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Abstract

Reactive systems are event driven state machines which usually do not terminate, but remain
in perpetual interaction with their environment. Such systems usually interact with devices
which introduce a high degree of concurrency and some real time constraints to the system.
Because of the concurrent nature of reactive systems they are commonly implemented as
communicating concurrent processes on one or more processors. Jeffay introduces a design
paradigm which requires consumer processes to consume messages faster than they are pro-
duced by producer processes. If this is guaranteed, the real time constraints of such a system
are always met, and the correctness of the process interaction is guaranteed in terms of the
message passing semantics. I developed the ESE kernel, which supports Jeffay systems by
providing lightweight processes which communicate over asynchronous channels. Processes
are scheduled non-preemptively according to the earliest deadline first policy when they have
messages pending on their input channels. The Jeffay design method and the ESE kernel
have been found to be highly suitable to implement embedded reactive systems. The general
requirements of embedded reactive systems, and kernel support required by such systems, are
discussed.
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Opsomming

Reaktiewe stelsels is toestandsoutomate wat aangedryf word deur gebeure in hul omgewing.
So ’n stelsel termineer gewoonlik nie, maar bly in 'n voortdurende wisselwerking met toestelle
in sy omgewing. Toestelle in die omgewing van 'n reaktiewe stelsel veroorsaak in die algemeen
'n hoé mate van gelyklopendheid in die stelsel, en plaas gewoonlik sekere intydse beperkings
op die stelsel. Gelyklopende stelsels word gewoonlik as stelsels van kommunikerende prosesse
geimplementeer op een of meer prosessors. Jeffay beskryf 'n ontwerpsmetodologie waarvolgens
die ontvanger van boodskappe hulle vinniger moet verwerk as wat die sender hulle kan stuur.
Indien hierdie gedrag tussen alle pare kommunikerende prosesse gewaarborg kan word, sal die
stelsel altyd sy intydse beperkings gehoorsaam, en word die korrektheid van interaksies tussen
prosesse deur die semantiek van die boodskapwisseling gewaarborg. Die “ESE” bedryfstelsel-
kern wat ek ontwikkel het, ondersteun stelsels wat ontwerp en geimplementeer word volgens
Jeffay se metode. Prosesse kommunikeer oor asinkrone kanale, en die ontvanger van die
boodskap met die vroegste keertyd word altyd eerste geskeduleer. Jeffay se ontwerpsmetode en
die “ESE” kern blyk in die praktyk baie geskik te wees vir reaktiewe stelsels wat as substelsels
van groter stelsels uitvoer. Die vereistes van reaktiewe substelsels, en die kernondersteuning

wat daarvoor nodig is, word bespreek.
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Chapter 1

Introduction

The proliferation of cheap microprocessors over the past decade has led to a trend of distribut-
ing intelligence in a computer system, and to embed intelligent applications in subsystems.
Integrated single chip and chip set solutions has made it cheap and easy to produce rela-
tively powerful embedded and stand-alone platforms. These platforms are used in a variety
of applications: from bus expansion cards, such as intelligent communications controllers, to

stand-alone devices such as process controllers and hand held computers.

The intelligence available in embedded platforms, today, facilitates very powerful embedded
applications. At the same time, economical considerations often dictate that commercial and
industrial systems be built on the cheapest possible platform. This usually results in a less
powerful processor, and less memory, than the software engineer would have preferred. In
contrast, operating systems are becoming more complex, and small embedded platforms can

often not support their resource requirements.

An embedded system usually interacts with devices in its environment. Such devices often
introduce real-time constraints on the device drivers controlling them. By real-time we mean
that the correctness of the system depends on its processing of certain events within 2 known
interval, in other words: before a deadline. In some real-time systems a missed deadline may
have catastrophic resuilts. Such systems are usually called hard real-time systems. Examples
of hard real-time systems are on-board flight control systems, medical control systems, etc.
Other real-time systems can recover from missed deadlines, and are know as soft real-time
systems.

Pnueli [45] describes two basically different views of computerised systems. The first, called
transformational systems, refers to systems which accept their inputs at the beginning of
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their operation, and yield their outputs at termination. The second, called reactive syatems,
are systems which typically don’t terminate, but remain in perpetual interaction with their
environment. Reactive systems are not used to obtain a final result, but rather to control
ongoing processes. Embedded systems are often reactive systems.

1.1 The subject of this thesis

Small commercial and industrial embedded systems are often built onr uniprocessor platforms.
The processor and RAM resources of these platforms usually do not permit the use of so-
phisticated state of the art operating systems, but their reactive nature is best supported as
a system of communicating processes. Furthermore, these systems interact with devices, and
therefore often have real-time constraints.

The purpose of this study is to find a design and implementation methodology which is
suitable for the type of systems described above. The implementation strategy should ensure
that the temporal correctness of a design is preserved in its implementation.

1.2 Outline of this thesis

This chapter introduces the concepts of real-time, embedded and reactive systems, and de-
scribes the subject of the thesis,

Chapter 2 describes the state of the art in real-time scheduling techniques, operating systems
and design and analysis methods. One method is chosen for an experimental implementation.

Chapter 3 summarises the RT/PC paradigm: a design and analysis method for real-time
systems. The paradigm, its graphical design notations, scheduling results, and realisability
analysis are described.

Chapter 4 examines the design, features and performance of the ESE kernel, which supports
implementations of RT/PC designs.

Chapter 5 describes the design, analysis and implementation of a real system. The RT/PC
method is used to design the system, which is then implemented on an embedded ESE kernel.

Finally, chapter 6 discusses the conclusions drawn from using RT/PC and the ESE kernel in
practice.
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Chapter 2
Background

In chapter 1, the goal of this study was stated to be an investigation into a design and imple-
mentation methodology, which is appropriate for uniprocessor based embedded systems. We
also saw that the concepts of real-time and reactive systems are pertinent to this study. The
implementation of embedded systems, on the target platforms in which we are interested, will
require specific kernel support for reactive, real-time systems. To understand the background
to this study we must therefore survey the literature pertaining to real-time scheduling, re-
active and embedded systems, analysis and modeling techniques for real-time systems, and

operating system support for real-time systems,

2.1 Scheduling algorithms for multiprogramming in a hard-

real-time environment

This was also the title of a landmark paper by Liu and Layland {39] in 1973, in which
the authors compared two preemptive priority scheduling techniques: a fixed priority and a
dynamic priority scheduling algorithm. In the fixed priority algorithm, priorities are assigned
to tasks according to the rate monotonic priority assignment method. In the dynamic priority
algorithm, the priority of a task is determined by its deadline. Liu and Layland’s results are
for periodic tasks scheduled on a uniprocessor, and tasks are independent. That is, requests
for a certain task do not depend on the initiation or completion of requests for other tasks.
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2.1.1 Rate monotonic scheduling

Let 7 = {T1,T3,...,Tm} be a set of m periodic tasks. Let each task T; = (c;,p;) be char-
acterised by its execution cost, ¢;, and its request period, p;. The request rate r; of a task
is the reciprocal of its request period, and represents the frequency at which the task must
be scheduled. A iate monotonic priorily assignment to T implies that for all T;,T; € 7, the
priority assigned to T is higher than the priority assigned to Tj iff p; < p;. Liuz and Layland
proved that the rate monotonic priority assignment is optimal in the sense that if a feasible
priority assignment exists for a task set, the rate monotonic priority assignment is feasible for
that task set.

Definition 1 A feasible set of tasks can be scheduled on a uniprocessor in such a way that
every execulion request of every task is guaranteed to have completed ezecution at or before
its deadline.

Definition 2 An optimal scheduling discipline can correctly schedule any task set that
is feasible.

Liu and Layland defined a processor utilisation factor, U; = ,—f’;e, for tasks. The total processor
utilisation for a set of tasks is given by )

For a given fixed priority scheduling algorithm, the least upper bound of the utilisation factoris
the minimum of the utilisation factors over all task sets that fully utilise the processor. If the
utilisation factor of a task set is below this bound, there exists a feasible priority assignment
for it. If the utilisation factor of a task set is above the least upper bound, it is feasible only
if the request periods of its tasks are related suitably. Liv and Layland proved that the least
upper bound of the utilisation factor for a fixed priority assignment is

U < m(2= - 1),

and for large m
U =~in2=0.69

Liu and Layland’s original work has been extended significantly. Dhall and Liu [14], for
example, studied the performance of the rale monolonic first fit and rate monotonic next
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fit scheduling algorithms for multiprocessor systems. Sha and Goodenough [50] discuss rate
monolonic analysis and give necessary and sufficient feasibility conditions for task sets which
exceed the least upper bound for fixed priority processor utilisation. They also discuss how
aperiodic tasks can be supported, and give a sufficient feasibility condition for tasks which
synchronise.

When tasks which are scheduled according to the rate monotonic algorithm synchronise, i.e.
the requests for a certain task may depend on the initiation or completion of requests for
other tasks, a situation called priorily inversion arises. Priority inversion occurs when tasks
with different priorities come into contention for a shared resource, and a higher priority task
is blocked by a lower priority task. Davari and Sha [12] examine common sources of priority
inversion and outline a number of solutions to the problem.

The rate monotonic scheduling algorithm is popular today for scheduling sets of tasks with
hard real-time constraints [36, 60, 6], and rate monotonic analysis can be used in conjunction
with other scheduling algorithms [6].

2.1.2 Deadline driven scheduling

The effect of using a deadline driven scheduling algorithm is to dynamically adjust the priori-
ties of tasks according to their deadlines. For a periodic task set Liu and Layland [39] derived
the following necessary and sufficient feasibility condition for a deadline driven scheduling
algorithm:

For a given set of m periodic tasks, the deadline driven scheduling algorithm is
feasible if and only if

3

<1
=1 Pi

This means that the least upper bound for processor utilisation is uniformly 100%. Two
deadline driven algorithms are commonly used:

1. The least slack first algorithm selects the task with the least amount of slack before its
deadline. The difference between the remainder of a task’s period (before its deadline)
and its computational cost is known as its slack. This algorithm has been proved to be

optimal for uniprocessor systems [37].
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2. The earliest deadline first algorithm selects the task with the earliest deadline to be
executed next. This algorithm has been proved to be optimal for both uniprocessor and

multiprocessor systems [37).

Deadline driven scheduling is optimal for both periodic and aperiodic tasks [8, 28, 9, 39]. Jeffay
[28] proved necessary and sufficient feasibility conditions for preemptive and non-preemptive
earliest deadline first scheduling of periodic and aperiodic tasks on a uniprocessor.

2.1.3 Hybrid scheduling algorichms

Hybrids of fixed and dynamic priority algorithms are used for many reasons. Liu and Layland
[39] observed that interrupt controllers impose a static priority assignment on interrupt events,
even when deadline driven scheduling is used. Processor utilisation cannot be 100% for mixed
scheduling algorithms, but on average can be much higher than the least upper bound of the
processor utilisation for fixed priority schedulers [39].

In rate monotonic schedulers the priority of critical tasks may be temporarily adjusted to
accommodate transient overload conditions [50]. Miller [43] cites the necessity to have func-
tional prioritisation in the presence of deadline scheduling. Schwan and Zhou [49] describe a
preemptive earliest deadline first scheduler which performs dynamic feasibility analysis when
a task request is received. Since all deadlines cannot be guaranteed in this environment a
seconGary metric, called criticalness is used to determine which task is scheduled when two
tasks cannot simuitaneously meet their deadlines.

Because deadlines must be met in the worst case behaviour or hard real-time systems, anal-
ysis of hard real-time systems is usually based on the theoretical worst case behaviour of the
system. The average case behaviour may differ significantly from the worst case, and if sched-
ules are computed based on worst case, under utilisation of resources may result. Haidware
and software monitors may be used to measure the real-time behaviour of real-time systems,
and adapt the scheduling policy accordingly. Haban and Shin [19] describe issue. relating
to real-time monitoring, and their experience with using a hardware monitor, while Kenny
and Lin [30] describe software monitoring in the Flex language and C++4. Some real-time
operating systems include monitors to improve average system performance [58].
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2.1.4 Run-time vs. pre-run-time scheduling

Because it is imperative for a hard real-time system to meet its deadlines, task schedules for
hard real-time systems are sometimes computed before run-time. A very simple run-time
scheduler is then used to select the next task from the pre-calculated schedule. Scheduling
a task set before run-time can reduce the run-time scheduling overhead, because feasibility
analysis is not done when the task is scheduled, and it ensures that a feasibie schedule exists
before the task set is run. This approach is called pre-run-time scheduling, or static scheduling.
Another approach is run-time or dynamic scheduling, where the schedule for a task set is
calculated as task requests arrive. Except for a closed task set, run-time scheduling implies
that feasibility analysis is required when a task request arrives. Burns [5] reviews current

scheduling techniques for hard real-time systems.

Xu and Parnas [65)] argue that pre-run-time scheduling is essential to guarantee that a system
will meet all its timing constraints. In their experience most tasks in a hard real-time environ-
ment are periodic, and any asynchronous (aperiodic) task can be translated into an equivalent
periodic task. For instance, let T, = (¢, ps,daj ve an asynchronous task, with ¢, the worst
case computational cost, p, the minimum period between successive requerts for T, and d,
its deadline. T, can be translated {65] into an equivalent periclic task, T, = (ry, cp, Pps dp),
with release time r, = 0, computational cost ¢, = ¢,, deadline d, > dp > ¢, period
pp < min(d, — dp + 1,p.). In this way it is possible to schedule asynchronous tasks us-
ing pre-run-time scheduling. Xu and Parnas [64] give a pre-run-time scheduling algorithm for
processes with release times, deadlines, precedence and exclusion relations. Shepard [53] gives
a pre-run-time multiprocessor scheduling algorithm for the same class of processes. The origi-
nal algorithm by Xu and Parnas was later also extended by Xu [63] to include multiprocessor

architectures.

Schwan and Zhou [49] argue that dynamic hard real-time systems, in their experience, have
to cope with unexpected sporadic (aperiodic) processes with hard deadlines. A schedule
of periodic tasks computed pre-run-time cannot adapt adequately to frequent unexpected
task requests with hard deadlines. Such task sets should be scheduled dynamically, but this
means that a feasible executing task set may be rendered infeasible by the arrival of a new
task request. Run-time feasibility analysis is therefore required before a new task request can
be scheduled. Schwan and Zhou present a preemptive earliesi deadline first algorithm with
run-time feasibility analysis. A secondary metric, criticalnessis used to determine which tasks
are scheduled when the arrival of a new task request causes an infeasible schedule. When
a new task request arrives, only those tasks which are in contention with the new task are
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rescheduled. This keeps the run-time overhead of the scheduler low.

Chetto and Chetto [8, 9] use a combination of static and dynamic scheduling for fault toler-
ant hard real-time systems. For each task it is possible to schedule either a primary or an
alternative process. If a primary process fails, an alternative may be used to recover from
the failure. The primary processes are scheduled pre-run-time, and alternatives sporadically

when a primary fails.

2.2 Specification and analysis techniques for real-time sys-

tems

Embedded systems are hard to develop and test for a number of reasons. Because the hard-
ware platform of an embedded system is usually customised to the specific purpose of the
system, the usual development aids such as character I/O and interactive debuggers can often
not be used. Because an embedded system is often a subsystem of a larger system, it may not
be possible to test in isolation, and more seriously, it may have real-time constraints which
are hard or impoasible to create outside the actual target environment. In some critical hard
real-time systems, such as weapons systems, the problem with testing and correcting errors

under operational conditions is self evident.

De Roever [13] urges the development of a design specification which satisfies a “full re-
quirements specification”, followed by implementation according to fail-safe, fault tolerant
techniques. Rigorous specification development is only possible when a fermal specification
method is used, and preferably automated. Fault tolerant techniques are becoming more
com.:uan [8, 9, 33, 37, 41, 54], and many analysis techniques have appeared. Although the
definition of the term real-time depends on the perspective of the practitioner using it, there
are clear categories and trends. The explicit use of time in the specification of real-ttme sys-
tems evokes a wide range of responses. Turski [59] advocates total avoidance of the explicit
use of time, while others prefer stepwise addition of timing constraints [23, 35]. At the other
extreme are totally time based design and analysis methods, such as rate monotonic apalysiz.

The following papers provide review aspects of design and analysis of real-time systems:
Heath [22] argues in favour of multiprocessor design architectures; Joseph and Goswami [29]
review formal description techniques used for real-time systems; and Hull, et al [26] compare
four methods for real-time system development. We shall now briefly examine some current
trends.
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State machines. Harel [20] describes an extension of finite state machines, called State-
charts. Statecharts is a visual formalism which allows the specification of concurrent
components, as well as their refinement and abstraction. It is well suited to the rigor-
ous specification of reactive systems and since the semantics of statecharts are formally
specified, automated analysis of statecharts can be done [21].

Communicating Real-Time State Machines [52] is a notation for specifying the require-
ments of real-time systems. It allows the definition of a system of state machines that
communicate over unidirectional channels.

Temporal logic and model checking have been used successfully in the verification of
concurrent systems [10]. Extended temporal logics can be defined [44, 45] to allow
quantitative temporal operators over bounded intervals. The resultant logics are used
to specify real-time properties for models of finite state systems. These models are
extended with a mechanism which allows the expression of bounds on the delays between
state transitions. Model checking can be used to verify that the model satisfies the
specification.

