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Abstract 

A Design Framework for Aggregation in a System 
of Digital Twins 

C. Human

Department of Mechanical and Mechatronic Engineering 
Stellenbosch University 

Dissertation: Ph.D. (Mechatronic Engineering) 
April 2022 

The digital twin (DT) concept has become a popular means of capturing and 
utilising data related to physical systems and has been applied in many domains. 
The data provided within DTs allow for the integration of services and models to 
improve understanding and decision-making related to the physical system. 
Through aggregation, multiple DTs can be combined to represent larger, more 
complex system, while maintaining the separation of concerns. 

The design framework presented in this dissertation aims to enable systematic, 
effective decisions when designing a system of DTs to represent a complex 
physical system. In particular, this framework adopts hierarchical aggregation as 
one of its primary enablers and it considers the use of a services network, such as 
a service-oriented architecture, as well. The design framework is intended to be 
broadly applicable, by remaining vendor-neutral, and it enables traceability of 
design choices. 

The approach starts with an analysis of physical system complexity to identify key 
needs related to managing complexity. A suitable requirements classification is 
then introduced to help translate the needs into requirements that the system of 
DTs should satisfy. Hierarchical aggregation is also introduced as a primary 
architectural approach to manage complexity. Hierarchical aggregation allows for 
the separation of concerns, computational load distribution, incremental 
development and modular software design. The design framework is arranged in 
six steps: 1) needs and constraints analysis, 2) physical system decomposition, 3) 
services allocation, 4) performance and quality considerations, 5) implementation 
considerations and 6) verification and validation. 

The dissertation then introduces a general reference architecture that combines a 
system of DTs (which follows hierarchical aggregation principles) with a services 
network to allow for reliable and adaptable service provisioning. The design 
framework is then discussed in the context of the general reference architecture. 
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The design steps of the design framework are then moulded into six design 
patterns, which simplify the design process by focussing of key quality attributes. 
The quality attributes considered for the respective design patterns are 
performance efficiency, reliability, maintainability, compatibility, portability and 
security. 

The use of the design framework and design patterns are then demonstrated and 
validated through three case studies, two high-level case studies and one detailed 
case study. The high-level case studies consider a water distribution system and a 
smart city, respectively. The detailed case study considers a heliostat field. 

The dissertation concludes that the design framework, as well as the design 
patterns, enable a systematic approach to designing a system of DTs. The design 
framework can also be applied to numerous and varying domains, such as the case 
studies considered. 
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Uittreksel 

‘n Ontwerpsraamwerk vir Samevoeging in ‘n 
Sisteem van Digitale Tweelinge 

 
C. Human 

 
Departement van Meganiese en Megatroniese Ingenieurswese 

Universiteit Stellenbosch  
Proefskrif: Ph.D. (Megatroniese Ingenieurswese) 

April 2022 

Die digitale tweeling-konsep het 'n gewilde manier geword om data wat met 
fisiese stelsels verband hou, vas te lê en te gebruik en die konsep word in talle 
gevalle toegepas. Die data wat binne ‘n digitale tweeling verskaf word, bied die 
geleentheid vir die integrasie van dienste en modelle om begrip en besluitneming, 
met betrekking tot die fisiese stelsel, te verbeter. Deur verskeie digitale tweelinge 
saam te voeg kan groter, meer komplekse stelsel voorgestel word, terwyl die 
skeiding van belange gehandhaaf word. 

Die ontwerpsraamwerk wat in hierdie proefskrif voorgestel word, beoog om 
sistematiese, effektiewe besluite moontlik te maak wanneer 'n stelsel van digitale 
tweelinge ontwerp moet word om 'n komplekse fisiese sisteem voor te stel. 
Hierdie raamwerk maak gebruik van hiërargiese samevoeging en dit oorweeg die 
gebruik van 'n dienstenetwerk, soos 'n diensgeoriënteerde argitektuur. Die 
ontwerpsraamwerk is bedoel om breed toepaslik te wees, deur verskaffer-
neutraal te bly, en dit maak naspeurbaarheid van ontwerpkeuses moontlik. 

Die benadering begin met 'n ontleding van fisiese stelselkompleksiteit om 
sleutelbehoeftes te identifiseer wat verband hou met die bestuur van 
kompleksiteit. 'n Geskikte vereistesklassifikasie word dan ingevoer om die 
sleutelbehoeftes te omskep in vereistes waaraan die stelsel van digitale tweelinge 
behoort te voldoen. Hiërargiese samevoeging word ook ingevoer as 'n primêre 
argitektoniese benadering om kompleksiteit te bestuur. Hiërargiese samevoeging 
maak voorsiening vir die skeiding van belange, berekeningsladingsverspreiding, 
inkrementele ontwikkeling en modulêre sagteware-ontwerp. Die 
ontwerpsraamwerk is georden in ses stappe: 1) behoeftes- en 
beperkingsontleding, 2) fisiese stelselverdeling, 3) dienstetoewysing, 4) prestasie- 
en kwaliteitsoorwegings, 5) implementeringsoorwegings en 6) verifikasie en 
validering. 

Die proefskrif stel dan 'n algemene verwysingsargitektuur voor wat 'n stelsel van 
digitale tweelinge (wat hiërargiese samevoegingsbeginsels volg) kombineer met 'n 
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dienstenetwerk om voorsiening te maak vir betroubare en aanpasbare 
diensverskaffing. Die ontwerpsraamwerk word dan in die konteks van die 
algemene verwysingsargitektuur bespreek. 

Die ontwerpstappe van die ontwerpsraamwerk word dan in ses ontwerppatrone 
gevorm, wat die ontwerpsproses vereenvoudig deur te fokus op 
sleutelkwaliteiteienskappe. Die kwaliteitseienskappe wat vir die onderskeie 
ontwerppatrone oorweeg word, is prestasiedoeltreffendheid, betroubaarheid, 
instandhoubaarheid, verenigbaarheid, oordraagbaarheid en sekuriteit. 

Die gebruik van die ontwerpsraamwerk en ontwerppatrone word dan deur drie 
gevallestudies, twee hoëvlak gevallestudies en een in diepte gevallestudie, 
gedemonstreer en gevalideer. Die hoëvlak gevallestudies oorweeg onderskeidelik 
'n waterverspreidingstelsel en 'n slim stad. Die gedetailleerde gevallestudie 
beskou 'n heliostaatveld. 

Die proefskrif kom tot die gevolgtrekking dat die ontwerpsraamwerk, sowel as die 
ontwerppatrone, 'n sistematiese benadering tot die ontwerp van 'n stelsel van 
digitale tweelinge moontlik maak. Die ontwerpsraamwerk kan ook op talle en 
variërende gevalle toegepas word, soos die gevallestudies wat oorweeg is. 
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1 Introduction 

 Background 

This dissertation is in the context of digital twins (DTs), a concept that was first 
introduced by Michael Grieves in 2002 as the conceptual ideal for product lifecycle 
management (Grieves & Vickers, 2017). The original premise was to create a 
virtual representation of a physical product, where the virtual representation 
could mirror the physical product throughout its lifecycle. Since then, the DT 
concept has evolved and has become a significant enabler of Industry 4.0 
initiatives (Durão, Haag, Anderl, et al., 2018). The industry 4.0 initiatives include 
connectedness and intelligence to allow for decentralised and adaptable 
production environments. Furthermore, the DT concept has been adopted in 
domains outside of production to achieve the same principles of connectedness 
and intelligence as part of larger digitisation movement. 

The DT concept has become a popular means of capturing and utilising data 
related to physical systems and has been applied in many domains, such as 
manufacturing (Bao, Guo, Li, et al., 2018; Redelinghuys, Basson & Kruger, 2020), 
smart city design (CDBB, 2018; Pan, Shi & Jiang, 2020), water treatment facilities 
(Therrien, Nicolaï & Vanrolleghem, 2020), the maritime domain (Bekker, 2018), 
wind turbines (Pargmann, Euhausen & Faber, 2018), aerospace (Glaessgen & 
Stargel, 2012), healthcare (Lutze, 2019), etc. The data provided within DTs allow 
for the integration of services and models to improve understanding and decision-
making related to the physical system (Kuhn, Schnicke & Oliveira Antonino, 2020; 
Longo, Nicoletti & Padovano, 2019). 

The dissertation title refers to a system of DTs. This concept is particularly relevant 
considering complex systems. A complex system is a system that consists of a large 
network of components which give rise to complex collective behaviour, 
sophisticated information processing and adaptation via learning or evolution 
(Mitchell, 2009). System complexity can be described as a measure of how difficult 
it is to understand the behaviour of a system and how difficult it is to predict the 
consequences of changing the system (SEBoK Editorial Board, 2021). Considering 
that digital twins are recognised as a concept that could help understand and 
manage the data related to complex system, there is a need to implement digital 
twins for complex systems and systems-of-systems. 

However, to feasibly apply the DT concept to complex systems, the aggregation of 
DTs is necessary, which leads to a system of DTs. Minerva, Lee & Crespi (2020) 
mention that the simulation and prediction of behaviour of complex systems, 
based on an aggregated set of DTs, is a unique benefit of the DT concept.  
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Aggregation of DTs is a strategy to enhance separation of concerns, 
reconfigurability, scalability, and it is therefore attractive for reflecting complex 
physical systems (Ciavotta, Bettoni & Izzo, 2018; Lutze, 2019; Redelinghuys, 2019). 
It is possible to view a system from different perspectives, by aggregating different 
DTs and data features, while also allowing for different levels of detail for each 
perspective (Borangiu, Oltean, Raileanu, et al., 2019; Ciavotta et al., 2018; 
Villalonga, Negri, Fumagalli, et al., 2020). This ability to accommodate different 
perspectives makes it easier to accommodate multiple stakeholders and it makes 
the data more comprehensible (Lutters & Damgrave, 2019; Lutze, 2019).  

Therefore, this dissertation considers a framework to aid in the design of a DT 
aggregation hierarchy. The framework considers complex systems and provides 
general principles to help design a DT aggregation architecture to manage the 
complexity of the systems. 

 Objective and contribution 

The objective of this dissertation is to develop a design framework to guide the 
detailed design of a DT aggregation architecture, or a system of DTs, to reflect 
complex systems.  

The framework makes use of hierarchical aggregation design principles. In 
particular, the framework provides methods and principles that guide a user 
through the design process. The framework also aims to make the user aware of 
trade-offs that may form part of the design approach and provides aggregation 
and implementation alternatives to manage the trade-offs.  

The framework is intended to be independent of the domain of application of the 
DTs, and thus it prescribes general design principles and best practices according 
to prioritised design requirements. Using the framework, the user should be able 
to design a detailed architecture for a DT aggregation hierarchy that reflects a 
complex system within a given domain. The resulting detailed architecture should 
provide a list of applicable DTs, the functionality of those DTs and how they relate 
to each other. Furthermore, the framework also supports implementation 
decisions related to key aspects to the architecture. 

It is not feasible within the scope of a PhD dissertation to comprehensively 
evaluate the decision framework. However, it is applied to different case studies 
in different domains as a preliminary evaluation and to demonstrate the efficacy 
of the framework.  

This dissertation contributes to the body of knowledge on DT design through the 
novel design framework. Most research on DTs involve the development of an 
architecture to satisfy the needs of a particular domain or use case. Some 
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architectures are defined to be more generally applicable. However, being an 
architecture, they explain the composition of the DT, but not how to approach the 
design of the components and their interactions. Little research has been done on 
methods and principles for the design of DTs. Furthermore, the design frameworks 
that do exist are still quite limited because they consider the design of a single DT 
or they only consider particular conceptual aspects of the DTs design. 

The design framework presented here is intended to contribute to the digital twin 
body of knowledge in the following ways: 

• The framework considers the design of a system of DTs and how those DTs 
can interact to represent a complex system.  

• The framework enables a systematic approach to decision making during the 
design of the system of DTs, starting with the fundamental needs and 
associated requirements. 

• The framework enables traceability from user defined needs and derived 
needs to architectural and implementation choices. 

• The framework makes provision for key sources of complexity, such as 
multistakeholder environments and distributed computing environments. 

• The framework considers the integration of DTs with a service-oriented 
architecture. 

• The framework is unique in its provisioning of design patterns according to 
key quality requirements. 

 Motivation 

Although much has been published about DTs, the use of aggregation with DTs, is 
fairly recent and poorly defined. The earliest papers in Scopus with "digital twin" 
and "aggregation" in their title, keywords or abstract, were published in 2018 
(Ciavotta, Bettoni & Izzo, 2018; Lutters, 2018). Therefore, there is a need for 
research with respect to the aggregation of DTs since it is an enabler for the 
effective digitisation of complex systems. 

For example, the Centre for Digital Built Britain (CDBB) is researching the 
possibilities of creating a digital twin of Britain, named the National Digital Twin 
(CDBB, 2018; Lamb, 2019). This is a highly diverse, complex and large system with 
numerous levels of subsystems. CDBB (2018) states: “The vision for the national 
digital twin (NDT) is not that it will be a huge singular digital twin of the entire built 
environment. Rather, it is envisaged to consist of ‘federations’ of digital twins 
joined together via securely shared data.” 
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The complexities related to implementing DTs and systems of DTs are not yet fully 
understood. A survey on DTs by Minerva, Lee & Crespi (2020) raised concerns 
regarding the scalability and interoperability of DTs and the viability of the concept 
when multiple stakeholders are present. Villalonga et al. (2021) also mention 
some shortcomings of research with respect to distributed DTs, including 1) a lack 
of well-defined frameworks to combine DTs, 2) the limitation of methods for 
aggregating DTs and 3) the poor use of the gathered data. These concerns give rise 
to research questions such as: 

• What complexities arise when implementing a system of DTs, particularly with 
regard to making the system of DTs scalable, interoperable and suitable for 
multi-stakeholder environments? 

• What challenges are addressed by using aggregation and what additional 
challenges arise when aggregating DTs? 

• What are some of the key aspects to consider when aggregating DTs? 

• How can DTs and aggregations of DTs help to servitise data? 

The design framework is intended to help identify and navigate some of the 
complexities of implementing DTs, including aspects related to scalability, 
interoperability and multi-stakeholder environments. Furthermore, the 
framework allows for the distributed implementation of DTs and provides 
methods and principles to help aggregate the DTs. Finally, the framework also 
addresses the issue of data endpoints, where the framework incorporates 
literature regarding the servitisation of data within and through DTs. 

The novel contributions to the growing body of knowledge about digital twins, 
indicated in the previous section, are further motivation for the dissertation. 
These contributions are intended to improve the feasibility of developing a digital 
twin system for complex systems and thereby make them more applicable to 
industry. 

 Methodology and dissertation overview 

The primary deliverable of this dissertation is a design framework to help reason 
about the design of a DT aggregation hierarchy. An overview of the design 
framework is provided in Chapter 7.  

To develop the design framework, software and systems engineering steps and 
principles as presented by SEBoK Editorial Board (2021) and Bourque & Fairley 
(2014) were considered. These general systems design guides include steps such 
as performing stakeholders’ needs analysis, requirements engineering, identifying 
design constraints, identifying design trade-offs, etc. Furthermore, these sources 
suggest principles such as iteratively designing and testing the design and ensuring 
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traceability for good change management. Based on these design steps and 
principles, the methodology detailed below discusses how the design framework 
was developed. 

A review of the relevant literature is presented in Chapters 2, 3 and 4. Chapter 2 
presents literature related to DTs and particularly literature related to the 
aggregation and design of DTs, as well as the integration of DTs and service-
oriented architectures (SOAs). Chapter 3 is devoted to the identification and 
classification of general needs related to the complexities of DT system design and 
implementation. The complexity needs were identified from digital twin literature, 
as well as literature concerning similar software systems and technologies. In 
particular, the related domains that were also investigated are: wireless sensor 
network (WSNs), Internet of Things (IoT), edge, fog and cloud computing, big data 
pipelines and service-oriented and microservices architectures.  

The complexity needs were then analysed in the context of digital twins to 
determine if they were applicable and if so, how they can be translated to a 
general set of requirements to help manage the complexity. However, to 
accomplish this, a requirements framework for digital twins was necessary. 
Therefore, Chapter 4 discusses the set of requirements considered for this 
dissertation and how they relate to the complexity needs identified in Chapter 3. 

With the above inputs, the framework was developed iteratively. The iterative 
process started by considering fundamental concepts of complexity management 
in systems engineering and software engineering. The final set of fundamental 
principles are presented in Chapter 5. The fundamental principles were then 
related to architectural and implementations solutions within a given context to 
determine how the principles can be embodied. Chapter 6 presents a reference 
architecture that is intended to embody the aforementioned principles and it 
provides context when applying the design framework.  

Chapter 7 introduces the design framework. The chapter starts with the objectives 
of the design framework and an overview is provided before each step of the 
design framework is discussed. The design steps are discussed with a running 
example to clarify the concepts. 

Chapters 8, 9 and 10 each consider one of the design framework’s steps in more 
detail. Chapters 8 considers the service allocation step, Chapter 9 considers 
performance and quality aspects of the architecture and Chapter 10 expands on 
Chapter 9 by providing guidelines with regards to key reoccurring implementation 
choices. Each chapter also considers how the design choices can change 
depending on the context. 

The evolving framework was regularly tested against various digital twin 
aggregation contexts that were being considered in the research group. These trial 
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applications helped to clarify the important distinctions (such as architectural and 
implementation aspects) and the decision sequences that offers a systematic 
approach with limited iteration overall, but intensive iteration inside the few 
major steps. The results of the above development are presented in the 
dissertation and not the process of the framework’s development.  

In Chapter 11, the design framework is moulded to six design patterns. The design 
patterns are intended to simplify the entire design process by highlighting the key 
needs, architectural choices and implementation choices related to the 
requirement that the design pattern is named after.  

In Chapter 12, the design framework is applied to two high-level case studies: a 
water distribution system and a smart city. The purpose of the high-level case 
studies is to demonstrate the systematic approach of the design framework in two 
different case studies. The case studies each present unique challenges and 
considerations and by applying the design framework to each of these cases, the 
general applicability of the design framework is also demonstrated. 

A water distribution network is a critical piece of infrastructure in any city and thus 
reliability is important. Water distribution networks also have a relatively long 
operational lifetime and thus associated DTs will need to be maintained for the 
duration of the water distribution network’s lifecycle. The water distribution 
system also presents some noteworthy characteristics, such as the continuous 
nature of the piping network and the large geographical distribution. 

The smart city case study presents a are large systems with numerous 
heterogeneous subsystems and a substantial amount of heterogeneous data, 
making interoperability a major concern. Smart cities also have many different 
stakeholders, where secure data sharing is a high priority. Furthermore, smart 
cities have mobile entities, such as public transport vehicles, which present some 
unique challenges. 

In Chapter 13, the design framework is applied in a more detailed case study. The 
purpose of this case study is to further demonstrate the systematic approach and 
generality of the design framework. This case study further validates the design 
framework’s approach by discussing how the architecture was implemented and 
tested. The implemented architecture’s scalability and reconfigurability were 
tested to validate the ability of the architecture in key areas of concern. 

Chapter 14 presents an evaluation of the design framework, where overall aspects 
of the design framework are discussed, as well as the individual design steps. The 
dissertation concludes in Chapter 15, where the key findings are summarised. 
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2 Literature review 

This section provides a short overview of literature applicable to DTs. Section 2.1 
provides a definition and qualifying criteria for DTs. Section 2.2 reviews literature 
related to the aggregation of DTs, whereas Section 2.3 reviews literature related 
to the combination of DTs with SOAs. Finally, Section 2.4 considers existing DT 
design frameworks. Furthermore, Chapters 3 and 4 also form part of the literature 
review, where each of these chapters considers a particular subject related to the 
design framework. Chapter 5 also makes extensive use of existing literature but 
with the intention of formulating new concepts. 

 Qualifying criteria for digital twins 

DTs have been considered in a multitude of application domains with a multitude 
of perspectives (as discussed in Section 1.1). The multitude of perspectives have 
resulted in many definitions of digital twins. Drawing from a number of sources 
(Grieves & Vickers, 2016; Kritzinger, Traar, Henjes, et al., 2018; Minerva et al., 
2020; Moyne, Qamsane, Balta, et al., 2020; Taylor, Human, Kruger, et al., 2020; 
VanDerHorn & Mahadevan, 2021), a DT is defined here as the virtual 
representation of a real-world entity (the physical twin), including that: 

• The representation is maintained in soft real-time (or near real-time) through 
data flows from the physical twin (sometimes referred to as synchronisation 
between the physical and digital twins) and/or from associated models. Soft 
real-time requires the virtual representation to be updated within a given 
time-period. However, occasionally missing the deadline is not detrimental to 
the decision-making performance (as opposed to hard real-time where failure 
to meet a deadline can cause critical failure). Alternatively, near real-time only 
requires the virtual representation to be updated as soon as feasibly possible. 
The required update frequency will most likely be dictated by the decision-
making frequency or the potential rate of physical system change. 

• Past representations are maintained (historical data storage). 

• The representation is constrained to features of interest, which may differ for 
the soft-real time and the historical representations. Furthermore, the 
required fidelity of the model(s) within the digital twin is dependent on the 
case. High-fidelity models are not always feasible (since not all states, inputs 
and outputs can be measured) or even required (depending on the service 
requirement). Aspects related to DT fidelity are further discussed in Section 
9.2.1. 

• The DT enables data-led decision making within and/or beyond the digital 
twin. The decisions affect the physical twin and/or other systems. 
Furthermore, data-led decision making requires that decisions be made based 
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on data of the physical reality (captured and generated in the virtual 
representation), but it does not exclude the use of human observations, 
expert experience and intuition, etc. 

• Subject-matter-expertise (also known as domain expertise) of the physical 
twin is embedded within the above aspects of the digital twin. 

• The above aspects are tailored to one or more life cycle stages of the physical 
twin (which can include design and planning, construction or manufacturing, 
ongoing operations, support during the operational phase and/or disposal). 

Further, a digital twin may include: 

• Application-specific functionality, such as simulations or predictions of future 
representations. 

• Bi-directional communication between the DT and the physical twin to affect 
the behaviour of the physical twin in response to decisions made 
autonomously by the digital twin and/or decisions made outside the DT. Some 
sources, such as Kritzinger et al. (2018), insist that a DT must have automatic 
bi-directional communications. However, other sources, such as VanDerHorn 
& Mahadevan (2021) and Minerva et al. (2020), do not require bi-directional 
communication, arguing that requiring bi-directional communication is too 
restricting, particularly when considering domains other than manufacturing. 

• Facilities for integration with digital systems and services outside the DT, such 
as providing data-related and/or modelling-related services as part of a larger 
service-oriented architecture. 

Therefore, regardless of the architecture used to develop a DT, it must be able to 
continually (based on Ciavotta, Maso, Rovere, et al., 2020; Harper, Malakuti & 
Ganz, 2019; Minerva et al., 2020; Redelinghuys, Basson, et al., 2020; Redelinghuys, 
Kruger & Basson, 2020; Therrien et al., 2020; VanDerHorn & Mahadevan, 2021): 

• Collect (possibly heterogeneous) data from its physical twin, where this 
physical twin may contain multiple data sources such as sensors, human 
observations, etc. This is also referred to as data acquisition. 

• Process the data into a suitable, consistent format (typically, an agreed upon, 
standard format). This is also referred to as data transformation or data pre-
processing. 

• Store data that is ingested by or created within the DT, as well as metadata 
and other static data that provides context. Note that not all ingested data 
must necessarily be stored. 

• Use models of the physical twin to generate information about the physical 
twin's reality. The models use as inputs the data collected from the physical 
twin or the collected data can be used for model validation.  
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• Utilise the data in a way that meets the users’ requirements. This may involve 
services built into the DT (that may also be accessible via APIs), but these 
services are constrained to the data captured within that DT. Utilisation is a 
broad term that encompasses any functionality related to decision-making, 
e.g. control, modelling, data visualisation, data analytics, etc. This is also 
referred to as data consumption. 

• Communicate the data, insights and decisions contained within the DT to the 
physical twin (when applicable), as well as to other entities, such as operators 
or other DTs. 

 Aggregation of digital twins 

Since its initial conceptualisation, the concept of aggregating DTs has evolved to 
take various meanings. 

The concept of aggregating DTs was introduced by Grieves & Vickers (2016) who 
defined a DT prototype (DTP), a DT instance (DTI), a DT aggregate (DTA) and DT 
environment (DTE). A DTP describes a prototypical physical object to the extent 
that the physical object could be produced based on the information contained in 
the DTP. A DTI is an instance of a DTP that is connected to a specific physical object 
and it continues to gather information about the physical object during its 
lifecycle. The DTA aggregates all the DTIs of a certain type to allow for a larger and 
more complete dataset regarding the operation of a type of physical object. The 
DTE is an integrated, multi-domain physics application space that makes use of the 
DTs for multiple purposes, such as simulating future system behaviour.  

In Borangiu et al. (2019) aggregation is used to collect, process and reduce data 
from multiple DTs to inform a control application. Karanjkar, Joglekar, Mohanty, 
et al. (2019) performs aggregation on historical data (captured within DTs) to 
manage the large amount of historical data. Similarly, Pan, Shi & Jiang, (2020) use 
hierarchical data format (HDF) data compression to aggregate large amounts of 
heterogeneous data to deliver a more complete and unified data representation.  

In Lutze, (2019) personal digital twins are used to keep individual medical records 
of patients, while group digital twins and system digital twins are aggregations of 
personal digital twins, based on certain criteria, that are used to train machine 
learning models. While the personal DTs contain a collection of all relevant 
medical data about a patient, the group and system DTs only collect data relevant 
to the desired model and thus also omits data such as the patient’s name to 
preserve patient privacy and anonymity. 

Architectures for DT aggregations have been proposed. Villalonga, Negri, Biscardo, 
et al. (2021) propose a hierarchical aggregation approach, where local digital twins 
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are concerned with asset health monitoring and diagnostics while global digital 
twins are concerned with decision-making. Ciavotta et al. (2018) proposes a 
framework where data from multiple digital twins are used to define layers of 
information (where each layer addresses a concern) and these layers can then be 
aggregated into different collections depending on the user’s interest and desired 
level of detail. The six-layer architecture for digital twins with aggregation, SLADTA 
(Redelinghuys, 2019; Redelinghuys, Kruger, et al., 2020), proposes a hierarchical 
assembly of DTs. The following section considers SLADTA in more detail because 
it is the reference architecture used for the internal design of the DTs in the system 
of DTs. 

 The six-layer architecture for digital twins with 
aggregation 

The Six-Layer Architecture for Digital Twins (SLADT) is a reference architecture for 
digital twin development and it has been applied to a manufacturing cell for close 
to real-time monitoring and fault detection (Redelinghuys, Basson, et al., 2020). 
SLADT with Aggregation (SLADTA) is an extension of the SLADT framework that 
allows multiple digital twins to aggregate data for a system level perspective 
(Redelinghuys, 2019; Redelinghuys, Kruger, et al., 2020). SLADTA is presented in 
Figure 1 where the individual DTs are designed according to the SLADT layers and 
where aggregation of DTs is performed through layer 4. 

 

Figure 1: The six-layer architecture for digital twins with aggregation. (Adapted 
from Redelinghuys, Kruger, et al., 2020) 
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The six layers of the SLADT are 1) devices and sensors, 2) data sources, 3) short-
term data repositories, 4) IoT gateway, 5) long-term data repositories and 6) 
emulation and simulation. Layer 1 (devices and sensors) refers to physical devices, 
such as actuators and sensors, that can send and receive signals. Layer 2 (data 
sources) refers to devices, such as controllers, that can virtualize data by 
processing the signals received from Layer 1 and that are able to induce physical 
changes based on virtual information. Layer 2 is considered separate from layer 1, 
because it can perform functions in physical space as well as virtual space. 
Together, these two layers form the physical twin. 

Layer 3 (short-term data repositories) consists of data repositories that are 
typically hosted near the physical twin. Such repositories would include a database 
hosted on the Layer 2 device. For example, a Raspberry Pi microcomputer can be 
used to perform the functionality of Layer 2 and host a local database to fulfil the 
functionality of Layer 3. Although, smart sensors and controllers could send data 
directly to the cloud, often there is a desire or a necessity for local short-term 
storage, particularly in large systems. This could be for security, reliability, latency, 
etc. and thus layer 3 is included in this architecture. 

Layer 4 (IoT gateway) is custom-developed software that links layers 3 and 5 by 
coordinating and managing data flow. This includes data reduction and basic data 
pre-processing, for example, calculating a time difference as opposed to sending 
a start and end timestamp. Layers 3 and 4 are typically responsible for aggregation 
and thus, when considering the SLADTA, these two layers become essential.  

Layer 5 (long-term data repositories) is intended to be a collection of long-term 
storage databases, typically hosted in the cloud, that contain the data sent by 
Layer 4. Layer 6 (emulation and simulation) is an information endpoint where the 
information is utilized for an intended purpose. The most common purposes 
include system monitoring, data visualization, data analysis and simulation 
(Minerva et al., 2020).  

The SLADTA adopts the terms DTI and DTA from (Grieves & Vickers, 2016), but the 
term DTI refers to any DT that has a direct link to a physical twin, while a DTA refers 
to any DT that aggregates data from multiple DTIs and/or other DTAs. In Figure 1, 
three DTIs can be observed (where DTIs have Layers 1 and 2) and two DTAs can be 
observed (Layers 1 and 2 are absent). The DTAs can be considered as a digital twin 
of twins because they make use of other DTs to provide a system perspective. 

In the case study presented by Redelinghuys (2019), the short-term local 
repositories were Open Platform Communications Unified Architecture (OPC UA) 
servers. In the case study, a DTI’s IoT gateway sends data to its OPC UA server 
which passes the data to a DTA’s OPC UA server (if they use separate servers) and 
then the OPC UA client in the DTA’s IoT gateway can access the data. Therefore, 
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aggregation is coordinated by Layer 4 but performed through Layer 3. Aggregation 
through Layer 3, as described by  Redelinghuys (2019), is enabled by OPC UA and 
if any other short-term storage solution is used, this type of aggregation would 
require DTs to have a shared database. However, it is not always feasible for DTs 
to share a database, particularly in geographically distributed systems. Therefore, 
this dissertation considers an adaptation of SLADTA, where aggregation is 
performed through Layer 4, as discussed in (Human, Kruger & Basson, 2021). 

The SLADTA is a vendor-neutral, general framework for the development of digital 
twins. Through aggregation, the architecture enables system-level decision-
making by gathering only the necessary data from lower-level DTs, thereby also 
limiting data exposure, for privacy and confidentiality reasons, and limiting data 
bottlenecks. In this dissertation, the SLADTA has been chosen for the internal 
design of DTs because it adheres to the criteria and functionality presented in 
Section 2.1 and it allows for the aggregation of DTs. 

 Combining digital twins and service-oriented 
architectures 

Microservices and SOAs have a high level of adaptability, making them an 
attractive solution to exploit the data captured within DTs (Ciavotta et al., 2020; 
Pernici, Plebani, Mecella, et al., 2020). Therefore, a number of approaches have 
been proposed to combine DTs and SOAs. 

The MAYA platform aims to join microservices, DTs and big data within a 
manufacturing environment to extend the capabilities of cyber-physical systems 
(CPSs) beyond control to include advanced simulation and big data capabilities 
(Ciavotta et al., 2020). The MAYA platform consists of three high-level 
components, namely the MAYA Communication Layer (MCL), the MAYA Support 
Infrastructure (MSI) and the  MAYA Simulation Framework (MSF) (Ciavotta, Alge, 
Menato, et al., 2017; Ciavotta et al., 2020).  

Essentially, the MCL is responsible for interfacing with the CPSs and integrating 
them into the rest of the platform, the MSI is microservices and big data 
middleware responsible for managing the DTs and the MSF contains the DTs 
(encompassing simulations and models). Therefore, MAYA uses microservices (in 
the MSI) to manage data between the CPSs (exposed by the MCL) and DTs (in the 
MSF). 

Kuhn et al. (2020) describes the use of the asset administration shell (AAS), as 
proposed by the Reference Architecture Model Industry 4.0 (RAMI4.0) (Adolphs, 
Bedenbender, Dirzus, et al., 2015), to create DTs of products, processes or 
production machines within a manufacturing environment. The AAS captures data 
about the physical asset or process and exposes that data in an SOA where a 
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stakeholder can then access the data via a dashboard. The dashboard makes use 
of a service orchestrator and service registry to find and coordinate services to 
achieve the application requirements. 

The AgileChains architecture is a service-oriented DT approach in the context of 
supply chain management (Pernici et al., 2020). The AgileChains architecture has 
three primary components: the DTs, the coordinator and the smart dataspace. 
This approach proposes that each DT exposes a set of services that are related to 
the physical twin, such as monitoring, diagnostics and prognostics. The 
coordinator orchestrates the services provided by the DTs to achieve a given 
process plan. Finally, all the data is stored in the smart dataspace which is a 
collection of heterogenous data sources that implements data mapping to 
translate and exchange data between entities. 

The service-oriented digital twin approach was proposed in the context of 
manufacturing, specifically as a means to empower manufacturing employees to 
make better decisions regarding the machines that they are responsible for (Longo 
et al., 2019; Padovano, Longo, Nicoletti, et al., 2018). This architecture consists of 
the service-oriented DTs that each expose a set of services through RESTful APIs. 
The manufacturing employees (and other stakeholders) can then access these 
services through a remote terminal unit (RTU), such as a smartphone or tablet. All 
the communication between the DTs and the RTUs are facilitated by an enterprise 
service bus (ESB). 

The approaches discussed above can be divided into two groups. The first 
approach is to keep the services separate from the DTs (the DTs only encapsulate 
data, models and simulations) and then allow the services to interact with the DTs. 
The ASS and MAYA platform follow the first approach. The second approach is to 
include all the services within the DTs and then orchestrate the services between 
the DTs using, for example, an ESB. The AgileChains and service-oriented digital 
twins architectures follow the second approach.  

 Digital twin design frameworks 

The design framework presented by VanDerHorn & Mahadevan (2021) consists of 
four primary steps and only considerers a single digital twin, although it can be a 
digital twin of a complex system. The four steps are 1) specify the intended 
outcomes, 2) scope the solution (by defining the physical system of interest and 
the levels of abstraction), 3) create a virtual representation and 4) establish the 
required data interconnections. 

Specifying the intended outcomes (step 1) refers to establishing measurable and 
quantifiable deliverables that the DTs must provide to ensure user satisfaction. 
Scoping the solution (step 2) consists of two sub-steps namely: 2.1) determining 
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the physical reality of interest and 2.2) determining the levels of abstraction of the 
models. Determining the physical reality of interest (step 2.1) refers to 
determining the boundary between the physical reality being reflected and the 
environment it is operating in. Determining the levels of abstraction of the models 
(step 2.2) refers to the process of determining the level of detail of the data 
required for the models that form part of the DT. 

Creating the virtual representation (step 3) involves the creation of the data model 
(step 3.1) and then the creation of a computational model (step 3.2). The creation 
of a data model (step 3.1) refers to determining what data features are applicable, 
how the data will be stored and how the data will be visualised. The creation of a 
computational model (step 3.2) refers to the development of computational 
models that simulates the behaviour of the physical reality of interest.  

Finally, establishing the required data interconnections (step 4) involves the 
establishment of 4.1) how the data will be collected, 4.2) the frequency at which 
data is collected and 4.3) how data is exchanged between physical and virtual 
spaces.  

An alternative design framework presented by Moyne, Qamsane, Balta, et al. 
(2020), follows object-oriented programming principles. The authors present the 
object-oriented DT framework which specifies four aspects with regards to their 
baseline digital twin object-oriented framework, including: 

• A DT object class, which specifies that each DT class is a type of DT that 
delivers a specific capability to the DT client. Therefore, DTs belonging to the 
same class must have the same generally defined scope and commonly 
defined behaviour.  

• A generalisation hierarchy and inheritance, which states that the output 
metric, common behaviour and the scope of the sub-class must fall within the 
super-class. The sub-class is typically a refinement of the superclass that 
better suits a specific application. For example, a super class may be “motor”, 
while a sub-class may be “conveyor motor” or “robot motor”. 

• Aggregation hierarchy, which is a specification that allows for the combination 
of DT object instances. Aggregation membership is specified in terms of 
purpose and scope. For example, aggregate all entities that deliver a capability 
to production line “A”. 

• Instantiation and implementation, which refers to the instantiation of a given 
DT implementation. The DT can occur anywhere in the hierarchy or it can be 
restricted to be above or below a certain point. This essentially refers to 
instantiation rules that govern which sub-class in a hierarchy of classes is 
applicable to which physical objects. 
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3 Needs related to managing system 
complexity 

 Overview 

A complex system is a system that consists of a large network of components 
which give rise to complex collective behaviour, sophisticated information 
processing and adaptation via learning or evolution (Mitchell, 2009). System 
complexity can be described as a measure of how difficult it is to understand the 
behaviour of a system and how difficult it is to predict the consequences of 
changing the system (SEBoK Editorial Board, 2021).  

Some of the most cited characteristics of complex systems are independence, 
interconnectedness, diversity and adaptability (Page, 2009). Independence refers 
to autonomous system elements that can make their own decisions, influenced by 
information from other system elements. Interconnectedness refers to system 
elements that are connected via physical connections, shared data or through 
visual (sensory) awareness. Diversity refers to the differences between system 
elements, for example technological differences or differences in function. 
Adaptability refers to system elements’ ability to self-organise in response to their 
environment to support themselves or the entire system. 

Similar to complex systems, systems-of-systems are an assemblage of other 
systems, where the following criteria must be satisfied: the subsystems must be 
1) operationally independent, and 2) managerially independent (Maier, 1999). 
Sage & Cuppan (2001) expanded the list of criteria to include: a system-of-systems 
must 3) be geographically distributed, 4) have emergent behaviour and 5) evolve 
over time (its structure, function and purpose is continually evolving).  

This chapter classifies commonly cited needs related to software design for 
complex systems, where software design refers to any software-based entities 
such as data, models, services, etc. The needs are functionally defined and are 
classified into multi-stakeholder, integration, evolutionary, reliability, data 
related, infrastructure and development needs. The taxonomy introduced here is 
to help make the needs more understandable and identifiable, but it must be 
noted that most of these needs do span over more than one of the categories. 
Each of the following subsections start with an introductory paragraph and table 
that summarises the needs and indicates where each need is addressed by the 
design framework. The table entries are explained after the table. 
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 Multi-stakeholder complexity 

A system of DTs is expected to have many stakeholders involved in multiple parts 
of the system’s lifecycle and these different groups of stakeholders should be 
accommodated. Stakeholders can be divided into primary users, secondary users 
and indirect users (BSI, ISO & IEC, 2011). Primary users are users who directly 
interact with the system to achieve the goal of the system, such as machine 
operators and data scientist. Secondary users are users who contribute to the 
composition and functioning of the system, such as component suppliers and 
system administrators. Finally, indirect users are users that rely on the outputs 
from the system, but without interacting with the system directly. This section 
highlights commonly cited needs related to multi-stakeholder environments 
which are summarised in Table 1. 

Table 1: Multi-stakeholder needs and how they are addressed in the design 
framework. 

Need 
number 

Need Design framework reference 

N1 Handle service 
requirement conflicts 

Hierarchical aggregation (Chapter 5) helps 
address this need as well as the service allocation 
method discussed in Section 8.2.  

N2 Enable secure data 
sharing and storage 

Section 10.1, as well as the security design 
pattern (Section 11.6), address issues related to 
secure data sharing and storage. 

N3 Provide for 
proprietary 
technologies 

This is part of the motivation for the design 
framework being vendor neutral (Chapter 6) and 
the compatibility design pattern helps address 
interoperability issues (Section 11.4). 

N4 Identify and address 
requirements 
imposed on the 
system by external 
regulatory bodies. 

The design framework includes provision for 
external requirements within its requirements 
breakdown (Section 4.2). However, the 
implications of such externally imposed 
requirements are case dependent. 

 

N1. Different stakeholders reasoning about different decisions regarding different 
system components and subsystems will be interested in different datasets, 
with different levels of detail (Durão et al., 2018; Villalonga et al., 2021). These 
different datasets and levels of details are referred to as viewpoints by van 
Geest, Tekinerdogan & Catal (2021). The differing viewpoints required by 
different stakeholders may give rise to conflicting system and service 
requirements (Galster & Bucherer, 2008). Therefore, the system of DTs must 
provide mechanisms to handle requirement conflicts and to minimise trade-
offs.  
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N2. To maintain a competitive edge and to be rewarded for their investments into 
research, many companies are concerned about their intellectual property and 
data security (Moyne et al., 2020). In response to concerns about data security, 
privacy and confidentiality, the Centre for Digital Built Britain (CDBB, 2018) 
emphasise the need for the system of DTs to be trustworthy. This essentially 
means that the system of DTs must enable secure sharing of relevant and 
accurate data between different subsystem and data owners. It also requires 
the secure storage and regulated access to data within the system.  

N3. The system of DTs is intended to have multiple contributors to the physical 
and software subsystems. These contributors are likely to have differing 
preferences and requirements related to their subsystem. Therefore, there is 
a need to provide for differing and proprietary technologies, such as differing 
programming languages, communication protocols and data formats.  

N4. Some domains, such as manufacturing and healthcare, have regulatory and 
quality constraints that may inhibit the adoption of new technologies and may 
require extended quality testing procedures (O’Donovan, Leahy, Bruton, et al., 
2015). Furthermore, institutions and countries also have specific data privacy 
and confidentiality needs (Harper et al., 2019; O’Donovan et al., 2015) 
Therefore, external quality and testing requirements, such as those imposed 
by regulating bodies, must be identified and addressed.  

 Integration complexity 

Complex systems typically have many contributors, many of which may be third-
party service providers. To ensure that the system functions as expected, the 
internal components from different development teams as well as the third-party 
components, must all integrate seamlessly. Therefore, this section highlights 
commonly cited integration and interoperability challenges. These challenges are 
summarised in Table 2. 

Table 2: Integration needs and how they are addressed in the design 
framework. 

Need 
number 

Need Design framework reference 

N5 Provide guidelines 
and standards for 
software interaction 

The design framework allows for better 
communication of the software between 
stakeholders (Chapter 6) as well as guidelines to 
improve interoperability through the compatibility 
design pattern (Section 11.4). 
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Need 
number 

Need Design framework reference 

N6 Allow for retrofitting 
and differing levels 
of technological 
maturity 

The design framework considers issues related to 
long-term maintenance and reconfiguration and 
provides the maintainability (Section 11.3), 
compatibility (Section 11.4) and portability 
(Section 11.5) design patterns to help address such 
issues. Hierarchical aggregation is also well suited 
to handle reconfiguration problems (Chapter 5). 

N7 Integrate with new 
and existing 
information systems 

The design framework facilitates the identification 
and management of data sources and relationships 
in various parts of Chapter 9. The compatibility 
design pattern (Section 11.4) also addresses such 
issues. 

N8 Allow for the 
integration of 
humans 

The design framework does not directly address 
the integration of humans, but the framework is 
flexible enough to accommodate humans that are 
represented by digital administration shells. 

 

N5. Software artifacts must adhere to exacting specifications for proper 
functioning and interaction, but there is no universal law that governs the 
exacting specifications (Brooks, 1995). Therefore, guidelines and standards 
must be agreed upon that allow for the interaction of the software artifacts.  

N6. Complexity management related to long-term maintenance, repair and end-
of-life behaviour is increased by the succession of old devices with newer 
versions, as well as by software and firmware updates (Lutters, 2018).  
Therefore, the system must provide for differing levels of technological 
maturity. Many companies have made significant investments into their 
existing IT and automation infrastructures and often that infrastructure is still 
fully operational and effective (O’Donovan et al., 2015). Therefore, the system 
of DTs must provide for retrofitting to accommodate legacy systems (Liu, Leng, 
Yan, et al., 2020).  

N7. Aspects such as retrofitting, long-term maintenance and the adoption of new 
technologies over time also give rise to the need to integrate with new and 
existing information systems and solutions. For example, it may be necessary 
to integrate with an existing local database and migrate it to a cloud platform. 
Manufacturing system also typically have SCADA system already installed and 
integrating with SCADA systems is a common need in the manufacturing 
domain.  

N8. Some industries are labour intensive and the role of humans within the system 
of DTs may be uncertain. This may cause hesitance to the adoption of DTs and 
similar enabling technologies (Bertoli, Cervo, Rosati, et al., 2021). 
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Furthermore, humans are more capable and/or more feasible options for 
solving certain problems than digital or robotic solutions. Humans are often 
integrated into digital environments using administrations shells that capture 
and manage data related to the humans and their interaction with other 
systems. Example of such administrations shells are the RAMI 4.0 AAS 
(Adolphs, Bedenbender, Dirzus, et al., 2015; Kuhn et al., 2020) and the BASE 
administrations shell (Sparrow, Kruger & Basson, 2021). Therefore, it is 
important to provide for the integration of humans that are represented by 
digital administration shells.  

