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Summary 

The agricultural and environmental importance of maintaining and increasing soil organic 

carbon (SOC) has been increasingly recognized globally. To a large extent, this recognition can 

be attributed to soil being the largest terrestrial carbon pool, as well as to soil’s responsiveness 

to land use and management. Land use and land use change are major factors affecting SOC 

levels with changes from natural vegetation (forests, grasslands and wetlands) to croplands, 

for example, causing significant SOC losses. The topsoil (0-30 cm depth) is especially sensitive 

to changes in land use and management and the highest variation in SOC levels is observed in 

this zone.  

In this study SOC stocks in the first meter of soil were quantified and mapped under 

different land uses and management systems using a vertical SOC distribution model, applying 

near-infrared (NIR) spectroscopy for SOC analysis and estimating the uncertainty of the maps 

created using different approaches. The study area was chosen as a quaternary catchment of 

317 km-2 south and southeast of Greytown in the Midlands area of KwaZulu-Natal, South 

Africa. The catchment exhibits complex topography and predominantly shale and dolerite 

parent material. Soils in the area have high organic carbon content ranging from 0.08 to 22.85 

% (mean = 3.48 %), with clay content ranging from 3 to 49 % (mean = 14.7 % clay) and pH(H20) 

between 3.3 and 6.7 (mean pH(H20) = 4.5).  

Vertical SOC distribution functions were developed for 69 soil profiles sampled from 

different land uses (mainly forestry plantations, grasslands and croplands) in and around the 

study catchment. Bulk density samples were taken at 2.5, 7.5, 12.5, 17.5, 30, 40, 50, 75 and 

100 cm depths. The aim was to reduce the number of soil observations required for SOC 

accounting to one point close to the soil surface by applying negative exponential vertical 

depth functions of SOC distribution. To achieve this, the exponential functions were 

normalized using the volumetric SOC content observed close to the surface and grouped as a 

function of land use and soil types. Normalization reduced the number of model parameters 

and enabled the multiplication of the exponential decline curve characteristics with the SOC 

content value observed at the surface to present an adequately represented value of soil 

carbon distribution to 1 m at that observation point. The integral of the exponential function 

was used to calculate the soil carbon storage to 1 m.  

The vertical SOC distribution functions were refined for soils under maize production 

systems using reduced tillage and conventional tillage. In these soils, the vertical SOC 
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distributions are described by piecewise, but still continuous functions where the distribution 

within the cultivated layer (0-30 cm) is a linear decline under reduced tillage or a constant 

value under conventional tillage, followed by an exponential decline to 1 m (30-100 cm). 

The value of predicting SOC concentrations in soil samples using wet oxidation (Walkley-

Black method) and dry near-infrared (NIR) spectrometry was assessed by comparing them to 

the dry combustion method. NIR spectrometry is considered to be an especially promising 

method, since it may be used in both proximal and remote sensing applications. In addition, 

the effect of using paired samples with single SOC determination versus paired samples with 

replicated (three times) analysis by all (reference and test) methods was tested. It was shown 

that the use of paired tests without replication dramatically decreases the precision of SOC 

predictions of all methods, possibly due to high variability of SOC content in reference values 

analysed by dry combustion. While reasonable figures of merit were obtained for all the 

methods, the analysis of non-replicated paired samples has shown that the relative RMSE for 

the SOC NIR method only falls below 10 % for values above ~8 % SOC. For the corrected SOC 

Walkley Black method the relative RMSE practically never falls below 10 %, rendering this 

method as semi-quantitative across the range. It was concluded that for method comparison 

of soil analysis, it is essential that reference sample analysis be replicated for all methods 

(reference and test methods) to determine the “true” value of analyte as the mean value 

analysed using the reference method. 

Finally, the above elements of vertical SOC distribution models as a function of land use 

and soil type, predicting SOC stocks to 1 m using only a surface (0-5 cm) sample, and the use 

of NIR spectroscopy as SOC analysis method were combined to assess the changes in SOC 

stock prediction errors through mapping. Results indicated a dramatic improvement in 

precision of SOC stock predictions with increasing detail in the input parameters using vertical 

SOC distribution functions differentiated by land use and soil grouping. Still, the relative error 

mostly exceeded 20 % which may be seen as unacceptably high for carbon accounting, trade 

and tax purposes, and the SOC stock accuracy decreased in terms of map R2 and RMSE. The 

results were generally positive in terms of the progressive increase in complexity associated 

with SOC stock predictions and showed the need for a substantial increase in sampling density 

to maintain or increase map accuracy while increasing precision. This would include an 

increase both in surface samples for the prediction of SOC stocks using the vertical SOC 

distribution models, as well as an increase in the sampling of profiles to include more soil types 

and increase the profile density per land use to improve the vertical SOC prediction models.  
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Opsomming 

Die landbou- en omgewingsbelang van die handhawing en toename van grondorganiese 

koolstof (GOK) word wêreldwyd toenemend erken. Tot ‘n groot mate kan hierdie erkenning 

toegeskryf word aan grond wat uit die grootste aardse koolstofpoel bestaan, sowel as die 

grond se responsiwiteit op grondgebruik en bestuur. Grondgebruik en 

grondgebruikverandering is belangrike faktore wat GOK-vlakke beïnvloed, met byvoorbeeld 

veranderinge van natuurlike plantegroei (woude, grasveld en vleilande) na gewaslande wat 

beduidende GOK-verliese tot gevolg het. Die bogrond (0-30 cm diepte) is veral sensitief vir 

veranderinge in grondgebruik en bestuur en die hoogste variasie in GOK-vlakke word in 

hierdie sone waargeneem. 

In hierdie studie is GOK-inhoud in die eerste meter grond gekwantifiseer en gekarteer 

onder verskillende grondgebruike en bestuurstelsels deur gebruik te maak van 'n vertikale 

GOK-verspreidingsmodel, die toepassing van naby-infrarooi (NIR) spektroskopie vir GOK-

analise en die bepaling van die onsekerheid van die kaarte wat geskep is deur verskillende 

benaderings. Die studiegebied is gekies as 'n kwaternêre opvanggebied van 317 km-2 suid en 

suidoos van Greytown in die KwaZulu-Natalse Middellande, Suid-Afrika. Die opvanggebied 

vertoon komplekse topografie en oorheersende skalie- en dolerietmateriaal. Grond in die 

gebied het 'n hoë organiese koolstofinhoud van 0,08 tot 22,85 % (gemiddeld = 3,48 %), met 

kleiinhoud wat wissel van 3 tot 49 % (gemiddeld = 14.7 % klei) en pH (H20) tussen 3,3 en 6,7 

(gemiddelde pH(H20) = 4.5). 

Vertikale GOK-verspreidingsfunksies is ontwikkel vir 69 grondprofiele wat in verskillende 

grondgebruike (hoofsaaklik bosbouplantasies, grasveld en gewaslande) in en om die 

opvanggebied gemonster is. Bulk digtheid monsters is geneem op 2,5, 7,5, 12,5, 17,5, 30, 40, 

50, 75 en 100 cm dieptes. Die doel was om die aantal grondwaarnemings wat nodig is vir GOK-

rekeningkunde tot een punt naby die grondoppervlak te verminder deur negatiewe 

eksponensiële vertikale diepte funksies van GOK verspreiding toe te pas. Om dit te bereik is 

die eksponensiële funksies genormaliseer met die volumetriese GOK-inhoud wat naby aan die 

oppervlak waargeneem word en gegroepeer as 'n funksie van grondgebruik en grondtipes. 

Normalisering het die aantal modelparameters verminder en moontlik gemaak om die die 

eksponensiële afname kurwe eienskappe met die GOK inhoud op die oppervlak te 

vermenidgvuldig ten einde 'n voldoende verteenwoordigende waarde van 

grondkoolverspreiding tot 1 m by daardie waarnemingspunt te bepaal. Die integraal van die 

eksponensiële funksie is gebruik om die grondkoolstofopberging tot 1 m te bereken. 
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Die vertikale GOK-verspreidingsfunksies is verfyn vir grond onder mielieproduksiestelsels 

wat verminderde bewerking en konvensionele bewerking toepas. In hierdie gronde word die 

vertikale GOK-verdelings deur stuksgewyse, maar steeds deurlopende funksies beskryf. Die 

GOK-verspreiding binne die bewerkingslaag (0-30 cm) toon 'n lineêre afname onder 

verminderde bewerking en konstante waarde onder konvensionele bewerking, gevolg deur 'n 

eksponensiële afname tot 1 m (30-100 cm). 

Die waarde van die voorspelling van GOK konsentrasies in grondmonsters deur gebruik te 

maak van nat oksidasie (Walkley-Black metode) en droë naby-infrarooi (NIR) spektrometrie, 

is beoordeel deur dit met die droëverbrandingsmetode te vergelyk. NIR-spektrometrie word 

beskou as 'n besonder belowende metode, aangesien dit in beide proksimale en 

afstandswaarneming toepassings gebruik kan word. Daarbenewens is die effek van die 

gebruik van gepaarde monsters met enkele GOK-bepaling versus gepaarde monsters met 

herhaalde (drie keer) analise met alle (verwysings- en toets) metodes getoets. Daar is getoon 

dat die gebruik van gepaarde toetse sonder replikasie die presisie van GOK-voorspellings van 

alle metodes dramaties verminder, moontlik as gevolg van die hoë veranderlikheid van GOK -

inhoud in verwysingswaardes wat deur droë verbranding ontleed word. Terwyl redelike 

merietesyfers vir al die metodes behaal is, het die ontleding van nie-gerepliseerde gepaarde 

monsters getoon dat die relatiewe RMSE vir die GOK NIR-metode slegs onder 10 % val vir 

waardes bo ~8 % GOK. Vir die gekorrigeerde SOC Walkley Black-metode val die relatiewe 

RMSE feitlik nooit onder 10% nie, wat hierdie metode as semi-kwantitatief oor die reeks lewer. 

Daar is tot die gevolgtrekking gekom dat, vir die vergelyking van grondanalisemetodes, dit 

noodsaaklik is dat die verwysingsmonster analise vir alle metodes (verwysings- en 

toetsmetodes) herhaal word (ten minste drie keer) om die "ware" waarde van analiet te 

bepaal as die gemiddelde waarde wat met behulp van die verwysingsmetode geanaliseer is. 

Ten slotte is die bogenoemde elemente van vertikale GOK verspreidingsmodelle, te wete 

as 'n funksie van grondgebruik en grondtipe, wat SOC-voorrade vir 1 m voorspel met slegs 'n 

oppervlakmonster (0-5 cm) en die gebruik van NIR-spektroskopie as GOK-analise metode, 

gekombineer ten einde die veranderinge in GOK-voorspellingsfoute deur kartering te 

evalueer. Resultate dui op 'n dramatiese verbetering in die akkuraatheid van GOK-

voorspellings met toenemende detail in die insetparameters deur vertikale GOK-

verspreidingsfunksies te gebruik wat gedifferensieer word as ‘n funksie van grondgebruik en 

grondgroepering. Tog het die relatiewe fout meestal 20% oorskry, wat as onaanvaarbaar hoog 

vir koolstofrekeningkunde, handels- en belastingdoeleindes beskou kan word, en die GOK-
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voorraad akkuraatheid het verminder in terme van kaart R2 en RMSE. Die resultate was oor 

die algemeen positief in terme van die progressiewe toename in kompleksiteit wat in verband 

met GOK-voorspellings en toon die behoefte aan 'n aansienlike toename in 

monsternemingsdigtheid om die akkuraatheid van kaarte te behou of te verhoog. Dit sal 'n 

toename in oppervlakmonsters insluit vir die voorspelling van GOK-voorrade deur die 

vertikale GOK-verspreidingsmodelle te gebruik, asook 'n toename in die monsterneming van 

profiele om meer grondsoorte in te sluit en die profieldigtheid per landgebruik te verhoog ten 

einde die vertikale GOK voorspellingsmodelle te verbeter.  

  

Stellenbosch University  https://scholar.sun.ac.za



viii 
 

Acknowledgements 

• This research was funded by: (1) the South African National Research Foundation 

(NRF) through the Department of Science and Technology/NRF Green Landscapes 

project, the Applied Centre for Climate & Earth Systems Science (ACCESS) 

programme, as well as the NRF Thuthuka programme; and (2) The Maize Trust.  

• I would like to sincerely thank Mondi Forests for sharing the soil survey data in the 

study area and for their assistance during field work.  

• To Steve Stamp, Kevin Cockburn, Rene Stubbs, and Garth Ellis: this study would not 

have been possible without your support and access to your farms. It was a sincere 

pleasure to meet you and thank you for the long discussions about soil, 

management, carbon, and life. I wish you all the best in your future farming 

activities. 

• Special gratitude also goes to SAPPI, Steve Stamp and Kevin Cockburn (Pidelta) (Pty) 

Ltd for logistical support in the field. 

• My sincere gratitude to every at the Department of Soil Science, Stellenbosch 

University, who helped with analyses and administrative support. 

• To Attie Boshoff and Trevan Flynn, your help with the digital soil mapping aspect of 

this study was crucial. Thank you!   

• Special thank you to Helene Nieuwoudt for showing me the ropes with the NIR 

spectrometer and for the open access to the lab. The NIR analysis was a big part of 

this study.  

• To my co-supervisors, Thomas Seifert and Willem de Clercq, it was a pleasure to 

work with you. I’m especially grateful to you Thomas, for welcoming me into the 

Green Landscapes project team and Willem, for your help in organizing GIS training, 

helping with a bursary, and to both of you for your overall support and discussions 

on modelling the vertical distribution of SOC and mapping.   

• I thoroughly enjoyed working on this project and the field work and fun moments in 

between was a key part of that. Ignacio Ros Mesa and Michael Esmeraldo, you were 

the best colleagues to work and spend long days in the field with. Thanks for all the 

Stellenbosch University  https://scholar.sun.ac.za



ix 
 

good times, but also for your hard work in helping with sample preparation and 

analysis!  

• My biggest support in this journey came from my supervisor, Andrei Rozanov. 

Andrei, thank you for the endless discussions, brainstorming, support and also fun 

times during this long journey. I learned a tremendous amount from you and truly 

admire your grasp of soils and soil science.  

• Finally, to my family and friends who always supported me in this long journey and 

encouraged me when it got tough. I love you all and am grateful to have you in my 

life.  

Thank you. 

  

Stellenbosch University  https://scholar.sun.ac.za



x 
 

Table of Content 

 

Summary ................................................................................................................................ iii 

Opsomming ............................................................................................................................ v 

Acknowledgements ............................................................................................................. viii 

List of Figures ....................................................................................................................... xiii 

List of Tables ....................................................................................................................... xvii 

List of symbols and abbreviations commonly used in the text ............................................ xx 

1 Introduction ....................................................................................................................... 1 

1.1 Background ................................................................................................................ 1 

1.2 Problem Statement ................................................................................................... 3 

1.3 Aims and Objectives .................................................................................................. 4 

1.4 Structure of the thesis ............................................................................................... 5 

2 Study area and sampling strategy ..................................................................................... 6 

2.1 Site description. ......................................................................................................... 6 

2.2 Sampling strategy and soils ....................................................................................... 8 

3 An approach to soil carbon accounting and mapping using vertical distribution functions 

for known soil types ................................................................................................................ 12 

3.1 Introduction ............................................................................................................. 12 

3.2 Materials and Methods ........................................................................................... 13 

3.2.1 Test area for SOC mapping .............................................................................. 13 

3.2.2 Soil samples and analyses ................................................................................ 13 

3.2.3 Interpolation of mapping layers ...................................................................... 15 

3.3 Results and Discussion ............................................................................................. 16 

3.3.1 Vertical SOC distribution ................................................................................. 16 

3.3.2 Modelling and mapping SOC ........................................................................... 23 

3.4 Conclusions .............................................................................................................. 27 

4 Assessing SOC vertical distribution functions for on-farm carbon stock quantification: a 

case study of maize production systems in the Mvoti River catchment, South Africa ........... 29 

Stellenbosch University  https://scholar.sun.ac.za



xi 
 

4.1 Introduction ............................................................................................................. 29 

4.2 Materials and Methods ........................................................................................... 30 

4.2.1 Farming systems and soils ............................................................................... 30 

4.2.1.1 No-till system ............................................................................................... 32 

4.2.1.2 Reduced tillage ............................................................................................ 33 

4.2.1.3 Conventional tillage ..................................................................................... 34 

4.2.2 Soil sampling and analysis ............................................................................... 35 

4.2.3 Modelling vertical SOC distribution ................................................................. 36 

4.2.4 Comparing k and k’ values ............................................................................... 36 

4.2.5 Averaging k and k’ values ................................................................................ 37 

4.3 Results and Discussion ............................................................................................. 37 

4.3.1 Comparing k and k’ values ............................................................................... 37 

4.3.2 Averaging k and k’ values ................................................................................ 38 

4.3.3 Calculating SOC stocks ..................................................................................... 44 

4.4 Conclusions .............................................................................................................. 48 

5 Method uncertainty: measuring and predicting soil organic carbon (SOC) content ...... 50 

5.1 Introduction ............................................................................................................. 50 

5.2 Materials and methods ........................................................................................... 53 

5.2.1 Soil sampling and analysis ............................................................................... 53 

5.2.2 Organic carbon determination ........................................................................ 53 

5.2.3 Figures of merit ............................................................................................... 54 

5.2.4 Data sets for determining the figures of merit................................................ 56 

5.3 Results and Discussion ............................................................................................. 56 

5.3.1 Method accuracy ............................................................................................. 56 

5.3.2 Limit of detection and limit of quantification ................................................. 68 

5.4 Conclusions .............................................................................................................. 72 

6 Improving input parameters for soil organic carbon assessment – effect on errors from 

point measurements to final map ........................................................................................... 74 

6.1 Introduction ............................................................................................................. 74 

6.2 Materials and Methods ........................................................................................... 75 

6.2.1 Soil sampling and analysis ............................................................................... 75 

Stellenbosch University  https://scholar.sun.ac.za



xii 
 

6.2.2 Calculation of SOC volumetric content and stock ........................................... 76 

6.2.3 Calculation of measurement error .................................................................. 77 

6.2.4 Digital soil organic carbon and error mapping ................................................ 79 

6.3 Results and Discussion ............................................................................................. 81 

6.3.1 Grouping of exponential and linear coefficients of vertical SOC distribution . 81 

6.3.2 Calculation of error propagation ..................................................................... 84 

6.3.3 Interpolation of surface volumetric SOC content (𝐶𝑣0) ................................. 86 

6.3.4 Soil organic carbon stocks and associated errors ............................................ 88 

6.4 Conclusions .............................................................................................................. 94 

7 General Conclusions ........................................................................................................ 96 

8 References ....................................................................................................................... 99 

 

  

Stellenbosch University  https://scholar.sun.ac.za



xiii 
 

List of Figures 

Figure 2-1. Location of the study area – quaternary catchment U40A – within the upper 

reaches of the Mvoti River in KwaZulu-Natal. The inset maps show the location of the study 

area (a) within South Africa and (b) within the Mvoti catchment. ........................................... 6 

Figure 2-2. Mean monthly rainfall, day and night temperatures: Greytown (South African 

Weather Bureau data) (Ros Mesa, 2015). ................................................................................. 7 

Figure 2-3. Location of the 69 profiles sampled in and around the quaternary catchment. 

Sampling points are stratified by land use and maize production tillage system. Satellite 

imagery was obtained from the Bing Aerial open layer in QGIS 2.18. ...................................... 9 

Figure 2-4. For each profile, core samples were taken in triplicate as shown in Figure (a) with 

Figure (b) indicating the sampling depth increments. Figure (c) shows the triplicate core 

sampling of surface soils for the final mapping exercise. ......................................................... 9 

Figure 2-5. Location of the 322 sites in the quaternary catchment sampled in triplicate with 98 

cm3 steel cores at 0-5 cm. ....................................................................................................... 11 

Figure 3-1. The test area for SOC stock mapping showing the locations of 40 random sampling 

points for surface (0-5 cm) core samples. The inset map indicates the location of test site and 

sampling points in the quaternary catchment. ....................................................................... 13 

Figure 3-2. Fitting the distribution of SOC vs depth using exponential functions for stratified 

mean values. The dashed line connects the data points, the solid line represents the fitted 

exponential trendline, and the error bars indicate the standard deviations. The model 

parameters are summarized in Table 3-2. .............................................................................. 17 

Figure 3-3. Fitting the distribution of bulk density vs depth using a logarithmic function for 

stratified mean values. The dashed line connects the data points, the solid line represents the 

fitted exponential trendline, and the error bars indicate the standard deviations. The model 

parameters are summarized in Table 3-2. .............................................................................. 17 

Figure 3-4. Fitting the distribution of Cvs vs depth using an exponential function for stratified 

mean value. The dashed line connects the data points, the solid line represents the fitted 

exponential trendline, and the error bars indicate the standard deviations. The model 

parameters are summarized in Table 3-2. .............................................................................. 18 

Figure 3-5. Mean exponential coefficients k and k’ for soil groups, with bars indicating their 

standard deviations. ................................................................................................................ 22 

Stellenbosch University  https://scholar.sun.ac.za



xiv 
 

Figure 3-6. The 𝐶𝑣0 raster layer showing the location of the surface (2.5 cm) sampling points 

and their relative Cv values, as well as the dams and wetlands in the mapping area. ........... 25 

Figure 3-7. The ERD raster layer with depths ranging from 0 to 1 m. Dams, wetlands and rivers 

in the mapping area are indicated. ......................................................................................... 25 

Figure 3-8. The k’ raster layer showing the soil grid samples (sample points) from the Mondi 

dataset to which k’ values were linked according to soil type and used for ordinary kriging. 26 

Figure 3-9. Map of cumulative SOC stocks to ERD depth using k’. ......................................... 27 

Figure 3-10. Map of cumulative SOC stocks to 1 m depth using k’. ........................................ 27 

Figure 4-1. Locations of the sampling sites in and around the quaternary catchment. Land uses 

and management systems are differentiated by colour for the different sampling sites. ..... 31 

Figure 4-2. Variation in the distribution of Cvs with depth in all cultivated profiles for stratified 

mean values with error bars indicating the standard deviation (δ). The dashed line connects 

the data points and the solid line represents the fitted exponential trendline. ..................... 38 

Figure 4-3. Fitted exponential trendlines (solid lines) with error bars indicating the standard 

deviation for the single treatment groups of eight profiles each. Dashed lines indicate lines 

connecting the data points. ..................................................................................................... 39 

Figure 4-4. Separate modelling of normalized SOC stocks for 0-30 cm (∆) and 30-100 cm (○) 

sections for the profiles under reduced and conventional tillage. Dashed lines indicate fitted 

linear functions (y-intercepts set to 1), solid lines indicate fitted exponential functions, and 

error bars indicated standards deviations. Trendline equations are presented in Table 4-5. 42 

Figure 4-5. Histogram of Cvs distribution for the 32 samples in the first 5-30 cm (0-5, 5-10; 10-

15; 15-20; 27.5-32.5 cm) from eight soil profiles in the conventional tillage system. ............ 42 

Figure 4-6. Regression plots of predicted vs observed SOC stocks (kg·m-2) under different land 

use systems. SOC stocks were calculated using relevant b and k values from graphs per land 

use system. .............................................................................................................................. 44 

Figure 4-7. Total SOC stocks calculated for the 0-100 cm, 0-30 cm and 0–20 cm depths under 

the different land use systems. Error bars indicate the standard deviation of the mean SOC 

stocks for eight profiles within each land use system. Percentage values indicate the 

percentage of total SOC stocks contained in the 0-30 cm and 0-20 cm soil layers respectively.

