

Phylogenetic relationships and population dynamics of Calonectria

Conrad L. Schoch

Dissertation approved for the degree of Doctor of Philosophy in Agriculture at the University of Stellenbosch

Declaration

I the undersigned hereby declare that the work contained in this dissertation is my own original work and has not previously in its entirety or in part been submitted at any university for a degree.

$$
7 / 1 / 1 / 1999
$$

Summary

This dissertation is presented as a collection of separate publications and an amount of redundancy has thus been unavoidable. Although several species are newly described they are not effectively published and will thus be formally published in scientific journals. There were two main objectives:
I. To investigate the variability and mating compatibility of species and populations, in order to contribute to the systematics of Calonectria.
II. To identify loci that would be useful for DNA sequence comparisons in this genus and to present a reliable phylogeny of Calonectria and other closely related hypocrealean taxa.

In the introductory review a synopsis of the current knowledge regarding the taxonomy and life cycle of Calonectria and Cylindrocladium spp. is presented. The importance of these pathogens are noted, as well as the problems related to identifying them. Aspects regarding specific species complexes and topics are discussed in more detail in the following chapters.

The morphological and phylogenetic variation was investigated for the Cy. candelabrum species complex in Part 2. DNA sequence comparisons of the ribosomal 5.8 gene and flanking ITS1 and ITS2 spacers were employed in order to determine whether mating incompatibility and general morphology was supported by molecular evidence. Although only small differences were found these proved to be consistent and resulted in the recognition of Calonectria scoparia (anamorph Cylindrocladium candelabrum), and the description of three new species, namely Calonectria pauciramosa (anamorph Cylindrocladium pauciramosum), Calonectria insularis (anamorph Cylindrocladium insulare) and Calonectria mexicana (anamorph Cylindrocladium mexicanum).

The Cylindrocladium scoparium cultures studied in Part 3 were isolated from several hosts in the U.S.A. Isolates were mated in all combinations, and one successful mating was selected to establish whether recombination occurred. RAPD and mating type data of parental isolates and progeny confirmed Cy . scoparium to have a heterothallic mating system. Furthermore, to determine the phylogeny of Cy: scoparium with several morphologically similar Cylindrocladium spp., DNA
sequences of the ribosomal 5.8S gene and the flanking internal transcribed spacers (ITS), as well as part of the high mobility group (HMG) box (forming part of the MAT2 mating type gene) and the β-tubulin gene, were analysed. Maximum parsimony yièlded concordant trees for all three data sets. These data supported the morphological and biological species concepts proposed for Cy. scoparium and other, similar, small-spored Cylindrocladium spp.

Part 4 represented an investigation into the mating compatibility and mating type distribution of populations of Cy. pauciramosum. This enabled the determination of the effective population for the different areas studied. A sample collected over a period of six years, reflecting a number of locations in South Africa were found have 1:1 mating type ratio, as expected in a random mating population. However, the mating type ratio was found to be significantly different in single nursery populations. In the South African nursery, the MAT-1 mating type was dominant, while the MAT-2 was more common in other samples obtained from nurseries in Italy and the U.S.A. This was consistent with one or more founder effects. The high percentage of hermaphrodites also suggested that recent introductions had occurred in nurseries in Italy and the U.S.A. In addition to this, DNA sequence comparisons of the β-tubulin gene was used to investigate variation below species level in Cy: pauciramosum. All isolates from South Africa, Australia, U.S.A. and a group from Italy had identical sequences. A second group with identical sequences were found in the Italian sample. In addition to this, variation was found between all isolates from Brazil, Colombia and Mexico. Some of these base pairs were shared between the South and Central American isolates as well as isolates of Cy. candelabrum. This points towards a speciation event in South or Central America.

After investigating variation below species level, this study was also expanded to generic level. In Part 5 information obtained in the preceding chapters culminated in a phylogeny of all known species in Calonectria and Cylindrocladium based on DNA sequence comparisons of the β-tubulin gene. Many clades, containing small numbers of isolates were strongly supported by bootstrap. However, relationships between these clades were often ambiguous. A number of phylogenetic placements based on DNA data did not always agree with preconceived morphological relationships. Two large groupings were evident and both contained small-spored, one-septate species. The only morphological character that correlated with DNA based phylogenies was vesicle shape of the anamorph.

Finally, in Part 6, the generic phylogeny was investigated. In order to obtain a generic phylogeny a subset of Calonectria species was selected, as well as isolates from other genera, closely related to Calonectria. All of these genera were originally described under the broad concept of Nectria sensu lato. A gene tree phylogeny, based on β-tubulin was presented for selected nectriaceous genera with anamorphs bearing cylindrical macroconidia. Based on molecular data and the distinct anamorph genera, new teleomorph genera were proposed for Cylindrocladiella (Nectricladiella), Gliocladiopsis (Glionectria) and Xenocylindrocladium (Xenocalonectria). Calonectria was also found to form a monophyletic lineage. Eight species of Cylindrocladiella were recognised, with two having teleomorphs in Nectricladiella, namely N. camelliae (Ce. microcylindrica) and N. infestans (Ce. infestans).

This study concluded that the current morphological species concepts in Cylindrocladium and its Calonectria teleomorphs can comprise several biological as well as phylogenetic species. The use of mating testers in this study was shown to provide a powerful tool to separate morphologically similar, but genetically isolated species. The biological and morphological species also agreed with the phylogenetic concepts used, but only vesicle shape were found to define phylogenetic clades. However, phylogenetic species concepts based on DNA sequences data obtained from genomic regions such as the β-tubulin and MAT-2 genes and additional areas will become increasingly important for further taxonomic studies in Calonectria and related genera.

Opsomming

Hierdie studie word aangebied as ' n samevoeging van ' n aantal onafhanklike publikasies en ' n sekere mate van oorvleueling sal dus voorkom. Alhoewel ' n aantal spesies nuut beskryf word in hierdie tesis, is hulle nie effektief gepubliseer nie, en sal dergelike publikasie in toepaslike wetenskaplike joernale plaasvind. Die hoofdoel van hierdie studie was tweërlei:

1. Om die varieerbaarheid en paringsvermoëns van spesies en bevolkings te ondersoek en by te dra tot die sistematiek van Calonectria.
II. Om die lokusse te identifiseer wat bruikbaar kan wees vir DNA volgorde vergelykings in hierdie genus en om ' n betroubare filogenie van Calonectria en naby verwante spesies in die Hyporeales te genereer.

In die inleidende oorsig is die huidige kennis aangaande die taksonomie en lewensiklus van Calonectria en Cylindrocladium spp. bespreek. Die belang van hierdie spesies is aangedui, sowel as die probleme waarmee hulle geassosieer word. Punte wat van toepassing is op spesifieke spesie komplekse word later in meer detail bespreek.

Die morfologiese en filogenetiese variasie op spesie vlak word ondersoek in Deel 2. DNA volgorde vergelykings van die ribosomale 5.8 S geen en die naasliggende ITS1 en ITS2 intergeniese areas was gebruik om die paringsonvermoë en morfologiese karakters te onderskryf. Dit het die herbeskrywing van ' n bestaande spesie, Calonectria scoparia (anamorf Cylindrocladium candelabrum), en die beskrywing van drie nuwe spesies, Calonectria pauciramosa (anamorf Cylindrocladium pauciramosum), Calonectria insularis (anamorf Cylindrocladium insulare) and Calonectria mexicana (anamorf Cylindroc/adium mexicanum) tot gevolg gehad.

In die daaropvolgende deel was die herkombinering van Cy . scoparium beskou met behulp van RAPD merkers. Parings is uitgevoer en die RAPD en paringstipe data het bevestig dat hierdie spesie heterotallies is. In die tweede deel van hierdie hoofstuk was DNA volgorde vergelykings gedoen op fragmente wat verkry is van drie verskillende lokusse, die 5.8 S ribosomale geen en ITS areas en dele van die MAT-2 geen se HMG kas asook die β-tubulien geen. Hierdie data was aangewend om die filogenie van $C y$. scoparium en ander kleinspoorvormende heterotalliese

Cylindrocladium spesies te ondersoek. Dit het die drie nuut beskryfde spesies van die vorige hoofstuk ingesluit en morfologies en biologies spesie konsepte bevestig.

Deel 4 bevat ' n ondersoek na die paringsvermoëns van Cy. pauciramosum op bevolkingsviak. As gevolg hiervan kon die effektiewe bevolking in verskillende areas bepaal word. A monster wat oor ' n tydperk van ses jaar en ' n verskeidenheid van geografies gebiede versamel is het ' n paringstipe verhouding van $1: 1$ gehad. Dit is volgens verwagting in ' n bevolking wat vrylik paar. In spesifieke kwekerye was die geval egter anders. In die Suid-Afrikaanse kwekery was die MAT-1 paringstipe oorheersend, terwyl MAT-2 meer voorgekom het in Italië en V.S.A. Die hoë aantal hermafrodiete dui ook daarop dat die spesie onlangs ingebring is. DNA volgorde vergelykings was ook gebruik om variasie onder spesievlak te ondersoek. Alle isolate van Suid-Afrika, Australië, V.S.A. en ' n groep van Italië het indentiese volgordes gehad. ' n Tweede groep in die Italiaanse bevolking is ook gevind met identiese DNA volgordes. In die Suid en Sentraal Amerikaanse bevolkings is die meeste variasie gevind en sommige van die basis paar verskille is gedeel met Cy. candelabrum. Dit dui op ' n spesiasie in Suid Amerika.

In Deel 5 is die inligting wat verkry is vantevore uitgebrei na generiese vlak toe. Dit het ' n filogenie van alle bestaande Calonectria en Cylindrocladium spesies tot gevolg gehad, gebaseer op DNA volgordes van ' n deel van die β-tubulien geen. Verskeie klades is deur statisties analise ondersteun. Verhoudinge tussen hierdie groepe was egter minder duidelik. Twee groot groepe was ook onderskei en die engiste morfologiese karakter was met die geen filogenie ooreengestem het is die vorm van die "vesicle" op die kondiofore van die anamorf.

Tot slotsom, in Deel 6 is die verteenwoordigende groepe spesies van Calonectria en naby verwante genera vergelyk. Hierdie genera is alreeds voorheen bespreek onder die wye taksonomiese konsep Nectria sensu lato. ' n Geen boom gebaseer op β tubulien was aangedui. Aan die hand van hierdie data en unieke anamorf verwantskappe is nuwe teleomorf genera voorgestel vir Cylindrocladiella (Nectricladiella), Gliocladiopsis (Glionectria) en Xenocylindrocladium (Xenocalonectria). Dit is ook bevind dat Calonectria monofileties is. Ag spesies van Cylindrocladiella is aangedui, waarvan twee teleomorwe het in Nectricladiella, naamlik N. camelliae (Ce. microcylindrica) en N. infestans (Ce. infestans).

Hierdie studie het dus bevind dat die huidige morfologies spesie konsepte in Cylindrocladium ook biologiese en filogeneties spesies omskryf. Die gebruik van paringstoetsers is aangedui as ' n goeie metode om morfologies eenderse spesies te onderskei. Dit wil egter voorkom asof filogenetiese spesie konspte gebaseer op DNA gebiede soos die β-tubulien en MAT-2 geen, asook ander areas meer belangrik sal word vir verder taksonomies studies in hierdie swam.
"An acquaintance with fungi is in the highest degree necessary to man."
Linneaus C (1707-1778)
"Nothing in the whole world is coarse or despicable, but everything that the Divine Power has created and preserves is most worthy of contemplation...since in our judgement the very smallest of created things, equally as the greatest, have their miracles."

Acknowledgements

I would like to thank the following:
Proff P.W. Crous, M. Wingfield and B.D. Wingfield for inspiration, guidance and helpful advice;
Drs G.J. Samuels, S. Koike, N.E. El-Gholl and Prof G. Polizzi for collecting isolates and providing critical comments;
Drs C. Linde, J.E. Taylor, G.R.A. Mchau, J.C. Kang and R.C. Witthuhn, as well as Mr G. Campbell and Mr G. Cronwright and colleagues and friends in the Deptartment of Plant Pathology at the University of Stellenbosch for providing isolates, sharing of ideas and technical assistance;
Ms B. Robbertse, my friends and my family for their support and The Creator of us all.
"The classification of the Pyrenomycetes will never be either natural or philosophical, until the species become known in the most minute details of their frutification."
De Notaris G (1805-1877)

Table of contents

1. An introduction to Calonectria and Cylindrocladium systematics 1
2. The Cylindrocladium candelabrum species complex includes four distinct mating populations 18
3. Recombination in Cylindrocladium scoparium and phylogeny with other heterothallic small-spored Cylindrocladium species 43
4. Comparison of female fertility and β-tubulin DNA sequences in isolates of Cylindrocladium pauciramosum62
5. Phylogeny of Calonectria based on β-tubulin DNA sequence comparisons 77
6. Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia 95
7. Appendix - DNA sequence alignments used 123

1. An introduction to Calonectria and Cylindrocladiuum systematics

Background

The Hypocreales constitutes one of the 46 ascomycetous orders recognised in the current Dictionary of Fungi (Hawksworth et al 1995). Several members of this order have been studied extensively because they fill ecological niches that make them important in many fields of human endeavour. Hypocrealean species range from agents of biological control and producers of antibiotics to elicitors of potent mycotoxins (reviewed by Rossman 1996). The genus Calonectria De Not. is especially important and its members are pathogenic to a wide variety of plants in warm and humid conditions world-wide.

Descriptive accounts on the Hypocreales have centred primarily on species of the genera Hypocrea Fr., Hypomyces (Fr.) Tul. and Nectria (Fr.) Fr. (Rossman 1996). The genus Nectria sensu lato has been a repository for all species having fleshy, uniloculate ascocarps with a hypocrealean centrum with hyaline, non-apiculate, bicellular ascospores, and phialidic anamorphs (Rossman 1993). Recently several informal groupings of Nectria were re-described as genera within the family Nectriaceae (Rossman et al 1999). Genera were segregated from Nectria on the basis of single characters, including ascospore septation and conidiomatal morphology. Calonectria, relevant to this study, were already seperately circumscribed previously by Rossman (1979b) and were one of these genera.

Teleomorph

The genus Calonectria (Ca.) was erected by De Notaris (1867) based on the type species Ca . daldiniana De Not. which has since proved to be a later synonym of Ca . pyrochroa (Desm.) Sacc. (Rossman 1979a). In Saccardo's description Calonectria was delimited for Nectria-like species with multiseptate ascospores (Saccardo 1883). Although Rossman (1979a, b, 1983) accepted differences in ascospore septation to exist at generic level, the concept of distinguishing genera on the basis of a single character was not supported. This viewpoint was in agreement with the work of Booth (1959) and subsequent authors who used a combination of characters that included anatomy of the perithecial wall, as well as ecology and presence of specific anamorphs for generic delimitation. Therefore, members of Calonectria were defined
as species with brightly coloured ascocarps that change colour when placed in 3% KOH solution $(\mathrm{KOH}+)$, have a warty to scaly wall structure, darkened stromatic base, and Cylindrocladium Morgan anamorphs (Rossman 1993, Rossman et al 1999).

A number of Calonectria species have been described in the previous two decades. Five species of Calonectria were accepted and monographed by Rossman (1983). A subsequent review included 10 species of Calonectria with Cylindrocladium anamorphs as well as an additional six Cylindrocladium species for which no Calonectria state was known (Peerally 1991). The most recent monograph was that by Crous and Wingfield (1994). These authors circumscribed sixteen Calonectria species with Cylindrocladium anamorphs, and seven Cylindrocladium species without known teleomorphs.

The emphasis of the last two monographs was firmly placed on features of the Cylindrocladium anamorph. The reasons for this are twofold. Firstly, the anamorph state is the form most frequently encountered in the field and secondly, nearly all species can be distinguished only on their asexual characters. This is due to the fact that ascospore size, as well as ascus and perithecial morphology can only place taxa into one of three species complexes. Furtherrnore, in many cases, species are heterothallic, and the Calonectria state is rarely observed. In line with the arguments presented above, preference in this document will be given to the terminology and morphological characters of the Cylindrocladium state in the rest of this study.

Anamorph

The asexual genus, Cylindrocladium (Cy.), was first erected by Morgan (1892) for a species found growing on an old pod of Gleditsia triacanthos L. in Ohio, U.S.A. This genus was delimited by the author as follows "Sterile hyphae, creeping, branched forked or trichotomously branched the sporophores in pairs or threes at the extremities of the branchlets and cymosely arranged; spores solitary, cylindrical, 1septate, hyaline". The type species was described as Cy. scoparium Morgan. Most notably, no mention was made of the appendage on the conidiophores. However, subsequent descriptions by Massey (1917) and Anderson (1918) clearly indicated this feature, which later authors found to be so characteristic for Cylindrocladium (Boedijn \& Reitsma 1950, Sobers \& Seymour 1967, Peerally 1991, Crous \& Wingfield 1994). Presently four conidial types are known for Cylindrocladium, namely chlamydospores, microconidia, macroconidia and megaconidia (Crous \& Seifert 1998). Cy. scoparium, however, forms macroconidia and chlamydospores only. As
no cultures were obtained by Morgan (1892), nor any mention made of chlamydospores, it is clear that the generic name represents the macroconidial form.

Several authors described species under different generic names that were eventually synonomised under Cylindrocladium. Diplocladium cylindrosporum Ellis \& Everh. was described with a sterile appendage, swollen at the tip, but was subsequently redisposed to Cylindrocladium by Boedijn and Reitsma (1950). A similar fate was in store for the genera, Candelospora Hawley apud Rea \& Hawley (Boedijn \& Reitsma 1950), Tetracytium Vanderwalle (Subramanian 1971) and Cylindrocladiopsis J.M. Yen (Crous \& Seifert 1998).

Species of Cylindrocladium have been defined based on various features of the conidiophores and the conidia (Crous \& Wingfield 1994). The use of one such character, the stipe eminating from the conidiophores and the shape of its apical vesicle has elicited much difference of opinion. Before the important review done by Boedijn and Reitsma (1950), taxonomists concentrated mainly on conidial morphology. The importance of the presence of a vesicle and its shape as a species defining character was only emphasised several years later (Bell \& Sobers 1966, Sobers \& Seymour 1967). However, subsequent authors rejected this species concept due to the variability of this feature (Hunter \& Barnett 1978, Rossman 1983). Peerally (1991) argued that vesicle shape can be a reliable taxonomic character in fresh cultures and that this must be used in combination with conidial characters for identification of Cylindrocladium species. This view was also supported by subsequent authors (Crous et al 1992, Uchida \& Aragaki 1992b). Crous et al (1992) showed that the osmotic potential of the medium influences vesicle shape and that vesicle morphology can be a reliable character when standardised media and growth conditions are applied. Consequently, this approach was combined with other morphological characters in order to delimit several Cylindrocladium species (Crous \& Wingfield 1994).

Closely related genera

The anamorph genus Cylindrocladiella Boesew. was erected by Boesewinkel (1982) to accommodate several small-spored species that were previously placed in Cylindrocladium. Cylindrocladiella (Ce.) was reported to have different conidiophore branching patterns, conidial shapes, dimensions, as well as cultural characteristics. The recognition of Nectria camelliae Shipton as the teleomorph for one of these species made a strong case for the seperation of Cylindrocladiella. More recent
studies have confirmed the genera Cylindrocladium and Cylindrocladiella to be distinct (Crous \& Wingfield 1993, Crous et al 1994, Victor et al 1998). Samuels (1991) allocated N. camelliae (anamorph: Ce. infestans) to Nectria subg. Dialonectria, while (Rossman et al 1999), in a re-evaluation of the group, placed it in Cosmospora (Cs.) as Cs. camelliae (Shipton) Rossman \& Samuels, based on its teleomorph morphology. In comparison to Calonectria, the perithecial walls of Cs. camelliae are smooth and narrow, while the ascospores are 1 -septate and much smaller.

Several genera with characters morphologically similar to those of Calonectria have previously been described under the generic concept of Nectria sensu lato in the Nectriaceae (Rossman et al 1999). Molecular character based phylogenies in this group have largely confirmed morphological groupings. Sequence comparisons of the nuclear large-subunit (28S) ribosomal DNA obtained from several genera in the Hypocreales indicated that some clustered closely to Calonectria (Rehner \& Samuels: 1994). Leuconectria clusiae Rossman et al (anamorph: Gliocephalotrichum bulbilium J.J. Ellis \& Hesselt.), as well as Nectria radicicola Gerlach \& Nilsson (anamorph: Cylindrocarpon destructans (Zinnsm.) Scholten) showed the closest similarity, with two typical species of Nectria, N. pseudotrichia Berk. \& Kurt. [anamorph: Tubercularia lateritia (Berk.) Seifert] and N. cinnabarina, forming part of this subclade, but grouping more distantly.

In morphological studies, several similarities were found between the Gliocephalotrichum and Cylindrocladium anamorphs of Leuconectria and Calonectria (Rossman \& Samuels 1993). The most notable was the formation of cylindrical conidia, penicillate conidiophores, and a brown pigment diffusing in agar media. Perithecial anatomy in N. radicicola and its relatives was also observed to be similar to that of Calonectria (Samuels \& Brayford 1990). Samuels and Seifert (1987) also recognised similarity between Cylindrocladium and the Cylindrocarpon Wollenw. (Co.) anamorphs of N. radicicola.

In addition to these genera, several other anamorph form genera are similar to Cylindrocladium, having cylindrical macroconidia and phialidic conidiogenous cells. Among these are Gliocladiopsis S.B. Saksena, Xenocylindrocladium Decock et al and Curvicladium Decock \& Crous. Of these genera, only Xenocylindroc/adium (Decock et al 1997) has been linked to a teleomorph, forming part of the Nectria sensu lato clade.

Characterisation of Cylindrocladium and Calonectria species

Morphology and cultural characteristics

As mentioned previously, the most recent taxonomic concept for Calonectria places emphasis on the features of its Cylindrocladium anamorph. The standardisation of growth conditions (Peerally 1991, Crous et al 1992, Crous \& Wingfield 1994) enabled the use of characters previously described as variable and unreliable (Hunter \& Barnett 1978, Rossman 1983). Besides the shape and size of the apical vesicles, species are differentiated on the dimensions and septation of conidia, phialide shape, stipe length, conidiophore branching pattern and cultural characteristics. Teleomorph characteristics evaluated for interspecies differentiation include ascospore size and septation, perithecial colour and morphology.

In addition to these characters, the taxonomic value of the occurrence of micro- and megaconidial states has also been evaluated. Sobers (1968) discussed the presence of a small-spored form of Cy. pteridis Wolf that was observed in cultures growing on water agar and on plant material. This microconidial form has also been reported in at least eight of the Cylindrocladium species treated in the monograph of Crous and Wingfield (1994). Microconidia are generally cylindrical, straight or curved and 1 -septate, although 3 -septate conidia have been reported for $C y$. multiseptatum and Cy. rumohrae (El-Gholl et al 1997, Crous et al 1998b). Crous and Wingfield (1994) questioned the usefulness of this character for taxonomic studies however, as the microconidia are not produced by all strains of a species.

The term "megaconidia" was only recently defined as a fourth conidial type for Cylindrocladium (Crous \& Seifert 1998). This conidial state has been infrequently reported before (Sobers 1971, Alfieri et al 1972, Uchida \& Aragaki 1992a). In agreement with the terminology used for Fusarium conidia, "normal" conidia are referred to as macroconidia, while the larger conidial type has been termed as megaconidia (Crous \& Seifert 1998). Megaconidia were reported for four species of Cylindrocladium and were described as multiseptate, widest in the middle, straight to curved or bent at right angles, and significantly larger than macroconidia. As in the case of microconidia the value of this as a taxonomic character is limited, but can be important in cases where some strains form only these conidia (Crous \& Seifert 1998).

The functions and roles of the mega- and microconidial states in the Calonectria life cycle are still uncertain and open to speculation. The occurrence of microconidial states is not unique in the Nectriaceae and it is regularly found in Cylindrocarpon and Fusarium Link:Fr. species (Booth 1971). Another conidial state intermediate between micro- and macroconidia was termed mesoconidia for species of Fusarium (Pascoe 1990a). Mesoconidia are thought to be produced under dry conditions in order to allow air dispersal (Pascoe 1990b). A similar relationship with regard to specific environmental conditions and functions of micro- and megaconidia may occur in Cylindrocladium.

Cardinal temperature requirements for growth, as well as the production of chlamydospores and microsclerotia were evaluated by Crous \& Wingfield (1994). Several species were found to grow at either high or low temperatures, and to produce sparse or extensive amounts of chlamydospores on malt extract agar. Although chlamydospore formation influences colony colour, these characters were found to be of much less taxonomic value than in related hypocrealean genera (Crous \& Wingfield 1994).

Physiological and biochemical characteristics

The response of a number of Cylindrocladium species to various nutritional and environmental conditions has been studied by Hunter and Barnett (1978). No major variations were observed in utilisation of different C and N sources, although species differed in sporulation. However, different C sources had an effect on microsclerotial production (Weaver 1974), while the ratio of C to N also influenced this character (Hunter \& Barnett 1975). Long term storage and excessive subculturing resulted in sterility in older cultures, which could only be observed as white mycelium (Hunter \& Barnett 1978). Variations were found in thiamine sufficiency, and effects of light on sporulation. Optimum temperatures for growth were found to vary between $25-30^{\circ} \mathrm{C}$ for all species studied (Hunter \& Barnett 1978). Other biochemical studies included aminopeptidase substrate specificities used by Stevens et al (1990) to distinguish Cylindrocladium pathogens found in Wisconsin, U.S.A. Recent work was also done to determine the structures of acidic fungal polysaccharides isolated from cell-walls of Cylindrocladium species by means of ${ }^{13} \mathrm{C}$ NMR spectroscopy (Ahrazem et al 1997). This study revealed the usefulness of using these markers for chemotaxonomy and emphasised the possiblities of finding new polysaccharidic structures in fungal cell walls.

Molecular characteristics

Protein characterisation

Because of the similarity and variability in several morphological characters used for Calonectria and Cylindrocladium taxonomy, the use of molecular characters has become increasingly important. Several molecular characters have been applied in attempts to solve problems relating to phylogeny and the identification of species. Total proteins and isozyme analysis have been used extensively to distinguish species in numerous fungal genera (Alfenas 1998). In Cylindrocladium taxonomy, total protein and isozyme profiles have been used to aid in the delimitation of species (Crous et al 1993a, b, c, El-Gholl et al 1993, El-Gholl et al 1997), and to investigate variation below species level (Crous et al 1998a). However, environmental conditions can influence protein expression and thus invalidate some results (Michelmore \& Hulbert 1987).

DNA characterisation
Restriction fragment length polymorphisms (RFLPs) have been used for several years for fungal population studies and taxonomy for several years (McDonald \& McDermott 1993). In Cylindrocladium RFLPs from nuclear DNA has been applied, together with morphological observations to support proposals for several new species (Crous et al 1995, Crous et al 1997a, Crous et al 1997b) and has also indicated variation within existing species (Overmeyer et al 1996, Jeng et al 1997). Based on these data, some species were shown to be conspecific (Crous et al 1995). Other DNA based molecular characters were obtained through random amplified polymorpisms (RAPDs) (Overmeyer et al 1996, El-Gholl et al 1997, Victor et al 1997) and AT-DNA profiles (Victor et al 1997).

DNA sequence comparisons are being used increasingly frequently in fungal systematics. In the Hypocreales, numerous phylogenies using DNA sequence comparisons from a wide variety of loci have already been made at several levels (e.g. O'Donnell 1993, Spatafora \& Blackwell 1993, Rehner \& Samuels 1994, Rehner \& Samuels 1995, Glenn et al 1996, O'Donnell et al 1998). In most cases this has led to a better understanding of the underlying morphological phylogeny. The first sequence data for Calonectria spp. were obtained by O'Donnell (1993) and subsequently by Rehner and Samuels (1994). In this study (O'Donnell 1993) the DNA sequence of the 5 ' end of the 28 S ribosomal RNA gene from an isolate identified as Ca. pyrochroa was included in a comparison of various other hypocrealean species with Fusarium anamorphs. The second study (Rehner \&

Samuels 1995) compared a wider array of hypocrealean species. Subsequent sequencing data was obtained from the 5.8 S ribosomal RNA gene and the two flanking internally transcribed spacers (ITS1 and ITS2) of several isolates by Hamelin (1996) in order to devise primers for detection of Cy. floridanum Sobers \& C. P. Seym. and Co. destructans in nursery seedlings. DNA sequence comparisons between Cylindrocladium species were made by Jeng et al (1996) when isolates of Cy. floridanum were compared with Cy. scoparium using the DNA sequences obtained from the same genomic area. Although the authors did not do a phylogenetic analysis, differences could be ascertained between these two species. Besides larger molecular based studies done on hypocrealean and other species that included 28 r rRNA sequences from Cy. floridanum and Cy. scoparium (O'Donnell 1993, Rehner \& Samuels 1995, Ogawa et al 1997), no DNA sequence based phylogeny of Cylindrocladium at species and generic level has yet been published.

Calonectria and Cylindrocladium as plant pathogens

Since the first description of Cylindrocladium scoparium (Morgan 1892) was made from material collected on dead pods of honey locust, it created the impression that this species may be saprophytic. However, the first reports of a plant disease caused by this fungus were by Massey (1917) and subsequently by Anderson (1918). These authors described the fungus as the causal agent of crown cankers on roses. Since then Cy. scoparium has been associated with a wide range of disease problems in over 30 plant families throughout the world (Booth \& Gibson 1973, French \& Menge 1978, Peerally 1991, Waipara et al 1996). This is also true for other species in Cylindrocladium (e.g. Bell \& Sobers 1966, Cordell \& Rowan 1975, French \& Menge 1978, Mohanan \& Sharma 1985, Chase \& Poole 1988, Peerally 1991, Koike et al 1999). Prominent diseases caused by Cylindrocladium spp. include Cylindrocladium black rot (CBR), a devastating pod and root necrosis disease of peanuts caused by Cy. parasitica Crous et al (Porter et al 1984), Cylindrocladium cutting rot of Eucalyptus cased by several Cylindrocladium spp. (Ferreira 1989) and Cylindrocladium root and petiole rot of Spathiphyllum by Cy. spathiphylli (Chase \& Poole 1988), to name but a few. Symptoms caused by other Cylindrocladium spp. include damping-off, root rot, crown canker, leaf spot, seedling and shoot blight, needle blight, wilt, fruit rot, tuber rot, cutting rot, die-back and stem lesions.

Samuels 1995) compared a wider array of hypocrealean species. Subsequent sequencing data was obtained from the 5.8 S ribosomal RNA gene and the two flanking internally transcribed spacers (ITS1 and ITS2) of several isolates by Hamelin (1996) in order to devise primers for detection of Cy. floridanum Sobers \& C. P. Seym. and Co. destructans in nursery seedlings. DNA sequence comparisons between Cylindrocladium species were made by Jeng et al (1996) when isolates of Cy. floridanum were compared with Cy. scoparium using the DNA sequences obtained from the same genomic area. Although the authors did not do a phylogenetic analysis, differences could be ascertained between these two species. Besides larger molecular based studies done on hypocrealean and other species that included 28 S rRNA sequences from Cy. floridanum and Cy. scoparium (O'Donnell 1993, Rehner \& Samuels 1995, Ogawa et al 1997), no DNA sequence based phylogeny of Cylindrocladium at species and generic level has yet been published.

Calonectria and Cylindrocladium as plant pathogens

Since the first description of Cylindrocladium scoparium (Morgan 1892) was made from material collected on dead pods of honey locust, it created the impression that this species may be saprophytic. However, the first reports of a plant disease caused by this fungus were by Massey (1917) and subsequently by Anderson (1918). These authors described the fungus as the causal agent of crown cankers on roses. Since then Cy. scoparium has been associated with a wide range of disease problems in over 30 plant families throughout the world (Booth \& Gibson 1973, French \& Menge 1978, Peerally 1991, Waipara et al 1996). This is also true for other species in Cylindrocladium (e.g. Bell \& Sobers 1966, Cordell \& Rowan 1975, French \& Menge 1978, Mohanan \& Sharma 1985, Chase \& Poole 1988, Peerally 1991, Koike et al 1999). Prominent diseases caused by Cylindrocladium spp. include Cylindrocladium black rot (CBR), a devastating pod and root necrosis disease of peanuts caused by Cy. parasitica Crous et al (Porter et al 1984), Cylindrocladium cutting rot of Eucalyptus cased by several Cylindrocladium spp. (Ferreira 1989) and Cylindrocladium root and petiole rot of Spathiphyllum by Cy. spathiphylli (Chase \& Poole 1988), to name but a few. Symptoms caused by other Cylindrocladium spp. include damping-off, root rot, crown canker, leaf spot, seedling and shoot blight, needle blight, wilt, fruit rot, tuber rot, cutting rot, die-back and stem lesions.

Research on the pathology of Cylindrocladium and Calonectria species has concentrated mainly on the identification of the pathogens, tests for pathogenicity, the role of microsclerotia in disease aetiology and control through chemical means (Peerally 1991). In addition to this, several comparative studies have shown differences between pathogenicity and in vitro fungicide resistance of various species (Sobers \& Litrell 1974, Sharma \& Mohanan 1991a, Blum et al 1992, Sharma \& Mohanan 1992). Less is known of variation below species level. Studies by Rowe and Beute (1975) done on the pathogenicity of various Cy. parasitica (as Cy. crotalariae) isolates showed no variation for isolates from different geographic origins, although recent observations (B. Shrew, pers. comm.) suggest that such variation may well occur in the U.S.A. Furthermore, results by Sharma (1991b) provided evidence that physiological strains exist in $C y$. quinqueseptatum.

The infection process of Cylindrocladium spp. appears to be similar on a range of hosts. This is summarised in Fig. 1. Usually infection of plants in nurseries and plantations comes from diseased plant material or soil originating from adjacently infected areas, or by transportation (Anderson 1918, Thies \& Patton 1970, Crous et al 1991). The primary propagule for nursery infections has been determined to be microsclerotia, consisting of chains or clusters of chlamydospores (Thies \& Patton 1970). Additional infection of plants within nurseries and plantations can occur through splash dispersal of conidia (Mohanan \& Sharma 1986), or wind-born ascospores. Perithecia can also develop on infected material and act as a source of inoculum (Crous et al 1991). To date no research has been conducted at the population level to establish what role the sexual and asexual propagules play in establishing genetic variation in the disease life cycle of Calonectria.

Usually the presence of free water is essential for germination of the infectious propagule to occur (Anderson 1918, Anderson et al 1962). Colonisation of plant leaves and stems has been observed after inoculation with conidia and appressorium formation occurs 4 h after inoculation for Cy. quinqueseptatum (Sharma \& Mohanan 1990). Chlamydospores and microsclerotia were described developing in several plant tissues (Anderson 1918, Bugbee \& Anderson 1963). This infected plant material can release the microsclerotia into the soil when infected plant remains fall on the ground where they can survive without a host for periods of up to 15 years or more (Sobers \& Litrell 1974, Crous et al 1991).

Fig. 1. Disease cycle of a Cylindrocladium sp. in a nursery

1. Fungus enters nursery in diseased plants or as microsclerotia in soil

Conclusions

Although the phylogenetic placement of Calonectria within the Hypocreales has been studied previously, the interspecies phylogeny of Calonectria has only been determined through morphological comparisons and molecular markers such as RFLPs and RAPDs. Sequence determinations have been made, but no DNA based phylogenetic study has yet been carried out on species in this genus. Because Calonectria species are common as the causal organisms of economically important plant diseases (mainly as Cylindrocladium spp.) world-wide, accurate identification of different species is essential. A phylogenetic assessment of the various species in the genus would therefore aid species identification. It would also facilitate a reevaluation of the significance of the various morphological characters previously used for species identification. This information would aid studies into the diversification and mating isolation of species in Calonectria.

References

Ahrazem O, Prièto A, Leal JA, Gómez-Miranda B, Domenech J, Jiménez-Barbero, J Bernabé M. 1997. Structural elucidation of acidic fungal polysaccharides isolated from the cell-wall of genera Cylindrocladium and Calonectria. Carbohydr Res 303: 67-72.

Alfenas AC. 1998. Electroforese de isoenzimas e proteinas afins. Viçosa, Brazil: Universidade Federal de Viçosa. 574 p.

Alfieri SA Jr, Linderman RG, Morrison RH, Sobers EK. 1972. Comparative pathogenicity of Calonectria theae and Cylidrocladium scoparium to leaves and roots of Azalea. Phytopathology 62: 647-650.

Anderson N, French DW, Taylor DP. 1962. Cylindrocladium root rot of conifers in Minnesota. For Sci 8: 378-384

Anderson PJ. 1918. Rose canker and its control. Mass Agr Exp Sta Bull 183: 1-45.
Bell DK, Sobers EK. 1966. A peg, pod and root necrosis of peanuts caused by a species of Calonectria. Phytopathology 56: 1361-1364.
Blum LEB, Dianese JC, Costa CL. 1992. Comparative pathology of Cylindrocladium clavatum and C: scoparium on Eucalyptus spp. and screening of Eucalyptus provenances for resistance to Cylindrocladium damping-off. Eur J For Path 38: 155-159.

Boedijn KB, Reitsma J. 1950. Notes on the genus Cylindrocladium. Reinwardtia 1: 51-60.

Boesewinkel HJ. 1982. Cylindrocladiella, a new genus to accommodate Cylindrocladium parvum and other small-spored species of Cylindrocladium. Can J Bot 60: 2288-2294.

Booth C. 1959. Studies in pyrenomycetes. IV. Nectria. Mycol Pap 73: 1-115.
Booth C. 1971. The genus Fusarium. Kew, United Kingdom: Commonwealth Mycological Institute. 237 p.

Bugbee WM, Anderson NA. 1963. Infection of spruce seedlings by Cylindrocladium scoparium. Phytopathology 53: 1267-1271.
Chase AR, Poole RT. 1988. Cylindrocladium root and petiole rot of Spathiphyllum spp. University of Florida, Coop Ext IFAS, Bulletin 860: 1-21.
Cordell, CE Rowan SJ. 1975. Cylindrocladium scoparium infection in a natural sweet gum stand. PI Dis Rep 59: 775-776.
Crous PW, Phillips AJL, Wingfield MJ. 1991. The genera Cylindrocladium and Cylindrocladiella in South Africa, with special reference to forest nurseries. S Afr For J 157: 69-85.

Crous PW, Alfenas AC, Junghans TG. 1998a. Variability within Calonectria ovata and its anamorph Cylindrocladium ovatum from Brazil. Sydowia 50: 1-13.

Crous PW, Alfenas AC, Wingfield MJ. 1993a. Calonectria scoparia and Calonectria morganii sp. nov. and variation among isolates of their Cylindrocladium anamorphs. Mycol Res 97: 701-708.

Crous PW, Janse BJH, Victor D, Marais GF, Alfenas AC. 1993b. Characterization of some Cylindrocladium species with three septate conidia using morphology, isozyme banding patterns and DNA polymorphisms. Syst Appl Microbiol 16: 266273.

Crous PW, Korf A, Van Zyl WH. 1995. Nuclear DNA polymorphisms of Cylindrocladium species with 1-septate conidia and clavate vesicles. Syst Appl Microbiol 18: 244-250.

Crous PW, Mchau GRA, Van Zyl WH, Wingfield MJ. 1997a. New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653-660.

Crous PW, Phillips AJL, Wingfield MJ. 1992. Effects of cultural conditions on vesicle and conidium morphology in species of Cylindrocladium and Cylindrocladiella. Mycologia 84: 497-504.
Crous PW, Seifert KA. 1998. Megaconidia as an additional taxonomic character in Cylindrocladium with a note on Cylindrocladiopsis. Fungal Diversity 1: 53-64.

Crous PW, Theron L, Van Zyl WH. 1997b. Delineating C. candelabrum spp. with 1-3septate conidia and clavate vesicles based on morphology and rDNA RFLPs. Mycol Res 101: 210-214.
Crous PW, Wingfield MJ. 1993. A re-evaluation of Cylindrocladiella, and a comparison with morphologically similar genera. Mycol Res 97: 433-448.

Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341-345.
Crous PW, Wingfield MJ, Alfenas AC. 1993c. Cylindrocladium parasiticum sp. nov., a new name for C. crotalariae. Mycol Res 97: 889-896.
Crous PW, Wingfield MJ, Lennox CL. 1994. A comparison of genetic concepts in Calonectria and Nectria with anamorphs in Cylindrocladium and Cylindrocladiella. S Afr J Sci 90: 485-488.

Crous PW, Wingfield MJ, Mohammed C, Qing Z. 1998b. New foliar pathogens of Eucalyptus from Australia and Indonesia. Mycol Res 102: 527-532.
De Notaris G. 1867. Nuove reclute per la pirenomicetologia Italica. Comment Soc Crittogram Ital 2: 477.
Decock C, Hennebert GL, Crous PW. 1997. Nectria serpens sp. nov. and its hyphomycetous anamorph Xenocylindrocladium gen. nov. Mycol Res 101: 786790.

El-Gholl NE, Alfenas AC, Crous PW, Schubert TS. 1993. Description and pathogenicity of Cylindrocladium ovatum sp. nov. Can J Bot 71:466-470.
El-Gholl NE, Alfenas AC, Junghans DT, Schubert TS, Miller JW, Leahy RM. 1997. Description of Calonectria rumohrae sp. nov. (anamorph = Cylindrocladium rumohrae sp. nov.). Mycotaxon 64: 467-484.

Ferreira FA. 1989. Patologia florestal. Principais doenças florestais no Brasil. Viçosa, Brazil: Sociede de Investigaçoes Florestais. 570 p.
French DW, Menge JA. 1978. Survival of Cylindrocladium floridanum in naturally and artificially infested soil forest tree nurseries. PI Dis Rep 62: 806-810.
Glenn AE; Bacon CW, Price R; Hanlin RT. 1996. Molecular phylogeny Acremonium and its taxonomic implications. Mycologia 88: 369-383.

Hamelin RC, Bérubé P, Gignac M, Bourassa M. 1996. Identification of root rot fungi in nursery seedlings by nested multiplex PCR. Appl Environ Microbiol 62: 40264031.

Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. Dictionary of the Fungi. Wallingford, United Kingdom: CAB International. 616 p.
Hunter BB, Barnett HL. 1975. Production of microsclerotia by species of Cylindrocladium. Ecol. Epidemiol. 66: 777-780.

Hunter BB, Barnett HL. 1978. Growth and sporulation of species and isolates of Cylindrocladium in culture. Mycologia 70: 614-635.

Jeng R, Hintz WE, Bowden CG, Horgen PA, Hubbes M. 1996. A comparison of the nucleotide sequence of the cerato-ulmin gene and the rDNA ITS between aggressive and non-aggressive isolates of Ophiostoma ulmi sensu lato, the causal agent of Dutch elm disease. Curr Genet 29: 168-173.
Jeng RS, Dumas M, Liu FH, Wang CL, Hubbes M. 1997. DNA analysis of Cylindrocladium floridanum isolates from selected forest nurseries. Mycol Res 101: 285-291.

Koike ST, Henderson DM, Crous PW, Schoch CL. 1999. A new root and crown rot disease of heath in California caused by Cylindrocladium pauciramosum. PI Dis 83: 489-592.

Massey LM. 1917. The crown canker of rose. Phytopathology 7: 408-417.
McDonald BA, McDermott JM. 1993. Population genetics of plant pathogenetic fungi. BioScience 43: 311-319.

Michelmore RW, Hulbert SH. 1987. Molecular markers for genetic analysis of phytopathogenic fungi. Ann Rev Phytopathol 25: 383-404.

Mohanan C, Sharma JK. 1985. Cylindrocladium causing seedling diseases of Eucalyptus in Kerala, India. Trans Brit Mycol Soc 84: 538-539.
Mohanan C, Sharma JK. 1986. Epidemiology of Cylindrocladium diseases of Eucalyptus. In: Sharma JK, Nair CTS, Kedharnath S, Kondas S, eds. Eucalypts in India: past present and future. Peechi, India: Kerala Forest Research Institute. p 388-394.

Morgan AP. 1892. Two new genera of hyphomycetes. Bot Gaz 17: 190-192.
O'Donnell K. 1993. Fusarium and its near relatives. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, United Kingdom: CAB International. p 225-245.
O'Donnell K, Cigelnik E, Nirenberg H. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465493.

Ogawa H, Yoshimura A, Sugiyama J. 1997. Polyphyletic origins of species of the anamorphic genus Geosmithia and the relationships of the cleistothecial genera: Evidence from the 18S, 5S and 28S DNA sequences. Mycologia 89: 756-771.

Overmeyer C, Lünnemann S, Von Wallbrünn C, Meinhardt F. 1996. Genetic variability among isolates and sexual offspring of the plant pathogenic fungus Calonectria morganii on the basis of random amplification of polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP). Curr Microbiol 33: 249-255.

Pascoe IG. 1990a. Fusarium morphology I: Identification and characterisation of a third conidial type, the mesoconidium. Mycotaxon 37: 121-160.
Pascoe IG. 1990b. Fusarium morphology II: Experiments on growing conditions and dispersal of mesoconidia. Mycotaxon 37: 160-172.

Peerally A. 1991. The classification and phytopathology of Cylindrocladium species. Mycotaxon 40: 323-366.
Porter DM, Smith DH, Rodríguez-Kabána R. 1997. Compendium of peanut diseases. St. Paul, U.S.A.: American Phytopathological Society. p 18-21.
Rehner SA, Samuels GJ. 1995. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73: S816-S823.

Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98: 625-634.
Rossman A. 1993. Holomorphic hypocrealean fungi: Nectria sensu stricto and teleomorphs of Fusarium. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, United Kingdom: CAB International. p 149-160.
Rossman A. 1996. Morphological and molecular perspectives on systematics of the Hypocreales. Mycologia 88: 1-19.
Rossman AY. 1979a. Calonectria and its type species, C. daldiniana, a later synonym of C. pyrochroa. Mycotaxon 8: 321-328.
Rossman AY. 1979b. A preliminary account of the taxa described in Calonectria. Mycotaxon 8: 485-558.

Rossman AY. 1983. The phragmosporous species of Nectria and related genera. Mycol Pap 150: 1-164.

Rossman AY, Samuels GJ, Rogerson CT, Lowen R. 1999. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 42: 1-248.

Rowe RC, Beute MK. 1975. Variability in virulence of Cylindrocladium crotalariae isolates on peanut. Phytopathology 65: 422-425.

Saccardo PA. 1883. Sylloge fungorum omnium hucusque cognitorum. 2: 490.

Samuels GJ, Rossman AY, Lowen R, Rogerson CT. 1991. A synopsis of Nectria subgen. Dialonectria. Mycol Pap 164: 1-46.

Samuels GJ, Seifert KA. 1987. Taxonomic implications of variation among hypocrealean anamorphs. In: J Sugiyama, ed. Pleomorphic fungi: the diversity and its taxonomic implications. Amsterdam, The Netherlands: Elsevier. p 29-56.
Sharma JK, Mohanan C. 1990. Studies on conidial germination of Cylindrocladium quinqueseptatum, causing leaf blight of Eucalyptus in India. Eur J For Path 20: 1523.

Sharma JK, Mohanan C. 1991a. In vitro evaluation of fungicides against Cylindrocladium spp. causing diseases of Eucalyptus in India. Eur J For Path 21: 17-26.

Sharma JK, Mohanan C. 1991b. Pathogenic variation in Cylindrocladium quiqueseptatum causing leaf blight of Eucalyptus. Eur J For Path 21: 210-217.
Sharma JK, Mohanan C. 1992. Relative susceptibility to of Eucalyptus provenances to Cylindrocladium leaf blight in Kerala, India. Eur J For Path 22: 257-265.
Sharma JK, Mohanan C, Florence EJM. 1990. Diseases of forest trees in Kerala. 6. Leaf diseases of eucalypts in plantations. Evergreen Trichur 25: 12-15.
Sobers EK. 1968. Morphology and host range of Cylindrocladium pteridis. Phytopathology 58: 1265-1270.
Sobers EK. 1971. A macro-condial form of Cylindrocladium theae occurring on glycerol-water agar. Ga Acad Sci Bull 29: 98.
Sobers EK, Litrell RH. 1974. Pathogenicity of three species of Cylindrocladium to select hosts. Phytopathology 58: 1017-1019.

Sobers EK, Seymour CP. 1967. Cylindrocladium floridanum sp. n. associated with decline of peach trees in Florida. Proc Fla State Hort Soc 57: 389-393.

Spatafora JW, Blackwell M. 1993. Molecular systematics of unitunicate perithecial ascomycetes: the Clavipitales-Hypocreales connection. Mycologia 85: 912-922.
Stevens C, Palmer MA, Tang AY, McRoberts RE. 1990. Use of aminopeptidase substrate specificities to identify species of Cylindrocladium in Wisconsin nurseries. Mycologia 82: 436-443.
Subramanian CV. 1971. Hyphomycetes. An account of Indian species, except Cercosporae. Nieu Delhi, India: Indian Council of Agricultural Research. p 730-732.
Thies WG, Patton RF. 1970. The biology of Cylindrocladium scoparium in Wisconsin forest tree nurseries. Phytopathology 60: 1662-1668.
Uchida JY, Aragaki M. 1992a. Calonectria leaf spot of Howeia forsterana in Hawaii. PI Dis 76: 853-856.

Uchida .JY, Aragaki M. 1992b. Further characterization of Cylindrocladium spathiphylli from Spathiphyllum in Hawaii and Florida. Mycologia 84: 810-814.
Victor D, Crous PW, Janse BJH, Van Zyl WH, Wingfield MJ, Alfenas AC. 1998. Systematic appraisal of species complexes within Cylindrocladiella. Mycol Res 102: 273-279.

Victor D, Crous PW, Janse BJH, Wingfield MJ. 1997. Genetic variation in Cylindrocladium floridanum and other morphologically similar Cylindrocladium species. Syst Appl Microbiol 20: 268-285.

Weaver DJ. 1974. Growth and production of microsclerotia of two Cylindrocladium species with various carbon and nitrogen sources. Can J Bot 52: 1665-1668.

2. The Cylindrocladium candelabrum species complex includes four distinct mating populations*

Abstract

Cylindrocladium candelabrum-like isolates were collected from a wide variety of geographic locations and compared based on their morphology, sexual compatibility and the nucleotide sequences of their rDNA ITS regions. All isolates included in this study mated to produce Calonectria teleomorphs with viable progeny. Four distinct mating populations were identified, each representing a genetically isolated, biallelic, heterothallic population. Several representative isolates of each mating population, reflecting geographic diversity, were chosen for sequence comparisons. The internal transcribed spacer (ITS) regions 1 and 2 that flank the 5.8 S rDNA gene, as well as the gene itself, were sequenced and compared. All isolates representing the same group yielded similar sequences, but small, consistent differences were found between the groups. Based on these results we recognise Calonectria scoparia (anamorph Cylindrocladium candelabrum), and describe three new species, namely Calonectria pauciramosa (anamorph Cylindrocladium pauciramosum), Calonectria insularis (anamorph Cylindrocladium insulare) and Calonectria mexicana (anamorph Cylindrocladium mexicanum).

Introduction

Cylindrocladium scoparium Morgan, the type species of Cylindrocladium Morgan (Cy.) (Morgan 1892), has been associated with a wide range of plant disease problems in over 30 families throughout the world (Booth \& Gibson 1973, French \& Menge 1978, Peerally 1991, Waipara et al 1996). This species is, however, the most commonly incorrectly identified taxon in the genus. Cy. scoparium sensu stricto has been confirmed from only North America, but has possibly also been introduced into Europe (Overmeyer et al 1996).

Cylindrocladium scoparium, still incorrectly treated by many researchers as synonymous with Cy. floridanum Sobers \& C. P. Seym., has been the subject of

[^0]much controversy. Victor et al (1997) used morphology, sexual compatibility, RAPD markers and $\mathrm{A}+\mathrm{T}$-rich total DNA polymorphisms to compare Cy . scoparium (teleomorph Calonectria morganii Crous et al), Cy. candelabrum Viégas (teleomorph Ca. scoparia Peerally), Cy. ovatum El-Gholl et al (teleomorph Ca. ovata D. Victor \& Crous) and Cy. floridanum (teleomorph Ca. kyotensis Terash.). This study showed that these species represent distinct taxa. Furthermore, evidence was presented to show that more than one species possibly exists in the Cy. floridanum complex. Additionally, based on DNA fingerprinting with human minisatellite DNA as a probe, Jeng et al (1997) showed the presence of three groups of isolates in collections of Cy. floridanum from Canada and the U.S.A.

Among the small-spored species of Cylindrocladium, Cy. scoparium has also commonly been confused with taxa such as Cy. ovatum and Cy. candelabrum. All three of the latter species are heterothallic. In a recent study Crous et al (1998) confirmed the biallelic, heterothallic nature of Cy. ovatum. In earlier studies, however, very low mating percentages were obtained for Cy. candelabrum and Cy. scoparium (Crous et al 1993a, Overmeyer et al 1996), suggesting that further research was required to elucidate their mating systems.

Cylindrocladium candelabrum, which was originally described from leaves of a Luma sp. in Brazil, was characterised by Viégas (1946) as having narrowly ellipsoidal vesicles and 1 -septate conidia, 40-88 $\times 5-6 \mu \mathrm{~m}$. Crous et al (1993a) re-examined the type specimen (IACM 440), and found it to be almost completely devoid of material, but the few conidia that were observed were 46-70 $\times 3.5-5 \mu \mathrm{~m}$, and the vesicles were ellipsoidal to narrowly obpyriform. A neotype (PREM 51045) was subsequently designated, and two isolates PPRI 4153 and 4163 identified as the two mating tester strains.

The species concept of Cy. candelabrum was complicated by Peerally (1991) who considered it synonymous with Cy. ellipticum Alfieri et al. The latter species was later shown to be a synonym of Cy. scoparium (Crous et al 1993a). To readily distinguish these species, Cy. scoparium was circumscribed as having ellipsoidal to pyriform vesicles (widest above the middle), while those of Cy . candelabrum were ellipsoidal to obpyriform (widest below the middle). However, a high degree of plasticity was observed amongst Cy. candelabrum-like isolates. This was particularly true in their vesicle shape, conidiophore branching pattern and conidial dimensions. Due to the low mating type frequency of isolates in previous studies, no clear
indication was obtained on the nature and relevance of this variation amongst Cy. candelabrum isolates, and the species was accepted as being highly variable.

Molecular tools have become increasingly useful in providing additional evidence that has supported the interpretation of morphological variation. Several techniques including protein profiles (Crous et al 1993a), RAPDs (Victor et al 1997) and RFLPs (Crous et al 1997b), have been applied to the taxonomy of Cylindrocladium spp. The nucleotide sequences of the ribosomal DNA (rDNA) region contain intermittent functional and non-functional regions (Furlong et al 1983). The more conserved rDNA genes allow for comparisons between higher taxa. For example, Rehner and Samuels (1995) compared the nucleotide sequences of the 28 SDNA gene from a wide range of hypocrealean taxa, including Cy. scoparium and Cy. floridanum. More variable areas are provided by intergenic regions such as the internal transcribed spacers (ITS1 and ITS2) that flank the 5.8 S rDNA gene. Various researchers have used these sequences to resolve intra- and interspecies phylogenies (Nazar et al 1991, Sreenivasprasad et al 1994, Bryan et al 1995, Jeng et al 1996, Witthuhn et al 1998).

Recently Jeng et al (1997) published ITS1, ITS2 and 5.8 S rDNA sequences of Cy. scoparium and Cy. floridanum. In these comparisons, one six base pair nucleotide deletion and three point mutations were found in the ITS2 region. This indicated the potential of this region to be used as a tool to differentiate between morphologically similar Cy. candelabrum-like species. Accordingly, the present study was undertaken to investigate the application of a biological species concept as well as a phylogenetic species concept to isolates provisionally accommodated in the Cy. candelabrum species complex. Using these data, it was possible to evaluate the value of morphological characters in Cylindrocladium.

Materials and-Methods

Isolates

Cylindrocladium candelabrum isolates were either obtained from symptomatic material, or they were baited from soil samples. Soil samples were collected and treated as explained in Crous et al (1997a). Type specimens were lodged at the National Collection of Fungi in Pretoria (PREM), and ex-type cultures maintained in the culture collection of the Department of Plant Pathology, University of Stellenbosch, South Africa (STE-U).

Table I. Isolates selected for sequencing.

Species	STE-U no.	Origin
Cy. pauciramosum	951	Mexico
(Group 1)	971	South Africa
	1160	Colombia
	1691	Australia
Cy. candelabrum	1674	Brazil
(Group 2)	1675	Brazil
	1676	Brazil
	1678	Brazil
Cy. insulare	766	Madagascar
(Group 3)	768	Madagascar
	616	Brazil
	954	Mexico
Cy. mexicanum	927	Mexico
(Group 4)	928	Mexico
	941	Mexico
	966	Mexico

Sexual compatibility

One hundred single conidial Cy. candelabrum-like isolates (listed under the results), originating from various geographic locations were mated in all possible combinations. This was achieved by removing 3 mm diam agar plugs from the periphery of actively growing cultures and placing them on CLA plates as described by Crous et al (1993a). Two different isolates were placed in a Petri dish with carnation leaves between them. Following this, plates were packed in stacks of 10 , sealed in plastic bags and incubated on the laboratory bench at $22^{\circ} \mathrm{C}$. Protoperithecia appeared after 2 wk and successful matings were determined after 2 mo of incubation. Successful matings were regarded as those isolate combinations that produced perithecia with fertile, extruding ascospores.

Mating groups were subsequently distinguished and strains that resulted in prolific matings were selected from each group. For each mating group identified, ascospores were obtained from two matings, involving four separate isolates. Seven single ascospores were sub-cultured for each mating group, and these were crossed in all possible combinations in order to reconfirm the biallelic, heterothallic nature of each mating population. Two isolates of opposing mating type were selected as tester strains from these isolates, and these were subsequently mated with the tester strains of the other groups to reconfirm that no mating was occurring between groups.

Both strands of the ITS1 and ITS2 intergenic spacers as well as the 5.8 S ribosomal gene were sequenced and compared. Sequences were deposited at GenBank (AF059280-AF059283). DNA was amplified using the primers ITS1 (5'dTCCGTAGGTGAACCTGCGG) and ITS4 (5 '-dTCCTCCGCTTATTGATATGC) (White et al 1990). The region amplified was the 5.8 S ribosomal gene and the two internal transcribed spacers (ITS1 and ITS2) flanking the gene. PCR amplifications were performed on a Hybaid Omnigene Temperature Cycler (Hybaid, Middlesex, U.K.). Reactions comprised of $1 \mu \mathrm{l}$ Expand High Fidelity DNA polymerase (Boehringer Mannheim, Mannheim, Germany) and $1 \mu \mathrm{l}$ reaction buffer containing 1.5 mM MgCl 2 (Boehringer Mannheim), with MgCl_{2} added to make up the final buffer concentration to 5.5 mM . Liquid paraffin oil was overlaid to prevent evaporation. Other reagents added to the final volume of $100 \mu \mathrm{l}$ were $250 \mu \mathrm{M}$ of each NTP, 0.5 $\mu \mathrm{M}$ of each primer and 25 ng DNA. PCR conditions were a denaturing step at $94^{\circ} \mathrm{C}$ for 1 min followed by 10 cycles of $56^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 2 min and $94^{\circ} \mathrm{C}$ for 15 s . This was followed by a further 20 cycles at the same settings except for a 20 s time increase at $72^{\circ} \mathrm{C}$.

PCR products were purified using Wizard PCR Preps (Promega Corporation, Madison, Wisconsin). Both strands of the PCR product were sequenced using the ABI Prism 377 DNA Sequencer (Perkin-Elmer, Norwalk, Connecticut). A Dye Terminator Cycle Sequencing Ready Reaction Kit containing AmpliTaq DNA Polymerase (Perkin-Elmer) was used for the sequencing reactions. The reactions were carried out with a concentration of 20 to 40 ng of DNA template and 3.2 pmol primer in a total volume of $10 \mu \mathrm{l}$. The cycle sequencing reaction was done by PCR under conditions of $96^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 15 s , and $60^{\circ} \mathrm{C}$ for 4 min . This was repeated for 25 cycles. DNA was finally purified using Centri-Sep Spin columns (Princeton Separations, Adelphia, New Jersey) and loaded onto the sequencing gel.