 Evolutionary complexity 

Users’ interests and needs are likely to change over time. This is one of the main 
drivers of system evolution and is (at least partially) addressed by changing aspects 
of the system to adapt to the new needs. Physical components can be added, 
removed, exchanged or changed to adapt to changing demands or changing 
system ability. Software is also highly malleable (easily changed) and is the most 
frequently changed part of a software intensive system (SEBoK Editorial Board, 
2021).Therefore, this section considers needs related to system evolution and 
these needs are summarised in Table 3. 

Table 3: Evolutionary needs and how they are addressed in the design 
framework. 

Need 
Number 

Need Design framework reference 

N9 Allow for 
efficient system 
reconfiguration 

Hierarchical aggregation helps accommodate system 
reconfiguration (Chapter 5). Furthermore, the service 
separation guidelines (Section 8) and the  
maintainability (Section 11.3)  and portability (Section 
11.5) design patterns further aid in reconfigurable 
design. 

N10 Verify and 
validate system 
changes and 
manage 
dependencies 

Hierarchical aggregation helps to clearly define 
system relationships (Chapter 5). The design 
framework also promotes the traceability of design 
choices which helps change management (Section 6). 
Furthermore, the design patterns (Chapter 11) 
provide some evaluation metrics. 

N11 Provide support 
services 

The support services are detailed in Section 10.2 and 
the design patterns in Chapter 11 also make 
recommendations for support services. 

N12 Provide decision 
validation and 
feedback where 
possible 

This need is not directly covered in this dissertation 
since it is very case dependent. 
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Need 
Number 

Need Design framework reference 

N13 Manage machine 
learning model 
changes 

This need is not directly covered in this dissertation 
since it is very case dependent. 

N14 Allow for easy 
system 
maintenance and 
extension 

Hierarchical aggregation eases system maintenance 
and extension (Chapter 5). The maintainability 
(Section 11.3) and portability (Section 11.5) design 
patterns help design systems for easier maintenance 
and extension. 

 

N9. Complex systems and systems-of-systems adapt and evolve over time, 
meaning that they change in composition and orientation over time. (Sage & 
Cuppan, 2001; SEBoK Editorial Board, 2021). However, large structures can be 
difficult and expensive to design, maintain, and modify (Duffie, Chitturi & Mou, 
1988; Ismail, Truong & Kastner, 2019). Software systems also often undergo 
refactoring, which can affect multiple software components and services 
(Engel, Langermeier, Bauer, et al., 2018). Therefore, the system of DTs must 
allow for system reconfiguration (including the addition, removal, exchange or 
change of components), while minimising the impact of the changes on the 
surrounding subsystems.  

N10. As the system evolves, the behaviour of the system may change and this 
change may be desirable or undesirable, expected or unexpected. In some 
domains, such as manufacturing and industrial automation, minimising system 
downtime is vital. For this reason, such domains are very cautious to introduce 
changes (such as software changes or new technologies) into the existing 
system because these changes may introduce new faults and cause failures 
(Ciavotta et al., 2020; Ismail et al., 2019; O’Donovan et al., 2015). Therefore, 
there is a need to implement a means of assessing the effect of system changes 
(physical or software changes), i.e. there is a need for DT verification and 
validation in response to system changes (Moyne et al., 2020). A particular 
subsection of this need is the need for dependency management in software 
design (Aderaldo, Mendonça, Pahl, et al., 2017; Engel et al., 2018).  

N11. Complex software architectures usually require additional support functions 
and services to enable the components to work together and to work 
efficiently despite some components changing regularly (Balalaie, 
Heydarnoori, Jamshidi, et al., 2018; Ciavotta et al., 2020; Engel et al., 2018; 
Karabey Aksakalli, Çelik, Can, et al., 2021). Examples of such services include 
discovery services, coordination and orchestration services, debugging 
services, load balancing, service monitoring, etc. Therefore, the system of DTs 
must provide the necessary support functions for a particular use case.  
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N12. Understanding or even quantifying the effect of decisions made within and 
about the system (where the effects can be short-term or long-term) can be 
particularly difficult in complex systems. Therefore, feedback should be 
provided, where possible, on the effect of decisions that have been made 
regarding the system, i.e.  provide decision validation and feedback where 
possible (for both short-term and long-term decisions) (Villalonga et al., 2021).  

N13. Lutze, (2019) mentions that the continuous learning ability of software (such 
as periodically updating machine learning models with new datasets) presents 
promising prospects for improving performance while simultaneously raising 
severe concerns related to the deterioration of performance. Therefore, it is 
important to manage machine learning model changes within the DT.  

N14. Many companies lack the expertise and knowledge required to further 
develop and maintain the software and infrastructure that forms part of the 
system of DTs (Bertoli et al., 2021; Ciavotta et al., 2020; Kuhn et al., 2020). 
Therefore, long-term system maintenance and extension should be simplified 
as far possible. 

 Reliability related complexity 

The system evolves over time as discussed in Section 3.4 and new components 
must be integrated into the system. Therefore, it is important to ensure that the 
system remains available and performs its functions satisfactorily despite the 
changes. This section highlights commonly cited needs related to system reliability 
and availability. Table 4 provide a summary of these reliability needs. 

Table 4: Reliability needs and how they are addressed by the design 
framework. 

Need 
number 

Needs Design framework reference 

N15 Provide a fault 
tolerant system 

The reliability design pattern (Section 11.2) 
makes suggestions for fault tolerant systems. 

N16 Automate system 
support functions 

The support services in Section 10.2 help 
automate tasks and the maintainability (Section 
11.3) and portability (Section 11.5) design 
patterns help incorporate such support 
functions. 

N17 Manage sensor health  This need is not directly covered in this 
dissertation. 

N18 Ensure high 
availability 

The reliability (Section 11.2) and performance 
efficiency (Section 11.1) design patterns help 
design highly available systems. 

Stellenbosch University https://scholar.sun.ac.za



 

22 
 

Need 
number 

Needs Design framework reference 

N19 Accommodate testing 
methods and metrics 

This need is not directly covered in this 
dissertation but the design patterns do provide 
some potential testing metrics. 

 

N15. System components often rely on inputs from other components to inform 
their own functioning and behaviour. However, other components might not 
always be available, may be delayed in their response, might not provide the 
expected response, etc. (the dependence of a component on other 
components is referred to as the system’s vulnerability to volatile inter-actor 
behaviours) (Engel et al., 2018; Lindsay, Gill, Smirnova, et al., 2021; Pernici et 
al., 2020). Therefore, system components must be able to handle faulty 
information, connection breakdowns, delayed connections, lost messages, 
etc. to prevent undesirable component behaviour. 

N16. Manually maintaining a large system of physical and software components 
and services is cumbersome and time consuming (Ciavotta et al., 2020; Moyne 
et al., 2020). Therefore, the automation of various aspects regarding the 
testing and validation, (re)deployment, fault handling and configuration of DTs 
is suggested by many researchers (Aderaldo et al., 2017; Ciavotta et al., 2020; 
Moyne et al., 2020; Therrien et al., 2020; VanDerHorn & Mahadevan, 2021). 

N17. Sensors and devices need to be maintained and they eventually degrade. 
This influences the quality of the data being captured and can significantly 
influence all downstream uses of that data such as modelling and services. 
Therefore, sensor lifetime management, health checking and cross-validation 
may be required. (Therrien et al., 2020)  

N18. The system of DTs is intended to help users make better decisions related to 
their area of interest. This is only possible if the user can use the system when 
the decision(s) need to be made. Therefore, the system of DTs must be 
available to users when they need it.  

N19. Software testing and validation for distributed software components is non-
trivial because the software is deployed across different types of hardware, 
the software must integrate with many other components (including external 
components) and testing all possible scenarios and variations of software 
execution is not feasible (Petrova-Antonova, Manova & Ilieva, 2020). 
Therefore, good testing and validation procedures and methods should be 
accommodated.  

Stellenbosch University https://scholar.sun.ac.za



 

23 
 

 Data related complexity 

Complex systems have many data sources, data is exchanged between many 
components and processing within components can differ. The abundance of data 
sources, data processing and data endpoints can cause some difficulty related to 
the management of the data within the system. Therefore, this section highlights 
commonly cited issues related to managing data within a complex system. Table 5 
summarises these data related needs. 

Table 5: Data related needs and how they are addressed by the design 
framework. 

Need 
number 

Need Design framework reference 

N20 Identify and address data 
management issues 

Section 9.2.1 lists some common data 
quality and management issues and the 
effect that those issues have on 
aggregation and the architecture. 

N21 Adequately structure and 
supplement data 

Considerations for heterogeneous systems 
are made throughout the dissertation and 
are summarised in the compatibility design 
pattern (Section 11.4). 

N22 Provide for multiple data 
viewpoints 

Hierarchical aggregation (Chapter 5) and 
the inclusion of a service architecture 
(Section 6) help to provide for multiple 
system viewpoints. 

N23 Facilitate heterogeneous 
data handling 

The compatibility design pattern (Section 
11.4) helps design interoperable systems 
despite heterogeneity.  

N24 Provide for high data 
capacity requirements 

The performance efficiency design pattern 
(Section 11.1) helps design system with 
high throughput needs. 

 

N20. Data generated by some components are used as inputs to other 
components, meaning that data is widely shared among software 
components. This results in data related issues such as data integrity, 
consistency and persistence management across the distributed components 
(Bourque & Fairley, 2014; Zimmermann, 2017). Therefore, the relevant data 
management issues must be identified and structures and/or guidelines must 
be put in place to facilitate them. 

N21. Therrien et al. (2020) mention data collections called data swamps and data 
graveyards, which refers to collections of data that have become unusable 
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because of their lack of structure and metadata. Therefore, data should be 
adequately structured and supplemented with metadata.  

N22. Lutters (2018) mentions how the increasing amount of data for decisions 
support, as well as the difficulty of predicting the outcome of a decision, stifles 
engineers’ ability to make decisions in a timely manner. This is because 
engineers cannot inspect and understand all the information fast enough. 
Lamb (2019) shares this concern and mentions that the national DT concept 
(DT of Britain as proposed in (CDBB, 2018)) is highly complex, diverse and very 
large and that it hinges on the ability to be: 1) multi-scale, being able to 
represent small components to the whole system (referred to as variety in 
spatial scale in (CDBB, 2018)), 2)  multi-component, being able to model 
distinct but interconnected assets, and 3) composite, including federated 
models from different sources. Therefore, data obscurity should be prevented 
by allowing for an information overview, while also providing quick access to 
relevant viewpoints of different subsystems and components.  

N23. Diversity in complex systems give rise to one of the most cited challenges in 
complex system – the need for heterogenous data handling (Engel et al., 2018; 
Ismail et al., 2019; O’Donovan et al., 2015; Pan et al., 2020; Pernici et al., 2020). 
Diverse systems produce data that can differ in type, range, structure, 
sampling rate, etc and extensive amounts of time and money are spent getting 
data in the right format before it can be utilised (Lutters & Damgrave, 2019). 
This is closely related to the need, expressed by many organisations, to 
integrate data silos for a more holistic view of the system (Lamb, 2019). 
However, to integrate data silos, efficient communication mechanisms and 
network management are required to transmit the data effectively and this 
may include the need to support heterogeneous communication protocols 
(Ismail et al., 2019; Lutze, 2019; O’Donovan et al., 2015).  

N24. The interconnectedness of complex systems results in large networks of 
diverse components where each component displays individual behaviour, 
while also contributing to a complex collective behaviour (Mitchell, 2009). To 
digitally represent such a system, a large amount of data must be captured and 
exchanged resulting in high levels of data traffic and complex processing 
(Huang, Liu, Xiong, et al., 2020). Therefore, the system of DTs must have the 
capacity to capture, process, transmit and store a large amount of data in a 
timely manner (Bertoli et al., 2021; Pan et al., 2020).  

 Infrastructure complexity 

The infrastructure and hardware used to host the digital twins contribute to the 
complexity of the system. Any software intensive system will be dependent on the 
infrastructure used to support it and thus it is important to identify what 
complexity may be encountered as a result. Therefore, this section highlights 
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commonly cited issues related to the hosting infrastructure. Table 6 summarises 
these infrastructure related issues. 

Table 6: Infrastructure needs and how they are addressed by the design 
framework. 

Need 
number 

Needs Design framework reference 

N25 Provide for resource 
constrained devices 

The performance efficiency design pattern 
(Section 11.1) helps design resource efficient 
systems. 

N26 Identify network 
constraints 

Section 9.1.3 provides some considerations 
when determining network ability.  

N27 Avoid physical resource 
contention 

The performance efficiency (Section 11.1) and 
compatibility (Section 11.4) design patterns 
help avoid resource contention (particularly 
the hosting related recommendations)  

 

N25. Data is often gathered using power and resource constrained devices, such 
as IoT devices (Pourghebleh & Navimipour, 2017; Ullah, Azeem, Ashraf, et al., 
2021). Therefore, there is a need to provide for resource constrained devices 
and sensors.  

N26. Distributed architectures and software systems that make use of cloud 
platforms are very reliant on the network infrastructure (Taibi, Lenarduzzi & 
Pahl, 2018). Therefore, important network characteristics, such as network 
latency, bandwidth and availability, must be identified and managed.  

N27. Host machines and hardware often host more than one software component 
to optimise resource usage (Bourque & Fairley, 2014; Karabey Aksakalli et al., 
2021). However, when some software components need to sustain high loads 
they monopolise the resources (this is referred to as physical resource 
contention) (Lindsay et al., 2021). This typically happens when there are very 
dynamic workloads. Therefore, physical resource contention between 
software components on the same host machine must be managed and 
avoided.  

 Development complexity 

The development of any system is subject to numerous constraints that limit the 
solution space that a design must fit into. These constraints significantly influence 
the quality of the system since they inform decisions regarding trade-offs and they 
place limitations on the extent to which a need can be met. Therefore, this section 
highlights commonly cited needs related to development that have not been 
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mentioned in any of the other sections. Table 7 summarises these additional 
development needs. 

Table 7: Development needs and how they are addressed by the design 
framework. 

Need 
number 

Need Design framework reference 

N28 Manage the balance 
between cost, time and 
quality. 

The design framework is intended to promote 
systematic and purposeful design and it 
facilitates a common understanding and 
purposeful communication amongst 
stakeholders. 

N29 Decompose the system 
and data effectively 

The aggregation hierarchy (Chapter 5) and 
service separation guidelines (Section 8) help 
with system decomposition. 

N30 Improve primary users’ 
system understanding 

The design framework provides some service 
patterns for DTs in Section 8.1 that can help a 
primary user understand how a DT can help 
them. 

N31 Improve secondary users’ 
mutual understanding of 
the system 

Design framework is also a framework for 
project communication and it promote 
traceability from user needs to design choices 
(refer to Chapter 6). The separation of 
concerns facilitated by the aggregation 
hierarchy (Chapter 5) also makes the systems 
more comprehensible. 
  

N32 Track system changes The support functions in Section 10.2 are 
intended to help track system changes. 

 

N28. First and foremost is the famous triple constraint of project management: 
cost (or resources) vs time (or schedule) vs scope (or quality). Many enterprises 
prefer cheap, plug-and-play solutions that are easy to use and that cause 
minimal disruption to existing operations (Bertoli et al., 2021). Furthermore, 
high time pressure often results in a lack of quality (Chung & Do Prado Leite, 
2009). Therefore, there is a need for modular solutions that are quick and easy 
to integrate and a framework that can help ensure quality despite time 
pressure. 

N29. Software decomposition and data separation are not trivial and good 
decomposition of complex software systems is a commonly cited difficulty in 
software design (Engel et al., 2018; Karabey Aksakalli et al., 2021; Salah, 
Zemerly, Yeun, et al., 2016). Poorly decomposed systems result in excessive 
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communication complexity, interface complexity and unit complexity. 
Therefore, there is a need for decomposition guidelines and best practises.  

N30. Moyne et al. (2020) expresses the need to improve the consistency, 
understanding and assessment of DT benefits through agreed upon metrics. 
Furthermore, O’Donovan et al. (2015) state that without understanding of 
how a new technology can benefit an organisation, adoption of that 
technology is not likely. Therefore, support should be provided to improve the 
understanding and usability of the system and its components, as well as how 
the components contribute to the system as a whole.  

N31. Software has no physical presence and must thus be represented using 
various methods, e.g. by using diagrams and code, to communicate the 
composition of the system and the interactions between the components 
(Brooks, 1995).  Therefore, terminology, schematics, architectures, etc. must 
be agreed upon to promote mutual understanding between contributors.  

N32. Keeping an overview of the software system is a challenge, particularly in 
large distributed systems, such as microservices systems, where services have 
been independently developed and refactored separately (Engel et al., 2018; 
Salah et al., 2016). Some related needs are the need for a code version control 
repository (Aderaldo et al., 2017), the need for portable designs (Moyne et al., 
2020) and the need for good document management (Harper et al., 2019). 
Therefore, there is a need to track system changes.  
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4 Requirements analysis 

 Background 

“A requirement is a condition or capability that must be met or possessed by a 
system, system component, product or service to satisfy an agreement, standard, 
specification or other formally imposed documents” (ISO, IEC & IEEE, 2010). 
Requirements are typically separated into functional and non-functional 
requirements, where function requirements (FRs) describe what functions the 
system must perform and non-functional requirements (NFRs) describe how (or 
how well) the system should perform its functions (ISO et al., 2010).  

There are also multiple perspectives on what NFRs are. For example, NFRs can be 
considered to be requirements that describe the properties, characteristics or 
constraints of a software system. Alternatively, NFRs can be considered to be 
requirements that describe the quality attributes that the software product must 
have (Mairiza, Zowghi & Nurmuliani, 2010). Here NFRs are considered to include 
properties, characteristics and constraints of the system. 

NFRs are often neglected in the development of software system because 1) of a 
lack in knowledge or experience in development,  2) NFRs are harder to model, 
verify, test and measure than FRs and 3) high time pressure related to providing a 
working system often results in a lack of attention to quality (Chung & Do Prado 
Leite, 2009; Mairiza et al., 2010). In a review of NFRs in the context of agent-based 
systems, Clark, Walkinshaw and Hierons (2021) also report that the majority of the 
reviewed information artifacts did not facilitate specification or testing of NFRs. 

NFRs should be incorporated early into the software development life cycle to 
ensure acceptable software performance and customer satisfaction, particularly 
in large and complex systems (Bajpai & Gorthi, 2012; Chung & Do Prado Leite, 
2009; Galster & Bucherer, 2008; Lamb, 2019). Considering NFRs from the start of 
the development process (as opposed to assessing the NFRs after 
development/prototyping) is beneficial because it allows traceability from 
requirements to implementation decisions and it provides a better basis for 
architectural and project decisions and trade-offs (Poort & De With, 2004). 
Therefore, the design framework provides a systematic approach that 
incorporates NFRs and software quality requirements from the start of the design 
process. 

 Requirements classification 

There are many different requirements classification models and methods. 
However, finding the best method of classification is not as important as that the 
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development teams should all understand the classification methods and 
terminology of the chosen classification model (Chung & Do Prado Leite, 2009). 
With this in mind, this section combines the taxonomies presented by (Galster & 
Bucherer, 2008; Poort & De With, 2004) and the ISO 25010 standard. Together, 
these taxonomies form a comprehensive classification of the design requirements.   

Poort & De With, (2004) classify the requirements as follows: 

• Primary functional requirements: Functions that directly contribute to the 
goal of the system or yield direct value to the user. They represent the 
principal functionality of the system. All primary requirements are functional 
requirements, but all functional requirements are not primary requirements. 

• Supplementary requirements 

o Secondary functional requirements: Functions that help achieve 
the primary goals without contributing to the goals directly, e.g. 
management functionality such as logging. 

o Quality attribute requirements: Quantifiable requirements related 
to the system quality. 

o Implementation requirements: Constraints placed on the system 
that cannot be measured by assessing the system, e.g. cost 
constraints, development time constraints. They contribute to the 
development process, but are not a measure of system quality.  

Similarly, Galster & Bucherer (2008) classify the non-functional requirements 
related to service-oriented development into three groups, namely process 
requirements, service requirements and external requirements. Process 
requirements relate to the development process of the services and include 
aspects such as cost and time and thus it corresponds to the implementation 
requirements of Poort & De With (2004). Service requirements are related to the 
quality of the service, such as reliability, usability, security, scalability, etc and thus 
they correspond to the quality attribute requirements in Poort & De With (2004). 
Finally, Galster & Bucherer, (2008) add external requirements, which are any NFRs 
that are not classified as process NFRs or service NFRs, such as legal constraints 
and market conditions.  

BSI et al. (2011) define a hierarchical decomposition of software quality that 
further decomposes the service NFRs of Galster & Bucherer (2008). BSI et al. 
(2011) decompose quality into attributes which in turn can be further 
decomposed into sub-attributes, etc. The decomposition continues until a 
measurable quality-related property is reached. The Systems and software Quality 
Requirements and Evaluation (SQuaRE) model consists of three aspects: the 
quality in use model, the product quality model and the data quality model. The 
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product quality model, which consists of eight quality attributes summarised in 
Table 8, is the model of interest here.  

Table 8: System and software product quality model. (Adapted from BSI et al., 
2011) 

Quality 
attribute 

Definition Sub-attributes 

Functional 
suitability 

The system’s ability to provide 
functions that meet the stated and 
implied needs of the user. 

Functional completeness, 
functional correctness, 
functional 
appropriateness. 

Performance 
efficiency 

The system’s performance relative to 
the amount of resources used. 

Time behaviour, resource 
utilisation, capacity. 

Compatibility The system’s ability to exchange 
information with other systems and/or 
to perform its functions despite 
sharing a hardware or software 
environment. 

Co-existence, 
interoperability. 

Usability The system’s ability to achieve 
specified goals with effectiveness, 
efficiency and satisfaction while being 
used by specified users. 

Appropriateness 
recognisability, 
learnability, operability, 
user error protection, 
user interface aesthetics, 
accessibility. 

Reliability The system’s ability to perform 
specified functions under specified 
conditions for a specified period of 
time. 

Maturity, availability, 
fault tolerance, 
recoverability.  

Security The system’s ability to protect 
information and data so that other 
persons or systems can only have the 
degree of access appropriate to their 
level of authorisation. 

Confidentiality, integrity, 
non-repudiation, 
accountability, 
authenticity. 

Maintainability The system’s ability to allow for 
effective and efficient modification to 
improve, correct or adapt to changes 
in the environment and requirements. 

Modularity, reusability, 
analysability, 
modifiability, testability.  

Portability The system’s ability to be transferred 
between hardware and software 
environments, as well as between 
operational and usage environments. 

Adaptability, 
installability, 
replaceability. 

A definition for each sub-characteristics is given on the ISO 25000 website (ISO & 
IEC, 2021). 
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The quality model also specifies three different groups of stakeholders, as 
mentioned in Section 3.2 (BSI et al., 2011):  

• Primary user: Person who interacts with the system to achieve the primary 
goal. 

• Secondary user: Persons who provide support, such as content providers, 
system administrators and security managers. 

• Indirect user: person who receives output, but does not interact with the 
system. 

The quality in use for primary users is significantly influenced by: functional 
suitability, performance efficiency, usability, reliability and security. The 
performance efficiency, reliability and security will also concern other 
stakeholders that specialise in these fields. The compatibility, maintainability and 
portability are significant for the quality in use for secondary users. (BSI et al., 
2011)   

Figure 2 presents the requirements classification that will be used further in the 
design framework. It is a combination of the taxonomies discussed and includes 
all the requirements classified either as FRs or NFRs. FRs are decomposed into 
primary and secondary FRs (as described by Poort & De With (2004)), where 
primary FRs directly contribute to the user needs (e.g. predictive analytics and 
data dashboards), while secondary FRs provide support functionality (e.g. system 
data logging for debugging).  

The NFRs are here grouped into quality attributes, development constraints and 
external NFRs. Quality attributes correspond to service NFRs (Galster & Bucherer, 
2008) and quality attribute requirements (Poort & De With, 2004) while 
development constraints correspond to process NFRs (Galster & Bucherer, 2008) 
and implementation requirements (Poort & De With, 2004). External NFRs are as 
defined by Galster & Bucherer (2008) and the external NFRs in Figure 2 are 
examples of external NFRs, not necessarily all the possibilities.  

The development constraints and external NFRs describe requirements placed on 
the system that constrain the development of the system and thus also influence 
the quality. The following section expands the quality attributes, describing 
requirements placed on the system to ensure the system functions according to a 
sufficiently high standard of quality to satisfy the user expectations. The quality 
attributes are further decomposed according to the software product model as 
described in BSI et al. (2011) and as summarised in Table 8. The design patterns, 
presented in Chapter11, are also designed based on these quality attributes, 
where each design pattern focusses on a quality attribute. The development 
constraints decomposition is discussed in Section 4.4. 
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Figure 2: Requirements classification.  

 Alternative quality attributes 

The taxonomy presented in Section 4.2 does not cover all the NFRs that have been 
used in research and in industry. Mairiza et al. (2010) present a list of 114 NFRs 
and further mention that 252 NFRs were identified in their literature study. 
Therefore, it is not feasible to consider all these NFRs, but this section relates some 
of the most popular NFRs to the taxonomy to avoid confusion. 

Responsiveness is a system’s ability to respond to user input in a timely manner 
and is commonly referred to when referencing reactive architecture design and 
The Reactive Manifesto (Bonér, Farley, Kuhn, et al., 2014). Responsive systems 
focus on providing rapid and consistent response times. Responsiveness relates to 
time behaviour, a sub-attribute of performance efficiency, as well as to availability, 
a sub-attribute of reliability. 
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Resilience is a system’s ability to remain responsive despite failures (Bonér et al., 
2014). Resilience relates to the ISO 25010 requirement of reliability.  

Scalability is a system’s ability to make use of more computing resources to 
increase its workload while maintaining stable performance. It is measured as the 
ratio of throughput gain to resource increase (Bonér et al., 2014; Márquez, Villegas 
& Astudillo, 2018). Furthermore, scalability can be divided into, 1) vertical 
scalability, which is the ability to scale to demand by adding resources to a single 
instance of the program (Tovarnitchi, 2019), 2) horizontal scalability, which is the 
ability to scale to demand by duplicating the program and load balancing between 
the identical instances (Tovarnitchi, 2019), and 3) z-axis scalability, which is the 
ability to scale to demand by duplicating the program by with different subsets of 
data as presented by the AKF scale cube (Abbott, 2020). 

For example, consider an online dictionary application that needs to meet 
increased demand. Providing the dictionary application with more RAM and more 
CPU time would be vertical scaling. Duplicating the dictionary application and then 
load balancing requests between the duplicate instances would be horizontal 
scaling. Duplicating the dictionary application functions but hosting one version 
with words from A to M and another version with words from N to Z would be z-
axis scaling. Vertical scaling is typically achieved by using a better machine or by 
using dedicated hardware. Horizontal scaling and z-axis scaling is typically 
achieved by using multiple, lower-grade, machines. 

Elasticity refers to the dynamic allocation of resources at runtime to increase or 
decrease throughput as demand varies. Elasticity can only be achieved if a system 
is scalable and thus elasticity is an extension of scalability (Bonér et al., 2014). 
Therefore, both scalability and elasticity relate to the ISO 25010 quality attribute 
for performance efficiency, particularly the relation between the sub-attributes of 
capacity and resource utilisation.  

Reconfigurability (in the context of manufacturing and cyber-physical systems) is 
the ability of a system to allow for the addition, removal, exchange or change of 
system components to respond to internal or external changes (Kruger & Basson, 
2019). Good reconfigurability means that system components can be added, 
removed, etc. with minimal system down time and ramp-up time, thus improving 
availability. Reconfigurability more closely resembles the sub-attributes of 
maintainability and portability, such as modularity, reusability, replaceability and 
modifiability. Scalability is also one of the critical characteristics for 
reconfigurability (Koren & Shpitalni, 2010) which is linked to performance 
efficiency. Therefore, reconfigurability is a characteristic that promotes 
performance efficiency, portability and maintainability as a means to improve 
reliability.  
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Agility is a system attribute that allows for the quick, incremental addition of 
features to provide new functionality in response to changing user needs (Ciavotta 
et al., 2017). This relates to the ISO 25010 sub-attribute of modifiability (a sub-
attribute of maintainability) and adaptability (a sub-attribute of portability). 

Extensibility is the system’s ability to integrate new interfaces, data types, 
connectors and components (Ismail et al., 2019). This relates to the ISO 25010 sub-
attributes of adaptability (a sub-attribute of portability) and it is also dependent 
of the system’s interoperability, which is a sub-attribute of compatibility.  

 Development constraints 

The development constraints are constraints placed on the development of the 
system and thus limit the solution possibilities for the system. Galster and 
Bucherer (2008) further divide the development constraints into ten sub-
categories which are given in Table 9. Each of these development constraints will 
influence the degree to which the quality attributes can be achieved and it is 
important to determine how the constraints may affect the design.  

Table 9: Development constraints. (Adapted from Galster & Bucherer, 2008) 

Development 
constraints 

Description Examples 

Implementation Constraints on 
implementation methods 
or technologies.  

This includes constraints such as 
having to use AWS as a cloud 
platform or having to use the 
SCRUM development method. 

Composition Constraints related to how 
the software should be 
composed.  

All development must make use 
of internally produced APIs or 
only certain packages or 
framework within a development 
language are allowed. 

Service provider 
support 

The degree of support 
offered by external service 
providers.  

Technical support staff, Q&A 
forums, documentation, tutorials 
and community support forums 
are examples of service provider 
support.  

Cost The allowed cost of 
development, equipment, 
deployment, etc. 

A limit on deployment costs may 
prevent to use of preferred 
equipment. 

Development time The amount of time 
allowed to develop the 
software or subsections of 
the software. 

Deadlines for milestone events 
and the expected time-to-market 
of features. The SCRUM 
development method breaks the 
development time into sprints.  
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Development 
constraints 

Description Examples 

Industry standards Standards imposed by a 
certain industry.  

Conforming to the ISO 27001 
standard for information security 
management. 

Documentation The documentation that 
should be provided along 
with the system.  

Documentation should provide a 
list of all systems APIs and 
examples of how they are 
intended to be used.  

Solution 
constraints 

Constraints placed on the 
solution space without 
considering 
implementation. 

The need to integrate with legacy 
systems is a common solution 
constraint. The scope of the 
solution being implemented also 
constrains the solution since it 
must receive certain, externally 
determined, inputs and provide 
certain outputs. 

Auditability The degree to which the 
system must provide 
support for audits. 

Software audits include aspects 
such as a review and evaluation 
of design and development 
methods, testing and validation 
procedures, implementation 
procedures, etc. 

To better balance and manage the development constraints, an incremental 
implementation approach is often adopted (VanDerHorn & Mahadevan, 2021). 
This typically helps to reduce upfront cost, reduce time to market and to identify 
where enhancements are most urgently required. Incremental development 
strategies also make the development more manageable by dividing the 
development into attainable sub-tasks. 

 Quality attribute conflicts 

All the quality attributes are important to consider within a complex system, but 
some of the attributes require conflicting solutions and thus trade-offs are 
necessary. The relative importance of the quality attributes, the influence of 
development constraints and external NFRs are case dependent. However, this 
section provides some of the most cited trade-offs that may need to be 
considered. 

4.5.1 Reliability vs agility 

Agility is the ability to change easily in response to a changing environment or 
changing user needs. Software agility is closely linked to agile software design 
methods which emphasise the incremental development and addition of new 
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features, functions and services as the operational lifecycle continues. This is 
referred to as continuous integration and continuous deployment (CICD).  

Agility is useful to reduce the time-to-market of software and it is useful to adapt 
to constantly changing user needs. However, these changes increase the risk of 
introducing new faults and failures into the current system and thus they increase 
the risk of downtime (Ciavotta et al., 2020; Kuhn et al., 2020). Therefore, there is 
a conflict between agility and reliability since reliability is focussed on minimising 
downtime. Furthermore, one of the sub-attributes of reliability is maturity which 
is hard to accomplish in a system where features can continually change. 

Hardware agility can also negatively impact reliability. In the context of production 
environments, Lutters (2018) mentions how components are replaced based on 
their perceived ability to add value that older technologies are not capable of. 
However, this adds to the complexity of the production environment and causes 
the system to be less predictable and thus less reliable. 

The conflict is caused by the desire for quick system changes in response to 
external changes. Therefore, it is important to determine the degree to which 
external changes need to be accommodated. In production and automation 
environments, these changes need to be handled, but the system does not 
necessarily have to change because of them. Therefore, in this context reliability 
is often preferred. On the other hand, in microservices architectures, it is vital that 
the needs of the users are met and thus agility gains priority. In this context 
reliability is achieved through other means, such as replication and extensive 
automated testing, despite the constant changes. 

4.5.2 Interoperability vs security 

The conflict between interoperability and security arises from the need to keep 
data private and confidential, while also needing to share it among systems to fulfil 
certain functionalities. In particular, Lamb (2019) mentions the difficultly related 
to data sharing in an environment where companies want to protect their 
intellectual property and competitive edge. This problem is echoed by the Centre 
for Digital Built Britain (CDBB, 2018) and Ismail et al. (2019). Collaboration 
agreements are cited as the most common solution to data sharing in highly 
competitive environments. However, the negotiation related to the collaboration 
agreements can last between six months to a year (Griffiths, 2018). 

In some domains, such as healthcare, where data is being captured about people, 
there is a strong need for data privacy. Therefore, when sharing data, there are 
strict policies that need to be adhered to and, in such cases, people also have the 
right to withhold consent (Lutze, 2019). The strict policies and need for consent 
mean that data sharing and, by implication, aspects of interoperability are 
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hindered or prevented. Such issues must be identified and developers must 
adhere to such policies. 

Furthermore, using good, open standard security methods, such as the SSL/TLS 
protocol, AES encryption and the OAuth protocol, helps secure data while still 
maintaining an acceptable degree of interoperability.  

4.5.3 Interoperability vs performance efficiency 

The use of intermediaries, such as brokers, middleware or directories, is a 
common way to improve interoperability.  However, such intermediaries can 
increase latency since they create extra communication steps and they often 
perform protocol conversions that require additional processing time. 
Furthermore, such intermediaries can become communication bottlenecks if they 
are not properly designed (O’Brien, Merson & Bass, 2007). 

High performance middleware technologies typically find a good balance between 
interoperability and performance efficiency. Designing high performance 
middleware typically makes use of concepts such as load balancing and message 
queueing and industrial grade solutions are available for such tasks. Section 10.3 
provides more details about messaging solutions for different scenarios. 

4.5.4 Performance efficiency vs data detail 

In the context of modelling within DTs, high fidelity models require more detailed 
data and thus more processing, storage and network bandwidth than lower 
fidelity models (VanDerHorn & Mahadevan, 2021). As a result, more resources 
must be utilised to manage the increased data load and possibly the increased 
latency. Therefore, it is important to determine what level of data detail is 
required by models and services. In some cases it is useful to reduce data 
dimensionality to improve the comprehensibility of the data, even though some 
detail is lost (Fadlalla, 2005). Furthermore, structuring data to minimise the 
number of data queries is a way of retaining detail with minimal effect on time 
behaviour. Pre-computing computationally expensive queries and storing the 
results of those queries is also common (Fadlalla, 2005), but there is then trade-
off between computational and storage resources that needs to be justified. 

It is also important to consider data management aspects and how those influence 
the performance efficiency. For example, when strong data consistency is 
required, latency is often increased and data persistence management requires 
long-term storage. The trade-off of performance efficiency vs data detail and 
quality is further considered in Chapter 9. 
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4.5.5 Performance efficiency vs portability 

In the context of distributed software systems, Lindsay et al. (2021) refer to the 
conflict between generalisation and specialisation. Generalisation of software 
refers to the software’s ability to handle a variety of scenarios without having to 
change the software, whereas specialisation of software refers to the software’s 
ability to perform a specific task exceptionally well. Generalisation prioritises 
portability, particularly adaptability, whereas specialisation prioritises time 
performance and resource efficiency (Lindsay et al., 2021). In this dissertation, this 
issue is facilitated by the separation of concerns. Section 8 provides more details 
regarding services separation.  

4.5.6 Security vs performance efficiency 

There is always a trade-off between security and performance (Gadge & Kotwani, 
2017) because security requires additional processing and possibly extra 
communication steps and storage. For example, encryption and decryption 
increase message size and overhead (O’Brien et al., 2007), authentication and 
authorisation can cause large initial delays in communication while a secure 
connection is being established and security aspects such as non-repudiation and 
accountability require logging and thus additional storage. 

Security is always a concern in software systems and should never be sacrificed. 
However, there are degrees of security and there are some methods of ensuring 
security that do not influence performance too significantly. Typically, this 
includes using industry standards for security, such as the SSL/TLS protocol and 
the OAuth protocol, and making use of reputable cryptographic libraries. Security 
issues are further discussed in Section 10.1 and the security design pattern 
(Section 11.6) provides some recommendations for security. 

4.5.7 Security and maintainability 

In the context of service-oriented architectures, O’Brien et al. (2007) mentions the 
trade-off between security and maintainability. Common methods of improving 
maintainability are by promoting a loose coupling between services and through 
the separation of concerns (Bachmann, Bass & Nord, 2007). However, security 
measures such as encryption, authentication and authorisation increase the 
interface complexity and responsibility of services, since the service must include 
logic to handle security certificates, security tokens, etc. Furthermore, 
authorisation and confidentiality concerns may cause some services to be 
restricted making it harder to debug and test such services. 

As discussed in Sections 4.5.2 and 4.5.6, it is recommended to prefer security 
protocol standards for security and making use of reputable cryptographic 
libraries also greatly eases maintenance issues.  
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5 Aggregation 

This Chapter extends upon the concept of aggregating DTs as presented in 
Sections 2.2 and 2.3. In particular, Section 5.1 introduces a definition and some 
core concepts related to aggregation. Section 5.2 then discusses hierarchical 
aggregation principles, while Section 5.3 discussed how the hierarchical 
aggregation principles can be applied to design DT aggregation hierarchies. 

 Aggregation definition and core concepts 

The following definition for aggregation, suited to computing and software 
environments, is used here: 

Within a given domain, the process of collecting, and potentially contextualising, 
various independent (and possibly heterogeneous) entities, followed by the 
processing of those entities into a unified, coherent entity, where "entities" can be 
data, information, models, microservices, etc. 

This definition captures some specific aspects of aggregation that can be identified 
when investigating literature. These aspects are: 

• Aggregation is tailored to intended purposes and a certain context. 

• Aggregation entails the collection of independent or nearly independent 
entities (see Section 5.2.2 for a discussion on nearly independent entities). 
Independent or nearly independent entities are entities that can be 
considered as individuals, but they may interact and influence each other. 
Therefore, considering them as a collective can also be beneficial.   

• Aggregation entails some processing to be performed on the combination of 
various entities to produce an aggregated entity. 

• The output of the aggregation must be a unified, coherent entity, i.e., an 
observer (such as a user) can interact with the aggregated entity without 
knowledge about the entities being aggregated. 

The definition of aggregation above, as well as the variety of processing 
approaches that can form part of aggregation, mean that a single DTI (as defined 
in Section 2.3) can already be considered an aggregation of, for example, multiple 
data sources (environmental sensors, machinery, historical data stores) from 
multiple lifecycle stages. Therefore, it is necessary to clarify what is meant by the 
aggregation of DTs. The definition proposed for the aggregation in the context of 
DTs is: 
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The process of collecting entities from multiple DTs (the child DTs), followed by the 
processing of those entities into a single DT that represents an identifiable part of 
physical reality which encompasses the child DTs' physical realities. 

Therefore, a DTA (as defined in Section 2.3) is the single coherent result when DTs 
(which can be DTIs or DTAs) are aggregated.  

Some further principles related to the aggregation of DTs are explained with 
reference to Figure 3. In Figure 3 the DTIs are labelled A, B and C and each of them 
represent a given reality and they encapsulate data, models and services related 
to that reality. Similarly, the DTAs are labelled AB, BC and ABC depending on which 
DTIs are aggregated. 

The key characteristics of DT aggregation applied here, with reference to Figure 3, 
are: 

• Aggregation follows a hierarchical structure, where DTIs make up the lowest 
level and DTAs make up one or more levels above the DTIs. 

• Entities from one DTI can be aggregated by more than one DTA (B is 
aggregated by AB and BC) and a DTA can aggregate data from another DTA 
(AB is aggregated by ABC). For example, data from a robot represented by DTI 
B can be aggregated to the DTA the represents the cell containing the robot 
(AB) and to an aggregation of all the robots of one manufacturer (BC).  

• If a DTA can be reached by more than one aggregation path, care should be 
taken to avoid redundant (and potentially conflicting) data. For example, ABC 
is an aggregate of AB and C, as opposed to being an aggregate of AB and BC. 
This restriction is intended to preserve data consistency, since AB and BC may 
manipulate the entities from B in different ways.  

• A DTA should be introduced into the hierarchy only where that DTA can add 
value, such as by reducing data storage and flows by aggregating information 
not stored long term by lower-level DTs, or by providing models that rely on 
the data from multiple, lower level, DTs.  

For the duration of this document, the term aggregation will refer to the process 
of aggregating DTs. The term aggregation hierarchy refers to the concept of 
dividing the system into subsystems with accompanying DTs and the aggregation 
of those DTs into different DTAs. The following sections will clarify the term 
aggregation hierarchy. 
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Figure 3: Hierarchical digital twin aggregation 

 Complexity, hierarchies and aggregation 

Hierarchies are one of the central structural schemes of any complex system 
(Simon H.A., 1996). A hierarchy is a system composed of interrelated subsystems 
where each subsystem can further be decomposed into subsystem until a lowest 
level elementary element is reached. What constitutes the lowest level 
elementary element is often a subjective decision and dependent on the case. 
Hierarchical aggregation is the reverse of decomposition and it refers to the joining 
of subsystems to create larger subsystems that can also be aggregated to form 
even larger systems until the largest system perspective is reached.  

WSNs and IoT networks along with concepts such as edge computing and fog 
computing often also make use of hierarchical arrangement and aggregation to 
manage complexity related to large amounts of data (Huang, Liu, Xiong, et al., 
2020; Pastor, Chamizo, Hidalgo, et al., 2018; Bertoli, Cervo, Rosati, et al., 2021; 
Rajagopalan, Varshney, 2006; Pourghebleh, Navimipour, 2017). Hierarchies offer 
a structured method of distributing processing and decision-making responsibility 
across a network, making the system more manageable and comprehensible 
(Ciavotta et al., 2018; Redelinghuys, Kruger, et al., 2020; Villalonga et al., 2020). 
Similarly, in SOAs, service hierarchies promote the separation of concerns, loose 
coupling and service reuse (Buenabad-Chavez, Kecskemeti, Tountopoulos, et al., 
2018). 
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Finally, in the context of DTs, hierarchical architectures provide a high degree of 
reusability and modularity which allows the DTs to adapt to different applications 
(Shangguan, Chen & Ding, 2019). Most existing DT architectures also make use of 
hierarchical models, where each level of the hierarchy has its own function and 
provides data or information to the level above (Villalonga et al., 2021).  

The following subsections introduce some dimensions and principles related to 
hierarchies in general and then translates those dimensions and principles to make 
them applicable to aggregation hierarchies in DTs.  

5.2.1 Dimensions of an aggregation hierarchy 

 Simon (1996) introduces two dimensions to describe a hierarchy: 

• The span of the system refers to the number of subsystems that the system is 
composed of. The span of the system is often limited by, and thus determined 
by, the system’s capacity for interaction.  

• Hierarchies are often defined in terms of their intensity of interaction. The 
intensity of interaction is typically quantified by the frequency of interaction 
between entities. In physical systems the intensity of interaction is often 
largely dependent on the spatial proximity of the subsystems, whereas for 
social systems only the frequency of interaction is an indication of the 
intensity of interaction.  

These dimensions are discussed in the following subsections. For this discussion, 
consider the example of multiple machines (with machine twins) within a 
production line (with a production line twin) that forms part of a manufacturing 
plant (with a plant twin). 

5.2.1.1 Span of reality 

To relate the “span” dimension of hierarchies to the aggregation of data and DTs, 
the term span of reality is defined as:  

The extent of the physical reality that is represented by a given digital twin, where 
a smaller span of reality means a smaller subset of the physical system and its 
environment is being represented.  

Considering the above-mentioned example, a machine twin has a small span of 
reality, whereas a production line twin has a larger span of reality and finally, the 
plant twin has the largest span of reality. Therefore, span of reality can be specified 
in part by specifying which DTs are being aggregated (and therefore which physical 
subsystem(s) is/are being represented). This is referred to here as the physical 
scope. However, since subsets of data can be aggregated and processed in 
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different ways it is useful to define another dimension here, namely data 
granularity.  