 ................................................................................................................................................. 47 

Stellenbosch University  https://scholar.sun.ac.za



xv 
 

Figure 5-1. OPUS-generated graphs of (a) calibration and (b) cross validation (leave-one-out) 

of NIR reflectance spectra for SOC % analysed by dry combustion using single scans of 397 

samples <2 mm. Calibration and validation statistics are shown next to each graph. ........... 54 

Figure 5-2. EuroVector EA3000 quality control with supplied standards (Standard) and 

relationship with reference concentrations calculated as a mean of replicated determination 

of standard sample concentrations (Mean). ........................................................................... 58 

Figure 5-3. Standard deviation (δ) (a) and relative standard deviation (b) of measured SOC 

against mean SOC % for the soil samples analysed in triplicate using dry combustion with the 

EA-3000 analyser. .................................................................................................................... 59 

Figure 5-4. Prediction of the mean with triplicate SOC determinations by WB method (a) and 

the SOC content measured in triplicate by DC and WB methods (b). ..................................... 60 

Figure 5-5. Regression between single SOC measurements by dry combustion vs. Walkley and 

Black method (a) and absolute error of the same measurements corrected by the factor 1.836 

(b). ........................................................................................................................................... 62 

Figure 5-6. The RMSE (a) and relative RMSE (b) of SOC predicted from WB analysis using a 

single experimentally-determined correction factor of 1.1836, as a function of mean SOC DC 

% per [a,b] range. .................................................................................................................... 64 

Figure 5-7. Mean SOC content (a) measured in triplicate by dry combustion (DC) and predicted 

in triplicate from the PLS regression model using NIR spectroscopy (Figure 5-1), and relative δ 

of the triplicate NIR predictions (b). ........................................................................................ 65 

Figure 5-8. Regression of single-measured SOC DC values vs. predictions of the PLS regression 

from NIR spectra (a) and the relative absolute error (RAE) of predictions (b). ...................... 66 

Figure 5-9. The RMSE (a) and relative RMSE (b) of SOC predicted with NIR analysis as a function 

of mean SOC DC % per [a,b] range. ......................................................................................... 67 

Figure 6-1. Distribution of croplands, grasslands and forestry (a) and soil types (b) in the study 

catchment (Developed by T. Flynn). ........................................................................................ 83 

Figure 6-2. Interpolation result of the surface volumetric SOC values (𝐶𝑣0) (kg·m-3) within the 

upper 5cm depth interval at 369 surface locations using random forest regression in R. ..... 87 

Figure 6-3. Map of SOC stock (𝐶𝑠) [kg·m-2] in the upper 1 m of soil determined using a single 

k-value for the entire catchment (Map 1) (a) and the associated propagated measurement and 

prediction errors (RMSE(𝐶𝑠)) [kg·m-2] calculated using a single value of 𝑅𝑀𝑆𝐸(𝑆𝑂𝐶) for the 

Stellenbosch University  https://scholar.sun.ac.za



xvi 
 

entire catchment (Map E1a) (b), and using different values of 𝑅𝑀𝑆𝐸(𝑆𝑂𝐶) based on different 

range intervals of SOC [%wt] (Map E1b) (c). ........................................................................... 90 

Figure 6-4. Map of SOC stock (𝐶𝑠) [kg·m-2] in the upper 1 m of soil determined using a single 

k-value per land use (Map 2) (a) and the associated propagated measurement and prediction 

errors (RMSE(𝐶𝑠)) [kg·m-2] calculated using different values of 𝑅𝑀𝑆𝐸(𝑆𝑂𝐶) based on 

different range intervals of SOC [%wt] (Map E2) (b). ............................................................... 91 

Figure 6-5. Map of SOC stock (𝐶𝑠) [kg·m-2] in the upper 1 m of soil determined using k-values 

differentiated per soil type (in forests and grasslands) and a piecewise distribution function in 

croplands (Map 3) (a) and the associated propagated measurement and prediction errors 

(RMSE(𝐶𝑠)) [kg·m-2] calculated using different values of 𝑅𝑀𝑆𝐸(𝑆𝑂𝐶) based on different 

range intervals of SOC [%wt] (Map E3) (b). .............................................................................. 92 

Figure 6-6. Relative RMSE [%] for Maps E1a (a) and E3 (b). .................................................... 94 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

xvii 

List of Tables 

Table 2-1. Summary of the number of profiles per soil type according to the South African 

Classification under forestry, grassland, and the three maize cultivation systems (conventional 

tillage, reduced tillage and no-till) (61 profiles). ..................................................................... 10 

Table 2-2: Summary statistics of percentage sand, silt and clay, as well as pH for all soil samples 

in the study area. ..................................................................................................................... 11 

Table 3-1. Summary of number of profiles per soil type used in this Chapter according to the 

South African Classification, as well as the corresponding Soil Taxonomy and WRB 

Classification. ........................................................................................................................... 14 

Table 3-2. Model parameters for the averaged distribution of SOC, ρb and Cvs for 38 profiles, 

stratified by depth (z). ............................................................................................................. 18 

Table 3-3. Goodness of fit statistics for the regression of k using analysis of covariance of k’ 

and k with land use and soil type. ........................................................................................... 20 

Table 3-4. Results of k-means clustering into 5 classes using k with k’ per soil type using Trace 

(W) as clustering criterion. ...................................................................................................... 21 

Table 3-5. Regression results for the prediction of SOC stock [kg∙m-2] using different k and k’ 

groupings (µ = mean; δ = standard deviation). ....................................................................... 23 

Table 3-6. Step-wise reduction in prediction error by using soil classification and depth-

distribution parameter optimization (k’) of cumulative carbon stocks for the sampled depth 

increments using three different exponential coefficients. .................................................... 23 

Table 3-7. Lookup table indicating k and k’ values associated with soil types in the Mondi soil 

data. ......................................................................................................................................... 24 

Table 4-1. Summary of the implements used and depth of soil disturbance under the different 

maize farming systems. ........................................................................................................... 32 

Table 4-2. Summary of p-values for differences between means of k and k’ values between 

the four treatments. Values in bold indicate significant differences for α=0.05. ................... 38 

Table 4-3. Summary of exponential equations obtained from Figure 4-2 and Figure 4-3 (y-

intercepts not equal to 1) and simplified equations with y-intercepts set to 1 for the different 

treatment groups. ................................................................................................................... 39 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

xviii 

Table 4-4. Summary statistics (n = number of profiles; µ = mean; δ = standard deviation) of k 

and k’ values for 0-100 cm profiles per treatment group obtained from mean values per group.

 ................................................................................................................................................. 40 

Table 4-5. Summary of linear (0-30 cm) and exponential (30-100 cm) equations obtained from 

Figure 4-4. For linear equations the y-intercept was set to 1 for both treatment groups. .... 42 

Table 4-6. Summary statistics of b and b’ values for 0-30 cm sections, as well as k and k’ values 

for 30-100 cm sections under RT and CT obtained from mean values per treatment. (n = 

number of profiles; µ = mean; δ = standard deviation) .......................................................... 43 

Table 4-7. Model parameters used to calculate volumetric SOC stocks (kg·m-2) at each 

sampling depth in the 32 profiles as presented in Figure 4-6. ................................................ 45 

Table 4-8. Summary regression statistics using XLSTAT, comparing calculated vs measured SOC 

stocks (kg·m-2) per 5 cm sampled depth increments for the different land use systems using 

the b and k (from Table 4-7), vs corresponding b’ and k’ values obtained from graphs. (LU = 

land use; n = number of samples used in each regression analysis ........................................ 46 

Table 4-9. P-values for paired two-tailed T-test for samples with unequal variance showing the 

difference in carbon stocks calculated by integration of the depth-distribution functions for 

three depth intervals under different maize production systems in comparison to native 

grasslands. (GL = grassland; NT = no-till; RT = reduced tillage; CT = conventional tillage). .... 47 

Table 5-1. Results of t-tests for differences between means (reported as P-value at α=0.05) 

determined by dry combustion (DC) and Walkley and Black method corrected by a factor of 

1.10 (1.10WB) and 1.27 (1.27WB). (μ = mean; δ = standard deviation) ................................. 61 

Table 5-2. The RMSE and relative RMSE values for the SOC concentration ranges. (a = lower 

limit of the range; b = upper limit of the range; μ = mean SOC % for the range; n = number of 

samples)................................................................................................................................... 63 

Table 5-3. The RMSE, relative RMSE (RMSE), mean absolute error (MAE) and relative MAE 

(RMAE) for the [a,b) intervals of the calibration/cross-validation range of single SOC content 

measurements with DC and NIR PLS model. (a = lower limit of the range; b = upper limit of the 

range; μ = mean SOC % for the range; n = number of samples). ............................................ 66 

Table 5-4. Regression line parameters for SOC analysis and estimated LOD and LOQ based on 

linear regression for the three methods: DC - dry combustion, WB – Walkley-Black, NIR – near-

infrared spectroscopy. (y-int = y-intercept) ............................................................................ 70 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

xix 

Table 5-5. Technical specifications of the EuroVector EA-3000 CHNS-analyser (Eksperiandova 

et al., 2011). ............................................................................................................................. 70 

Table 6-1. Summary of input parameters and equations used for the development of three 

maps of 𝐶𝑠 and its associated propagated errors. (LU – Land use; FO = Forestry; GL = 

Grasslands; CL = Croplands; n = number of samples; Eq. = Equation) .................................... 80 

Table 6-2. List of 44 covariates at 10 m resolution used in the feature selection. ................. 81 

Table 6-3. Lookup table used for the development of SOC stock maps showing the mean (𝑘 

and 𝑏) and standard deviations (𝛿𝑘 and 𝛿𝑏) for the input parameters used in the calculation 

of SOC stocks. The t-test results show the significant differences between the soil type 

groupings for Grasslands and Forest at α=0.05. ..................................................................... 84 

Table 6-4. Lookup table for the RMSE of the [a,b] intervals of the calibration/cross-validation 

range of single SOC content measurements with DC and NIR PLS model. (a = lower limit of the 

range; b = upper limit of the range; μ = mean SOC % for the range; n = number of samples).

 ................................................................................................................................................. 85 

Table 6-5. Mean and standard deviation of the volumetric SOC content [kg·m-3] in the surface 

samples under different land uses indicating significant differences between the means based 

on a Student’s t-test for α=0.05. (FO = Forestry [n = 698]; GL = Grassland [n = 210]; CL = 

Cropland [n = 88]) .................................................................................................................... 86 

Table 6-6. Covariates used in the interpolation of the surface volumetric SOC values (𝐶𝑣0) in 

order of importance. ............................................................................................................... 87 

Table 6-7. Covariates used in the interpolation of the SOC stock (𝐶𝑠) in order of importance 

for Maps C1 to C3. ................................................................................................................... 89 

Table 6-8. Summary of map interpolation statistics for Maps C1 to C3. ................................ 89 

Table 6-9. Relative RMSE [%] calculated from Maps E1a to E3 for the prediction of SOC stocks 

in the catchment, shown as the minimum, maximum, mean and standard deviation (δ) for 

each map. ................................................................................................................................ 93 

 

  

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

xx 

List of symbols and abbreviations commonly used in the text 

Soil characteristics 

Cs – carbon stock [kg·m-2] 

Cv – volumetric carbon content [kg·m-3] 

SOC – soil organic carbon 

ρb – soil bulk density [Mg·m-3] 

ρs – soil particle density [Mg·m-3] 

Analytical methods 

NIR(S) – near-infrared (spectroscopy) 

(SOC) DC – (soil organic carbon determined using) dry combustion [%] 

(SOC) NIR – (soil organic carbon determined using) NIR spectroscopy [%] 

(SOC) WB - (soil organic carbon determined) using Walkley and Black (1934) method [%] 

Statistical parameters 

AE – absolute error 

MAE – mean absolute error 

LOD – limit of detection 

LOQ – limit of quantification 

PLS(R) – partial least squares (regression) 

R2 – correlation coefficient 

RAE – relative MAE 

RMSE – root mean square error 

RRMSE – relative RMSE 

α – significance level 

δ – standard deviation 

µ – mean value 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

1 

1 Introduction 

1.1 Background 

The agricultural and environmental importance of maintaining and increasing soil organic 

carbon (SOC) has been progressively recognized globally. This includes the role of SOC in 

contributing to food production, as well as its role in efforts of adapting to and mitigating the 

effects of a changing climate (England et al., 2018; Lal and Stewart, 2011; Minasny et al., 2017; 

Soussana et al., 2017; Vitharana et al., 2019). To a large extent, this recognition can be 

ascribed to soil being the largest terrestrial carbon pool (Batjes, 1996; Jackson et al., 2017), as 

well as to soil’s responsiveness to land use and management (Nave et al., 2018).  

In recent years, numerous global initiatives focused their attention on SOC (England et al., 

2018), for example: (1) the United Nations Sustainable Development Goal (SDG) Indicator 

15.3.1 on “the Proportion of land that is degraded over total land area”  includes SOC stock as 

one of the first metrics used; (2) in the same vein, the United Nations Convention to Combat 

Desertification (UNCCD) will use SDG Indicator 15.3.1, including SOC stocks, as one of the 

indicators to monitor progress towards its land degradation neutrality targets (Orr et al., 

2017); and (3) the “4 per 1000” initiative was launched at the 21st session of the United Nations 

Framework Convention on Climate Change (UNFCCC) in Paris, setting an ambitious target to 

increase global SOC stocks at a rate of 0.4 % (i.e. 4 per 1000) per year with a focus on 

agricultural land (Soussana et al., 2017).    

As a result of these developments, measuring, mapping and monitoring of SOC have 

become well-studied topics over the last two decades to quantify and understand the status, 

trends, variability, and sequestration potential of SOC and more (Adhikari et al., 2014; Baldock, 

2008; Beltrame et al., 2016; Chatterjee et al., 2009; Corbeels et al., 2018, 2016; Deng et al., 

2013; England et al., 2018; Guevara et al., 2018; Haddaway et al., 2017; Henry et al., 2009; 

Hobley and Wilson, 2016; Jackson et al., 2017; Jobbagy et al., 2000; Kempen et al., 2019, 2010; 

Le Quéré et al., 2016; Mäkipää et al., 2008; Malone et al., 2017; Meersmans et al., 2009; 

Minasny et al., 2017, 2006; Minasny and McBratney, 2016; Mishra et al., 2009; Olson et al., 

2013; Olson and Al-Kaisi, 2015; Paustian et al., 2016, 1997, Sleutel et al., 2007, 2003; Stolbovoy 

et al., 2007; Suddick et al., 2013; Tan et al., 2007; VandenBygaart and Kay, 2004; Vitharana et 

al., 2019; Waltman et al., 2010; Z. Wang et al., 2012b; Wiese et al., 2016; Yang et al., 2016, 

2012, 2008). In addition, several past and present studies and initiatives focus on SOC 

accounting and the inclusion of SOC in carbon (C) trading schemes (Australia Department of 
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Climate Change and Energy Efficiency, 2012; Baldock, 2008; Bispo et al., 2017; Brenna et al., 

2014; England et al., 2018; Gershenson et al., 2011; Goglio et al., 2015; Heath and Smith, 2000; 

Malone et al., 2017; Sanderman and Baldock, 2010; Schaltegger and Csutora, 2012; 

Stechemesser and Guenther, 2012; Suddick et al., 2013; Viscarra Rossel and Brus, 2018; 

Viscarra Rossel et al., 2014; White and Davidson, 2015; Wiese et al., 2016). England et al. 

(2018) highlighted that the development of new SOC accounting technologies is important 

for: (1) national greenhouse gas (GHG) emissions reporting to fulfil obligations under the 

UNFCCC, and (2) domestic schemes that aim to reduce or offset GHG emissions by 

implementing different activities such as improved land management practices and managing 

or preventing land use change.  

Land use and land use change is a major factor affecting SOC change (Poeplau and Don, 

2013; Smith, 2008), with changes from natural vegetation (forests, grasslands and wetlands) 

to croplands, for example, causing significant SOC losses (Paustian et al., 2016; Smith, 2008; 

Swanepoel et al., 2016). On the other hand, SOC stocks can be increased by increasing organic 

matter inputs (for example, by restoring degraded lands to perennial forest or grassland) or 

by decreasing soil organic matter decomposition rates (i.e. through reduced soil disturbance) 

(Paustian et al., 2016; Poeplau and Don, 2013). The topsoil (0-30 cm depth) is especially 

sensitive to changes in land use and management (Poeplau and Don, 2013) and is the zone of 

higher SOC variability (Beaudette et al., 2013). 

Assessing the effect of land use, land use change and management practices on SOC 

requires the measurement of baseline SOC stock values, as well as the quantification of 

changes and variability in SOC stock in both space and time (England et al., 2018; Suddick et 

al., 2013). This, in turn, requires  accurate and cost-efficient methods to measure and monitor 

SOC stocks (Bellon-Maurel and McBratney, 2011; Bispo et al., 2017; Cremers et al., 2001; Davis 

et al., 2018; De Gruijter et al., 2016; England et al., 2018). The determination of SOC stock 

requires measurements of SOC concentration, bulk density and gravel content (Batjes and 

Wesemael, 2015; England et al., 2018) and it is essential that relevant measurements are 

based on agreed upon standards to ensure comparable estimations of SOC stocks (Bispo et 

al., 2017). Furthermore, it is essential that analytical methods have sufficient accuracy, 

precision and the ability to detect and measure small quantities of the analyte. These 

requirements of analytical methods can be evaluated by calculating the relevant figures of 

merit which have been developed to assess and compare the performance of analytical 

methods (Bouabidi et al., 2010; Currie, 1999; De Vos et al., 2007; Eksperiandova et al., 2010; 
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Harris, 2007; Sangmanee et al., 2017; Shrivastava and Gupta, 2011; Valderrama et al., 2007; 

Wenzl et al., 2016), as well as the mean method prediction error (Olivieri, 2015). 

When it comes to SOC mapping, the use of pedometrics, geostatistics and digital soil 

mapping has become especially popular and is used in an abundance of SOC studies (Adhikari 

et al., 2014; Aldana Jague et al., 2016; Brodský et al., 2013; De Brogniez et al., 2015; Dorji et 

al., 2014b; Guevara et al., 2018; Kempen et al., 2019; Lacoste et al., 2014; Malone et al., 2017; 

Minasny et al., 2006, 2013; Roudier et al., 2012; Sindayihebura et al., 2017; Somarathna et al., 

2016; Thompson et al., 2010; Tsui et al., 2013; Vågen and Winowiecki, 2013; Veronesi et al., 

2014; Vitharana et al., 2019; Zhao et al., 2005). In digital soil mapping, field and laboratory 

observation methods are coupled with quantitative spatial prediction techniques to create a 

spatial soil information system (Minasny et al., 2013). Therefore, it is equally important to 

quantify the errors and uncertainties associated with the resultant maps to determine 

whether a particular map is usable for a specific intended purpose (De Gruijter et al., 2016; 

Heuvelink, 2018; Minasny and McBratney, 2016; Stumpf et al., 2017). Furthermore, 

uncertainty propagation analysis is used to determine how uncertainty in input parameters is 

propagated in the modelling and mapping process and can identify the main sources of 

uncertainty. There are many sources of uncertainty accumulating in the modelling and 

mapping process, including field and laboratory measurement error, positional error, 

classification error, model parameter and structural errors, errors arising from spatial 

interpolation, errors from fitting and applying regression models and more (Heuvelink, 2018). 

However, reporting of errors and uncertainty in digital SOC mapping in literature generally 

excludes laboratory measurement errors. According to Heuvelink (2018) the main challenge 

in including all the various errors and uncertainties is to characterise the error sources with 

realistic probability distribution. 

1.2 Problem Statement 

Measuring and mapping SOC stocks is increasingly in demand to monitor progress in the 

achievement of goals such as reduced GHG emissions, land degradation neutrality and 

increasing SOC stocks by 0.4 % per year (4 per 1000 initiative) (England et al., 2018; Orr et al., 

2017; Soussana et al., 2017). However, the measurement of SOC stocks at different soil depths 

and spatial scales is often expensive and time consuming due to field soil sampling, sample 

preparation and laboratory analysis (Akumu and McLaughlin, 2013; Chatterjee et al., 2009; 

Mäkipää et al., 2008; Sleutel et al., 2007). Furthermore, based on the assessed literature, error 

and uncertainty propagation arising from laboratory measurements are usually not included 
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in the estimation of overall SOC map accuracy, which may have a direct impact on the usability 

of such maps for potential users and the financial well-being of carbon market players.     

1.3 Aims and Objectives 

The overall aim of this study was to quantify and map SOC stocks in the first meter of soil 

under different land uses and crop management systems in a quaternary catchment using a 

vertical SOC distribution model, applying near-infrared spectroscopy for SOC analysis and 

estimating the uncertainty of the maps created using different approaches.  

The specific objectives of this research were to:  

1. Fit and group exponential vertical distribution functions for SOC stocks upon 

normalizing values observed throughout the soil profile by the SOC content close 

to soil surface (0-5 cm layer). 

2. Develop a novel approach for soil carbon accounting using field soil sampling and 

stochastic modelling of vertical SOC distribution for a quaternary catchment area 

covered to a large extent by a detailed soil survey.  

3. Compile a local NIR spectral library for the study area and use it to develop a PLS 

regression model for predicting the SOC content. Evaluate the loss in accuracy and 

precision of replacing the dry combustion analysis of SOC measurement by the 

cheaper Walkley and Black (1934) or NIR spectroscopy methods. 

4. Find the best possible continuous functions describing the vertical distribution of 

SOC under different intensities of cultivation, so that a single surface sample 

would be sufficient to estimate the stocks down to various depths (20, 30, 100 

cm). Analyse the changes in the stochastic models imposed by land use. 

5. Determine the values of SOC content, bulk density and stone content at the soil 

surface (0-5 cm) from random sampling points throughout the study area to 

assess the volumetric SOC content at the soil surface. Use the existing soil map, 

land use classification and DEM derivatives, together with the vertical distribution 

functions developed previously to map SOC stocks in the study catchment, and 

assess the uncertainty of the maps produced. 
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1.4 Structure of the thesis 

The technical part of the thesis is structured to address the above objectives in the 

presented order in Chapters 3 to 6. These Chapters have been, or will be submitted for 

publication in peer-reviewed journals. For this reason, Chapter 1 provides a summarised 

introduction of pertinent literature relevant to this study. More detailed references to existing 

literature are provided in Chapters 3 to 6.  

Chapter 2 provides an overview of the study area in terms of location, geology, climate, 

and soils and describes the soil sampling strategy. The materials and methods are described 

in the respective technical chapters. 

Chapter 3 describes the application, normalization and grouping of exponential vertical 

distribution functions to model SOC stocks under forests, grasslands and croplands. Upon 

normalization and grouping of exponential functions, a novel approach to soil carbon 

accounting is tested in a subsection of the study catchment where detailed soil information is 

available. 

Chapter 4 compares the accuracy and precision of SOC analysis using NIR spectroscopy 

and the Walkley Black method by comparing these methods to dry combustion analysis.  

Chapter 5 focuses on the effect of different tillage practices for maize production on the 

vertical distribution of SOC to find the best possible continuous distribution functions using 

grasslands as reference. 

Following on the developments in Chapters 4 and 5, Chapter 6 assesses the changes in 

SOC stock prediction errors in the study catchment as a function of increased complexity and 

detail of model input parameters by mapping the SOC stocks and associated propagated error 

(measurement and prediction errors) of SOC stock determinations. 

Chapter 7 summarizes the main conclusions arising from this research and Chapter 8 

provides the full list of references. 
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2 Study area and sampling strategy 

2.1 Site description. 

A quaternary catchment (U40A), shown in Figure 2-1, was selected in the Midlands area 

of KwaZulu-Natal (KZN), South Africa, measuring 317 km2 (Department of Water and 

Sanitation, 2018) with altitudes ranging from 950 to 1540 m. The catchment is located south 

and southeast of Greytown which is located on the banks of the Mvoti River. The Mvoti River 

includes the Mvoti Vlei wetland within the Mvoti Vlei Nature Reserve (2.67 km2) in the study 

catchment. This wetland and nature reserve were excluded from the study due to the 

potentially deep layers of SOC stocks with layers of peat and mineral sediment, as well as the 

common presence of fresh sediment on the surface of wetland soils which would not suit the 

purposes of this study.  

 

Figure 2-1. Location of the study area – quaternary catchment U40A – within the upper reaches of the 
Mvoti River in KwaZulu-Natal. The inset maps show the location of the study area (a) within South 
Africa and (b) within the Mvoti catchment.  

Geologically, the study area falls in the Ecca Group of the Karoo Subgroup - from west to 

east, the area spans across the Volksrust, Vryheid, and Pietermaritzburg Formations. The 

primary parent materials for the three Formations are: Volksrust - mudstone and shale; 

Vryheid – sandstone and shale; and Pietermaritzburg: shale. According to Camp (1999) the 

(a) (b) 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

7 

shales of the Ecca group tend to be dark and exposed in the midlands area and are often used 

to make good-quality bricks that burn red due to their high iron (Fe) content. Dolerite 

(diabase) dykes often pierce the Karoo system shale, frequently forming isolated hills within 

the general incline of the Drakensberg escarpment. Sandstones of the Ecca group crown the 

escarpment that extends in part to the west of Greytown. These sandstones have a coarser 

grain size and crumble more easily than those of the Natal Group Sandstone (Camp, 1999). 

Although a narrow band of sandstone occurs in the centre of the study area, sampling focused 

on the shale and dolerite parent materials (soils on sandstone parent material were not 

sampled).  

Due to the complex topography, the climate varies along the altitudinal gradient, but is 

generally warm temperate in Greytown with mean winter (June) temperatures of 12 °C and 

summer (January) temperatures of 28 °C. Minimum winter temperatures can fall below 0 °C 

and frost is common in valley bottoms. Winters are relatively dry, with summer rainfall (mainly 

November to March) averaging from 900 mm.yr-1 (Ros Mesa, 2015). The mean monthly rainfall 

and temperatures (day and night) are presented in Figure 2-2. 

 

Figure 2-2. Mean monthly rainfall, day and night temperatures: Greytown (South African Weather 
Bureau data) (Ros Mesa, 2015). 

The study area falls within the Mistbelt vegetation type which is characterized by a mosaic 

of grasslands and indigenous Afromontane forest. However, these grasslands and forests have 

been largely replaced by agriculture and commercial timber plantations (Camp, 1999) which 

is particularly well suited due to the high rainfall and mild temperatures in the area (Winter 

and Morris, 2001). Isolated patches of natural forest remain (Camp, 1999), along with small, 

fragmented patches of Mistbelt grassland (Winter and Morris, 2001). Agricultural land uses 
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are mostly limited to maize for grain and seed production, limited sugarcane production (in 

frost-free areas), pastures, and plantations (forestry) of eucalypts and pines (with residual 

wattle stands in the process of conversion to eucalypts). 

2.2 Sampling strategy and soils 

Soil sampling was conducted during two sampling campaigns in June 2013 and June 2014. 

Soil profiles were sampled to enable the modelling of vertical SOC distribution under different 

land uses, while a set of surface (0-5 cm) samples were taken for the final prediction and 

mapping of SOC stocks in the quaternary catchment.  

For profile sampling, a random stratified sampling approach was selected with the random 

sampling locations represented by two to four profiles in a catenary sequence. This was done 

to capture the changes in soil type and carbon stocks along the hill slope and down to the 

valley bottom. Soil profiles were excavated in positions in and around the catchment based 

on ease of access and land use. During the 2013 sampling campaign, 50 profiles were sampled 

mainly from plantation forests, grasslands and maize fields, with isolated profiles sampled 

from natural forest, wetland and sugarcane. In 2014 an additional 19 profiles were sampled 

to focus on different maize production systems using conventional tillage, reduced tillage and 

no-till. The closest available no-till farm was situated in the Karkloof area of KZN to the 

southwest of the main study catchment. The locations of the 69 sampling profiles are shown 

in Figure 2-3.  

Soil profiles were dug to 1 m unless restricted by rock or a water table occurring at 

shallower depth. All the soils were classified using the Taxonomic Soil Classification system of 

South Africa (Soil Classification Working Group, 1991). Core samples were taken in triplicate 

per sampling depth (Figure 2-4a) using steel cores of 48 mm length and a volume of 98 cm3 to 

account for variability in bulk density. The vertical centres of the cores were placed at 2.5, 7.5, 

12.5, 17.5, 30, 40, 50, 75 and 100 cm depths as illustrated in Figure 2-4b. As reported by Ros 

Mesa (2015) and Esmeraldo (2016), all the samples were analysed for particle size distribution 

and pH. A summary of the number of profiles with the same South African classification is 

given in Table 2-1. For purposes of this study the litter layer in plantations was not considered 

part of the mineral soil. The litter layer in these soils was therefore removed prior to sampling 

as illustrated in Figure 2-4c. 
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Figure 2-3. Location of the 69 profiles sampled in and around the quaternary catchment. Sampling 
points are stratified by land use and maize production tillage system. Satellite imagery was obtained 
from the Bing Aerial open layer in QGIS 2.18.  

       

Figure 2-4. For each profile, core samples were taken in triplicate as shown in Figure (a) with Figure 
(b) indicating the sampling depth increments. Figure (c) shows the triplicate core sampling of surface 
soils for the final mapping exercise.  

(a) (b) 

(c) 

Cores 

Core center 
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Table 2-1. Summary of the number of profiles per soil type according to the South African 
Classification under forestry, grassland, and the three maize cultivation systems (conventional tillage, 
reduced tillage and no-till) (61 profiles). 