Graph theory. Graphs can be used to model real-time systems [27, 28]. Real-time con-
straints can be specified for elements of a graph and used in a mathematical analysis
of the temporal behaviour of the system. The design method of the MARS real-time
operating system uses graphs to specify real-time transactions [34, 33].

Process algebra. CSP-R [40] is an extension of Hoare’s Communicating Sequential Pro-
cesses [24, 25] by a real-time construct, wait . Programs with real-time constraints can
be written and statically analysed for temporal correctness. The maximal parallelism
approach to real-time programming, taken in CSP-R, is criticised by Kurki-Suonio [35]
because of the interdependencies on the relative speed of processes which it introduces
into models.

Real-time analysis for programming languages. Fugetta et al [15] extend Haase’s [18]
extension of Dijkstra’s guarded commands by parallel guarded commands (PARCs) for
real-time programs. Execution times for PARCs are specified as weakest preconditions.

Shaw [51] describes a methodology similar to that of Fugetta, et al. He extends Hoare
logic to prove assertions about deadlines and timing constraints in high level language
programs.

Stoyenko et al {56] describe a system which supports guaranteed schedulability of Real-
time Euclid programs. The system inciudes a Real-Time Euclid compiler, schedulability
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analyser, and a kernel which schedules tasks according to the Earliest Deadline First
policy on a multiprocessor hardware platform. It is capable of guaranteeing real-time

response.

I have tried to give a brief overview of trends in real-time system design. As we shall see in

section 2.3, the trend in hard real-time operating systems is towards distributed and multi-

processor architectures.

2.3 Operating systems for real-time systems

A large number of real-time operating systems have been developed over the last decade. The
latest systems reflect the state of ihe art in hardware (distributed and multi-microprocessor
architectures) and the theory of analysis and scheduling of real-time systems. We shall briefly

review some of the well documented examples.

ARTS [58] is an object oriented distributed real-time operating system kernel and a real-
time toolset which consists of a schedulability analyser and a real-time monitor. ARTS
has a time driven rate monotonic scheduier and priority inheritance protocol to prevent
unbounded priority inversion. The scheduler can guarantee hard periodic tasks, and
perform criticality based soft real-time task scheduling, as well as overload control based
on value functions of aperiodic tasks.

CHAOS*° [17] is an object based real-time operating system designed for a multiprocessor
architecture. It can run on bare hardware, or on an existing operating system [47, 48].
Chaos supports lockable resources, and uses a run-time earliest deadline first scheduling
policy. Schedulability analysis is done dynamically and a priority assignment, based on
the “criticalness” of the task, is used to determine a feasible task set {4, 48].

Real-time threads [47, 48] is a package which supports the programming of concurrent
threads on a UNIX platform. Since the package is built on top of a standard UNIX
platiorm, it is portable. Scheduling is earliest deadline, and schedulability analysis
is done when the thread is created. Threads communicate via lockable shared data
structures or signals. See aiso Chaos®*'e.

FAIRCHILD {42] is a real-time operating system which runs on an embedded Intel 80386
system. It employs a predictive deadline scheduling policy [43] and supports multipro-
cessing, semaphores and event management. In [{42] Miller gives performance statistics
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for the system.

HARTS [54] (Hexagonal Architecture for Real-Time Systems) is a mesh of 19 nodes, each
consisting of application processors, a network processor and a RISC processor. Each
node connects to 6 other nodes via its network processor. A distributed operating
system, HARTOS, consists of a single processor kernel running on each application
processor. A distributed name service and both blocking and non-blocking inter-process
communication is provided. The scheduling policy is priority based and processes can
change their priority dynamically.

MARS [34, 33] (Maintainable Real-Time System) is a fault tolerant distributed real-time
operating system. The MARS architecture consists of a number of MARS components
inter-connected on a synchronous real-time bus. Each component js a computer on
which tasks are executed, and components are clustered to manage network complexity.
Messages in MARS are not consumed 1 hen read. Instead, 2 message may be read
multiple times, and is overwritten when the system state changes. Tasks as well as
communication on the MARS bus is scheduled pre-run-time, and hard real-time tasks
are periodic. Aperiodic tasks usually have soft deadlines, and are handled in system
idie time.

Maruti [38, 37] is an object oriented distributed real-time operating system which supports
fault tolerance through replication. Maruti supports reactive systems in that task re-
quests may be entered dynamically when a previously guaranteed schedule is already
executing. Run-time schedulability analysis determines whether a new task request
can be guarantced to complete before its deadline. Tasks with no deadline guarantees
execute “off-line” when no real-time tasks are ready.

Spring {55] is a distributed real-time operating system kernel which guarantees deadlines.
It supports tasks with lockable resources, which are scheduled at run-time. Run-time
schedulability analysis determines whether a task’s deadline can be guaranteed.

Thoth [7] is a single processor real-time operating system which was designed to be portable.
It runs on Data General Nova and Texas Instruments minicomputers. Tasks are sched-
uled on a priority basis, and a task is not preempted unless a higher priority task
becomes ready, or the task is blocked.

Commercially available real-time operating systems. VRTX [46] is a commercially
available real-time operating system for embedded microprocessor applications. Tasks
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are scheduled by a preemptive priority based scheduler on a uniprocessor. Tasks commu-
nicate through signals, mailboxes and queues. Various real-time versions of the UNIX
operating system have been developed {16). Intel Corporation’s RMK kernel and RMX
operating system [1] are also widely used. QNX [31] is a distributed real-time operating
system which provides inter-process communication through remote procedure calls.

The review of real-time operating systems provided here is by no means complete. The
intention is to reflect the current trends, and to highlight how both deadline driven anrd
priority based scheduling is employed both pre-run-time and at run-time.

2.4 The real-time producer/consumer paradigm

In 1989 Kevin Jeffay published his Ph.D. thesis [28] in which he describes a design method
for real-time systems. The method is based on the premise that a real-time system can
be understood in terms of producer/consumer relationships on system components. Jeffay’s
paradigm requires that the k*» message sent on any channel must be consumed before the
k+ 1M message is sent. He calls this the Real-Time Producer/Consumer (RT/PC) paradigm.

Jeffay proves that both preemptive and non-preemptive deadline scheduling could be used to
realise his paradigm. This makes it well suited to reactive real-time systems which are driven
by aperiodic (sporadic) events. The message passing semantics of the RT/PC paradigm makes
it possible to reason about time, and make accurate performance predictions.

In his thesis Jeffay describes a graphical design method which supports RT/PC. and deter-
mines certain conditions under which an RT/PC design can be implemented with guarantees
of temporal correctness. These conditions can be used to support a design and development
method for real-time reactive systems which spans requirements analysis to implementation.
Given appropriate run-time kernel support, the real-time behaviour of a design can be guar-
anteed at run-time.

2.5 Discussion

It should be clear from the brief survey of scheduling techniques that there are distinct camps
in the field of scheduling for hard real-time systems. Both rate monotonic and deadline driven
scheduling can be used to guarantee deadlines. Both techniques can be used in a static as well
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as dynamic scheduling mechanism. Hybrid techniques (mixed priority and deadline driven
scheduling, and dynamic priority adaption) are used widely.

The choice of scheduling algorithm (priority based or deadline driven) and whether scheduling
is aone pre-run-time or at run-time, is dictated by the nature ci the real-time environment in
which the system will run. In environments where sensors are regularly sampled, a periodic
task approach is suitable. In environments where a system has to react to frequent sporadic

events, a deadline driven approach is appropriate.

If it is imperative that hard deadlines be met, pre-run-time scheduling can guarantee a fea-
sible schedule. In a closed task set deadlines can be guaranteed by both deadline and rate
monotonic scheduling, but rate monotonic is preferred in periodic task environments. If task
requests can arrive dynamically, all deadlines cannot be guaranteed — a new task request
can render the current schedule infeasible. This means that run-time feasibility analysis must
be done. If the new task set is infeasible, some tasks will not meet their deadlines. In a
hard real-time environment, critical tasks must therefore be ensured to remain in the feasible
schedule. This can be done by ensuring that they have a higher priority in a rate monotonic

scheduler, or to use a second priority metric in deadline driven schedulers.

Next generation real-time platforms tend to have multiprocessor or distributed architectures
with processors dedicated to specific purposes. Processor nodes sometimes consist of a cluster
of special purpose processors: application processor, network processor, off-line scheduler,
monitor, etc. The design and features of next generation real-time operating systems depend
on the environment in which it is used. Systems which support periodic tasks are used
in periodic environments, such as pure control systems. Operating systems which support
aperiodic processes are normally used in asynchronous environments, usually with deadline
scheduling. Fault tolerance is usually supported through replication. Failures of primary
tasks scheduled pre-run-time are recovered by backup tasks which are activated aperiodically,
and usually scheduled by deadline.

The goal of this study was stated in chapter 1 to be an investigation into a method of de-
sign, analysis and implementation for small, uniprocessor based embedded reactive systems.
Run-time support for the method should allow guaranteed real-time behaviour, and the im-
plementation method should use resources such as CPU and RAM economically.

Since the systems in which we are interested consist of closed reactive task sets, deadline
scheduling can be used to guarantee real-time behaviour. Jeffay’s method suits the envi-
ronments for which the method is intended very well. In RT/PC messages flow through
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the system from input devices, through communicating processes to output devices. Deadline
driven scheduling makes it well suited to aperiodic environments, and RT/PC semantics allow
rigotous reasoning about the timing of a system’s real-time behaviour. Finally, kernel support
for RT/PC can be economically provided on the platforms for which it is intended. Jeffay’s
method was therefore chosen to be the subject of an experimental kernel support implemen-
tation, as well as a nontrivial reactive application. The rest of this thesis describes the kernel
implementation, and the application of RT/PC in the design, analysis and implementation of
a real reactive application.
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Chapter 3

The real-time producer/consumer

(RT/PC) paradigm

3.1 Intreduction

In this chapter we will examine Jeffay’s method of design and analysis for hard real-time
systems [28]. Jeffay defines a model of hard real-time systems, which he calls the real-time
producer/consumer paradigm, and uses it as a semantic basis for a design discipline of real-
time systems. The method consists of a graphical design notation for describing RT/PC
systems, and a sequence of analysis steps during which the semantic correctness of the system
is determined. This chapter discusses the various components of the design method, and the
different aspects of analysis. More emphasis is laid in this chapter on the design mcthod than
analysis, since the analysis of RT/PC systems is the subject of chapter 5.

Jeffay models a real-time system as a system of message producers which communicate with
message consumers via unidirectional channels. Assuming that there is no propagation delay,
the consumer of a message receives it immediately after it was sent by the producer. If a
producer produces messages faster than the consumer can consume them, then no amount
of buffering is sufficient to prevent the loss of messages. To guarantee the correctness of the
system the consumer must process messages at least at the rate at which they are produced.
Based on this observation Jeffay defines the real-time producer/consumer paradigm (RT /PC)

as follows:

Definition 3 The consumer must process the i** output of the producer before the producer
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e

Figure 1: Real-time producer/consumer paradigm

produces the (i + 1)* oulput.

Figure 1 illustrates the RT/PC paradigm. Producer and Consumer are processes, connected
by a unidirectional channel. The rate (r) at which messages can flow on the channel between
Producer and Consumer, is the reciprocal of the minimum period between any two messages
on the channel (pmin).

3.2 System components and graphical notation

In this section we shail examine the components of Jeffay’s design discipline, and describe his
graphical notation. The method is based on the producer/consumer mode! of communicating
r.rocesses, and the design of a real-time system may be expressed as a directed graph, G =
(V,E). V is the set of vertices, and can represent processes, input devices, output devices
or data reposilories. E the set of edges, and can represent unidirectional synchronous or
asynchronous channels between the vertex components. A design can therefore contain!:

o Processes — machines which process messages. Processes are graphically denoted as
ovals.

e Channels— unidirectional asynchronous connections between processes, or synchronous
connections between processes and data repositories. An asynchronous channel iz graph-
ically denoted by a single-headed arrow, 2 synchronous channel by a double-headed

ArTOW.

e Data repositories — machines which control access to data objects which are shared

between two or more processes. Data repositories are graphically denoted by two con-
centric ovals.

'] have modified Jefay’s original graphical motatioa slightly with regard to imput and output devices.
Jeffay’s original graphical notation uses a darkened circle for input devices, and a darkened and shaded cirde
for output devices. I wee a bar for both input and output devices. Iaput and owtput devices can still be
uniquely identified: input devices by their single outgoing directed edge, and ontput devices by their single
uoo-m;edge The notational change was necessitated by a lack of graphical tools, and incurs no loss of
meaniag, power or clarity.
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Figure 2: An RT/PC design graph

o Input devices — process abstractions of physical devices which cause messages to flow

into the system; denoted graphically by a bar.

e Output devices — process abstractions of physical devices into which messages flow out

of the system; denoted graphically by a bar.

o Mutual exclusion regions — sets of processes or data repositories which are implicitly or
explicitly required to execute mutually exclusively in time. An explicitly defined mutual
exclusion region is graphically denoted by enclosing its members in a box.

Figure 2 is an example of an RT/PC design graph. In the figure we can identify the following
components:

¢ A, B, C, E and F are processes;

¢ D is a data repository;

o In; and In; are input devices;

e Out; and Out; are output devices;

e The directed edges of the graph represent unidirectional channels.

¢ The box enclosing vertices E and F defines an explicit mutual exclusion region, consisting
of E and F.
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3.2.1 Processes and channels

An RT/PC model represents a reactive system which performs certain actions in response to
events that occur in its environment. In the model events are represented by messages which
are transmitted to processes by input devices or other processes. When a process receives a
message it may perform certain operations, and send one or more messages in response to

other processes, data repositories or output devices.

An RT/PC process consists of a single execution thread, with a single entry point, which
always starts with the reception of a message, and is defined by its behaviour in response to
each message it may receive. Each time a process completes its execution thread it blocks
until it receives another message.

Figure 3 shows a schema for an RT/PC process. The ACCEPT command blocks the process
until it receives a message (msg). It then executes the body of the process, and may call
A_EMIT and S_EMIT one or more times. A_EMIT ig used to send a message to another
process or output device on an asynchronous channel. S_LEMIT is used to send a synchronous

message to a data repository, and to receive a reply from it.

A process can receive messages on only one logical input port, but several asynchronous
channels may connect to the same input port. A process may emit messages on a set of
output ports, but only one message may be emitted on each asynchronous output channel
per execution of the process thread. The input and output ports of a process are statically
bound to communication channels for the lifetime of the system.

A channel is a connection between the output port of one process and the input port of
another process or data repository. If a2 process sends a message on a synchronous channel,
it awaits and will receive a response. A process which sends a message on an asynchronous
channel does not block, and does not receive a response to the message. All messages sent on
a channel will be received by the receiving process. As long a8 a process does not emit two
messages on the same asynchronous channel during the same execution of the process thread,
and if the system obeys RT/PC, no asynchronous channel will ever overflow. A synchronous
channel cannot be overflowed because the sending process is blocked until it receives the reply
from the receiver, at whick point the receiver is ready to receive another message.

Apart from the RT/PC paradigm, message passing in RT/PC has the following semantics:

¢ A process can only consume one message at a time; and
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Process:
BEGIN
ACCEPT (msg) ;

:A_EMIT (m1) ; /* Asynchrouous emit */
:S.EMIT (m2, reply) ; /* Synchronous emit */
END:;
Figure 3: Schema for an RT/PC process

e messages may be sent to a process on several input channels; therefore
e the reception of messages has to be interleaved in time.

o The receiving process cannot select which input channel it wishes to receive a message
from. The ACCEPT command will present it with the next message to process.

Because of the above, the temporal behaviour of a process is not determined by how it handles
its connections, but by the input rate of its input port (bear in miud that all input channels
of a process connect to one logical input port). One can therefore reason about the temporal
behaviour of a process in terms of only the rate of its input port.

3.2.2 Input and output devices

Input and output devices are abstractions of the behaviour of the physical devices in the
environment of a system. Because an RT/PC system is reactive it is driven by the events
generated by devices in its environment. These events enter the system in the form of messages
sent by input devices on asynchronous channels. Reactive systems usually control devices, and
this is modeled in RT /PC by sending messages on asynchronous channels to output devices.

An input device behaves like a process which intermittently sends messages on an output
channel. We assume that there is a nonzero interval between any two messages emitted by an
input device, with a known lower bound. It is important to know the worst case (shortest)
interval between messages from an input device, because it determines the rate of down tream
channels.
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An output device behaves like a process which is always ready to receive a message on an
asynchronous channel, but does not emit messages back into the system. The reason for
having output devices in a design is to determine the temporal behaviour of the system with
regard to each device it controls.

3.2.3 Mutual exclusion regions and data repositories

Some processes which share access to data or devices have critical sections in their execution
threads, which require exclusive access to the shared resource in order to execute correctly.
RT/PC allows ihe definition of mutual ezclusion regions which are sets of processes which
must be guaranteed to execute mutually exclusively. A set of processes may be denoted
explicitly to constitute a mutual exclusion region, by enclosing them in a box as shown in

figure 2.

