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Abstract 

 

Despite progressive research regarding Mycobacterium tuberculosis, Tuberculosis (TB) still 

remains the top cause of mortality worldwide, with South Africa being considered one of the 

top ten TB burdened countries. Once infected with M. tuberculosis, TB disease can progress 

to an active disease state, or in the majority of cases, to an asymptomatic infection state known 

as latency or Latent TB infection (LTBI).  LTBI has been associated with recurrent TB 

infection after a cured TB treatment outcome was achieved as individuals with LTBI are 

considered reservoirs of active M. tuberculosis. A subpopulation of bacteria known as 

persisters is thought to contribute to the LTBI state. Persisters are viable but non-replicating 

(VBNR) bacteria, which are recalcitrant to antibiotic treatment. There are major knowledge 

gaps regarding VBNR bacteria and their role in TB treatment outcome. Previously it was 

observed that patients who underwent TB treatment had remaining lesion activity post-

treatment and presence of M. tuberculosis mRNA suggested the presence of unculturable 

bacteria likely being persisters. Based on positron emission tomography – computed 

tomography (PET/CT) scans patients were characterized as cured, recurrent or failed.  

 

In this study, we aimed to evaluate the correlation between persister formation and pulmonary 

TB (PTB) disease outcome. We exploited a dual fluorescence replication reporter plasmid, and 

assessed persister formation using a THP-1 infection model, which mimics the host 

environment pathogenic mycobacteria encounter upon infection. Whole genome sequencing 

(WGS) data of baseline and follow-up isolates was obtained to determine if isolates are 

genetically predisposed to persister formation. A total of eighteen baseline clinical M. 

tuberculosis isolates were selected for this study. Eight isolates represented bacteria from the 

cured patient group while ten isolates represented bacteria from the failed/recurrent patient 

group. Isolates were determined to be pure cultures and WGS data was obtained. In preparation 

for persister assay experiments, all eighteen isolates were transformed with the fluorescence 

dilution (FD) dual reporter plasmid pTiGc. Growth curves demonstrated that plasmid carriage 

had no impact on bacterial growth.  

 

The infection model enriched for persister-like cells as reflected by a subpopulation of VBNR 

bacteria. We found that all bacterial isolates possessed a level of replication heterogeneity at 

baseline both in vitro and intracellularly. Furthermore, isolates from the cured patients showed 

a significantly lower frequency of persister cells compared to that of isolates from the 
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failed/recurrent patient group. This suggests that the inherent tendency to form persister-like 

cells may have an impact on PTB treatment outcome. Data suggests that persister-like cell 

formation may be strain dependent. However, WGS data analysis were inconclusive. 

Furthermore, we recognize that the sample size is a crucial limiting factor in this study and 

further investigation with a larger cohort would be essential.  

  

This is the first study to use clinical strains of M. tuberculosis, obtained from failed/recurrent 

treatment outcome group, coupled with fluorescent reporters in combination with WGS data 

to investigate the relationship between persister formation and clinical outcome. Possible future 

work would be to to validate the phenotypic study findings in a murine model. Furthermore, 

future studies that determine the role of genetic variation in persister formation would greatly 

advance a patient-specific treatment regimen that could decrease the lengthy treatment 

duration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



iv 
 

Abstrak 

 

Ten spyte van goeie vordering in Mycobacterium tuberculosis navorsing bly Tuberkulose (TB) 

een van die grootste oorsake van sterftes wêrelwyd met Suid-Afrika (SA) wat as een van die 

top tien mees geaffekteerde lande geag word. Sodra ‘n persoon geïnfekteer word met M. 

tuberculosis kan TB tot n aktiewe siekte toestand vorder of, soos in meeste gevalle, tot ‘n 

asimptomatiese infektiewe toestand ontwikkel, beter bekend as ‘n latente TB infeksie (LTBI).  

LTBI word geassosieer met ‘n herhalende TB infeksie nadat ‘n pasiënt genees is met 

behandeling omdat individue met LTBI as ‘n bron van aktiewe M. tuberculosis geag word. ‘n 

Subpopulasie van bakterieë bekend as persisters word as bydraende faktore van die LTBI 

toestand gesien. Persisters is lewendige maar nie-repliserende (VBNR) bakterieë wat 

anktibiotika behandeling kan weerstaan. Daar is groot gapings in ons kennis oor VBNR 

bakterieë, asook die rol van dié selle in die finale uitkoms van TB. Daar is voorheen 

waargeneem dat pasiënte wat TB behandeling ondergaan het steeds aktiewe letsels het na 

behandeling en die teenwoordigheid van M. tuberculosis mRNA gee aanduiding daartoe dat 

nie kultiveerbare bakterieë, moontlik persisters, steeds teenwoordig is. Gebaseer op resultate 

van positron emissie tomografie – berekende tomografie (PET/CT) skanderings is pasiënte in 

kategorieë genaamd genees, herhalend of misluk verdeel.  

 

In die studie beoog ons om te evalueer wat die korrelasie is tussen persister vorming en 

pulmonêre TB (PTB). Ons maak gebruik van ‘n dubbele fluoreserende replikasie plasmied en 

asseseer persister vorming in ‘n THP-1 infeksie model wat die omstandighede naboots wat M. 

tuberculosis teëkom in die gasheer. Heel genoom volgorde (WGS) data was versamel van 

oorspronklike asook opvolg isolate om vas te stel of isolate geneties meer vatbaar is vir 

persister vorming. In totaal is agtien kliniese M. tuberculosis isolate gekies vir die studie. Agt 

isolate verteenwoordig die tenvolle herstelde patiënt groep, terwyl tien isolate pasiënte  die 

herhalende/mislukte groep verteenwoordig. Isolate was geïdentifiseer as rein kulture en WGS 

data was verkry. Ter voorbereiding van persister vorming eksperimente was al agtien isolate 

getransformeer met ‘n dubbel fluoreserende replikasie (FD) plasmied, pTiGc. Groeikurwes het 

gedemonstreer dat die plasmied geen effek het op bakteriële groei nie. 

 

Die infeksie model het verryk vir persister selle soos gereflekteer deur ‘n subpopulasie van 

VBNR bakterieë. Ons het gevind dat alle bakteriële isolate dui tot ‘n mate van heterogene 

replikasie, beide in vitro en intrasellulêr. Verder het die isolate van tne volle herstelde pasiënte 
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‘n aansienlike laer frekwensie persister selle gehad teenoor die isolate van die 

mislukte/herhalende groep. Dit dui daarop dat die natuurlike neiging van selle om persisters te 

vorm ‘n impak het op die uitkoms van TB behandeling. Data wys dat persister sel vorming 

spesifiek is tot kliniese isolate, alhoewel WGS data nie oortuigend was om hierdie observasie 

te ondersteun nie. Verder herken ons dat die klein aantal monsters ‘n belangrike beperkende 

faktor is in die studie en verdere ondersoek met ‘n groter monster poel noodsaaklik is. 

 

Hierdie is die eerste studie van sy soort wat gebruik maak van kliniese M. tuberculosis selle 

verkry van mislukte/herhalende pasiënte groepe met behulp van fluoreserende plasmiede en 

WGS data om die verhouding tussen persister vorming en kliniese uitkomste te bepaal. 

Toekomstige werk moet daarop fokus om die fenotipiese uitkomste in ‘n muis model te 

bevestig. Verder sal studies wat fokus op die effek van genetiese variasie en persister 

vorming groot vordering maak in ‘n meer pasiënt gefokusde benadering tot behandeling, wat 

die verlengde behandelings tydperk wat tans nodig is moontlik kan verkort.  
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Chapter 1 

Introduction 

1.1. Background 

 

1.1.1. The prevailing tuberculosis pandemic 

Mycobacterium tuberculosis (M. tuberculosis) the etiologic agent of tuberculosis (TB) – which 

is a contagious infection that has tormented mankind for millennia. M. tuberculosis was 

identified in the 19th century (Barberis et al., 2017). However, this pathogen continues to cause 

a worldwide epidemic, where new TB cases were estimated to reach 10 million in 2019 (WHO, 

2020). Factors that advance the high TB burden include co-morbidities like diabetes and human 

immunodeficiency virus (HIV) co-infection (Singh et al., 2020). However, factors such as the 

prevalence of totally drug-resistant (TDR), extremely drug-resistant (XDR)-, multidrug-

resistant (MDR)-, drug-resistant (DR)- and persistent M. tuberculosis decrease the efficacy of 

TB treatment resulting in longer treatment regimens (Millet et al., 2013; Seung, Keshavjee and 

Rich, 2015; Singh et al., 2020; Yam et al., 2020). DR is defined as an organism that is resistant 

to one drug e.g. isoniazid, MDR refers to M. tuberculosis which is resistant to two first-line TB 

drugs namely, isoniazid and rifampicin (Rif), XDR-TB a kind of MDR-TB which is resistant 

to all fluoroquinolones including at least one Group A drug. Group A drugs are are the foremost 

potent group within the second-line drug class for treatment against drug-resistant  M. 

tuberculosis consisting of bedaquiline, levofloxacin, linezolid and moxifloxacin (WHO, 2021). 

Mycobacterial persisters are a subpopulation of bacteria that survives environmental stressors 

and antibiotic concentrations which are lethal to phenotypically non-persister mycobacteria 

(Goossens, Sampson and Rie, 2021).   

 

The TB burden in Africa, which encompasses South Africa, is high compared to the rest of the 

world (WHO, 2020). In 2019 South Africa was considered one of the top ten high TB burdened 

countries world-wide with 360 000 incidences. Mortality due to TB in South Africa (excluding 

patients with HIV co-infection) was 22 000 during 2019 (WHO., 2020). It is estimated that 

~80% of the South African population has TB, of which ~ 24% to 88% have latent TB infection 

(LTBI) (Mahomed et al., 2011; Ncayiyana et al., 2016; Drain et al., 2018).  
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1.1.2. Understanding the disease and bacterium 

The TB disease paradigm is a dynamic continuum defined by various states between active and 

latent infection, including incipient and subclinical states (Barry et al., 2009). An incipient 

disease state occurs when viable M. tuberculosis infects a host and there is a likelihood of 

progression to active disease without intervention but is asymptomatic, has not induced 

radiographic irregularities, and is culture-negative. A subclinical TB state is caused by viable 

M. tuberculosis which results in abnormalities besides clinical TB symptoms and can be 

detected with the use of existing radiological and microbiological tests. LTBI is defined as 

causing an immune response following M. tuberculosis antigen stimulation by immunological 

tests [TST (Tuberculin Skin Test) or IFN-𝛾 (Interferon-gamma) release assay (IGRA), 

QuantiFERON-TB Plus, and Statens Serum Institut, Copenhagen, Denmark C-Tb] without 

clinical symptoms of the disease and a normal chest radiograph e.g. positron emission 

tomography-computed tomography (PET/CT) scan. Following the establishment of LTBI, 

there are multiple pathways through which the disease can progress; (i) latency (consisting of 

a persistent disease burden) (ii) eliminated infection, (iii) fast or (iv) slow reactivation through 

the subclinical and incipient disease to active disease, or (v) cycling between incipient and 

subclinical states which may lead to symptomatic disease or disease resolutions (Fig 1.1). 

Individuals with LTBI are considered reservoirs for active TB cases as reactivation occurs in 

approximately 5%-15% of these individuals (Kiazyk and Ball, 2017; Jeon, 2020).  

  

Figure 1.1. The TB disease paradigm adapted from Drain et al., 2018 
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Pathogenesis studies have suggested a similarly complex disease progression using animal 

models as observed when M. tuberculosis infects a human host. Infection by a strain of the M. 

tuberculosis complex can result in an active disease state, elimination through an acquired or 

innate immune response, or the bacteria can adapt to the hostile environment (Drain et al., 

2018; de Martino et al., 2019). Variation in host immune response, inter-host variation to 

treatment responses, genetic variation among strains, and possibly heterogeneity of 

mycobacterial populations upon initial infection has been responsible for these inconsistent 

outcomes, which could be explained by the yin-yang paradigm.  

 

Under different laboratory designs, the yin-yang paradigm relates to both patients and 

pathogens. The paradigm theorizes that upon infection the overall bacterial populations 

consists of growing (yang-orange), slow-growing and non-growing (yin-grey) sub-populations 

with different metabolic statuses in a consortium which can interconvert at the level of the 

bacteria (expressed by the gradient from light to dark) (Fig 1.2) (Zhang, Yew and Barer, 2012; 

Zhang, 2014a). The grey dot in Yang is connected and rooted in the Yin half (grey), and the 

orange dot in Yin, reverters/persisters, is connected to the Yang half (red). In the case of TB 

treatment, TB antibiotics kills growing bacteria (Yang), while leaving reverters (orange dot) 

untouched. Antibiotic-tolerant persisters/reverters can regress to a replicating state, causing TB 

disease regression. The yin-yang paradigm could explain LTBI  in humans. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  The yin-yang paradigm adapted from Zang., 2014 

 

M. tuberculosis genomes are about 4.4 Mbp in length, GC rich, and comprise of ~ 4000 genes 

with ~99% similarity between M. tuberculosis complexes (Fig 1.3). However, specific strains 

assigned to a specific M. tuberculosis complex species and M. tuberculosis lineages depict 

notable differences in their virulence, pathogenesis and phenotypes, which have been reported 

Persisters 
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to have an impact on clinical appearance (Coscolla and Gagneux, 2010). Increased virulence 

has been observed especially in modern lineages including the Euro-American strains (Lineage 

4) and the Beijing family (Lineage 2) compared to other ancient M. tuberculosis lineages for 

example the M. africanum strains (Lineage 5 and 6) and East-African-Indian (Lineage 1) 

(Merker et al., 2015).  

 

Figure 1.3: M. tuberculosis complexes adapted from (Tientcheu et al., 2017). 

 

Phenotypic and genotypic heterogeneity of mycobacterial populations may contribute to the 

variation in patient outcome as described by Figure 1.1. Various studies have shown that killing 

curves of M. tuberculosis under drug stress are biphasic, indicative of heterogeneous 

populations consisting of a mix of rapidly killed bacteria and those tolerant to antibiotic stress 

(Ahmad et al., 2009). During antibiotic treatment of heterogeneous mycobacterial populations, 

antibiotic resistant and antibiotic tolerant (termed persisters) bacterial populations could arise. 

Antibiotic resistance differs from antibiotic tolerance. Antibiotic resistance is driven by non-

reversible genetic mutations, and is either antibiotic-specific or drug class-specific; antibiotic 

resistance alters the lowest antibiotic concentration required to inhibit bacterial replication, 

known as the minimum inhibitory concentration (MIC). However antibiotic tolerance can 

occur in strains with no resistance-conferring mutations, can be observed across antibiotic 

classes (known as multidrug tolerance), and does not affect the MIC. Various bacterial states 

which contribute to survival under antibiotic pressure have previously been observed such as 

tolerance, persistence and dormancy.  

1.1.3. Persister formation and the mechanisms of antibiotic tolerance. 
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Innate immune responses coupled with the adaptability of M. tuberculosis strains to these 

innate immune responses have been suggested as a mechanism that allows individuals with 

LTBI to maintain a dynamic relationship with the bacterium (de Martino et al., 2019). Innate 

immune components include macrophages (M), dendritic cells, neutrophils, mast cells, 

airway epithelial cells and  natural killer cells (de Martino et al., 2019). 

 

Ms are suggested to be the first line of defense against M. tuberculosis. Ms subject the 

bacteria to stressors such as hypoxia, low pH, reactive oxygen species, and reactive nitrogen 

species (Flynn and Chan, 2001). Exposure to Ms has been shown to slow or halt the 

replication of M. tuberculosis (Levitte et al., 2016). The bacilli adapt to macrophage uptake 

conditions by entering a persistent state, where the persister bacilli are slowly or non-

replicating and phenotypically drug-tolerant and can resume growth upon removal of the 

stressor to re-activate infection (Keren, Mulcahy and Lewis, 2012; Balaban et al., 2019). 

Phagosomes inside Ms has acted as a safeguard against M. tuberculosis during the latent 

infection phase where in some Mϕ’s M. tuberculosis growth is partially restricted and in others 

M. tuberculosis is actively growing. (Flynn and Chan., 2001; Orme., 1988; Russell., 2019). M. 

tuberculosis can neutralize strategies of Ms to suppress the pathogen. These strategies include 

intracellular trafficking, neutralization of toxic components such as reactive oxygen species 

and toxic metals, the acquisition of cytosol access, inhibition of autophagy, and the induction 

of host cell death, (Xu et al., 1994; Vergne et al., 2004; van der Wel et al., 2007; Simeone et 

al., 2012; de Martino et al., 2019; Chen et al., 2020). 

  

To date little is known regarding the impact of M. tuberculosis persisters on disease 

progression. However, the persister phenomenon has been identified in numerous bacteria, 

including Escherichia coli, Pseudomonas aeruginosa and Salmonella spp. which have been 

utilized as model organisms for identifying mechanisms of persister formation and drug-

induced tolerance (Möker, Dean and Tao, 2010; Hill and Helaine, 2019). Mechanisms of 

tolerance which have been identified across bacterial species and include, but are not 

constrained to, translational and post-transcriptional gene regulation, lowering the metabolic 

activity of a sub-population of bacteria, metabolic shifting (shifting between energy generating 

pathways), cell wall thickening, and various genetic adaptations conferring tolerance 

(Goossens, Sampson and Rie, 2021). Undoubtedly, a variety of factors affect the course of M. 

tuberculosis infections within individuals. It is suggested that persisters play a role in the 
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dynamic continuum of the TB disease as one of the factors influencing disease outcome and 

recurrence.  

 

1.2. Problem Statement 

Despite extensive research on TB, several aspects of the disease and its causative agent, M. 

tuberculosis are still poorly understood. A major knowledge gap surrounds the physiological 

state of the bacteria involved in LTBI. LTBI is in part attributable to the phenomenon of 

bacterial persistence. Persister bacteria are defined here as non- or slowly replicating, 

antibiotic-tolerant bacteria, where antibiotic tolerance is reversible and not genetically 

resistant. High treatment failure rates highlight that these persister populations pose a major 

problem for effective TB treatment. 

 

Until recently, identification and isolation of persister bacteria has been extremely difficult. 

This is attributed to the low bacterial numbers (as only 1% of bacterial cultures comprise 

persisters) and lack of replication. Unfortunately, factors that trigger the entry into, survival in, 

and exit from, a persistent state are largely unknown. Determining the formation of persisters 

in clinical isolates from South African TB patients who have remaining lesion activity in the 

lung based on positron emission tomography PET-CT imaging could point to strains that are 

more likely to form persisters. This could provide valuable information about the underlying 

cause for unfavourable clinical outcome after treatment.  

 

In this study we will be exploiting a novel replication reporter plasmid (pTiGc) and next-

generation sequencing (NGS) data on sequence variants in M. tuberculosis for each patient to 

determine a correlation between patient outcome and bacterial data.  

 

1.3. Hypothesis 

We hypothesise that clinical isolates (taken at baseline) of individuals that show remaining 

lesion activity on PET-CT imaging and the presence of M. tuberculosis mRNA post TB 

treatment are predisposed to the formation of M. tuberculosis persisters.  

 

 

1.4. Aim and Objectives 
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Aim: 

To determine whether M. tuberculosis strains from TB patients who were considered cured, 

but have relapsed, or failed treatment, are more likely to be predisposed to persister formation 

than those who remained “cured”. 

 

Objectives: 

Phenotypic 

i. Assessing persister proportions in all clinical isolates (taken at baseline) from cured, 

recurrent/failed patient groups using fluorescence dilution (FD) and flow cytometry. 

ii. Determine the correlation of persister formation with PET-CT scan classifications 

from all patient groups. 

Genotypic 

iii. Perform comparative next generation sequencing analysis of the isolates from all 

patient groups. 

iv. Investigate strain evolution during treatment. 

v. Determine whether sequence variation predisposes persister formation in clinical 

isolates (taken at baseline) from patient groups.  

 

 

1.5. Thesis Overview 

Chapter 2 Literature review: Persisters and the genetic contributors to their 

formation. 

Chapter 3 Assessment of persister proportions in clinical M. tuberculosis isolates 

(taken at baseline) from cured, recurrent/failed patient groups. 

Chapter 4 Comparative next generation sequence analysis of clinical isolates (taken 

at baseline) from cured and recurrent/failed patient groups.  

Chapter 5 Discussion and conclusions 

Chapter 6 Reference list 

 Supplementary Material 

 Appendices 
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Chapter 2 
 

  

Literature review: Persisters and genetic contributors to their formation 
 

Antibiotic resistance is undoubtedly one of the high-profile challenges human health currently 

faces. However, in the last decade, antibiotic tolerance has also come to the fore. This is as a 

result of identification of hard-to-treat bacterial infections, despite the lack of genetically 

encoded resistance, with the tendency to cause relapse. This chapter therefore provides an 

overview of the antibiotic tolerant subpopulation termed “persisters”, the tools utilized to study 

them, triggers of persister formation and highlight the mechanisms persisters use to overcome 

environmental stress.  

 

2.1. What is persistence? 

 

2.1.1. Persistent infections vs antibiotic persistence 

 

The term “persistent infections” is generally used when a pathogen resides in a host for 

prolonged time periods, independent of the host immune response (Balaban et al., 2019). 

However, antibiotic persistence refers to a bacterial sub-population that is tolerant of prolonged 

antibiotic treatment, these bacterial populations are also referred to as ‘persisters’ (Lewis, 2010; 

Zhang, 2014a; Gollan et al., 2019). Persistent infections are thought to be partly attributed to 

resistance or poor pharmacokinetics of the infecting populations as well as antibiotic 

persistence, which will be referred to as ‘persistence’ throughout (Levison, Matthew; Levison, 

2013; Cicchese et al., 2020).  

 

2.1.2. Antibiotic resistance vs antibiotic persistence 

 

Bacteria are defined as antibiotic resistant when the bacteria proliferate at lethal antibiotic 

concentrations. Resistance to a single drug or family of drugs is largely due to a genetic 

alteration of a non-resistant parent strain [de novo mutations or mutations acquired by 

horizontal gene transfer (HGT)](Figure 2.2.2)(Papavinasasundaram et al., 2005). Once 

resistance has been acquired, the mutation is typically passed through the generations (Davies, 

J.; Davies, 2010; Gollan et al., 2019). The level of resistance is usually measured utilizing a 
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minimum inhibitory concentration (MIC) assay either by culturing microorganisms in liquid 

media or on solid growth medium plates (Wiegand, Hilpert and Hancock, 2008). This refers to 

the lowest antibiotic concentration required to inhibit bacterial replication. Thus, the relation 

between MICs and antibiotic resistance is directly proportional (Balaban et al., 2019). 