Soil type  Count 

Forestry Grassland Conventional 
Tillage 

Reduced 
Tillage 

No-Till 

Avalon (Av)    3  

Dundee (Du)   1   

Glencoe (Gc)   1   

Glenrosa (Gs)  1    

Griffin (Gf)   1 1  

Inanda (Ia) 3 1  3 1 

Katspruit (Ka)  1    

Kranskop (Kp) 2 3 1 4 2 

Magwa (Ma) 10 1 2  4 

Nomanci (No) 6 3 2 1 1 

Pinedene (Pn)  1    

Willowbrook (Wo)     1 

 

During the 2014 sampling campaign, surface (0-5 cm) core samples were taken across the 

catchment to be used as prediction set for the final mapping of SOC stocks. For this purpose, 

a random set of 150 sampling points was generated in the catchment using QGIS 2.16 

software. During sampling, every effort was made to reach these exact locations, but access 

was often restricted on private land, or due to terrain and vegetation. In such cases, 

alternative points were sampled as close as possible to the specified locations. From each 

predefined sampling location, a transect of 3 points was sampled along the catena at a total 

of 322 locations shown in Figure 2-5. At each of these locations, core samples were taken in 

triplicate as illustrated in Figure 2-4c.  

The soils of the area have been studied intensively. This includes a study by Turner (2000), 

documenting the soil forms regularly found in association with the major geology formations 

in KZN (and Mpumalanga), as well as the range of variation sampled across the two provinces. 

Soils in the area have high organic carbon content ranging from 0.08 to 22.85 % (µ = 3.48 %), 

with clay content ranging from 3 to 34 % (µ =14.7 % clay) and pH(H20) between 3.3 and 6.7 (µ 

= pH(H20) = 4.5). Summary statistics of the SOC content, soil particle size distribution and pH 
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are provided in Table 2-2. The sand grade was not determined. However, based on the nature 

of the parent material, the sand fraction is expected to be dominated by fine sands in soil from 

the Volksrust and Pietermaritzburg Formation shales, and fine to medium sand in the Vryheid 

Formation with isolated occurrences of coarse sand (Camp, 1999; Turner, 2000). Since isolated 

areas with sandstone parent material were not sampled, it is assumed that sand grades for 

this study remain in the fine and medium sand classes. 

 

Figure 2-5. Location of the 322 sites in the quaternary catchment sampled in triplicate with 98 cm3 
steel cores at 0-5 cm.   

 

Table 2-2: Summary statistics of percentage sand, silt and clay, as well as pH for all soil samples in 
the study area. 

 Minimum Maximum µ Median δa 

SOC % 0.08 22.85 3.5 2.98 2.74 

% Sand 16.1 82.2 56.3 56.8 12.2 

% Silt 6.1 62.1 29.0 28.7 10.4 

% Clay 3.3 49.0 14.7 14.2 4.3 

pH (H20) 3.3 6.7 4.5 4.5 0.7 

pH (KCl) 2.8 6.2 4.1 4.0 0.6 

aδ = Standard deviation 
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3 An approach to soil carbon accounting and mapping using 

vertical distribution functions for known soil types1 

3.1 Introduction 

Soil organic carbon (SOC) estimates in two dimensions for large areas are increasingly in 

demand for climate change reporting (Mäkipää et al., 2008), but such estimates at large spatial 

scales and different soil depths are generally time consuming and expensive (Akumu et al., 

2003; Mäkipää et al., 2008; Sleutel et al., 2003). Numerous studies in recent years have 

modelled the vertical distribution of SOC based on various distribution patterns, most notably 

exponential functions (Hilinski, 2001; Kempen et al., 2011; Minasny and McBratney, 2006; 

Sleutel et al., 2003). The integral of the exponential function is then used to represent the 

carbon storage at selected soil depths. The exponential function is generally chosen for its 

mathematical simplicity in conjunction with its apparent similarity to SOC decline with soil 

depth (Minasny and McBratney, 2006).  Such modelling of SOC distribution in the soil profile 

enables the prediction of SOC stocks at unsampled soil depths and, if adequately developed, 

could reduce the need for soil sampling. The exponential decline function is generally 

expressed as: 

𝐶 = 𝐶0 ∙ 𝑒−𝑘𝑧 (3-1) 

where the SOC content, C, is related to the SOC concentration at the soil surface (C0) and 

decreases at a rate of k to depth z (Russell and Moore, 1968). 

The aim of this Chapter was to fit and group exponential vertical distribution functions for 

SOC stocks upon normalizing values observed throughout the soil profile by the SOC content 

close to soil surface (0-5cm layer). This approach assumes that the SOC content at any depth, 

under relatively stable vegetation conditions, can be functionally related to the concentration 

at the soil surface in the absence of major recent disturbances (e.g. landslides, soil stock piling, 

etc.). This would reduce the number of required observations for carbon accounting to one 

point close to the soil surface. The integral of the exponential SOC distribution function would 

then be applied in a spatial environment to map the two-dimensional distribution of SOC 

                                                           
1 The material presented in this chapter is reproduced with minor changes from a prior publication: 

Wiese, Liesl; Ros, Ignacio; Rozanov, Andrei; Boshoff, Adriaan; Clercq, Willem de; Seifert, Thomas (2016): 

An approach to soil carbon accounting and mapping using vertical distribution functions for known soil 

types. In Geoderma 263, pp. 264–273. DOI: 10.1016/j.geoderma.2015.07.012. 
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stocks.   

3.2 Materials and Methods 

3.2.1 Test area for SOC mapping 

A test area for SOC stock mapping was selected as a collection of sub-catchments in the 

southwestern part of the quaternary catchment as shown in Figure 3-1. This area was selected 

based on the availability of proprietary digital, geo-referenced soil point data (1:10 000 scale) 

provided by Mondi Forests (Pty) Ltd for its properties located in the study catchment. For each 

soil point, data were available for effective rooting depth (ERD) and soil type according to the 

Taxonomic Soil Classification system of South Africa (Soil Classification working group, 1991). 

This data was necessary for the development of interpolated ERD and soil type maps for SOC 

stock mapping as discussed in Section 3.2.3. 

 

Figure 3-1. The test area for SOC stock mapping showing the locations of 40 random sampling points 
for surface (0-5 cm) core samples. The inset map indicates the location of test site and sampling points 
in the quaternary catchment. 

3.2.2 Soil samples and analyses 

Soil samples from 38 of the 69 sampled profiles as described in Chapter 2 were used. This 

included 6 profiles in grasslands, 12 in cultivated land and 20 in forest plantations, yielding a 

total of 948 samples from 316 sampling positions. A summary of the number of profiles with 

the same South African classification is given in Table 3-1, along with the corresponding 
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grouping according to Soil Taxonomy (Soil Survey Staff, 2014) and World Reference Base 

(WRB) Classification (IUSS Working group WRB, 2014). 

Table 3-1. Summary of number of profiles per soil type used in this Chapter according to the South 
African Classification, as well as the corresponding Soil Taxonomy and WRB Classification. 

SA soil type (Mapping 

code) 
Count Soil Taxonomy WRB 

Avalon (Av) 3 Plinthic Haplustox Plinthic Ferralsol 

Glencoe (Gc) 1 Petroferric Haplustox Petroplinthic Ferralsol 

Griffin (Gf) 1 Typic Haplustox Haplic Ferralsol 

Inanda (Ia) 6 Humic Rhodic Haplustox Umbric Rhodic Ferralsol 

Katspruit (Ka) 1 Typic Endoaquent Umbric Gleysol 

Kranskop (Kp) 7 Humic Haplustox Umbric Ferralsol 

Magwa (Ma) 10 Humic Xanthic Haplustox Umbric Xanthic Ferralsol 

Nomanci (No) 8 Lithic Humlustept Skeletic Umbrisol 

Pinedene (Pn) 1 Oxyaquic Haplustox Oxyaquic Xanthic Ferralsol 

 

Triplicate core samples were oven-dried at 90 °C, weighed and bulk density (ρb) 

determined as the mass of oven-dried soil per unit bulk volume (Mg.m-3) (Robertson and Paul, 

2000). Mean ρb values were calculated per sampling depth from triplicates for further data 

analysis.  

Following ρb analysis, triplicate samples were combined to give one composite sample per 

soil depth. Fine roots were manually removed, following which samples were pounded and 

sieved to 2 mm and the coarse (gravel) fraction content gravimetrically determined, when 

present. 

Subsamples of the 2 mm fraction were ball-milled to < 0.5 mm for total SOC [%wt] which 

was determined by DC gas chromatography elemental analysis as in the method outlined by 

Nelson and Sommers (1974) using a EuroVector EA 3000 elemental analyser at Stellenbosch 

University. Since the soils do not contain inorganic carbon, the total carbon results obtained 

by DC constitutes total SOC.   

The < 2 mm samples were scanned once to acquire the near-infrared (NIR) reflectance 

spectral characteristics using a Bruker MPA (Multi-Purpose Analyser) with a quartz beam 
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splitter and RT-PbS detector. The reflectance of the samples was measured from 12500 to 

3600 cm-1 (800 – 2778 nm) at 1 cm-1 using a rotating macro sample sphere at 128 scans per 

sample. The software OPUS 7.2.139.1294 supplied with the Bruker MPA was used for spectral 

data collection. The OPUS statistical Quant2 module was used to optimize and calibrate the 

raw NIR reflectance spectra using the DC SOC values ranging from 0.18 to 22.85 %.   

An NIR spectral library was developed from these analyses using a subset of 313 samples 

as calibration set and the remaining 86 samples as validation test set.  Results from the 

calibration and validation tests were considered sufficient for this exercise, with a validation 

R2 value of 0.9237, a root mean square error of prediction (RMSEP) of 0.982 and a ratio of 

performance deviation (RPD) of 3.62. 

The volumetric SOC content (Cv) was calculated as 

Cv [kg·m-3] = 10·SOC [%wt]∙ρb [Mg·m-3] (3-2) 

The Cv value was corrected for stone content, where present as:  

Cv = Cv(2mm)∙(1-Sm∙ ρb / ρs) (3-3) 

 where Cv(2mm) is the volumetric carbon content in the < 2 mm fraction, Sm is the mass 

fraction of stones in the bulk sample determined gravimetrically, and ρs = 2.65 Mg·m-3. 

The ∑Cv∙Δz, where Δz is a depth increment, was used to calculate carbon stocks per profile 

within the sampled depth intervals for model calibration. 

Soil surface core samples (0-5 cm) from 40 of the 322 sampling positions described in 

Chapter 2 were used for the interpolation of a Cv raster data layer. These samples were 

selected from grassland and plantation areas in the mapping test site as shown in Figure 3-1. 

In these samples the ρb and stone content (where present) were again determined 

gravimetrically, while the SOC content in the < 2mm fraction was determined only by NIR 

spectroscopy using the methods and NIR calibration set described above.  

3.2.3 Interpolation of mapping layers 

A 20 m digital elevation model (DEM) derived from contour data obtained from South 

African Surveys and Mapping was used, as well as a set of sub catchments developed within 

the study area for a separate hydrological study using QGIS/SAGA tools. The DEM was used to 

derive slope and curvature layers for use as covariates for kriging interpolation of soil data. 
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Interpolation of the surface volumetric SOC values from 45 surface sampling points (40 

surface samples and 5 surface samples obtained from profiles) was performed in ArcMap 10.1 

using ordinary kriging with the DEM, slope and curvature as covariates. The ERD values were 

interpolated from the proprietary 100 m grid soil survey point dataset mentioned above using 

the same co-kriging procedure to improve predictions for areas outside the mapped 

compartments. The same co-kriging procedure was used to interpolate the exponential 

coefficients (k-values) characterizing soil type. Details of k-value derivation and association 

with soil types are described in Section 3.4.1. 

Uncertainties of interpolated and subsequent maps were not calculated and are not 

shown or discussed in this Chapter. Estimates of the propagated error and map accuracy are 

presented and discussed in Chapter 6 as part of the overall estimation of errors incurred in 

SOC modelling and mapping across the quaternary catchment. 

3.3 Results and Discussion 

3.3.1 Vertical SOC distribution 

For all 38 profiles, Cv vs depth functions were plotted using MS Excel 2013. Each individual 

profile in this set was characterized by the best-fit exponential decline function, though it was 

evident that in some instances the fit was poor based on visual observation and R2 values < 

0.5. The general exponential decline of SOC with soil depth has been confirmed in many 

studies (Hilinski, 2001; Kempen et al., 2011; Kulmatiski et al., 2003; Minasny and McBratney, 

2006; Mishra et al., 2009; Sleutel et al., 2003). However, the zone of higher SOC variability in 

the first 30 cm  may lead to a poor exponential fit in individual profiles (Beaudette et al., 2013). 

The stratified averaging of SOC concentration values for all the studied profiles (mean values 

calculated for each fixed depth increment) confirmed that the general pattern for the area 

may be well approximated to such exponential decline of SOC with depth as shown in Figure 

3-2 and Table 3-2.  

Distribution of bulk density values (ρb) followed the opposite trend and was approximated 

to a logarithmic function with asymptotic line at 1m depth (Figure 3-3).  

A combination of the models for SOC and ρb may have been used to model and predict 

the carbon stocks, but that would require the collection of bulk density samples to a depth of 

1 m for all future predictions. Such a requirement was used, for example, in the Century model 

(Porter et al., 2009) which relies on two values of SOC and ρb determined at depths of 0 cm 
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and 1 m to calculate SOC content in the profile. To avoid this, Cv values were calculated for 

each sample and modelled separately. The distribution of Cv [kg∙m-3] with depth, or 10x 

multiplication product of SOC(z) and ρb(z) functions (using Eq. 3-2) remains strongly 

exponential (Figure 3-4) due to the large difference in values of the exponential and 

logarithmic coefficients.  

 

Figure 3-2. Fitting the distribution of SOC vs depth using exponential functions for stratified mean 
values. The dashed line connects the data points, the solid line represents the fitted exponential 
trendline, and the error bars indicate the standard deviations. The model parameters are summarized 
in Table 3-2. 

 

Figure 3-3. Fitting the distribution of bulk density vs depth using a logarithmic function for stratified 
mean values. The dashed line connects the data points, the solid line represents the fitted exponential 
trendline, and the error bars indicate the standard deviations. The model parameters are summarized 
in Table 3-2. 
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Table 3-2. Model parameters for the averaged distribution of SOC, ρb and Cvs for 38 profiles, stratified 
by depth (z). 

Parameter µ - δ µ µ + δ 

SOC [%wt] 
SOC = 3.59e-2.665z SOC = 6.46e-2.349z SOC = 9.32e-2.262z 

R² = 0.98 R² = 0.98 R² = 0.95 

ρb (Mg∙m-3) 
ρb = 0.1285ln(z) + 1.05 ρb = 0.1140ln(z) + 1.23 ρb = 0.0995ln(z) + 1.40 

R² = 0.98 R² = 0.98 R² = 0.95 

Cvs 
Cvs = 1.2144e-1.544z Cvs = 1.0175e-1.826z Cvs = 0.8293e-2.424x 

R² = 0.992 R² = 0.9944 R² = 0.9933 

 

 

Figure 3-4. Fitting the distribution of Cvs vs depth using an exponential function for stratified mean 
value. The dashed line connects the data points, the solid line represents the fitted exponential 
trendline, and the error bars indicate the standard deviations. The model parameters are summarized 
in Table 3-2. 

Cv values for each profile were normalized by the value of 𝐶𝑣
0 - the value of the volumetric 

SOC content in the surface (0-5 cm) sample of the specific profile. The common normalization 

(scaling) procedure which produces values in the range of 0 - 1, is 

𝐶𝑣𝑠𝑖 =  
𝐶𝑣𝑖 − 𝐶𝑣𝑚𝑖𝑛

𝐶𝑣𝑚𝑎𝑥 − 𝐶𝑣𝑚𝑖𝑛
 (3-4) 

where Cvsi is the scaled volumetric carbon (no unit) at depth i, Cvi is the volumetric carbon 

at depth i, and Cvmin and Cvmax are the minimum and maximum values of volumetric carbon 
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respectively for the specific profile. Based on the assumption of exponential decline in SOC 

with depth, the value for Cvmax in Eq. 3-2 was substituted for 𝐶𝑣
0 which is the volumetric carbon 

content at a depth of 2.5 cm (0-5 cm sample). In addition, the value for Cvmin at infinite soil 

depth was assumed to be zero (0), hence Eq. 3-4 was simplified and applied as  

𝐶𝑣𝑠𝑖 =  
𝐶𝑣𝑖

𝐶𝑣
0 

 (3-5) 

Vertical Cvs distribution functions were fitted to individual profiles by plotting Cvs against 

sampling depth (z), fitting an exponential trendline (Figure 3-4) and setting the y-intercept to 

1. This gives an exponential decline function of  

Cvs = e-kz (3-6) 

where e is the exponential function, k is the exponential coefficient describing the rate of 

change and z is the soil depth. From Eq. 3-6, a k-value was obtained for each soil profile. 

Since actual (measured) values for Cv were available for the sampled depth increments 

per profile, the cumulative SOC stocks for those increments were calculated as the sum of the 

definite integrals per depth increment: 

∫ 𝐶𝑣
0  ∙  𝑒−𝑘𝑧 𝑑𝑧 =  

𝐶𝑣
0

𝑘
 ∙  (𝑒−𝑘𝑧1 − 𝑒−𝑘𝑧2 )

𝑧2

𝑧1

 (3-7) 

where 𝑧1 and 𝑧2 are the respective depths at the bottom and top boundaries of the soil 

core during sampling. A further k’-value was determined per profile which is the exponent 

coefficient perfectly describing the hypothetical curve with area equalling the measured SOC 

stock, using the above integral and the known volumetric SOC content from core samples per 

profile. However, since this integral could not be solved for k’ algebraically, values for k’ were 

determined by manual iterative substitution until the value of measured SOC was obtained.  

For the 38 profiles combined, the mean Cvs plotted against soil depth (Figure 3-4) gives an 

exponential coefficient k of 1.798 (R2 = 0.9941) when the y-intercept of the exponential 

function is set to 1. This suggests that a single k-value may be used to predict SOC stocks in 

soils regardless of soil type or land use. Variation in exponential functions fitted to individual 

profiles, with y-intercepts set to 1, showed R2 values ranging from 0.6034 to 0.9547. The 

respective k-values ranged from 0.820 to 3.891 with a mean of 2.049 and standard deviation 

of 0.6927.  There was a clear difference in k-values obtained from averaging the Cvs values per 
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soil depth and plotting these means against depth (Figure 3-4) to obtain a single k-value 

(1.798), compared to averaging individual k-values from the different profiles (k = 2.049). 

Individual k-values were therefore submitted to statistical analysis. 

To capture the natural variation in SOC distribution in different profiles, k and k’ values 

needed to be grouped according to either land use or soil type to enable joining of resulting 

correlation coefficients to Mondi soil data for mapping purposes. Since the correlation 

coefficient k showed a normal distribution (using Shapiro-Wilk, Anderson-Darling, Lilliefors 

and Jarque-Bera tests), an analysis of covariance (ANCOVA) of k and k’ was done as a function 

of land use and soil type respectively. As summarised in Table 3-3, the regression of k based 

on soil type covariance provided higher accuracy compared to land use. As a result, soil type 

was used as clustering criteria for k and k’ grouping as summarized in Table 3-4.  

In a similar instance Khalil et al. (2013) developed land cover specific and soil type specific 

exponential models to predict vertical SOC content. The land cover specific models showed 

very high prediction power with depth and very little variation in SOC within land cover when 

compared to the soil type specific models. However, due to over- and under-estimations of 

SOC in greater soil groups within a specific land cover class, they elected to use soil type 

specific models to estimate SOC concentration (%) to 1 m.  

Table 3-3. Goodness of fit statistics for the regression of k using analysis of covariance of k’ and k with 
land use and soil type. 

Statistic Land Use Soil type 

R² 0.64 0.81 

RMSE 0.44 0.35 

 

Soil profiles were grouped according to the nine represented soil types (Av, Gc, Gf, Ia, Ka, 

Kp, Ma, No and Pn) and k and k’ values averaged per soil type. Four of the nine soil types (Gc, 

Gf, Ka and Pn) occurred only once and no mean k or k’ was calculated. K-means clustering was 

run on the mean k and k’ values using Trace (W) as clustering criterion to minimize the within-

group sum-of-squares across all variables and identify the best groupings according to soil 

type. Clustering into five classes (as shown in Table 3-4) was used to determine how the single 

soil types grouped with multi-replicated soil types (Gc/Av, Gf/Kp, and Pn/Ma). An exception 

was accepted for the Ka soil type which only had one replicate and fell into a separate class 

due to its G-horizon and association with wetness. The Ia/No class was split into two by moving 
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the Nomanci form to a sixth class due to its generally shallow characteristics resulting from 

minimal development of the B horizon in weathering rock.  

Table 3-4. Results of k-means clustering into 5 classes using k with k’ per soil type using Trace (W) as 
clustering criterion. 

    5 Classes a6 Classes 

Soil type Topsoil Subsoil Class Class 

Av 
Orthic 

Yellow-brown 

apedal B 
Soft plinthic 1 1 

Gc 
Orthic 

Yellow-brown 

apedal B 
Hard plinthic 1 1 

Gf 
Orthic 

Yellow-brown 

apedal B 

Red 

apedal B 
2 2 

Kp 
Humic 

Yellow-brown 

apedal B 

Red 

apedal B 
2 2 

Ia 
Humic 

Red 

apedal B 
unspecified 3 3 

No Humic Lithocutanic B  3 6 

Ka Orthic G horizon  4 4 

Ma 
Humic 

Yellow-brown 

apedal B 
unspecified 5 5 

Pn 
Orthic 

Yellow-brown 

apedal B 

Unspecified with 

signs of wetness 
5 5 

aThe Nomanci soil type was separated from the Inanda to form a sixth class. 

The digital soil dataset contained an additional two soil types, Glenrosa (Gs) and Westleigh 

(We) which were both grouped with Av/Gc. In the case of Gs, this was due to the orthic A 

horizon and expected gradual decrease in SOC from the A to B horizon, as well as the depth 

limiting factors of weathering parent material (Gs) and soft plinthite (Av) B horizons. 

Westleigh, on the other hand, has a soft plinthic B horizon as does Av and hence groups well 

with this class.  

Variations in k and k’ for the final soil type classes is shown in Figure 3-5. With k’ 

representing the actual exponential coefficient to obtain measured vertical SOC stocks, k > k’ 

would result in an underestimation of carbon stocks, with k < k’ resulting in an overestimation. 

From Figure 3-5, underestimation of C stocks using k is expected in soil type groups of Av/Gc, 

Gf/Kp and No (k > k’), with slight overestimation in the Ia and Ma/Pn groups (k < k’).  
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Figure 3-5. Mean exponential coefficients k and k’ for soil groups, with bars indicating their standard 
deviations. 

Using Eq. 3-7, the model was validated for accurately predicting the mean SOC stocks 

[kg∙m-2] per soil type or group of soil types, as well as the full data set (Table 3-5). Although 

the model predicts the means fairly accurately, it does so at the expense of increased standard 

deviation (reduced precision). The comparison was conducted as follows: The sum of all 

measured core-sampled Cv  values per profile was compared to the sum of integrals of the 

exponential functions with coefficients listed in Table 3-5 for the same depth increments (0-

20, 27.5 - 32.5, 37.5 - 42.5, 47.5 - 52.5, 73.5 - 77.5, 97.5 - 102.5 cm) or to soil depth restricting 

layer. 

In this case the calculation of regression coefficients to predict stocks in individual profiles 

is meaningless with R2 close to 0, since regression is tested against the mean hypothesis. 

However, the relative error estimate per group resulting from regression analysis may be of 

interest. The predictive capabilities of the k and k’ classes were compared by linear regression 

of measured incremental SOC content per profile with predicted values using the two mean 

k-values (1.798 and 2.049), as well as the different classes for k and k’. Results show a 

reduction in prediction error when k and k’ values are grouped according to soil types 

compared to using a single k-value for all profiles. As expected, predictions using k’ values 

have a slightly lower root mean square error (RMSE = 4.068) compared to k-value predictions 

(RMSE = 4.199) (Table 3-6). 
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Table 3-5. Regression results for the prediction of SOC stock [kg∙m-2] using different k and k’ groupings 
(µ = mean; δ = standard deviation). 

 
Measured 

SOC stock 

Stock 

Predicted 

with k=2.049 

 

Stock 

Predicted with 

k=1.798  

Stock 

Predicted with 

class k 

Stock 

Predicted 

with class k' 

µ [kg∙m-2] 13.45 14.295 13.94 13.30 13.61 

δ 2.66 5.009 4.51 4.40 4.27 

 

Table 3-6. Step-wise reduction in prediction error by using soil classification and depth-distribution 
parameter optimization (k’) of cumulative carbon stocks for the sampled depth increments using 
three different exponential coefficients. 

  Value 

Statistic ak = 2.049 bk = 1.798 cClass k dClass k’ 

RMSE 5.227 4.412 4.199 4.068 

aAn exponential coefficient of 2.049 was used to predict the cumulative C stock for all 38 profiles by 

averaging best-fit exponential curve coefficients for individual profiles. 

bAn exponential coefficient of 1.798 was used to predict the cumulative C stock for all 38 profiles by 

stratified averaging of SOC stocks per depth increment. 

cThe exponential coefficient k was applied according to the six soil type classes. 

dThe exponential coefficient k’ was applied according to the six soil type classes. 

3.3.2 Modelling and mapping SOC 

Cumulative SOC stocks from the soil surface (z = 0) to selected depths (z) were calculated 

using the definite integral  

∫ 𝐶𝑣
0  ∙  𝑒−𝑘𝑧 𝑑𝑧 =  

𝐶𝑣
0

𝑘
 ∙  (1 − 𝑒−𝑘𝑧)

𝑧

0

 (3-8) 

Spatial raster layers were created through kriging interpolation at 20m resolution for each 

of the variables in Eq. 3-8 (𝐶𝑣
0, z and k) to map the spatial distribution of cumulative SOC stocks 

to selected soil depths.  

For soil depth (z), effective rooting depth (ERD) data was used from the Mondi soil dataset, 

using values of ERD ≤ 1 m. All values of ERD > 1 were assigned a value of 1. The Mondi dataset 

was clipped to selected sub-catchments in the test area with an approximately 1 km buffer 

zone defined manually by interactive digitizing to include points lying outside the area of 
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interest for better interpolation results. ERD values were co-kriged to the extent of the dataset 

with inputs of DEM, slope and curvature using ordinary kriging with default settings in ArcMap 

10.1. 