A data repository encapsulates data which are shared between processes. It behaves like a
reactive process with a single input port for one or more synchronous channels. Processes
send requests to the data repository, which processes each request atomically, and replies
to the requesting process. In this way it serialises concurrent accesses to shared data, thus
ensuring mutual exclusion. A data repository may not emit asynchronous messages — it may
only respond synchronously to received synchronous messages. Data repositories therefore do
not have any output ports. Figure 4 shows a schema for a data repository.

A process or data repository logically performs a single function. To ensure the predictable
completion of each execution of this function, messages from multiple sources are not allowed
to be processed simultaneously. Processes and data repositories are therefore allowed only
one entry point where messages can be accepted. A process or data repository with multiple
input channels forms an implicit mutual exclusion region.

Jeffay sets two restrictions on the use of mutual exclusion regicns:
o Each component (process or data repository) may occur in at most one mutual exclusion
region; and
e processes and data repositories may not be combined in one mutual exclusion region.
Jeffay does not give reasons for these restrictions, but deadlocks may occur if vertices are

freely combined in mutual exclusion regions. A process and data repository in the same

mutual exclusion region would be unable to communicate, because their execution is always
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DataRepository:
BEGIN
Accept (msg) ;

Reply (value)
END DataRepository ;

Figure 4: A schema for an RT/PC data repository

interleaved in time.

3.2.4 Well-formedness of design graphs

Jeffay imposes two restrictions on the interconnections of processes:

1. There must exist a path from at least one input device to each process in the system.

2. A process may have any number of synchronous or asynchronous output channels; how-
ever, no two asynchronous output channels of a process may have the same receiver.

Jeffay calls a design that satisfies both restrictions well-formed. He also states that the first
condition simplifies the aralysis of RT/PC designs, the second implementation of RT/PC

systems.

Every message in an RT/PC system ultimately originates from an input device. Therefore,
if condition 1 does not hold, it means that a process in the design graph is unreachable. If a
process is unreachable, its input channel rate functions cannot be solved, with the result that
it is impossible to determine analytically whether the system will obey the RT/PC paradigm.?
An unreachable process does not contribute to the system, but complicates the analysis.

Jeffay’s statement about condition 2 presumably refers to the amount of buffering required.
Recall that all input channels of a process logically connect to a single input port. If condition
2 holds a process cannot send more than one message to another process during the same
execution cycle. This would mean that only one message needs to be buffered per input port
if condition 2 is met; one per input channel if condition 2 is not met.

2]t is possible to determine analytically whether a system will obey the RT/PC paradigm if all the channel
rate fanctions car be solved. This will be discuseed in sections 3.4 and 3.6, as well as chapter 5.
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3.3 Message passing semantics

Jeffay’s design mnethod specifies special temporal semantics for message passing. Every chan-
nel has one producer and one consumer of messages. All connected pairs of processes obey
the RT/PC paradigm, which requires that whenever a message is produced on a channel, it
will be consumed by the receiving process before the next message is produced on the same
channel. The time interval in which a consumer may consume a message is therefore defined

by the arrival rate of messages on the input port of that consumer.

8.3.1 Message transmission rates

Each channel in a design graph has an associated message transmission rate which is defined
in terms of the worst case (shortest) inter arrival time of messages at the receiving process of
the channel. If ppmix is the shortest inter arrival time of messages on a channel, its rate is

1

r= ,
Pmin

where pnin is an integer multiple of a time unit of suitable granularity.

3.3.2 Restrictions on process construction

In order to ensure that a process can be guaranteed to obey RT/PC, Jeffay defines a number
of restrictions on the construction of processes and data repositories in implementations.

o Process and data repositories are implemented in a sequential language in such a way
that the execution time of each programming construct can be statically determined.

In order to determine whether an RT /PC implementation is guaranteed to be temporally
correct, the execution cost (timing) of each process must be determined accurately.
Ideally the cost of each construct should be automatically determinable, possibly by
the compiler for the implementation language. As such tools do not exist for most
compilers used in real systems (such as C, Modula-2, etc), one has to revert to other
tools to measure the timings of processes. This can be done accurately as long as the
implementation language is sequential, and the execution of a thread is not interleaved
with other threads.

¢ Potentially nonterminating constructs, such as loops, must contain a mechanism to en-
sure termination. An unbounded loop can easily occur when a loop is used to test for a
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specific condition in a hardwar= device. If the condition never occurs (due to hardware
malfunction, for example) the loop will not terminate. The worst case (longest) execu-
tion time for a loop must be used in the analysis of RT/PC systems. An upper bound
must therefore exist on the number of times any loop may be executed. If a bouad is not
explicit in the loop condition, a special condition is required. One way of guaranteeing
a bounded loop is to increment and test a special loop counter, and terminate the loop
if an upper bound is exceeded. Another method would be to set and test a timer.

o During the processing of a message, a process may emit only one message per asyn-
chronous channel. This ensures that the receiver can be scheduled to process the mes-
sage before another message is sent on the same channel.

3.4 Calculating channel input rates

In order to determine the precise semantics of an RT/PC system one must be able to calculate
the transmission rates of all channels accurately. Synchronous channels are only used to
connect processes with data repositories. To adhere to RT/PC a process must consume
each message it receives within ,1, time units, if r is the rate of its input port. If a process
communicates with data repositories, all synchronous communications must be completed
within -"; time units as well. The rate of synchronous channels are therefore determined by

the rate of asynchronous channels.

3.4.1 Calculating message output rates

A channel’s transmission rate is the rate at which the sending process connected to it transmits
messages on that channel. The transmission rzte of the process depends upon the rate at
which it processes messages on its own input port. A transmission rate function is defined for
each asynchronous channel, which maps the rate at which the sender process receives messages
to the rate at which it emits messages on that channel. The time required to execute the code
to process messages received on its input port, and the rate of the input port of a process
determines the transmission rate function of each of the output channels of the process.
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Figure 6: Input rate definition for MP/SC processes

3.4.2 Calculating message input rates

The input rate of a process with only one input channel is equal to the message transmission
rate of that channel. A process which receives messages on a set of input channels is required
to obey RT/PC on each of those channels. Messages can arrive simultaneously on any number
of the input channels of a process. A single buffer is therefore required for cachk nput channel.
If messages are buffered for input channels, the input rate of a multi-producer/single-consumer
(MP/SC) process is equal to the aggregate rate of its input channels.

The rate of a channel connecting an input device to a process is simply the worst case rate

at which the input device can produce messages.

If a design graph is acyclic and well-formed, the transmission rates on all asynchronous chan-
nels can always be calculated. These equations may be solved numerically or symbaolically.

3.5 Scheduling results

In an implementation of an RT/PC design, the RT/PC system is represented by a set of
communicating tasks3. To ensure that the implementation satisfies the temporal requirements

3To differentiate between a desiga and its implementatior, we refer to processes in a design graph, and
tasks in an implementation task set.
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of the design, it is necessary to find a way to schedule the t~sks in such a way that the RT/PC
paradigm is preserved. Since RT/P” requires that a message is consumed before a certain
deadline, a scheduling mechanism which can guarantee deadlines is required.

If a set of tasks is feasible it is possible to find a scheduling discipline which will ensure that
every task will always meet its deadline. In order to find an optimal scheduling discipline which
can support RT/PC systems, Jeffay examined the earliest deadline first (EDF) scheduling
discipline with regard to RT/PC. The repetitive behaviour of RT/PC systems suggests the
characterisation of an RT/PC process as a cyclic task, where a cyclic task is one that makes
repeated requests for execution.

Definition 4 A cyclic task T is a 3-tuple (s, ¢, p) were

1. s = start time (also called release time): the time of the first request for execution of T;

2. ¢ = compulational cost: the time to ezecute T to completion on a dedicated uniprocessor;
and

3. p = period: the interval between requests for ezecution of task T.

Jeffay distinguishes between two types of cyclic task: sporadic and periodic. If a task makes
requests for execution at regular intervals it is periodic, else sporadic. These two types of
tasks are typical of two important characterisations of real-time systems: periodic in time

driven and sporadic in event driven state machines [32].

In chapter 3 of his thesis, Jeffay proves feasibility and optimality results for the EDF schedul-
ing discipline with regard to the RT/PC paradigm. The results of his investigation can be
summarised as follows. For preemptive scheduling:

e EDF is an optimal discipline (see definition 2) if preemption is allowed at arbitrary
points in a process. If a feasible schedule exists for a task set, and every process can be
preempted at any point, the EDF discipline will correctly schedule the tasks.

e Feasibility of a task set can be determined analytically for arbitrary release times of
both sporadic and periodic tasks.

For non-preemptive scheduling:

e EDF is an optimal discipline for sporadic tasks; but
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o EDF is not an optimal discipline for periodic tasks with arbitrary release times,

o For sporadic tasks, feasibility can be determined efficiently for arbitrary release times;
but

o for periodic tasks, feasibility is dependent on knowledge of release times, and the problem
of determining the feasibility of a set of periodic tasks with arbitrary release times is

intractable.

These results will be used in chapter 4, when the design of a kernel which supports RT/PC
is considered.

3.6 Implementing RT/PC designs

The RT/PC paradigm requires that for every channel in a system, the receiver of the channel
consumes messages faster than its producer emits messages on that channel. In order to
determine whether a system is guaranteed to obey RT/PC, we have to reason about the
temporal properties of a design graph. We do this in terms of the message transmission rates
of the asynchronous channels of the design graph.

If the set of equations which describe the message transmission rate functions of a design
graph can be solved, it means that the maximum input rate of messages on the input port
of each process is known. We know from section 3.5 that the earliest deadline first (EDF)
scheduling discipline is optimal for sporadic tasks. Therefore, given a fast enough processor,
we can always schedule the processes of the design graph with tke guarantee that each pair
of connected processes will obey the RT/PC paradigm. Such a design graph is said to be
realisable, meaning that there exists a mapping from it to a feasible task set.

Definition 5 An implementation of a design graph is temporally correct if every pair
of vertices connected with an asynchronous channel is guaranteed to adhere to the RT/PC

paradigm.

Definition 8 A design graph is realisable on a uniprocessor if it is possible to implement
the design on a uniprocessor so that the design will be temporally correct.

Realisability is an absolute measure of temporal correctness. A realisable design graph can
always be implemented given a fast enough processor, while a design graph which is not
realisable cannot be implemented with guarantees of temporal correctness.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE REAL-TIME PRODUCER/CONSUMER (RT/PC) PARADIGM 27

Jeffay proved that the following conditions are necessary and sufficient for realisability of
design graphs:

1. Acyclic, well-formed design graphs are realisable,

2. Design graphs with disjoint cycles are realisable iff at least one channel in each cycle has
a nonidentity transmission rate function. This will be discussed informally in chapter 5.

Definition 7 Two cycles in a design graph are disjoint if no process appears in both

cycles.

Definition 8 If the transmission rate function, f(r), of a channel is defined by Lr,

then the slope of the transmission rate function is L.

We can now formally define the condition for realisability of a graph with disjoint cycles
as follows:

Definition 9 Let G be a design graph with a cycle C of n distinct processes and asyn-

chronous channels. Let ;1;, ;‘;, ceny

Jor the channels in C. If C is disjoint from other cycles in the graph, then the transmis-

= be the slopes for the transmission rate functions

sion rale functions for the channels in C can be solved iff

n
HI.‘ >1
i=1
3. Design graphs with non-disjoint cycles are realisable only if the following two conditions

are met:

(a) At least one channel in each cycle has a nonidentity transmission rate function.

(b) There must exist a process or sequence of processes in one of the cycles in a non-
disjoint set of cycles, in which at least three messages must be sent to the first
process in the sequence before a message can be emitted from the last process in

the sequence. Formally:

Definition 10 A simple cycle in a design graph is a cycle in which all vertices
are disjoint.

Definition 11 Let G be a design graph with non-disjoint cycles. Let Cy and C3 be
two non-disjoint, simple cycles. Assume that C) and C; conlain n and m processes

respectively. If processes in C; are interconnected with channels whose transmission
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rate functions have slopes 1., -};,....;&, and processes in Cy are interconnected
with channels whose transmission rate funclions have slopes 'v'x" ;‘;,. vey ;l_-, then
the transmission rate functlions for the channels in Cy and C; can be solved only if

n m

(MIz:-)[Iwi-1)>1

=l i=1
We do not have sufficient conditions for when the transmission rate functions can
be solved for arbitrary patterns of non-disjoint cycles. However, if each pair of
simple cycles has at most a single process that receives messages from a distinct
process in each cycle, then the necessary condition given above is also sufficient for
solving the transmission rate functions.

Realisability analysis is called processor independent analysis because a realisable design graph
can always be implemented on a fast enough uniprocessor. Temporal correcinessis a measure
of the correctness of an implementation of a design graph. The following chapters describe
an experiment to investigate how realisable RT/PC design graphs can be implemented to be
temporally correct.
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Chapter 4

The ESE Kernel

In chapter 3 we discussed Jeffay’s method of developing real-time systems with guaranteed
temporal behaviour. He showed that his RT/PC? paradigm can be used to design systems
with hard real-time constraints in such a way that all deadlines can be guaranteed. He also
showed that RT/PC is realisable by developing a kernel which supports RT/PC design graphs,
and by implementing a number of systems with hard real-time constraints on it {28].

Jeffay’s system runs on the UNIX operating system on a Sun workstation, and interacts
with devices at a very high level. I propose that RT/PC is also suitable for the design and
implementation of general embedded reactive systems. In order to investigate this, I developed
2 nontrivial example on an industrial embedded platform. In chapter 5 we shall examine the
implementation of the case study. To support RT/PC systems on an embedded platform I
developed a kernel, called Embedded Systems Ezecutive (ESE — pronounced “easy”), which
runs on Intel 80x86 based hardware platforms. In this chapter we shall examine the design
of this kernel.

4.1 Embedded Reactive Systems

Embedded systems are usually reactive. A reactive system is idle until an event occurs in its
environment. The system performs certain actions in response to the event, and then awaits
the next event. A state machine can be used to determine the reactive system’s response to
a particular event, given the current state of the system. The action taken by the reactive

system in response to an event can change the state of the system. We can define a reactive

IReal-Time Producer/Consumer

1 34
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Figure 7: Reactive system

system as follows:

Definition 12 A reactive system is an event driven state machine.

Figure 7 shows the components of a reactive system. Input events are generated by devices
in the environment of the system. The driver process receives the events, and executes the
state machine. The execution of the state machine typically causes output to be generated.
The output may be control signals to a device, data written to a persistent data store, or

messages sent to other processes in the system.

An embedded system is an autonomous component of a larger system. It can run or an
autonomous hardware platform embedded in the hardware of the larger system. Examples of
such systems are intelligent communications adapters, disk subsystems, etc.

Autonomous stand-alone systems often suffer the same problems as the embedded systems:
hard real-time constraints, limited CPU, RAM and other resources, etc. Examples of such

systems are robots with autonomous control systems.

A software system can also be embedded within a larger software system — in other words,
run on the same hardware platform of the larger system. Examples of such systems are
real-time systems which are embedded in general purpose operating systems.

The mair characteristics of embedded systems are:
¢ Devices introduce concurrency — embedded systems usually interact with several au-

tonomous devices. These devices introduce concurrency which is best modeled as a

system of communicating processes.
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o Devices have real-time requirements -— devices usually have to be serviced within speci-
fied temporal limits, otherwise information is lost. Many problems in embedded systems
are timing related: a missed event because the system was engaged in another action,
an overflowed buffer because a message consumer was too slow, etc.

¢ Rcactive systems — an event driven reactive system can be modeled very conveniently as
a system of communicating state machines. This requires inter process communication
and the guarantee of atomicity of state machine commands.

Because of their “black box™ nature, embedded systems can often be tested only in
terms of their response to events from their actual environment. Certain sequences of
events may be timing dependent, and very difficult to reproduce. It can therefore be

very hard to find errors in embedded #vstems.

e Memory and CPU requirements are usually tight in embedded systems, and resources
have to be used optimally.

Conventional multi tasking operating systems do not adequately address the problems of
embedded systems. The memory requirements of a general purpose operating system (UNIX,
for example) is usually prohibitive, and the processing overhead it introduces, unacceptable.
Furthermore, the process scheduling policy of general purpose operating systems is usually
a variant of time sliced round robin scheduling with multiple levels of priority. This has the
following implications:

o Real-time constraints cannot be guaranteed;

¢ Priority levels must be tailored to accommodate processes with higher processing re-
quirem~nts;

e The order in which processes (which communicate via asynchronous message passing)
will be scheduled may be unpredictable. Inter process message buffers must therefore

provide for the worst case of outstanding messages.

The ESE kernel is designed to meet the requirements of embedded reactive systems which
are designed according to RT/PC. I assume that the number of processes and chanuels in
an embedded system is fixed, and new channels or processes cannot be dynamically created
during the lifetime of the system. Jeffay’s methodology can therefore be used te analyse the
system, and to determine a priori whether all deadlines can always be guaranteed.

Other principles which influenced design decisions were the following:
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e Portability — different processors are often used for embedded systems. FSE should be
portable across different architectures with the minimmum of effort;

o State machines — A state machine is a very suitable formalism for the description of
reactive systems. ESE must be suitable for the implementation of state machines.