Data granularity refers to the detail of the data that is captured within a DTA, 
where a finer granularity refers to a higher level of detail. Data granularity specifies 
1) the desired subset of data features and 2) the time interval between 
consecutively ingested data records of a feature (for batch data this refers to the 
amount of data compression and for real-time data this refers to the sampling 
frequency of the data). Choosing which DTs to aggregate from and defining a level 
of data granularity helps to determine the data scope of the DTs. 

If a DT provides data to a service hosted outside of the DT or if the data ingestion 
is split from the data utilisation within a DT, then the data update frequency should 
also be determined. Data update frequency is the rate at which data must be 
output from the DT’s database. Data update frequency is largely determined by 
the potential rate of physical system change, as well as the decision-making 
frequency. In some cases, the data sampling frequency may be the same as the 
required data update frequency, but they are not always the same. For example, 
for real-time control, the sampling frequency and data update frequency might be 
the same whereas for exploratory data analytics a fine data granularity may be 
required (many data features with many data records) but the data may only need 
to be updated once a day.  

The Centre for Digital Built Britain (CDBB, 2018) mentions that a DT must provide 
for a variety of temporal scales, such as an operational timescale, reactive 
timescale, planned maintenance timescale, capital investment timescale, etc. 
Each of these requires different levels of data detail. Therefore, the data 
granularity is chosen according to the services’ data requirements. Determining 
the desired data granularity will then inform what processing operations may be 
required to produce the desired subset of data.  

Furthermore, when choosing the span of reality of a DT, it is important to consider 
the DT’s capacity for interaction. The capacity for interaction of a DT is heavily 
influenced by the underlying hardware and refers to aspects such as: 

• The number of concurrent connections that a DT can maintain. 

• The amount of data that can be processed by the DT within a given timeframe. 

• The storage capacity and memory allocated to the DT by the host machine. 

Span of reality essentially describes the scope of the data that is available and 
sustainable within a DT. This is important for service-to-DT mapping since a service 
may require a particular set of data to perform its functions. Table 10 summarises 
the sub-dimensions of span of reality. 
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Table 10: Sub-dimensions and influence of span of reality. 

Sub-dimension of span 
of reality 

Significance of sub-dimension 

Physical scope The scope of the physical reality of interest, i.e. which DTs 
are being aggregated. 

Data granularity Determines the scope of the data being aggregated and 
informs which processing operations are required. 

Capacity for interaction Determines the capability of the underlying hardware to 
support data granularity, which can be a requirement if 
new hardware will be obtained or a constraint if hardware 
is already provided. 

5.2.1.2 Intensity of interaction 

Based on the intensity of interaction dimension, the physical system will most 
likely be decomposed based on spatial proximity and interface complexity. 
Therefore, each DTI will represent an elementary element based on spatial 
decomposition (this may also be desirable for reconfigurability). However, DTs can 
form social hierarchies and thus an aggregate entity should be defined according 
to frequency of interaction rather than spatial proximity alone. As a result, 
aggregate entities can aggregate according to different types of relations. 

There are two primary types of relations that are considered here: a spatial 
relation and a functional relation. A spatial relation refers to relationships based 
on physical proximity. For example, aggregating various machines within a 
production line into a production line twin is aggregation based on a spatial 
relation. DTAs typically aggregate based on a spatial relation because this is how 
humans naturally perceive reality and thus how DTs reflect reality. 

Alternatively, aggregation can be based on a functional relation, where the 
relationship is based on functional similarity. For example, aggregating all the 
electrical information from various machines to determine energy consumption. 
Services that form part of an SOA or microservices architecture typically aggregate 
according to a functional relation, which is typically determined using domain-
driven design principles (Aderaldo et al., 2017; Salah et al., 2016; Tovarnitchi, 
2017) 

Therefore, the intensity of interaction can be spatially focussed, in which case 
aggregation using a DTA may be preferred. Alternatively, the intensity of 
interaction can be functionally focussed, in which case aggregation using a service 
in a SOA may be preferred. Either way, the intensity of interaction is determined 
by the related service’s required span of reality. There are also other 
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considerations when choosing an aggregate entity and these are discussed in 
Sections 8.3 and 9.3.4. 

5.2.2 Near decomposability 

In hierarchical systems, a distinction can be made between interactions within a 
subsystem and interaction among the subsystems. The interactions within a 
subsystem are typically an order of magnitude higher than interactions among 
subsystems. The principle of near decomposability states that the interaction 
among subsystems is weak but not negligible when compared to interactions 
within subsystems (Simon, 1996). This leads to two propositions that can be 
exploited when considering nearly decomposable systems (Simon, 1996): 

• The short-term behaviour of the component subsystems is nearly 
independent of the short-term behaviour of other component subsystems. 
Therefore, short-term behaviour can often be closely approximated as 
independent of other component subsystems.  

• The long-term behaviour of any one component subsystem depends on only 
the aggregate behaviour of another component subsystem, i.e. component 
subsystem A is not dependent on all the interaction within component 
subsystem B, but only on the aggregate result of those internal interactions 
within B. For example, consider two machines within a production line, 
machine A and machine B, where machine A places a label and machine B 
stamps the label placed by machine A. Machine B’s throughput is not 
dependent on the power consumption, strain, temperature, etc of each 
motor in machine A, instead machine B’s throughput is only influenced by the 
throughput of machine A. 

In terms of an aggregation hierarchy, the principle of nearly decomposable 
systems relates to the concept of separation of concerns and the distribution of 
data and logic across the system. When considering decisions related to the short-
term behaviour of a subsystem, only the data and logic internal to that subsystem 
is required. Alternatively, when considering decisions related to the long-term 
behaviour of a subsystem, only the aggregated data (that describes the net inputs 
and outputs) and the associated logic is required. Therefore, there is a natural 
separation of concerns within hierarchies allowing for distributed decision making. 

The principle of near decomposability also highlights an important aspect within 
aggregation hierarchies, namely that higher levels of aggregation typically have 
reduced dimensionality and a higher level of abstraction than the lower levels 
(Engel et al., 2018; Fadlalla, 2005). This means that higher levels of aggregation 
have more aggregated DTs (a larger physical scope) but with reduced data 
granularity (a smaller scope of data from each DT). This is how hierarchies manage 
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large data flows and how hierarchies improve the comprehensibility of complex 
systems. 

5.2.3 Intermediary forms 

Intermediary forms are stable subassemblies of a system that can exist as 
individuals and they can be assembled into larger systems (Simon, 1996). The 
number and distribution of potentially stable intermediate forms is a critical 
determinant of the time required for the evolution from simple elements to 
complex systems. Potential for rapid evolution exists in any complex system that 
consists of a set of stable subsystems, each operating nearly independently. 
Therefore, to improve the evolutionary ability of the system, i.e. the system’s 
ability to adapt to changes, there must be stable intermediary forms. 

Relating this to system of DTs, the existence of intermediary forms refers to the 
concepts of load distribution, incremental development and component reuse. 
Intermediary DTs can function as individuals and as part of a collective. As 
individuals they can be used to perform load distribution, where they are 
responsible for any pre-processing related to the data that is contained within 
themselves. As part of a collective they can then make the pre-processed data 
available to other DTs or services. Furthermore, the distributed nature of the 
intermediary DTs improves reliability and scalability since they allow for horizontal 
scaling, individualised vertical scaling and z-axis scaling (Section 4.3 provides a 
discussion on scalability).  

Intermediary forms are also intended to be assembled into larger systems. This 
relates to the ability to incrementally build hierarchies, where elementary 
components are developed individually and then aggregated to form larger, more 
complex systems. This also relates to the divide-and-conquer design strategy, 
where a system is recursively subdivided into subsystems until a manageable unit 
complexity is reached for a subsystem. The manageable subsystems can then be 
developed separately and assembled to form the desired system (Bourque & 
Fairley, 2014). 

5.2.4 Reoccurring patterns 

Finally, hierarchical systems often contain reoccurring patterns. Hierarchical 
systems are usually composed of only a few different kinds of subsystems, but 
they are present in various combinations and arrangements (Simon, 1996). 
Similarly, in the context of complex production systems, Lutters (2018) mentions 
how a production plant is recursive and thus a plant can be built from only a very 
small number of typifications, even though there are a multitude of manifestations 
and instantiations.  
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The identification and exploitation of reoccurring patterns in a hierarchy relates to 
the concept of modularity and proposes that the ideal is to have only a few 
modules that can be arranged in various combinations. This suggests an optimal 
number of modules, where too few would mean a lack of generalisation and 
reusability, while too many modules would cause unnecessary confusion and 
complexity when ordering and integrating the modules. The intention of the 
modularity is to improve the reusability of the software, so finding the optimal 
number of modules could relate to a global optimal reuse rate 

Simon (1996) also mentions that through appropriate “recoding”, the reoccurring 
patterns that are present, but not obvious in structure, can often be made clearer. 
This relates to the concept of self-similarity in hierarchies and is particularly useful 
when a mutual problem is “recoded” to allow for a single solution. For example, 
consider a software system with many interacting software programs but where 
these programs have different communication protocols. Each program has the 
problem of communication heterogeneity and instead of solving the problem for 
each program, a middleware or broker can be used as the single solution to the 
mutual problem.  

Self-similarity also allows for module and solution reuse at various levels of the 
hierarchy, which allows for reduced development times. Consider again the 
example of multiple software programs that need to interact. However, in this 
case the communication protocol has not yet been determined. Then, because all 
the programs must communicate, a single communication module can be 
designed that can be used by each program. 

 How hierarchical aggregation helps to handle 
complexity  

This section considers the benefits of the hierarchical principles discussed in 
Section 5.2. Table 11 provides a summary of the benefits and how they relate to 
the quality attributes. A short discussion follows after the table. 
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Table 11: Relation of hierarchy principles to engineering design principles and 
their benefits. 

Hierarchy 
principle 

Related 
engineering 
design 
principle 

Benefits Quality 
attributes 
improved 

Near 
decomposability 

Separation of 
concerns 

Allows for multi-stakeholder 
and multi-services 
provisioning 
 
Enables parallel 
development 
 
Reduces data flows 
 
Eases integration 

Maintainability  
 
Portability  
 
Performance 
efficiency 

Intermediary 
forms 

Load 
distribution  
 
Incremental 
development 

Allows for scalability (in all 
three axes) 
 
Reduces unit complexity of 
individual DTs 
 
Allows for multi-scale 
system representation 
 
Eases integration 

Maintainability  
 
Portability 
 
Performance 
efficiency  
 
Reliability 

Redundancy Modularity 
  
Self-similarity 

Allows for larger, more 
adaptable systems 
 
Improves expansibility and 
reconfigurability 
 
Allows for solution reuse 
 
Eases integration 

Maintainability 
  
Portability 

Through the separation of concerns and because of the distributed data 
acquisition and load distribution, the DT aggregation hierarchy can maintain a 
single source of truth in the DTIs while providing data to multiple services. 
Therefore, data-led decision making can be facilitated in multiple services and at 
multiple levels of the system, while maintaining a degree of data consistency. 
Furthermore, this also provides for the separation of data and service ownership 
concerns (Harper et al., 2019). This is vital to building a multi-stakeholder 
ecosystem (Harper et al., 2019) because requirement conflicts can often be 
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resolved by separating the system or subsystem and applying different solutions 
to the separate components (Poort & De With, 2004).  

The DT aggregation hierarchy also enables a combination of distributed, clustered 
and/or centralised processing and/or decision making. This can be used to address 
issues, such as computational load balancing and latency concerns, while also 
allowing for centralised data visualisation, analytics and configuration 
management (Bertoli et al., 2021). Furthermore, it allows for different data 
granularities in different parts of the aggregation hierarchy. This allows for a 
simple overview of one subsystem while also allowing for detailed data analysis 
on another subsystem (Brandenbourger & Durand, 2018). Allowing for different 
data granularities and levels of complexity is also advantageous for integration 
since subsystems can be integrated as primitive data sources or sophisticated DTs, 
depending on their capabilities. 

The combination of distributed, clustered and/or centralised processing and/or 
decision making also improves resource efficiency by making use of multiple 
devices and computing processes (Villalonga et al., 2020). This is related to the 
ability to scale horizontally, vertically and in the z-axis (O’Donovan et al., 2015). 
Reliability is also improved through horizontal and z-axis scalability because they 
allow for replication and partitioning, respectively (Tovarnitchi, 2019; Villalonga et 
al., 2020).  

The separation of concerns also allows for different development teams (including 
third-party developers) to contribute to the different concerns in parallel, thereby 
also allowing for the integration of domain expertise by the different developers 
(Tovarnitchi, 2019). Furthermore, the different development teams can then 
independently deploy and maintain the DT(s) related to their concerns (Taibi et 
al., 2018). The different development teams can also develop in different 
programming languages, provided that they use programming agnostic interfaces 
or a programming agnostic communication protocol (Balalaie et al., 2018). 

The modular design and self-similarity in DT aggregation hierarchies also allow for 
larger and more adaptable system representations and services (Ciavotta et al., 
2020). The modularity, separation of concerns and distributed architecture also 
allows for the easier integration of new technologies without disruption to other 
subsystems (Tovarnitchi, 2019) and these aspects make the system more 
reconfigurable (Adolphs et al., 2015).   
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6 Overall reference architecture 

This chapter presents a reference architecture that provides context for the design 
framework presented in Chapter 7. The design framework should produce an 
architecture that resembles the reference architecture presented in this chapter. 
However, when the design framework is applied to a specific case, variations of 
the reference architecture are expected. For example, not all the management 
services may be required or the services network may not need dynamic 
orchestration. 

The overall architecture of the system of DTs is provided in Figure 4, where the DT 
aggregation hierarchy, the services network and the management services are 
encapsulated within the overall architecture.  

 

Figure 4: Reference architecture for the system of digital twins. 
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The roles of the main groupings in the architecture are as follows: 

• The DT aggregation hierarchy represents the physical system in virtual space, 
including data capturing and system modelling, as well as providing services 
that directly pertain to the physical system and its data. The DT hierarchy is 
designed according to the principles discussed in Chapter 5 and typical 
services include physical system monitoring and physical system fault 
diagnostics. 

• The service network is intended to provide a more general set of functionally 
decomposed services to further manipulate and interrogate the data. The 
service network will likely follow a service-oriented or microservices 
architecture. The services network also provides an entry point for external 
services and any data that does not originate from the physical system but 
that still has a bearing on the management of the physical system. For 
example, financial data can be incorporated using the microservices 
architecture and analysed together with production data to inform business 
decisions.  

• The management services are services external to any DT but that still help to 
handle some of the complexity within the DT aggregation hierarchy. These 
services are discussed in Section 10.2. 

The overall purpose of the system of DTs is to provide a stakeholder with the 1) 
appropriate level of interaction, from the 2) appropriate viewpoint, with 3) 
appropriate filtering of information, at the 4) appropriate time (Lutters, 2020). To 
fulfil its purpose, the system of DTs must 1) provide the right services with 
adequate security and regulation, 2) provide the right span of reality to the 
services, 3) aggregate the data appropriately and 4) respond to inputs in a timely 
manner.  

Furthermore, the combination of the digital twin hierarchy and the services 
network is intended to support two (often conflicting) quality attributes, namely 
reliability and agility (Section 4.5.1 discusses the conflict between reliability and 
agility). The reliability of the system is supported by the digital twin aggregation 
hierarchy. The digital twin hierarchy represents a stable physical reality, of which 
the functionality, behaviour and possible interactions are likely to change slowly 
and infrequently – promoting the development of robust, reliable software. In 
contrast, the services network aims to satisfy dynamic user requirements and, as 
such, should be developed to be adaptable and agile. The services network 
enables faster provisioning of services as user needs change or as new users are 
integrated into the system. It also allows for optimized hardware utilization and 
dynamic resource allocation as services experience varying demand.  
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7 Design framework 

 Objectives of the design framework 

The design framework presented in this dissertation aims to enable systematic, 
effective decisions when designing a system of DTs to represent a complex 
physical system. In particular, this framework adopts hierarchical aggregation as 
one of its primary enablers and combines it with a services network, as discussed 
in Chapter 6. However, the focus of the design framework is the design of the DT 
aggregation hierarchy according to the principles discussed in Chapter 5. 

Furthermore, the framework aims to be broadly applicable to various DT 
application domains and, as such, does not focus on the needs of any particular 
complex system, but rather focusses on general complexity issues. The framework 
also aims to be vendor neutral, avoiding the prescription of any specific 
technologies, because complex systems are likely to involve multiple vendors and 
typically software related technologies change rapidly. 

The framework enables traceability from user needs and complexity 
considerations to architectural and implementation decisions. By enabling this 
traceability, design choices can be mapped to the needs they intend to fulfil. This 
makes it easier to determine which needs have not been met and allows for better 
change management when a need, implementation technology, etc. changes. 
Finally, the framework also intends to provide a common set of terminology to 
allow for better development team cooperation. 

 Design framework overview 

An overview of the system of DTs design framework is provided in Figure 5, where 
the high-level design steps are divided into various blocks and the design steps are 
further decomposed within each block. Furthermore, the outcomes of the design 
steps are summarised next to the arrows leading to the next step. Within each 
block, iteration and interaction should be expected. Although it is desirable to 
progress from the first to the last high-level step without returning to a previous 
step, such iterations are usually unavoidable in practice. 

Each of the design steps are discussed in more detail in the following subsections. 
To help clarify the concepts and the intended outcomes of each step, the heliostat 
field case study will be used as a running example. The running example presented 
in this chapter is an excerpt from the heliostat field case study presented in 
Section 13.1.  
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Figure 5: Overview of design framework for complex DT system design. 

 Needs and constraints analysis 

This step involves the analysis and translation of user defined needs, as well as 
derived needs, into requirements. The requirements are then grouped. This step 
of the design framework relates to Chapter 4 which defines all the terminology 
related the requirements.  
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The needs and constraints analysis step is tightly coupled with the physical system 
decomposition since many of the derived needs are identified during physical 
system decomposition. The needs and constraints analysis along with the physical 
system decomposition are together considered the problem space. The problem 
space refers aspects of the design that are given and thus the system designers do 
not have control over such aspects. The decomposed design steps are:  

• Analyse user needs to translate the user needs into FRs or NFRs. This step also 
involves the identification and translation of derived needs into requirements. 
Derived needs here refer to any needs that are not explicitly defined by the 
user but have been identified as necessary to satisfy the user defined needs. 
The physical system decomposition (discussed in Section 7.4) is a common 
source of derived needs. 

• List the FRs and group them into primary and secondary functional 
requirements. Prioritise the two groups of functional requirements using the 
classification of mandatory, highly desirable, desirable or optional (Bourque 
& Fairley, 2014). The prioritisation of the functional requirements is important 
for project planning, management and deployment and it helps to make 
trade-off decision to, for example, save cost or development time (Poort & De 
With, 2004). 

• List and group the NFRs into quality requirements and development 
constraints. Determine how the constraints may affect the final design and 
which of the quality attributes should be prioritised for the case. 

• Determine what external NFRs, if any, should be considered.  

Outcomes of design step: List of prioritised primary FRs, list of prioritised 
secondary FRs, list of prioritised quality attributes, list of development constraints 
with their implications, list of external NFRs and their implications. 

With reference to the heliostat field, Table 12 is an example of a list of grouped 
and prioritised FRs. Similarly, Table 13 is an example of NFRs with their 
implications. 

Table 12: Functional requirements for the heliostat field (excerpt) 

High-level 
functional 
requirements 

Rationale Group 
(Primary 
or 
secondary) 

Priority 

Remote 
monitoring 

The status of individual heliostats, as 
well as the status of subsections of the 
field need to be presented to a user. 

Primary Mandatory 
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High-level 
functional 
requirements 

Rationale Group 
(Primary 
or 
secondary) 

Priority 

Event logging Considering that the heliostat field can 
be controlled automatically or by a user, 
it is considered good practice to log 
events related to the heliostat field 
control. The best practise is related to 
maintenance for debugging purposes 
and to security for accountability and 
non-repudiation.  

Secondary Mandatory 

Table 13: Non-functional requirements of the heliostat field (excerpt) 

Need Provide for large amounts of data. (Related to N24) 

Related 
NFR 

Performance efficiency 

Rationale 
for NFR 

Considering the size of the heliostat field, the amount of data 
generated by each heliostat and the potential resource constraints, 
there is a need to handle a large amount of data efficiently. Therefore, 
resource utilisation, scalability and high throughput are primary 
concerns and these are sub-characteristics of performance efficiency. 

NFR 
grouping 

Quality attribute 

Implication 
of NFR 

Use performance efficiency design pattern 

Need Allow for retrofitting and integrate with existing information systems. 
(Related to N6 and N7).  

Related 
NFR 

Solution constraint and implementation constraint 

Rationale 
for NFR 

Solution constraint - The consultants at STERG are responsible for 
designing the heliostat field and its accompanying control systems. 
Therefore, the digital twins must be able to integrate with the heliostat 
field as if it were being retrofitted onto an existing system. 
 
Implementation constraints - The Helio100 field makes use of a local 
PostgreSQL database that serves as the current primary data source of 
all historical data. Therefore, there is a preference to use PostgreSQL 
because the current engineers are familiar with it.  

NFR 
grouping 

Development constraint 

Implication 
of NFR 

Some of the technologies related to the data acquisition are predefined 
and must be integrated with. There is a preference for PostgreSQL as a 
database. 
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When the entire list of NFRs was analysed and the stakeholders were consulted 
again, it was determined which quality attributes are most important for the 
proper functioning of the heliostat field. The heliostat field does not have any 
identified external NFRs. However, an example of an external NFR could be the 
Department of Energy that requires the storage of data related to energy 
production for a minimum of seven years. 

Furthermore, the examples presented in this dissertation are high-level needs and 
requirements for the sake of brevity. However, in practice it is likely that these 
needs and requirements may be defined in more detail, where each need can 
include more details and sub-needs. For example, the implication of the 
implementation constraint listed in Table 13 could include details of specifically 
which technologies must be integrated with. The need for remote monitoring 
could also be decomposed further if necessary. 

 Physical system decomposition 

This step involves the decomposition of the physical system and the 
characterisation of the data that is expected to be available within the physical 
system. Furthermore, during physical system decomposition, it is likely that some 
needs will be derived to accommodate the complexity identified within the 
system. These derived needs typically resemble the needs presented in Chapter 3. 
The decomposed design steps are: 

• Decompose the physical system, most likely according to spatial proximity and 
interface complexity to represent the system effectively. 

• Characterise the available data of the decomposed elements and/or 
subsystems. This entails determining what data is available, in what format it 
is and how it can be accessed. This is intended to help with the 
contextualisation and integration of the data (Kuhn et al., 2020; O’Donovan 
et al., 2015). O’Donovan et al. (2015) warn that this data characterisation 
process can be challenging and the effort-to-benefit ratio is often perceived 
as low. However, this phase is necessary and, if done well, the effort related 
to subsequent data integration and contextualisation is greatly decreased.  

Outcome of design step: Hierarchically decomposed physical system diagram and 
data characterisation 

An example physical system diagram is given in Figure 12 in Section 13.1.3 and 
Table 14 is an example of the span of reality of a single heliostat. The span of reality 
includes a physical scope, a data characterisation, a communication mechanism 
and constraints and considerations. The data features within the data 
characterisation were defined according to the following schema: <data feature> 
- <number of observations if there is more than one>, <data type>, <data range>, 
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<(units)>, <frequency of observations>. This is an example of a highly detailed 
characterisation that would typically be used during implementation. 

Table 14: Span of reality of a single heliostat.  

Physical component Heliostat with local control unit (LCU) 

Physical system scope Individual heliostat. 

Data characterisation 
(Data granularity) of 
data recorded/ 
generated by physical 
component 

Stepper motor positions – two, int, between 0 and 200 000, 
(step count), generated every minute. 
Battery value – float, between 5.5 and 8.2, (Volt), generated 
every minute. 
Timestamp – datetime, N/A, (N/A), generated every minute. 

Data characterisation 
(Data granularity) of 
data sent to physical 
component 

Local coordinates of the sun – See CCU (presented in case 
study in Section 13.1.3). 
 
Translated operator control commands – details unknown. 

Data format JSON formatted message. 

Communication  Radio frequency (RF) communication using a serial bus. 

Considerations and 
Constraints (Capacity 
for interaction) 

LCUs are power constrained and thus the activity of the 
LCUs need to be minimised.  
 
The LCUs can only support RF communication. 
 
The design requires 10 002 individual heliostats and they 
may differ slightly in composition (e.g. newer heliostats 
make use of newer components and future heliostats may 
have more sensors). 

 Services allocation 

The services allocation marks the start of defining the solution space. The solution 
space refers to aspects of the design that are within the system designers’ control. 
This step involves assigning services to DTs or to the services network based on 
the span of reality (discussed in Section 5.2.1.1) requirements of the services, as 
well as the intensity of interaction (discussed in Section 5.2.1.2). The service 
allocation step is discussed in detail in Section 8.  

The decomposed design steps are: 

• Derive a list of services from the functional requirements and determine the 
required span of reality of each service. It should be noted that a service can 
address more than one FR and more than one service can address an FR. The 
service patterns listed in Table 15 in Section 8.1 can be used as a reference for 
possible services. 
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• Derive a list of DTs from the hierarchically decomposed physical system 
diagram and span of reality characterisation. This provides a list of possible 
DTs that reflect the decomposed physical system. Section 8.2 provides 
guidelines when determining the scope of DTIs and DTAs. 

• Using the list of services and the list of possible DTs, assign services to the DTs 
by mapping their span of reality to each other. Service should initially be 
assigned to the lowest-level DT that has the data required for the service. 
Services may also be assigned to the services network portion of the overall 
reference architecture (discussed in Chapter 6). Services that are assigned to 
the services network are referred to as the delegated services. 

• Separate services that have ownership or quality conflicts or separate services 
when the DT’s scope and complexity become difficult to manage.  

Outcome of design step: The service-to-DT mapping, a hierarchical layout of DTs 
and a list of delegated services. The service allocation is primarily concerned with 
functional allocation, i.e. determining what services will be provided by which 
components. 

In the example of the heliostat field, it was determined that a mirror service (as 
described in Section 8.1) is required to fulfil the remote monitoring FR. For the 
heliostat field, the mirror service can be applied to multiple levels of the system. 
The mirror service described here will only consider the span of reality required 
for individual heliostats, but the full span of reality description is available in 
Section 13.1.4. The mirror service’s span of reality is: 

Mirror service: 

Description: The status of individual heliostats must be presented to a user. 

Related primary functional requirements: Remote monitoring. 

Related secondary functional requirements: Log files of events. 

Required physical scope: Individual heliostats. 

Required data granularity:  

Individual heliostat scale: 

• Data features: LCU level - Motor position values, battery values. CCU 
level – heliostat status values. 

• Timescale: All data features should be measured at one-minute 
intervals. 
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Service characteristics: 

• Required data update frequency: Real-time 

• Degree of user interaction: Remote monitoring – periodic user 
interaction 

• Intensity of interaction: Spatially focussed service 

• Persistence: Persistent data gathering.  

Constraints and considerations: Remote monitoring requires access from 
an external network and thus the service must either be cloud hosted or it 
must allow for direct local network access, such as through a VPN or SSH 
connection. The data throughput may become a critical factor in a large 
field. 

Furthermore, based on the physical system decomposition it is determined that 
the DTIs should represent CCUs because the LCUs of the individual heliostats are 
resource constrained and thus do not have capacity for interaction. A DTA would 
represent the FCU. Both a DTI and DTA would have the right span of reality to host 
the mirror service detailed above. Therefore, the mirror service is initially assigned 
to each DTI, since the DTI is the lowest level DT that has the right span of reality. 
In this example, there is no separation of services because there is only one 
service. 

 Performance and quality considerations 

This step involves making decisions regarding the aggregation and architecture to 
achieve the data quality requirements, as well as the desired system-level and 
service-level quality attributes. This step is closely linked to the implementation 
considerations discussed in Section 7.7. The performance and quality 
considerations are discussed in detail in Section 9. The design patterns presented 
in Chapter 11 are intended to simplify the architectural choices. 

The decomposed design steps are: 

• Choose a suitable internal architecture for the DTs. This dissertation makes 
use of SLADTA as discussed in Section 2.3. 

• Determine what the dominant quality attribute(s) is/are for each DT and its 
associated service(s) and consider performance related architectural choices 
according to the identified quality attribute. Section 9.1 discusses aspects 
related to performance, while the design patterns (presented in Chapter 11) 
are intended to simplify the aggregation and architectural decisions to 
provide for the identified quality attributes. 
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• Check that the implemented architecture accommodates any data quality and 
management issues as described in Section 9.2.1 and choose the required 
granularity related processing operations as described in Section 9.2.2. 

• Check that the solution constraints (identified during the needs analysis step) 
are satisfied. 

Outcome of design step: Architectural design choices. The performance 
considerations step is primarily concerned with determining whether the quality 
requirements are being met by the architecture.  

For the example heliostat field, the mirror service requires high data throughput 
and thus the performance efficiency design pattern is chosen. This includes 
choices such as distributing the processing load, using pre-storage aggregation, 
using local network aggregation and performing stream processing. Data 
persistence is likely to be an issue in the heliostat field and thus in addition to a 
local data store (for operational performance) a cloud-based data store is also 
advised. Furthermore, the system of DTs must be retrofitted onto the heliostat 
field and thus some infrastructure is already specified. No replication or 
partitioning is required yet, but the DTA of the FCU might need to be partitioned. 

 Implementation considerations 

This step involves making recurring and important implementation decisions that 
significantly affect the data and system quality. This step is closely linked to the 
quality and performance considerations discussed in Section 7.6. The 
implementation choices are discussed in more detail in Chapter 10. The design 
patterns presented in Chapter 11 are intended to simplify the implementation 
choices. Furthermore, such implementation choices are usually made with 
reference to an internal DT architecture. In this dissertation the SLADTA was 
chosen for the internal DT design as discussed in Section 2.3.  

The decomposed design steps are: 

• Select the security standards (this choice will impact all following choices). 

• Select management services. 

• Select communication mechanisms and standards. 

• Select important storage solutions (solutions where a specific type of storage 
is important). 

• Select hosting position. 

• Check that implementation constraints are satisfied. 

Outcome of design step: Implementation decisions  
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With regards to the heliostat field, the performance efficiency design pattern is 
being used. For the heliostat field, standard TLS security is advised and no 
management services are recommended. A message-oriented middleware is 
recommended for communication, a time-series database would be well-suited 
for operational storage and a NoSQL database provides scalability for the long-
term storage. Local hosting with containers is preferred where possible. 

However, the heliostat field has resource constrained devices and thus a more 
lightweight communication mechanisms is preferred. Therefore, a lightweight 
publish-subscribe protocol would be well suited because publish-subscribe is also 
highly scalable. Furthermore, the heliostat field engineers are already using 
PostgreSQL as a database and thus a PostgreSQL database is used instead of the 
recommended timeseries database. Therefore, in context of SLADTA, the short-
term (Layer 3), local data repository is a PostgreSQL database, while the long-term 
database should be a NoSQL database. The IoT gateway (Layer 4) will make use of 
a publish-subscribe messaging protocol with SSL/TLS for security. 

 Verification and validation 

This step is concerned with verifying that all the needs have been addressed and 
validating that the system does indeed satisfy those needs. The decomposed 
design steps are: 

• Verify that the implemented system or subsystems addresses all the needs 
that were identified in the needs and constraints analysis. 

• Determine quantifiable metrics (technical performance measures) for the 
systems and subsystems to allow for validation after implementation. 

Outcome of design step: Detailed system architecture and accompanying 
documentation for traceability of the needs and validation of the requirements. 
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8 Services allocation 

This chapter discusses the services allocation step (introduced in Section 7.5) of 
the design framework in more detail. The following sections each discuss a step 
within the services allocation. 

 Service patterns  

When considering what services can derived from the user needs, the eight service 
patterns, identified by Erikstad & Bekker (2021), can be considered. The term 
service pattern is used by the authors because they describe general aspects of 
the services which can be applied to numerous contexts. These service patterns, 
listed in Table 15, have been included here to help with the service identification 
step within the services allocation. 

Table 15: List of service patterns for DT services. (Adapted from Erikstad & 
Bekker, 2021) 

Name Description 

Virtual sensor Infer sensor feeds from digital model to provide data that is not 
captured in the real world. This provides compensation when sensor 
placements are limited due to cost, access, hazardous 
environments, etc. 

Context 
sensor 

Provide insights into operational context by inverse inferences from 
asset response measurements. This allows for load estimations 
where load is not measured directly because of limitations. 

Fingerprint Recognise operational response of real asset based on a catalogue 
of behavioural patterns that were pre-generated within the digital 
model. This can be used to pre-empt failures of critical assets. 

Anomaly Detect abnormal behaviour by contrasting data from live sensor 
feeds with data from trusted digital models. This can provide 
notifications in case of anomalies and help to understand what 
behaviour should be expected. 

Root cause Determine the reason for asset response deviation. This is typically 
done through a combination of physics-based simulations, as well as 
real-time sensor readings. 

Scout Simulate future behaviour of an asset to inform decision making. 
This typically uses physics-based simulations, as well as data-based 
models, such as machine learning models.  

Life counter Track stresses incurred by an asset to determine remaining useful 
life and/or to prescribe maintenance. This can be used to reduce 
uncertainties related to prognostics. 

Mirror Manage assets remotely through an immersive operators’ 
experience. This allows for more immersive and informed decision 
making from remote locations.  

Stellenbosch University https://scholar.sun.ac.za



 

63 
 

 DTI and DTA scope identification 

This section provides guidelines to determine the scope of a DTI and a DTA (as 
defined in Section 2.3). Therefore, this section helps identify applicable DTs to 
adequately represent the physical reality of interest. This relates to the DT 
identification step of the services allocation. 

Drawing from the discussion of span of reality in Section 5.2.1.1, the DTI has the 
finest grained data about a certain subset of the physical reality, but also the 
smallest physical scope. DTIs are therefore located at the lowest level of the 
aggregation hierarchy. A DTI may reflect a complex physical entity that forms part 
of a larger complex system, but it should remain the source of the finest grained 
data of that physical entity. Therefore, a DTI can reflect any physical entity (simple 
or complex), where the scope of the DTI is determined by the granularity of the 
data required by the models and services within the DTI. Furthermore, the physical 
entity being reflected may include environmental data, such as ambient 
temperature, provided the environmental data is not already being captured 
elsewhere.  

In continuous systems where there are no physical divisions in the physical system, 
such as water distribution systems or railway systems, the physical system should 
be divided according to the respective concerns of the end-users or manageable 
parts, such as district water distribution networks or sectors of railway line. These 
continuous physical systems can then be represented by a number of DTIs that 
represent similar, but still distinct, physical realities. These DTIs will be more 
interdependent and exchange data among themselves, either directly or through 
an aggregate. 

In contrast, a DTA can be located at various levels within an aggregation hierarchy, 
but not at the lowest (DTI) level. As a DTA is located higher in an aggregation 
hierarchy, its physical scope increases, but typically its data granularity decreases 
(refer to Section 5.2.2 for a discussion of this trend). Different DTAs on the same 
level of aggregation can also reflect different aspects of reality by 1) aggregating 
different DTs, 2) by aggregating different features from DTs and 3) by processing 
the data differently. The span of reality of a DTA is determined according to the 
data requirements of the associated models and services, where services are 
typically focussed on a spatially distinct subset of the physical system (refer to 
Section 5.2.1.2 for spatially versus functionally focussed services). 

Furthermore, the more assets are represented by a DT, the more complex the 
problems that can be addressed by the DT (Kuhn et al., 2020). Aggregation allows 
for the combination of DTs and thus DTAs are generally used for more complex 
decision making with regards to the physical system. Therefore, when models or 
services require such a combination of other DTs, a DTA should be used. This is 
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likely to become increasingly applicable as the system evolves and needs to host 
new services with their associated DTs. However, to keep the DTAs manageable, 
Moyne et al. (2020) suggests that aggregation membership should be specified in 
terms of purpose and the associated span of reality. This means a DTA must have 
a clear purpose and span of reality and should only aggregate the necessary data 
for decision-making, with the required sampling frequency, to meet its purpose 
(Villalonga et al., 2021). When the scope of an DTA’s purpose becomes too large 
and general, a DTA can quickly become too complex due to the amount of data 
available from the lower levels of aggregation.  

The number of aggregation levels depends on the complexity of the system, where 
higher levels of complexity generally require more layers to represent reality 
efficiently (Villalonga et al., 2021). The level of aggregation depends on the degree 
of detail required for decision making and it depends on the efficiency 
requirements, such as storage space and response times (Fadlalla, 2005).  

In summary, the scope of a DTI or DTA is limited by its unit complexity. DTIs and 
DTAs may contain multiple models and services, but if maintaining the DT 
becomes too difficult, it may be desirable to partition the DT. Furthermore, if the 
DT’s capacity for interaction is too limited, the performance of the DT will degrade. 
Therefore, the scope of any DT must be large enough to accommodate the related 
models and services, but small enough to remain responsive and manageable.  

 Services in digital twins vs the services network 

This section provides some considerations when allocating services to DTs and to 
the services network. These considerations are in addition to the intensity of 
interaction as discussed in Section 5.2.1.2. 

In systems where different span of reality requirements exist, two broad 
approaches can be followed to gather the data for the right span of reality: data 
warehousing or data federation (Pathak, Jiang, Honavar, et al., 2006). Data 
warehousing refers to the collection, transformation and storage of the relevant 
data in a common format, that can then be queried for decision making. Data 
federation refers to the collection and transformation of the relevant data as a 
query is made by a service. 

DTs tend to build a data warehouse and thus a span of reality related to a 
particular asset or a group of spatially related assets. However, services in an SOA 
are functionally focussed and thus data federation and orchestration are often 
used to gather data as needed and sent to the appropriate services to be 
processed as required. Therefore, services within DTs tend to have a specific 
purpose with a specific data requirement and typically with stricter quality 
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requirements, while services in an SOA have a more general purpose and are 
generally also more adaptable to user needs.  

Domains such as manufacturing tend to prefer the services in DTs approach 
because DTs are persistent and more dedicated to an asset or group of assets, i.e. 
they are useful for real-time and persistent services, such as automatic process 
control and fault detection (Ciavotta et al., 2020; Moyne et al., 2020; Therrien et 
al., 2020). On the other hand, services in SOAs tend to be preferred for more 
general and longer-term decision making that is only periodically required. For 
example, long-term business planning using general data analytics. The services 
mentioned in Section 8.1 are strongly related to physical assets and thus they are 
also considered spatially focussed services. DTs are well suited to hosting spatially 
focussed services because DTs also follow spatial decomposition.  

In summary, DTs are generally the preferred host for services when services 1) are 
spatially focussed, 2) have a specific purpose, 3) are persistent or periodically 
invoked, 4) require real-time data and 5) have strict latency, throughput or 
reliability requirements. If services are 1) functionally focussed, 2) more general, 
3) periodically invoked (typically less frequently than periodically invoked services 
in DTs) or event-driven and 4) only require historical data with no strict service 
requirements, then the services network may be preferred. 

 Separation of conflicting services 

This section discusses the separation of services according to ownership (8.4.1), 
scope complexity (8.4.2) and dominant quality attributes (8.4.3). These three 
reasons for services separation are part of the final sub-step of the services 
allocation step. 

8.4.1 Separation according to ownership 

Separation according to ownership is the simplest reason for separation to 
understand, but it can be complex to handle. The premise is to separate DTs 
according to ownership of the data, models and services. For example, in the 
context of city management, the Centre for Digital Built Britain (CDBB, 2018) state: 
“Each infrastructure owner or operator is likely to want DTs to improve the 
management of their own assets.” Therefore, DTs and their associated services 
are separated according to ownership and appropriate data sharing is facilitated 
between these DTs. However, challenges arise when issues related to intellectual 
property and competitive advantage hinder data sharing (this issue is discussed as 
a multi-stakeholder complexity need (N2) in Section 3.2) 
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8.4.2 Separation according to scope complexity 

The goal of a service is to provide a comprehensive set of data related to an area 
of decision making, while the service must remain easy to use (Therrien et al., 
2020). Therefore, one of the primary goals of the DT is to provide the service with 
the data that it needs. Some use cases require high levels of detail and high fidelity 
models for decision making, while other use cases may not (VanDerHorn & 
Mahadevan, 2021). Therefore, tailoring the span of reality of the DT to the service 
can help make the service comprehensive while also maintaining usability. The 
intention is to meet the intended outcomes without adding unnecessary 
complexity or cost that may compromise the feasibility of the DT (VanDerHorn & 
Mahadevan, 2021). 

For example, in the context of manufacturing, Villalonga et al. (2020) classified DT 
modelling and decision making into three main levels of detail: 1) local, 2) system 
and 3) global, according the system being represented. Local represents the 
dynamics of the equipment pieces in the production lines; system considers the 
interaction between the equipment pieces that make up the production line; and 
global replicates the behaviour of the entire shop floor production. Only data 
needed for the decision making at the upper levels are sent to those levels. 

The required timeframe and data update frequency are components of a service’s 
span of reality. The timeframe and update frequency of various data features is 
largely determined by the potential rate of physical system change captured by 
the data feature, as well as the decision-making frequency. Typically, the physical 
system change is described using models and decisions are made based on such 
models. Therefore, the update frequency is determined by the DTs associated 
models. Lamb (2019) also distinguishes between dynamic digital models and static 
digital models. Dynamic digital models capture and react to real-time data to, for 
example, perform control functions. Static digital models periodically update long-
term data and are typically used for strategic planning. 

Furthermore, the decision-making frequency can be classified as real-time, 
periodic or event-driven. It is also important to recognise that ‘real-time’ is context 
specific and it depends on the frequency of data required to make effective 
decisions. For example, for control applications such as motor speed control, this 
frequency is very high (data needs to be sampled multiple times per second) 
because the physical system can change rapidly and the related control decisions 
must react faster than the change of the system. However, for the control of a 
heliostat’s position, this frequency is very low (only one sample per minute) 
because heliostats only adjust position once per minute. Further, in the context of 
power transformers, operational decisions are made on a hour to week 
timeframe, maintenance decisions are made on a week to year timeframe and 
planning decisions are made on a year to 10 year timeframe (Pathak et al., 2006).  
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Ultimately, the services form part of the scope of a DT and if the DT’s scope 
becomes too complex, it may be desirable to partition the DT. Section 8.2 
discussed DT scoping considerations. 

8.4.3 Separation according to dominant quality attributes 

Different services may have different quality requirements and often these 
requirements can be conflicting. One of the best ways to deal with such 
requirement conflicts is to separate the services (Poort & De With, 2004).  

For example, consider a high-value or critical asset within a physical system. There 
may be a fault detection service related to the asset that needs to be reliable. 
There may also be a need for data analytics related to the high value assets which 
emphasises agility. Even though these services rely on the same span of reality, 
their quality attributes are in conflict and thus is may be better to separate the 
services. Section 4.5 provides a discussion on some of the most cited quality 
attribute conflicts. 
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9 Performance and quality considerations 

This section discusses the performance and quality considerations step 
(introduced in Section 7.6) of the design framework in more detail. Specifically, 
this section considers aspects related to the aggregation hierarchy’s performance 
in Section 9.1, as well as aspects related to the management and quality of the 
data within the hierarchy in Section 9.2. Some aggregation alternatives are then 
provided in Section 9.3 to help manage the trade-off of performance versus data 
detail and quality. This trade-off is discussed in Section 4.5.4 and the trade-off is 
also captured within the span of reality where performance efficiency is related to 
the capacity for interaction, whereas the data detail and quality are related to the 
physical scope and data granularity.  

 Performance efficiency considerations 

Regardless of the dominant quality attribute of a DT and its associated services, 
the performance of the DT must still be acceptable for a good user experience. 
Therefore, this section considers aspect related to the performance of a DT. 

Performance efficiency is sub-divided in the ISO 25010 standard (BSI et al., 2011) 
into time behaviour, capacity and resource utilisation. These sub-divisions can be 
quantified as latency, throughput and infrastructure measures, respectively. Table 
16 provides a summary of the performance efficiency sub-division and the 
associated performance measures, which are further considered in the 
subsections that follow the table. 

Table 16: Performance efficiency breakdown 

Performance 
efficiency sub-
division 

Performance measures Dimensions of performance 
measures 

Time behaviour Latency Intermediary communication time: 
Transmission, I/O and processing time 

Number of intermediary 
communications 

Capacity Throughput Message size 

Message frequency 

Number of parallel message streams 

Resource utilisation Infrastructure measures Network: network speed, network 
bandwidth, network availability 

Computation: CPU, GPU, memory 

Storage: I/O speed, storage capacity 
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9.1.1 Latency considerations 

Latency is the amount of time it takes for a message to be captured, transmitted, 
processed and received when sent from a source to a destination. 