 

‘Persistence’ is a phenomenon that occurs at a population level depicted by a biphasic killing 

curve indicative of a heterogeneous population (Fig 2.1) (Gold and Nathan, 2017; Balaban et 

al., 2019). This heterogeneous population comprises of cells that are susceptible to lethal doses 

of antibiotics and a sub-population of antibiotic tolerant cells, where antibiotic tolerance is 

reversible and not genetically encoded (Helaine and Kugelberg, 2014). The progeny of 

persisters is drug-susceptible when regrown in the absence of antibiotics as depicted by Figure 

2.1. Unlike resistant bacteria, persister cells are either slow or non-growing in the presence of 

antibiotics. Persisters are defined either as Type I (“triggered”) persisters exit slowly from log 

to stationary phase, while type II (“spontaneous”) persisters develop by phenotypic flipping in 

the absence of external stressors, which can switch back to a normal phenotype, and rise in 

numbers during the exponential growth phase (Levin-Reisman and Balaban, 2016; Gold and 

Nathan, 2017). However, it is worth noting, though, that persisters are much more complex 

than type I and type II, and are highly heterogeneous with variable metabolic activity.  

 

Figure 2.1: Bi-phasic killing curve and the difference between antibiotic resistance and antibiotic 

persistence. Review  of drug treatment (red-plane) with persisters present (gold) or when antibiotic 
resistance occurs (green) within the bacterial population. Susceptible cells (grey) are destroyed in both 

cases after the initial procedure, as seen by the sharp decline arrow. However, resistant cells can 
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multiply during this process, while persisters can only survive (slowly falling arrow), resulting in a bi-

phasic killing curve for persistence. Both populations of surviving cells multiply at natural rates until 

antibiotic therapy is stopped; persisters, however, can have a longer lag time. At the starting population 

(mid-blue plane), persisters will form a vulnerable population, while antibiotic-resistant cells would 

form a population made up entirely of resistant mutants. This distinction has an effect on a subsequent 

antibiotic therapy (second red plane)(adapted from van den Bergh, Fauvart and Michiels, 2017). 

 

2.1.3. Antibiotic persistence vs tolerance and dormancy 

 

Tolerance, persistence, and dormancy are all phenomena of survival to antibiotic treatment 

without an increase in the MIC (Meylan, Andrews and Collins, 2018). These three concepts 

are often used interchangeably, however, cells referred to as dormant are considered viable, yet 

do not replicate in optimal environmental conditions (Balaban et al., 2019)(Fig 2.2). Dormant 

bacteria are usually tolerant of antibiotic treatment because of their growth arrest and 

decreased/inactive metabolism (Amato, Orman and Brynildsen, 2013). Literature suggests that 

the persistent state is an active stress response (Peyrusson et al., 2020). Tolerance refers to the 

ability of an entire bacterial population to survive bactericidal activity due to having a lower 

killing rate, whereas persistence refers to the survival of a sub-population of non- or slowly 

growing drug-tolerant cells in response to antibiotic treatment as reflected by a biphasic killing 

curve. Mechanisms linked to dormancy and tolerance include reduced metabolic activity, 

which occurs in all three cell types (dormant, persistent and tolerant cells) (Greening, Grinter 

and Chiri, 2019). Two areas of interest in persister research are the molecular mechanisms of 

tolerance which enables the persister bacteria to survive stress conditions and the mechanisms 

that generate heterogeneity with the population. These mechanisms are studied utilizing 

various tools, which are further described below.  
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Figure 2.2: The overlapping characteristics of persistence, resistance, and dormancy. Created by 

JL Coetzee 

 

2.2. Tools used to study persistence 

 

The persistence phenomenon was discovered in the 1940s (Hobby, Meyer and Chaffee, 1942; 

Bigger, 1944). However, the transient nature of this subpopulation of bacteria, the limited 

evidence of their clinical impact and the lack of tools to study this hard-to-culture sub-

population led to a major decline in interest. During the era of genetic engineering in the early 

1980s, nearly 40 years after this phenomenon was first described, a breakthrough occurred 

(Moyed and Bertrand, 1983). The identification of three mutants in a gene termed hipA 

displaying the high persister (hip) phenotype reignited the interest in the field and subsequently 

tools were developed that could overcome challenges associated with studying persister 

bacteria (Moyed and Bertrand, 1983). 

 

During the initial boom in renewed interest, bacterial populations were commonly 

environmentally or genetically manipulated to favor persister formation (McCune et al., 1966; 

Wayne and Hayes, 1996). Although these techniques were essential in identifying pathways 

and stressors involved in mediating persister levels within a population, it became evident that 
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single-cell technology would be advantageous, as persisters are only a subgroup of bacterial 

populations (Verstraeten et al., 2016). Thus, techniques such as microfluidics, flow cytometry, 

and fluorescent microscopy received preference (Fig 2.3.). Microfluidics is utilized to track 

behavior of single bacteria over time using time-lapse microscopy to analyze the history and 

fate of persister cells (Delincé et al., 2016). This technique allowed researchers to show that 

persisters are pre-existing non-growers in Escherichia coli (Balaban et al., 2004). Although 

microfluidics allows for the visualization and tracking of single cells, the number of cells that 

can be analyzed simultaneously is limited. Live cell microscopy in M. tuberculosis is time 

consuming as the doubling time of the organism is between 18 and 54 hours (Gill et al., 2009). 

Therefore, flow cytometry provides an alternative that allows for high throughput assessment 

and sorting of single cells of interest, when combined with fluorescent reporters. The use of 

flow cytometry has been exploited to demonstrate that dormancy (lack of energy metabolism) 

is neither necessary nor adequate for persister formation (Orman and Brynildsen, 2013). 

Techniques that utilize flow cytometry in combination with a dual-fluorescence replication 

reporter that allows tracking of bacterial proliferation at the single cell level have provided new 

insights into persister populations (Roostalu et al., 2008; Helaine et al., 2010; Mouton et al., 

2016). Utilizing flow cytometry and fluorescence microscopy, Lerner et al., 2017 found that 

necrotic macrophages provide a niche for replicating or non-replicating M. tuberculosis (Lerner 

et al., 2017). 

 

Omics techniques such as genomics, transcriptomics, and metabolomics coupled with 

improved bioinformatic analysis have led to the elucidation of changes in persister cells. An 

amalgamation of these techniques has been essential in identifying genes involved in persister 

formation, gene expression profiling, and persister evolution within a heterogeneous 

population (Cameron et al., 2018; Stapels et al., 2018; Choudhary et al., 2019; Liu et al., 2020). 

Furthermore, besides wet bench techniques utilized in tracking and analyzing persistence, 

mathematical modeling has been used for in silico persister behavior predictions and the design 

of molecular models (Lou, Li and Ouyang, 2008; Spalding et al., 2018).  
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Figure 2.3: Tools utilized in understanding bacterial persistence. Non-single cell techniques are 

shown in grey. Single-cell techniques are shown in blue. (adapted from Gollan et al., 2019) 
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2.3. Relevance of persisters in pathogenic diseases 
 

The above-mentioned tools have been proven to be essential in the study of persisters in various 

pathogens including, but not restricted to, Pseudomonas aeruginosa, Salmonella spp., 

Escherichia coli, Staphylococcus aureus and M. tuberculosis as shown in Table 2.1. 

 

Persister formation has generally been related to the inability of the host immune system to 

eradicate bacterial pathogens. This is due to host immune deficiency, bacterial evasion, and 

subversion (Monack, Mueller and Falkow, 2004; Grant and Hung, 2013; Fisher, Gollan and 

Helaine, 2017). However, more recently it has been shown that antibiotic treatment 

significantly increases the survival of a variety of pathogens in tissues (Agarwal et al., 2016; 

Pham et al., 2021). Whether these bacteria are persisters are unknown. Literature suggests that 

difficulty to distinguish between bacterial survival that is driven by poor pharmacokinetics 

(lack of penetration by antibiotics), phenotypic adaptation to stress or the induction of 

resistance genes in vivo gives rise to this ambiguity. Nonetheless, various studies show the role 

of persisters during infection (Table 2.1).  

 

It has been speculated that antibiotic tolerance may be related to bacteria's capacity to survive 

during infection. Regardless of antibiotic therapy, chronic infections improve pathogen 

dissemination in host communities. The interaction between host immune systems and 

virulence factors of pathogens can bring about tolerant subpopulations (triggered or 

spontaneous) (Diard and Hardt, 2017; Bakkeren, Diard and Hardt, 2020). This is however 

difficult to test in clinical settings thus, macrophage, in vitro and in vivo models are used to 

analyse this hypothesis. In vivo models have observed long-term feacal shedding in persistent 

infections of Salmonella enterica subspecies within mice (Lawley et al., 2008). Persister cells 

of S. typhimurium were recently found to occupy M2-like macrophages in the granuloma of  

murine spleens (Pham et al., 2021). This observation correlates with in vitro studies that have 

shown that polarization of macrophages to a M2-like phenotype allows for increased pathogen 

survival within cells, including during antibiotic treatment (Stapels et al., 2018; Thiriot et al., 

2020) 

 

Cystic fibrosis leads to persistent lung infection and is connected to formation of biofilms 

containing heterogeneous populations of P. aeruginosa (Høiby, Ciofu and Bjarnsholt, 2010). 

To date, the clinical observations are unreproducible utilizing animal models, largely due to 

Stellenbosch University  https://scholar.sun.ac.za



15 
 

the lack of standardized animal models (Moreau-Marquis, Stanton and O’Toole, 2008).This is 

however being addressed in recent studies (Geddes-McAlister, Kugadas and Gadjeva, 2019). 

Otherwise, in vitro biofilm systems have shown that large subpopulations of bacterial cells 

survived antibiotic treatment, hypoxia, and nutrient starvation although bacteria were 

genetically antibiotic susceptible. The rate of persister formation has been observed to be 1000-

fold higher in biofilms compared to in vitro cultures (Spoering and Lewis, 2001). In a study by 

Ramsey et al., 1999, patients receiving intermittent antibiotic treatment for cystic fibrosis 

displayed transient reductions of P. aeruginosa in sputum, however, reductions become less 

pronounced over time. Isolates obtained from patients who lacked genetic resistance are 

therefore indicative of evolution towards tolerance or persistence (Ramsey et al., 1999). A 

follow-up study showed that high-persister mutants were isolated from these patients with 

cystic fibrosis (Mulcahy et al., 2010).  

 

S. aureus also forms persisters referred to as small-colony variants (SMVs), which are tolerant 

to host immune defense and antibiotic treatment (Sendi and Proctor, 2009). Infections thus 

result in persistent, relapsing infections such as osteomyelitis. After a long lag period before 

resuming growth after separation from mice or patient abscesses, and after growth under 

stresses such as low pH, SMVs have been observed (Vulin et al., 2018). In accordance with 

previous literature, antibiotic tolerance has been observed in these SMVs, indicating a link 

between chronic infections, recurrence in a host, and antibiotic tolerance. (Vulin et al., 2018). 

 

Similar to the above-mentioned pathogens, M. tuberculosis causes recurrent infections that 

require lengthy antibiotic treatment. In patients who undergo antibiotic treatment, multiple 

subpopulations have been identified with variable molecular activity and a mosaic of resistance 

profiles (Wallis et al., 1999; Fauvart, de Groote and Michiels, 2011; Liu et al., 2016). 

Numerous in vivo and ex vivo studies have identified resistance-independent mycobacterial 

survival during antibiotic treatment (Dhar and J. D. McKinney, 2010). Studies utilizing animal 

models have shown that the caseum in lesions is a niche for drug-tolerant M. tuberculosis 

(Ramos et al., 2017; Blanc et al., 2018; Sarathy et al., 2018; Sarathy and Dartois, 2020). A 

further example of M. tuberculosis persistence after anti-TB treatment demonstrated the 

presence of M. tuberculosis mRNA in culture-negative sputum samples and remaining lesion 

activity post pulmonary TB treatment (Malherbe et al., 2016). Hspx, which has been related to 

long-term M. tuberculosis survival, was the most commonly identified transcript in the study 

(Yuan, Crane and Barry, 1996; Malherbe et al., 2016). The detection of mRNA is suggestive 
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of ongoing transcription (based on the short-life of mRNA) (Pasipanodya et al., 2007, 2010; 

Wejse et al., 2008). Adaptation to various stress factors such as nutritional stress, oxidative 

stress, antibiotics and growth in mouse lungs have been found to increase persisters. The 

increased persister formation due to stresses have been shown to result from stress-induced 

noise in RNA expression (Leung and Lévesque, 2012). Infected mouse lungs have been shown 

to contain subpopulations of growing and non-growing, yet metabolically active, bacteria 

which are absent from mice lacking interferon gamma, a cytokine essential for anti-TB 

immunity (Manina, Dhar and McKinney, 2015). Survival of pathogens including M. 

tuberculosis is dependent on the bacterium’s ability to adapt to stressors.  

 

Table 2.1: Diseases known to be influenced by bacterial persisters (adapted from Van den Bergh 

et al.,2016 and Zhang.,2014).  

Disease Pathogen References 

Tuberculosis Mycobacterium 

tuberculosis 

Keren et al., 2011; Sarathy and Dartois., 

2020; Liu et al., 2016; Malherbe et al., 2016 

Lyme Disease Borrelia burgdorferi Sharm et al., 2015; 

Feng, Auwaerter and Zhang., 2015; 

Feng J et al., 2020 

Urinary tract infections Escherichia coli, 

Enterococcus, 
Pseudomonas 

aeruginosa, Chlamydia, 

Mycoplasma genitalium 

Keren et al., 2004 

Michiels et al., 2016 

Liebes et al., 2014; 

Zou and Shnaker., 2014; McAuliffe et al., 

2006 

 

 

Peptic ulcer Helicobacter pylori Fisher, Gollan and Helaine., 2017; Hathrobi 

et al., 2018 

Bacteremia/sepsis Staphylococcus aureus, 
Group B Streptococcus 

Bigger.,1944; Lechner, Lewis and 

Bertram.,2012; Johnson and Levin.,2013 

Endocarditis Streptococcus, 
Staphylococcus, 

Enterococcus 

Lueng and Lévesque.,2012; Elgharably et 
al.,2016 

Brucellosis Brucella arbortus Amraei et al., 2020 

Salmonellosis Salmonella enertica Vega et al., 2013; Arnoldini et al., 2014 

Biofilms infections, 

periodontitis, and  

Prosthetic device 

infections 

Multiple pathogens Colon et al., 2014; Van Geelen et al., 2020, 
Lewis., 2008 

2.4. Triggers of persisters 

The main triggers of persister formation are linked to environmental stressors like starvation, 

oxidative or extracellular metabolite signals (Harms, Maisonneuve and Gerdes, 2016).  
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2.4.1. Nutritional stresses 

Various models have utilized nutrient starvation as an inducer of persister formation (Betts et 

al., 2010; Grant et al., 2013). The rationale behind this is that the antibiotic killing rate is 

dependent on the bacterial growth rate that is directed by carbon source availability and 

multiple other nutrient sources such as glycerol. Amino acid and nitrogen starvation examples 

have been found to increase persisters in P. aeruginosa, S. aureus and E. coli (Leung and 

Lévesque, 2012; Brown, 2019; Nguyen et al., 2020). A carbon source shift has been associated 

with the stringent response and the observation of elevated levels of guanosine tetra- or 

pentaphosphate [(p)ppGpp] (Que et al., 2013).  

 

2.4.2. Oxidative, acidic and antibiotics 

In addition to nutritional shifts, changes in acidic and oxidative stressors have been identified 

as triggers of persister formation. For example, treatment of E.coli cultures with reactive 

oxygen species (ROS) through addition of salicylate to the culture media led to an increase in 

persister formation (Vega et al., 2012). Similarly, increased oxidative stress in E.coli, utilizing 

indole, was shown to promote persister formation (Vega et al., 2012, 2013). Combination 

treatment with antibiotics and oxidative stress has been shown to cause DNA damage, 

increasing persisters (Wu et al., 2012). Alterations in pH have been observed to promote 

persister formation, for example, Helaine et al. showed that pre-exposure of Salmonella to 

acidic environments (>4.5) significantly increased persister formation (Helaine et al., 2014). 

Additionally, antibiotic treatment could increase persister formation. Specifically, S. aureus, 

and E. coli pretreated with sub-MIC concentrations of multiple antibiotics significantly 

increased persister formation (Dörr, Lewis and Vulić, 2009; Johnson and Levin, 2013; Kwan 

et al., 2013; Gollan et al., 2019). A similar observation was made when M. tuberculosis was 

treated with isoniazid (INH) (Walter et al., 2015). Importantly, clinical strains of M. 

tuberculosis which were exposed to INH showed strong red fluorescence when using a dual 

reporter bacteriophage system indicating increased persister levels, as well as the subsequent 

emergence of resistant variants (Jain et al., 2016). The dual reporter bacteriophage system 

consists of a green fluorescent reporter (GFP) and a red fluorescent protein (RFP). The 

bacteriophages follow a similar principle to FD where dilution of RFP is observed to determine 

persister proportions, those which retained RFP intensity were suggested to be persisters (Jain 

et al., 2016). A similar occurrence was observed in a clinical strain of Klebsiella pneumoniae, 

where multi-drug tolerant persisters were identified utilizing killing experiments (Ren et al., 

2015). The impact of antibiotic treatment on persister formation is relevant to clinical settings 
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since antibiotic delivery and pharmacokinetics result in variable antibiotic concentrations being 

present in blood (Levison, Matthew; Levison, 2013). The low antibiotic concentration in blood 

could thus increase the persister population size and the pool from which resistant mutants 

could arise.  

 

2.4.3. Host 

During infection, bacteria experience a medley of stressors (mentioned above) in various 

degrees of intensity, which could favour persister formation. It is therefore suggested that 

persisters that form inside an infected host, unlike persisters formed under in vitro stress 

conditions, are uniquely adapted to host-specific triggers in response to which they are first 

formed. In the case of M. tuberculosis, a subpopulation of non-growing, but metabolically 

active mycobacteria was found to survive INH treatment and a combination of stressors in 

macrophages and after being transplanted from lungs of infected mice (Manina, Dhar and 

McKinney, 2015; Mouton et al., 2016). These studies demonstrate that persisters formed in 

host environment are different than in vitro persisters as these are generally induced by a single 

stress factor.  

 

2.5. Pathways and genes involved in persister formation in M. tuberculosis  

Literature highlights that multiple interconnected pathways are responsible for the activation 

and formation of a persister state in response to the stress imposed (Helaine and Kugelberg, 

2014; Amato and Brynildsen, 2015; Gollan et al., 2019). Several of these have been identified 

with single-gene mutation studies, identifying these genes as  possible drivers of persister 

formation (Glickman, Cox and Jacobs, 2000; Bryk et al., 2008; Dhiman et al., 2009). However, 

the majority of mechanisms exploited by persisters are not stressor-specific and occur in 

response to multiple stressors (Michiels et al., 2016). 

 

2.5.1. The Stringent Response 

Persister research has identified starvation as an important trigger of persister formation 

(Potrykus and Cashel, 2008). The stringent response is a conserved stress response in all 

bacteria involving the construction of the hyperphosphorylated guanosine pentaphosphate or 

tretraphosphate (p)ppGpp which relocates cellular resources allowing the development of a 

VBNR state aiding in survival of cells to environmental stress (Gaca, Colomer-Winter and 

Lemos, 2015). The metabolism of (p)ppGpp is mediated by Rel/SpoT homolog (RSHs) 
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proteins (Atkinson, Tenson and Hauryliuk, 2011). Here RelA functions as a (p)ppGpp 

synthetase and SpoT is a bi-functional enzyme that is active in (p)ppGpp hydrolysis activity 

and weak (p)ppGpp synthetase. M. tuberculosis however, encodes a singular long RSH termed 

RelMtb, that is conserved in all Mycobacterium species (Avarbock et al., 1999; Prusa, Zhu and 

Stallings, 2018). RelMtb was shown to complement a RelA E .coli mutant for growth in minimal 

media, confirming its ability to induce the stringent response (Avarbock et al., 1999). The 

deletion of RelMtb has been shown to produce a RelMtb null mutant, suggesting its importance 

as the only functional (p)ppGpp synthetase in M. tuberculosis. RelMtb has been found to be 

important in chronic infection of mice (Weiss and Stallings, 2013). 

 

2.5.2. SOS response 

M. tuberculosis has two DNA damage response pathways that are utilized during exposure to 

oxidative and antibiotic stress; the LexA/RecA-dependent SOS response and a LexA/RecA-

independent pathway (Müller, Imkamp and Weber-Ban, 2018). Stressors generally cause DNA 

damage resulting in single stranded DNA (Dörr, Lewis and Vulić, 2009). RecA activates the 

LexA repressor, which leads to bacterial suppression of transcription (Dörr, Lewis and Vulić, 

2009; Müller, Imkamp and Weber-Ban, 2018). Interestingly suppression/depletion of DNA 

gyrase in M. tuberculosis results in the activation of LexA/RecA-mediated SOS response and 

subsequently drug tolerance through formation of a persister subpopulation (Choudhary et al., 

2019). 

 

2.5.3. Metabolic slowdown/shifting 

Metabolic slowdown and shifting has been observed in persisters from in vitro models. This is 

because antibiotics and stressors such as Rifampicin target metabolically active bacteria (Hu 

et al., 2000). For example, rifampicin kills metabolically active bacteria that are in log-phase 

of growth in comparison to the stationary phase bacteria that have shown to utilize metabolic 

slowdown via decreased replication is a successful mechanism for evading antibiotic killing 

and inducing antibiotic tolerance (Hu et al., 2000). Similarly, Keijzer et al. observed a 10-fold 

reduction in ATP levels 7 days post rifampicin treatment of an M. tuberculosis Beijing strain 

(De Keijzer et al., 2016). Genes involved in aerobic respiration, the TCA cycle and ATP 

synthesis are major pathways involved in energy metabolism which have been found to be 

down-regulated in response to stress (Walter et al., 2015). Walter et al found that after 14 days 

post TB treatment initiation, Rv1304 (atpB), Rv1308 (atpA), which have been shown to be 

essential for in vitro growth (Dejesus et al., 2017) were significantly downregulated. Cells in 
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exponential growth phase that were treated with arsenate, which decreases ATP concentrations, 

exhibited increased persister formation (Mohiuddin, Kavousi and Orman, 2020). Energy-

related pathways include menA, required in menoquinone biosynthesis essential for ATP 

production, which inhibits survival of non-replicating persisters (Dhiman et al., 2009). SucB 

(dihydrolipoamide acyltransferase), a subunit of the pyruvate dehydrogenase complex, under 

hypoxic and during in vivo infections was determined to be a drug target in persister baccili 

(Bryk et al., 2008). Mutant M. tuberculosis with disrupted cydC that encodes a putative ATP-

binding transporter system increased persister formation (Dhar and J. McKinney, 2010). When 

under stress, M. tuberculosis shifts from carbon metabolism, by upregulation of tgs1 

(triacylglycerol synthetase 1), to carbon storage of fatty acids (Tudó et al., 2010; Baek, Li and 

Sassetti, 2011). Downregulation of various genes involved in mRNA synthesis and protein 

synthesis such as tuf, gyrA, gyrB has been associated with metabolic slowdown under antibiotic 

stress (Walter et al., 2015). 