Phylogenetic analysis of the ITS1 and ITS2 DNA sequences was performed by using the PAUP (Phylogenetic Analysis Using Parsimony) 3.1.1 program (Swofford 1993). The branch and bound algorithm, with gaps treated as a fifth character was used. Confidence intervals were determined using a 1000 bootstrap replications. All uninformative characters were ignored. Sequences of Cy. scoparium and Cy. floridanum, previously published by Jeng et al (1997), were used for comparison. In addition to this, a sequence of Fusarium subglutinans, deposited by Waalwijk et al (1996), was obtained (EMBL accession number X94167) and used as outgroup.

Morphological comparisons

Isolates were cultured on 2\% malt extract agar (MEA) (Biolab, Midrand, South Africa), plated onto carnation-leaf agar (CLA) (Crous et al 1992), incubated at $25^{\circ} \mathrm{C}$ under near-ultraviolet light, and examined after 7 d . Only material occurring on carnation leaves was examined. Mounts were prepared in lactophenol, examined under Nomarski and phase contrast, and measurements made at x 1000 magnification. Wherever possible, each measurement represents at least 30 observations, and extremes are given in parentheses. Cardinal temperature requirements for growth and cultural characteristics were determined after 6 d on MEA, using procedures described by Crous and Wingfield (1994), and colony colours coded according to Rayner (1970). Cultures of Cy. candelabrum were identified using the keys of Crous and Wingfield (1994).

Results

Sexual compatibility

All matings between the selected isolates resulted in perithecia containing fertile ascospores, except where STE-U 216 was concerned (Fig. 1). Whether this isolate constitutes another mating population, or has lost the ability to mate, remains unresolved. Control inoculations indicated that all isolates used were self sterile. Isolates of the same mating type yielded no perithecia when mated, confirming the biallelic, heterothallic mating system commonly found in ascomycetes (Yoder et al 1986). Four distinct mating populations (Groups 1-4) were observed. No successful matings were observed between the different mating groups, and subsequent crossings between ascospore progeny of prolific mating strains confirmed the distinctiveness of the mating groups (results not shown).

Sequence analysis

No differences were detected between isolates for their 5.8 S sequences. The four isolates selected per mating group (Table 1), revealed ITS sequences that were 100 \% similar within each group, irrespective of geographic location. For the purpose of comparison a single sequence, representing the four isolates from one species, was subsequently used to compare isolates of the four mating populations.. A number of single and double base pair substitutions and deletions were found between all the species in the ITS1 and ITS2 regions (Fig. 2).

Fig1

120
Cy. floridanum CGGCAACGGCCCGCCAGAGGACCCAACAAACTCTTTTGAATTTTTCAGTATCTTCTGAGT
Cy. scoparium
Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum

Cy. floridanum
Cy. scoparium
Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum
coparium
Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum

Cy. floridanum
Cy. scoparium
Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum

Cy. floridanum
Cy. scoparium
Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum

180
AAAAAAAACAA*TAAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAF

240
GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTI

300
TGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAA.

360
CCCTCAAGCACTTCGGGAGCTTGGTGTTGGGGATCGGCAGGGCGTC*TCCGGGTCGCGCC

400
Cy. floridanum GTCCCCCAAATCTAGTGGCGGTCTCGCTGTAGCTTCCTCTGCGTAGTAATACACCTCGCT
Cy. scoparium

Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum

448
Cy. floridanum CTGGAGTCTCGGTGCG*CCACGCCGTAAAACCCCCAACTTTTTTCTGG
Cy. scoparium
Cy. pauciramosum
Cy. candelabrum
Cy. insulare
Cy. mexicanum

Fig. 2. Nucleotide comparison of the rDNA ITS region of Cylindrocladium isolates. Cylindrocladium scoparium and Cy. floridanum are included for comparison with the consensus sequences of each mating population (biological species) shown as indicated. The sequence of Cy. floridanum is shown in full. Asterisks indicate sites of nucleotide deletion. Sequences are shown beginning with the 5^{\prime} end of ITS1, followed by the 5.8 S gene shown underlined and the 3 ' end of ITS2.

Previous work done by Jeng et al (1997) showed one six base pair deletion and 3 single base substitutions when the sequences of $C y$. floridanum and $C y$. scoparium were compared. None of the other species sequenced contained a six base pair deletion found in the Cy. floridanum ITS2 region.

Fig. 3. Phylogeny of the species in the Cylindrocladium candelabrum complex. One of four most parsimonious trees generated with a branch and bound algorithm in PAUP 3.1.1. Trees were obtained from aligned sequences of the 5.8 S gene and flanking ITS1 and ITS2 regions (15 steps, $\mathrm{Cl}=0.8, \mathrm{RI}=0.786$). Bootstrap values above 50% are shown. A Fusarium subglutinans sequence (EMBL accession number X94167) was used as outgroup.

Additional differences were observed in the ITS1 region of the four species in the Cy. candelabrum complex. Single base pair substitutions in the ITS2 region at base pairs could distinguish Cy, floridanum from the other species' sequences, while a similar single base difference could differentiate the four species in the Cy. candelabrum complex from Cy. scoparium and Cy. floridanum. Further single base deletions and substitutions distinguished all species on the basis of sequence dissimilarity. Accordingly, a phylogenetic tree was produced using PAUP analysis (Swofford 1993). Figure 3 shows one of the four most parsimonious trees obtained by branch and bound analysis of the informative sites of the 5.8 S and flanking ITS1 and ITS2 DNA regions for the six species mentioned above. All four most parsimonious trees indicated a closer relationship between the sequences of Cy . insulare and those of Cy. scoparium and Cy. floridanum. The exact relationships between the other species were ambiguous.

Morphological comparisons

Several morphological characters were studied. This included the shape and diameter of the terminal vesicles extending from the conidiophore stipes, conidial size, conidiophore branching pattern, ascospore shape, size, perithecial colour, anatomy, morphology, and cultural characteristics.

The morphological similarities of the anamorph and teleomorph states corresponded well with the results obtained in the mating studies, and grouped isolates into four distinct groups. The four groups identified based on these features were further supported by their distinct DNA sequences, which led us to conclude that they represent four biological species, which are subsequently described below.

Species descriptions

Calonectria pauciramosa, C.L. Schoch \& Crous sp. nov.
Figs. 4-11
Anamorph. Cylindrocladium pauciramosum C.L. Schoch \& Crous sp. nov.

Figs. 4-6. Calonectria pauciramosa and its anamorph Cylindrocladium pauciramosum. 4. Terminal vesicles on stipe extensions. 5. Conidiophore and conidia. 6. Asci and ascospores. Bar = $10 \mu \mathrm{~m}$.

Etymology. Refers to the relatively low number of conidiophore branches in the species.

Holotypes. BRAZIL \times SOUTH AFRICA. BRAZIL. BAHIA: Nursery, Eucalyptus sp., Jul. 1990, A. C Alfenas; Knysna, soil, Nov. 1994, P. W. Crous, heterothallic mating of STE-U 1670 (PREM 55753 anamorph) \times STE-U 971 (PREM 55752 anamorph holotype), Apr. 1997 C. L. Schoch (PREM 55754 teleomorph holotype).

Description. Perithecia subglobosa ad ovoidea, 250-400 $\mu \mathrm{m}$ alta, $170-300 \mu \mathrm{~m}$ lata, crocea ad rubro-brunnea, pariete exteriore verrucosa, ostiolo papillato. Asci clavati, in stipitem longum tenuem gradatim angustatae, $70-140 \times 8-25 \mu \mathrm{~m}, 8$-spori. Ascosporae hyalinae, fusiformes, 1-septatae, nihil vel leviter ad septum constrictae, $(30-) 33-38(-40) \times 6-7(-8) \mu \mathrm{m}$. Filum septatum, hyalinum (120-) $180(-230) \mu \mathrm{m}$, in vesiculam obpyriformam ad late ellipsoidam (5-)7-9(-11) $\mu \mathrm{m}$ diam terminans. Conidia cylindrica, hyalina, 1 -septata, apicibus obtusis, (30-)45-55(-60) $\times(3.5-) 4-5$ $\mu \mathrm{m}$. Microconidiophora ignota.

Figs. 7-11. Calonectria pauciramosa and its anamorph Cylindrocladium pauciramosum. 7. Vertical section through a perithecium. 8. Ascospores. 9-11. Terminal vesicles. Bars $=10 \mu \mathrm{~m}$.

Perithecia orange to red-brown, subglobose to ovoid, 250-400 $\mu \mathrm{m}$ high, 170-300 $\mu \mathrm{m}$ wide, turning dark red in $3 \% \mathrm{KOH}$; ostiole papillate. Perithecia rough-walled, wall consisting of two layers: outside layer of textura globulosa, 20-50 $\mu \mathrm{m}$ wide; inner
layer of textura angularis, 5-10 $\mu \mathrm{m}$ wide, outer cells $40-55 \times 15-35 \mu \mathrm{~m}$; hymenial layer of textura prismatica, hyaline, $5-10 \mu \mathrm{~m}$ wide; perithecial base up to $100 \mu \mathrm{~m}$ wide, consisting of dark red, angular cells. Asci 8 -spored, clavate, $70-140 \times 8-25 \mu \mathrm{~m}$, tapering to a long thin stalk. Ascospores aggregated in the upper third of the ascus, hyaline, fusoid with rounded ends, straight to slightly curved, 1-septate, not or slightly constricted at the septum, (30-)33-38(-40) $\times 6-7(-8) \mu \mathrm{m}$. Macroconidiophores comprised of a stipe, a sterile elongation and a penicillate arrangement of fertile branches. Stipe septate, (120-)180(-230) $\mu \mathrm{m}$ long, terminating in an obpyriform to broadly ellipsoidal vesicle, (5-)7-9(-11) $\mu \mathrm{m}$ diam; primary branches aseptate or 1 septate, $12-45 \times 5-6 \mu \mathrm{~m}$; secondary branches aseptate, $15-20 \times 5 \mu \mathrm{~m}$, and tertiary branches aseptate, $12-15 \times 5 \mu \mathrm{~m}$, each terminal branch producing 2-6 phialides; phialides doliiform to reniform, hyaline, aseptate, $10-13 \times 2.5-4 \mu \mathrm{~m}$, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, ($30-$) $45-55(-60) \times(3.5-) 4-5 \mu \mathrm{~m}, 1$-septate, lacking a visible abscission scar, held in cylindrical clusters by colourless slime. Microconidiophores not observed. Chlamydospores dark brown, thickened, formed in extensive numbers throughout the medium, and aggregated to form microsclerotia.

Cultures. Colony colour (underneath) 13 i fulvous, (surface) 13 i sienna with abundant white aerial mycelia. Colony margin irregular, with extensive chlamydospores and sparse sporulation on aerial mycelia. Colonies obtaining a radius of $17-20 \mathrm{~mm}$ diam on MEA after 6 d in dark at $25^{\circ} \mathrm{C}$.

Cardinal temperatures for growth. Minimum above $5^{\circ} \mathrm{C}$, maximum below $35^{\circ} \mathrm{C}$, optimum $25^{\circ} \mathrm{C}$. This is both a high and low temperature species, growing below $5^{\circ} \mathrm{C}$, and above $30^{\circ} \mathrm{C}$.

Substrate. Acacia cyclops, Azalea sp., Eucalyptus spp., Fragraria sp., Protea sp., Rhododendron sp., soil.

Distribution. Australia, Brazil, Colombia, Mexico, South Africa.

Additional cultures examined. AUSTRALIA. QUEENSLAND: Locality unknown, strawberry, 1991, D. Hutton (N167/91 = STE-U 1691; N335/91 = STE-U 1692). BRAZIL. BAHIA: Vivieros, Eucalyptus sp., Jul. 1990, A. C. Alfenas (UFV 25 = STE-U 1670; UFV 27 = STE-U 1671). SANTA CATARINA: Florianópolis, soil, Apr. 1994, M. J. Wingfield (STE-U 911-913, 923-925). COLOMBIA. CÓRDOBA: La Selva, Jun. 1995, M. J. Wingfield (STE-U 1160-1163). MEXICO. VERACRUZ: Catemaco,

Laguna Encantada, soil, Apr. 1994 M. J. Wingfield (STE-U 951). SOUTH AFRICA. KWAZULU-NATAL: Kwambonambi, Eucalyptus grandis seedlings, Feb. 1990, P. W. Crous (STE-U 247, 249, 256, 257, 271, 274, 344, 346); Eucalyptus grandis, Oct. 1995, P. W. Crous (STE-U 1239); Pietermaritzburg, Eucalyptus nitens, Mar. 1990, P. W. Crous (STE-U 391); WESTERN CAPE: Acacia cyclops, Jul. 1990, M. Morris (CMM 953 = STE-U 1693); George, Azalea bushes, Feb. 1993, S. Lamprecht (STEU 575); Knysna, soil, Nov. 1994, P. W. Crous (STE-U 971, 972); MPUMALANGA: Kruisfontein, Eucalyptus grandis trunk, Sept. 1989, P. W. Crous (STE-U 138, 143); Sabie, soil, Feb. 1990, P. W. Crous (STE-U 356, 358); Klipkraal, Eucalyptus grandis seedlings, Feb. 1990, P. W. Crous (STE-U 286-288); Witrivier, Azalea sp., May 1990, S. Lamprecht (STE-U 379, 380); NORTHERN PROVINCE: Piet Retief, pine cuttings, Nov. 1994, P. W. Crous (STE-U 958, 959); Tzaneen, Eucalyptus grandis seedlings, Feb. 1990, P. W. Crous (STE-U 282-284), Eucalyptus grandis cuttings, Jun. 1990, S. de Buisson (STE-U 416, 417).

Calonectria scoparia Peerally, Mycotaxon 40: 341 (1991).
Figs. 12-18
Anamorph. Cylindrocladium candelabrum Viégas, Bragantia 6: 370 (1946).

Figs. 12-14. Calonectria scoparia and its anamorph Cylindrocladium candelabrum 12. Terminal vesicles on stipe extensions. 13. Conidiophore and conidia. 14. Asci and ascospores. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

Holotypes. BRAZIL. BAHIA. Picadao, Conceicao de Barra, Eucalyptus grandis, Apr. 1992, A. C. Alfenas \& F. A. Ferreira (PREM 51045 neotype of teleomorph; Crous et al 1993a); Copener, Eucalyptus sp., A. C. Alfenas, PREM 51044 (neotype of anamorph; Crous et al 1993a), culture ex-type PPRI 4135.

Description. Perithecia red-brown, subglobose to ovoid, 350-450 $\mu \mathrm{m}$ high, 300-350 $\mu \mathrm{m}$ wide, turning dark red in $3 \% \mathrm{KOH}$, frequently in clusters of $3-4$; ostiole papillate. Perithecia rough-walled, wall consisting of two layers: outside layer of textura globulosa, 50-100 $\mu \mathrm{m}$ wide; inner layer of textura angularis, $5-10 \mu \mathrm{~m}$ wide, outer cells $35-45 \times 18-30 \mu \mathrm{~m}$; hymenial layer of textura prismatica, hyaline, $5-10 \mu \mathrm{~m}$ wide; perithecial base up to $150 \mu \mathrm{~m}$ wide, consisting of dark red, angular cells. Asci 8spored, clavate, $70-130 \times 7-15 \mu \mathrm{~m}$, tapering to a long thin stalk. Ascospores aggregated in the upper third of the ascus, hyaline, fusoid with rounded ends, straight to slightly curved, 1 -septate, not to slightly constricted at the septum, (40-)45-50(-60) $\times 5-6 \mu \mathrm{~m}$; becoming 3 -septate once discharged. Macroconidiophores comprised of a stipe, a sterile ongation and a penicillate arrangement of fertile branches. Stipe septate, (100-) $170(-220) \mu \mathrm{m}$ long, terminating in an ellipsoidal to narrowly obpyriform vesicle, (5-)6-7(-8) $\mu \mathrm{m}$ diam; primary branches aseptate or 1 -septate, $20-45 \times 4-5$ $\mu \mathrm{m}$; secondary branches aseptate, $15-25 \times 4-5 \mu \mathrm{~m}$, tertiary branches aseptate, $15-20$ $\times 4-5 \mu \mathrm{~m}$, and quaternary branches aseptate, $10-15 \times 4-5 \mu \mathrm{~m}$, each terminal branch producing 2-6 phialides; phialides doliiform to reniform, hyaline, aseptate, 10-20 \times 3-4 $\mu \mathrm{m}$, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, (45-)58-68(-80) $\times 4-5(-6) \mu \mathrm{m}, 1$-septate, lacking a visible abscission scar, held in cylindrical clusters by colourless slime. Microconidiophores not observed. Chlamydospores dark brown, thickened, formed in extensive numbers throughout the medium, and aggregated to form microsclerotia.

Cultures. Colony colour (underneath) 13i fulvous, (surface) 13i sienna. Colony margin irregular with sparse to moderate aerial mycelia, and extensive chlamydospores. Colonies obtaining a radius of 12-17 mm diam on MEA after 6 d in the dark at $25^{\circ} \mathrm{C}$.

Cardinal temperatures for growth. Minimum above $5^{\circ} \mathrm{C}$, maximum below $35^{\circ} \mathrm{C}$, optimum $25^{\circ} \mathrm{C}$. This is both a high and low temperature species, with medium sporulation on aerial mycelium.

Substrate. Eucalyptus spp., Luma sp., soil.

Distribution. Brazil, Venezuela.

Additional specimens deposited. BRAZIL. BAHIA: Vivieros, soil, heterotallic mating of STE-U 1675 (PREM 55755 anamorph) \times STE-U 1677 (PREM 55756 anamorph), Apr. 1997, C. L. Schoch, (PREM 55757 teleomorph).

Figs. 15-18. Calonectria scoparia and its anamorph Cylindrocladium candelabrum. 15. Vertical section through a perithecium. 16. Ascospores. 17, 18. Terminal vesicles. Bars $=10 \mu \mathrm{~m}$.

Additional cultures examined. BRAZIL. AMAZONAS: Locality unknown, Eucalyptus sp., 1991, A. C. Alfenas (UFV 117 = STE-U 1675; UFV 118 = STE-U 1676; UFV 121 = STE-U 1677; UFV $122=$ STE-U 1678; UFV $126=$ STE-U 1679; UFV 128 = STE-U 1680; UFV 129 = STE-U 1681; UFV 130 = STE-U 1682; UFV 132 = STE-U 1683); Eucalyptus sp., 1991, J. C. Dianese (D1038 = STE-U 1684); Belém, Eucalyptus sp., Feb. 1990, M. J. Wingfield (STE-U 313); BAHIA: Copener, Eucalyptus sp., Jul. 1990, A. C. Alfenas (UFV 63 = STE-U 1674); Vivieros, Eucalyptus sp., Jul. 1990, ACA: UFV 29 = STE-U 1672); MINAS GERAIS: Ipatinga, Eucalyptus sp., Jul. 1990, A. C. Alfenas (UFV 45 = STE-U 1673); Bocaiúva, Eucalyptus sp., Jul. 1990, A. C. Alfenas (UFV 170 = STE-U 1685); Bom Despacho, Eucalyptus sp., Jul. 1990, A. C. Alfenas (UFV 172 = STE-U 1686); SÃO PAULO: São Paulo, Eucalyptus cuttings, Mar. 1993, P. W. Crous (STE-U 586, 594, 597, 600-602, 604, 605). VENEZUELA. Locality unknown, soil, Jun. 1995, M. J. Wingfield, (STE-U 1183).

Etymology. In reference to its geographic distribution.

Holotypes. MADAGASCAR: Tamatave, soil, Apr. 1997, P. W. Crous, heterothallic mating of STE-U 766 (PREM 55758 anamorph holotype) \times STE-U 768 (PREM 55759 anamorph), Apr. 1997, C. L. Schoch, (PREM 55760 teleomorph holotype).

Figs. 19-21. Calonectria insularis and its anamorph Cylindrocladium insulare. 19. Terminal vesicles on stipe extensions. 20. Conidiophore and conidia. 21. Asci and ascospores. Bar $=10 \mu \mathrm{~m}$.

Discriptions. Perithecia subglobosa ad ovoidea, 350-450 $\mu \mathrm{m}$ alta, $300-350 \mu \mathrm{~m}$ lata, crocea ad rubra, pariete exteriore verrucosa, ostiolo papillato. Asci clavati, in stipitem longum tenuem gradatim angustatae, $70-120 \times 7-18 \mu \mathrm{~m}, 8$-spori. Ascosporae hyalinae, fusiformes, 1 -septatae, ad septum nihil constrictae, (27-)30-$36(-42) \times 5-6(-7) \mu \mathrm{m}$. Ascosporae evolentes usque ad constrictae dismissae ab asco. Filum septatum, hyalinum (110-)160(-250) $\mu \mathrm{m}$, in vesiculam obpyriformam ad late ellipsoidam (4-)7-10(-13) $\mu \mathrm{m}$ diam terminans. Conidia cylindrica, hyalina, 1septata, apicibus obtusis, (33-)40-50(-60) $\times 3.5-4 \mu \mathrm{~m}$. Microconidiophora ignota.

Perithecia orange to red, subglobose to ovoid, $350-450 \mu \mathrm{~m}$ high, $300-350 \mu \mathrm{~m}$ wide, turning dark red in $3 \% \mathrm{KOH}$; ostiole papillate. Perithecia rough-walled, wall consisting of two layers: outside layer of textura globulosa, 40-80 $\mu \mathrm{m}$ wide; inner layer of textura angularis, $5-10 \mu \mathrm{~m}$ wide, outer cells $25-45 \times 20-35 \mu \mathrm{~m}$; hymenial layer of textura prismatica, hyaline, $5-10 \mu \mathrm{~m}$ wide; perithecial base up to $100 \mu \mathrm{~m}$ wide, consisting of dark red, angular cells. Asci 8 -spored, clavate, $70-120 \times 7-18 \mu \mathrm{~m}$, tapering to a long thin stalk. Ascospores aggregated in the upper third of the ascus, hyaline, fusoid with rounded ends, straight to slightly curved, 1 -septate, not constricted at the septum, becoming constricted once discharged, (27-)30-36(-42) x $5-6(-7) \mu \mathrm{m}$. Macroconidiophores comprised of a stipe, a sterile elongation and a penicillate arrangement of fertile branches. Stipe septate, (110-)160(-250) $\mu \mathrm{m}$ long, terminating in an obpyriform to broadly ellipsoidal vesicle, (4-)7-10(-13) $\mu \mathrm{m}$ diam; primary branches aseptate or 1-septate, $10-45 \times 4-5 \mu \mathrm{~m}$; secondary branches aseptate, $10-25 \times 4-5 \mu \mathrm{~m}$, tertiary branches aseptate, $10-17 \times 4-5 \mu \mathrm{~m}$, and quaternary branches aseptate, $10-12 \times 4-5 \mu \mathrm{~m}$, each terminal branch producing 2-6 phialides; phialides doliform to reniform, hyaline, aseptate, $9-14 \times 3-5 \mu \mathrm{~m}$, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, (33-)40-50(-60) $\times 3.5-4 \mu \mathrm{~m}, 1$-septate, lacking a visible abscission scar, held in cylindrical clusters by colourless slime. Microconidiophores not observed. Dark brown, thickened chlamydospores formed in extensive numbers throughout the medium, and aggregated to form microsclerotia.

Cultures. Same characteristics as Cy. pauciramosum with colonies obtaining a radius of $18-23 \mathrm{~mm}$ diam on MEA after 6 d in the dark at $25^{\circ} \mathrm{C}$.

Cardinal temperatures for growth. Minimum above $15^{\circ} \mathrm{C}$, maximum above $35^{\circ} \mathrm{C}$, optimum $25-30^{\circ} \mathrm{C}$. This is a high temperature species.

Substrate. Acacia sp., Auracaria heterophylla, Medicago sativa, Persea americana, Pisum sativum, Eucalyptus sp., soil.

Distribution. Brazil, Hawaii, Indonesia, Madagascar, Malaysia, Mauritius, Mexico.

Additional cultures examined. BRAZIL. AMAZONAS: Belém, soil, Apr. 1993, M. J. Wingfield (STE-U 616, 620, 625, 626). INDONESIA. SUMATRA: Sei Kobaro, Acacia mangium rhizosphere, Jan. 1994, A. C. Alfenas (STE-U 722). MADAGASCAR. Tamatave, soil, Apr. 1994, P. W. Crous (STE-U 766, 768). MALAYSIA. MALAY

PENINSULA: Kemasik, Acacia sp., Dec. 1995, M. J. Wingfield (STE-U 1281, 1282). MAURITIUS. Rivière Noire, soil, Apr. 1996, H. Smith (STE-U 1473, 1474). Pampalmousses, soil, Apr. 1996, H. Smith (STE-U 1475). MEXICO. VERACRUZ: Conejos, Puente Nacional, soil, Apr. 1994, M. J. Wingfield (STE-U 952, 954). U.S.A. HAWAII: Locality unknown, Medicago sativa, 1981, M. Aragaki (A $890=$ STE-U 1687); Auracaria heterophylla, 1987, M. Aragaki (A 1570 = STE-U 1688); Pisum sativum, 1988, M. Aragaki (A 1823 = STE-U 1689); Persea americana, 1988, M. Aragaki (A 1853 = STE-U 1690).

Figs. 22-25. Calonectria insularis and its anamorph Cylindrocladium insulare. 22. Vertical section through a perithecium. 23. Ascospores. 24, 25

Calonectria mexicana, C.L. Schoch \& Crous sp. nov.
Figs. 26-35
Anamorph. Cylindrocladium mexicanum, sp. nov.

Etymology. In reference to its country of origin.

Holotypes. MEXICO. YUCATAN: Uxmal, soil., Apr. 1994 M. J. Wingfield; HOLPECHÉN: Campeche, soil., Apr. 1994, M. J. Wingfield, heterothallic mating of STE-U 927 (PREM 55761 anamorph holotype) \times STE-U 941 (PREM 55762 anamorph), Apr. 1997, C. L. Schoch (PREM 55763 teleomorph holotype).

Decriptions. Perithecia subglobosa ad ovoidea, 400-450 $\mu \mathrm{m}$ alta, $350-450 \mu \mathrm{~m}$ lata, crocea ad rubra, pariete exteriore verrucosa, ostiolo papillato. Asci clavati, in stipitem longum tenuem gradatim angustatae, $70-120 \times 10-20 \mu \mathrm{~m}, 8$-spori. Ascosporae hyalinae, fusiformes, 1-septatae, nihil vel leviter constrictae ad septum,
(35-)40-55(-65) $\times 5-6(-7) \mu \mathrm{m}$. Ascoporae evolentes usque ad tres septa dismissal ab asco. Filum septatum, hyalinum (160-) $180(-250) \mu \mathrm{m}$, in vesiculam late ellipsoidam apicibus papillatis (7-)8-10(-12) $\mu \mathrm{m}$ diam terminans. Conidia cylindrica, hyaline, 1-septata, apicibus obtusis, (35-)40-48(-52) $\times 3-4(-4.5) \mu \mathrm{m}$. Microconidiophora ignota.

Figs. 26-28. Calonectria mexican and its anamorph Cylindrocladium mexicanum. 26. Terminal vesicles on stipe extensions. 27. Conidiophore and conidia. 28. Asci and ascospores. Bar $=$ $10 \mu \mathrm{~m}$.

Perithecia orange to red, subglobose to ovoid, 400-450 $\mu \mathrm{m}$ high, $350-450 \mu \mathrm{~m}$ wide, turning dark red in $3 \% \mathrm{KOH}$; ostiole papillate. Perithecia rough-walled, wall consisting of two layers: outside layer of textura globulosa, $35-90 \mu \mathrm{~m}$ wide; inner layer of textura angularis, $5-15 \mu \mathrm{~m}$ wide, outer cells $20-35 \times 20-30 \mu \mathrm{~m}$; hymenal layer of textura prismatica, hyaline, $5-10 \mu \mathrm{~m}$ wide; perithecial base up to $100 \mu \mathrm{~m}$ wide, consisting of dark red, angular cells. Asci 8 -spored, clavate, $70-120 \times 10-20$ $\mu \mathrm{m}$, tapering to a long thin stalk. Ascospores aggregated in the upper third of the ascus, hyaline, fusoid with rounded ends, straight to slightly curved, 1-septate, not or slightly constricted at the septum, (35-)40-55(-65) $\times 5-6(-7) \mu \mathrm{m}$; becoming 3 -septate once discharged. Macroconidiophores comprised of a stipe, a sterile elongation and a penicillate arrangement of fertile branches. Stipe septate, (160-)180(-250) $\mu \mathrm{m}$ long, terminating in a broadly ellipsoidal vesicle with a papillate apex, (7-)8-10(-12) $\mu \mathrm{m}$ diam; primary branches aseptate or 1 -septate, $17-45 \times 4-6 \mu \mathrm{~m}$; secondary
branches aseptate, $15-25 \times 4-5 \mu \mathrm{~m}$, tertiary branches aseptate, $11-17 \times 3-5 \mu \mathrm{~m}$, and quaternary branches aseptate, $10-15 \times 2.5-4 \mu \mathrm{~m}$, each terminal branch producing 2-6 phialides; phialides doliiform to reniform, hyaline, aseptate, $7-16 \times 3-4 \mu \mathrm{~m}$, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, (35-)40-48(-52) $\times 3-4(-4.5) \mu \mathrm{m}$, 1 -septate, lacking a visible abscission scar, held in cylindrical clusters by colourless slime. Microconidiophores not observed. Chlamydospores dark brown, thickened, formed in extensive numbers throughout the medium, and aggregated to form microsclerotia.

Figs. 29-35. Calonectria mexicana and its anamorph Cylindrocladium mexicanum. 29. Vertical section through a perithecium. 30. Ascospores. 31. Asci. 32. Conidiophore with extending stipe and terminal vesicle. 33-35. Terminal vesicles. Bars $=10 \mu \mathrm{~m}$.

Cultures. Colony colour (underneath) 13b-13i (orange to sienna), (surface) similar as underneath with moderate white aerial mycelia. Colony margin irregular with extensive chlamydospores and sparse sporulation on aerial mycelium. Colonies obtaining a radius of $17-20 \mathrm{~mm}$ diam on MEA after 6 d in the dark at $25^{\circ} \mathrm{C}$.

Cardinal temperatures for growth. Minimum above $10^{\circ} \mathrm{C}$, maximum above $35^{\circ} \mathrm{C}$, optimum $25-30^{\circ} \mathrm{C}$. This is both a high and low temperature species.

Substrate. soil.

Distribution. Mexico.

Additional cultures examined. MEXICO. CAMPECHE: Holpechén, soil, Apr. 1994, M. J. Wingfield (STE-U 941-943, 966, 967); YUCATAN: Uxmal, soil, Apr. 1994, M. J. Wingfield (STE-U 926-928, 944-946).

Discussion

This study was initiated in order to investigate the morphological variability observed within the Cy. candelabrum species complex. Mating studies revealed the existence of four distinct mating populations in this complex. These findings were further supported by differences in morphology, and sequence data. In accordance with the biological species concept, different species were therefore proposed for each mating population.

Previous mating studies between isolates of Cy. scoparium and Cy. candelabrum showed these species to be genetically isolated (Crous et al 1993a). Within the Cy. candelabrum-complex, however, prominent differences were observed when perithecia of South African \times South African, or South African \times Brazilian matings were compared with some Brazilian x Brazilian matings. In light of the distribution data of some of these species (Cy. pauciramosum and Cy. candelabrum) as circumscribed in the present study, it is obvious that the variation observed by Crous et al (1993a) can now be ascribed to different biological species. In light of the results presented here, previous mating groups observed in Cy. candelabrum (as Cy. scoparium; Ribeiro 1978), suggest that yet other, undescribed biological species could exist in this complex. Recent molecular work done in another homothallic species complex, Cy. floridanum (Victor et al 1997), suggests that this aggregation of distinct biological taxa in species complexes is much more common in Cylindrocladium than expected earlier.

The high proportion of successful matings obtained in the present study, and recently by Crous et al (1998) in Cy. ovatum, can possibly be ascribed to the fact that these matings were conducted at $22^{\circ} \mathrm{C}$, compared to previous studies that used 15 and $25^{\circ} \mathrm{C}$ as optimum temperature. Within each species, however, isolates showed
varying degrees of success in mating with opposing mating types. For example, in Cy. pauciramosum STE-U 138 mated only with two other opposing mating type strains, while in Cy. candelabrum STE-U 1678 mated successfully in all instances. Age of isolates as well as differences in their female fertility could account for this variation. It appears that Cy. pauciramosum and Cy. insulare are largely allopatric in character, with isolates available from various localities.

Sequence data can quantify relatedness among taxa, and is commonly used to clarify different taxonomic questions (Viljoen et al 1993, Rehner \& Samuels 1995). The sequences of the ITS1 and ITS2 flanking regions of the 5.8 S ribosomal gene indicated small, but consistent differences between the species proposed in this study. Although a high degree of sequence variation in this region has been reported before (Chambers et al 1986), a low amount of variation was observed between the Cylindrocladium species examined in the present study. Within a biological species no variation could be observed at all. Even in the case of Cy. insulare, identical sequences were observed for isolates from disparate geographic areas like Madagascar, Mexico and Brazil. When compared to a similar situation in Gibberella fujikuroi, where several mating populations exist between isolates with similar morphological features (Leslie 1995), the high relatedness in the Cy. candelabrum complex becomes more evident. However, sequences of the 5.8 S gene and ITS1 and ITS2 flanking regions proved problematic in differentiating the different mating populations in the Gibberella fujikuroi complex (Waalwijk et al 1996). Although the species in this study could be differentiated using sequence results, further consideration will have to be given to other, more variable DNA regions. Studies conducted in the hypocrealean genus Fusarium (O'Donnell 1996), could prove useful in this regard.

References

Booth C, Gibson IAS. 1973. Cylindrocladium scoparium. CMI Descr Pathog Fungi Bact 362: 1-2.

Bryan GT, Daniels MJ, Osbourn AE. 1995. Comparison of fungi within the Gaeumannomyces-Phialophora complex by analysis of ribosomal DNA sequences. Appl Environm Microbiol 61: 681-689.

Chambers C, Dutta SK, Crouch RJ. 1986. Neurospora crassa ribosomal DNA: sequence comparison with N. intermedia and N. sitophila. Gene 44: 159-164.

Crous PW, Alfenas AC, Junghans TG. 1998. Variability within Calonectria ovata and its anamorph Cylindrocladium ovatum from Brazil. Sydowia 50: 1-13.
Crous PW, Alfenas AC, Wingfield MJ. 1993a. Calonectria scoparia and Calonectria morganii sp . nov. and variation among isolates of their Cylindrocladium anamorphs. Mycol Res 97: 701-708.

Crous PW, Janse BJH, Victor D, Marais GF, Alfenas AC. 1993b. Characterization of some Cylindrocladium species with three septate conidia using morphology, isozyme banding patterns and DNA polymorphisms. Syst Appl Microbiol 16: 266273.

Crous PW, Mchau GRA, Van Zyl WH, Wingfield MJ. 1997a. New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653-660.

Crous PW, Phillips AJL, Wingfield MJ. 1992. Effects of cultural conditions on vesicle and conidium morphology in species of Cylindrocladium and Cylindrocladiella. Mycologia 84: 497-504.

Crous PW, Theron L, Van Zyl WH. 1997b. Delineating C. candelabrum spp. with 1-3septate conidia and clavate vesicles based on morphology and rDNA RFLPs. Mycol Res 101: 210-214.

Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341-345.
French DW, Menge JA. 1978. Survival of Cylindrocladium floridanum in naturally and artificially infested soil forest tree nurseries. PI Dis Rep 62: 806-810.
Furlong JC, Forbes J, Robertson M, Maden BEH. 1983. The external transcribed spacer and preceding region of Xenopus borealis rDNA: comparison with the corresponding region of Xenopus laevis rDNA. Nucl Acids Res 11: 8183-8196.
Jeng R, Hintz WE, Bowden CG, Horgen PA, Hubbes M. 1996. A comparison of the nucleotide sequence of the cerato-ulmin gene and the rDNA ITS between aggressive and non-aggressive isolates of Ophiostoma ulmi sensu lato, the causal agent of Dutch elm disease: Curr Genet 29: 168-173.
Jeng R, Dumas M, Liu FH, Wang CL, Hubbes M. 1997. DNA analysis of Cylindrocladium floridanum isolates from selected forest nurseries. Mycol Res 101: 285-291.
Leslie JF. 1995. Gibberella fujikuroi: available populations and variable traits. Can J Bot 73: S282-S291.
Morgan AP. 1892. Two new genera of hyphomycetes. Bot Gaz 17: 190-192.

Nazar RN, Hu X, Schmidt J, Culham D, Robb J. 1991. Potential use of PCRamplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogens. Physiol Molec PI Pathol 39: 1-11.

O'Donnell K. 1996. Progress towards a phylogenetic classification of Fusarium. Sydowia 48: 57-70.

Overmeyer C, Lünnemann S, Von Wallbrünn C, Meinhardt F. 1996. Genetic variability among isolates and sexual offspring of the plant pathogenic fungus Calonectria morganii on the basis of random amplification of polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP). Curr Microbiol 33: 249-255.

Peerally A. 1991. The classification and phytopathology of Cylindrocladium species. Mycotaxon 40: 323-366.

Rayner RW 1970. A mycological colour chart. Kew, United Kingdom: CMI and British Mycological Society. 34 p and 17 sheets.

Rehner SA, Samuels G. 1995. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73: S816-S823.
Ribeiro JO 1978. Heterotalismo em Cylindrocladium scoparium Morgan. M.Sc. thesis. Viçosa, Minas Gerais, Brazil: Universidade Federal de Viçosa. 33p.
Sreenivasprasad S, Mills PR, Brown AE. 1994. Nucleotide sequence of the rDNA spacer 1 enables identification of isolates of Colletotrichum as C. acutatum. Mycol Res 98: 186-188.

Swofford DL. 1993. PAUP (Phylogenetic analysis using parsimony, ver. 3.1.1.). Computer programme. Champaign, Illinois, U.S.A.: Illinois Natural History Survey.
Victor D, Crous PW, Janse BJH, Wingfield MJ. 1997. Genetic variation in Cylindrocladium floridanum and other morphologically similar Cylindrocladium species. Syst Appl Microbiol 20: 268-285.
Viégas AP. 1946. Algunos fungos do Brazil XII. Hifomicetos. Bragantia 6: 353-442.
Viljoen CD, Wingfield BD;-Wingfield MJ. 1993. Comparison of Seiridium isolates associated with cypress canker using sequence data. Exp Mycol 17: 323-328.

Waalwijk C, De Koning JRA, Baayen RP, Gams W. 1996. Discordant groupings of Fusarium spp. from sections Elegans, Liseola and Dlaminia based on ribosomal ITS1 and ITS2 sequences. Mycol Res 88: 361-368.

Waipara NW, Di Menna ME, Cole ALJ, Skip RA. 1996. Pathogenicity of Cylindrocladium scoparium to pasture clover and grass species. Austral PI Pathol 25: 205-211.

White TJ, Burns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky J, White TJ, eds. PCR protocols. A guide to methods and applications. San Diego: Academic Press. p 315-322.

Witthuhn RC, Wingfield BD, Wingfield MJ, Wolfaardt M, Harrington TC. 1998. Monophyly of the conifer species in the Ceratocystis coerulescens complex based on DNA sequence data. Mycologia 90: 96-101.

Witthuhn RC. 1999. Molecular taxonomy and mating type genes in Ceratocystis sensu stricto. PhD Dissertation. Bloemfontein, South Africa: University of the Orange Free State. 122 p.

Yoder OC, Valent B, Chumley F. 1986. Genetic nomenclature and practice in plant pathogenic fungi. Phytopathology 76: 383-385.

3. Recombination in Cylindrocladium scoparium and phylogeny with other heterothallic small-spored Cylindrocladium species*

Abstract

The Cylindrocladium scoparium cultures studied were isolated from several hosts in the U.S.A. Isolates were mated in all combinations, and one successful mating was selected to establish whether recombination occurred. RAPD and mating type data of parental isolates and progeny confirmed Cy. scoparium to have a biallelic heterothallic mating system. Furthermore, to determine the phylogeny of Cy. scoparium with several morphologically similar Cylindrocladium spp., DNA sequences of the ribosomal 5.8 S gene and the flanking internal transcribed spacers (ITS), as well as part of the high mobility group (HMG) box (forming part of the MAT2 mating type gene) and the β-tubulin gene, were analysed. Maximum parsimony yielded concordant trees for all three data sets. These data supported the morphological and biological species concepts proposed for Cy. scoparium and other, similar, small-spored Cylindrocladium spp.

Introduction

Cylindrocladium scoparium Morgan is the type species of the anamorph genus Cylindrocladium Morgan (Morgan 1892). Members of this genus have Calonectria De Not. teleomorphs, are ubiquitous plant pathogens and have been isolated mainly in tropical and subtropical regions of the world. Cylindrocladium scoparium (teleomorph Calonectria morganii Crous et al) has reportedly been associated with a wide range of disease symptoms, including damping off, root rot, cutting rot, stem cankers, leaf-spot and seedling blight (Cordell \& Rowan 1975). Although this species has been reported from over 30 plant families (Booth \& Gibson 1973, French \& Menge 1978, Peerally 1991, Waipara et al 1996), recent data (Part 2) suggest that many of these records were incorrectly ascribed to Cy . scoparium.

[^1]The main taxonomic criteria used for the identification of Cylindrocladium species are conidial and ascospore size and septation, vesicle shape and diameter, and perithecial morphology. Although the reliability of the terminal vesicle as criterion for species identification has been questioned by some workers (Hunter \& Barnett 1978, Rossman 1983), Crous et al (1992) showed that this is useful when studied under controlled conditions on carnation-leaf agar (CLA) (Fisher et al 1982).

However, uncertainty still exists regarding the identification of Cy. scoparium, and it has frequently been confused with other species with 1 -septate, small conidia. These include Cy. ovatum El-Gholl et al (ovoid vesicles), Cy. floridanum Sobers \& C.P. Seym. (sphaeropedunculate vesicles) and Cy. candelabrum Viégas (obpyriform vesicles). Victor et al (1997) compared isolates of these taxa and showed that they represent different species. The latter study also confirmed the existence of genetically distinct groups among isolates of Cy. floridanum, which was initially reported by Jeng et al (1997). A similar situation has also been found to exist in other species complexes such as Cy. gracile (Crous et al 1995, 1997a, b) and Cy. candelabrum (Part 2).

Cylindrocladium scoparium has been reported from various areas worldwide, including Africa (Doidge 1950, Darvas et al 1978, Botha \& Crous 1992), South America (Palmucci et al 1996, Tozetto \& Ribeiro 1996), Europe (Overmeyer et al 1996, Polizzi \& Azzaro 1996), Asia (Mohanan \& Sharma 1985, Srinivasan \& Gunasekaran 1995) and New Zealand (Waipara et al 1996). However, the presence of Cy. scoparium has only been confirmed from North America and Brazil (Crous et al 1993a), and many of the isolates discussed in the previously mentioned reports have proven to be the newly described Cy. pauciramosum C.L. Schoch \& Crous, which forms part of the C. candelabrum species complex (Part 2).

The low mating frequency reported in previous studies of Cy. scoparium (Crous et al 1993a) and related species (Victor et al 1997) have complicated studies in these fungi by limiting the use of mating testers for species identification. Overmeyer et al (1996) reported only a single mating between mating type tester strains obtained from the American Type Culture Collection (ATCC). Furthermore, no successful matings were obtained with any of the additional thirty-two strains isolated from various hosts in Germany. High success rates were, however, recently obtained for matings done with Cy. ovatum (Crous et al 1998) and species in the Cy.
candelabrum species complex (Part 2). These results confirmed that these species have biallelic, heterothallic mating systems.

A similar mating system was originally described for Cy. scoparium (Crous et al 1993a). Results obtained by Overmeyer et al (1996) indicated a different scenario, because only one parent was reported to contribute to the genetic makeup of progeny. However, as so few matings with Cy. scoparium have proven successful in the past (Crous et al 1993a, Overmeyer et al 1996, Victor et al 1997), it was decided to also employ molecular techniques to provide more information on whether recombination occurred or not.

Random amplified polymorphic DNA (RAPD) is a technique that has been applied to answer various genetically oriented questions. Previous studies have applied RAPD data in order to show recombination among agricultural crops (Echt et al 1992) and fungal pathogens (Nicholson et al 1995, Campbell et al 1999) This technique was therefore chosen to verify whether recombination occurred during matings of Cy . scoparium.

The phylogenetic relatedness of various Cylindrocladium species as suggested by morphological features is still largely uncertain. Several molecular characters have previously been used to analyse relationships among Cylindrocladium spp. These include protein profiles (Crous et al 1993b), RAPDs (Victor et al 1997) and Restriction fragment length polymorphisms (RFLP) (Crous et al 1997b). Previous results by Jeng et al (1997) showed that isolates of Cy. scoparium and Cy. floridanum could be distinguished by DNA sequence analysis of the 5.8 ribosomal RNA gene and flanking internally transcribed spacers (ITS). More recently data obtained from mating studies were combined with the analysis of ITS sequences in the Cy. candelabrum species complex (Part 2), emphasising the low number of informative characters available in the DNA sequence data of the ITS region.

In a study aimed at differentiating species in the Gibberella fujikuroi species complex, O'Donnell et al (1998) employed sequence data of the nuclear 28 S rDNA, mitochondrial small subunit (SSU) and β-tubulin gene. From these data it was shown that the β-tubulin gene yielded the most variation of all areas sequenced, making it useful for determining phylogeny in newly diverged groups. Degenerate primers based on conserved regions in the HMG (high mobility group) box in the $m t a-1$
mating type gene of Neurospora crassa Shear \& B.O. Dodge have successfully been employed to amplify partial MAT-2 (mt a-1) sequences from other species in the pyrenomycetes (Arie et al 1997, Turgeon 1998, Witthuhn et al 1999).

Based on the clear advantages of these techniques to separate closely related species, the aim of the present study was to use these sequences to infer the phylogeny of Cy. scoparium and other small-spored, heterothallic Cylindrocladium species.

Materials and Methods

Isolates

Cylindrocladium scoparium isolates studied were either isolated from from symptomatic material, or obtained from the American Type Culture Collection (ATCC 46300 and ATCC 38227) (Table I). All isolates were identified using the methods reported by Crous et al (1997b) and those in Part 2.

Table I. Isolates used in this study.

Species	Culture no.	Collector	Host	Origin
Cy. scoparium	STE-U 496	A.C. Alfenas	Unknown	U.S.A.
	STE-U 497	A.C. Alfenas	Unknown	U.S.A.
	STE-U 654	A.C. Alfenas	Unknown	U.S.A.
	STE-U 655	A.C. Alfenas	Unknown	U.S.A.
	STE-U 1720	N.E. El-Gholl	Rosa sp.	Florida, U.S.A.
	STE-U 1721	N.E. El-Gholl	Conocarpus erectus	Florida, U.S.A.
	STE-U 1722	N.E. El-Gholl	Dodonea viscosa	Florida, U.S.A.
	STE-U 1723	N.E. El-Gholl	Nandina domestica	Florida, U.S.A.
	ATCC 38227	S.A. Alfieri	Mahonia bealei	Florida, U.S.A.
	ATCC 46300	D.M. Benson	Leucothoe catesbaei	N. Carolina, U.S.A.
Cy. pauciramosum	STE-U 416	S. de Buisson	Eucalyptus grandis	N. Province, South Africa.
	STE-U 925	M.J. Wingfield	Soil	Santa Catarina, Brazil
	STE-U 972	P.W. Crous	Eucalyptus grandis	Western Cape, South Africa
Cy. candelabrum	STE-U 1677	A.C. Alfenas	Eucalyptus sp.	Amazonas, Brazil
	STE-U 1674	A.C. Alfenas	Eucalyptus sp.	Bahia, Brazil
	STE-U 1951	A.C. Alfenas	Soil	Brazil
Cy. insulare	STE-U616	M.J. Wingfieid	Soil	Amazonas, Brazil
	STE-U 768	P.W. Crous	Soil	Tamatave, Madagascar
	STE-U 954	M.J. Wingfield	Soil	Veracruz, Mexico
Cy. mexicanum	STE-U 927	M.J. Wingfield	Soil	Yucatan, Mexico
	STE-U 941	M.J. Wingfield	Soil	Campeche, Mexico
Cy. ovatum	UFV 90	A.C. Alfenas	Soil	Brazil
	STE-U 2232	P.W. Crous	Eucalyptus sp.	Brazil
Cy. multiseptatum	STE-U 1589	M.J. Wingfield	Eucalyptus sp.	Indonesia
	STE-U 1602	M.J. Wingfield	Eucalyptus sp.	Indonesia

Sexual compatibility

Isolates were mated in all possible combinations. This was achieved by removing 3 mm diam agar plugs from the periphery of actively growing cultures and placing them on carnation leaf agar plates as described by Crous et al (1997a). Two different isolates were placed in a Petri dish with carnation leaves between them. Plates were subsequently incubated for 2 mo at $22^{\circ} \mathrm{C}$ as explained in Part 2 . Successful matings were regarded as those isolate combinations that produced perithecia with fertile, extruding ascospores. Perithecia were harvested and ascospores cultured on 2% malt extract agar (MEA) (Biolab, Midrand, South Africa).

Isolation of DNA

Single conidial and ascospore isolates were grown on MEA plates and plugs transferred into 500 ml Erlenmeyer flasks containing 100 ml liquid MEA broth. Flasks were shaken at $25^{\circ} \mathrm{C}$ and 125 rpm for approximately 7 d . Mycelium was collected by filtration (Whatman no. 1 filter paper) and DNA was extracted as described by Crous et al (1993b).

RAPD analysis

PCR reactions ($25 \mu \mathrm{l}$ totai volume) comprised of 1.5 units Biotaq (Bioline, London, U.K.) with the buffer as recommended by the manufacturer, 1 mM deoxynucleoside triphosphates, $4 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mu \mathrm{M}$ primer oligonucleotide and approximately 10 to 30 ng of fungal genomic DNA. Reactions were performed on a Rapidcycler (Idaho Technology, Idaho, U.S.A.). RAPD reaction conditions consisted of the following: an initial denaturation for 30 s at $96^{\circ} \mathrm{C}$, followed by 40 cycles of 30 s at $96^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $38^{\circ} \mathrm{C}$ and 30 s at $72^{\circ} \mathrm{C}$. A final elongation step of 2 min at $72^{\circ} \mathrm{C}$ was included.

Amplified DNA fragments were separated on $1.6 \%(w / v)$ CE agarose gels (Boehringer Mannheim, South Africa), with ethidium bromide ($1 \mu \mathrm{~g} / \mathrm{ml}$) using 0.5 X TBE buffer and run at a constant voltage of 60 V . Fragments were visualised and photographed under ultraviolet light. Thirteen decameric oligonucleotides (OPE 02, 03, 04, 07, 09, 10, 11, 13, 15, 16, 17, OPM 06, OPY 20, Operon Technologies Inc., U.S.A.) were screened. One primer, OPE 17 (CTA CTG CCG T) was selected for further analysis after yielding polymorphic bands separating both parental isolates.

DNA fingerprints were evaluated by visual inspection of the photographs of the gels. Bands that were observed as intense bands were used for analysis. The data were scored on the presence or absence of fragments within each individual sample. Possible recombination observed in the parental isolates could be seen in progeny as determined by the co-segregation of bands that were polymorphic in the parents.

PCR amplifications

HMG box
The strategy of Arie et al (1997) was followed, using two degenerate primers based on the Neurospora crassa mt a-1 HMG box, (NcHMG1 CCY CGY CCY CCY AAY GCN TAY AT and NCHMG2 CGN GGR TTR TAR CGR TAR TNR GG). DNA fragments were visualised on an agarose gel and photographed under ultraviolet light. Although several Cylindrocladium species were tested with the degenerate primers the clearest band was obtained from a homothallic species, Cy. colhounii. Fragments with an approximate size of 300 base pairs [based on known sequences from Neurospora crassa (Staben \& Yanofsky 1990)] were subsequently cut from the gel with a clean scalpel. DNA was recovered from the agarose matrix using Wizard PCR Preps (Promega Corporation, Madison, Wisconsin). This was sequenced directly after purification. The amino acid translation from the sequence obtained was compared to the N. crassa mt a-1 HMG sequence obtained from GenBank (M54787) (Staben \& Yanofsky 1990) in order to confirm its identity. This sequence was used to design ColHMG1 (CCA GAT GCT GAA GCA GCT CAA CC) and ColHMG2 (GCT TCT TGA TGA GCT CAG CC). Fragments of approximately 170 base pairs were amplified and sequenced with these primers.

A range of different species in the genus Cylindrocladium from both mating types were tested for specific PCR of amplification of a MAT-2 HMG box fragment using primers ColHMG1 and ColHMG2 under the following conditions: an initial denaturation for 2 min at $96^{\circ} \mathrm{C}$, followed by 35 cycles of 15 s at $96^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 35 s at $75^{\circ} \mathrm{C}$. A final elongation step of 4 min at $75^{\circ} \mathrm{C}$ was included. PCR amplifications were performed on a Rapidcycler (Idaho Technology, Idaho, U.S.A.). Amplified DNA fragments were separated on $1.6 \%(w / v)$ CE agarose gels (Boehringer Mannheim, South Africa), with ethidium bromide ($1 \mu \mathrm{~g} / \mathrm{ml}$) using 0.5 X TBE buffer and run at a constant voltage of 60 V .
β-tubulin gene
A 600 bp fragment was amplified with primers T1 (O'Donnell \& Cigelnik 1997) and Bt2b (Glass \& Donaldson 1995). Amplification and visualisation conditions were the same as for the HMG box.

ITS and 5.8S
The ITS1 and ITS2 internally transcribed spacers as well as the 5.8 S ribosomal gene were amplified, yielding a fragment consisting of 537 bp . DNA was amplified using the primers ITS1 and ITS4 (White et al 1990). Amplification and visualisation conditions were the same as for the HMG box.

Sequence analysis

Initially both mating types of each species were tested for amplification with the primers ColHMG1 and ColHMG2. After the MAT-2 mating types were identified as those isolates yielding a fragment of approximately 300 bp , two isolates belonging to this mating type were used for further comparisons. Additional isolates belonging to the opposite mating type (based on the absence of the MAT-2 sequence) were used for the β-tubulin and ITS data sets. DNA was extracted as described by Crous et al (1993b) and PCR performed as mentioned previously. PCR products were purified using Wizard PCR Preps (Promega Corporation, Madison, Wisconsin). Both strands of the PCR product were sequenced using the ABI Prism 377 DNA Sequencer (Perkin-Elmer, Connecticut, U.S.A.). Sequencing conditions were as described in Part 2. Alignments of sequences were done with the computer package Malign version 2.7 (Wheeler \& Gladstein 1991) and appended manually. These were included in the Appendix (Alignments 1-3). Phylogenetic analysis of aligned DNA sequences was performed using PAUP* version 4.0 b 1 (Swofford 1998) and printed with the help of Treeview version 1.5 (Page 1996). Unweighted parsimony analysis was performed using the branch and bound search option. Gaps were treated as a fifth character, but in order to remove ambiguities only the first position was coded as such. Subsequent gap positions were coded as missing data. . Confidence intervals for nodes were determined using 1000 bootstrap replications and the branch and bound search option for the β-tubulin and combined data sets. Due to the high number of possible trees the bootstrap values of the ITS data set was determined by means of a heuristic search with 1000 random additions and 1000 bootstrap replications.

Figs. 1-5. Variation in colour of perithecia from matings in Cy. scoparium. 1. Yellow perithecia from a cross of STE-U1720 X STE-U 1722. 2. Red immature perithecia from a cross between the two type species (ATCC $38227 \times$ ATCC 46300). 3-5. Range of yellow to red perithecia from a cross of STE-U $1720 \times$ ATCC 46300.

Results

Sexual compatibility

Crous et al (1993a) and Overmeyer et al (1996) previously reported that mating compatibility was low for Cy. scoparium. This was also true in the present study. From a total of ten isolates, including the reference isolates obtained from ATCC, only five isolates (STE-U 1720, STE-U 1722, STE-U 1723, ATCC 38227, ATCC 46300) could be crossed successfully. In the case of successful crosses fertile perithecia appeared after two to three wk. Successful crosses were: STE-U 1720 X STE-U 1722, STE-U 1720 X STE-U 1723, STE-U $1720 \times$ ATCC 46300 and ATCC $38227 \times$ ATCC 46300.

A successful mating between isolates STE-U 1720 and STE-U 1722 was selected for further study. Perithecia were found to be pale yellow to light orange in this cross (Figs. 1-5). Isolate STE-U 1720 also successfully mated with the reference isolate ATCC 46300 and this cross yielded perithecia ranging from pale yellow to orange brown in colour (Fig. 1-5). Viable progeny confirmed that these isolates belonged to the same biological species, namely Cy. scoparium.

After several unsuccessful attempts, a fertile cross could be observed between the two reference isolates (ATCC 46300 and ATCC 38227). Perithecial colour in this instance was as previously described, dark orange to red-brown (Figs. 1-5) (Crous et al 1993a, Overmeyer et al 1996). Ascospores were recovered from the mating between isolate STE-U 1720 and STE-U 1722. In addition to the fifteen ascospores used in th

RAPD analysis

The 15 randomly chosen ascospores were also used in the RAPD study. Primers were screened against the two parental isolates in order to find polymorphic bands between them. Most primers yielded profiles that appeared to be highly monomorphic. Only one primer showed clear polymorphic bands between the two parents, OPE 17 (Fig. 6). The markers shown in Fig. 6 co-segregated in three of the fifteen progeny (lanes 3, 7 and 17). Additional polymorphic bands in parent 1 (STE-U 1720) also co-segregated with the indicated polymorphic band (see arrow, Fig. 6) in parent 2 (STE-U 1722), further supporting the hypothesis that genetic material was derived from both parents. These data suggest that the ascospore progeny is the result of a true heterothallic cross and Mendelian segregation.

Fig. 6. Electropherogram showing RAPD profiles obtained with primer OPE 17. The two unique polymorphic bands are indicated (arrows). Lambda DNA size marker (kb) is also shown. Amplification products from parental isolates were loaded in lane 1 (STE-U 1720) and 2 (STE-U 1722). Products from ascospore progeny (A1-A15) are shown in lanes 3-17.

Phylogeny

Three regions of the genome were used for phylogenetic comparisons. The Cylindrocladium specific primers obtained from the MAT-2 HMG box of an isolate of Cy. colhounii yielded products from several other Cylindrocladium species. Partial HMG box sequences from the MAT-2 mating types of the small-spored heterothallic species, Cy. scoparium, Cy. candelabrum, Cy. insulare, Cy. pauciramosum and Cy. ovatum were also obtained. Where possible two isolates from disparate geographic areas were used for each species, in order to allow for intraspecific variation. In addition to this, the ITS ribosomal region and part of the β-tubulin gene were amplified and used for comparisons. Sequences of the opposite mating type for each species were also added to the β-tubulin and ITS data sets.

Two isolates from the multiseptate, large-spored species, Cy. multiseptatum Crous \& M.J. Wingf., were included in order to investigate intrageneric phylogeny. The sequences of Fusarium subglutinans deposited by O'Donnell et al (1998), were obtained (GenBank accession numbers ITS: U34559, β-tubulin: U34417), and used as outgroups in the ITS and β-tubulin data sets. A sequence of the Fusarium oxysporum Shltdl.:Fr. (O-17) obtained from Genbank (AB005040) was used as outgroup for the partial MAT-2 HMG data set. The results were presented as phylogenetic trees (Figs. 7-9).