To develop raster layers for exponential coefficients, the coefficients k and k’ were related 

to soil types in the clipped soils data. A lookup table was created based on soil type and 

associated mean k and k’ values (Table 3-7) which was joined to the Mondi soil point data, 

yielding k and k’ values for each sampling point. Raster layers for k and k’ were subsequently 

developed by ordinary kriging of the Mondi point data to the extent of the data itself using 

the same inputs and parameters as for the ERD layer.  

Table 3-7. Lookup table indicating k and k’ values associated with soil types in the Mondi soil data. 

Soil type k k’ 

Av/Gs/We 1.8638 1.2336 

Ia 2.1308 2.2388 

Ka 2.9430 3.1636 

Kp 2.1731 1.9916 

Ma/Pn 1.5975 1.6911 

No 2.4629 2.0872 

 

A collection of sub catchments was used to identify an eastern boundary for mapping 

purposes which encompass the geographic sampling points from Mondi and the additional 

surface samples within the quaternary catchment (U40A). The raster layers for 𝐶𝑣
0, ERD, k and 

k’ were masked to the extent of overlap between the sub catchments, 𝐶𝑣
0, and the clipped 

Mondi data to define the final test mapping area. 

Masked raster layers for 𝐶𝑣
0, ERD and k’ are presented in Figure 3-6 to Figure 3-8. Although 

the 𝐶𝑣
0 (Figure 3-6) ranges from 39 to 91 kg·m-3, the sampling density did not allow for a high 

level of detail in its distribution. In comparison the ERD layer (Figure 3-7), which ranges in 

value from 0.3 to 1 m, shows a clearer distinction of values as a result of a much higher 

sampling density.  

The somewhat stratified appearance of the 𝐶𝑣
0 layer roughly mimics the elevation trend 

in the area. The effect of land use is evident in this case, since forest plantations mostly occur 
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on steeper slopes and higher lying areas. Higher 𝐶𝑣
0 values therefore also correspond to the 

higher organic matter inputs found in this land use in the form of leaf litter and fine root 

turnover. 

 

Figure 3-6. The 𝑪𝒗
𝟎 raster layer showing the location of the surface (2.5 cm) sampling points and their 

relative Cv values, as well as the dams and wetlands in the mapping area. 

 

Figure 3-7. The ERD raster layer with depths ranging from 0 to 1 m. Dams, wetlands and rivers in the 
mapping area are indicated. 
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Figure 3-8. The k’ raster layer showing the soil grid samples (sample points) from the Mondi 
dataset to which k’ values were linked according to soil type and used for ordinary kriging.  

Maps of vertical SOC stock distribution were generated by calculating Eq. 3-8 using the 

generated raster layers (Figure 3-9 and Figure 3-10). Although, the use of ERD in calculations 

increases the map variability and introduces more detail (Figure 3-9), one could assume that 

soil organic matter may be found below such depth, and most likely in concentrations 

following the exponential distribution pattern. Sampling the fractured and weathered rocks 

with usual soil surveyor’s tools is particularly difficult, and in this case, modelling may be of 

greater importance. The map in Figure 3-10 ignores the limiting effects of 

weathered/fractured rock and simulates carbon stocks down to 1 m depth throughout the 

catchment assuming that the organic material is accumulated in the fractures instead of being 

dispersed in the soil matrix. Such accumulation, though not proven, may be following the 

quantitative pattern of distribution with depth observed in unconsolidated materials. A similar 

assumption was made by Heim et al. (2009) based on the findings of Kulmatiski et al. (2003) 

who found that the depth distribution of SOC stocks were well described by an exponential 

model in the presence of stones.   
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Figure 3-9. Map of cumulative SOC stocks to ERD depth using k’. 

 

Figure 3-10. Map of cumulative SOC stocks to 1 m depth using k’. 

3.4 Conclusions 

For soils characterized by exponential decline in SOC content with depth, normalization 

of the volumetric SOC (Cv) vertical distribution curve by the 𝐶𝑣
0 allowed isolation of the rate 

of SOC decline for several groups of soils in the study catchment expressed as the k’ coefficient 

specific to each group. The confidence level for k’ coefficients is numerically characterized by 
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standard deviation, and in combination with measured 𝐶𝑣
0 value may be used for mapping and 

monitoring carbon stocks over large areas, where soil survey results are available. Since the 

𝐶𝑣
0 values are measured, the uncertainty is largely associated with the 𝐶𝑣

0 measurement error, 

the standard deviation of k (or k’) values, the density of 𝐶𝑣
0 observations and their 

interpolation. It was shown that the two independent variables, namely the volumetric carbon 

content at the soil surface (𝐶𝑣
0) and the coefficient (k or k’) are sufficient for mapping and 

monitoring soil carbon stocks in the areas covered by soil survey.  

Due to the natural variation and random mixing processes in soil, particularly pronounced 

in cultivated fields, no soil exhibits a perfect exponential distribution of SOC content, though 

stratified averaging has produced very good correlations to characterize the group as a whole 

by mean values of k (k’) and their standard deviations. 

The overall assessment of uncertainty of the final maps is a complex matter, due to 

accumulation of errors stemming from analytical errors and method accuracy, the stochastic 

nature of the depth-distribution model and ending with errors associated with point 

interpolation. Solutions to these problems are addressed in Chapter 6. 

 The approach suggested here requires further testing and verification, but may become 

a useful tool for monitoring SOC dynamics with reduced need for sampling and analysis. 
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4 Assessing SOC vertical distribution functions for on-farm 

carbon stock quantification: a case study of maize 

production systems in the Mvoti River catchment, South 

Africa 

4.1 Introduction 

Changes in land cultivation practices, particularly the introduction of no-till systems, are 

often seen as a way to achieve substantial increases in SOC stocks on cultivated land (Lal, 

2018). Initiatives like 4‰ (Minasny et al., 2017) see such changes as a tool to mitigate the 

increases of CO2 in the atmosphere. Research on the effect of different land use on soil organic 

carbon (SOC) stocks is increasing, especially to assess the effect of land use or soil 

management on SOC losses and/or gains through carbon sequestration. Soil organic carbon 

forms an integral part of the global carbon cycle (Batjes, 2014; Paustian et al., 1997) and plays 

an important role in soil fertility, structure, hydrology and microbial health, and hence 

agricultural productivity and sustainability. In addition, soil provides a potential sink for the 

sequestration of atmospheric CO2 to support climate change mitigation efforts (Paustian et 

al., 1997).  

Assessing SOC stock often includes measuring and modelling its vertical distribution in the 

soil profile to enable carbon accounting and three-dimensional mapping. However, such 

estimates of vertical SOC distribution are often time consuming and expensive, especially at 

larger spatial scales, at different soil depths, and when including soil bulk density 

measurements to enable SOC stock calculations (Akumu and McLaughlin, 2013; Allen et al., 

2010; Bai et al., 2016; Mäkipää et al., 2008; Sleutel et al., 2003). Some of the recent attempts 

to reduce the cost of analysis include various proximal sensing techniques for determining soil 

bulk density, stone percentage and SOC content in soil cores (Lobsey and Viscarra Rossel, 

2016). However, such an approach still requires at least one-meter-deep coring throughout 

the survey area. Modelling vertical SOC distribution has been done using various distribution 

patterns such as exponential, power, spline and logarithmic functions (Bai et al., 2016; 

Bernoux et al., 1998; Chai et al., 2015; Dorji et al., 2014a; Hobley and Wilson, 2016; Kempen 

et al., 2011; Liu et al., 2016; Minasny et al., 2006; Mishra et al., 2009; Ottoy et al., 2016; Sleutel 

et al., 2003; Wiese et al., 2016). 

In order to reduce the need for soil sampling and analysis in SOC stock assessments, Wiese 

et al. (2016) suggested modelling vertical SOC distribution using an exponential decline 
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function and calculating its integral to predict SOC stocks at unsampled soil depths using only 

samples from the soil surface. To achieve this, SOC stock values observed throughout the 

profile were normalized by the SOC content close to the soil surface (0-5 cm layer). The 

resulting vertical distribution functions from 38 profiles were grouped as a function of land 

use (forest plantation, grassland and cultivated soils) and soil type, assuming that SOC content 

at any depth can be functionally related to the concentration at the soil surface. This 

assumption is subject to relatively stable vegetation conditions and no major recent 

disturbances such as landslides and soil stock piling. The profile groupings revealed that the 

regression of the exponential coefficient based on soil type provided higher accuracy 

compared to land use.   

In cultivated soils however, especially in cases of conventional or full-tillage, soil in the 

tillage layer is thoroughly mixed which leads to an almost constant SOC concentration to the 

depth of tillage (Liu et al., 2016; Meersmans et al., 2009). Even a single ploughing of long term 

(20 or more years) no-till fields with a mouldboard plough has been shown to homogenize 

SOC through the ploughed profile and remove SOC stratification (Stockfisch et al., 1999; 

VandenBygaart and Kay, 2004). No-tillage practices, on the other hand, are often seen to 

stratify SOC distribution in the upper soil layer (Dolan et al., 2006; Paustian et al., 1997b). Since 

the upper 30 cm of soil has been found to contain an average of up to 50 % or more of the 

SOC for different vegetation types (Wang et al., 2004; Brahim et al., 2014), accurate estimation 

of SOC content in this soil layer is crucial in considering the total amount of SOC in 1 meter of 

soil. 

The objective of this study was to find the best possible continuous functions describing 

the vertical distribution of SOC under different intensities of cultivation, so that a single 

surface sample would be sufficient to estimate the stocks down to various depths (20, 30, 100 

cm) in order to reduce the cost of carbon accounting in agricultural fields. It was hypothesised 

that, at farm level, sufficiently robust vertical distribution models may be developed level from 

a small (<10) number of profile observations with frequent depth sampling increments per 

established land use system practiced at the specific location for a period longer than ten 

years (stable in medium-term).  

4.2 Materials and Methods 

4.2.1 Farming systems and soils 

Three farming systems were selected as treatments based on the main tillage methods 
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applied for maize production as: i) no tillage (NT), ii) reduced tillage (RT) and conventional 

tillage (CT). The soil carbon was assessed relative to native grasslands (GL) sampled at different 

locations in and around the catchment as shown in Figure 4-1. The dispersed location of 

grasslands was used based on the assumption that the vertical distribution of SOC under 

native grasslands in the study area would exhibit an average exponential decline regardless of 

their location. The method and depth of soil disturbance was of main interest, therefore each 

farming system as a whole was considered as a treatment. The implements used and depths 

of soil disturbance are summarized in Table 4-1 Individual procedures or applications are not 

considered as separate treatments since all farmers would annually assess the need for tillage 

and inputs based on climate, costs, soil analyses, availability of seeds, exchange rates, market 

prices and more.  

 

Figure 4-1. Locations of the sampling sites in and around the quaternary catchment. Land uses and 
management systems are differentiated by colour for the different sampling sites.  
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Table 4-1. Summary of the implements used and depth of soil disturbance under the different maize 
farming systems. 

 
Farming system 

 Implement No tillage Reduced tillage Conventional tillage 

No till planter 10 cm 25 cm 
 

Conventional planter   10 cm 

Aeration implement 15 cm   

Ripper  a45 cm 50 cm 

Disc Harrow  10 cm 15 cm 

Mouldboard plough   20 cm 

a Deep ripping was only applied on one of two RT farms following maize harvest. 

4.2.1.1 No-till system 

A no-till (NT) system was observed on a mixed dairy/maize farm where maize was grown 

using no-till for 10 to 17 years on different fields. Prior to implementing no-till, the farm was 

under conventional tillage using deep ripping, ploughing and disking each year prior to 

planting, as well as incorporation of plant residues with a disc implement after harvesting. The 

three NT fields sampled in this study were converted from conventional tillage 17, 15 and 12 

years prior to sampling.  

Maize is planted in early October depending on the soil water status using a no-till planter. 

After harvesting in May, rye is sown within two weeks as a cover crop and later grazed by 

cattle. One year prior to sampling, the usually undisturbed soil was aerated for the first time 

since no-till was adopted. The farmer used an implement designed for this purpose: it loosens 

the soil to a depth of 15 cm with a steel rod which runs horizontally under the soil surface. 

This implement is used only when the farmer considers it necessary to address the soil 

compaction problem. Since the adoption of no-till practices, plant residues from both maize 

and rye are left on the soil surface and are not incorporated in any way.     

Lime is applied on all fields using a tractor-drawn spreader every three years at a rate of 

2-3 tons∙ha-1 depending on the lime requirement of the specific field. Lime is not worked into 

the soil following application. Nitrogen is always applied as urea at an annual rate of 130-150 

kg N∙ha-1 during the maize growing season. The first nitrogen application is band-placed during 

planting with a no-till planter at the rate of 40-50 kg N∙ha-1. After maize emergence, top 

dressing is split into two applications of 60-70 kg N∙ha-1 each.  
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When no-till was first adopted, maize was rotated with soybeans every other year or once 

every four years. This rotation was stopped eight years prior to sampling because soybean is 

not a priority feed for dairy cattle. Maize is primarily used for silage. 

4.2.1.2 Reduced tillage 

Two farms where varying degrees of soil disturbance occur through reduced tillage (RT) 

are included in this category and assessed as one treatment. On both farms a disc implement 

is used prior to planting to prepare the seedbed and incorporate some of the previous 

season’s stubble and plant residue. Oats are planted as cover crop on maize fields within two 

weeks after maize harvest and grazed by cattle upon maturity. Chemical weed control is 

applied once per year. Both farmers in this category consider their farming operations to fit 

the description of reduced tillage based on the systems described below.  

On the first RT farm, maize cultivation was initiated just over 10 years prior to sampling, 

following a complete no-till strategy for the first 5 years. Prior to that, all fields were used for 

vegetable production using conventional tillage including deep ripping and ploughing each 

season. Three years into the no-till maize-producing period the build-up of plant residue 

volume on the soil surface was considered excessive due to slow decomposition. The 

formation of an O horizon became an obstruction for the direct seeding tine. As a result, the 

farmer opted to adopt an annual reduced tillage system two years later to incorporate some 

of the stubble and plant residue into the soil prior to planting. Two months prior to planting a 

special disc implement penetrating 10 cm into the soil incorporates some of the previous 

season’s plant residue as a part of seedbed preparation. Maize is planted by direct seeding 

with a no-till planter with a tine in front of the seed dispenser that penetrates the soil to a 

depth of 25 cm.  

Lime on all fields was last applied 7 years prior to sampling at the rate of 2.5 tons∙ha-1. 

Following application with a tractor-drawn spreader, lime was ploughed into the soil to a 

depth of 25-30 cm. Total annual nitrogen application is 150-160 kg∙ha-1 split into four 

applications. At planting the first application is band-placed with the seeds in the form of urea 

at the rate of 40 kg N∙ha-1. Topdressing occurs in three applications using a spreader at a rate 

of 40 kg N∙ha-1. The first top dress is applied two weeks after plant emergence, the second top 

dress is applied two weeks later and the third application two weeks after the second 

topdressing. 

On the second RT farm a form of reduced tillage has been practiced for the last 10 years 
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prior to sampling in a maize-soybean rotation system. The farmer would choose the crop to 

plant each year based on an assessment of the soybean and maize prices. During the last 10 

years, however, soybeans were planted at least once every four years. Soil would be disturbed 

twice a year using two different implements.  

The first soil disturbance occurs during maize planting with a no-till planter equipped with 

tines penetrating the soil to a depth of 25 cm.  Cattle would graze the fields as much as possible 

following each year’s harvest to remove most of the plant residues and stubble prior to 

ripping. In extreme cases, if the stubble and weeds were too much even for the cattle, fields 

would be burned prior to planting. The second disturbance occurs after maize harvest as part 

of seedbed preparation for the next season using an implement which is a combination 

between a ripper and a roller. It has coulters on the front to cut through stubble, followed by 

ripper blades to break the soil to a depth of 45 cm, and finally a roller at the back, which will 

break up soil clods and incorporate the stubble into the soil. This implement is not used after 

soybean harvest due to the reduced volume of stubble on the soil surface compared to maize 

harvest which rendered it unnecessary. During dry years the ripping action created soil clods 

on the surface which the roller was not strong enough to break. In such cases a disc implement 

penetrating 10 cm into the soil would be used to break up the clods prior to planting.  

Lime requirement for individual fields is assessed at the beginning of each season. The 

average amount of lime applied annually was 3 tons∙ha-1, but differs from year to year 

according to the specific requirement. Lime would be applied with a spreader, following which 

the soil is ripped and disked using the same implements described above. To minimize soil 

disturbance, lime application would be synchronized as much as possible with annual post-

harvest tillage.  

Fertilizer applications are split into two, one with planting and a second as topdressing 

within the first two months after plant emergence. At planting, fertilizer is band placed with 

seeds, usually as NPK (4:3:4). The second application is applied with a spreader as limestone 

ammonium nitrate (LAN), a mixture of dolomitic lime and NH4NO3. The aim is to apply a total 

of 180 kg of N∙ha-1 per season split into two applications of 90 kg nitrogen each as described 

above. 

4.2.1.3 Conventional tillage 

A farm specializing in maize seed production has been under conventional tillage for more 

than 15 years. Soybean rotation is incorporated into the production at least every four years 
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following maize, but there is no fixed rotation schedule. 

After the first rains during late winter or early spring, a mouldboard plough is used to 

plough to a depth of 20 cm. Fields will be further disc harrowed to 15 cm at least once to 

incorporate stubble and prepare the seedbed: break up the clods and incorporate the stubble. 

However, in most cases at least two disc harrow passes are preferred prior to planting in early 

summer. Soil would not be ploughed following a soybean crop. 

After harvest in May to June each year, all fields are ripped, followed by disc harrowing to 

sufficiently aerate the subsoil and break up clods on the soil surface. In fields where maize has 

been planted in the previous season, ripping will be done to a depth of 50 cm.  

Crop residues (both maize and soybean) are incorporated into the soil each year using the 

disc harrow. Normally soybeans will yield less residues compared to maize. As a result, the 

usual ripping will be applied after soybean harvest and only one disc harrowing operation in 

preparation for maize planting the following year.  

Chemical weed control is applied once a year. For both maize and soybeans the planter 

disturbs the soil to a depth of 10 cm. 

A total of 150 kg N∙ha-1 is applied per growing season split into two applications. The first 

20-30 kg N∙ha-1 is band-placed at planting as a mixture of granular urea and monoammonium 

phosphate. Top dressing is applied six weeks after planting using a tractor-drawn spreader at 

a rate of 100-120 kg N∙ha-1 as granular urea.  

Lime is applied as required with the last two applications occurring on selected fields 6 

years prior to sampling. When required, lime is applied at a rate of 2 tons∙ha-1 using a tractor-

drawn spreader followed by incorporation with a disc harrow. 

4.2.2 Soil sampling and analysis 

Thirty-two (32) of the 69 soil profiles sampled as discussed in Chapter 2 were used - eight 

profiles in each of the following land use systems, NT, RT (4 in each of the two RT farms), CT 

and GL.  

All samples were prepared and analysed as described in Chapter 3 for bulk density (ρb) 

[Mg·m-3] stone content and SOC [%wt] (by dry combustion). As described by Wiese et al. (2016) 

(Chapter 3), the volumetric SOC content (Cv) was calculated for each composite sample as  
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Cv [kg·m-3] = 10·SOC [%wt]∙ρb [Mg·m-3]   4-1 

where stone was present, the Cv value was corrected as 

Cv = Cv(2mm)∙(1-Sm∙ ρb / ρs)  4-2 

where: Cv(2mm) is the volumetric carbon content in the < 2mm fraction, Sm is the 

gravimetrically determined mass fraction of stone in the bulk sample, and ρs = 2.65 Mg·m-3. 

Carbon stocks within the sampled depth intervals were calculated as ∑Cv∙Δz, where Δz is the 

sampling depth increment.  

4.2.3 Modelling vertical SOC distribution  

Vertical SOC distribution was modelled and scaled to a value between 0 and 1 as described 

by Wiese et al. (2016) (Chapter 3), following five steps. In step one, Cv values were normalized 

for each profile by the value of volumetric SOC content in the 0-5 cm sample (𝐶𝑣
0) to yield Cvs 

for each sample. This normalization of the SOC stock distribution curve enables the 

development of a simple exponential equation to describe the SOC stock distribution. In step 

two, Cvs was plotted against sampling depth (z) for each profile and the best-fit exponential 

trendline was fitted using MS Excel 2016, setting the y-intercept to 1. Setting the y-intercept 

to 1 enabled step 3 in which a value for the exponential coefficient (k) was obtained from the 

trendline equation for each profile. In step 4 cumulative SOC stocks for the sampled depths 

were calculated as the sum of the definite integrals per depth increment using measured Cv 

values in 

∫ 𝐶𝑣
0  ∙  𝑒−𝑘𝑧 𝑑𝑧 =  

𝐶𝑣
0

𝑘
 ∙  (𝑒−𝑘𝑧1 − 𝑒−𝑘𝑧2)

𝑧2

𝑧1

 
4-3 

where 𝐶𝑣
0 is the volumetric carbon content at a depth of 2.5 cm (0-5 cm sample), e is the 

exponential function, k is the exponential coefficient, and 𝑧1 and 𝑧2 are the respective depths 

at the bottom and top boundaries of the soil core during sampling. In step 5 a k’-value per 

profile was determined by manual iterative substitution as the exponential coefficient that 

perfectly describes the hypothetical curve with area equalling the measured SOC stock. 

4.2.4 Comparing k and k’ values 

Prior to statistical analysis, all k and k’ values were transformed using a natural log 

transformation to ensure a normal distribution of k using Shapiro–Wilk, Anderson–Darling, 

Lilliefors and Jarque–Bera tests. Transformed values were tested for variance using a Fischer’s 
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F-test, and tested for significant differences between treatments using Student’s two-sample 

t-tests. Student’s two-sample paired t-tests were applied to evaluate the mean of k’ against 

the mean of k within the four treatments.    

4.2.5 Averaging k and k’ values 

Profiles were clustered into five groups as follows: i) all cultivated profiles combined 

(NT+RT+CT); and ii) each of the four land use types as a separate group (GL, NT, RT, and CT). 

Single k values for these five groups were obtained in two ways. In the first instance, a single 

k value per group was obtained from fitted exponential trendlines as in the case of single 

profiles (referred to as “from graphs”). To obtain this single value, a stratified mean of SOC 

stocks was obtained by calculating the mean Cvs for each fixed depth increment within each 

group of profiles. The mean Cvs values per group were plotted against sampling depth and an 

exponential trendline was fitted.  

4.3 Results and Discussion 

4.3.1 Comparing k and k’ values 

Testing of variance in k and k’ values using a Fischer’s F-test indicated no significant 

differences in variance for k values between the four treatments. Variance in k’ values were 

significantly different only between the RT and CT treatments.  

Comparison of k and k’ values between the four treatments using Student’s two-sample 

t-test shows that the means for both k and k’ under GL and NT are significantly different from 

those under RT and CT (Table 4-2). This implies that the average rate of exponential decline in 

SOC stocks under GL and NT is significantly different from the average exponential decline in 

RT and CT, both in terms of modelled SOC distribution (k) and SOC decline using measured 

stocks (k’). This further indicates that all cultivated fields do not display the same exponential 

decline in SOC stocks as a function of the farming system applied. In addition, results suggest 

that no-till farming systems may mimic the SOC stock distribution under natural grasslands.   

Results of Student’s two-sample paired t-test analysis of k’ against k within the four 

treatments showed no significant differences between the means of k and k’ for the GL and 

NT treatments. This indicates that there is no significant difference between the mean 

modelled (k) and mean measured (k’) exponential decline in SOC stocks under GL or NT, so 

the SOC distribution may be well described by k. For RT and CT, however, the means of k and 

k’ were significantly different with p-values of 0.013 and 0.009, respectively. The mean 
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modelled exponential decline in SOC (k) was therefore significantly different from the mean 

measured SOC stock decline. This implies that the model k did not sufficiently describe the 

measured SOC distribution under RT or CT.  

Table 4-2. Summary of p-values for differences between means of k and k’ values between the four 
treatments. Values in bold indicate significant differences for α=0.05. 

 k  k’ 

Treatment GL  NT RT  GL NT  RT 

NT 0.331    0.726   

RT 0.001 0.026   0.004 0.004  

CT 0.002 0.042 0.680  0.002 0.003 0.111 

 

4.3.2 Averaging k and k’ values 

The variation of Cvs (volumetric SOC content scaled between 0 and 1) with depth in the 

24 cultivated profiles is presented in Figure 4-2 and the fitted exponential functions for the 

four single treatment groups in Figure 4-2. In order to simplify the exponential equations 

obtained from the trendlines in Figure 4-2, the y-intercept for each trendline was set to 1. 

Table 4-3 presents the exponential equations for the five groups, with and without the y-

intercept set to 1. From Table 4-3, a single k-value was obtained for each group. 

 

Figure 4-2. Variation in the distribution of Cvs with depth in all cultivated profiles for stratified mean 
values with error bars indicating the standard deviation (δ). The dashed line connects the data points 
and the solid line represents the fitted exponential trendline.  
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Figure 4-3. Fitted exponential trendlines (solid lines) with error bars indicating the standard deviation 
for the single treatment groups of eight profiles each. Dashed lines indicate lines connecting the data 
points. 

Table 4-3. Summary of exponential equations obtained from Figure 4-2 and Figure 4-3 (y-intercepts 
not equal to 1) and simplified equations with y-intercepts set to 1 for the different treatment groups. 

Treatment group 
 y-intercept ≠ 1  y-intercept = 1 

an Equation R2  Equation R2 

All cultivated 24 y = 1.1542e-1.957z 0.98  y = e-1.73z 0.96 

Grassland 8 y = 1.0041e-2.502z 0.96  y = e-2.495z 0.96 

No-till 8 y = 0.9989e-2.305z 0.99  y = e-2.307z 0.99 

Reduced tillage 8 y = 1.1256e-1.692z 0.98  y = e-1.505z 0.96 

Conventional 

tillage 

8 
y = 1.3098e-1.915z 0.93  y = e-1.488z 0.85 

a n = number of profiles  
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In the second instance, single values of both k and k’ were obtained for each of the five 

groups by calculating the mean k and k’ values for profiles within each group (referred to as 

“profile means”). These mean k and k’ values are presented with summary statistics in Table 

4-4. 

Table 4-4. Summary statistics (n = number of profiles; µ = mean; δ = standard deviation) of k and k’ 
values for 0-100 cm profiles per treatment group obtained from mean values per group.   