 

2.5.4. Transcriptional and post-transcriptional gene regulation 

The central dogma of molecular biology essentially explains that “DNA makes RNA, and RNA 

makes proteins”. Based on this logic, changes at the transcriptional and post-transcriptional 

level during a stress response are an essential mechanism of the formation of non-growing or 

slowly growing M. tuberculosis persisters. Rv1152, which forms part of the Gnt transcriptional 

regulator protein family, WhiB, transcriptional factors and sigma factors function as stress 

regulators (Francez-Charlot et al., 2009; Casonato et al., 2012; Zeng et al., 2016; Goossens, 

Sampson and Rie, 2021). Post-transcriptionally, toxin-antitoxin (TA) modules and small RNAs 

are thought to induce persistence. Specifically, M. tuberculosis Rv1152 has been shown to be 

involved  in various persister models, namely antibiotic tress, hypoxia and nutrient starvation 

(Keren et al., 2011; Iacobino et al., 2021), overexpression of Rv1152 has been shown to 

increase tolerance of mutant M. smegmatis to vancomycin in vitro, cell surface and acid stress 

(Zeng et al., 2016), while WhiB was involved in pathogenesis (Steyn et al., 2002), cell division 

(Gomez and Bishai, 2000; Rybniker et al., 2010)and stress response (Geiman et al., 2006). 

 

2.5.4.1.WhiB-like family genes 

The WhiB-like (Wbl) family of genes is only found within Actinobacteria. WhiB was shown 

to be essential in M. tuberculosis virulence and antibiotic tolerance. Wbl proteins were found 

to be O2-and NO-sensitive [4Fe-4S] (Smith et al., 2010; Kudhair et al., 2017). Recent 

developments shed light on Wbls as transcriptional regulators and sensors of O2 or nitric oxide 
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(NO) (Kudhair et al., 2017). In M. tuberculosis WhiB1 has been shown to be essential 

(Rv3219) (Smith et al., 2010), WhiB3 (Rv3416) and WhiB4 (Rv3681c) were suggested to play 

a role in regulating virulence, WhiB3 and WhiB7 were found to play a role in antibiotic 

resistance while WhiB2 (Rv3260c) has been suggested to be essential and play a role in the 

regulation of cell division (Bush, 2018). WhiB1 was shown to be increasingly sensitive to NO, 

which is important for M. tuberculosis as NO is produced by lung macrophages (Kudhair et 

al., 2017). Studies have shown that WhiB7 null mutants have increased drug susceptibility in 

vitro (Morris et al., 2015). Studies have suggested that Whib7 may result in a drug-tolerant 

state by upregulation of drug efflux pumps (tap or Rv1258c) and through rearrangement of 

cellular processes that compensate for metabolic shifting, induced under antibiotic stress 

(Morris et al., 2005). Mice infected with WhiB3 mutants were found to live longer when 

exposed to antibiotic  stress, compared to mice infected with wild-type H37Rv. Considering 

WhiB3 encodes for a 4Fe-4S redox sensor protein, it is suggested to modulate drug sensitivity 

through regulating the balance between redox and bioenergetic homeostasis, both of which are 

affected during drug response. WhiB3 has been observed to regulate essential metabolic 

pathways such as glycolysis, the TCA cycle, the pentose phosphate pathway and amino acid 

biosynthesis (Saini et al., 2016). The essential role the WhiB-like family of genes play in 

antibiotic resistance, NO sensitivity, antibiotic tolerance, metabolic shifting and increased 

survival upon chronic infections suggests their importance in M. tuberculosis persister 

formation as persister utilize these mechanisms to evade host defenses.  

2.5.4.2.Sigma () factors 

Sigma factors are subunits of bacterial RNA polymerases that are responsible for binding RNA 

polymerases to form a holoenzyme that determines promoter specificity. These factors play an 

important part in post-transcriptional modifications such as acetylation and phosphorylation 

through protein kinases and anti-sigma factors. Post-translational modifications have been 

observed to increase persister formation (De Keijzer et al., 2016). Generally, bacteria encode 

a single sigma factor regulating transcription of essential housekeeping genes, and a variety of 

sigma factors whose expression is stress-activated (Boldrin et al., 2020). M. tuberculosis 

encodes for 13 sigma factors (SigA-M) (Rodrigue et al., 2006). SigE was found to be 

imperative for response to acidic environments, human macrophage growth, detergent 

mediated surface stress, and oxidative stress (Manganelli et al., 2001; Schnappinger et al., 

2003; Manganelli, 2014; Chauhan et al., 2016). SigE is also responsible for transcription of 

SigB and the two component system MprAB (Dainese et al., 2006). In response to antibiotic 
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treatment, expression of B, E, F, G, H, I and J is increased and the expression of A 

expression is decreased (Walter et al., 2015; Miryala, Anbarasu and Ramaiah, 2019).  

2.5.4.3.Toxin-antitoxin (TA) modules 

TA modules are comprised of two genes: one encoding a toxin protein affecting bacterial 

growth and the other an antitoxin element (RNA, type I; or protein, type II) which nullifies the 

toxin under favorable conditions (Hall, Gollan and Helaine, 2017). A considerably large 

number of TAs (at least 88) has been identified in M. tuberculosis (Ramage, Connolly and Cox, 

2009; Sala, Bordes and Genevaux, 2014). The majority of the TAs in M. tuberculosis are Type 

II TA systems. The high number of TA systems present in the M. tuberculosis genome suggests 

a highly important role in host-pathogen interactions (Yu et al., 2020). Under specific 

environmental stressors, antitoxin degradation is induced, allowing the toxin to take effect on 

specific targets like the ribosome, specific transfer ribonucleic acid’s (tRNAs) or messenger 

ribonucleic acids (mRNAs) (Slayden, Dawson and Cummings, 2018; Barth et al., 2019; Barth 

and Woychik, 2020), which results in a slowdown of metabolism or dormancy. TA systems 

have been shown to increase the subpopulation of peristers stochastically in the presence or 

absence of stressors (Kim, Choi and Hwang, 2016; Yu et al., 2020). TA modules have been 

assessed in response to antibiotic exposure where toxins such as MazF, Rv1577x, Rv2651c, 

and Rv0366c confer drug tolerance across multiple drug classes (Singh, Barry and Boshoff, 

2010; Tiwari et al., 2015; Tandon et al., 2019). TA modules have also been detected in 

environmental stresses encountered during infection, directing bacteria toward an increased 

and constant dormant state during latent TB (Slayden, Dawson and Cummings, 2018). 

2.5.4.4.Small RNAs (sRNAs) 

To date sRNAs have been poorly studied in M. tuberculosis (Gerrick et al., 2018). However, 

in non-mycobacterial species sRNAs regulate gene expression by binding mRNA, constricting 

mRNA translation increasing mRNA degradation (Storz, Vogel and Wassarman, 2011). 

sRNAs were found to play a role in regulation of genes associated with the efflux pumps, 

transport proteins, membrane proteins, metabolic enzymes and the mycobacterial cell wall 

(Chan et al., 2017; Dersch et al., 2017; Felden and Cattoira, 2018).  In E. coli sRNAs were 

found to regulated persistence to multiple antimicrobials through the reduction of cellular 

metabolism (Zhang et al., 2018).  

2.5.4.5.Protein post-translation modifications  

The role of protein post translation modifications as a mechanism of persister formation has 

been largely overlooked, as only one study to date addresses the topic. Keijzer et al. determined 
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that phosphorylation occurs in 132 unique proteins of M. tuberculosis and demonstrated that 

phosphorylation of Rv2986c/HupB upregulates protein expression thus increasing iron storage 

in a persister-like subpopulation (De Keijzer et al., 2016). Post translation modification such 

as acetylation, pupylation (Barandun, Delley and Weber-ban, 2012)and phosphorylation (Sajid 

et al., 2011) has recently been suggested to be a silent contributor to mycobacterial virulence, 

metabolism and pathogenesis. Phosphorylation has been observed to affect LexA binding to 

RecA, the inhibition has identified to increase DNA damage and subsequently Rif-resistance 

(Wipperman et al., 2018). Subsequently this could suggest a possible mechanism for increased 

persister formation as RecA/LexA has been identified as a mechanism that increases persister 

antibiotic tolerance.  

 

2.5.5. Genetic adaptations  

Tolerance/persister formation is a phenotypic phenomenon, however, recent studies have 

suggested that specific variants in genes that are essential for M. tuberculosis increases the 

predisposition of a population to form persisters under stress conditions. Specifically, high 

persister “hip” mutants of genes are connected to carbon metabolism pathways and lipid 

biosynthesis, under selection by lethal doses of rifampicin and streptomycin (Torrey et al., 

2016). In hip mutants, gltA1 (Rv1131) was upregulated which is associated with metabolic 

shifts in carbon away from the TCA cycle possibly by changing the propionyl-CoA 

metabolism. Similarly in hip mutants decreased activity of fadE30, a probable acyl-CoA 

dehydrogenase, is likely to prove the reduction in lipid catabolism, coherent with shifting from 

the TCA cycle to lipid synthesis (Torrey et al., 2016). Thus, FadE30 is observed to be essential 

for M. tuberculosis survival in macrophages (Rengarajan, Bloom and Rubin, 2005). 

Upregulation of icl and tsg1 in hip mutants is suggestive of a redirection of carbon sources to 

lipid synthesis as well, as it supports glyoxylate bypass (Torrey et al., 2016). 

 

Glycerol was suggested to be an unimportant carbon source for M. tuberculosis as glycerol 

kinase (glpK) essential for glycerol catabolism is dispensable in an in vivo mouse model (Beste 

et al., 2009; Pethe et al., 2010). However, bacteria containing frameshift mutations in glpK 

gene have been shown to be multidrug tolerant in vitro and in clinical isolates (Bellerose et al., 

2019; Safi et al., 2019). Interestingly variants accumulate during drug treatment suggesting 

their relevance in treatment failure and relapse.  
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2.6. Identifying genes associated with persister formation 

The lack of knowledge regarding the impact genetic adaptions have on persister formation 

indicates the need to uncover the underlying genetic mutations which predisposes persister 

formation. Methods elucidating genes involved in persister formation includes inducing 

persisters with transposon sequences followed by next generation sequencing or RNA 

sequencing as a targeted approach determining genes involved in persisters. For example Carey 

et al., identified essential genes for in vitro growth of clinical isolates belong to the modern M. 

tuberculosis lineage, by utilizing a modified Himar transpon coupled with comparative WGS 

of H37Rv (Carey et al., 2018). Although transposon sequencing (tn-seq) allows for the 

identification of functional genetic differences, the methodology is more technically 

challenging than that of WGS. WGS could provide an unbiased approach to identify genes 

involved in persister formation as it provides a comprehensive view of the genome (coding, 

non-coding and mitochondrial DNA). WGS could identify genes which could be included for 

targeted sequencing in a point of care setting (Nimmo et al., 2019). Table 2.3. summarizes the 

advantages and disadvantages of utilizing tn-seq, RNA-seq and WGS for the identification of 

genes involved in persister formation. 
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Table 2.2 High throughput methods for identifying genes related to persister formation and their 

advantages and disadvantages 

Method Advantage Disadvantages 

Tn-seq Study mutual freq of transposons Limited bacterial studies 

Used to deduce fitness of genes 

within microorganisms 

Errors during PCR amplification can lead 

to inaccurate sequence reads 

Robust, reproducible and sensitive tn-seq analyses is not normalized 

 Gene deletions results in false gene 

essentiality 

 Gene duplications results in false gene 

non-essentialiy calls 

 Sequence variants which changes 

transposon insertion sites creat subtle 

errors 

 Time consuming 

 Induces persistes by creating mutants 

RNA-seq 

(whole exome 

sequencing) 

Signal-to-noise ratio is low RNA is easily contaminated 

Multiple publicly available databases RNA is unstable 

Bacterial-to-human transcriptomic 

size ratio is greater 

 

WGS (DNA) DNA is stable Cannot deduce gene fitness 

High capacity to receive genetic 

material from archived samples 

Identification of genes are coverage 

dependent 

Able to extract bacterial genomic 

DNA from sputum. 

Certain regions/genes in the genome 

covered but not reliable in mapping  

Readily available  

Low cost  

Identify genes within a natural 

occurance 

 

Robust, reproducible, sensitive  

Identification of possible variants 

while sequencing can guide point of 

care 

 

 

2.7. Conclusion 
 

In this review we highlighted that the subpopulation of bacteria termed persisters is extremely 

complex and is not completely understood. The large number of stressors that trigger persisters 

coupled with various genetic mutations linked to the multiple pathways which persisters utilize 

makes characterizing persisters in M. tuberculosis challenging. Their small population size 

makes investigating genes involved in persister formation in a non-targeted approach 

challenging. There is a lack of an efficient method to identify persister-related genes. WGS of 

hip mutants was thought to hold promise, but hip mutations are thought to create persisters in 

a way that does not reflect what occurs during infection. It has been speculated that if hip 

mutants are obtained from clinical isolates, then the mechanism of formation could be more 

productively investigated. This review highlights that future research should focus on 
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exploiting multi-omics approaches to elucidate mechanisms involved in persister formation, 

understanding the genetics of persisters and the role of epigenetic changes.  
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Chapter 3 
 

Assessment of persister proportions in baseline clinical M. tuberculosis 

isolates from cured and recurrent/failed patient groups. 
 

3.1. Introduction 

It is thought that persistent mycobacteria arise in response to environmental stressors 

encountered in the host and adopt a slow or non-replicating state (North and Jung, 2004; Liu 

et al., 2020). This small, viable, but non-replicating (VBNR) population is likely to be 

antibiotic-tolerant. Currently the majority of drug therapies target actively growing bacteria, 

however persister bacteria comprise an important subpopulation of bacteria that is recalcitrant 

to antibiotic treatment (Gill et al., 2009). Importantly, VBNR bacterial populations are 

phenotypically drug tolerant, but not genetically resistant. Drug tolerant populations could 

contribute to the requirement for lengthy drug treatment and could themselves give rise to 

genetically resistant progeny.  

Due to the difficulty of isolating persistent mycobacteria, little is known about them. Recent 

research has developed and used a technique known as Fluorescence Dilution (FD) to identify 

a VBNR Salmonella population in infected macrophages. (Helaine et al., 2010), and to show 

for the first time that the internalization by macrophages induced the formation of VBNR 

populations (Helaine et al., 2014) (Figure 3.1). Importantly, FD has recently been successfully 

adapted and optimized for use in mycobacteria (Mouton et al., 2016, 2019). FD utilizes a dual-

reporter plasmid containing GFP, a constitutively expressed green fluorescent protein and 

TurboFP635 that is under control of an inducible promoter (Seeliger et al., 2012; Mouton et 

al., 2016). Upon removal of the inducer a decrease in the inducible TurboFP635 fluorescence 

over time serves as a measure of mycobacterial replication within a population at a single cell 

level, bacteria that retains their maximum red fluorescence intensity represents non-growing 

M. tuberculosis. This technique has revealed considerable heterogeneity in intracellular 

mycobacterial replication (Mouton et al., 2016).  
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Figure 3.1. The principle of FD (Mouton et al., 2016). A) pTiGc dual reporter plasmid schematic, 

with GFP being constitutively expressed providing a marker of viability, and TurboFP635 under control 

of a riboswitch promoter inducible by theophylline B) Utilization of FD assessing replication dynamics, 

where the fluorescence intensity of TurboFP635 is diluted as bacteria replicate. C) Flow cytometric 

detection of TurboFP635 intensity in bacterial population replication.  

 

Here we aimed to apply FD in combination with flow cytometry to determine the underlying 

persister formation in strains from individuals previously infected with M. tuberculosis that 

have remaining lung lesion activity and the presence of M. tuberculosis mRNA. This could 

help to explain why apparently curative treatment for pulmonary tuberculosis (PTB) is not 

eradicating all of the M. tuberculosis bacteria in most patients (in the context of non-resolving 

and intensifying lesions on Positron Emission Tomography/Computed Tomography [PET/CT] 

images).   
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3.2. Methods and materials 

All procedures involving the use of live cultures of M. tuberculosis have been performed in 

Biosafety Level 3 (BSL3) laboratories in the Division of Molecular Biology and Human 

Genetics, Stellenbosch University, Tygerberg, South Africa. Strict BSL3 safety precautions 

have been implemented as defined in the in-house BSL3 Departmental SOP. Care was taken 

to prevent any contamination of the bacterial cultures or surrounding environments to 

pathogenic mycobacterial cultures. 

 

The work represented in the present study forms part of larger projects which received ethical 

approval from the Stellenbosch University Health Research Ethics Committee under the title: 

“Mycobacterium tuberculosis Biomarkers for diagnosis and cure”, ethics number N10/01/013, 

and entitled “An investigation into the evolutionary history and biological characteristics of the 

members of genus Mycobacterium, with specific focus on the different strains of M. 

tuberculosis, other members of the M. tuberculosis complex and non-tuberculosis 

mycobacteria (NTM)”, ethics number N14/03/022.  

 

Bacterial samples were obtained in a parent study from patients at health clinics in Cape Town, 

Western Cape, South Africa during 2016. Patients received PET/CT scans at diagnosis (dx) 

and at later points during treatment to assess the outcome of the treatment. Sputum samples 

were subjected to sputum smear microscopy and cultured in a BD BACTECTM MGITTM 960 

at Stellenbosch University. Confirmed M. tuberculosis isolates were subjected to standard 

genetic characterisation by RFLP analysis and spoligotyping (Van Embden et al., 1993; 

Kamerbeek et al., 1997).  

 

Methods for preparing reagents and buffers used in this chapter are presented in Appendix A.  

 

3.2.1. Plasmid constructs 

Plasmids utilized in this study are listed in Table 3.2.1. Briefly, these were pST5552 (carrying 

hsp60(ribo)-gfp under the control of the theophylline-inducible riboswitch promoter) (Seeliger 

et al., 2012),pSTCHARGE (encoding the inducible TurboFP635) and the pTiGc plasmid 

(carrying the inducible TurboFP635 and constitutive GFP) (Mouton et al., 2016).  
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Table 3.2.1. Plasmids and strains adapted from Mouton et al., 2016 

Plasmid/Strain Description Source 

pST5552 hsp60(ribo)-gfp (inducible 

GFP under control of 

theophylline-inducible 

riboswitch), 

KanR[1], episomal 

Seeliger et al. (2012), 

Addgene plasmid 

number 36255; Mouton et al. 

(2016) 

pSTCHARGE  hsp60(ribo)-turboFP635 

(inducible TurboFP635 

under control of 

theophylline-inducible 

riboswitch), KanR, episomal 

Mouton et al. (2016) 

pTiGc leuD and panCD-deficient 

attenuated strain of M. 

tuberculosis H37Rv carrying 

hsp60(ribo)-turboFP635 

hsp60-gfp, KanR, episomal 

Mouton et al. (2016) 

H37Rv 102J23 Parent strain Laboratory strain 

SAMMtb leuD and panCD-deficient 

attenuated strain of M. 

tuberculosis H37Rv, HygR[2] 

(Sampson et al., 2004, 2011)  

[1] Kanamycin resistant; [2] Hygromycin resistant 

3.2.2. Bacterial strains and culturing 

All reagents utilized in this study were purchased from Sigma-Aldrich, unless stated otherwise. 

Bacterial strains used in this study are listed in Table 1. The clinical M. tuberculosis isolates 

used in this study were received from the Catalysis TB-Biomarker Consortium (Malherbe et 

al., 2016), obtained from smear positive sputum samples (Table 3.2). Dx isolates were utilized 

for downstream analysis.  These isolates were classified into cured or failed/recurrent based on 

clinical outcome, Gene Xpert results, and PET/CT imaging. Results from Malherbe et al., 2016 

showed that a fraction of individuals who has undergone the 6-month treatment for M. 

tuberculosis have remaining lesion activity based on PET/CT imaging of the lung and the 

presence of M. tuberculosis mRNA in sputum and bronchoalveolar lavage samples, suggestive 

of persister M. tuberculosis. PET/CT images were taken before treatment (Dx), 1 month after 

treatment was commenced (M1) and six months after the treatment commenced (M6). At M6, 

lesions were identified to show minimal or no activity (indicative of being clinically cured), 

showed moderate to high lesion intensity as compared to Dx scans (indicative of failed patients) 
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or showed new lesion activity representing re-current M. tuberculosis infection in patients who 

were re-diagnosed with pulmonary-TB 1 year after treatment. The isolates were assessed using 

the Ziehl Neelsen staining procedure for the identification of mycobacterium screening (Allen, 

1992).  

 

Liquid cultures of dx mycobacterial isolates were cultivated in 7H9 (Becton Dickinson, NJ, 

United States) complemented by 10% oleic acid-albumin-dextrose-catalase (OADC; Becton 

Dickinson, NJ, United States), 0.2% (v/v) glycerol (Sigma-Aldrich) and 0.05% (v/v) Tween 80 

(Sigma-Aldrich) (7H9-OGT) and incubated at 37°C until OD600=0.8-1. Electro-competent 

mycobacteria were prepared and transformed with pTiGc as described by Snapper et al. (1990). 

Two hundred microliters of the newly transformed mycobacterial isolates were plated onto 

7H10 solid media (Becton Dickinson, NJ, United States) supplemented with 10% OADC, 1% 

(v/v) glycerol, and appropriate antibiotics, and cultured at 37°C for approximately 4 weeks.  

 

To confirm the presence of the pTiGc plasmid, single colonies were picked into 96-well plates 

and cultured at 37°C for 6-10 days in 200 µl 7H9-OGT with appropriate antibiotics. The 

colonies were then duplicated into plates with and without 4 mM theophylline (Sigma-Aldrich) 

and cultured for a further 48 hours (h) before being read on a plate reader. The following 

settings were used for analyses using a FLUOstar Omega multi-mode 96 well microplate reader 

(BMG LABTECH, Offenburg, Germany); optic settings for GFP (green) detection were set at 

an excitation of 485 nm and an emission of 520 nm, the gain function was set at 1692. For 

TurboFP635 (Red), excitation was set at 584 nm and the emission set to 640 nm, the gain 

function was set at approximately 2800. The plates were shaken at a frequency of 500 rpm on 

a double orbital shaking mode for 2 seconds before the plate was read. To detect positive 

transformation a fold change of fluorescent intensity was calculated for both GFP and 

TurboFP635 of induced cells divided by the un-induced cells (data not shown). Fold-change 

calculations: 

GFP: 

Background -adjusted fluorescence intensity was initially determined by the background green 

intensity reading from wild-type (wt) from the raw fluorescent data per isolate. Fold induction 

was subsequently determined by dividing the background adjusted value by the background 

adjusted un-induced value per strain. GFP fold induction was expected to be -1.0 as GFP is 

constitutively expressed in all isolates at similar levels. Indicative of live bacterial populations.  
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TurboFP635: 

Backgound-adjusted fluorescence and fold change for TurboFP635 was determined similarly 

to GFP. However, the fold change for TurboFP635 was expected to be ≥ 6 indicative that the 

TurboFP635 protein is induced by theophylline and can reliably track 6 generations of 

mycobacterial replication. 