Fig. 7. Concordance of two selected most parsimonious trees generated from aligned sequences of the 5.8 S gene and flanking ITS regions (done with a heuristic search with 1000 random addition sequences, 186 trees, 86 steps, $\mathrm{Cl}=0.965, \mathrm{Rl}=0.941, \mathrm{RC}=0.908$) as well as the β-tubulin gene (with a branch and bound search, 27 trees, 320 steps $\mathrm{Cl}=0.844, \mathrm{RI}=0.854$, $R C=0.721$) in PAUP* version 4.0b1. Clade stability was assessed with 1000 bootstrap replications and values above 50\% are shown.

The ITS data set consisted of 489 nucleotide characters, of which 14 were parsimony informative, while the β-tubulin data set contained 107 parsimony informative sites out of 540 nucleotide characters. The area of the β-tubulin gene sequenced was found to have three introns containing 93 informative sites. Only 15% of informative sites were in the coding regions. Substitutions in the exons were favouring third base substitutions with 65% of all variable characters in this position, while 16% and 19% were in the first and second bases respectively.

Trees obtained from only the coding regions of the β-tubulin gene could not distinguish between the species $C y$. insulare and $C y$. scoparium as well as $C y$. pauciramosum and Cy. candelabrum with any meaningful bootstrap support (results not shown), but were still concordant with a tree from the total β-tubulin data set (Fig. 7). A partition-homogeneity analysis performed on PAUP* version 4.0 b 1 revealed an underlying similarity in the phylogeny $(P=0.84)$ of the trees obtained with ITS and β tubulin data sets. A similar analysis also indicated that the three introns in the β -
tubulin data set provided concordant phylogenies $(P=0.56)$. The β-tubulin dta set will be discussed in more detail in Part 5. The disparity in the number of informative charactersin the ITS and β-tubulin data sets is reflected in the bootstrap values revealed in Fig. 7. Nodes generally had lower support in the ITS data set than in the β-tubulin data set. A closer relationship of the Brazilian isolate of Cy. pauciramosum (STE-U 925), with the apparent sibling species Cy. candelabrum is also evident from the β-tubulin data set. Both these taxa were shown to be biological species (Part 2), but a closer relationship between isolates from similar geographical origins is suggested from these data. This will be discussed in more detail in Part 4.

The topology for the tree based on the MAT-2 HMG box sequences (Fig. 8) confirmed the results discussed above. However, although isolates of Cy. ovatum were shown to be distinct from other isolates, relationships between this species and

Fig. 8. One of 13 most parsimonious trees (48 steps $\mathrm{Cl}=$ $0.917, \mathrm{RI}=0.920, \mathrm{RC}=0.843$) generated by the branch and bound algorithm in PAUP* version 4.0 b 1 based on sequences of the MAT-2 HMG box. Clade stability was assessed with 1000 bootstrap replications (values above 50% are shown) and F. oxysporum was used as outgroup
other species were not concordant in all data sets. The use of Fusarium subglutinans and Fusarium oxysporum MAT-2 HMG box protein sequences obtained from GenBank (accession number AFO 25888) was used to confirm the identity of the sequences amplified. The high variation of the nucleotide sequences obtained for these Fusarium species made sequence alignment difficult. Therefore, sequences from the two isolates of Cy. multiseptatum, shown to group distantly in the ITS and β tubulin data sets, were used as outgroup sequences. The MAT-2 HMG box data set consisted of 171 nucleotide characters, with 27 of these characters being parsimony
informative. In a similar fashion to the ITS data set, it was not possible to distinguish between isolates of Cy. scoparium and Cy. insulare. However, it was possible to separate both these species after analysis of the β-tubulin data, albeit with weak bootstrap support (50-70\%).

Fig. 9. Dendrogram of combined ITS and β-tubulin data set. One of 20 most parsimonious trees (531 steps $\mathrm{Cl}=0.857, \mathrm{RI}=0.824, \mathrm{RC}=0.706$) generated with a branch and bound algorithm in PAUP* version 4.0 b 1 from aligned sequences of combined data set of the 5.8 S gene and flanking ITS regions as well as the β-tubulin gene. Ten steps are indicated by the bar. Clade stability was assessed with 1000 bootstrap replications and values above 50% are shown. Fusarium subglutinans sequences (GenBank-accession numbers ITS:U34559, β-tubulin:U34417) were used as outgroups.

A final analysis was done with a combination of both ITS and β-tubulin data sets (Fig. 9). The partition homogeneity test performed earlier indicated the possibility that these data sets would reinforce each other. This data set yielded 20 most parsimonious trees and consisted of 1026 nucleotide characters with 135 being parsimony informative. This confirmed the topology seen in the earlier dendrograms.

However higher bootstrap support for a separation of $C y$. scoparium and Cy . insulare was observed. The high similarity previously mentioned in the RAPD data between STE-U 1720 and STE-U 1722 is also reflected.

Isolates of Cy. multiseptatum were shown to be distant from the other small-spored species in agreement with the difference in morphology. Isolates from Cy . mexicanum, the fourth species described under the Cy. candelabrum species complex, also grouped distantly compared to the other small-spored species. Neighbor-joining and maximum-likelihood trees for all data sets (results not shown) were concordant with those obtained through maximum parsimony.

Discussion

The results obtained in the present study have confirmed that Cy. scoparium has a biallelic heterothallic mating system. Furthermore, sequence data from all three genomic regions used also support Cy. scoparium as a morphological and biological species, distinct from other morphologically similar small-spored Cylindrocladium spp.

The results of the mating study are in direct contrast with those previously obtained (Overmeyer et al 1996), where a system involving genetic material from only one parent was suggested in Cy. scoparium. Using RAPD markers, recombinant profiles obtained from both the parental isolates (STE-U 1720 and STE-U 1722) were observed in the F1 generation. A phylogenetic analysis of RAPD data obtained by Overmeyer et al (1996), however, showed all progeny to group with one parent. In addition to this, no back-cross was reported with strain ATCC 38227. However, F1 isolates were reported to intercross, indicating the existence of both mating types in the sample used. The absence of protoperithecia reported by Overmeyer et al (1996), and observed in this study, indicate that isolate ATCC 38227 has lost the ability to act as a hermaphrodite in a cross. This fact, combined with the low fertility observed in our study could explain why Overmeyer et al (1996) were unsuccessful in backcrossing ascospore progeny with ATCC 38227.

Furthermore, RAPD results obtained from 15 ascospores in the present study indicate that both parents contributed to the genetic make-up of the progeny. The designation of all isolates as either MAT-1 or MAT-2, using DNA sequence data, their
novel RAPD profiles as well as their mating behavior with tester strains, is further proof that a biallelic heterothallic system exists in Cy. scoparium.

In order to determine the phylogenetic relationships between other heterothallic, small-spored Cylindrocladium species and Cy. scoparium, several genomic DNA regions were sequenced and analyzed. This study evaluated the phylogenetic trees obtained from the MAT-2 gene HMG box, β-tubulin and the ribosomal ITS region. From the results presented here it is clear that, in spite of their similar morphology, these species can be differentiated on the basis of DNA phylogeny. Although only an area of 170 base pairs was obtained from the HMG box, trees were similar in topology compared to those obtained from β-tubulin and ITS sequences.

The results further indicate that $C y$. scoparium is very closely related to Cy. insulare. Only one area of the genome tested; β-tubulin, could distinguish isolates of these two species. This could not be done with high bootstrap support, however. In a combined data set of both ITS and β-tubulin sequences higher bootstrap values were observed (Fig. 9). A closer relationship between the two isolates selected for the mating studies (STE-U 1720 and 1722) is also evident with relatively high bootstrap support in the combined data set. This is in agreement with the high amount of monophyly observed with the RAPD markers. Additionally, the variation in perithecial colour observed between crosses of these isolates and those involving the ATCC reference isolates support this observation. This finding also underlines the fact that in some heterothallic species of Calonectria variation can occur regarding perithecial colour, thus reducing the usefulness of this feature for species identification (Crous \& Wingfield 1994).

The β-tubulin based tree grouped isolate STE-U 925 of Cy. pauciramosum with isolates of Cy. candelabrum. All of these isolates were collected in Brazil. In other studies where β-tubulin sequences were obtained from a wider range of $C y$. pauciramosum isolates (Part 4), clusters correlated with geographical origin, but also confirmed a close relationship among various South American species, and between Cy. pauciramosum and Cy. candelabrum in particular. The high similarity shown between these two species indicate that they probably are sibling species.

Other than rDNA ITS sequences, DNA sequences obtained from genes such as β tubulin and MAT-2 appear to be more variable and yielded much higher resolution for
interspecies differentiation. However, more information is needed regarding intraspecies variation and the relationship between some of the closely related species in Cylindrocladium, before these results can be seen as comprehensive.

Differing characters found for other Cylindrocladium species, such as optimum growth temperature (Crous \& Wingfield 1994, Part 2), fungicide profiles (Jayasinghe \& Wijesundera 1995) and pathogenicity (Alfieri et al 1972, Blum et al 1992, Crous et al 1993c) highlight the need for accurate identification of even seemingly closely related species. The fact that Cy. scoparium is regularly confused with morphologically similar species further underlines this requirement. This is exemplified by recent new reports of one of the species in the Cy. candelabrum species complex, Cy. pauciramosum from Italy (Polizzi \& Crous 1999) and Florida (Koike et al 1999). The apparent lack of resolution in morphological characters in this genus necessitates the use of sexual compatibility (where applicable) as well as molecular characters in order to identify morphologically similar species.

References

Alfieri SA Jr, Linderman RG, Morrison RH Sobers EK. 1972. Comparative pathogenicity of Calonectria theae and Cylindrocladium scoparium to leaves and roots of Azalea. Phytopathology 62: 647-650.
Arie T, Christiansen SK, Yoder OC, Turgeon BG. 1997. Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG box. Fung Genet Biol 21: 118-130.
Blum LEB, Dianese JC, Costa CL. 1992. Comparative pathology of Cylindroc/adium clavatum and C. scoparium on Eucalyptus spp. and screening of Eucalyptus provenances for resistance to Cylindrocladium damping-off. Trop Pest Manag 38: 155-159.
Booth C, Gibson IAS. 1973. Cylindrocladium scoparium. CMI Descr Pathog Fungi Bact 362: 1-2.
Botha WJ, Crous PW. 1992. A wilt disease of Rhododendron caused by Pythium prolatum and Cylindrocladium scoparium. Phytophylactica 24: 75-78.
Campbell GF, Crous PW, Lucas JA. 1999. Pyrenophora teres f. maculata, the cause of Pyrenophora leaf spot of barley in South Africa. Mycol Res 103: 257-267.
Cordell CE, Rowan SJ. 1975. Cylindrocladium scoparium infection in a natural sweet gum stand. PI Dis Rep 59: 775-776.

Crous PW, Alfenas AC, Junghans TG. 1998. Variability within Calonectria ovata and its anamorph Cylindrocladium ovatum from Brazil. Sydowia 50: 1-13.

Crous PW. Alfenas AC, Wingfield MJ. 1993a. Calonectria scoparia and Calonectria morganii sp. nov. and variation among isolates of their Cylindrocladium anamorphs. Mycol Res 97: 701-708.

Crous PW, Janse BJH, Victor D, Marais GF, Alfenas AC. 1993b. Characterization of some Cylindrocladium species with three septate conidia using morphology, isozyme banding patterns and DNA polymorphisms. Syst Appl Microbiol 16: 266273.

Crous PW, Korf A, Van Zyl WH. 1995. Nuclear DNA polymorphisms of Cylindrocladium species with 1 -septate conidia and clavate vesicles. Syst Appl Microbiol 18: 244-250.

Crous PW, Mchau GRA, Van Zyl WH, Wingfield MJ. 1997a. New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653-660.

Crous PW, Phillips AJL, Wingfield MJ. 1992. Effects of cultural conditions on vesicle and conidium morphology in species of Cylindrocladium and Cylindrocladiella. Mycologia 84: 497-504.

Crous PW, Phillips AJL, Wingfield MJ. 1993c. New records of Cylindrocladium and Cylindrocladiella spp. in South Africa. PI Pathol 42: 302-305.

Crous PW, Theron L, Van Zyl WH. 1997b. Delineating C. candelabrum spp. with 1-3septate conidia and clavate vesicles based on morphology and rDNA RFLPs. Mycol Res 101: 210-214.

Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341-345.

Darvas JM, Scott DB, Kotzé JM. 1978. Fungi associated with damping-off in coniferous seedlings in South African nurseries. S Afr For J 104: 15-19.

Doidge EM. 1950. The South African fungi and lichens to the end of 1945. Bothalia 5: 1-1094.

Echt CS, Erdahl LA, McCoy TJ. 1992. Genetic segregation of randomly applied polymorphic DNA in diploid cultivated alfalfa. Genome 35: 84-87.
Fisher NL, Burgess LW, Toussoun TA, Nelson PE. 1982. Carnation leaves as substrate and for preserving cultures of Fusarium species. Phytopathology 72: 151-153.

French DW, Menge JA. 1978. Survival of Cylindrocladium floridanum in naturally and artificially infested soil forest tree nurseries. PI Dis Rep 62: 806-810.

Glass NL, Donaldson G. 1995. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environm Microbiol 61: 1323-1330.

Hunter BB, Barnett HL. 1978. Growth and sporulation of species and isolates of Cylindrocladium in culture. Mycologia 70: 614-635.

Jayasinghe CK, Wijesundera RLC. 1995. In vitro evaluation of fungicides against clove isolates of Cylindrocladium quinqueseptatum in Sri Lanka. Int J Pest Manag 41: 219-223.

Jeng RS, Dumas M, Liu FH, Wang CL, Hubbes M. 1997. DNA analysis of Cylindrocladium floridanum isolates from selected forest nurseries. Mycol Res 101: 285-291.

Koike SL, Henderson DM, Crous PW, Schoch CL. 1999. A new root and crown rot disease of heath in California caused by Cylindrocladium pauciramosum. PI Dis 83: 589.

Mohanan C, Sharma JK. 1985. Cylindrocladium causing seedling diseases of Eucalyptus in Kerala, India. Trans Br Mycol Soc 84: 538-539.
Morgan AP. 1892. Two new genera of hyphomycetes. Bot Gaz 17: 190-192.
Nicholson P. Dyer PS, Rezzanoor HN, Lucas JA. 1995. Mating relationships between different pathotypes of Tapesia yallundae, the teleomorph of the eyespot pathogen Pseudocercosporella herpotrichoides. Mycol Res 99: 457-465.

O'Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molec Phylogenetics Evol 7: 103-116.

O'Donnell K, Cigelnik E, Nirenberg H. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465493.

Overmeyer C, L_ünnemann S, Von Wallbrünn C, Meinhardt F. 1996. Genetic variability among isolates and sexual offspring of the plant pathogenic fungus Calonectria morganii on the basis of random amplification of polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP). Curr Microbiol 33: 249-255.

Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer programme. Comp Appl Biosci 12: 357-358.

Palmucci HE, Grijalba PE, Rivera MC. 1996. Cylindrocladium scoparium: a new pathogen of azaleas (Rhododendron spp.) in Argentina. Fitopatologia 31: 241-247.
Peerally A. 1991. The classification and phytopathology of Cylindrocladium species. Mycotaxon 40: 323-366.

Polizzi G, Azzaro A. 1996. A new leaf spot disease of myrtle by Cylindrocladium scoparium and its control in the nursery. Petria 6: 117-123.
Polizzi G, Crous PW. 1999. Root and collar rot of Milkwort caused by Cylindrocladium pauciramosum, a new record for Europe. Eur J PI Pathol: 105: 413-415.

Rossman AY. 1983. The phragmosporous species of Nectria and related genera. Mycol Pap 150: 1-164.
Srinivasan N, Gunasekaran M. 1995. Cylindrocladium scoparium in relation to leaf rot disease of coconut. Indian Phytopathol 48: 196-198.
Staben C, Yanofsky C. 1990. Neurospora crassa a mating type type region. Proc Natl Acad Sci USA 87: 4917-4921.

Swofford DL 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Beta version1b. Computer programme. Sunderland, Massachussetts, U.S.A.: Sinauer Associates.

Tozetto L, Ribeiro WRC. 1996. Leaf spot of mangoes caused by Cylindrocladium scoparium in Central Brazil. J Phytopathol 144: 471-472.

Turgeon BG 1998. Application of mating type gene technology to problems in fungal biology. Ann Rev Phytopathol 36: 115-137.

Victor D, Crous PW, Janse BJH, Wingfield MJ. 1997. Genetic variation in Cylindrocladium floridanum and other morphologically similar Cylindrocladium species. Syst Appl Microbiol 20: 268-285.

Waipara NW, Di Menna ME, Cole ALJ, Skip RA. 1996. Pathogenicity of Cylindrocladium scoparium to pasture clover and grass species. Austral PI Pathol 25: 205-211.

Wheeler W, Gladstein D. 1991. Malign. Version 2.7. Computer programme. New York, U.S.A.: Department of Invertebrates, American Museum of Natural History.

White TJ, Burns. T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky J, White TJ, eds. PCR protocols. A guide to methods and applications. San Diego, U.S.A.: Academic Press. p 315-322.

Witthuhn RC. 1999. Molecular taxonomy and mating type genes in Ceratocystis sensu stricto. PhD Dissertation. Bloemfontein, South Africa: University of the Orange Free State. 122 p.

4. Comparison of female fertility and β-tubulin DNA sequences in isolates of Cylindrocladium paucirramosum

Abstract

Cylindrocladium pauciramosum isolates were obtained from nurseries in South Africa, Italy and the U.S.A. The percentages of hermaphrodites and the different mating types were evaluated in these isolates. This enabled the determination of the effective population for the different areas studied. All nurseries had isolates with mating type ratios significantly different from an expected 1:1 ratio. In the South African nursery, the MAT-1 mating type was dominant, while the MAT-2 was more common in other samples. This was consistent with one or more founder effects. The high percentage of hermaphrodites also suggested that recent introductions had occurred in nurseries in Italy and the U.S.A. DNA sequence comparisons of the 5' end of the β-tubulin gene obtained for a set of $C y$. pauciramosum isolates collected from various geographic regions yielded different amounts of variation. All isolates from South Africa, U.S.A. and Australia had identical sequences. In the Italian sample, two groups were observed, one of which was identical to the sequences obtained from isolates in the other areas. Finally, a group of isolates obtained from South and Central America had the highest variation of all isolates investigated and also included isolates that had shared characters with another biological species, Cy. candelabrum.

Introduction

Cylindrocladium species are associated with Calonectria teleomorphs (Rossman 1979). Species are distinguished based on the morphological features of the anamorph, such as conidium, vesicle and phialide morphology, as well as cultural characteristics. Morphological features of the teleomorph tend to be more conserved and species identification based on these characters alone is generally not possible (Crous \& Wingfield 1994).

Cylindrocladium candelabrum is a well-known root and leaf pathogen of numerous hosts. This species has regularly been confused with another species, Cy. scoparium Morgan (Doidge 1950, Botha \& Crous 1992, Polizzi \& Azzaro 1996). In
order to distinguish these two species, Cy. scoparium was delimited as having ellipsoidal to pyriform vesicles, while Cy. candelabrum was circumscribed as having ellipsoidal to obpyriform vesicles (Crous et al 1993). Mating studies have shown both these species to be distinct and heterothallic (Crous et al 1993, Part 2).

In Part 2 the existence of four genetically isolated mating populations within the boundaries of the existing morphological definition of Cy. candelabrum was demonstrated. DNA sequencing of the ribosomal ITS regions confirmed these to be separate entities and consequently four species were described. One of these species, described as Cy. pauciramosum, was described from isolates originating in Australia, Brazil, Colombia, Mexico and South Africa.

Published records indicate that Cy. pauciramosum has been associated with diseases of plants in South Africa for several years, but incorrectly referred to as Cy. scoparium (Doidge 1950, Darvas et al 1978, Lamprecht 1986, Botha \& Crous 1992) and Cy. candelabrum (Crous et al 1993). Previous reports of a new disease attributed to Cy. scoparium from nurseries in Sicily, Italy (Polizzi \& Azzaro 1996) were subsequently shown to be caused by Cy. pauciramosum (Polizzi \& Crous 1999). In addition to this, another recent report confirmed the recent introduction of this fungus into Florida, U.S.A. (Koike et al 1999).

The phylogenetic relationship of Cy. scoparium to other heterothallic small-spored Cylindrocladium species was recently investigated by means of DNA sequence comparisons (Part 3). Although previous work on these fungi could distinguish closely related species based on small differences in the sequence of the 5.8 S rDNA and flanking internal transcribed spacers (ITS1 and ITS2) (Jeng et al 1997, Part 3), the low number of informative characters made phylogenetic determinations difficult. The use of DNA sequences obtained from additional areas, such as the β-tubulin gene and the HMG box of the MAT-2 mating type gene yielded higher variation and could distinguish most species previously defined based on other characters (Part 2).

Cylindrocladium pauciramosum is self-sterile, and female structures consist of protoperithecia that can be spermatized by conidia or hyphae from opposite mating type isolates. A typical heterothallic ascomycete has been defined as a self-sterile hermaphrodite, capable of producing the female reproductive structures as well as male gametes (Leslie \& Klein 1996). Generally these male functions can be performed by asexual spores, sexual spores or mycelia. Observations in Gibberella
fujikuroi have shown that the female function is lost regularly (Leslie 1995). These female sterile isolates can act only as males and were proposed to have a vegetative advantage during asexual reproduction because no resources would be required for the production of female reproductive structures (Leslie \& Klein 1996). The opposite scenario was proposed for conditions favouring sex, resulting in a higher percentage of hermaphrodites (Leslie \& Klein 1996). The ratios of both mating types and of female steriles and hermaphrodites can be used to determine the importance of sexual replication and the effective population $\left(N_{e}\right)$, giving an estimate of a finite population's size as first proposed by Wright (1931). These principles were reviewed by Caballero (1994) and adapted for haploids (Leslie \& Klein 1996). Recent work by Mansuetus et al (1997) and Britz et al (1998) made use of these assumptions in order to gain information on the effective population size and sexual dynamics of mating populations in the Gibberella fujikuroi complex.

The goals of this study were to firstly determine the ratios of both mating types in the newly introduced populations of Cy. pauciramosum in Sicily (Polizzi \& Azzaro 1996) and California (Koike et al 1999) and to compare these with a sample of the South African population. Additionally, the presumed founder populations introduced into disease free nurseries are compared with respect to fertility and mating type ratio. This would provide the necessary data to determine the mating type and inbreeding effective populations in the nurseries sampled. A final aim was to obtain data relating to infraspecific variation of Cy. pauciramosum based on DNA sequences of the β tubulin gene of isolates collected from a wide geographical area.

Materials and Methods

Isolates

Isolates of Cy. pauciramosum (Table I) were either obtained from symptomatic plant material, or baited from soil samples. Soil samples were collected and treated according to Crous et al (1997). Collectors are indicated in Table I. All isolates were identified using the morphological concepts, mating types and keys as defined in earlier studies (Crous et al 1997, Part 3). For the purpose of this study mating capability of isolates was assumed not to be influenced by the host from which they were isolated, because species in the genus have been found not to be host specific and are essentially soil borne (Part 6).

South African isolates of Cy . pauciramosum were obtained from the culture collection at the Department of Plant Pathology at the University of Stellenbosch (STE-U). These were collected throughout South Africa over a period from 1990-1995 and were obtained from diseased plant material as well as from soil. Because a recent subset from this collection all produced successful crosses, it was assumed that the techniques used to preserve cultures did not adversely affect mating ability (Part 2). An additional sample of 50 isolates was obtained from crown and root rot symptoms on cherry, Prunus sp., plants (one isolate / plant) from a small nursery in Stellenbosch to which this disease was recently introduced (C. Linde pers. comm.).

Italian isolates were obtained from a number of nurseries in Italy (Polizzi \& Crous 1999). A total count of 50 isolates was spread between several nurseries. In a similar manner, 50 isolates were collected from crown and root rot symptoms of heath, Erica capensis Salter from a single nursery in California, U.S.A.

Sexual compatibility

Two mating tester strains of the opposing mating type (MAT-1 = STE-U 416, MAT-2 $=$ STE-971) were selected for their high levels of fertility during previous mating experiments (Parts 2 and 3). Single isolates were grown on Petri dishes containing malt extract agar (MEA) (Biolab, Midrand, South Africa) for 2-4 wk until sporulation. One ml of sterile water was added to each Petri dish and conidia were dislodged with the help of a sterile glass rod. The conidial suspension was removed with a micropipette. Cultures were spermatised by applying the conidial suspension to Petri dishes containing CLA with $2-4$-wk-old growth. The selected cultures were spermatized with both tester strains. In addition to this, the tester strains were individually spermatized with all test isolates. Plates were packed in stacks of 10 , sealed in plastic bags and incubated on the laboratory bench at $22^{\circ} \mathrm{C}$. Successful crosses were determined after 2 mo of incubation and were selected as those isolate combinations that produced perithecia with extruding, fertile ascospores.

Statistical analysis

The effective population numbers were calculated according to methods of Leslie and Klein (1996). The effective population number based on mating type ($N_{\theta(m 0)}$) was determined as $N_{\text {e(mf) }}=\left(4 N_{M A T-1} N_{M A T-2}\right) /\left(N_{M A T-1}+N_{M A T-2}\right)$ with $N_{M A T-1}$ the number of MAT1 strains and $N_{M A T-2}$ the number of MAT-2 mating type strains. These are parameters to estimate genetic drift and inbreeding in populations. The inbreeding effective
population $\left(N_{e(f)}\right)$ is based on the probability of identity due to common ancestry and determined as $N_{e(f)}=\left(4 N^{2} N_{h}\right) /\left(N+N_{h}\right)^{2}$ with N being the total number of individuals and N_{n} the total number of hermaphrodites.

Isolation of DNA

Single conidial isolates selected for DNA comparison (Table II) were grown on MEA plates. Mycelial mats were removed from the plates by means of a sterile scalpel and ground to a powder by means of liquid nitrogen and a mortar an pestle. Approximately 40 mg of ground mycelium was added to 2 ml microtubes containing $600 \mu \mathrm{l}$ of extraction buffer. The extraction buffer consisted of 1% SDS, 50 mM Tris$\mathrm{HCl}(\mathrm{pH} 8.0), 150 \mathrm{mM} \mathrm{NaCl}$ and 100 mM EDTA. Subsequently, the protocol was followed as suggested for the Wizard Genomic DNA Purification kit (Promega, Madison, U.S.A.).

PCR amplifications and sequencing

Reactions (total volume $25 \mu \mathrm{l}$) comprised of 1.5 units Biotaq (Bioline, London, U.K.) with the buffer as supplied by the manufacturer, 1 mM deoxynucleoside triphosphates, $4 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mu \mathrm{M}$ primer oligonucleotide and approximately 10 to 30 ng of fungal genomic DNA as target. Reactions were performed on a Rapidcycler (Idaho Technology Idaho, U.S.A.). Reaction conditions consisted of the following: an initial denaturation for 2 min at $96^{\circ} \mathrm{C}$, followed by 30 cycles of 15 s at $96^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 35 s at $75^{\circ} \mathrm{C}$ with a slope of 1.0 . A last elongation step of 2 min at $75^{\circ} \mathrm{C}$ was included. A 600 bp fragment was amplified using primers T1 (O^{\prime} Donnell \& Cigelnik 1997) and Bt2b (Glass \& Donaldson 1995). PCR fragments were sequenced as described previously (Part 2).

Phylogenetic analysis

Sequence comparisons based on DNA sequences of the β-tubulin gene have previously been used to investigate phylogeny in Cy. scoparium, Cy. pauciramosum and related species (Part 3). In the present study an investigation on the variation in Cy. pauciramosum was undertaken. Cy. candelabrum, Cy. multiseptatum and Fusarium subglutinans were used as outgroups. As far as possible six isolates from disparate regions within a country and representing different mating types were used for comparison: The isolates selected for phylogenetic analysis are shown in Table II. Alignments of sequences were done with the computer package Malign version 2.7 (Wheeler \& Gladstein 1991) and assessed manually. These are included in the

Appendix (Alignment 2). Phylogenetic analysis of aligned DNA sequences was performed using PAUP* Version 4.0b1 (Swofford 1998). Gaps were treated as a fifth base. Confidence intervals were determined using a 1000 bootstrap replications.

Table II. Isolates of Cy. pauciramosum and other species used for sequencing.

Species	Original no.	Collector	Host	Origin
Cy. pauciramosum	STE-U 143	P. W. Crous	Eucalyptus grandis	Mpumalanga, South Africa
	STE-U 416	S. de Buisson	Eucalyptus grandis	Northern Province, South Africa
	STE-U 344	P.W. Crous	Eucalyptus grandis	KwaZulu Natal, South Africa
	STE-U 925	M.J. Wingfield	Soil	Santa Catarina, Brazil
	STE-U 951	M.J. Wingfield	Soil	Veracruz, Mexico
	STE-U 971	P.W. Crous	Eucalyptus grandis	Western Cape, South Africa
	STE-U 972	P.W. Crous	Eucalyptus grandis	Western Cape, South Africa.
	STE-U 1160	M.J. Wingfield	Soil	Córdoba, Colombia
	STE-U 1670	A.C. Alfenas	Eucalyptus sp.	Bahia, Brazil
	STE-U 1671	A.C. Alfenas	Eucalyptus sp.	Bahia, Brazil
	STE-U 1691	D. Hutton	Fragraria sp.	Queensland, Australia
	STE-U 1692	D. Hutton	Fragraria sp.	Queensland, Australia
	STE-U 1990	S. Koike	Ericasp.	California, U.S.A.
	STE-U 2030	S. Koike	Erica sp.	California, U.S.A.
	DISTEF-G 2	G. Polizzi	Polygala myrtifolia	Catania, Sicily, Italy
	DISTEF-G 6	G. Polizzi	Callistemon citrinus	Messina, Sicily, Italy
	DISTEF-G 60	G. Polizzi	Myrtus communis	Catania, Sicily, Italy
	DISTEF-G 62	G. Polizzi	Callistemon citrinus	Messina, Sicily, Italy
	DISTEF-G 84	G. Polizzi	Acacia retinodes	Messina, Sicily, Italy
	DISTEF-G 126	G. Polizzi	Arbutus unedo	Catania, Sicily, Italy
	DISTEF-G 127	G. Polizzi	Callistemon citrinus	Messina, Sicily, Italy
	DISTEF-G 128	G. Polizzi	Callistemon citrinus	Messina, Sicily, Italy
	DISTEF-G 192	G. Polizzi	Polygala myrtifolia	Catanzaro, Calabria, Italy
	DISTEF-G 196	G. Polizzi	Polygala myrtifolia	Catanzaro, Calabria, Italy
Cy. candelabrum	STE-U 1677	A.C. Alfenas	Eucalyptus sp.	Amazonas, Brazil
	STE-U 1674	A.C. Alfenas	Eucalyptus sp.	Bahia, Brazil
	STE-U 1951	A.C. Alfenas	Soil	Brazil
	UFV 89	A.C. Alfenas	Soil	Brazil
Cy. mexicanum	STE-U 927	M.J. Wingfield	Soil	Yucatan, Mexico
	STE-U 941	M.J. Wingfield	Soil	Campeche, Mexico
Cy. multiseptatum	STE-U 1589	M.J. Wingfield	Eucalyptus sp.	Indonesia
	STE-U 1602	M.J. Wingfield	Eucalyptus sp.	Indonesia

Results

Sexual compatibility

Effective populations and ratios based on numbers of mating types and hermaphrodites of the Cy. pauciramosum samples obtained from the selected areas are shown in Table III. These values reflect differences in the profiles for the different nurseries. Samples from a group of various areas in South Africa, where the disease has been well established, tended to have a mating type ratio of approximately 1:1. All other samples, representing areas where the pathogen is thought to be recently introduced, yielded ratios that significantly favoured one mating type. In the Stellenbosch nursery the ratio favoured the MAT-1 mating type, while the nurseries in California and Sicily had more MAT-2 isolates present. Additionally, only one mating type, MAT-2, was present in Californian nursery. These figures differ appreciably
from those obtained by other workers for species of the Gibberella fujikuroi complex (Leslie \& Klein 1996, Mansuetus et al 1997, Britz et al 1998). Here the highest mating type ratio was approximately of 1:2.

Table III. Comparison of population distribution of mating types and hermaphrodites between three geographic areas.

Geographic origin	Ratio of mating types ${ }^{1}$	N_{e} (effective population) ${ }^{3}$		
		$\mathrm{N}_{\mathrm{fs}} \mathrm{N}_{\mathrm{h}}{ }^{2}$	$\mathrm{Ne}_{\text {(} \mathrm{mt})}{ }^{4}$	$\mathrm{Ne}_{\text {(f) }}{ }^{5}$
South Africa				
Stellenbosch nursery	48:8	31:25	49.0	85.3
Rest of South Africa	21:23	29:15	99.7	75.8
United States				
Californian nursery Italy	0:50	4:46	0	99.8
Various nurseries	13:41	12:42	73.1	98.4

[^2]Effective population size, based on mating types $\left(\mathrm{N}_{\mathrm{e}(\mathrm{mt})}\right)$, of between 49% and 99% of the total count was inferred where both mating types of the Cy. pauciramosum isolates were present. In contrast to the effective populations based on mating types, higher effective populations based on the presence of hermaphrodites were found. Other effective population values differed between 76% and 98% of the total population. High percentages were found for nurseries in California and Italy (98$99 \%$), in spite of a mating type bias in these samples. Mating type ratios found for the hermaphrodites were also comparable to those of the total sample in all cases (data not shown).

β-tubulin sequence analysis

Based on preliminary results obtained in Part 3 a number of isolates were selected in order to investigate the variation of the β-tubulin DNA sequence for a number of isolates within Cy. pauciramosum. A heuristic search using PAUP* 4.0 b 1 with 500 random additions and 1000 bootstrap repetitions yielded ten most parsimonious trees. One of these trees is shown in Fig. 1.

Fig. 1. Phylogram of DNA sequences from the 5^{n} end of the β-tubulin gene. One of 10 most parsimonious trees (266 steps, $\mathrm{Cl}=0.925 \mathrm{RI}=0.905 \mathrm{RC}=0.837$) generated by the heuristic algorithm in PAUP* version 4 based on sequences of the β-tubulin gene. Ten steps are indicated by the bar. Clade stability is assessed by 1000 bootstrap samplings (shown above branches).

All variable characters in the DNA alignments were single base pair substitutions, less than a third of these being transversions. From a comparison between Cy . candelabrum and Cy. pauciramosum 27 variable characters were found out of a data set of 521 unordered characters. Only 18 of these were parsimony informative. This is comparable to the low, but consistent amount of variation previously seen between species of Cylindrocladium in the ITS1 and ITS2 spacers flanking the 5.8 S ribosomal RNA gene (Crous et al 1999, Part 2). Variable characters were almost exclusively situated in the non-coding regions of the β-tubulin gene. Only 2 characters (base pairs 273 and 348) were inside the coding regions (Table IV).

The low number of informative characters were emphasised in the low bootstrap values (Fig. 1). A Neigbor Joining comparison done with 1000 bootstrap replications in PAUP* yielded higher values ($75-90 \%$) and similar topology. in order to investigate the variation at sequence level the different base pair substitutions are presented as single characters in Table IV with the clades as indicated in Fig. 1.

Cylindrocladium candelabrum isolates obtained from Brazil (Clade 1, Fig. 1) all had identical sequences. Although this species is closely related to Cy. pauciramosum, these two species have already been shown to differ biologically and genetically (Parts 2 and 3). The Cy. candelabrum isolates (Clade 1) shared a total of nine variable sites of which three (base pairs 57,232 and 409) were unique for all isolates in this group. The remaining five variable sites were shared by isolates in clade 2 with an isolate of Cy. pauciramosum, STE-U 1670. This isolate clustered with Cy. candelabrum (Fig. 1), but still grouped separate and also had one unique variable site (base pair 227). Only one variable site separated clades 1, 2 and STE-U 1670 (base pair 198).

Variation was found for other individual Cy. pauciramosum isolates from South America and Mexico. Three variable characters were found in Clade 2. Of these, base pair 198 was shared with clade 1 and STE-U 1670, and base pair 420 with STE-U 1671. Although variation occurred between South American and Mexican isolates no variable characters were shared with any of the isolates from the other geographic regions (South Africa, Australia and Italy).

Isolates in Clade 3, selected from the South African, Italian and California populations had identical sequences and clustered together with low bootstrap support. This group is supported by one unique character at base pair 95 (Table IV).

A different group of Italian isolates were supported by four unique base pair substitutions (Clade 4). This grouping is shown to be distinct with high (93\%) bootstrap support (Fig. 1).

Table IV. The 27 variable characters in the comparison of β-tubulin DNA sequence data from isolates of Cy. pauciramosum Cy. candelabrum species, compared to the groups seen in Fig. 1, and their areas of origin. Base pairs are numbered from the start of deposited sequences (Appendix, Alignment 4).

Base pair no.	Original state	Derived state	Group (seen in Fig. 1)	Geographic origins	
57	C	T	Clade 1	Brazil	
63	C	G	STE-U 925	Brazil	
75	A	G	STE-U 1671	Brazil	
83	C	G	STE-U 925	Brazil	
95	A	G	Clade 3	Australia, California, Italy	South Africa,
138	C	T	Clade 1, STE-U 1670	Brazil	
143	T	C	STE-U 951	Mexico	
181	T	C	Clade 1, STE-U 1670	Brazil	
195	T	C	Clade 1, STE-U 1670	Brazil	
198	A	C	Clade 1, STE-U 1670, Clade 2	Brazil	
212	G	A	STE-U 951, STE-U 1160	Mexico, Colombia	
215	A	G	STE-U 913, STE-U 925	Brazil	
217	T	G	STE-U 1671	Brazil	
219	A	G	Clade 2	Brazil	
225	A	G	STE-U 951	Mexico	
227	T	C	STE-U 1670	Brazil	
232	G	C	Clade 1	Brazil	
273	T	C	Clade 1, STE-U 1670	Brazil	
348	C	T	Clade 4	Italy	
387	C	G	Clade 4	Italy	
394	C	T	Clade 4	Italy	
397	G	A	STE-U 1160	Colombia	
406	G	T	Clade 1, STE-U 1670	Brazil	
409	A	G	Clade 1	Brazil	
413	C	G	Clade 4	Italy	
417	C	T	STE-U 951	Mexico	
420	C	A	Clade 2, STE-U 1671	Brazil	

Discussion

The results presented here showed fundamental differences in the profiles of the populations sampled. In effect, all the nursery populations amounted to founder populations and some could have gone through several population bottlenecks. This is reflected in the varying ratios of mating types found in the different nurseries in the different geographic areas. The only population that approached a 1:1 mating type ratio was the sample where the disease has been well established in South Africa (Table III). This was collected over a wide area and a time period of several years.

The Italian sample used in the present study resembled a number of isolates spread over a number of nurseries in Sicily and Southern Italy. Preliminary results obtained from an additional number of isolates collected in single nurseries such as Carubba,

Barcellona and Milazzo indicate that the founder effects seen in the nurseries of Stellenbosch (South Africa) and California (U.S.A.) were also consistent in these circumstances (results not shown). Indications are that in some Italian nurseries only one mating type has been introduced. All the Italian samples had the same mating type bias correlating with a single source, the nursery in Carubba. This nursery has been established as the point of entry for new material in the region and could have had a persistent inoculum (Sicily and Southern Italy). Further analysis of these additional samples will enable a clearer picture of the population variation between single nurseries in Italy.

The high ratios of hermaphrodites in samples supports hypothesised recent introductions (Polizzi \& Azzaro 1996, Koike et al 1999). However, the percentage of hermaphrodites found in the various nurseries is still consistent with a population that is sexually reproductive (Leslie \& Klein 1996, Britz et al 1998). One would expect the percentage of hermaphrodites to drop if a single mating type were to persist in each nursery. The application of good nursery practices entails the immediate removal of diseased material. This has the potential to create several bottlenecks as the remaining populations must result from small starter populations. The influx of new diseased material containing the opposite mating type could further rapidly influence population structure in these nurseries.

Plant pathogens are normally introduced into nurseries by infected plant material or soil. The most important survival structures of Cylindrocladium spp. are microsclerotia which can survive for periods of up to 15 years and longer in soil (Thies \& Patton 1970, Sobers \& Litrell 1974). Under suitable climatic conditions germination and subsequent infection of roots and leaves occurs (Anderson et al 1962, Sharma et al 1990). The conidia form on infected plant material and are splash dispersed between closely placed plants (Mohanan \& Sharma 1986). In the case of sexual reproduction, the ascospores can also be an additional source of inoculum and are generally wind dispersed (Crous et al 1991). The profiles of the mating type distributions found in this study are consistent with the effects seen for a small initial inoculum, probably by asexual propagules. The fact that only one mating type can be found in the nursery samples from California, as well as the strong bias towards one mating type, suggests that sexual replication has a small role to play under these circumstances.

Genetic variation, based on DNA sequencing data, was detected between different isolates of Cy. pauciramosum. Although the gene phylogeny as reflected from the tree obtained from the partial sequences of the β-tubulin gene may not accurately reflect the species phylogeny (Doyle 1992, Maddison 1997), recent analysis of different loci have produced concordant phylogenies for Cy . pauciramosum and closely related species (Part 3).

Shared characters were found between a number of $C y$. pauciramosum isolates and isolates of Cy. candelabrum. These Cy. pauciramosum isolates include the isolates in Clade 2 as well as STE-U 1670 (Fig. 1). All of these isolates were collected in South and Central America. This suggests a population of Cy. candelabrum being sexually isolated from the more variable mother population of Cy. pauciramosum. In addition to this, it would imply that these two taxa are sibling species.

The high variation amongst South and Central American isolates of Cy. pauciramosum is consistent with an endemic population in this area. Attempts to obtain a larger sample to include in this study have thus far proved unsuccessful as all samplings contained mainly Cy. candelabrum isolates. These results could imply a South African population introduced from elsewhere. The identical DNA sequences obtained from the South African isolates certainly allows this possibility. DNA sequences obtained from isolates collected from a wide variety of locations, including Australia, South Africa, Italy and California were also identical and could indicate a collective origin for these populations. There is anecdotal evidence of importation of South African nursery material into Italian nurseries and this would agree with results presented here. The occurrence of another distinct group of DNA sequences obtained from isolates in the Italian population complicates this issue. It is possible that there has been more than one introduction of this species into this area.

Because the relatively small sample sizes utilised in this study could influence the results, it must be emphasised that this is a first approximation of the variation present in populations of Cy. pauciramosum. A more detailed study of genetic and mating markers will allow more comprehensive conclusions to be drawn. In spite of this, these results emphasise the importance of identification of the members of morphologically closely related species in the Cylindrocladium candelabrum species complex in order to aid phytosanitation programmes and aid disease control.

References

Anderson N, French DW, Taylor DP. 1962. Cylindrocladium root rot of conifers in Minnesota. For Sci 8: 378-384.

Botha WJ, Crous PW. 1992. A wilt disease of Rhododendron caused by Pythium prolatum and Cylindrocladium scoparium. Phytophylactica 24: 75-78.
Britz H, Wingfield MJ, Coutinho TA, Marasas WFO, Leslie JF. 1998. Female fertility and mating type distribution in a South African population of Fusarium subglutinans f.sp. pini. Appl Environm Microbiol 64: 2094-2095.

Caballero A. 1994. Developments in the prediction of effective population size. Heredity 73: 657-679.
Crous PW, Phillips AJL, Wingfield MJ. 1991. The genera Cylindrocladium and Cylindrocladiella in South Africa, with special reference to forest nurseries. S Afr For J 157: 69-85.

Crous PW, Alfenas AC Wingfield MJ. 1993. Calonectria scoparia and Calonectria morganii sp. nov. and variation among isolates of their Cylindrocladium anamorphs. Mycol Res 97: 701-708.
Crous PW, Kang JC, Schoch CL, Mchau GRA. 1999. Phylogenetic relationships within two Cylindrocladium species complexes based on general morphology and DNA sequences of ITS and β-tubulin. Can J Bot (submitted).
Crous PW, Mchau GRA, Van Zyl WH, Wingfield MJ. 1997. New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653-660.

Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341-345.

Darvas JM, Scott DB, Kotzé JM. 1978. Fungi associated with damping-off in coniferous seedlings in South African nurseries. S Afr For J 104: 15-19.

Doidge EM. 1950. The South African fungi and lichens to the end of 1945. Bothalia 5: 1-1094.

Doyle JJ. 1992. Gene trees and species trees: molecular systematics as onecharacter taxonomy. Syst Bot 17: 144-163.

Glass NL, Donaldson G. 1995. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environm Microbiol 61: 1323-1330.

Jeng RS, Dumas M, Liu FH, Wang CL, Hubbes M. 1997. DNA analysis of Cylindrocladium floridanum isolates from selected forest nurseries. Mycol Res 101: 285-291.

Koike ST, Henderson DM, Crous PW, Schoch CL. 1999. A new root and crown rot disease of heath in California caused by Cylindrocladium pauciramosum. PI Dis 83: 589.

Lamprecht SC. 1986. A new disease of Medicago truncatula caused by Cylindrocladium scoparium. Phytophylactica 18: 111-114.
Leslie JF. 1995. Gibberella fujikuroi: available populations and variable traits. Can J Bot 73: S282-S291.

Leslie JF, Klein KK. 1996. Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics 144: 557-567.
Maddison W. 1997. Gene trees in species trees. Syst Biol 46: 523-536.
Mansuetus ASB, Odvody GN, Frederiksen RA, Leslie JF. 1997. Biological species in the Gibberella fujikuroi species complex (Fusarium section Liseola) recovered from sorghum in Tanzania. Mycol Res 101: 815-820.

Mohanan C, Sharma JK. 1986. Epidemiology of Cylindrocladium diseases of Eucalyptus. In: Sharma JK, Nair CTS, Kedharnath S, Kondas S, eds. Eucalypts in India: past present and future. Peechi, India: Kerala Forest Research Institute. p 388-394.

O'Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molec Phylogenetics Evol 7: 103-116.

Polizzi G, Azzaro A. 1996. A new leaf spot disease of myrtle by Cylindroc/adium scoparium and its control in the nursery. Petria 6: 117-123.

Polizzi G, Crous PW. 1999. Root and collar rot of milkwort caused by Cylindrocladium pauciramosum, a new record for Europe. Eur J PI Pathol 105: 413-415

Rossman AY. 1979. A preliminary account of the taxa described in Calonectria. Mycotaxon 8: 485-558.

Sharma JK, Mohanan C, Florence EJM. 1990. Diseases of forest trees in Kerala. 6.

- Leaf diseases of eucalypts in plantations. Evergreen Trichur 25: 12-15.

Swofford DL. 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Beta version1b. Computer programme. Sunderland Massachussetts, U.S.A.: Sinauer Associates.

Sobers EK, Litrell RH. 1974. Pathogenicity of three species of Cylindroc/adium to select hosts. Phytopathology 58: 1017-1019.
Thies WG, Patton RF. 1970. The biology of Cylindrocladium scoparium in Wisconsin forest tree nurseries. Phytopathology 60: 1662-1668.

Wheeler W, Gladstein D. 1991. Malign. Version 2.7. Computer programme. New York, U.S.A.: Department of Invertebrates, American Museum of Natural History. Wright S. 1931. Evolution in Mendelian populations. Genetics 16: 97-159.

5. Phylogeny of Calonectria based on β-tubulin DNA sequence comparisons

Abstract

The phylogeny of the genus Calonectria was analysed by means of DNA sequence comparisons. This was done by amplifying the 5 ' end of the β-tubulin gene from isolates representative of 30 Calonectria species. A neighbor-joining analysis was performed on a total data set of 86 isolates, while a representative subset of isolates was analysed by means of maximum parsimony. The analyses yielded dendrograms with concordant topology. Many clades, containing small numbers of isolates were strongly supported by bootstrap. However, relationships between these clades were often ambiguous. A number of phylogenetic placements based on DNA data did not always agree with preconceived morphological relationships. Two large groupings were evident and both contained small-spored one-septate species. The only morphological character that correlated with DNA based phlyogenies was vesicle shape.

Introduction

The genus Calonectria De Not. resides in the euascomycete order Hypocreales and has been characterised as having Cylindrocladium Morgan anamorphs (Rossman 1979, Crous \& Wingfield 1994). Members of this genus are defined as species with brightly coloured ascocarps that change colour when placed in a $3 \% \mathrm{KOH}$ solution $(\mathrm{KOH}+$), have a warty wall surface, darkened stromatic bases, as well as Cylindrocladium anamorphs (Rossman 1993, Rossman et al 1999). Cylindrocladium anamorphs are the form most frequently encountered in nature and are also morphologically the most informative. Thus, most of the species in Calonectria are distinguished based on-morphological features of their anamorphs.

Conflicting opinions have arisen regarding the use of the stipes eminating from the conidiophores and specifically the shape of its terminal vesicle as a taxonomic character. This character was rejected by some authors (Hunter \& Barnett 1978, Rossman 1983), but others found it to give reliable taxonomic results (Sobers \& Alfieri 1972, Peerally 1991). Crous et al (1992) demonstrated that the osmotic potential of the medium influences vesicle shape. Thus vesicle shape was proposed to be a reliable character only when it is used under standardised conditions.

Consequently, this criterion has been combined with other morphological characters in order to delimit Cylindrocladium species (Crous \& Wingfield 1994).

Several Cylindrocladium species have been described with variable morphological characters despite the use of standardised growth conditions. One such character is conidial septation. Hence only predominant septation has been used as an important character in past descriptions (Crous \& Wingfield 1994). Further studies have also shown intraspecific variation in other characters such as conidial size and vesicle shape (Crous \& Peerally 1996, Crous et al 1998).

Because various morphological characters overlap in Cylindrocladium, frequent misidentifications occur, and different biological species are commonly lumped together under broad morphological species concepts. One example is the Cy. candelabrum Viégas species complex. Besides the fact that it is regularly confused with other species such as Cy. floridanum Sobers \& C.P. Seym., Cy ovatum El-Gholl et al and Cy. scoparium Morgan, a high amount of plasticity within the limits originally defined for its vesicle shape has been reported (Crous et al 1993a). A subsequent study revealed the presence of several distinct mating populations previously identified as Cy. candelabrum (Part 2). The use of mating tester strains was advocated in order to differentiate between these biological species, but due to the practical limitations of this approach, molecular characters became increasingly significant. In agreement with the contemporary trend in systematics, such molecular characters have also been applied to Calonectria taxonomy. These include the use of aminopeptidase substrate specificities (Stevens et al 1990), total protein electrophoresis (Crous et al 1993a) isoenzyme comparisons (El-Gholl et al 1997), DNA hybridisation based techniques (Crous et al 1993b, Victor et al 1997) as well as PCR-based methods (Victor et al 1997). These techniques have been helpful in delimiting several new species (Crous et al 1997a, Victor et al 1997, Crous et al 1999) subsequent to the monograph by Crous and Wingfield (1994).

The first study using DNA sequence comparisons to distinguish species of Cylindrocladium was that of Jeng et al (1997), where isolates of Cy. floridanum were compared with Cy. scoparium using the DNA sequences obtained from the ITS-5.8S ribosomal RNA area. Although these authors found differences between the two species, subsequent work showed that these differences were consistent between other Cylindrocladium species, and that the number of variable characters in this
region was low (Part 2). This necessitated the use of DNA sequences from additional genomic regions in order to infer a phylogeny for these taxa.

DNA sequences obtained from the β-tubulin gene have been employed to predict a phylogeny for closely related species in the Gibberella fujikuroi (Sawada) Wollenw. species complex (O'Donnell et al 1998). Several unlinked loci were used in a study by O'Donnell et al (1998), and the β-tubulin gene yielded the most variation of all areas sequenced, possibly making it useful for determining phylogeny in recently diverged groups. The β-tubulin gene product is an important component of microtubules, the major constituents of the cytoskeleton and mitotic spindles. The fact that mutations in this gene can confer resistance to the fungicide benomyl, implies that a significant body of sequencing data are already available for comparisons in fungi (Koenraad \& Jones 1993, Yan \& Dickman 1996). The utility of the β-tubulin gene sequence in determining phylogenetic relationships has also been demonstrated at various taxonomic levels (Schardl et al 1994, Tsai et al 1994, Donaldson et al 1995, Baldauf \& Doolittle 1997).

Gene phylogeny may not necessarily be an accurate reflection of species phylogeny (Doyle 1992, Maddison 1997). One problem could be posed by the presence of several copies of the β-tubulin gene under different selection constraints. Several copies of this gene have been encountered in plants (Snustad et al 1992), and more than one copy have also been reported in fungi, such as the two divergent copies in Colletotrichum graminicola (Panaccione \& Hanau 1990), and five in Epichloë species (Schardl et al 1994, Tsai et al 1994). However, ascomycetes generally appear to have lower copy numbers and several species have been described with only one β tubulin gene (Neff et al 1983, Orbach et al 1986, Smith et al 1988).

The present study of Calonectria has shown that the gene phylogeny obtained from the 5 ' end of the β-tubulin is concordant with that obtained from the ITS flanking sequences of the 5.8 S rRNA gene, as well as the HMG box of the MAT-2 gene (Part 3). These results indicated that the β-tubulin gene could be suitable for determining the phylogeny of this closely related group of fungi. The aims of this study were to utilise the DNA sequences of the 5 ' end of the β-tubulin gene in order to obtain a phylogeny for species in Calonectria, and to investigate species relationships at a larger scale than in previous studies. Inclusion of biological species such as those forming part of the Cy. candelabrum species complex (Part 2) would also enable a
comparison of the morphological, phylogenetic and biological species concepts in this genus.

Materials and Methods

Isolates

Strains were either obtained from culture collections (Table 1) or isolated from infected plant material or soil samples (Crous et al 1997b). These have been deposited in the culture collection of the Department of Plant Pathology, University of Stellenbosch (STE-U).

Isolation of DNA

Single conidial isolates were grown on malt extract agar (MEA) (Biolab, Midrand, South Africa) plates. Mycelial mats were cut from the plates using a sterile scalpel and ground to a powder with liquid nitrogen and a mortar and pestle. Approximately 40 mg of ground mycelia was added to 2 ml microtubes containing $600 \mu \mathrm{l}$ of extraction buffer. The extraction buffer consisted of 1% SDS, 50 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ 8.0), 150 mM NaCl and 100 mM EDTA. The subsequent protocol was followed as suggested for the Wizard Genomic DNA Purification kit (Promega, Madison, U.S.A.).

PCR amplifications and sequencing

A wide variety of isolates were used for sequencing (Table I). Reactions (total volume $25 \mu \mathrm{I}$) comprised of 1.5 units Biotaq (Bioline, London, U.K.) with the buffer as recommended by the manufacturer, 1 mM deoxynucleoside triphosphates, 4 mM $\mathrm{MgCl}_{2}, 0.5 \mu \mathrm{M}$ primer oligonucleotide and approximately 10 to 30 ng of fungal genomic DNA as target. These were performed on a Rapidcycler (Idaho Technology Idaho, U.S.A.). Reaction conditions consisted of the following: an initial denaturation for 2 min at $96^{\circ} \mathrm{C}$, followed by 30 cycles of 15 s at $96^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 35 s at $75^{\circ} \mathrm{C}$ with a slope of 1.0 . A last elongation step of 2 min at $75^{\circ} \mathrm{C}$ was included. A 600 bp fragment encompassing the first three introns and exons and part of the fourth exon of the β-tubulin gene was amplified with the use of primers T 1 (O'Donnell \& Cigelnik 1997) and Bt2b (Glass \& Donaldson 1995). PCR fragments were sequenced as described previously (Part 3). DNA sequences of isolates ofCy. floridanum, Cy. spathiphylli and a number of unknowns (CBS 413.67, STE-U 599, $682,1150,1484,2712,2350$, IMI and IMI 354529, UFV 76) previously sequenced by J.C. Kang was also included in this study for a more complete analysis.