Treatment  k  k’ 

Group n µ Median δ  µ Median δ 

All cultivated 24 1.90 1.76 0.81  1.52 1.38 0.96 

Grassland 8 2.97 3.18 0.82  2.68 2.46 1.18 

No-till 8 2.57 2.36 1.00  2.43 2.06 0.99 

Reduced 

tillage  
8 

1.54 1.67 0.47  1.25 1.25 0.41 

Conventional 

tillage  
8 

1.63 1.51 0.47  0.88 0.75 0.63 

 

From Figure 4-2 it is evident that for GL and NT the exponential distribution closely mimics 

the actual distribution of the data points and the y-intercepts of these trendlines are close to 

1 (Table 4-3). For the combination of all cultivated fields (NT+RT+CT), as well as the RT and CT 

treatments the y-intercepts for the trendlines deviate further from 1 (Table 4-3) and there is 

a marked difference between the exponential functions and the data points (Figure 4-3 and 

Figure 4-2 and d). In these cases, the applied exponential function does therefore not 

sufficiently describe the decline in SOC stocks from the soil surface. This difference is especially 

clear for CT. For the combination of all cultivated fields, this implies that using one k value to 

model the decline in SOC stocks in cultivated soils of different management types may not 

sufficiently capture the variation in these soils. More specifically, it would predict a larger than 

observed decline in NT and RT soils, while predicting a smaller than observed decline in CT 

soils. As a result, the profiles for the RT and CT groups were subjected to further analysis by 

creating separate plots on the same graph of Cvs against sampling depth (z) for the 0-30 cm 

and 30-100 cm sections respectively. The best-fit linear trendline was fitted to each 0-30 cm 

section and the y-intercept was set to 1, yielding the linear decline equation 

Cvs = 1 - bz 4-4 
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where b is the trendline gradient. The best-fit exponential trendlines were fitted to the 

30-100 cm sections as presented in Figure 4-4. The resulting piecewise functions are 

presented in Table 4-5, from which it is observed that for CT the linear distribution of SOC in 

the upper 30 cm has a near-constant distribution with a b value of 0.1165 and R2 of 0.13.  

Figure 4-5 shows that under CT, the values of normalized SOC stocks (Cvs) for samples at 

all depth intervals in the 5-30 cm layer (5-10; 10-15; 15-20; 27.5-32.5 cm) (n=32) from eight 

soil profiles are normally distributed. The mean value converges to 1 (0.99) with a standard 

deviation of 0.24. From this it can be concluded that within the conventionally cultivated fields 

the SOC stocks throughout the plough layer are independent of sampling depth and the mean 

SOC stocks measured at the surface (0-5 cm) on average are equal to carbon stocks measured 

at any other depth between 0-30 cm within the 5cm intervals. Subsequently the distribution 

of normalized volumetric SOC stocks under CT at any sampling location in this depth range can 

be approximated as Cvs = 1 ± 0.24. For purposes of this study, this equation was simplified to 

assume constant SOC stock in the 0-30 cm layer under CT with mean Cv = 𝐶𝑣
0 at any sampling 

depth in this layer. The same was found by Meersmans et al. (2009) and Ottoy et al. (2016) 

when modelling SOC distribution with depth in croplands. In both instances the authors found 

that SOC remained constant until the tillage depth, from where it declined exponentially with 

depth. In these instances, the SOC value nearest to the soil surface was used to calculate the 

constant value for the tillage layer. Also Liu et al. (2016) observed that, for cultivated soils, the 

soil organic matter concentration in the tillage layer was usually almost constant to the tillage 

depth resulting from frequent mixing of the topsoil. As a result, they modelled SOM stock in 

the topsoil using a linear function, defining a slope of 0 for cultivated soils.    

The procedure of splitting profile graphs into 0-30 cm and 30-100 cm plots was applied to 

all individual profiles under RT and CT. The y-intercept for the linear trendlines (0-30 cm) were 

set to 1, while the y-intercept for the 30-100 cm exponential functions were set to 1.3 for RT 

profiles and 1.85 for CT profiles to match those from Table 4-5 and ensure uniformity. Unique 

profile values for b and k were obtained from the respective trendline equations. As was done 

for full (0-100 cm) profiles, k’ values were determined by manual iterative substitution for the 

30-100 cm exponential trendline of each profile.  
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Figure 4-4. Separate modelling of normalized SOC stocks for 0-30 cm (∆) and 30-100 cm (○) sections 
for the profiles under reduced and conventional tillage. Dashed lines indicate fitted linear functions 
(y-intercepts set to 1), solid lines indicate fitted exponential functions, and error bars indicated 
standards deviations. Trendline equations are presented in Table 4-5. 

 

Figure 4-5. Histogram of Cvs distribution for the 32 samples in the first 5-30 cm (0-5, 5-10; 10-15; 15-
20; 27.5-32.5 cm) from eight soil profiles in the conventional tillage system. 

Table 4-5. Summary of linear (0-30 cm) and exponential (30-100 cm) equations obtained from Figure 
4-4. For linear equations the y-intercept was set to 1 for both treatment groups. 

Treatment group Piecewise Functions 

Reduced tillage 𝑦 =  {
1 −  0.8094𝑧 if 0 ≤  𝑧 ≤  30 cm;  R² =  0.98

1.3e−1.897𝑧 𝑖𝑓 30 ≤  𝑧 ≤  100 cm;  R² =  0.99
 

Conventional tillage 𝑦 =  {
1 −  0.1165𝑧 if 0 ≤  𝑧 ≤  30 cm;  R² =  0.13

1.85e−2.41𝑧 𝑖𝑓 30 ≤  𝑧 ≤  100 cm;  R² =  0.96
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For the 0-30 cm sections, the cumulative SOC stocks for the sampled depths in RT and CT 

were calculated as the sum of the definite integrals per depth increment using measured Cv 

values as 

∫ 𝐶𝑣
0  ∙ (1 − 𝑏𝑧)𝑑𝑧 =  𝐶𝑣

0 ∙ ((𝑧2 −
𝑏(𝑧2)2

2
) − (𝑧1 −

𝑏(𝑧1)2

2
))

𝑧2

𝑧1

 4-5 

Using Eq. 4-3, b’ values were determined by manual iterative substitution for the 0-30 cm 

linear trendlines as the line gradient that perfectly describes the hypothetical curve with area 

equalling the measured SOC stock.  

Single b, b’, k, and k’ values were determined for the RT and CT treatment groups by 

calculating the mean b, b’, k and k’ values for profiles within each group as presented in Table 

4-6. From Table 4-6 it is evident that for CT profiles the value of b’ approaches zero at 0.060, 

which further supports the use of a constant SOC stock for the 0-30 cm section under this 

tillage system. Based on the earlier assumption that SOC stock under CT is constant as mean 

Cv = 𝐶𝑣
0 at any sampling depth in this layer, values for b and b’ were assumed to be zero (0) 

under conventional tillage. 

Table 4-6. Summary statistics of b and b’ values for 0-30 cm sections, as well as k and k’ values for 30-
100 cm sections under RT and CT obtained from mean values per treatment. (n = number of profiles; 
µ = mean; δ = standard deviation) 

  0-30 cm 

Land use System  b  b’  

 n µ Median δ  µ Median δ 

Reduced tillage 8 0.81 0.79 0.31  0.78 0.73 0.37 

Conventional tillage 8 0.12 0.03 0.85  0.06 0.08 1.10 

  30-100 cm 

  k  k’ 

 n µ Median δ  µ Median δ 

Reduced tillage 8 1.96 2.13 0.48  1.34 1.49 0.34 

Conventional tillage 8 2.74 2.54 0.67  2.23 2.28 0.39 
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4.3.3 Calculating SOC stocks 

The various model values for b, b’, k and k’ were used to calculate SOC stocks at each 

sampling depth in the appropriate land use systems using the same 32 profiles as for model 

development. The model robustness was tested by the comparison of k and k’ values, as well 

as b and b’ values.   

Since values of k’ and b’ were selected such as to predict the sum of the measured stocks 

per profile correctly for all the sampled increments, the lack of significant difference between 

k and k’ (or b and b’) indicates that the model adequately describes the vertical distribution 

for calculation of SOC stocks with specified accuracy (defined by standard deviation). Applying 

the model parameters obtained from graphs for each separate treatment group sufficiently 

predicted the SOC stocks as presented in Figure 4-6. 
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Figure 4-6. Regression plots of predicted vs observed SOC stocks (kg·m-2) under different land use 
systems. SOC stocks were calculated using relevant b and k values from graphs per land use system. 
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In Figure 4-6 the linear regression equations were set to a y-intercept of 0 to present a 

linear model gradient of 1. The model parameters used for each land use system are 

summarized in Table 4-7.  

Table 4-7. Model parameters used to calculate volumetric SOC stocks (kg·m-2) at each sampling depth 
in the 32 profiles as presented in Figure 4-6.  

  0-100 cm  0-30 cm  30-100 cm 

Land use system an k  b  a k 

Grassland 8 2.495      

No-till 8 2.3070      

Reduced tillage  8   0.8094  1.3 1.897 

Conventional tillage  8   0  1.85 2.41 

a n = number of profiles 

For GL and NT, Eq. 4-3 was applied to each sampling depth increment using the k values 

in Table 4-7 to calculate the SOC stocks at all the sampling depths. For RT the SOC stocks in 

the 0-30 cm samples were calculated using Eq. 4-5, applying the single model parameter b 

(Table 4-7) to all samples in this soil layer. For CT the SOC stocks in the 0-30 cm samples were 

assumed as constant and equal to the volumetric SOC stock in the uppermost (0-5 cm) sample. 

The SOC stocks at subsequent sampling depths (40-100 cm) for RT and CT were calculated 

using a modification of Eq. 4-3 as  

∫ 𝐶𝑣
30  ∙  𝑎𝑒−𝑘𝑧 𝑑𝑧 = 𝑎 ∙

𝐶𝑣
30

𝑘
 ∙  (𝑒−𝑘𝑧1 − 𝑒−𝑘𝑧2)

𝑧2

𝑧1

 4-6 

where a is the y-intercept of the respective exponential function and 𝐶𝑣
30 is the volumetric 

SOC content in the sample taken at 30 cm (27.5-32.5 cm). Since Eq. 4-6 would require a bulk 

density sample to be taken at 30 cm depth to calculate Cv, the value for 𝐶𝑣
30 may be 

substituted by the modelled SOC content at 30 cm using Eq. 4-5 in the case of RT. For CT, since 

SOC stocks in the 0-30 cm layer are assumed to be constant, 𝐶𝑣
30 may be substituted by 𝐶𝑣

0 as 

∫ 𝐶𝑣
0  ∙  𝑎𝑒−𝑘𝑧 𝑑𝑧 = 𝑎 ∙

𝐶𝑣
0

𝑘
 ∙  (𝑒−𝑘𝑧1 − 𝑒−𝑘𝑧2)

𝑧2

𝑧1

 4-7 

Equation 4-6 was applied using a single model parameter k for all samples under RT and 

using calculated values for 𝐶𝑣
30. Similarly, Eq. 4-7 was applied using a single model parameter 

k for all samples under CT and using measured values for 𝐶𝑣
0.   
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Since the b’ and k’ values were determined manually (through iterative substitution) and 

were only intended to compare the goodness of fit of the model values b and k, the values of 

b’ and k’ are not intended to be used for prediction purposes in SOC stock assessments. For 

comparative purposes however, the goodness of fit regression statistics for the use of b and k 

vs b’ and k’ in calculating SOC stocks per sampling depth are provided in Table 4-8.  

From Table 4-8 it is clear that for all the land use systems there is very little difference 

between the regression statistics when using either b or b’ and either k or k’ values to predict 

SOC stocks. This confirms that the SOC decline functions with model parameters b (in the case 

of RT and CT) and k can be successfully used to calculate SOC stocks at different sampling 

depths with reasonable accuracy and that the calculated SOC stocks sufficiently mirror the 

measured stocks at the different sampling depths. For RT the calculated values for 𝐶𝑣
30 were 

used in the calculations using combinations of b/k as well as b’/k’. For CT a constant SOC stock 

was assumed in the 0-30 cm layer in both cases and only the k and k’ values differed in the 

calculation of the SOC stocks in the 40-100 cm samples. 

Table 4-8. Summary regression statistics using XLSTAT, comparing calculated vs measured SOC stocks 
(kg·m-2) per 5 cm sampled depth increments for the different land use systems using the b and k (from 
Table 4-7), vs corresponding b’ and k’ values obtained from graphs. (LU = land use; n = number of 
samples used in each regression analysis 

  Regression statistics 

 
 Using b and k values 

from Table 4-7 

 Using corresponding b’ and 

k’ values from graphs 

LU system n     R2 RMSE          R2 RMSE 

Grassland 60 0.77 0.39  0.78 0.39 

No-till 70 0.88 0.32  0.88 0.32 

Reduced tillage  70 0.82 0.25  0.82 0.22 

Conventional tillage  68 0.70 0.32  0.70 0.31 

 

The total SOC stocks in the 0-100 cm, 0-30 cm and 0-20 cm soil layers were calculated for 

each profile per land use system using the model parameters in Table 4-7 and measured 

values for 𝐶𝑣
30 under RT. Figure 4-7 summarizes the mean total SOC stocks (kg·m-2) for these 

depths under the different land use systems. From Figure 4-7 it is evident that total calculated 

SOC stocks are slightly higher under NT compared to the other land use systems, including 

grasslands. The seeming increase in SOC stocks within the NT system compared to grasslands 
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may be attributed to higher nutrient inputs and, subsequently higher overall system 

productivity. Such a trend was observed in a study of SOC stocks under different intensities of 

grassland management in England (Ward et al., 2016).  

The difference between the SOC stocks under NT and grasslands is not statistically 

significant (Table 4-9), though both differ significantly (at α=0.1) from both RT and CT systems. 

The lack of significant difference between the CT and RT systems indicates that a simple tillage 

reduction does not lead to considerable recovery in SOC stocks.  

 
Figure 4-7. Total SOC stocks calculated for the 0-100 cm, 0-30 cm and 0–20 cm depths under the 
different land use systems. Error bars indicate the standard deviation of the mean SOC stocks for eight 
profiles within each land use system. Percentage values indicate the percentage of total SOC stocks 
contained in the 0-30 cm and 0-20 cm soil layers respectively. 

 
Table 4-9. P-values for paired two-tailed T-test for samples with unequal variance showing the 
difference in carbon stocks calculated by integration of the depth-distribution functions for three 
depth intervals under different maize production systems in comparison to native grasslands. (GL = 
grassland; NT = no-till; RT = reduced tillage; CT = conventional tillage). 

 

0-20 cm  0-30 cm  0-100 cm 

 

GL NT RT  GL NT RT  GL NT RT 

NT 0.299 

  

 0.266 

  

 0.151 

  
RT 0.0081 0.0021 

 

 0.0321 0.0051 

 

 0.0742 0.0061 

 
CT 0.0081 0.0872 0.797  0.0692 0.0101 0.816  0.646 0.0772 0.199 

The differences are significant: 1 – at α=0.05; 2 – at α=0.1 
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Table 4-9 also shows that the significance level describing these differences decreases 

with the increase in the size of the interval within which the stock assessment is conducted 

from 0-20 to 0-100 cm. The level of significance (α) may increase to 0.05 (a level commonly 

used in agricultural research) for all the comparisons of tillage and no-till systems presented 

here by increasing the number of surface samples, while applying the same vertical 

distribution models. Highly significant differences between the NT and till systems were 

reported for Bergville - another area of the KZN midlands in South Africa (Mchunu et al., 2011) 

for the depth interval of 0-2 cm. The latter finding is in line with our observations and may be 

attributed not only to soil erosion studied by the authors, but also to the modification of the 

vertical distribution pattern described here. 

The higher SOC stocks under NT are mostly assumed to occur as a result of the continuous 

input of organic material from crop residues in the upper soil layers, especially compared to 

grasslands, and the concomitant low level of soil disturbance. Furthermore, measuring the 

vertical distribution of SOC using profile data from the same study area, Esmeraldo (2016) 

found that in the 30-100 cm section, grasslands had the lowest cumulative SOC stocks 

compared to cultivated soils. This was assumed to be due to the roots of the particular grass 

species not reaching deeper soil layers, hence decreasing the input of organic material and 

SOC into these layers. The SOC stocks occurring at any location and soil depth is a function of 

a series of complex interactions between factors such as plant growth, plant type, root 

growth, climate, soil type, parent material, topography and soil management (Allen et al., 

2010; Dietzel et al., 2017). Figure 4-7 further shows that in the studied soils, roughly 48-57 % 

of SOC occurs in the top 30 cm, and about 33-43 % in the 0-20 cm soil layer. Similar ranges 

were reported by various authors indicating that 40-54 % of SOC stocks were located in the 0-

30 cm soil layer (Brahim et al., 2014; Omonode and Vyn, 2006; Wang et al., 2004), and 33-50 

% in the 0-20 cm layer (Dietzel et al., 2017; Jobbagy et al., 2000) relative to the first meter of 

soil. 

4.4 Conclusions 

The vertical distributions of SOC stocks under grasslands and croplands with three 

different types of tillage systems were successfully modelled to a depth of 100 cm. For on-

farm accounting, a small number (<10) of individual soil profile observations per land use (in 

this case 8) to a depth of one meter is sufficient to develop a robust model of mean vertical 

normalized SOC (Cvs) distribution for stable land use system practiced for more than 10 years. 
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The vertical distribution of SOC stocks normalized by 𝐶𝑣
0 may be described with a 

continuous exponential function in the native grasslands of the study area, as well as in the 

adjacent fields cultivated using a no-till mixed cattle/maize production system.  

In the case of reduced and conventional (full) tillage systems, piecewise functions 

separately describing the vertical distribution of SOC stocks normalized by the 𝐶𝑣
0 for the 

plough layer and deeper layers are better suited for predicting SOC stocks compared to a 

single exponential function. In the case of reduced tillage, a linear decline function may be 

used for predicting the SOC stocks in the plough layer (0-30 cm), while for conventional tillage 

the mean vertical distribution throughout the plough layer may be approximated to a 

constant.   

It was shown that, for all the studied land use systems in this study, irrespective of specific 

soil type, the vertical distribution of soil organic carbon stocks may be successfully predicted 

with varying degrees of accuracy from only sampling the 0-5 cm increment to determine bulk 

density, volume of stones (>2 mm fraction) and SOC content in the <2 mm fraction. 
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5 Method uncertainty: measuring and predicting soil organic 

carbon (SOC) content  

5.1 Introduction 

Accurate and cost-effective soil organic carbon (SOC) content determination is a critical 

step in quantifying carbon stocks for carbon accounting (Bellon-Maurel and McBratney, 2011; 

Bispo et al., 2017; Cremers et al., 2001; Davis et al., 2018; De Gruijter et al., 2016; England et 

al., 2018). Therefore, convenience, cost effectiveness and level of accuracy are critical criteria 

for the selection of appropriate analytical methods (Périé and Ouimet, 2008). However, the 

performance and range limits of SOC measurement methods are rarely assessed and reported 

in recent studies (Conyers et al., 2011; De Vos et al., 2007). Furthermore, conventional soil 

sampling and chemical SOC analysis is often expensive and time consuming, and not always 

sensitive enough to detect small changes occurring over time as a function of land use or 

management practices (Chatterjee et al., 2009).  

Considering the recent prioritization to increase SOC sequestration in relation to climate 

change adaptation and mitigation, measuring baselines and changes in SOC becomes even 

more important (Chatterjee et al., 2009; Cremers et al., 2001; Davis et al., 2018). For example, 

increased SOC sequestration is central to the “4 per 1000 Initiative: Soils for Food Security and 

Climate” initiative. The 4 per 1000 initiative has set the goal of increasing global SOC stocks at 

an annual rate of 0.4 %, focusing mainly on agricultural lands where carbon stewardship of 

soils would be ensured by farmers (Soussana et al., 2017). To date, the difficulty to detect 

changes or improvements in SOC has been one of the challenges limiting the attention given 

to SOC sequestration (Chatterjee et al., 2009), along with issues such as the permanence of 

sequestered carbon and others (Soussana et al., 2017). According to Bispo et al. (2017) it is 

essential that SOC measurements be based on agreed upon standards to ensure comparable 

estimations of stocks and there is an increased call for the harmonization of methods, 

measurements to support data comparability and exchange, and more .  

Dry combustion (DC) analysis allows for the direct measurement of SOC content in soil 

and is often used as standard or reference method in numerous SOC studies (Abraham, 2013; 

Chatterjee et al., 2009; Ciric et al., 2014; Cremers et al., 2001; De Vos et al., 2007; Fernandes 

et al., 2015; Lettens et al., 2007; Mccarty et al., 2010; Mikhailova et al., 2003; Sangmanee et 

al., 2017; Skjemstad, J.O., Spouncer, L.R. & Beech, 2000; Sleutel et al., 2007). In this method, 

samples are ignited in a furnace at temperatures between 1000 ℃ and 1600 ℃   which enables 
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the thermal decomposition of inorganic carbon and oxidation of organic carbon to CO2. The 

high temperatures are used to ensure that all the C forms are fully converted to CO2 (Davis et 

al., 2018).    

Another commonly used method is wet combustion of carbon by dichromate oxidation, 

commonly known as the Walkley-Black method (WB) (Walkley and Black, 1934) which has 

undergone numerous modifications over time (Chatterjee et al., 2009). Contrary to DC, wet 

oxidation of carbon does not allow for the direct measurement of SOC due to incomplete 

sample oxidation. To account for this incomplete oxidation, (Walkley and Black, 1934) 

introduced a correction factor of 1.32 (assuming 76 % carbon recovery) to calculate the total 

SOC content. With time, numerous authors have shown that this correction factor is 

dependent on factors such as soil type, soil depth and mineralogy (Bisutti et al., 2004; Davis 

et al., 2018; De Vos et al., 2007; Kamara et al., 2007; Mikhailova et al., 2003; Nelson and 

Sommers, 1974; Santi et al., 2006; X. Wang et al., 2012a), which may lead to either 

overestimation or underestimation of SOC. Nonetheless, the WB method has also been 

regarded as a standard procedure for SOC analysis, especially due to its low cost and minimum 

requirements in terms of analytical equipment (Abraham, 2013; Bisutti et al., 2004; Chatterjee 

et al., 2009; X. Wang et al., 2012a).  

The use of high-throughput techniques such as near-infrared (NIR) spectroscopy has 

increasingly been tested and used as rapid technique to measure SOC, both in the laboratory 

and in the field (Amare et al., 2013; Askari et al., 2018; Awiti et al., 2008; Bushong et al., 2015; 

Chatterjee et al., 2009; Clairotte et al., 2016; De Souza et al., 2016; Deng et al., 2012; England 

et al., 2018; Gobrecht et al., 2014; Guerrero et al., 2014; Mccarty et al., 2010; Mouazen et al., 

2010; Reeves, 2010; Viscarra Rossel et al., 2017, 2016, Wight et al., 2016, 2005). Due to the 

complex nature of the soil matrix, NIR analysis does not directly measure SOC, but rather, 

produces a spectrum based on the interaction of photons with molecules when striking a 

sample surface (Wight et al., 2016), creating overtones and combinations of fundamental 

bands of molecular vibrations (Bellon-Maurel and McBratney, 2011). These interactions 

consist of reflection, refraction or absorption and can be measured accordingly. To relate the 

measured spectra to SOC content, a spectral library and calibration models are needed, as 

well as reference analyses of SOC for calibration, such as DC or WB (Bellon-Maurel et al., 

2010). In a 2004 review on the use of NIR for soil analysis, Roberts et al. (2004) identified the 

high potential of using NIR for soil carbon inventory and sequestration assessment to reduce 

the costs of analyses. However, the authors specified the need for more work on this topic to 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

52 

refine the method and its calibration. Bispo et al. (2017) stated that, according to ISO soil 

quality standards (ISO 17184:2014), NIR may be used at larger scales (such as landscape, 

regional,  and national) to quantify SOC in large sets of soil samples. Furthermore, the 

sampling strategy should be defined based on the necessary accuracy of SOC quantification.   

Errors in SOC analysis may arise at all stages of sample handling, processing and analysis, 

accumulating as a method error. The actual values of these errors are specific to each 

individual laboratory, analyst, analyte and instrument. Therefore, to support routine chemical 

analysis and ensure the detection of small changes in analyte over time, analytical methods 

require sufficient accuracy, precision and ability to measure small quantities of analyte. Some 

critical statistical parameters or figures of merit (FOM) have been formulated to assess and 

compare the performance of analytical methods such as accuracy, precision, limit of detection 

(LOD), and limit of quantification (LOQ) (Bouabidi et al., 2010; Currie, 1999; De Vos et al., 2007; 

Eksperiandova et al., 2010; Harris, 2007; Sangmanee et al., 2017; Shrivastava and Gupta, 2011; 

Valderrama et al., 2007; Wenzl et al., 2016). Olivieri (2015) argues the additional importance 

of the mean prediction error or root mean square error (RMSE) and the relative error of 

prediction (REP).  

As highlighted by Bellon-Maurel and McBratney (2011), the use of NIR spectroscopy as a 

future SOC reference method for would require that the method be compatible with 

metrology requirements, especially in terms of method performance and uncertainty. They 

report that the most commonly used performance parameter for NIR is the standard error of 

prediction (SEP) which is commonly calculated as the root mean square error of prediction 

(RMSEP) (the sum of squares of the difference between the predicted and actual values of the 

analyte). The SEP value generally increases as the measurement range of calibration increases. 

Developments in multivariate analysis and computing power have recently led to a 

widening of applications for spectroscopic methods to detect a wide variety of components in 

complex mixtures. Dry NIR spectrometry is increasingly advocated as new means of SOC 

content predictions (England et al., 2018; Viscarra Rossel et al., 2017). An additional benefit 

NIR spectrometry is that it may be used in both proximal and remote sensing applications 

(Gomez et al., 2008).  

The aim of this chapter is to determine whether NIR spectroscopy can be successfully used 

as a rapid SOC analysis method for the specific study area. To achieve this, DC was used as 

reference method and compared to WB and NIR to determine their limitations in terms of 
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method accuracy, precision, LOD and LOQ. 

5.2 Materials and methods 

5.2.1 Soil sampling and analysis 

A total of 397 samples from 50 sampled soil profiles from various land uses (forestry, 

grasslands, croplands, natural forest, sugarcane) were used for this study. Sample preparation 

and analysis of bulk density and stone content were conducted as described in Chapter 3. The 

summary of soil classification, particle size distribution and pH characteristics is given in 

Chapter 2. 