When considering communication from a sensor (source) to where a decision can 
be made, such as a user interface within a cloud platform (destination), the 
communication can be broken into intermediary communications (O’Brien et al., 
2007), where each intermediary communication consists of data input/output 
(I/O), transmission and processing operations. For example, intermediary 
communications can be from sensor to local storage, from local storage to cloud 
storage and then from cloud storage to user interface. There might also be 
additional communications involved, such as communication through a service 
gateway or intermediary communications between services. Therefore, when 
considering latency between a source and a destination, the intermediary 
communication time and the number of intermediary communications should be 
considered.  

The latency related to each part of an intermediary communication is tightly 
coupled with the underlying hardware. The I/O latency is related to the storage 
device’s read/write speed, the transmission latency is related to the network 
speed, as well as the network bandwidth and availability and the processing 
operation latency is related to the CPU, GPU, and RAM. These hardware aspects 
are further discussed in Section 9.1.3. 

Furthermore, some intermediary communications may be more time critical than 
others. For example, transfer time from sensor to cloud database may be less 
important than minimising the transfer time from cloud database to user 
application. Therefore, optimising the transfer time from database to user 
application at the cost of transfer time between sensor and database is sometimes 
desirable. This would typically be achieved by pre-processing the data before it is 
stored so that less processing is required when the data is queried. 

9.1.2 Throughput considerations 

Throughput is a measure of the amount of data that is transferred between source 
and destination within a given time interval. 

Throughput is influenced by multiple factors such as message size (further 
influenced by the size of the datapoints and the number of datapoints), message 
frequency and the number of message streams. The configuration of these factors 
is often influenced by the latency requirement and the limitations imposed by 
existing infrastructure, as well as the number of data sources. 

Stellenbosch University https://scholar.sun.ac.za



 

70 
 

9.1.3 Infrastructure considerations 

The computing and network infrastructure can be considered a limitation in cases 
where the infrastructure is already installed and when DTs are being retrofitted 
onto the physical system. In other cases, however, the DT developers may have 
freedom to choose some or even all the infrastructure components. Therefore, it 
is important to establish what infrastructure is already available and what 
infrastructure needs to be added. The considerations in each case, however, 
largely remain the same and thus this section provides considerations for 
retrofitting onto existing infrastructure and when choosing new infrastructure. 

Infrastructure considerations have here been divided into three subsections: 
network, computational resources and storage. Alternative methods of 
infrastructure hosting, such as local hosting vs cloud hosting and the effects of 
virtualisation, are discussed in Section 10.5. 

Network considerations include: 

• Network bandwidth: The upload and download capacity. This is the maximum 
amount of data that the network can transmit per second, typically measured 
in megabits per second (Mbps). 

• Network speed: The transmission speed between network nodes, which has 
a significant impact on transmission latency. Network speed is typically 
measured through ping messages. Network speed is dependent on factors 
such as (Kajati, Papcun, Liu, et al., 2019): 1) transmission medium, 2) the 
physical distance between nodes (this plays a significant role when using 
cloud services), 3) the number of network relays (such as routers or switches), 
4) internet service provider (for external connections) and 5) cloud platform 
and cloud offering (e.g. throttling limits imposed by a certain cloud service). 
Time of day and the day of the week have negligible impact on network 
latency (Kajati et al., 2019). Another factor to consider is the repeatability of 
the messaging latency, where the standard deviation of the latency values 
may be too great even though the mean value may be acceptable (Kajati et 
al., 2019). Standard deviation is particularly applicable when considering 
applications that require high reliability. 

• Network availability: The fraction of time that the network can be used by the 
various nodes within a given timeframe. A stable and continuous network 
connection may not always be available, for example when using wireless 
connections or when devices are mobile and move between connection 
points. Therefore, the amount of time that a device is unable to connect to 
the network contributes to the latency of the communication. Intermittent 
network connections also require additional provisioning for asynchronous 
communications, such as message queues and message patterns that 
acknowledge message delivery, to prevent data loss. 
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Network connectivity may also be challenging when designing for physically 
dispersed systems that require multiple access points. In such cases, network 
availability may be a limiting factor and it may also limit some of the aggregation 
options. For example, local network aggregation may not be feasible for physically 
dispersed systems. 

Computational resource considerations include CPU, GPU and memory 
considerations. The computational resources are related to the processing latency 
between source and destination as mentioned in Section 9.1.1. Therefore, when 
dealing with processing heavy workloads, such as workloads that require 
extensive image processing, computational resources become a critical factor to 
reduce latency. Furthermore, processing latency can be significantly increased by 
data format conversions, for example when parsing, validating and transforming 
text-based data formats (O’Brien et al., 2007) and when encrypting and decrypting 
data.  

Storage considerations include the read/write speed of the storage drive and 
storage space. I/O latency is heavily influenced by the storage drive’s read/write 
speed as well as the database type and the database management system. 
Furthermore, the required storage capacity must also be considered.  

 Data quality and detail considerations 

The data detail is described by the data granularity and it is directly proportional 
to the physical scope being represented. However, having detailed data that is of 
poor quality does not help and thus data quality is also considered here. Section 
9.2.1 highlights some data quality and management related considerations that 
influence how the data may be aggregated, while section 9.2.2 considers 
processing operations that form part of the aggregation process to produce the 
desired data granularity. 

9.2.1 Data quality and management considerations 

The data quality and management considerations are subjective by nature and 
thus they are case specific. However, there are some general guidelines about how 
these considerations can influence the aggregation strategy, as well as the 
performance and data quality within the DTs. 

Data veracity refers to the trustworthiness of the data. It is generally unwise to 
aggregate data that is trustworthy and accurate with data this is low quality. For 
example, in healthcare, Lutze (2019) mentions that digital trust should be 
established between user and digital system and thus it is important to determine 
if high-quality clinical data should be combined with behavioural and biometric 
data from smart wearables.  
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Furthermore, the difference in veracity as a result of the level of processing of the 
dataset should be considered. For example, a raw data dataset, a cleaned dataset 
and a summarised dataset have different levels of veracity. The data veracity is 
also highly influenced by the method of collection and if the data collected is of 
poor quality it will be detrimental to the service(s) being rendered (Therrien et al., 
2020). The pre-processing of data can help to mitigate shortcomings of poor 
collection, but only to a  point (Therrien et al., 2020). 

Data worth refers to the importance of the data. Data with high worth may justify 
more data reliability measures, such as duplication and redundancy, within the 
aggregation hierarchy. Factors that influence the worth of the data could be 
aspects such as 1) number of sources (data with fewer sources may have higher 
worth), 2) the frequency at which the data is recorded (less frequently recorded 
by have higher worth), 3) the likelihood of a particular data point value (in some 
services such as anomaly detection, anomalous values should not be aggregated 
away) and 4) long-term availability of the data (when data is collected through a 
third party, it may be useful to duplicate the data for long-term availability).  

Data accuracy refers to how closely the captured data reflects the actual data 
about the system and this is an important aspect of DT fidelity, i.e. how closely the 
DT reflects reality. Fidelity is significantly influenced by data granularity 
(Brandenbourger & Durand, 2018), but finer detail does not always produce more 
accurate models/ predictions. For example, aspects such as sensor measurement 
accuracy influence the fidelity as well as modelling aspects, such as overfitting or 
underfitting data.  

The Centre for Digital Build Britain (CDBB, 2018) states that a DT must represent 
reality at a level of accuracy suited to its purpose and this depends on 1) the 
accuracy of the data, 2) the fidelity of the models (including the validity of the 
algorithms and assumptions) and 3) the quality of the visualisation and 
presentation. Furthermore, Moyne et al. (2020) suggests including a parameter 
for prediction uncertainty and simulation accuracy, such as a probability value. 

Data consistency refers to the consistency of the data across multiple instances of 
the data in use. Without proper data consistency, different stakeholders may 
receive different data values for the same features of the physical system. Data 
consistency can refer to strong consistency, where any update to a partition of the 
dataset is immediately reflected in any subsequent access, or weak consistency, 
where updates may experience a delay before being propagated through the 
system (Lindsay et al., 2021).  

Ensuring strong data consistency will likely cause an increase in latency because 
data changes must be propagated through the distributed instances before the 
data can be accessed again. The severity of the increase in latency is dependent 
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on the time it takes the data to propagate through the system and thus how many 
distributed instances there are, how physically far apart the instances are and how 
the instances are connected. 

Data persistence refers to the management of long lived data that also relates to 
the need to store massive amounts of data (Bourque & Fairley, 2014; Pan et al., 
2020). In some domains, the data persistence and life-cycle management of data 
are dictated by domain related policies and governance (Ismail et al., 2019). 
Therefore, adequate storage capacity and scalability are important factors when 
data persistence is important. 

Villalobos, Ramírez-Durán, Diez, et al. (2020) present a three-level hierarchical 
architecture to manage persistent data effectively. The architecture follows the 
multi-temperature data management paradigm, which is a paradigm that tailors 
storage hardware choices according to the frequency with which data is accessed. 
An example is to use high performance SSDs for hot (real-time data that requires 
high read and write speeds) and standard HDDs for warm data (frequently 
accessed but older data). Furthermore, the architecture proposes the use of a pre-
processing service to clean data being transferred from the hot storage to warm 
storage and a data reduction service is proposed to reduce data when transferring 
data from warm storage to cold storage. A data management layer is also used to 
manage the data flows between the different storage units as well as between the 
storage units and a user. 

Data synchronisation refers to the matching of data values as they were recorded. 
Synchronisation is applicable when data features are generated at different rates. 
The need to cross-validate sensor readings of the same parameter and the need 
to draw correlations between parameters means that the data must be 
synchronised. The synchronisation of data can cause increases in latencies 
because when data needs to be matched in time, the slowest sampling frequency 
dictates the latency of the synchronised data. 

Data inference and interpolation relates to the observation that all automatically 
captured and treated data is likely to contain gaps and dealing with these gaps is 
important (Therrien et al., 2020). There are various strategies, such as 
interpolation techniques or model-based gap filling. Depending on the methods 
used to infer data, the computational demand placed on the system may be 
significant. 

Data heterogeneity relates to the heterogeneity of the data with regards to 
various aspects. These aspects are: 

• Data structure - Data can be structured, semi-structured or unstructured and 
some processing may be required to make data more structured. 
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• Data features - Data features can differ in data type, as well as the units that 
they use and some conversion may be required. This also includes 
heterogeneity of the level of processing of the data points. For example, 
sensor signals (voltage value), sensor readings (bit-value, such as an 8-bit 
value of 0-255) sensor unit value (e.g. temperature in Degrees Celsius). 

• Data format - Data format conversion may be necessary, especially when 
working with different types of databases. For example, converting data 
between XML, JSON, CSV or text formats. 

• Communication protocol - Some nodes within the network might need to 
utilise more than one communication protocol or, alternatively, an 
intermediary may be required to translate messages from one 
communication protocol to another.  

9.2.2 Granularity related processing operations 

The desired data granularity is achieved during aggregation through a combination 
of the following processing operations: 

• Data removal such as the removal of redundant data and invalid data: Data 
removal helps alleviate data persistence and storage issues (Pan et al., 2020) 
and contributes to smaller transmission payloads. Data removal also helps 
alleviate network strain and downstream processing strain (Huang et al., 
2020). 

• Data cleaning such as missing value handling and outlier detection and 
handling: Data cleaning methods typically increase the data veracity but at the 
cost of increase processing time. 

• Data homogenisation: This includes aspects such as structuring data into a 
common format (Pan et al., 2020) or receiving data from multiple protocols 
and outputting it in one protocol (Huang et al., 2020). Data homogenisation 
requires data and protocol conversions that increase the processing time.  

• Data summation, such as calculating descriptive statistics (minimum, 
maximum, average, and standard deviations etc.) (Huang et al., 2020): Data 
summation can also entail the structured summation of unstructured data, 
for example, provide structured, text-based data that describes the contents 
of an audio file. Data summation can significantly reduce downstream 
latencies related to processing, transmission or I/O operations and it reduces 
the storage requirements of downstream entities. 

• Data selection and filtering based on certain criteria or thresholds (Huang et 
al., 2020): Similar to data summation, selection and filtering can significantly 
reduce the latencies and loads placed on downstream entities. 
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The processing approaches above are often split into two groups. The first group 
is data removal, data cleaning, and data homogenisation. The second group of 
approaches is data selection, data filtering, and data summation. The first group 
of approaches is typically done before medium to long-term storage and is used 
when dealing with relatively smaller amounts of data and real-time data (like 
within edge devices). The second group of approaches is usually done after storage 
and is used when dealing with relatively large amounts of data, such as data from 
large historical datasets or data from many child entities (like fog servers and data 
mining practices within big data pipelines). 

 Aggregation alternatives 

The aggregation alternatives refer to various architectural decisions that 
influence, on the one hand, performance efficiency requirements discussed in 
Section 9.1 and, on the other hand, the data quality and management 
requirements discussed in Section 9.2. 

9.3.1 Processing batch density 

Processing batch density differentiates between stream processing, micro-batch 
processing and batch processing, where the batch density is influenced by: 

• Datapoint size: The size of individual datapoints of a given data feature. For 
example, a single sensor reading is typically a small datapoint, whereas a 
single photo is typically a large datapoint. 

• Number of datapoints per message: This refers to the number of data features 
in the message, as well as the number of datapoints per data feature. 

• Message frequency: The rate at which messages are being transmitted. 

• Number of messages per aggregation: This refers to the number of data 
sources that are being aggregated from. 

Furthermore, these choices are mutually exclusive for a single intermediary 
communication, but consecutive intermediary communications may utilise 
different processing batch densities. 

In stream processing, single data points from multiple sources are processed 
together. This type of processing happens frequently (relative to the frequency of 
micro-batch and batch processing). Therefore, this entails the frequent processing 
of small bits of data and is typically used when processing real-time data and when 
processing few data points from many sources. In some cases, stream processing 
is also used to break up a batch of data that is too large to process effectively. For 
example, when transmitting and processing a batch of 1000 photos, it may be 
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more effective to send and process the photos as individual messages as opposed 
to a single, large message.  

Stream processing is typically used for applications that demand low latency. The 
small batch densities require less computational power, but the network 
infrastructure can be significantly strained. Stream processing is also not typically 
suited to data synchronisation or data inference applications. Furthermore, data 
cleaning or data summation would not typically coincide with stream processing 
unless there are pre-determined rules that can be applied to single datapoints. 

In micro-batch processing, small collections of data points from multiple sources 
are processed together. This type of processing occurs less frequent than stream 
processing, but more frequent than batch processing. Micro-batch processing is 
typically used when processing relatively few data points from multiple sources 
that also require data synchronisation or in cases where network strain needs to 
be reduced (such as when sensors collect data at a very high frequency).  

As with stream processing, micro-batch processing can be used to break up a batch 
of data that is too large to process effectively. Micro-batches are also used to 
break-up a batch of data for fault tolerance and diagnosability reasons. For 
example, when a fault can cause an entire batch process to fail, the batch can be 
divided into parts where only certain parts may incur faults. Therefore, only a part 
of the batch needs to be debugged and processed again, as opposed to the entire 
batch. 

Batch processing entails the processing of a large collection of data, at a low 
frequency. Typically, batch processing combines fewer data sources, but many 
data points are collected per source, such as when aggregating large amounts of 
historical data from two or three datasets. The difference between micro-batch 
and batch processing is not clearly defined but is rather a difference of degree. 

Batch processing can be very computationally intensive and thus is not preferred 
when low latencies are important or when computational power is limited. 
Furthermore, processing large batches of data can cause data inconsistencies 
when failures cause the processing to terminate early (this scenario is the premise 
for the Atomicity principle in database management systems that follow the ACID 
principles; refer to Section 10.4 for a discussion on database management 
systems). On the other hand, data inference also typically makes use of large 
batches of data and it is easier to discern difference in data veracity when large 
batches of data are compared. 

9.3.2 Pre-storage vs post-storage aggregation  

Aggregation before the data has been placed in medium-term to long-term 
storage is referred to as pre-storage aggregation, while aggregation after 
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medium-term to long-term storage is referred to as post-storage aggregation. For 
example, in SLADTA (Section 2.3), medium-term to long-term storage corresponds 
to Layer 5 of a DT and thus when data is aggregated before it is stored in a DTI’s 
Layer 5 (through Layer 4) it is classified as pre-storage aggregation. Conversely, 
aggregation that aggregates data from Layer 5 through Layer 6 is classified as post-
storage aggregation. It is possible to split the aggregation responsibilities across 
pre-storage and post-storage aggregation. For example, high frequency sensor 
data can be pre-storage aggregated, whereas low frequency sensor data can be 
post-storage aggregated. 

Pre-storage aggregation is common when aggregating real-time data since it 
allows for reduced storage requirements by, for example, removing duplicate 
sensor values before storing the data. Pre-storage aggregation also has lower 
latencies than post-storage aggregation because data is exchanged before the 
database transactions need to be executed. Pre-storage aggregation is also more 
suited to multi-cloud environments because data can be aggregated before it is 
stored in numerous repositories in numerous cloud platforms. 

Pre-storage aggregation is typically more applicable when considering network 
and resource constrained devices that are not able to maintain their own 
repositories or when aggregating data with a high sampling rate. However, these 
benefits may be negated if each of the aggregated entities still maintain the 
aggregated data in their own data repositories. Typically, pre-storage aggregation 
makes use of stream or micro-batch processing and is not suited to batch 
processing. 

Furthermore, pre-storage aggregation is not typically applied to data that has high 
veracity or high worth. Pre-storage aggregation also typically entails data removal, 
data homogenisation and in some cases data cleaning and selection using pre-
determined rules. 

Post-storage aggregation is common when aggregating larger batches of data and 
when aggregating low frequency or historical data. Post-storage aggregation 
allows for more asynchronous and selective aggregation, but at the cost of higher 
latencies. Asynchronous aggregation here refers to the ability to wait for and 
aggregate a batch of data, such as aggregating historical data. Selective 
aggregation refers to the ability to select certain data features over certain 
timeframes without losing the original data.  

Furthermore, post-storage aggregation also allows for more redundancy of the 
data when data has a high level of worth or high level of veracity, since the original 
data is not lost when aggregating. Typically, post-storage aggregation makes use 
of micro-batch or batch processing. 
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9.3.3 Local-network aggregation vs cloud-based aggregation 

Aggregation of data within a common, local network is referred to as local-
network aggregation, whereas the aggregation of data from different networks 
within the cloud is referred to as cloud-based aggregation. In cases where data is 
aggregated in the local network, but the data sources are from different networks, 
the characteristics of the aggregation may resemble either local-network or cloud-
based aggregation. The distinction depends on 1) the number of external network 
connections, 2) the physical distance between aggregated and aggregating entity 
and 3) the capacity of the local infrastructure.  

For clarification, local-network aggregation is considered to have far fewer 
external connections, much shorter distances between entities and sufficient 
computing capacity. In contrast, cloud-based aggregation has many external 
connections, there are large distances between entities and there is abundant 
computing capacity. Therefore, local-network and cloud-based aggregation are 
not all-encompassing, but they provide two distinct reference points. As with pre-
storage and post-storage aggregation, the aggregation responsibility can also be 
split between local-network and cloud-based aggregation in a given DT and, even 
more so, in an implementation of a DT hierarchy. 

Local-network aggregation is common in environments requiring low latencies 
and high throughput or it can be used to accommodate network and resource 
constrained devices. Aggregating within the local network also means that fewer 
external network connections are required which is also beneficial for privacy and 
security. Furthermore, local-network aggregation is typically more reliable (in 
terms of message loss) and typically has less latency variability. These qualities 
make local aggregation useful when dealing with high veracity and high worth 
data. However, local-network aggregation requires more and better local 
infrastructure compared to cloud-based aggregation. Finally, in multi-cloud 
environment, local-network aggregation is preferred because the data is 
aggregated before it enters multiple cloud platforms. 

Cloud-based aggregation provides scalability in terms of computing resources and 
storage, making it easier to manage large processing loads and persistent data. 
Cloud-based aggregation also reduces the amount of on-premises computing and 
storage infrastructure required and thus the expertise required to design, install 
and maintain the infrastructure. However, cloud-based aggregation is very 
dependent on the network infrastructure and typically displays lower message 
transport reliability and higher network latencies and latency variability.  

9.3.4 Aggregate entity 

Section 8.3 discussed when it is appropriate to allocate service to a DT or to a 
service. This section further explains the differences when aggregating with a DTA 
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as opposed to a service in the services network. The distinction is intended to 
promote the separation of concerns. 

DTs in the DT hierarchy typically share a messaging mechanism internal to the DT 
hierarchy, as opposed to making data available through a service or API. 
Therefore, DTAs can make use of this common communication mechanism for 
lower latency, pre-storage aggregation that is beneficial for near real-time 
applications, such as operational control scenarios. DTAs can also pre-process and 
pre-structure data that can then be stored for faster querying ability. 

Services in a service network are typically cloud hosted and thus typically make 
use of data sharing mechanisms, such as APIs. As such, the services in the services 
network are not afforded access to the messaging mechanism internal to the 
aggregation hierarchy. Therefore, these services cannot make use of pre-storage 
or local aggregation. This restriction is intended to limit communication through 
the DT hierarchy messaging mechanism, to allow for simpler devices with lower 
resource requirements and to ensure more reliable and secure aggregation and 
communication within the DT hierarchy. 
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10 Implementation considerations 

This chapter discusses the implementation considerations step (introduced in 
Section 7.7) of the design framework. This chapter discusses some of the most 
often encountered and most important implementation decisions when designing 
individual DTs, as well as an aggregation hierarchy. In particular regarding security, 
support services, messaging mechanisms, storage solutions and hosting options. 

 Security 

Security is generally associated with the following principles (BSI et al., 2011; 
O’Brien et al., 2007):  

• Confidentiality: Degree to which the system ensures that only authorised 
entities (either human users or other software programs) have access to data. 

• Authenticity: Degree to which the identify of entities can be confirmed. 

• Integrity: Degree to which unauthorised access and/or modifications to data 
or programs can be prevented. 

• Accountability: The degree to which the actions of an entity can be traced 
back to that entity. 

• Non-repudiation: The degree to which events can be proven to have taken 
place. 

Furthermore, some developers also consider availability to be an aspect of security 
since some security attacks (such as denial of service attacks) seek to disrupt the 
normal functioning of the system, as opposed to stealing data. 

Security is often divided into security in transit and security at rest. Security in 
transit refers to the security of data when it is sent between nodes in a network, 
whereas security at rest refers to the security of data when it is stored on a device.  

Ensuring that systems have adequate security is a continual and changing process, 
but some security standards are provided here. 

Federated identity (such as single sign-on) is the preferred method of 
authentication and authorisation with an API Gateway in a services network 
(Gadge & Kotwani, 2017). This approach allows for the decoupling of the 
authentication and authorisation functions. It also makes it easier to centralise 
these two functions, to avoid a situation where every service must manage a set 
of credentials for every user. There are three major federated identity protocols: 
OpenID, SAML and OAuth (Gadge & Kotwani, 2017). Figure 6 provides a diagram 
of the OAuth2.0 protocol flow where a client must request access from a resource 
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owner and then be authorised by a server before the requested resource can be 
acquired from the resource server (IETF, 2012). OAuth2.0 is industry-standard 
protocol for authorisation at the time of writing. 

 

Figure 6: OAuth2.0 abstract protocol flow. (Adapted from IETF, 2012) 

To prevent message tampering and thereby improve integrity and confidentiality, 
encryption is standard practice (Gadge & Kotwani, 2017). The SSL/TLS protocol is 
a standard for authentication and encryption during transit and at the time of 
writing TLS 1.3 is the latest version. TLS works by using asymmetric cryptography 
(also known as public key cryptography) to authenticate one or both connected 
parties. Once the parties have been authenticated, they exchange a symmetric 
encryption key that is valid for that session (Dierks & Rescorla, 2008). 

Furthermore, additional security measures can also be undertaken to further 
improve the security of the system. For example, hosting services in a subnet that 
can only be made accessible through a proxy, such as an API gateway (Gadge & 
Kotwani, 2017) or making use of multi-factor authentication. 

 Management services 

This section lists some management service that are often used in distributed 
computing environments. The management services mentioned in this section 
were derived from Ciavotta et al. (2017, 2020), Gadge & Kotwani (2017), Kuhn et 
al. (2020), Taibi et al. (2018). The management services discussed in this section 
were introduced as part of the overall architecture in Chapter 6. 
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10.2.1 Central user interface 

The purpose of the central user interface (CUI) is to provide a single entry-point 
into the system of DTs. The CUI can serve as a flexible dashboard to display data 
for other services. However, it is expected that some DTs and their associated 
services may have their own dashboards and thus the CUI can help discover and 
redirect to other dashboards too.  

Furthermore, when considering a single DT or a small group of DTs and/or services, 
it is feasible to have a separate interface for each DT or service. In complex 
systems, however, it may be more reasonable to have a single entry-point into the 
system which can serve as a single flexible dashboard or as a directory for users to 
find the appropriate DT or service for their needs. 
 

10.2.2 Security service 

The purpose of the security service (SS) is to fulfil the role of the authentication 
server when protocols such as OAuth2.0 are used. By having a central security 
service, other services can delegate authentication and authorisation 
functionality. This also promotes the separation of concerns since each service 
does not have to implement its own security. Furthermore, updates in security 
information, such as changes to the user roles, do not have to propagate through 
the system. However, having a central security service is a trade-offs that benefits 
performance efficiency and usability more than security (Gadge & Kotwani, 2017).  
It is often considered an acceptable trade-off since there are many other methods 
of further strengthening security and it can be very cumbersome to implement 
security in every individual service. 

10.2.3 Gateway service 

The purpose of the gateway (G) is to route service requests to the appropriate 
services or DTs and it is closely linked with the CUI. The CUI allows users to make 
requests, whereas the gateway transforms and directs those requests as 
necessary. The gateway can also be used by services to establish connections with 
each other. Gateways are further often used to transform data formats or 
communication protocols between internal and third-party provided services.  

The gateway is intended to simplify communications (since services do not have 
to implement service discovery logic) and this reduces the number of requests 
made by a client. The gateway can allow for better service interoperability since 
the services only have to interface with the gateway as opposed to interfacing with 
each other. However, the API gateway can become a bottleneck and it can become 
complex when load balancing and multiple interfaces for different services are 
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considered. Server-side discovery is preferred with gateways because discovery 
logic is removed from services and it makes maintenance easier. 

10.2.4 Directory service 

The purpose of the directory service (DS) is to serve as a central metadata 
repository that can be queried for discovery information about DTs and services 
within the system. This typically includes metadata about the DTs such as a short 
description of the DTs’ contents (such as what physical subsystem is being 
reflected, what models are available, what services are offered, etc.) and how to 
contact the DT (such as an IP address or related messaging topic). Similarly, for the 
service network, the directory provides metadata about the services’ functionality 
and connection details. 

To implement the directory, the DTs and services must register themselves when 
they start up or a log must be manually maintained that provides all the relevant 
metadata. 

10.2.5 DT monitoring service 

The DT monitoring (DTM) service is responsible for monitoring individual DTs (and 
other software components within the system) to ensure maximum availability of 
the DTs. Typically monitoring is split into two categories, i.e. health monitoring and 
load monitoring. 

Health monitoring checks the connection status of DTs and resource availability 
within DTs to determine whether they are functioning as expected. 
Recommended measurements for health monitoring are (Gadge & Kotwani, 
2017): 1) CPU, memory and thread usage, 2) network connectivity, 3) security 
alerts and 4) maintenance of logs. 

Load monitoring of DTs is intended to provide data on DT performance and it 
allows for load-balancing between replicated DT instances. Recommended 
measurements for load monitoring are (Gadge & Kotwani, 2017): 1) number of 
service requests, 2) performance statistics and 3) success and exception messages 

Furthermore, the DT monitor should keep interactions with the DTs to a minimum 
and should rather interact with the platform or host that the DT is running on, 
when possible. 

10.2.6 Configuration Server 

The configuration server (CS) is a central server that contains the start-up and 
operation configuration settings for the different digital components (DTs, 
services, brokers, etc.) of the system. Non-volatile operational configuration 
settings, such as user-specific settings, preferences, etc. can also be captured 
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within the configuration server. Having a centralised configurations server allows 
for the automatic deployment and redeployment of digital components and it 
makes the reconfiguration of distributed systems much easier. 

10.2.7 Orchestration service 

The purpose of an orchestration service (OS) is to logically sequence other services 
to achieve the desired data transformation and application functionality. This is 
likely only applicable to the services network where multiple functions need to be 
performed consecutively to achieve an outcome. Services hosted within DTs are 
expected to encapsulate all the functionality required to achieve the purpose of 
the service. There may be cases where the DT delegates functionality to the 
services network, but in such cases the DT is regarded as a client and not part of 
the services network. 

 Messaging mechanisms 

Messaging mechanisms form a critical part of any distributed system and they can 
be complex in their own right. This section provides guidelines when considering 
alternative messaging and communication mechanisms. 

10.3.1 Communications middleware 

The purpose of a message-oriented middleware is to help manage heterogeneity 
and high message loads from many sources. A middleware can be used to facilitate 
communication and aggregation within or between DTs and middleware should 
be agnostic to the contents of the message and thus no processing should be 
performed on the contents of the message.  

Furthermore, the middleware decouples communication in time (allows 
asynchronous communication) and space (allows software to run in separate 
processes), in addition to decoupling communication from a specific protocol. A 
middleware can also implement certain communication patterns, such as a circuit-
breaker pattern, to improve the reliability of the connected services (Santana, 
Andrade, Delicato, et al., 2021).  

Message-oriented middleware is typically preferred in large systems with many 
concurrent users and requests and for asynchronous communication that involves 
large data loads. Some message-oriented middleware technologies also have 
support for multiple communication protocols and they are commonly required 
to have low latencies and high reliability (Karabey Aksakalli et al., 2021; 
Tovarnitchi, 2017). 
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10.3.2 Messaging patterns 

Messages can be exchanged according to different patterns and these patterns 
have different benefits and drawbacks. The messaging patterns can be broadly 
categorised into synchronous and asynchronous. Synchronous typically refers to 
request-response (such as APIs that make use of the RESTful approach) and it is 
commonly used for inter-platform communication (Bertoli et al., 2021). 
Asynchronous communication typically refers to publish-subscribe 
communication or asynchronous request-response. Publish-subscribe makes use 
of a broker or other message-oriented middleware, while asynchronous request-
response typically makes use of message queue.  

Publish-subscribe also allows an entity to simultaneously be a data provider and a 
data receiver and this is often used for inter-service communication within the 
same platform (Bertoli et al., 2021; Tovarnitchi, 2019). Publish-subscribe is 
typically preferred for one-to-many or many-to-many messaging and it is also very 
beneficial with regards to fast changing systems since the broker decouples 
publishers and subscribers, allowing for easy reconfigurations (Karabey Aksakalli 
et al., 2021).  

Table 17 provides a conceptual comparison between request-response and 
publish-subscribe messaging based on certain characteristics. The event-bus is 
conceptually very similar to publish-subscribe and is thus not considered on its 
own in Table 17.  

Table 17: Conceptual comparison of request-response and publish-subscribe 
messaging. 

Characteristic Request-response Publish-subscribe 

Pattern One-to-one One-to-many 

Participating entities Client, server Publisher, broker (usually), 
subscriber 

Data flow  Bi-directional Uni-directional (per topic) 

Coupling Tighter 
Client and server must be 
acquainted  

Looser 
Subscriber can be 
anonymous 

Synchronous/ 
Asynchronous 

Synchronous or 
asynchronous 

Asynchronous 

Typical usage Inter-platform 
communication 

Intra-platform 
communication 
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10.3.3 Messaging performance parameters and solutions 

This section provides an overview of how a messaging solution can be chosen and 
provides some of the most popular messaging protocols and technologies used 
industry and in research. 

Choosing the most appropriate protocol depends on several characteristics of the 
use case, but the most important are: environmental conditions, network 
characteristics, the amount of data transferred, security levels and quality of 
service (QoS) requirement (where QoS in the context of messaging refers to the 
level of guarantee that a message is delivered) (Ferrández-Pastor, García-Chamizo, 
Nieto-Hidalgo, et al., 2018). Based on the use case characteristics, certain 
performance parameters will be prioritised when considering a messaging 
solution. Table 18 provides some common performance parameters used to 
compare messaging solutions.  

Table 18: Descriptions for performance parameters with regards to messaging 
protocols 

Parameters Description 

Latency The amount of time it takes for a message to be 
captured, transmitted, processed and received when 
sent from a source to a destination. 

Transport 
reliability 

The ability of a protocol to transport data with 
minimal to no data loss under given conditions and for 
a given time interval. This includes a protocol’s ability 
to compensate for faulty networks with differing QoS 
levels, message queues and similar functions. 

Security Security refers to authentication, integrity and 
encryption, as described in Section 10.1. 

Interoperability The ability of a protocol to allow communication and 
data transfer between functional units in a manner 
that requires minimal to no knowledge of the unique 
characteristics of the involved units.  

Resource usage The use of the elements of a processing system that 
are required to perform an operation. This includes 
the required bandwidth for communication, as well as 
the CPU and memory usage of the protocol. 

Throughput A measure of the amount of data that a message 
protocol is transferring within a given time interval.  

Scalability A protocol’s ability and capacity to adapt to changes in 
network size and scale. 

Usability 
(Support/ 
existing 
technologies) 

The provisioning of services and materials that allow 
for the use and improvement of a protocol. This 
includes support for multiple programming languages 
and documentation to help with implementation. 
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Parameters Description 

Complex 
communication 
suitability 

The ability of a protocol to allow for different 
communication architectures and data exchanges, 
such as publish-subscribe, request-response and 
contract exchanges. 

Message order A protocol’s ability to ensure correct message order 
on the recipient’s side. 

Message priority For asynchronous communication, the ability of a 
protocol to prioritise certain messages in the message 
queue over others, depending on a priority score. 

HTTP based protocols such as RESTful APIs have good interoperability and are thus 
good for cross-platform integration (Bertoli et al., 2021; Longo et al., 2019). HTTP 
is a synchronous, request-response protocol but, for asynchronous request-
response, HTTP based protocols are often combined with message queues 
(Karabey Aksakalli et al., 2021). 

RabbitMQ is cited as a good option for a message-oriented middleware (Karabey 
Aksakalli et al., 2021; O’Donovan et al., 2015) because of its scalability and 
reliability and it supports multiple protocols and messaging patterns. Apache 
Kafka is often cited as a good technology for unidirectional data streaming because 
of its scalability and low latencies (Ciavotta et al., 2020; Ismail et al., 2019). MQTT 
and CoAP are popular lightweight and open protocols typically used in IoT where 
power and resource efficiency are important (Tovarnitchi, 2017). MQTT follows a 
publish-subscribe pattern, whereas CoAP follows a HTTP compatible request-
response pattern. 

Binary protocols such as gRPC and Apache Thrift are good for large, heterogeneous 
service environments because they require the user to publish interface 
definitions using a Interface Definition Language (IDL) (Protobuf and Thrift for 
gRPC and Apache Thrift, respectively) (Karabey Aksakalli et al., 2021). Binary 
protocols also allow for polyglot programming. 

 Storage 

Storage solutions are required in every DT, as well as in some of the services and 
thus this section provides some considerations when choosing data storage 
solutions. 

10.4.1 SQL vs NoSQL 

10.4.1.1 SQL (relational database) 

Relational databases are databases that store data in two-dimensional tables with 
rows and columns according to a schema-on-write model. The schema predefines 
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the type of data that can be inserted into a column with strict rules to ensure that 
the data is consistent. Relational databases use structured query language (SQL) 
to perform queries. 

SQL is preferred for highly structured data that requires consistency (relational 
databases are good at ensuring consistent data across multiple instances of a 
database for multiple applications), complex queries (multiple operations can be 
performed using a single transaction) and no duplication (because of relational 
propagation of data as opposed to writing to multiple tables) and is often used for 
cases like banking information and order logs. SQL is also very reliable, durable 
and it follows the ACID (atomic, consistent, Isolated, durable) model.  

Relational databases also allow for stored procedures, which are functions internal 
to the database, that ensure consistent functions and processes for multiple 
instances of the same database. Stored procedures also allow connecting tables 
to one another (create relations) to further improve consistency. Examples of 
relational databases are MySQL and PostgreSQL. 

10.4.1.2 NoSQL (non-relational database) 

NoSQL databases typically follow the BASE paradigm (Basically Available, Soft 
state, Eventually consistent) meaning that they typically lose consistency to 
improve availability and performance (Bonnet, Laurent, Sala, et al., 2011). This 
tends to make NoSQL more scalable (Ismail et al., 2019) and better for cross-node 
operations and thus they are good for large volume data processing in distributed 
environments (Bonnet et al., 2011).  

Furthermore, NoSQL is schema-less which makes the database more adaptable to 
evolutional change and better suited to handling heterogeneous data (Ismail et 
al., 2019). However, this does come at the cost of data consistency as mentioned 
above and the lack of a schema can cause data to become excessively 
unstructured which negatively impacts performance and usability. Some NoSQL 
systems do employ Multi-Version Concurrency Control (MVCC) to mitigate this 
issue by proving “weak consistency” (Bonnet et al., 2011). Non-relational or NoSQL 
databases can be further divided into document stores and wide column stores.  

Document stores (e.g. MongoDB) are intricate key-value stores where data is 
saved in parts known as documents. These documents typically contain relatively 
small amounts of semi-structured data in the form of JSON or XML. Documents 
typically represent a single data entry and thus documents are grouped into 
collections to represent multiple related data entries, such as multiple data entries 
from a single source. Documents do not have any set schema and thus entries do 
not necessarily have the same features etc. This is good for reconfigurability and 
adaptability, but data can become excessively unstructured if not managed well. 
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Document stores are also well suited to read intensive workloads (Bonnet et al., 
2011). 

Wide column stores (also known as column-family databases, such as Cassandra 
or Bigtable) are data stores that still use a table-row-column format but different 
rows can have different column formats, i.e. there is some structure, but there is 
no strict schema. Wide column stores typically have fast write speeds, allowing for 
high throughput and low latencies but they are not as consistent or predictable as 
relational databases (Bonnet et al., 2011). Furthermore, some wide column stores, 
such as Apache Cassandra, have good decentralisation support which is well-
suited to distributed environments (Ciavotta et al., 2020). 

10.4.1.3 Specialised datastores 

There are some other storage options, often grouped with NoSQL databases, that 
have more specialized functions. Some of these more specialised datastores are 
listed below along with their typical usage. 

Key-value data stores (e.g. Redis or Memcached) are a temporary data storage 
solution often used for caching. Key-value stores use system memory and thus 
have exceptionally low latencies but the storage is volatile, i.e. the storage is short-
term and temporary. They also only support simple queries.  

Object or file storage (e.g. Google Cloud Storage or Azure Blob Storage) solutions 
are typically used for file sharing and it uses a hierarchical, tree-like, file storage 
format. They are often used when dealing with large amounts of unstructured 
data such as images, videos, audio files and large csv files. 

Graph databases (e.g. Neo4J) are databases that consist of nodes and edges, 
where nodes represent entities and edges represent relationships between 
entities. This is commonly used when the relationships between nodes is an 
important factor in the data. For example, graph databases are popular for fraud 
detection because relationships between people and places can be identified 
more easily. 

Specialised time-series datastores (e.g. InfluxDB) are available that are specifically 
designed to collects large amounts of real-time data from multiple sources. 
Typically, time-series datastore are optimised for many small data entries that are 
rarely updated or deleted. 

Full-text search engines (e.g. Elasticsearch) are another type of data store that is 
specifically used for text-based searches, but they are not durable and should not 
be used as a primary data store.  
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10.4.2 Operational and transactional vs analytical datastores 

Operational datastores (technical operations data) and transactional databases 
(business data) are datastores that record the day-to-day data generated within a 
company. This often entails many simple read-write operations that require low 
latencies so that multiple concurrent applications have access to real-time data. 
This type of datastore is primarily used for dynamic real-time data used to answer 
short-term questions (Therrien et al., 2020). 

In contrast, analytical datastores are data storage systems that specialize in storing 
data for data analytics. There are various types of analytical datastores but the 
most common is a data warehouse. Other types analytical datastores include data 
lakes and data marts. Analytical datastores are typically concerned with high 
volumes of historical data that rarely changed after entry and, thus, reading and 
querying ability is often emphasised over writing speeds with analytical 
datastores. Analytical datastores are often classified according to the order of 
extraction, transformation and loading. Extract refers to the gathering of data 
from multiple sources, transform refers to the transformation of data into a more 
useful structure and format and load refers to writing the data to the store for 
further use.  

A data warehouse is subject-oriented, integrated (data is transformed and stored 
in a standard format) datastore, that typically organises data by time period. In 
data warehouses, data is not updated in real time but rather updated periodically 
because they typically contain data for data analytics and long-term strategic 
decision-making (Suba, 2018). Data warehouses conform to an extract, transform, 
load (ETL) method of data entry, meaning a schema is enforced when writing data. 
Therefore, data warehouses typically makes use of a relational database model to 
store data in a structured format (Therrien et al., 2020).  

An alternative analytics datastore to a data warehouse is a data lake, which 
conforms to an extract, load, transform (ELT) model of data entry. Data lakes do 
not enforce a schema when writing data. This makes them easy-to-use with 
unstructured data but this also holds the risk of the data becoming so unstructured 
and lacking in metadata that data becomes overlooked, misused, corrupted and 
ultimately unusable (Therrien et al., 2020). 

Furthermore, data warehouses often make use of data marts, where a data mart 
contains a subset of data that is applicable to a particular group of people within 
the company. The top-down approach of designing a data warehouse entails the 
analysis of business requirements and then designing and implementing the data 
warehouse according to those requirements. Dependent data marts (dependent 
because data comes from data warehouse) are then linked to the data warehouse 
to provide specific data. This generally ensures better consistency and 
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standardisation but the design stage may take longer and cost more to deploy 
(Suba, 2018).  

The bottom-up approach of designing a data warehouse implements independent 
data marts (data marts do not get their data from the data warehouse) as quickly 
as possible. The data warehouse is then built by integrating conformed dimensions 
from the data marts (Suba, 2018). This generally provides data storage solutions 
quickly but special care must be taken to enforce standards for seamless 
integration (Suba, 2018). 

 Hosting options 

Hosting options refer to the hardware or platform that the software is hosted on 
as well as virtualisation techniques that can help to better exploit the potential of 
the hardware. Practical solutions would most likely consider a combination of 
hosting positions as well as making use of virtualisation. 

10.5.1 Hosting positions  

10.5.1.1 Overview 

Hosting positions are here divided into three categories: local device, fog server 
and cloud. Local devices (also known as edge devices) refer to any device that is 
directly connected to the sensors and actuators that are being monitored. For 
example, a Raspberry Pi or a PLC can be local devices because they receive, 
interpret and respond to signals from sensors.  

Fog server refers to dedicated servers at the network edge that are typically used 
to provide additional computational and storage capacity within the local 
network. Fog servers are typically used when the local devices do not have 
sufficient computing capacity or power to perform all the tasks required of the 
digital system within the local network.  

The cloud refers to any computing infrastructure that is managed and maintained 
by a recognised third-party provider, where the computing infrastructure is in an 
off-premises, specialised facility. Examples of cloud providers are Google Cloud 
Platform (GCP), Amazon Web Services (AWS) and Microsoft Azure. The cloud is 
often associated with exceptionally accessible, scalable and “serverless” 
computing resources (serverless meaning the physical servers are managed and 
maintained by the cloud provider). 

10.5.1.2 Comparison of hosting positions 

Local devices are typically used for low latency, real-time decision making within 
the local data context (Villalonga et al., 2021), such as health monitoring of a 
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critical asset. The local device can also be used for time synchronisation and data 
stream buffering to, for example, manage a few high-frequency sensors (Karanjkar 
et al., 2018). Local devices can also be used to compensate for other resource 
constrained devices by providing network connectivity and relatively simple 
processing (in comparison to the processing done using fog servers or the cloud) 
(Kuhn et al., 2020). This is typically the case in wireless sensor networks, where 
resource constrained sensors transmit their data to the local device using short-
range communication protocols, such as Bluetooth Low Energy. 

Fog computing was designed to overcome the shortcomings of cloud technology 
with respect to real-time applications and physically distributed systems (Bertoli 
et al., 2021), while also overcoming the problem of limited resources found in local 
devices. Therefore, fog servers are suited to applications such as near real-time 
control of multiple devices and low latency local analytics, which require more 
computing resources than a local device typically has available (Ullah et al., 2021). 
Fog servers are also often used to reduce network congestion (Ferrández-Pastor 
et al., 2018) and to ensure reliable data transfer within the local network as well 
as to external networks (Ciavotta et al., 2020).  