Table I. Isolates of Cylindrocladium spp. studied.

amorph	Teleomorph	No.	Collector	Substrate	Origin	Date isolated
avesiculatum candelabrum	Ca. avesiculata Ca. scoparia	ATCC 38226	S.A. Alfieri	llex vomitoria	Florida, U.S.A.	1971
		STE-U 1674	A.C. Alfenas	Eucalyptus sp.	Bahia, Brazil	Jul. 1990
		STE-U 1677	A.C. Alfenas	Eucalyptus sp.	Amazonas, Brazil	1991
		STE-U 1951	A.C. Alfenas	Eucalyptus sp.	Brazil	Jun. 1998
		UFV 89	A.C. Alfenas	Eucalyptus sp.	Brazil	1990
citri colhounii	Unknown Ca. colhounii	CBS 186.36	H.S. Fawcett	Citrus sinensis	Florida, U.S.A.	Jañ. 1932
		STE-U 681	M.J. Wingfield	Soil	Thailand	Nov. 1993
		STE-U 705	M.J. Wingfield	Soil	KwaZulu-Natal, S. Africa	Nov. 1993
		STE-U 1237	P.W. Crous	Eucalyptus sp.	KwaZulu-Natal, S. Africa	Oct. 1995
		STE-U 1339	M.J. Wingfield	Soil	Indonesia	Mar. 1996
curvisporum	Unknown	STE-U 763	P.W. Crous	Soil	Madagascar	Apr. 1994
		STE-U 765	P.W. Crous	Soil	Madagascar	Apr. 1994
flexuosum	Ca. clavata	STE-U 2536	N.E. El-Gholl	Callistemon viminalis	Florida, U.S.A.	Apr. 1978
: floridanum	Ca. kyotensis	ATCC 18834	T. Terashita	Robinia pseudoacacia	Japan	1968
		ATCC 18882	R.H. Morrison	Peach roots	Florida, U.S.A.	1967
		CBS 413.67	W. Gerlach	Paphiopedilum callosum	Celle, Germany	Oct. 1967
		STE-U 682	M.J. Wingfield	Soil	Thailand	Aug. 1993
		STE-U 2350	M.J. Wingfield	Soil	Hong Kong	1998
		IMI 354528	M. Aragaki	Araucaria heterophylla	Hawaii	1987
		IMI 354529	M. Aragaki	Araucaria heterophylla	Hawaii	1987
		UFV 76	A.C. Alfenas	Pinus sp.	Canada	1990
gracile	Unknown	ATCC 22833	C.S. Hodges	Pinus caribeae	Brazil	Mar. 1971
		IMI 167580	A. Peerally	Camellia sinensis	Mauritius	1970
		PC 551197	Bugnicourt	Argyreia splendens	Vietnam	1937
		STE-U 623	M.J. Wingfield	Soil	Amazonas, Brazil	Apr. 1993
		STE-U 1586	P.W. Crous	Soil	Amazonas, Brazil	1996
: graciloideum	Ca. gracilipes	STE-U 1153	M.J. Wingfield	Soil	Colombia	Jun. 1996
: hawksworthii	Unknown	MUCL 30866	A. Peerally	Nelumbo necifera	Mauritius	1990
macroconidiale	Ca. macroconidialis	STE-U 307	P.W. Crous	Eucalyptus grandis	Mpumalanga, S. Africa	Mar. 1990
		STE-U 413	P.W. Crous	Soil	Mpumalanga, S. Africa	May 1990
heptaseptatum	Unknown	FTCC 1002	N.E. El-Gholl	Rumohrae adiantiformis	Florida, U.S.A.	Unknown
		FTCC 1003	N.E. El-Gholl	Rumohrae adiantiformis	Florida, U.S.A.	Unknown
		STE-U 2344	N.E. El-Gholl	Rumohrae adiantiformis	Florida, U.S.A.	Mar. 1999
insulare	Ca. insularis	STE-U 616	M.J. Wingfield	Soil	Amazonas, Brazil	Apr. 1993
		STE-U 768	P.W. Crous	Soil	Madagascar	Apr. 1994
		STE-U 954	M.J. Wingfield	Soil	Veracruz, Mexico	Apr. 1994
. leucothoes	Unknown	ATCC 64824	N.E. El-Gholl	Leucothoe axillaris	Florida, U.S.A.	1988
		P97.2605	N.E. El-Gholl	Leucothoe sp.	Florida, U.S.A	1997
. mexicanum	Ca. mexicana	STE-U 927	M.J. Wingfield	Soil	Yucatan, Mexico	Apr. 1994
		STE-U 941	- M.J. Wingfield	Soil	Holpechén, Mexico	Apr. 1994
' multiseptatum	Ca. multiseptata	STE-U 1589	M.J. Wingfield	Eucalyptus sp.	Indonesia	Jan. 1997
		STE-U 1602	M.J. Wingfield	Eucalyptus sp.	Indonesia	Jan. 1997
naviculatum	Ca. naviculata	STE-U 627	M.J. Wingfield	Soil	Amazonas, Brazil	Apr. 1993
		STE-U 628	M.J. Wingfield	Soil	Amazonas, Brazil	Apr. 1993
. ovatum	Ca. ovata	UFV 90	M.J. Wingfield	Soil	Amazonas, Brazil	1990
- parasiticum	Ca. ilicicola	ATCC 46133	S.A. Alfieri	Cissus rhombifolia	Florida, U.S.A.	1981
		CBS 190.50	K.B. Boedijn J. Reitsma	Solanum tuberosum	Java, Indonesia	Feb. 1948
		STE-U 723	M.J. Wingfield	Soil	Colombia	Jan. 1994
pauciramosum	Ca. pauciramosa	STE-U 416	S. de Buisson	Eucalyptus grandis	N. Province	Jun. 1990
		STE-U 972	P.W. Crous	Soil	W. Cape	Nov. 1994
		STE-U 925	M.J. Wingfield	Soil	Santa Catarina, Brazil	Apr. 1994
penicilloides pseudogracile	Unknown Ca. gracilis	CBS 174.55	M. Ookubu	Prunus sp.	Hatizyo, Japan	Jan. 1952
		AR 2677	A.Y. Rossman	Manilkara sp.	Amazonas, Brazil	Unknown
		STE-U 1588	P.W. Crous	Soil	Amazonas, Brazil	1997
pteridis	Ca. pteridis	STE-U 2190	P.W. Crous	Eucalyptus sp.	Amazonas, Brazil	Oct. 1996
		STE-U 2869	P.W. Crous	Eucalyptus sp.	Brazil	1997
		UFV 43	J.C. Dianese	Unknown	Minas Gerais, Brazil	Unknown

Table I. Isolates of Cylindrocladium spp. studied (continued).

amorph	Teleomorph	No.	Collector	Substrate	Origin	Date isolated
quinqueseptatum Ca. quinqueseptata		ATCC 16550	Unknown	Scolopendrium sp.	Solomon Islands	1965
		STE-U 516	M.J. Wingfield	Eucalyptus sp.	Thailand	Aug. 1992
		STE-U 759	P.W. Crous	Eucalyptus sp.	Madagascar	Jan. 1994
spathiphylli	Ca. spathiphylli	ATCC 44730	S.A. Alfieri	Spathiphyllum sp.	Florida, U.S.A.	1982
		STE-U 1624	M.J. Wingfield	Soil	Ecuador	Jun. 1997
		STE-U 1641	M.J. Wingfield	Soil	Ecuador	Jun. 1997
		STE-U 2186	K.I. Kavowas	Heliconia psitacorum	Florida, U.S.A.	1986
		STE-U 2188	A. Thompson	Spathiphyllum sp.	Mpumalanga, S. Africa	Feb. 1998
rumohrae	Ca. rumohrae	UFV 215	A.C. Alfenas	Rumohrae adiantiformis	Panama	Jan. 1997
		UFV 218	A.C. Alfenas	Rumohrae adiantiformis	Panama	Jan. 1997
		STE-U 1603	R. Pieters	Adiantum sp.	The Netherlands	Jan. 1996
scoparium	Ca. morganii	ATCC 38227	S.A. Alfieri	Mahonia bealei	Florida, U.S.A.	1970
		ATCC 46300	D.M. Benson	Leucothoe catesbaei	North Carolina, U.S.A.	1981
		STE-U 1720	N.E. El-Gholl	Rosasp.	Florida, U.S.A.	Jan. 1998
		STE-U 1722	N.E. El-Gholl	Dodonea viscosa	Florida, U.S.A	Jan. 1998
spathulatum	Ca. spathulata	AR 1844	C.S. Hodges	Eucalyptus grandis	Minas Gerais, Brazil	Unknown
		ATCC 62616	N.E. El-Gholl	Eucalyptus viminalis	Brazil	1985
theae	Ca. indusiata	ATCC 48895	N,E. EI-Gholl	Rhododendron sp.	Florida, U.S.A.	Unknown
		UFV 16	N.E. El-Gholl	Rhododendron sp.	Minas Gerais, Brazil	Unknown
variabile	Ca. variabilis	AR 2675	F.C. de Albuquerque	Didymopanax morototoni	Pará, Brazil	1990
		UFV 28	A.C. Alfenas	Eucalyptus sp.	Minas Gerais, Brazil	Unknown
indrocladium sp.	Calonectria sp.	STE-U 2321	J. Taylor	Soil	Madagascar	Dec. 1998
		STE-U 2322	J. Roux	Soil	Congo	Dec. 1998
		STE-U 2347	N.E. El-Gholl	Rumohrae adiantiformis	Florida, U.S.A.	May 1999
		STE-U 599	P.W. Crous	Soil	Brazil	Jan. 1993
		STE-U 1150	M.J. Wingfield	Soil	Colombia	Jan. 1995
		STE-U 1484	P.W. Crous	Soil	Brazil	Aug. 1998
		STE-U 2712	M.J. Wingfield	Eucalyptus grandis	Colombia	1998

Phylogenetic analysis

Alignments of sequences were done with the computer package Malign version 2.7 (Wheeler \& Gladstein 1991) and assessed manually and are included in the Appendix (Alignment 5). A number of isolates Phylogenetic analysis of aligned DNA sequences was performed using PAUP* 4.0b1 (Swofford 1998) and printed with the help of Treeview Version 1.5 (Page 1996). The large number of indels found in the three non-coding regions proved to be problematic for alignment. Twenty-four highly ambiguous characters in the third intron (base pair 542-567) were excluded from the analysis. Analyses were also done both with gaps treated as a "missing" and as a "fifth base" in PAUP*4.0b1." Finally, in order to limit the influence of large gaps consisting of several characters only the first character of a multi-character gap was coded. Subsequent gap characters were coded as missing data. The former treatment yielded 104 and the latter 1 most parsimonious trees after addition of 1000 random sequences using a heuristic search algorithm. Confidence intervals were determined using 1000 bootstrap replications. . Decay indices were determined with Autodecay Version 4.0 (Eriksson 1998). Data sets were also assessed by using neighbor-joining with uncorrected ("p") distance methods and ties were broken
randomly in PAUP* 4.0b1. The outgroup sequence was obtained from GenBank (Fusarium subglutinans, accession number, U34417).

Results

Sequences of the complete open reading frame of the β-tubulin gene from Gibberella fujikuroi (tub2) were obtained from GenBank (Accession no. U27303). After comparisons with the partial gene sequences obtained from Calonectria a similar arrangement for the coding and non-coding regions was observed in this species. Both of these species had three introns and exons in the genomic DNA area amplified. This confirmed the close relationship between these species.

Due to the number of sequences used and the high amount of possible most parsimonious trees, the neighbor-joining analysis method of Saitou and Nei (1987) was applied to a complete data set containing DNA sequence data sets obtained from more than one isolate per species, where possible. This data set consisted of 92 ingroup taxa with 582 total characters of which 316 were parsimony informative. The PCR fragments of the partial β-tubulin gene obtained from the different Cylindrocladium species had a variation of 31 base pairs in length. The regions used for analysis differed from 509 to 540 base pairs, while the outgroup F. subglutinans had the shortest length (494 base pairs). The tree obtained after 1000 bootstrap repetitions showed a number of clades within two larger clades (Fig. 1). Clade A included the largest number of species, as well as subclades 1-8. Clade B encompassed a smaller number of species (clades 9 and 10). In addition to this, it was evident that most isolates of the same morphological species grouped together with strong bootstrap support.

In order to perform a cladistic analysis a reduced data set of taxa containing a single isolate of each morphological species was used. This data set consisted of 30 ingroup taxa with 579 characters. Twenty four highly ambiguous characters at the end of the third intron were excluded. This left 170 variable parsimony informative characters. A heuristic search with 1000 random additions yielded 104 most parsimonious trees when gaps were treated as missing and a single most parsimonious tree when gaps were treated as a fifth base (Fig. 2). The topology of all these trees were similar, but lower bootstrap support for branches were found when gaps were ignored. The topology of the tree in Fig. 2 is mainly concordant with that of the neighbor-joining tree in Fig. 1 and shows close relationships for the same morphological species. Two large clades are again evident from this tree.

Fig.1. Neighbor-joining tree of total group of taxa. Bootstrap values were assessed after 1000 repetitions and values above 50% are shown. Clades supported by bootstrap values are indicated by brackets. A Fusarium subglutinans sequence (Genbank accession number: U34417) was used as outgroup.

Fig. 2. Parsimonious tree obtained from a subset of Calonectria isolates. The most parsimonious tree (958 steps $\mathrm{Cl}=0.568$, $\mathrm{RI}=0.551, \mathrm{RC}=0.313$) generated with a heuristic algorithm in PAUP* version 4.0 b 1 from aligned sequences of the 5^{\prime} ' end of the β-tubulin gene. Ten steps are indicated by the bar. Gaps were treated as a fifth base. Clade stability was assessed with 1000 bootstrap replications and values above 50% are shown. Decay indices are shown below branches. A Fusarium subglutinans sequence (Genbank accession number: U34417) was used as outgroup.

Stellenbosch University https://scholar.sun.ac.za

F. suboglutinans NRRL 22061

Cy. graciloideum STE-U 1153

Cy. theae UFV 16

Cy. rumohrae UFV 215
Cy. heptaseptatum FTCC 1002
Cy. mexicanum STE-U 941
Cy. avesiculatum ATCC 38226

$$
\text { Cy. citri CBS } 186.36
$$

Cy. leucothoes ATCC 64824
Cy. pseudogracile AR 2677
Cy. gracile PC 551197
Cy. flexuosum STE-U 2536
Cy. multiseptatum STE-U 1589
Cy. quinqueseptatum ATCC 16550
C. . ovatum UFV 90

Cy. pteridis UFV 43
Cy. spathulatum ATCC 62616
Cy. pauciramosum STE-U 972
Cy. candelabrum STE-U 1674
Cy. hawksworthii MUCL 30866

$$
\text { Cy. insulare STE-U } 616
$$

Cy. scoparium ATCC 46300
Cy. variabile AR 2675
Cy. späthipiglli ATCC 44730
Cy. macroconidiale STE-U 307
Cy. colhounii STE-U 681
Cy. floridanmon ATCC 18882
Cy: parasiticum CBS 190.50
Cy. curvisporum STE-U 763
Cy. penicilloides CBS 174.55
Cy. naviculatum STE-U 627

F. subglutinans NRRL 22061

Cy. graciloidewm STE-U 1153
Cy. theae UFV 16
Cy. rumohrae UFV 215
Cy. heptaseptatum FTCC 1002
Cy. mexicanum STE-U 941
Cy. avesiculatum ATCC 38226
Cy. citri CBS 186.36
Cy. leucothoes ATCC 64824
Cy. pseudogracile AR 2677
Cy. gracile PC 551197
Cy. flexuosum STE-U 2536
Cy. multiseptation STE-U 1589
Cy. quinqueseptatum ATCC 16550
Cy. ovatum UFV 90
Cy. pteridis UFV 43
Cy. spathulatum ATCC 62616
Cy. pauciramosum STE-U 972
Cy: candelabrum STE-U 1674
Cy. hawksworthii MUCL 30866
Cy. insulare STE-U 616
Cy. scoparium ATCC 46300
Cy. variabile AR 2675
Cy. spathiphylli ATCC 44730
Cy. macroconidiale STE-U 307
Cy. colhounii STE-U 681
Cy. floridanum ATCC 18882
Cy. parasiticum CBS 190.50
Cy. curvisporum STE-U 763
Cy. penicilloides CBS 174.55
Cy. noviculatum STE-U 627

Fig. 3. Neighbor-joining trees of selected areas in the β-tubulin DNA sequence data set. A. intron 1 B. intron 2 C . intron 3 D. coding sequence. Clade stability was assessed after 1000 repetitions.

Several smaller clades are apparent that generally conform to those observed in the neighbor-joining tree (Fig. 1). However, like the neighbor-joining tree no strong bootstrap support was evident for relationships between several clades.

In order to test whether specific areas in the DNA fragments sequenced specifically influenced the compositions of the dendrograms (Figs. 1 and 2) separate analyses for each of the introns found in the area of β-tubulin sequenced were performed. The large number of possible most parsimonious topologies made a cladistic analysis difficult and the neighbor-joining method was used (Fig. 3A-D). The first intron consisted of 167 characters, with 96 informative sites, the second had 74 characters with 52 informative sites and the third 112 characters with 78 informative sites. The protein coding area was also subjected to the same analysis (Fig. 3D). This data set consisted of 230 characters with 45 informative sites.

The separate analyses yielded a number of clades weakly supported by bootstrap values (Fig. 3A-D). A higher number of clades observed in Figs. 1 and 2 were supported in analyses of the three different introns. The protein sequences also provided support for the two large clades A and B observed in Figs. 1 and 2. Only one clade (clade 1) was supported in the neighbor-joining (Fig. 1) and heuristic trees (Fig. 2) but not in any of the separate analyses (Fig. 3). Several clades were supported in more than one of the areas analysed, but in some instances a smaller number of species were supported e.g. clade 2 (Fig. 3A-D). Finally, a close relationship is suggested between previously unsupported clades such as $C y$. multiseptatum and Cy. flexuosum (Fig. 3A, D). The bootstrap support for this relationship was low in Fig 3 and although the most parsimonious tree in Fig. 2 supported this relationship, it was not supported by bootstrap values in that analysis.

Discussion

This study presents the first attempt to consider the phylogeny of all described species in the genus Cylindrocladium. Previous studies have used smaller subsets of isolates in order to investigate morphologically defined groups, such as those species with multiseptate conidia (Crous et al 1999) and heterothallic species with small conidia (Part 3). Several of these studies have corroborated morphological species concepts (Crous et al 1997b, Crous et al 1999, Part 3) and also showed the presence of additional genetic groups within morphologically defined taxa (Part 2). Some of these seemingly closely related fungi have also been found to group
distantly in DNA sequence based phylogenies, such as Cy. mexicanum Crous \& C.L. Schoch, originally described as part of the Cy. candelabrum species complex (Part 3). The current study tests whether species in the genus have evolutionary relationships not realised in previous, less encompassing studies.

The β-tubulin DNA sequence based phylogeny of Cylindrocladium species has both confirmed some, but contradicted other taxonomic concepts for the genus. Several clades received strong bootstrap support (Figs. 1-3). However, the relationships between most of these indicated clades were not supported by statistical data and remained unresolved. In spite of this, several conclusions could be made.

In the first large clade (A) the isolate representing Cy. graciloideum Crous \& G.R.A. Mchau formed a distinct branch, basal to clades 1-6. Clade 1 comprises species from the Cy. colhounii Peerally species complex. Cy. macroconidiale Crous et al was previously described as a large-spored variant of Cy. colhounii (Crous \& Wingfield 1994) and has only recently been proposed as a separate species based on sequence and morphological data (Crous et al 1999). Isolates STE-U 2231 and 2232 could not be identified as either Cy. macroconidiale or Cy. colhounii by means of sequence data and possibly represent one or two new phylogenetic species. Although these isolates had smaller conidia than other isolates of Cy. colhounii, their taxonomic placement remained unclear. They clustered distantly from the other isolates, but are retained as Cy. colhounii for the present.

Cylindrocladium species with ellipsoid and globose vesicles were grouped within clade 2 (Fig. 1). Two well-supported subclades could also be distinguished. In the first, the close relationship between isolates of Cy. scoparium and Cy. variabile Crous et al was surprising, since they both have distinctive characters. Cy. scoparium is heterothallic with exclusively one-septate macroconidia, while Cy. variabile is a homothallic species with microconidia and predominantly three-septate macroconidia. Other morphologically distinctive species included in this group are Cy. insulare Crous \& C.L. Schoch and Cy. hawksworthii Peerally. The most notable difference between these two species is the presence of curved conidia in Cy. hawksworthii. Preliminary mating studies confirmed the DNA sequence based phylogeny and showed both species to be sexually compatible (results not shown). This calls into question the value of curved conidia as a distinguishing character for species of Cylindrocladium. The second sub-clade consisted of isolates of Cy. spathiphylli Schoult. et al This cluster contained isolates with two mating strategies
(homo- and heterothallic). Although they are morphologically indistinct, the groups containing isolates with either of these mating strategies could clearly be differentiated based on DNA sequence comparisons.

A number of clades (3,6 and 7) contained isolates from two distinct morphological species with bootstrap support. In one of these clades (clade 7) isolate P99.0545 had intermediate morphological features between Cy. heptaseptatum Sobers et al and Cy. rumohrae El-Gholl \& Alfenas. The statistical analysis (Fig. 1) only showed low bootstrap support for a similarity with Cy. heptaseptatum. This species could thus not be identified with any certainty and could not be delimited as a new species. The species clustering in clades 3 and 7 shared morphological characters such as multiseptate conidia and clavate vesicles. However, the isolates of Cy. ovatum ElGholl et al and Cy. pteridis F.A. Wolf in clade 6 had clear differences in vesicle shape and spore size and were never previously considered to be closely related.

Clade 4 contained isolates previously identified as Cy. gracile (Bugnic.) Boesew. and Cy. clavatum Hodges \& L.C. May (ATCC 22833). Variation between various strains were evident. However, these species were recently synonymised on morphological characters (Crous et al 1999) and these results supported this.

Clade 5 contained a number of species with spathulate to obpyriform vesicles. Isolates of two distinct biological species, Cy. candelabrum and Cy. pauciramosum Crous \& C.L. Schoch were included in this group. Cy. pauciramosum isolates also exhibited prominent intraspecies variation and one isolate (STE-U 925) showed similarities to Cy. candelabrum. In addition to this, a large number of unknown isolates that were obtained from various locations in South America, tentatively identified as a possible new species, clustered strongly with isolates of Cy . spathulatum El-Gholl et al These isolates were provisionally identified as Cy. reteaudii (STE-U 1150 and-STE-U 2712) and were found to be associated with a serious disease of eucalypts in Colombia. After sequence comparisons were made they were found to share the same sequences with those obtained from the type species of Cy . spathulatum. On the basis of statistical analysis and re-examination of their morphological characters they were reclassified as Cy. spathulatum.

A number of species with variable morphological features were represented in clade 8. Some of these species had umbonate vesicles, ($C y$. mexicanum and $C y$. leucothoes El-Gholl et al), but the additional two species had distinctly clavate [Cy.
citri (Fawcett \& Klotz) Boedijn \& Reitsma] or clavate to avesiculate vesicles (Cy. avesiculatum Gill et al). As was true for clade 6, these species were not previously considered to be closely related based on morphology.

In addition to those species forming part of well supported clades, several species could not be positioned on the tree with any statistical support (Figs. 1 and 2). Isolates representing the morphological species Cy. flexuosum Crous, Cy. theae (Petch) Subram. and Cy. pseudogracile Crous grouped separately within the first large clade, but without any strong indications of their relationships to other species. However, their distinctiveness as separate species were supported by these data.

The second large clade (B) consisted of clades 9 and 10, as well as additional groups consisting of isolates of a single species. Clade 9 contained isolates from three morphological species - Cy. floridanum, Cy. parasiticum Crous et al and Cy. curvisporum Crous \& Victor. The differentiation for those isolates seen in Fig. 1 is not distinct and will have to be re-evaluated in future. All of these species have sphaeropendunculate vesicles, with differences in conidial shape and septation. The second clade (clade 10) consisted of the type culture of Cy. floridanum (ATCC 18882) and additional isolates identified as Cy. floridanum. Another isolate of Cy. floridanum (UFV 76) also clustered separately from any of the clades. These data distinguished at least three distinctive groups within Cy. floridanum, supporting the results of previous studies in this complex (Jeng et al 1997, Victor et al 1997).

This study represents the first instance where it has been possible to investigate the phylogenetic relationship of Cy. penicilloides (Tubaki) Tubaki to other species. Cy. penicilloides was initially described without any mention of its vesicle morphology (Tubaki 1958). Furthermore its ex-type culture is infertile and no dried specimens could be located. Data from the present study confirmed that it is a distinct species without clear indication of its phylogenetic placement. Similarly, isolates of Cy. naviculatum Crous \& M.J. Wingf. formed part of the larger clade (B) but could not be placed phylogenetically.

This study has provided an opportunity to compare the morphological species and biological concepts previously used for species in Cylindroc/adium with a phylogenetic species concept. A similar species concept, based on propositions made earlier by Nixon and Wheeler (1990) has previously been applied on isolates in the Gibberella fujikuroi complex by O'Donnell et al (1998). The biological species
described in Part 2 provided a convenient "bench mark" enabling comparison with other species concepts. The existence of biological species within the confines of morphological species delimitations of Cylindrocladium was discussed earlier and only slight morphological differentiations was possible for these species (Part 2). Results of Part 3 confirmed the delimitations of these biological concepts as was also validated in the current study. The only morphological characters that agreed to some extent with the DNA based phylogeny presented here was vesicle shape. This was not surprising, as Crous and Wingfield (1994) showed that vesicle shape is an important character, but it had to be assessed under controlled conditions. However, most clades did not exclusively have one vesicle shape and the clavate shape appeared to be present in several clades with unresolved relationships.

In general, this study has emphasised that most morphological and biological species of Cylindrocladium represent separate phylogenetic entities. These data were also helpful in confirming identifications of isolates with intermediate or indeterminate morphological characters. Several questions, however, remain unresolved. This includes the close phylogenetic relationships seen between some species previously considered to be distinct based on morphological characters.

References

Baldauf SL, Doolittle WF. 1997. Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci USA 94: 12007-12012.

Crous PW, Alfenas AC, Junghans TG. 1998. Variability within Calonectria ovata and its anamorph Cylindrocladium ovatum from Brazil. Sydowia 50: 1-13.
Crous PW, Alfenas AC, Wingfield MJ. 1993a. Calonectria scoparia and Calonectria morganii sp. nov. and variation among isolates of their Cylindrocladium anamorphs. Mycol Res 97: 701-708.
Crous PW, Janse BJH, Victor D, Marais GF, Alfenas AC. 1993b. Characterization of some Cylindrocladium species with three septate conidia using morphology, isozyme banding patterns and DNA polymorphisms. Syst Appl Microbiol 16: 266273.

Crous PW, Kang JC, Schoch CL, Mchau GRA. 1999. Phylogenetic relationships within two Cylindrocladium species complexes based on general morphology and DNA sequences of ITS and β-tubulin. Can J Bot (submitted).

Crous PW, Mchau GRA, Van Zyl WH, Wingfield MJ. 1997a. New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653-660.

Crous PW, Peerally A. 1996. Gliocladiopsis irregularis sp. nov. and notes on Cylindrocladium spathiphylli. Mycotaxon 58: 119-128.

Crous PW, Phillips AJL, Wingfield MJ. 1992. Effects of cultural conditions on vesicle and conidium morphology in species of Cylindrocladium and Cylindrocladiella. Mycologia 84: 497-504.
Crous PW, Theron L, Van Zyl WH. 1997b. Delineating C. candelabrum spp. with 1-3septate conidia and clavate vesicles based on morphology and rDNA RFLPs. Mycol Res 101: 210-214.
Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341-345.
Crous PW, Wingfield MJ, Lennox CL. 1994. A comparison of genetic concepts in Calonectria and Nectria with anamorphs in Cylindrocladium and Cylindrocladiella. 90: 485-488.
Donaldson GC, Ball LA, Axelrood PE, Glass NL. 1995. Primer sets developed to amplify conserved genes from filamnetous ascomycetes are useful in differentiating Fusarium species associated with conifers. Appl Environm Microbiol 61: 1331-1340.
Doyle JJ. 1992. Gene trees and species trees: molecular systematics as onecharacter taxonomy. Syst Bot 17: 144-163.
Eriksson T. 1998. Autodecay version 4.0. Computer Programme. Department of Botany, Stockholm University, Stockholm: Distributed by author.
EI-Gholl NE, Alfenas AC, Junghans DT, Schubert TS, Miller JW, Leahy RM. 1997. Description of Calonectria rumohrae sp . nov. (anamorph $=$ Cylindrocladium rumohrae sp. nov.). Mycotaxon 64: 467-484.
Glass NL, Donaldson G. 1995. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environm Microbiol 61: 1323-1330.
Hunter BB, Barnett HL. 1978. Growth and sporulation of species and isolates of Cylindrocladium in culture. Mycologia 70: 614-635.

Jeng RS, Dumas M, Liu FH, Wang CL, Hubbes M. 1997. DNA analysis of Cylindrocladium floridanum isolates from selected forest nurseries. Mycol Res 101: 285-291.

Koenraad H, Jones AL. 1993. Resistance to benomyl conferred by mutations in codon 198 or 200 of the beta tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198. Phytopathology 83: 850-854.
Maddison W. 1997. Gene trees in species trees. Syst Biol 46: 523-536.
Neff NF, Thomas JH, Grisafi P, Botstein D. 1983. Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 3: 211-219.
Nixon KC, Wheeler QD. 1990. An amplification of the phylogenetic species concept. Cladistics 6: 211-223.

O'Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molec Phylogenetics Evol 7: 103-116.
O'Donnell K, Cigelnik E, Nirenberg H. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465493.

Orbach MJ, Porro EB, Yanofski C. 1986. Cloning and characterization of the gene for β-tubulin from a benomyl resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Molec Cell Biol 6: 2452-2461.
Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer programme. Comp Appl Biosci 12: 357-358.
Panaccione DG, Hanau RM. 1990. Characterization of two divergent β-tubulin genes from Colletotrichum graminicola. Gene 86: 163-170.
Peerally A. 1991. The classification and phytopathology of Cylindrocladium species. Mycotaxon 40: 323-366.
Rossman A. 1993. Holomorphic hypocrealean fungi: Nectria sensu stricto and teleomorphs of Fusarium. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, United Kingdom: CAB International. p 149-160.
Rossman AY. 1979. A preliminary account of the taxa described in Calonectria. Mycotaxon 8: 485-558.
Rossman AY. 1983. The phragmosporous species of Nectria and related genera. Mycol Pap 150: 1-164.
Rossman AY, Samuels GJ, Rogerson CT, Lowen R. 1999. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 42: 1-248.

Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.

Schardl CL, Leuchtmann A, Tsai H-F, Collett MA, Watt DM Scott DB. 1994. Origin of a fungal symbiont of perennial ryegrass by interspecific hybridisation of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136: 1307-1317.
Smith HA, Allaudeen HS, Whitman MH, Koltin Y Gorman JA. 1988. Isolation and characterization of a β-tubulin gene from Candida albicans. Gene 63: 53-63.
Snustad DP, Haas NA, Kopczak SD, Silflow CD. 1992. The small genome of Arabidopsis thaliana contains at least nine expressed β-tubulin genes. PI Cell 4 : 549-556.
Sobers EK, Alfieri SA. 1972. Species of Cylindrocladium and their hosts in Florida and Georgia. Phytopathology 85: 366-369.
Stevens C, Palmer MA, Tang AY, McRoberts RE. 1990. Use of aminopeptidase substrate specificities to identify species of Cylindrocladium in Wisconsin nurseries. Mycologia 82: 436-443.
Swofford DL 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods), 4b01. Computer programme. Sunderland, Massachusetts, U.S.A.: Sinauer Associates.

Tsai H-F, Liu J-S, Staben C, Christensen MJ, Latch GCM, Siegel M, SchardI CL. 1994. Evolutionary diversification of fungal endophytes of tall fescue grass by hybridisation with Epichloe species. Proc Natl Acad Sci USA 91: 2542-2546.
Tubaki. 1958. Studies on hyphomycetes. 5. Leaf and stem group with discussion of the classification of Hyphomcetes and their perfect stages. Journal of the Hattori Botanical Laboratory 20: 142-144.
Victor D, Crous PW, Janse BJH Wingfield MJ. 1997. Genetic variation in Cylindrocladium floridanum and other morphologically similar Cylindrocladium species. Syst Appl Microbiol 20: 268-285.
Wheeler W, Gladstein D. 1991. Malign. Version 2.7. Computer programme. New York, U.S.A.: Department of Invertebrates, American Museum of Natural History.
Yan K, Dickman M. 1996. Isolation of a beta-tubulin gene from Fusarium moniliforme that confers-cold-sensitive benomyl resistance. Appl Environm Microbiol 62: 30533056.

6. Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia*

Abstract

Calonectria is characterised by having brightly coloured, warty perithecia and Cylindrocladium anamorphs. Other hypocrealean genera in this complex have a similar perithecial anatomy and anamorph morphology, except those of Cylindrocladiella spp. which are smooth-walled and clearly distinct. The aim of this study was to employ DNA sequence analysis to determine the phylogeny of Calonectria to other hypocrealean genera with cylindrical macroconidia. The taxonomy of species in Cylindrocladiella was also investigated. Calonectria was found to form a monophyletic lineage, and this was also true for the anamorph genera Cylindrocladiella, Cylindrocarpon, Curvicladium, Gliocephalotrichum, Gliocladiopsis and Xenocylindrocladium. Although some of these genera have been associated with nectriaceous teleomorphs, Nectria sensu stricto is restricted to species with Tubercularia anamorphs. Based on molecular data and the distinct anamorph form genera, new teleomorph genera are proposed for Cylindroc/adiella (Nectricladiella), Gliocladiopsis (Glionectria) and Xenocylindrocladium (Xenocalonectria). The data also provide support for recognition of previously erected holomorphs for Cylindrocarpon (Neonectria) and Gliocephalotrichum (Leuconectria). To date no teleomorph has been reported for Curvicladium, although our results suggest that Cigneum is closely related to Xenocalonectria. Eight species of Cylindrocladiella are recognised, with two having teleomorphs in Nectricladiella, namely N. camelliae (Ce. microcylindrica) and N. infestans (Ce. infestans).

Introduction

The ascomycete order Hypocreales includes fungi found in a variety of ecological niches that are of agricultural, medical and industrial importance. These fungi are characterized by unitunicate asci produced in typically ostiolate, brightly or lightly coloured perithecia, hyaline ascospores and a hamathecium of apical paraphyses

[^3]that disintegrate at maturity (Rogerson 1970, Rossman et al 1999). It is noteworthy that a large number of anamorph genera are associated with the Hypocreales (Samuels \& Seifert 1987). These can be described as moniliaceous and typically phialidic; conidia are held in lightly to brightly coloured slime (Samuels \& Seifert 1987). The importance of anamorph morphology in taxonomic studies is emphasized by the fact that in many economically important species this form is more frequently encountered than the teleomorph, and is thus often the only way to identify a species.

In the Hypocreales, Nectria (Fr.) Fr. has included more species than any other genus, with more than 600 described. Traditionally all species having fleshy, uniloculate ascocarps with a hypocrealean centrum with hyaline, non-apiculate, bicellular ascospores, and phialidic anamorphs have been included in Nectria (Rossman 1993). In this generic definition, ascospore morphology and septation dominated. Other genera were segregated from Nectria on the basis of single characters, including ascospore septation and pigmentation, and synnematous anamorphs. Calonectria De Not. (Ca.), one of the segregate genera that is of special interest to the current work, was described for species having multiseptate ascospores (Saccardo 1883).

Booth (1959) was the first to use a combination of characters that included anatomy of the perithecial wall, ecology and anamorphs in describing informal taxonomic groups in Nectria sensu lato. Subsequent authors (e.g. Samuels 1976, Samuels et al 1991, Brayford \& Samuels 1993, Samuels \& Brayford 1993) followed Booth in recognizing informal groups within the large genus Nectria. In a recent revision of genera of the Hypocreales (Rossman et al 1999), many of these groups were given generic status and additional genera were described. Nectria sensu stricto was restricted to the type species, Nectria cinnabarina (Tode: Fr.) Fr., and species similar to it. Rossman et al (1999) split the large and polyphyletic genus Nectria into several smaller genera within two families, the Nectriaceae and the Bionectriaceae. Calonectria was included in the Nectriaceae, but was differentiated from Nectria sensu stricto on the basis of ascocarp morphology and anatomy, the occurrence of a Cylindrocladium Morgan (Cy.) anamorph, and basic differences in biology. Although the singular character of ascospore morphology was regarded as less important (Rossman 1983, Crous \& Wingfield 1994), ascospores of Calonectria are distinct from those of Nectria.

In a study based on the sequence alignments of the nuclear large-subunit ribosomal DNA obtained from several genera in the Hypocreales, Rehner and Samuels (1995) found some species to group together with Calonectria. These authors showed that species of Calonectria grouped closely to Leuconectria clusiae Rossman et al (anamorph: Gliocephalotrichum bulbilium J.J. Ellis \& Hesselt.), as well as to Nectria radicicola Gerlach \& L. Nilsson [anamorph: Cylindrocarpon destructans (Zinssm.) Scholten], with two typical species of Nectria, N. pseudotrichia Berk. \& M.A. Curtis [anamorph: Tubercularia lateritia (Berk.) Seifert] and N. cinnabarina, forming part of this subclade, but grouping more distantly. This phylogeny generally confirmed morphological observations, where similarities were found between the Gliocephalotrichum and Cylindrocladium anamorphs of Leuconectria and Calonectria (Rossman \& Samuels 1993), the most notable similarities being the formation of cylindrical conidia and brown pigment diffusing in the agar.

In addition to Gliocephalotrichum, several other anamorph form-genera are similar to Cylindrocladium in producing cylindrical macroconidia, phialidic conidiogenous cells and slimy conidia. Among these are Cylindrocladiella Boesew. (Ce.), Gliocladiopsis S.B. Saksena, Xenocylindrocladium Decock et al and Curvicladium Decock \& Crous. Of these, only Cylindrocladiella (Boesewinkel 1982) and Xenocylindrocladium (Decock et al 1997) have been linked to teleomorphs, both forming part of Nectria sensu lato. We have included representatives of these genera in the present evaluation of holomorphs having cylindrical conidia.

Anamorphs have assumed an increasingly important role in the delimitation of genera of the Hypocreales (Rossman et al 1999), to the extent that they have replaced ascospores as the single most important phylogenetically informative character. The advent of data derived from sequences of the rDNA gene has provided independent support for the phylogenetic significance of anamorphs. These data have indicated that some anamorphs that have the 'hypocrealean phenotype' do, in fact, cluster with sexually reproducing genera of the Hypocreales (e.g. Spatafora \& Blackwell 1993, Rehner \& Samuels 1994, 1995, Glenn et al 1996; O'Donnell et al 1998). Moreover, individual anamorph species that are either not known to reproduce sexually, or that are encountered frequently in the absence of sexual reproduction (i.e. perithecia) can be phylogenetically related to sexually reproducing holomorphs (Kuhls et al 1996, 1997).

Additional anamorph genera and species are likely to be linked to the Hypocreales as additional DNA sequence data become available. Considering this and recent trends in favour of discarding the phenetically based form-genera of the deuteromycetes (Sutton, 1993), Rossman (1993, this volume) proposed that each hypocrealean teleomorph genus should potentially be linked to one anamorph genus. This is in step with a more holomorphic approach, encompassing both teleomorph and anamorph (Hawksworth, 1993). However, the generic concepts as currently applied still have a strong influence from Saccardo's original taxonomic system (Rossman, 1996, this volume), and detailed cultural and molecular studies are required to clarify anamorph/teleomorph relationships and attain a genus for genus phylogeny as far as possible.

The revision of genera of the Hypocreales proposed by Rossman et al (1999) was acknowledged by the authors as a 'starting point' rather than a final statement on the Hypocreales. They acknowledged that many of the genera that they delimited are still poly- or paraphyletic, and that new genera remain to be described as new species are discovered through exploration. Most of the genera that were recognized by Rossman et al (1999) have not been assessed using DNA characters. In the present work we consider holomorphs of nectriaceous ascomycetes that have cylindrical conidia whose anamorphs are classified in several genera. These ascomycetes are united by the formation of small, red perithecia that are situated on a small basal stroma, occur singly or in clusters, and have pigments that change colour in $3 \% \mathrm{KOH}$. Species of Calonectria are characterized by warted perithecia, and clavate, long-stemmed asci without a visible apical discharge mechanism, and large ($\leq 25 \mu \mathrm{~m}$), 1- to multiseptate, hyaline, smooth, fusiform ascospores with obtuse ends that aggregate in the upper third of the ascus. Based on teleomorph morphology alone, however, species of Calonectria can only be identified to species complexes, and the anamorph is required for identification at species level. The perithecial wall anatomy of Calonectria is not unique, but is also shared by teleomorphs of some Cylindrocarpon (destructans-complex), Xenocylindrocladium and Gliocladiopsis species. The latter are primarily distinguished from Calonectria based on their ascus and ascospore morphology. That said, teleomorphs of the latter three genera would be difficult if not impossible to distinguish without knowledge of their respective anamorphs. In contrast, the teleomorphs of Cylindrocladiella spp. are quite distinct from those discussed above, as they have a smooth, relatively thin-walled Cosmospora-like perithecia that easily collapse laterally when dry, a less well-developed basal stroma, and smaller ascospores.

Materials and Methods

Isolates

Strains were either obtained from other culture collections or isolated from infected plant material or soil samples (Crous et al., 1997) and deposited in the culture collection of the Department of Plant Pathology, University of Stellenbosch, South Africa (acronym STE-U, Table 1). Hypocrealean genera are abbreviated as follows: Calonectria - Ca.; Cylindrocladium - Cy.; Cylindrocladiella - Ce., and Cylindrocarpon - Co.

Acronyms used to denote culture collections of institutions and individuals from which isolates were obtained include: ATCC - American Type Culture Collection, Virginia, U.S.A.; A.R. - A.R. (A. Y. Rossman), C. T. R. (C. T. Rogerson) and G. J. S. (G. J. Samuels), United States Department of Agriculture, A.R.S., Beltsville, Maryland, U.S.A.; IMI - CABI Bioscience, Bakeham Lane, Egham, U.K.; IMUR - Institute of Mycology, University of Recife, Brazil; MUCL - Mycothèque, Laboratoire de Mycologie Systématique et Appliqée, Université Louvain-la-Neuve, Belgium; STE-U - (see above), and UFV - (A. C. Alfenas), Department of Plant Pathology, University of Viçosa, Viçosa, Minas Gerais, Brazil.

Morphological comparisons

Isolates were cultured on 2% malt extract agar (MEA) (Biolab, Midrand, South Africa), plated onto carnation-leaf agar (CLA) (Fisher et al., 1982; Crous et al., 1992), incubated at $25^{\circ} \mathrm{C}$ under near-ultraviolet light, and examined after 7 d . Only material growing on carnation leaves was examined. Mounts were prepared in lactophenol, examined using Nomarski interference phase contrast and bright-field phase contrast microscopy, and measurements made at $\times 1000$ magnification. The 95% confidence intervals were determined from at least 30 observations and the minimum and maximum ranges given in parentheses. Cardinal temperature requirements for growth and cultural characteristics were determined after 6 d on MEA, using procedures described by Crous and Wingfield (1994). Colony colours were coded according to Rayner (1970). Sections of perithecia were cut at $10 \mu \mathrm{~m}$ thickness on a CM1100 Cryostat microtome (Leica, Heidelberg, Germany).

Table I. Isolates used in this study.

Anamorph	Teleomorph	Original no.	Collector	Host	Origin
Cylindrocladium scoparium	Calonectria morganii	ATCC 38227	S.A. Alfieri	Mahonia bealei	Florida, U.S.A.
		ATCC 46300	D.M. Benson	Leucothoe catesbaei	North Carolina, U.S.A.
Cylindrocladium floridanum	Calonectria kyotensis	ATCC 18882	R.H. Morrison	Peach roots	Florida, U.S.A.
		ATCC 18834	T. Terashita	Robinia pseudoacacia	Japan
Cylindrocladium candelabrum	Calonectria scoparia	STE-U 1677	A.C. Alfenas	Eucalyptus sp.	Amazonas, Brazil
		STE-U 1674	A.C. Alfenas	Eucalyptus sp.	Bahia, Brazil
Cylindrocladium multiseptatum	Caloriectria multiseptata	STE-U 1589	M.J. Wingfield	Eucalyptus sp.	Sumatra, Indonesia
		STE-U 1602	M.J. Wingfield	Eucalyptus sp.	Sumatra, Indonesia
Cylindrocladiella novae-zelandiae	None described	ATCC 44815	H.J. Boesewinkel	Rhododendron indicum	New Zealand
Cylindrocladiella elegans.	None described	STE-U 518	P.W. Crous	Litter	Western Cape, South Africa
Cylindrocladiella parva	None described	ATCC 28272	H.J. Boesewinkel	Telopea speciossima	New Zealand
		STE-U 373	P.W. Crous	Pinus radiata	Western Cape, South Africa
Cylindrocladiella peruviana	None described	IMUR 1843	M.P. Herrera	Ants	Brazil
		STE-U 395	P.W. Crous	Acacia mearnsii	KwaZulu Natal, South Africa
Cylindrocladiella lageniformis	None described	UFV 115	A.C. Alfenas	Eucalyptus sp.	Brazil
Cylindrocladiella infestans	Nectricladiella infestans	ATCC 44816	H.J. Boesewinkel	Pinus pinea	New Zealand
		IMI 299376	K.B. Boedijn \& J. Reitsma	Arenga pinnata	Indonesia
		STE-U 708	M. J. Wingfield	Soil	Hong Kong
		STE-U 2319	J.E. Taylor	Soil	Madagascar
Cylindrocladiella microcylindrica	Nectricladiella camelliae	ATCC 38571	W.A. Shipton	Pinus pinea	Australia
		STE-U683	M.J. Wingfield	Soil	Thailand
		STE-U 918	Unknown	Soil	Salta, Argentina
Cylindrocladiella camelliae	None described	STE-U 234	P.W. Crous	Eucalyptus grandis	Northern Province, South Africa
		STE-U 277	P.W. Crous	Eucalyptus grandis	Northern Province, South Africa
Cylindrocarpon macroconidialis	Neonectria radicicola var. macroconidialis	GJS 83-162	G.J. Samuels	Astelia sp.	New Zealand
Cylindrocarpon destructans	Neonectria radicicola var. radicicola	AR 2553	A.Y. Rossman	Bark	Venezuela
		CTR 71-322	G.J. Samuels	Host unknown	Venezuela
Cylindrocarpon destructans var. coprosmae	Neonectria radicicola var. coprosmae	CTR 73-152	G.J. Samuels	Cosmospora sp.	New Zealand
		GJS_85-182	G.J. Samuels	Unknown	New Zealand
Gliocladiopsis tenuis	Glionectria tenuis	STE-U 706	M. J. Wingfield	Soil	Hong Kong
Gliocladiopsis sumatrensis	None described	STE-U 1351	M.J. Wingfield	Soil	Sumatra, Indonesia
Gliocladiopsis irregularis	None described	STE-U 718	A.C. Alfenas	Soil	Sumatra, Indonesia
Curvicladium cigneum	None described	STE-U 1595	C. Decock	Leaf of angiosperm	French Guiana
Xenocylindrocladium serpens	Xenocalonectria serpens	STE-U 1144	G.L. Hennebert	Bark of unknown tree	Ecuador

DNA extraction and sequencing

Single conidial isolates were grown on MEA plates. Mycelial mats were removed from the plates and ground to a powder with the help of liquid nitrogen and a mortarand pestle. Approximately 40 mg of ground mycelium was added to 2 ml microtubes containing $600 \mu \mathrm{l}$ of extraction buffer. The extraction buffer consisted of 1% SDS, 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0), 150 \mathrm{mM} \mathrm{NaCl}$ and 100 mM EDTA. The subsequent protocol was followed as suggested for the Wizard Genomic DNA Purification kit (Promega, Madison, U.S.A.).

Reactions (total volume $25 \mu \mathrm{I}$) comprised of 1.5 units Biotaq (Bioline, London, U.K.) with the buffer as recommended by the manufacturer, 1 mM deoxynucleoside triphosphates, $4 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mu \mathrm{M}$ primer oligonucleotide and approximately 10 to 30 ng of fungal genomic DNA as target. Reactions were performed on a Rapidcycler (Idaho Technology, Idaho, U.S.A.). Reaction conditions consisted of the following: an initial denaturation for 2 min at $96^{\circ} \mathrm{C}$, followed by 30 cycles of 15 s at $96^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 35 s at $75^{\circ} \mathrm{C}$ with a slope of 1.0 . A last elongation step of 2 min at $75^{\circ} \mathrm{C}$ was included. DNA was amplified using the primers ITS1 and ITS4 (White et al 1990). The region amplified was the 5.8 S ribosomal gene and the two internal transcribed spacers (ITS1 and ITS2). An approximately 540 bp fragment was amplified. The PCR products were sequenced using the ABI Prism 377 DNA Sequencer (Perkin-Elmer, Norwalk, Connecticut). Sequencing conditions were as described in Part 2.

Phylogenetic analysis

Sequences were aligned with the computer package Malign version 2.7 (Wheeler \& Gladstein 1991) and adjusted manually. Phylogenetic analysis of aligned DNA sequences was performed using PAUP* Version 4.0b1 (Swofford 1998) and printed with the help of Treeview Version 1.5 (Page 1996). In order to limit the influence of large gaps consisting of several characters only the first character of a multicharacter gap was coded. Subsequent gap characters were coded as missing data. Having done this, the analyses were done treating these single character gaps as fifth characters. A number of strains representing different species in each genus were selected for the generic analysis (Fig. 1). In this instance a heuristic search option with 1000 random addition sequences was used. The analysis for species with Cylindrocladiella anamorphs were performed using the branch and bound search option. Confidence intervals were determined using 1000 bootstrap
replications in all cases. Decay indices were determined with Autodecay Version 4.0 (Eriksson 1998). A partition homogeneity test was performed in PAUP* Version 4.0 b 1 in order to test whether phylogenies obtained from the ITS and β-tubulin data sets differed significantly. This was done heuristically with 1000 replications. Data sets were also analyzed by using Neighbor-Joining with uncorrected ("p") and maximum-likelihood distance methods in PAUP* Version 4.0b1.

Taxonomy

A phylogenetic analysis of all species in this study, based on the DNA sequence of the two flanking internally transcribed spacers (ITS1 and ITS2) and the 5.8 S ribosomal RNA gene is shown in Fig. 1. When gaps were coded as missing the number of possible most parsimonious trees was in excess of 1000. With gaps treated as a fifth character only one most parsimonious tree was found. No difference in the number of most parsimonious trees was found when all subsequent gap characters after the first gap character was coded as missing. However, this reduced the number of parsimony informative sites from 163 to 139 . All species clustered in accordance with their distinctive anamorphs and the groupings evident from this are discussed in more detail below.

Calonectria/Cylindrocladium, Curvicladium, Nectria/Xenocylindrocladium

The type species of Calonectria is Ca. daldiniana De Not., now considered a synonym of Ca. pyrochroa (Desm.) Sacc. (Rossman 1979a). Calonectria encompasses species with brightly coloured ascocarps that become red in $3 \% \mathrm{KOH}$ solution ($\mathrm{KOH}+$), have a thick perithecial wall that consists of large cells and have a darkened stromatic base. Ascospores of Calonectria tend to be longer than $25 \mu \mathrm{~m}$, are fusiform, and usually phragmosporous. Cylindrocladium spp. have been linked to Calonectria teleomorphs exclusively (Rossman 1993). Rossman (1979b) redisposed many species ascribed to Calonectria.

The anamorph genus Cylindrocladium was originally based on C. scoparium Morgan, a species that was collected from a dead pod of honey locust (Gleditsia triacanthos L.) in Ohio, U.S.A. (Morgan 1892). Species in this genus are well-known plant pathogens and have been isolated from all continents in tropical and subtropical zones world-wide (Crous \& Wingfield 1994). Species concepts in Cylindrocladium have been defined based on the dimensions and septation of conidia, phialide shape, stipe length, cultural characteristics, as well as the shape and diameter of the

Fig. 1. One of four most parsimonious trees (405 steps $\mathrm{Cl}=0.681 \mathrm{RC}=0.554 \mathrm{RI}=0.812$) obtained with a heuristic search in PAUP* version 4.0 b 1 and 1000 random addition sequences. Bootstrap values are shown above branches and decay indices below. Characters used were based on a data set comprising of ITS1 and 2 as well as the 5.8 S ribosomal gene DNA sequences.
replications in all cases. Decay indices were determined with Autodecay Version 4.0 (Eriksson 1998). A partition homogeneity test was performed in PAUP* Version 4.0 b 1 in order to test whether phylogenies obtained from the ITS and β-tubulin data sets differed significantly. This was done heuristically with 1000 replications. Data sets were also analyzed by using Neighbor-Joining with uncorrected ("p") and maximum-likelihood distance methods in PAUP* Version 4.0b1.

Taxonomy

A phylogenetic analysis of all species in this study, based on the DNA sequence of the two flanking internally transcribed spacers (ITS1 and ITS2) and the 5.8 S ribosomal RNA gene is shown in Fig. 1. When gaps were coded as missing the number of possible most parsimonious trees was in excess of 1000. With gaps treated as a fifth character only one most parsimonious tree was found. No difference in the number of most parsimonious trees was found when all subsequent gap characters after the first gap character was coded as missing. However, this reduced the number of parsimony informative sites from 163 to 139. All species. clustered in accordance with their distinctive anamorphs and the groupings evident from this are discussed in more detail below.

Calonectria/Cylindrocladium, Curvicladium, Nectria/Xenocylindrocladium

The type species of Calonectria is Ca. daldiniana De Not., now considered a synonym of Ca. pyrochroa (Desm.) Sacc. (Rossman 1979a). Calonectria encompasses species with brightly coloured ascocarps that become red in $3 \% \mathrm{KOH}$ solution ($\mathrm{KOH}+$), have a thick perithecial wall that consists of large cells and have a darkened stromatic base. Ascospores of Calonectria tend to be longer than $25 \mu \mathrm{~m}$, are fusiform, and usually phragmosporous. Cylindroc/adium spp. have been linked to Calonectria teleomorphs exclusively (Rossman 1993). Rossman (1979b) redisposed many species ascribed to Calonectria.

The anamorph genus Cylindrocladium was originally based on C. scoparium Morgan, a species that was collected from a dead pod of honey locust (Gleditsia triacanthos L.) in Ohio, U.S.A. (Morgan 1892). Species in this genus are well-known plant pathogens and have been isolated from all continents in tropical and subtropical zones world-wide (Crous \& Wingfield 1994). Species concepts in Cylindrocladium have been defined based on the dimensions and septation of conidia, phialide shape, stipe length, cultural characteristics, as well as the shape and diameter of the
terminal vesicle found on stipes eminating from the conidiophores (Figs. 2-5) (Crous \& Wingfield, 1994).

Previous studies, using sequence data obtained from ITS, β-tubulin and the HMG box of MAT-2, showed that concordant phylogenies could be derived from the gene trees based on different loci in this genus (Crous et al 1999, Part 3). Some of these species were also shown to have interfertility barriers, thus complying with a biological species concept (Part 1). Although these results generally coincided with morphological species concepts, in some cases several phylogenetic species (based on DNA sequence data) and biological species could be described within the parameters of a morphological species.

Two new hyphomycete genera with penicillate conidiophores and unique stipe elongations were described that also appeared to be morphologically closely related
to Cylindrocladium (Decock et al 1997, Decock \& Crous 1998). Xenocylindrocladium serpens was described from Ecuador as the type species of this genus, while its teleomorph, distinct from Calonectria, was described in Nectria as N. serpens Decock et al. (Decock et al 1997). A similar fungus, Curvicladium cigneum Decock \& Crous, was later described as yet another new genus in this complex, characterized by curved, rough, sparsely septate stipe extensions (Decock \& Crous 1998). No teleomorph has yet been reported for Curvicladium (Fig. 12).

The species of Calonectria included in this study all produced Cylindrocladium anamorphs characteristic of this genus, and formed a clearly distinct clade, strongly supported by high bootstrap values (Fig. 1). The Calonectria clade was shown to be closely related to Xenocylindrocladium and Curvicladium (Fig. 1). Their close proximity to Calonectria suggests a shared ancestor. This hypothesis will still have to be tested further, however, using additional gene trees.

Figs. 6-12. Nectria serpens and Curvicladium cigneum. 6-11. Xenocalonectria serpens and its anamorph Xenocylindrocladium serpens. 6. Vertical section through perithecium. 7. Ostiolar region of perithecium. 8-9. Cylindrical asci with apical apparatus. 10. Conidiophores with stipe extensions. 11. One-septate conidia. eum. 12. Conidiophores and conidia of Curvicladium cigneum. Bars $=10 \mu \mathrm{~m}$.

Based on the phylogenetic distance shown in Fig. 1, as well as distinct morphological differences in the anamorph of Xenocylindrocladium, we propose the following new holomorph genus:

Xenocalonectria Crous \& C.L. Schoch gen. nov.
Anamorphe: Xenocylindrocladium Decock, Hennebert \& Crous
Typus: Xenocalonectria serpens (Decock, Hennebert \& Crous) Crous \& C.L. Schoch Perithecia superficialia, solitaria vel aggregata, globosa ad subglobosa, verrucosa, lutea usque ad rubra, cum basi obscure rubra stromatica, $\mathrm{KOH}+$; pariete perithecii ex duabus regionibus composito: strato exteriore ex textura globulosa cum parietibus crassitunicata, strato interiore ex cellulis compressis texturae angularis; periphyses ostioli hyalinae, tubulares cum apicibus rotundatis. Asci unitunicati, octospori, cylindrici basi elongata, apice applanato et apparatu apicali refringente. Ascosporae in parte superiore asci aggregatae, hyalinae, late vel anguśte ellipsoideae, leves, medio uniseptatae.

Perithecia superficial, solitary or in clusters, globose to subglobose, warted, yellow to red and with a dark red stromatic base, $\mathrm{KOH}+$; perithecial wall consisting of two regions: outer layer of thick-walled textura globulosa, inner layer of compressed cells of textura angularis; ostiolar periphyses hyaline, tubular with rounded ends. Asci unitunicate, 8 -spored, cylindrical, with long basal stalks, a flattened apex, and a refractive apical apparatus. Ascospores aggregated in the upper third of the ascus, hyaline, broadly to narrowly ellipsoidal, smooth, medianly 1 -septate. Anamorph is Xenocylindrocladium.

Xenocalonectria serpens (Decock, Hennebert \& Crous) Crous \& C.L. Schoch, comb.nov. - (Figs. 6-11).
\equiv Nectria serpens Decock, Hennebert \& Crous, Mycol. Res. 101: 788. 1997.
Anamorph: Xenocylindrocladium serpens Decock, Hennebert \& Crous, Mycol. Res. 101: 788. 1997.

Holotypes. ECUADOR. SUCUMBIOS: Reserva de Producción Faunistica, Cuyabeno, Tierra firme, bark of a fallen tree trunk, Jul. 1993, G.L. Hennebert, MUCL 39315a, holotype of teleomorph, MUCL 39315b, holotype of anamorph (culture extype: MUCL 39315 = STE-U 1144).

This species was described in full by Decock et al. (1997). Ascospores aggregated in the upper third of the ascus, hyaline, broadly to narrowly ellipsoidal, smooth, with granular contents, (8-)12-20(-25) $\times 4-5(-6) \mu \mathrm{m}$, medianly 1 -septate, becoming constricted at the septum, and developing up to 2 septa with age. Macroconidia
cylindrical, hyaline, straight with rounded ends, 1 -septate, (24-)27-33(-36) $\times 2.5-3(-$ 3.5) $\mu \mathrm{m}$.

Cultures. Colony colour (reverse) 13K, amber brown (Rayner 1970). Chlamydospores in extensive numbers, with medium to extensive sporulation on aerial mycelium.

Cardinal temperature requirements for growth. Minimum above $5^{\circ} \mathrm{C}$, optimum 25 $30^{\circ} \mathrm{C}$, maximum below $35^{\circ} \mathrm{C}$.

Substrate. Bark of fallen trees.

Nectria/Cylindrocarpon

Perithecial anatomy in N. radicicola and its relatives is similar to that of Calonectria (Samuels \& Brayford 1990). Samuels and Seifert (1987) commented on the similarity between Cylindroc/adium and the Cylindrocarpon Wollenw. anamorphs of N. radicicola and closely related species. Calonectria and the nectriaceous species centred around N. radicicola are distinguished primarily by the respective occurrence of Cylindrocladium and Cylindrocarpon anamorphs, as well as on their distinct ascus and ascospore morphology (Samuels \& Brayford 1990). Ascospores of the radicicola-group are, however, much smaller than those of Calonectria spp. Rossman et al (1999) referred many holomorphs having Cylindrocarpon anamorphs to Neonectria Wr. Nectria radicicola (which was not transferred to Neonectria) and its relatives, all of which have Cylindrocarpon anamorphs, cluster in a clade (Fig. 1) that is sister to Cylindroc/adiella. Whether N. radicicola is representative of all holomorphs having Cylindrocarpon anamorphs (Neonectria) is currently being evaluated (F. Mantiri \& G. Samuels pers. comm.).

Nectria/Cylindrocladiella

A new anamorph genus was erected in 1982 to accommodate five small-spored species of Cylindrocladium (Boesewinkel, 1982). This new genus, Cylindrocladiella, was reported to have different conidiophore branching patterns, conidial shapes, dimensions as well as cultural characteristics. The recognition of Nectria camelliae Shipton as the teleomorph for one of these species made a strong case for the delimitation of the new genus. More recent studies have confirmed the genera Cylindrocladium and Cylindrocladiella to be distinct (Crous \& Wingfield, 1993; Crous
et al 1994, Victor et al 1998). Samuels et al (1991) allocated N. camelliae (anamorph: Ce. infestans) to Nectria subg. Dialonectria, while Rossman et al (1999), in a re-evaluation of the group, placed it in Cosmospora as C. camelliae (Shipton) Rossman \& Samuels, based on its perithecial morphology and anatomy. As presently defined by Rossman et al (1999), Cosmospora is heterogeneous in having diverse anamorphs, including Cylindrocladiella. In comparison to Calonectria spp., the perithecial wall of Cosmospora camelliae is smooth, narrow, and its ascospores are much smaller.

Victor et al (1998) recognised seven species in Cylindrocladiella. All these species could be distinguished based on RFLP and AT-DNA data, as well as morphology. The AT-DNA data showed differences in the profiles of the ex-type isolates of Cosmospora camelliae (ATCC 38571; teleomorph) and Ce. infestans (ATCC 44816; anamorph). One restriction enzyme also showed differences in the RFLP profiles, but cultural and morphological characters have shown little variation other than conidial length (Victor et al 1998).

Figs. 13-17. Nectricladiella infestans and its Cylindrocladiella microcylindrica anamorph. 13. Vertical setum through a perithecium, showing smooth wall and hyphal mute, brown seta. 14. Broken asci and ascospores 15. Ascospores. 16. Conidium and conidia. 17. Conidiophore with stipe extensions and terminal cylindrical vesicle. Bars $=10$ $\mu \mathrm{m}$.