5.2.2 Organic carbon determination 

Total SOC (%wt) was determined by DC gas chromatography elemental analysis as 

described in Chapter 3 and assumed to be total SOC due to the absence of inorganic carbon.   

The < 2 mm samples were analysed for SOC using the WB (Walkley and Black, 1934) 

method at the Elsenburg Agricultural Laboratory, Western Cape Department of Agriculture.   

The < 2 mm samples were also scanned to acquire the near-infrared (NIR) reflectance 

spectral characteristics using a Bruker MPA (Multi-Purpose Analyser) as described in Chapter 

3. Following method optimization within OPUS based on partial least squares (PLS) analysis, 

spectra pre-processing using a combination of first derivative and vector normalization was 

applied for calibration, and validated using leave-one-out cross-validation. The calibration and 

validation graphs and relevant statistics generated in OPUS are presented in Figure 5-1. The 

small bias in the cross-validation model (Fig. 5-1b) can be ignored since it is insignificant (less 

than the stated precision of the DC method for reference measurements) and is much less 

than 30% of the total error (Maroto et al., 2002). It should be noted here that this NIR 

spectroscopy model is only intended for use within this study area and is not intended for 

application as-is in other locations. 
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a 

 

R2 = 95.17 

RMSEC = 0.691 

RPD = 4.55 

 

 

b 

 

R2 = 93.97 

RMSECV = 0.758 

Bias = -0.00779 

RPD = 4.07 

Figure 5-1. OPUS-generated graphs of (a) calibration and (b) cross validation (leave-one-out) of NIR 
reflectance spectra for SOC % analysed by dry combustion using single scans of 397 samples <2 mm. 
Calibration and validation statistics are shown next to each graph. 

5.2.3 Figures of merit 

Accuracy and precision: 

Method accuracy was determined as the slope of linear regression curves of predicted 

(observed) versus reference SOC concentrations. Method precision was determined as the 

root mean square error of prediction (RMSE) of the predicted SOC concentration in relation 

to the reference concentrations as 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑜𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛)2

𝑛
 (5-1) 

Where 𝑦𝑜𝑏𝑠 is the measured SOC content, 𝑦𝑚𝑒𝑎𝑛 is the mean of 3 measurements and 𝑛 is 

the number of measurements (3). 
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𝑅𝑀𝑆𝐸𝑃 = √∑
(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑟𝑒𝑓)

2

𝑛
 (5-2) 

For the comparison of methods, the RMSEP (RMSE of prediction) was calculated for paired 

sample analysis:         

where 𝑦𝑝𝑟𝑒𝑑 is the predicted (measured) SOC concentrations, 𝑦𝑟𝑒𝑓  is the value measured 

by the reference (DC) method, and 𝑛 presents the number of samples in the calibration set 

(Stumpf et al., 2017). 

Limit of detection and limit of quantification: 

The LOD was calculated based on the standard deviation of the response (predicted 

values) and the slope of the calibration curve (Chandran and Singh, 2007; International 

Conference on Harmonization, 2005; Ribani et al., 2007) as 

LODy0 =
3.3δy0

b
 (5-3) 

where, δ𝑦0 is the residual standard deviation (also known as the standard error of the 

estimate) of the y-intercept (δy0) of the regression lines of the calibration curve and b is the 

slope of the calibration curve and 

LODres =
3.3δres

b
 (5-4) 

where δ𝑟𝑒𝑠 is the residual standard deviation of the regression line. 

Similarly, the LOQ (Chandran and Singh, 2007; International Conference on 

Harmonization, 2005) was calculated as: 

LOQy0 =
10δy0

b
 (5-5) 

and 

LOQres =
10δres

b
 (5-6) 

The relevant standard deviations (δ𝑦0 and δ𝑟𝑒𝑠) were calculated in Microsoft Office Excel 

using the LINEST function.  
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5.2.4 Data sets for determining the figures of merit 

Twelve samples with SOC DC μ ± δ = [0.75 ± 0.06, 0.90 ± 0.07, 1.06 ± 0.16, 1.15 ± 0.12, 

1.85 ± 0.11, 2.51 ± 0.01, 3.05 ± 0.07, 4.96 ± 0.19, 5.72 ± 0.17, 9.01 ± 0.60, 11.79 ± 0.20, 17.13 

± 0.10] were used for the analysis of accuracy (trueness and precision) of individual methods. 

The above samples were subsampled and analyzed in triplicate using DC, WB and NIR. 

Dry combustion: 

The EuroVector EA3000 used for DC analysis was calibrated regularly using the standard 

samples SOIL1, SOIL2, SOIL3, SOIL4 supplied by EuroVector and containing respectively 0.732, 

2.417, 3.5 and 4.401 % carbon. Subsamples of the standards (22 in total) were analysed as 

part of test batches as quality control (QC) samples included in batch determination during 

the analysis of our sample collection. Method accuracy, precision, LOD and LOQ for DC were 

determined using this dataset.  

Walkley-Black and NIR: 

The 12 calibration samples analyzed in triplicate were used to determine the accuracy and 

precision for the WB and NIR methods using DC as reference method.  

For LOD and LOQ determination of the WB and NIR methods, six (6) of the 12 calibration 

samples were used with mean C analysed by DC ranging from 0.75 to 4.96 %. This was done 

to stay within the SOC concentration range used for the LOD and LOQ determination for DC 

(below 5% SOC).   

5.3 Results and Discussion 

5.3.1 Method accuracy 

Accuracy and precision are the two main method characteristics used for comparison of 

analytical methods, where accuracy is the proximity to 1:1 correspondence between the 

results obtained by different methods, and precision is the RMSEP (Currie, 1999; Nalimov et 

al., 1963; Westgard, 1973). Recently, IUPAC (Thompson et al., 2002) suggested to use the term 

“accuracy” in a general qualitative manner, replacing the strict understanding of accuracy with 

the term “trueness” and making distinction between the mean and the mathematical 

expectation of the mean (τ). However, the term “trueness” was dropped and not replaced in 

the latest edition of the IUPAC Gold Book (IUPAC, 2014). Here the term accuracy will be used 

in its classical term referring to agreement between the methods in terms of proximity of the 
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results measured by the compared methods to the 1:1 line (line of agreement). Method 

accuracy or trueness refers to how close a measured value is to a standard or known value 

and should be established for the specified range of the analytical method. Such accuracy can 

be determined using reference material or standards in which the analyte concentrations are 

known (as used for DC in this study), or by comparing analysis results of one method with 

those of a second method for which the accuracy is known or defined (as used for WB and NIR 

in this study) (Chandran and Singh, 2007; International Conference on Harmonization, 2005).  

Method precision refers to how close repeated measurements are to each other and 

precision analysis should aim to determine typical variability rather than minimum variability 

of measurement. Precision is usually expressed by statistical parameters that describe the 

spread of replicate measurements of suitable samples (Chandran and Singh, 2007; Eurachem, 

2014). The recommended number of replicates for analysis to determine precision vary 

between authors, ranging from 3 (Chandran and Singh, 2007) up to 6 and 15 (Eurachem, 

2014). 

Either precision alone (as the error of zero) or the combination of precision and accuracy 

allow to derive an estimate of the LOD and LOQ, which are indeed important, but mostly 

underreported FOM, particularly in soil analysis. In terms of soil carbon determination, LOD 

and LOQ are rarely mentioned. Calculation of LOQ as 10 times the error of zero implies that 

the restriction on “quantification” is a relative error = 10% of the determined value (Nalimov 

et al., 1963). Such error tolerance level is sometimes seen as unnecessary, and higher levels 

of relative error may be considered acceptable, particularly in environmental sciences where 

high levels of natural variability often occurs in material composition. As for detecting SOC 

content for carbon accounting purposes, the analytical error has direct financial implications. 

In this case, the error tolerance has to be specified by the trading parties. 

Dry combustion analysis: 

The linear regression analysis of the EuroVector measurement of standard samples is 

presented in Figure 5-2. The slopes of the regression lines in Figure 5-2 are 1.00 for the 

prediction of mean SOC concentrations from several measurements and shows a slight 

inaccuracy (slope = 1.02) in terms of prediction of stated standard concentrations. On one 

hand the inaccuracy is negligibly  small (Maroto et al., 2002) and may be ignored, on the other 

hand, it may be true and reflecting the deterioration of the standards which were 18 years old 

at the time of analysis. 
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Figure 5-2. EuroVector EA3000 quality control with supplied standards (Standard) and relationship 
with reference concentrations calculated as a mean of replicated determination of standard sample 
concentrations (Mean). 

The RMSE of true validation for declared standards was 0.13 % SOC. However, it was 

assumed that the mean of replicate determination concentrations may better represent the 

true concentration in the sample rather than the declared standard. Substituting the mean of 

replicate determination for the declared standard concentration, the RMSE calculated from 

the replications of standard sample analysis becomes 0.10 % SOC. This value represents an 

average precision of soil analysis within the given range and the variation in the composition 

of the analyte. This is an important result, since the stated operational range of the instrument 

is 0.01 to 100 % C. However, with an error of 0.1 % SOC, a 100 % relative error may still be 

expected for the 0.1 % SOC concentration, which in theory should be the LOQ. This error 

includes all the laboratory procedures and the variability in the composition within the volume 

of the standards.  

The triplicate analysis of 12 subsamples (from calibration samples analyzed as reference 

values for WB and NIR) using DC has shown that the error from subsampling a well-prepared 

ball-milled soil sample does not dramatically increase the overall error of analysis (Figure 5-3). 

The error mainly lies below 0.2 % SOC and averages at 0.15 (RMSE = 0.17). Removing one 

outlier that may be attributed to poor sample homogenization with a δ = 0.60, the overall 

mean standard deviation falls to 0.11 (RMSE = 0.10) – almost exactly what was found with the 

analysis of standards. This shows that the variability in sample composition and subsampling 

procedure contribute to a rather small proportion of the method error. The relative standard 

deviation falls below 10 % for values exceeding 1 % SOC, but does not exceed 20 % throughout 
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the analysed range where: 

Relative δ =
δ

𝑦̅ 
∙ 100 (5-7) 

where δ is the standard deviation and 𝑦̅ is the mean of the triplicate analyses. 

  
Figure 5-3. Standard deviation (δ) (a) and relative standard deviation (b) of measured SOC against 
mean SOC % for the soil samples analysed in triplicate using dry combustion with the EA-3000 
analyser. 

Walkley Black analysis:  

The WB method was extensively evaluated since its initial development (Chatterjee et al., 

2009). While De Vos et al. (2007) suggest 8 % as the upper boundary of reliable use for the 

WB method, it was decided to use the 9 % mean SOC content determined by DC as the upper 

limit for our statistical analysis. By applying this limit, ten (out of 12) calibration samples with 

SOC content up to 9 % were used.  

The WB method displays a good reproducibility of results and prediction of the mean by 

repeated analysis of subsamples (Figure 5-4a) and an RMSE = 0.13 which is fairly similar to 

that of the DC method (RMSE = 0.10). The relative standard deviation is below 10 %, averaging 

at 5%. The sample with the highest mean SOC content of 9 % was an outlier in this analysis 

with a relative error of 29%. Based on the analysis of De Vos et al. (2007), this large error may 

be as a result of the upper boundary of reliable use for the WB method. Conversely, since the 

WB analyses were done using soil samples < 2mm, this error may also be due to poor sample 

homogenization.  
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Figure 5-4. Prediction of the mean with triplicate SOC determinations by WB method (a) and the SOC 
content measured in triplicate by DC and WB methods (b). 

A further concern with regards to WB analyses of SOC is the linear regression coefficient 

which is often approximated as a multiplication factor of 1.32 (Walkley and Black, 1934). This 

factor is required for comparison of the WB results with results obtained by the DC method 

(Abraham, 2013). However, this factor was shown to vary for different soils from 1.0 to 2.8 

(Davis et al., 2018; De Vos et al., 2007; Mikhailova et al., 2003; Nelson and Sommers, 1996). 

The conversion factor for data in this study should be closer to 1.10 as determined by the 

slope of the regression line in Figure 5-4b (Abraham, 2013). The response is somewhat non-

linear since the conversion factor increases to 1.18 if the data range is limited to less than 5 % 

SOC determined by DC. 

Applying the multiplication factor of 1.10 to the results obtained by the WB method 

results in good correspondence between the WB and DC measurements with an RMSE of 0.37. 

However, the two-tailed t-test for paired samples with unequal variance shows that 50 % of 

the pairs had different means at α=0.05 (Table 5-1). A factor of 1.27 was subsequently selected 

through iterative substitution to minimize the number of statistically different means. Such a 

choice of conversion factor produced better comparison of the WB and DC means using the 

same t-test. In the latter case, only two out of ten samples had significantly different means 

when determined by these two analysis methods (Table 5-1).  

For accuracy determination, it is usually recommended that a minimum of 9 to 15 

determinations be conducted through 3 to 5 replicates each at a low, medium and high 

concentration within the expected analysis range (Chandran and Singh, 2007). Similarly, the 

recommended number of replicates for analysis to determine precision vary between authors, 

ranging from 3 (Chandran and Singh, 2007) up to 6 and 15 (Eurachem, 2014). However, 
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numerous studies comparing different SOC determination methods only perform single 

measurements with both the reference and test methods (Abraham, 2013; Chen et al., 2015; 

Dieckow et al., 2007; Fernandes et al., 2015; Harper and Tibbett, 2013; Kalembasa and 

Jenkinson, 1973; Mccarty et al., 2010; Périé and Ouimet, 2008; Sato et al., 2014; Wight et al., 

2016), or multiple replicate measurements only with the test analysis method (Amare et al., 

2013; X. Peng et al., 2014; Y. Peng et al., 2014; Sangmanee et al., 2017). Isolated studies were 

found that include duplicate reference method analyses (Beltrame et al., 2016; De Vos et al., 

2007). 

Table 5-1. Results of t-tests for differences between means (reported as P-value at α=0.05) 
determined by dry combustion (DC) and Walkley and Black method corrected by a factor of 1.10 
(1.10WB) and 1.27 (1.27WB). (μ = mean; δ = standard deviation) 

DC  1.10WB  1.27WB 

μ δ  μ δ DC/WB P-value  μ δ DC/WB P-value 

0.75 0.06  0.53 0.01 1.42 0.022  0.61 0.01 1.23 0.052 

0.90 0.07  0.58 0.06 1.55 0.003  0.66 0.07 1.36 0.019 

1.06 0.16  0.83 0.07 1.28 0.036  0.95 0.08 1.11 0.349 

1.15 0.12  1.04 0.01 1.11 0.001  1.2 0.01 0.96 0.496 

1.85 0.11  1.41 0.27 1.31 0.094  1.63 0.32 1.14 0.355 

2.51 0.01  1.92 0.13 1.31 0.016  2.21 0.15 1.14 0.071 

3.05 0.07  2.71 0.19 1.13 0.078  3.12 0.22 0.98 0.614 

4.96 0.19  4.56 0.16 1.09 0.054  5.27 0.19 0.94 0.121 

5.72 0.17  5.72 0.05 1.00 0.976  6.61 0.06 0.87 0.006 

9.01 0.6  9.48 0.39 0.95 0.324  10.95 0.45 0.82 0.013 

 

To assess the effect of triplicate measurements using the reference method (DC) versus 

single reference method measurements on the variance of method predictions (WB), results 

of single DC and WB determinations on 383 samples with DC SOC < 10 % were used (Figure 

5-5). Since the standard deviation (and relative standard deviation) cannot be determined for 

single measurements, δ was substituted with RMSE, keeping in mind that for small model 

intervals, as the interval of observations around the mean approaches zero, the RMSE → δ. 

RMSE is calculated in the same manner as the standard deviation, except that the residuals 
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are calculated as the difference of “true” and predicted values rather than the difference 

between the measured values and the mean. 

Regression analysis of this data set shows a linear relationship between WB and DC 

determinations that requires a correction factor of 1.1836 to predict SOC DC from SOC WB 

determination (Figure 5-5a). Upon applying this correction factor, a new set of SOC WB values 

(1.1836WB) was generated, resulting in an RMSE of 0.47 (from 0.37 determined by the 

analysis of triplicates using a correction factor of 1.10). Next, the absolute error per sample 

was calculated as the difference between the DC and WB measured SOC concentration. 

Outliers with an absolute error > 1.41 (3·RMSE of 0.47) were removed, which reduced the 

number of samples to 359 and the RMSE to 0.40. The above approach for the removal of 

outliers would be valid for constant (system) error. It is clear, though, that the absolute error 

increases with an increase in SOC concentrations within the interval from 0 to around 1.5 % 

SOC and is capped at 1.41 due to removal of outliers (Figure 5-5b). 

  

Figure 5-5. Regression between single SOC measurements by dry combustion vs. Walkley and Black 
method (a) and absolute error of the same measurements corrected by the factor 1.836 (b). 

 

To understand the dependency of the RMSE on the observed value, the range of 

observations was split into intervals [a,b] of increasing width so that the range boundaries of 

the reference values would be set 25 % away from the mean (μ), i.e: a = μ - μ/4 and b = μ + 

μ/4 (Table 5-2). This was applied to the complete set of 383 samples, as well as the set of 359 

samples with outliers removed as explained previously, using the 1.1836WB corrected values. 
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Table 5-2. The RMSE and relative RMSE values for the SOC concentration ranges. (a = lower limit of 
the range; b = upper limit of the range; μ = mean SOC % for the range; n = number of samples). 

a b μ Complete set (383 samples) 

 Outliers removed (359 

samples) 

n RMSE Rel.RMSE, %  n RMSE Rel.RMSE, % 

0.135 0.225 0.18 3 0.11 61.1  3 0.11 61.1 

0.225 0.375 0.30 4 0.15 50  4 0.15 50 

0.375 0.625 0.50 17 0.23 46  17 0.23 46 

0.625 1.042 0.83 30 0.23 27.6  30 0.23 27.6 

1.042 1.736 1.39 37 0.46 33.1  37 0.46 33.1 

1.736 2.893 2.31 87 0.58 25.1  84 0.51 22 

2.893 4.822 3.86 134 0.7 18.1  125 0.52 13.5 

4.822 8.037 6.43 71 1.08 16.8  59 0.6 9.3 

Full model range: 383 0.47   359 0.40  

 

When comparing the number of samples (n) in the complete set compared to the set with 

outliers removed, the results in Table 5-2 show that using a single RMSE value for the whole 

range only allows the identification of outliers in the upper ranges (from a = 1.736). That is 

due to the dependence of the RMSE on the reference SOC % (Figure 5-6a). The magnitude of 

absolute error increases with increasing SOC content due to increased variation in analyte 

composition, which in turn increases the RMSE. It is also shows that such type of regression 

model calibration (matching single observations instead of observation means) results in high 

relative error (Figure 5-6b), which practically never falls below the 10 % threshold set for 

quantitative analysis. This would mean that the WB method of determining SOC remains semi-

quantitative throughout the range.  

The need for the experimental determination of a conversion factor for each study area 

as well as the range limitation of the WB method for determining high SOC concentrations 

makes it less attractive for carbon accounting purposes at locations with very or high soil 

carbon content. In fact, Abraham (2013) considers the WB method to be semi-quantitative in 

nature due to its incomplete recovery of SOC. De Vos et al. (2007) determined the lower and 

upper SOC quantification limits of the original WB method for forest soils as 0.42% and 8.00% 
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total organic carbon (TOC) respectively, with 76% carbon recovery using 542 mineral soil 

samples. In this case the correction factor for WB was calculated as 1.58. Nonetheless, the low 

cost of analysis and wide adoption of the method by commercial laboratories make it a viable 

option for intensive soil carbon surveys. 

  

Figure 5-6. The RMSE (a) and relative RMSE (b) of SOC predicted from WB analysis using a single 
experimentally-determined correction factor of 1.1836, as a function of mean SOC DC % per [a,b] 
range. 

NIR spectroscopy with PLS regression: 

A striking feature of the calibration and cross-validation of the partial least squares (PLS) 

regression model relating reflectance spectra of these samples to single SOC DC 

measurements (Figure 5-1) is the rather high RMSE values (0.69 and 0.76 respectively). These 

figures are in line with the values reported by different authors and summarized by Bellon-

Maurel and McBratney (2011) and Bellon-Maurel et al. (2010). Nonetheless, a closer look is 

required at this method’s figures of merit.  

The NIR method was evaluated further using the twelve triplicate samples with the DC 

values ranging from 0.75 to 17.13 % C as reference. Here, the NIR method shows reasonable 

accuracy producing close to 1:1 (regression slope = 1.04) results with R2 = 0.988 (Figure 5-7a) 

and precision in terms of predicting the observed mean of DC analysis (Figure 5-7b). The 

comparison of multiple replications for the spectroscopic determination of SOC is not a 

common practice and often single or duplicate sample analysis are used (Beltrame et al., 

2016). 
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Figure 5-7. Mean SOC content (a) measured in triplicate by dry combustion (DC) and predicted in 
triplicate from the PLS regression model using NIR spectroscopy (Figure 5-1), and relative δ of the 
triplicate NIR predictions (b). 

The RMSE of predicting the means of triplicate samples analysed by both the DC and NIR 

methods is substantially better (RMSE = 0.42) than that of the cross-validated PLS NIR model 

for paired samples without replication (RMSE = 0.76). Limiting the range to less than 5 % SOC 

DC, the RMSE falls to 0.11, which is comparable to the error of the DC analysis and requires 

further investigation of the error distribution within the initial (bigger) range of values. 

Predicting the single-measurement SOC DC values with the SOC NIR PLS model for the set 

of 397 samples produced a good correlation (R2 = 0.95) and 1:1 correspondence between the 

paired values (Figure 5-8a). However, the RMSE = 0.68 and the relative absolute error (RAE) 

for the lower part of the range exceeds 100 % (Figure 5-8b). This dramatically restricts the 

application of the method to samples with low SOC content. One of the solutions to enhancing 

the accuracy of NIR measurements is to successfully develop calibration models, hence 

different calibration models yield different results (Mouazen et al., 2010). Mouazen et al. 

(2010) evaluated NIR spectroscopy predictions of SOC in 168 samples using WB as reference 

method, reporting an R2 = 0.84, RMSE = 0.68 and residual prediction deviation (RPD) = 2.54 

when using a back propagation neural network analysis calibration method. These results 

were classified as “excellent”.  
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Figure 5-8. Regression of single-measured SOC DC values vs. predictions of the PLS regression from 
NIR spectra (a) and the relative absolute error (RAE) of predictions (b). 

For further analysis, the range is once again split into intervals so that the range 

boundaries are set 25 % away from the mean (μ), i.e: a = μ - μ/4 and b = μ + μ/4 (Table 5-3). 

Similar to the WB analysis, the RMSE and MAE results indicate the dependence of the error 

on the magnitude of the absolute value which is reflected in Figure 5-9a. According to Bellon-

Maurel and McBratney (2011), the RMSE value of NIR spectroscopy analysis generally 

increases as the measurement range of calibration increases.   

Table 5-3. The RMSE, relative RMSE (RMSE), mean absolute error (MAE) and relative MAE (RMAE) for 
the [a,b) intervals of the calibration/cross-validation range of single SOC content measurements with 
DC and NIR PLS model. (a = lower limit of the range; b = upper limit of the range; μ = mean SOC % for 
the range; n = number of samples). 

a b μ n RMSE RRMSE, % MAE RMAE, % 

0.135 0.225 0.18 4 0.19 105.5 0.14 78.9 

0.225 0.375 0.30 5 0.44 146.6 0.42 139.2 

0.375 0.625 0.50 15 0.70 140 0.52 103.7 

0.625 1.042 0.83 30 0.47 56.4 0.40 47.6 

1.042 1.736 1.39 37 0.50 36.0 0.36 26.2 

1.736 2.893 2.31 89 0.67 28.9 0.48 20.6 

2.893 4.822 3.86 107 0.56 14.5 0.42 10.9 

4.822 8.037 6.43 19 0.62 9.6 0.47 7.3 

8.037 13.396 10.72 84 0.93 8.7 0.69 6.5 

13.396 22.326 17.86 7 1.03 5.8 0.86 4.8 
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Using the equation in Figure 5-9b it can be estimated that the relative RMSE will fall below 

100 % for SOC content > 0.39 %, below 50 % for SOC content > 0.97 %, below 20 % for SOC 

content > 3.25 %, and below 10 % (quantitative range) for SOC content > 8.09 %. Therefore, 

contrary to the WB analysis, which in comparison practically never fell below the 10 % relative 

RMSE threshold, the evaluation of NIR analysis with single observations of the reference DC 

methods would mean that the NIR method of determining SOC becomes quantitative only for 

SOC content > 8.09 %.   

Therefore, the above considerations impose serious limitations on the use of the locally-

developed PLS regression models for NIR spectroscopy of soil samples with calibration/cross-

validation based on single measurements within the model calibration set. Furthermore, the 

single SOC content measurements by DC method may be a rather poor data set for true model 

validation.  

  

Figure 5-9. The RMSE (a) and relative RMSE (b) of SOC predicted with NIR analysis as a function of 
mean SOC DC % per [a,b] range. 

From the above results it is clear that triplicate analyses using the reference (DC) and test 

(NIR) method yields higher accuracy and precision of analysis. This is confirmed by Beltrame 

et al. (2016) who stated that, according to ASTM E1655-05,13 standards, the accuracy of a 

component concentration or property value estimated using a multivariate infrared analysis 

is highly dependent on the accuracy and precision of the reference values used in the 

calibration. Judging from the WB results presented in this study, this is not only applicable to 

multivariate infrared analysis, but to any analysis method comparison. Beltrame et al. (2016, 

p. 1529) further stated that “the expected agreement between the infrared estimated values 

and those obtained from a single reference measurement can never exceed the repeatability 

of the reference method, since, even if the infrared estimated the true value, the 
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measurement of agreement is limited by the precision of the reference values”. 

5.3.2 Limit of detection and limit of quantification 

The LOD is not the smallest measurable concentration of a particular method. Instead, it 

is the point at which it can be decided whether an element or compound is present in the 

sample or not (Payling, 2012). It is therefore the point where a measured signal can be 

distinguished from the background or blank measurement. Various equations are offered by 

different authors for the determination of LOD and LOQ. For example, both LOD and LOQ can 

be calculated from multiple blank measurements as: 

 𝐿𝑂𝐷 =  𝑥𝑏𝑖 + 𝑘 ∗ 𝛿𝑏𝑖                                          (5-8) 

where 𝑥𝑏𝑖 is the mean of the n blank measurements, δ𝑏𝑖 is the standard deviation of the 

n blank measurements, and 𝑘 is a numerical factor chosen according to the desired confidence 

level (Currie, 1999; De Vos et al., 2007; Eksperiandova et al., 2010; Gustavo González and 

Ángeles Herrador, 2007; IUPAC, 1997; Sangmanee et al., 2017; Thomsen et al., 2003) which is 

usually set at a minimum of 3 (De Vos et al., 2007). This calculation usually involves analyzing 

at least 10 replicates of blank samples or, in the absence of suitable blanks, 10 independent 

sample blanks fortified or spiked to the lowest acceptable analyte concentration which serve 

as pseudo-blanks (Gustavo González and Ángeles Herrador, 2007; Wenzl et al., 2016). 