Furthermore, fog servers are also intended to improve security and 
interoperability. Security is improved because fog servers can host sophisticated 
security software, such as firewalls, antivirus and anti-malware software, and can 
then act as proxies for other local devices to external networks (Cisco, 2015; 
VanDerHorn & Mahadevan, 2021). Security policies can also be met using fog 
servers since they provide location awareness that allows for specific security 
measures in accordance with local government (Bonomi, Milito, Zhu, et al., 2012). 
Fog servers are also used to improve interoperability within the local network by 
hosting sophisticated middleware (Ullah et al., 2021). 

The cloud offers accessibility and scalability in data storage and processing power 
(Harper et al., 2019; Therrien et al., 2020; VanDerHorn & Mahadevan, 2021) and 
it has exceptionally high availability (Tovarnitchi, 2017). The cloud also consists of 
more than just hardware and typically there is also a selection of service that help 
manage the cloud platform as well as help utilise its hardware more quickly and 
efficiently. Using cloud infrastructure also saves the cost of server acquisition, 
maintenance and eventual upgrade, but fast and reliable internet access is 
required (Therrien et al., 2020).  

The cloud can be divided into public cloud and private cloud. The private cloud is 
not accessible through the internet but is only accessible from the local network 
(and using VPNs). This offers better reliability, control, performance, privacy and 
security but at the cost of lower accessibility and interoperability (Givehchi, Imtiaz, 
Trsek, et al., 2014). Private cloud is typically used in industrial environments where 
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services do not focus on the user, but rather on managing a device on behalf of a 
user.  

In practice, a hybrid between public and private cloud is often used. Hybrid cloud 
combines the easier access of public cloud with the reliability and performance of 
private cloud. Generally, applications with inconsistent rising and falling demand 
for network resources are best served by the public cloud, whereas applications 
that require consistent, high levels of network resources are better served by the 
private cloud. (Odun-Ayo, Ananya, Agono, et al., 2018) 

10.5.2 Virtualisation 

Virtualisation refers to the creation of virtual hardware to allow for more versatile 
and efficient use of the actual hardware. Two forms of virtualisation are 
considered here: virtual machines (VMs) and containers. 

VMs partition a part of the hardware resources to host a separate operating 
environment. Therefore, VMs provide resource and operating environment 
isolation between software components and VMs in the cloud are also able to take 
advantage of some cloud support for load balancing and scaling to improve 
availability (Karabey Aksakalli et al., 2021). VMs are good for implementing 
security measures around a service. However, VMs are relatively slow to deploy in 
comparison to containers and, furthermore, VMs employ static resource 
partitioning. 

Containers also partition a part of the hardware resources to host a separate 
operating environment, but the method used to do this allows for dynamic 
resource allocation and faster deployment than VMs (Karabey Aksakalli et al., 
2021). Containers are typically deployed using a cluster manager (such as 
Kubernetes or Docker Swarm) to help monitor and manage them (Akbulut & 
Perros, 2019). 

Both VMs and containers are good for reliability since they allow for environment 
reproducibility (where dependencies are packaged with the software) and failure 
isolation (Santana et al., 2021). VMs enforce a more severe partitioning and thus 
greater isolation and security, but at the cost of resource elasticity and 
deployment speed.  
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11 Design patterns 

The preceding sections give a large number of design considerations that often 
have to be balanced in compromises. The number of choices can be daunting. 
However, in practice, many applications are characterised by having one high-
priority (even dominant) quality attribute. This section provides six design 
patterns, where each design pattern is focussed on a different quality attribute. It 
should be noted that the quality attributes are interdependent and thus changes 
to one quality attribute will likely also influence others. 

The quality attributes that the design patterns focus on are performance 
efficiency, reliability, maintainability, compatibility, portability and security. 
Usability and functional suitability do not have design patterns because they are 
too dependent on the use case.  

In the context of the research presented here, the design patterns serve as 
abstract case studies that demonstrate the application of the information 
presented in Chapters 9 and 10. 

In practical applications, the benefits of a pattern-based software architecture 
include ease of maintenance and reuse (Aderaldo et al., 2017) and they provide 
common solutions to common problems that can be applied to a given context 
(Bourque & Fairley, 2014). Various DTs in the aggregation hierarchy can make use 
of different design patterns. Furthermore, it is likely that more than one design 
pattern would be applied to a given DT, to iteratively improve a particular quality 
attribute. 

For the sake of brevity, the core aspects of each design pattern are not worded in 
full sentences. 

 Performance efficiency 

Related priorities:  

Responsiveness, scalability, timeliness, capacity, resource utilisation. 

Related needs:  

The related complexity needs are: N18, N24, N25, N27. The performance 
efficiency design pattern is also applicable when the latency, throughput and 
resource usage of a particular service needs to be improved. 

Performance metrics: 
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Latency, throughput, infrastructure measures. See Table 16 in Section 9.1. 

Conflicts: 

Data detail and DT fidelity, security, portability and interoperability (see Section 
4.5).  

Recommended aggregation choices: 

• Design for the separation of concerns and the distribution of load across 
multiple DTs to improve the scalability of the architecture. DTs can also be 
replicated for horizontal scalability, partitioned for z-axis scalability or 
provided with more resources for vertical scalability. This scalability is enabled 
by the hierarchical aggregation architecture as discussed in Section 5.3. 
Furthermore, the separation of concerns reduces the amount of data that 
needs to be exchanged between subsystems. 

• The span of reality should be narrowly defined and should serve a specific 
purpose to improve query response times. This includes the following: 

o Data granularity should be chosen to include only the necessary 
data for the intended purpose. 

o Typically, a DTI or DTA is used, depending on the physical scope 
being considered, because they are more dedicated to an asset and 
they encapsulate functionality as opposed to orchestrating 
functionality as done in services networks.  

o As the physical scope gets larger, the data granularity should get 
coarser and the processing operations should be more extensively 
applied. 

• Pre-storage aggregation should be used where possible to reduce latencies 
and/or to reduce storage requirements. This includes: 

o Pre-processing and pre-structuring data before storage for faster 
response times to queries. This may include performing data 
homogenisation and data synchronisation before storage. 

o Exchanging data through a messaging mechanism internal to the 
aggregation hierarchy for more rapid data to propagation to the 
higher levels of aggregation. 

o Reducing the data (e.g. by removing duplicate values) before 
storing the data.  

• Local aggregation should be used where possible to increase throughput and 
to reduce latencies. This includes: 
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o Making use of local infrastructure (i.e. local devices and fog servers) 
for reduced latencies and increased throughput. 

o Reducing the physical distance between DTIs and aggregates for 
reduced latencies 

o Avoiding limitations imposed by cloud platforms such as throttling. 

• Aggregate through stream processing or micro-batch processing. 
Furthermore, it may be beneficial to implement the aggregation processing 
operations’ logic in the DTIs to prevent the DTA becoming a bottleneck. 

Recommended implementation choices: 

• Minimise the number of intermediaries between data source and data 
destination (for automatic decision making) or requester and responder (for 
human decision making). 

• Minimise the physical distance between source and destination to minimise 
network latencies. 

• Minimise the required amount of data formatting and protocol conversions 
that need to be made, by using a commonly agreed upon format and protocol. 

• Request-response messaging patterns tend to have lower point-to-point 
latencies, but publish-subscribe is more scalable. Some message-oriented 
middleware may allow for both. 

• NoSQL databases can support higher throughput and lower latencies than SQL 
databases and NoSQL databases are more scalable. Using a specialised 
storage solution such as a time-series data store or a key-value store for 
temporary storage may also be useful. 

• Make use of local infrastructure or private cloud offerings where possible. 
Furthermore, hosting DTs and services in containers will allow for elasticity 
which is good for resource efficiency and it makes load balancing easier. 

Further recommendations: 

• Multi-threading can reduce I/O latency and multi-processing can reduce 
computational latency. However, this is also dependent on the resources that 
are available in the DTIs and DTAs. 

• A component can save resources by delegating some functions to other 
components, particularly processing intensive workloads. For example, a local 
device can save resources by using a secure fog server as a proxy where the 
fog server performs security services. 

• Caching frequently queried data as opposed to accessing the database for 
every query can greatly reduce latencies but at the cost of higher memory 
usage. 
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 Reliability 

Related priorities: 

Maturity, availability, fault tolerance, recoverability, resilience, robustness. 

Related needs: 

The related complexity needs are: N15, N18. The reliability design pattern is also 
applicable when network availability is uncertain, when messages have high 
veracity or worth, when power outages may cause disruptions, when applications 
are safety critical, etc. 

Reliability metrics: 

The length of downtime after system or component failure. The number of faults, 
failures or error messages within a given timeframe. The percentage of time that 
a system or component remains available within a given timeframe. The number 
of downstream failures (the number of failures caused by an initial failure).  

Conflicts: 

Agility (See Section 4.5). 

Recommended aggregation choices: 

• Design for separation of concerns (distribution of functional logic) and the 
distribution of load to allows for fault isolation. For example, service such as 
fault monitoring can be implemented on locally hosted, distributed DTIs (as 
opposed to a central DTA) so that even if the external network connection 
fails or if there are failures in an aggregate, the DTIs remain operational. 
Furthermore, replication and partitioning also contribute to reliability by 
improving scalability which is complementary to reliability since it allows for 
a better response to load disruptions. 

• The span of reality should be defined to leave reserve capacity for interaction, 
i.e. the full infrastructure capacity of the system should rarely be utilised. This 
essentially serves as a safety factor so that when there is some disruption to 
the system, it has additional capacity to compensate. Therefore, often a 
reliable upper bound of resource utilisation is identified that allows for stable 
hardware functioning and allows for some disruption. 

• Typically, DTIs and DTAs are used to host services with high reliability 
requirements because querying data from a single source, such as a data 
warehouse within a DT, is more predictable than data federation. The 
encapsulation of functionality within a persistent and dedicated DT is also 
more reliable than service orchestration. 
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• Post-storage aggregation is generally better for reliability because data is 
stored before it is transferred or manipulated, which allows for some 
redundancy. If latency is also important, a key-value store with periodic 
persistence, such as Redis, can be used as low latency temporary storage 
before aggregation.  

• Local aggregation is generally more reliable because the low latencies and 
high throughput of a local network allows for a higher capacity for interaction.  

• Stream processing and micro-batch processing should be used for aggregation 
to prevent large batch failures. Furthermore, it may be beneficial to 
implement the aggregation processing operations’ logic in the DTIs to prevent 
the DTA becoming a bottleneck. However, this is also dependent on the 
resources that are available in the DTIs and DTAs. 

Recommended implementation choices: 

• A DT monitoring service’s primary focus is to ensure maximum DT uptime. 
Therefore, a DT monitoring service should be used and the extent of the 
monitoring is dependent of the level of reliability required. However, at the 
very least, a heartbeat monitor or watchdog service should be implemented. 
Furthermore, if the middleware makes use of load-balancing or the circuit 
breaker design pattern, the monitoring service will have to capture 
performance metrics to enable those functions. 

• Message-oriented middleware is generally beneficial for reliability because 
middleware typically makes use of short-term and temporary storage, which 
ensures some redundancy. Middleware also decouples components in time, 
space and protocol, i.e. asynchronous communication and processing are 
enabled and interoperability between components is improved. Furthermore, 
middleware can employ load balancing and/or reliability focussed software 
design patterns such as the circuit breaker pattern. 

• In resource constrained environments, publish-subscribe messaging is 
typically more reliable than request-response because the broker decouples 
publishers and subscribers in time and space. 

• For persistent storage, SQL databases are typically more reliable and durable 
than NoSQL and they have better data consistency. 

• Private cloud hosting is the most reliable hosting position for service with 
constant loads, whereas the public cloud is the most reliable option for highly 
dynamic loads and when the service must be publicly available. However, 
transmission within the local network is more reliable than transmission 
across networks. Therefore, if reliability is required to prevent message loss, 
the services should be hosted in the cloud with short-term local storage for 
data redundancy. However, if reliability is required because of intermittent 
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network availability, then it may be preferable to host services locally on a fog 
server.  

• Virtual machines provide the best resource and operating environment 
isolation. However, they do take longer to deploy which means that when 
they do fail, they will have a longer downtime than containers. 

Further recommendations: 

• Digital twins should employ default safe state logic in case of external failures 
such as network or communication failures. 

• When components need to be replaced within the system, introduce new 
components using a split load approach, where possible. For example, when 
a new version of a service is available, the load can be split between the old 
and the new version until the new version proves adequately reliable. Cloud 
platforms, such as Google Cloud Platform, provide services that enable this 
type of load splitting. 

• Make use of physically and logically partitioned communication for different 
types of communication. For example, the aggregation communication can be 
separated from the digital twin’s internal communication, where different 
hardware modules are used by different OS processes. 

 Maintainability 

Related priorities: 

Modularity, reusability, analysability, modifiability, testability, reconfigurability. 

Related needs: 

The related complexity needs are: N6, N9, N14, N16.  

Maintainability metrics: 

The time required to add, remove or rearrange system components without 
introducing failures. The reuse rate of software modules. The time it takes to 
identify the cause of a failure.  

Conflicts: 

Security (see Section 4.5). Performance efficiency and reliability (because testing 
and maintaining distributed software logic can be harder than maintaining 
centralised logic). 

Recommended aggregation choices: 
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• The separation of concerns increases the modularity and reusability of 
software, which makes it easier to maintain the system. Modularity also 
improves the scalability and expansibility (as defined in Section 4.3) of the 
system and makes it more adaptable. However, replication and partitioning 
of DTs may cause data consistency and code versioning issues (e.g. where one 
DT gets updated but its replicant does not). 

• The span of reality should serve a clear purpose and should be defined to 
produce self-contained and modular DTs with few, well-defined and simple 
interfaces. Therefore, the more complex the system, the more aggregates and 
levels of aggregation there are likely to be. 

• Spatially focussed services would be more maintainable in a DT whereas a 
functionally focussed service may be better maintained in the services 
network. 

• The choice of pre-storage vs post-storage aggregation is not likely to affect 
maintainability much. However, it may be beneficial if DTAs establish the 
aggregation communication. This means that the DTA contains all the 
aggregation metadata, such as which DTs are aggregated and which features 
are relevant. Furthermore, it would be easier to maintain the aggregation 
processing operations’ logic if it is implemented in the DTA, but this may cause 
the DTA to become a bottleneck. 

• Cloud-based aggregation could be better for maintainability because of the 
additional support services that are provided by most cloud platforms. 

• The processing batch density is not likely to affect the maintainability of the 
DTs much, if at all. 

Recommended implementation choices: 

• Making use of a central user interface, security service, gateway service, 
directory and configuration server should be beneficial for maintainability, 
where more complex systems would benefit more. Each of these 
management services encapsulate a particular functionality that helps to 
separate concerns. This separation of concerns allows DTs and services to be 
focussed on a single responsibility by delegating functions to the management 
services.  

• Message-oriented middleware would be test best option with regards to 
maintainability. Message-oriented middleware decouples entities in time and 
space, which reduces dependencies and thus simplifies interfaces. 
Furthermore, some message-oriented middleware, such as RabbitMQ, can 
also support multiple communication patterns and protocols, which also 
simplifies interfacing. In resource constrained environments, the publish-
subscribe pattern is likely to be better than request-response because the 
broker still decouples entities in time and space. 
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• The best storage solution for maintainability depends on the data. Structured 
data may be more maintainable in an SQL database or wide column store, 
whereas semi-structured or unstructured data may be better maintained in a 
wide column store or document store. Furthermore, NoSQL datastores are 
generally better in distributed environments and some datastores such as, 
Apache Cassandra, employ multi-version concurrency control which eases the 
management of distribute data. 

Specialised datastores may also be preferred. For example, a graph database, 
such as Neo4j, provides a visual data interface that can make some data more 
comprehensible and thus manageable.  

• The cloud offers “serverless” computing which means that the maintenance 
related to hardware is delegated to the cloud provider. Furthermore, cloud 
providers often offer additional support services to help deploy and manage 
software in the cloud. 

• Containers are widely regarded to be beneficial for maintenance since they 
provide resource and operating environment isolation. Containers are usually 
deployed using a cluster manager, which makes aspects such as software 
performance monitoring and load balancing easier.  

Further recommendations: 

• Code versioning services, such as GitHub, are widely recognised as a means to 
manage code versioning more effectively, particularly when multiple 
developers are contributing to the code. 

• Check that software is backward compatibility and designing new systems 
with backward compatibility in mind can greatly contribute to maintainability. 

• Incrementally develop modular and testable software features with 
accompanying reusable unit tests. 

• Implement good document management practices so there is a dependable 
reference for system components, functions, relationships, etc.  

• Allow for over the air (OTA) programming for easier reprogramming of 
distributed devices. 

 Compatibility 

Related priorities: 

Interoperability, co-existence. 

Related needs: 

The related complexity needs are: N3, N5, N6, N7, N23, N27. 
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Compatibility metrics: 

The time required to add a new component and/or to integrate with external 
services. The processing time required to transform heterogeneous data formats 
and protocols. 

Conflicts: 

Security, performance efficiency (see Section 4.5). 

Recommended aggregation choices: 

• The separation of concerns and modularity of the architecture simplifies the 
interfaces with the DTs and services, making them more interoperable. The 
degree of isolation provided by the separation of services across DTs and the 
services network also enables easier replacement and expansion of the 
system’s functionality. However, replication and partitioning may cause 
resource contention and thus poor co-existence if it is not managed 
appropriately. 

• The span of reality should serve a clear purpose and should be defined to 
produce self-contained and modular DTs with few, well-defined and simple 
interfaces. Therefore, the more complex the system, the more aggregates and 
levels of aggregation there are likely to be. 

• The services network is intended to interface with external data source and 
services as discussed in Chapter 6. 

• Pre-storage aggregation may be beneficial for interoperability because data 
can be homogenised and structured before storage, making later querying 
easier.  

• Local aggregation is likely to be better for interoperability is cases where 
multiple cloud platforms are present (e.g. as when multiple DT owners use 
different cloud platforms) because data can be exchanged between entities 
before entering the different cloud platforms. 

• The processing batch density is not likely to make a difference in terms of 
interoperability. 

Recommended implementation choices: 

• A gateway service and directory service can both be beneficial for 
interoperability. The gateway service simplifies interfacing between services 
because services can be designed to interface with the gateway as opposed 
to multiple other services. In some cases, gateways are also used to convert 
between communication protocols. The directory service can be queried by 
DTs to retrieve interfacing information about other DTs. For example, when 
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multiple DT owners form part of the system, the DT directory can be queried 
to determine what data is available in which DTs. 

• Openly available message-oriented middleware is good for interoperability 
because it decouples the communicating entities. Furthermore, some 
message-oriented middleware can support multiple communication 
protocols and programming languages. Furthermore, binary protocols, such 
as gRPC, can also support multiple development languages for better 
interoperability. 

• In some cases, having a strict data schema can be beneficial for 
interoperability and in such cases an SQL database may work best. However, 
when dealing with semi-structured and unstructured data, it would likely be 
better to use NoSQL databases or specialised databases since they are better 
suited to handling heterogeneous data. 

• Hosting software entities in the cloud will ensure the best co-existence. 
Furthermore, hosting software entities in containers and VMs provide 
resource partitioning for better co-existence, where VMs implement stricter 
partitioning. Containers and VMs also help with versioning control which is 
important since not all versions of software are backward compatible. 
Furthermore, hosting databases and services in the public cloud makes them 
more accessible to clients (whether the clients are humans or other software 
entities). 

Further recommendations: 

• The data format should strive to be syntactically and semantically consistent 
across different DTs and metadata should be incorporated to provide context.  

• Making use of open industry standards for data formats, communication 
protocols and security protocols can greatly improve interoperability.  

 Portability 

Related priorities: 

Adaptability, installability, replaceability. 

Related needs: 

The related complexity needs are: N6, N9, N14, N16.  

Portability metrics: 
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The time it takes to install new components. The time it takes to replace 
components. The time it takes to transfer a software package from one platform 
to another or from one operating environment to another.  

Conflicts: 

Reliability (See Section 4.5). 

Recommended aggregation choices: 

• The separation of concerns and modularity help make components more 
replaceable and interchangeable. The ability to aggregate existing DTs into 
new DTs also allows for the adaptable and incremental development of 
increasing more complex DTAs and services.  

• Span of reality should be defined to be modular and may be defined with a 
more general purpose than some of the other design patterns. More DTs and 
more levels of aggregation may also be preferred to increase the pool of DTs 
that can be aggregated from. 

• Services in a service network are generally preferred for adaptability because 
functionality can be orchestrated as required. 

• Post-storage aggregation may be preferred since services in the services 
network make use of post-storage aggregation. Post-storage aggregation also 
allows for more asynchronous and selective aggregation. 

• Cloud-based aggregation may be preferred since cloud platforms are highly 
elastic and can thus adapt more easily to varying processing loads. 

• The processing batch density is not likely to make a difference to portability. 
However, services in the services network are more likely to make use of 
batch processing. 

Recommended implementation choices: 

• A directory service allows for automatic lookup of relevant information that 
can be useful for adaptability. An orchestration service may be required for 
services in the services network. 

• A message-oriented middleware and publish-subscribe messaging with a 
broker are beneficial for adaptability and replaceability since both patterns 
decouple the communicating entities.  

• NoSQL databases are more adaptable than SQL databases since they do not 
enforce a strict schema. Furthermore, the JSON type data format of document 
stores makes them particularly adaptable to changing data features. Object 
datastores are also well suited to storing large, unstructured data, such as 
images and videos. 
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• The cloud is the most adaptable hosting position since it is highly elastic and 
provides a multitude of hardware configurations to choose from. This also 
makes it easy to replace and upgrade hardware as demand on the system 
increases. 

• VMs and containers are both very beneficial for portability since they allow 
for environment reproducibility across multiple platforms and types of 
hardware. Containers are particularly popular for portability since they also 
allow for dynamic resource allocation as well as fast deployment and 
redeployment. 

 Security 

Related priorities:  

Confidentiality, integrity, authenticity, authorisation, accountability, non-
repudiation. 

Related needs: 

The related complexity needs are: N2, N4. Security become increasingly important 
when working with confidential information and often governments enforce data 
privacy requirements as well. 

Security metrics: 

The security of the system is hard to quantify but some metrics that can be used 
are the number of vulnerabilities that have been identified and the percentage of 
those that have been patched. The impact of a vulnerability being exploited, 
typically rated on a low to high scale. The attack area - the number of open 
external network connections within the local network. 

Conflicts: 

Interoperability, maintainability, performance efficiency. 

Recommended aggregation choices: 

• Distributing services across multiple DTs and the service network decreases 
the impact of a vulnerability exploit since only a subdivision of the data and 
functionality would be exposed. DTs can be replicated and partitioned to 
separate data processing over multiple instances. If one instance is 
compromised, other instances can remain unaffected and continue activity. 
Furthermore, if one instance of a partitioned DT is compromised, only the 
data within the DT instance is compromised and not all the data. 
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• The capacity for interaction should make allowance for security related 
processing and storage. For example, encryption and decryption require some 
processing, while storage is required to log activities and to keep track of 
whitelisted connections, such as approved IP addresses.  

• Services in DTs are likely to be more secure than services in the services 
network since DTs encapsulate the functionality and data required for a 
service and thus DTs require fewer external connections. 

• Post storage aggregation may be beneficial to create data redundancy.  

• Local network aggregation is more secure since the network can be closely 
monitored for suspicious activity and making use of firewalls, antivirus and 
anti-malware software can further secure the local network. The local 
network can be further isolated from the internet by using proxies. 

• Stream processing and micro-batch processing are preferred to allow for data 
partitioning to reduce the severity of exposure. 

Recommended implementation choices: 

• Standard security protocols should be employed for all communication. This 
may include authentication, authorisation and encryption between all entities 
as opposed to using federated security. This may also include implementing 
individual security measures in each DT and/or service, such as password 
protected access and multi-factor authentication measures. 

• A DT monitoring service can be used to monitor DT activity. This can help by 
detecting slow connections, by providing notifications about access by 
suspicious IP addresses and other security alerts, etc. 

• Messaging protocols and messaging technologies should support the use of 
security protocols. For example, MQTT provides easy integration with the 
SSL/TLS protocol and AMQP is a protocol that is known for its security 
provisioning. Furthermore, message-oriented middleware and brokers can 
apply additional security restrictions such as regulated access to topics and 
resources. 

• DTs should never allow direct access to a database but should rather provide 
a regulated service through which database queries can be made. 
Furthermore, any reputable database management system, whether it is an 
SQL or NoSQL database, should provide multiple features related to security. 
This typically includes provisioning for multiple users with differing levels of 
access. Encrypting data before storage in another means of securing data 
within a database.  

• Fog servers are often used to provide security. Fog servers form part of the 
local network and can thus communicate within a local private network. Fog 
servers also have substantial computing resources to implement security 
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measures. The private cloud is also preferred for security over the public cloud 
because the private cloud is linked to the local network and not the internet. 

• For virtualisation, VMs are preferred in terms of security because they provide 
better support for security and isolation than containers. 

Further recommendations: 

• DTs and services can be hosted in a private subnet that can only be accessed 
through a secure proxy with a list of whitelisted connections. 

• Vulnerable legacy systems should be retrofitted with new technologies that 
implement security measures. 

• Multi-factor authentication can be applied in individual DTs. 
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12 High-level case studies 

This chapter presents two high-level case studies. These case studies focus on 
architectural aspects, with limited implementation detail. The detailed case study 
presented in the next chapter does include more implementation details. 

The purpose of the case studies presented here is to demonstrate the systematic 
approach of the design framework in two different case studies. The case studies 
each present unique challenges and considerations and by applying the design 
framework to each of these cases the general applicability of the design 
framework is also demonstrated. 

 Water distribution system 

12.1.1 Scenario 

A water distribution system (WDS) is responsible for the transportation of water 
from storage sources to consumers with appropriate quality, quantity and 
pressure. To achieve this, the physical integrity, hydraulic integrity and water 
quality integrity of the WDS must be monitored and maintained (Van Zyl, 2014). 
Physical integrity refers to the ability to have correctly functioning components 
that also maintain a barrier between the water in the network and the external 
environment. Hydraulic integrity refers to the ability of the distribution system to 
meet all the users’ demand (domestic, commercial, industrial, etc.) while ensuring 
desirable pressures, velocities and water age in the system. Water quality integrity 
refers to the distribution system’s ability to deliver water of acceptable quality to 
its users. 

The scope of the WDS considered in this case study includes the infrastructure 
systems that are intended to deliver water to consumers with appropriate quality, 
quantity and pressure. This includes water storage systems, pipe networks, 
pumping stations and water treatment facilities. For this case study, a Kentucky 
WDS, KY12, that forms part of a set of benchmark WDSs will be used (Jolly, Lothes, 
Sebastian Bryson, et al., 2014). The KY12 WDS is the largest of the set of 12 WDS 
defined in Jolly et al. (2014) and some metadata about the data captured within 
the WDS is freely available on the University of Kentucky website (University of 
Kentucky, n.d.). Therefore, it serves as a good representative WDS for this case 
study. 

Concerns raised by researchers in the water sector include: 

• Increases in urban populations cause increases in demand, as well as water 
quality degradation (Butler, Farmani, Fu, et al., 2014).  
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• Changing weather conditions and changing rainfall patterns are creating 
uncertainty with regards to water supply. In South Africa, this has placed 
tremendous pressure on water supply and infrastructure management 
(Archer, Landman, Malherbe, et al., 2019). 

• Infrastructure is aging and, in many cases, has not been maintained properly. 
Therefore, some infrastructure needs to be replaced and demand for water 
must be managed during the development of the new infrastructure (SAICE, 
2017). 

• There is a lack of water engineering and artisanal expertise within South Africa 
and there is a lack of resources to support the expertise that is available 
(Brown, Keath & Wong, 2009; Sharma & Vairavamoorthy, 2009). This means 
that there is insufficient expertise and capacity to undertake the 
infrastructure development mentioned in the previous point. 

Researchers in the water sector have turned to digitisation to alleviate some of 
the concerns mentioned above. However, current monitoring and control 
technology can vary significantly in terms of communication methods and 
capabilities. For example, some subsystems make use of SCADA systems, while 
others make use of varying IoT communication methods such as 3G-based 
protocols, Sigfox or LoRaWAN. Furthermore, much of the sensor and control 
infrastructure is installed and maintained by third-party providers that provide 
access to the data through webhooks or APIs. 

In this context, digital twins are being proposed as a potential method to integrate 
and manage the data to facilitate services that can help alleviate some of the 
challenges. Owen (2018) provides a list of potential services that may be applicable 
to WDSs, including: 

• Active leak control prioritisation: Prioritisation of leak repairs, as well as 
pressure management in response to leaks, to minimise water loss. 

• Benchmarking: Comparing operational zones within a WDS and comparing 
various WDSs. 

• Anomaly detection: Detecting abnormal operation and irregular performance 
within the distribution network. 

• Burst awareness: Generating real-time alerts in response to bursts along with 
locational pinpointing for improved remediation. 

• Works optimisation: Optimised scheduling of maintenance to balance effort 
with impact. 
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12.1.2 Needs and constraints analysis 

This section presents the needs and constraints analysis for the WDS case study. 
The high-level FRs are listed in Table 19 along with a rationale for the FR, a 
grouping and a prioritisation (as discussed in Section 7.3). 

Table 19: Functional requirements for the water distribution system 

High-level 
functional 
requirements 

Rationale Group 
(Primary 
or 
secondary) 

Priority 

Demand 
estimation 

The growing population is causing 
increased demand for water supply and 
this demand must be accurately 
estimated so that adequate water 
supply can be ensured. 

Primary Mandatory 

Supply 
estimation 

There is considerable uncertainty with 
regards to the supply, including 
uncertainty about rainfall and 
evaporation losses, uncertainty about 
the infrastructure’s ability, the inability 
to perform effective maintenance, etc. 

Primary Mandatory 

Pressure 
management 

To supply sufficient pressure and thus 
quantity of water, the pumps and 
pump stations must be scheduled 
appropriately. 

Primary Mandatory 

Leak/ burst 
detection 

Considering the uncertainty with 
regards to water supply and the aging 
infrastructure, it is important to detect 
leaks and burst quickly and accurately 
to minimise losses. 

Primary Mandatory 

Demand 
characterisation  

For certain areas, particularly industrial 
areas, there is a need to characterise 
the demand to allows for services such 
as anomaly detection. 

Primary Desirable 

Maintenance 
scheduling 

Effective maintenance and repairs 
scheduling is required to fully utilise 
the available resources and expertise, 
while also maintaining adequate 
supply. 

Primary Desirable 

Reporting The government expects regular 
(weekly to monthly) updates of the 
water quality to ensure that it is within 
acceptable bounds. Therefore, having a 
reporting service would save managers’ 
time so that they can focus elsewhere. 

Primary Highly 
desirable 
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Furthermore, the NFRs are listed in Table 20, where the needs are given in the 
grey rows, followed by the related NFR, a rationale, an NFR grouping and an 
implications description for the NFRs (as discussed in Section 7.3).  

Table 20: Non-functional requirements for the water distribution system 

Need Provide for proprietary technologies, integrate information silos 
and integrate with existing data systems. (Related to N3, N7  and 
N23 ) 

Related NFRs Compatibility, composition constraint, service provider support. 

Rationale for 
NFRs 

The variety of monitoring and control systems that have been 
implemented by different third-party providers have resulted in 
data silos. The DTs must integrate with the third-party 
technologies to create a holistic view of the WDS and this requires 
interoperability. 

NFR grouping Quality attribute, development constraints. 

Implication of 
NFRs 

Use the compatibility design pattern to help overcome 
heterogenous communication mechanisms and data formats.  
The composition of the DTs must provide for the inclusion of APIs 
and webhooks to interface with the third-party providers. 

Need Provide for legacy systems and facilitate effective system 
maintenance and extension by allowing for efficient 
reconfiguration, possibly through some system automation. 
(Related to N6, N9, N14, N16) 

Related NFR Maintainability, solution constraint. 

Rationale for 
NFR 

The WDS consists of old and new infrastructure while the variety 
of monitoring and control systems also differ in their technological 
maturity. The differences in maturity are a result of periodic sensor 
installations and system replacements etc. over the lifetime of the 
WDS. Therefore, the DTs must allow for such differences in 
technological maturity by facilitating easy system maintenance and 
by allowing for easy reconfigurations. 

NFR grouping Quality attribute, development constraint. 

Implication of 
NFR 

Use the maintainability design pattern. The system must also make 
provision for legacy systems that do not have internet connectivity 
(many of the subsystems use short range communication). 

Need Provide reliable and highly available services. (Related to N15, 
N18) 

Related NFR Reliability. 

Rationale for 
NFR 

The WDS is a critical piece of infrastructure and the fast and 
efficient identification of leakages or other anomalies is important.  

NFR grouping Quality attribute. 

Implication of 
NFR 

Use the reliability design pattern. 

Need The system must provide for data veracity, data accuracy and 
data persistence management. (Related to N20) 

Related NFR Reliability, solution constraint. 
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Rationale for 
NFR 

The DT must ensure that the services and models receive all the 
relevant data for reliable supply and demand estimates. Therefore, 
the DT must ensure high veracity data, accurate data and the data 
must be managed for long-term use. 

NFR grouping Quality attribute, development constraint. 

Implication of 
NFR 

Use the reliability design pattern. The solution space is constrained 
in its ability to aggregate since high veracity and high accuracy data 
is usually post-storage aggregated. Persistent data must be 
managed and periodically reduced. 

Need The distributed nature of the system results in the use of wireless 
networks. (Related to N26) 

Related NFR Composition constraint. 

Rationale for 
NFR 

WDSs often make use of WSNs to capture data and these networks 
typically make use of short-range communications to send data to 
a sink node (a sink node collects the data from multiple sensors 
and sends it to a server or to the cloud). Therefore, the system of 
DTs must provide for the use of wireless networking infrastructure.  

NFR grouping Development constraint. 

Implication of 
NFR 

The reliability design pattern should be used to compensate for 
the uncertainty of the network ability. The network infrastructure 
is largely constrained to mobile network connections. 

Need Provide for resource constrained devices. (Related to N25) 

Related NFR Performance efficiency, solution constraint. 

Rationale for 
NFR 

The sensors and devices that take measurements on the pipe 
network are typically battery powered and thus they are limited in 
terms of their processing ability. 

NFR grouping Quality attribute, development constraint. 

Implication of 
NFR 

Use the performance efficiency design pattern for efficient 
resource utilisation and limit the load placed on the sensors and 
the battery powered devices. 

 

12.1.3 Physical system decomposition 

The basic components of a WDS are presented in Figure 7, where the elements 
are arranged in a simple diagram. These elements are typically used within 
hydraulic modelling software, such as EPANET, to build hydraulic models. 
Junctions are links in the network that join pipes or that mark a point where water 
enters or exits the network. Reservoirs are water storage units and typically they 
also have water treatment facilities, tanks are simple water storage units, pumps 
are links that impart energy to the water and valves are links that limit pressure or 
flow. Pipes are the conduits that transport the water and there are multiple types, 
such as transmission lines, arterial mains, distribution mains, etc.  
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Figure 7: Basic water distribution system elements. Adapted from (Rossman, 
2000) 

The KY12 WDS physical system diagram is presented in Figure 8 where all the 
hydraulic modelling elements are present except that the junctions are not 
explicitly shown. In Figure 8, the “pump” symbol represents a pump station which 
consists of more than one pump. In total the KY12 WDS consists of one reservoir 
with a water treatment facility, seven water tanks, 21 pressure reducing valves, 16 
pumps spread across four pumping stations, 2262 junctions and 649,4 km of 
piping. 

Furthermore, the WDS has been divided into operational zones which are arbitrary 
divisions used to manage the size of the WDS. Operational zones are commonly 
used in practice, although other terms, such as district metering area, are used in 
similar contexts. In practice it is also common to use pressure flow zones to divide 
the WDS into areas according to similar pressure requirements (these areas are 
typically at the same elevation). However, this case study adopts the operational 
zones concept because it allows for divisions according to parameters other than 
pressure.  
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Figure 8: KY12 water distribution system decomposition. (Adapted from 
Hoagland, n.d.) 

Table 21 presents the formal span of reality of an operational zone, but for the 
sake of brevity, the other physical components are only briefly discussed. The 
elementary components are the pipes, values, pumps and tanks. Tanks are 
relatively simple and typically only have a water level measurement. Pipes (and 
junctions), as well as pumps, can be fitted with pressure meters, flow velocity 
meters and vibration sensors.  

A reservoir with a water treatment facility is a complex system and many 
measurements can be taken to monitor and control the treatment process and 
water quality throughput the process. This case study does not consider the water 
treatment facility in detail and is only concerned with the reservoir’s water level. 
Pump stations typically consist of a collection of pumps, pipes and valves and the 
measurements that go along with them. The various sensors are also scattered 
across the pipe network and are typically located in key areas, such as areas where 
the elevation changes significantly. Furthermore, all the components also have 
static data such as longitude, latitude and elevation values. 

The frequency of data capturing within the WDS can typically be between a 
measurement every ten minutes to one measurement a day. However, for some 
components, such as the pumps, measurements can be taken more frequently. 
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Table 21: Span of reality of water distribution network operational zone. 

Physical component Operational zone (OZ) 1 

Physical system scope Two water tanks, two pressure reducing values, three 
pumping stations, unknown length of pipe, unknown 
number of junctions. 

Data characterisation 
(Data granularity) of 
data recorded/ 
generated by physical 
component 

None 

Data characterisation 
(Data granularity) of 
data within physical 
component 

Pump station data: Number of pumps, number of valves, 
pipe data, valve data. 
 
For each pump: pressure at inlet (kPa), inlet flow velocity 
(m/s), pressure at outlet (kPa), outlet flow velocity (m/s), 
power usage (kWh), status. 
 
Water tank data: Water level (m), volume (kL). 
 
Valve data: Pressure at inlet (kPa), pressure at outlet 
(kPa), status. 
 
Pipe data: Length (km), diameter (cm), material, pressure 
at node (kPa), flow velocity at node (m/s), vibrational 
data. 

Data format Unknown 

Communication  Sigfox and LoRaWAN. Other protocols not known 

Considerations and 
Constraints (Capacity for 
interaction) 

OZ 1 shares a boundary with OZ 2, where two pipes are 
bisected. OZ 1 also shares a boundary with OZ 3 where 
one pipe is bisected. 

 

12.1.4 Services allocation 

Service identification and characterisation: 

Many services can be developed with the data from the WDS. The services 
suggested for the WDS are briefly discussed below except for the virtual sensor 
service, which is used as an example for the extensive service characterisation. 
The suggested services were identified from the scenario in Section 12.1.1, as well 
as by using Table 15 in Section 8.1. 

• Benchmarking (which is similar to the fingerprint service in Table 15) is a 
service that compares an operational zone’s demand and supply ability with 
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its history, as well as with other operational zones, to better estimate demand 
and to detect trends. 

• Anomaly (which is a service in Table 15) is a service to detect water leaks and 
burst pipes, as well as other irregular component operations. Examples of 
irregular operations include irregular pressures at nodes or in pumps, low 
water tank or reservoir levels, unsafe water quality, the detection of 
cavitation, etc. The benchmarking service is similar to the anomaly service, 
but the anomaly service is used to detect irregular operation, whereas the 
benchmarking service is used to detect irregular demand or supply.  

• Scout (which is a service in Table 15) is a service that simulates future 
behaviour of the WDS or the behaviour of a sub-network. Simulation 
programs, such as EPANET, are used to design WDSs, where the supply of a 
WDS can be estimated to determine if a specified demand can be met. The 
scout service would likely just build upon an existing simulation application, 
such as EPANET, to make the simulation more applicable the WDS being 
represented. 

• Optimised maintenance scheduling is a service intended to schedule 
maintenance to make optimal use of the available resources. This service will 
likely require information generated by the other services, as well as 
information about the available personnel, costs, etc. For example, the 
anomaly service could be queried to identify where maintenance is needed, 
while the scout service could be queried to determine which repairs would be 
most beneficial. The maintenance scheduling service can then use this 
information to assign the appropriate technician for the job, record that the 
job was executed and verify that the repair was effective. 

• Reporting is a service that is intended to automate the reporting of data to 
the government. The reporting is primarily concerned with water quality data. 

• Pump scheduling is a service that schedules pump operation to maintain 
adequate pressure throughout the WDS.  

Virtual sensor service: 

Description: The virtual sensor service can make use of existing modelling 
frameworks, such as EPANET, to infer various values at any point within the system 
based on current sensor inputs. This is required since fitting sensors to all 2396 
pipes and all 2262 junctions is not feasible. The virtual sensor service will likely 
serve as an input to the benchmarking, scout and reporting services. 

Related primary functional requirements: Supply estimation, demand estimation, 
pressure management. 

Related secondary functional requirements: None identified yet. 
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Required physical scope: Operational zone with known boundary node values or 
full WDS. 

Required data granularity:  

• Data features: From pipes and junctions – size, pressure and flow velocity 
values. From pump stations – pressure and flow velocity values. From valves 
– pressure and flow velocity values. Form tanks – water level and volume. 
From reservoir – water level and volume. 

• Required sampling frequency:  For pipes and junctions, pump stations and 
valves – measurement once every ten minutes is the norm. For tanks and 
reservoir – measurements once per day is the norm. 

Service characteristics: 

• Required data update frequency: Near real-time (which is the same rate as 
the sampling frequency for this case). 

• Degree of user interaction: Periodic and possibly infrequent. The virtual 
sensing service serves more as an input to other services. 

• Intensity of interaction: Spatially focussed. 

• Persistence: Periodic or event-based 

Constraints and considerations: The virtual sensing service makes use of the 
current sensor measurements to infer measurements at other points in the WDS. 
Therefore, if the service is provided with or has access to the historical sensor 
measurements, the inferred sensor measurements can be recalculated as 
opposed to stored. This approach will further help to ease the data persistence 
management required for the actual sensor measurements. However, if latencies 
become a problem within the user interface, the virtual sensor values may need 
to be periodically pre-calculated and stored. This may be applicable if virtual 
sensing is done for a lengthy historical period. 

DT identification: 

Considering the physical system decomposition, the following digital twins may be 
feasible: 

• DTIs of pumps. The pumps are critical components within the WDS and their 
operation is closely monitored using pressure meters, flow velocity meters 
and vibrations sensors. Therefore, each pump may need its own DTI for 
reliable representation and high fidelity. 

• DTIs of clusters of pipes, junctions, valves and tanks. The geographic 
distribution and prevalence of short-range wireless communications likely 
means that there are multiple clusters of sensors spread across the WDS. 
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Therefore, DTIs can be designed to represent the elements being represented 
by such clusters, where a cluster does not necessarily have to contain all the 
elements. However, the exact distribution of the sensors is unknown and this 
may need to be verified. 

• DTAs of pump stations. The pump stations are a collection of pumps, pipes, 
junctions and valves that must work in unison. Therefore, a DTA of the pump 
station, which aggregates from the individual pump DTIs and an internal 
cluster DTI, is recommended. 

• DTA of the reservoir and treatment facility. The reservoir and treatment 
facility are together likely to be a DTA depending on the complexity of the 
treatment facility. However, the KY12 WDS dataset does not provide data or 
metadata about the water treatment facility, which makes is difficult to 
determine the complexity and composition of the treatment facility. 

• DTAs of the operational zones. The operational zones are arbitrary divisions 
of the WDS, but the divisions help manage the data and, importantly, help 
with supply and demand estimations through benchmarking. The operational 
zone divisions are chosen to minimise the interconnections between zones, 
i.e. the divisions were chosen to cross the least number of pipes possible. 
Furthermore, the dividing lines are drawn close to potential sensor clusters so 
that the boundary values can be determined by sensor values. 

• DTA of the full WDS. The WDS DTA provides a full overview of the WDS, 
including the supply and demand of the entire WDS, as well as representing 
the interconnections between the operational zones. 

Services allocation:  

Table 22 summarises the services allocation, where all potential hosting position 
for each service are indicated. 

Table 22: Potential services allocation, for WDS, based on span of reality. 

Services Pump 
DTI 

Cluster 
DTI 

Pump 
station 
DTA 

Reservoir 
DTA 

OZ* 
DTA 

WDS 
DTA 

Services 
network 

Virtual sensor     X X X 

Benchmarking      X X 

Anomaly X X X X X X X 

Scout      X X 

Optimised 
maintenance 
scheduling 

      X 

Reporting    X   X 
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Services Pump 
DTI 

Cluster 
DTI 

Pump 
station 
DTA 

Reservoir 
DTA 

OZ* 
DTA 

WDS 
DTA 

Services 
network 

Pump 
scheduling 

  X  X X X 

 *OZ: operational zone 

Based on Table 22 and considering that initially services are allocated to the lowest 
level DT that can host the service, the services allocation is: 

• Anomaly -> Pump DTI 

• Anomaly -> Cluster DTI 

• Pump scheduling -> Pump station DTA 

• Reporting -> Reservoir DTA 

• Virtual sensor -> OZ DTA 

• Benchmarking and scout -> WDS DTA 

• Maintenance scheduling -> Service network 

Furthermore, the only DT that is hosting more than one service is the WDS DTA. 
However, these services do not have any obvious conflicts and thus no separation 
is required. 