The rest of this chapter describes how ESE supports RT/PC and the requirements of embed-
ded reactive systems.

4.2 Events

Events are fundamental to most models of concurrent systems. In CSP [25], for example, a
process is defined entirely in terms of the possible sequences of events which may occur during
its execution. A state machine is defined in terms of the state transitions which it makes in

response to the occurrence of events. We define an even® as follows:

Definition 13 An event is an alomic occurrence. It may cause a state machine to perform
an action, or it may generate input to a process.

The granularity of an event is determined by the level of abstraction at which a process
observes it. Consider the following example:

A transport layer protocol sends a data unit to a remote destination. Because the
data unit is larger than the maximum network layer datagram size, the network
layer protocol fragments the transport layer data unit into two network layer
data units. These fragments are received by the destination, reassembled by the
network layer protocol and passed to the transport layer protocol.

Let us now examine the sequence of eveats which describes the arrival of the data at its
destination. Qur first vantage point is at the link layer. We see a sequence of events generated
by the physical iayer, representing the arrival of the data:

LinkLayer FrameArrival =
OpeningFlag — DataByte — --- — DataByte — CRC — ClosingFlag —
OpeningFlag — DataByte — --- — DataByte — CRC — ClosingFlag.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. THE ESE KERNEL a3

The link layer passes the data encapsulated in the link layer frames to the network layer. The
events seen by the network layer are:

NetworkLayer Datagram Arrival =
FragmentlArrives — Fragment2Arrives.

The network layer reassembles the transport layer data unit encapsulated in the two network
layer datagrams, and passes it to the transport layer. The event seen at the transport layer

is:

Transport Layer DatalUnit Arrival = DatalUnit Arrives.

The previous example shows that an event at a higher level of abstraction is the result of a

process at a lower level. What is atomic at one level is structured at another.

Physical events occur in the environment of RT/PC systems — for example:

¢ a message arrives on a data communications physical medium;
e a quantity measured by a sensor reaches a predefined threshold;
¢ a timer expires; or

e an operator issues a command.

An event could manifest itself to an RT/PC system in various ways. It could be in the
form of an interrupt; the raising of a condition which is polled; or an incoming message on
a communication link (for instance a transputer link). A physical event causes an RT/PC
input device to send a message to an RT/PC process. The process performs certain actions
in response to the message, and may send messages to other processes and output devices.

An RT/PC system is therefore a reactive system -— it reacts to input from the devices which
constitute its environment, and controls devices in the environment by sending messages to
them. All actions are taken directly or indirectly in response to events (in the form of messages

from input devices).

The view that RT/PC systems are event driven reactive systems, has been the guiding prin-
ciple in the design of the ESE kernel.
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4.3 Preemptive and Non-preemptive Scheduling

Jeffay proved that a realisable RT/PC design can be scheduled either preemptively or non-
preemptively, and still be guaranteed to meet all its deadlines. Aslong as the earliest deadline
first (EDF) scheduling policy is adhered to, the choice of preemptive and non-preemptive
scheduling is not determined by RT/PC. The choice must be made on implementation and

other requirements.

The choice of scheduling policy for ESE was made on the design principles stated previ-
ously. The guiding principle is that ESE is intended for embedded reactive systems, designed
according to RT/PC. The requirements for ESE’s scheduling policy are:

¢ it must be capable of supporting RT/PC;

o due to real-time requirements and limited resources, it must be as efficient as possible;

and

e it must support state machines.

4.3.1 Support for RT/PC

We know already that both preemptive and non-preemptive EDF scheduling will support
RT/PC. An important RT/PC requirement which impacts the choice of scheduling policy
is mutual exclusion. Both explicitly defined mutual exclusion regions and data repositories
require kernel support for mutual exclusion. If the scheduling policy is preemptive, the kernel
must implement primitives to ensure that mutual exclusion is maintained in the critical sec-
tions of mutual exclusion regions and data repositories. A non-preemptive scheduling policy,
on the other hand, implies that all threads always run to completion. This means that mutual
exclusion is guaranteed in critical sections by the scheduling policy, and no special primitives
are required for its implementation.

4.3.2 Scheduling efficiency

The efficiency of preemptive and non-preemptive EDF scheduling can be compared in terms

of their respective memory requirements and context switching overhead.

A preemptive scheduling policy requires that the complete context of each process must be
maintained ¢=parately. In the implementation of ESE this would imply a separate stack for
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each process, and that all processor registers must be saved when a process is preempted.

If the scheduling policy is non-preemptive it is possible to run all processes on the same
stack. The amount of memory saved in this way can be significant in an embedded system. If
sporadic processes are scheduled non-preemptively, it is possible to implement the scheduler
in such a way that no context has to be saved during a context switch. This makes non-
preemptive scheduling more efficient than preemptive scheduling, in terms of botl: memory
usage and context switching overhead.

4.3.3 Support for state machines

For a state machine to be deterministic, its actions must be atomic. If it is possible for a
state machine action to be interrupted by any other action which may change the machine
state, the result of the state machine’s actions will not be deterministic.

A preemptive scheduling policy makes it possible for a state machine action to be preempted
and for another, which may change the system state, to be scheduled. Atomicity of state
machire actions must therefore be ensured by the programmer, if preemptive scheduling is
used.

A nor-preemptive scheduling policy ensures that state machine actions will always run to
completion before another process is scheduled. There is therefore no requirement for the
programmer to ensure the atomicity of state machine actions. A whole class of errors, which
may be introduced by the inherent concurrency of most reactive systems, is therefore elimi-
nated by the scheduling policy. The importance of this safety becomes even greater when the

reactive system is embedded in an environment where debugging is difficuit.

4.3.4 Design decision

Non-preemptive EDF scheduling was implemented for ESE for the following reasons:

¢ non-preemptive EDF scheduling supports RT/PC;

¢ non-preemptive scheduling is more efficient than preemptive scheduling in terms of both
memory required and context switching overhead; asd

e nor-preemptive scheduling ensures mutual exclusion and the atomicity of state ma-
chine actions implicitly, thus relieving the programmer of the onus of ensuring mutual

exclusion.
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4.4 Periodic v Sporadic Processes

The decision to make support for reactive systems a design principle has an important result:
processes in a reactive sysiem are always sporadic. This is due to our definition of reactive
systems — the system is idle until an event causes it to perform a state machine action. A
periodic process can be supported in 2 reactive system by defining a periodic timer event
which causes a sporadic process to be executed periodically.

If processes are scheduled non-preemptively, it becomes unnecessary to execute each process
exclusively on its own stack. But in order for all processes to run on one stack, the activation
record of the current process must be removed from the stack before the next process can be
activated. This implies that the release of a ready process is equivalent to a procedure call,
and that the process must return from that procedure on completion. Processes which loop
forever cannot be supported because they will never be descheduled.

Because ESE’s processes are sporadic and scheduled non-preemptively, processes are pre-
dictable (deterministic) in both their logical and temporal behaviour. Each process has a
single entry point, and always runs to completion. A process is scheduled only in response
to the occurrence of an event, and will branch deterministically in response to the event. No
other process can interrupt an executing process and modify the state of the system. The
predictability of ESE processes makes systematic testing possible, and the real-time behaviour
of a process can be measured accurately for each possible event.

ESE’s non-preemptable sporadic processes are suitable for the implementation of systems of
connected state machines. Each state machine is implemented as a process. It receives its
events in the form of messages from other processes, and its output may be the input events
to other state machine processes. An example of such a system is a protocol stack. Each
protocol layer is a state machine which may be encapsulated in a process. Each layer receives
messages from, and sends output messages to its next higher and lower neighbouring layers.

PROCEDURE AProcess () ;
VAR
nsg : POINTER TO MessageType ;
nsg_size : CARDINAL ;
RSg_SIc : ESE.UsexrRet ;
BEGIN
ESE.Receive

(msg.
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meg.size,
msg.src) ;
CASE msg_src OF
SOURCE_A :
ProcessASourceANessage (msg, msg._size)
| SOURCE.B :
ProcessASourceBMessage (msg, msg_size)
END
END AProcess ;

AProcess, above, is an example of a skeleton of an ESE process. The process entry point
is always at the start of the body of the procedure which implements it. The Receive call
does not block, and will not deschedule the process. Each process may call Receive only once
between its entry point and termination, and a ready process will be scheduled even if it does
not call Receive. The only way in which a process can acquire the message for which it is
scheduled, is by calling Receive, therefore it is usually the first operation in the thread of a
process. Receive also returns the user reference of the active channel (for which the current
process was scheduled). A Process can receive messages from two channels, and uses the user
reference of the active channel to branch to the routine which is used to process a message
for that channel. There is no restriction on the number of input channels to a process.

For every process in an RT/PC system, ESE stores a process record which contains a symbolic
name for the process, as well as a reference to the procedure which implements it.

ProcessRecord = RECORD

name : Name ;
thread : Thread ;
END ;

Name is an ASCII string, and will be described in appendix A. Threadis a procedure type
which contains the entry point for a process.

Thread = PROCEDUPE () ;
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4.5 Data Repositories and Synchronous Message Passing

Jeffay’s data repositories encapsulate persistent data which are shared between processes.
In order to ensure the integrity of the data, a data repository is accessed only via a single
synchronous message passing port. A data repository never emits asynchronous messages,
but only replies to requests. In this way access to the data repository is serialised.

Since ESE processes are scheduled non-preemptively, access to persistent shared data is se-
rialised by the scheduler. It is therefore not necessary to implement a synchronous message
passing channel to data repositories. The synchronous access to a data repository degenerates
to a procedure call.

4.6 Synchronous vs Asynchronous Channels

The purpose of the ESE kernel is to support systems designed according to the RT/PC
method. All RT/PC systems are reactive, and messages flow from input devices through
processes to output devices. Unlike client-server systems there is therefore no synchronous
message flow back to the scurce of a message, except in the case of data repositories. We have
already seen that ESE'’s non-preemptive scheduling policy and sporadic processes make kernel
support for data repositories unnecessary. We therefore need only asynchronous channels to
support RT/PC.

ESE is also required to support state machine implementations of reactive systems. A state
machine implemented on ESE will receive its input events in the form of messages on channels,
and both synchronous and asynchronous message passing could be used to send an event
message to a state machine. However, a state machine does not always send the output,
generated in response to an event, back to the source of the event. Instead, the output
usually goes to a device controller or another state machine. In neither case is there any
synchronous message flow back to the source of an event.

When two processes communicate on a synchronous channel, the sender is preempted while
the receiver consumes the message, and remains blocked until the receiver replies. This would
require preemptive scheduling and therefore a separate stack would have to be maintained
for each process to store its context when preempted.

All ESE message passing channels are implemented in the memory of a single processor.
Channels are therefore highly reliable, and it is unnecessary to acknowledge the delivery of a



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. THE ESE KERNEL 39

message. Asynchronous channels are suitable to convey the events and messages which flow
in RT/PC systems. They can be implemented very efficiently and allow a scheduler imple-
mentation which executes all processes on the same stack. Given our design principle that
ESE must support embedded RT/PC systems, only asynchronous message passing channels
were implemented in ESE because of the gain in processing efficiency and memory usage.

For each asynchronous channel in a system, ESE maintains a channel record with the following

Async
ChannelRecord = RECORD
name : Name ;
user_ref : CARDINAL ;
receiver ¢ Process ;
sender : Process ;
period : Time ;
deadline : Time ;
nessage : Message ;

max_message_size : CARDINAL ;
END ;

The user_ref is a number chosen by the programmer to represent that channel. ESE will
use the user reference to identify the channel to the receiving process when it is scheduled.
ESE’s asynchronous channels identify both their sender and receiver processes. The receiver
process identification is used by the scheduler to activate the receiver process, and the sender
identification is used by the ESE Send command to check that each channel connects only
two processes (as required by RT/PC). The period is stored to compute a deadline when a
message is sent on the channel. When a message is sent on a channel it is stored in a field
called message, and mar_message_size is used to check that it is not lager than the buffer of
the channel.

The types, Process, Time and Message are described in appendix A.

4.7 Mutual Exclusion Rcgions

Some processes which share data have critical code sections in which each process must be
assured of exclusive access to the shared data. If not, the critical section may be executed
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incorrectly. RT/PC allows the specification of mutual ezclusion regions to ensure the seriali-

sation of critical accesses.

ESE’s non-preemptive scheduling policy implicitly serialises the execution of all processes,
and no special kernel support for mutual exclusion regions is therefore required.

4.8 Interrupts and Events

ESE (and RT/PC) systems are driven by messages flowing in channels. A process will be
scheduled only if it has a2 message pending on an input channel, and every message in an
RT/PC system can be traced back to the occurrence of an event in the environment. Envi-
ronmental events usually manifest themselves as interrupts. For each type of interrupt there
is an interrupt handler which must convert the information conveyed by the interrupt into a

message, so that it can be processed by a process which manages the interrupting device.

For an interrupt handler to be able to send a message to its device driver process each time it
receives an interrupt, the shortest interval between any two consecutive interrupts of that type
must be longer than the time required to send a message, schedule its receiver and process
the message. Interrupts often occur in bursts which exceed the rate at which the receiving
device driver processes can be scheduled. When this occurs in an RT/PC graph, the design
is not realisable. In practice, however, there is usually a known upper bound on the length

of a burst of an interrupt.

Consider, for example, the device driver process of a communications device which provides
a physical layer service to a link layer protocol?. The shortest possible inter frame delay
can occur when any frame is followed immediately by an information frame with only one
data byte. An information frame with one data byte consists at the physical frame level of
7 bytes, composed as depicted in figure 8. The worst case interrupt behaviour (assuming a
connection with no idle time) is therefore a frame followed seven byte transfer intervals later
by an information frame. At a transmission rate of 64000 bits/s this translates to an inter
frame period of 875us. In the case study described in chapter 5 an X.25 protocol stack is
implemented on an Intel 80188 processor running at 10MHz. On this platform the system
would be hard pressed to service a sustained burst of short frames, if scheduled strictly
according to the semantics of RT/PC.

2This exampic uscs the frame format of the balanced link access procedure protocol (LAPB) of CCITT’s
X.25 protocol stack.
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opening | address | control | data | CRC | CRC | closing
flag byte byte | byte | byte | byte | flag

Figure 8: Information frame format
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Figure 9: Fast Interrupting Device: Unrealisable System

If the link layer protocol implements a reliable service with window flow control, we know
that a sustained burst of frames cannot be longer than the available window size. We also
know that another burst will not be received until some of the received information frames
have been acknowledged. This means that incoming frames can be buffered, and because the
upper bound on the length of a burst is known, the receive buffer can be made large enough

so that no incoming frame is ever lost due to buffer overflow.

When the length of an interrupt burst is bounded as described above, the interrupt handler
can buffer messages from input devices, and rclease them into the system at a rate at which
the design is realisable. In effect the boundary between the system and its environment is
shifted. Instead of the physical device determining the rate of the input device, the input
from the physical device is buffered. The rate at which messages are released into the system
is determined by the buffer, which is logically a part of the environment.

Figure 9 shows a system with a device which generates interrupts too fast for the system
to be realisable. Figure 10 shows the same system, with an interrupt buffering mechanism
which releases events into the system at a realisable rate. The figure shows how the interrupt
buffering mechanism becomes logically part of the environment rather than the system.

In TSE an interrupt handler signals the occurrence of an interrupt on an input port, which is an
asynchronous channel which does not convey data — only the fact that an event has occurred.
An input port counts the number of signals it receives and its receiving process is scheduled
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Figure 10: Fast Interrupting Device: Realisable System

once for every signal received. Each input port is assigned a period, and its receiving process
is scheduled according to the same EDF policy which applies to asynchronous channels.

InputPortRecord = RECORD
name : Name ;
user_ref : CARDINAL ;
Teceiver : Process ;
period ! Time ;
level : CARDINAL ;
deadline : Time ;

END ;

Each time that an interrupt handler signals on an input port, the level of the port is incre-
mented. Each time that the receiving process of the input port is scheduled, the level of the
port is decremented. The receiving process of an input port is ready when the level of the
port is non-negative (level > 0). A deadline is calculated for an input port when it receives
a signal while its level is zero, or when its receiving process is scheduled and the new level is
still nonzero.

The period of an input port has the following scheduling implications:
e if the level of an input port is positive, and no other input ports or asynchronous channels
are ready, then the receiving process of the input port will be scheduled immediately;

o if another asynchronous channel or input port has an earlier deadline, the receiving
process of a ready input port will be scheduled no later than its deadline; and
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o if several occurrences of an interrupt have been buffered, the receiving process of the
input port will be scheduled once for each level of the port, and the delay between each
release of the receiving process will be no greater than the period of the input port.

The period of an input port therefore determines the minimum frequencyat which its receiving
process will be scheduled. If the system is not heavily loaded, and there are no other channels
with earlier deadlines, the receiver will be scheduled faster than the minimum frequency.

A system may recognise other events than just interrupts. If a process has an event to signal
to another process, it may do so by sending a message to the other process. Such a message
would not contain any data, since it merely indicates that an event had occurred. The signal
command of ESE can be easily generalised to support another kind of port: one which one
process uses to signal to another process (rather than an interrupt handler ¢o o device driver).
ESE therefore supports two pert types: an input port for interrupt haudlers, and a general

port for processes.