 

Table 3.2.2. Mycobacterial clinical isolates selected for this study (modified from 

Malherbe et al., 2016) 

Cured Failed/Recurrent 

C-S4dx F/R-S43dx 

C-S5dx F/R-S43w24* 

C-S29diag F/R-S93dx 

C-S41w4 F/R-S101dx 

C-S105dx F/R-S112dx 

C-S105d2* F/R-S130dx 

C-S126dx F/R-S137dx 

C-S153dx F/R-S152dx 

C-S159dx F/R-S163dx 

C-S159x4 F/R-S163w24* 

 F/R-S168dx 

 F/R-S168w24* 

 F/R-S169dx 

*indicates isolates used for WGS only 

3.2.3. Growth curve analysis of transformed clinical isolates 

To assess whether carriage of the pTiGc plasmid imposes a fitness cost on the bacterial isolates, 

in vitro growth curves were used. Cultures were grown to an OD600nm=0.6-0.8. On the day of 

setup, both the wild type (WT) clinical isolates and clinical isolates that were transformed with 

the pTiGc plasmid (number dx-pTiGc) were sonicated for 12 minutes at 37 kHz in a water bath 

(UC-1D; Zeus Automation) at room temperature and filtered through a 40 um cell strainer. The 

initial OD600nm was adjusted to 1 (approx. 1X108 CFU/ml). Thereafter, 100 µl bacteria 

(OD600nm=0.1) was added to each well containing 100 µl 7H9-OGT containing the appropriate 

antibiotics. The growth curves were performed in a NUNC 96-well black, clear-bottomed plate 

and OD600nm readings were taken every second day using the following parameters. Data was 
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obtained utilizing a Polarstar Omega 96-well microplate reader (BMG Labtech, Ortenberg, 

Germany). The plate was read at an absorbance of 600 nm and shook at 200 rpm on the double 

orbital shaking setting for 5 seconds before the reading was done. This was done at 37°C with 

an absorbance path length of 120.  

 

3.2.4. Infection of transformed isolates into THP-1 

THP-1 cells (ATCC TIB-202) were cultured in Roswell Park Memorial Institute-1640 medium 

(RPMI), supplemented with 10% heat- inactivated fetal bovine serum (FBS) (R10) at 37C in 

a 5% CO2 atmosphere (both reagents were obtained from ThermoFisher). Cells were passaged 

every 2-4 days. For infections, cells were seeded at 1.25x105 per well in 96 well plates and 

differentiated with 50 ng/ml of phorbol-12-myristate-13-acetate (PMA, Sigma-Aldrich) before 

incubation at 37C with 5% CO2 atmosphere for 3 days. Following the incubation, the R10 

media containing PMA was replaced with fresh R10 and the macrophages were allowed to 

recover for 24h. One hour prior to infection THP-1 cells were stimulated with R10 containing 

100 ng/ml lipopolysaccharide (LPS, Sigma-Aldrich) and incubated at 37C, which induces 

macrophage activation. Before infection the R10 containing LPS was removed and replaced 

with 100 l fresh R10 media. 

 

Dx-pTiGc and SAMMtb-pTiGc (control) bacterial cultures were induced 7 days prior to 

infection with 4 mM theophylline in 7H9-OGT with the required antibiotic supplementation. 

On the day of infection mycobacteria were prepared for infection. Cultures were sonicated at 

37 kHz for 12 minutes at room temperature in an ultrasonic bath to disperse clumps, and 

thereafter filtered through a 40 m cell strainer. Bacterial OD600nm was assessed with a 

spectrophotometer (Thomas Scientific) and adjusted to OD600nm= 1 in R10 containing 4 mM 

theophylline. Thereafter, bacteria were added to the macrophages at a multiplicity of infection 

(MOI) of 10:1, and incubated at 37C in a Thermo Ster-Cycle 5% CO2 incubator (Marshall 

Scientific) for 3h in the presence of 2mM Theophylline. Following uptake, the cells were 

washed with 200 µl phosphate buffered saline (PBS, ThermoFisher) once before replacing the 

media with R10 media containing 100 U penicillin/streptomycin. This was followed by 

incubation at 37C in 5% CO2 for 1 hour to kill any non-phagocytosed, extracellular bacteria. 

Cells were washed three times with 200 µl PBS before adding fresh R10, containing 2 mM 

theophylline, to maintain expression of TurboFP635 for 24h after infection. After 24h, R10 

media containing 2 mM theophylline was replaced with R10 without 2 mM theophylline (R10-
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Theo) (Fig 3.2.1). To recover mycobacteria for flow cytometry analyses, the macrophages were 

lysed by the addition of 300 µl sterile distilled water. Intracellular bacteria were recovered from 

infected macrophages along with parallel in vitro bacterial cultures at day 0, and day 5.  

 

 

 

 

 

 

 

 

Abbreviations: *= Sampling time points, D= day 

Figure 3.2.1. Theophylline induction during macrophage infection 

 

3.2.5. Flow cytometry sample preparation, acquisition and analysis.  

In vitro cultured bacteria or intracellular bacteria (from lysed macrophages), were pelleted and 

fixed in 4% formaldehyde (Sigma-Aldrich) for 30 minutes, washed once by centrifugation at 

10 000 rpm for 5 minutes and resuspended in PBS-Tween before storing at 4C. On the day of 

flow cytometry analyses the samples were pelleted at 10 000 rpm for 5 minutes and 

resuspended in 300µl PBS. Samples were filtered through a 35 µM filter immediately prior to 

running on the flow cytometer. A volume of 5 µl microsphere standard beads (6.0 µm) from 

the LIVE/DEAD BacLight Bacterial Viability kit was added to samples after filtering 

(ThermoFisher,https://www.thermofisher.com/order/catalog/product/L7012#/L7012). 

Samples were analysed on the BD FacsJazzTM  flow cytometer (Becton Dickinson, United 

States) that is located in the BSL3 facility within the Division of Molecular Biology and Human 

Genetics, Stellenbosch University. The forward scatter (FSC) and side scatter (SSC) were 

investigated, as well as the fluorescent intensity of GFP which was captured by excitation at 

488 nm, using a 530/30 filter and TurboFP635 fluorescence intensity was captured by 

excitation at 561 nm, using a 610/20 filter. Compensation was carried out using single color 

and unlabeled controls in each experiment. For samples from both in vitro cultures and 

bacterial samples recovered from macrophages, 20 000 events were captured.  

 

D0 D1 D2 D3 D4 D5 

LPS 

Theo 

+2mM Theo No Theo 

* 
* 
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FlowJo v10 software was used to analyze flow cytometric data. A primary gate was set 

according to FSC/SSC properties, followed by gating on the GFP-positive (live) population. 

The TurboFP635 fluorescence intensity of the population was then analysed (Fig 3.2.2). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2: Gating strategy for flow cytometry created by JL Coetzee  

 

3.2.6. Determination of bacterial uptake and survival within macrophages utilizing 

counting beads. 

Enumeration of bacterial uptake by and survival in THP-1 cells post infection was determined 

by exploiting the LIVE/DEAD Backlight Bacterial Viability and Counting kit. The beads from 

the kit served as an alternative to using colony forming units (CFU’s) for determining uptake 

of bacteria from inoculum, since it would provide a more rapid and accurate readout compared 

to CFU’s. Fig 3.2.3 depicts the gating strategy for the bead and bacterial gating. Calculating 

the bacteria/ml was dependent on the bacterial events captured, the number of bead events 

captured, the number of beads added, sample volume and the dilution factor.  

Bacteria/ml=  

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠

𝐵𝑒𝑎𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
 ×  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑎𝑑𝑠 𝑎𝑑𝑑𝑒𝑑 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
 ×  𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 
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Figure 3.2.3. Schematic representation of the gating strategy for accurate bead population 

identification created by JL Coetzee 

 

3.2.7. Statistical analysis 

An OD600 growth curve data was utilized to calculate generation time per isolate at various 

time points and analysed using GraphPad Prism v9.01 and expressed as the mean ± standard 

deviation. Differences between mean generation times at 96h – 120h were analysed with a 

multiple t-test and unpaired pairwise comparison between wt and dx-pTiGc strains. If the 

measured p-value was <0.05, the variations were deemed statistically significant.  

 

To calculate if a statistically significant difference in bacterial uptake percentage between 

isolates from cured and failed/recurrent treatment groups by THP-1 were observed, a pairwise 

comparison was performed for the mean ± standard deviation in GraphPad prism v9.01. If the 

measured p-value was <0.05, the variations were deemed statistically significant.  

 

To determine differences in persister frequency between the cured treatment group and 

failed/recurrent patient treatment group, Differences between means were analysed with a 

grouped unpaired t test in GraphPad prism v9.01. If the measured p-value was <0.05, the 

variations were deemed statistically significant. 
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Results 

3.3.1. Rationale 

The objective of this section was to assess persister proportions in clinical isolates taken at 

baseline from both cured and failed/recurrent patient groups and to compare persister 

proportions to disease outcome. The assessment exploited the florescence dilution (FD) tool 

previously utilized in replication dynamics of Mycolicibacterium smegmatis, M. tuberculosis 

and similarly in Salmonella (Mouton et al., 2016; Helaine et al., 2014). The tool uses a dual 

reporter plasmid, pTiGc, which encodes an inducible far red fluorescent protein (TurboFP635), 

enabling monitoring of bacterial replication over time and a constitutively expressed green 

florescent reporter (GFP) that allows assessment of bacterial viability.  

 

3.3.2. Patient and isolate information 

Clinical isolates selected for this study were obtained from a parent study conducted by the 

Catalysis TB Biomarker consortium (Malherbe et al., 2016). The study followed a cohort of 

patients undergoing treatment for pulmonary TB (PTB) residing in the Western Cape, South 

Africa. Briefly, patients were grouped based on PET/CT scans at the end of treatment into 

cured (having no lesion activity), re-current (having new lesion activity), and failed (having 

intensified lesion activity). The presence of M. tuberculosis mRNA from culture-negative 

South African patients with PTB at the end of treatment is suggested to be indicative of viable, 

but non-culturable bacteria likely being persisters (Malherbe et al., 2016). 

 

For the current study 18 patients were selected of whom 8 (45%) were classified as cured and 

10 (55%) as failed/recurrent after 6 months TB treatment. The cured patient group consisted of 

7 (90%) males and 1 (10%) female with ages ranging from 19-42 years old. The failed/recurrent 

patient group consisted of 5 (50%) males and 5 (50%) females with ages ranging from 18-44 

years. The prevalence of smokers overall was 17 (90%). Interestingly, in the cured patient 

group 50% either quit smoking/non-smoking during treatment, whereas the majority [8 (80%)] 

of the failed/recurrent patient group continued smoking during treatment.   
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Table 3.3.1. Mycobacterium catalysis clinical patient information 

 

Sample id Age Sex Smoking Outcome 

C-S4dx 40 Male Quit smoking Cured 

C-S5dx 30 Male Quit smoking Cured 

C-S29dx 42 Male Smoking Cured 

C-S41w4 35 Male Smoking Cured 

C-S105dx 21 Male Smoking Cured 

C-S126dx 39 Male Quit smoking Cured 

C-S153dx 25 Male Smoking Cured 

C-S159dx 19 Female Never smoked Cured 

F/R-S43dx 18 Male Quit smoking Failed 

F/R-S93dx 30 Male Smoking Recurrent 

F/R-S101dx 28 Female Smoking Recurrent 

F/R-S112dx 52 Male Smoking Recurrent 

F/R-S130dx 29 Male Smoking Recurrent 

F/R-S137dx 44 Female Smoking Recurrent 

F/R-S152dx 23 Female Smoking Recurrent 

F/R-S163dx 25 Male Smoking Failed 

F/R-S168dx 23 Female Quit smoking Failed 

F/R-S169dx 30 Female Smoking Failed 

 

3.3.3. Confirmation of clinical isolates, transformation with replication reporter plasmid 

and growth of transformed strains.  

 

All bacterial samples from both cured and recurrent/failed groups were assessed utilizing the 

Ziehl Neelsen (ZN) staining procedure to confirm purity of mycobacterium cultures. No non-

mycobacterial species were detected in any of the clinical isolates which was determined by 

Gene Xpert and whole genome sequencing (data not shown). Fig 3.3.1 represents a clean ZN 

stain. Streaking of cultures onto blood agar plates confirmed the absence of contamination in 

all clinical isolates (data not shown). 

 

 
Figure 3.3.1. Ziehl-Neelsen (ZN) staining of H37Rv representing pure M. tuberculosis bacteria 

(scalebar =2µm) 
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To assess the persister proportions within both the cured and failed/recurrent patient groups all 

bacterial isolates were transformed with the dual reporter plasmid, pTiGc. Fluorescent plate 

reading results confirmed the expression of GFP and TurboFP635 in all isolates that were 

transformed with the dual reporter plasmid pTiGc (Table 3.3.2). A TurboFP635 fold change 

more than or equal to six were considered as an adequate induction, since it allows for 

identification of several generations within an actively growing bacterial population after 

induction has been removed. However, one isolate (C-S4dx-pTiGc) could not be sub-cultured 

into a larger volume after transformation for respective follow-up analysis and was excluded 

from all subsequent experiments.  

 

Table 3.3.2. Transformation information of baseline clinical isolates. 

 

Group 

 

Sample id 

 

TurboFP635 fold change 

Cured 

 

C-S4dx 10,05  

C-S5dx 77,51 

C-S29dx 75,47 

C-S41w4 43,89 

C-S126dx 88,39 

C-S105dx 234,39 

C-S153dx 71,15 

C-S159dx 33,41 

Failed/recurrent 

 

F/R-S43dx 6,15 

F/R-S93dx 28,00 

F/R-S101dx 275,23 

F/R-S112dx 64,94 

F/R-S130dx 168,96 

F/R-S137dx 139,32 

F/R-S152dx 9,64 

F/R-S163dx 8,76 

F/R-S168dx 1222 ,90 

F/R-S169dx 34,20 
*Indicates isolates which did not grow following transformation.  

 

To assess the fitness of bacterial isolates carrying the dual reporter, comparative in vitro growth 

curves were performed. Fig 3.3.2 and 3.3.3 depict the growth curves of 13 bacterial isolates 

from cured and failed/recurrent groups respectively. Four clinical isolates were excluded from 

further analyses (Samples F/R-S101dx, F/R-S130dx, F/R-S93dx, F/R-S168dx and their pTiGc 

counterparts) as starter cultures were difficult to initiate from freezer stocks inclusive of isolate 

C-S4-pTiGc. In an attempt to overcome this growth limitation, isolates were cultured from 

duplicate freezer stocks in 0.5x the initial volume of 7H9-OGT (containing double the 

concentration of glycerol). Still, no growth was observed for these clinical isolates. 
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Nonetheless, due to these difficult-to-culture bacteria only 13 of the initial 18 samples were 

selected for further analyses.   

 

Visually, the wild type (wt) (e.g. F/R-S112dx) and the pTiGc transformed isolates (e.g. F/R-

S112-pTiGc) show similar growth rates (Fig 3.3.2 and 3.3.3). This is explored in more 

quantitative detail in Fig 3.3.4, which represents the generation time of both the untransformed 

wild-type (wt) and the transformed (pTiGc) isolates at early time points (96 -120h) (Formula 

3.3.1). The carriage of the pTiGc plasmid did not impose a fitness cost on bacterial growth of 

the clinical isolates (p-value > 0.05). 

 

Generation time =  
𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
ln (𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒)

ln (2)
 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑔𝑒𝑜𝑚𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑥

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 0
  

 

Formula 3.3.1. Generation time calculation 
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Figure 3.3.2. OD
600 

-based growth curve assessing fitness of bacterial isolates from the cured group carrying the pTiGc plasmid. All time points represent 

four technical replicates.  
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Figure 3.3.3. OD
600 

-based growth curve assessing fitness of bacterial isolates from the failed/recurrent group carrying the pTiGc plasmid. All time points 

represent four technical replicates.  
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Figure 3.3.4. Generation time of all strains from cured and failed/recurrent treatment groups 

[wild-type(wt) vs pTiGc transformed isolates (pTiGc)] Data is representative of mean with SD 

values. The asterisk depicts the 120h time interval, while the other sample represent the 96h time 

interval. Multiple t-tests were run with no significance obtained between wt and pTiGc.   

 

3.3.4. Intracellular mycobacterial uptake and survival following macrophage infection.  

 

Uptake of the clinical isolates from both cured and failed/recurrent patient groups by THP-1 

macrophages showed high variability between isolates and groups (Fig 3.3.5). Uptake of 

isolates from the cured patient group ranged from 1-400%, while uptake of isolates from the 

failed/recurrent patient groups had a lower uptake of 1-18% (Fig 3.3.5). Despite variability in 

the uptake between strains, all technical replicates within strains showed uniformity. Isolates 

that showed high bacterial uptake, e.g. C-S41w4 that showed an average uptake of 478%, 

suggests that 5 bacteria were taken up per macrophage. Mycobacterial survival after 24h in 

THP-1 macrophages (Fig 3.3.6) showed high variability between strains and triplicates.  

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



44 
 

C
ure

d

R
ec

urr
en

t/f
ai

le
d 

SA
M

M
tb

 

-200

0

200

400

600

Patient groups

P
e
r
c
e
n

ta
g

e
 u

p
ta

k
e
 (

%
)

Control

p value:  0,1559

ns

 
Figure 3.3.5 Uptake percentage of cured versus failed/recurrent patient groups’ 0h post infection. 

Intracellular uptake of inoculum was assessed utilizing the by comparing bacterial uptake of isolates 

obtained from cured, failed/recurrent patient groups and the control SAMMtb reporting median and 

interquartile range. Data shown is representative of three technical replicates and 2 biological repeats. 
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Figure 3.3.6 Percentage intracellular survival of isolates from cured and failed/recurrent patient 

groups 120h post infection.  Intracellular survival of all patient groups and SAMMtb control reporting 

median and interquartile range (excluding obvious outliers). Pairwise group comparison indicating non-

significance between group means. Data shown is representative of three technical replicates and 2 

biological repeats. 

 

 

3.3.5. Fluorescence dilution (FD) analysis assessing persister formation within patient 

groups at baseline.  

To determine whether there is a difference in replicating populations between cured and 

failed/recurrent patient groups, changes in TurboFP635 fluorescent signal in response to THP-

1 macrophage infection was assessed using flow cytometry. Fig 3.3.7 depicts representatives 

of both cured and failed/recurrent patient groups taken at baseline following infection. 
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Figure 3.3.7. Population-wide replication dynamics from representatives of both cured and 

failed/recurrent patient groups upon macrophage infection. Intracellular bacteria lysed from 

macrophages 0h (red), In vitro bacteria 120h (dotted black), intracellular bacteria lysed from 

macrophages 120h, (orange) A) Flow cytometric identification of TurboFP635 fluorescence intensities 

intracellular and in vitro cultured mycobacteria for isolate C-S105dx, a representative of the cured 

patient group, at designated intervals. B) Flow cytometric identification of TurboFP635 fluorescence 

intensities of intracellular and in vitro mycobacteria at selected time points for isolate F/R-S43dx as a 

representative of the failed/recurrent. Turbo+ is indicative of the proportion intracellular (orange) 

bacterial population that remains high red (visible to the right of the black threshold line). Turbo – is 

indicative of the proportion of intracellular bacteria that are actively replicating (to the left of the black 

threshold line). Data shown are representative of three technical replicates, and two biological 

replicates.  

 

Utilizing the gating strategy in Fig 3.2.2, high GFP fluorescent signal remained relatively 

unchanged throughout infections, indicative that the majority of bacteria that were selected for 

analysis were viable. The population dynamics of bacterial isolates from the two patient groups 

demonstrated a homogenous intracellular population at 0h, and heterogeneous intracellular 

bacterial replication inside the THP-1 macrophages and in vitro (black dashed line) at 120h in 

both patient groups (Fig 3.3.7).   

 

At 120h post infection a small population of high-red bacteria overlaps with the intracellular 

bacterial population at 0h infection, indicating retarded growth that is suggestive of enrichment 

for a persister-like subpopulation (blue circle, Fig 3.3.7). In the majority (shown in 

supplementary, FigS3.2) of the failed/recurrent isolates (5/6) intracellular growth at 120h post 

infection vs in vitro growth 120h post infection was observed to be slower than that of the 

isolates obtained from cured patients (green square).  
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Interestingly, intracellular growth of S126dx 120h post infection was observed to be faster than 

in vitro growth 120h post infection (Fig 3.3.9). This was in contrast to previous observations 

of isolates obtained from cured patients, where the in vitro and intracellular replication rates 

were relatively similar (Fig 3.3.7). Various aspects needed to be considered such as whether 

intracellular is growth faster than other samples in the cured patient group, or whether the in 

vitro is growth slower than other samples. Comparison of Figure 3.3.8 to Figure 3.3.7(a) shows 

that the TurboFP635 intensity for the highest peak at D5 in vitro (black line) is similar to that 

of Figure 3.3.7(a), suggesting that the intracellular growth is indeed faster than the growth rate 

in vitro. This result is representative of 2 biological replicates.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.8. Population wide replication dynamics of C-S126dx upon macrophage infection. The 

histogram represents intracellular bacteria at 0h (red histogram), in vitro bacteria at 120h (black) and 

intracellular bacteria at 120h, (orange histogram). Data shown are representative of three technical 

replicates and two biological replicates. 

 

To ascertain whether there was a statistically significant variation between the persister-like 

subpopulation in the cured and failed/recurrent patient group (at baseline) we applied the gating 

strategy outlined in Fig 3.2.6.1. Following the selection of viable bacteria (high GFP), 

TurboFP635 florescence was assessed in a histogram plot (Fig 3.3.7 and 3.3.8). A threshold 

gate was set based on the median TurboFP635 florescence intensity (MFI) of intracellular 

bacteria at 0h for each isolate (Fig 3.3.19a). To determine the frequency of a persister-like 

subpopulation, the top 50th percentile of TurboFP635 signal was selected and termed “high 

red”. This gate was used to determine the frequency of “high-red” persister bacteria in the in 

vitro bacteria and intracellular bacteria at 120h post infection (Fig 3.3.9b, c). The frequency of 

the “true” macrophage-induced persister-like subpopulation was determined by subtracting the 

frequency of high-red in vitro cultured bacteria from intracellular bacteria at 120h post 
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infection (equation below). FlowJo V10.7.1 was used to select the flow cytometry gates and 

GraphPad Prism V9.0.1 was utilized to determine statistical significance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.9. Persister analysis gating strategy. A) Initial gate determined by MFI of 0h intracellular 

bacteria select the top 50 percentile of MFI and is termed “high red”. B) High red gate overlaid on in 

vitro bacteria 120h post infection. C) High red gate overlaid on intracellular bacteria 120h post 

infection. "True" persister = % intracellular bacteria 120h − % 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 bacteria 120h  
 

Significantly more persister-like proportions were observed in isolates from the 

failed/recurrent group compared to the cured group (Fig 3.3.10). This is an indication that the 

proportion of persister-like subpopulations at baseline could impact patient outcome during 

PTB treatment.  
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Figure 3.3.10. Persister frequency in isolates obtained from the cured and failed/recurrent patient 

groups following macrophage infections. Plots showing mean  and SD values of **p<0.05  
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3.4. Discussion 
 

To determine whether isolates from different patient groups (cured vs failed/recurrent) show 

variable growth dynamics upon macrophage infection, we utilized a THP-1 infection model in 

combination with the FD tool. The macrophage (THP-1) model was utilized to mimic aspects 

of the environment that M. tuberculosis bacteria are exposed to during PTB. We aimed to 

determine if clinical isolates from failed/recurrent groups are more likely to form a persister-

like subpopulation that contributes to the poor treatment outcome by exposing all the isolates 

to the same environment.  