The Nectria/Cylindrocladiella clade has strong bootstrap support (Fig. 1). Relationships between the groupings Nectria/Cylindrocladiella and Neonectria are equivocal because the clade that includes these two groups received only weak
bootstrap support. However, both groups are strongly supported as separate entities in accordance with their different anamorphs. Two areas of the genome were utilised in order to investigate relationships in those species with Cylindrocladiella anamorphs. When the phylogenies derived from data sets obtained from the ITS regions flanking the 5.8 S ribosomal RNA gene as well as the 5 ' end of the β-tubulin gene were compared in a partition homogeneity test, they were not found to differ significantly ($P=0.33$, where $P<0.05$ denotes significance) (Fig. 18). The number of parsimony informative sites in the ITS data set (25) were much less than those in the β-tubulin data set (109). A similar trend occurred in Calonectria species (Part 2).

Fig. 18. Concordance of two most parsimonious trees obtained from the ITS (left) and β tubulin (right) data sets. The ITS data set yielded one most parsimonious tree and β-tubulin yielded four. Trees were obtained with a branch and bound search in PAUP* version 4.0b1 and 1000 random addition sequences. Bootstrap values are shown above branches and decay indices below.

The DNA sequence data of both ITS and β-tubulin loci have shown clear differences between two groups of isolates identified as Ce . infestans (Fig. 18). One group is characterised by the culture on which the name Cosmospora camelliae is based, while the other is characterised by the culture on which the name Ce. infestans is based. Furthermore, an isolate from the "anamorph type grouping", recently obtained from Madagascar, produced a teleomorph in culture. The clear differences shown in the molecular data, based on two DNA sequence data sets and the
previous characters described by Victor et al. (1998), suggest that Ce. infestans contains more than one genetically distinct taxon. These are described as new below.

Cylindrocladiella microcylindrica, Ce. peruviana (Bat., J.L. Bezerra \& S. Herrera) Boesew. and Ce. camelliae (Venkataram \& C.S.V. Ram) Boesew. were shown to cluster together in the tree based on the ITS data (Fig. 18). Likewise, the β-tubulin data set showed support for a distinct grouping of these species, but could differentiate between them (Fig. 18). Previously, Crous and Wingfield (1993) synonymized Ce . peruviana with Ce . camelliae based on similarity in morphology. Conidiophores of both of these species have ellipsoid to lanceolate vesicles and similar conidial dimensions as well as similar temperature growth relationships, but Victor et al (1998) separated them based on differences in RFLP profiles as well as vesicle width and taper. The data in Figs. 1 and 18 show that this close relationship is also reflected in the molecular characters used here. The β-tubulin data set supported their separation. Further variation in this clade based on the β-tubulin sequences was also evident. Although molecular data confirmed Ce. camelliae and Ce. peruviana to be different, isolates of the third species, Ce. microcylindrica, exhibited similarities to these two taxa, and more isolates will have to be studied to clearly resolve the boundaries among these species.

The relationships of the other species in the genus, Ce. elegans Crous \& M.J. Wingf., Ce. novaezelandiae (Boesew.) Boesew., Ce. lageniformis Crous et al. and Ce. parva (P.J. Anderson) Boesew. were represented as separate entities in both data sets (Fig. 18). A close relationship between Ce . novaezelandiae and Ce . elegans is only supported by the β-tubulin data set. Based on the distinct clade of Cylindrocladiella species identified here, as well as their unique morphological traits, backed up by molecular data, a new holomorphic genus is proposed below.

Nectricladiella Crous \& C.L. Schoch gen. nov.
Anamorphe: Cylindrocladiella Boesewinkel
Typus: Nectricladiella camelliae (Shipton) Crous \& C.L. Schoch
Perithecia superficialia, solitaria, stromate basalari egentes, globosa ad obpyriformia, collabentia ubi arida, levia, numerosis setis parvis ex pagina parietis perithecii orientibus; apice et corpore perithecii rubro, basi brunnea, $\mathrm{KOH}+$, ostiolum ex cellulis columnaribus compositum, cum periphysibus hyalinis inconspicuis indutum; pariete
perithecii ex 3-4 stratis texturae angularis composito cum cellulis compressis, hyalinis. Asci unitunicati, octospori, cylindrici, sessiles, tenuitunicati et apice applanato. Ascosporae uniseriatae, superpositae, hyalinae, ellipsoideae ad fusiformes, cum apicibus obtusis, uniseptatae.

Perithecia superficial, solitary, basal stroma absent, globose to obpyriform, collapsing laterally when dry, smooth, with several minute, brown setae arising from the perithecial wall surface, red, $\mathrm{KOH}+$; ostiole consisting of clavate cells, lined with inconspicuous, periphyses; perithecial wall consisting of a single region of 3-4 cell layers of textura angularis, which become hyaline and slightly flattened towards the centre. Asci unitunicate, 8 -spored, cylindrical, sessile, thin-walled, with a flattened apex, and a refractive apical apparatus. Ascospores uniseriate, overlapping, hyaline, ellipsoid to fusoid with obtuse ends, smooth, 1-septate. Anamorph is Cylindrocladiella.

Nectricladiella camelliae (Shipton) Crous \& C.L. Schoch comb. nov.
\equiv Calonectria camelliae Shipton \& C. Booth, Trans. Br. Mycol. Soc. 69: 59. 1977 (nom. nud.).
\equiv Calonectria camelliae Shipton, Trans. Br. Mycol Soc. 72: 163. 1979.
\equiv Nectria camelliae (Shipton) Boesewinkel, Can. J. Bot. 60: 2293. 1982.
\equiv Cosmospora camelliae (Shipton) Rossman \& Samuels, Stud. Mycol. 42: 118. 1999. Anamorph: Cylindroc/adiella microcylindrica Crous \& D. Victor sp. nov.

Etymology. Micro + cylindrica, named after its smaller conidia and cylindrical vesicles.

Holotypes. AUSTRALIA. QUEENSLAND: Fruit of a rainforest tree, W.A. Shipton, 1973, IMI 174836, holotype of teleomorph PREM 51724, holotype of anamorph (culture ex type: ATCC $38571=$ STE-U 2375).

Characteribus culturae, morphologia et temperaturae provento C. infestanti similis sed distincta propter conidia minoria. Conidia hyalina, 1-septata, cylindracea, apicibus obtusis, (10-)12-14(-15) $\times 2(-3) \mu \mathrm{m}$.

Perithecia described in full by Shipton (1979). Ascospores hyaline, median septate, unconstricted, oval to ellipsoid, $6.5-10.5 \times 2.5-4 \mu \mathrm{~m}$. Anamorph morphology and
cultural characteristics similar to those of Ce . infestans, but conidia shorter (10-)12-$14(-15) \times 2(-3) \mu \mathrm{m}$, than those of the former (10-) $14-16(-20) \times 2(-3) \mu \mathrm{m}$.

Cultures. Colony colour (reverse) 19D, buff yellow (Rayner 1970). Chlamydospores in medium numbers, arranged in chains.

Cardinal temperature requirements for growth. Minimum above $5^{\circ} \mathrm{C}$, optimum $25^{\circ} \mathrm{C}$, maximum below $35^{\circ} \mathrm{C}$.

Substrate. Soil.

Distribution. Australia, Argentina, Brazil, Thailand.

Nectricladiella infestans Crous \& C.L. Schoch sp. nov.
Anamorph. Cylindrocladiella infestans Boesewinkel, Can. J. Bot. 60: 2290. 1982.

Holotypes. MADAGASCAR: Rana, isolated from soil, J.E. Taylor, 1998, PREM 56380, holotype of teleomorph (culture ex type: STE-U 2319). NEW ZEALAND: Isolated from Pinus pinea, H.J. Boesewinkel, CBS 487.76, holotype of anamorph (culture ex type: ATCC $44816=$ STE-U 2380).

Description. Perithecia superficialia, solitaria, sine stromate basale, globosa ad obpyriformia, $150-200 \mu \mathrm{~m}$ alta et lata, collabentia ubi arida, levia, cum numerosis setis parvis ex pagina parietis perithecii orientibus; apice et corpore perithecii rubro, base brunnea, $3 \% \mathrm{KOH}+$ [bene agens in $3 \% \mathrm{KOH}$], parte superiore rubro brunnea facta, base brunneo rubra facta; ostiolum ex cellulis columnaribus compositum, cum periphysis hyalinis inconspicuis; pariete perithecii 10-15 $\mu \mathrm{m}$ lato, ex 3-4 stratis texturae angularis composito; interiore regione hymenii ex 3-4 stratis composita, cum cellulis compressis, hyalinis. Asci unitunicati, octospori, cylindrici, leviter clavati in maturitate, sessiles, cum parietibus tenuibus et apice applanato, apparatu apicale refracto, $35-60 \times 4-6 \mu \mathrm{~m}$. Ascosporae: 8 in uno asco, uniseriatae, superpositae, hyalinae, ellipsoideae ad fusiformes, cum apicibus obtusis, leves, altissimae ad medium septum vel ad regionem leviter superiorem, non constrictae, $8-10(-12) \times 3$ $3.5 \mu \mathrm{~m}$; ex perithecio extantes, profusae et hyalinae. Morphologia anamorpha et characteristica in cultura Ce . microcylindricae similis sed cum conidiis longioribus, $(10-) 14-16(-20) \times 2(-3) \mu \mathrm{m}$.

Perithecia superficial; solitary, basal stroma absent, globose to obpyriform, 150-200 μm high and thick, collapsing when dry, smooth, with several minute, brown setae arising from the perithecial wall surface; apex and perithecial body red, base brown, reacting positive in $3 \% \mathrm{KOH}$, upper part turning red-brown, base becoming brownred; ostiole consisting of columnar cells, lined with inconspicuous, hyaline periphyses; perithecial wall 10-15 $\mu \mathrm{m}$ thick, consisting of 3-4 layers of textura angularis; inner hymenium region of 3-4 layers of flattened, hyaline cells. Asci unitunicate, 8 -spored, cylindrical, becoming slightly clavate at maturity, sessile, thinwalled, with a flattened apex, and a refractive apical apparatus, $35-60 \times 4-6 \mu \mathrm{~m}$. Ascospores 8 per ascus, uniseriate, overlapping, hyaline, ellipsoid to fusoid with obtuse ends, smooth, widest at median septum or slightly above, unconstricted, 8-$10(-12) \times 3-3.5 \mu \mathrm{~m}$; extruding from perithecia in yellow mass. Anamorph morphology and cultural characteristics similar to those of Ce . microcylindrica, but conidia longer, (10-) 14-16(-20) $\times 2(-3) \mu \mathrm{m}$.

Habitat. Arenga pinnata, Pinus pinea, soil.

Distribution. New Zealand, Madagascar, Hong Kong, Indonesia.

Leuconectria/Gliocephalotrichum

The similarities in perithecial anatomy between Leuconectria and Calonectria have been noted before (Rossman \& Samuels 1993). Their Gliocephalotrichum and Cylindrocladium anamorphs also share several characteristics. Besides having penicillate conidiophores, cylindrical conidia, and forming chlamydospores in culture, both anamorph genera have stipe extensions, even though they originate from different areas on the conidiophores. Cultural characteristics are also similar. Furthermore, both teleomorphs have $\mathrm{KOH}+$, solitary, red perithecia. Perithecia of Leuconectria are distinct, however, in having a white covering that is absent in species of Calonectria. Thus far, isolates of Leuconectria have been obtained from decaying leaves, fruits, or from soil, and nothing is known about their potential status as plant pathogens. It is similar to the other taxa dealt with in this paper in that they occupy similar habitats, all basically being soil fungi that converge in forming more or less similar, small, red perithecia. This is in contrast to Cylindrocarpon sensu stricto
(exclusive of the radicicola complex), which are primarily lignicolous and cankerforming.

The DNA sequence data employed here support the separation of Leuconectria from other genera in this study (Fig. 1). The data were ambiguous about the relationship of Leuconectria to other genera that have cylindrical conidia while at the same time confirming the close relationship with Calonectria (see also Rehner \& Samuels 1995).

Gliocladiopsis

The anamorph genus Gliocladiopsis S.B. Saksena (Saksena 1954, Crous \& Peerally 1996) closely resembles Cylindrocladium. The type species of the genus, G. sagariensis S.B. Saksena was shown to be synonymous with Cylindrocarpon tenue Bugn. (Barron 1968). Although it had been suggested previously that the genus Gliocladiopsis should be retained for species lacking stipe extensions (Crous \& Wingfield 1993), Watanabe (1994) synonymised it with Cylindrocladium based on the uncertainty of stipe formation. However, studies on Cylindrocladium and Cylindrocladiella have shown that both these genera regularly produce stipe extensions on their conidiophores under controlled conditions (Crous \& Wingfield 1993, Crous \& Wingfield 1994), suggesting that the non-stipe forming genus Glioc/adiopsis, with its multi-branched, penicillate conidiophores should be retained. Gliocladiopsis was also represented by a clade. However, as for Leuconectria, the relationship of this genus to the other genera selected for this study is still uncertain, due to low bootstrap support for the phylogeny (Fig. 1). The three species described for Gliocladiopsis have no known teleomorphs (Saksena 1959, Crous \& Wingfield 1993, Crous \& Peerally 1996). The present study describes the first teleomorph associated with this genus, which was produced by homothallic cultures obtained from single conidia of G. tenuis (Bugn.) Crous \& M.J. Wingf. (STE-U 706) on CLA after 2 mo of incubation at $22^{\circ} \mathrm{C}$ with a 12 h fluorescent white light / dark regime.

Herewith we propose a new holomorph genus for Gliocladiopsis. The new genus is based on the distances observed between other genera in the ITS DNA sequence based tree, as well as the distinct anamorph, Gliocladiopsis.

Glionectria Crous \& C.L. Schoch gen. nov.
Anamorphe: Gliocladiopsis S.B. Saksena
Typus: Glionectria tenuis Crous \& C.L. Schoch

Perithecia superficialia, dense gregaria, stromate tenui basali insidentia, obovoidea ad late obpyriformia, collabentia ubi arida, verrucosa, rubrobrunne basi stromatica atro-rubra, $\mathrm{KOH}+$, pariete perithecii ex duabus regionibus composito: exteriore strato ex textura globulosa crassitunicata, interiore strato ex cellulis compressis texturae angularis; periphyses ostioli cylindricae, apicibus rotundatis. Asci unitunicati, octospori, cylindrici, sessiles, cum apice applanato et apparatu apicali refringente. Ascosporae uniseriatae, superpositae, hyalinae, ellipsoidae, leves, medio uniseptatae.

Perithecia superficial, densely gregarious, seated on a thin basal stroma, obovoid to broadly obpyriform, collapsing laterally when dry, warted, red-brown with a dark red stromatic base, changing colour in KOH ; perithecial wall consisting of two regions: outer region of thick-walled textura globulosa, inner region of compressed cells of textura angularis; ostiolar periphyses tubular with rounded ends. Asci unitunicate, 8spored, cylindrical, sessile, with a flattened apex, and a refractive apical apparatus. Ascospores uniseriate, overlapping, hyaline, ellipsoidal, smooth, medianly 1 -septate Anamorph is Gliocladiopsis.

Figs. 19-24. Glionectria tenuis and its anamorph Gliocladiopsis tenuis. 19. Vertical section through a perithecium. 20,21. Ostiolar region and paraphyses. 22. Cylindrical asci with apical mechanism. 23. One-septate ascopsores. 24. Conidiophore with cylindrical, 1-septate condia. Bars $=10 \mu \mathrm{~m}$.

Glionectria tenuis Crous \& C.L. Schoch sp. nov.
Anamorph. Gliocladiopsis tenuis (Bugn.) Crous \& M.J. Wingf., Mycol. Res. 97: 446. 1993.

三Cylindrocarpon tenue Bugn., Encycl. Mycol. 11: 178. 1939.
三Cylindrocladium tenue (Bugn.) T. Watan., Mycologia 86: 155. 1994.
= Gliocladiopsis sagariensis Saksena, Mycologia 46: 663. 1954.

Holotypes. HONG KONG: Soil, M.J. Wingfield, 1993, PREM 56381, holotype of teleomorph, (culture ex type: STE-U 706). INDOCHINA (country unknown): Indigofera sp., F. Bugnicourt, Nov. 1936, PC 540, holotype of anamorph (culture ex type: IMI 68205 = STE-U 2403).

Description. Perithecia superficialia, dense gregaria, in stromate basale tenue sedentia, obovidea ad late obpyriformia, collabentia ubi arida, usque ad $400 \mu \mathrm{~m}$ alta et $350 \mu \mathrm{~m}$ lata, verrucosa, cum apice leviter applanata, aurantiaca, corpore et base rubro-brunnea, bene agentia in $3 \% \mathrm{KOH}$, apice aurantiaco-rubro facto, corpore perithecii purpureo-rubro et base atro-rubro brunnea. Regione ostiola usque ad 180 $\mu \mathrm{m}$ lata. Pariete perithecii ex duabus regionibus composito: strato exteriore ex 4-5 stratis texturae globulosae cum parietibus crassis composito, usque ad $60 \mu \mathrm{~m}$ lata, compresso ad centrum, [interiore strato] ex 3-4 stratis texturae angularis composito, usqe ad $20 \mu \mathrm{~m}$ lato. Asci unitunicati, octospori, cylindrici, cum apice obtuse rotundato, sessile, cum apparatu apicale refracto, $50-80 \times 4-5 \mu \mathrm{~m}$. Ascosporae uniseriatae, superpositae, hyalinae, leves, ellipsoideae cum apicibus rotundatis, 9-12 \times 2.5-3 $\mu \mathrm{m}$, latissimae ad septum medianum, non constrictae. Conidiophora penicillata, sine extensione stipitis et sine vesiculis terminalibus. Rami conidiophori: primis ramis non septatis, $9-23 \times 3-5 \mu \mathrm{~m}$, secundis ramis non septatis, $10-18 \times 2.5-3$ $\mu \mathrm{m}$, tertiis ramis non septatis, $9-14 \times 2.5-3.5 \mu \mathrm{~m}$, quartis ramis raris vel absentibus, non septatis, $9-12 \times 2.5-3 \mu \mathrm{~m}$. Phialides doliiformes ad cymbiformes ad cylindricae, $10-25 \times 2.5-3 \mu \mathrm{~m}$, in verticillis terminalibus dispositae, usque ad 7 in uno ramo, cum collulis parvis. Conidia cylindrica, hyalina, levia, cum apicibus rotundatis, medio uniseptata, (12-)16-19(-23) $\times 1.5-2(2.5) \mu \mathrm{m}$.

Perithecia superficial, densely gregarious, seated on a thin basal stroma, obovoid to broadly obpyriform, collapsing when dry, up to $400 \mu \mathrm{~m}$ high and $350 \mu \mathrm{~m}$ thick, warted, apex slightly flattened, orange, body and base red-brown, reacting positive in $3 \% \mathrm{KOH}$, apex becoming orange-red, perithecial body purple-red and base dark red-
brown. Ostiolar region up to $180 \mu \mathrm{~m}$ thick. Perithecial wall consisting of two regions: outer region of 4-5 layers of thick-walled textura globulosa up to $60 \mu \mathrm{~m}$ thick, becoming compressed towards the centrum, consisting of 3-4 layers of textura angularis up to $20 \mu \mathrm{~m}$ thick. Asci unitunicate, 8 -spored, cylindrical, with a bluntly rounded apex, sessile, with a refractive apical apparatus, $50-80 \times 4-5 \mu \mathrm{~m}$. Ascospores uniseriate, overlapping, hyaline, smooth, ellipsoidal with rounded ends, $9-12 \times 2.5-3 \mu \mathrm{~m}$, widest at median septum, not constricted. Conidiophores penicillate, without stipe extensions and terminal vesicles. Conidiophore branches: primary branches non-septate, $9-23 \times 3-5 \mu \mathrm{~m}$, secondary branches non-septate, 10$18 \times 2.5-4 \mu \mathrm{~m}$, tertiary branches non-septate, $9-14 \times 2.5-3.5 \mu \mathrm{~m}$, quaternary branches rare to absent, non-septate, $9-12 \times 2.5-3 \mu \mathrm{~m}$. Phialides doliform to cymbiform to cylindrical, $10-25 \times 2.5-3 \mu \mathrm{~m}$, arranged in terminal whorls of up to 7 per branch, with minute collarettes. Conidia cylindrical, hyaline, smooth, with rounded ends, medianly 1 -septate, (12-) $16-19(-23) \times 1.5-2(-2.5) \mu \mathrm{m}$.

Cultures. Colony colour (reverse) 15"I, sayal brown (Rayner 1970). Chlamydospores in extensive numbers, in clearly delimited, mostly unbranched chains.

Cardinal temperature requirements for growth. Minimum above $5^{\circ} \mathrm{C}$, optimum $25-$ $30^{\circ} \mathrm{C}$, maximum above $35^{\circ} \mathrm{C}$.

Substrate. Indigofera sp., Psidium guajava, Shorea robusta, Camellia sinensis, Chamaedorea elegans, soil.

Distribution. Brazil, Colombia, Hong Kong, India, Indonesia, Thailand, U.S.A.
Key to genera of the Nectriaceae having cylindrical conidia borne in hyaline or pale yellow masses:

1. Conidiophores penicillate, mononematous 4
Conidiophores penicillate or nearly so, sporodochial or synnematous 2
2. Stipe extensions present, conidia in hyaline slime; extensions with one apical and basal septum, apical cell curved, pigmented,
\qquad
3. Stipe extensions absent, conidia in hyaline or pale yellow slime;
perithecia solitary to gregarious, warty, wall consisting of two layers; asci cylindrical, sessile, with apical apparatus; ascospores smooth, hyaline, 1-septate
4. Conidiophores frequently divergent, or unbranched with a single conidiogenous cell; macroconidia straight or fusoid, 1-multiseptate, attenuating to rounded ends with a basal abscission scar; microconidia fusoid to ellipsoid, 0-1-septate Neonectria (Cylindrocarpon)
5. Conidiophores always penicillate with more than 2 series of branches, rarely solitary, mostly gregarious; macroconidia cylindrical with rounded ends, 1septate, straight or curved, abscission scar inconspicuous; microconidia absent. \qquad Glionectria (Gliocladiopsis)
6. Stipe extensions hyaline, arising above the apical penicillus........... 5
7. Stipe extensions slightly pigmented, forming below the apical penicillus; perithecia warty, wall consisting of two layers; asci narrowly clavate, sessile, with apical apparatus; ascospores smooth, hyaline, 1 -septate................... Leuconectria (Gliocephalotrichum)
8. Perithecium smooth, frequently with a few reduced hyphal setae, body collapsing at maturity; asci cylindrical, sessile, with apical apparatus; ascospores smooth, hyaline, 1-septate; stipe extensions aseptate, thick-walled; conidia shorter than $25 \mu \mathrm{~m}$; phialide collarettes convergent Nectricladiella (Cylindrocladiella)
9. Perithecium warted, consisting of two layers; asci with long basal stalk; stipe extensions multi-septate, thin-walled; conidia longer than 25 m ; phialide collarettes divergent 6
10. Asci cylindrical with apical apparatus; ascospores 1-septate; stipe extensions spirally twisted, hyaline, smooth, avesiculate; 1-septate Xenocalonectria (Xenocylindrocladium)
11. Asci clavate without an apical apparatus; ascospores 1-6-septate; stipe extensions straight, terminating in a swollen vesicle of characteristic shape.

Calonectria (Cylindrocladium)

References

Barron GL. 1968. The genera of Hyphomycetes from soil. Baltimore, Maryland, U.S.A.: Williams \& Wilkins Co., Baltimore, Maryland, U.S.A. 364 p.

Boesewinkel HJ. 1982. Cylindrocladiella, a new genus to accommodate Cylindrocladium parvum and other small-spored species of Cylindrocladium. Can J Bot 60: 2288-2294.
Booth C. 1959 . Studies in pyrenomycetes. IV. Nectria. Mycol. Pap. 73: 1-115.
Brayford D, Samuels GJ. 1993. Some didymosporous species of Nectria with nonmicoconidial anamorphs. Mycologia 85: 612-637.

Crous PW. Peerally A. 1996. Gliocladiopsis irregularis sp. nov. and notes on Cylindrocladium spathiphylli. Mycotaxon 58: 119-128.

Crous PW, Wingfield MJ. 1993. A re-evaluation of Cylindrocladiella, and a comparison with morphologically similar genera. Mycol Res 97: 433-448.

Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341-345.
Crous PW, Kang JC, Schoch CL, Mchau GRA. 1999. Phylogenetic relationships within two Cylindrocladium species complexes based on general morphology and DNA sequences of ITS and β-tubulin. Can J Bot (submitted).
Crous PW, Mchau GRA, Van Zyl WH, Wingfield MJ. 1997. New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653-660.
Crous PW, Phillips AJL, Wingfield MJ. 1992. Effects of cultural conditions on vesicle and conidium morphology in species of Cylindrocladium and Cylindrocladiella. Mycologia 84: 497-504.
Crous PW, Wingfield MJ, Lennox CL. 1994. A comparison of genetic concepts in Calonectria and Nectria with anamorphs in Cylindrocladium and Cylindrocladiella. S Afr J Sci 90: 485-488.
Decock C, Crous PW. 1998. Curvicladium gen. nov., a new hyphomycete genus from French Guiana. Mycologia 90: 276-281.
Decock C, Hennebert GL, Crous PW. 1997. Nectria serpens sp. nov. and its hyphomycetous anamorph Xenocylindrocladium gen. nov. Mycol Res 101: 786790.

Eriksson T. 1998. Autodecay version 4.0. Computer Programme. Department of Botany, Stockholm University, Stockholm: Distributed by author.
Fisher NL, Burgess LW, Toussoun TA, Nelson PE. 1982. Carnation leaves as substrate and for preserving cultures of Fusarium species. Phytopathology 72: 151-153.
Glenn AE, Bacon CW, Price R, Hanlin RT. 1996. Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88: 369-383.

Hawksworth DL. 1993. Holomorphic fungi. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, United Kingdom: CAB International. p 57-63.

Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP. 1996. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 93: 7755-7760.

Kuhls K, Lieckfeldt E, Samuels GJ, Meyer W, Kubicek CP, Börner T. 1997. Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia 89: 442-460.

Morgan AP. 1892. Two new genera of hyphomycetes. Bot Gaz 17: 190-192.
O'Donnell K, Cigelnik E, Nirenberg H. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465493.

Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer programme. Comput Appl Biosci 12: 357-358.
Rayner RW. 1970. A mycological colour chart. Kew, United Kingdom: CMI and British Mycological Society. 34 p and 17 sheets.

Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98: 625-634.

Rehner SA, Samuels GJ. 1995. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73: S816-S823.

Rogerson CT. 1970. The hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia 62:865-910.

Rossman AY. 1979a. Calonectria and its type species, C. daldiniana, a later synonym of C. pyrochroa. Mycotaxon 8: 321-328.

Rossman AY. 1979b. A preliminary account of the taxa described in Calonectria. Mycotaxon 8: 485-558.

Rossman AY. 1983. The phragmosporous species of Nectria and related genera. Mycol Pap 150: 1-164.

Rossman A. 1993. Holomorphic hypocrealean fungi: Nectria sensu stricto and teleomorphs of Fusarium. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, United Kingdom: CAB International. p 149-160.

Rossman AY. 1996. Morphological and molecular perspectives on systematics of the Hypocreales. Mycologia 88: 1-19.

Rossman AY, Samuels GJ. 1993. Leuconectria clusiae gen. nov. and its anamorph Gliocephalotrichum bulbilium with notes on Pseudonectria. Mycologia 85: 685-704.

Rossman AY, Samuels GJ, Rogerson CT, Lowen R. 1999. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 42:1-248

Saccardo PA. 1883. Sylloge fungorum omnium hucusque cognitorum. 2: 490.
Saksena SB. 1954. A new genus of Moniliaceae. Mycologia 46: 660-666.
Samuels GJ. 1976. A revision of the fungi formerly classified as Nectria subgenus Hyphonectria. Mem NY Bot Gard 26: 1-126.
Samuels GJ, Brayford D. 1990. Variation in Nectria radicicola and its anamorph, Cylindrocarpon destructans. Mycol Res 94: 433-442.

Samuels GJ, Brayford D. 1993. Phroagmosporous Nectria species with Cylindrocarpon anamorphs. Sydowia 45: 55-80.
Samuels GJ, Rossman AY, Lowen R, Rogerson CT. 1991. A synopsis of Nectria subgen. Dialonectria. Mycol Pap 164: 1-46.
Samuels GJ, Seifert KA. 1987. Taxonomic implications of variation among hypocrealean anamorphs. In: J Sugiyama, ed. Pleomorphic fungi: the diversity and its taxonomic implications. Amsterdam, The Netherlands: Elsevier. p 29-56.
Shipton WA. 1979. Calonectria camelliae sp. nov. the perfect state of Cylindrocladium camelliae. Trans Br Mycol Soc 72: 161-164.
Spatafora JW, Blackwell M. 1993. Molecular systematics of unitunicate perithecial ascomycetes: the Clavipitales-Hypocreales connection. Mycologia 85: 912-922.

Sutton BC. 1993. Mitosporic fungi (deuteromycetes) in the dictionary of the fungi. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, United Kingdom: CAB International. p 27-55.

Swofford DL 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods), 4b01.' Computer programme. Sunderland, Massachusetts, U.S.A.: Sinauer Associates.

Victor D, Crous PW, Janse BJH, Van Zyl WH, Wingfield MJ, Alfenas AC. 1998. Systematic appraisal of species complexes within Cylindroc/adiella. Mycol Res 102: 273-279.

Watanabe T. 1994. Cylindrocladium tenue comb. nov. and two other Cylindrocladium species isolated from diseased seedlings of Phellodendron ammurense in Japan. Mycologia 86: 151-156.

Wheeler W, Gladstein D. 1991. Malign. Version 2.7. Computer program. New York, U.S.A.: Department of Invertebrates, American Museum of Natural History.

White TJ, Burns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky J, White TJ, eds. PCR protocols. A guide to methods and applications. San Diego, U.S.A.: Academic Press. p 315-322.

7. Appendix - DNA alignments used

Alignment 1. Part 3. ITS1 5.8S ITS2 DNA sequence alignment of selected Cylindrocladium species

F._subglutinans_NRRL 22061 CY. candelabrum STE-U 1674 Cy._candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951
Cy._-insulare_STE-U_61 $\overline{6}$
Cy._insulare_STE-U_768
CY. -insulare_STE-U-954
Cy._mexicanum_STE-U_927
Cy.--mexicanum_STE-U_941
Cy._multiseptatum_STE-U_1589
Cy._multiseptatum STE-U_1602
Cy._ovatum_STE-U_2 232
Cy._ovatum_UFV_90
Cy._pauciramosum_STE-U_416 Cy. pauciramosum STE-U-925 Cy._pauciramosum_STE-U_972 Cy._scoparium_ATCC_382 $\overline{2} 7$ Cy._scoparium_ATCC-46300 Cy. scoparium STE-U 1720 Cy._scoparium_STE-U_1722
F._subglutinans_NRRL 22061 Cy._candelabrum_STE- \bar{U} _1674 Cy._candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951 Cy._insulare_STE-U_616 Cy.-insulare_sTE-U-768 CY._-insulare_STE-U_954 Cy._mexicanum_STE-U_-927 Cy. mexicanum_Ste-U-941 Cy._multiseptatum_STE-U_1589 Cy.-multiseptatum_STE-U_1602 CY._ovatum_STE-U_2232 CY.-_ovatum_UFV_90 Cy. pauciramosum STE-U 416 Cy._pauciramosum_STE-U_925 Cy._pauciramosum_STE-U_972 CY._-scoparium_ATC̄C_382 $\overline{2} 7$ Cy._scoparium_ATCC 46300 Cy._scoparium_STE-U_1720 CY._-scoparium_STE-U_1722
F. subglutinans NRRL 22061 Cy.__candelabrum_STE-Ū_1674 Cy._-candelabrum_STE-U_1677 Cy. candelabrum_STE-U 1951 Cy. insulare_STE-U 616 Cy.-insulare_STE-U-768 Cy._insulare_STE-U_954 Cy._mexicanum_STE-Ū 927 Cy._mexicanum_STE-U_941 Cy._-multiseptätum_ST̄E-U_1589 Cy._multiseptatum_STE-U_1602 Cy._Ovatum_STE-U_2 232 Cy.-.ovatum_UFV_90 Cy. pauciramosum STE-U 416 Cy._pauciramosum_STE-U_925 CY._pauciramosum_STE-U_972 Cy._scoparium_ATC C Cy._scoparium_ATCC_46300 Cy__scoparium_STE- $\bar{U}_{-} 1720$ Cy._scoparium_STE-U_1722

CCGAGTITAC AACTCCCAAA CCCC-TGTGA ACATACCAAT T-XGTTGCCT CGGCGGATCA CCGAGTTTAC AACTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX CCGAGTtTAC AACTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX XXXXXXXXXX XXXXXCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX CCGAGTTTAC AACTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXCCTGT TTCGTTCCCT CGGCGG-XXX CCGAGTTTAC AACTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX XXXXXXXXXX XXCTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX CCGAGTTTAC AACTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX XXXXXXXXXX XXCTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX XXXXXXXXXX XXCTCCCAAA CCCCATGTGA ACATACCTGT TTCGTTCCCT CGGCGG-XXX

120

GCCCGCTCCC GGTAAAACGG GACGGCCCGC CAGAGGACCC C-TAAACTCT GTT-XXTCTA -XXXXTGTCC GGCAA-XXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT TTTGAATTTT -XXXXTGTCC GGCAA-XXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT TITGAATTTT -XXXXTGTCC GGCAA-XXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT TTTGAATTTT -XXXXGGTCC GGCAA-XXXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT TTTGAAITTT -XXXXTGTCC GGCAA-XXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT TTTGAATTTT -XXXXTGTCC GGCAA-XXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT TTTGAATTTT

180

tatgianctt ctgagtanan cca-xxtana tanatcanai ctttcancan cggatctct TCAGTATCTT CTGAGTAAAA AA-XXXCAAA TAAATCAAAA CTTTCAACAA CGGATCTCTT tCAgTatctt ctgagtanan an-xxxcana tanatcanan ctttcancan cggatctctt tCAGTATCTT CTGAGTAAAA AA-XXXCAAA TAAATCAAAA CTtTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTAAAA AAAA-XCAA- TAAATCAAAA CTTTCAACAA CGGATCTCTT tCAGTATCTT CTGAGTAAAA AAAA-XCAA- TAAATCAAAA CTtTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTAAAA AAAA-XCAA- TAAATCAAAA CTTTCAACAA CGGATCTCTT tCAGTATCTT CTGAGTGAAA AAAA-XCAA- TAAATCAAAA CTtTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTGAAA AAAA-XCAA- TAAATCAAAA CTTTCAACAA CGGATCTCTT tCAGTATCTT CTGAGTGAAA AAAAAACAA- TAAATAAAAA CTTTCAACAA CGGATCTCTT rCAGTATCTT CTGAGTGAAA AAAAAACAA- taAATAAAAA CTTTCAACAA CGGATCTCTT tCAGTATCTT CTGAGGGAAA AAAA-XCAA- TAAATCAAAA CTTTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTGAAA AAAA-XCAA- TAAATCAAAA CTTTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTAAAA AA-XXXCAAA TAAATCAAAA CTTTCAACAA CGGATCTCTT tCAGTATCTT CTGAGTAAAA AA-XXXCAAA TAAATCAAAA CTTTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTAAAA AA-XXXCAAA TAAATCAAAA CTtTCAACAA CGGATCTCTT TCAGTATCTT CTGAGTAAAA AAAAA-CAA- TAAATCAAAA CTTTCAACAA CGGATCTCTT
F._subglutinars_NRRL_22061 Cy. candelabrum-STE- $\bar{U} 1674$ Cy._candelabrum_STE-U_1677 Cy._ candelabrum_STE-U_1951 Cy._insulare_STE-U_61 $\overline{6}$ Cy.-insulare_STE-U-768 Cy._insulare_STE-U_954 Cy._mexicanum_STE-Ū_927 Cy._mexicanum_STE-U-941 Cy._multiseptáam_STE-U_1589 Cy._multiseptatum_STE-U_1602 Cy._ovatum_STE-U_2232 Cy._OvatumuFv_90
Cy._pauciramosum_STE-U 416 Cy._pauciramosum_STE-U_925 Cy._pauciramosum_SIE-U_972 Cy. scoparium_ATC C_ $382 \overline{2} 7$ Cy._scoparium_ATCC_46300 Cy._scopariur_STE-U_1720 Cy._scoparium_STE-U_1722
F._subglutinans NRRL 22051 Cy._ candelabrum_STE- $\bar{U}_{-} 1674$ Cy .- candelabrum_STE-U-1677 Cy._candelabrum_STE-U_1951 Cy. -insulare STE-U $61 \overline{6}$ Cy._insulare_STE-U_768 Cy.- insulare_STE-U_954 CY._mexicanum_STE-U-927 Cy._mexicanterste-u_941 Cy._multiseptatum_STE-U_1589 Cy. multiseptatum_STE-U_1602 Cy._ovatum_sTE-U_2232 Cy.-ovatum_UEV_90
CY._pauciramosum_STE-U_416 Cy__pauciramosum_STE-U_925 CY. -pauciramosum_STE-U_972 Cy._scoparium_ATCC_382 $\overline{2} 7$ Cy._scoparium_ATCC_46300 Cy._-scoparium_STE-U__ 1720 Cy._Scopariun_STE-U_1722
F._subglutinans_NRRI_22061 Cy.-candelabrum STE-U 1674 Cy._candelabrum_STE-U_1677 Cy. candelabrum STE-U_1951 Cy.-insulare_STE-U_61 $\overline{6}$ Cy. insulare_STE-U 768 Cy._insulare_STE-U_954 Cy._mexicanum STE-U_927 Cy-mexicanum-ste-U-941 Cy. multiseptatum STE-U 1589 Cy.-multiseptatum_STE-U_1602 Cy._ovatum_STE-U_2232 Cy._ovatum_UFV_90 Cy._pauciramosum_STE-U_416 Cy._pauciramosum_STE-U_925 Cy._pauciramosum_STE-U-972 Cy._scoparium_ATCC_38227 Cy._scoparium_ATCC_46300 Cy._scoparium_sTE-U_1720 Cy._scoparium_STE-U_1722

GGTTCTGGCA tCGATGAAGA ACGCAGCAAA ATGCGATAAG TAATGTGAAT TGCAGAATIC GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC GGTtCTGGCA tCGATGAAGA ACGCAGCGAA ATGCGATAAG tAATGTGAAT TGCAGAATIC gGttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcagaittc GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC GGTTCTGGCA TCGATGARGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC GgTtctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcaganttc gGttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcaganttc GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC GGTtCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC gGttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcagantic GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATIC GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC gGitctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcaganttc gGttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcaganttc gGttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcaganttc GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG TAATGTGAAT TGCAGAATTC ggttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcagaittc GGttctggca tcgatganga acgcagcgan atgcgatang tantgtgant tgcaganttc
agtgaitcat cgantctttg ancgcacatt gcgcccgcca gtattctggc gggcatgcct agtgaitcat cgantctttg ancgcacatt gcgcccgcca gtattctggc gggcatgcct AgTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA GTATTCTGGC GGGCATGCCT agtgaitcat cgantctttg ancgcacatt gcgcccgcca giattctgge gggcatgcct AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA GTATTCTGGC GGGCATGCCT agtgantcat cgantctttg ancgcacatt gcgcccgcca gitatctggc gggcatgcct AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA GTATTCTGGC GGGCATGCCT agtgantcat cgantctttg ancgcacatt gcgcccgcca gtattctgge gggcatgcct agtgantcat cgantctttg ancgcacatt gcgcccgcca gtattctggc gggcatgcct agtgantcat cgantctttg ancgcacatt gcgcccgcca giattctgge gggcatccct AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA GTATTCTGGC GGGCATGCCT agtgaitcat Cgantctttg ancgcacatt gcgcccgcca giattctggc gggcatgcct AgTGAATCAT CGAATCTtTG AACGCACATT GCGCCCGCCA GTATtCTGGC GGGCATGCCT

360

GTTCGAGCGT CATTTCAACC CTCAAGCCCA GCTTGGTGTT GGGACTCG-C GAG-XXXXXX GTTCGAGCGT CATTTCAACC CTCAAGCTCA GCTTGGTGTT GGGGATCGGC AAGGCGGCCT
 GTTCGAGCGT CATTTCAACC CTCAAGCTCA GCTTGGTGTT GGGGATCGGC AAGGCGGCCT GTTCGAGCGT CATTICAACC CTCAAGCTCT GCTTGGTGTT GGGGATCGGC AAGGCGTCCT GTTCGAGCGT CATTICAACC CTCAAGCTCT GCTTGGTGTT GGGGATCGGC AAGGCGICCT GTtCGAGCGT CATTTCAACC CTCAAGCTCT GCTTGGTGTT GGGGATCGGC AAGGCGTCCT GTtCGAGCGT CATTTCAACC CTCAAGCTCA NCTTGGTGTT GGGGATCGGC AGGGCGTCCT GTICGAGCGT CATTTCAACC CTCAAGCTCA GCTTGGTGTT GGGGATCGGC AGGGCGTCCT GITCGAGCGT CATTTCAACC CTCAAGCTCA GCTTGGTGTT GGGGATCGGC AAGGCGTCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCA GCTIGGTGTT GGGGATCGGC AAGGCGTCCT
 GTTCGAGCGT CATTTCAACC CTCAAGCTCT GCTTGGTGTT GGGGATCGGC AAGGCGTCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCT GCTTGGTGTT GGGGATCGGC AAGGCGTCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCT GCTTGGTGTT GGGGATCGGC AAGGCGTCCT gTtcgagcgi catticancc ctcancctct gcttggtgtt ggggatcggc anggcgicct

420
TCAAATCGC- XXGTTCCCCA AATTGATTGG CGGTCACG-T CGAGCTTCCA TAGCGTAGTA CCGGGTCGCG CCGTCCCCCA AATATAGTGG CGGTCTCGCT GTAGCTTCCT CTGCGTAGTA CCGGGTCGCG CCGTCCCCCA AATTTAGTGG CGGTCTCGCT GTAGCTTCCT CTGCGTAGTA. CCGGGTCGCG CCGTCCCCCA AATTTAGTGG CGGSCTCGCT GTAGCTTCCT CTGCGTAGTA CCGGGTCGCG CCGTCCCCCA AATtTAGTGG CGGTCTCGCT GTAGCTTCCT CTGCGTAGTA CCGGGTCGCG CCGTCCCCCA AATATAGTGG CGGTCTCGCT GTAGCTTCCT CTGCGTAGTA
E._subglutinans_NRRL_22061 $\mathrm{C}_{y^{\prime}}$. candelabrum ${ }^{-}$STE- $\overrightarrow{\mathrm{U}} 1674$ Cy._candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951
Cy._insulare_STE-U_616
Cy._insulare_STE-U-768
CY__insulare_STE-U_954
Cy._mexicanum_STE-U 927
CV. mexicanum STE-U-941

Cy._multiseptatum_STE-U_1589
Cy._multiseptatum_STE-U_1602
Cy._ovatum_STE-U_ 2232
Cy._ovatum_UFV_90
Cy.,-pauciramosün_STE-U_416
Cy._pauciramosum_STE-U_925
Cy._pauciramosum_STE-U_972
Cy._scoparium_ATC̄C_382 $\overline{2} 7$
Cy. scoparium ATCC 46300
CY. -scoparium_STE-
Cy._scoparium_STE-U_1722
F. subglutinans_NRRI_22061

Cy._candelabrum_STE-प्U 1674
CV.-candelabrum_STE-U_1677

Cy. ${ }^{-}$candelabrum ${ }^{-}$STE-U ${ }^{-1} 1951$
Cy._insulare_STE-U_616
Cy. insulare_STE-U_768
Cy. insulare_STE-U_954
Cy._mexicanum STE-U 927
Cy._mexicanum_STE-U-941
Cy._multiseptatum STE-U_1589
Cy. -multiseptatum STE-U-1602
Cy. ovatum STE-U_ $\overline{2} 232$
Cy._ovatum_UFV_90
Cy._pauciramosum_STE-U_416
Cy._pauciramosum_STE-U_925 Cy. pauciramosum STE-U 972 Cy._scoparium_ATCC_38227 Cy.-scoparium_ATCC-46300 Cy._scoparium_STE-U 1720 Cy._scoparium_STE-U_1722

GTAAAACCCT CGTTACTGGT AA-TCGTCGC GGCCACGCCG TTAAA-CCCC AACTICTGAA ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GACCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GACCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GACCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACNCCG TAAAAACCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAAACCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTTT ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTT-X ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-ATACA-XCCT CGCT-CTGGA GTCTCGGTGC GGCCACGCCG TAAAACCCCC AACTTTTTT-

483
-TGT
CTGG
XXXX
CTGG
CTGG
CTGG
CTGG
CTGG
CTGG
CTGG
CTGG

Alignment 2. Part 3. 5' end of β-tubulin gene DNA sequence alignment from selected

 Cylindrocladium species

 Cylindrocladium species}
E._subglutinans_NRRL_22061 Cy. candelabrum_STE- \bar{U} _1674 Cy.-Candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951
CY._-insulare_STE-U_61 $\overline{6}$
Cy._insulare_STE-U_768
Cy._insulare_STE-U_954
Cy._mexicanum_STE-U_927
Cy._mexicanum_STE-U_941
Cy._multiseptatum_STE-U_1589
Cy._multiseptatum STE-U_1502
Cy._ovaturn_STE-U_2232
Cy._ovatum_UFV 90
Cy._pauciramosum_STE-U_416 Cy._pauciramosum_STE-U_925 Cy._pauciramosum_STE-U-972 Cy._scoparium_ATCC_382 $\overline{2} 7$ Cy._scoparium_ATCC 46300 CY. scoparium STE-U 1720 Cy._scoparium_STE-U_1722
. subglutinans NRRL 22061 Cy._candelabrum_STE-U__1674 Cy._candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951
Cy. insulare STE-U $61 \overline{6}$ Cy._insulare_sTE-U-768 CY._-insulare_STE-U_954 Cy._mexicanum_STE-U_-927 Cy._mexicanum_STE-U_941 Cy._multiseptatum_STEE-U_1589 Cy._miltiseptaturn_STE-U_1602 Cy.__ovatum_STE-U_2232 Cy._ovatum_UFV_90
Cy. pauciramosum STE-U 416 Cy. pauciramosum_STE-U_925 Cy. pauciramosum_STE-U-972
Cy._scoparium_ATCC_38227 Cy._scoparium_ATCC_46300 Cy._scoparium_STE-U_1720 Cy._-scoparium_STE-U_1722
F. subglutinans_NRRL 22061 Cy.__candelabrum_STE- $\bar{U}_{-} 1674$ Cy._candelabrum_STE-U_1677 Cy. candelabrum STE-U 1951 Cy. -insulare STE-U $61 \overline{5}$ Cy.-insulare_STE-U-768 Cy._insulare_STE-U_954 Cy._mexicanum_STE-U_-927 Cy. mexicanum STE-U 941 Cy._multiseptatum_STE-U_1589 Cy._multiseptatum_STE-U_1602 Cy. ovatum STE-U 2232 CY.-ovatum UFV 90 Cy._-pauciramosum_STE-U_416 Cy._-pauciramosum_STE-U_925 Cy._pauciramosum STE-U 972 Cy._scoparium_ATCC_38227 Cy._scoparium_ATCC_- 46300 Cy._scoparium_STE-U_1720 CY._-scoparium_STE-U_1722
F._subglutinans_NRRL_22061 CY._candelabrum_STE- $\overline{\mathrm{U}}$ _1674 Cy._candelabrum_STE-U_1677 Cy. - candelabrum STE-U 1951 Cy.- insulare_STE-U_61 $\overline{6}$ Cy._insulare_STE-U-768 Cy._insulare_STE-U_954 Cy._-mexicanum_STE-U_927 Cy. mexicanum_STE-U_941 CY._multiseptátum_STE-U_1589 Cy. multiseptatum_STE-U_1602 Cy. ovatum STE-U 2232 Cy._Ovatum_UFV_90 Cy._-pauciramosün_STE-U_416 Cy._pauciramosum_STE-U_925 Cy. pauciramosum_STE-U-972 Cy._scoparium_ATCC_382 $\overline{2} 7$ Cy._scoparium_ATCC_46300 Cy._scoparium_STE-U_1720 Cy__scoparium_STE-U_1722

GCGITGAGTT TAT-GGT-XX XXGCCCCTGA TTCTACCCCG C-XXXXTGGG CGGTGGCAGC GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCATCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA ITCTACCCCG CCGCCCCGGT tTCCATCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCATCGCT ACG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACC ACG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACC GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACC GCG-TGCCTT TGTIGCT-XX XXGCCCCTGG TTCTACCCCG CCGTCCCGGT TTCCACCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGTCCCGGT TTCCACCGCT GAG-TGCCTT TGTTGCTTTC TGGCCCCTGA TTCTACCCCG CGGCCCCGGT TTCCACCGCT GAG-TGCCTT TGTTGCTTTG CTGCCCCTGA TTCTACCCCG CGGCCCCGGT TTCCACCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA ITCTACCCCG CCGCCCCGGT TTCCACCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCGCT GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCGCT GGG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACA GCG-TGCCTT GGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACA GCG-TGCCTT TGTTECT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACA GCG-TGCCTT TGTTGCT-XX XXGCCCCTGA TTCTACCCCG CCGCCCCGGT TTCCACCACA
tCAACGACAA TGCACGAT-X AG CT-AGCA GCTTTAA-XA TACCTTCTGT CAAGATGAAG TCGACGACAA -CAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCAGAA CAAGATTGCT tCgacgacan -canagccgc agcctcacga tcatga-cga gatatcagan canagattgct tCGACGACAA -CAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCAGAA CAAGATTGCT tCGACGACAA -CAAAGCCGC AGCCTCACGA ACATGA-TGT GATATCAGAA CAAGATTGCT tCgacgacan -caAagccgc agcctcacga acatga-tgt gatatcagan cadgattgct TCGACGACAA -CAAAGCCGC AGCCTCACGA ACATGA-TGT GATATCAGAA CAAGATTGCT ACAACGACAA -CAAAGCCGC AGCCTCGACA ACATGAGCAA GATATCAGGA TATGATGGCT ACAACGACAA -CAAAGCCGC AGCCTCGACA ACATGAGCAA GATATCAGGA TATGATGGCT CCGACGAAAA -CAAAGCCGC AACCTCACGA ATGTGA-CGA GATATCAGAA CAAGATtGCT CCGACGAAAA -CAAAGCCGC AACCTCACGA ATGTGA-CGA GATATCAGAA CAAGATTGCT tCGACGACAA -CAAAGCCGC AGCCTCACGA ACATGA-CTA GATATCAGAA CGAGATCGST TCGACGACAA -CAAAGCCGC AGACTCACGA ACATGA-CGA GATATCAGAA CGAGATTGCT tCGACGACAA -CAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCAGAA CAAGATTGCT tGgacgacan -CAAAGCCGC aggctcacga tcatga-cga gatatcagan cangattgct TCGACGACAA -CAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCAGAA CAAGATTGCT TCGACGAAAA -CAAAGCCGC AGCCTCACGA ACATGA-TGT GATATCAGAA CAAGATTGCT TCGACGAAAA -CAAAGCCGC AGCCTCACGA ACATGA-TGT GATATCAGAA CAAGATTGCT TCGACGAAAA -CAAAGCCGC AGCCTCACGA ACATGA-TGT GATATCAGAA CAAGATIGCT TCGACGAAAA -CAAAGCCGC AGCCTCACGA ACATGA-TGT GATATCAGAA CAAGF.TTGCT

180
AAGCTAATCA GATCTTTTCT CTGCGATAGG TTCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTTT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GCTTCTTTTT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GCTTCTTTTT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GCCTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTCT GCTTCTTTCT CGACTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GTTTCTTCCT CAATTCTAGG TTCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GTTTCTTCCT CAATTCTAGG TTCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CTTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGCCAG TGCGTAAGTG AA-C-CTTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGCCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTTT CAATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTCT CAATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTA AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG AA-C-CGTGT GCTTCTTTCT CGATTATAGG TCCACCTCCA GACCGGTCAG TGCGTAAGTG

CTCATCGCTT CCTCGACGTC GCATGTGGGG -GATGCTCAC -GATGTTT-X -ATCAGGGTA CCCTTCTCAA CTCCGACCAA ATTCTCACGA CGAGATTCAC TGACAGTTGT CCATAGGGTA CCCTTCTCAA CTCCGACCAA ATTCTCACGA CGAGATTCAC TGACAGTTGT CCATAGGGTA CCCTTCTCAA CTCCGACCAA ATTCTCACGA CGAGATTCAC TGACAGTTGT CCATAGGGTA CTCTTC-XAA CTCCAACGGA ATTCTCACGA CCAGATTCAC TGACAGTTAT CGACAGGGTA CTCTTC-XAA CTCCAACAAA ATTCTCACGA CCAGATTCAC TGACAGTTAT CGACAGGGTA CTCTTC-XAA CTCTAACAAA ATTCTCACGA CCAGATTCAC TGACAATTAT CGACAGGGTA CTCCTTGCAA CTCCAACAAC TTTCTCACGG CCATGATCGC TGACAGACGT CGATAGGGTA CTCCTTGCAA CTCCAACAAC TTTCTCACGG CCATGATCTC TGACAGACGT CGATAGGGTA CTCCTCTCGA CTCCAACGAT ATTCTTATGA CAAGATTCAC TGACAGTTTT CGATAGGGTA CTCCTCTCGA CTCCAACGAT ATTCTTAIGA CAAGATTCAC TGACAGTTTT CGATAGGGTA CTTCTCTCGA CTCCAGCAAG ATTTTCACGA CGAGATTCGC TGACAGTTGT CAATAGGGTA CTCCTCTCAA CTCCAACAAG ATTCTCACGA CGAGATTCGC TGACAGTTGT CGATAGGGTA CTCTTCTCAA CTCCAACAAA ATTCTCACGA CGAGATTCAC TGACAGTTGT CGATAGGGTA CTCTTCTCAA CTCCAACCAA ATTCTCACGA CGAGGTTCGC TGACAGTTGT CGATAGGGTA CTCTTCTCAA CTCCAACAAA ATTCTCACGA CGAGATTCAC TGACAGTTGT CGATAGGGTA CTCTTC-XAA CTCCAACAAA ATTCTCACGA CCGGATTCAC TGACAGTTAT CGACAGGGTA CTCTTC-XAA CTCCAACAAA ATTCTCACGA CCGGATTCAC TGACAGTTAT CGACAGGGTA CTCTTC-XAA CTCCAACAAA ATTCTCACGA CCGGATTCAC TGACAGTTAT CGACAGGGTA CTCTTC-XAA CTCCAACAAA ATTCTCACGA CCGGATTCAC TGACAGTTAT CGACAGGGTA

F．＿subglutinans＿NRRL＿22061 Cy．candelabrum STE－U 1674 Cy．candelabrum STE－U－1677 Cy．＿candelabrum＿STE－U＿1951 Cy．＿insulare＿STE－U＿61无 Cy．＿insulare STE－U 768 Cy．insulare STE－U－954 Cy．＿mexicanum＿STE－U＿927 Cy．＿mexicanum＿STE－U＿941 Cy．＿multiseptatum＿STE－U＿1589 Cy．multiseptatum STE－U－1602 Cy．＿ovatum＿STE－U＿2 232 Cy．＿ovatum＿UFV＿90 Cy．＿pauciramosum＿STE－U＿416 Cy．pauciramosum＿STE－U＿925 Cy．＿pauciramosum＿STE－U＿972 Cy．＿scoparium＿ATCC＿382立7 Cy．＿scoparium＿ATCC＿46300 Cy．－scoparium STE－U 1720 Cy．＿scoparium＿STE－U＿1722

F．subglutinans NRRL 22061 Cy．candelabrum＿STE－U 1674 Cy．＿candelabrum＿STE－U＿1677 Cy．＿candelabrum＿STE－U－1951 Cy．＿insulare＿STE－U＿616 Cy．insulare STE－U 768 Cy．＿insulare＿STE－U＿954 Cy．＿mexicanum＿STE－U＿927 Cy．＿mexicanum＿STE－U＿941 Cy．＿multiseptatum＿STE－U＿1589 Cy．＿multiseptatum＿STE－U＿1602 Cy．＿ovatum＿STE－U＿2232 Cy．＿ovatum＿UFV＿90 Cy．pauciramosum STE－U 416 Cy．＿pauciramosum＿STE－U＿925 Cy．＿pauciramosum＿STE－U－972 Cy．＿scopariun＿ATC̄C＿382立7 Cy．scoparium ATCC＿46300 Cy．－scoparium＿STE－U 1720 Cy．＿scoparium＿STE－U＿1722

F．subglutinans NRRL 22061 Cy．＿candelabrum＿STE－U＿1674 Cy．＿－candelabrum＿STE－U＿1677 Cy．＿candelabrum＿STE－U＿1951 Cy．insulare STE $-\mathrm{U} \quad 61 \overline{6}$ Cy．＿insulare＿STE－U＿768 Cy．＿insulare＿STE－U－954 Cy．＿mexicanum＿STE－U＿927 Cy．mexicanum ${ }^{-}$STE－U－941 Cy．＿multiseptātum＿STE－U＿1589 Cy．＿multiseptatum＿STE－U＿1602 Cy．＿ovatum＿STE－U＿2232 Cy．＿ovatum＿UFV＿9
Cy．＿pauciramosüm＿STE－U＿416 CY．＿pauciramosum＿STE－U＿925 Cy．＿pauciramosum＿STE－U－972 Cy．scoparium ATC̄C $382 \overline{2} 7$ Cy．＿scoparium＿ATCC－46300 Cy．＿scoparium＿STE－ \bar{U}＿1720 Cy．＿scoparium＿STE－U＿1722

F．＿subglutinans＿NRRI＿22061 Cy．＿candelabrum＿STE－U＿1674 Cy．＿candelabrum＿STE－U＿1677 Cy．candelabrum STE－U 1951 Cy．＿insulare＿STE－U＿616 Cy．－insulare＿STE－U＿768
Cy．＿insulare＿STE－U＿954
Cy．＿mexicanum＿STE－U＿927
Cy．＿mexicanum＿STE－U＿941
Cy．＿Multiseptatum＿STEEU＿1589
Cy．＿multiseptatum＿STE－U＿1602
Cy．＿ovatum＿STE－U＿ 2232
Cy．＿ovatum＿UFV＿90
Cy．－pauciramosün＿STE－U＿416
CY．＿pauciramosum＿STE－U＿925
Cy．pauciramosum＿STE－U＿972 Cy．＿scoparium＿ATCC＿382 $\overline{2} 7$ Cy．＿scopariumi＿ATCC＿46300 Cy．＿scoparium＿STE－
Cy．＿scoparium＿STE－U＿1722

ACCAAATTGG TGCTGCTTTC TGGCAAACCA TCTCTGGCGA GCACGGCCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTSTGGCGA GCACGGTCTC GACミGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTCTGGCGA GCACGGTCTC GACABCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACEGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACASCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GAC：GCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACEEUAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTCTGGCGA GCACGGTCTC KACミЭСAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TCTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACACCAATG ACCAAATTGG TGCTGCTTTC TGGCAGACCA TTTCTGGCGA GCACGGTCTC GACAGCAATG ACCAAATIGG TGCTGCTTTC TGGCAGACCA．TTTCTGGCGA GCACGGTCTC GACAGCAATG

360

GIGTCTACAA CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAGTGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAECGAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GIGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCA ACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAミニGAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGICTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG GTGTCTACGC CGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAد工GAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCIAC TTCAACGAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCCACGAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAZCGAGG GTGTCTACGC TGGTACCTCC GAGCTCCAGC TCGAGCGTAT GAACGTCTAC TTCAACGAGG