12.1.5 Design pattern selection and application 

As discussed in Section 2.3, the SLADTA is used as the reference architecture for 
the internal structure of each DT. Based on the needs and constraints analysis, the 
quality attributes that are most important for this case study are maintainability, 
reliability and compatibility. Of these, maintainability is considered the most 
important because the exact data characteristics of the system are not known and 
thus future changes will be necessary. Furthermore, the WDS has a history of 
incremental expansion and development and thus the system must make 
provision for such changes. 

Reliability is also an important factor in the lower-level WDS components and their 
accompanying services. The pumps and pump stations, the tanks, critical junctions 
and the transmission and arterial pipes are all important components and thus the 
services related to their real-time operation must also be reliable.  

Finally, compatibility is important because of the variety of communication 
mechanisms that are used within the WDS. For the communication heterogeneity, 
the DTIs would have to implement some homogenisation logic before sending the 
data further.  
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The proposed internal architectures for the DTs are presented Figure 9 and the 
aggregation and communication architecture is presented in Figure 10. With 
regards to the internal architectures, the pump DTIs’ anomaly detection service 
has been separated into anomaly training (hosted in the cloud portion of the DTI) 
and anomaly model (hosted on the local portion of the DTI). Anomaly training 
refers to data exploration and training functions related to building an anomaly 
detection model. The anomaly detection model is the model implemented to 
identify anomalies during operation. This separation has been made to ensure that 
the anomaly detection has enough storage and processing power to perform 
training, while also ensuring reliability of the service execution during operation 
despite network failures.  

Furthermore, the pumps and pump stations each have locally hosted publish-
subscribe (pub-sub) clients to allow for local network communication between the 
pump DTIs and pump station DTA. The pump station also has a watchdog service 
(as proposed by the reliability design pattern) that periodically pings the pump 
DTIs and the pump scheduling service to ensure that all the components are 
active. The middleware client (present in all DTs except the pump DTI) is the 
common communication mechanism within the DT hierarchy to ensure 
interoperable and reliable messaging within the DT hierarchy. Furthermore, 
according to the SLADTA, where a DT has layers hosted locally and in the cloud, 
data transfer from local layers to cloud layers is handled through Layer 4. 

The cluster DTI also has a webhook component within its Layer 4. The webhook is 
an HTTP message that gets pushed to a pre-defined endpoint based on the 
occurrence of events. This mechanism follows an asynchronous request-response 
pattern (discussed in Section 10.3). This is the pattern that some of the pre-defined 
communication mechanisms, such as Sigfox, use to make their short-range 
communication data available over the internet and thus it is mirrored here.  

In terms of the separation of concerns, the generated architecture spreads the 
services across multiple DTs, where each DT has a clear purpose in fulfilling the 
needs of the services attached to it. There are also multiple levels of aggregation 
which help make the architecture more maintainable by lowering the unit 
complexity of each of the DTs and services (as discussed in Section 5.2.3).  

In terms of the services hosting, most of the services (except for the maintenance 
scheduling) are primarily focussed on the physical system and thus they can be 
encapsulated in DTs. The encapsulation should allow for more predictable 
functioning, which is good for reliability, while also reducing the need for service 
orchestration. Furthermore, the maintenance scheduling service requires data 
that is not captured by the DTs, such as personnel and financial data, and thus this 
service is located within the service network. 
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Figure 9: Internal architectures for the water distribution system DTs. 
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For the communication architecture in Figure 10, there are three primary 
communication facilitators: the local broker, the message-oriented middleware 
and the gateway. The local broker is a locally hosted, lightweight, publish-
subscribe broker which is solely dedicated to facilitating communication within a 
pump station. The pump DTIs and the pump station DTA all have local network 
presence. Therefore, pre-storage aggregation is sensible to allow for reliable 
transmission, while the short-term local storage can used to capture, for example, 
two weeks’ worth of data to still provide data redundancy.  

The message-oriented middleware and gateway are both cloud hosted 
communication mechanisms. The message-oriented middleware is responsible for 
reliable and secure communication within the DT hierarchy, while the gateway 
serves as a proxy for external services and service within the services network. It 
would be possible to join them, but this would be less secure, less reliable and 
more prone to becoming a bottleneck. Furthermore, the message-oriented 
middleware is expected to facilitate publish-subscribe messaging, whereas the 
gateway is expected to facilitate service requests through REST APIs.  

The local broker and message-oriented middleware, both of which are in the DT 
hierarchy, make use of periodic micro-batch processing. This is because the 
frequency of sensor readings can vary significantly depending on the phenomena 
being measured and many of these are relatively infrequent (measurements are 
in the order of minutes to tens of minutes). The gateway, on the other hand, 
makes use of event-driven batch processing, where events are requests from 
other service or from a primary user. 
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Figure 10: Communication architecture for the water distribution system’s DTs.  

12.1.6 Discussion 

The proposed WDS architecture separates the service across all six DTs, as well as 
delegating some services to the services network. This is in accordance with the 
reliability and maintainability design patterns to distribute the service offerings 
across multiple DTs to allow for better fault isolation and separation of concerns. 
Reliability is also improved by hosting most of the services in DTs, which 
encapsulate the data and functionality required for the services, to minimise 
external dependencies. The minimised dependencies are also in accordance with 
the maintainability design pattern.  

Furthermore, local, pre-storage aggregation is facilitated between the pump DTIs 
and the pump station DTA using a local broker. The local network communication 
provides reliable communications, while the broker decouples the pump DTIs and 
pump station DTA to further improve fault isolation. Although pre-storage 
aggregation is used, data redundancy is ensured through the local, short-term 
storage solution. Making use of the short-term storage for data redundancy is 
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feasible in this case study because the data sampling frequency is relatively slow. 
The pump station DTA also makes use of a watchdog, service to further improve 
reliability. 

The message-oriented middleware is hosted in the cloud, using a container, to 
provide secure and reliable communication for all the DTs in the hierarchy. Hosting 
the middleware in a container in the cloud ensures scalability and easier 
replication with load balancing. This is in accordance with the maintainability 
design pattern, which suggests making use of cloud support for easier 
management. The message-oriented middleware also decouples the DTs to 
provide fault isolation. 

Finally, the individual DTs use an SQL database for better reliability and 
consistency, as recommended by the reliability design pattern. The services 
network includes central UI, directory service and configurations server to further 
improve the maintainability of the system of DTs. 

 Smart City 

12.2.1 Scenario 

The concept of smart city refers to the combining of information and 
communication technology (ICT) and other technologies to improve the quality of 
life (QoL) for the citizens in the city, to improve the competitiveness of the city and 
to improve the operational efficacy of urban services, while ensuring the 
availability of social, economic and environmental resources for the current 
generation and for generations to come (Kondepudi, Ramanarayanan,  Jain, Singh, 
Agarwal, Kumar, et al., 2014). Another description of smart cities is: to seek to 
improve the institutional (governance), social (intellectual and human capital and 
QoL), economic (economic and job growth) and physical (natural and 
manufactured resources) infrastructure of the city, in a sustainable way, to 
ultimately improve the wellbeing of the citizens in the city despite increases in 
population (Mohanty, Choppali & Kougianos, 2016). 

Smart cities are typically composed of other smart systems and these smart sub-
systems can vary from city to city depending on how well developed the city is. 
Some of the most common smart sub-systems are (Silva, Khan & Han, 2018): 

• Smart energy which refers to the ability to produce enough energy in a 
sustainable manner with minimal adverse effects to the environment and 
community. 

• Smart buildings which primarily refers to the management of buildings to 
reduce energy consumptions and to improve the physical security of the 
building and thus the people in it. 
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• Smart waste management which refers to the effective collection, disposal, 
recycling and recovery of waste within the city. 

• Smart transport which refers to the effective management of traffic flow 
within the city. 

Other smart sub-systems that have been mentioned in literature include smart 
healthcare, smart water management, smart warehouses and smart supply 
chains.  

Examples of smart cities include Smart London (United Kingdom) and Smart 
Santander (Spain). Smart London is one of the top ranked smart cities according 
to Berrone, Ricart, Carrasco, et al. (2018). Some of the most renowned initiatives 
that Smart London have employed include traffic congestion management 
through street monitoring and number plate recognition (for traffic modelling 
purposes) while smart public transport schemes are also being heavily invested in. 
Furthermore, Smart London also gets the citizens involved by providing platforms 
where citizens can comment and provide feedback. Large amounts of data 
captured within Smart London are also made available to citizens through London 
Datastore (Greater London Authority, 2021) to stimulate application development 
and innovation among citizens. 

Smart Santander has implemented the Smart Santander testbed (Smart 
Santander, n.d.) which is a large-scale IoT infrastructure deployment available to 
researchers. The Smart Santander testbed is primarily focussed on environment 
and traffic monitoring. It includes 2000 IoT devices for environment monitoring, 
150 mobile environment monitoring units on public vehicles, 400 parking sensors, 
60 traffic monitoring sensors and 50 irrigation related sensors for the parks.  

The Smart Santander IoT infrastructure deployment makes use of three types of 
devices: 1) IoT nodes which have various sensors built in, 2) repeaters which 
receive data from IoT nodes and forward them to the gateway to improve the 
range of the WSN and 3) the gateway which is a WiFi, ethernet or GPRS enabled 
device that either forwards the data to a central command unit or stores the data 
and makes it available through a web interface. Static deployments are typically 
located on streetlights and building facades, whereas mobile deployments are 
located on public transport vehicles.  

For this case study, as hypothetical smart city will be considered based on Smart 
London and Smart Santander. The hypothetical case study will be considered at a 
higher level than the WDS case study presented in Section 12.1. The WDS would 
typically be a sub-system within a smart city and thus the smart city case study will 
focus on demonstrating the design framework on a system-of systems. 

Stellenbosch University https://scholar.sun.ac.za



 

126 
 

12.2.2 Needs and constraints analysis 

The FRs mentioned in Table 23 are general FRs that would each likely be part of 
multiple services. For example, remote monitoring allows an operator to recognise 
traffic congestion, which can then be acted on by sending notifications to public 
servants, such as police officers, while sending directed messages at an ambulance 
to help them follow an alternative route. Furthermore, these are considered to be 
fundamental functions that will allow for a multitude of other functions.  

Table 23: General functional requirements for a smart city 

High-level 
functional 
requirements 

Description Group 
(Primary 
or 
secondary) 

Priority 

Remote 
monitoring 

Allow users to monitor activity and 
conditions within the city from a 
central command position. 

Primary Mandatory 

Notification Notify citizens, workers or authorities 
about activities or conditions within 
the city that are relevant to them. 

Primary Mandatory 

Directed 
communication 

Allow for directed communications to 
selected users to enable particular 
services. For example, notifying an 
ambulance about an alternative, less 
congested route. 

Primary Mandatory 

Exploratory 
analytics 

Allow various users to analyse data 
about various parts of the city for 
various services.  

Primary Highly 
desirable 

Furthermore, Table 24 provides some of the NFRs that are expected to be most 
applicable in the smart city context. 

Table 24: Non-functional requirements for smart cities. 

Need Accommodate multiple stakeholders with different levels of 
access to different subsets of data. (Related to N2) 

Related NFRs Security. 

Rationale for NFRs A smart city is expected to consist of multiple DTs that 
represent multiple infrastructure systems that are each 
managed by a different group of people. Furthermore, some 
data is expected to be available to the public, some data will 
only be for internal use and some data may even be restricted 
to individuals. Secure data sharing and data privacy are some 
of the primary concerns in smart cities. (Silva et al., 2018) 

NFR grouping Quality attribute. 
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Implication of NFRs Use the security design pattern to ensure secure data sharing 
and storage. 

Need Integrate with new and existing data systems, allow for 
retrofitting and allow for the integration of humans. (N6, N7, 
N8) 

Related NFRs Compatibility, security. 

Rationale for NFRs Interoperability is one of the most cited concerns in smart city 
research because of the variety of data, the variety of data 
acquisition techniques and the variety of vendors involved in 
the system composition (Silva et al., 2018). Furthermore, 
smart cities can also collect data from participating citizens 
which further emphasises the need for data privacy and 
security. 

NFR grouping Quality attributes. 

Implication of NFRs Use the compatibility and security design patterns. 

Need Allow for easy system maintenance and extension. (N14) 

Related NFRs Maintainability. 

Rationale for NFRs A smart city deployment is expected to be extended over the 
span of years. Furthermore, the city itself will also change and 
thus the system of DTs must be able to change along with the 
city. 

NFR grouping Quality attribute. 

Implication of NFRs Use the maintainability design pattern. 

Need Data management issues that are applicable within the 
smart city are veracity, consistency, persistence and 
synchronisation. (Related to N20) 

Related NFRs Solution and implementation constraints. 

Rationale for NFRs Given the variety of contributors and the variety of data 
acquisition methods, ensuring the trustworthiness of the data 
may become challenging. Some data will also likely be shared 
amongst multiple users and it is important that these users 
receive the same data. The volume of the data will make data 
persistence a pressing issue and given that variety of sensors, 
as well as the intermittent network availability, data 
synchronisation will be required.  

NFR grouping Development constraints. 

Implication of NFRs To ensure that data is trustworthy, certain measures will need 
to be put in place. Such measures may include imposing a 
data standard, implementing cross-validation of sensor values 
(comparing sensor values with the values from other nearby 
sensors) and implementing rule-based data cleaning. 
The data consistency issue will require database support for 
consistency, the persistence issue may require automated 
data reduction on older data (such as the multi-temperature 
data management paradigm) and data synchronisation will 
limit the data transfers to micro-batch transfers. 

Need Facilitate heterogeneous data handling. (Related to N23)  
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Related NFRs Compatibility. 

Rationale for NFRs Smart cities can collect data from sensors, cameras, mobile 
devices and from people who comment (Smart London 
provides multiple methods for people to comment on their 
experiences within the city). This means there will be highly 
structured data from the sensors, as well as highly 
unstructured data in the form of user comments. 

NFR grouping Quality attribute. 

Implication of NFRs Use the compatibility design pattern. 

Need Provide for resource constrained devices. (N25) 

Related NFRs Solution constraint, Performance efficiency. 

Rationale for NFRs Many of the sensing devices used in Smart Santander are 
battery powered devices. This is covered in more detail in 
Section 12.2.3. 

NFR grouping Development constraint, quality attribute. 

Implication of NFRs Resource constrained devices are limited in their processing 
ability and typically have very infrequent sensor readings. 
Furthermore, in Smart Santander, these devices also make 
use of power efficient short-range communications that are 
designed to the IEEE 802.15.4 protocol. 

Need Provide for intermittent network availability. (Related to 
N26) 

Related NFRs Solution constraint, reliability. 

Rationale for NFRs The mobile devices and sensors in Smart Santander either 
make use of General Packet Radio Service (GPRS), which is a 
mobile data standard that makes use of 2G and 3G cellular 
communication, or mobile devices connect to a gateway 
when within range of one. 

NFR grouping Development constraint, quality attribute. 

Implication of NFRs Mobile sensing devices must store data so that when network 
connectivity is not available, the data does not go lost. This 
also means that micro-batch transfers are common for such 
mobile devices. 

This case study will focus on the compatibility and security design patterns 
because interoperability and security are two of the most cited concerns in smart 
cities (Silva et al., 2018). Further consideration will also be given to maintainability 
of the smart city system of DTs. 

12.2.3 Physical system decomposition  

The physical system decomposition of the city, can be done in various ways, as is 
the case for most complex systems. However, what makes the decomposition of 
the smart city difficult is that some sub-systems are spatially concentrated and 
static, whereas other sub-systems are widely dispersed and others are mobile.  
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For the physical decomposition in this case study, a spatially focussed 
decomposition will be followed, but keeping in mind the functional decomposition 
as well. This case study considers the following high-level functional sub-systems 
of a smart city: 

• Energy systems: Infrastructure related to energy provision. This includes 
distribution infrastructure, sub-stations, metering systems, etc.  

• Water distribution systems: Infrastructure related to water provisioning. This 
includes water storage, pump stations, piping networks, etc. 

• Transport systems: Infrastructure related to the transportation of people and 
goods. This includes roads, railways, public transport mechanisms, etc. 

• Waste management systems: Infrastructure related to the collection, 
disposal, recycling and recovery of refuse (municipal solid waste) within the 
city. This includes refuse removal trucks and teams, landfills, recycling plants, 
etc. 

• Sanitation systems: Infrastructure related to the removal of sewage. This 
includes the piping infrastructure, treatment plants, etc. 

• Emergency systems: Infrastructure related to emergency response and 
physical safety and security. This includes health services, law enforcement 
and fire and rescue services. 

• Goods distribution systems: Infrastructure related to the distribution of 
goods. This includes warehouses, shopping centres, retail outlets, etc.  

As for the physical decomposition, cities are typically divided into arbitrary 
sections by municipalities to help with governance. For example, Stellenbosch 
municipality is divided into 22 wards and the city of Cape Town is divided into 116 
wards, where each ward has a different councillor that presides over it. These 
wards are spatially divided sections that can be large (more than 100 km2) or small 
(0,30 km2) and they are related to parameters such as the population density. 
Within wards there are various combinations of the following components: 

• Citizens: The people within the city are ultimately the most important part of 
the city. People are a dynamic, multifaceted and fully integrated part of any 
city. The city is there to help serve the needs of the people, but the people are 
also largely the means through which a city achieves its functions.  

• Buildings: Smart buildings are an important component in smart cities and 
smart buildings are primarily focussed on optimised power consumption and 
improved physical safety and security. Furthermore, some buildings have 
specialised functions, such as hospitals, university buildings, shopping 
centres, etc. 

• Vehicles: Smart vehicles are cars, busses, taxis, etc. that capture and transmit 
data. In Smart Santander, public transport vehicles are used to capture data 
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about the environment (such as ambient temperature, luminosity, air quality, 
etc.), as well as to capture statistics about public transport usage. As with 
buildings, some vehicles can be specialised vehicles, such as ambulances or 
police cars, in which case their contents may also need to be logged. 
Furthermore, vehicles can monitor and keep track of their own usage 
statistics, such as speed travelled, distance travelled, maintenance history, 
etc.  

• Static infrastructure components: Static infrastructure refers to small 
infrastructure components such as streetlights and traffic lights. 

• Land use areas: An area whose components share a purpose, such as a 
housing estate, a golf course or a business park. Such an area can consist of 
multiple citizens, vehicles, buildings, etc. but they are typically still smaller 
than a ward.  

• Utility networks: Distinct infrastructure systems that perform core functions 
related to cities, such as water distribution systems, sewage systems, power 
distribution systems, urban transport systems etc. These are infrastructure 
systems that form continuous networks across a city and thus they can span 
across multiple wards. 

For the span of reality, the Smart Santander IoT deployment has been used as a 
reference (Smart Santander, n.d.), while further possibilities are also considered 
based on literature. A map of the Smart Santander IoT infrastructure deployment 
is available at: https://maps.smartsantander.eu. For brevity, only a high-level data 
characterisation of a hypothetical ward will be considered here. 
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Table 25: High-level span of reality of the data available in a city ward. 

Physical component Ward 

Physical system scope Citizens, buildings, vehicles, static infrastructure 
components, land use areas and a subsection of a 
utilities network. 

Data characterisation 
(Data granularity) of data 
within physical 
component 

Citizens – GPS coordinates, comments and feedback, 
smart wearables data. 
 
Buildings – Water usage, electricity usage, security data 
(such as CCTV video), occupancy measurements, HVAC 
system information, temperature, luminosity, noise. 
 
Vehicles – Vehicle related data (such as speed and 
distance travelled), public transport related data (such as 
passenger count), environment data (such as 
temperature, luminosity, noise, air quality). 
 
Static infrastructure components – Electricity usage, 
environmental data, traffic data (such as parking space 
availability, traffic volume, road occupancy, vehicle speed 
or queue length). 
 
Land use areas – Environmental data, irrigation data (in 
parks and gardens), traffic data (in parking areas or large 
roads), occupancy measurements, power consumption. 
 
Utility network subsystem – Depends on the 
infrastructure but power consumption and water usage 
are likely measurements. 

Data format Unknown 

Communication  (Based on the Santander IoT infrastructure for 
environment and traffic monitoring) 
 
Sensing devices – IEEE 802.15.4 based protocols (e.g. 
Zigbee, 6LoWPAN, Thread) 
 
Repeater devices - IEEE 802.15.4 based protocols 
 
Gateway devices - IEEE 802.15.4 based protocols and 
WiFi or ethernet or GPRS. Specific protocols not defined. 

Considerations and 
Constraints (Capacity for 
interaction) 

None 
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12.2.4 Services allocation 

Service identification and characterisation: 

The potential for services within a smart city is substantial and covering each 
possibility here would not be feasible. Therefore, the service characterisation here 
is rather going to focus on core services that would enable the creation of other 
services. The core service suggested here are: 

• A mirror service: The mirror service here refers to the ability of the DT to 
capture, manage and present data in a meaningful way for decision-making 
regarding the physical system being represented. It also includes the ability to 
send information or commands back to the physical system if applicable. 
Furthermore, the mirror service is intended to allow for remote monitoring 
and control. 

• An anomaly service: The anomaly service may not be applicable to all DTs, but 
it is expected to form part of most DTs and thus it is included in this list. The 
anomaly service, in this context, is a service that helps operators identify 
potential unusual activity and may also include an automated notification 
service. Some examples of what an anomaly service could be used for is to 
help identify traffic congestion, help to identify excessive power consumption 
or to help identify faulty hardware. 

• System directory and navigation: The system directory is part of the 
management services mentioned in Section 10.2 but it is mentioned here 
because navigation between DTs will be important for a good user experience. 

DT identification: 

Based on the physical system decomposition the following DTs are identified: 

• Citizens may each have their own DTs, but the composition of such a DT is 
uncertain. Citizens can form part of various other systems. For example, their 
data can be tracked as a worker or their medical data can be recorded for 
hospital use, etc. Furthermore, there would be strict security and privacy 
concerns, assuming the citizens provide permission to track the data. 
Therefore, this case study will not consider DTs of citizens, but will rather 
consider citizens as voluntary data sources to other DTs. 

• Specialised buildings are likely to consist of multiple levels of DTs. For 
example, a hospital contains complex machinery, as well as specialised rooms 
and floors, that can each be represented if the need arises. Therefore, DTs of 
such buildings will be DTAs. Some less sophisticated buildings may only consist 
of a single DTI. 
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• Static infrastructure is likely to form part of a utilities network or land use area 
and thus this case study does not consider separate DTs for each static 
infrastructure component. 

• Vehicles are each likely to have their own DT. As in Smart Santander, DTs of 
vehicles can capture data about the vehicles, as well as the environment. 
Furthermore, vehicle DTs can be designed to allow an automotive 
manufacturer to monitor vehicle performance to allow for better future 
designs. Some vehicles, such as ambulances and fire trucks, may also have 
important contents that need to be monitored, such as medicines or rescue 
supplies. Therefore, similar to citizens, vehicles are very versatile and a single 
vehicle can be applicable to many stakeholders. 

• Land use areas may be represented through a DTI or DTA depending on the 
size of the area and the amount of data captured within the land use area. 
However, it is likely that a land use area would be a DTA that aggregates from 
multiple buildings, vehicles, citizens, etc. as well as other data sources, such 
as irrigation system data, static infrastructure data and environmental data. 

• Utility networks are likely to have their own DTs, such as the WDS presented 
in Section 12.1. Therefore, there is likely to be a DTA of the utility network 
that would be integrated with for the smart city representation. 

• Wards would be represented by a DTA that could aggregate data from various 
land use areas, buildings, vehicles, citizens, etc.  

• The Smart City DTA will be a high-level DT that aggregates the data from 
various ward DTs to represent the city. 

Services allocation: 

This section does not explicitly assign services to DTs, but instead makes some 
recommendations that may be applicable within the smart city context. Services 
that are focussed on operational decision-making, such as services related to 
traffic congestion or irrigation control, would likely be better served within DTs. 
Furthermore, service that require confidential data are also suggested to form part 
of the DT hierarchy. Services that citizens can interact with, such as parking spot 
directories or citizen notification services, would likely be better served in the 
services network.  

In terms of service separation, separation according to ownership is highly likely. 
In particular, the respective utility network systems are likely to be owned and 
managed by different stakeholders. Some buildings are also likely to separate 
services according to ownership. For example, a hospital may have some services 
for doctors and others for administrators. An office block that accommodates 
more than one business would also likely have separation according to ownership. 
Furthermore, the different wards each have a different councillor and each 
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councillor would likely be interested in different aspects of their ward. For 
example, one ward might experience heavy traffic congestion, another ward may 
be more concerned with water usage and another ward may be more concerned 
with crime statistics. 

Separation according to scope complexity will also play role in a system such as a 
smart city. To allow for minimal interface complexity and interchangeability of 
components, the number of services assigned to a DT should be limited. Some DTs 
may even be dedicated to a single persistent service. This separation also creates 
a greater degree of service isolation which is beneficial for security. However, it 
should be noted that any DT is expected to be able to share data to authorised 
clients (people or programs) despite the number of services hosted within the DT. 

Furthermore, the compatibility and security design patterns suggest a span of 
reality that has a specific purpose and thus a higher degree of separation is 
beneficial. The span of reality should also be defined to allow for additional 
processing and storage related to security functions. 

12.2.5 Design pattern selection and application 

This case study will focus on the compatibility and security design patterns 
because interoperability and security are two of the most cited concerns in smart 
cities (Silva et al., 2018). However, the design should also allow for maintainability 
and system extension. 

This case study will not consider the internal architecture of the DTs since there 
are many possibilities and will rather focus on the communication between the 
DTs, as well as the services in the services network. The proposed architecture is 
presented in Figure 11. 
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Figure 11: Smart city aggregation and communication architecture. 

In terms of aggregation, the most likely scenario would be pre-storage aggregation 
within the DT hierarchy, where the DT has short-term storage to provide some 
redundancy. Pre-storage aggregation will allow for some pre-processing and pre-
structuring of the data before it is stored in a long-term repository. This is intended 
to help structure and manage the data to help prevent data persistence issues, 
such as data swamps or data graveyards (discussed in N21). Furthermore, it is 
highly likely that the different stakeholders will make use of different cloud 
platforms and pre-storage aggregation is more suited to multi-cloud 
environments. 

Local aggregation is suggested where possible, but the physical distribution of a 
smart city is likely to necessitate aggregation across networks. Therefore, the 
aggregation will resemble both local network aggregation and cloud-based 
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aggregation (refer to Section 9.3.3 for a discussion on this phenomenon). It is 
expected that many gateway devices (as in Smart Santander) and fog servers (such 
as in a hospital or traffic control centre) would be located within the city. 
Therefore, Wide Area Network (WAN) aggregation can be done to still allow for 
aggregation before the data enters a cloud platform. Furthermore, a private WAN 
can be used for better throughput, better security and better reliability. 

Considering that much of the data acquisition in smart cities is done using WSNs, 
micro-batch processing and transmission is likely to be necessary. Micro-batch 
processing allows for data synchronisation and it is more suited to environments 
with intermittent network connectivity. 

Some DTs in Figure 11, such as the building DTs, show multiple lines of 
aggregation. Some of these DTs may aggregate to a land use area, if it forms part 
of a land use area with a DT, and otherwise some buildings may aggregate directly 
to the ward. However, the same data should not be aggregated by both the land 
use area DT and the ward DT since this could cause data consistency issues as 
discussed in Section 5.1. The “Other DTs” refer to more specific DTs, such as a DT 
of an irrigation system in a park. 

The vehicle DTs capture data about the vehicle, as well as the environment and 
they can contain other data, such as logs about important contents or data 
captured by vehicle manufacturers. The variety of stakeholders and the mobile 
nature of vehicles means that the vehicle DTs do not have a strong intensity of 
interaction with any specific DTAs. For example, a vehicle captures environment 
data and could be aggregated a ward DTA, but the vehicle will likely drive through 
multiple wards in a day. This means that the vehicle DT will constantly cause 
hierarchy reconfigurations and the ward DTAs will only receive data intermittently 
and possibly at unpredictable intervals. Therefore, even though a vehicle may be 
represented by a DT, its data is aggregated by the services network since it does 
not share a strong spatial relationship with any other DTs in the hierarchy. 

The services network has also been expanded from the reference architecture 
presented in Chapter 6. The services in the expanded services network are 
classified into: 1) management services (as discussed in Section 10.2), 2) external 
data integrators (services that acquire data not captured within the DT hierarchy, 
such as citizen comments), 3) proprietary developed services (services designed 
by data owners that have full access to the applicable data), 4) data manipulation 
and processing services (service that manipulate the data to make it suitable for 
third-parties) and 5) third-party services (services that are designed by third-
parties who do not have full access to the raw data).  

For messaging within the DT hierarchy, multiple message-oriented middleware 
that support a binary protocol with a publish-subscribe messaging pattern is 
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suggested. Considering the variety of stakeholders and the size the system, having 
a single message-oriented middleware is not feasible. Instead, a message-
orientated middleware for each group of aggregates may be more feasible and, in 
some cases, individual DTAs may require a dedicated message-oriented 
middleware. For example, some building DTAs, such as a DTA of a hospital, may 
require a dedicated middleware, whereas all the buildings in a land use area, such 
as a university, may use the same middleware.  

Furthermore, reputable message-oriented middleware, such as RabbitMQ or the 
Mosquitto broker, have built-in security features, such as regulated data topics, 
and support for the TLS protocol. Making use of a message queue within a 
middleware, as well as making use of a publish-subscribe pattern, further 
accommodates the need to provide for intermittent network connectivity. Finally, 
protocols such as MQTT and AMQP are also binary protocols and thus allow for 
better interoperability. For messaging within the services network, REST APIs are 
commonly used along with a federated security approach, such as OAuth2.  

For database queries, a proxy service should be used as opposed to allowing direct 
access. A proxy service for database queries can be beneficial for various reasons, 
including additional security, it allows for load balancing, it can make use of 
caching to improve response times to frequently made queries, it can be used to 
check queries, etc. 

In terms of hosting, services that require low latencies, higher security standards 
and location awareness are better served on fog servers. Services that are open to 
the public and services that entail intensive periodic processing, such as training 
machine learning algorithms, are better served in the public cloud. Furthermore, 
different stakeholders may make use of different cloud platforms and thus 
multiple services networks may also be present. In such cases, the services 
networks of other stakeholders can be considered as external services to the 
services network being considered. 

Furthermore, services that require stricter security measures or greater isolation 
can make use of VMs, but the most popular hosting option is likely to be 
containers. Containers’ ability to dynamically allocate resources allows for more 
efficient resource utilisation and containers provide more support for 
performance and reliability monitoring. Furthermore, periodically invoked 
services will also benefit from containers’ ability to deploy faster. 

Finally, multifactor authentication can be employed for more secure services. This 
level of security may be beneficial for services that deal of safety and security 
issues. For example, a traffic congestion control service that allows for directed 
communications can benefit from multifactor authentication. Health related 
services are also services that may employ multifactor authentication. 
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12.2.6 Discussion 

The smart city case study demonstrates the ability of the design framework to be 
applied to a larger and more abstract case. The design steps, principles and 
patterns can thus be applied to multiple levels of abstraction and it can be applied 
recursively to help further design sub-systems of the larger system. The security 
and compatibility design patterns were able to direct designers towards a feasible 
architecture and the few conflicts that arose between the design patterns were 
easy to resolve.  

For the smart city case study, the physical system decomposition and data 
characterisation were a vital starting point. The smart city decomposition, both 
functionally and spatially, provided a top-down perspective, while the data 
characterisation provided a bottom-up perspective of the smart city. Taking both 
views into account was very useful for the needs and constraints analysis, as well 
as all subsequent steps (particularly the DT identification step).  

Having a list of typical complexity needs (as presented in Chapter 3) helped to 
identify applicable needs within the smart city context. However, it is advisable to 
use domain related terms to rephrase the general complexity needs for the case. 
This helps to make the needs more specific to the case and more understandable 
when referred to later.  

This case study also introduced mobile DTs, such vehicles (and potentially citizens), 
which present some noteworthy characteristics. Firstly, these mobile DTs are not 
spatially bound and thus do not fit well into a DT hierarchy. Therefore, mobile DTs 
are aggregated by the services network to prevent the need to continually 
reconfigure the DT hierarchy. Secondly, the mobility of the DTs means that they 
capture data that may be applicable to many other DTs. For example, in Smart 
Santander, data is captured about the vehicle, which may be applicable to the 
vehicle owner, as well as the manufacturer, while also capturing data about the 
environment throughout the city. In such cases, where a single DT captures data 
applicable to many other DTs and stakeholders, the need for good metadata 
becomes paramount. Many data management systems make use of “tags”, which 
are functional or object-oriented categories to help users identify what data is 
applicable to them. 

In terms of communication, it is likely that multiple message-oriented middleware 
instances may be required to help manage the data load. This variety of 
middleware instances may cause some management issues and the effect of this 
still needs to be investigated. In terms of the services network, the inclusion of 
various service network groups may prove useful and this should also be further 
investigated. 
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13 Detailed case study 

The purpose of this case study is to further demonstrate the systematic approach 
and generality of the design framework. This case study further validates the 
design frameworks approach by discussing how the architecture was 
implemented and tested. The implemented architecture’s scalability and 
reconfigurability were tested to validate the ability of the architecture in key areas 
of concern. 

Section 13.1 presents the architecture design, whereas Section 13.2 discusses the 
implemented architecture and the results of the experiments. Appendix A 
provides additional details about the case study and the related testing. 

 Heliostat field architecture design 

13.1.1 Scenario 

Concentrating solar power (CSP) plants are a method of utilising solar energy for 
power production. CSP plants generally consists of three major subsystems: a 
concentrating subsystem, a thermal storage subsystem and a power generation 
subsystem (Xiao, Xie & Deng, 2018). Heliostats are orientable high-reflectance 
mirrors that form part of the concentrating subsystem. Heliostats reflect solar 
energy onto a central receiving tower which contains a heating medium, typically 
molten salt, that is heated up and redirected to the thermal storage or steam 
generation subsystems (Cruz, Alvarez, Redondo, et al., 2018). 

To sufficiently heat the molten salt, a typical heliostat field can consist of tens of 
thousands of heliostats. For example, Malan (2014) designed a prototype heliostat 
field for operation in South Africa, where 10 000 heliostats were required for a 
5 MW energy generation plant. Larger heliostat fields, such as the 392 MW 
Ivanpah heliostat field in California, can have over 300 000 software-controlled 
heliostats (BrightSource, 2013). 

The scope of this case study is the design of a heliostat field system of DTs for a 
5 MW heliostat field as presented by Malan (2014). Therefore, the design 
considers a heliostat field of about 10 000 heliostats. Malan, (2014) contributes to 
a larger research project lead by researchers from Stellenbosch University’s Solar 
Thermal Energy Research Group (STERG). STERG uses a prototype heliostat field 
called Helio100 for research and development purposes. Therefore, technical 
information about the field is gathered from the Helio100 heliostat field. 

The physical system's composition has an effect on the needs analysis and, 
therefore, the physical decomposition is given here: 
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The heliostat field can be decomposed into three tiers, namely the heliostats with 
their local controller units (LCUs), the cluster control units (CCUs) and the field 
control unit (FCU). Each heliostat consists of: a mirror, two stepper motors (that 
act as the actuators), an LCU, a battery, and some photovoltaic (PV) solar panels 
to charge the battery. The LCU is used to send control signals to the stepper 
motors to orientate the mirror and the LCU is the data source of the individual 
heliostats.  

Heliostats are also arranged into groups of six according to their support structure. 
The six heliostats that are supported by the same structure are called a pod. The 
heliostats in the Helio100 field are named according to their pod number and 
heliostat number within that pod. For example, heliostat four in pod nine would 
have the ID number 9.4 (<pod number>.<heliostat number>).  

The CCU is a small computer, such as a Raspberry Pi microcomputer, that 
calculates the motor positions for all the LCUs that are connected to it. Typically, 
a CCU has 24 LCUs (4 pods) or 30 LCUs (5 pods) connected to it via a short-range 
wireless communication protocol (radio frequency communication with serial bus 
for the Helio100 field). Furthermore, multiple CCUs are connected to the FCU 
using an ethernet connection that also provides power to the CCUs. 

The FCU at the Helio100 field is a single desktop computer that is responsible for 
six CCUs. Furthermore, the FCU also collects data from the central receiving tower 
and the weather station. For a larger field, the desktop computer would likely be 
replaced with a dedicated server. Figure 12 depicts the heliostat field’s physical 
decomposition, where a heliostat forms part of a pod, four or five pods 
communicate to a CCU and multiple CCUs are connected to the FCU. 
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Figure 12: Heliostat field hierarchy decomposition 

13.1.2 Needs and constraints analysis 

STERG is the only known stakeholder of the heliostat field and they expressed the 
following needs: 

• Heliostat fields tend to be in remote locations, such as desserts, and thus the 
field needs to be monitored remotely. Furthermore, the system of DTs must 
allow for supervisory control. For example, when the wind is too strong and 
may cause damage to the heliostats, the operator must be able to command 
the heliostats to move into their home position. 

• Heliostat field performance is highly dependent on the weather and thus 
analytics are required to better understand how the weather effects the 
energy production. 

• Manual inspection of the heliostats in a heliostat field is not feasible and thus 
physical fault detection and prognostics are needed. 

• New heliostats are often added to the heliostat field during its operational 
lifetime, to either replace damaged heliostats or enable higher energy 
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production. Therefore, the system of DTs must be able to easily accommodate 
the loss or gain of heliostats, where newer model heliostats may be slightly 
different to the old models. 

• One of the largest barriers to the wider adoption of heliostat fields is their 
high initial cost and thus cost effectiveness is a primary concern. 

Based on the above, Table 26 lists the functional requirements for the heliostat 
field. 

Table 26: Functional requirements for the heliostat field. 

High-level 
functional 
requirements 

Description Group 
(Primary 
or 
secondary) 

Priority 

Remote 
monitoring 

The status of individual heliostats, as 
well as the status of subsections of the 
field need to be presented to a user. 

Primary Mandatory 

Supervisory 
control 

It must be possible to send commands 
to individual heliostats for calibration 
purposes and it must be possible to 
send the same command to subsections 
of the field for operational control. 

Primary Mandatory 

Exploratory 
analytics 

 The relationship between the weather 
and the production capacity of the 
heliostat field is unknown and some 
insight into this relationship is required. 

Primary Highly 
desirable 

Physical fault 
detection 

Given the number of heliostats, it is not 
feasible to do manual inspection of 
each heliostat. Therefore, it must be 
possible to identify faulty hardware 
using the DT. 

Primary Mandatory 

Prognostics Scheduled maintenance of all the 
heliostats is not feasible and thus 
predictive maintenance is required to 
identify which heliostats need 
maintenance within a two-week 
timeframe (two weeks was given as the 
average time it takes to get new parts). 

Primary Highly 
desirable 
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High-level 
functional 
requirements 

Description Group 
(Primary 
or 
secondary) 

Priority 

Event logging Considering that the heliostat field can 
be controlled automatically or by a 
user, it is considered good practice to 
log events related to the heliostat field 
control. The best practise is related to 
maintenance for debugging purposes 
and to security for accountability and 
non-repudiation.  

Secondary Mandatory 

The applicable NFRs, presented in Table 27, were identified using the needs tables 
in Chapter 3 with reference to the scenario and physical system decomposition in 
Section 13.1.1. For the sake of brevity, Table 27 only presents the first two needs 
in detail, while the subsequent needs are only listed with their implications. Table 
30 in Appendix A.1 contains a more detailed description of each of the NFRs listed 
in Table 27. 

Table 27: Non-functional requirements for the heliostat field 

Need Provide for large amounts of data. (Related to N24) 

Related NFR Performance efficiency. 

Rationale for NFR Considering the size of the heliostat field, the amount of data 
generated by each heliostat and the potential resource 
constraints, there is a need to handle a large amount of data 
efficiently. Therefore, resource utilisation, scalability and 
high throughput are primary concerns and these are sub-
characteristics of performance efficiency. 

NFR grouping Quality attribute. 

Implication of NFR Use performance efficiency design pattern. 

Need Provide for resource constrained devices. (Related to N25) 

Related NFR Performance efficiency, solution constraint. 

Rationale for NFR The required performance metrics must be reached with 
minimal resource usage to increase the longevity of the 
resource constrained devices. The LCUs of the individual 
heliostats are battery powered and the batteries are charged 
using photovoltaic (PV) panels. Therefore, the LCUs are 
energy constrained and as a result the heliostat control 
engineers have limited the computational responsibilities of 
the LCUs. The resource constraints of the CCUs and FCU are 
unknown. 

NFR grouping Quality attribute. 

Implication of NFR Use performance efficiency design pattern.  
Additional code, other that the heliostat control program, 
may not be implemented on the LCUs. 
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Need Allow for system changes with minimal impact. (Related to 
N9) 

Implication  Use portability and maintainability design patterns. 

Need Provide for intermittent network availability and limited 
network bandwidth. (Related to N26) 

Implication The performance efficiency design pattern should be used 
with elements of the reliability design pattern to compensate 
for the intermittent network availability. 

Need Avoid physical resource contention amongst software 
components. (Related to N27) 

Implication Use the performance efficiency design pattern and 
incorporate elements of the compatibility design pattern 
related to co-existence. 

Need Allow for retrofitting and integrate with existing 
information systems. (Related to N6 and N7). 

Implication  The compatibility and portability design patterns must be 
applied to ensure that different technologies and 
components can be replaced without disrupting the system. 
Some of the technologies related to the data acquisition part 
of the DT are predefined and must be integrated with, such 
as the use a PostgreSQL database for local storage. 

Need Verify and validate the behaviour of DTs in response to 
system changes. (Related to N10) 

Implication Use the maintainability design pattern to improve the 
testability of the digital twins. 

Need Structure the data to prevent it becoming unusable. 
(Related to N21) 

Implication Make use of the maintainability design pattern. 

Need Provide a cost-effective solution. (Related to N28) 

Implication  The cost constraint will limit the amount of development 
time that can be spent on quality assurance and testing.  

Need Allow for easy long-term maintenance and extension. 
(Related to N14) 

Implication  Use the maintainability and portability design patterns. The 
portability design pattern is particularly important in this 
case since STERG emphasised the need to adapt to changes 
in hardware. 

Based on Table 27 and in further consultation with the consultant at STERG it was 
determined that the performance efficiency is the primary quality attribute, 
particularly with respect to the limited resource usage and high throughput 
requirements. Furthermore, the portability was cited as the next most important 
quality attribute to allow for easy hardware changes as they need to take place.  

Therefore, the architecture will primarily use the performance efficiency design 
pattern, supplemented with the portability design pattern. Furthermore, the 
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constraints will also influence some of the design choices, particularly where there 
are trade-offs involved. 

13.1.3 Physical system decomposition  

The physical system decomposition was done based on consultations with the 
engineers at the Helio100 field, a site visit to Helio100 and documentation 
provided by the engineers at Helio100. The decomposition is given in Section 
13.1.1. 

Table 28 provides the span of reality for a CCU, while the LCU and FCU are briefly 
discussed after the table. Table 31 in Appendix A.2 provides a detailed span of 
reality for each component of the heliostat field. 

Table 28: Span of reality of a heliostat field CCU. 

Physical component Cluster control unit (CCU) 

Physical system scope 24 or 30 heliostats (4 or 5 pods) 

Data characterisation 
(Data granularity) of 
data recorded/ 
generated by physical 
component 

Unique identifier for each heliostat (<pod 
number>.<heliostat number>).  
 
Status value for each heliostat – [start-up, manual move, 
running, standby, home, calibration, e-stop, offline]. 
 
Translated operational commands – The commands are 
unknown. 
 
Grena algorithm inputs – Fractional Universal Time (UT), 
date, time difference between UT and terrestrial time, 
longitude and latitude of heliostats. 
 
Grena algorithm outputs – Global coordinates of the sun, 
local coordinates of the sun. 

Data characterisation 
(Data granularity) of 
data sent to physical 
component 

Operation commands (from FCU). 
 
Grena algorithm inputs (from FCU) – Air pressure, 
ambient temperature. 
 
Individual heliostat parameters (from every LCU in the 
CCU’s scope) – Battery value, stepper motor positions, 
timestamp. 