The reason for the minimum value for 𝑘 set as 3 is that, following the three sigma rule, 

the value exceeding three standard deviations is definitely (P=0.9973) a positive value and not 

an error of 0 (Pukelsheim, 1994). This allows the avoidance of both Type I and Type II errors 

with a very high degree of certainty. 

In turn, the limit of quantification (LOQ) is generally stated to start at 10 standard 

deviations of the blank, which gives: 

LOQ = 3.3∙LOD (5-9) 

where LOQ is the lowest concentration of SOC that can be accurately determined with a 

particular method (De Vos et al., 2007; Sangmanee et al., 2017). 

Alternatively, LOD and LOQ can be calculated based on the standard deviation of the 

response and the slope of the calibration curve (Chandran and Singh, 2007; International 

Conference on Harmonization, 2005) as was applied in this study using Equations 5-3 and 5-4 
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to calculate LOD and Equations 5-5 and 5-6 to calculate LOQ. In the latter two equations, the 

calculation of 10δ for LOQ (compared to 3.3δ for LOD) is because in chemical analysis the 

relative error or relative standard deviation of 10 % is often regarded as acceptable for 

quantitative analysis as explained above (Nalimov et al., 1963). 

As stated by Wenzel et al. (2016) and Ribani et al. (2007), it is best to determine LOD and 

LOQ at concentration levels close to the expected values (based on expert knowledge or 

experience from previous experiments), especially when concentration estimates are derived 

from calibration measurements. Estimating LOD and LOQ were not initially intended as part 

of this study, hence the original study was not designed for this purpose. For example, 

replications of a blank (or pseudo-blank) were not measured using the DC, WB or NIR 

methods. However, as the importance of understanding the detection capabilities of analysis 

methods became evident, the available data was used as a scoping exercise to determine the 

relative differences in LOD and LOQ between the three methods. Furthermore, since method 

LOD and LOQ is very rarely determined in SOC studies, limited literature exists for comparison 

of obtained values. 

The summary statistics for the determination of LOD and LOQ for the three analysis 

methods are presented in Table 5-4. From these results it is clear that the LOD and LOQ values 

calculated using δy0 were substantially lower than those calculated using δres. The same trend 

was observed when the same methodology was applied in pharmaceutical studies (Ismail et 

al., 2014; Ribani et al., 2007; Vial and Jardy, 1999). Differences in these values vary since they 

depend on a range of parameters such as the number of analyte levels, their position, the 

number of replicates per level and data heteroscedacity (Vial and Jardy, 1999). Vial and Jardy 

(1999) evaluated three methods of LOD and LOQ determination (including the method used 

in this study), yielding five different LOD and LOQ values for the same gas chromatography 

analyses. They stated that extreme estimates could vary by as much as a factor of 6 for LOD 

and a factor 10 for LOQ. As a result, they stressed the importance of rigorous stipulation of 

the approach chosen to estimate LOD and LOQ in method validation reports to avoid serious 

discrepancies. Of the three methods evaluated, the authors found that calculating LOD and 

LOQ using δy0 and δres obtained from weighted least squares regression data reduced the 

effect of data heteroscedacity and recommended this method especially for determination of 

LOD. 
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Table 5-4. Regression line parameters for SOC analysis and estimated LOD and LOQ based on linear 
regression for the three methods: DC - dry combustion, WB – Walkley-Black, NIR – near-infrared 
spectroscopy. (y-int = y-intercept) 

      LOD (SOC %)  LOQ (SOC %) 

Method R2 Slope y-int δy0 δres δy0 δres  δy0 δres 

DC 0.995 1.053 -0.94 0.043 0.113 0.14 0.36  0.41 1.08 

WB 0.984 0.882 -0.287 0.077 0.164 0.29 0.61  0.87 1.86 

NIR 0.991 1.093 -0.083 0.070 0.151 0.21 0.45  0.64 1.38 

 

Dry combustion: 

The instrumental limit of detection (LOD) of the EuroEA3000 series used for the DC 

determination of total SOC is not quantified by the manufacturer, but is rather advertised as 

less than one microgram for each element (Eurovector, 2010). Eksperiandova et al. (2011) 

summarized the relevant technical specifications for the EuroVector EA-3000 as presented in 

Table 5-5. As a result, it is expected that in this study, the concentration ranges used for 

regression analysis of the DC method are substantially higher than the potentially detectible 

and measurable concentrations using this method. From Table 5-4, the LOD and LOQ for DC 

using δres were calculated as 0.32 % and 1.06 % SOC respectively which are the lowest results 

of the three methods. This result was expected since DC enables the direct determination of 

C and the regression analysis to determine δy0 and δres was done using reference standards 

supplied by EuroVector with known true values. For the WB and NIR methods, the means of 

the triplicate DC analyses of six calibration samples were used as reference.  

Table 5-5. Technical specifications of the EuroVector EA-3000 CHNS-analyser (Eksperiandova et al., 
2011). 

Element Concentration range Declared accuracy Sample mass 

C 0.01–100 % ± 0.3 % 1-2 mg 

 

Walkley-Black: 

The WB method yielded the highest LOD and LOQ values of the three methods with 

LODδres = 0.61 and LOQδres = 1.86 (Table 5-4). This implies that in this study, of the three 

methods, the WB method had the lowest capability to quantitatively determine low values of 
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SOC. It is possible that, should a study be devised specifically to determine the LOD and LOQ 

values by determining replicates of samples with lower SOC levels, these results for the WB 

method may be improved. The importance in this instance is the relative difference between 

the three analysis methods which indicates that the appeal of the WB method in terms of its 

low cost of analysis may need to be weighed up against its overall accuracy and ability to 

quantify SOC at low levels.  

Sangmanee et al. (2017) determined the LOD and LOQ of a modified WB method for C 

determination using pure kaolinite as background to quantify small C concentrations (< 0.05 

%) in deep kaolinitic regolith. Seven sets of kaolinite with three replications were used for total 

organic carbon (TOC) determination of the blank and the LOD was calculated using Eq. 5-6 

with 𝑘 = 3 and LOQ was calculated using Equation 5-7. Values for LOD and LOQ were 

determined as 0.015 and 0.050% TOC respectively.   

NIR spectroscopy with PLS regression:    

The LOD and LOQ results for the NIR method compare favourably to those of the WB 

method with LODδres = 0.45 and LOQδres = 1.38 (Table 5-4). These results were obtained 

despite the high heteroscedacity of the NIR method as observed from the increase in RMSEP 

with an increase in analyte range in Table 5-3. Therefore, it is expected that these values could 

be markedly improved by purposely analysing replicates of samples with SOC content lower 

than the 0.75 % to 5 % range used here. Furthermore, alternative calculation methods for LOD 

and LOQ can be applied to remove the heteroscedacity of the dataset.       

Here it is relevant to note that different variations for the calculation of LOD and LOQ from 

the ones discussed so far have been used in multivariate calibration to assess NIR 

spectroscopy analysis for various substrates (Allegrini and Olivieri, 2014; Olivieri, 2015; 

Valderrama et al., 2007). According to several authors, these methods are considered to 

require additional effort to obtain a reasonable convention between univariate and 

multivariate LOD definitions (Allegrini and Olivieri, 2014; He et al., 2018).  

Two studies reporting LOD and LOQ determination for NIR analysis of SOC specifically 

were conducted using multivariate LOD calculations on the NIR spectra scanned in reflectance 

mode (Beltrame et al., 2016; De Souza et al., 2016). For example, De Souza et al. (2016) 

reported the calculation of LOD and LOQ as 
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LOD = 3.3δxbk 

LOQ = 10δxbk 

(5-10) 

(5-11) 

where δx is an estimation of the noise level in the data and bk is the regression coefficient 

for the kth variable based on a regression model.  

Beltrame et al. (2016) evaluated NIR spectroscopy as SOC determination method by 

comparing the DC and modified WB methods as reference on 161 samples. NIR spectra were 

obtained for samples < 2 mm at the percentage of reflectance mode, following which 

multivariate calibration models were developed based on PLS regression with external 

validation. LOD and LOQ were calculated for first order multivariate calibration using 

Equations 5-8 and 5-9 as 0.4377 g.kg-1 and 1.3262 g.kg-1 C respectively using the modified WB 

method as reference, and 0.3710 g.kg-1 and 1.1244 g.kg-1 C respectively using the DC method 

as reference.  

It is clear that considerable discrepancies in LOD and LOQ exist between methods. In 

addition, such discrepancies may also exist between laboratories as a function of individual 

practice performance and experimental design. As a result, harmonization of approaches to 

estimate LOD and LOQ are necessary (Wenzl et al., 2016).  

In this study, the multivariate model calibration was optimized and performed 

automatically using the Quant2 method in the OPUS software. Therefore, the resultant PLS 

calibration model is considered as the method and tested the univariate determination of LOD 

and LOQ accordingly for further application in this study. 

5.4 Conclusions 

It was shown that the use of paired tests without replication dramatically decreases the 

precision of SOC predictions of all methods, possibly due to high variability of SOC content in 

reference values analysed by DC. In the case of the WB method the use of the paired samples 

without replication also substantially affected the model accuracy (the slope of linear 

regression changes from 1.1045 to 1.1835). In the case of NIR spectroscopy, the accuracy was 

improved with the introduction of a large number of paired samples showing the 1.0008 slope 

of linear regression (R2 = 0.95). However, the use of paired samples with single DC 

determination rather than mean values substantially decreases the model precision – the 

RMSE increased from 0.42 to 0.68. It was therefore concluded that for method comparison of 
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soil analysis, reference sample analysis be replicated for all methods (reference and test 

methods) to determine the “true” value of analyte as the mean value analysed using the 

reference method. 

Considering the fact that carbon accounting also requires error reporting, it was further 

concluded that the common practice of using paired samples with single determination 

(without replication) of SOC DC for NIR model calibration and (cross)validation should be 

abandoned in favour of finding the mean values for the calibration/validation sets using at 

least three replicates. The common practice of single determinations, which is mostly justified 

by financial constraints, substantially decreases the model precision and reduces the range of 

quantitative SOC determination.  

While reasonable figures of merit were obtained for all the methods, the analysis of non-

replicated paired samples has shown that the relative RMSE for the SOC NIR method only falls 

below 10 % for values above ~8 % SOC, while for the corrected SOC WB method the relative 

RMSE practically never falls below 10 %, rendering the method as semi-quantitative across 

the range. 
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6 Improving input parameters for soil organic carbon 

assessment – effect on errors from point measurements to 

final map  

6.1 Introduction 

Interest in the assessment and monitoring of SOC stocks and stock changes has markedly 

increased in recent years in relation to the agricultural and environmental importance of 

maintaining and increasing SOC (Chenu et al., 2018). Numerous global initiatives have targets 

related to the maintenance, increase and assessment of SOC stocks (England et al., 2018). For 

example, the United Nations Sustainable Development Goal (SDG) Indicator 15.3.1 on the 

“Proportion of land that is degraded over total land area”, includes the assessment of SOC 

stock along with above ground carbon as one of its metrics in the assessment of land 

degradation. This same indicator (SDG 15.3.1) and its metrics will be used to monitor progress 

towards the land degradation neutrality targets of the United Nations Convention to Combat 

Desertification (UNCCD) (Orr et al., 2017). The “4 per 1000” initiative, which was launched 

during the 21st session of the United Nations Framework Convention on Climate Change, 

specifically targets the maintenance and increase of global SOC stocks at a rate of 0.4 % (i.e. 4 

per 1000) per year and places particular focus on agricultural land (Soussana et al., 2017).  

These international developments have greatly stimulated SOC studies aimed at assessing 

and improving the accuracy and cost-effectiveness of SOC stock determinations which is a 

critical step in carbon quantification and accounting (Bellon-Maurel and McBratney, 2011; 

Bispo et al., 2017; Cremers et al., 2001; De Gruijter et al., 2016; England et al., 2018). However, 

the assessment and reporting of errors in soil organic carbon (SOC) assessments is rarely 

quantified or reported. Assessing these errors is important in order to develop ways to reduce 

the overall uncertainty of SOC estimates, especially in relation to assessing carbon stock 

changes (Goidts et al., 2009). 

Errors in the determination of SOC stocks may arise at various stages of sample handling, 

processing and analysis (measurement errors), as well as during the prediction of stocks using 

different models (Batjes and Wesemael, 2015; Brodský et al., 2013; Brown and Heuvelink, 

2005). However, quantifying these errors and associated uncertainties may be challenging due 

to the complex interactions between different variables included in SOC stock determinations 

(Goidts et al., 2009). The assessment of SOC stock requires the determination of soil bulk 
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density, SOC concentration [%wt], coarse fragments (>2 mm) and soil depth (Batjes and 

Wesemael, 2015; England et al., 2018). Therefore, measurement errors may occur during each 

of these determinations (Batjes and Wesemael, 2015; Goidts et al., 2009). In addition, varying 

levels of interactions may occur between variables, such as the interaction between SOC 

concentration and bulk density (Goidts et al., 2009). Furthermore, the sources of uncertainty 

in SOC stocks may vary according to the scale and landscape unit of assessment and SOC stock 

assessment designs need to be developed or adapted accordingly (Goidts et al., 2009).  

 The aim of this study was to assess the changes in SOC stock prediction errors as a 

function of increased complexity and detail of the model input parameters by mapping the 

propagated error (measurement and prediction errors) of SOC stock determinations in a 

quaternary study catchment.  

6.2 Materials and Methods 

6.2.1 Soil sampling and analysis 

Surface (0-5 cm) samples from 47 of the 69 sampled profiles described in Chapter 3were 

used. Only samples falling within the boundary of the quaternary catchment were used and 

samples from wetlands were excluded. Samples were prepared and analysed for bulk density 

(𝜌𝑏) and fraction of stones by weight (Swt) as described in Chapter 3. Each < 2 mm sample was 

scanned once using NIR spectroscopy as described in Chapter 3 and the SOC content [%wt] was 

determined using the NIR partial least squares (PLS) model described in Chapter 5.  

The 966 surface (0-5 cm) samples taken at 322 sampling sites (three samples per site) in 

quaternary catchment U40A  as described in Chapter 2 were used. All 966 samples were 

prepared and analysed the same way as above for bulk density analysis. In this case, however, 

triplicate samples were not combined following bulk density analysis as described in Chapter 

3. Instead, each triplicate sample was pounded and sieved to 2 mm, analysed using NIR 

spectroscopy as described in Chapter 3, and the SOC content [%wt] determined using the NIR 

PLS model described in Chapter 5. Samples for which the predicted SOC % fell outside the 

range of the NIR PLS calibration curve were removed as outliers, leaving 949 samples at 322 

sites. As a result, a total of 996 (47 + 951) surface (0-5 cm) samples from 369 (47 + 322) 

locations were used in this study.  

Exponential SOC distribution functions and relevant exponential coefficients (k-values) as 
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developed for individual soil profiles under different land uses in Chapters 3 and 4 were 

applied in this study. K-values from a total of 45 profiles under forestry (20), grassland (11) 

and cropland (14) were used and grouped in various ways for the production of four (4) SOC 

stock maps based on land use and soil type. The piecewise distribution functions developed 

from eight profiles in croplands under reduced tillage in Chapter 4 with associated k and b-

values (linear decline gradient) were also used. 

6.2.2 Calculation of SOC volumetric content and stock  

As described in Chapter 3, the volumetric carbon content Cv [kg∙m-3] within the upper 5cm 

depth interval z=[z0,z0.05] was calculated as: 

𝐶𝑣
0= 10 ∙ SOC ∙ ρb ∙ (1 − 𝑆𝑤𝑡  

𝜌𝑏

𝜌𝑠
) (6-1) 

where:   

𝐶𝑣
0 is the volumetric carbon content at 0-5 cm [kg∙m-3], 

SOC is the weight percentage [%wt] of soil organic carbon in the 2 mm soil fraction,  

ρb and ρs (2.65) are the bulk and particle density [Mg∙m-3] respectively,   

Swt is the fraction of stones by weight, and  

10 is the conversion factor for SOC from [%wt] to kg∙Mg-1. 

The SOC stock (𝐶𝑠) [kg·m-2] for continuous exponential decline functions was calculated as 

described in Chapter 3 as the integral of the exponential decline function to a depth of 1 m 

[z0,z1] as:  

𝐶𝑠 = ∫ 𝐶𝑣
0𝑒−𝑘𝑧1

0
 =  

𝐶𝑣
0

𝑘
(1 −  𝑒−𝑘𝑧1) (6-2) 

where:  

𝑘 is the coefficient of the exponential function, and  

𝑧 is the soil depth [m]. 

The SOC stock (𝐶𝑠) [kg·m-2] for piecewise decline function characterizing the cultivated 
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fields with reduced tillage was calculated using two integrals as described in Chapter 4. The 

value of 𝐶𝑠 at 0-30 cm [z0,z0.3] was calculated as the integral of the linear decline function as:  

∫ 𝐶𝑣
0  ∙ (1 − 𝑏𝑧)𝑑𝑧 =  𝐶𝑣

0 ∙ ((𝑧1 −
𝑏(𝑧1)2

2
) − 1)

𝑧0.3

𝑧0

 

where: 

b is the trendline gradient. 

(6-3) 

The value of 𝐶𝑠 at 30-100 cm [z0.3,z1] was calculated as the integral of the exponential 

decline function to a depth of 30 cm as:  

∫ 𝐶𝑣
30  ∙  1.3𝑒−𝑘𝑧 𝑑𝑧 = 1.3 ∙

𝐶𝑣
30

𝑘
 ∙  (𝑒−𝑘𝑧0.3 − 𝑒−𝑘𝑧1)

𝑧1

𝑧0.3

 
(6-4) 

where: 

𝐶𝑣
30 is the volumetric SOC content at 30 cm depth, and 

1.3 is the y-intercept of the exponential function. 

According to information received from a local farmers’ association, most farmers in the 

catchment use some form of reduced tillage for maize production. However, ground-truthing 

this information was not possible, which on its own creates an additional level of uncertainty. 

This uncertainty was not assessed. 

6.2.3 Calculation of measurement error  

The total (propagated) measurement error (RMSE) for the determination of 𝐶𝑣
0 may be 

approximately calculated by a method commonly used in engineering, physics and chemistry 

(Harvey, 2000) as: 

RMSE(𝐶𝑣
0) =√𝐶𝑣

02
((

𝛿SOC

SOC̅̅ ̅̅ ̅̅ )
2

+ (
𝑅𝑀𝑆𝐸(𝑆𝑂𝐶)

SOC̅̅ ̅̅ ̅̅ )
2

+ (
𝛿𝜌𝑏

𝜌𝑏̅̅ ̅̅
)

2
+ (

𝛿𝑆𝑤𝑡

𝑆𝑤𝑡̅̅ ̅̅ ̅
)

2
) (6-5) 

where:   

SOC̅̅ ̅̅ ̅ is the mean of the three soil organic carbon measurements per sampling point using 

NIR spectroscopy, 
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𝛿SOC is the standard deviation of the three soil organic carbon measurements per 

sampling point using NIR spectroscopy, 

𝑅𝑀𝑆𝐸(SOC) is the RMSE of the NIR method to determine SOC (obtained from Chapter 5), 

𝜌𝑏̅̅ ̅  is the mean of the three bulk density measurements sampling point, 

𝛿𝜌𝑏 is the standard deviation of the three bulk density measurements, 

𝑆𝑤𝑡
̅̅ ̅̅̅ is the mean of the three gravimetric stone content measurements, and 

𝛿𝑆𝑤𝑡 is the standard deviation of the three gravimetric stone content measurements. The 

error for the determination of SOC stock (𝐶𝑠) using Eq. 6-2 was calculated as: 

RMSE(𝐶𝑠) = √𝐶𝑠
2 ((

𝑅𝑀𝑆𝐸𝐶𝑣
0

𝐶𝑣
0̅̅ ̅̅ )

2

+ 2 ∙ (
𝛿𝑘

k̅
)

2
) (6-6) 

where:  

𝑅𝑀𝑆𝐸(𝐶𝑣
0) is calculated in Eq. 6.5, 

𝐶𝑣
0̅̅̅̅  is the mean of the 𝐶𝑣

0 values, 

𝑘̅ is the mean of the 𝑘-values, and 

𝛿𝑘 is the standard deviation of the 𝑘-values.  

The cumulative error for the determination of SOC stock (𝐶𝑠) using Eqs. 6-3 and 6-4 was 

calculated as: 

RMSE(𝐶𝑠) = √𝐶𝑠
2 (2 ∙ (

𝑅𝑀𝑆𝐸𝐶𝑣
0

𝐶𝑣
0̅̅ ̅̅ )

2

+ 3 ∙ (
𝛿𝑘

k̅
)

2
+ (

𝛿𝑏

b̅
)

2
) (6-7) 

where: 

b̅ is the mean of the b-values, and 

𝛿𝑏 is the standard deviation of the b-values.  
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6.2.4 Digital soil organic carbon and error mapping 

All calculations and spatial interpolations were performed in R. During the spatial 

interpolation of 𝐶𝑣
0, 𝐶𝑠 and the propagated errors associated with 𝐶𝑠 determination, the 

relevant parameters were first calculated for each sample using Eqs. 6-1 to 6-7 and then 

interpolated. All maps were interpolated at 10 m resolution.  

Interpolations of 𝐶𝑣
0 and 𝐶𝑠 were done using random forest regression. The sample set 

was split into a 70 % training and 30 % validation set and a component-wise linear feature 

selection was used on all covariates. The number of covariates randomly tested at each split 

was optimised through 25 bootstrap resamples and the number of trees was held constant at 

2000 to obtain accurate covariate importance measures. The model was validated using the 

30% external samples and the out-of-bag (OOB) error.  

Interpolation of the errors associated with 𝐶𝑠 determination was performed through 

variogram analysis and universal kriging using only the 𝐶𝑣
0 as a covariate. A variogram function 

for each 𝐶𝑠 prediction was fit through residual maximum likelihood analysis and then kriged 

over the 𝐶𝑣
0 layer. 

Three maps of 𝐶𝑠 and their associated errors were developed. For each subsequent set of 

maps, the level of detail in the input parameters were increased to evaluate the effect on map 

accuracy and cumulative error. The input parameters and equations used for their 

determination are summarized in Table 6-2. 

Soil type and land use rasters, as well as the covariate layers used were developed at 10 

m resolution by T. Flynn for a yet unpublished digital soil mapping project in the study area 

which does not form part of this study. These rasters were developed using proprietary soil 

point data provided by Mondi Forests (Pty) Ltd and a 30 m digital elevation model (DEM) 

resampled from the ALOS-2 satellite as well as spectral 30 m grids from the Landsat 7 ETM+ 

satellite. All covariates were resampled to 10 m. A resolution of 10 m was used because it 

achieved a higher accuracy than the original 30 m data. The 44 covariates were used in the 

feature selection are presented in Table 6-2.
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Table 6-1. Summary of input parameters and equations used for the development of three maps of 𝑪𝒔 and its associated propagated errors. (LU – Land use; 
FO = Forestry; GL = Grasslands; CL = Croplands; n = number of samples; Eq. = Equation) 

 Map LU 
 Calculation of 𝐶𝑠 (Total n = 369)  Calculation of RMSE(𝐶𝑠) (Total n = 322) 

Name Eq. Input parameters  Name Eq. Input parameters 

1 

All  Map 

C1 

6-2 Single k-value: calculated as the mean k for all 

profiles 

 Map E1a 6-6 Single 𝑅𝑀𝑆𝐸(SOC) value for the NIR method for all 

values of SOC [%wt] 

 

      Map E1b 6-6 Different 𝑅𝑀𝑆𝐸(SOC) values for the NIR method 

for different range intervals [a,b] of SOC [%wt]    

2 FO  Map 

C2 

6-2 Single k-value: calculated as the mean k for forestry 

profiles 

 Map E2 6-6 As for Map E1b 

 GL  6-2 Single k-value: calculated as the mean k for 

grassland profiles 

 6-6 As for Map E1b 

 CL  6-2 Single k-value: calculated as the mean k for 

cropland profiles 

 6-6 As for Map E1b 

3  FO  Map 

C3 

6-2 Single k-value per group of soil types:  calculated as 

the mean k per group of soil types under forestry 

 Map E3 6-6 As for Map E1b 

 GL  6-2 Single k-value per group of soil types:  calculated as 

the mean k per group of soil types under 

grasslands 

 6-6 As for Map E1b 

 CL  6-3  Single b-value for the 0-30 cm interval: calculated 

as the mean b for reduced tillage profiles (obtained 

from Chapter 4) 

 6-7 As for Map E1b 

   6-4 Single k-value for 30-100 cm interval:  calculated as 

the mean k for reduced tillage profiles (obtained 

from Chapter 4) 

 6-7 As for Map E1b 
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Table 6-2. List of 44 covariates at 10 m resolution used in the feature selection. 

Covariate Covariate Covariate 

Analytical hillshading1 Land types SAGA wetness index 

Aspect1 Land use Saturation index 

Blue LS factor SAVI2  

Brightness index Mid slope position Sky view  

Catchment area MRRTF2 Slope 

Catchment slope MRVBF2 Slope height 

Colouration index NDVI2 SWIR2 

Convergence index Negative openness Terrain factor 

Convexity NIR2 Terrain position index 

DEM Normalised height Terrain ruggedness index 

Flow direction Plan curvature Terrain units 

Geomorphons Positive openness Valley depth 

Gradient Profile curvature Vector ruggedness measure 

Gradient difference Red Visible sky 

Green Redness index (Hematite)  

1 These covariates were placed into the component wise-linear feature selection 

2 MRRTF = multiresolution ridge top flatness, MRVBF = multiresolution valley bottom 

flatness, NDVI = normalized difference vegetation index, NIR = near-infrared, SAVI = soil 

adjusted vegetation index, SWIR = short-wave infrared 

6.3 Results and Discussion 

6.3.1 Grouping of exponential and linear coefficients of vertical SOC distribution 

The level of detail in Maps C1 to C3 was increased by increasing the specificity of k-values 

as a function of land use and soil type. The natural variation in profile SOC distribution could 

be captured by grouping k-values to either land use or soil type (Khalil et al., 2013; Ros Mesa, 

2015; Wiese et al., 2016). These values can then be related to spatial information of the 

particular feature. In Chapter 3 the k-values were ultimately grouped according to soil types 

and mapped accordingly (Wiese et al., 2016).  