420

TATGCTTTAA CAGTC－AATG－CCAA－GAAT TCCCAAGCTC ACA－XXCAAC T－XXXXXXXX TATGTGAAAA CCACTCGAAG CACTCCCTTG ACCGAGAAGC ACAATCCGAC TCACAC－XCA TATGTGAAAA CCACTCGAAG CACTCCCTTG ACCGAGAAGC ACAATCCGAC TCACAC－XCA TATGTGAAAA CCACTCGAAG CACTCCCTTG ACCGAGAAGC ACAATCCGAC TCACAC－XCA TATGTGAAAA TCACGCGGTG TACTCACACG－CCGAGAGGC ACAAGCAAAC TGACAC－XXX TATGTGAAAA CCGCGCGGTG TACCCACACG－CCGAGAGGC ACAAGCAAAC TGACAC－XXX TGTGTGAAAA CCGCGCGGTG TACTCACACG－CCGAGAGGC ACAAGCAAAC TGACAC－XXX TATGTAAAAA CCGCTCCAAG AAATTTCTTT GTCGGGACGC CCAAACAAAC TCACA－XXXX TATGTAAAAA CCGCTCCAAG AAATTTCTTT GTCGGGACGC CCAAACAAAC TCACACA－CG TATGCGAAAA ATCATGAGTG CGCTCGCTTT GTGGAGAAAC ATAGTCAAAC TGACACACCA TATGCGAAAA ATCATGAGTG CGCTCGCTTT GTGGAGAAAC ATAGTCAAAC TGACACACCA TATGTGAAAA CCACGCCGAG CACTCCCTET ACCGGGAAGC ACAAGCAAAC TGACACGC－X TATGTGAAGA CCACGCGGTG CACCCCTTTT GCCGAGAAGC ACAAGCAAAC TGACACAC－X TATGTGAAAA CCACTCGAAG CACTCCCTTG ACCGAGAAGC ACAAGCCAAC TCACAC－XCA TATGTGAAAA CCACTCGAAG CACTCCCTTG ACCGAGAAGC ACAAGCCAAC TCACACA－XA TATGTGAAAA CCACTCGAAG CACTCCCTTG ACCGAGAAGC ACAAGCCAAC TCACAC－XCA TATGTGAAAA CCACGCGGTG TACTCACACG－CCGAGAGGC ACAAGCAAAC TGACAC－XXX TATGTGAAAA CCACGCGGTG TTCTCACACG－CCGAGAGGC ACAAGCAAAC TGACAN－XXX TATGTGAAAA CCACGCGGTG TACTCACACG－CCGAGAGGC ACAAGCAAAC TGACAC－XXX TATGTGAAAA CCACGCGGTG TACTCACACG－CCGAGAGGC ACAAGCAAAC TGACAC－XXX
－XXXXXAGGC CTCTGGCAAC AAGTATGTTC CCCGAGCCGT CCTCGTCGAT CTTGAGCCTG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG －CATGTAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTCGAGCCCG －C－TGTAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTCGAGCCCG －CATGTAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTCGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG T－GTGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTG－CCTCGTTGAT CTTGAGCCCG T－GTGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTTGAT CTTGAGCCCG －CGTGCAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG －CATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG TCATGTAGGC TTCCGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTTGAGCCCG －CATGTAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTCGAGCCCG －CATGTAGGC TTCTGGCAAC AAGTTCCGTC CTTG－TCTGT CGTCGT－GAT CTTGAGCCCG －CATGTAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTCGAGCCCG －CATGTAGGC TTCTGGCAAC AAGTTCGTTC CTCGCGCTGT CCTCGTCGAT CTGGAGCCCG
F._subglutinans_NRRL_22061

Cy, candelabrum STE-U 1674
Cy.-candelabrum_STE-U_1677
Cy._candelabrum_STE-U_1951
Cy._insulare_STE-U_61百
Cy._insulare_STE-U_768
Cy. -insulare-STE-U-954
C_{Y}._mexicanum_STE-U_927
Cy._mexicanum_STE-U_941
Cy._multiseptatum_STE-U_1589
Cy,_multiseptatum_STE-U_1602
Cy._ovatum_STE-U_2232
Cy._ovatum_UFV_90
Cy._pauciramosum STE-U 416
Cy. pauciramosum STE-U 925
Cy, pauciramosum_STE-U_972
Cy._scoparium_ATCC_382 $\overline{2} 7$
Cy. scoparium ATCC 46300
Cy. scoparium_STE-U_1720
Cy.-scoparium_STE-U_1722

GTACCATGGA CGCCGTCCGA GCTGGTCCCT TCGGTCAGCT CTTCCGTCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TNGGTCAGNT CTTTCGCCCC GACAACTT GTACCATGGA TGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTTCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTNCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA TGCCGTCCGT GCTGGTCCCT TCGGTCAGCT CTTCCGTCCC GACAACTT GTACCATGGA TGCCGTCCGT GCTGGTCCCT TCGGTCAGCT CTTCCGTCCC GACAACTT GTACCATGGA TGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTTCGCCCC GACAACTT GTACCATGGA TGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA TGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA TGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA CGCCGTCCGT GCCGGTCCTT tCGGTCAGCT CTtCCGCCCC GACAACTT GTACCATGGA tGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT GTACCATGGA TGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT gTaccatgca tgccgrccgr gccgetcctt rcgetchgct cttccgccce gachact GTACCATGGA tGCCGTCCGT GCCGGTCCTT TCGGTCAGCT CTTCCGCCCC GACAACTT

Alignment 3. Part 3. Partial MAT-2 HMG box DNA sequence alignment of selected

Cylindrocladium species

CY._multiseptatum_STE-U_1602
Cy. multiseptatum STE-U 1589
Cy._pauciramosum_STE-U_925
CY._pauciramosum_STE-U-972
Cy._ candelabrum_STE-U_1674
Cy._candelabrum_STE-U_1677
Cy.-ovatum_STE-U_2232
Cy._insulare_STE-U_616
Cy.-insulare_STE-U_768
Cy.-_scoparium_STE- $\bar{U}_{3} 1720$
Cy._scoparium_ATCC_38227

Cy._multiseptatum STE-U_1602 Cy. multiseptatum STE-U-1589
Cy. pauciramosum STE-U 925
Cy._pauciramosum_STE-U-972
Cy._candelabrum_STE-U_1674
Cy__candelabrum_STE-U_1677
Cy. -ovatum STE-U 2232
Cy._insulare_STE-U_615
Cy._insulare_STE-U_768
Cy._scoparium_STE-U 1720
Cy._scoparium_ATCC_ $\overline{3} 8227$

Cy._multiseptatum_STE-U_1602 Cy. multiseptatum STE-U 1589 Cy. -pauciramosum STE-U $\overline{9} 25$
Cy. pauciramosum_STE-U_972
Cy._candelabrum_STE-U 1 1674 Cy. - candelabrum_STE-U_1677 CY.-_Ovatum STE-U_2232 Cy._insulare_STE-U_E15
Cy.-insulare_STE-U_768
Cy._scoparium_sTE-U_1720
Cy._scoparium_ATCC_38227

CCGAAATCAC GAACAGTGAG ATtTGTAAGT ACCCATCGCC ttattatagt ttccatgita CGGAAATCAC GAACAGTGAG ATtTGTAAGT ACCCATCGCC TTATtATAGT TTCCATGTTA CCGAAATCAC GAACAGTGAG ATTTGTAAGT ACCTACCACC TTGGCACAAT TTCTGTGCTG CCGAAATCAC GAACAGTGAG ATTTGTAAGT ACCTACCACC TTGGCACAAT TTCTGTGCTG CCGAAATCAC GAACAGTGAG ATTTGTAAGT ACCTACCACC ITAGCACAAT TTCTGTACTA CCGAAAACAC. GAACAGTGAG ATtTGTAAGT ACCTACCACC TTAGCACAAT TTCTGTACTA XXXXXXXXXX XXXXAGTGAG ATCTGTAAGT ACCCGCTACC CTAGCACAGT TTCTGTACTA CAGAAATTAC CAACAGTGAG ATTTGTAGGT ACTCACCACC TTGGTACAGT TTCTGTACTA CAGAAATCAC CAACAGTGAG ATTTGTAAGT ACTCACCACC tTGGTACAGT TTCTGTACTA XXXXXXXXXX XAACAGTGAG ATTTGTAAGT ACTCACCAAC TTGGTACAGT TTCTGTACTG XXXXXXXXAC CAACAGTGAG ATTTGTAAGT ACTCACCACC TTGGTACAGT tTCTATACTA

120
ACACTITtCA GCCATGGTTC tTGGTCGCGC CTGGAACATG GAGACTCCGG AGACGCGCAA ACACTTTTCA GCCATGGTTC TTGGTCGCGC CTGGAACATG GAGACTCCGG AGACGCGCAA ACATtTTTCA gCCATGGTTC tTgGCCGTGC CTGGAACATG GAGACTCCAG AGACGCGAAA ACATTCTTCA GCCATGGTTC TTGGCCGTGC CTGGAACATG GAGACTCCAG AGACGCGAAA AAAGTTTTCA GCCATGGTCC tTGGCCGTGC CTGGAACATG GAGACTCCAG AGACGCGAAA AAAGTTTTCA GCCATGGTCC TTGGCCGTGC CTGGAACATG GAGACTCCAG AGACGCGAAA ACATTTCTCA GCTATGGTTC TGGGTCGTGC CTGGAACATG GAAACTCCAG AAACGCGAAA ACATtTttce gCCatggttc ttggtcgtgc Ctggancatg gagactccag agacgcgana ACATttttea gccatggttc ttggtcgtgc ctggancatg gagactccag agacgcgana ACATTTTTTA GCCATGGTTC TTGGTCGTGC CTGGAACATG GAGACTCCAG AGACGCGAAA ACATTTTTCA GCCATGGTTC TTGGTCGTGC CTGGAACATG GAGACTCCAG AGACGCGAAA

171
gangtatang ctcatggcag atgagatcan ggctgagctc atcangang a gangtatang ctcatggcag atgagatcan ggctgagctc atcangang a gaigtacang ctcaiggcag atgagatcan ggctgagctc atcangang a GAAGTACAAG CTCAAGGCAG ATGAGATCAA GGCTGAGCTC ATCAAGAAGC A gangtacang ctcanggcag atgagatcan ggctgagctc atcangancl a gangtacang ctcaaggcag atgagatcan ggctgagctc atcangangC a gangtacaia ctcatggcag atgagatcan ggctgagctc atcangangc a gadgtacang ctcatggcgg atgagatcan ggctgagctc atcangangc a gangtacang ctcatggcgg atgagatcan ggctgagctc atcangangc a GAAGTACAAG CTCATGGCGG ATGAGATCAA GGCTGAGCTC ATCAAGAAGC A gaigtacang ctcatggcgg atgagatcan ggctgagctc atcangangc a

Alignment 4. Part 4. 5' end of β-tubulin gene DNA sequence alignment of Cylindrocladium

pauciramosum

F. subglutinans NRRL 22061 CY.__candelabrum_STE-U_1674 Cy._candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951 Cy._ candelabrum UFV_8 9
Cy._mexicanum_STE-U-927
Cy._mexicanum_STE-U_941
Cy.-_multiseptatum_STE-U_1589
Cy._multiseptatum_STE-U_1602 Cy._pauciramosum_DISTEE_-127 Cy._pauciramosum_DISTEE_128 Cy._pauciramosum_DISTEF_192 Cy._pauciramosum_DISTEE_196 Cy._pauciramosum_DISTEE_2 CY._pauciramosum_DISTEE_26 Cy._pauciramosum_DISTEE_6 Cy._pauciramosum_DISTEF_60 Cy. pauciramosum DISTEF 62 Cy. pauciramosum_DISTEF_84 Cy._pauciramosum_STE-U_1160 Cy._pauciramosum_STE-U_143 Cy._pauciramosum_STE-U_1691 Cy._pauciramosum_STE-U-1692 Cy._pauciramosum_STE-U_1990 Cy. pauciramosum_STE-U_2030 Cy. pauciramosum STE-U_344 Cy._pauciramosum_SIE-U_416 Cy._pauciramosum_STE-U_913 Cy. pauciramosum_STE-U-925 Cy._pauciramosum_STE-U_951 Cy._pauciramosum_STE-U_971 Cy.-pauciramosum_STE-U-972 Cy._pauciramosum_UFV_25 Cy._pauciramosum_UFV_27

GCGTTGAGTT TATGG-T-XX XXXGCCCCTG ATTCTACCCC GCTGGGC-GG TGEC-AGCTC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCATCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG GTTCTACCCC GCCGTCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGTCCCGG TTTCCACCGC GAG-TGCCTT tGTtGCTtT- CTGGCCCCTG ATtCTACCCC GCGGCCCCGG TTTCCACCGC GAG-TGCCTT TGTTGCTTTG CT-GCCCCTG ATTCTACCCC GCGGCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATtCTACCCC GCCGCCCCGG TTICCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TITCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG tTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG titCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCC̣GCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TITCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCACCGC GCG-TGCCTT TGTTGCT-XX XXXGCCCCTG ATTCTACCCC GCCGCCCCGG TTTCCACCGC

120
AACGACAATG - CACGATAGC - TAGCAGCTT TAAATACC-T tCTGTCAAGA TGAAGAA-GC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tacancgaca acanagccgc agcctcgaca acatgagcan gatatca-gg atatgatggc tacAacgaca acanagccgc agcctcgace acatgagcan gatatca-gg atatgatggc TCCGACGAAA ACAAAGCCGC AACCTCACGA ATGTGA-CGA GATATCA-GA ACAAGATTGC tCCGACGAAA ACAAAGCCGC AACCTCACGA ATGTGA-CGA GATATCA-GA ACAAGATtGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC TTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC TTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC rtCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC ITCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC TTCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC rtcgacgaca acaangccgc agcctcacga tcatga-cga gatatca-ga acangattgc tTCGACGACA ACAAGGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC ITCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTGGACGACA ACAAAGCCGC AGGCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tICGACGACA ACAAAGCCGC AGCCTCACGA TCATGA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC tTCGACGACA ACAAAGCCGC AGCCTCACGA TCATAA-CGA GATATCA-GA ACAAGATTGC
F. subglutinans NRRL 22061

Cy._mexicanum_STE-U_927
Cy._mexicanum_STE-U_94i Cy._multiseptatum_STE-U_1602 Cy. multiseptatum STE-j 1589 Cy._candelabrum_STE-U_1951 Cy._candelabrum_STE-U_1674 CY._ candelabrum_UFV_8 $\overline{9}$ Cy._candelabrum_STE-U_i677 Cy. -pauciramosum STE- $\bar{U} 1671$ Cy._pauciramosum_STE-U_1670 Cy._pauciramosum_STE-U-416 Cy. pauciramosum STE-U 972 Cy. pauciramosum STE-U143 Cy._pauciramosum_DISTEE_2 Cy._pauciramosum_DISTEE_127 Cy._pauciramosum_DISTEE_128 Cy. pauciramosum DISTEE-84 Cy._pauciramosum_STE-U_2030 Cy._pauciramosum_STE-U_925 Cy. pauciramosum STE-U 913 Cy. pauciramosum STE-U 1160 Cy._pauciramosun_STE-U- 951 Cy-pauciramosum_STE-U_1990 Cy. pauciramosumTSTE-U_1692 Cy. pauciramosum STE-U 344 Cy. pauciramosum_STE-U_971 Cy._pauciramosum_STE-U_1691 Cy._pauciramosum_DISTEE_60 Cy. pauciramosum DISTEE 62 Cy._pauciramosum_DISTEE 6 Cy._pauciramosum_DISTEE_26 Cy._pauciramosum_DISTEE_196 Cy._pauciramosum_DISTEE_192

AATCA-GAT CTTTTCTCT- XGCGATAGGT TCACCTCCAG ACCGGTCAGT GCGTAAGTGC tAACCGTGTG TTTCTTCCTC AATTCTAGGT TCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG TTTCTTCCTC AATTCTAGGT TCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCTTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGCCAGT GCGTAAGTGC IAACCTTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGCCAGT GCGTAAGTGC TAACCGTGTG CTTCTTTTTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC IAACCGTGTG CTTCTTTTTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTTTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC IAACCGTGTG CTTCTTTTTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC IAACCGTGTG CTTCTTTTTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC IAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC rAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC IAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GACTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC TAACCGTGTG CTTCTTTCTC GATTATAGGT CCACCTCCAG ACCGGTCAGT GCGTAAGTAC

240
TCATCGCTTC CTC-GACGTC GCATGTGGGG G-ATGCTCAC- GAT-GTT-X -TATCAGGGT TCCTTGCAA- CTCCAACAAC TTTCTCACGG CCATGATCGCT GACACACGT CGAT-AGGGT TCCTTGCAA- CTCCAACAAC TTTCTCACGG CCATGATCTCT GACAGACGT CGAT-AGGGT TCCTCTCGA- CTCCAACGAT ATTCTTATGA CAAGATTCACT GACAGTTTT CGAT-AGGGT TCCTCTCGA- CTCCAACGAT ATTCTTATGA CAAGATTCACT GACAGTTTT CGAT-AGGGT CCTTCTCAA- CTCCGACCAA ATTCTCACGA CGAGATTCACT GACAGTTGT C־AT-AGGGT CCTTCTCAA- CTCCGACCAA ATTCTCACGA CGAGATTCACT GACAGTTGT CCAT-AGGGT CCTTCTCAA- CTCCGACCAA ATTCTCACGA CGAGATTCACT GACAGTTGT CCAT-AGGGT CCTTCTCAA- CTCCGACCAA ATTCTCACGA CGAGATTCACT GACAGTTGT CCAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATGCACT GACAGCTGT CGAT-AGGGT CCTTCTCAA- CTCCGACCAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACCAA ATTCTCACGA CGAGGTTCGCT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACCAA ATTCTCACGA CGAGGTTCGCT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACCAA ATTCTCACGA CAAGATTCGCT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACCAA ATTCTCACGA CAAGATTCGCT GACGGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT ICTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT ICTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT TCTTCTCAA- CTCCAACAAA ATTCTCACGA CGAGATTCACT GACAGTTGT CGAT-AGGGT
F. subglutinans NRRI 22061

Cy._mexicanum_STE-U_927 Cy._-mexicanum_STE-U_941 Cy._multiseptátum_STE-U_1602 Cy._multiseptatum_STE-U_1589 Cy._candelabrum_STE-U_1951 Cy._candelabrum_STE-U_1674 Cy... candelabrum_UFV_8" Cy...candelabrum_STE-U_1677 Cy._-pauciramosum_STE- $\bar{U}_{-} 1671$ Cy. pauciramosum_STE-U_1670 Cy._pauciramosum_STE-U_416 Cy._pauciramosum_STE-U_972 Cy._pauciramosum_STE-U_143 Cy.-pauciramosum_DISTEE_2 Cy._pauciramosum_DISTEE_127 Cy. pauciramosum DISTEF 128 Cy. pauciramosum_DISTEF-84 Cy._pauciramosum_STE-U_2030 Cy. pauciramosum_STE-U_925 Cy._pauciramosum_STE-U_913 Cy._pauciramosurn_STE-U_1160 Cy. pauciramosumisTE-U_951 Cy._pauciramosum_STE-U_1990 Cy. pauciramosum_STE-U_1692 Cy. pauciramosum_STE-U_344 Cy._pauciramosum_STE-U_971 CY._pauciramosum_STE-U_1691 Cy._pauciramosum_DISTEF_ 60 Cy. pauciramosumbister 62 Cy._panciramosum_DISTEF-6 Cy. pauciramosum_DISTEF-26 Cy._pauciramosum_DISTEF_196 Cy._pauciramosum_DISTEF_192

AACCAAATTG GTGCTGCTTT CTGGCAAACC ATCTCTGGCG AGCACGGCCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATTTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATCTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATCTCTGGCG AGCACGGTCT CKACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATCTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATTTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATCTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATTTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTIT CTGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT aACCAAATTG GTGCTGCTIT CTGGCAGACC ATTICTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTIT CTGGCAGACC AITTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATTTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTIT CTGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT anccanattg gtgctgctit ctggcagacc atttctggcg agcacggtct cgacagcant AACCAAATtG GTGCTGCTIT CTGGCAGACC AtTTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATtG GTGCTGCTtT CTGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTIT CTGGCAGACC ATITCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CIGGCAGACC ATtTCTGGCG AGCACGGTCT CGACAGCAAT AACCAAATTG GTGCTGCTTT CTGGCAGACC ATTTCTGGCG AGCACGGTCT CGACAGCAAT

360
gGtGTCTACA ACGGTACCTC CGAGCTCCAG CTCGAGCGTA tGAGTGTCTA CtTCAACGAG gGtGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG gGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA tGAACGTCTA CTTCAACGAG gGtgictacg ccggtacctc cgagctccag ctcgagcgta tgancgtcta cttcancgag GgTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG gGtgictacg ccggtacctc cgagctccag ctcgagcgta tgaicgicta cttcancgag gGtgictacg ccggtacctc cgagctccag ctcgagcgta tgancgtcta cttcancgag gGtgtctacg ccgatacctc cgagctccag ctcgagcgta tgancgicta cttcancgag GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG gGtgtctacg ccggtacctc cgagctccag ctcgagcgta tgancgicta cttcancgag GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG gGtgictacg ccggtacctc cgagctccag ctcgagcgta tgaicgtcta cttcaicgag GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG gGtgTctacg ccgatacctc cgagctccag ctcgagcgta tgancgtcta cttcancgag GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG gGtgtctacg ccgatacctc cgagctccag ctcgagcgta tgancgrcta cttcancgag GGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG GgTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTCTA CTTCAACGAG GgTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTTTA CTTCAACGAG gGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTTTA CTTCAACGAG ggigtctacg ccgetacctc cgagctccag ctcgagcgta tgancgttta cttcancgag gGTGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA TGAACGTTTA CTTCAACGAG GGIGTCTACG CCGGTACCTC CGAGCTCCAG CTCGAGCGTA tGAACGTCTA CTTCAACGAG

Cy._pauciramosum DISTEE-192

GTATGCTTTA A-CAGTCAAT GCCAAGAATT -XXXXXXXXX CCCAAG-XXX CTCACACAAC GTATGTAAAA ACCGCTCCAA GAAATTTCTT IGTCGGGACG CCCAAACAAA CTCACA-XXX GTATGTAAAA ACCGCTCCAA GAAATTTCTT TGTCGGGACG CCCAAACAAA CTCACACA-C GTATGCGAAA AATCATGAGT GCGCTCGCTT TGTGGAGAAA CATAGTCAAA CTGACACACC GTATGCGAAA AATCATGAGT GCGCTCGCTT TGTGGAGAAA CATAGTCAAA CTGACACACC GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAATCCGA CTCACAC-XC GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAAGCCAA CTCACAC-XA GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAATCCAA CTCACAC-XC GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAAGCCAA CTCACAC-XA GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAAGCCAA CTCACAC-XA GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAAAAG CACAAGCCAA CTCACAC-XA GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAAGCCAA CTCACAT-XA GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAAGCCAA CTCACAC-XC GTATGTGAAA ACCACTCGAA GCACTCGCTI GACTGAGAAG CACAAGCCAA CTGACAC-XC GTATGTGAAA ACCACTCGAA GCACTCGCTT GACTGAGAAG CACAAGCCAA CTGACAC-XC GTATGTGAAA ACCACTCGAA GCACTCGCTT GACTGAGAAG CACAAGCCAA CTGACAC-XC GTATGTGAAA ACCACTCGAA GCACTCGCTT GACTGAGAAG CACAAGCCAA CTGACAC-XC GTATGTGAAA ACCACTCGAA GCACTCCCTT GACCGAGAAG CACAAGCCAA CTCACAC-XC
F._subglutinans_NRRL_22061

CY._mexicanum_STE-U_ 927
Cy._mexicanum_STE-U"S41
CY._multiseptātum_S̄̄シ-U_1602
Cy.-multiseptatum_STE-U_1589
Cy._candelabrum_STE-U_1951
Cy._candelabrum_STE-U_1674 Cy._candelabrum_UFV_39
Cy._candelabrum_STE-U_1677
Cy.-pauciramosum STE-U_1671 Cy._pauciramosum_STE-U_1670 Cy._pauciramosum_STE-U_416 Cy._pauciramosum_STE-U_972 Cy._pauciramosum_STE-U_143 Cy._pauciramosum_DISTEE_2 Cy. pauciramosum DISTEF 127 Cy._pauciramosum_DISIEE_128 Cy. pauciramosum_DISTEF-84 Cy._pauciramosum_STE-U_2030 Cy. pauciramosum STE-U 925 Cy. pauciramosum_STE-U_913 Cy._pauciramosum_STE-U-1160 Cy._pauciramosum_STE-U-951 Cy._pauciramosum_STE-U_1990 Cy. pauciramosum_STE-U_1692-Cy._pauciramosum_STE-U_344 Cy. pauciramosum STE-U 971 Cy._pauciramosum_STE-U_1691 Cy._pauciramosum_DISTEF 60 Cy._pauciramosum_DISTEF_62 Cy. pauciramosum_DISTEF-6 Cy._pauciramosum_DISTEF_26 Cy._pauciramosum_DISTEF_196 Cy._Dauciramosum_DISTEF_192

480
-XXXXXTAGG CCTCTGGCAA CAAGTATGTT CCCCGAGCCG TCCTCGTCGA TCTTGAGCCT -TCATGTAGG CTTCCGGCAA CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GTCATGTAGG CTTCCGGCAA CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC AT-GTGTAGG CTTCCGGCAA CAAGTTCGTT CCTCGCGCTG TCCTCGTTGA ICTTGAGCCC AT-GTGTAGG CTTCCGGCAA CAAGTTCGTT CCTCGCGCTG TCCTCGTTGA TCTTGAGCCC ATCATGTAGG CTTCCGGCAA CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC ATCATGTAGG CTTCCGGCAA CAAGTICGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC ATCATGTAGG CTTCCGGCAA CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC

subglutinans NRRL_22061	GGTACCATGG	ACGCCGTCCG	AGCTGGTCCC	THCGGTCAGC
CY: mexicanum STE-U_927	gGtaccatg	ATGCCGTCCG	TGCTGGTCCC	TTCGGTCAGC
Cy. mexicanum STE-U_941	GGTACCATGG	ATGCCGTCCG	TGCTGGTCCC	GGTCAGC
Cy.-multiseptatum_STE-U_1602	GGTACCATGG	ATGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy. multiseptatum_SIE-U_1589	GGTACCATGG	ATGCCGTCCG	TGCCGGTCCT	TTCGGICAGC
CY._candelabrum_STE-U_1951	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._candelabrum_STE-U1674	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	ITCGGTCAGC
Cy._candelabrum_UFV_89	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCA
Cy._candelabrum STE-U_1677	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCA
Cy._pauciramosum_STE-U_1671	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_1670	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_416	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_972	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum. STE-U_143	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEF_2	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy. .pauciramosum_DISTEF_127	GgTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEF_128	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEF_84	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_2030	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_925	gGtaccatg	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_913	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_1160	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAG
Cy._pauciramosum_STE-U_951	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_1990	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy..pauciramosum_STE-U_1692	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_344	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_971	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_STE-U_1691	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEF_60	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy. pauciramosum DISTEE_62	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEF_6	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEF_26	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Cy._pauciramosum_DISTEE_196	GGTACCATGG	ACGCCGTCCG	TGCCGGTCCT	TTCGGTCAGC
Y. pauciramosum DISTEE 192				

Alignment 5．Part 5．5＇end of β－tubulin gene DNA sequence alignment from Cylindrocladium species

F．subglutinans NRミi 22061 Cy．avesiculatum ATCC 38226 Cy．＿candelabrum＿STE－U＿1674 Cy．＿－candelabrum＿STE－U＿1677 Cy．＿－candelabrum＿sse－51951 Cy．＿candelabrum＿UFv＿ 89 Cy．＿citri＿CBS＿18 $6.3 \overline{6}$ CY．＿colhounii＿STE－U＿1237 Cy．＿colhounii＿STE－U＿i 1339 Cy．＿colhounii＿STE－U＿681 Cy．＿colhounii＿STE－U＿705 Cy．＿curvisporum＿STEーテ＿763
Cy．curvisporum ${ }^{-}$STE－U 765
y．flexuosum＿STE－U＿2536
Cy．floridanum＿ATCC＿18834
Cy．＿floridanum＿ATCC＿18882
Cy．＿floridanum＿CES＿413．67
Y．＿floridanum＿IMI＿35428
y．floridanum＿IMI 35429
y．＿floridanum＿STE－U＿2350
y．floridanum STE－U 682
y．floridanum UFV＿7 $\overline{6}$
y．－gracile＿ATC̄C＿2こ833
y．＿gracile＿IMI IE7590
y．＿Gracile＿PC＿551197
y．＿gracile＿STE－U＿1536
．＿gracile＿STE－U＿623
－＿Gracilṓdeun STE－U＿1153
y．－hawksworthi＿MUCL $\overline{3} 0866$
．heptaseptatum＿FTCC＿1002
．heptaseptatum＿ETCC 1003
．＿heptaseptatumíSTE－प̄ 2344
－＿insulare＿STE－U＿616
－insulare＿STE－U－768
insulare＿STE－U＿954
leucothoes＿ATC \bar{C}＿ 64824
－leucothoes＿p97．$\overline{2} 605$
－＿macroconidiale＿STE－U＿307
macroconidiale＿STE－U＿413
－mexicanum＿STE－प्ד＿927
mexicanum STE－U－941
＿multiseptatum＿STE－U＿1589
multiseptatum STE－U 1602
＿naviculatum＿STE－U＿627
－naviculatum＿STE－U＿628
＿ovatum＿UFV＿90
＿parasiticum＿ATCC＿46133
－parasiticum＿CBS＿190．50
＿＿parasiticum＿STE－U＿723
－＿pauciramosum＿STE－U＿416
．＿pauciramosum＿STE－U＿925
－pauciramosum＿STE－U＿972
Cy．＿penicilloides＿CBS＿174．55
Cy．＿pseudogracile＿AR＿2677
y．＿pseudogracile＿STE－U＿1588
－＿PteridiS＿STE－U＿2869
．－pteridis＿STE－U＿2190
Cy．＿pteridis＿UFV＿4 $\overline{3}$
Cy．＿quinqueseptatum＿ATCC＿16550
Cy．＿quinqueseptatum＿STE－U＿516
CY．quinqueseptatumsTE－U＿759
Cy．＿rumohrae＿STE－U＿1603
．rumohrae＿UFV＿215
．＿rumohrae＿UFV＿218
y．－＿scoparium＿ATC̄C＿ 38227
－scoparium＿ATCC＿46300
Y．＿scoparium＿STE－U＿1720
y．＿scoparium＿STE－U＿1722
Cy．＿sp．＿STE－U＿599
Cy．＿SP．＿STE－U＿1150
Cy．＿sp．＿STE－U＿1484
Cy．＿SP．＿STE－U 2321
Cy．＿sp．＿STE－U＿2322
Cy．＿Sp．＿STE－U－2347
Cy．＿sp．＿STE－U＿2712
Cy．＿spathiphylli＿ATCC＿44730 Cy．＿spathiphylli＿STE－U 1624 Cy．－spathiphylli＿STE－U－1641 Cy．Spathiphylli－STE－U ${ }^{-} 2186$ Cy．＿spathiphylli＿STE－U＿2188 Cy．－spathulatum $\bar{A} R_{-} 184 \overline{4}$ CY．＿spathulatum＿ATC̄C＿62616 Cy．，theae＿ATCC＿48895 Cy．－＿theae＿UFV＿16A
Cy．＿－variabile＿AR＿2675
cy．＿－variabile＿UFV＿2s

GCGTI－GAGT TTATG－XXXX XGT－GCCCCT GATTCTACCC CGCTGGGC－G－XXXXGTGG GCGTGCC－TT TGTTG－XXXX XCC－GCCCCT GATTCTACCC CGCCGTCCCG－XXXXXGTTC GCGTGCC－Tt tGTtG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－Tt TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTGTTGTT GCT－GCCCCT GATCCTACCC CGCCGCCCCA TGGGTGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GACCCT GATTCTACCC CGACGACCCG－XXXXGTTTC GCGTGCC－Tt TGTtG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTT－XXXXX－CT－GCCCCT GATTCTACCC CCCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTT－XXXXX－CT－GCCCCT GAGCGTACCC CCCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTA－XXXX XCT－GCCCCT GAGCGTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－Tt TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGACCCG－XXXXGTTTC XXXXGCC－TT TGTTG－XXTT GCT－GCCCCT GATTGTACCC CGCCGCCCCG－XXXXGTTTC XXXXGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGCCCCG－XXXXGTTTC XXXXGCC－TT GGTTG－XXXX XCT－GCCCCA GAACGTACCA CGCCGCCCTG－XXXXGTTAC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGACCCG－XXXXGTTTC XXXXGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGACCCG－XXXXGTTTC XXXXGGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC ACGTGCC－TT GGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGTCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGGGCN－TT TGTTG－XXXX XTT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGCTG－XXXX XCT－GCCCCT GATACTACCC CGCCGCCCCG－XXXXGTTTC XXXXGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC ACGTGCC－Tt TGTtG－XXXX XCTtGCCCCT GATtCTACCC CGCCGCCCCG－XXXXGTtTC GCGTGCC－TT TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC XXXXXXXXXX XXXXXXXXXX XCT－GCCCCT GATCCTACCC CGCCGCCTCG GGGG－ATTTC GCGAGCC－TT TGTTGTTGIT GCT－GCCCCT GATCCTACCC CGCCGCCTCG GGGG－ATtTC GCGTGCC－TT TGITG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCTtGCCCCT GGTTCTACCC CGCCGTCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGTCCCG－XXXXGTTTC GAGTGCC－TT TGTTGCT－TT－CTGGCCCCT GATTCTACCC CGCGGCCCCG－XXXXGTTTC GAGTGCC－TT TGTTGCT－TT GCT－GCCCCT GATTCTACCC CGCGGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXAATTC XXXXGCC－TT TGTTG－XXXX XTT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXAATTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGCCCYG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GAGCGTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCCTTT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－Tt TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTtTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATICTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GAITCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT GGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC XXXXXCC－TT TGTTG－XXXX XCTTGCCCCT AATTCAACCC CGCCGCCCCG－XXXXGTTTC GCGTGCCCTT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCCCTT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GGGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT GGTTG－XXXX XCTTGCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC XXXXXXC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCYCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTITC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGACCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XTT－GCCCCT GATTCTACCC CGCCGATCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－Tt TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC XXXXGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTCC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTCC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC GCGTGCC－TT TGTTG－XXXX XCT－GCCCCT GATTCTACCC CGCCGCCCCG－XXXXGTTTC
F._subglutinans_NRRL_22061 Cy._avesiculatum_ATCE_38226 Cy. candelabrum STE-U-1674 Cy. - candelabrum_STE-U-1677 Cy. candelabrum_STE-U-1951 Cy._candelabrum_UEV_89 Cy._citri_CBS_1包. 3 $\overline{5}$ Cy._colhounii_STE-E_1237 Cy._colhounii-STE-U_1339
Cy._colhounii_STE-U_681 Cy._colhounii_STE-U_705 Cy._curvisporum_STE-U 763 $C y$-_curvisporum_STE-U_765
Cy._flexuosum_STE-U_2536 Cy._floridanum_ATCC 18834 Cy._floridanum_ATCC_18882 Cy._floridanum_CBS_413.67 Cy._floridanum_IMI-35428 Cy._floridanum_IMI_35429 Cy._floridanum_STE-U_2350 Cy._floridanum_STE-U_682 Cy. floridanum UFV $7 \overline{6}$ Cy._gracile_ATCC_2 Cy. gracile IMI 167580 Cy._gracile_PC_551197
Cy._gracile_STE-U_1586 Cy._gracile_STE-U-б23 Cy._graciloideum_STE-U_1153 Cy._hawksworthii_MUCL_30866 Cy. -heptaseptatum_ETCD-1002
Cy._heptaseptatum_ETCC-1003
Cy._heptaseptatum_STE-U 2344
Cy._insulare_STE-U_616
Cy._insulare_STE-U_768
Cy._insulare_STE-U_954
Cy._leucothoes_ATCC_64824
Cy._leucothoes_p97. 2605
Cy.-macroconidiale STE-U_307
Cy._macroconidiale_STE-U_413
Cy._mexicanum_STE-U_927
Cy._mexicanum_STE-U_941
Cy.-multiseptatur_STE-U_1589
Cy._multiseptatum_STE-U_1602
Cy._naviculatum_STE-U_6 $\overline{2} 7$
Cy._naviculatum_STE-U_628
Cy._ovatum_UFV_90
Cy.-parasiticum_ATCC_46133
Cy._parasiticum_CBS_190.50
Cy._parasiticum_STE-U 723
Cy._pauciramosum_STE-TU_416
Cy._pauciramosum_STE-U_925
Cy._pauciramosum_STE-U_972
Cy. penicilloides CBS 174.55
Cy. pseudogracile_AR $\overline{2} 677$
Cy._pseudogracile_STE-U_1588
Cy. pteridiS_STE- $\bar{U} _2869$
Cy. pteridis_STE-U 2190
Cy._pteridis_UFV_4 $\overline{3}$
Cy. -quinqueseptatum_ATCC_16550
Cy._quinqueseptatum_STE-U_ 516
Cy._quinqueseptatum_STE-U_759
Cy._rumohrae STE-U_1603
Cy._rumohrae_UFV_215
Cy._rumohrae_UFV_218
Cy._scoparium_ATCC_38227 Cy._scoparium_ATCC_46300
Cy._scoparium_STE-U__ 1720
Cy._scoparium_STE-U_1722
Cy._sp. STE-U_599
Cy._sp._STE-U_1150
Cy._Sp._STE-U_1484
Cy._sp._STE-U_2321
CY._SD._STE-U_2322
Cy._sp._STE-U_2347
Cy._sp.-STE-U_2712
Cy._spathiphyIli_ATCC_44730
Cy._spathiphylli_STE-U_1624 Cy. spathiphylli STE-U_1641
Cy._spathiphyIIi_STE-U_2186
Cy._spathiphylli_STE-U_2188
Cy._spathulatum_ $\vec{A} R$ _184 $\overline{4}$
Cy._spathulatum_ATCC_62616
Cy._theae_ATCC 48395
Cy._- theae_UFV_I6A
Cy._variabile_AR_2675
Cy._.variabile_UEV_28

CA-XXGCTC- XAACGACAAT G-CACGATAG CT-AGCACC 120 CACC-GCTTC -AACGACAA- XXCAAAGCCG CA-XGCCTCG AGGAACAT-X GGCGAGATA-CATC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-CATC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT- X GACGAGATA-CATC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT- \therefore GACGAGATA-CATC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCIC- ACGATCAT- \because GACGAGATA-CACC-GCTTC GAACGACAA- XXCAAAGCCG CA-XGCCTCG A-GAACAT-X GGCGAGATAA CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAGCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAGCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAGCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA - XXCAAAGCCG CA-XGCCTC- ACGAGCAT-X GACGAGATA-GACC-GCTIC GA-CAACAA- XXCAAAGCTC GACGACCCC- AAG-XCAC-X GATGTGATA-GACC-GCTTC GA-CAACAA- XXCAAAGCTC GACGACCCC- AAG-XCAC-X GATGTGATA-CACC-GCTCC GA-CGACAA- XXCAAAGCCG TA-XGCCTC- ACGAATAT-X GGCGAGATA-CACC-GTTTC GA-CAACAA- XXCAAAGCTC GATGGCTTC- AAG-XCAC-X AATGCGATA-CACC-GCTTC GA-CAACAA- XXCAAAGCTC GATGGCTTC- AAG-XCAC- X AATGCGATA-AACC-GCCTC GA-CAACAA- XXCAAAGCTC GACGGGGTCC AAGAAC-XXX TATGTGATA-GACC-GCTTC GA-CAACAA- XXCAAAGCTC GACGACCCC- AAG-XCAC-X GATGTGATA-GACC-GCTTC TA-CAACAA- XXCAZAACTG GACAACCCC- AAG-XCAC-X CATGTGATA-CACC-GCTTC GA-CAACAA- XXCAAAGCTC GATGGCTTC- AAG-XCAC-X AATGCGATA-CACC-GCTTC GA-CAACAA- XXCAAAGCTC GATGGCTTG- AAG-XCAC-X AATGCGATA-GACC-GCTTC GA-CGACAAC AACAAAGCTC GACGACCCC- AAG-XCAC-X GATGTGATA-CACC-GCTCC GA-CGACAA- XXCAAAGCCA CA-XGCCTC- ACGAACAT-X GGCGAGATA-CACC-GCTCC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GGCGAGATA-CACC-GCTCC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAGCAT-X GGCGAGATA-CACC-GCTCC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GGCGAGATA-CACC-GCTCC GA-CGACAA- XXXAAAGCCA CW-XTTCTC- ACGAACAT-X GGCGAGATA-CACC-GCTTC GA-CGAAAA- XXCAAGGCCG CA-XGCCTC- AAGAACAT-X GACGAGATA-CACC-ACCTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-GCTTC GA-CGACAG- XXCAAAGCCG CG-XTCCTC- ATGAACAT-X GGCGAGATA-CACC-GCTTC GA-CGACAG- XXCAAAGCCG CG-XTCCTC- ATGAACGT-X GGCGAGATA-CACC-GNTTT GA-CGACAG- XXCAAARCCG CG-XTCCTC- ATGAACAT-X GGCGAGATA-CACC-ACCTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-ACCTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-ACCTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-GCTTC AAACGACAA- XXCAAAGCCG CA-XGCCTCG A-GAACAT-X GGCGAGATAA CACC-GCTTC AAACGACAA- XXCAAAGCCG CA-XGCCTCG A-GAACAT-X GGCGAGATAA CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XTCCTC- ACGAACAT-X GGCGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XTCCTC- ACGAACAT-X GGCGAGATA-CACC-GCTAC -AACGACAA- XXCAAAGCCG CA-XGCCTCG AC-AACAT-G AGCAAGATA-CACC-GCTAC -AACGACAA- XXCAAAGCCG CA-XGCCTCG AC-AACAT-G AGCAAGATA-CACC-GCTCC GA-CGAAAA- XXCAAAGCCG CA-XACCTC- ACGAATGT-X GACGAGATA-CACC-GCTCC GA-CGAAAA- XXCAAAGCCG CA-XACCTC- ACGAATGT-X GACGAGATA-TGCC-GCCTC GA-CAACAA- XXCAAAGCCC GACAACCTC- GAG-XCGT-X GATGTGACATTGCCGCNTC GA-CAACAA- XXCAAAGCCG -ACAACCTC- GAG-XCGT-X GATGTGACA-CACC-GCTIC GA-CGACAA- XXCAAAGCCG CA-XGACTC- ACGAACAT-X GACGAGATA-GACC-GCTTC GA-CAACAA- XXCAAAGCTG GACGACCCC- AAG-XCAC-X GATGTGATA-GACC-GCTTC GA-CAACAA- XXCAAAGCTG GACGACCCC- AAG-XCAC-X GATGTGATA-GACC-GCTTC GA-CAACAA- XXCAAAGCTG GACGACCCC- AAG-XCAC-X GATGTGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-X AACGAGATA-CACC-GCTTG GA-CGACAA- XXCAAAGCCG CA-XGGCTC- ACGATCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-X AACGAGATA-GACC-GCC-C GA-CGACAG- XXAACAGCTC GGCGGCTTC- AGG-XCAT-X GATGTGATGG CACC-GCTTC GA-CAACAA- XXCAAAGCCG CT-XGCCTC- ACGAACAI-X GGCAAGATA-CACC-GCTTC GA-CAACAA- XXCAAAGCCG CT-XGCCTC- ACGAACAT-X GGCAAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XXCCTCG -TGAACAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XACATC- ATGAACA - - X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XXCATC- ATGAACAA-X GACGAGATA-CACC-GCTTC GA-CAACAG- XXCAAAGTCG CA-XCCCTC- TTGAACAI-X GATGATATA-CACC-GCTTY GA-CAACAG- XXCAAAGCCG CA-XCCCTC- TTGAACAT-X GACGATATA-CACC-GCTTC GA-CAACAG- XXCAAAGCCG CA-XCCCTC- TTGAACAT-X GACGATATA-CACC-ACATC GA-CGAAAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-ACATC GA-CGAAAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-ACATC GA-CGAAAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-ACATC GA-CGAAAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X GATGTGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACA:-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACGI-X GACGAGATA-CACC-GNTTC GA-CGACAG- XXCGAAACCG CG-XTTCTC- ATGAACAT-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCA:-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCA:-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAI-X CATGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAACAT-X CATGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAGCAI-X CATGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGAGCA:-X CATGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAF-X GACGAGATA-CACC-GCTTC GA-CGACAA- XXCAAAGCCG CA-XGCCTC- ACGATCAT-X GACGAGATA-CACC-GCCTC GA-TGGCAG- XXCGAAGCCG CA-XTCCTC- ATGAACA_AA GACGAGGCA-CACC-GCCTC GA-TGGCAG- XXCGAAGCCG CA-XTCCTC- ATGAACA=AA GACGAGGCA-CACC-ACATC GA-CGAAAA- XXCAAAGCCG CA-XGCCTC- ACGAACA--X GATGTGATA-CACC-ACATC GA-CGAAAA- XXCAAAGCCG CA-XGCCTC- ACGAACA--X GATGTGATA-
E._subglutinans_MR?I_22061 CY._avesiculatum_ACC_38226 Cy. candelabrum STE-U-1674 C.- candelabrum_STE-U_1677 CY._candelabrum_STE-U_1951 Cy._candelabrum UEV_89 Cy.-citri_CBS_186.36 Cy._colhounii_STE-j_1237 CY._colhounii_STE-E_1339 Cy. colhounii_STE-U_681 Cy. colhounii STE-j 705 Cy. curvisporum_s Cy._curvisporum_SIE-U_755 Cy.-flexuosum STE-U_2536 Cy. floridanum ATCC 18834 Cy._floridanum_ATCC-18882 Cy._floridanum_CBS_413.67 Cy._floridanum_IMI_35428 Cy. floridanum_IMi_35429 CY. floridanum STE-U 2350 Cy._floridanum_STE-U-682 Cy. floridanum_U5V $7 \overline{6}$
Cy._gracile_ATCC_22833 Cy. gracile IMI 1E7580 Cy._gracile_PC_55:197 Cy. gracile_STE-U_1586 Cy._gracile_STE-U_623 Cy._graciloideum STE-U 1153 Cy._hawksworthii_XUCL_30866 Cy._heptaseptatum_FTCC 1002 Cy, heptaseptatum FTCC 1003 Cy. heptaseptatum STE-U 2344 Cy._insulare_STE-U 616 Cy._insulare_STE-7768 Cy._insulare_STE-ت゙954 y. leucothoes_ATCC_64824 - leucothoes-pg7. $\overline{2} 605$ V._macroconidiale_STE-U_307 y._macroconidiale_STE-U_413 Cy._mexicanum_STE-U_927 . mexicanum STE-U 941 y._-multisept̄̄am_STE-U_1589 Cy._multiseptatum_STE-U_1602
Cy. naviculatum STE-U 627 naviculatum STE-U_628 y._ovatum UFV $\overline{9} 0$ y. parasiticum_ATCC_46133 . parasiticum_CBS_190.50 . parasiticum STE-U 723 ._pauciramosum_STE-U__416 _pauciramosum_STE-U_925 Cy._pauciramosum_STE-U_972 Cy. penicilloides_CBS 174.55 Cy._pseudogracile_AR_2677 Cy. pseudogracile_STE-U_1588 Cy._pteridis_STE-U_2869 Cy. pteridis STE-U 2190 Cy._pteridis_UEV_4 $\overline{3}$ Cy. quinqueseptaEum_ATCC 16550 Cy._quinqueseptatum_STE-U_516 Cy. quinqueseptatum STE-U 759 Cy. rumohrae STE-U_1603 Cy._rumohrae_UFV_215 Cy._rumohrae_UEV_218 Cy._scoparium_ATत्टC_38227 Cy._scoparium_ATCC_46300 Cy._scoparium_STE-U_1720 Cy._scoparium_STE-U_1722 CY._sp._STE-U_599 Cy. sp. STE-U-1150 Cy._SP._STE-U-1484 CY._sp._STE-U_2321 Cy._Sp._STE-U_2322 Cy._sp.-STE-U_2347 Cy._Sp._STE-U_2712 Cy._spathiphylli_ATCC_44730 Cy._spathiphylli_STE-U_1624 Cy._spathiphyl1i_STE-U_1641 Cy._spathiphyl1i_STE-U_2186 Cy._spathiphylli_STE-U_2188 Cy.-spathulatum AR $184 \overline{4}$ Cy._spathulatum ATC̄_ 62616 Cy._theae_ATCC_ $\overline{4} 3895$ Cy._theae_UFV_16A CY._variabile_AR_2675 Cy._variabile_UTV_28

TCAAG-XATG AAG-AAGCTA. ATCAGAT-CT TTTCTCT-GC GAT-XXAGGT TCACCTCCAG TCAAG-XATG CAAT-GGCTA ACCGTGTGTT TCTTTCT-XC AATTATAGGT TCACCTTCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTTT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTTT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTTT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTITTT-XC GATTATAGGT CCACCTCCAG TCGGG-XATA TGATT-GCTA ACCGTCTGTT TCTTTCT-XC AATTATAGGT CCACCTCCAG TCGAA-XACA AGATTTGCTG ACCATGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG TCGAA-XACA AGATTTGCTG ACCATGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG TCGAA-XACA AGATTTGGTG ACCATGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG TCGAA-XACA AGATTTGCTG ACCATGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG TCGGAGGACA AGGTT-GCTG ACTAT-XATT TCTTTCT-XC AATTCTAGGT TCACCTCCAG tCGGAGGACA AGGTT-GCTG ACTAT-XATT TCTTTCT-XC AATTCTAGGT TCACCTCCAG CCAGA-XACA AGATT-GCTA ACCATGTGCT TATTTCT-XC GATTATAGGT CCACCTCCAG TTGGAGGACA AGGTT-GCTA ACTAT-CGTT TTTCTCTCTC AATTATAGGT CCACCTCCAG TTGGAGGACA AGGTT-GCTA ACTAT-CGTT TTTCTCTCTC AATTATAGGT CCACCTCCAG TCGGAGGACA AGATT-GCTA ACGA-XCGGT TT-CTTCC-C AATTCTAGGT CCACCTCCAG TCGAAGGACA AGGTT-GCTG ACTAT-TATT TCTTTCT-XC AATTCTAGGT TCACCTCCAG TCGAAGGACA AGGTT-GCTG ACTAT-TATA AATTGGT-XC AATTCTAGGT TCACCTACAG TTGGAGGACA AGGTT-GCTA ACTAT-CGTT TTTCTCTCTC AATTATAGGT CCACCTCCAG TTGGAGGACA AGGTT-GCTA ACTAT-CGTT TTTCTCTCTC AATTATAGGT CCACCTCCAG TCGGAGGACA AGGGC-GCTG ACTAT-TATT TGTTTCT-XC AATTCTAGGT TCACCTCCAG TCAGA-XACA AGATT-GCTA ACCATGTCCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATAA-CNA ACCATGTCCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTG ACCATGTGCT TCTTTCT-XC AATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTG ACTATGTGCT TCTTTCT-XC AATTATAGGT CCACCTCCAG TCACA-XACA AGATT-GCTG ACTATGTGCT TCTTTCT-XC AATTATAGGT CCACCTCCAG TCAGA-XACA AGATN-GCTG ACTATGTGCT TCTTTCT-XC AATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCC TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATI-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTCTGCT TCTTTCT-XC GACTATAGGT CCACCTCCAG TCGGG-XATA TGAT-GGCTA ACCGTGT-XT TCTTTCT-XC AATTCTAGGT TCACCTCCAG TCGGG-XATA TGAT-GGCTA ACCGTGT-XT TCTTTCT-XC AATTCTAGGT TCACCTCCAG TCGGA-XACA AGATTTGCTG ACCATGTGCT TCTTTCT-XC AACTATAGGT CCACCTCCAG TCGGA-XACA AGATTTGCTG ACCATGTGCT TCTTTCT-XC AACTATAGGT CCACCTCCAG TCAGG-XATA TGAT-GGCTA ACCGTGTGTT TCTTCCT-XC AATTCTAGGT TCACCTCCAG TCAGG-XATA TGAT-GGCTA ACCGTGTGTT TCTTCCT-XC AATTCTAGGT TCACCTCCAG TCAGA-XACA AGATT-GCTA ACCTTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCTTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TAGGGGAACA AGTTT-GCTG ACCATGTGCT TTTT-XXXXC AATTCTAGGT TCACCTCCAG TAGGGGAACA AGTTT-GCTG ACCATGTGCT TTTT-XXXXC AATTCTAGGT TCACCTCCAG TCAGA-XACG AGATT-GCTA ACCGTGTGCT TCTTTCT-XC AATTATAGGT CCACCTCCAG TCGGAGGACA AGGTT-GCTG ACTAT-XXXT TCTTTCT-XC AATTCTAGGT CCACCTCCAG TCGGAGGACA AGGTT-GCTG ACTAT-XXXT TCTTTCT-XC AATTCTAGGT CCACCTCCAG TCGGAGGACA AGGTT-GCTG ACTAT-TATT TCTTCCT-XC AATTCTAGGT TCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG ACG-AGGACA AGATT-GCTG ACCAAGT-XT TCTT-CT-XC AATTCTAGGT TCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTTTGCT TCTTTTT-XC GATCATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTTTGCT TCTTTTT-XC GATCATAGGT CCACCTCCAG TCAGA-XACG AGATC-GCTA ACCGTGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG TCAGA-XACG AGATC-GCTA ACCGTGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG ICAGA-XACG AGATC-GCTA ACCGTGTGCT TCTTTTT-XC AATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCATGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCATGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCATGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TTGGA-XATC AGATT-GCTG ACCGTGTGCT TCTTTCT-XC AATAATAGGT CCACCTCCAG tTGGA-XATC AAATT-GCTG ACCATGTGCT TCTTTCT-XC AATTATAGGT CTACCTCCAG TTGGA-XATC AAATT-GCTG ACCATGTGCT TCTTTCT-XC AATTATAGGT CTACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTG ACCATGTGCT TCTTTCT-XC AACTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTG ACCATGTGCT TCTTTCT-XC AACTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCATGTGCT TCCTTCT-XC AATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC CATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCGTGTGTT ICTTTCT-XC GATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCGTGTGTT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC CATTATAGGT CCACCTCCAG TCGGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC CATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT ICTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACC AGATT-GCTG ACCATGTCCT TTTCTCT-XG AATTATAGGT CCACCTCCAG TCAGA-XACC AGATT-GCTG ACCATGTCCT TITCTCT-XG AATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG TCAGA-XACA AGATT-GCTA ACCGTGTGCT TCTTTCT-XC GATTATAGGT CCACCTCCAG

T GCGTAAGTGC TCTCAT-CAA CC-CCGAAAA AAAACTTTCT -CGAGGCCAT ACCGGTCAGT GCGTAAGTAC CCTTCT-CAA CT-CCGACCA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC CCTTCT-CAA CT-CCGACCA AA-XXKTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC CCTTCT-CAA CT-CCGACCA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC CCTTCT-CAA CT-CCGACCA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTCA CCATCTTCAA CT-CCGAAAA AA-XCTTTCT -CACGGCCAT ACCGGCCAGT GCGTAAGTGC TCTTGT-CAA CT-CCAACAA TA-XXXTTAT -CAC-XXGAG ACCGGTCAAT GCGTAAGTGC TCTTGT-CAA CT-CCAACAA TA-XXXTTAT -CAC-XXGAG ACCGGTCAGT GCGTAAGTGC TCTTGT-TAA CT-CCAACAA TA-XXXTTAT -CAC-XXGAG ACCGGCCAGT GCGTAAGTGC TCTTGT-CAA CT-CCAACAA TA-XXXTTAT -CAC-XXGAG ACCGGTCAGT GCGTAAGTGA TCATTC-CAG CTTCCAA-AA A-XXXXXXCT -GCCCTGAGG ACCGGTCAGT GCGTAAGTGA TCATTC-CAG CTTCCAA-AA A-XXXXXXCT -GCCCTGAGG ACCGGCCAGT GCGTAAGTAC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CATGACGAG ACCGGTCAGT GCGTAAGTGA TAGTTCCCAA CTT-CAAAAA AAAAA-XTCT -ACCGTGAAG ACCGGTCAGT GCGTAAGTGA TAGTTCCCAA CTT-CAAAAA AAAAA-XTCT -ACCGTGAAG ACCGGTCAGT GCGTAAGTGT TCATTCCGAA -T-CCAAAG- XXXXXXXTCT -GCCCCGAGT ACCGGTCAGT GCGTAAGTGA TCATT-CCAG CTTCCAA-AA A-XXXXXXCT -CCCCTGAGG ACCGGTCAAC GCGTAAGTGA TAATTT-CAG CTTCCAA-AA A-XXXXXXCT -GCCCTGAGG ACCGGTCAGT GCGTAAGTGA TAGTTCCCAA CTTCAAAAAA AAAA-XXTCT -ACCGTGAAG ACCGGTCAGT GCGTAAGTGA TAGTTCCCAA CTTCAAAAAA AAAA-XXTCT -ACCGNGAAG ACCGGTCAGT GCGTAAGTGA TTATT-CCAG CTTCCAA-AA A-XXXXXXCT -GCCTTGGGG ACCGGTCAGT GCGTAAGTGA TATTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGATGAG ACCGGTCAGT GCGTAAGTGA TATTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGA TATTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGA TATTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGA TATTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGATGAG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CGCGGCCAACCGGTCAGT GCGTAAGTGC TCTT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCAG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CCCGGCGAG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-ACAACAA AA-XXXTTCT -CGCGGCAAG ACCGGTCAGT GCGTAAGTGC TCTTCT~CAA CT-CCAACAA AA-XXXTTCT -CCCGGCGAG ACCGGTCAGT GCGTAAGTGC TCTT-XXCAA CT-CCAACGG AA-XXXTTCT -CACGACCAG ACCGGTCAGT GCGTAAGTGC TCTT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCAG ACCGGTCAGT GCGTAAGTGC TCTT-XXCAA CT-CTAACAA AA-XXXTTCT -CACGACCAG ACCGGTCAGT GCGTAAGTGA TCCTATTCAA CCCCCAA-AA A-XXCTTTCT -CGCCGCCAT ACCGGTCAGT GCGTAAGTGA TCCTATTCAA CCCCCAA-AA A-XXCTTTCT -CGCCGCCAT ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCGACAA TA-XXXTTAT -CACGGCGAG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCGACAA TA-XXXTTAT -CACGGCGAG ACCGGTCAGT GCGTAAGTAC TCCTTG-CAA CT-CCAACAA -XXXCTTTCT -CACGGCCAT ACCGGTCAGT GCGTAAGTAC TCCTTG-CAA CT-CCAACAA -XXXCTTTCT -CACGGCCAT ACCGGCCAGT GCGTAAGTGC TCCTCT-CGA CT-CCAACGA TA-XXXTTCT -TATGACAAG ACCGGCCAGT GCGTAAGTGC TCCTCT-CGA CT-CCAACGA TA-XXXTICT -TATGACAAG ACCGGTCAGT GCGTAAGT-A TTTAATCCGA CT-CCAG-AA -XXXXXTTCG TCGTGATGAG ACCGGTCAGT GCGTAAGT-A TTTAATCCGA CT-CCAG-AA -XXXXXTTCG TCGTGATGAG ACCGGTCAGT GCGTAAGTGC TCCTCT-CAA CT-CCAACAA GA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGA TCATTC-CAG CTTCCAA-AA A-XXXXXXCT -GCCCTGGGG ACCGGTCAGT GCGTAAGTGA TCATTC-CAG CTTCCAA-AA A-XXXXXXCT -GCCCTGGGG ACCGGTCAGT GCGTAAGTGA TCATTC-CAG CTTCCAA-AA A-XXXXXXCT -GCCTTGAGG ACCGGTCAGT GCGTAAGTAC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC TCTTCT-CAA CT-CCAACCA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTCT TCAC-XXCAA CGCCCAA-XX XXXXTTCTCT -CCCAAGGAG ACCGGTCAGT GCGTAAGTGA TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACAAG ACCGGTCAGT GCGTAAGTGA TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACAAG ACCGGTCAGT GCGTAAGTGC TCCTCT-CGA CT-CCAGCAA GA-XXXTTTT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCCTCT-CGA CT-CCAGCAA GA-XXXTTTT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCCTCT-CGA CT-CCAGCAA GA-XXXTTTT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCCTC-XXXG CT-CCGAAAA TG-XXXTTCT -CATGACAAC ACCGGTCAGT GCGTAAGTGC TCCTCT-CGA -TTCCAAATA TG-XXXTTCT -CATGACAAG ACCGGTCAGT GCGTAAGTGC TCCTCT-CGA -TTCCAAATA TG-XXXTTCT -CATGACAAG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAGCAA AA-XXXTTCT -CGCAGCGAG ACCGGTCAGT GCGTAAGTAC ATTTCT-CAA CT-CCAACAA AA-XXXTTCT -CGCAGCGAG ACCGGTCAGT GCGTAAGTAC ATTTCT-CAA CT-CCAACAA AA-XXXTTCT -CGCAGCGAG ACCGGTCAGT GCGTAAGTGC TCTT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCGG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCAA-XX GA-XXXTTCT -CACCACGGG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-TCGA-XX TA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCTTCC-CAA CT-CGAACAA AA-XXXTTCT -CGCGGCGAG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCCT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCGG ACCGGTCAGT GCGTAAGTGC TACT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCAG ACCGGTCAGT GCGTAAGTGC TACT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCAG ACCGGTCAGT GCGTAAGTGC TCCT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCGG ACCGGTCAGT GCGTAAGTGC TCCT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCGG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTAC TTTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGAG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGGG ACCGGTCAGT GCGTAAGTGC TCTTCT-CAA CT-CCAACAA AA-XXXTTCT -CACGACGGG ACCGGTCAGT GCGTAAGTGC TCAT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCGG ACCGGTCAGT GCGTAAGTGC TCAT-XXCAA CT-CCAACAA AA-XXXTTCT -CACGACCGT