 

3.4.1. Patient information and PTB outcome  

Table 3.3.1. represents patient outcome of individuals undergoing PTB treatment and the 

general demographics of the patient groups. It was observed that the male: female ratio is 

similar between the cured and failed/recurrent patient groups. Khan et al., 2020 has shown that 

smoking has a significant impact on TB treatment outcome, where a halt in smoking during 

treatment showed a ̴ 0.70% success in TB treatment (Khan et al., 2020). This supports that a 

halt in smoking is an effective way to decrease treatment failure and subsequently drug 

resistance. In our study, the majority of patients in the failed/ recurrent group were smoking 

during treatment. However, results from the cured patient outcome group suggest that smoking 

had an irregular impact on patient outcome (Table 3.3.1). Gene Xpert inclusive of WGS results 

were utilized as a tool for differentiation between M. tuberculosis and non-tuberculosis 

mycobacterium (data not shown).  Lian et al, 2020 assessed current diagnostic algorithms for 

detection of mixed infections by comparing Gene Xpert results and mycobacterial culture plus 

DNA sequencing. Gene Xpert only identified m. tuberculosis DNA presence while DNA 

sequencing identified NTMS as they comprised majority of the culture.  

 

3.4.2.  In vitro mycobacterial growth  

Isolate C-S4dx-pTiGc failed re-growth after sub culturing (Table 3.3.2, indicated with an *). 

Factors which could affect bacterial growth of C-S4dx-pTiGc include the culture volume. An 

increased culture volume increases the nutrient-to-bacterium ratio. However, a decrease in 

proximity has been shown to decrease growth in some bacterial species. This could be due to 

the lack of growth enhancing stimulus secreted by neighboring bacteria as highly dilute 
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cultures cannot grow with limited resuscitation promoting factors (Rpfs) (Mukamolova et al., 

2002).  

 

Re-growth from freezer stocks was observed to be problematic for some samples, as depicted 

by the inability to obtain reliable growth for isolates F/R-S93dx, F/R-S101dx, F/R-S130dx and 

F/R-S168dx  (section 3.3.3.). One possibility is that bacterial stocks underwent freeze-thawing 

cycles during storage. Multiple freeze-thawing cycles have been observed to be detrimental to 

Mycobacterium lepraemurium in vivo, where a loss of viable bacteria of 60-97% was observed 

(Portaels et al., 1988). Other factors which could affect bacterial growth include the need for 

multiple carbon/nitrogen sources, the change in environmental conditions and, storage time of 

isolates prior to usage for the current study. Storage time prior to usage was 2 years. 

Furthermore, Kim and Kibuca et al., 1972 found that storage of H37Rv at -70°C maintained 

its’ viability however, the experiment was only implemented for a duration of 1 year (Kim and 

Kubica, 1972). However, previous literature has supported the hypothesis that a prolonged lag 

phase in bacterial growth is indicative of high persister proportions within the overall 

population (Şimşek and Kim, 2019). This is supported by the yin-yang model which suggests 

that the bacterial population consists of both growing and non/slow growing bacteria in a 

consortium which interconverts at various stages (Zhang, Yew and Barer, 2012; Zhang, 

2014b). Thus, it can be suggested that these isolates which belonged to the failed/recurrent 

group consisted of a high proportion of persisters compared to the isolates from the cured 

patient group.  

 

OD-based growth curves and generation calculations showed a strong correlation in in vitro 

growth between the untransformed wt and transformed pTiGc isolates (Fig 3.3.2, 3.3.3 and 

3.3.4). In the majority of failed/recurrent isolates there is a longer stationary phase. The 

prolonged stationary phase could increase in vitro heterogeneity of these isolates and in turn 

increase the bacteria’s adaptability to host environments. Jôers and Tenson  have showed that 

wild type strains of Escherichia coli displayed increased heterogeneity correlating to a longer 

lag phase (Jõers, Kaldalu and Tenson, 2010; Jõers and Tenson, 2016). Thus, showing that 

despite favorable conditions, delaying growth is potentially advantageous to surviving 

stressors.  
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3.4.3. Uptake percentage and survival of mycobacterial strains within THP-1 

macrophages 

Literature suggests that the expected uptake of mycobacteria within macrophages after an 

infection at MOI 10:1 is approximately 10% (Li, Petrofsky and Bermudez, 2002). Results from 

the uptake percentages for the controls strain SAMMtb confirmed uptake of approximately 

10% in THP-1 macrophages (Fig 3.3.6). However, within strains variability in uptake 

percentages were observed, however, no significant differences between the cured group and 

the failed/recurrent group were observed. Variability in uptake % could be the result of 

variability in inoculum (bacteria/ml). However, bacteria were all in exponential growth phase 

prior to infection initiation. Variability could also be due to a lack in host binding factors that 

are present on bacteria for phagocytosis (Ernst, 1998). Additionally, PMA stimulation could 

have affected THP-1 macrophages as PMA was found to induce a significant tumor necrosis 

factor-α production in resting macrophages where increased concentrations and prolonged 

treatment has led to rapid macrophage death (Mendoza-Coronel and Castañón-Arreola, 

2016; Starr et al., 2018). Macrophage uptake has also been observed to be strain dependent 

(Chakraborty et al., 2013), where ~60% of infected THP-1 showed >10 bacilli per cell from 

both Beijing (lineage 2) and Latin-American-Mediterranean (LAM-6) lineage 4 strains, 

compared to ~40% of THP-1 showed to be infected with >10 bacilli per cell H37Rv.  Reiling 

et al found that clinical strains belonging to lineage 2 (East-Asian) had low uptake in human 

monocyte derived macrophages (Reiling et al., 2013). In our results, we observed a similar 

relationship since strains F/R-S152dx, F/R-S112dx and F/R-S163dx, belonging to lineage 2, 

showed low uptake by THP-1 macrophages (Fig 3.3.5). These strains have been isolated from 

the failed/recurrent patient group, which could suggest that uptake has an impact on treatment 

outcome. However, these observations need to be followed-up, as the sample numbers are too 

low to make a definitive conclusion.  

 

Fig 3.3.6 depicts high inter strain variability in intracellular bacterial survival, which is 

presumably due to variable initial mycobacterial uptake or virulence effectors that are produced 

following macrophage infections. Literature suggests that mycobacteria from lineage 2 (East-

Asian) has an increased ability to survive upon macrophage phagocytosis (Chakraborty et al., 

2013; Reiling et al., 2013). However, this trend was not observed in the current study.  
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3.4.4. Replication dynamics of intracellular M. tuberculosis clinical isolates reveals 

population heterogeneity on multiple levels 

 

At 0h after infection, in vitro and intracellular cultures of isolates from cured and 

failed/recurrent groups demonstrated a homogenous population, similar to previous studies 

(Fig 3.3.7) (Mouton et al., 2016; Helaine et al., 2014). However, at 120h post infection, 

heterogeneity within isolates both in vitro and intracellularly were observed. This showed that 

the majority of clinical mycobacterial populations (taken at baseline), regardless of treatment 

outcome, are inherently heterogeneous 120h after infection. Corresponding with these results, 

Cohen et al., 2016 showed that upon initiation of treatment 21.1% of patients demonstrated M. 

tuberculosis bacterial heterogeneity at baseline based on mycobacterial interspersed repetitive 

units-variable tandem repeat (MIRU-VNTR) typing. This indicates that in 21.1% of patients 

had >1 strain of M. tuberculosis upon initial infection. Cohen et al., found that bacterial 

heterogeneity at baseline is associated with a 2-fold increase in the odds of persistent culture 

positivity (Cohen et al., 2016). Post infection, it was observed that intracellular growth is 

slowed compared to the in vitro growth in isolates from the failed/recurrent group compared to 

the cured group (indicated by the blue circle in Figure 3.3.7a-b). An increased subpopulation 

of bacteria that retain high TurboFP365 intensity suggests an increased frequency of bacteria 

with slow/no growth, suggestive of a persister-like subpopulation.  

 

The growth of isolate C-S126dx-pTiGc was observed to be faster intracellularly compared to 

in vitro growth (Fig 3.3.8). Various aspects could explain the increased intracellular bacterial 

growth, such as increased macrophage lysis during infection, the percentage uptake of bacteria 

into macrophages, or more importantly the strain specific adaptability to the host environment. 

However, data validating increased macrophage lysis and strain specific adaptability would 

need to be explored in future.   

 

3.4.5. Persister-like cell formation between cured and failed/recurrent patient groups  

Previous work suggested that remaining lesion activity post PTB treatment is a result of 

persister-like formation (Malherbe et al., 2016). Thus, we hypothesized that isolates obtained 

from these patients at baseline had a higher propensity to form persisters. This study provides 

preliminary support for these suggestions. 
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From our results, we observed persister-like subpopulations in the failed/recurrent group (Fig 

3.3.10). A significant increase in persister-like frequency in isolates from the failed/recurrent 

patient group compared to the cured patient group was observed (p<0.005, Fig 3.3.10). Within 

the failed/recurrent patient group there was heterogeneity in persister-like frequency between 

isolates. This heterogeneity could be lineage dependent. The isolates with an average high 

persister frequency were determined to be S112dx, S163dx and S169dx. Isolates S112dx and 

S163dx belong to the (East-Asian) lineage that has previously shown to be hyper virulent and 

exhibit various adaptations to the host environment (Reiling et al.,2013). However, a definitive 

correlation between persister formation and mycobacteria lineages could not be made due to a 

limited sample size, and restriction of isolates to modern M. tuberculosis lineages.  

 

Heterogeneity within persister subpopulations has previously been observed where persister 

subpopulations where found to respond diversely to stressors to achieve a persister or drug 

tolerant phenotype (Vilchèze et al., 2013; Berney, Hartman and Jacobs, 2014; Amato and 

Brynildsen, 2015; Jain et al., 2016). Nguyen et al. found that within Staphylococcus aureus 

clinical isolates from 36 patients, presenting with unresolved or reactive infections that were 

susceptible to moxifloxacin, showed high persister formation in 17% of isolates after 

macrophage infections and moxifloxacin treatment (Nguyen et al., 2020). These findings are 

suggestive that high persister formation in antibiotic susceptible bacteria plays a role in clinical 

outcome (Nguyen et al., 2020). This study has found that isolates consisting of large persister 

proportions in stationary phase that are phagocytized by THP-1 monocytes gave rise to larger 

persister proportions that remained unaffected by moxifloxacin intracellularly (Nguyen et al., 

2020). In our current study we focused on persister-like populations in exponential growth 

phase; in future studies, focusing on persister-like population dynamics in stationary phase 

could provide a better representation of the effect of persisters in LTBI. The conclusions from 

the study depicts the impact of high persister proportions on clinical outcome in S. aureus 

infections, these conclusions could thus be extended to M. tuberculosis as a macrophage-

induced persister-like subpopulation was observed predominantly in the failed/recurrent 

patient group (38%).  

 

3.4.6. Adaptation to host environment 

It has previously been reported that upon uptake, macrophages kill the majority of intracellular 

bacteria when combined with antibiotic treatment post infection (Anes et al., 2006). Generally, 

intracellular bacterial growth commences an undetermined period of time after uptake.  
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Heterogeneity observed in bacterial replication in all isolates in macrophages 120h post 

infection suggests that mycobacteria adapt to survive the host environment. In this study we 

have observed that there is variable replication within macrophages by utilizing FD. The 

frequency of persister-like cells of M. tuberculosis in the failed/recurrent patient group suggests 

it allows progression of infection by evading host immune responses. Slow mycobacterial 

growth has been suggested to be an adaptive mechanism, allowing for in-host persistence that 

results in no or limited clinical symptoms (Barry et al., 2009). Decreased growth has also been 

associated with a decrease in drug efficacy as mechanisms involving replication serve as 

antibiotic targets. Persisters are known to have an  increased expression of efflux pumps that 

actively export first line TB drugs, rifampicin and isoniazid thus increasing antibiotic tolerance 

(Adams et al., 2011). This could suggest future experiments utilizing combination stresses 

(macrophage in addition to a first line drug) to determine the likelihood of increased persister-

like proportions post treatment.  

During antibiotic persister enrichment in sputum, differential gene expression was observed in 

genes involved in ATP synthase, stress responses, growth and division, NADH dehydrogenase 

and the DosR regulon (Jain et al., 2016). Similarly, Walter et al. found that within sputum, 

upregulation in genes involved in drug efflux and stress responses was observed, while a 

decrease in replication, ribosomal protein production, expression of DNA gyrase and 

topoisomerase occurred, enabling survival (Walter et al., 2015). In sputa, WGS revealed 

resistance-associated variants, depicted as heterozygous alleles, and in some provided a 

genotypic explanation for phenotypic resistance (Nimmo et al., 2019). M. tuberculosis 

adaptations were previously identified by mouse and real-time in vitro models utilizing time 

lapsed fluorescence microscopy and microfluidics during a variety of stressors (Manina et al., 

2015). M. tuberculosis has been observed to prevent maturation once within the phagosome 

compartment by inhibition of phagosomal acidification and fusion with lysosomes (Armstrong 

and Hart, 1971; VanderVen, Brian C. Huang, Lu; Rohde, K; Russell, 2016). Liu et al. observed 

that NapM a nucleoid associated protein binds to DnaA both in vitro and in vivo inhibiting 

DNA replication as well as ATP hydrolysis activity enhancing M. tuberculosis survival (Liu et 

al., 2019). Mechanisms underlying M. tuberculosis adaptation to survive within host 

environments, that subsequently cause recurrence in patients, are complex and need to be 

further explored. However, bacterial genotyping could shed some light on the subject.  
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3.5. Limitations 

A limited number of clinical isolates were included in the current study.  The reason for this 

was that criteria for isolate selection needed to include drug susceptible isolates that failed 

treatment or resulted in recurrent PTB. This experiment would thus need to be repeated with a 

larger cohort of separated patient groups cured, failed and recurrent as failed and recurrent are 

two different clinical phenotypes. This would allow for a clear understanding of persister 

proportions and their relevance in clinical outcome. Although the utilization of counting beads 

allowed for a more rapid and robust enumeration of bacterial uptake and survival percentage, 

confirmatory experiments would need to be completed with solid agar plate-based CFU counts. 

 

3.6. Future work 

• To assess differences in macrophage lysis in response to different strains, macrophage 

viability could be assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide MTT assay pre and post infection.  

• An aspect which could be interesting to address is the level of persisters in the follow up 

samples. However, antibiotic treatment could increase the prevalence of phenotypic 

changes within a population as a mechanism to overcome the antibiotic stress.  

• To determine antibiotic tolerance of the heterogeneous population’s bacterial survival in 

response to a first line TB drug such as isoniazid could be assessed. 

• Primary macrophage cells derived from TB patients could be used for macrophage 

infections, since immunity in these cells might be different from that of the THP-1 cell line.  

• Following macrophage infections, bacterial cell sorting could be done to determine 

transcriptomic changes of the macrophages harboring persister vs actively replicating 

populations.  

• Isolates determined to have increased persister proportions could be subjected to rounds of 

antibiotic treatment to determine if persister cells have a propensity to cause antibiotic 

resistance. 

• Murine models could be used to assess persister formation in an in vivo setting. 

 

3.7. Conclusion 
 

Little is known about the impact persisters have on TB disease outcome. FD in combination 

with the THP-1 macrophage infection model allowed for the assessment of heterogeneous 
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mycobacterial populations both in vitro and intracellularly at a single cell level. Additionally, 

persister-like cells were more abundant within the failed/recurrent group indicative of their 

importance in TB disease treatment outcome. Suggesting their relevance in recurrence and 

failed treatment outcome. However, further studies would need to assess the relation between 

persister proportions and clinical outcome with a larger sample size.  
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Chapter 4 
 

Whole genome sequencing analyses of clinical isolates. 
 

4.1. Introduction 

The utilization of WGS has become widely popular in recent years due to the swift advances 

in next generation sequencing techniques and the decline in costs. To date various strains of M 

tuberculosis including other mycobacterial species have been subjected to WGS, providing 

genetic information with a greater power than previously used methods. WGS has been applied 

to a variety of topics namely transmission investigations, studies of bacterial evolution, as well 

as those examining host-pathogen co-evolution, and in combination with transposon 

sequencing for genetic identification of  VBNR populations known as persisters (Walker et al., 

2013; Dippenaar et al., 2015; Copin et al., 2016; Jajou et al., 2018).  

 

In this section we aim to use WGS as a non-targeted approach to identify if there is a genetic 

component which predisposes persister formation within isolates obtained from patients 

grouped into cured and failed/recurrent based on PET/CT post pulmonary TB treatment. 
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4.2. Materials and Methods 

4.2.1 Genomic DNA extraction   

Clinical isolates of M. tuberculosis from all patient groups selected by preliminary screening 

were initially cultured into 5 ml 7H9-OGT (7H9 supplemented with OADC, glycerol and 

Tween80) from mycobacterium growth indicator tube (MGIT) stocks and incubated at 37°C 

for 7-14 days in T25 vented flasks. Upon identification of growth the isolates were sub-cultured 

into 15 ml 7H9-OGT media and incubated for 7-14 days in T75 vented flasks to increase 

bacterial numbers for an increased DNA yield.  

 

The liquid culture was centrifuged at 4000 rpm with an Eppendorf 5804 Benchtop centrifuge 

(Marshall Scientific) for 10 minutes at room temperature (̴ 21°C) and the resulting bacterial 

pellet was re-suspended in 400 µl TE Buffer (0.01M Tris-HCl, 0.001 M EDTA [pH 8]) 

obtained from Sigma-Aldrich and transferred into a 2 ml cryogenic storage tube. The 2 ml 

tubes containing the TE buffer cell suspension were subjected to heat-killing at 80°C for 30 

minutes. Thereafter, 50 µl lysozyme (10 mg/ml) was added. The cell suspensions were 

incubated at 37°C overnight to ensure cell wall degradation. Following incubation, 70 µl (10%) 

sodium dodecyl sulphate (SDS, Sigma-Aldrich) in combination with 5 µl proteinase K (Sigma-

Aldrich) (10 mg/ml) were added and the suspensions were incubated for 10 minutes at 65°C 

for the digestion of bacterial proteins. Next, 100 µl (5 M) sodium chloride (NaCl) and 100 µl 

pre-warmed (65°C) hexadecetyltrimethylammonium bromide (CTAB)/NaCl (0.1/0.041 g/ml) 

(Sigma-Aldrich) was added, aiding in the separation of polysaccharides. The suspensions were 

incubated for an additional 10 minutes at 65°C. Seven hundred and fifty microliters 

chloroform: isopropanol (Sigma-Aldrich) (24:1 v/v) was added to the cell suspensions. After 

centrifugation (Marshal Scientific) at 11,000 x g for 8 minutes, the aqueous phase was 

transferred to a fresh tube and 0.6 volumes of isopropanol was added to precipitate the DNA 

followed by incubation at 20°C for 1 hour. Thereafter, the precipitated DNA was centrifuged 

(Marshal Scientific) at 11,000 g for 15 minutes and washed with an equal volume of cold 70% 

ethanol and centrifuged for 5 minutes at 11,000 g (Marshall Scientific). The DNA pellet was 

re-suspended in 35 µl TE buffer. A NanoDrop spectrophotometer was used to calculate the 

concentration of extracted DNA (Thermo Fisher Scientific, Waltham, Massachusetts, USA). 

4.2.2. Next-generation sequence analysis  

WGS was performed on the DNA collected from the M. tuberculosis isolates chosen for this 

project initially using the Illumina NextSeq 550 instrument (Illumina, California, USA) and 
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thereafter using the Illumina MiSeq platform (Illumina, California, USA) as sequencing data 

from 3 isolates were not obtained from initial sequencing. With approximately 600 base 

fragment sizes and a read length of 101 bp (base pairs), a paired-end technique was used, 

resulting in insert sizes between 350 and 550 bases. One microgram of DNA was used to 

prepare libraries for sequencing per the manufacturer’s instructions using the Illumina 

NEBNext sample preparation kit (Illumina, Inc, San Diego, CA). The theoretical depth of 

coverage of all isolates were estimated to be at least above 100x based on the predicted data 

output. This, in combination with the sequence data quality, warranted a high confidence level 

for the variations identified in the genomes.  

 

4.2.3.  FASTQ file format 

The FASTQ format is a text-based format for the storing of biological sequences and 

corresponding quality scores in one file. It is concise and compact, and was originally utilized 

in Sanger sequencing, although it is now used as a standard format for transporting next-

generation sequencing data.  

 

 

 

 

Figure 4.2.1. A typical read from a FASTQ file generated by the Illumina sequencing 

platform version 1.5. 

 

The data within the FASTQ file is commenced with a ‘@’ symbol, followed by the sequence 

identifier. The second line consists of the sequence information where the end is indicated by 

a new line and the third line is represented by an optional ‘+’ symbol. The ‘+’ symbol is 

occasionally followed by the same sequence identifier, which is followed by the sequence 

quality information in the fourth line.  

 

4.2.4. Phred-scaled quality values 

Phred quality scores are automatically assigned during the sequencing run produced by WGS 

technologies. The phred score is a value representing the probability that a base is called 

incorrectly by the sequencer utilized:  

𝑄 =  −10 𝑙𝑜𝑔10 𝑃 

Where: 

Q = phred score  

@SEQ_ID  
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT  

+  
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 
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P = error probability 

Sequencing quality scores are portrayed as ASCII (American standard code for informational 

change) with characters having an offset of +33. This system connects a character with a 

number. For example “ ) “ represents a Phred score of 8 which correlates to an error probability 

of 0.15849. Table 4.2.1 shows some of the quality scores and their correlating ASCII characters 

found in the datasets analyzed in the current study.  

 

Table 4.2.1. Examples of phred scores and the correlating ASCII characters 

Phred score (Q) Error probability ASCII 

2 0.63096 # 

5 0.39811 & 

10 0.10000 + 

20 0.01000 5 

30 0.00100 ? 

34 0.00040 67 

 

4.2.5. Automated WGS Data Analysis Pipeline (USAP) 

Worldwide there is a variety of free specialized software packages available for the analysis of 

high throughput next-generation sequencing. However, this software is highly generic and 

publicly available pipelines do not take a specific organism’s genome into account. More 

specifically, traits of M. tuberculosis such as high GC content, genome size, and high 

percentage of repetitive regions are not accounted for. Therefore, various software packages 

together with in-house developed scripts were optimized (by members of the TB Genomics 

group, Stellenbosch University) for the analysis of mycobacterial genomes. An overview of 

the pipeline is represented by Fig 4.2.2. 
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Figure 4.2.2 Workflow of the computational analysis of WGS data. 