A general port identifies its signaling process as well as its receiving process. The signal
command checks whether the current signaling process is the declared signaling process of the
port. This guarantees that ports, like asynchronous channels, are unidirectional connections
between only two processes. An input port is logically a connection between a physical device
and a process, and because interrupt handlers are not activated by the scheduler, the identity
of the signaling process cannot be checked for input ports.

4.9 Timers

Many reactive systems require timers to implement periodic processes, to verify the comple-
tion of tasks, or to check that certain events occur within a specified interval. ESE supports
timers which can be set to expire after a specified interval, after which it sends a message
to a process on an asynchronous channel. Associated with each timer is a user reference, a
channel to send notification of expiry on, and a deadline.

TimerRecord = RECORD
user_ref ¢ CARDINAL ;
notification_channel : AsyncChannel ;
deadline ¢ Time ;
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AsyncChannel identifics an asynchronous channel in ESE’s channel table. It will be described
in section A.

When a timer is started, ESE calculates its deadline based on the current system time and
the period specified in the request to start the timer. A special process is periodically sched-
uled to check whether any timers have expired. If the current system time is later than a
timer’s deadline, the timer is stopped and a notification sent on its notification channel. The
notification consists of a message which contains the user reference which was specified when
the timer was set.

4.10 Implementation of Scheduling

To the scheduler there is no difference between an asynchronous channel and a port. Both have
a name, user reference, receiver, period and deadline. For the rest of this section asynchronous
channels and ports will both be referred to as channels, except where it is necessary to
distinguish between the two. “Channel” should be read as “channel (or port)”, and “message”
should be read as “message (or signal)”.

ChannelRecord = RECORD
name : Name ;
user.ref ¢ CARDINAL ;
receiver : Process ;
period : Time ;
deadline : Time ;

CASE channel_type : ChannelType OF
ASYRC_CHAWNEL :
sender : Process ;
message : Message ;
max_message_size : CARDINAL ;
| INPUT_PORT :
level

*e

CARDINAL ;
END
EWD ;

ESE maintains a table of channels for scheduling purposes:
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channel.table :+ RECORD
channels : ARRAY [0..MAX_CHANNELS-1] OF ChannelRecord ;
no.of_channels ¢ CARDINAL ;
END ;

Because ESE processes are sporadic, 2 process will only be scheduled when there is a message
for it to process — processes are not scheduled periodically. Jeffay showed that all messages
in a feasible RT/PC design will always be processed before their deadlines, if their receiving
processes are scheduled according to the earliest deadline first (EDF) policy. Because dead-
lines are associated with messages, a process is scheduled to process a message on a specific
channel: the one with the earliest deadline — the process cannot decide which channel to
accept a message from. In contrast, a process in a general purpose operating system can be
scheduled whenever it is not blocked on a specific communication command, and can usually
determine which message to process first. When no channel has a pending message, the ESE
idle process is scheduled. The idle process is also a sporadic process and runs to completion
like all ESE processes. The Select procedure of the ESE scheduler determines which process
to activate next.

PROCEDURE Scheduler () ;
VAR

next_channel ¢ ChannelIndex ;
BEGIN

LOOP

Select {(next_channel) ;
Release (next_channel.receiver)
END
EF) Scheduler ;

Because of the policy of scheduling according to deadlines associated with channels, ESE does
not maintain a ready queue of processes. Instead, channels are sorted in increasing order of
deadlines. When the scheduler is executed, the channel with the earliest deadline is found in
the channel table. It contains a reference to its receiving process, where the scheduler can find
its entry point to schedule. The scheduler will always schedule the receiving process of the
channel with the earliest deadline, and that process will not be preempted. All processes run
to completion, and after initially scheduling the first process, the scheduler is only invoked
every time a process completes execution.
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A deadline is calculated for a channel when a message is sent on that channel. The deadline
is equal to the current system time plus the period of the channel. A channel’s deadline is
therefore the earliest time at which another message can be sent on it. The receiving process
of a ready channel must be scheduled before its deadline to process the current message,
otherwise message collision will occur.

Scheduling the next process involves finding the channel with the earliest deadline, and calling
the thread of its receiving process. To find the channel with the earliest deadline, the channels
must be ordered by their deadlines. The channel ready queue can be sorted when one of the
following events occurs:

1. When a message is sent on a channel. A list of channels with pending messages must
be maintained and ordered by deadline. When a message is sent on a channel a deadline
is calculated for the channel, and it is inserted into the correct position in the ordered
list.

e If the ordered ready queue of channels is implemented as a linked list, the com-
plexity of the insertion of a channel into the queue is of order O(n), where n is the
number of channels.

o If the ordered ready queue of channels is implemented as a randomly accessible
queue, a binary search can be used to find the position for a new channel. The
complexity of a binary search is of order O(log n), where n is the number of
channcls. In order to insert a new element into the queue, its existing elements

must be moved in time proportional to n.

In both cases, sending 2 message introduces an unpredictable delay with a known upper
bound into the execution time of a sending process.

2. When the current process completes execution, and the scheduler selects the nezxt process.
In this case no ordered queue needs to be kept if all channels are examined during the
scheduling to determine the one with the earliest deadline. This incurs a constant O(n)
overhead on the cost of scheduling, and the ordering of the ready channels has no impact
on the execution time of a process sending process.

As both the approaches described above have a know worst case behaviour, either can be
used in the implementation of the EDF scheduling policy. ESE employs the second approach
for the following reasons:



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. THE ESE KERNEL 47

¢ No ready queue for channels is required. This simplifies the implementation, and saves
data and code space. No dyramic data structures (pointers) ar= required for the sched-
uler, raising confidence in the reliability of the scheduler.

e A simple iterative routine finds the earliest deadline. The cost of this operation is
constant for a given number of channels, and can be determined accurately.

e No unpredictable delay is incurred by sorting the channe] ready queue when a process
sends a message on a channel. The execution time of a process can be predicated

accurately.

The first channel in the channel table is initialised as the input channel to the idle process.
All channels receive an initial deadline of MAX (Time).

WITH channel_table.channels [0] DO
name := ’Jdle Process Input Channel’ ;
user_ref := IDLE_PROC_CHANMEL ;
receiver := idle_process ;
deadline := MAX (Time) ;
END ;
channel_table.no_of_channels := 1 ;

Selectselects the first channel with the earliest deadline (more than one channel may share the
earliest deadline) as the next chennel. A ready channel will have a deadline of less than MAX
(Time). If no channel is ready Select will defanlt to the input channel of the idle process.

PROCEDURE Select

(VAR next_channel : ChannellIndex) ;
VAR

c : ChannellIndex ;
BEGIN

next_channel := 0 ; (* Input chamnel to idle process %) ;

c =1 ;

WHILE ¢ < channel_table.no_of_channels DO

IF

channel_table.channels [c].deadline <
channel_table.channels [next_channel] .deadline
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THEN
next_channel := ¢
END ;
INC (c)
END ;
channel_table.channels [next_channel].deadline := MAX (Time)
END Select ;

4.10.1 System clock granularity

ESE requires a hardware clock to determine deadlines accurately. If the system clock granu-
larity is much coarser than the period of input events, more than one process may be scheduled
between two clock ticks. When this happens, the deadlines of channels cannot be determined
accurately, and the deadline of a channel may be set earlier than it should be.

Figure 11 shows a system where such a problem can occur. It shows three channels, each
with the same period, and with the same execution cost for each receiving process. The
system clock granularity is five times the execution time of the receiving processes. The
period between events that occur in a burst can be much smaller than the timer granularity.
For this reason messages on the input channels of processes 1, 2 and 3, which occur in the
same interval between two system clock ticks, will receive the same deadline.

If a number of ready channels share the earliest deadline ESE’s scheduler will always select
the first one it encounters. If the clock granularity is coarse enough, two successive messages
on the same channel can receive the same deadline. The scheduler may then repeatedly select
a channel with a low channel number even though there is a channel with a higher channel
number, and the same deadline.

In figure 11 three channels share a common release time, and therefore 2 common deadline.
The blackened circles show the release times of the channels (in real time) and the unblackened
circles show the deadline of each channel (in system time). The filled boxes on the ready
intervals of the channels indicate the period for which the receiving process of that channel
was scheduled tc process the pending message. The figure shows how process 3 will not be
scheduled before the deadline of its input port, because processes 1 and 2 were repeatedly
scheduled before it.

From the example it should be clear that a system clock granularity, of at most the minimum
period of the most frequent event, is required to ensure that the deadline scheduling policy
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is correctly applied. The provision of such a fast clock can however place a heavy interrupt
handling overhead on the system, or may be physically impossible in some systems. For
example:

Th« ESE clock granularity is configurable, but for the platform used in the case
study in chapter 5 it defaults to a 50ms tick. Systems implemented on ESE on
that platform have however had bounded burst signal periods of down to around
500us. A timer tick of 500us would have placed an intolerable interrupt handling
burden on the system.

One solution to the problem is to keep an ordered deadline queue, and always insert a new
channel immediately before the next later deadline. This would ensure a temporal ordering
on channels with the same deadline, but would incur more overhead in finding the correct
position for a2 new channel in the queue. An even more serious probiem is the inaccuracy of
the clock, and the fact that channels which receive the same deadline in this scheme may not
have had the same deadline had the clock granularity been finer.

The ESE scheduler addresses the problem by artificially inserting fine grain clock ticks into the
clock, thereby providing a finer grain clock. A deadline is calculated each time a message or
signal is sent on a channel or port, so ideally message events must occur at different instances
of the system clock. In ESE the system clock is therefore incremented by a fixed amount each
time a message is sent, or a port is signaled. This has the effect of inserting fine grain clock
ticks. The system clock drift caused by the inserted ticks is controlled in two ways:

1. The amount by which the clock is incremented with each communication event is chosen
so that the sum of such increments will not exceed the length of one ESE timer tick
interval in one such interval. This can be accurately determined because the rates of all

channels are known.

2. At each hardware clock tick the clock is incremented to one tick interval later than the
previous hardware clock tick. The effect of the inserted fine grain clock increment is
therefore cancelled at each clock tick, and the ESE clock remains as accurate as the
hardware timer which provides the tick.

Although the ESE clock will never be accurate at the fine grain, it is guaranteed not to drift
from the hardware timer. If the constant with which the clock is incremented with each
communication operation is chosen carefully, the behaviour of the clock is accurate enough
to ensure correct scheduling.
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Figure 11: Scheduling with course clock ticks

Figure 12 shows the same events as the previous figure scheduled with inserted clock ticks.
All deadlines are now met.

4.11 Periormance of ESE

To measure the efficiency of ESE’s scheduler two p:  esces were programmed to exchange a
2 byte message 120000 times. This means that the scheduler was executed 120000 times to
switch between the two processes. The iest was executed on a 50 MHz Intel 80486-based PC.
Table 1 shows the results of this test. Note that the cont: xt switching overhead is constant
for a specific configuration of channels. This predictability is important in hard real-time

systems.
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Figure 12: Scheduling with inserted fine grain clock ticks
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l No of Channels Sn! !J'f‘ota.l Time % Task Switch (t) | C= !t-28.4!/n |
2 3.59 30us 0.8us

3 3.6s 3lus 0.8us

4 3.81s 32us 0.8us

5 3.86s 33us 0.8us

10 4.36¢ A6us 0.8us

20 5.22s 43us 0.8us

30 6.17s 51us 0.8us

40 7.11s 59us 0.8us

50 8.4s TOus 0.8us

100 13.45s 112us 0.8us

200 23.42s 195us 0.8us

Table 1: Task Switching Overhead
Task switch (us)
200 T
180
160 +
140 +
120 1
100 +
80 -
60 <4
40 4
5
20 -+
20 40 60 80 100 120 140 160 180 200

No of channels (n)

Figure 13: Task switching cost of channels
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| No of Timers | Total Time | Task Switch ]

1 3.59s 20.9us
10 3.50s 29.9us
100 3.59 20.9us

1000 3.64s 30.3us

Table 2: Timer Processing Overhead

The cost of the ESE scheduler consists of two components: a fixed setup component (KX), and
a variable component (C) which is proportional to the number of configured channels. The
cost of a task switch (t) is determined by the following formula:

t=K+nxC,

where n is the number of configured channels. For the hardware used for these tests, the fixed
component is approximately 28.4us for all channel configurations, and the variable component
0.8 us per channel. In other words, for any given configuration of channels on this platform,
all task switches will take approximately

(28.4 4 n x 0.8)us

to execute. Figure 13 shows a graphical representation of the context switching overhead
incurred for different numbers of channels.

Timers are used extensively in typical reactive systerns. To measure the overhead incurred by
timers, different numbers of timers were configured, and the context switching rate measured.
Table 2 shows the results of this test.

As can be seen from tables 1 and 2, the number of configured timers has a negligible effect
on the context switching overhead, while the number of channels created for timers has
a significant effect (see table 1). When a large number of timers is required, the context
switching overhead incurred by creating a channel for each timer can be considerable. In the
next chapter we shall examine a solution to this problem.
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Chapter 5

Developing Reactive Systems

5.1 Introduction

The goal of this chapter is to provide a step by step description of the process of design,
analysis and implementation when one uses Jeffay’s RT/PC paradigm [28] and the ESE
kernel. A real example is used throughout to illustrate each step in the process. We shall
see that two extensions were required to the basic ESE kernel to support industrial reactive
systems: mailboxes and alarms. Having described the development process we shall discuss
some observations derived from using RT/PC and ESE in practice. Finally we shall summarise
the development process.

The main steps in the development process are: requirements definition, system design,
RT/PC design and analysis, and implementation. At the start of each section which de-
scribes a step in the development process, we shall describe the purpose and output of that
step.

5.2 X.25 case study — requirements definition

The purpose of the requirements definition step in the development process is to state clearly
what the functional and performance requirements of the finished system are. The ouput of
this step is a specification document which describes the requirements. We shail discuss the
functional and performance requirements of the X.25 implementation briefly, but since it is
not a part of Jeffay’s method, we shall not develop a complete requirements specification here.
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The requirements definition is, however, an important step in the development process. The
application of Jeflay’s RT/PC method requires accurate information about the rate at which
events occur in the environment of the system, as well as the performance requirements of
the system.

My case study is an implementation of CCITT’s recommendation X.25 protocol stack, em-
bedded on an intelligent ISA bus expansion card. The requirements of the embedded software

ate:

¢ an embedded implementation of both the link layer (LAPB) and packet level protocols
of CCITT’s 1988 recommendation X.25 [62};

e the packet level protocol must support up to 200 standard two way logical channels;

¢ a user interface to the X.25 packet level protocol, which provides access to all X.25
facilities; and .

o line speeds up to 64Kbps must be supported.

Figure 14 shows a block diagram of the hardware platform on which the X.25 protocol stack is
to be implemented. It is a PC/AT (ISA) bus expansion card with the following components:

Intel 80188 uprocessor, running at 10 MHz, for protocol processing. The processor has
integrated interrupt and DMA controllers. This facilitates full duplex DMA access to

and from the network interface controiler.

258Kbyte Local Memory. The protocol stack must execute from local RAM, and all X.25
buffers will be kept there.

Intel 82C30-10 Serial Communications Controller (SCC) which supports full duplex
synchronous communication, and performs framing, bit stuffing/stripping and CRC

computation.

PC Interface consisting of 32 KByte dual port RAM, an interrupt each for the card and the
PC, and an I/0 port each for the card and the PC. Interface primitives are exchanged
between the host PC and the card through the dual port RAM window. The I/0 port
is used by the PC to reset the card and to generate an interrupt to the card’s on board
processor. The card uses the I/O port to generate an interrupt to the PC.

The stated system requirements make strenuous demands on the card’s processor and available
RAM. Consider the following examples:
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IRQ2..15 / 32 e

Figure 14: Block diagram of iX.25 hardware




Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. DEVELOPING REACTIVE SYSTEMS 57

1. The buffer space required to suppért 200 standard logical channels can be calculated as
follows:
Standard packet size = 128 bytes
Standard packet level window size = 2 packets
Each two way logical channel has an incoming and outgoing window = 4 packets
200 logical channels therefore require

200 X 4 X 128 = 102400bytes(100K B)

The link layer buffer space requirement is given by

2 X window sizeXx

(maz packet size + packet header + LAPB header + CRC)

If the packet size is negotiable up to the X.25 maximum of 4096 bytes, the LAPB
window size is 7, and sequence numbering of both LAPB and packet level is standard,

the link layer buffer space required is

2 % 7 % (4006 + 3 + 2 + 2) = 57422bytes(+56 K B)

The total buffer space requirement for the protocol stack is therefore +156 K B. This
leaves plus minus 100 KB of the card’s 256 KB for the code, stack and data segments
of the entire implementation.

2. LAPB can receive a burst of information frames up to its maximum window size. The
smallest information frames which can occur in a burst, is a burst of packet level com-
mand frames: for instance, one RR packet for each of a number of logical channels. At
64Kbps, the transfer time for one byte is:

52000 X 8 = 1258

Each LAPB frame will consist of an opening flag, an address byte, a command byte, 3
information bytes (the packet level RR), two CRC bytes and a closing flag= 9 bytes.
The minimum transfer time for a frame is therefore

9 x 125us = 1.125ms

Incoming frame events can therefore occur at roughly 1.125ms intervals.