. subglutinans NRRL 22061 CY. avesiculatum ATC들 38226 Cy_-candelabrum_STE-U_1674 C.-_candelabrum_STE-U_167 Cy._candelabrum_uFV_8 9 Cy._citri_CBS_1 $\overline{8} \hat{\sigma} .3 \overline{6}$ C_{y}-colhounii_STE-U_1237 colhouni STE-U 68
Cy._-colhounii_STE-U_705
Cy. curvisporum_sTE-U_763
y._curvisporum_STE-U_765
Y. flexuosum STE-U 2536

Cy._floridanum_ATCC_18834
Cy._floridanum_ATCC_18882
-- 10 idanum_CBS_413.67

- floridanum-IMI-35428

Cy._floridanum_STE-U_2350
Cy._floridanum_STE-U_682
floridanum UFV 76
_gracile_ATCC_22833
_gracile_IMI_167580
-gracile_PC 551197
gracile_STE-U_623
gracilō${ }^{\text {deum_STE-U_1 }} 1153$
hawksworthii_MUCL 30866
heptaseptatum FTCC 1002
heptaseptatum ETCC 1003
_heptaseptatum_STE- $\bar{U} 2344$
-insulare_STE-U_616
_insulare_STE-U_768
_leucothoes_ATCD_64824
leucothoes_P97. 2605
macroconidiale_STE-U-307
mexicanum_STE-U_927
-mexicanum_STE-U_941
multiseptatum STE-U-1589
naviculatum STE-U $6 \overline{2} 7$
Cy._naviculatum_STE-U_628
_ovatum urv 90
. parasiticum CBS 7905
Cy._parasiticum_STE=U_723
Cy. pauciramosum_STE- $\overline{\mathrm{U}}$ _ 416
_pauciramosum_SIE-U_92
V._penicilloides_CBS_174.55

Cy._pseudogracile_AR_2677
. pseudogracile_STE-U_1588
-pteridiS_STE-U_2869
pteridis_STE-U 2190
quinqueseptātum_ATCC 16550
quinqueseptatum_STE-U_516
quinqueseptatum_STE-U_759
rumohrae_STE-U_1603
Cy._rumohrae_UFV_215
. rumohrae Urv 218
Cy._scoparium_ATCC_38227
Cy.-scoparium_ATCC-46300
V.-scoparium_STE-U-1720

Cy. sp._STE-U_599
Cy._sp._STE-U_1150
Cy._Sp._STE-U_1484
-SP. STE-U_2321
V. SD STE-U-2347

Cy._sp._STE-U_2712
Cy._spathiphȳ̄1i_ATCC_44730
Cy. spathiphylli_STE-U_1624
Cy._spathiphylli_STE-U_1641
Cy. spathiphylli_STE-U_2186
Cy. spathulatum $\bar{A} R 184 \overline{4}$
CV._spathulatum_ATCC_62616

Cy._theae_ATCC_48895

- theae UFV $16 A$
Y._variabile_UFV_28

A-XXXTGCTC AC-XGAGTTT ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAAACCAT ATT-XCACTG ACAGGAGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCC AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTT-XCTCTA ACTCTCGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATATGTCG AT-AGGGTAA CCAAATTGGT GCTGCITTCT GGCAGACCAT ATT-XTACTG ACACATGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATATGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATATGTCG AT-AGGGTAA. CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTCGCG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTCGCG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACGGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XGACTG ACACTTATGG CT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XGACTG ACACTTATGG CT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACATTCGTGG TT-AGGGTAA CCAAATTGGT GCTGCTITCT GGCANACCAT ATT-XCACTA ACA-TTCGCG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTCGGG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAAACCAT ATT-XGACTG ACACTTATGG CT-AGGGTAA CCAAATTGGT GCTGCTTICT GGCACACCAT ATT-XGACTG ACACTTATGG CT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTCGCG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACATTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GATT-CGCTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATGTTTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATGTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATGTTTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAATTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTT-XCACTG ACAGTCGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTT-XCACTG ACAGTCGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTT-XTACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTr-XTACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GAT-XCGCTG ACAGACGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GAT-XCTCTG ACAGACGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTTTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTTTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTGCTG AC-CTTGGTG GACAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTGCTG AC-CTTGGTG GACAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTSGCG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTGGCG ATCAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTA ACA-TTCRCG ATCAFGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTT-XCGCTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTC ACAAT-CACA AACAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAAACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTG ACAGTTGTCA AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTG ACAGTTGTCA AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTG ACAGTTGTCA AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT GTT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTTT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATG-XAACTG ACATTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATA-XAACTG ACATTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATA-XAACTG ACATTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAI ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTITCT GGCAGACCAT ATT-XTACTG ACAGCTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACAGCTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACATTTGTCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAI ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XTACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTITCT GGCAGACCAT ATT-XTACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCG A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTGTCG AT-AGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTG ACACTCGCGG AT-AGGGTAA CCAAATCGGT GCTGCTTTCT GGCAGACCAT ATT-XCGCTG ACACTCGCGG AT-AGGGTAA CCAAATCGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCA A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT ATT-XCACTG ACAGTTATCA A-CAGGGTAA CCAAATTGGT GCTGCTTTCT GGCAGACCAT

 tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTSTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACECC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACRAC GGTACCTCCG ACCTCCAGTT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACAAC GGTACCTCCG ACCTCCAGTT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACZAC GGTACCTCCG ACCTCCAGTT TTTTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACュAC GGTACCTCCG ACCTCCAGTT CTtTGGCGAG CACGGCCTTG ACAGCAATGG TGTCTACFAC GGTACCTCCG ACCTCCAGTT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTTTACFAC GGTACCTCCG ACCTCCAGTT CTtTGGCGAG CACGGTCTCG ACAGCGGTGG TGTCTACAAC GGAACCTCCG ACCTGCAGTT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACAAC GGTACCTCCG ACCTCCAGTT CTTTGGCGAG CACGGCCTCT ACAGCAATGG TGTCTACAAC GGTACCTCCG ACCTCCAGTT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACAAC GGTACCTTCG ACCTCCAGTI CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT TTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGOT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTNTACGCC GGTACCTCCG AGCtTCAGCT ttCtggcgag cacggtctca acagcantgg tgtctacgec ggtacctccg agcttcagct CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTTTACGCC GGTACCTCCG AGCTTCAGCT ttctggcgag Cacgetctcg acagcaitgg tgtctacget ggtacctccg agctccagct tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT ttctggcgag cacggtctcg acagcantgg tgtctacget ggtacctccg agctccagct tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCTG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCTG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCE GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT ttctggcgag cacggictcg acagcantgg tgtctacgcc ggtacctccg agctccagct tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACAAC GGCACCTCTG AGCTCCAGCT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTYTACAAC GGCACCTCTG AGCTCCAGCT CTCTGGCGAG CACGGTCICG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT CtCTGGMGAG CACGGCCTTK ACAGCAATGG tGTCTACAAC GGTACCTCCG ACCTCCAGTT CtCtgGcgag cacgecettg acagcaitg tgtctacaic ggtacctccg acctccagtt CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACAAC GGTACCTCTG ACCTCCAGTT TTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT ttctggcgag cacggtctcg acagcaitgg tgtctacgec ggtacctccg agctccagct CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACGCI GGTACCTCCG ATCTCCAGCT TTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AACTCCAGCT tTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AACTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGCCTCG ACAGCAATGG TGTCTACGCT GGTACTTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCC GGTACCTCCG AGCTCCAGCT TTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT tTCTGGGGAG CACGGCCTCG ACAGCAATGG CGTCTACGCC GGTACCTCCG AGCTCCAGCT ttctggcgag cacgacctcg acagcantgg cgtctacgcc ggtacctccg agctccagct tTCTGGCGAG CACGGCCTCG ACAGCAATGG CGTCTACGCC GGTACCTCCG AGCTCCAGCT ttctggcgag cacggtctcg acagcaitgg tgtctacget ggtacctccg agctccagct tTCTGGCGAG CACGGCCTAG ACAGCAATGG tGTCTACGCT GGTACCTCTG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCTG AGCTCCAGCT tTCTGGCGAG CACGGCCTCG ACAGCAATGG CGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT CTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT TTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGCCTCG ACAGCAATGG CGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGCCTCG ACAGCAATGG CGTCTACGCC GGTACCTCCG AGCTCCAGCT tTCTGGCGAG CACGGTCTCG ACAGCAATGG TGTCTACGCT GGTACTTCCG AGCTCCAGCT trctggcgag cacggictcg acagcaitgg tgtctacgct ggtacttccg agctccagct tTCTGGCGAG CACGGTCTCG ACAGCAATGG tGTCTACGCT GGTACCTCCG AGCTCCAGCT trctggcgag cacgatctcg acagcaitg tgictacgct ggtacctccg agctccagct
candelejrum STE-U-1674
_candelabrum_STE-U_1677
_ candelabrum_STE-U_1951
-_candelab:um_UFV_89
citri CBS $1 \overline{8} 6.3 \overline{6}$
Cy._-colhouniti-STE-U_1237
-colhouri_i_STE-U_1339
-colhourii_STE-U-681
colhou:i:STE-U705
curvisev=um_STE-U 763
_curvisEosum_STE-U-765
Cy._flexuosum_STE-U_2536
Y. floridatum ATCC 18834
y. floridenum ATCC 18882
Cy._florida.:um_CBS_413.67
Cy._floridanum_IMI-35428
Cy. floridanum IMI 35429
Y. floridanum STE-U 2350
Cy._floridanum_STE-U 682
._florida.?um_UFV_7
. gracile_ATC̄C $2 \overline{2} 833$
gracile IMI 167580
gracile_PC 551197
gracile_STE-U_1586
gracile_STE-U-623
. graciloideum STE-U 1153
y. hawksworthii MUCL $\overline{3} 0866$
Cy._heptaseptatum_FTCC 1002
Cy.-heptaseptatum_FTCC_1003
heptaseptatum STE-U 2344
insulare STE-U 616
insulare_STE-U-768
insulare_STE-U-954
Veucothoes_ATCC_64824
eucothoes P97. 2605
croconidiale_STE-U_307
croconidiale_STE-U_413
xicanum_STE-U_927
icanuin STE-U-941
tisep =atum_STE-U_1589
Itiseptatum STE-U-1602
naviculatur_STE-U_627
naviculatum STE-U 628
ovatum_UE_ 90
Cy._parasiticun ATCC_46133
Cy._parasiticum_CBS_190.50
Cy. parasiticumste-u 723
Cy._pauciramosum_STE-U_416
Cy._pauciramosum_STE-U_925
Cy. panciramosum_STE-U-972
Cy, penicilloides CBS 174.55
Cy. pseudogracile-AR $\overline{2} 677$
Cy. Pseudogracile_STE-U_1588
Cy._pteridis_STE-U 2869
Cy._pteridis_STE-U_2190
Cy. pteridis UFV $4 \overrightarrow{3}$
Cy._quinqueseptatum_ATCC_16550
Cy._quinqueseptatum_STE-U_- 516
Cy. quinqueseptatum STE-U 759
Cy. rumohrae STE-U 1603
y. . rumohrae_UFV_215
Cy._rumohrae_UFV_218
Cy._scoparium_ATCC 38227
Cy. ${ }^{-}$scoparium ${ }^{-}$ATCC $^{-} 46300$
Cy._scoparium_STE-U_ 1720
CY._scoparium_STE-U_1722
Cy._Sp._STE-U_599
Cy._sp. STE-U 1150
Cy._sp._STE-U-1484
Cy._sp._STE-U_2321
Cy._sp._STE-U_2322
CY._sp._STE-U_2347
Cy._sp.-STE-U_2712
Cy._spathiphyIli_ATCC_44730
Cy._spathiphylli_STE-U 1624
Cy. spathiphy11i STE-U 1641
Cy._spathiphylli_STE-U- 2186
Cy._spathiphy11i_STE-U_2188
Cy._spathulatum_AR_184 $\overline{4}$
Cy._spathulatum_ATCC_62616
Cy. theae ATCC 48895
Cy. theae_UFV ÍA
Cy._variabile_AR_2675
Cy._variabile_UFV_28
cgagcgtatg agtgtctact tcancgasgt atgc-tttan -xca-g-tca atgccan-ga cgagcgtatg ancgtctact ttancgaggt gtgta-XaAa accgcgccga -gaictttc CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCcGagcgtatg ancgtctact tcancgaggt atgtg-xana accactc-ga agcactccccgagcgtatg ancgtctact tcancgaggt atgtg-xaAa accactc-ga agcactcccCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGCATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCGCGCCGA -GAACTCTCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA GCTGC-TTGG TGT-XCCCC cgagcgtatg ancgtctact tcancgagg atgtg-xaAa gctgc-ttgg tgta-ccccCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA GCTGC-TTGG TGTA-CCCTCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA GCTGC-TTGG TGTA-CCCCGGAGCGCATG AACGTCTACT TCAACGAGGT ATGTGGTTAA AATA-XXAAA CG-XCTCGCC GGAGCGCATG AACGTCTACT tCAACGAGGT ATGTGGTTAA AATA-XXAAA CG-XCTCGCC CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG AGCACTCCCgGagcgtatg ancgtctact tcancgaggt atgtggtcan att-Xgc-AA CA-XXtcGcgGagcgtatg ancgrctact tcancgagg atgtggtcan attgc-Xxan CA-XXtcgcgGagcgcatg ancgtttact tcancgaggt atgtagcgan agagcgcgca tacgcgctca gGagcgcatg ancgtctact tcancgagg atgtggntan anta-XXAAA cG-XCTCGCC gGagcgcatg ancgtctact tanaceagg atgtggatan anta-Xxana cgctctc-cgGagcgtatg ancgtctact tcancgaggt atgtggtcan att-XgC-AA CA-XXtcgcggagcgtatg ancgtttact ttancgaggt ttgtggtcan att-xgc-an ca-xxtcgcgGagcgcatg ancgtctact tcaicgagg atgtggttan anta-xkaian cg-xctcccc cgagcgtatg ancgtctact tcancgaggt atgtg-xada accacgc-gg agcactcccCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG AGCACTCCCcgagcgtatg ancgtctact tcancgaggt atgig-XaAA accacgc-gg agcactcccCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACA-XGA -GTAC-TTCG CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG tGTACTCACcGagcgratg ancgictact tcancgagg atgtt-caAa -ccacac-ga cctactcccCgagcgtatg ancgictact tcancgaggt ttgta-XaAA accacac-ga actacttccCGaGCGTATG AACGTCTACT TCAACGAGGT ATGTT-CAAA -CCACAC-GA CCTACTCCC CGAGCGTATG AACGTCTACT tCAACGAGGT ATGTG-XAAA ATCACGC-GG TGTACTCACA Cgagcetatg ancgtctact tcancgagg atgtg-XAAA accgcgc-gg tgtacccaca CGAGCGTATG AACGTCTACT TCAACGAGGT GTGTG-XAAA ACCGCGC-GG TGTACTCACA CGAGCGCATG AACGTCTACT TCAACGAGGT ATGT-GAAAA -TCACGCTGA T-AACACTCCGAGCGCATG AACGTCTACT TCAACGAGGT ATGT-GA-AA ATCACGCTGA T-AACACTCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA CCCAT-CTGA tCTGACCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA CCCAT-CTGA TCTGACCCCCGAGCGTATG AACGTCTACT TCAACGAGGI ATGTA-XAAA ACCGCTCCAA -GAAATTTCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTA-XAAA ACCGCTCCAA -GAAATTTCcgagcgtatg ancgtctact tcancgaggt atgcga-ana atcatg-xag tgcgctcgcCgagcgtatg ancgtctact tcancgaggt atgcg-anai atcatg-xag tgcgctcgcCGAGCGCATG AACGTCTACT TCAACGAGGT AGGTAGT-GG GCTA-GC-XA CA-XXXCCCA CGAGCGCATG AACGTCTACT TCAACGAGGT AGGTAGT-GG GCTA-GC-XA CA-XXXCCCA CGAGCGTATG AACGTCTACT tCAACGAGGT ATGTG-XAAG ACCACGC-GG TGCACCCCTgGagcgcatg ancgtctact tcancgagge atgtggttan anca-xxana cg-xctcgcc gGAGCGCATG AACGTCTACT TCAACGAGGT ATGTGGTTAA AACA-XXAAA CG-XCTCGCC gGagcgcatg ancgtctact tcancgaggt atgtggttan anta-xxana cg-xctcgcc CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCgGagcgcatg agcgtctact tcancgaggt atgtagagan gccccattgg -ganaic-xx gGagcgtatg ancgrctact tcancgaggt acgtg-xada accacac-gg agtactcccg gGAgCGTATG AACGTCTACT tCAACGAGGT ACGTG-XAAA ACCACAC-GG AGTACTCCCG CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG agCACTCCCCGAGMGWATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG AGCACTCCCCGAGCGTATG AACGTCTACT tCAACGAGGT AT-CAA-AAA AC-ATGC-XG tGCGCTCACcgagcgtatg ancgtctact tcancgaggt atgcg-aAAA accatgcc-x tgcgctcgcCGAGCGTATG AACGTCTACT TCAACGAGGT ATGCG-AAAA ACCATGCC-X TGCGCTCGCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTTACAA- XCCGCGC-GG CGTAT-CGCC CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTTGCAA- XCCGCGC-GG CGTAT-CGCC cgagcgtatg ancgtctact tcancgaggt atgttgcai- xccgcgc-gg cgtatcgccCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG TGTACTCACA CGAGCGTATG AACGTCTACT TCCACGAGGT ATGTG-XAAA ACCACGC-GG TGTTCTCACA CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG TGTACTCACA CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG tGTACTCACA CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACT-XGA AGCACTCCCCGAGCGTNTG AACGTNTACT tCAACGAGGT ATGTGG-A-G GCTAC-CTGG tGCACCCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTGG-AAA -CTGC-CTGG TGCATCCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGITGCAA- XCCGCAC-GG CGTATTCCCT CGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG tGTtCTCGCCGAGCGTATG AACGTTTACT TCAACGAGGT ATGTG-XAAT GCCACGC-GG TGTtCTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA GCCACGC-GG TGTTCTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACGC-GG TGTTCTCGCcgagcgtatg ancgtctact tcancgaggt atgtg-xana accacgc-gg tgttctcgcCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTG-XAAA ACCACTC-GA AGCACTCCCCGAGCGTATG AACGTCTACT TCAACGAGGT ATGTGA-AAA AA-GCAC-XX XGCAC-AGTcGAGCGTATG AACGTCTACT tCAACGAGGT ATGTGA-AAA AA-GCAC-XX XGCAC-AGTcGAGCGTATG AACGTCTACT tCAACGAGGT ATGTG-XAAA ACCACGC-GG TGTACTCACA cGagcgtatg ancgtctact tcancgagg atgtg-xana accacgc-gg tgtactcaca
 Cy._avesiculatum $\operatorname{ATC} \bar{C} 38226$ Cy. .candelabrum_STE-U-1674 Cy._candelabrum_STE-U_1677
. candelabrum_STE-U 195
._candelabrum_UFV_89
Cy._citri_CBS_186.3̄
CY._COLhounii_STE-U_1237
Cy._colhounii_STE-U_1339
Cy._colhounii_STE-U_E81
Cy._colhounii_STE-U-70s
CY.-curvisporum STEEU 763
Cy. flexuosum STE-U_2536
Cy.- floridanum_ATCC_-18834
Cy. floridanum ATCC-18882
Cy._floridanum_CBS_413.67
._floridanum_IMI_35428
Y._floridanum_IMI_35429
y. floridanum_STE-U_2350
y._floridanum_STE-U_682
floridanum UFV 76
. gracile_ATCC_22833
y._gracile_IMI_167580
y._gracile_pC_551197
._gracile_STE-U_1586
. gracile STE-U 623
-_graciloideum_STE-U_1153
y. _hawksworthii_MUCL_30866
-heptaseptatum_FTCC_1002
neptaseptatum ETCC 1003
heptaseptatum_STE-U 2344
-insulare_STE-U_ 616
_insulare_STE-U_768
insulare_STE-U 954
leucothoes_ATCC_64824
leucothoes_P97. $\overline{2} 605$
macroconidiale-sTE-U
_mexicanum_STE-U_927
-mexicanum_STE-U_-
multiseptatum_STE-U_1589
multiseptatum STE-U 1602
. naviculatum STE-U 627
._naviculatum_STE-U_628
._ovatum_UFV 90
_parasiticum_ATCC_46133
parasiticum CBS 190.50
-_parasiticum_STE-U_723
- pauciramosum STE-Ū_416
pauciramosum_STE-U_92
auciramosum STE-U 972
_penicilloides CBS $\overline{174.55}$
pseudogracile_AR_2677
_pseudogracile STE-U 1588
pteridiS_STE-U_2869
pteridis_STE-U-2190
_pteridis_UFV_4 $\overline{3}$
-quinqueseptatum_ATCC_16550
quinqueseptatum SIE-U 516
quinqueseptatum STE-U 759
- rumohrae_STE-U_1603
_rumohrae_UFV_215
rumohrae UFV 218
scoparium_ATCC_38227
-scoparium_ATCC_46300
_scoparium_STE-U_-1720
scoparium STE-U_1722
sp...STE-U_599
.sp. STE-U_1150
._sp._STE-U_1484
._sp._STE-U_2321
sp. STE-U_2322
._sp._STE-U_2347
_SP._STE-U_2712
spathiphylli_ATCC 44730
spathiphylli_STE-U_1624
._spathiphylli_STE-U_1641
._spathiphylli_STE-U_2186
Cy._spathiphylli_STE-U_2188
Cy. spathulatum_AR_1844
Cy. spathulaturn ATCC_62616
Cy._theae_ATCC_48895

- heae UFV 16A
variabile_UFV_28

ATT-XCC-XX XXXXXXXCAA -G-XXXXCTC ACACA-XXXX XXXAC-TAGG CCTCTGGCAA tGTG-TCGAG G-XXCATAAA CCCAA-XCTC ACAC-XXXXX GTCATGTAGG CTTCCGGCAA TT-GACCGAG AAG-CACAA- TCCGA-XCTC ACAC-XXXXC ATCATGTAGG CTTCCGGCAA tGTG-TCGAG ACAACACA-X GTAAA-XCTC ACACAC-XXX G-CATGTAGG CTTCTGGCAA TATG-TCGAG AGA-CGCAA- CTAAA-XCTG ACAC-XXXXX -XCATGTAGG CCTTCGGCAA
 TATG-TCGAG AGA-CGCAA- GTAAA-XCTG ACAC-XXXXX -XCATGTAGG CCTTCGGCAA TATG-TCGAG AGA-CGCAA - CTAAA-XCTG ACAC-XXXXX -XCATGTAGG CCTCCGGCAA -XtGGTCGA- AAAACTTGTG CACAAA-CTC ACAC-XXXXX -XGATACAGG CTTCCGGCAA -XTGGTCGA- AAAACTTGTG CACAAA-CTC ACAC-XXXXX -XGATACAGG CTTCCGGCAA tT-GATCGAG AAA-CATAAA -CAAA-XCTC ACAC-XXXXX -XCATGTAGG CTTCCGGCAA tTtGG-CGAG AA-Xtataga gccagcactc acac-xxxxx -xCAtctagg cttccgecan tTTGG-CGAG AA-Xtataga gccagcactc acac-xxxxx -xcatctagg cttccggcan CCCTG-CGAG AAA-CAT-GA ATAAAAACTC ACAC-XXXXX -XTATCAAGG CCTNCGGCAA -XTGGTCGA- AAAACTTGTG CACAAA-CTC ACAT-XXXXX -XGATACAGG CTTNCGGCAA -XtGGTCGA- AAAACTTGTG CACAAA-CTC ACAT-XXXXX -XGATACAGG CTtGCGGCAA tttgg-cgag an-xtataga gccagcactc acac-xxxxx -xcatntagg cticcgecan tTtGGG-GAG AA-Xtttaga gccagcactc acac-xxxxx -XCATtTAGG Ctttcgecan -XTGGTCGA- AAAACTTGTG CACAAAACTC ACAC-XXXXX -XGATACAGG CTTCCGGCAA tT-GATCGAG AAG-CACAA- GCAAA-XCTC ACACAC-XXX -XCATGTAGG CTTCCGGCAA tt-gatcgag ang-cacai- gcana-xctc acacac-xxx -xcacgtagg cttccggcan tT-GATCGAG AAG-CACAA- GCAAA-XCTC ACACAC-XXX -XCATGTAGG CTTCCGGCAA TT-GATCGAG AAG-CACAA- GCAAA-XCTC ACACAC-XXX -XCATGTAGG CTTCCGGCAA tT-GATCGAG AAG-CACAA- GCAAA-XCTC ACACAC-XXX -XCATGTAGG CTTCCGGCAA tTtG-TCGGG AAGAT-CAA- GCGAA-XCTC ACACAC-XXX -XCATGTAGG CTTCCGGCAA -xXxGCCGAG AGG-CACAA- GCAAA-XCTG ACAC-XXXXX -XTATGTAGG CTTCTGGCAA TCATACCAGC AG-XTAT-GA GAAAA-XCTC A-XXXXXXXX XXCATGTAGG CCTCTGGCAA TTATACCAGC AG-XTAT-GA GAAAA-XCTC AC-XXXXXXX -XXXTGTGGG CCTCTGGCAA TCATACCAG- CAG-TAT-GA GAAAA-XCTC A-XXXXXXXX XXCATGTAGG CCTCTGGCAA C-XXGCCGAG AGG-CACAA- GCAAA-XCTG ACAC-XXXXX -XCATGTAGG CTTCTGGCAA C-XXGCCGAG AGG-CACAA- GCAAA-XCTG ACAC-XXXXX -XC-TGTAGG CTTCTGGCAA C-XXGCCGGG AGG-CACAA- GCAAA-XCTG ACAC-XXXXX -XCATGTAGG CTTCTGGCAA tTtG-TTG-X AGACA-ACAA AGCGAA-CTC ACACAC-XXX GTCATGTAGG CTTNCGGCAA tTtG-ttgag acancanagc g-an-XxCtC acacac-Xxx gtcatgtagg cttccgecan TTCG-TCGAT AGG-CACAAA GTAAA-XCTG ACAC-XXXXX GCTATGTAGG CTTCCGGCAA tTCG-TCGAT AGG-CACAA- GTAAA-XCTG ACAC-XXXXX GCTATGTAGG CTTCCGGCAA TTTG-TCGGG ACG-CCCAAA -CAAA-XCTC ACA-XXXXXX XTCATGTAGG CTTCCGGCAA tTtG-tCgGg acg-CCCAAA -CAAA-XCTC ACACAC-XXX GTCATGTAGG CTTCCGGCAA tTtG-TGGAG AAA-CATAG- TCAAA-XCTG ACACAC-XXC AT-GTGTAGG CTTCCGGCAA tTTG-TGGAG AAA-CATAG- TCAAA-XCTG ACACAC-XXC AT-GTGTAGG CTTCCGGCAA TTTG-TCAAG AAA-CATTGA ACAAA-XCTG ACAGACCGCA ACCGCACAGG CTTCCGGCAA tTtG-TCAA- XGAAACATTG AACAAA-CTG ACAGACCGCA ACCGCACAGG CTTCCGGCAA tTT-GCCGAG AAG-CACAA- GCAAA-XCTG ACACA-XXXX XCCATGTAGG CTTCCGGCAA -XtGGTCGAA AAA-CTTGT- GCACAAACTC ACAC-XXXXX -XGATACAGG CTTCCGGCAA -XTGGTCGAA-AAA-CTTGT- GCACAAACTC ACAC-XXXXX -XGATACAGG CTTCCGGCAA -XtGGTCGAG AAA-CTTGT- GCCCCAACTC ACAC-XXXXX -XAATACAGG CTTTCGGCAA tT-GACCGAG AAG-CACAA- GCCAA-XCTC ACAC-XXXXC ATCATGTAGG CTTCCGGCAA TT-GACCGAG AAG-CACAA- GCCAA-XCTC ACACA-XXXX ATCATGTAGG CTTCCGGCAA TT-GACCGAG AAG-CACAA- GCCAA-XCTC ACAC-XXXXC ATCATGTAGG CTTCCGGCAA -XTGAT-GA- XAAT-CTCAC ACACG-XCT- XXXXXXXXXX -XXACTCAGG CTTCCGGCAA TT-G-CCCAG AAG-CACAA- GCAAA-XCTC ACA-XXXXXC ATCATGTAGG CTTCCGGCAA TT-G-CCCAG AAG-CACAA- GCAAA-XCTC ACA-XXXXXC ATCATGTAGG CTTCCGGCAA TTT-ACCGGG AAG-CACAA- GCAAA-XCTG ACACGC-XXX -XCGTGCAGG CTTCTGGCAA tTT-ACCGGG AAG-CACAA- GCAAA-XCTG ACACGC-XXX -XCGTGCAGG CTTCTGGCAA tTT-ACCGGG AAG-CACAA- GCAAA-XCTG ACACG-XXXX XCCGTGCAGG CTTCTGGCAA tTtGA-CGAG AAA-TACAG-TTTG-TCGAA AAAGCACAA-TTTG-TCGAA AAAGCACAATTTAACCAGC AG-XTGCAATTTAACCGGC AG-XTGCAATTTAACCGGC AG-XTGCAA-C-XXGCCGAG AGG-CACAA-C-xxgCCGAg AgG-CACAA-c-xxgccgag agg-cacan-C-XXGCCGAG AGG-CACAA-TT-GGCCGAG AAG-CACAA-TT-GGCCGAG AAG-CACAA-TT-GGCCGAG AAG-CACAA-TTTG-CCGAG AGG-CACAAA tTGG-CCGAG AGG-CACAAA TCA-GCCAAC CG-XTGCAAG TT-GGCCGAG AAG-CACAA--XXXXTCGAG AGG-CACAA--XXXXTCGAG AGG-CACAG--XXXXTCGAG agg-cacag--XXXXTCGAG AGG-CACAA--XXXXTCGAG AGG-XACAA-TT-GGCCGAG AAG-CACAA-TT-GGCCGAG AAG-CACAAtGTGAACGCG AAGG-ACAG- CCAA-XXCTC ACAC-XXXXX -XCATGTAGG CTTCTGGCAA tgTgancgcg angg-acag- ccan-xxctc acac-xxxxx -xCAtgtagg cttctggcan C-XXGCCGAG AGG-CACAA- GCAAA-XCTG ACGC-XXXXX -XCATGTAGG CTTCTGGCAA C-XXGCCGAG AGG-CACAA- GCAAA-XCTG ACGC-XXXXX -XCATGTAGG CTTCTGGCAA
F._subglutinans_NRRL_22061 Cy. avesiculatum ATC $\bar{C} 38226$ Cy._candelabrum_ $\overline{S T E}-\mathrm{U}_{-}^{-} 1674$ Cy._candelabrum_STE-U_1677
Cy._candelabzum_STE-U_1951
Cy. candelabzum UFV $8 \overline{9}$
Cy._citri_CBS_1 $\overline{8} 6.3 \overline{6}$
Cy._colhounii_STE-U_1237
Cy._colhounii_STE-U_1339
Cy.-colhounii_STE-U_681
. colhounii-STE-U-705
y.-_curvisporum_STE-U_763

Cy._curvisporum_STE-U-765
Cy._flexuosum_STE-U_2536
Cy._floridanum_ATCC_18834
Cy._floridanum_ATCC_18882
Cy.-floridanum_CBS_413.67
Cy._floricianum_IMI_35428
Cy. floridanum IMI 35429
Cy._floridanum_STE-U_2350
Cy.-floricianumSTE-U 682
Cy._floricianum_uFV $7 \overline{6}$
Cy._gracile_ATC̄C_22833
Cy. gracile - IMI $\overline{1} 67580$
Cy._gracile_pC_551197
Cy._gracile_STE-U_1586
Cy._gracile_STE-U_623
Cy. graciloideum $\bar{S} T E-\mathrm{U} 1153$
Cy._hawksworthii_MUCL_30866
Cy._heptaseptatum_ETCC_1002
Cy._heptaseptatum_ETCC_1003
Cy. heptaseptatum STE-U 2344
Cy.-insulare_STE-U
Cy._insulare_STE-U-768
Cy._insulare_STE-U_954
Cy. - leucothoes ATCC 64824
Cy._leucothoes_p97. 2605
Cy.-macroconidiale_STE-U_307
Cy._macroconidiale_STE-U_413
Cy._mexicanum_STE-U_927
Cy._mexicanum_STE-U_941
Cy._multiseptatum_STE-U_1589
Cy.-.multiseptatum_STE-U-1602
Cy. naviculatum STE-U 627
Cy.-_naviculatum_STE-U-628
Cy._ovatum_UFV 90
Cy._parasiticum_ATCC_46133
Cy._parasiticum_CBS_190.50
Cy._parasiticum_STE-U 723
Cy._pauciramosum_STE- $\overline{\mathrm{U}}$ _ 416
Cy._pauciramosum_STE-U_925
Cy._pauciramosum_STE-U_972
Cy._penicilloides_CBS_174.55
Cy._pseudogracile_AR_5 677
Cy._pseudogracile_STE-U_1588
Cy. pteridiS_STE-U_2869
Cy. pteridis STE-U 2190
Cy._pteridis_UFV $4 \overline{3}$
Cy._quinqueseptatum_ATCC_16550
Cy. quinqueseptatum_STE-U 516
Cy. quinqueseptatum STE-U 759
Cy._rumohrae_STE-U_1603
Cy._rumohrae_UFV_215
Cy._rumohrae_UFV_218
Cy._scoparium_ATCC_38227
CY._scoparium_ATCC_46300
Cy._scoparium_STE-U_1720
Cy._scoparium_STE-U_1722
Cy._sp. STE-U_599
Cy._sp. STE-U_1150
Cy._sp. ${ }^{-S T E-U-1484}$
CV. Sp. STE-U 2321

Cy._sp._STE-U_2322
Cy._sp._STE-U_2347
Cy._Sp._STE-U_2712
Cy._spathiphylli_ATCC_44730 Cy._spathiphylli STE-U 1624 Cy. spathiphylli STE-U-1641 Cy._spathiphylli_STE-U_2186 Cy. spathiphylli-STE-U-2188 Cy._spathulatum_AR_1844
Cy. spathulatum ATCC 62616
Cy._theae_ATCC_48895
CY._theae_UFV_I6A
Cy._variabile_AR_2675
Cy._-variabile_UFV_28

CAAGTATGTT CCCCGAGCCG TCCTCGTCGA TCTTGAGCCT GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTTGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGITCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGTGCCG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAA.STTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTNGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTTCA TCTTGAGCCC CGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TNTTGAGCCC GGTNCCATGG ATGCCGTCCG CAAGTTTGTC CCTTGCGCTG TCCTCGTTGA TNTTNAGCCC GGTCCCATGG ATGXXXXXXX CAAGTATGTC CCTTGCGCTG TCCTTGTNGA TCTTGAGCCC GGTACCATGG ATGCCGTCCC CAAGTATGTC CCTCGCGCTG NCCTCGTTTA TCTTGAGCCC GGTACCATGG ATGCCGXXXX CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCCGGCTG TCCTCGTCGA TTTTGAGCCC GGTACCNTGG ATGCCGTCCG CAAGTATGTG CCTTGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGC ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTI CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGKT CCCCGTGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGNCCG CAAGTTCGTT CCCCGTGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG CCCTCGTTGA TCTTGAGCCG GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTTGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGAGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTATGTC CCTCGAGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAACTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCT GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCCGT CCTTGTGCTG TCGTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG NCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGINGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTC CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTIGAGCCC GGTACCATGG ATGCCGTCCG CAAGTNCGTT CCTTCCGCTG TCCTCGTCGA TTTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT TCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTNCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA NTTTGANCCC CGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ACGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTIGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTTGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG CAAGTTCGTT CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG ATGCCGTCCG
F._subglutinans_NRRL_22061 Cy._avesiculatum_ATCC 38226 Cy. candelabrum STE-U 1674 Cy._candelabrum_STE-U_1677 Cy._candelabrum_STE-U_1951
Cy._candelabrum_UFV_89
Cy, citri CBS 186.36
Cy._colhounii_STE-U_1237
Cy._colhounii_STE-U_1339
Cy._colhounii_STE-U_-681
Cy. colhounii STE-U 705
Cy._curvisporum_STE-U_763
Cy._curvisporum_STE-U-765
Cy._flexuosum_STE-U_2536
Cy. floridanum ATCC 18834
Cy. ${ }^{-}$Eloridanum ATCC $^{-} 18882$
Cy._floridanum_CBS_413.67
Cy.-floridanum_IMI-35428
Cy._floridanum_IMI_35429
Cy._floridanum_STE-U_2350
Cy._Eioridanum_STE-U_682
Cy._floridanum_UEV_7
Cy._gracile_ATCC_22833
Cy. gracile-IMI 167580
Cy._gracile_PC_551197
Cy._gracile_STE-U_1586
Cy._gracile_STE-U_623
Cy. graciloideum STE-U 1153
Cy._hawksworthii_MUCL_30866
Cy._neptaseptatum_FTCC_1002
Cy._neptaseptatum_ETCC_1003
Cy. heptaseptatum-STE-U 2344
Cy._-insulare_STE- $\bar{U} _616$
Cy._-insulare_STE-U_768
Cy._insulare STE-U 954
Cy. leucothoes ATCC 64824
Cy._leucothoes_P97. 2605
Cy._macroconidiale_STE-U_307
Cy._macroconidiale_STE-U_4-413
Cy. mexicanum_STE-U_927
Cy._-mexicanum_STE-U_941
Cy._multiseptātun_STE-U_1589
Cy._multiseptatum_STE-U-1602
Cy._naviculatum_STE-U_627
Cy._naviculatum_STE-U_628
Cy._ovatum_UFV_90
Cy._parasiticum_ATCC_46133 Cy. parasiticum_CBS_190.50 Cy._parasiticum_STE-U_723
Cy._pauciramosum_STE-U
Cy. Dauciramosum STE-U-925
Cy. pauciramosum STE-U 972
Cy. penicilloides_CBS 174.55
Cy._pseudogracile_AR_2677
Cy._pseudogracile_STE-U_1588
Cy._pteridiS_STE-U_2869
Cy. pteridis-STE-U-2190
Cy._pteridis_UFV_4 $\overline{3}$
Cy._quinqueseptatum_ATCC_16550
Cy. quinqueseptatum STE-U 516
Cy. quinqueseptatum STE-U 759
Cy._工umohrae_STE-U_I 1603
Cy._ rumohrae_UFV_215
Cy. zumohrae UFV 218
Cy. scoparium ATCC 38227
Cy._scoparium_ATCC_46300
Cy._scoparium_STE-U_1720
Cy._scoparium_STE-U_1722
Cy. sp. STE-U 599
Cy._SP._STE-U_1150
CY._sp._STE-U_1484
Cy._sp._STE-U_2321
Cy. sp. STE-U 2322
Cy._sp._STE-U-2347
Cy._Sp._STE-U_2712
Cy._spathiphylii_ATCC_44730
Cy. spathiphyl1i-STE-U 1624
Cy._spathiphylli_STE-U_1641
Cy._spathiphy11i_STE-U_2186
Cy._spathiphylli_STE-U_2188
Cy. spathulatum AR 1844
Cy._spathulatum_ATCC_62616
Cy._theae_ATCC $\overline{4} 8895$
Cy._theae_UFV_I6A
Cy._variabile_AR_2675
Cy._Variabile_UFV_28

579
AGCTGGTCCC TTCGGTCAGC TCTTCCGTCC CGACAACTT CGCTGGTCCC TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC NGACAACTT NGCCGGTCCT TTNGGTCAGN TCTTTCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCC TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCTGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTTTGTTAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT IGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGAXXXXXX TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGAXXXXXX IGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCC TTCGGTCAGT TCTTCCGCCC CGACAACTT TGCCGGCCCT TTNGGTCAGC TCTTCCGCCC CGACAACTT XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXX GGCCCXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXX TGCCGGTCCC TTCGGTCAGC TCTTNCGCCC CGACAACTT TGĆCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXX TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACXX TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGXXXXXXX TGCCGGTCCT TTCGGTCAGC TCTTTCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTNCGCCC NGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGCCCT TNCGGNCAGC TCTXXXXXXX XXXXXXXXX TGCCGGTCCC TTCGGTCAGC TCTTXXXXXX $X X X X X X X X X$ TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCTGGTCCC TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCTGGTCCC TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTTCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCC TTCGGTCAGC TCTTXXXXXX XXXXXXXXX TGCCGGTCCC TTCGGTCAGC TCTTXXXXXX $X X X X X X X X X$ TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TICGGTCAAC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAAC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCCGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC NGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCC TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC GGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT rGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTXXXXXX XXXXXXXXX TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGGCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTXXXXXXX XXXXXXXXX rGCCGGTCCT TTCGGTCAGC TCTTTCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTXXXXXX XXXXXXXXX TGCCGGTCCT TTCGGTCAGM TCTTCCGNCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCNGNCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGNCAACXX TGCCGGTCCT TTCGGTCAGC TCTTXXXXXX XXXXXXXXX TGCCGGTCCT TTCGGCCAGC TCTTTCGACC CGACAACTT TGCCGGTCTT TTXXXXXXXX XXXXXXXXXX XXXXXXXXX TGCCGGCCTT TTXXXXXXXX XXXXXXXXXX XXXXXXXXX TGCCGGTCCT TTCGGCCAGC TCTTCCGXXX XXXXXXXXX TGCCXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXX TGCCGGTCCT TTNGGTCAGC TCTTCCGNCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TTTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TTTTCCGTCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGCCC CGACAACTT TGCCGGTCCT TTCGGTCAGC TCTTCCGNCC CGACAACTT

Alignment 6. Part 6. ITS1 5.8S ITS2 rDNA sequence alignment from selected isolates of
Hypocrelaean species with nectriaceous teleomorphs and anamorphs with cylindrical macroconidia

```
Ce._camelliae_STE-U_234
Ce._camelliae_STE-U_277
Ce._eleyans_sTE-U_518
Ce._-infestans_ATC\overline{C}}4481
Ce._infestans_IMI_299376
Ce._infestans_STE-U_2319
Ce.-infestans_STE-U-708
Ce._-lageniformis_UFV
Ce._microcylindrica_ATTCC_38571
Ce._microcylindrica_STE-U_683
Ce.-microcylindrica-STE-U-918
Ce._novae-zelandiae_ATCC_-44815
Ce._parva_ATCC 28272
Ce._parva_STE-U__373
Ce._peruviana_IMUR 1843
Ce._peruviana_STE-0}_39
Co._destructans_AR_\overline{2553}
Co._destructans_CTR_71-322
Co.-destructans_var_coprosmae_CTR_73-152
Co._destructans_var_coprosmae_GJS_85-182
Co._macroconidialis_GJS_83-162
Cu._cigneum_STE-U_1595
Cy._candelabrum_STE-U_1674
Cy._candelabrum_STE-U-1675
Cy._floridanum_ATCC_18834
Cy. floridanum ATCC-18882
Cy.mul:iseptatum_STE-U_1589
Cy.-multiseptatum_STE-U_1602
CY._scoparium_ATCC_38227
Cy._scoparium_ATCC_46300
F._subglutinans_NR\overline{RI__22061}
Ge._bulbilium_GJS_92-7
Gl._irregularis_STE-U_718
GL._sumatrensis_STE-U-1351
X._serpens_STE-\overline{U}_1144
```

F._subglutinans_NRRL_22061
F._subglutinans NRRL 220
Ce. camelliae STE-U 277
Ce._camelliae_STE-U_277
Ce. camelliae-STE-U-234
Ce._camelidae_STE-U
Ce._- elegans_STE-U_518
Ce._infestans_ATCC_44816
Ce._infestans_IMI_299376
Ce._-infestans_STE-U_2319
Ce.-infestans_STE-U_2319
Ce._infestans_STE-U 708
Ce.- infestans_STE-U 708
Ce._lageniformis_UFV 115
Ce.-microcylindrica_ATCC 38571
Ce.-microcylindrica_STE-U 683
Ce.-microcylindrica_STE-U-918
Ce._microcylindrica_STE-U_683
Ce._microcylindrica_STE-U_918
Ce.-microcylindrica_STE-U-918
Ce.-novae-zelandiae_ATCC_44815
Ce.-parva_ATCC_2827 $\overline{2}$
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U_395
ce._peruviana_STE-U
Co. destructans CTR $71-322$
Co._destructans_var_coprosmae_CTR_73-152
Co._destructans_var_coprosmae__CTR_73-152
Co._macroconidialis_GJS 83-16त्2
Cu._cigneum_STE-U_1595
Cy._candelabrum STE-U_1674
Cy._candelabrum_STE-U 1675
Cy.-candelabrum STE-U-1675
Cy. floridanum ATCC 18834
Cy.-floridanum ATCC_18834
Cy._multiseptatum_STE-U_1589
Cy._multiseptatum_STE-U_1602
Cy. multiseptatum STE-U-1
Cy.-scoparium ATCC $3822 \overline{7}$
Cy._scoparium ATCC 46300
Ge._bulbilium_GJS_92-7
Gl._irregularis_STE-U_718
Gl._irregularis_STE-U_718
Gl._sumatrensis_STE-U_1351
X._serpens_STE-प_1144
Cy._multiseptatur_STE-U_1602
Cy-scoparium_ATCC_38227

60
CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG XXXXACATAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCATGT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCA-GT-XC GTTGCCTCGG XXXXXXAGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCA-GT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG XXXXACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCATGT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG XXXXXXXXAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG XXXXXXXXAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG
CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG CATTACAGAG TTTACAACTC CCAAACCCC- TGTGAACT-T ACCATGT-XC GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCAT-ATT- GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCAT-ATT- GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCAT-ATT- GTTGCCTCGG
CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCAT-ATT- GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCAT-TATC GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCATGT-XC GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCCA TGTGAAC-AT ACC-TCAAAC GTTCCCTCGG XXXXXCCGAG TTTACAACTC CCAAACCCCA TGTGAAC-AT ACC-TGTTTC GTTCCCTCGG XXXXXCCGAG TTTACAACTC CCAAACCCCA TGTGAAC-AT ACC-TGTTTC GTTCCCTCGG CATTACCGAG ITTACAACTC CCAAACCCCA TGTGAAC-AT ACC-TGTTTC GTTCCCTCGG XXXXXXXXXX XXXXXXXCTC CCAAACCCCA TGTGAAC-AT ACC-TGTTTC GTTCCCTCGG XXXXXCCGAG TTTACAACTC CCAAACCCCA TGTGAAC-AT ACC-TGTTTC GTTCCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAAC-AT ACCA-XATT- GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCA- TGTGAA-TTT ACC-XTTTAC GTTCCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAACTAT ACC-XTTTAC GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCC- TGTGAACTAT ACC-XTTTAC GTTGCCTCGG CATTACCGAG TTTACAACTC CCAAACCCAA TGTGAACTAT ACC-TGTT-C GTTCCCTCGG

CGG-ATCAGC CCGC-XTCCC GGTAAAACGG GACGGCCCGC CAGAGGACCC C-TAAACTCT CGGTGT-XXC TTGC-TTC-X GGC-XXXXXX GA-XGCCCGC CAGAGGACCC AACAAACTCT CGGTGT-XXC TIGC-TTC-X GGC-XXXXXX GA-XGCCCGC CAGAGGACCC AACAAACTCT CGGTGT-XXC TTGC-TTC-X GGC-XXXXXX GA-XGCCCGC CAGAGGACCC AACAAACTCT CGGTG-XXXC CCG-TTTC-X GGC-XXXXXX XXXGGCCCGC CAGAGGACCC AA-ACCCT-X CGGTGT-XXC -TG-TTTC-X GGCA-XXXXX -XXXGCCCGC CAGAGGACCC AA-ACCCTA-CGGTGT-XXC -TG-TTTC-X GGCA-XXXXX -XXXGCCCGC CAGAGGACCC AA-ACCCTA-CGGTG-XXXC CCGC-TTC-X GGC-XXXXXX XXXGGCCCGC CAGAGGACTG AA-ACCCTT-CGGTG-XXXC CCGC-XTCC- GGCGG-XXXX XXXXTCCCGC CAGAGGACCC C-CAAACCCT CGGTGT-XXC CCGCGCTCC- GGCAA-XXXX XXGGGCCCGC CAGAGGACCC AACAAACTCT CGGTGT-XXX -XXXXXXCC- GGCAA-XXXX XXCGGCCCGC CAGAGGACCC AACAAACTCT CGGCGTTC-C CC-XXXTC-X GG-GG-XXXX XXXTTCCCGC CAGAGGACCA AACAAACCCT CGGCGT-XXX CCGC-TTC-X GGC-XXXXXX XXXGGCCCGC CAGAGGACCC AA-XXACTCT CGGCGT-XXX CCGC-TTC-X GGC-XXXXXX XXXGGCCCGC CAGAGGACCC AA-XXACTCT CGGTGTTCGC -TGC-TTC-X GGCA-XXXXX GA-GGCCCGC CAGAGGACCC AACAAACTCT
F. subglutinans NRRI 22061
Ce. camelliae_STE-U_277
Ce. camelliae STE-U-234
Ce. elegans_STE-U 513
ce. infestans ATCC $4: 816$
Ce._infestans_IMI_2G9376
Ce.-infestans-sTE-U_2319
Ce. infestans STE-U 708
Ce. lageniformis unv 115
Ce._microcylindrica_ITCC_38571
Ce.-microcylindrica_STE-U 683
Ce. microcylindrica_STE-U 918
Ce._novae-zelandiae_ATCC_44815
Ce._parva_ATCC_2827
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce. peruviana_STE-U 395
Co._destructans_AR_̄253
Co._destructans_CTR_71-322
Co._destructans_var_coprosmae_CTR_73-152
Co._destructans_var_coprosmae_GJS_85-182
Co. macroconidialis GJS 83-16 $\overline{2}$
Cu. cigneum STE-U_1595
Cy._candelabrum_STE-U_1674
Cy. candelabrum STE-U 1675
Cy. floridanum ATCC $1 \overline{8} 834$
Cy._floridanum_ATCC_18882
Cy._multiseptāum_STシーU_1589
Cy. multiseptatum STE-U 1602
Cy. scoparium_ATCC_38227
Cy. scoparium_ATCC_46300
Ge.-bulbilium_GJS 92-7
Gl._irregularis_STE-U_718
Gl. sumatrensis STE-U 1351
x. serpens_STE-U_1i44
G1- - sumatrensi_STE-U_718

```
F._subglutinans_NRRi_22061
Ce._camelliae_STET-U_\overline{2}77
Ce. camelliae STE-U-23
Ce.-elegans STE-U_5\overline{1P}
Ce._infestans_ATC\overline{C_44816}
Ce._infestans_IMI_\c5376
Ce._infestans_STE=U_2319
Ce. infestans STE-U 708
Ce._lageniformis_UFV}11
Ce._microcylindrice_#.TCC_38571
Ce.microcylindrica_STE-U_683
Ce.microcylindrica STE-U 918
Ce._novae-zelandiae_=TCC_44815
Ce._parva_ATCC_2827\overline{2}
Ce._parva_STE-\̃_373
Ce. peruviana IMUR i\ni43
Ce. peruviana_STE-प्U }39
Co._destructañs_AR_\overline{2}553
Co._destructans_-CT\overline{R}_1-322
Co. destructans_var_coprosmae_CTR_73-152
Co. destructans-var-coprosmae GJS 85-182
Co._macroconidialis GJS 83-16\overline{2}
Cu._cigneum_STE-U_1E E5
Cy._candelabrum STE-% 1674
Cy. candelabrum STE-: 1675
Cy._flóridanum_ATCC_18834
Cy. floridanum_ATCC_18882
Cy._multiseptatum STE-U_1589
Cy.multiseptatum STE-U 1602
Cy._scoparium_ATC\overline{C_}}3522\overline{7
Cy._scoparium_ATCC_45300
Ge._bulbilium GJS 92-7
G1. irregularis STE-U 718
G1._sumatrensis_STE-U-1351
X._serpens_STE-\overline{U_}1144
\begin{tabular}{|c|c|}
\hline & F．＿subglutinans＿NRRi＿22061 Ce．＿camelliae＿STE－U＿277 \\
\hline & Ce．＿camelliae＿STE－U＿234 \\
\hline & Ce．＿elegans＿STE－U＿5is \\
\hline & Ce．＿infestans＿ATCC＿44816 \\
\hline & Ce．＿infestans＿IMI＿2¢ \(\ddagger 376\) \\
\hline & Ce．＿infestans＿STE－U＿2319 \\
\hline & Ce．＿infestans＿STE－U＿708 \\
\hline & Ce．＿lageniformis＿UEV＿115 \\
\hline & Ce．microcylindrica＿\＃TCC＿38571 \\
\hline & Ce．＿microcylindrica＿STE－U＿683 \\
\hline & Ce．＿microcylindrica＿STE－U＿918 \\
\hline & Ce．＿novae－relandiae＿ETCC＿44815 \\
\hline & Ce．＿parva＿ATCC 28272 \\
\hline & Ce．＿parva＿STE－U＿373 \\
\hline & Ce．peruviana＿IMUR i \(\ddagger 43\) \\
\hline & Ce．＿peruviana＿STE－U＿395 \\
\hline & Co．＿destructans＿AR 2553 \\
\hline & Co．＿destructans＿CTR＿71－322 \\
\hline & Co．destructans＿var＿coprosmae＿CTR＿73－152 \\
\hline & Co．＿destructans＿var＿coprosmae＿GJS＿85－182 \\
\hline & Co．－macroconidialis GJS 83－162 \\
\hline & Cu．＿cigneum STE－U 1595 \\
\hline & Cy．candelabrum STE－U 1674 \\
\hline & Cy．＿candelabrum STE－E1675 \\
\hline & Cy．＿floridanum＿ATCC＿18834 \\
\hline & Cy．floridanum＿ATCC＿18882 \\
\hline & Cy．multiseptatum STE－U 1589 \\
\hline & Cy．．．multiseptatum STE－U＿1602 \\
\hline & Cy．＿scoparium ATCC 35227 \\
\hline & Cy．scoparium ATCC 46300 \\
\hline & Ge．＿bulbilium GJS 92－7 \\
\hline & Gl．irregularis＿STE－U718 \\
\hline & G1．＿sumatrensis＿STE－u＿1351 \\
\hline & X．＿serpens STE－U＿1144 \\
\hline
\end{tabular}
```

－XXG－XTTTC－XXXTATAこG TA－XA－CTTC TGAGTAAAAC CA－XXTAAAT－AAATCAAEA T－XG－XTTTT T－XXTT－Z－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTA－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAZA T－XG－XTTTT T－XXTT－E－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCABAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAMA T－XG－XTTTT T－XXTT－F－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAZ T－XG－XTTTT T－XXTT－E－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAEA T－XG－XTTTT T－XXTT－E－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XTTT－E－G TATTATCT－X－GAGTA－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAZAA T－XG－XTTTT T－XXTT－A－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAAA T－XG－XTTTT T－XXTT－E－G TATTATCT－X－GAGTG－XAC AAGTTT－AAT－AAATCAAA －XXGTATTA－XXXXXXAZ－G TAT－XTCTTC TGAGT－AAAT－XGATTAAAT CAA－TCAAAA －XXGA－TTAC－XXATTAZ＝G CATT－T－TTN TGAGT－XXCA ATGATTAAAT CAA－TCAAAA －XXG－ATTA－CA－XTTAA．－G CATT－T－TTC TGAGT－CAAT－XGATTAAAT CAA－TCAAAA －XXGAATTTT T－XXXTACEG－XTTATCTTC TGAGTACA－T－XGATTAAAT CAA－TCAAAA T－XG－ATCTA－XXXTTACFG TAT－ATCTTC TGAGTAAACG ATGA－XAAAT CAAATCAAAA TT－GTATTT－CAA－TCTE－G TA－XXTCTTC TGAGTGAAAA CAAA－C－AAT－AAATAAFAA TTTGAATTTT T－XXXXCA－G TA－XXTCTTC TGAGT－AAAA AA－XXCAAAT－AAATCAבAA TTTGAATTTT T－XXXXCA－G TA－XXTCTTC TGAGT－AAAA AA－XXCAAAT－AAATCAAAA TTTGAATTTT T－XXXXCA－G TA－XXTCTTC TGAGTGAAAA AAA－XC－AAT－AAATCAAAA TTTGAATTTT T－XXXXCA－G TA－XXTCTTC TGAGTGAAAA AAA－XC－AAT－AAATCAPAA TTTGAATTTT T－XXXXCA－G TA－XXTCTTC TGAGTGAAAA AAAAAC－AAT－AAATAAAAA TTTGAATTTT T－XXXXCA－G TA－XXTCTTC TGAGTGAAAA AAAAAC－AAT－AAATAAAAA TTTGAATTTT TC－XXXXA－G TA－XXTCTTC TGAGT－AAAA AAAAAC－AAT－AAATCAAAA TTTGAATTTT TC－XXXXA－G TA－XXTCTTC TGAGT－AAAA AAAAAC－AAT－AAATCAAAA TT－GCATTT－XXXATT－A－G TATTAT－XTC TGAGTGATTT AAT－XC－AAT－AAATCAFAA T－XGTATTT－GAA－TTGA－G TAT－XTC－TC TGAGTGATAC AAG－XC－AAT－AAATTAAAA T－XGTATTT－XGAATTGE－G TAT－XTC－TC TGAGTGATAC AAG－XC－AAT－AAATTAAAA TTTGAATCTT T－XXXXXA－G TA－XXTCTTC TGAGTGAAAA AAA－XC－AAT－AAATCAAAA

CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCAAA ATGCGATAAG CTtTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTtTCAACAA CGGATCTCTT GGTtCTGGCA tCgAtganga acgcagcgan atgcgatang CTTTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG Cittcancan cggatctctt ggtictggca tcgatganga acgcagcgan atgcgatang CTTtCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTITCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTITCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGCTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTITCAACAA CGGATCTCTT GGTtCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTITCAACAA CGGATCTCTT GGCTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCET GGCTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CITTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTtTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTICAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CITTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATrAG CITTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CttTcAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATHAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCTT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTTTCAACAA CGGATCTCIT GGTTCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG CTtTCAACAA CGGATCTCET GGTtCTGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAG

```
F. subglutinans NRRL 22061
Ce._camelliae_STE-U_\overline{2}77
Ce._camelliae_STE-U_234
Ce.-elegans_STE-U_5\overline{18}
Ce.infestans_ATCC 44816
Ce._infestans_IMI_299376
Ce._infestans_STE-U_2319
Ce._infestans_STE-U_708
Ce.- lageniformis UFV 115
Ce._microcylindrica_ATCC_38571
Ce._microcylindrica_STE-U__683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce.-parva ATCC 2827\overline{2}
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U_395
Co._destructañs_AR_}255
Co._destructans_CTR_71-322
Co._destructans_var_coprosmae_CTR_73-152
Co. destructans var coprosmae GJS_85-182
Co.-macroconidialis_GJS 83-16\overline{2}
Cu._cigneum_STE-U_1595
Cy._candelabrum_STE-U_1674
Cy. candelabrum STE-U 1675
Cy. floridanum ATCC 18834
Cy._floridanum_ATCC_18882
Cy._multiseptatum_STE-U_1589
Cy._multiseptatum STE-U_1602
Cy.-scoparium ATCC_38227
Cy._scoparium_ARCC_46300
Ge._bulbiliumGGS_\overline{92-7}
Gl._irregularis_STE-U_718
G1. sumatrensis-STE-U-1351
X._serpens_STE-\overline{U_1144}
```

F._subglutinans_NRRL_22061
F._subglutinans NRRL_220
Ce. camelliae STE-U 277
Ce._camelliae_STE-U_277
Ce. camelliae STE-U_234
Ce.-_legans_STE-U_518
Ce._infestans_ATCC_44816
Ce.-infestans IMI 299376
Ce.-infestans STE-U 2319
Ce._-infestans_STE-U_708
Ce._lageniformis uFV 115
Ce._microcylindrica_ATCC_38571
Ce._microcylindrica_STE-U-683
Ce._microcylindrica_STE-U_918
Ce.-novae-zelandiae_ATCC_- 44815
Ce. parva_ATCC_28272
Ce. parva-STE-U 373
Ce._peruviana IMUR_1843
Ce. peruviana STE-U 395
Ce._peruviana_STE-U 395
Co._destructans_AR $\overline{2} 553$
Co. destructans CTR 71-322
Co._destructans_var_coprosmae_CTR_73-152
Co._destructans_var_coprosmae_GJS_85-182
Co._macroconidialis_GJS_83-162
Cu. cigneum STE-U 1595
Cy._candelabrum_STE-U_1674-
Cy._candelabrum_STE-U_1675
Cy._ candelabrum_STE-U-1675
CY._floridanum_ATCC_18834
Cy.-floridanum-ATCC_18834
Cy._multiseptatum_STE-U_1589
Cy._multiseptatum_STE-U_1589
Cy._multiseptatum_STE-U_1602
Cy._scoparium ATCC_38227
Cy._scoparium ATCC_38227
Cy. scoparium_ATCC_46300
Ge._bulbilium_GJS_92-7
Gl.-irregularis_STE-U-718
Gl. sumatrensis STE-U 1351
Gl._irregularis_STE-U_718
X. serpens STE-U 1144
Ce._microcylindrica_STE-U_918
Cy._floridanum ATCC_18882

AATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCTA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCGA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA TAATGTGAAT TGCAGAATTC AGNGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA TAATGTGAAT TGCAGAATTC AGTGAATCAT CGAATCTTTG AACGCACATT GCGCCCGCCA

360
GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCCCA -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAACCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTICAACC CTCAAACCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAAACCC CGG-XXXXXT GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAAACCC CGG-XXXXXT GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAACCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAACCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTCCGAGCGT CATTTCAACC CTCAAGCCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTCCGAGCGT CATTTCAACC CTCAAGCCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTCCGAGCGT CATTTCAACC CTCAAGCCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCCCC CGG-XXXXXG GTATTCTCGC GGGCATGCCT GTCCGAGCGT CATTICAACC CTCGAGCCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGC-CT CTTCTG-XXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCA -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCA -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCAC- CTTC-GGGAG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCAC- CTIC-GGGAG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCA -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCA -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCT -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCTCT -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCCCA -XXXXXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCCCC CGG-XXXXXG GTATTCTGGC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAAGCCCC CGG-XXXXXG GTATTCTGAC GGGCATGCCT GTTCGAGCGT CATTTCAACC CTCAATTCCT CTTTTGGGA-
F._subglutinans_MRRL_22061

Ce-_cameiliae ST̄E-U_277
Ce._cameiliae_STE-U_234
Ce.-elegans STE-U_518
Ce._infestans_ATCㄷ_44816
Ce._infestans_IMI_299376
Ce._infestans_STE-U_2319
Ce.-_infestans_STE-U_708
Ce._lageniformis UFV 115
Ce._microcylindrica_ATCC_38571
Ce.-microcylindrica_STE-U_683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_-_44815
Ce._parva_ATCC_2827
Ce. parva STE-U 373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U 395
Co._destructans_AR_2553
Co.__destructans_CTR_71-322
Co._destructans_var_coprosmae_CTR_73-152
Co._macroconidialis_GJS_83-16
Co._destructans_var_coprosmae_GJS_85-182
Cu. cigneum_STE-U $1 \overline{595}$
Cy._candelabrum STE-U 1674
Cy._-candelabrum_STE-U-1675
Cy.-floridanum \bar{A} ICC_18834
Cy._floridanum_ATCC-18882
Cy. multiseptatum STE-U 1589
Cy.-multiseptatumsTE-U-1602
Cy._scoparium_ATCC_38227
CY._scoparium_ATCC_46300
Ge._bulbilium_GJS_92-7
Gl._irregularis_STE-U_718
G1._sumatrensis_STE-U_1351
X __serpers_STE-U_1144 ${ }^{-}$
F. subglutinans NRRL 22061

Ce-_camelliae_STE-U_277
Ce._camelliae_STE-U_234
Ce._elegans_STE-U_5I8
Ce. infestañs ATCC 44816
Ce._infestans_IMI_299376
Ce._-infestans_STE-U_2319
Ce._infestans_STE-U_708
Ce._-lageniformis UFV_115
Ce._microcylincrica_ATCC_38571
Ce.-microcylindrica_STE-U_683
Ce.-microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_- 44815
Ce. parva ATCC 28272
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U_395
Co._destructans AR_2553
Co._destructans_CTR_71-322
Co._destructans_var_coprosmae_CTR_73-152
Co._destructans_var_coprosmae_GJS_85-182
Co. macroconidialis_GJS_83-162
Cu._cigneum_STE-U_1595
Cy._cancielabrom_STE-U_1674*
Cy._candelabrum STE-U-1675
Cy._floridanum ATCC_18834
Cy._floridanum_ATCC_18882
C_{y}-mudtiseptatum_STE-U_1589
Cy._multiseptatum_STE-U_1602
Cy.__scoparium_ATCC_3822 $\overline{7}$
Cy._scoparium_ATCC_46300
Ge._bulbilium_GJS_92-7
G1._irregularis_STE-U_718
Gl._sumatrensis_STE-U_1351
X._serpens_STE-U_1144

CTTGGTGTTG GGACTCG-C- XXXGA-XXGT -XXXXC-AAA T-CGC-XXXG TTCCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG- CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGA-XXGT CCCTTC-GGG GGCGACGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA -XTGA-XXGT -CCTTC-GGG -GCGACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA -XTGA-XXGT -CCTTC-GGG -GCGACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA -XTGA-XXGT -CCTTC-GGG -GCGACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA -XTGAG-XXT -CCTTC-GGG -GCGACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA A-TGA-XXG- CCCTCCGGGG CGAAACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG- CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG- CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG- CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGA-XXGT CCCTTCGGGG G-CGACGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA -XTGA-XXGT -CCTTC-GGG -GCGACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGGCA -XTGA-XXGT -CCTTC-GGG -GCGACGCCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG- CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT TTTGGTGTTG GAGATCGACA -XTGAA-XG- CCCTTCTGGG TGTGAAGTCG TCTCCCAAAT CTTGGTGTTG GAGATCGGC- XXXGA-XXG- CCCTCC-GGG G-CAC-GCCG TCTCCCAAAT CTTGGTGTTG GAGATCGGC- XXXGA-XXG- CCCT-CCGGG G-CGC-GCCG TCTCCCAAAT CTTGGTGTTG GAGATCGGC- XXXGA-XXG- CCCTCC-GGG G-CGC-GCCG TCTCCCAAAT CTCGGTGTTG GAGACCGGC- XXXGAGG-XX CCCXXXXXXX XXXXXXXXXX XXXXXXXXXX CTTGGTGTTG GAGATCGGC- XXXXXGG-G- CCCTCC-GGG G-CGC-GCCG CCTCCCAAAT CTTGGTGTTG GGGATCGGCA -C-G-GGCG- CCCTCA-GGG G-CGCTGCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXXAGGCG- GCCTCC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXXAGGCG- GCCTCC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXG-GGCGT -CCTTC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXG-GGCGT -CCTTC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXXAGGCGT -CCTCC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXXAGGCGT -CCTCC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GGGATCGGCA -XXXAGGCGT -CCTC்C-GGG T-CGC-GCCG TC்C்ĆCCAAAT CTTGGTGTTG GGGATCGGCA -XXXAGGCGT -CCTCC-GGG T-CGC-GCCG TCCCCCAAAT CTTGGTGTTG GAGATCGGCA -C-XAAGCGT -CCTCC-GGG T-CGCCGCCG TCTCCCAAAT CTTGGTGTTG GAGATCGGCA ACT-XXXXGC CCCTTGCGGG -XTGC-GCCG TCTCCCAAAT CTTGGTGTTG GAGATCGGCA ACT-XXXXGC CCCTTGCGGG -XTGC-GCCG TCTCCCAAAT -TTGGTGTTG GGGATCGGCA -XXXAGGCG- ACCTTC-GGG -CCGC-GCCG TCCCCTAAAT

TGATTGGCGG TCACGTCG-A GCTTCCATAG C-GTAGTAGT AAAACCCTCG TTACTGGTAA ATAGTGGCGG TCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG TCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG TCTCGCTGTA GCTTCNTATG CCGTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG TCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG NCTCGCTGTA NCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG NCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG TCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG NCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG TCTCGCTGTA GCTTCCTATG C-GTAGTAGC ACA-XCCTCG C-ACTGG-AA TTAGTGGCGG TCCCGCTGTA GCTTCCTCTG C-GTAGTAGC ACA-XCCTCG C-ACTGGGAA ATAGTGGCGG TCCCGCTGTA GCTTCCTCTG C-GTAGTAGC ACA-XCCTCG C-ACTGGGAA ATAGTGGCGG TCCCGCTGTA GCTICCTCTG C-GTAGTAGC ACA-XCCTCG C-ACTGGGAA ATAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAGC ACA-XCCTCG C-ACTGGGAA XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX CTAGTGGCGG TCTCGCTGTA GCCAACTCTG C-GTAGTAAT ACA-XCCTCG C-ACTGG-AA ATAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG ATAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG TTAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG TTAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG TTAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG ITAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG ATAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG ATAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AG CTAGTGGCGG TCTCGCTGTA GCCTCCTCTG C-GTAGTAAC TCA-XCCTCG C-ACTGG-AA CTAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT TCA-XCCTCG C-TCTGG-AA CTAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT TCA-XCCTCG C-TCTGG-AA CTAGTGGCGG TCTCGCTGTA GCTTCCTCTG C-GTAGTAAT ACA-XCCTCG C-TCTGG-AA

	E．＿subglutinans＿NRRL＿22061
	Ce．＿camelliae＿STE－U＿277
	Ce．＿camelliae＿STE－U＿234
	Ce．＿elegans＿STE－U＿518
	Ce．＿infestans＿ATCC＿44816
	Ce．＿infestans＿IMI＿299376
	Ce．＿infestans＿STE－U＿2319
	Ce．＿infestans＿STE－U＿708
	Ce．．．．lageniformis UFV＿115
	Ce．microcylindrica＿ATCC＿38571
	Ce．－microcylindrica＿STE－U＿683
	Ce．＿microcylindrica＿STE－U＿918
	Ce．＿novae－zelandiae＿ATCC＿44815
	Ce．＿parva＿ATCC＿28272
	Ce．＿parva＿STE－U＿373
	Ce．peruviana IMUR＿1843
	Ce．＿peruviana＿STE－U＿395
	Co．＿destructans＿AR＿2553
	Co．．＿destructans＿CTR＿71－322
	Co．＿destructans＿var＿coprosmae＿CTR＿73－152
	Co．＿destructans＿var＿coprosmae＿GJS＿85－182
	Co．macroconidialis＿GJS＿83－162
	Cu．＿cigneum＿STE－U＿1595
	Cy．＿candelabrum＿STE－U＿1674
	Cy．＿candelabrum＿STE－U＿1675
	Cy．floridanum ATCC＿18834
	Cy．＿floridanum ATCC＿18882
	Cy．＿multiseptatum STE－U＿1589
	Cy．multiseptatum＿STE－U＿1602
	Cy．＿scoparium＿ATCC＿38227
	Cy．＿scoparium ATCC＿46300
	Ge．＿bulbilium＿GJS＿92－7
	Gl．irregularis＿STE－U＿718
	Gl．＿sumatrensis＿STE－U＿1351
	X．＿serpens＿STE－Ü＿1144

x－serpensensis＿STE－U＿1351
X．＿－serpens＿STE－EU＿1144
－XTCGTCGCG＝CCACGCCGT TAAACCCC－A ACTT－XXXXC TGAATG－TT－GACCICO A－GCAGCAAG こCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT A－GCAGCAAG こCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGACT AA－CAGCGTG こCCACGCCGT TAAACCCCCA ACTTT－XXXC TGAA－XGTTT GNCCTCGAAT A－GCAGCGCG GCCACGCCGT TAAACCCCCA ACTTTT－XXC TGA－XXGTTT GACCTCGAAT A－GCAGCGCG $=C-A C G C C G T$ TAAACCCCCA ACTTTT－XXC TGA－XXGTTT GACCTCGAAT A－GCAGCGCG EC－ACGCCGT TAAACCCCCA ACTTTT－XXC TGA－XXGTTI GACCTCGAAT A－GCAGCGCG ミCCACGCCGT TAAACCCCCA ACTTTT－XXA KKA－XXGTTT KACCTCGAAT A－GCAGCGCG ：CCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT A－GCAGCAAG こCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT A－GCAGCAAG こCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT A－GCAGCAAG こCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT AA－CAGCTTG СССACGCCGT TAAACCCCCA ACTTT－XXXC TGAA－XGTTT GACCTCGAAT AA－CAGCGTG CCCACGCCGT TAAACCCCCA ACTTT－XXXC TGAA－XGTTT GACCTTGAAT AA－CAGCGTG CCCACGCCGT TAAACCCCCA ACTTT－XXXC TGAA－XGTTT GACCTCGAAT A－GCAGCAAG CCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT A－GCAGCAAG CCCACGCCGT TAAACCCCCC ACTTT－XXXC TGA－XXGTTT GACCTCGAAT A－XCAGCGTG ミCCACGCCGT AAAACCCCCC ACTT－XXXXC TGAAAGGTT－GACCTCGGAT A－XCAGCGTG ECCACGCCGT AAAACCCCCC ACTT－XXXXC TGAAAGGTT－GACCTCGGAT A－XCAGCGTG ミCCACGCCGT AAAACCCCCC ACTT－XXXXC TGAAAGGTT－GACCTCGGAT A－XCAGCGCG ECCACGCCGT TAAACCCCCC ACTT－XXXXC TGAAAGGTT－GACCTCGGAT XXXXXXXXXX \therefore XXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX GCTCGGCGCG ECCAAGCCGT TAAACCCCCA ACTTTTTTTX XXXXXXXXXX XXXXXXXXXX TCTCGGTGCG ECCACGCCGT AAAACCCCCA ACTTTTT－XC TG－XXXGXXX XXXXXXXXXX TCTCGGTGCG 三CCACGCCGT AAAACCCCCA ACTTTTT－XC TG－XXXGXXX XXXXXXXXXX TCTCGGTGCG ECCACGCCGT AAAACCCCCA ACTTTTT－XC TG－XXXGTT－GACCTCGAAT TCTCGGTGCG ミCCACGCCGT AAAACCCCCA ACTTTTT－XC TG－XXXGTT－GACCTCGAAT TCTCGGTGCG ECCACGCCGT AAAAACCCCA ACTTTTTT－C TG－XXXGTT－GACCTCGAAT TCTCGGTGCG GCCACGCCGT AAAAACCCCA ACTTTTTT－C TG－XXXGTT－GACCTCGAAT TCTCGGTGCG ECCACGCCGT AAAACCCCCA ACTTTTTT－C TG－XXXXXXX XXXXXXXXXX TCTCGGTGCG GCCACGCCGT AAAACCCCCA ACTTTTTT－C TG－XXXXXXX XXXXXXXXXX －CGCGGCGCG ECCAAGCCGT TAAACCCCCA ACTT－XXXXC TGAA－XGTTT GACCTCGGAT －CGCGGCGCG GCCACGCCGT TAAACCCCCC ACTT－XXXXC TGAA－GGTT－GACCTCGGAT －CGCGGCGCG GCCACGCCGT TAAACCCCCC ACTT－XXXXC TGAA－GGTT－GACCTCGGAT ACGCGGCGCG GCCAAGCCGT TAAACCCCCA ACTTTTTTTT TG－XXXXTTT GACCTCGAAT

F．subgIutinans NRRL 22061
Ce－camelliae STE－U＿ 277
Ce．＿－camelliae＿STE－U＿234
Ce．＿elegans STE－U＿518
Ce．＿infestans＿ATCC＿44816
Ce．＿－infestans＿IMI＿$\overline{2} 99376$
Ce．＿－infestans＿STE－U＿2319
Ce．＿infestans＿STE－U＿708
Ce．lageniformis UFV 115
Ce．＿microcylindrica＿ATCC＿38571
Ce．＿Microcylindrica＿STE－U＿ 683
Ce．＿microcylindrica＿STE－U＿918
Ce．＿novae－zelandiae＿ATCC＿－ 44815
Ce．parva ATCC 28272
Ce＿－parva＿STE－U＿＿373
Ce．＿peruviana IMUR＿1843
Ce．peruviana STE－U 395
Co．destructans AR 2553
Co．＿destructans＿CTR＿71－322
Co．＿－destructans＿var＿coprosmae＿CTR＿73－152
Co．＿destructans＿var＿coprosmae GJS 85－182
Co．macroconidialis GJS 83－162
Cu．＿＿cigneum＿STE－U＿1595
Cy．＿candelabrum＿STE－U＿1674－
Cy．Candelabrum STE－U－1675
Cy．floridanum ATCC 18834
Cy．－＿floridanum＿ATCC＿18882
Cy．＿multiseptātum＿STE－U＿1589
Cy．＿multiseptatum＿STE－U－1602
Cy．scoparium ATCC 38227
Cy．＿scoparium ATCC－ 46300
Ge．＿bulbilium＿GJS＿92－7
G1．＿irregularis＿STE－U＿718
G1．sumatrensis＿STE－U＿1351
X ．＿serpens＿STE－U＿1144

CAGGTAGGAA TACCCGCTGA ACXX CAGGTAGGAT IACCCGCXXX XXXX CXXXXXXXXX KXXXXXXXXX XXXX CAGGTAGGAT IACCCGCTGA ACTT CAGGTAGGAT TACCCGCTGA ACTI CAGGTAGGAT IACCCGCTGA ACTT CAGGTAGGAT TACCCGCTGA ACTT CAGGTAGGAT IACCCGCTGA ACTT CAGGTAGGAT TAXXXXXXXX XXXX CAGGTAGGAT TACCCGCTGX XXXX CAGGTAGGAT TACCCGCTGA AXXX CAGGTAGGAT TACCCGCTGA ACTT CAGGTAGGAT TACCCGCTGA ACTT CAXXXXXXXX $\because X X X X X X X X X ~ X X X X ~$ CAGGTAGGAT IACCCGCTGA ACTT CAGGTAGGAT $T A X X X X X X X X X X X X$ CAGGTAGGAT IACCXXXXXX XXX CANGTAGGAA TACCCGCTGA ACTT CAGGTAGGAA TACCCGCTGA ACTT CAGGTAGGAA IACCCGCTGA ACTI CAGGTAGGAA TACCCGCTGA ACTT XXXXXXXXXX XXXXXXXXXX XXXX XXXXXXXXXX XXXXXXXXXX XXXX XXXXXXXXXX XXXXXXXXXX XXXX XXXXXXXXXX XXXXXXXXXX XXXX CAGGTXXXXX XXXXXXXXXX XXXX CAGGTAGGAC TACCCGCTXX $X X X X$ CAGGTAGGAC TACCCGCTGA ACTT CAGGTAGGAC TACCCGCTGA ACTI XXXXXXXXXX XXXXXXXXXX XXXX XXXXXXXXXX XXXXXXXXXX XXXX CAGGTAGGAC TACCCGCTGA ACTT CAGGTAGGAC TACCCGCTGA ACTT CAGGTAGGAC IACCXXXXXX XXXX CAGGTAGGAC IACCCGCTGA ACTI

Alignment 7. Part 6. ITS1 5.8S ITS2 rDNA sequence alignment from isolates of selected Cylindrocladiella species

._subglutinans_NRRL_22061
Ce. camelliae STE-U_234
Ce. camelliae STE-U-277
Ce._elegans_STE-U_518
Ce._infestans_ATCC 44816
Ce.-infestans IMI $\overline{2} 99376$
Ce. infestans_STE-U 2319
Ce._-infestans_STE-U_708
Ce._lageniformis_UFV 115
Ce._microcylindrica ATCC 38571
Ce, microcylindricaSTE-U 683
Ce._microcylindrica_STE-U_918
Ce.-novae-zelandiae_ATCC_44815
Ce.-parva_ATCC_2827 $\overline{2}$
Ce. parva_STE-U_373
Ce. peruviana IMUR 1843
Ce._peruviana_STE-TU_395

CATTACCGAG TTTACEACTC CCAAACCCCT GTGAACATAC CAATT-GTTG CCTCGGCGGCATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT MTCNACATAG TTTACAACTC CCAAACCCCT GTGAACATAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACATAC CA-GTCGTTG CCTCGGCGGT XXXXXXAGAG TTTACAACTC CCAAACCCCT GTGAACATAC CA-GTCGTTG CCTCGGCGGT CATTACAGAG TITACAACTC CCAAACCCCT GTGAACATAC CA-GTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACATAC CA-GTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACATAC CA-GTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT XXXXACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACATAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT XXXXXXXXAG TTTACZACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT CATTACAGAG TTTACAACTC CCAAACCCCT GTGAACTTAC CATGTCGTTG CCTCGGCGGT

```
F._subglutinans_NRRL_22061
Ce._camelliae_STE-U 234
Ce. camelliae STE-U 277
Ce.__elegans_STE-U_518
Ce._infestans_ATCC̈_44816
Ce. infestans IMI }\overline{299376
Ce.infestans STE-U 2319
Ce._infestans_STE-U-708
Ce._lageniformis_uEV_115
Ce.microcylindrica_ATCC_38571
Ce._microcylindrica_STE-U_683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce._parva_ATCC_2827\overline{2}
Ce. parva STE-U 373
Ce._peruviana_IM\MR_1843
Ce._peruviana_STE-U__395
```

```
F._subglutinans_NRRI_22061
Ce._camelliae_STE-U_234
Ce. camelliae-STE-U`}27
Ce._elegans_STE-U_518
Ce._infestañs_ATCC_44816
Ce._infestans_IMI }\overline{299376
Ce. infestans STE-U 2319
Ce.-infestans_STE-U_708
Ce._-lageniformis_UFV
Ce._microcylindrica_ATCC 38571
Ce. microcylindrica STE-U 683
Ce._microcylindrica_STE-U_918
Ce.__novae-zelandiae_ATCC_44815
Ce._parva_ATCC_2827\overline{2}
Ce. parva-sTE-U }37
Ce._peruviana IMUR_1843
Ce._peruviana_STE-\overline{U_}395
```

F._subglutinans_NRRL_22061
Ce._camelliae_STE-U_234
Ce._camelliae_STE-U_277
Ce._elegans_STE-U_518
Ce._infestans_ATC̄_44816
Ce._infestans_IMI__99376
Ce._infestans_STE-U_2319
Ce._infestans_STE-U_708
Ce._lageniformis_UEV 115
Ce._microcylindrica_ATCC_38571
Ce._microcylindrica_STE-U 683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce._parva_ATCC_28272
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U_395

- subglutinans NRRL 22061

Ce.-camelliae_STE-U_234
Ce. camelliae STE-U 277
Ce.-elegans STE-U_518
Ce.-infestans_ATCC 44816
Ce.-infestans STE-U 2319
Ce.-infestans_STE-U_708
Ce._lageniformis_UFV_115
Ce. microcylindrica_ATCC 38571
Ce. microcylindrica_STE-U 683
Ce._novae-zelandiae_ATCC_44815
Ce. parva_ATCC_28272
Ce._parva_STE-U_373
Ce._peruviana_STE-U_395

120
ATCAGCCCGC TCCCGGTAAA ACGGGACGGC CCGCCAGAGG ACCCC-TAAA CTCT-GTTTC GT-XXCTTGC TTCGGC-XXX -XXXGA-XGC CCGCCAGAGG ACCCAACAAA CTCTTGTTTT GT-XXCTTGC TTCGGC-XXX -XXXGA-XGC CCGCCAGAGG ACCCAACAAA CTCTTGTTTT

180
-XXTATATGT AACTTCTGAG TAA-AACCAT AAATAAATCA AAACTTTCAA CAACGGATCT TTT-AGTATT ATCT-XXGAG TGACAAGTTT -AATAAATCA AAACTTTCAA CAACGGATCT TTT-AGTATT ATCT-XXGAG TGACAAGTTT -AATAAATCA AAACTTTCAA CAACGGATCT TTT-AGTATT ATCT-XXGAG TAACAAGTTT -AATAAATCA AAACTTTCAA CAACGGATCT TTT-AGTATT ATCT-XXGAG TGACAAGTTT -AATAAATCA AAACTTTCAA CAACGGATCT TTTTAGTATT ATCT-XXGAG TAACAAGTTT -AATAAATCA AAACTTTCAA CAACGGATCT TTT-AGTATT ATCT-XXGAG TGACAAGTTT -AATAAATCA AAACTTTCAA CAACGGATCT

240
CTTGGTTCTG GCATCGATGA AGAACGCAGC AAAATGCGAT AAGTAATGTG AATTGCAGAA CTTGGTTCTG GCATCGATGA AGAACGCAGC GAAATGCGAT AAGTAATGTG AATTGCAGAA CTTGGTTCTG GCATCGATGA AGAACGCAGC GAAATGCGAT AAGTAATGTG AATTGCAGAA CTTGGTTCTG GCATCGATGA AGAACGCAGC GAAATGCGAT AAGTAATGTG AATTGCAGAA. CTTGGTTCTG GCATCGATGA AGAACGCAGC GAAATGCGAT AAGTAATGTG AATTGCAGAA CTTGGTTCTG GCATCGATGA AGAACGCAGC GAAATGCGAT AAGTAATGTG AATTGCAGAA

```
F._subglutinans_NRRL_22061
ce._camelliae STE-U 234
Ce. camelliae STE-U 277
Ce._-elegans_STE-U_5İ8
Ce.__infestañ_ATC\overline{C}_44816
Ce.-infestans IMI }29937
Ce. infestans STE-U 2319
Ce._infestans_STE-U_708
Ce._lageniformis_UFV}11
Ce._microcylindrica_ĀTCC 38571
Ce. microcylindrica STE-U 683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce._parva_ATCC_2827\overline{2}
Ce._parva STE-U_373
Ce.-peruviana IMMUR 1843
ce._peruviana_STE-\__395
```

```
F._subglutinans_NRRL_22061
Ce. camelliae STE-U 234
Ce. camelliae STE-U 277
Ce._elegans_STE-U_ST̄ 8
Ce.-infestañs_ATCC 44816
Ce. infestans \({ }^{-}\)IMI \(\overline{2} 99376\)
Ce. infestans STE-U 2319
Ce._-infestans_STE-U_708
Ce._lageniformis_UFV 115
Ce._microcylindrica_ATCC_38571
Ce. microcylindrica STE-U 683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce. parva_ATCC_28272
Ce. parva STE-U 373
ce. peruviana IMUR 1843
ce. peruviana_STE-U_395
```

E._subglutinans_NRRL 22061
Ce._camelliae_STE-U_234
Ce. camelliae STE-U-27
Ce._elegans STE-U_518
Ce._infestans_ATCC 44816
Ce._infestans_IMI_299376
Ce. infestans STE-U 2319
Ce._infestans_STE-U_708
Ce._-lageniformis_UFV 115
Ce._microcylindrica_ATCC_38571
Ce. microcylindrica STE-U 683
ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce.-parva_ATCC_28272
Ce. parva STE-U 373
Ce. peruviana IMUUR_1843
Ce._peruviana_STE-U_395

F．＿subglutinans＿NRRL＿22061
Ce．＿camelliae＿STE－U＿234
Ce．camelliae STE－U 277
Ce．－elegans STE－U＿518
Ce．＿infestañs＿ATCC 44816
Ce．＿infestans＿IMI 299376
Ce．infestans STE－U 2319
Ce．＿infestans＿STE－U－708
Ce．＿lageniformis UFV＿115
Ce．＿microcylindrica＿ATCC＿38571
Ce．＿microcylindrica＿STE－U＿683
Ce．＿microcylindrica＿STE－U＿918
Ce．＿－novae－zelandiae＿ATCC＿44815
Ce．＿parva＿ATCC＿28272
Ce．parva－STE－U 373
Ce．＿peruviana＿IMUR＿1843
Ce．＿peruviana＿STE－U＿395
tTCAGTGAAT CATCGAミ：ET TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGス：ニTT TTGAACGCA．ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGFA－ST TTGAACGCFC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGAATCT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGFミEこT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGAZECT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCG：ミIこT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGA，©T TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGE：EOT TTGAACGCES ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGAATCT TTGAACGCAC ATTGCGCCCG CTAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGAュ＝CT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGA＿ALT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGAدECT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG TTCAGTGAAT CATCGAATCT TTGAACGCAC ATTGCGCCCG CCAGTATTCT GGCGGGCATG

CCTGTTCGAG CGTCATTECA ACCCTCAAGC CCA－XXGCTT GGTGTTGGGA CTCG－XXXCG CCTGTTCGAG CGTCATTICA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATT：CA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATTECA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATITCA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGGCA－TG CCTGTTCGAG CGTCATITCA ACCCTCAAAC CCCCGGGTTT GGIGTTGGAG ATCGGCA－TG CCTGTTCGAG CGTCATTTCA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGGCA－TG CCTGTTCGAG CGTCATIIEA ACCCTCAAAC．CCCCGGGTTT GGTGTTGGAG ATCGGCA－TG CCTGTTCGAG CGTCATTTCA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGGCAATG CCTGTTCGAG CGTCATTICA ACCCTCAALC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATTICA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATTICA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATTTCA ACCCTCAAAC CCCGGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATTECA ACCCTCAAA2 CCCCGGTTTT GGTGTTGGAG ATCGGCA－TG CCTGTTCGAG CGTCATTRCA ACCCTCAAAA CCCCGGTTTT GGTGTTGGAG ATCGGCA－TG CCTGTTCGAG CGTCATTJCA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG CCTGTTCGAG CGTCATIILA ACCCTCAAAC CCCCGGGTTT GGTGTTGGAG ATCGACA－TG

A－GTCAAATC GC－XXXXXXX－XXGTTCCCC AAATTGATTG GCGGTCACGT CG－AGCTTCC AAG－CCCTTC TGGGTGTGAA GTCGTCTCCこ AAATATAGTG GCGGTCTCGC TGTAGCTTCC AAG－CCCTTC TGGGTGTGAA GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC A－GTCCCTTC－GGGGGCGAC GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCN A－GT－CCTTC－GGG－GCGAC GCCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC A－GT－CCTTC－GGG－ECGAC GCCGTCTCCC AAATATAGTG GCGGNCTCGC TGTANCTTCC A－GT－CCTTC－GGG－GCGAC GCCGTCTCCC AAATATAGTG GCGGNCTCGC TGTAGCTTCC A－GT－CCTTC－GGG－GCGAC GCCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC A－G－CCCTCC GGGGCGAㅋAC GCCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC AAG－CCCTTC TGGGIGTGAA GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC AAG－CCCTTC TGGGTGTGAA GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC AAG－CCCTTC TGGGTGTGAA GTCGTCTCCC AAATATAGTG GCGGNCTCGC TGTAGCTTCC A－GTCCCTTC GGGGG－CCAC GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC A－GT－CCTTC－GGG－GCGAC GCCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC A－GT－CCTTC－GGG－GCGAC GCCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC AAG－CCCTTC TGGGTGTGAA GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTAGCTTCC AAG－CCCTTC TGGGTGTGAA GTCGTCTCCC AAATATAGTG GCGGTCTCGC TGTACCTTCC
atagc－gTag tagtanajcc ctcgttactg gtantcgtcg cgeccacgcc gttanaccce tatGC－GTAG TAGCACA－XC CTCGC－ACTG GAAAGCAGCA AGCCCACGCC GTTAAACCCC TATGC－GTAG TAGCACA－XC CTCGC－ACTG GAAAGCAGCA AGCCCACGCC GTTAAACCCC tatGCCGTAG tagcaca－xc ctccc－actg ganaicagcg tgcccacgcc gttanacccc tATGC－GTAG TAGCACA－XC CTCGC－ACTG GAAAGCAGCG CGGCCACGCC GTtAAACCCC TATGC－GTAG TAGCACA－XC CTCGC－ACTG GAAAGCAGCG CGGC－ACGCC GTTAAACCCC TATGC－GTAG TAGCACA－XC CTCGC－ACTG GAAAGCAGCG CGGC－ACGCC GTTAAACCCC tatGc－gtag tagcaca－xc ctcgc－actg ganagcagcg cggccacgcc gttanacccc tatgC－gTag tagcaca－xC ctcgc－actg ganagcagcg cgGccacgcc gttanacccc tatGC－GTaG tagcaca－xC CTCGC－ACTG GAAAGCAGCA AGCCCACGCC GTtAAACCCC tatgc－gtag tagcaca－xC CTCGC－ACTG gadagcagca agcccacgcc gttanacccc tatGc－gTag tagcaca－xC ctcgc－actg ganagcagca agcccacgcc gttanacccc tatgc－gtag tagcaca－xC ctcgc－actg gaiancagct tgcccacgcc gttanacccc TATGC－GTAG TAGCACA－XC CTCGC－ACTG GAAAACAGCG TGCCCACGCC GTTAAACCCC tatgc－gtag tagcaca－x c ctcgc－actg ganancagcg tgcccacgcc gttanacccc tatgc－gtag tagcaca－xc ctcgc－actg ganagcagca agcccacgcc gttanacccc tatgc－gtag tagcaca－xc ctcgc－actg ganagcagca agcccacgcc gttanacccc

```
E._subglutinans_NRRL_22061
Ce. camelliae STE-U 234
Ce._Camelliae_STE-U-277
Ce._elegans_STE-U_518
Ce._infestañs_ATCC 44816
Ce. infestans IMI 299376
Ce. infestans-STE-U 2319
Ce._infestans_STE-U_708
Ce.__lageniformis UFV}11
Ce.microcylindrica ATCC 38571
Ce.-microcylindrica_STE-U
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce._parva_ATCC_28272
ce. parva-STE-U 373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-\U_395
E._subglutinans_NRRL_22061
Ce._camelliae STE-U 234
Ce._camelliae_STE-U_277
Ce. in
Ce. infestans IMI 29937
Ce.-infestans-STE-U 2319
Ce._infestans_STE-U-708
lageniformis urv 115
Ce. microcylindrica ATCC 38571
Ce.microcylindrica_STE-U_683
ce.-novae-zelandiae-ATCC 44815
Ce. parva_ATCC_28272
Ce. parva STE-U 373
Ce._peruviana_STE-U_395
```

532
-AACTT-XCT GAATGTT-GA CCTCGGATCA GGTAGGAATA CCCGCTGAAC XX CCACTTT-CT GA-XGTTTGA CCTCGACTCX XXXXXXXXXX XXXXXXXXXX XX CCACTTT-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCXXXXX XX CAACTTT-CT GAA-GTTTGN CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CAACTTTTCT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CAACTTTTCT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CAACTTTTCT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CAACTTTTAK KA-XGTTTKA CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CCACTTT-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA XXXXXXXXXX XX CCACTTT-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGXXX XX CCACTTI-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGAAX XX CCACTTT-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCCGCIGAAC TT CAACTTI-CT GAA-GTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CAACTTT-CT GAA-GTTTGA CCTTGAATCA XXXXXXXXXX XXXXXXXXXX XX CAACTTT-CT GAA-GTTTGA CCTCGAATCA GGTAGGATTA CCCGCTGAAC TT CCACTTT-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA XXXXXXXXXX XX CCACTTT-CT GA-XGTTTGA CCTCGAATCA GGTAGGATTA CCXXXXXXXX XX

Alignment 8．Part 6．5＇end of β－tubulin gene DNA sequence alignment of Cylindrocladiella species

F．＿subglutinans＿NRRL＿22061
Ce．＿camelliae＿STE－U＿2 34
Ce．＿camelliae＿STE－U＿277
Ce．－elegans＿STE－U 518
Ce．＿infestans＿ATCC＿44816
Ce．＿－infestans＿IMI＿299376
Ce．＿－infestans＿STE－U＿2319
Ce．＿infestans＿STE－U－708
Ce．＿lageniformis＿UFV 115
Ce．－Microcylindrica＿ATCC＿38571
Ce．＿microcylindrica＿STE－ $\mathrm{U}=683$
Ce．－microcylindrica－STE－U－918
Ce．＿novae－zelandiae＿ATCC＿－ 44815
Ce．＿－parva＿ATCC＿2827 $\overline{2}$
Ce．＿parva＿STE－प̄＿373
Ce．＿peruviana＿IMUR＿1843
Ce．＿peruviana＿STE－U＿＿395

F．＿subglutinans＿NRRL＿22061

Ce．camelliae STE－U 234
Ce．＿camelliae＿STE－U＿277
Ce．＿elegans＿STE－U＿518
Ce．－．．infestañs＿ATC̄－＿44816
Ce．＿infestans＿IMI＿299376
Ce．＿－infestans＿STE－U＿2319
Ce．＿infestans＿STE－U＿708
Ce．＿－lageniformis＿UFV＿115
Ce．－microcylindrica＿ATCC 38571
Ce：－microcylindrica＿STE－U＿683
Ce．microcylindrica＿STE－U－918
Ce．＿novae－zelandiae＿ATCC＿44815
Ce．＿parva＿ATCC＿28272
Ce．＿parva＿STE－U＿373
Ce．＿peruviana＿IMUR＿1843
Ce．＿peruviana＿STE－U＿ 395

F．subglutinans NRRL 22061
Ce．＿camelliae＿STE－U＿234
Ce．＿camelliae＿STE－U＿277
Ce．－＿legans＿STE－U＿518
Ce．＿infestans＿ATCC 44816
Ce．＿－infestans＿IMI＿Z̄29376
Ce．＿infestans＿STE－U＿2319
Ce．－infestans＿STE－U＿708
Ce．＿lageniformis＿UFV＿115
Ce．＿microcylindrica＿ATCC＿38571
Ce．＿microcylindrica＿STE－U 683
Ce．＿microcylindrica＿STE－U－918
Ce．－novae－zelandiae＿ATCC 44815
Ce．＿parva＿ATCC＿28272
Ce．＿parva＿STE－U＿373
Ce．＿peruviana＿IMUR＿1843
Ce．＿－peruviana＿STE－Ū＿395

[^4]GCGTTGAGTT TATGGTGCCC CTGATTCTAC CCCGCTGGGC GGTGG－XCA－XXXXXGC－TC GCGTT－TGTT－\because KGTGCCC CTGATTCTAC CCCGCCGAAC CATTTTCCAC C－XXXGCCTC GCGTT－TGTT－Z AC －TGCCC CTGATTCTAC CCCGCCGAAC CATTTTCCAC C－XצAGCCTC GCGTT－TGTT－YKOこTGCCC CTGATTCTAC CCCGCCGAAC CGTTTTCCAC C－XXXGCCTC XXXXXXXXXX－KKGこTGCCC CTSATTCTAT CCMGCCGAAT CGTTTCCCAC CCACCGCCTC GCGTT－XGTT－XKGこTGCCC CTGATTCTAC CCCGCCGAAT CGTTTCCCAC CCACCGCCTC GCGTT－XGTT－\because KGETGCCC CTGATTCTAC CCCGCCGAAT CGTTTCCCAC CCACCGCCTC GCGTT－XGTT－ KGGTGCCC CTGATTCTAC CCCGCCGAAT CGTTTCCCAC CCACCGCCTC GCGTT－XGTT－XXGCTGCCC CTGATTCTAC CCCGCCGAAT CGTTTCCCAC C－XXXGCCTC XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXAC CATTTTCCAC C－XXXGCYTC GCGTT－TGTT－XXGCTGCCC CTGATTCTAC CCCGCCGAAC CATTTTCCAC C－XXXGCCTC GCGIT－TGTT－XXGCTGCCC CTGATTCTAC CCCGCCGAAC CATTTTCCAC C－XXXGCCTC XXXXXXXXXX XXXXCTGCCC CTGATTCTAC CCCGCCGAAY CCTTTTCCAC C－XXXGCCTC GCGTT－XGTT－XXGCTGCCC CTGATTCTAC CCCGCCGAAT CGTTTCCCAC C－XXXGCTTC GCGTT－XGTT－XXCCTGCCC CTGATTCTAC CCCGCCGAAT CGTTTCCCAC C－XAXGCTTC GCGTT－TGTT－XXGNTGCCC CTGATTCTAC CCCGCCGAAC CATTTTCCAC C－XXXGCCTC ACGTT－TGTT－XXGCTGCCC CTGATTCTAC CCCGCCGAAC CATTTTCCAC C－XXXGCCTC

AACGACAATG CACGATAGCT AGCA－GCTTT A－XAATACCT TCTGTCAAG－ATGAAGAAGC GACAACAA－C AZAGCTCGCG ATAATGCCCA C－XXXGTCGT GATGTCTTGA ATGAGATTGC GACAACAA－C AAAGCTCGCG ATAATGCCCA C－XXXGTCGT GATGTCTTGA ATGAGATTGC GACAACAA－C A＝AGCTCGCG ATTATGCCCA C－XXXGTCGT GATA－GTTGG ATCAGATTGC GACAACAA－C AAAGCTCGCG AT－XXGCCCA CCCACATCGT GATATCT－GA AGACAATGGC GACAACAA－C AAAGCTCGCG AT－XXGCCCA CCCACATCGT GATATCT－GA AGACAATGGC GACAACAA－C AAAGCTCGCG AT－XXGTCCA CCCACATCGT GATATCT－GA AGACAATGGC GACAACAA－C Aد\＃GCTCGCG AT－XXGTCCA CCCACATCGT GATATCT－GA AGACAATGGC GACAACAA－C AAAGCTCGCG AT－XXGCCCA CCCACACCAT GATATCT－GA ACATAATGGC GGCAACAAAC AAAGCTCGCG ATAATGCCCA C－XXXGTCGT GATATCTTGA ATGAGATTGC GACAACAA－C FZAGCTCGCG ATAATGCCCA C－XXXGTCGT GATATCTTGA ATCAGATTGC GACAACAA－C A彐－GCTCGCA ATAATGCCCA C－XXXGTCGT GATATCTTGA ATCAGATTGC GACAACAA－C AㅍAACTCGCG ATTATGCCCA C－XXXGTCGT GATA－CTTGG ATCAGATTGC GACAACAA－C AAAGCTCGCG ATGATACCCA C－CAC－XCGT AATATCT－GG ATACAATGGC GACAACAA－C AAAGCTCGCG ATGATACCCA C－CAC－XCGT GATATCT－GG ATACAATGGC GACAA－XXXC A＝AGCTCGCG ATAATGCCCA C－XXXGTCGT GATATCTTGA ATCAGATTGC GACAA－XXXC A2AGCTCGCG ATAATGCCCA C－XXXGTCGT GATATCTTGA ATCAGATTGC TAATT－XATG IGTYTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTTTA TAATT－XATG TGTTTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTTTA TAATT－XATG TGTTTCTG－A AATATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTACA TAATTTTGTG TGIIICTGCG AATATAGGTC CACCTCCAGA CCGGTCAGTG CGTAAGTACA TAATTTTGTG TGTTTCTGCG AATATAGGTC CACCTCCAGA CCGGTCAGTG CGTAAGTACA TAATTTTGTG TGTIECTGCG AATATAGGTC CACCTCCAGA CCGGTCAGTG CGTAAGTACA TAATTTTGTG TGTTTCTGCG AATATAGGTC CACCTCCAGA CCGGTCAGTG CGTAAGTACA TAATTTTGCG TGTTTCTGCG AATATAGGTC CACCTCCAGA CCGGTCAGTG CGTAAGTGCA TAATT－XATG TGTTTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG NGTAAGTTTA TAATC－XATG TGTTTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTTTA tAATC－XATG TGTTTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTTTA TAATT－XATG TGTTTCCG－A AATATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTACA TAATT－XCTC TGTTTCTCAA AATATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTACA TAATT－XCTC TGTTTCTCAA AATATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTACA TAATC－XATG TGTTTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTTTA TAATC－XATG TGTTTCTG－A ACTATAGGTC CACCTCCAGA CCGGCCAGTG CGTAAGTTTA

240
CATCGCTTCC TCG－ACGTCG CATGTGGGGG ATGCTCACGA TG－TTTATCA GGGTAACCAA CACCTCACCT TCACGAGTCT C－TGCGGCGT TTGCTCACGA TA－CATAACA GGGTAACCAA CACCTCACCT TCACGAGTCT C－TGCGGCGT TTGCTCACGA TA－CATAACA GGGTAACCAA TCCCGAACCT CGACGAGCCT T－GCGGGCAT TTGCTAACGG TGCCATAATA GGGTAACCAA TTCCTCACCT CGACAAGCTT C－GTCAACGG CTGCTAACGG TGTCTCGATA GGGTAACCAA TTCCTCACCT CGACAAGCTT C－GTCAACGG CTGCTAACGC TGTCTCGATA GGGTAACCAA TTCCTCACCT CGACAAGCTT C－GTCAACGG CTGCTAACGG TGTCTCGATA GGGTAACCAA TTCCTCACCT CGACAAGCTT C－GTCAACGG CTGCTAACGG TGTCTCGATA GGGTAACCAA TTCCTCACCT CGACAAGCCT C－GTCAACGG CTGCTAACGG TGTCTTGATA GGGTAACCAA CACCTCACCT TCACGAGTCT C－TGCGGCGT TTGCTCNCGA TT－CATAACA GGGTAACCAA CACCTCGCCT TCACGAGTCT C－TGCGGCGT TTGCTCACGA TA－CATAACA GGGTAACCAA CACCTCGCCT TCACGAGTCT C－TGCGGCGT TTGCTCACGA TA－CATAACA GGGTAACCAA TTC－GAACCT CGACGAACCT T－GCGGGCAT TTGCTAACGG TGGCATAATA GGGTAACCAA TTCCTCACCT CGßTAGGCCT C－AACGGCGG GTGCTAACGG TTTCTCAATA GGGTAACCAA TTCCTCACCT CGATAGGCCT C－AACGGCGG GTGCTAACGG TTTCTCAATA GGGTAACCAA CACCTCGCCT TCACGAGTCT C－TGCGGCGT TPGCTCACGA TA－CATAACA GGGTAACCAA CACCTCGCCT TCACGAGTCT C－TGCGGCGT TTGCTCACGA TA－CATAACA GGGTAACCAA
E._subglutinans_NRRL_22061

Ce._camelliae_STE-U_ 234
Ce._camelliae_STE-U_277
Ce._elegans_STE-U_518
Ce._-infestañ_ATCC̄ 44816
Ce._-infestans_IMI_ 299376
Ce._infestans_STE-U_2319
Ce._-infestans_STE-U-708
Ce._lageniformis_UFV_115
Ce._microcylindrica_ATCC_38571
Ce.-microcylindrica_STE-U 683
Ce.-microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce._parva_ATCC_28272
Ce. parva-STE-U_373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U__395
F._subglutinans_NRRI_22061

Ce-_camelliae_STE-U_234
Ce._camelliae_STE-U_277
Ce._elegans_STE-U $5 \overline{18}$
Ce._infestans_ATCC 44816
Ce._infestans_IMI_299376
Ce.-infestans_STE-U2 2319
Ce.-_infestans_STE-U_708
Ce.-lageniformis UEV 115
Ce.microcylindrica_ATCC 38571
Ce.-microcylindrica_STE-U_683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_- 44815
Ce. parva_ATCC_28272
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce._-peruviana_STE- $\bar{U}_{-} 395$

```
F._subglutinans_NRRL_22061
Ce-_camelliae_STE-U_ \(\overline{2} 34\)
Ce._camelliae_STE-U_277
Ce._-elegans_STE-U_518
Ce._infestans ATCC 44816
Ce._infestans_IMI_299376
Ce._infestans_STE-U_2319
Ce._infestans_STE-U_708
Ce._lageniformis UFV_115
Ce._microcylindrica_ATCC_38571
Ce.-microcylindrica_STE-U 683
Ce._microcylindrica_STE-U-918
Ce._-novae-zelandiae_ATCC_44815
Ce.-parva_ATCC_28272
Ce._parva_STE-U 373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U_395
```

F._subglutinans_NRRL_22061

Ce.__camelliae_STE-U_234
Ce._camelliae_STE-U_277
Ce._elegans STE-U_518
Ce.-infestañs ATC̄ 44816
Ce.-infestans IMI 299376
Ce._-infestans_STE-U_2319
Ce.-infestans_STE-U_708
Ce.-lageniformis_UFV 115
Ce._microcylindrica_ATCC_38571
Ce.-microcylindrica_STE-U_683
Ce._microcylindrica_STE-U_918
Ce._novae-zelandiae_ATCC_44815
Ce. parva ATCC 28272
Ce._parva_STE-U__373
Ce._peruviana_IMUR 1843
Ce._peruviana_STE-U_395

ATTGGTGCTG CTITCTGGCA AACCATCTCT GGCGAGCACG GCCTCGACAG CAATGGTGTC ATTGGTGCTG CTTICTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCIG CTIICTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTTICTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTI:CTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTN ATTGGTGCTG CTTTCTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTİСTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTTECTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTIICTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTT ATTGGTGCTG CTTICTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTITCTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTITCTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTITCIGGCA GACCATCTCT GGCGAGCACG GICTCGACAG CAATGGTGTC ATTGGTGCTG CTTTCTGGCA GACCATCTCT GGCGAGCACG GTCTTGACAG CAATGGTGTC ATTGGTGCTG CTITCTGGCA GACCATCTCT GGCGAGCACG GTCTTGACAG CAATGGTGTC ATTGGTGCTG CTTICTGGCA GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC ATTGGTGCTG CTIICTGGCA. GACCATCTCT GGCGAGCACG GTCTCGACAG CAATGGTGTC

360

TACAACGGTA CCTCCGAGCT CCAGCTCGAG CGTATGAGTG TCTACTTCAA CGAGGTATGC TACAACGGCA GCTCTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCTCTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCICTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTATGT TACAACGGCA GCICTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCTCTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCICTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCICTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCTCTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCICTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTATGT TACAACGGCA GCICTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCTCTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTGCGT TACAACGGCA GCTMTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT TACAACGGCA GCTCTGAGCT CCAGCTCGAG CGCATGAGCG TCTACTTCAA CGAGGTACGT

420

T-TT-A-XAC AGTC-R-AT- XGCCA-A-XG -AATTCC-CA A-G-XCTCAC ACA-ACTAGG GACTG-XATG ATCT-A-ATC TTTCACA-XG -AGAATCACA GTG-ACTTAC GCCTATTAGG GACTG-XATG ATCT-A-ATC TTTCACA-XG -AGAATCACA GTG-ACTTAC GCCTATTAGG GACTGACAAC CCTCGA-ATT TTCTACATCA GAGAATCACA GTGGACTTAC GCCCTATAGG GACT-ATGGC ACTC-ACATT TGCTACACTG TGAAATCAGA ATGTACTCAC GCTCCGTAGG GACT-ATGGC ACTC-ACATT TGCTACACTG TGAAATCAGA ATGTACTCAC GCTCCGTAGG GACC-ATAAC ACGC-ATATT TGCTACACTG TGAAATCGTA ATGTACTCAC GCTCCATAGG GACC-ATAAC ACTC-ATATT TGCAACACTG IGAAATCGTA ATGTACTCAC GCTCTGTAGG GACC-AGAGC ACTC-TCATT TGC-XXXXTG TGAA-CGATA ATGTACTCAC GCTTCATAGG GACTG-XAAG ATCT-A-ATT TGCCACA-XG -AGAATCACA GTG-ACTTAC GCCTATTAGG GACT-A-ATG ATCT-A-ATC TGTCACA-XG -AGAACCACA GTG-ACTTAC GCACAATAGG GACT-A-ATG ATCI-A-ATC TG-CACA-XG -AGAACCACA GTG-ACTTAC GCACAATAGG GACTGACAAC CCTCGA-ATT TGCTACATCG GGGAATCACA GTGGACTTAC GCCCTATAGG GATT-ATAAC ACTC-A-TTT TATCACATTG AAGATTCTCA ATGTACTCAC ACATTCTAGG GATT-ATAAC ACTC-A-TTT TATCACATTG AAGATCCTCA ATGTACTCAC ACATTCTAGG GACT-A-ATG ATCT-A-ATC TGTCACA-XG -AGAACCACA GTG-ACTTAC GCACAATAGG GACT-A-ATG ATCT-A-ATC TGTCACA-XG -AGAACCACA GTG-ACTTAC GCACAATAGG

480
CCTCTGGCAA CAAGTATGTT CCCCGAGCCG TCCTCGTCGA TCTTGAGCCT GGTACCATGG CTICTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTNCCATGG CTTCTGGCAA CAAGTATGTC C-TCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTICTGGCAA CAAGTATGTC CCTCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTYGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG CTTCTXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG CTTCCGGCAA CAAGTATGTC CCTCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTTCCGGCAA CAAGTATGTC CCTCGCGCCG TCCTCGTCGA TCTTGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG CTTCTGGCAA CAAGTATGTC CCTCGCGCTG TCCTCGTCGA TCTCGAGCCC GGTACCATGG
F. subglutinans NRRL 22061

Ce. camelliae STE-U 234
Ce._camelliae_STE-U_277
Ce. elegans STE-U 51̄8
Ce._infestans_ATCC_44816
Ce._-infestans_IMI_299376
Ce._infestans_STE-U_2319
Ce._infestans STE-U-708
Ce. lageniformis UFV_115
Ce._microcylindrica_ĀTCC_38571
Ce._microcylindrica_STE-प्U_683
Ce.-microcylindrica_STE-U-918
Ce. novae-zelandiae ATCC_44815
Ce. parva ATCC $2827 \overline{2}$
Ce._parva_STE-U_373
Ce._peruviana_IMUR_1843
Ce._peruviana_STE-U_395

ACGCC-GTCC -GAGCTGGTC CCTTCGGTCA NGCTCTTCCG TCCCGACAAC TT ACGCC-GTCC -GTGCCGGIC CTTTCGGTCA NGCTCTTTCG CCCCGACAAC TT ACGCC-GTCC -GTGCCGGTC CTTTCGGTCA AGCTCTTCCG CCCNGACAAC TT ATGCC-GTCC -GTGCCGGRC CTTTCGGTCA NGCTCTTNCG CCCNGACAAC TT ATGCC-GTCC -GTGCCGGIC CTTTCGGTCA NGCTCTTTCG TCCCGACAAC TT ATGCC-GTCC -GTGCCGGIC CTTTCGGTCA AGCTCTTCCG TCCCGACAAC TT ATGCC-GTCE -GTGCCGGTC CTITCGGTCA NGCTCTTNCG CCCNGACAAC TT ATGCC-GTCC" -GTGCCGGEC CTTTCGGTCA AGCTCTTCCG CCCCGACAAC TI ATGCC-GTCC -GTGCCGGTC CTTTCGGTCA NGCTTTTCCG CCCCGACAAC TT ACGCC-GTCC -GTGCCGGTC CTTTXXXXXX XXXXXXXXXX XXXXXXXXXX XX ACGCC-GTCC -GTGCTGGTC CTTTCGGTCA AGCTCTTCCG CCCCGACAAC TT XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XX ACGCC-GTCC CGTGCCGGTC CTTTCGGTCA AGCTCTTCCG CCCCGACAAC TT ATGCCCGTCC -GTGCCGGTC CTTTTGGTCA AGCTNTTTCG CCCCGACAAC TT ATGCC-GTCC -GTGCCGG:TC CTTTCGGTCA NGCTCTTCCG CCCCGACAAC TI ACGCC-GTCC -GTGCTGETC CTTTCGGTCA NGCTCTTCCG CCCCGACAAC XX ACGCC-GTCC -GTGCTGGTC CTTTCGGTCA NGCTCTTCCG CCCCGACAAC TT

[^0]: * Published: Schoch CL, Crous PW, Wingfield BD, Wingfield MJ. 1999. The Cylindrocladium candelabrum species complex includes four distinct mating populations. Mycologia 91: 286-298.

[^1]: *Submitted: Schoch CL, Crous PW, Cronwright G, Witthuhn RC, EI-Gholl NE, Wingfield B. 1999. Recombination in Cylindrocladium scoparium and phylogeny with other heterothallic small-spored Cylindrocladium species. Mycologia.

[^2]: ${ }^{1}$ The ratio of mating types based shown as MAT-1:MAT-2 (mating types determined previously according to work done in Part 3).
 ${ }^{2}$ The ratio of female sterile:hermaphrodites in the population.
 ${ }^{3}$ The effective population number based on the numbers of males ($N_{t s}$) and hermaphrodites (N_{h}) as percentage of the actual count.
 ${ }^{4}$ Effective population number based on mating type (given as percentage of total population).
 ${ }^{5}$ Inbreeding effective number based on numbers of males and hermaphrodites (given as percentage of total population).
 Equations were all derived from Leslie and Klein (1996).

[^3]: *Accepted for publication: Schoch CL, Crous PW, Wingfield MJ, Wingfield BD. Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia. 1999. Stud Mycol.

[^4]: F．＿subglutinans＿NRRL＿22061
 Ce．＿camelliae＿STE－U＿ 234
 Ce．＿camelliae＿STE－U＿277
 Ce．＿－elegans＿STE－U＿518
 Ce．＿－infestañ＿ATCC̄＿44816
 Ce．－infestans＿IMI＿299376
 Ce．－infestans STE－U＿2319
 Ce．＿infestans＿STE－U＿708
 Ce．＿lageniformis＿UFV＿115
 Ce．microcylindrica＿ATCC 38571
 Ce．＿microcylindrica＿STE－U＿683
 Ce．＿microcylindrica＿STE－U＿918
 Ce．＿novae－zelandiae＿ATCC＿44815
 Ce．＿－parva＿ATCC＿2827
 Ce．＿parva＿STE－U＿373
 Ce．＿peruviana＿IMUR＿1843
 Ce．＿＿peruviana＿STE－U＿395