 

4.2.6. Quality control 

Raw sequence data per isolate were subjected to quality checks. FastQC was used to check the 

quality of the Illumina reads to see whether any features in the data could affect downstream 

analysis. FastQC is a Java-based tool which utilizes FASTQ files as inputs and the results are 

produced in a HTML format; the data is evaluated using a seven-step package that includes the 

following steps: 

• Basic statistics includes information describing the platform used, input file, sequence 

length, amount of reads processed, and percentage of the GC content. 

• Calculating the per base sequence quality.  

• Calculating the per base sequence content ascertaining the distribution of the four 

nucleotides throughout the reads. 

• Calculating the GC content throughout the reads and comparing them to the theoretical 

value. 

• Calculating the probability of read contamination. 

FASTQC 

Trimmomatic 

BWA Novoalign 

Picard tools 

SAMTools 

SAMTools: sort and index 

GATK: realignment around in/dels 

Picard tools: sort 

SAMTools: index 

Picard tools: remove PCR duplicates 

GATK, SAMTools 

SMALT 

• Quality assessment 
• Pre-processing: trim 

reads 

• Alignment to a 
reference genome 

• Validate alignment 
• Improve alignment 

• Variant calling 
(SNVs) 

• Genome coverage 
(deletions) 
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• Calculating the number of uncalled bases throughout the reads – number of “Ns”. 

• Calculating the amount of duplicate sequences. 

 

4.2.7. Trimming of sequences 

Trimmomatic, a fast, multi-threaded command-line tool, was used for accurate trimming of the 

3’end of the sequences. The tool was run in the paired-end mode, which maintained 

correspondence of the read pairs as well as the additional information to better determine 

adapters. While it is paramount that focus be placed on the quality of the reads (Phred ̴ 30), a 

balance had to be upheld between quality and read length. The FASTQ files were trimmed 

according to the command to produce high quality FASTQ files, which are used for further 

analysis. The command consists of the following (Appendix B): 

• Removal of adapters  

• Removal of leading low quality or N bases (below quality 20) (leading 20) 

• Removal of trailing low quality or N bases (below quality 20) (trailing 20) 

• Scanning the read with a 4-base wide sliding window trimming when the average 

quality per base drops below 20. 

• Reads are dropped which were below 36 bases long. (MINLEN 36) 

 

4.2.8. Alignment and mapping 

Three distinct alignment software programs for alignment and mapping of WGSs were used. 

These mappers use different algorithms for mapping short sequencing reads to a reference 

genome, which was M. tuberculosis H37Rv (NC_000962.3). The mapping software included 

Novoalign 2.07.18 relies on a Needleman-Wunsch algorithm (Novocraft Technologies 

http://novocraft.com), BWA, which uses a Burrows-Wheeler transform Algorithm (Li and 

Durbin, 2009, 2010), and SMALT, which employs a hash table-based algorithm (Sanger 

Institute https://www.sanger.ac.uk). A collection of free software packages were used for the 

downstream analysis of the alignment file and quality control procedures.  

Employing three different alignment tools minimized the identification of false positive 

variants since the aligners use distinctive algorithms. All alignment tools produced an output 

in the Sequence Alignment/Map (SAM) format. This format is generic for the storage of large 

nucleotide sequence alignments up to 128 Mb, it permits for the majority of procedures on the 

alignment to work on a stream without loading the entirety of the alignment to memory (Li et 

al., 2009).  
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4.2.8.1. Novoalign 

Novoalign is an alignment tool aligning short sequences against an indexed referenced 

sequence. The aligner aims to accurately identify variants in FASTQ format to a reference 

genome in fasta format. Indexing of the reference genome is completed using the “Novoindex” 

command. The indexed genome is saved to a corresponding file and thus can be reused if 

necessary. The indexing strategy utilizes a k-mer indexing size of 13 and an indexing step size 

of 1. Novoalign takes the input sequences and employs a Needleman-Wunch algorithm to find 

the best alignments. The aligner does a gapped global alignment and for this analysis the default 

of 6 was utilized, therefore allowing for six matches per alignment, producing a SAM file as 

an output.  

 

4.2.8.2. Burrows-Wheeler Aligner (BWA) 

BWA is a software package that aligns relatively short reads to a reference genome by 

executing three algorithms: BWA-backtrack (for reads up to 100 bp), BWA-SW and BWA-

MEM (for longer reads 70 base pairs to 1 Mega base pairs). BWA-backtrack was utilized for 

analysis. The aligner requires the reference genome to be indexed, therefore the “faidx” 

command was used to index H37Rv from SAMTools and the “index” command was used in 

BWA home directory. BWA takes FASTQ reads as inputs and utilizes the “bwa-aln” command 

followed by the command “bwa sampe” to align the forward and reverse reads in combination 

to the reference genome (H37Rv) and produced a SAM file as an output. Default command 

line parameters were used for the alignment procedure.  

 

4.2.8.3. SMALT  

SMALT is a pairwise sequence alignment tool mapping reads to a reference genome. It utilizes 

a short-word hashing algorithm. SMALT encompasses a two-step process. Firstly, an index of 

short reads needed to be built utilizing the reference genome (fasta format) with the command 

“smalt index”. Secondly, the sequenced reads in FASTQ format were mapped to the reference 

genome called by the “smalt map” command. The aligner matches reads to the reference 

utilizing a k-mer hash index method. Based on potential matching, segments were selected for 

alignment by a Smith-Waterman algorithm. The aligner utilizes FASTQ as the input sequence 

file format, and the output is a SAM file format.  
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4.2.9. SAM File Validation 

The SAM files generated were validated with the “ValidateSAMFile” command in Picard tools 

(http://picard.sourceforge.net) this was used to identify the authenticity of the SAM file, the 

program validates the existence of reads group within the SAM file. The program was run in 

“mode=summary”, which summarized all errors and warnings. Prioritization was set on severe 

errors.  

 

4.2.10. Converting the Sequencing Alignment Map (SAM) File Format to Binary 

Alignment (BAM) File Format 

SAMTools (http://samtools.sourceforge.net.) is a software package which invokes multiple 

utilities for post-processing and manipulation of alignments in SAM/BAM format (Li et al., 

2009). The software is able to index, sort, and merge SAM files. The SAMTools commands 

utilized for the conversion from the SAM alignment file to the binary alignment (BAM) format 

were “view” and “sort”. The BAM format improves performance, due to the compression in 

size, while retaining all information from the SAM alignment format. The format can be 

indexed ensuring fast and efficient retrieval of all reads at a specific chromosomal locus. 

 

4.2.11. Alignment Statistics 

Qualimap was used to produce extensive alignment statistics for isolates analyzed in Chapter 

4, section 4.2.8. The program inspects sequence alignments in an input SAM or BAM file 

format and provides a comprehensive report of the data concerning the depth of coverage of 

the reference genome, mean and median values of the insert size, and nucleotide distributions 

(García-Alcalde et al., 2012; Okonechnikov, Conesa and García-Alcalde, 2016). 

 

4.2.12. Post Alignment Processing of BAM Files 

BAM files were subjected to processing for error corrections which were integrated during the 

alignment step. 

 

4.2.12.1. Coordinate sorting and indexing of BAM files 

The SAMTool commands “sort” and “index” were employed for the conversion of the BAM 

file into a format easily readable and manageable. The loading of extra alignments was avoided 

by sorting the BAM files by coordinate into computational memory.   
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4.2.12.2. Realignment focused on in/dels (insertions and deletions) 

Insertions and deletions (in/dels) have the ability to affect the alignment of reads, which leads 

to the identification of false positive single nucleotide variants due to misalignment to a 

reference genome (Fletcher and Yang, 2010). This can occur due to bases mismatching to the 

reference sequence and can be misread as single nucleotide polymorphisms (SNPs). 

Minimization of such an occurrence across all reads was achieved by using the Genome 

Analysis Toolkit (GATK), which realigned misaligned sequencing reads (Mckenna et al., 

2009; Depristo et al., 2011). The process consists of two steps. Firstly, small intervals that were 

misaligned were identified using the “RealignerTargetCreator” command. Secondly, 

questionable intervals were realigned using the “IndelRealigner” command, which realigned 

the intervals to the reference genome, thus amending the misaligned reads.  

 

4.2.12.3. Coordinate sorting and indexing of realigned BAM files 

Realigned BAM files were sorted with the command “sortsam” with Picard tools and indexed 

with “index” command using the SAMTools software package. 

 

4.2.12.4. Removal of PCR duplicates 

Polymerase chain reaction (PCR) amplification during the library construction may produce 

duplicate reads. The Picard command “MarkDuplicates” was utilized to locate the duplicate 

reads in BAM files, which were flagged in the BAM output files. This was used to decrease 

the bias established by PCR amplification.  

4.2.13. Variant calling 

Two autonomous variant callers were used for the identification of SNPs and short in/dels to 

the reference genome. The three different mapping files received from the prior stages were 

analyzed with two SNP callers – SAMTools and GATK (Li et al., 2009; Mckenna et al., 2009; 

Depristo et al., 2011). The variants are kept in the variant call (vcf) file format. In addition to 

the identification of variants, GATK was used to determine small in/dels from each alignment, 

thus resulting in three vcf files comprising of potential in/dels for each isolate that was 

analyzed. The usage of 3 mapping alignment tools and two variant calling programs decreased 

the likelihood of identifying false positive variants. 

 

4.2.13.1. GATK 

The ‘UnifiedGenotyper’ tool from GATK was used for SNP and in/dels calling, and produced 

a file in the output call variant format (vcf). The value of stand-call-conf was set at 50, which 
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allowed for variants with a minimum phred-scaled threshold of 50 or greater to be reported as 

polymorphic sites. The stand-emit_cof value was set at 10. This allowed for variants with a 

phred-scaled confidence equal to or greater than 10, but less than the calling threshold of 50, 

to be reported and marked as filtered. The output vcf file contained information regarding the 

position, alternative sequence and the phred scale probability of the polymorphisms at that 

position. The vcf file also contains alternative base specific information, inclusive of the 

number of reads bridging that position and the number of reads containing the reference and 

alternative base at the position.  

 

4.2.13.2. SAMTools 

The command “mpileup” was used in SAMTools. This created a pileup of all reads relative to 

the reference genome and simultaneously identified SNPs relative to the reference genome. 

Default parameters were utilized. In/dels identified by SAMTools were excluded from 

downstream analysis. Vcf files generated by this software tool contained information relating 

to position, alternative sequence, and quality score in the phred scale for each variant. 

Furthermore, files include variant specific information such as the number of reads aligning to 

that position.  

 

4.2.14. Annotation of variants obtained from the different aligners 

In-house scripts written as part of the USAP pipeline were used to: 1) annotate the identified 

variants, 2) calculate the resultant amino acid changes created by SNPs located within genes 

and 3) annotate the identified in/dels. The genes in which the variants occur were classified 

based on its cellular function as reputable in the TubercuList knowledgebase and Mycobrowser 

(Cole et al., 1998; Kapopoulou, Lew and Cole, 2011).  

 

4.2.15. Comparison of annotations obtained from aligners 

The annotated variants which were previously compiled from all three aligners were placed 

into a single variant file. An in-house Python script called dirCompare32 written by Dr. Ruben 

van der Merwe. The in-house script utilized two annotated variant input files from the isolate 

taken at diagnosis and at w24 to identify unique variants from both input files as well as 

overlapping variants. The output files produced were in text format, which were viewed and 

analysed in Microsoft Excel. These text files contained information such as the genomic 

position, the heterogeneity frequency, the number of reads, and functional category of all 
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unique variants identified in all three mappers with the two different variant callers as described 

in section 4.2.16. Information originated from six analyses strategies, namely BWA-GATK, 

BWA-SAMTools, Novoalign-GATK, Novoalign-SAMTools, SMALT-GATK and SMALT-

SAMTools.  

 

Similarly, annotated variants obtained from the three aligners were utilized for an inter-patient 

group comparison. The in-house script utilized all annotated variant input files from the cured 

patient group and compared to all variant input files from the failed/recurrent patient group to 

identify unique variants in the failed/recurrent patient group not present in the cured patient 

group. 

 

4.2.16. Filtering of unique variants after pairwise comparison 

Filtering of variants took place in Microsoft Excel and was used to: 1) Filter for variants that 

were identified in alignments of all three mappers, and both variant callers that are unique to a 

particular isolate when compared to the baseline/follow-up from the same patient.  2) Filter 

based on heterogeneity frequency  1 ≤ 𝑥 ≥ 0.3 , which identified whether the variants were 

fixed in the population or not. A value of 0.7-1 represented a fixed variant, translating to 70% 

- 100% of reads supporting an identified variant at a specific position. A value of 0.3-0.7 was 

interpreted as a heterogeneous variant. A heterogenous value below 0.3 were excluded as 

variants below 0.3 are untrustworthy and considered false positives. 3) Filter based on number 

of reads at the position of the identified variant. This is defined by the average depth of 

coverage of each individual isolate, where if the unique variant is covered by less than 30% of 

the average depth of coverage of the entire genome of the specific isolate, the variant is 

excluded. 4) Filter based on functional category, where all variants identified in known 

repetitive regions were removed, such as insertion sequences, and phages. These genomic 

regions have a high rate of producing false positives with short read sequences, due to having 

high repetitive regions in M. tuberculosis (Treangen and Salzberg, 2012; Torrey et al., 2016) 

5) Filter based on position within 5 bases of each other. Variants positioned with a close 

proximity to each other often indicate an error in sequencing. Filtering allowed for a high 

confidence in unique variants.  

 

4.2.17. Drug susceptibility and lineage prediction of isolates obtained from cured and 

failed/recurrent patient group 
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A pipeline, TB-profiler, similar to the automated in-house pipeline optimized for analysis of 

the M. tuberculosis genome was employed for drug resistance and lineage predictions (Coll et 

al., 2015; Phelan et al., 2019). The pipeline utilizes Trimmomatic to trim reads, for alignment 

to M. tuberculosis H37Rv and BCFtools mpileup and BCFtools call for variant calling. 

Command line usage of TB-profiler required Conda software package manager. Commands 

utilized are stipulated in appendix B.  

 

4.2.18. Phylogenetic tree construction  

High confidence SNPs of 15 sequences from the current study and 21 publicly available 

representatives of the Mycobacterium tuberculosis complex (MTBC) were included in the 

phylogenetic analysis (Comas et al., 2010; Blouin et al., 2012). Variants identified by both 

SAMTools and the GATK in three alignments were filtered to exclude variants in the pe/ppe 

family region, repeat regions, insertion sequences and phages, and only variants with an allele 

frequency of >0.95 were considered. A python script (Appendix C) written by Dr Ruben van 

der Merwe was used to generate a connected sequence of all high confidence SNPs recognized 

for each isolate. The principle is illustrated by the example below: 

Reference strain partial genome sequence:    ATGCAGTTGCGCACAGCTGCGGAT  

Strain A partial genome sequence:   ATCCAGTACCGCACCGCTGCGGAT  

Strain B partial genome sequence:   ACGCAGTTCCGCACAGGTGCGCTT  

 

Concatenated SNP strings based on variable positions:   

Reference:     TGTGACGAT  

Strain A:      TCACCCGAT  

Strain B:      CGTCAGCTT 

The connected sequences that contained variable sites were secured in multi-FASTA format. 

Sequences were converted to the Phylip format (.phy) and used for phylogenetic inference in 

IQ-TREE  v 1.6.1.2 (Nguyen et al., 2015). IQ-TREE uses an ultra-fast and automatic nucleotide 

substitution model selection method (Modelfinder) for phylogenetic analysis. IQ-TREE was 

run in the ultra-fast bootstrapping mode, using 1000 bootstrap iterations. Lineage and drug 

resistance annotation files produced by TB-profiler was used to annotate the resulting 

phylogenetic tree in the Interactive Tree of Life (iTOL) online phylogenetic tree visualization 

tool (Letunic and Bork, 2019).  
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4.3. Results  

4.3.1 Introduction 

WGS of Mycobacterium tuberculosis clinical isolates from Cape Town in South Africa was 

done in collaboration with the Centres for Disease Control and Prevention, Atlanta, GA, USA. 

The genomic DNA from 18 M. tuberculosis clinical isolates was subjected to WGS on an 

Illumina NextSeq 550 platform, 3 clinical isolates were sequenced on a Illumina Miseq at 

Inqaba Biotech. A customised in-house WGS data analysis pipeline was used to analyse the 

WGS data. Multiple measures were taken to ensure high quality sequencing and mapping of 

sequence reads for variant calling with high confidence. The reads obtained were aligned to 

the complete genome sequence of the M. tuberculosis H37Rv laboratory strain (Genbank 

accession number: NC000962.3). Table 4.1.1 depicts general information regarding the clinical 

isolates. All isolates selected for this study were predicted to be drug susceptible and belonged 

to either lineage 2 (Beijing, 37.5%) or lineage 4 (Euro-American, 62.5%). This was expected, 

since the majority of pulmonary TB in Africa is caused by M. tuberculosis from these strain 

families (Rutaihwa et al., 2019).  

Table 4.3.1. Information of M. tuberculosis clinical isolates 

Sample ID Age Sex Treatment outcome Lineage Drug 

susceptibility 

prediction 

C-S5dx 30 Male Cured 4.3.2.1 (LAM) Susceptible 

C-S29dx 42 Male Cured 4.3.2.1  

(LAM) 

Susceptible 

C-S41w4 35 Male Cured 4.1.1.3 (X) Susceptible 

F/R-S43dx 18 Male Failed 2.2 (Beijing) Susceptible 

F/R-S43w24 2.2.1.1 

(Beijing) 

C-S105dx 21 Male Cured 4.2 (Ural)     Susceptible 

C-S105d2 

F/R-S112dx 52 Male Recurrent 2.2 (Beijing) Susceptible 

S126dx 39 Male Cured 4.1.2.1(X) Susceptible 

F/R-S137dx 44 Female Recurrent 2.2.1.1 

(Beijing) 

Susceptible 

F/R-S152 23 Female Recurrent 2.2 (Beijing) Susceptible 

C-S153dx 25 Male Cured 4.1.1.3 (X) Susceptible 

C-S153w8 

C-S159dx 19 Female Cured 4.9 (T1) Susceptible 

C-S159w4 

F/R-S163dx 25 Male Failed 2.2 (Beijing) Susceptible 

F/R-S163w24 

F/R-S169dx 30 Female Failed 4.1.2.1 (X) Susceptible 

Abbreviations: d=day, w=week 
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4.3.2. Read Assessment and Trimming 

The quality of all raw sequences in both the forward and reverse orientation was assessed using 

open access quality control tools. FastQC was used to assess the quality of the reads and the 

subsequent mapping strategies (Andrews, 2010). The quality of the raw sequences was 

considered, trimming of the reads were done accordingly using Trimmomatic (Bolger, Lohse 

and Usadel, 2014). Reads were on average 101 bases long and the per base quality scores 

decrease towards the ends of the reads similar to what was previously reported (Patel and Jain, 

2012). However, reads from samples subjected to Miseq sequencing were on average 35-301 

bases long with a low per base sequence quality for 2/3 sequences. The tapering of quality 

towards the end of reads is generally attributed to the Illumina sequencing technology, which 

relies on the synthesis procedure. However, Illumina sequencing frequently produces 

sequences of high quality regardless. Trimming of reads was completed utilizing the sliding 

window approach in Trimmomatic. This approach considers 4 bases at a time, determines the 

average quality score, and once parameters are not met, one base is trimmed. An average of 20 

bases was used with a minimum read length of 36. Trimming produced reads with an average 

Phred scaled quality greater than 33, translating to a sequence error probability of 0.00050 

(99,93% accuracy). Following trimming, samples subjected to Miseq sequencing had a 

minimum Phred of 16, translating to a sequence error probability of 0.025 (97,48% accuracy). 

Fig 4.3.1represents an example of the quality of the trimming of raw sequences from NextSeq; 

(a-b) shows raw sequences of isolate S105dx before trimming, showing larger errors that relate 

to having large variation between bases that were called, while (c-d) depicts an example of the 

quality of the trimmed reads in the forward and reverse orientation, respectively. Similarly, Fig 

4.3.2 depicts a representative of the quality trimming of raw sequences subjected to the 

Illumina Miseq; (a-b) shows raw sequences of isolate S5 before trimming, showing larger 

errors that relate to having large variation between bases that were called, while (c-d) depicts 

an example of the quality of the trimmed reads in the forward and reverse orientation, 

respectively. 

Stellenbosch University  https://scholar.sun.ac.za



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3.1. The per base quality of the sequencing reads of a representative strain C-S105dx 

from NextSeq platform. A) A per base quality graph of the forward read (R1) pre-trimming. B) A 

per base quality graph of the reverse read (R2) pre-trimming. C) A per base quality graph of the forward 

read (R1) post-trimming. D) A per base quality graph of the reverse read (R2) post-trimming.  
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Figure 4.3.2. The per base quality of the sequencing reads of a representative strain C-S5 from 

Miseq platform. A) A per base quality graph of the forward read (R1) pre-trimming. B) A per base 

quality graph of the reverse read (R2) pre-trimming. C) A per base quality graph of the forward read 

(R1) post-trimming. D) A per base quality graph of the reverse read (R2) post-trimming.  
 

 

4.3.3. Read Alignment and Mapping Statistics  

Three independent mapping software packages (BWA, NovoAlign and SMALT) were utilised. 

These employ various algorithms for mapping short sequencing reads to the reference genome, 

M. tuberculosis H37Rv (Genbank accession number: NC000962.3). Qualimap2, an 

independent Java and R application which examines sequence alignments and produces 

graphical and statistical evaluation of the data from BWA, Novoalign and SMALT, was used 

to obtain mapping statistics for sequenced M. tuberculosis genomes (Okonechnikov, Conesa 

and García-Alcalde, 2016). Selected mapping statistics viewed from Qualimap2 and 

determined by SAMTools flagstat for the alignments of all clinical isolates to the reference 

genome M. tuberculosis H37Rv, are summarised in Table 4.3.2.  The range of values obtained 

from each of the parameters listed in Table 4.3.2 reflects the diverse algorithms utilized by the 

independent mapping software packages. For the majority of isolates, >90% of the reads were 
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mapped to the H37Rv reference genome, suggesting no contamination within the samples, and 

that high sequence quality was obtained from using the NextSeq platform. However, the Miseq 

platform produced a majority of sequences with low sequence quality. Eleven of eighteen  

isolates were sequenced to a depth of coverage between 87,96 x – 140,06 x; two isolates had 

an average depth of coverage of  ̴ 0 and were excluded from further  analysis (C-S5 and F/R-

S137); while 5 isolates (C-S105d2, C-S126dx, C-S153w8, C-159w4 and F/R-S43dx) had an 

average depth of coverage of 17,72-58,85x.   