The throughput of the host/card interface is roughly 2Mbps. Assume that the host may
send a sustained burst of data requests to X.25, each 130 bytes long (including data and
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control). The messages from the host may therefore arrive at intervals of approximately
65us.

As can be seen from the above, the rate at which events can occur is very high. On the
target Intel 80188 processor ESE processes cannot be scheduled, or consume events, at
these rates. The system can therefore not deal synchronously with each event.

5.3 System design

In this section we shall create a top level design for the X.25 implementation. The purpose
of this section of the development process is to understand the functionality of the X.25
protocol stack, and to decompose it into manageable blocks. At this stage we do not yet
concern ourselves with Jeffay’s method, but we translate the statement of requirements into
a functional specification/design. We shall not develop a detailed specification here, as it is
not a part of Jeffay’s method.

5.3.1 Block design of X.25 system

The requirements stated in section 5.2 suggest a design consisting of three modules: a user
interface, the X.25 packet level protocol, and the LAPB protocol. A fourth module, the
interface to the network interface hardware, is also required. We shall call these modules
NL3IF, PLvi, LAPB and SCC Driver, respectively. Figure 15 shows the modules of our
design in relation to the OSI 7 layer stack and the X.25 specification.

The ISO’s 7 layer model for open systems interconnection (OSI) [61] specifies 7 protocol
Iayers, as well as service interfaces between each pair of protocol layers. For instance, the
Transport layer (TL4) and the Network layer (NL3) share a service interface: the Network
layer Interface. In OSI this is referred to as the n-interface between the n-layer and n+1-layer
protocols. The X.25 specification [62] spans the lower three layers of OSI: Physical, Link and
Network, but it does not specify any service interfaces. Qur statement of requirements adds
to the X.25 specification a Network layer interface. In our case study the Physical layer is
implemented in hardware. In our software design, the Physical layer is represented by the
device driver which interfaces with the physical layer: the serial communications controller
(SCC) device driver.
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Figure 15: OSI/X.25/implementation correspondence
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Figure 16: Protocol machine implementations
5.3.2 Process decomposition

A process is a useful abstraction for an autonomous component of a system. If processes
communicate via message passing they do not need to share data structures, and concurrent
access problems are eliminated. A process is also a clean way of dealing with asynchronous

events in reactive systems. When an event occurs, a process is scheduled to process it.

We ase the following criteria to decompose a system into processes. Reactive -ystems are
driven by eventsin their environment. These events enter the system in the form of interrupts.
An interrupt handler then signals the occurrence of the event to a process, which is scheduled
by the scheduler. Auy component of a system which is decomposed into an autonomous
module, and which also processes events, is a candidate to be a process.

Of the four modules already identified in our X.25 design, three will process events: NL3IF,
PLvl and LAPB. The SCC driver will consist of library routines to initiate transmission and
reception, and interrupt handlers. When it is decomposed into the three processes above, our
design becomes a system of communicating reactive systems. Each process receives events on
its input channels, and generates output in response to these events. When the output is a
message to another process, this message constitutes an input event to the reactive system
represented by that process.

Figure 16 shows the structure of each process in our design. Since each process implements
2 protocol machine (a service protocol in the case of NL3IF) each emulates a state machine.
Each protocol has a single driver process which receives all events (signals and messages) for
that protocol layer. This process activates a state machine which processes the events, and
generates output messages to devices and other processes (protocol layers).
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5.4 Design and analysis of RT/PC systems

The purpose of this section is to describe how Jeffay’s analysis techniques for RT/PC systems
can be applied to a real system. The goal of Jeffay’s method is to design and implement a
system of communicating processes in such 2 way that the implementation is known to be
temporally correct (Definition 5, section 3.6).

The method involves two steps: the first is to develop a realisabie design graph (Definition 6),
the second to map the realisable design onto a viable implementation of tasks! and channels.

A realisable design is one that can be implemented. If the worst case rate of each asynchronous
channel in an RT/PC graph is known, it is theoretically possible to schedule its processes in
such a way that the system adheres to the RT/PC paradigm. A design graph is therefore

realisable if its channel rate functions can be solved.

Definition 14 An implementation of a set of tasks is viable if every ezecution of every task
s guaranteed to complete before its deadline.

Viability as a measure of the correctness of a system of tasks is relative to the implemen-
tation strategy employed for those tasks, and is dependent upon the processor used for the
implementation. In section 5.4.5 we shall identify specific conditions under which a realisable
design graph has a viable implementation on the ESE kernel.

5.4.1 Realisability of a design graph

Jeffay determined conditions? for the realisability of three classes of design graphs: acyclic
design graphs, graphs with disjoint cycles and graphs with non-disjoint cycles.

1. An acyclic design graph is realisable if there exists a path from an input device to each
process in the system.

2. The transmission rate functions of a cycle, which is disjoint from all other cycles in
a design graph, can be solved iff at least one channel in the cycle has a non-identity
transmission rate function.

1We shall use the term, task, when we refer to a process in an implementation, and process whea we refer
to a process in the design graph. In the analysis that follows, this helps us to distinguish between the design
and its implementation.

Section 3.6 contains formal versions of the necessary aad sufficieat conditions for design graphs with cycles.
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(2]

Figure 17: Nested cycles

)

3. The transmission rate functions of a pair of non-disjoint, simple cycles in a design graph
can be solved iff:

o there is only one process which receives messages from a distinct process in each
cycle;
o each cycle has at least one channel with a non-identity transmission rate function;

e one of the cycles has a sequence of processes in which at least three messages are
required to be input to the first process in the sequence, before 2 message can be

emitted from the last message in the sequence.

Figure 17 shows two examples of non-disjoint cycles. The realisability conditions for
non-disjoint cycles are sufficient for the pair of cycles on the left, but not for those on
the right.

5.4.2 Realisability of the X.25 design

Figure 18 shows an RT/PC design graph of our X.25 system. It has a process for each of
the two protocol layers, LAPB and packet level; and one for the network layer interface. The
physical layer is implemented in hardware, and is represented in the graph by input devices.
The design contains two output devices (not shown in the design graph): the physical layer
(for frame transmission) and the host interface. Due to the flow control mechanism of the
X.25 protocoal stack, the output devices cannot be flooded. Since they are not required in the
realisability analysis, the output devices are omitted from the graph. Should any reasoning
about timing involving the output devices be required, they can be added without any impact
on the realisability analysis of the system. Asynchronous channels in the system are labeled

a---j3.

The design graph contains six input devices:
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Figure 18: RT/PC design of X.25

1. host — control and data messages sent to the embedded protocol stack by the host PC.

2. PLul timers — The packet level protocol maintains several timers which signal certain

events.
3. MdmC — An event indicating a change in the modem status to LAPB.
4. TzC — An event indicating the completion of a frame transmission to LAPB.
5. Rz — An event indicating that an incoming frame has been received.

6. T1 — LAPB maintains a single timer which signals the occurrence of certain events.

Channel rate functions

The rate at which messages flow through the X.25 system is determined by the rate at
which the host sends data, and the rate at which messages are received on the physical
layer interface. The worst case rate occurs when a sustained burst of messages is sent in
both directions between an X.25 DTE and DCE.3 If the DTE and DCE are correctly tuned,
each received LAPB frame will contain both a packet level data packet and a LAPB frame

3The CCITT's recommendation X.25 defines the protocol betweea a DTE (Data Termination Equipmeat)
and a DCE (Data Connection Equipmeat). The DTE represents the X.25 user’s equipmest, the DCE the
point where the user’s link connects to the X.25 packet switched network.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. DEVELOPING REACTIVE SYSTEMS 64

acknowledgement. In response to such a frame, LAPB will then send two messages to PLui:
a data and a control primitive. In this worst case scenario, each packet level data packet will
contain a data message for the host, as well as a packet level acknowledgement. In response
to each data packet, PLvl will therefore send two primitives to the user via NL3IF: a data and
a control primitive. Based on the worst case behaviour of the system, we can now determine

the following channel rate functions for the system:

¢ b= a — All primitives from the host are passed to PLvl by NL3IF.

e f = 23 — Each received frame is an information frame which causes LAPB to send a

data primitive and a control primitive to PLvl,

o ¢ = 2x £ = f — Half of all primitives which PLvl receives from LAPB (£) are data
packets. Each packet contains data for the host as well as packet acknowledgement.
For each data packet received, one data indication primitive and one control primitive
is sent to the host via NLSIF.

ee=2Xx * = f — Each control message sent to PLul on f causes it to send the next
queued information packet to LAPB (é). Each data primitive which PLuv! receives on f

causes it to send a control primitive on e (%)

The behaviour above can be achieved only if the host interface is at least as fast as the frame
reception rate — a > j. If a > j the X.25 flow control mechanism will ensure that host data
is transmitted only at the rate at which frames are acknowledged. If a < 7 the message flow
rate in the system will be lower, and the worst case behaviour described here will not occur.

The input devices, MdmC, TzC, T1 and PLvl Timers cause very limited message flow in
the system. In the worst case behaviour described here, only TzC and MdmC generate any
events. Neither of these events cause any message flow out of LAPB, and therefore have
no impact on the realisability of the system. I'7f and PLul timers will only generate events
when communication timeouts occur — in other words, when the flow of data through the
system is much lower than the worst case described above. We can therefore ignore these
input devices for the purpose of our realisability analysis, and use the reduced design graph
shown in figure 19.

Figure 19 shows that even though the RT/PC design of X.25 contains non-disjoint cycles, the
channel rate functions are easily solved. This is because the channel rate functions depend
upon the interactions of the X.25 protocols, rather than cumulative input. The design graph
in figure 19 is realisable because all the channel rate functions can be solved.
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LAPB

Figure 19: Reduced, annotated RT/PC design for X.25

It is possible to refine the design graph in figure 19 by refining the processes and channels
shown into sets of processes and channels. For example, the data and control flows can be
separated into separate channels and receiving and sending processes. In this way cycles
in the design graph :an be removed. However, the added complexity will not simplify the
analysis. The structure of the system is such than the effective message flow in the refined
graph is exactly the same as in the abstracted graph shown here.

ESE kernel extension — mailboxes and alarms

Two practical issues, which arose in using RT/PC and the ESE kernel in practice, prompted
the addition of asynchronous channels, which can buffer multiple messages, to the basic ESE
kernel.

The first situation occurs when one input message (event) can cause its receiver process to send
more than one output message to the same destination. Consider the worst case behaviour
of the X.25 system, described above. Each LAPB frame received causes two messages to be
sent to PLvl. If both messages were sent on the same channel, the channel would overflow,
because ESE would not preempt LAPB so that PLul could process the firsi message. There
are a2 number of solutions to this problem:
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1. Both primitives could be packed into one message, and sent together. However, this
would violate the conventions of the OSI n-service interface, which requires separate
control and data primitives. It would also require the receiver of each message to
parse it for the primitives it contains, and a separate thread to be executed for each
different message. But this approach does not suit the design of a reactive system,
which processes events one at a time.

2. Separate channels can be created for different types of messages exchanged between two
processes. This is a viable solution, since the deadline scheduling policy can ensure that
messages are processed in the order they were sent. Care has to be taken, however,
of the number of channels created. Section 4.11 shows that the number of channels
in a system has a significant impact on the fixed scheduling overhead. This becomes
especially significant when a less powerful embedded processor, such as an Intel 80188,
is used. ‘

3. Messages can be buffered, and a signal used to activate a receiver process once for every
buffered message. When the buffering and signaling functions are combined, the result
is equivalent to an asynchronous channel which can buffer multiple messages.

The second motivation for buffered asynchronous channels involves the use of timers. In some
systems provision has to be made for a large number of timers. The X.25 packet level, for
instance, requires a separate timer for each logical channel. In our implementation, which
supports up to 200 logical channels, this would imply 200 extra channels, and that would
have a significant impact on the cost of scheduling. The answer to this problem is to have
a second type of timer in ESE: one which signals expiry on a buffered asynchronous channel
rather than the standard ESE asynchronous channel. Several of these timers can then share
one buffered channel. For the reasons outlined above, Mailbozes and Alarms were added to
the basic ESE kernel.

A mailboz is an asychronous channel which can buffer up to a predefined number of messages.
Like an ESE input port, the receiving process of the mailbox will be scheduled once for each
buffered message. The semantics of mailboxes are exactly the same as for input ports, and
the receiving process of a mailbox will be scheduled at least at the rate corresponding to the
period of the mailbox. Since a mailbox can receive messages from a number of tasks, it does
not identify its sender task. The buffer slots required by a mailbox are allocated when the
mailbox is created. This is done to fix the cost of sending a message to a mailbox. If the
buffer space for a slot is allocated when the send occurs, there may be an unpredictable delay,
or in the worst case the system may be unable to allocate the required space.
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When a message is put into a mailbox, it is copied into the buffer apace maintained by the
ESE kernel. If it is the only message in the mailbox, a deadline is calculated for the mailbox.
ESE’s scheduler and Receive command treat mailboxes as part of the generic set of channels,
which consists of asynchronous channels, input ports and mailboxes.

An alarm is a timer which signals its expiry on a mailbox rather than an asynchronous
channel. It is started and stopped in the same way as an ESE timer. Because alarm expiry
notifications are buffered in a mailbox, an alarm cannot be used to provide an accurate time
tick to a prucess. When accurate timing is required, an ESE timer must be used. When a
timer is used only to indicate that an event (timeout) had occurred, and this does not require
accurate timing, an alarm can be used. The overhead involved in sending to and receiving
from a mailbox is marginally hLigher than for an asynchronous channel. Since there is no
semantic difference between timers and alarms, alarms should therefore only be used when
the number of timers re;tir2d would add a significant number of channels to the system.

5.4.3 Implementing the design graph

An RT/PC design graph models a system in terms of graph vertices and edges. Edges
correspond to message passing channels (both synchronous and asynchronous); vertices to
processes, in/output devices, data repositories, etc. To implement a design one must map a
design graph onto a set of ESE tasks and channels in such a way that the temporal correctness
of the implementation can be determined.

In his thesis [28], Jeffay specifies necessary and sufficient conditions for the viability of a
set of sporadic tasks which communicate on asynchronous channels. The ESE kernel has the
following features which determine how a design graph is mapped onto a set of sporadic tasks,
and the viability conditions that apply to such a mapping;:

e Non-preemptive scheduling ensures that mutual exclusion is always ensured for any
set of tasks that share data structures and resources. Because of the non-preemptive
scheduling policy no receiver will ever consume a message immediately when it is sent
— the sending task must always complete its execution cycle before another process can
be scheduled. Each ESE channel must therefore buffer one message until the receiver
of that channel is scheduled.

e No data repositories or other mutual exclusion mechanisms are required in ESE, because
mutual exclusion is guaranteed by the non-preemtive scheduling policy.
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e No lockable shared resources are supported by the ESE kernel. All ESE tasks are
therefore single phase tasks [28] and no ready process can ever be blocked Ly a locked

resource.

o The ES 7 kernel scheduler selects the channel with the earliest deadline, and activates
the receiving process of that channel. Because tasks are scheduled non-preemptively a
task’s deadline is the same as that of the channel whose message it consumes at any
point in time. Due to the non-preemptive scheduling policy a task with multiple input
channels will behave exactly like a set of tasks: one for each channel.

Mapping a design graph onto an ESE implementation
A design graph can be mapped to an ESE implementation as follows:

1. ESFE lasks

Jeffay recommends an implementation strategy of creating a task for each asynchronous
channel. This is because a process with multiple input channels would have a period of
;{: where r;, 18 the sum of the rates of all input channels of the process. For tasks with
shared resources it is desirable to have the largest possible period, because the more
blockage a task can endure, the less it imposes on other tasks. If a task is created for
each channel, the period of each task will be longer than the ;-.1: of the corresponding
multi-input process [28].

In ESE we can create a task for each process in the design graph without the problem
described above. This is due to the fact that ESE does not support lockable shared
resources, and schedules tasks non-preemptively on the deadlines of ready channels.
Because ESE determines which message (from which channel) a scheduled process can
consume, and because tasks are single threaded, the effect is the same as creating a task
for each asynchronous channel in the design graph.

2. ESE channels
ESE supports only asynchronous channels. Synchronous channels reduce to standard
procedure calls due to the non-preemptive scheduling policy of single phase ESE tasks.
An asynchronous ESE channel is therefore created for each asynchronous channel in
the design graph. The sender and receiver tasks of a channel are those created for the
corresponding sender and receiver processes in the design graph.

3. ESF signal ports
A signal port is created for every event that originates from an interrupt handler. This
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enbles ESE to schedule a device driver task which will process the event.

4. ESE mailbozes
A mailbox can be created, instead of two or more channels, if it is desirable to reduce
the number of channels in a system. It can also be created for a set of alarms to signal
their expiry on. A mailbox may also be used to reduce the flow rate of messages on a
certain path in a system. The mailbox can be used to buffer and release messages at
the desired rate. In this way an otherwise non-viable system may be made viable.