Data format JSON formatted message. 

Communication  ZeroMQ messaging over TCP/IP and WLAN/ethernet. 
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Considerations and 
Constraints (Capacity 
for interaction) 

Available processing and storage capacity of CCUs is 
unknown. 
Assuming each CCU controls 4 pods, 417 CCUs will be 
required. Assuming each CCU controls 5 pods, 334 CCUs 
will be required. 

The LCU collects data from the battery and the two stepper motors at one-minute 
intervals. The FCU collects operational data from the central receiving tower, such 
as the temperature of the molten salt and the operational data of the various 
pumps and valves. The weather station’s data is also sent to the FCU, as well as 
the calibration images taken using an IP camera. 

13.1.4 Services allocation 

Services identification and characterisation 

According to the service patterns described Section 8.1, the requirements can be 
captured by the following service patterns: mirror, life counter and root cause. 
Mirror captures the requirements for remote monitoring and supervisory control 
while the life counter relates to the requirement for prognostics and the physical 
fault detection requirement relates to the root cause service. 

The exploratory data analysis does not neatly fit into any of the proposed service 
patterns in Table 15 and thus it will simply be referred to as exploratory data 
analytics. Therefore, there are four services to capture the five functional 
requirements. The mirror service is discussed in detail below, whereas the other 
services are only briefly discussed.  

Mirror service 

Description: The status of individual heliostats, as well as the status of subsections 
of the field need to be presented to a user. It must be possible to send commands 
to individual heliostats for calibration purposes and it must be possible to send the 
same command to subsections of the field for operational control. The actual 
control logic is performed by the CCUs and is outside the scope of the service, but 
the CCU must be sent the right commands based on user inputs. 

Related primary functional requirements: Remote monitoring and supervisory 
control. 

Related secondary functional requirements: Log files of events and log files of 
operator details and issued commands. 

Required physical scope: Individual heliostats – Some control operations are 
applicable to single heliostats, e.g. during calibration, single heliostats may need 
to be adjusted. 
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Heliostat clusters – Heliostats related to a CCU may need to be configured 
differently since the heliostat technology may differ. 

Field overview – An overview of the operational state of the heliostat field is 
required for general operational checking and full field commands, such as “move-
to-home”, are required when the wind becomes too strong and may cause 
damage. 

Required data granularity:  

Individual heliostat scale 

• Data features: LCU level - Motor position values, battery values. CCU level – 
all Grena algorithm values, heliostat status values. FCU level - calibration 
images. 

• Timescale: All data features, other than the calibration images, should be 
measured or calculated at one-minute intervals. The calibration images are 
only taken during heliostat calibration and 3 to 5 photos are taken per second. 

Heliostat clusters scale 

• Data features: CCU level - heliostat status values. 

• Timescale: Status levels should be determined once per minute. 

Full field scale 

• Data features: FCU level - Cluster status summaries, weather data. 

• Timescale: Cluster status summaries need to be updated every minute. 
Weather data is also measured once per minute. 

Service characteristics: 

• Required data update frequency: Real-time (at all levels). 

• Degree of user interaction: Remote monitoring – periodic user interaction. 
Supervisory control – user driven. 

• Intensity of interaction: Spatially focussed service. 

• Persistence: Persistent data gathering and possibly model validation. Periodic 
user interaction. 

Constraints and considerations: Remote monitoring requires access from an 
external network and thus the service must either be cloud hosted or it must allow 
for direct local network access, such as through a VPN or SSH connection. The local 
storage capacity is likely to become a constraint. The data throughput may 
become a bottleneck in a sufficiently large field. 
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The other services that are considered within the heliostat field case study are: 

• Life counter service: This is a prognostics service that makes use of historical 
data from a heliostat to determine when maintenance is required. The 
consultants at STERG expressed the need to be notified at least two weeks 
before a heliostat failure. This service would most likely make use of trend 
analytics and possibly machine learning.  

• Root cause service: This service is intended to identify physical system faults 
or failures. For example, the consultants at STERG mentioned that when PV 
panels or batteries get old, they cannot provide enough power anymore. In 
such cases, the heliostat’s movement becomes sluggish or the heliostat 
becomes inactive. The root cause service must be able to identify such faults. 

• Exploratory analytics service: This service is intended to allow the consultants 
at STERG to investigate trends in power production, such as the influence of 
the weather. Therefore, large amounts of cleaned historical data are required 
along with adequate processing ability. 

Digital twin identification and characterisation 

Based on the physical system decomposition, it is possible to build DTs of the CCUs 
and the FCU. The LCUs of individual heliostats are resource constrained and thus 
the control engineers have restricted the responsibilities of the LCUs to the 
heliostat control only. However, the CCUs do have all the LCU data of each of its 
associated heliostats. Therefore, DTIs can be built to represent CCUs and the FCU 
would be represented by a DTA. 

Service to digital twin allocation 

Table 29 provides a list of DTs that have the span of reality required by the various 
services. 

Table 29: Potential service allocation, for a heliostat field, based on span of 
reality 

Service  CCU DTI FCU DTA Service Network 

Mirror  X X 

Root cause X X X 

Life counter X X X 

Exploratory analytics  X X 

The initial service allocation is according to the lowest level DT that has the correct 
span of reality. Based on this, the root cause and life counter should be allocated 
to the individual DTIs, while the mirror service should be allocated to the DTA and 
the exploratory analytics should be allocated to the service network. The 
exploratory analytics service has been delegated to the services network because 
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it is a more generally defined, functionally focussed service that is periodically 
invoked. 

In terms of service separation, the root cause and life counter are separated. The 
life counter service is hosted in the DTI’s cloud platform and the root cause is 
hosted in the local portion of the DTI. This is because the root cause service has a 
high reliability requirement since its primary function, in this case, is to identify 
system faults (in near real-time) and notify the appropriate stakeholders 
accordingly. The life counter service, on the other hand, is more of an analytics 
service and thus computational performance and adaptability is likely to be more 
important. 

13.1.5 Design pattern selection and application 

The primary quality attributes related to the system are performance efficiency 
and portability as identified in Section 13.1.2. Therefore, the performance 
efficiency design pattern will be applied to the mirror service, while the portability 
design pattern will be applied to the exploratory analytics and life counter 
services. However, the root cause service will be designed according to the 
reliability design pattern.  

The internal architectural design of the DTIs, DTAs and the service network is given 
in Figure 13. The internal architectural design of the DTs is done according to 
SLADTA as discussed in Section 2.3. The internal design also shows the services 
allocation. The life counter service is hosted in the cloud portion of the DTI, to 
allow access to large amounts of stored data, as well as computational resources. 
The root cause service is hosted in the DTI’s local portion for better reliability. The 
services network includes the exploratory analytics services, as well as a directory 
to improve the adaptability of the design. To further improve their portability, the 
services should be hosted in containers. 

It should be noted that the mirror service should ideally be hosted within the local 
portion of the DTA, where the local network’s benefits (higher throughput and 
reliable connection) can be exploited. However, the requirement for remote 
monitoring limits this. Therefore, the mirror service has been separated into the 
mirror service dashboard (hosted in the cloud portion of the DTA) and the mirror 
service computation (hosted in the local network portion of the DTA). This allows 
for aggregation within the local network, while only sending the necessary 
aggregated data to the mirror service dashboard. 

Regarding the DT’s internal design, PostgreSQL databases are specified for each 
DTs’ short-term local data repository, because the heliostat field engineers are 
familiar with PostgreSQL. Layer 4 consists of a publish-subscribe client, which 
relates to the aggregation and communication architecture discussed later in this 
section. The long-term data storage on Layer 5 is intended for data analytics and 
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for each DT a NoSQL database is recommended, as per the performance efficiency 
and portability design patterns. NoSQL databases tend to have better scalability 
and latency performance, while also allowing for more adaptability because they 
do not enforce a strict schema.  

 

Figure 13: Internal design of the DTI (top left), DTA (top right) and service 
network (bottom) 

The aggregation hierarchy design is given in Figure 14. The broker, which is a 
locally hosted, lightweight broker, facilitates publish-subscribe communication, as 
recommended by the performance efficiency and portability design patterns. 
Publish-subscribe communication is scalable and it is well-suited to many-to-one 
communication as is the case for the heliostat field. Publish-subscribe also 
decouples the DTs, which is beneficial for reliability and replaceability. 
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The aggregation within the DT hierarchy, i.e. between the CCU DTIs and the FCU 
DTA, is pre-storage, local aggregation performed through stream processing. 
These are all recommendations made by the performance efficiency design 
pattern. Pre-storage aggregation allows for reduced data storage and lower 
latencies, while local aggregation further allows for lower latencies and higher 
throughput. Stream processing further lowers latencies. 

Communication and aggregation through the gateway are intended for event-
driven, batch data or service requests. The exploratory analytics service can use 
the gateway to request data from DTIs or the DTA and combine it with external 
data where necessary.  

 

Figure 14: Aggregation hierarchy design 

 Heliostat field implementation 

13.2.1 Implementation scope 

The implementation of the case study is intended to contribute to validating the 
design framework and design patterns by testing the architecture that was 
developed. However, a full implementation of the architecture is not feasible in 
the scope of this dissertation and instead a proof-of-concept implementation is 
presented here. The proof of concept is aimed at assessing the scalability and 
portability of the architecture to contribute to validating the performance 
efficiency and portability design patterns, respectively. Furthermore, the 
architecture will be validated against the complexity needs and NFRs in Table 27. 
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For the proof of concept, the implementation of the heliostat field system of DTs 
only considers the DT hierarchy and not a services network. Furthermore, the 
scope of the DT hierarchy is limited to a rudimentary mirror service which simply 
displays the relevant data. The mirror service is a suitable subject for the 
assessment since it requires good scalability. To assess the portability of the 
architecture, some reconfiguration scenarios are investigated. 

Furthermore, the proof of concept focusses on assessing the scalability and 
portability enabled by the aggregation hierarchy. For this case, pre-storage 
aggregation is performed and thus the experiments focus on assessing the 
scalability and portability of the DTs hierarchy’s internal communication, which 
relates to Layer 4 of SLADTA.  

13.2.2 Physical architecture 

The internal physical architectures for the DTIs and DTAs are presented in Figure 
15. Appendix A.3 presents a more detailed description of the physical architecture 
and the aggregation communication.  

 

Figure 15: Internal physical architectures for heliostat field DTIs and DTAs 

The heliostats and CCUs (Layer 1 and 2, respectively) have been simulated to allow 
for more flexibility to change experimental parameters, while also allowing for a 
scale of data that is not feasible in a laboratory environment. The short-term, local 
PostgreSQL database is used because the heliostat field control engineers are 
familiar with PostgreSQL. The long-term, cloud-based Firestore database (which is 
a NoSQL database) is a design choice according to the performance efficiency 
design pattern.  
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The DTIs’ and DTAs’ Layer 4 are custom developed Python programs, as well as 
some Google Cloud Platform (GCP) services. This Layer contains two MQTT clients 
per DT: one to send data to the cloud and another for aggregation. In the cloud, 
the GCP IoT Core, Pub/Sub and Cloud Functions services were used to receive data 
from the local Layer 4 and write the data to the appropriate data repository. 

Furthermore, three aggregation scenarios are considered in this case study. For 
the three cases, the message-oriented middleware that facilitates aggregation is: 
1) a locally hosted Mosquitto broker, 2) a cloud-based Mosquitto broker and 3) a 
GCP broker. The local Mosquitto broker performs pre-storage, local aggregation 
using MQTT, which is a lightweight publish-subscribe protocol. The cloud-based 
Mosquitto broker (hosted in a cloud-based GCP VM) performs pre-storage, WAN 
aggregation using MQTT. The cloud-hosted Mosquitto broker represents WAN 
aggregation because it only makes use of a VM hosted within the cloud and does 
not make use of any cloud specific services. Therefore, the data and the data 
pipeline components remain fully in the control of the developer. 

The GCP broker refers to GCP’s Pub/Sub service, which makes use of HTTP and a 
message queue to perform publish-subscribe communication. The Pub/Sub 
service performs pre-storage, cloud-based aggregation. The Pub/Sub service 
represents a typical cloud offered solution that could be used as a broker for 
aggregation. Furthermore, all the brokers facilitate stream processing. 

13.2.3 Scalability experiments 

The purpose of the scalability experiments is to contribute to validating the design 
framework by testing the scalability of the architecture discussed in the previous 
section. The scalability of the architecture is a key concern in this case study and 
thus these experiments aim to determine whether this concern has been satisfied.  

The scalability of the architecture was tested by performing various experiments 
using the various brokers described in the previous section. In particular, the 
scalability of each broker scenario was measured for varying message frequencies 
(discussed in Appendix A.4), varying message sizes (discussed in Appendix A.5), as 
well as through partitioning of the aggregate and/or broker (discussed in Appendix 
A.6). The scalability experiments were designed to stress the system of DTs until 
failure or until significant performance degradation occurs. 

13.2.3.1 Procedure and measurement method 

To quantify the scalability (as defined in Section 4.3), the broker being tested, as 
well as a DTA, were started before periodically adding DTIs (one DTI was added 
per minute) to gradually increase the data throughput that needed to be 
sustained. The round-trip latency was then monitored to determine when the 
system became unstable. The round-trip latency is the collective time it takes a 
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message to 1) travel from DTI to broker, 2) travel from broker to DTA, 3) be 
processed by the DTA, 4) travel from DTA to broker and 5) travel from broker to 
original DTI. Round-trip latency is a standard method of measuring latency 
because the start and end timestamps are generated by the same machine to 
ensure accurate measurements. 

To better understand the experimental method and the variables, please refer to 
Figure 16, which is an example of a typical scalability experiment output graph. In 
this graph, the coloured vertical lines indicate where a DTI is initialised and the 
jagged graph thereafter (in the same colour) is the time a message was received 
(x value) plotted against the round-trip latency for that message (y value).  

 

Figure 16: Limit point of the DT aggregation. 

Some terms that will be used to explain the behaviours of the data pipeline are: 

• The limit point is defined as the point where the latency starts increasing 
rapidly and probably unbounded (circled in red in Figure 16). This was a 
common occurrence for all the scalability experiments. 

• The threshold period is defined as the minute before the limit point is reached 
and it is one minute long because there is a one-minute interval between the 
start of successive DTIs. This threshold period is the period during which the 
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system of DTs was able to sustain the largest throughput, and thus indicates 
the data pipeline’s best performance while stable. The one-minute delay 
period between DTI starts was a choice that allowed the data pipeline to reach 
steady-state before increasing the load further.  

13.2.3.2 Discussion of results 

Figure 17 presents the results of the message frequency experiments for each of 
the broker scenarios (discussed in Section 13.2.2), given a single broker and a 
single DTA configuration. The vertical bars in the figures indicate the range of the 
values observed in repeated experiments, while the lines pass through the mean 
values. The latency and percentage message loss results, as well as all the results 
for the varying message size experiments are available in Appendices A.4 and A.5, 
respectively. 

Figure 17 presents the number of DTIs that could be sustained at different 
message frequencies, as well as the collective message threshold at different 
message frequencies. The number of DTIs refers to the maximum number of DTIs 
that could be sustained (measured within the threshold period) and the collective 
message threshold refers to the number of messages that were processed by the 
DTA per second (within the threshold period). The message frequency refers to 
the frequency at which DTIs send their messages and it was controlled by adjusting 
the sleep time of the DTIs. The sleep time is the time in between logic execution 
cycles of a DTI, where a logic execution cycle refers to the DTI reading data, 
processing data and sending the data as a message (Appendix A.3 describes the 
modules that relate to these steps).  
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Figure 17: Number of DTIs and the collective message threshold for different 
message frequencies. 

The results of these experiments indicate that message frequency of the DTIs have 
a significant effect on the number of DTIs that can connect to the broker and DTA, 
while the collective message threshold remains relatively constant. This is 
significant because it indicates that throughput (represented by collective 
message frequency) is relatively constant and thus to accommodate more DTIs, 
the message frequency should be reduced. It also provides a basis to extrapolate 
how many DTI could connect to a DTA and thus how many heliostats could be 
represented. 

The results also indicate that message size is not as significant as message 
frequency when considering the scalability. However, at sufficiently large message 
sizes (20 kB or more for this case study) the message size does become increasingly 
more important to consider. The message size experiments also emphasised the 
need to make provision for poor network connectivity and MQTT was ideal for 
this. With a QoS level of 1 (QoS = 1 is supposed to guarantee that each message is 
received at least once), the message loss was very low, even near maximum DTA 
capacity. Therefore, in this architecture, MQTT and the Mosquitto broker (which 

Stellenbosch University https://scholar.sun.ac.za



 

157 
 

was the message-oriented middleware) allowed the architecture to satisfy N26 in 
Table 27 (the need to provide for intermittent network connectivity).  

Extrapolating the results (as presented in Appendix A.7), it was determined that 
the locally hosted Mosquitto broker could sustain 460 DTIs (13800 heliostat), the 
cloud-hosted Mosquitto broker could sustain 310 DTIs (9300 heliostats) and the 
Pub/Sub service could sustain 80 DTIs (2400 heliostats). The limiting factor was the 
DTA’s processing ability when using the Mosquitto brokers or cloud throttling 
when using the Pub/Sub service. The network bandwidth also became a limiting 
factor when large messages were being communicated. Based on the extrapolated 
results, the locally hosted Mosquitto broker and single DTA configuration could 
sustain the data load for the proposed 5 MW heliostat field. Therefore, for this 
case study, the architecture satisfies the need to sustain a large amount of data 
(N24 in Table 27). 

To further demonstrate the scalability of the architecture, the DTA and/or broker 
were/was partitioned. In particular, four cases were investigated: 1) a local and a 
cloud-based Mosquitto broker with a single DTA, 2) a local and a cloud-based 
Mosquitto broker with a DTA dedicated to each broker, 3) a single cloud-based 
Mosquitto broker with two DTAs and 4) the Pub/Sub service with two DTAs. The 
results are presented in Table 32 in Appendix A.6.  

The results demonstrate the scalability of the architecture, where an additional 
DTA resulted in a 50% increase in message throughput in comparison to the best 
single broker, single DTA equivalent (36 messages per second in comparison to 24 
messages per second). In comparison to the single cloud-hosted Mosquitto broker 
with a single DTA, the partitioning resulted in a 125% increase in message 
throughput. Similarly, the Pub/Sub service achieved a 78% increase in throughput 
with an additional DTA. It should be noted that these results were achieved 
through static partitioning, where half the field as assigned to one DTA and the 
other half to the other DTA. If dynamic partitioning were used or if the load was 
distributed according to each host machine’s ability, the result may be better. 

Based on the results discussed above, the architecture was able to scale to the 
demand required for the heliostat field. Therefore, in terms of scalability, the 
design framework and performance efficiency design pattern were able to guide 
the design of a feasible architecture. 

13.2.4 Reconfigurability experiments 

The purpose of the reconfigurability experiments is to contribute to validating the 
design framework by testing the reconfigurability of the architecture discussed in 
Section 13.2.2. Therefore, this section discusses the effort required to perform 
certain reconfigurations on the system of DTs and thus it serves as a qualitative 
evaluation of the portability and maintainability of the architecture. Three 
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reconfiguration scenarios were investigated: adding or removing a DTI, adding or 
removing a DTA and adding or removing a broker. The reconfigurations required 
for each scenario are discussed in Appendix A.8. 

The modularity of the Layer 4 design (as discussed in Appendix A.3) means that 
many of the software modules (such as the communication modules) of the DTIs 
and DTAs are the same (differences in communication are accommodated through 
the configuration file). Therefore, the DTIs’ and DTAs’ reconfigurations are also 
similar (as discussed in Appendix A.8). Adding a new DT (DTI or DTA) into the 
system of DTs requires changes to three components: the DTI’s Layer 4, the DTA’s 
Layer 4 and the cloud platform. All these changes are configurations file changes 
and thus no source code changes have to be made. The most time and effort were 
spent on configuring and generating the security credentials, such as assigning 
new security certificates and encryption keys to the DTs. 

In terms of failures, if a DTI fails, it causes a notification within the cloud platform, 
but it does not influence the performance of any of the other DTIs and the DTA 
will simply stop updating the data profile of the DTI that failed. If a DTA fails, it 
causes all aggregation related to that DTA to cease, but the DTIs still communicate 
their data to their respective long-term repositories within the cloud. As soon as 
the DTA recovers and reconnects to the broker, the aggregation automatically 
continues. 

Furthermore, a Mosquitto broker can also be added to the system of DTs by 
specifying the appropriate parameters in the configuration file. Similarly, the 
Pub/Sub service also only requires a configuration change to accommodate 
another DTA. If either broker fails, the aggregation ceases, but the broker can be 
automatically restarted using batch script. Broker failure also required the DTs to 
be restarted before they could reconnect to the broker. However, the DTs could 
implement an exponential backoff reconnection approach to remedy this 
problem, but this would have to be verified. 

The results of the reconfigurability experiments contributed to demonstrating the 
portability of the architecture, while also demonstrating how horizontal and z-axis 
scalability are achieved within the architecture. Furthermore, these experiments 
demonstrated how reoccurring patterns and the concept of self-similarity within 
aggregation hierarchies (as discussed in Section 5.2.4) can be exploited to create 
modular and reusable software.  

The observations made about the architecture through the reconfigurability 
experiments demonstrate the architecture’s ability to allow for system changes 
with minimal impact (N9 in Table 27). The portability of the architecture also 
allows for easier long-term system maintenance (N14 in Table 27), while making 
use of the cloud to host proprietary technology (such as the cloud-based 
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Mosquitto broker) can further ease maintenance. These qualities also contribute 
to the need to allow for differing levels of technological maturity N6 in Table 27. 
Therefore, in terms of portability, the design framework and portability design 
patterns were able guide the design of a feasible architecture. 

13.2.5 Heliostat field architecture evaluation 

The architecture that was implemented for the experiments was able to address 
scalability needs, N24 and N26, from Table 27 (as discussed in Section 13.2.3), as 
well as the portability needs, N6, N9 and N14, from Table 27 (as discussed in 
Section 13.2.4). Furthermore, by comparing the broker scenarios, it can be 
determined that the locally-hosted Mosquitto broker induces the least amount of 
strain of the DTs and it induces the least variation is strain. Therefore, it is the best 
option to satisfy the resource constraints (N25 in Table 27), as well as the resource 
contention (N27 in Table 27). Making use of the cloud platform, where it is 
appropriate to do so, also contributes to alleviating the resource constraints of the 
heliostat field. 

Furthermore, the needs listed in Table 27 that were not directly addressed using 
the architecture are: the need to verify and validate DT behaviour (N10), the need 
to structure data (N21) and the need for a cost-effective design (N28). For this case 
study, the DT behaviour was validated using system and program logs, as well as 
through the services provided by the cloud to monitor program execution. DT 
behaviour could be further validated through unit testing. 

The data was structured according to heliostat, where each heliostat had its own 
subcollection in the Firestore database. This data structuring was made easier and 
more scalable using the GCP Cloud Functions. The cloud functions also allow the 
local portion of the DT to delegate processing responsibilities to the cloud where 
appropriate. Finally, some provisions were made to reduce costs, such as using the 
cloud to reduce the upfront cost of computational hardware. 

Based on the results from the experiments, the design framework, along with the 
performance efficiency and portability design patterns, were able to guide the 
design of a feasible architecture for the system of DTs to represent the 5 MW 
heliostat field. The architecture managed to address most of the needs that were 
identified and the needs that were not addressed directly were still provided for 
to some degree. 
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14 Design framework evaluation 

The general evaluation, presented in the next subsection, discusses overall aspects 
of the design framework, such as the systematic approach, generality, traceability 
and facilitation of communication. The design step evaluation, presented in 
Section 14.2, considers the individual design steps. 

 General evaluation 

The design framework provides a systematic design approach. The sequence of 
design steps, proposed by the design framework, follow well on each other and, 
for all the case studies, very little iteration was required between consecutive 
design steps. The most iteration occurred within the needs and constraints 
analysis, where needs and constraints were updated and added as the design 
process continued. In particular, the quality attributes and constraints were 
closely linked to the physical system decomposition, as expected. However, for 
the WDS case study, the uncertainty about the services allocation may cause some 
iteration when implementing the architecture.  

Furthermore, the systematic approach helps developers identify system derived 
needs, such as the complexity needs listed in Chapter 3. These derived needs can 
then be related to NFRs to determine their influence on the design choices. In 
particular, the applicable quality attributes associated with a derived need can be 
used to choose and apply design patterns that help a developer design software 
with satisfactory quality. The heliostat field case study contributed to 
demonstrating the feasibility of this quality focussed approach by applying the 
performance efficiency and portability design patterns and testing the resulting 
architecture. This systematic and quality focussed approach to software design 
should enable better software design in a shorter period of time. 

The variety of case studies also demonstrated the generality of the design 
framework and the accompanying design patterns. The heliostat field presented a 
system with many similar devices, where scalability and portability were 
important. The WDS presented a continuous network system that required high 
reliability and maintainability, whereas the smart city presented a large scale 
heterogenous system where interoperability and security were important. These 
cases also contain different types of physical entities, for example discrete 
heliostats, a continuous pipeline and mobile vehicles in, respectively, the heliostat 
field, WDS and smart city. The level of abstraction and detail also differed amongst 
the case studies, demonstrating the recursive nature of the design framework, 
where the framework can be applied to a system, as well as its individual 
subsystems. 
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In terms of traceability, having short descriptive paragraphs, such as the rationale, 
and implication (see Table 20, Table 24 and Table 27) in the needs and constraints 
analysis proved highly useful. Similarly, the constraints and considerations section 
(see Table 21, Table 25 and Table 28) for the services characterisation was also 
very useful. However, the traceability can be obscured when constraints prevent 
certain architectural choices and it is suggested that a method for assessing need 
conflicts during the needs and constraints analysis be further investigated.  

Furthermore, the span of reality definitions for both the services and the physical 
components, with their DTs, were helpful to map the services to DTs. Based on the 
span of reality, the potential service allocation tables (Table 22 for the WDS and 
Table 29 for the heliostat field) could be setup, which makes initial service 
allocation easy and it provides a reference for alternative hosting positions should 
the need arise.  

During meetings and interviews with other researchers in the research group, the 
design framework allowed for targeted discussion. For example, the complexity 
needs in Chapter 3 provided a reference to establish which needs were applicable 
to the WDS, when consulting a fellow researcher on the topic. The physical system 
decomposition step aided in developing a system-focussed top-down perspective 
of the WDS, as well as bottom-up data-focussed perspective. The service patterns 
(provided in Table 15) also helped to stimulate discussion about the possibilities 
of the system of DTs in the WDS. Therefore, with regards to needs related 
communication, such as an interview with a client, the design framework provides 
examples and considerations for stakeholders to discuss. With regards to design 
related communication, the common requirements taxonomy, physical system 
decomposition and span of reality characterisation, provide a common problem 
space to consider.  

In terms of research about the complexities and architecture implementation, the 
service allocation provides each DT with a clear purpose to focus on when 
designing the architecture and when choosing implementation technologies. The 
needs and constraints analysis helps focus research on key areas of concern and 
complexity, while the design patterns guide research in key areas of interest, such 
as an appropriate communications technology. 

 Design step evaluation 

14.2.1 Needs and constraints analysis 

The needs and constraints analysis tables are useful to refer to while designing the 
architecture and while making implementation choices. The rationale and 
implication sections are particularly so. The rationale helps understand the reason 
for the requirement which is useful to know when making trade-off decisions. For 
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example, knowing whether the performance efficiency design pattern is being 
applied to improve scalability, latency or to reduce resource usage has an effect 
on where compromises can be made when conflicts arise with other design 
patterns. The implication section is useful when determining if all the needs and 
constraints have been met. 

The rationale that relates needs to a requirement can also be used to group similar 
needs. This is useful when communicating the needs. Furthermore, using the 
general complexity needs listed in Chapter 3 can help identify relevant needs, but 
it is useful to use domain related language to express the need. 

14.2.2 Physical system decomposition 

The physical system decomposition helps the designer(s) understand the context 
and composition of the system, as well as the external dependencies. The span of 
reality characterisation helps identify data dependencies and thus component 
dependencies within the system. Having a span of reality table (such as Table 21, 
Table 25 and Table 28) to refer to for information about the data characteristics, 
communication details and data formats, is helpful during service identification, 
as well as during implementation.  

Together, the physical system decomposition and span of reality characterisation 
help a designer make more informed decisions because the decomposition 
provides a top-down perspective of the system while the span of reality 
characterisation provides a bottom-up perspective. The smart city case study was 
a good example of this where the city was decomposed both functionally and 
spatially, while the existing IoT infrastructure was used to identify what data is 
captured, how it is captured and how it can be used. The top-down and bottom-
up perspectives also help identify many of the system derived complexity needs 
that form part of the needs and constraints analysis. 

It should be noted that the physical system decomposition is not always simple. In 
the WDS case study the division of the continuous network presented a challenge. 
The network was divided into arbitrary sections (as is the common practice in the 
industry) but choosing where to make these divisions can be confusing. Some 
principles do make the divisions easier, such as dividing where there are minimal 
interactions between sections and dividing where boundary nodes are known, but 
such information may not always be available. It was found that proposing many 
decompositions and then narrowing down the options during DT selection makes 
the decomposition and DT selection easier (because alternatives are known and 
because data and services should also be known by then).  

Furthermore, from the heliostat field case study, it was found that the span of 
reality characterisation can be long and very detailed, making it harder to use for 
quick references. Therefore, it may be appropriate to have a secondary document 
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that contains the full characterisation while the tables in the span of reality 
characterisation section of the design framework only contain summaries. The 
data characterisation can also be cumbersome to setup, but it is very useful to 
refer to when designing the services and architecture and during implementation.  

14.2.3 Services allocation 

When identifying applicable services, it is very useful to have a list of potential 
service, such as the service patterns in Table 15, to refer to. This helps to simulate 
stakeholders’ ideas about the possibilities of the system of DTs and it helps 
developers focus their design efforts toward a common goal. Furthermore, the 
characterisation of the services was particularly useful in the WDS case study, 
where a service hierarchy was identified. Some services were dependent on inputs 
form other services (such as the benchmarking service receiving data from the 
virtual sensor service) and this influenced the allocation of the services. Services 
at a higher level in the service hierarchy were subsequently located at a higher 
level in the DT hierarchy. 

Identifying DTs is relatively easy when the physical system decomposition has 
already been done. However, it is important to carefully consider the scope of the 
DTIs because they affect the data available to the DTAs and they perform much of 
the homogenisation of the data and protocols. If the DTI scope is too small, the 
DTI may be too simple to host any services, whereas if the DTI scope is too large, 
the DTI may experience poor performance or it may become difficult to maintain. 
Deciding when a DTI scope it too large can be difficult and the problem is 
exacerbated for continuous network cases, such as the WDS. The 
interconnectedness of the continuous network also raises the concern of how 
boundary values should be shared amongst the DTs without causing data 
inconsistencies. Furthermore, deciding on the scope of a DTI is also harder when 
the data characteristics and services are not yet known or if they are very vague. 

The smart city case study also introduced mobile DTs, such vehicles (and 
potentially citizens), which present some noteworthy characteristics. Firstly, these 
mobile DTs are not spatially bound thus do not fit well into a DT hierarchy. 
Therefore, the mobile DTs were aggregated by the services network to prevent 
the need to continually reconfigure the DT hierarchy. Secondly, the mobility of the 
DTs means that they capture data that may be applicable to many other DTs and 
stakeholders. For example, vehicle DTs capture data about the vehicle that may 
be applicable to the vehicle owner, as well as the manufacturer, while also 
capturing data about the environment throughout the city. In such cases where a 
single DT captures data applicable to many other DTs and stakeholders, the need 
for good metadata becomes paramount. Many data management systems make 
use of “tags” which are functional or object-oriented categories to help users 
identify what data is applicable to them. 
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For the service allocation, the potential service allocation tables (Table 22 and 
Table 29) were particularly useful, not only to make initial service allocations but 
also to be aware of alternative hosting positions. The potential services allocation 
table was informed by the span of reality of the services and DTs and the span of 
reality seemed to work well for this purpose. However, the span of reality 
requirements of some services is hard to determine if the details about the 
services, such as data requirements, are not known. 

14.2.4 Design pattern selection and application 

The design patterns help narrow down architectural and implementation choices 
to allow for more focussed research and more rapid development. The services 
allocation is useful when identifying which design pattern(s) to apply because they 
give the DTs a specific purpose. Different design patterns can also be applied to 
different subsystems so that the most appropriate quality attribute(s) are 
emphasised for individual DTs and services. For each of the case studies, the 
applicable design patterns were able to produce a feasible architecture. The 
heliostat field case study helped demonstrate the feasibility of the architecture 
and it helped to validate the design choices recommended by the performance 
efficiency and portability design patterns. 

More than one design pattern can also be applied to a single DT or service, but this 
presents some difficulty. The design patterns can be in conflict about some design 
choices and then it is up to the designer to decide on a suitable compromise. These 
compromises are largely informed by the rationale and implication sections of the 
needs and constraints analysis, as well as the constraints and considerations 
section of the services characterisation. However, without metrics to refer to, it 
can be hard to decide what would be a good compromise.  

Despite the uncertainty inherent to some of the previous steps, the design 
patterns could still be applied to guide the design of a feasible architecture. One 
issue that arose while designing the communication for the architecture was 
services navigation. Navigating between the widespread services could be 
cumbersome and thus it could be beneficial to have a centralised dashboard 
within a DTA that serves all the DTs below it. This will also help limit the complexity 
of designing the central UI, where the central UI would redirect to a DTA 
dashboard instead of serving as the single dashboard to all the services. This may 
also be beneficial for security, for reliability when considering intermittent 
networks and for the separation of concerns. 

14.2.5 Verification and validation 

The verification and validation step was not discussed in detail, but some 
observations can still be made based on the heliostat field case study. The 
implications paragraph in the needs and constraints analysis tables is useful when 
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identifying which needs and constraints still need to be satisfied. It may be 
beneficial to include a secondary table that only summarises the implications.  

The experiments performed, as part of the heliostat field case study, also 
demonstrated how the performance metrics can be applied to validate the 
performance of a DT. Using host machine logs, as well as DT program logs are 
useful to identify faults and inconsistencies in the system. 

14.2.6 Suggestions for future work 

This section makes suggestions for future work. 

• The distinction between system-level requirements and service-level 
requirements is not always clear. Initially, the FRs are imposed on the system 
but some of the FRs are delegated to services in different DTs as the design 
progresses. This transition from system-level to service-level is not always 
clear and it can cause confusion, particularly when more than one service 
addresses an FR and when more than one FR is addressed within a service. 
Therefore, it could be useful to investigate a taxonomy or mechanism that can 
help discern what requirements are applied to a given level of abstraction.  

• In table format it can be hard to identify which needs are overlapping or 
conflicting. Therefore, an additional diagram could be added to help clarify 
need and requirement interactions. Furthermore, nested and chained needs 
can be difficult to deal with and the framework does not make provision for 
handling this.  

• More research is required to determine the intricacies of developing a DT 
hierarchy for a continuous network. The continuous nature of the network 
creates a higher degree of dependency between DTs at the same level of 
aggregation and thus more horizontal data sharing is required. Network 
elements such as boundary nodes will have data applicable to both DTs that 
represent the sections being divided by the boundary. How such data should 
be shared is uncertain. For example, should DTs communicate directly 
through a message-oriented middleware or with a request-response protocol, 
should DTs communicate through a DTA or should DTs share their data via API 
request as is typically done with a service in the services network.  

• Further work is required to determine the efficacy of the services allocation 
and the joining of the DT hierarchy and the service network. The subdivision 
of the services network, as presented in the smart city case study, may also 
prove useful and should be further investigated.  

• The framework has not considered having a central DT dashboard separate 
from the services network. It may be beneficial to have a secondary 
dashboard that can serve as the central dashboard for the local DTs. This may 
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also be particularly relevant when there are numerous locally hosted services 
in DTs that may need to function despite external network failures. 

• Some services can be implemented with multiple spans of reality. For 
example, the mirror service in the heliostat field case study can be used to 
monitor and control single heliostats or the entire field. Such services present 
a trade-off decision where the service can either be completely centralised in 
a high-level DT for maintainability or it can be distributed for better 
performance efficiency and reliability. However, it is uncertain whether this 
service should be separated without metrics to determine the effects. 

• More thorough evaluation is still required for the reliability, maintainability, 
compatibility and security design patterns. These design patterns have only 
been assessed at a high level. 

• Testing parameters, methods and procedures should still be added to the 
verification and validation section. 

• Some aspects related to data quality require more attention. Suitable 
methods for handling aspects such as the data consistency, veracity and 
persistence (see Section 9.2.1), should be investigated in more detail. 
Furthermore, additional data quality aspects, such as data provenance, can 
also be considered. Data provenance is concerned with the documentation of 
the origin of a piece of data, as well as documenting how and why it got to its 
present position (Gupta, 2009). 
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15 Conclusion 

A system of DTs is able to represent complex physical systems, while maintaining 
the separation of concerns. This is enabled through hierarchical aggregation of 
DTs, while also making use of a services network.  

The main objective of this dissertation was to develop a design framework to guide 
the design of a DT aggregation architecture, or a system of DTs, to reflect complex 
systems. The design framework had to enable the systematic, traceable design of 
a system of DTs, while remaining domain independent. 

To achieve this objective, the dissertation investigated the needs related to 
managing physical system complexity. Considering these needs, the dissertation 
presents a design framework to help design a system of DTs, according to 
hierarchical aggregation principles, to meet the needs identified in a particular 
case. The design framework is arranged in six steps: 1) needs and constraints 
analysis, 2) physical system decomposition, 3) services allocation, 4) performance 
and quality considerations, 5) implementation considerations and 6) verification 
and validation. These design steps were then moulded into six design patterns, 
which simplify the design process by focussing of key quality attributes. The quality 
attributes considered for the design patterns are performance efficiency, 
reliability, maintainability, compatibility, portability and security. 

The use of the design framework was then demonstrated and validated through 
three case studies, i.e. two high-level case studies and one detailed case study. 
The high-level case studies were a water distribution system and a smart city. Each 
of these high-level case studies presented unique characteristics, such as the 
continuous nature of the water distribution network and the mobility of elements 
within the smart city. For each of these case studies, the design framework, along 
with the applicable design patterns, was able to guide the design of a feasible 
architectures for a system of DTs.  

The detailed case study, which considered a heliostat field, allowed for a more in-
depth demonstration and validation of the design framework. As with the high-
level case studies, the design framework was able to guide the design of a feasible 
architecture for a system of DTs to represent a heliostat field. In particular, the 
performance efficiency and portability design patterns were applied to produce 
the resulting architecture. The architecture was then validated through an 
implementation case study, where the scalability and portability of the 
architecture was tested.  

The scalability of the architecture was tested through the scalability experiments, 
which considered three types of broker and aggregation scenarios: a local 
Mosquitto broker - which performed local aggregation, a cloud-based Mosquitto 
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broker – which performed WAN aggregation and GCP broker – which performed 
cloud-based aggregation. The scalability experiments demonstrated the scalability 
of the architecture for different message frequencies and different message sizes, 
as well as through DTA partitioning. The experiments validated the design choices 
made according to the performance efficiency design pattern. 

The portability of the architecture was tested through the reconfigurability 
experiments, which considered three reconfiguration scenarios: the addition and 
removal of a DTI, the addition and removal of a DTA and the addition and removal 
of a broker. Each of these reconfigurations could be made with just a configuration 
file change. However, there are cases of more extensive reconfiguration that 
require source code changes. These experiments helped to validate the design 
choices made according to the portability design pattern. 

In general, the design framework achieved its objectives. It was successfully 
applied to three different case studies, that each presented different challenges.  
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communication patterns in microservice architectures: A systematic literature 
review. Journal of Systems and Software. 180. 

Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D. & Sundaresan, 
R. 2018. Digital twin for energy optimization in an SMT-PCB assembly line. in 
Proceedings - 2018 IEEE International Conference on Internet of Things and 
Intelligence System, IOTAIS 2018 IEEE. 85–89. 

Kondepudi, S.N. Ramanarayanan, V. Jain, A., Singh, G.N., Nitin Agarwal, N.K. 
Kumar, R., Singh, R., Bergmark, P., Hashitani, T. & Gemma, P. 2014. Smart 
sustainable cities analysis of definitions. The ITU-T focus group for smart 
sustainable cities. 

Koren, Y. & Shpitalni, M. 2010. Design of reconfigurable manufacturing systems. 
Journal of Manufacturing Systems. 29(4):130–141. 

Kritzinger, W., Traar, G., Henjes, J., Sihn, W. & Karner, M. 2018. Digital Twin in 
manufacturing: A categorical literature review and classification. IFAC-
PapersOnLine. 51(11):1016–1022. 

Kruger, K. & Basson, A.H. 2019. Evaluation criteria for holonic control 
implementations in manufacturing systems. International Journal of Computer 
Integrated Manufacturing. 32(2):148–158. 

Kuhn, T., Schnicke, F. & Oliveira Antonino, P. 2020. Service-Based Architectures in 
Production Systems: Challenges, Solutions Experiences. 2020 ITU Kaleidoscope: 
Industry-Driven Digital Transformation, ITU K 2020. 

Lamb, K. 2019. Principle-based digital twins: a scoping review. Centre for Digital 
Built Britain: University of Cambridge, UK. 

Lindsay, D., Gill, S.S., Smirnova, D. & Garraghan, P. 2021. The evolution of 
distributed computing systems: from fundamental to new frontiers. Computing 
103:1859-1878. 

Stellenbosch University https://scholar.sun.ac.za



 

175 
 

Liu, Q., Leng, J., Yan, D., Zhang, D., Wei, L., Yu, A., Zhao, R., Zhang, H., et al. 2020. 
Digital twin-based designing of the configuration, motion, control, and 
optimization model of a flow-type smart manufacturing system. Journal of 
Manufacturing Systems. 58(Part B):52-64. 

Longo, F., Nicoletti, L. & Padovano, A. 2019. Ubiquitous knowledge empowers the 
Smart Factory: The impacts of a Service-oriented Digital Twin on enterprises’ 
performance. Annual Reviews in Control. 47:221–236. 

Lutters, E. 2018. Pilot production environments driven by digital twins. South 
African Journal of Industrial Engineering. 29(3 Special Edition):40–53. 

Lutters, E. & Damgrave, R. 2019. The development of Pilot Production 
Environments based on digital twins and virtual dashboards. in Procedia CIRP Vol. 
84. Elsevier B.V. 94–99. 

Lutze, R. 2019. Digital Twins in eHealth: Prospects and Challenges Focussing on 
Information Management. in Proceedings - 2019 IEEE International Conference on 
Engineering, Technology and Innovation, ICE/ITMC 2019. 

Maier, M.W. 1999. Architecting principles for systems-of-systems. Systems 
Engineering. 1(4):267–284. 

Mairiza, D., Zowghi, D. & Nurmuliani, N. 2010. An investigation into the notion of 
non-functional requirements. in Proceedings of the ACM Symposium on Applied 
Computing. 311–317. 

Malan, K.J. 2014. A Heliostat Field Control System. Master’s Thesis. Stellenbosch 
University. [Online], Available: http://scholar.sun.ac.za/handle/10019.1/86674 

Márquez, G., Villegas, M.M. & Astudillo, H. 2018. An Empirical Study of Scalability 
Frameworks in Open Source Microservices-based Systems. in Proceedings - 
International Conference of the Chilean Computer Science Society, SCCC Vol. 
November. 

Minerva, R., Lee, G.M. & Crespi, N. 2020. Digital Twin in the IoT Context: A Survey 
on Technical Features, Scenarios, and Architectural Models. Proceedings of the 
IEEE. 108(10):1785–1824. 

Mitchell, M. 2009. Complexity: A guided tour. Oxford University Press, Inc. 

Mohanty, S.P., Choppali, U. & Kougianos, E. 2016. Everything you wanted to know 
about smart cities. IEEE Consumer Electronics Magazine. 5(3):60–70. 

Stellenbosch University https://scholar.sun.ac.za



 

176 
 

Moyne, J., Qamsane, Y., Balta, E.C., Kovalenko, I., Faris, J., Barton, K. & Tilbury, 
D.M. 2020. A Requirements Driven Digital Twin Framework: Specification and 
Opportunities. IEEE Access. 8:107781–107801. 

O’Brien, L., Merson, P. & Bass, L. 2007. Quality attributes for service-oriented 
architectures. in Proceedings - ICSE 2007 Workshops: International Workshop on 
Systems Development in SOA Environments, SDSOA’07. 3–9. 

O’Donovan, P., Leahy, K., Bruton, K. & O’Sullivan, D.T.J. 2015. An industrial big data 
pipeline for data-driven analytics maintenance applications in large-scale smart 
manufacturing facilities. Journal of Big Data. 2:25(1):1–26. 