 

 

Table 4.3.2. Average percentage of mapped reads and depth of coverage calculated 

based on Qualimap results from alignments produced by BWA, Novoalign and SMALT 

Treatment 

Outcome 
Sample ID 

Mapping 

Aligners 

Percentage 

mapped 

reads 

Average 

depth of 

coverage 

(X) 

Average 

% 

mapped 

reads (3 

mappers) 

Average 

depth of 

coverage (3 

mappers) 

Cured 

C-S5dx 

BWA 98,40 
0,67           

(+/- 1,12) 

98,80 
0,67             

(+/- 1,13) 
Novoalign 98,23 

0,67             

(+/- 1,13) 

SMALT 99,76 
0,68               

(+/- 1,13) 

C-S29dx 

BWA 99,18 
140,4183 

(+/- 30,20) 

98,97 
140,06         

(+/-31,45) 
Novoalign 98,27 

139,081   

(+/- 32,24) 

SMALT 99,45 
140,6721 

(+/- 31,75) 

C-S41w4 

BWA 99,34 
143,6368      

(+/- 31,74) 

97,33 
143,42         

(+/-32,35 ) 
Novoalign 98,74 

142,724     

(+/- 33,36) 

SMALT 99,63 
143,9106      

(+/-31,96) 

C-S105dx 

BWA 99,1 
88,09       

(+/- 21,078) 

97,43 

 

87,96          

(+/-21,44) 
Novoalign 98,48 

87.52        

(+/- 22.01) 

SMALT 99,43 
87,96       

(+/- 21,45) 

C-S105d2 

BWA 95,77 
17,74         

(+/- 5,89) 

95,70 
17,72           

(+/- 5,95) 
Novoalign 96,19 

17,79              

(+/- 5,93) 

SMALT 95,15 
17,62             

(+/- 6,03) 

C-S126dx BWA 98,65 
13,28             

(+/- 5,37) 
99,04 

21,86             

(+/- 15,06) 
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Novoalign 97,80 
38,90              

(+/- 34,40) 

SMALT 98,70 
13,39          

(+/- 5,40) 

C-S153dx 

BWA 99,34 
182,72      

(+/- 42,37) 

97,07 

 

182,41      

(+/-43,15 ) 

 

Novoalign 98,69 
181,47        

(+/- 44,46) 

SMALT 99,61 
183,04     

(+/- 42,63) 

C-S153w8 

BWA 99,31 
58,95             

(+/- 15,92) 

99,60 
58,85         

(+/- 16,14) 
Novoalign 98,58 

58,52         

(+/-16,49) 

SMALT 99,60 
59,07          

(1+/-6,02) 

C-S159dx 

BWA 99,25 
92,07         

(+/- 23,26) 

97,61 

 

91,90             

(+/-23,77) 
Novoalign 98,42 

91,29       

(+/- 24,54) 

SMALT 99,64 
92,34       

(+/- 23,52) 

C-S159w4 

BWA 98,93 
18,70          

(+/- 6,15) 

98,78 
18,67             

(+/- 6,20) 

Novoalign 98,10 
18,54       

(+/-6,34) 

SMALT 99,31 
18,75        

(+/-6,20) 

Failed/recurrent 

F/R-S43dx 

BWA 98,87 
40,66           

(+/- 12,22) 

98,86 

 

40,77             

(+/-15,90) 
Novoalign 98,86 

40,36               

(+/- 14,85) 

SMALT 98,86 
41,28            

(+/- 20,61) 

F/R-S43w24 

BWA 98,85 
87,79          

(+/- 21,44) 

98,57 
87,52          

(+/- 21,90) 
Novoalign 97,72 

86,77        

(+/- 22,37) 

SMALT 99,15 
87,99           

(+/- 21,89) 

F/R-S112dx 

BWA 99,36 
158,48             

(+/- 36,45) 

97,22 

 

157,96                  

(+/-37,31 ) 
Novoalign 98,2 

156,56                    

(+/- 38,22) 

SMALT 99,66 
158,84                  

(+/- 37,27) 

F/R-S137 

BWA 97,55 
0,87                      

(+/- 1,32) 

98,26 
0,88               

(+/- 1,32) 
Novoalign 97,59 

0,87                 

(+/-1,32) 

SMALT 99,65 
0,89                

(+/- 1,33 
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F/R-S152 

BWA 98,12 
89,00             

(+/- 24,33) 

98,26 
88,97             

(+/- 24,73) 
Novoalign 97,13 

88,13             

(+/- 25,55) 

SMALT 99,53 
89,78             

(+/- 24,30) 

F/R-S163dx 

BWA 99,31 
149,18       

(+/- 33,65) 

97 

 

148,71              

(+/-34,53 ) 
Novoalign 98,19 

147,44      

(+/- 35,53) 

SMALT 99,61 
149,52        

(+/- 34,41) 

F/R-S163w24 

BWA 99,29 
107,86           

(+/- 25,66) 

99,01 
107             

(+/- 26,28) 
Novoalign 98,16 

106,59           

(+/- 26,97) 

SMALT 99,57 
108,08            

(+/- 26,22) 

F/R-S169dx 

BWA 83,71 
90,70         

(+/-21,90) 

83,80 
90,58         

(+/-22,43) 
Novoalign 83,12 

90,00          

(+/- 23,18) 

SMALT 84,58 
91,04           

(+/-22,21) 

 

4.3.4. High Confidence Variants 

4.3.4.1.Comparison of variants identified in the cured patient group vs failed/recurrent patient 

group 

In an attempt to identify common features in the genome of isolates from the failed/recurrent 

patient group that could explain the increased persister proportions observed in chapter 3 

(section 3.3.5), we examined variants that were shared (or unique) in the failed/recurrent patient 

group, but not identified in the cured patient isolates. However, the data did not reveal an 

obvious genetic contributor to the differential persister phenotypes or clinical outcome 

observed.    

 

4.3.4.2.Pairwise comparisons of isolates obtained at diagnosis (Dx) vs later time points (d2, 

w4, w8 and w24) 

To determine if there was any strain evolution during TB treatment, variants identified at 

diagnosis (dx) and at later time points were compared utilizing the script mentioned in section 

4.2.16. Importantly, only 5/13 patients have follow-up samples, with 3 belonging to the cured 

group (C-S105d2, C-S153w8 and C-S159w4) and 2 belonging to the failed/recurrent patient 

group (F/R-S43w24 and F/R-S163w24). Unique SNPs were only identified in two patients 

(F/R-S43 and F/R-S163) from the failed/recurrent patient groups (data not shown). 
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Unsurprisingly, patient F/R-S43 showed 130 unique variants in both the diagnosis bacterial 

isolate (dx) and follow-up isolate (w24), as this patient samples revealed reinfection with a 

different mycobacterial strain. Patient S163 was identified to have a non-synonymous SNP in 

dx bacterial isolate in Rv3795. A separate non-synonymous SNP was identified in the later 

time point of patient F/R-S163, F/R-S163w24, in gene Rv2142A. The pairwise comparison 

identified little strain evolution during treatment at a genomic level. However, a factor which 

contributed to the lack of evolution observed in the cured groups is the lack of later time point 

isolates i.e w24.  

 

4.3.5. Phylogenetic Tree Construction 

To assess the relationship of the included M. tuberculosis isolates to members of the 

Mycobacterium tuberculosis complex (MTBC), a comprehensive phylogenetic tree was 

constructed (Fig 4.3.3). The strings of the concatenated variants from all isolates used in this 

study were considered in fasta format. These strings were matched to each other and members 

of the MTBC.  Previous phylogenetic analyses of M. tuberculosis evolution have used a related 

methodology (Jones et al., 2019). Fig 4.3.3 depicts that all isolates were drug susceptible with 

majority (62.5%) belonging to lineage 4 (Euro-American) and (37, 5%) belonging to lineage 2 

(East-Asian). Due to F/R-S43, F/R-S112, F/R-S163, F/R-S152 and F/R-S137 being part of the 

same sub-lineage. Fig 4.3.3 depicts a diverse collection of Euro-American sub-lineages, which 

were not dominated by a single sub-lineage, as isolates of the LAM family and X family 

predominantly made up the portion of lineage 4 data set.  
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Figure 4.3.3. Molecular phylogenetic analysis by maximum likelihood method with 1000 

bootstrap replicates showing the relationship of the included M. tuberculosis isolates to other 

members of the Mycobacterium tuberculosis complex. The bootstrap support values are shown next 
to the nodes. The phylogenetic tree was produced by IQ-TREE which was based on variable sites 

identified when compared to the M. tuberculosis H37Rv reference sequence (Letuni and Bork., 2019). 
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4.4. Discussion 
In this component of the study, we wished to determine whether there were genetic contributors 

to the differential persister formation observed in the two patient groups with different clinical 

outcomes (section 3.3.5). We further wished to rule out that the clinical outcomes are linked to 

drug resistance-conferring mutations. This was aided by WGS analysis of selected clinical 

isolates. Genome sequencing was carried out on 2 different Illumina platforms, namely the 

NextSeq and Miseq platforms. For data analysis, we utilized a reference genome sequencing 

approach to M. tuberculosis H37Rv in combination with a M. tuberculosis customised 

University Stellenbosch automated pipeline (USAP) which utilized a multi-software approach 

to determine unique variants per isolate.  

 

4.4.1. Data clean-up and quality control  

A major challenge for WGS data analyses of M. tuberculosis is that the genome has several 

highly repetitive regions, which complicates bioinformatics analysis of the data. This property 

may cause alignment algorithms to map a read to the wrong location in the reference genome, 

predominantly around repetitive areas of low-complexity regions. Utilizing multiple aligners 

minimises the identification of false positive variants. Thus, regions which are annotated as 

pks, insertions, esx, repeat, phages, polyketide, or transposase in gene name or gene product 

description in the annotated variant file were removed prior to variant calling analysis.  

 

The USAP pipeline includes several data clean-up and quality control steps. One of the steps 

to ensure good sequence quality is the use of the Trimmomatic tool which is a pre-processing 

tool that removes and poor-quality sections allowing downstream analysis on good quality 

reads. Fig 4.3.1. depicts a representative of the per base quality as observed in FastQC post 

sequencing on the Nextseq platform, showing good per base sequence quality. In contrast, Fig 

4.3.2. depicts a representative of Miseq per base quality, showing the majority of per base 

quality scores being in the (orange-red) y-axis background indicative of reasonable to poor 

quality.  

 

Following sequence trimming, data was subjected to the 3 alignment algorithms (BWA, 

Novoalign and SMALT). Using various software packages read alignment to the reference 

genome, including depth of coverage of each sequence was assessed. Overall, >90% of reads 

from clinical isolates mapped to M. tuberculosis H37Rv, indicative of having no contamination 

(Table 4.3.2). Depth of coverage provided a further measure of data quality; a high depth of 
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coverage of ≥ 80x is recommended as this increases confidence in variants observed. 

However, a minimum depth of coverage of 30x has been observed to provide accurate variants 

in M. tuberculosis studies (Colman et al., 2019).When depth of coverage was assessed for our 

sample set, it was revealed that isolates C-S5 and C-S137 showed a depth of coverage of <1, 

indicating that variants discovered in these isolates could not be assessed with any degree of 

confidence. These were therefore excluded from further analyses.  

 

4.4.2. Antibiotic susceptibility and lineage specificity 

To rule out genetically-encoded antibiotic resistance of mycobacterial isolates obtained from 

cured and failed/recurrent patient groups as a contributing factor to the different clinical 

outcomes (as previously observed by Malherbe et al., 2016) we subjected WGS data to a 

publicly available profiling tool, TB-profiler. TB-profiler was specifically created for the 

identification of known antibiotic resistance mutations as well as for strain identification of M. 

tuberculosis (Coll et al., 2015; Phelan et al., 2019). Fig 4.3.3 showed that all isolates are drug 

susceptible. Thus, it can be reasonably concluded that drug resistance had no impact on the 

phenotypic persister-like population identified from macrophage infections.  

 

Lineage identification was executed with the open source TB-profiler pipeline and confirmed 

by creating a phylogenetic tree with scripts and IQ-Tree. The pipeline utilizes similar tools 

such as USAP for drug susceptibility and lineage profiling. Strains identified were observed to 

belong to the modern MTBC lineages, with ~60% belonging to the Euro-American lineage 4 

and ~40% belonging to the East-Asian lineage 2 (Fig 4.3.3). The observed lineage distribution 

is similar to what is expected in the Western Cape (Nicol et al., 2005; Rutaihwa et al., 2019). 

Strain evolution during treatment is inconclusive as absolute distance of SNP difference 

between baseline and follow-up could not be determined. Given the limited number of samples 

included in the phylogeny, two strains could cluster together on the tree but be more than 5-12 

SNPs apart. 

 

4.4.3. Unique variant recognition 

Recent literature has provided evidence of genetic components which could predispose cells to 

enter a persister-like state (Torrey et al., 2016; Safi et al., 2019). Thus, we attempted to identify 

unique variants in isolates obtained from failed/recurrent patient group compared to the cured 

patient group. The lack of unique variants suggests that treatment outcome groups are not 

associated with genetic contributors, although current sample numbers would need to be 
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expanded for a definitive conclusion. It is noted that phenotypic antibiotic tolerance as well as 

epistasis could be responsible for the increased persister formation observed. However, 

regarding epistasis data suggests that non-synonmous mutation had limited or no contribution 

to the phenotype observed. Furthermore, phenotypic antibiotic tolerance has been shown to be 

directly proportional to the rate of antibiotic resistance emergence in clinical isolates of E. coli 

and P. aeruginosa (Vogwill et al., 2016; Windels et al., 2019). This could be a possible avenue 

of research in future. 

Initially it was speculated that genetic variants could lead to the increased intracellular 

replication observed in isolate C-S126 (Figure 3.3.8). However, upon analysis of variants 

following WGS no variations in genomic data is suggested to explain the observed 

phenomenon.  

Following a pairwise comparison, we assessed if unique variants could be identified between 

dx samples and follow-up samples at a later time point. Unsurprisingly, unique variants were 

only identified in one patient sample, F/R-S163. Variants identified in both dx and w24 isolates 

were synonymous SNPs in Rv3795 and Rv2142A respectively, which do not cause amino acid 

changes affecting protein products. However, synonymous mutations have been shown to 

change translation initiation, mRNA stability as well as protein folding (Kristofich et al., 2018). 

While the majority of synonymous mutations are neutral, their effects may be magnified under 

strong selection processes. Synonymous mutations could lead to codon bias. Codon biases 

could lead to either the overexpression or decreased expression of certain products which could 

impact persister formation (Walsh et al., 2020). For example; in E. coli, a synonymous 

mutation in a gene upstream of inhA, encoding the target of isoniazid (used in TB treatment), 

generates a new promoter and increases inhA expression by 3-4 fold (Ando et al., 2014). 

Mutations in Rv3795 have been linked to low or moderate resistance as it is an essential gene 

involved in the biosynthesis of the mycobacterial cell wall arabinan, which is the drug target 

of ethambutol (Phelan et al., 2016). Disruption of Rv2142A has been shown to increase growth 

of in vitro H37Rv, by analysing of saturated HimaR transposon libraries (Dejesus et al., 2017). 

The use of RNA sequencing would be beneficial in determining whether codon bias has an 

effect on persister formation.  

 

Additionally, isolates obtained from patient F/R-S43 showed approximately 130 unique 

variants (more than threshold of 5 or 12 SNPs) to the baseline (F/R-S43dx) and follow-up (F/R-

Stellenbosch University  https://scholar.sun.ac.za



82 
 

S43w24) isolates (data not shown). This is an indication that a reinfection with a closely related 

strain also belonging to lineage 2 has likely occurred. This explains why the two isolates appear 

adjacent to one another in the phylogenetic tree (Fig 4.3.3). Thus, it can be concluded that 

treatment failure was due to reinfection and likely not due to the unique genetic make-up of 

baseline vs follow-up isolates. As F/R-S43 and F/R-S43w24 is suggested to be an infection 

with a different strain of M. tuberculosis from the same lineage. It could be speculated that 

F/R-S43w24 would have an increased persister frequency as it was exposed to antibiotic 

treatment upon initial infection.  

 

4.5. Limitations  

Ideally, this portion of the study would need to be repeated in a larger sample size to make 

adequate conclusions of whether there is a genetic component that predisposes persister 

formation. Additionally, low quality sequences posed another limitation as samples had to be 

removed from sequencing analyses that reduced the sample size.  

 

4.6. Future work: 

• Following variant calling if unique variants were determined within the failed/recurrent 

group. Tools such as polyphen-2, swift and provean to assess the impact of SNVs and 

in/dels on the biological function of the protein. If mutations were observed it would be 

interesting to see in which pathways these mutations could affect. pathway analyses KEGG 

analyses would be good. You would be able to look at genotypic info and see whether 

pathway analyses highlight involvement in specific genes/functions.  

• Resequencing of isolates with poor sequence quality would need to be done with the 

Illumina NextSeq platform.  

• WGS would need to be performed on a larger cohort to increase accuracy of relationship 

between genomic data and phenotypic occurrence of persister-like cells. A larger cohort 

could be determined utilising power calculations.  

• Deep WGS could be implemented to assess underlying minority populations in serial 

sputum samples. Similar to Liu et al., 2015.  

• Epigenetic studies on persister-like cells could be performed.  

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



83 
 

4.7. Conclusion  

Overall this section of this study has contributed new WGS data from strains with different in 

vitro phenotype and clinical outcomes. Unfortunately, the question of whether genetic 

composition predisposes persister of strains was not answered, due to the low sample number 

for what is a complex phenotype. A possibility to consider is that the persister phenotype 

observed in section 3.3.5 might be epigenetic rather than genetic.  
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Chapter 5 
 

General conclusion 

Approximately one third of the world’s population is asymptomatically infected with 

Mycobacterium tuberculosis, (Gill et al., 2009) the causative agent of tuberculosis (TB). In 

most M. tuberculosis-infected individuals, the infection persists in a latent, asymptomatic state 

that can continue for decades with the potential to reactivate later in life (Stewart, Robertson 

and Young, 2003). Therefore, therapies that aim to eliminate TB should target dormant 

organisms, since these could resume replication to cause active disease.  

Previously it has been shown that persistent mycobacteria arise in response to environmental 

stressors encountered in the host and adopt a slow or non-replicating state (North and Jung, 

2004; Liu et al., 2019). This small, viable, but non-replicating (VBNR) population is likely to 

be antibiotic-tolerant (Balaban et al., 2019). Currently the majority of drug therapies target 

actively growing bacteria, however persister bacteria comprise an important subpopulation of 

bacteria that is recalcitrant to antibiotic treatment (Gill et al., 2009). Importantly, VBNR 

bacterial populations are phenotypically drug tolerant, but not genetically resistant. Drug 

tolerant populations have been determined to be a contributing factor to the requirement for 

lengthy drug treatment and give rise to genetically resistant progeny. However, little is known 

about mycobacterial persisters, since they comprise of only 1% of the bacterial population and 

are non- or slowly growing, making them difficult to isolate. A major knowledge gap exists 

regarding the genetic contributors to persisters, likely to be involved in recurrent/failed TB 

treatment outcome.  

In a study by Malherbe et al lesion activity in lungs and the presence of M. tuberculosis mRNA 

were identified post TB treatment, which is suggestive of unculturable bacteria likely being 

persisters (Malherbe et al., 2016). Lesions were found to have variable fluorodeoxyglucose F 

18 (FDG) uptake, suggestive of a heterogeneous mycobacterial population in the 

failed/recurrent patient group.  

Therefore, the aim of this study was to determine if M. tuberculosis isolates from 

failed/recurrent TB patients are more likely to be predisposed to persister formation than those 

who were cured in response to treatment. For assessing persister proportions in all clinical 

isolates from cured and recurrent/failed patient groups, isolates were transformed with a FD 

dual-reporter plasmid and a THP-1 infection model was used to mimic host environmental 
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conditions that M. tuberculosis encounter during PTB infections. The THP-1 infection model 

has been found to be similar in bacterial uptake, viability and host response as that of primary  

human monocyte-derived macrophages (MDMs), which are considered to be the first line 

defence against mycobacterial infection (Madhvi et al., 2019). In addition, next generation 

sequencing analyses of the isolates were performed to characterise the isolates, investigate 

strain evolution during treatment and determine whether sequence variation predisposed 

persister formation in clinical isolates from cured and failed/recurrent patient groups.  

Flow cytometric results demonstrated heterogeneous in vitro growth of M. tuberculosis clinical 

strains from both patient groups, as opposed to previous work (Mouton et al., 2016).  This 

suggests that clinical strains are phenotypically and genetically more heterogeneous prior to 

host environmental stress (Zhang, Yew and Barer, 2012; Khare and Tavazoie, 2020). 

Heterogeneity prior to infection has been linked to increased host adaptability of strains (Jain 

et al., 2016), which could lead to uncleared/recurrent infection, even  after antibiotic treatment. 

Interestingly, one isolate C-S126dx was observed to have an increased intracellular growth 

compared to in vitro growth. Initially it was speculated to be as a result of a genetic component. 

However, no obvious genetic variations were observed that could explain this observation. For 

example, deletion of the pknH gene was found to increase bacillary load during infections in 

BALB/c mice (Papavinasasundaram et al., 2005). In addition to in vitro population 

heterogeneity, intracellular replication dynamics revealed the presence of a persister-like 

population in both cured and failed/recurrent groups 120 hours post infection. This suggests 

that host environments induce the formation of persister populations, which are inherently 

present prior to infection. This data which showed bacterial heterogeneity at baseline upon 

treatment initiation detected in replication dynamics have not been previously observed within 

clinical isolates. Furthermore, the frequency of persister-like cells was greater in the isolates 

from the failed/recurrent group compared to the cured group. It is tempting to speculate that 

these bacterial populations could possibly predispose patient treatment outcome. This however 

requires additional confirmation. Persister frequency within the failed/recurrent group was 

observed to be strain dependent as strains demonstrated variability in their propensity to form 

persisters in response to macrophage stress. The heterogeneity in persister proportions between 

strains could be attributed to various mechanisms bacterial persisters employ to survive host 

defense mechanisms, which could be lineage dependent. Isolates F/R-S112dx, F/R-S163dx, 

F/R-S169dx and F/R-S43dx are from lineage 2 and were found to have higher persister-like 

formation (FigureS3.2). Lineage 2 has been linked to increased virulence and improved 
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intracellular survival of M. tuberculosis in macrophages (Tram et al., 2018). However, further 

analysis would be needed to determine the link between high virulence M. tuberculosis lineages 

and their predisposition for persister formation. Furthermore, it will be interesting to determine 

the effect of other models such as an in vitro granuloma model, or murine models on persister 

formation of failed/recurrent isolates, as this would more accurately represent host-pathogen 

interactions experienced during TB disease progression.  

 

To determine whether antibiotic resistance and other genetic components predispose persister 

formation, a customized WGS analysis pipeline was applied. This allowed for the identification 

of genetic variation within clinical isolates between cured and failed/recurrent treatment groups 

at baseline and strain evolution during TB treatment. Based on the WGS analyses results, drug 

resistance was not a contributor to the persister formation identified in both cured and 

failed/recurrent patient groups as all isolates were identified to be drug susceptible. Following 

WGS analyses no unique variants were identified when treatment outcome groups were 

compared. Whether, the data suggests that there are no underlying genetic contributors to 

persister formation is inconclusive as the sample size is a limiting factor. Moreover, 

comparisons of variants of baseline and follow-up samples to determine strain evolution during 

treatment were inconclusive as limited isolates had follow-up samples from a later time point 

i.e w24. It can be speculated that persister formation that was observed during macrophage 

infections are as a result of epigenetic changes. An increased sample size would thus be 

beneficial to confirm that no genetic contributor is underlying the persister formation in these 

isolates. A study by Colengeli et al.,2018 used 1004 samples which was collected from 1995 

till 2002 which determined a correlation between mics and relapse. It can therefore be 

speculated that a sample size similar to Colengeli et al., 2018 would be efficient.  