Rules for the use of mailboxes

1. The number of unprocessed messages to be buffered by a mailbox must be bounded. If
the system does not impose some form of flow control over the processes communicating
through the mailbox, the mailbox will overflow.

2. A mailbox must be created with enough slots to buffer the largest possible number of
unprocessed messages which may be sent to it, otherwise it will overflow.

3. The period of the mailbox determines a lower bound on the rate at which the messages
in the mailbox will be consumed. If no other channels have earlier deadlines, the mailbox
receiver will be scheduled faster than the rate corresponding to its period.

4. Because mailbox slots are allocated when the mailbox is created, each slot must be
large enough to hold the largest possible message that can be sent to the mailbox. If 2
mailbox is created to combine two channels which have a large difference in maximum
message size, the mailbox must provide buffer space for the smaller messages in slots
large enough to hold the largest message. This wastes space, and in such a case it may
be more desirable to create two separate asychronous channels. A mailbox should be

used to combine channels only if they have similar maximum message sizes.

Refining design graph asynchronous channels

The purpose of the design graph is twofold: to model a system as clearly and simply as
possible; and to determine the realisability of the design. The first purpose requires the
abstraction of unnecessary detail; the second, sufficient detail to calculate the message flow
rates accurately.

In some designs it is possible to combine a number of asynchronous channels into one in

the design g..~h. In the implementation one may thea create more than one channel for a
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corresponding asynchronous channel in the design graph. The refined design would still be
realisable, since the effective message flow rate between the processes remained the same.

Example In the X.25 design both the LAPB and packet level protocols can generate both
a data and a control message to each other in one execution cycle, Because of non-
preemptive scheduling this will cause channel overflow if both messages are sent on the
same channel. To solve this, we create separate control and data channels, and if the
original design was realisable, the refined one will be as well. The channe] overflow
problem is eliminated in the refined design, and the temporal ordering of messages is
preserved by the deadline scheduling of receiver processes.

In this example a mailbox could also have been used to solve the problem. This would
have required buffer space to be allocated for the largest message which the mailbox
could receive. Since the largest control message is several times smaller than the Jargest
data message, it is more memory efficient to create separate channels in this case. If
all messages have the same size, a mailbox would be a better solution because it would
reduce the number of channels. In this way the scheduling overhead is reduced.

5.4.4 Implementation mapping of the X.25 example

In section 5.4.2 we determined the realisability of a mndel of an X.25 system (figure 19).
That model was made deliberately abstract to illuminate the logical structure of the system,
and to avoid implementation detail. To reason about the viability of a system, we need a
model which represents the planned implementation in the exact detail of tasks, channels and
mailboxes. Figure 20 shows the refined model which represents our planned implementation.

Tasks

The implementation model has an ESE task for each process in the design graph of the
previous section: NL3IF, PLvl and LAPB.

Interrupt handlers and signal ports

The input devices of figure 19 have been refined to input devices which generate events to
interrupt handlers. The interrupt handler signals the occurrence of the event on an ESE signal
port. The input device represents the physical device — it is not implemented in software.
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Figure 20: Refined model of X.25 for implementation

n
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The reason for this refinement is to model the cost of processing an event fiom an input
device accurately. Interrupt handlers in figure 20 are shown as processes. This is because an
interrupt handler is semantically equivalent to an ESE process, except for the fact that it is
not scheduled by ESE’s scheduler.

Host

FromHostE

Host Int Handler
FromHostS

Network

TxCE

RxE

PL! Int Handler

TxCS

RxS

The host PC

The event which causes an interrupt to the X.25 system

The interrupt handler for host interrupts

A signal port on which Host Int Handler signals the arrival of a host

message to NL3IF

The physical layer hardware

The event wkich causes a transmission completion interrupt to the
system

Tne event which causes a frame reception interrupt to the system

The interrupt handler for physical layer interrupts

A signal port on which PL1 Int Handler signals an transmission com-
pletion interrupt to LATB

A signal port on which PL1 Int Handler signals a frame reception to
LAPB

Asynchronous channels

The channels of the ahstract design graph have been refined in figure 20 to accurately model

the message flow which will occur in the implementation, and the channels between PLvl and

LAPB have been refined into pairs of data and control channels.

N2P NL3IF to PLvl channel: all primitives

P2N  PLvl to NL3IF channel: all primitives

P2L; PLvl to LAPB channel: data primitives only
P2L. PLvl to LAPB channel: control primitives only
L2P; LAPB to PLv! channel: data primitives only
L2P. LAPB to PLvl channel: control primitives only
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Timers and mailboxes

Both PLvl and LAPB require timeouts to signal certain events. LAPB’s single timer, T1, is
created as an ESE timer, and signals expiry on a channel. PLvl requires many timers, and
since ESE’s scheduling overhead increases with the number of channels in the system, these
timers are implemented as ESE alarms which signal expiry on a single mailbox.

T1 A timer, and a channel called T1
Packet Level Timers A alarm for each PLvl timer, and a2 mailbox called Packet Level
Timers. The mailbox has one slot for each alarm which may expire.

5.4.5 Viability analysis

The first step towards implementation of the RT/PC design graph is a mapping of the design
onto a set of tasks and channels, supported by the ESE kernel. This was the subject of
sections 5.4.3 — 5.4.4. The purpose of the viability analysis is to determine whether the
implementation of that mapping will be temporally correct. Viability analysis takes into
account the implementation strategy, as well as the processor on which the system is to be
implemented. A viable implementation of a design graph will always be temporally correct.
This means that all execution cycles of all tasks in the implementation are always guaranteed
to complete before their deadlines. We use an implementation strategy of single phase, non-
preemptive, non-resource consuming sporadic task= (for the purpose of analysis the CPU
is not a resource). ESE processes are single-phase because ESE does not support lockable
resources, and because they are not preempted.

According to Jeffay the viability conditions for this implementation strategy are:

Definition 15 A sporadic task T is a tuple (¢, p) where:

¢ = computational cost: the time to ezecute task T to completion on a dedicated uniprocessor,
and

P = period: the shortest possible interval between successive requests for execution of task T.

Definition 16 A set of sporadic tasks, v = {11,T3,...,T,}, sorted in non-decreasing order
by period, can be scheduled non-preemptively without inserted idle time for all possible release
times iff:
2 =<1 (¢}
i=1 P
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and

Vk,1 < k< n:pp2 max (c.+ max ( l+§[m+l )) (2)

©:Pi>p O<U<pi—ps 3=1
The meaning of the two conditions are:

1. For any task, % gives the rate of that task. The execution cost multiplied by the rate
(e x 1) gives the fraction of the standard time unit that the task can consume in the
worst case. The sum for all tasks of & can therefore not exceed one standard time unit.

2. For any task, the remainder of its period less its execution cost must be large enough
to cover any delay the task may experience due to other ready tasks being scheduled
before it.

Note: When all tasks have the same period only condition 1 needs to be tested.

How do we apply these conditions to an ESE implementation? Since ESE tasks are sporadic,
and scheduled non-preemptively, we can treat each channel as if it has a dedicated process
which processes only messages fromn that channel. We therefore use the channels of a design
as “tasks” in the viability analysis, with the cost of processing a message on each channel as
the cost of that “task”.

For a feasible set of tasks, condition 1 is easily verified. Jeffay showed that determining
condition 2 has O(n?p,) complexity, where n is the number of tasks, and p,, is the period of
the task with the lowest rate of execution requests. However, since the number of channels
(“tasks”) in a typical implementation of this kind will be reasonably low (typically 30 or less),
condition 2 is determined reasonably quickly (see section 5.5).

5.4.6 Viability of the X.25 example

In order to determine the viability of the X.25 example we need accurate values for two
parameters: the worst case (shortest) period of execution requests for each task, and the
worst case (highest) cost of executing each task. For each channel in the system we consider a
separate task -— the period of each task is the same as the period of its corresponding channel,

and its cost is equal to the cost of processing a message on its corresponding channel. Table 3
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shows the cost {¢; = C(1)) and the channel rate (r; = R(3)) for each channel. The execution
costs (¢;) were measured with an in-circuit emulator.

Table 3 does not show any timer channels. This is because the tiimers will not expire during
the worst case behaviour of X.25 analysed here. The channel rate functions in table 3 are
solved for the worst case rate of incoming 128 byte X.25 data packets. The total length of a
link layer frame containing such a packet is:

flagbytes +
FCS bytes +
LAPB header bytes +
3 packetlevel header bytes +
128 data bytes

137 bytes

NN

This means that 137 bytes must be transmitted for each frame. At 64 Kbps we can therefore

transmit

64000bits/s « 1
Bbits/byte ~ 137bytes/ frame

= 58.4frames/s

For the sake of the initial viability analysis we round the number of frames per second up to
60. If we use the values of table 3 to calculate viability condition 1, we arrive at the following

result:
14

Y Eo24251

&t p;
=1
The system is therefore not viable for the worst case behaviour of 128 byte data packets

transmitted at 64Kbps, and we have to reduce the input rate to render the system viable.

Table 4 shows the system with the rate of incoming frames adjusted to 20. For this solution

of the channel rate functions

and viability condition 1 is satisfied.

The analysis above was done using a commercially available spreadsheet package. This is an
ideal way of solving the equations and determining viability condition 1, since it allows onc
to interactively adjust the rates of input devices, and to see the resultant message flow in the

system.
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The analysis of viability condition 1 tells us that the hardware is not capable of handling the
worst case frame transmission rate at 64 Kbps. How does this influence our implementation?
At a line speed of 19200 bps, 17.5 frames, each containing 137 bytes, can be transmitted per
second. This means that the system can be scheduled according to the EDF policy, and that
@ll deadlines will be met, at line speeds up to 19200 bps. At higher line speeds the higher
1:.ssage rate from input devices will cause channels to overflow. This situation is remedied
by setting the period of the ESE signal port, which is used to signal frame arrival (RzS), to
the maximum tolerable rate of 20 frames per second. The result is that ESE will schedule
the receiving process of this signal no faster than 20 times per second when other processes
with earlier deadlines are ready. Frames which arrive at a rate faster than 20 per second must
be buffered or lost. Since the X.25 link layer protocol (LAPB) uses a window flow control
mechanism, frames will not be lost — frames can be buffered up to the maximum window size,
at which point the flow control mechanism wiil prevent the remote X.25 stack from sending
any further frames. The net effect is a reduction ¢/ the rate of the input device, RzE, to
the viable rate (20). As socn as at least one of the buffered frames has been processed and
acknowledged, the remote X.25 stack can transmit again. The system can therefore operate
at line speeds higher than 19200 bps, and ESE will ensure that bursts of frames which arrive

too quickly to be scheduled will not overflow asynchrorous channels.

Viability condition 2 is determined by a special program. Figure 21 shows the input file to
this program for the X.25 case study. Each line in the input file contains the name, minimum
period and maximum execution cost of a channel. Period and cost are given in microseconds.

Figure 22 and figure 23 show the output file generated by the program in response to the input
file shown in figure 21. It first prints the channel information from the input file sorted by
non-decreasing period of the channels, and then checks viability condition 2 for each chanael.
If a channel satisfies viability condition 2, it is marked, OK. If a channel does not satisfy
viability condition 2, it is marked, FAILED.

As can be seen from the output file, our X.25 implementation model satisfies viability condi-
tion 2. The channel periods of the implementation on the ESE kernel can now be adjusted
to those used in the successful viability analysis. The ESE kernel is guaranteed to schedule
the viable implementation in such a way that all tasks always meet their deadlines — aii
consumers are guaranteed to consume every message before another message is received on

the same channel.

The X.25 implementation model described here was implemented on the hardware platform
described in section 5.2. The measured performance (in terms of maximum throughput) of
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1 | FromHostE | 0.0005 2 X R(RzFE) =120
2 | FromHostS | 0.001282 1 =113
_ m{-C(Fﬂ)ﬂlHOIIE)
3 | ToHost 0.001933 ] IC(P2N) =59
4 | N2P 0.008562 —T— -:c:( Fromfionis) = 99
H 1 -
7 { P2L, 0.001381 w—rT =31
9 | L2P; 0.004321 =40
ez +O(R=5)
10| Tz 0.000089 1 =29
m-l'c(mld)
11| TzCS 0.001 ) S =28
Xriegr +C(13CE)
12 | RzS 0.00738 1 = 56
@-{-C(Rsﬁ')
13| TzCE 0.00053 R(Tz) =
14| RzF 0.001161 K = 60
14
Y Z 042
i=1 pi

Table 3: Viability Condition 1 — Maximum Channel Rate
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6 | P2Lg 0.005431 % TP =16
7| P2L. 0.001381 —— T =15
— |
9 | L2P. 0.004321 ;m.:ﬂ-l—— =17
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Table 4: Viability Condition 1 — Adjusted Channel Rate

78



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. DEVELOPING REACTIVE SYSTEMS 79

# 1X.26 Viability Analysis
# Input file for Viable2.EXE
# Test for Jeffay’s Second Viability Condition

#ChannelName Period Cost
SRR ERSRREERRRARARARRNARES

FromHostE 25000 500 -
FromHostS 25641 1282
ToHost 33333 1933
N2P 27027 8562
P2K 32258 1031
P2LD 62500 5431
P2LC 86667 1381
L2PD 58824 6696
L2PC 58824 4321
Tx 66667 89

TxCS 66667 1000
RxS 50000 7380
TxCE 66667 530

RxE 50000 1161

Figure 21: Input File for Viability Condition 2 Checker

the implementation is within 4% of the throughput predicted in the viability analysis above.

5.5 RT/PC and ESE in practice — some observations

Jeffay’s RT/PC paradigm and the ESE kernel have been applied to a number of reactive sys-
tems: the embedded X.25 application described in this chapter; an embedded implementation
of the Frame Relay protocol; a MAC* layer bridge; and various DOS based user interface pro-
grams with a menu driven interface, It is currently being used in the implementation of
subsystems of a satellite. The following are some observations from two years of experience

with the paradigm in practice.

“The Medinm Access Control sublayer for broadcast networks [57], for example the IEEE 802 family of
specifications.
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Viability Analysis: Condition 2
Output from Viable2.EXE

Channels sorted by non decreasing periocd
SESERRRERBRABBLRRARRRARERBRRABRANRUBRERAR

FromHostE 25000 500
FromHostS 25641 1282
N2P 27027 8562
P2N 32268 1031
ToHost 33333 1933
RxS 50000 7380
RxE 50000 1161
L2PD 58824 6696
L2PC 58824 4321
P2LD 62500 5431
P2LC 66667 1381
Tx 66667 89
TxCS 66367 1000
TxCE 66667 530

Figure 22: Qutput File of Viability Condition 2 Checker

Delay check per channel
RS RRERERRARARNARAR
FromHostE p = 25000 max delay = 15696 OK
FromHostS p = 25641 max delay = 16337 0K

n2P P = 27027 max delay = 17723 OK
P2 P = 32258 max delay = 22074 OK
ToHost P = 33333 max delay = 23149 0K
RxS P = 50000 max delay = 39816 0K
RxE p = 50000 max delay = 39816 0K
L2PD p = 58824 max delay = 48640 0K
L2PC P = 58824 max delay = 48640 0K
P2LD P = 62500 max delay = 50021 0K
P2LC p = 66667 max delay = 1000 OK
Tx P = 66667 max delay = 1000 0X
TxCS p = 66667 max delay = 530 0K
TxCE p = 66667 max delay = 0 OK

Figure 23: Output File of Viability Condition 2 Checker: Continued
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5.5.1 The area of applicability of ESE

RT/PC and the ESE kernel can be used eftectively in any reactive application where the
number of processes and channels remain constant. If processes and channels can be added
or removed during the lifetime of the system, the channel rate functions will change, and
realisability and viability analysis become impossible.

RT/PC and ESE are particularly useful in applications where accurate reasoning about time
is required. Since deadlines can be guaranteed, hard real-time systems can be built this way,

provided the system is viable on the target processor.

ESE is a suitable platform to develop embedded systems on. It is efficient in terms of processor
and RAM requirements, thus maximising the amount of resources (CPU and RAM) available
to the application. The RT/PC paradigm allows systems to be designed with the minimum
of buffering. Mailboxes and signal ports provide mechanisms to control the ra‘e at which
events enter the system. This is important in systems in which a burst of events may render

a system nonviable on a specific processor.

ESE can be used fruitfully in non real-time environments. If all channels are created with
the same period, ESE effectively schedules ready tasks on a round robin basis. General
event driven systems, such as user interface programs are then easily implemented with the
minimum of analysis and tuning.

5.5.2 The effort of designing for RT/PC and ESE

Since 1 originally implemented ESE and the embedded X.25 application, five other developers
have used ESE as a platform to implement various embedded and DOS based applications.
All report that designing for ESE is at least as simple as designing for any other multitasking
kernel used by these programmers, and that the implemented systems were very efficient. The
analysis that is possible for RT /PC systems facilitates accurate performance and requirements
predictions.

5.5.3 Realisability and viability analysis

Determining the realisability of a design is simple if one applies Jeffay’s guidelines. An RT/PC
design graph is realisable if its channel rate functions can be solved. It was found in practice
that the realisability of the system was usually apparent upon inspection of the channel rate
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functions, and that it was unnecessary to resort to the categories of realisable design graphs
defined by Jeflay.