In Chapter 4 it was shown that the accuracy of exponential SOC distribution functions 
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were improved by grouping k-values per land use for grasslands and croplands. In cultivated 

soils, however, the SOC concentration in the tillage layer is strongly affected by the relevant 

tillage practices (Liu et al., 2016; Meersmans et al., 2009; Stockfisch et al., 1999; 

VandenBygaart and Kay, 2004). As a result, the vertical SOC distribution models for croplands 

in Chapter 4 were further improved by developing piecewise SOC distribution functions for 

maize production under reduced tillage and conventional tillage.  

As indicated in Table 6-2, a single k-value was used for the entire catchment in Map C1 

and for Map C2 the k-values were grouped per land use. Figure 6-1a shows the land use map 

produced by T. Flynn that was used to relate mean k-values to forests, grasslands and 

croplands and Table 6-3 shows the lookup table with the respective k-values used per land 

use.  

For Map C3 the k-values for forestry and grasslands were further subdivided and grouped 

by soil types actually sampled in these land uses. K-means clustering applied to the k-values 

of 11 grassland profiles identified two distinct groups of soil types. The first group was a 

combination of Kp/Ia/Pn/Ma (Kranskop/Inanda/Pinedene/Magwa) and the second a 

combination of No/Gs/Ka (Nomanci/Glenrosa/Katspruit). Based on the k-means clustering 

results it was also possible to separate Ka soils into a third class. Considering that No and Gs 

soils are generally shallower soils with a lithocutanic B horizon, this may have been a good 

option. However, due to the overall low number of profiles, of which only two were Ka soils, 

it was opted to use only two groups. A T-test analysis at α=0.05 confirmed that the mean k-

values for the two groups were significantly different with P = 0.0066 (Table 6-3).  

Results of k-means clustering for k-values of 20 forestry profiles were less distinct, but 

good enough to enable the selection of two groups. It was clear that the k-values of Ma soils 

grouped well together, while Ia and Kp soils grouped together. The No grouped more towards 

the Ia/Kp group, with some profiles interspersed with the Ma soils. The selection of three 

groups was tested (based on the shallowness of the No soils) as Ma, No and Ia/Kp using t-test 

analysis, but there was no significant different between the means of the No and Ia/Kp groups. 

As a result, two groups of k-values were selected as Ma and Ia/Kp/No. T-test analysis 

confirmed the highly significant difference of the mean k-values between the groups with P = 

0.0013 (Table 6-3).  

Figure 6-1b shows the map of nine soil types produced by T. Flynn that was used to relate 

the k-values and b-values to soil types. However, profile data was only available for seven soil 
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types in grasslands and four soil types in forests. As a result, soil types in Figure 6-1b without 

measured k-values were termed “other” in Table 6-3 and assigned the mean k-value for the 

particular land use that was used in Map C2.  

 

 

Figure 6-1. Distribution of croplands, grasslands and forestry (a) and soil types (b) in the study 
catchment (Developed by T. Flynn). 

 

a 

b 
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Table 6-3. Lookup table used for the development of SOC stock maps showing the mean (𝒌̅ and 𝒃̅) and 
standard deviations (𝜹𝒌 and 𝜹𝒃) for the input parameters used in the calculation of SOC stocks. The 
t-test results show the significant differences between the soil type groupings for Grasslands and 
Forest at α=0.05. 

Land use Soil type 𝑘̅ 𝛿𝑘 𝑏̅ 𝛿𝑏 t-test 

Maps 1 and 2 

All land use  2.13 0.79    

Map 3 

Grassland  2.81 0.77    

Forest  2.13 0.7    

Cropland  1.59 0.48    

Map 4 

Grassland Kp/Ia/Pn/Ma 2.3 0.61   0.0066 

 No/Gs/Ka 3.41 0.43    

 Other 2.81 0.77    

Forest Ia/Kp/No 2.56 0.44   0.0013 

 Ma 1.61 0.6    

 Other 2.13 0.7    

Cropland All 1.96 0.48 0.81 0.31  

    

As indicated in Chapter 2, the main form of agriculture in the study area is maize 

production. During the field excursion it was evident that the majority of maize producers 

apply some form of reduced tillage. However, the specific tillage systems used is not known 

for all croplands in the study area. For the development of Map C3 the assumption was 

therefore made that all croplands in the catchment are cultivated using reduced tillage.  In 

Chapter 4 it was shown that the SOC distribution in soils under reduced tillage follow a 

piecewise distribution with a linear decline in the top 30 cm and an exponential decline from 

30-100 cm. For Map C3 the croplands were therefore assigned single values for the linear and 

exponential decline coefficients (b and k) (Table 6-3) which were obtained from Chapter 4.  

6.3.2 Calculation of error propagation 

The error calculation for the determination of SOC stocks (𝐶𝑠) incorporated the 

measurement error of the (𝑅𝑀𝑆𝐸(𝐶𝑣
0)) and the error for the determination of SOC stock that 
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used the vertical distribution coefficients. In Chapter 5 it was shown that, when SOC [%wt] is 

analysed using the NIR partial least squares model with single-measurement SOC values 

obtained from dry combustion (DC) as reference method, the results are highly 

heteroscedastic. This was demonstrated by splitting the range of SOC values analysed by DC 

into a range of intervals [a,b] of increasing range and calculating the RMSE of the NIR analysis 

for each range. Due to the heteroscedasticity of the data, the RMSE increases with an increase 

in SOC content as illustrated in Table 5-3. 

As shown in Table 5-3, the mean RMSE for the full dataset is 0.68. However, when splitting 

the dataset into intervals, it shows that for several smaller intervals the RMSE is well below 

the mean. Therefore, Table 6-4 was used as a lookup table for the calculation of RMSE(𝐶𝑠) in 

the development of error Map 2 to determine whether increasing the level of detail of RMSE 

would reduce the overall error of the SOC stock determination.  

Table 6-4. Lookup table for the RMSE of the [a,b] intervals of the calibration/cross-validation range 
of single SOC content measurements with DC and NIR PLS model. (a = lower limit of the range; b = 
upper limit of the range; μ = mean SOC % for the range; n = number of samples). 

a b μ n RMSE 

All    0.68 

0.135 0.225 0.18 4 0.19 

0.225 0.375 0.30 5 0.44 

0.375 0.625 0.50 15 0.70 

0.625 1.042 0.83 30 0.47 

1.042 1.736 1.39 37 0.50 

1.736 2.893 2.31 89 0.67 

2.893 4.822 3.86 107 0.56 

4.822 8.037 6.43 19 0.62 

8.037 13.396 10.72 84 0.93 

13.396 22.326 17.86 7 1.03 

 

Other methods to determine the combined error more accurately, particularly in the 

presence of interactions between parameters (i.e. between SOC content and bulk density) 

Stellenbosch University  https://scholar.sun.ac.za



 

86 
 

(Elamir and Seheult, 2004; Goodman, 1960) may be used (Goidts et al., 2009). This would have 

been useful if the techniques of measuring the variables in Eq. 6-5 were to be further 

improved. Since such a task is beyond the scope of this work, it was decided to simply assess 

the error of 𝐶𝑣
0 measurements from three sample replications rather than through error 

propagation from determination of individual parameters. 

Error propagation method was used to assess the precision of the SOC stocks, which could 

not have been done otherwise and clearly separates the contribution of the 𝐶𝑣
0  

measurements and the vertical distribution model towards overall spatial precision. 

6.3.3 Interpolation of surface volumetric SOC content (𝑪𝒗
𝟎) 

The SOC content in the 996 samples determined by NIR spectroscopy ranged from a 

minimum of 1.91 % to a maximum of 22.78 % (µ = 9.01 % C). In Chapter 5 the limit of detection 

and limit of quantification for the NIR method were estimated as 0.45 % and 1.38 % carbon 

respectively. Therefore, all the estimates in this study fall sufficiently above the limits of the 

analysis method.  

The values of 𝐶𝑣
0 calculated using Eq. 6-1 ranged from 18.79 kg·m-3 to 191.92 kg·m-3 with 

a mean of 65.78 kg·m-3. The 𝐶𝑣
0 values per land use were compared using a T-test to test for 

significant differences between the means. The results in Table 6-5 show that the mean for 

croplands (n = 88) was highly significantly different from the means of forestry (n = 698) and 

grasslands (n = 210), but there was no significant difference between the means for forestry 

and grasslands. Table 6-5 also shows the means and standard deviations of 𝐶𝑣
0 for each of the 

land uses. 

Table 6-5. Mean and standard deviation of the volumetric SOC content [kg·m-3] in the surface samples 
under different land uses indicating significant differences between the means based on a Student’s 
t-test for α=0.05. (FO = Forestry [n = 698]; GL = Grassland [n = 210]; CL = Cropland [n = 88]) 

 
FO 67.6 ± 23 GL 68.4 ± 22.6 

GL 68.4 ± 22.6 0.6204 
 

CL 45.3 ± 18.6 < 0,0001 < 0,0001 

 

The interpolated map of 𝐶𝑣
0 values across the study area is shown in Figure 6-2, including 

the locations of the 369 samples used for the interpolation. According to the OOB calculated 

during validation of 30% external samples, the model explained 59% of the variance. 
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Statistically the map has an R2 of 72, RMSE of 13.41 and Bias of 1.63. The covariates used in 

the interpolation are shown in Table 6-6 in order of importance.  

Table 6-6. Covariates used in the interpolation of the surface volumetric SOC values (𝑪𝒗
𝟎) in order of 

importance. 

Rank Covariate Rank Covariate 

1 DEM 9 Gradient 

2 Valley depth 10 SWIR 

3 Terrain view 11 Blue 

4 Vector ruggedness index 12 LS factor 

5 Negative openness 13 Positive openness 

6 Convergence index 14 Geomorphon 

7 Coloration index 15 Terrain ruggedness index 

8 Gradient difference 16 MRVBF 

 

 
Figure 6-2. Interpolation result of the surface volumetric SOC values (𝑪𝒗

𝟎) (kg·m-3) within the upper 
5cm depth interval at 369 surface locations using random forest regression in R.  

 

R2 = 0.72 
RMSE = 13.41 
Bias = 1.63 
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6.3.4 Soil organic carbon stocks and associated errors 

Calculation of the SOC stocks done for the first meter of soil without taking into 

consideration actual soil depth <1 m. This decision was made based on both pragmatic and 

theoretical considerations. All the cultivated areas in the catchment are located on deep soils, 

while the spatial distribution of shallow soils in the forestry and grassland areas is difficult to 

predict. Attempts to do so with the analysis of the detailed (1:10 000) soil maps (used in 

Chapter 3) available for Mondi Forest plantations within the catchment so far yielded very 

poor results with R2 below 0.5. Soil depth is also mostly characterized by very coarse 

measurements recorded in the data set as 30 cm increments (30, 60, 90, >120 cm). The use of 

these values would introduce additional uncertainty if the depth to bedrock indeed prohibited 

root penetration into and carbon accumulation in the fractured rock. 

The theoretical considerations for keeping the model depth to 1m were based on the 

understanding that roots would be the main source of SOC in deeper soil layers (Hütsch et al., 

2002). The occurrence of roots in fractured shale, which dominates the landscape of the study 

catchment will not be restricted by the Effective Soil Depth (ERD) indicated in the Mondi data 

set, since root penetration of both grasslands (Nippert and Holdo, 2015) and forest plantation 

genera (pine, eucalyptus and wattle) will exceed the 1m depth even in shallow soils (Harper 

and Tibbett, 2013; Laclau et al., 2013; Schenk, 2008; Schenk and Jackson, 2005). While the 

presence of fractured rock does restrict manual excavation, it has much less effect on the 

penetration of tree roots (Ficarelli et al., 2003; Hubbert et al., 2001; Schwinning, 2010; 

Zwieniecki and Newton, 1995). Here it is assumed that the exponential decline model will 

adequately describe the SOM behaviour as the transition occurs from fine-earth sediment into 

the fractured rock within the 1 m depth. 

The interpolated map of 𝐶𝑣
0 (Figure 6-2) was used as an additional covariate in the 

development of maps for 𝐶𝑠 (Maps C1 to C3) and the only covariate for the interpolation of 

RMSE(𝐶𝑠) (Maps E1a to E3). The covariates used in the interpolation of Maps C1 to C3 are 

shown in Table 6-7 in order of importance, and their map interpolation statistics are given in 

Table 6-8. Map C1 and its associated error maps (E1a and E1b) are shown in Figure 6-3; Maps 

C2 and C3 and their associated error maps (E2 and E3) are shown in Figure 6-4 and Figure 6-5 

respectively. 
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Table 6-7. Covariates used in the interpolation of the SOC stock (𝑪𝒔) in order of importance for Maps 
C1 to C3. 

Rank Map C1 Map C2 Map C3 

1 Cv0 Cv0 Cv0 

2 DEM DEM LS factor 

3 Negative Openness Negative openness DEM 

4 Valley Depth LS factor Negative openness 

5 VRM Profile curvature Valley depth 

6 Profile curvature MRVBF RI 

7 LS factor VRM VRM 

8 RI Valley depth Aspect 

9 MRVBF MRRFT NIR 

10 MRRTF RI CI 

11 Aspect CI Profile curvature 

12 CI Aspect MRVBF 

13 NIR NIR MRRTF 

 

Table 6-8. Summary of map interpolation statistics for Maps C1 to C3. 

Map R2 RMSE [kg·m-2] Bias 

C1 0.86 5.75 1.28 

C2 0.77 6.03 1.23 

C3 0.64 7.79 0.76 

 

From Table 6-8 there are two important results to consider. Firstly, the results show that 

an increase in the detail of input parameters used to model SOC stocks in the first 1 m of soil 

leads to a clear decrease (41 %) in the bias (from 1.28 in Map C1 to 0.76 in Map C3). This 

indicates that improved modelling of the SOC stocks results in increased accuracy of the 

resulting SOC stock maps and is supported by the simultaneous decrease in the propagated 

error of SOC stock determination (RMSE(Cs)).
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Figure 6-3. Map of SOC stock (𝑪𝒔) [kg·m-2] in the upper 1 m of soil determined using a single k-value 
for the entire catchment (Map 1) (a) and the associated propagated measurement and prediction 
errors (RMSE(𝑪𝒔)) [kg·m-2] calculated using a single value of 𝑹𝑴𝑺𝑬(𝑺𝑶𝑪) for the entire catchment 
(Map E1a) (b), and using different values of 𝑹𝑴𝑺𝑬(𝑺𝑶𝑪) based on different range intervals of SOC 
[%wt] (Map E1b) (c).     

a 

b 

c 
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Figure 6-4. Map of SOC stock (𝑪𝒔) [kg·m-2] in the upper 1 m of soil determined using a single k-value 
per land use (Map 2) (a) and the associated propagated measurement and prediction errors 
(RMSE(𝑪𝒔)) [kg·m-2] calculated using different values of 𝑹𝑴𝑺𝑬(𝑺𝑶𝑪) based on different range 
intervals of SOC [%wt] (Map E2) (b). 

 

a 

b 
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Figure 6-5. Map of SOC stock (𝑪𝒔) [kg·m-2] in the upper 1 m of soil determined using k-values 
differentiated per soil type (in forests and grasslands) and a piecewise distribution function in 
croplands (Map 3) (a) and the associated propagated measurement and prediction errors (RMSE(𝑪𝒔)) 
[kg·m-2] calculated using different values of 𝑹𝑴𝑺𝑬(𝑺𝑶𝑪) based on different range intervals of SOC 
[%wt] (Map E3) (b). 

a 

b 
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On the other hand, the same increase in input parameters results in a decrease in the map 

R2 (from 0.86 in Map C1 to 0.64 in Map C3) and an increase in the RMSE (from 5.75 in Map C1 

to 7.79 in Map C3) which in turn indicates a decrease in map precision. To investigate this 

further, the results from the error estimates in Maps E1a to E3 were analysed relative to the 

SOC stock maps (Maps C1 to C3) to determine the relative RMSE [%] as summarized in Table 

6-9 and presented form Maps E1a and E3 in Figure 6-6.  

Table 6-9. Relative RMSE [%] calculated from Maps E1a to E3 for the prediction of SOC stocks in the 
catchment, shown as the minimum, maximum, mean and standard deviation (δ) for each map.  

Error Map 
Relative RMSE [%] 

Minimum Maximum µ δ 

1a 28.0 102.1 56.6 6.2 

1b 29.7 86.8 52.8 4.5 

2 15.6 76.5 45.6 5.2 

3 4.9 104.9 38.2 9.6 

 

The progression of relative RMSE from Map E1a to E3 shows the narrowing of mean 

relative error across the quaternary catchment along with the increase of input detail. Both 

RMSE and relative RMSE are high around the Mvoti vlei – the protected wetland surrounded 

by grasslands, which was not sampled. This area borders on private farms with maize fields, 

fallow lands and pastures. The spatial pattern of these land uses also leads to high uncertainty 

due to patchiness and complexity of the land cover. Although very high carbon stocks are 

predicted for this area, the error of these predictions is close to 100 % (Figure 6-6). No matter 

how accurately the models are adjusted to land use and soil conditions, this error associated 

with spatial variability is persistent and carries across from Map C1 to C3. This error is primarily 

associated with low density of surface sampling and 𝐶𝑣
0 determination resulting in large 

interpolation errors. A significantly higher sampling density would be required for farm-scale 

carbon accounting to reduce the uncertainty compared to the sampling density used for the 

whole sub-catchment used in this study.  
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Figure 6-6. Relative RMSE [%] for Maps E1a (a) and E3 (b). 

6.4 Conclusions 

The overall accuracy (R2 = 86; bias = 1.28) and precision (RMSE = 5.75) of the map 

generated using a single k-value for the entire catchment were considered acceptable for a 

general assessment of carbon stocks in the first 1 m of soil and visualisation of their 

distribution at the scale of the study quaternary catchment covering 317 km2. This level of 

accuracy and precision was achieved using 322 triplicate sampling locations and 47 single 

sampling locations randomly distributed across the catchment, together with a single generic 

SOC vertical distribution function for the entire catchment. The associated error for this 

a 

b 
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generic prediction of SOC stocks was improved when applying a sliding scale of the 

RMSE(𝑆𝑂𝐶) based on different range intervals of SOC [%wt] content.  

For the studied catchment dominated by forest plantations and native grasslands, 

increasing the level of input detail in terms of the SOC vertical distribution functions applied 

from a single generic function for the entire catchment to to functions differentiated by land 

use and soil grouping improved the map precision. In addition, a strong improvement in the 

accuracy of SOC stocks was observed with the decrease in bias. Still, the relative error mostly 

exceeds 20 % which may be seen as unacceptably high for carbon accounting and trade 

purposes, and the SOC stock accuracy decreases in terms of R2 and RMSE.  

The increase in precision (decreasing relative RMSE) and partial increase in accuracy 

(decreasing bias) show potential for the increase in overall accuracy of SOC predictions by 

increasing the R2 and RMSE. These results are especially positive in terms of the progressive 

increase in complexity associated with transition from applying single to differentiated SOC 

vertical distribution functions and shows the need for a substantial increase in sampling 

density to maintain or increase the accuracy while increasing precision. This would include an 

increase both in surface samples for the determination of 𝐶𝑣
0, as well as an increase in the 

sampling of profiles to include more soil types and improve the vertical SOC distribution 

models used as input for SOC stock prediction.  
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7 General Conclusions 

For soils characterized by a mean exponential decline in SOC content with depth, 

normalization of the volumetric SOC (Cv) vertical distribution curve by the volumetric SOC 

content at the surface (0-5 cm) (𝐶𝑣
0) allowed isolation of the rate of SOC decline for several 

groups of soils in the study catchment. The rate of SOC decline was expressed as the k 

coefficient specific to each group. The confidence level for k coefficients was numerically 

characterized by standard deviation, and in combination with the measured 𝐶𝑣
0 value may be 

used for mapping and monitoring carbon stocks over large areas where land use and soil type 

information is available. Since the 𝐶𝑣
0 values were measured, the uncertainty in SOC stock 

predictions was largely associated with the 𝐶𝑣
0 measurement error, the standard deviation of 

k values, the density of 𝐶𝑣
0 observations and their interpolation. It was shown that the two 

independent variables of the volumetric carbon content at the soil surface (𝐶𝑣
0) and the 

coefficient k were sufficient for predicting and mapping soil carbon stocks in the areas covered 

by soil survey. 

The vertical distributions of SOC stocks under grasslands and croplands with three 

different types of tillage systems were successfully modelled to a depth of 1 m. For on-farm 

SOC accounting, a small number (<10) of individual soil profile observations per land use (in 

this case 8) to a depth of one meter was sufficient to develop a robust model of mean vertical 

normalized SOC (Cvs) distribution for stable land use systems practiced for more than 10 years. 

The vertical distribution of SOC stocks normalized by 𝐶𝑣
0 may be described with a continuous 

exponential function in the native grasslands of the study area, as well as in the adjacent fields 

cultivated using a no-till mixed cattle/maize production system.  

In the case of reduced and conventional (full) tillage systems, piecewise functions 

separately describing the vertical distribution of SOC stocks normalized by the 𝐶𝑣
0 for the 

plough layer and deeper layers were better suited for predicting SOC stocks compared to a 

single exponential function. In the case of reduced tillage, a linear decline function may be 

used for predicting the SOC stocks in the plough layer (0-30 cm). For conventional tillage the 

mean vertical SOC stock distribution throughout the plough layer may be approximated to a 

constant value equal to the value at the soil surface (0-5 cm).   

It was shown that for all the studied land use systems, irrespective of specific soil type, 

the vertical distribution of soil organic carbon stocks in the first meter of soil may be 

successfully predicted with varying degrees of accuracy from only sampling the 0-5 cm 
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increment to determine bulk density, volume of stones (>2 mm fraction) and SOC content in 

the <2 mm fraction. 

The SOC analysis by dry combustion showed good accuracy and precision for estimating 

the mean from triplicate SOC determination in 12 samples with SOC % ranging from 0.75 to 

17.13. The relative standard deviation (δ) remained below 10 % throughout the range. The 

RMSE for eleven triplicate determinations after outlier removal was 0.10 % C. Although the 

stated instrument precision is 0.01 % C, it cannot be used as an estimation of the method 

precision as a whole without considering the variation in the analyte composition, errors of 

weighing the subsample, etc., which impose their own restrictions on the overall method 

characteristics. The higher than expected level of error should be taken into account for use 

of natural soil samples as reference material for comparison of different analytical methods. 

It was therefore concluded that, for comparison of different analytical methods, multiple 

replicates (at least three) of natural soil reference samples should be analysed using the 

reference method to determine the “true” value of analyte as the mean value.  

Both wet oxidation using the Walkley and Black (1934) method and the SOC determination 

with the PLS regression model based on NIR spectroscopy have shown substantially worse 

results compared to the dry combustion method. The error of predicting the mean SOC 

concentration determined by the Walkley and Black method showed good reproducibility of 

results and was comparable to that of the dry combustion method. The accuracy was variable 

with the slope of linear regression (conversion factor) varying between 1.10 and 1.27 

depending on the regression optimization method and was below the commonly used generic 

conversion factor of 1.32. Predicting the dry combustion SOC from Walkley Black SOC 

determinations using paired single observations yielded rather poor results with a regression 

slope (conversion factor) of 1.1835. The regression between single observations (without 

replication) of dry combustion SOC versus corrected Walkley Black SOC values showed an R2 

= 0.8699 and an RMSE = 0.47. For the analysis of non-replicated paired samples using the 

corrected Walkley Black SOC method, the relative RMSE practically never fell below 10 %, 

rendering the method as semi-quantitative across the analyte range. Therefore, it was 

concluded that the variable accuracy (correction factor) of the Walkley Black method poses a 

serious challenge for its use in carbon accounting.  

The analysis of means from triplicate SOC determination has shown reasonable accuracy 

and precision of SOC detection with NIR spectroscopy across the wide range of values, though 

inferior to dry combustion method. A small deviation from the 1:1 regression line (1.04) with 
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R2 = 0.99 and RMSE = 0.42 % SOC. The model also showed the relative RMSE below 20 % (and 

in 78 % of observations – below 10 %) of measured values, which may be seen as acceptable 

for some applications. The NIR method accuracy deteriorated when comparing analyses of 

single measurements with DC and NIR, with R2 = 0.95, 1:1 correspondence between the paired 

values, and an RMSE = 0.68. The relative RMSE for the SOC NIR method analysis of non-

replicated paired samples only fell below 10 % for values above ~8 % SOC. It was therefore 

concluded that for method comparison, analysis of the reference samples using the NIR 

method should be replicated at least three times. 

Considering the fact that carbon accounting also requires error reporting, it was further 

concluded that the common practice of using paired samples with single determination 

(without replication) of dry combustion SOC for NIR model calibration and (cross) validation 

should be abandoned in favour of finding the mean values for the calibration/validation sets 

using at least three replicates. The common practice of single determinations, which is mostly 

justified by financial constraints, substantially decreases the model precision and reduces the 

range of quantitative SOC determination. 

The level of input detail in terms of the vertical distribution functions used to predict SOC 

stocks in the catchment affected the accuracy and precision of the resultant SOC stock maps, 

as well as the associated propagated errors. Using a single k value for all land uses to predict 

the SOC stock resulted in the highest accuracy based on map R2 values, but lower accuracy 

based on map bias compared to using functions differentiated by land use and soil grouping. 

On the other hand, SOC stock map precision (RMSE) was improved with an increase in detail 

by using differentiated SOC distribution functions. However, the relative error mostly 

exceeded 20 %, even when using differentiated SOC distribution functions, which may be 

unacceptably high for carbon accounting, trade and taxation purposes.  

It was concluded that the observed increase in SOC stock map precision (decreasing 

relative RMSE) and partial increase in accuracy (decreasing bias) obtained by using 

differentiated SOC distribution functions show potential for the increase in overall accuracy 

of SOC predictions by increasing the R2 and RMSE of resultant maps. The observed results 

suggest the need for a substantial increase in sampling density to maintain or increase the 

map accuracy while simultaneously increasing precision. Increased sampling density would be 

necessary in the sampling of profiles to include more soil types and improve the vertical SOC 

distribution models used as input for SOC stock prediction, as well as an increase in surface 

samples per land use or soul grouping for the determination of 𝐶𝑣
0. 
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