 

This is one of the first studies to combine a macrophage infection model with WGS data to 

investigate the phenotypic and genotypic characteristics of persister formation in M. 

tuberculosis clinical isolates. In summary, the results from this study emphasize the 

heterogeneity of M. tuberculosis clinical isolates both in vitro and in response the host 

environment stress during infection, which could contribute to the adaptability of clinical 

isolates to stress environments and their ability to survive TB treatment. The study suggests 

that increased persister-like formation in isolates from the recurrent/failed group are likely not 
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as a result of genetic variation. Yet, data suggests persisters play a role in unfavourable TB 

treatment outcome.  
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Chapter 6 
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Figure S3.1. Population-wide replication dynamics of baseline isolates obtained from cured treatment group. Intracellular bacteria lysed from macrophages 

0h (red), in vitro bacteria 120h (dotted black line), intracellular bacteria lysed from macrophages 120h (orange). Turbo+ indicative of proportion of bacterial 

population in “high-red persisters”. Turbo – is indicative of intracellularly lysed bacteria from macrophages that are actively replication (left of black threshold). 

Data is representative of 3 technical replicates and 2 biological duplicates.  
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Figure S3.2. Population-wide replication dynamics of baseline isolates obtained from failed treatment group. Intracellular bacteria lysed from macrophages 

0h (red), in vitro bacteria 120h (dotted black line), intracellular bacteria lysed from macrophages 120h (orange). Turbo+ indicative of proportion of bacterial 

population in “high-red persisters”. Turbo – is indicative of intracellularly lysed bacteria from macrophages that are actively replication (left of black threshold). 
Data is representative of 3 technical replicates and 2 biological duplicates.  
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Appendices 

Appendix A: Recipes and Protocols 
7H9 liquid media 

2.35g of 7H9 powder into 450ml ddH2O 

Autoclave at 121°C for 18 minutes 

Aseptically add: 

• 50ml OADC  

• 1.25ml 20% Tween-80 (filter-sterilized) 

• 2ml 50% glycerol (filter-sterilized)  

 

7H10 solid media 

19g 7H10 powder into 900ml MilliQ H2O 

Autoclaved at 121°C for 18 minutes. 

Cool to approximately 50°C  

Aseptically Add: 

• 100 ml OADC (BD) 

• 10 ml 50 % glycerol 

• Required antibiotic 

Measure out and pour 25-30ml per plate.  

 

EDTA 

MW 292.24 

Weigh out 29.22 g for 200 ml of a 0.5M solution 

pH as required - eg. to pH 8.0, with NaOH 

 

 

 

 

Leucine  

(200x stock is 10 mg/ml in water) Weigh out 2.5 g powder 

Dissolve in 250 ml MilliQ H2O, 

Filter-sterilize (use cup filter) 

Make 50 ml aliquots, cover with foil and store at 4˚C 

 

Pantothenate  

(1000x is 24 mg/ml in water) 

Weigh out 2.4 g powder 
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Dissolve in 100 ml MilliQ H2O, 

Filter-sterilize 

Cover with foil, store at -20˚C 

Just prior to use, thaw tube, store at 4ºC for up to 1 week. 

 

Theophylline (5x) 

Since Theophylline is poorly soluble in aqueous solutions, can only make up at 5x or lower 

concentration, so make it up in 7H9 complete (or RPMI + 10% FCS for tissue culture) to avoid 

diluting media when adding to final culture. 

 Weigh out 90 mg into a 50 ml Falcon tube 

Add 50 ml 7H9 complete, mix to dissolve (put on shaker at RT for 1 hour) 

Filter-sterilize 

Store at 4ºC for up to 1 week 

 

Tris  

MW: 121.14 

Make up 1 M stock by dissolving  

60.57 g in 500 ml 

pH as required 

CTAB/NaCl solution  

 

Dissolve 4.1 g NaCl in 80 ml distilled water. While stirring, add 10 g CTAB.  

Heat solution in 65°C incubator  

Adjust volume to 100 ml with distilled water 

Lysozyme (10 mg/ml)  

Reconstitute lyophilised lysozyme (brought to room temperature) with distilled water to 10 

mg/ml  

• Add 100mg to 10ml of H2O (or 50mg to 5 ml of H2O)  

 

Proteinase K (10 mg/ml)  

Reconstitute vial of lyophilised Proteinase K with distilled water to 10 mg/ml. Freeze 

aliquots in 2 ml tubes at -20°C  

 

10% SDS (500 ml; pH 7.8)  

• 10 g SDS made up to 100 ml with distilled water  

Dissolve by heating at 65°C for 20 min  

 

NaCl (5M)  

• 29.2 g NaCl made up to 100 ml with distilled water  
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Autoclave. Store at room temperature for up to 1 year 

Chloroform/isoamyl alcohol (24:1)- store in fridge and bring to RT prior to use  

• 384 ml Chloroform  

• 16 ml Isoamyl alcohol  

 

TE (Tris EDTA; pH 8; 1 litre) – store at RT  

• 1.211 g Tris  

• 0.372 g EDTA  

• Adjust pH with HCl  
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Appendix B: Commands 
 

 Generic commands used in the analysis pipeline 

1. Trimmomatic 

 

2. BWA 

 

3. Novoalign (http://www.novocraft.com/documentation/novoalign-2/novoalign-ngs-quick-

start-tutorial/basic-short-read-mapping/)  

 

4. SMALT 

 

5. SAM file validation in PicardTools 

(https://broadinstitute.github.io/picard/command-line-

overview.html#CommandSyntax)  

 

 

6. SAM to BAM conversion in SAMTools 

java -jar trimmomatic-0.35.jar PE -phred33 input_forward.fq.gz input_reverse.fq.gz 

output_forward_paired.fq.gz output_forward_unpaired.fq.gz output_reverse_paired.fq.gz 

output_reverse_unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:20 

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:36 

bwa index ref.fa 

bwa backtrack ref.fa read1.fq read2.fq > aln-pe.sam 

bwa aln ref.fa short_read.fq > aln_sa.sam 

bwa sampe ref.fa aln_sa1.sai aln_sa2.sai read1.fq read2.fq > aln-pe.sam 

 

Indexing: Smalt index [Index Options] Index Refseq-file.fasta 

Alignment: Smalt map [MAP-OPTIONS] Index Read-File. Read1.fq read2.fq_ 

output_aln.sam 

Indexing: Novoindex [-k -s] referencegenome.fasta 

Alignment: Novoalign -d reference.nix -f input_forward.fq.gz input_reverse.fq.gz -

i200.50 -o SAM > alignment.sam >log.txt  

Indexing: samtools faidx referencegenome.fasta 

Sort: samtools sort alignedoutput.sam -o sorted.sam 

View: samtools view -b sorted.sam -o viewed.bam 

Java -jar picard.jar ValidateSamFile \\ input.sam/bam  \\ MODE=SUMMARY -o 

output.sam 
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7. BAM processing in PicardTools 

 

8. In/del realignment in GATK 

(https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-

0/org_broadinstitute_gatk_tools_walkers_indels_IndelRealigner.php)  

9. Removal of PCR duplicates 

 

 

 

 

10. Variant calling  

a. GATK 

 

 

 

 

 

b. SAMTools 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -R reference. Fasta -I sample1.bam 

[-I sample2.bam….] --dbsnp dbSNP.vcf -o snsps.raw.vcf --stand_call_cof [50.0] [-L 

targets.interval_List]  

Mpileup: ./bcftools mpileup -f reference.fasta input.bam | call -vmO v -o variants raw.vcf 

Java -jar picard.jar MarkDuplicates input .bam -o marked_duplicates .bam -m 

marked_dup_metrics.txt 

Java -ja GenomeAnalysisTK.jar -T IndelRealigner  -R reference. Fasta -I input.bam -

known indels.vcf  -targetIntervals intervalistFromRTC.intervals -o realignedBam.bam 

java -jar picard.jar CollectAlignmentSummaryMetrics \ 

 REFERENCE=my_data/reference.fasta \ 

 INPUT=my_data/input.bam \ 

 OUTPUT=results/output.txt 
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Generic command for TB-profiler for usage on Khaos server following activation:  

 

 

 

 

The arguments provided here include: 

• -1 : the absolute path to the forward reads of the isolate that you want to analyse with TB-

profiler. 

• -2 : the absolute path to the reverse reads of the isolate that you want to analyse with TB-

profiler. If the isolate is sequenced single endedly and only one FATSQ file is available, 

leave out the -2 argument. 

• -p : prefix, this is the name of the output file and should correspond to the isolate ID. 

• -t : the number of threads to use on the server and translates to the computational resources 

that will be assigned to perform the task. 

• --txt : include the results in a plain text format, as opposed to the default output in Jason 

format. 

  

tb-profiler profile -1 /path/to/reads/isolateID_R1.fastq.gz -2 

/path/to/reads/isoalteID_R2.fastq.gz -p isolateID -t 8 –txt 
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Appendix C: Scripts 
 

1. SCRIPT USED TO TRIM SEQUENCES USING TRIMMOMATIC  

 

#!/bin/bash 

 

if [[ $1 == "" || $1 == "help" ]]; 

then 

 echo "Hello, is me your looking for" 

 echo "your params is as following" 

 echo "1 = samples" 

 echo "2 = output dir" 

 echo "3 = raw file dir" 

 echo "4 = ram (6)" 

 echo "5 = cores (6)" 

fi 

 

samples="${1}" 

output="${2}" 

rawdir="${3}" 

ram="${4}" 

threads="${5}" 

 

#masterdir 

master_dir=/home/user/Desktop/final_script/ 

#myprograms 

trim="${master_dir}/programs/Trimmomatic-0.36/trimmomatic-0.36.jar" 

trim_PE="${master_dir}/programs/Trimmomatic-0.36/adapters/TruSeq2-PE.fa" 

 

while read sample; 

do  

 

 echo "getting raw file names" 

 raw_1="${rawdir}/${sample}" 
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 echo "Your file is: $raw_1" 

 raw_2="${rawdir}/${sample}" 

 echo "Your file is: $raw_2" 

  

 echo "Trimming reads, Julian"  

 java -Xmx"${ram}"g -jar $trim PE \ 

 -phred33 \ 

 -threads "$threads" \ 

 "$raw_1" "$raw_2" \ 

 "${output}/${sample}_R1_forward_paired.fq.gz" 

"${output}/${sample}_R1_forward_unpaired.fq.gz" \ 

 "${output}/${sample}_R2_reverse_paired.fq.gz" 

"${output}/${sample}_R2_reverse_unpaired.fq.gz" \ 

 ILLUMINACLIP:"${trim_PE}":2:30:15 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:20 MINLEN:30 

 

done< <(tr -d '\r' < "$samples") 

 

2. SCRIPT USED TO ANNOTATE CONFIDENCE OF VARIANTS 

 

#!/usr/bin/perl  

# annotating SNPs for one strain  

# Note that the H37RvAnno.txt and H37RvGeneSeq.fasta files used in this script were 

downloaded from the Tuberculosis database (TBDB)  

use strict;  

my ($vcf)=@ARGV;  

my @headers;  

open(MUT, "$vcf") or die "Cannot open $vcf:$!\n";  

while (<MUT>) {  

chomp;  

next if (/^##/);  

if (/^#/) {  

@headers = split(/\t/,$_);  
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print join ("\t", ("CHROM", "POS", "LOCUS", "SYMBOL", "REFBASE", "ALTBASE", 

@headers[5,6,7,8,9], "CODONnr", "REFCODON", "REFAA", "MUTCODON", "MUTAA", 

"CHANGE")), "\n";  

next;  

}  

my ($CHROM, $POS, $ID, $REFBASE, $ALTBASE, $QUAL, $FILTER, $INFO, 

$FORMAT, $STRAIN_1)=split(/\t/,$_);  

my 

$annofile="/home/adippenaar/Documents/Bioinformatics/Out_groups_output/H37RvAnno.tx

t";  

my $line=0;  

my $prevGene;  

my $prevStrand;  

my 

$geneseqfile="/home/adippenaar/Documents/Bioinformatics/Out_groups_output/H37RvGen

eSeq.fasta";  

my $codonsize = 3;  

open(ANNO, "$annofile") or die "Cannot open $annofile:$!\n";  

while (<ANNO>) {  

if ($line==0) {  

$line++;  

next;  

}  
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chomp;  

my ($LOCUS, $SYMBOL, $SYNOYM, $LENGHT, $START, $STOP, $STRAND, 

$NAME)=split(/\t/,$_);  

#print "'$STRAND'\n";  

if ($POS>$START && $POS<$STOP) {  

open(GENESEQ, "$geneseqfile") or die "Cannot open $geneseqfile:$!\n";  

my $seq;  

while (<GENESEQ>) {  

next unless /^>$LOCUS/;  

while (<GENESEQ>) {  

last if /^>/;  

chomp;  

$seq.=$_;  

}  

last;  

}  

close GENESEQ;  

my $posingene;  

if ($STRAND eq "+") {  

$posingene = ($POS - $START) + 1;  

}  

else {$posingene = ($STOP - $POS) + 1;  

}  

my $codonnr = int(($posingene - 1)/$codonsize + 1);  

#print "'$codonnr'\n";  

my $firstbase = (($codonnr - 1) * $codonsize) + 1 - 1;  

#print "'$firstbase'\n";  

my $lastbase = (($codonnr - 1) * $codonsize) + 3 - 1;  

#print "'$lastbase'\n";  

# -1: subst will start to count at 0  
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my $codon = substr($seq, $firstbase, $codonsize);  

#print "'$seq'\n";  

#print "'$codon'\n";  

my $aa = &codon2aa($codon);  

#print "aa is $aa\n";  

my $offset;  

if (($posingene % $codonsize) == 1) {  

$offset = 1 - 1;  

}  

elsif (($posingene % $codonsize) == 2) {  

$offset = 2 - 1;  

}  

elsif (($posingene % $codonsize) == 0) {  

$offset = 3 - 1;  

}  

#print "offset value is $offset\n";  

my $mutcodon = $codon;  

my $mutaa;  

my $change;  

if ($STRAND eq "+") {  

substr($mutcodon, $offset, 1) = $ALTBASE;  

#print "altbase is $ALTBASE\n";  

#print "my mutcodon is $mutcodon\n";  

$mutaa = &codon2aa($mutcodon);  

if ($mutaa eq $aa) {$change = "SYN";  

}  

elsif ($mutaa ne $aa) {$change = "NONSYN";  

}  

}  
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else {  

if ($ALTBASE eq "T") {$ALTBASE = "B";  

}  

if ($ALTBASE eq "A") {$ALTBASE = "D";  

}  

if ($ALTBASE eq "C") {$ALTBASE = "E";  

}  

if ($ALTBASE eq "G") {$ALTBASE = "H";  

}  

if ($ALTBASE eq "B") {$ALTBASE = "A";  

}  

if ($ALTBASE eq "D") {$ALTBASE = "T";  

}  

if ($ALTBASE eq "E") {$ALTBASE = "G";  

}  

if ($ALTBASE eq "H") {$ALTBASE = "C";  

}  

substr($mutcodon, $offset, 1) = $ALTBASE;  

#print "altbase is $ALTBASE\n";  

#print "my mutcodon is $mutcodon\n";  

$mutaa = &codon2aa($mutcodon);  

if ($mutaa eq $aa) {$change = "SYN";  

}  

elsif ($mutaa ne $aa) {$change = "NONSYN";  

}  

}  
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# print join ("\t", ($CHROM, $POS, $LOCUS, $SYMBOL, $REFBASE, $ALTBASE, 

$QUAL, $FILTER, $INFO, $FORMAT, $STRAIN_1, $codonnr, $codon, $aa, $mutcodon, 

$NAME)), "\n";  

print join ("\t", ($CHROM, $POS, $LOCUS, $SYMBOL, $REFBASE, $ALTBASE, $QUAL, 

$FILTER, $INFO, $FORMAT, $STRAIN_1, $codonnr, $codon, $aa, $mutcodon, $mutaa, 

$change, $NAME)), "\n";  

last;  

}  

if ($POS<$START){  

$SYMBOL = "-";  

my $message="Intergenic";  

#if($STRAND eq "+") {$message.=".Upstream of $LOCUS";  

#}  

#if($prevStrand eq "-") {$message.=".Upstream of $prevGene";  

#}  

print join ("\t", ($CHROM, $POS, $message, $SYMBOL, $REFBASE, $ALTBASE, $QUAL, 

$FILTER, $INFO, $FORMAT, $STRAIN_1)), "\n";  

last;  

}  

$prevGene=$LOCUS;  

$prevStrand=$STRAND;  

}  

close ANNO;  

}  

close MUT;  

##########################################################  

sub codon2aa {  

my $codon = uc shift;  

if ( $codon =~ m/GC./ ) { return "A" } # Alanine  

elsif ( $codon =~ m/TG[TC]/ ) { return "C" } # Cysteine  

elsif ( $codon =~ m/GA[TC]/ ) { return "D" } # Aspartic Acid  

elsif ( $codon =~ m/GA[AG]/ ) { return "E" } # Glutamic Acid  

elsif ( $codon =~ m/TT[TC]/ ) { return "F" } # Phenylalanine  

elsif ( $codon =~ m/GG./ ) { return "G" } # Glycine  
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elsif ( $codon =~ m/CA[TC]/ ) { return "H" } # Histidine  

elsif ( $codon =~ m/AT[TCA]/ ) { return "I" } # Isoleucine  

elsif ( $codon =~ m/AA[AG]/ ) { return "K" } # Lysine  

elsif ( $codon =~ m/TT[AG]|CT./ ) { return "L" } # Leucine  
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3. SCRIPT USED TO COMPARE ANNOTATIONS  

import dirCompare32 

 

# EDIT THESE DIRECTORIES 

dir1 = "/home/marisat/Dircompare/DirA_ECWCstrains/" 

dir2 = "/home/marisat/Dircompare/DirB_KZNstrains/" 

 

#dir1 = "C:/Ruben/WORK/[ALL_RESULTS]/2016/pnca_online/ALL_GATK/" 

#dir2 = "C:/Ruben/WORK/[ALL_RESULTS]/2016/pnca_online/ALL_SAMTOOLS/" 

outputDir = "/home/marisat/Dircompare/DirComparOut/" 

 

dirCompare32.main(dir1,dir2,outputDir) 

 

Stellenbosch University  https://scholar.sun.ac.za



119 
 

elsif ( $codon =~ m/ATG/ ) { return "M" } # Methionine  

elsif ( $codon =~ m/AA[TC]/ ) { return "N" } # Asparagine  

elsif ( $codon =~ m/CC./ ) { return "P" } # Proline  

elsif ( $codon =~ m/CA[AG]/ ) { return "Q" } # Glutamine  

elsif ( $codon =~ m/CG.|AG[AG]/ ) { return "R" } # Arginine  

elsif ( $codon =~ m/TC.|AG[TC]/ ) { return "S" } # Serine  

elsif ( $codon =~ m/AC./ ) { return "T" } # Threonine  

elsif ( $codon =~ m/GT./ ) { return "V" } # Valine  

elsif ( $codon =~ m/TGG/ ) { return "W" } # Tryptophan  

elsif ( $codon =~ m/TA[TC]/ ) { return "Y" } # Tyrosine  

elsif ( $codon =~ m/TA[AG]|TGA/ ) { return "_" } # Stop  

else { die "Bad codon \"$codon\"!\n" }  

}  

 

4. SCRIPT USED TO CREATE SNP STRING FOR PHYLOGENETIC INFERENCE 

 

 

#This python script assumes:  

#1. A single chromosome  

#2. Input files with the naming convention  

# pos_alt_<sample_nr>_<list_identifier>.txt  

# Entries in these files contain 2 columns: the position of a variant and its  

# value  

#3. A fasta file (reference sequence) with 1 header line and a column length of 60  

 

#The output of this script is <sample_nr>.txt files, one file for each of the   

#input files. The content of each file is a string of nucleotides, in order  

#of position, for the set of all positions read from the input files. If a  

#value for a certain position is not available for a sample, it contains the  

#value of the the reference allele, as read from the FASTA file.  

 

nr_fasta_header_lines = 1  

col_len = 60  

input_file_prefix = 'pos_alt_'  

 

import sys, os  
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if len(sys.argv) != 4:  

print("Usage: python create_phylo_files.py <fasta_file> <input_dir> " + \  

"<output_dir>")  

sys.exit(-1)  

else:  

fasta_file_name = sys.argv[1]  

input_dir = sys.argv[2]  

output_dir = sys.argv[3]  

 

 

#Map containing a map of positions and variants, keyed on sample nr  

sample_map = {}  

#Map containing reference variants, keyed on position  

ref_map = {}  

#Set the column length to 60  

 

input_dir_list = os.listdir(input_dir)  

for file_name in input_dir_list:  

if file_name[0:8] == input_file_prefix:  

print('Processing ' + file_name + ' ...')  

#Determine the sample number  

sample_nr_length = file_name[9:].find('_')  

sample_nr = file_name[8:9+sample_nr_length]  

#Initialize the variant map for this sample, keyed on position  

var_map = {}  

#Read the file content and populate the maps  

in_file = open(os.path.join(input_dir, file_name))  

for line in in_file:  

data = line.strip().split()  

 

pos, var = int(data[0]), data[1]  

var_map[pos] = var  

if (pos in ref_map) == False:  

#Get the reference allele from the fasta file  

col_nr = str(pos % col_len)  

row_nr = str((pos / col_len) + nr_fasta_header_lines + 1)  

if col_nr == '0':  

col_nr = str(col_len)  

os.system('head -' + row_nr + ' ' + fasta_file_name + ' | ' + \  

'tail -1 > tmp_fasta_line.txt')  
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ref = os.popen('cut -c' + col_nr + \  

' tmp_fasta_line.txt').read().strip().upper()  

os.system('rm tmp_fasta_line.txt')  

ref_map[pos] = ref  

in_file.close()  

sample_map[sample_nr] = var_map  

 

#Sort the positions  

positions = sorted(ref_map.keys())  

 

for sample_nr in sample_map.keys():  

#Open the output file for this sample  

print('Writing ' + sample_nr + '.txt ....')  

out_file = open(os.path.join(output_dir, sample_nr) + '.txt', 'w')  

debug_file = open(os.path.join(output_dir, sample_nr) + '_debug.txt', 'w')  

debug_file.write('pos\tref\talt\n')  

 

#Get the variant map for this sample  

var_map = sample_map[sample_nr]  

 

#Write the output file  

for pos in positions:  

debug_file.write(str(pos) + '\t')  

if pos in var_map:  

var = var_map[pos]  

debug_file.write('*\t' + var + '\n')  

else:  

var = ref_map[pos]  

debug_file.write(var + '\t*\n')  

out_file.write(var)  

out_file.close()  

debug_file.close()  
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