Viability condition 1 can be calculated with any commercially available spreadsheet package.
A special program determines viability condition 2 for any set of sporadic tasks. For the
X.25 example it computed viability condition 2 in less than 2 seconds. Computation of the
viability conditions therefore presents no problem.

5.5.4 Performance of ESE implementations

A good example of the performance attainable by systems implemented on ESE, is an em-
bedded implementation of the Frame Relay protocol [2] on the same hardware platform as
the embedded X.25 implementation described in this chapter. The scheduling overhead in
this implementation constitutes only 6.2 of the processing time for each message that flows

through the system.

5.6 Summary of method

The purpose of this section is to give a guide to development with Jeffay’s RT/PC paradigm
and the ESE kernel. It also includes the steps of requirements definition and system design
to complete the development process.

5.6.1 Requirements definition

This is a very important step in the development process. Since RT/PC iavolves a priori
analysis of real-time behaviour, a small change in the requirements can render the implemen-
tation non-viable. It is therefore important to be clear about the requirements before the
design and analysis of the systemn is started.

5.6.2 System design

The purpose of the system design phase is to develop a clear specification of the functionality
and performance of the modules that will implement the system. The system is decomposed
in terms of data flow and autonomous modules, and a process decomposition is identified.
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5.6.3 RT/PC design

Once the system is decomposed into a system of communicating processes, an RT/PC design
graph is developed which shows the interconnection of the processes via synchronous aad
asynchronous communication channels, and the input and output devices which are the source
and sync of events. Mutual exclusion regions are identified, and the graph is annotated with

channel rate functions.

5.6.4 Realisability analysis

An RT/PC design is realisable, i.e. schedulable according to the RT/PC paradigm, if the
channel rate functions can be solved. The realisability of a design giraph depends on the
presence and nesting of cycles in the graph. A graph without cycles is always realisable
— given a fast enough processor, the system can always be scheduled in such a way that
no process ever misses a deadline. Jeffay gives necessary and sufficient conditions for the
realisability of graphs with disjunct and nested cycles.

5.6.5 Implementation mapping

An RT/PC design graph is an abstract system represented by the RT/PC design icons. In
order to determine whether a realisable design can in fact be supported by a given hardware
platform, it has to be inapped to an implementation strategy supported on the platform. For
the ESE kernel we map processes to tasks, asynchronous graph channpels to asynchrunous ESE
channels or mailboxes, synchronous channels to procedure calls and input devices to interrupt
handlers and signal ports.

5.6.6 Viability analysis

For any number of channels in. an implementation we can accurately determine the scheduling
overhead incurred by ESE, for a given hardware platform. We also measure the cost of
processing each type of message that can flow in the system. Using this input we can determine
whether an implementation of an RT/PC design is viable — in other words, whether the
implementation as mapped from the RT/PC design can be scheduled on the given hardware
platform in such a way that deadlines are guaranteed.

Since the ESE kernel employs a non-preemptive carliest deadline first scheduling policy, the
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viability analysis is done as if a separate task exists for each channel. Because ESE does not
support lockable resources, the two viability conditions, 1 and 2, are sufficient for viability.
Condition 1 is computed using a spreadsheet, condition 2 by a special purpose program.

5.6.7 Implementation

If the viability analysis was done correctly, we are assured that the corresponding implemen-
tation is guaranteed to be temporally correct. Exact reasoning about the real-time behaviour
of the system is possible as long as the implementation follows the viable set of tasks and
channels exactly.
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Conclusion

The purpose of this study was to determine a design and implementation methodology suitable
for small embedded reactive systems. We therefore surveyed the current trends in real-time
systems development, and found a basic dichotomy: a time driven approach and an event
driven approach [3, 32). The time driven approach is popular in hard real-time systems
which can be implemented as sets of periodic processes [65]. Rate monotonic analysis and
scheduling are widely used in periodic systems [6], and pre-run-time schedulir ‘x used to
guarantee deadlines [65]. The event driven approach is popular in systems have to
cope with unexpected events with hard deadlines. Such systems are typically implemented
as sets of asynchronous processes, and scheduled by a deadline driven algorithm [49)].

The trend in real-time operating systems is towards distributed, fault tolerant systems which
employ pre-run-time scheduling, or run-time schedulability analysis to guarantee deadlines
[11, 17, 38]. Hybrid techniques combine priority based scheduling with deadline driven
scheduling to handle overload conditions, priority ‘uversions and fault tolerance [9, 49, 50].

The systems in which we are interested are event driven, and have real-time requirements and
strict resource constraints. We therefore require a design and implementation paradigm which
supports sporadic processes and incurs the least possible overhead on the system. Jeffay’s
RT/PC design method [28] provides a design and analysis method which can guarantee dead-
lines for reactive systems. The ESE kernel, which I implemented, supports implementations
of RT/PC systems, and guarantees their correct temporal behaviour.

Jeffay’s RT /PC paradigm has been found to be a practical design method for the systems
implemented on ESE. It is an intuitive model for reactive systems, and provides a formal
basis for rigorous analysis and reasoning about time. RT/PC not only allows the designer
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to guarantee deadlines in the design, but also to make accurate predictions about run-time
performance. The automated viability analysis procedure, which is based on a formal model,
ensures the temporal correctness of embedded systems.

The ESE kernel proves that it is possible to support RT/PC efficiently at run-time. The
scheduling implementation of the ESE kernel is highly efficient, and the run-time overhead
incurred by using the ESE kernel is minimal. Since deadline driven scheduling allows a
theoretical processor utilisation factor of 100% [39], RT/PC systems implemented on the
ESE kernel can use the processor optimally.

RT/PC systems implemented on the ESE kernel are suitable for embedded reactive systems.
Because the RAM and processor overhead incurred by using ESE is minimal, it is ideal for
systems with limited resources. The process abstraction provided by RT/PC can model the
concurrency inherent in systems which interact with devices, and hard deadlines of devices
can be guaranteed. Another significant advantage of using RT/PC is that the amount of
buffering required in a system can be minimised. An RT/PC system can be designed in such
a way, that the consumer of messages on a channel will always consume them faster than they

are produced. This means that no buffering is required between the processes.

The ESE kernel is implementcd in Modula-2, and all hardware dependencies are isolated in
one module. The size of the hardware dependent module is 323 lines of source code for the
embedded Intel 80188 version, and 218 lines of source for DOS. ESE requires 4737 bytes of
RAM for code on an Intel 80x86 processor, and one hardware timer to operate. Provided a
Modula-2 compiler is available, porting ESE to a new hardware platform is a quick, simple

exercise.

ESE’s non-preemptive sporadic processes make it suitable to embed in another operating
system. Since ESE will only execute processes when they have messages to process, an ESE
system embedded in another operating system will consume no processor cycles until an event
causes it to schedule a process. Because ESE processes run to completion, there is 2 known
upper bound on the amount of time for which an ESE system will remain active before
returning control to the host operating system. Provided that the host operating system
can guarantee a bounded delay between an event arriving for ESE and ESE being activated,
bard deadlines can still be guaranteed. One example of using ESE embedded under another
operating system is a version of ESE which can be used for DOS terminate but stay resident

programs.
Jeffay {28] posed a number of questions which could only be answered after using RT/PC in
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practice:

e Can real-time systems be naturally and elegantly designed with RT/PC? RT/PC is ide-
ally suited to modeling event driven systems. Systems with periodic tasks can, however,
also be modeled by sending a periodic timer message to a sporadic process.

o What is the benefit of using RT/PC over more traditional methods? The first benefit of
using RT/PC is that deadlines are guaranteed. Since an ESE design is a closed system,
there will be no unexpected run-time overload conditions which can cause deadlines to
be missed. The deadline driven scheduling algorithm avoids priority inversions which

may also cause missed deadlines.

For small embedded systems a major benefit is the fact that RT/PC allows the designer
to minimise the amount of buffering that is required. When communicating processes
are not guaranteed to adhere to RT/PC, some buffering mechanism is required, which
must provide for the worst case of unprocessed messages. This inter-process buffering

is unnecessary for RT/PC processes.

Jeffay proves that the RT/PC discipline is deadlock free [28]. An RT/PC system is
driven by events, and a process is only scheduled when it has a message to consume.
In ESE there are no lockable shared resources which may block a process, and since all

inter-process communication is asynchronous, deadlocks cannot occur.

The small size of the ESE kernel means that it can be used in environments where kernels
with more sophisticated features would be too expensive to support. This means that
a whole new class of embedded systems can benefit from process basod design, and
guaranteed deadlines.

o It must be demonstrated that it is possible to implement the RT/PC paradigm. The ESE
kernel and the various implementations done on it demonstrate that the paradigm can
indeed be implemented.

o Is the cost of scheduling and supporting RT/PC too great? ESE demonstrates that the
cost of scheduling can be extremely low. When non-preemptive earliest deadline first
scheduling is used, all processes can be executed on the same stack, and the selection
of the next process can be done in time linearly proportional to the number of channels
(O(n) for a set of n channels). Section 4.11 gives measured performance figures.

e Can task sets in practice satisfy the viability conditions? The class of applications, for
which the RT/PC method and the ESE kernel is being used, is always a closed, reactive
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set of sporadic tasks. For these systems the viability conditions were not found to be

restrictive.

RT/PC and the ESE kernel are currently in use by three commercial companies and a research
institute for applications ranging from data communications to satellite subsystems. The
design method has been found practical and of benefit in the development of small embedded
systems. The correctness of systems has been improved by eliminating timing errors, and the
reduction of buffering has been an important benefit. The absence of timing errors, and the
fact that process scheduler priorities and buffering do not have to be tuned during system
testing, has been found to reduce the development time of embedded systems.
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ESE interface types and commands

The basic ESE kernel supports processes which communicate over asynchronous channels,
and input devices which signal device driver processes on input ports. It also provides timers
which signal expiry by sending a message to a process over an asynchronous channel. The
following sections describe the parameters and semantics of each of the commands of the basic
ESE kernel.

A.1 Types

The following types are used in the interface to ESE.

A.1l.1 Alarm

An opaque type in the interface which identifies an alarm record in the timer table.

Alarm = POINTER TO AlarmRecord ;

A.1.2 AsyncChannel

An opaque type in the interface which identifies an asynchronous channel record in the channel
table.

AsyncChannel = POINTER TO AsyncChannelRecord ;
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A.1.3 InputPort

An opaque type in the interface which identifies an input port record in the channel table.

InputPort = POINTER TO InputPortRecord ;

A.1.4 Mailbox

An opaque type in the interface which identifies a mailbox record in the channel table.

Mailbox = POINTER TO MailboxRecord ;

A.1.5 Message

A pointer to a buffer which contains a message sent on a channel.

Message = POINTER TO ARRAY [1..MAX_MESSAGE_SIZE] OF Octet ;

A.1.86 Name

Various objects in ESE receive symbolic names to identify them for debugging purposes. A
name is an ASCII string.

Name = ARRAY [1..MAX_NAME_SIZE] OF CHAR ;

A.1.7 Octet

An Octet is an 8 bit type which can store numbers in the range [0,2® — 1].

A.1.8 Process

An opaque type in the interface which identifies a process record in the process table.

Process = POINTER TO ProcessRecord ;
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A.1.9 Thread

The entry point of a process, represented by a procedure type with no parameters.

A.1.10 Time

A 64 bit type is used to store time values. Time is measured in elapsed microseconds, so a
time interval of 264 — 1us can be handled. This translates to 584942 years, which is sufficient
to implement linear system time. A 32 bit time value represents an interval of just over 1
hour, if time is measured in us. This would require the system time to wrap to 0 periodically,
introducing possibly inconsistent deadlines.

A.1.11 Timer

An opaque type in the interface which identifies a timer record in the timer table.

Timer = POINTER TO TimerRecord ;

A.1.12 UserRef

A number, chosen by the user, by which ESE will identify channels and timers to the user in
the Receive command.

A.2 CreateProcess

CreateProcess is used to create a sporadic process which will be scheduled if it receives mes-
sages on its input channels. CreateAsyncChannel, CreateMailboz and CreateInputPort are
used to create the input channels to a process.

PROCEDURE CreateProcess
( name : Name ;
thread : Thread ;
VAR process : Process) ;
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A.3 CreateAsyncChannel

CreateAsyncChannel is used to create a unidirectional asynchronous communication chaanel
between only two processes. CreateProcess is used to create the processes.

PROCEDURE CreateAsyncChannel

( name : Name ;
user_ref : UsexRef ;
period : Time
sender ! Process ;
receiver : Process ;
max_message_size : CARDINAL ;

VAR channel : AsyncChannel) ;

A.4 CreateMailbox

CreateMailboz is used to create an asynchronous channel which can buffer one or more mes-
sages. A mailbox has one receiver and one or more senders. CreateProcess is used to create

the processes.

PROCEDURE CreateMailbox
( name : Name ;
user.ref : UserRef ;
Treceiver : Process ;
no_of_slots : CARDINAL ;
slot_size : CARDINAL ;
period : Time ;
VAR mailbox : Mailbox) ;

A.5 CreatelnputPort

CreateInputPort is used to create an input port on which an interrupt handler can signal to
a device driver process. CreateProcess is used to create the processes.
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PROCEDURE CreatelnputPort
( name : Name ;
user_ref : UserRef ;
period : Time ;
receiver ¢ Process ;
VAR port : InputPort) ;

A.6 StartSystem

StartSystem is called by the system to start the ESE scheduler once the process/channel
network has been created. Once the StartSystem has been called ESE’s scheduler remains in
control and control never returns to the thread from which it was called.

PROCEDURE StartSystem
Q

A.7T SendMessageOnAsyncChannel

SendMessageOnAsyncChannel is used to send a message on an asynchronous channel.

PROCEDURE SendMessagelnisyncChannel
(channel : AsyncChannel ;
nessage : Message ;
size : CARDINAL) ;

A.8 PutIntoMailbox

PutintoMailbox is used to put a message into a mailbox. Mailboxes differ from asynchronous
channels in that message k does not have to be processed before message k + 1 is sent on
the same chaanel. The mailbox buffers messages, and the receiver process of the mailbox is
scheduled at a minimum rate equal to the period of the mailbox.
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PROCEDURE PutIntoMailbox

(mailbox : Mailbox ;

Ressage : Message ;

size : CARDINAL) :

A.9 SignallnputPort

SignallnputPort is used by an interrupt handler to signal to a device driver process. Ports
differ from asynchronous channels in that signal k& does not have to be processed before signal
k 4+ 1 is sent on the same channel. The port buffers signals, and the receiver process of the
port is scheduled at 2 minimum rate equal to the period of the port.

PROCEDURE SignalInputPort
(port : InputPort) ;

A.10 Receive

Receive is called by a scheduled process to retrieve the user reference of the channel for which
it was scheduled, as well as the message sent on that channel. If the channel is an input port

only the channel user reference is returned.

PROCEDURE Receive
(VAR channel : UserRef ;
VAR message : Message ;
VAR size : CARDINAL) ;

The message in the active channel is not copied out of the internal buffer by the Receive
command. Since ESE employs non-preemptive scheduling, the sender of the channel cannot
be scheduled during the execution of the receiver. The receiver is therefore guaranteed that
the message will not be overwritten during its execution. The only exception occurs when a
process sends messages to itself on a channel. In this case the process would have to copy the
message to a local buffer before sending another.
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A.l11 SetTimer

SetTimer is used to start a kernel timer which will expire after the specified period, and sead
an expiry message to the receiver process of the specified notification channel.

PROCEDURE SetTimer
( user.ref : UserRef ;
notification_channel ¢ AsyncChannel ;
period : Time ;
VAR timer : Timer) ;

A.12 SetAlarm

SetAlarm is used to start a kernel timer which will expire after the specified period, aud put
an expiry message into the specified notification mailbox.

PROCEDURE Setilarm
( user_ref : UserRef ;
notification _mailbox : Mailbox ;
period : Time ;
VAR alarm : Alarm) ;

A.13 StopTimer

StopTimer is called to stop a timer which was started earlier by a SetTimer command, and
whoee expiry message has not been received yet.

PROCEDURE StopTimer
(timer : Timer ;
user_ref : UserRef ;

notification_channel : AsyncChannel) ;
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A.14 StopAlarm

StopAlarm is called to stop an alarm which was started earlier by a SetAlarm command, and
whose expiry message has not been received.

PROCEDURE StopAlarm
(alarm : Alarm ;
user_ref ¢ UserRef ;
notification_mailbox : Mailbox) ;

It is poesible for a timer or alarm to expire, and to be reused by another process, before the
receiver process is notified of the first expiry. If the receiver process is scheduled in response
to another event, which causes it to stop the timer (alarm)}, it will still have a valid timer
(alarm) reference, but possibly for a timer (alarm) set by another process. Both the user
reference and notification channel (mailbox) of the timer (alarm) are therefore compared to
the parameters of the StopTimer (StopAlarm) call. If they do not match, the timer (alarm)
referred to in the call had already expired.

If a process attempts to stop an expired timer (alarm), ESE removes the expiry message
from the notification channel (mailbox), after checking that the user reference of the expiry
message matches the parameter of the Stop Timer (StopAlarm) call.
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