Odun-Ayo, I., Ananya, M., Agono, F. & Goddy-Worlu, R. 2018. Cloud Computing 
Architecture: A Critical Analysis. Proceedings of the 2018 18th International 
Conference on Computational Science and Its Applications, ICCSA 2018. 

Owen, D.A.L. 2018. The Technologies and Techniques Driving Smart Water. in 
Smart Water Technologies and Techniques: Data Capture and Analysis for 
Sustainable Water Management Vol. 1. 57–78. 

Padovano, A., Longo, F., Nicoletti, L. & Mirabelli, G. 2018. A Digital Twin based 
Service Oriented Application for a 4.0 Knowledge Navigation in the Smart Factory. 
in IFAC-PapersOnLine Vol. 51. Elsevier B.V. 631–636. 

Page, S.E. 2009. Understanding Complexity. Chantilly, VA, USA: The Teaching 
Company. 

Pan, Z., Shi, J. & Jiang, L. 2020. A Novel HDF-Based Data Compression and 
Integration Approach to Support BIM-GIS Practical Applications. Advances in Civil 
Engineering. 2020. 

Pargmann, H., Euhausen, D. & Faber, R. 2018. Intelligent big data processing for 
wind farm monitoring and analysis based on cloud-Technologies and digital twins: 
A quantitative approach. in 2018 3rd IEEE International Conference on Cloud 
Computing and Big Data Analysis. 233–237. 

Pathak, J., Jiang, Y., Honavar, V. & McCalley, J. 2006. Condition data aggregation 
with application to failure rate calculation of power transformers. in Proceedings 
of the Annual Hawaii International Conference on System Sciences. 1–10. 

Pernici, B., Plebani, P., Mecella, M., Leotta, F., Mandreoli, F., Martoglia, R. & Cabri, 
G. 2020. Agilechains: Agile supply chains through smart digital twins. in Baraldi P., 
Di Maio F., & Zio E. (eds.). Proceedings of the 30th European Safety and Reliability 
Conference and the 15th Probabilistic Safety Assessment and Management 
Conference. Singapore: Research Publishing. 2678–2684. 

Stellenbosch University https://scholar.sun.ac.za



 

177 
 

Petrova-Antonova, D., Manova, D. & Ilieva, S. 2020. Testing web service 
compositions: Approaches, methodology and automation. Advances in Science, 
Technology and Engineering Systems. 5(1):159–168. 

Poort, E.R. & De With, P.H.N. 2004. Resolving requirement conflicts through non-
functional decomposition. in Proceedings - Fourth Working IEEE/IFIP Conference 
on Software Architecture (WICSA 2004). 145–154. 

Pourghebleh, B. & Navimipour, N.J. 2017. Data aggregation mechanisms in the 
Internet of things: A systematic review of the literature and recommendations for 
future research. Journal of Network and Computer Applications. 97(April):23–34. 

Redelinghuys, A.J.H. 2019. An Architecture for the Digital Twin of a Manufacturing 
Cell. PhD Dissertation. Stellenbosch University. [Online], Available: 
http://scholar.sun.ac.za/handle/10019.1/108283. 

Redelinghuys, A.J.H., Basson, A.H. & Kruger, K. 2020. A six ‑ layer architecture for 
the digital twin: a manufacturing case study implementation. Journal of Intelligent 
Manufacturing. 31:1383–1402. 

Redelinghuys, A.J.H., Kruger, K. & Basson, A.H. 2020. A six-layer architecture for 
digital twins with aggregation. Studies in Computational Intelligence. 853:171–
182. 

Rossman, L.A. 2000. EPANET 2 User’s Manual EPA/600/R-00/57. [Online], 
Available: https://www.epa.gov/water-research/epanet. 

Sage, A.P. & Cuppan, C.D. 2001. On the systems engineering and management of 
systems of systems and federation of systems. Information knowledge systems 
management journal. 2(4):325–345. 

SAICE.2017. SAICE 2017 Infrastructure Report Card for South Africa. South African 
Institution of Civil Engineering. [Online], Available: https://saice.org.za/wp-
content/uploads/2017/09/SAICE-IRC-2017.pdf 

Salah, T., Zemerly, M.J., Yeun, C.Y., Al-Qutayri, M. & Al-Hammadi, Y. 2016. The 
evolution of distributed systems towards microservices architecture. in 2016 11th 
International Conference for Internet Technology and Secured Transactions, 
ICITST 2016. Infonomics Society. 318–325. 

Santana, C., Andrade, L., Delicato, F.C. & Prazeres, C. 2021. Increasing the 
availability of IoT applications with reactive microservices. Service Oriented 
Computing and Applications. 15(2):109–126. 

Stellenbosch University https://scholar.sun.ac.za



 

178 
 

SEBoK Editorial Board. 2021. The Guide to the Systems Engineering Body of 
Knowledge (SEBoK), v. 2.4, R.J. Cloutier (Editor in Chief). Hoboken, NJ: The Trustees 
of the Stevens Institute of Technology. 

Shangguan, D., Chen, L. & Ding, J. 2019. A hierarchical digital twin model 
framework for dynamic cyber-physical system design. in ACM International 
Conference Proceeding Series Vol. Part F1476. 123–129. 

Sharma, S.K. & Vairavamoorthy, K. 2009. Urban water demand management: 
prospects and challenges for the developing countries. Water and Environment 
Journal.23(3):210–218. 

Silva, B.N., Khan, M. & Han, K. 2018. Towards sustainable smart cities: A review of 
trends, architectures, components, and open challenges in smart cities. 
Sustainable Cities and Society. 38(February):697–713. 

Simon, H.A. 1996. The Sciences of the Artificial. Cambridge, Massachusetts: MIT 
Press. 

Smart Santander. n.d. Santander facility. [Online], Available: 
https://www.smartsantander.eu/index.php/testbeds/item/132-santander-
summary [2021, October 24]. 

Sparrow, D.E., Kruger, K. & Basson, A.H. 2021. An architecture to facilitate the 
integration of human workers in Industry 4.0 environments. International Journal 
of Production Research, DOI: 10.1080/00207543.2021.1937747. 

Suba, C. 2018. Data Warehousing Methods and its Applications. International 
Journal of Engineering Science Invention (IJESI). 12–19. [Online], Available: 
www.ijesi.org. 

Taibi, D., Lenarduzzi, V. & Pahl, C. 2018. Architectural patterns for microservices: A 
systematic mapping study. in CLOSER 2018 - Proceedings of the 8th International 
Conference on Cloud Computing and Services Science. 221–232. 

Taylor, N., Human, C., Kruger, K., Bekker, A. & Basson, A.H. 2020. Comparison of 
Digital Twin Development in Manufacturing and Martime Domains. In Borangiu T., 
Leitão P., V. Botti V., Trentesaux D., & Boggino A.G. (eds.) Service Orientated, 
Holonic and Multi-agent Manufacturing Systems for Industry of the Future - 
Proceedings of SOHOMA 2019 Volume 853 ed. Springer Nature Switzerland AG. 
158–170. 

Therrien, J.D., Nicolaï, N. & Vanrolleghem, P.A. 2020. A critical review of the data 
pipeline: How wastewater system operation flows from data to intelligence. Water 
Science and Technology. 82(12):2613–2634. 

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1080/00207543.2021.1937747


 

179 
 

Tovarnitchi, V.M. 2017. Cloud-Based Architectures for Environment Monitoring. in 
Proceedings - 2017 21st International Conference on Control Systems and 
Computer, CSCS 2017. 708–714. 

Tovarnitchi, V.M. 2019. Designing distributed, scalable and extensible system 
using reactive architectures. in Proceedings - 2019 22nd International Conference 
on Control Systems and Computer Science, CSCS 2019. 484–488. 

Ullah, A., Azeem, M., Ashraf, H., Alaboudi, A.A., Humayun, M. & Jhanjhi, N.Z. 2021. 
Secure Healthcare Data Aggregation and Transmission in IoT - A Survey. IEEE 
Access. 9:16849–16865. 

University of Kentucky. n.d. Kentucky Dataset. [Online], Available: 
https://uknowledge.uky.edu/wdst/index.2.html [2021, October 18]. 

VanDerHorn, E. & Mahadevan, S. 2021. Digital Twin: Generalization, 
characterization and implementation. Decision Support Systems. 
145(February):113524. 

Villalobos, K., Ramírez-Durán, V.J., Diez, B., Blanco, J.M., Goñi, A. & Illarramendi, 
A. 2020. A three-level hierarchical architecture for an efficient storage of industry 
4.0 data. Computers in Industry. 121. 

Villalonga, A., Negri, E., Fumagalli, L., Macchi, M., Castaño, F. & Haber, R. 2020. 
Local Decision Making based on Distributed Digital Twin Framework. in IFAC World 
Congress 2020, July 11-17, 2020, Vol. 53. 10568–10573. 

Villalonga, A., Negri, E., Biscardo, G., Castano, F., Haber, R.E., Fumagalli, L. & 
Macchi, M. 2021. A decision-making framework for dynamic scheduling of cyber-
physical production systems based on digital twins. Annual Reviews in Control. 
(December 2020). 

Xiao, Y., Xie, Q. & Deng, Z. 2018. A review on heliostat field layout and control 
strategy of solar tower thermal power plants. in Proceedings of the 2018 Chinese 
Automation Congress (CAC) IEEE. 1909–1912. 

Zimmermann, O. 2017. Microservices tenets: Agile approach to service 
development and deployment. Computer Science - Research and Development. 
32(3–4):301–310. 

van Zyl, J.E. 2014. Introduction to Operation and Maintenance of Water 
Distribution Systems. First edit ed. Pretoria, South Africa: Water Research 
Commission. 

 

Stellenbosch University https://scholar.sun.ac.za



 

180 
 

Appendix A : Heliostat field case study 
details 

A.1 Extended needs and constraints analysis 

Table 30 provides a more complete description for each need and NFR related to 
the heliostat field case study. 

Table 30: Extended list of NFRs for the heliostat field case study 

Need Provide for large amounts of data. (Related to N24) 

Related NFR Performance efficiency. 

Rationale for NFR Considering the size of the heliostat field, the amount of data 
generated by each heliostat and the potential resource 
constraints, there is a need to handle a large amount of data 
efficiently. Therefore, resource utilisation, scalability and high 
throughput are primary concerns and these are sub-
characteristics of performance efficiency. 

NFR grouping Quality attribute. 

Implication of NFR Use performance efficiency design pattern. 

Need Allow for system changes with minimal impact. (Related to 
N9) 

Related NFRs Portability, maintainability. 

Rationale for NFRs New heliostats, that may utilise newer technology, can be 
added to the heliostat field during the heliostat field’s 
operational lifetime. 
Portability – Considering the large number of heliostats, the 
system requires automatic reconfigurability to be feasible. 
Maintainability – Modularity will help to minimise 
dependencies between systems and reusability will help to 
reduce the number of modules required to represent the 
heliostat field. 

NFR grouping Quality attributes. 

Implication of NFRs Use portability and maintainability design patterns. 

Need Provide for resource constrained devices. (Related to N25) 

Related NFR Performance efficiency, solution constraint. 

Rationale for NFR The required performance metrics must be reached with 
minimal resource usage to increase the longevity of the 
resource constrained devices. The LCUs of the individual 
heliostats are battery powered and the batteries are charged 
using photovoltaic (PV) panels. Therefore, the LCUs are 
energy constrained and as a result the heliostat control 
engineers have limited the computational responsibilities of 
the LCUs. The resource constraints of the CCUs and FCU are 
unknown. 
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NFR grouping Quality attribute. 

Implication of NFR Use performance efficiency design pattern.  
Additional code, other that the heliostat control program, 
may not be implemented on the LCUs. 

Need Provide for intermittent network availability and limited 
network bandwidth. (Related to N26) 

Related NFR Performance efficiency, reliability. 

Rationale for NFR The Helio100 field has no wired of fibre connections and only 
makes use of radio frequency communication between LCUs 
and CCUs and of WLAN/ethernet between CCUs and FCU(s). 
Therefore, the local network has good capacity, but because 
of the location of the heliostat field, the external network 
connection is likely to be wireless, which is comparatively 
poor.  
Performance efficiency – The data throughput must be 
optimised to allow for the required data acquisition despite 
the limited network bandwidth. 
Reliability – The intermittent network availability will require 
some reliability measures to ensure that data does not go 
lost. 

NFR grouping Quality attributes. 

Implication of NFR The performance efficiency design pattern should be used 
with elements of the reliability pattern to compensate for the 
intermittent network availability. 

Need Avoid physical resource contention amongst software 
components. (Related to N27) 

Related NFR Performance efficiency, compatibility. 

Rationale for NFR To optimise hardware usage and thus also save costs, 
software components will have to be hosted together on a 
single host machine. Therefore, resource contention may 
become an issue. 
Performance efficiency – The digital twins must be resource 
efficient to allow for multiple DTs per host. 
Compatibility – Co-existence is a sub-division of compatibility 
that relates to efficient resource usage of software 
components to minimise the impact on other components on 
the same host. 

NFR grouping Quality attributes. 

Implication of NFR Use the performance efficiency design pattern and 
incorporate elements of the compatibility design pattern 
related to co-existence. 

Need Allow for retrofitting, differing levels of technological 
maturity and integration with existing information systems. 
(Related to N6 and N7) 

Related NFR Compatibility, portability, solution and implementation 
constraints. 
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Rationale for NFR The consultants at STERG are responsible for designing the 
heliostat field and its accompanying control systems. 
Therefore, the digital twins must be able to integrate with the 
heliostat field as if it is being fitted onto an existing system.  
Solution constraint – the design must allow for retrofitting 
onto a heliostat field similar to the Helio100 field without 
interfering with the existing control network. 
Implementation constraints - The Helio100 field makes use of 
a local PostgreSQL database that serves as the current 
primary data source of all historical data. Therefore, there is a 
preference for PostgreSQL because the current engineers are 
familiar with it. 
Compatibility – The differing technologies must be 
interoperable. 
Portability – System components must be replaceable. 

NFR grouping Quality attributes, development constraints. 

Implication of NFR The compatibility and portability design patterns must be 
applied to ensure that different technologies and components 
can be replaced without disrupting the system. 
Some of the technologies related to the data acquisition part 
of the digital twin are predefined and must be integrated 
with, such as the use a PostgreSQL database for local storage. 

Need Verify and validate the behaviour of DTs in response to 
system changes. (Related to N10) 

Related NFR Maintainability. 

Rationale for NFR The proper functioning and performance of the heliostat field 
must be ensured after physical parts are replaced and after 
software components are updated. Considering that there is a 
high opportunity for software reuse, the impact of software 
changes can also be widespread. 
Maintainability – Testability is a sub-characteristic of 
maintainability that directly links to the verification and 
validation of system components. 

NFR grouping Quality attribute. 

Implication of NFR Use the maintainability design pattern to improve the 
testability of the digital twins. 

Need Structure the data to prevent it becoming unusable. (Related 
to N21) 

Related NFR Maintainability. 

Rationale for NFR Reusability of data should be ensured despite the increase in 
volume. 

NFR grouping Quality attribute. 

Implication of NFR Make use of the maintainability design pattern. 

Need Provide a cost-effective solution. (Related to N28) 

Related NFR Cost constraint. 

Rationale for NFR The high initial costs of heliostat fields are a deterrent to their 
adoption and thus the cost must be minimised. 
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NFR grouping Development NFR. 

Implication of NFR The cost constraint will limit the amount of development time 
that can be spent on quality assurance and testing.  

Need Allow for easy long-term maintenance and extension. 
(Related to N14) 

Related NFR Maintainability, portability. 

Rationale for NFR Maintainability – A heliostat field has a long operational 
lifetime and software maintenance must be provided for the 
duration of the physical system’s lifecycle. 
Portability – The long operational lifetime of the heliostat field 
means that new technologies will be developed during the 
operational lifetime of the heliostat field. Therefore, provision 
must be made to allow for changes in software and hardware 
technology. 

NFR grouping Quality attributes. 

Implication of NFR Use maintainability and portability design patterns. The 
portability design pattern is particularly important in this case 
since STERG emphasised the need to adapt to changes in 
hardware. 

 

A.2 Extended span of reality for the heliostat field 

Table 31 presents an extended span of reality for the components of the heliostat 
field. 

Table 31: Span of reality of the heliostat field components. 

Physical component Heliostat with local control unit (LCU) 

Physical system scope Individual heliostat 

Data characterisation 
(Data granularity) of 
data recorded/ 
generated by physical 
component 

Stepper motor positions – two, int, between 0 and 200 000, 
(step counts), generated every minute 
Battery value – float, between 5.5 and 8.2, (Volts), 
generated every minute 
Timestamp – datetime, N/A, (N/A), generated every minute 
 

Data characterisation 
(Data granularity) of 
data sent to physical 
component 

Local coordinates of the sun – See Cluster control unit 
below. 
Translated operator control commands – details unknown 

Data format JSON formatted message 

Communication  Radio Frequency (RF) communication using a serial bus. 

Considerations and 
Constraints (Capacity 
for interaction) 

LCUs are power constrained and thus the activity of the 
LCUs need to be minimised.  
The LCUs only support RF communication. 
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The design requires 10 002 individual heliostats and they 
may differ slightly in composition (e.g. newer heliostats 
make use of newer components and future heliostats may 
have more sensors). 

Physical component Pod of heliostats 

Physical system scope 6 Heliostats 

Data characterisation 
(Data granularity) 

No data added at this level 

Data format None 

Communication  No communication to a pod 

Considerations and 
Constraints (Capacity 
for interaction) 

There is no hardware or software implemented at pod 
level. 
The design will have 1667 pods. 

Physical component Cluster control unit (CCU) 

Physical system scope 24 or 30 heliostats (4 or 5 pods) 

Data characterisation 
(Data granularity) of 
data recorded/ 
generated by physical 
component 

Unique identifier for each heliostat – String, N/A, (N/A) 
static value 
Status value for each heliostat – String, [start-up, manual 
move, running, standby, home, calibration, e-stop, offline], 
(N/A), generated every minute or on request (the CCU 
generates a status value per minute but an operator can 
force a state aswell) 
Translated operational commands – The commands are 
unknown but the operational commands come from the 
FCU, are translated by the CCU and sent to the LCU in a 
format familiar to the LCU. 
Grena algorithm inputs:  
Fractional Universal Time (UT) – Float, between -12.00 and 
+12.00, (N/A), every minute. Fractional UT is the time in 
hours and fractions of hours from the Greenwich midnight. 
Date – three (day – d, month – m, year - y), int, d – 1 to 31; 
m – 1 to 12; y – 2003 to 2023, (N/A), every minute. The 
Grena algorithm is valid for 20 years, after which the 
algorithm parameters must be adjusted. 
Time difference between UT and terrestrial time – float, 
unknown, (seconds), every minute.  
Longitude -  Float, unknown, (radians), every minute. 
Latitude - Float, unknown, (radians), every minute. 
Grena algoritm outputs:  
global coordinates of the sun – two, Float, unknown, 
(radians), every minute. The global coordinates are right 
ascension and declination  
local coordinates of the sun – three, Float, unknown, 
(radians), every minute. The local coordinate angles are the 
hour angle, zenith angle and azimuth angle. 

Data characterisation 
(Data granularity) of 

Grena algorithm inputs:  
Air pressure - See FCU for details 
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data sent to physical 
component 

Ambient temperature – See FCU for details 
Operation commands – See FCU for details 
 

Data format JSON formatted message 

Communication  ZeroMQ messaging over TCP/IP and WLAN/ethernet 

Considerations and 
Constraints (Capacity 
for interaction) 

Available processing and storage capacity of CCUs is 
unknown 
Assuming each CCU controls 4 pods, 417 CCUs will be 
required. Assuming each CCU controls 5 pods, 334 CCUs 
will be required. 

Physical component Field control unit (FCU) 

Physical system scope Six CCUs (Which is the whole field) 

Data characterisation 
(Data granularity) of 
data recorded/ 
generated by physical 
component 

Operational commands (from a user) - String, unknown, 
(N/A), user driven. 

Data characterisation 
(Data granularity) of 
data sent to physical 
component 

Calibration images – images (format unknown), N/A, N/A, 
32 images are taken at a rate of 3-5 images a second for 
every heliostat calibration sequence. A calibration 
sequence is triggered by a user. 
Weather data: 
Direct normal irradiance (DNI) – float, unknown, (W/m^2), 
every minute. 
Wind speed – float, unknown, (m/s), every minute 
Air pressure - Float, unknown, (atm), every minute 
Ambient temperature – Float, unknown, (°C), every minute. 

Data format JSON formatted message 

Communication With CCUs - ZeroMQ messaging over TCP/IP and 
WLAN/ethernet 
With weather station – HTTP   
IP camera (for calibration) – Unknown 

Considerations and 
Constraints (Capacity 
for interaction) 

Available processing and storage capacity of the FCU is 
unknown and thus the number of CCUs that can be 
supported by a single FCU is unknown. 
The current FCU design stores all the captured data locally 
in a PostgreSQL database with no reduction being applied. 

 

A.3 Extended physical architecture description 

The physical architecture in Figure 15 presents the internal structure of DTs 
implemented as part of the heliostat field system of DTs. Layers 1 and 2 of the DTI 
were simulated to allow for the flexibility to add and remove heliostats and CCUs 
as the experiments required. The simulated heliostats and CCUs also allow for a 
scale of data that would not be feasible in a laboratory environment. The 
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simulated heliostats and CCUs generated data that mimicked the data of a 
heliostat field as described in Table 28. This amounted to a message size of 300 
bytes which contained all the relevant data for the mirror service concerning a 
heliostat. However, the frequency that data was generated at was adjusted as 
required by the various experimental scenarios.  

Furthermore, the simulated CCUs collected the data from multiple simulated 
heliostats before writing the data to a PostgreSQL database in Layer 3. The 
simulated heliostat’s battery values and motor values were programmed to 
fluctuate and can trigger a simulation status change (if the values deviated from 
the expected ranges) or the heliostat simulation could generate a “fault” (an 
artificial fault could be triggered). These value fluctuations and artificial faults 
were introduced so that typical pre-processing and fault handling could also be 
mimicked within the DTs’ Layer 4. 

The DTIs’ and DTAs’ Layer 4 are custom developed Python programs, as well as 
some Google Cloud Platform (GCP) services. The Layer 4 composition of both DTIs 
and DTAs are presented in Figure 18. The DTIs’ local Layer 4 consists of five 
modules: data ingestion, processing, communication, orchestration and 
configuration. The data ingestion module reads data from the PostgreSQL 
database. The processing module performs a data format conversion (from csv to 
JSON), as well as some rule-based checks and fault handling on the data (such as 
out-of-bound value checks). The communication module contains an MQTT client 
with the connection and callback logic, as well as SSL/TLS security logic to secure 
all communications. Two communication modules were used per DT: one to send 
data to the cloud and another for aggregation. The orchestration module is the DT 
program’s entry point and coordinates the other modules, while the configuration 
file contains information unique to each DT (such as an ID, SSL/TLS security 
certificates, connection information, etc.) 

The cloud-based portion of Layer 4 is fulfilled using GCP’s IoT Core, Pub/Sub and 
Cloud Functions services. The IoT Core contains an MQTT broker which receives 
data from one of the local Layer 4’s MQTT clients. The Pub/Sub service essentially 
acts as an MQTT client within the cloud and makes the data in the IoT Core 
available to the rest of the cloud platform. Cloud Functions are standalone, 
stateless and temporary functions that are triggered by events within the cloud. 
In this case study, these functions were triggered by the Pub/Sub service when 
new data became available within the cloud. Once triggered, the functions write 
the data to a Firestore database, which is a NoSQL document store.  

It should be noted that it is possible to write directly to the Firestore database 
from the local Layer 4, using the Firestore APIs. However, the method above is 
generally preferred when many devices are interacting with the database, because 
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the IoT Core and Pub/Sub services provide support for features such as device 
monitoring, load balancing and temporary data storage for reliability. 

The DTA modules are similar to the DTI modules, except that the DTA does not 
have a data ingestion module and the processing module aggregates the data 
instead of doing format conversion. The aggregation is done through a broker and 
since it is aggregation through Layer 4, it is pre-storage aggregation.  

 

Figure 18: Layer 4 breakdown of the DTI and the DTA 

The long-term database on Layer 5 is a Firestore database. Firestore is a document 
store and it was chosen because of its scalability, reconfigurability and 
compatibility with the JSON data format. Finally, Layer 6 makes use of GCP’s App 
Engine service which is a service that helps deploy web applications within GCP. In 
this case, App Engine was used to deploy a basic mirror service that simply 
displayed the data available in the Firestore database. Therefore, the mirror 
service just served as validation that the data, sent by the simulated heliostats, 
were captured in long-term storage.  
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A.4 Varying message frequency experiments 

The purpose of the varying message frequency experiments is to determine the 
sensitivity of the architecture to changing message frequency (which is a 
component of throughput as discussed in Section 9.1.2). Scalability is essentially 
the ratio between throughput and resource usage (as discussed in Section 4.3). 
The host machines used for the experiments were kept constant and thus at full 
load the resource usage in each case was also constant. Therefore, the difference 
in throughput is a result of the different aggregation methods and technologies.  

Throughput can be adjusted by changing the message frequency, changing the 
message size and by increasing the number of messaging channels, i.e. the number 
of DTIs (as discussed in Section 9.1.2).  Therefore, for the experiments that tested 
the effect of varying message frequency, the message size was kept constant and 
the number of DTIs was periodically increased as discussed in Section 13.2.3.1. The 
results of these experiments are presented in Figure 19 and Figure 20. The vertical 
bars in the figures indicate the range of the values observed in repeated 
experiments, while the lines pass through the mean values. 

Figure 17 presents the number of DTIs that could be sustained at different 
message frequencies, as well as the collective message threshold at different 
message frequencies. The number of DTIs refers to the maximum number of DTIs 
that could be sustained (measured within the threshold period) and the collective 
message threshold refers to the number of messages that were processed by the 
DTA. The message frequency refers to the frequency at which DTIs send their 
messages and it was controlled by adjusting the sleep time of the DTIs. The sleep 
time is the time in between logic execution cycles of a DTI, where a logic execution 
cycle refers to the DTI reading data, processing data and sending the data as a 
message (Section 13.2.2 describes the modules that relate to these steps).  

Figure 17 shows that the local Mosquitto broker can sustain the most DTIs at a 
given message frequency, followed by the cloud-based Mosquitto broker and then 
the Pub/Sub service. For example, at a frequency of one message per second, the 
local Mosquitto broker can sustain 25 DTIs, the cloud-based Mosquitto broker can 
sustain 17 DTIs and the Pub/Sub service can sustain 6 DTIs. Similarly, at a fixed 
number of DTIs, the local Mosquitto broker can sustain the highest message 
frequency, followed by the cloud-based Mosquitto broker and then the Pub/Sub 
service. Furthermore, the collective message threshold fluctuates slightly, but 
remains relatively consistent across multiple message frequencies. Therefore, the 
collective message threshold is likely the maximum throughput that can be 
sustained by the system of DT for the given experiment configuration.  
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Figure 19: Number of DTIs and the collective message threshold for different 
message frequencies. 

The collective message threshold of the cloud-based Mosquitto broker does, 
however, fluctuate more than the other brokers’ collective message threshold. 
The reason for this deviation from the expected result is uncertain but is likely 
because of network effects since it does not seem to correlate with the number of 
DTIs, message frequency, percentage message loss or mean latency.  

Figure 20 presents the mean latency and percentage message loss at various 
message frequencies. Figure 20 shows that the mean latency of the local 
Mosquitto broker is the lowest and it displays the least variation in latency. The 
Pub/Sub service displayed the highest latencies, as well as the highest variation in 
latencies. 

Furthermore, the cloud-based Mosquitto broker displays the lowest percentage 
message loss, followed by the local Mosquitto broker and then the Pub/Sub 
service. The cloud-based Mosquitto broker also displays the lowest variation in 
percentage message loss, followed by the local Mosquitto broker and then the 
Pub/Sub service. However, it is important to note that the DTIs were using a 
quality of service (QoS) of 0 (QoS = 0 does not guarantee that a message is 
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received) when aggregating via the local Mosquitto broker. When aggregating via 
the cloud-based Mosquitto broker, the DTIs were using a QoS of 1 (which is 
supposed to guarantee that each message is received at least once). Originally the 
DTIs used a QoS of 0 for both Mosquitto brokers, to minimise latencies and 
prevent possible data duplication, but the cloud-based Mosquitto broker was 
losing more that 20% of the messages when QoS was set to 0. Therefore, the DTIs’ 
QoS levels were adjusted to 1 for the cloud-based Mosquitto broker. The DTAs 
used a QoS of 1 to send data back to the DTIs, regardless of which broker was 
being used. 

 

Figure 20: Mean latency and percentage message loss for different message 
frequencies. 

The experiment results presented in this section indicate that message frequency 
of the DTIs have a significant effect on the number of DTIs that can connect to the 
broker and DTA, but the collective message threshold sustained by the DTA 
remains relatively constant. This is significant because it indicates that throughput 
is relatively constant and thus to accommodate more DTIs, the message frequency 
should be reduced. 
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Furthermore, these experiments contributed to validating the performance 
efficiency design pattern by demonstrating how local network aggregation is 
better for lower latencies and higher throughput than cloud-based aggregation. 
The reliability of the local network aggregation is likely to be better, with a lower 
percentage messages loss, less variation in percentage message loss and less 
variation in latency. 

A.5 Varying message size experiments 

The purpose of the varying message size experiments is to determine the 
sensitivity of the architecture to changes in message size. As mentioned in 
Appendix A.4, throughput can be adjusted by adjusting the message frequency, 
message size or number of messaging channels. For the experiments discussed in 
this section, the message frequency was fixed while the message size was 
changed. The results of the experiments are presented in Figure 21 and Figure 22. 

 

Figure 21: Number of DTIs and collective message threshold for different 
message sizes. 
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Figure 21 shows that the local Mosquitto broker can sustain the greatest number 
of DTIs and the greatest collective message threshold, followed by the cloud-based 
Mosquitto broker and then the Pub/Sub service. Therefore, the local Mosquitto 
broker again displays the best throughput, followed by the cloud-based Mosquitto 
broker and then the Pub/Sub service. 

The results from Figure 21 further indicate that the effect of message size is not 
significant before the 20kB message size but thereafter a new bottleneck is 
reached. Before the 20kB point, the number of DTIs for each broker remains within 
expected range and the collective message threshold drops off slightly by one 
message per second for each Mosquitto broker. However, after the 20 kB message 
size, a significant downward trend can be observed for both Mosquitto brokers. 
The Pub/Sub service on the other hand remains relatively stable for all the 
message sizes, where only a slight downward trend is observed for the number of 
DTIs. 

For the Mosquitto brokers, the bottleneck is most likely the network bandwidth. 
The reasoning behind this is that as the message size increases after the 20kB 
point, the number of DTIs decreases. Considering that message frequency was 
kept constant, the throughput is also likely keeping constant at its maximum 
threshold.  

For the Pub/Sub service, the bottleneck is likely a cloud platform throttling limit. 
The reasoning behind this is that for the varying message frequency and varying 
message size experiments, the collective message threshold remains relatively 
constant, around 5 messages per second, regardless of any other changes made 
to the system. This observation is further supported by Kajati et al. (2019), where 
a similar observation was made while using Microsoft Azure. 

Furthermore, Figure 22 shows that the local Mosquitto broker also has the lowest 
latency, followed by the cloud-based Mosquitto broker and then the Pub/Sub 
service. The bandwidth bottleneck at the 20 kB point also marked a significant 
increase in latency for both Mosquitto brokers. The reason for the increase in 
latency for the Pub/Sub service, however, is uncertain but is likely related to the 
decrease in percentage message loss. 

For the Mosquitto brokers, the DTIs used a QoS level of 0 for aggregation through 
the local Mosquitto broker, whereas the DTIs used a QoS level of 1 for aggregation 
through the cloud-based Mosquitto broker (the reason for this is discussed in the 
previous section). For the smaller message sizes, the cloud-based Mosquitto 
broker displayed a lower percentage message loss than the local Mosquitto 
broker. However, as message size increased, the difference in percentage message 
loss between the brokers became smaller. This is likely because fewer messages 
were sent at the larger message sizes. 
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Figure 22: Mean latency and percentage message loss for different message 
sizes. 

The experiment results presented in this section indicate that message size is not 
as significant as message frequency when considering the scalability. However, at 
sufficiently large message sizes (20 kB or more in this case) the message size does 
become increasingly more important to consider. The message size experiments 
also emphasised the need to make provision for poor network connectivity and 
MQTT was ideal for this. With a QoS level of 1, the message loss was very low, 
even near maximum DTA capacity. Therefore, in this architecture, MQTT and the 
Mosquitto broker (which was the message-oriented middleware) allowed the 
architecture to satisfy N26 in Table 27 (the need to provide for intermittent 
network connectivity). However, in performance efficiency scenarios, good 
network hardware, such as ethernet connections and network switches, would 
make a significant impact.  

Furthermore, the results discussed in this section further support the conclusions 
that local network aggregation has lower latencies and better throughput than 
cloud-based aggregation. 
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A.6 Multiple aggregate, multiple broker experiments 

The purpose of the multiple aggregate and multiple broker cases is to demonstrate 
the scalability of the architecture through partitioning. In particular, four cases 
were investigated: 1) a local and a cloud-based Mosquitto broker with a single 
DTA, 2) a local and a cloud-based Mosquitto broker with a DTA dedicated to each 
broker, 3) a single cloud-based Mosquitto broker with two DTAs and 4) the 
Pub/Sub service with two DTAs. Each of these cases have a fixed message 
frequency and fixed message size, while DTIs are periodically added to the system 
of DTs to gradually increase the messaging load. 

The results of the various cases are summarised in Table 32, where each 
experimental case was conducted twice to consider the repeatability of the 
results. The respective results of an experimental case are marked as a and b, 
while the cases have been separated with alternating light and dark rows. 
 

Table 32: Scalability experiment results for multiple brokers and multiple 
aggregates 

Case 
number 

Brokers DTAs Threshold 
number of 
DTIs 

Collective message 
threshold 

Total 
message 
loss  

1a L&Ci 1ii 6 10.60 0.40% 

1b L&C 1 8 10.97 0.30% 

2a L&C 1&4iii 21+iv 36.58+ 0.56% 

2b L&C 1&4 20 34 1.95% 

3a Cv 1&4 20 32.67 3.74% 

3b C 1&4 21+ 35.05+ 4.91% 

4a Pub/Sub 1&4 8 7.82 0.00% 

4b Pub/Sub 1&4 9 8.23 2.47% 
 
i - L&C means that both the Local Mosquitto and the Cloud Mosquitto brokers were active. 
ii - 1 here refers to Host 1. Therefore, the DTA being used is the one on Host 1. 
iii - 1&4 means that the DTA on Host 1 was active as well as the DTA on Host 4. 
iv - The “+” operator indicates that the system never reached a limit point. 
v - C refers to the Cloud Mosquitto broker. 

The results of Case 1 (two Mosquitto brokers with one DTA) indicate that adding 
brokers without adding DTAs decreases the throughput of the system of DTs. The 
likely reason for this is that the DTA must sustain a third MQTT client (one client 
for the IoT Core and one client for each Mosquitto broker) and this requires the 
DTA to sustain an additional thread (each MQTT client requires their own thread 
because MQTT clients enter a blocking loop to allow for the receipt of messages). 
Therefore, forcing the DTA to switch between more threads negatively impacts 
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the throughput of the DTA. This can be observed in the data captured during the 
experiments which show that the DTA’s mean processing time per message goes 
up from 0,01 – 0,02 seconds per message to 0,03 – 0,05 seconds per message. 
That is roughly double the processing time and as a result roughly half the 
throughput when compared to the single DTA and single broker case with the 
same experimental parameters. 

The results of Case 2 (two brokers with two DTAs) indicated that the partitioning 
of the DTIs between two brokers and two DTAs produced the best throughput. In 
this case, the DTIs were divided into two groups, where one group was aggregated 
through one broker to one DTA, while the other group was aggregated through 
the other broker to the other DTA. This allowed for a collective message threshold 
of up to 36.58 messages per second, 12 messages per second more (50% increase) 
than a single local Mosquitto broker and 20 messages per second more (125% 
increase) than the single cloud-based Mosquitto broker with otherwise the same 
experimental parameters.  

The results of Case 3 (a single cloud-based Mosquitto broker with two DTAs) 
proved to be very insightful. The single cloud-based Mosquitto broker with two 
DTAs was able to sustain a collective message threshold twice as high as the cloud-
based Mosquitto broker with a single DTA (all other parameters being the same). 
Therefore, this experimental case indicates that the DTA was the limiting factor in 
the scalability experiments, involving the Mosquitto brokers, that investigated 
varying message frequencies presented in Appendix A.4. 

It is suspected that the DTA was the bottleneck because it was unable to process 
and return all the messages fast enough. This means that the collective message 
threshold is the maximum number of messages that the DTA could receive, 
process and send back before becoming unstable. The difference in throughput 
for the local Mosquitto broker versus the cloud-based Mosquitto broker is likely 
because  of a combination of three factors: 1) the difference in messaging latency, 
2) the difference in time it takes the DTA to acknowledge and/or resend messages 
to the respective brokers (the DTA uses a QoS of 1 regardless of the broker as 
mention in Appendix A.4) and 3) the DTA must likely resend more messages to the 
cloud-based Mosquitto broker. 

Finally, the results of Case 4 (the Pub/Sub service with two DTAs) show that the 
Pub/Sub service with two DTAs shows about a 78% increase in throughput when 
compared to a single DTA. This means that the cloud platform throttling discussed 
in Appendix A.5 is likely being applied to the number of messages being sent and 
received by each DTA or on the respective host machine that the DTAs are being 
hosted on. 
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Case 1 demonstrates the effect of increased processing time within the DTA, 
where the number of DTIs that could be supported were halved when DTA 
processing time was doubled. Therefore, this supports the performance efficiency 
design pattern’s suggestion to decentralise processing logic from the DTA to the 
DTIs where possible to improve performance and to prevent the DTA from being 
a bottleneck. The results of cases 2, 3 and 4 demonstrates the scalability of the 
architecture by partitioning the DTA to improve the throughput, where each of 
these cases displayed significant increases in throughput after partitioning. This 
also validates the performance efficiency design pattern’s recommendation to 
replicate or partition to improve performance. 

Furthermore, during the multiple brokers and DTA experiments it was determined 
that the DTA is the likely bottleneck for these experiments. To alleviate this 
bottleneck, the DTA was partitioned (as shown by case numbers 2 and 3 in Table 
32) and the throughput was significantly increased.  

A.7 Real world scenario 

The previous experiments investigated the system scalability in various 
configurations, as well as the potential limitations to the scalability of the system 
of DTs. The real-world scenario, presented here, aims to determine how many 
heliostats can potentially be monitored using one broker and one DTA with typical 
heliostat field data parameters. The results of the experiments for each broker are 
summarised in Table 33. The discussion after the table extrapolates the results to 
determine the potential number of CCUs and heliostats that could be monitored. 

Table 33: Broker results comparison 

Broker Threshold 
number of 
DTIs 

Collective message 
threshold [msg/s] 

Total 
messages loss 

Mean 
latency [s] 

GCP Pub/Sub 28+ 2.68+ 2.19% 1.126 
±0.231 

Local 
Mosquitto 

31+ 2.92+ 0.29% 0.049 
±0.019 

Cloud 
Mosquitto 

32+ 3.05+ 0.00% 0.725 
±0.116 

In general, the threshold number of DTIs and the collective message threshold for 
each broker case are similar, where none of the cases reached a limit point. 
Instead, the maximum number of DTIs that the host machines could sustain, given 
the broker configuration, was reached. Therefore, the experimental hardware was 
the limiting factor during these experiments. Despite this limitation, the results 
are extrapolated to provide an indication of how many heliostats could potentially 
be sustained. 
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The experiment shows that the Pub/Sub service can at least sustain 28 DTIs. The 
messages are also being sent back and forth (because round-trip latency is being 
measured) and thus it is possible that the data pipeline can sustain a higher 
number of DTIs when fewer messages are sent back to the DTI. This is particularly 
likely given the conclusion that the DTA is the bottleneck because it must resend 
messages to the DTIs (as discussed for Case 3 in the previous section). 

Given that the number of threshold messages per second remained relatively 
constant during the experiments discussed in Appendix A.4, this could be a good 
indicator of the data pipeline’s potential scale. If the collective message threshold 
for the Pub/Sub service was capped at 4 messages per second, and no other 
problems are incurred (such as bandwidth limitations, or throttling), the system of 
DTs could theoretically sustain 41 DTIs. If the DTIs are also only required to send 
data frequently and not to receive data frequently, the number of threshold DTIs 
might even be 80. If each DTI had 5 pods connected to it, the number of heliostats 
represented by system of DTs would be 2400 heliostats.  

For the local Mosquitto broker all 31 of the available DTIs were able to connect. 
Extrapolating according to the same logic as for the Pub/Sub service and based on 
a collective message threshold of 22 messages per second, the broker should be 
able to support about 233 DTIs. Then assuming a relatively high frequency of 
messages sent per second and a low frequency of messages received, the potential 
number of threshold DTIs could be as high as 460, equating to 13800 heliostats. 
Similarly, the cloud-based Mosquitto broker could theoretically be able to support 
310 DTIs, equating to 9300 heliostats (assuming a message threshold of 15 
messages per second). 

Based on the extrapolated results, the local Mosquitto broker would be the only 
broker configuration that could sustain the data capturing requirements of the 
5 MW heliostat field. However, further consideration should also be given to the 
partitioning of the heliostat field amongst two or three DTAs and brokers for the 
sake of reliability. If this advice were to be followed, the cloud-based Mosquitto 
broker would also be capable of sustaining the data capturing. 

A.8 Reconfigurability experiments 

The purpose of the reconfigurability experiments is to contribute to validating the 
portability of the aggregation hierarchy, as well as the design choices made 
according to the portability design pattern. Therefore, this section discusses the 
effort required to perform certain reconfigurations on the system of DTs and thus 
it serves as a qualitative evaluation of the portability and maintainability of the 
architecture. Three reconfiguration scenarios are discussed: adding or removing a 
DTI, adding or removing a DTA and adding or removing a broker.  
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Adding or removing a DTI: 

Adding a new DTI into the system of DTs requires reconfiguration on three 
components: the DTI’s Layer 4, the DTA’s Layer 4 and the cloud platform. The 
reconfigurations required on each component are discussed below. 

In Layer 4 of the DTI: 

• For communication to Layer 5 of the DTI, the authentication credentials must 
be generated and the MQTT client must be configured to connect to the right 
IoT Core device (the IoT Core device is a cloud-based avatar for the actual 
device which is the DTI’s Layer 4 in this case). The authentication credentials 
consist of the CA certificate for the TLS protocol and a private key to sign the 
JWT.  

• For aggregation and communication through the Mosquitto brokers, the CA 
certificate, the private key, and the private key certificate for the TLS protocol 
must be configured. The MQTT client must also be configured to connect to 
the right broker, connect to the right DTA, and connect with a unique ID. 
When using the Pub/Sub service, the DTI only requires a service account for 
authentication and the correct Pub/Sub topic (that links to a certain DTA) 
must be specified. 

In Layer 4 of the DTA: 

• For a new DTI to connect to the DTA, only the pod numbers associated with 
that DTI need to be specified in the DTA’s configuration file. The DTA also 
needs to know the DTI’s unique device id, but that is part of the metadata of 
the JSON message sent by the DTI.  

In the cloud platform: 

• For communication to a DTI’s Layer 5, a new device, with an accompanying 
public key, must be created within an existing registry of GCP IoT Core. Care 
must be taken to link the right public-private key pairs. The most effective way 
to do this is to use the Google SDK and batch script to create all the required 
IoT Core devices with their accompanying public keys. No changes have to be 
made in Cloud Pub/Sub, Cloud Functions or in Firestore. 

• If aggregation is done using the Pub/Sub service, Cloud IAM must be used to 
create a service account for the DTI, or an existing service account can also be 
used. 

These are the minimum reconfigurations that need to be done to create a new 
DTI. None of these reconfigurations require source code changes. All the changes 
can be done by changing the specifications in the configuration file of the DTI and 
DTA, respectively. Changes made to the cloud platform components are also 
configuration changes that are done through a GUI provided by the cloud 
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platform. The most time and effort were spent on configuring and generating the 
security credentials. 

Furthermore, if a DTI suddenly stops working, the rest of the DT system can 
function normally. The DTA will simply stop updating the DTI’s related profiles (a 
profile is a class within the DTA responsible for aggregating and keeping track of 
data for each heliostat). The IoT Core will raise an error to indicate that the DTI 
has stopped sending messages, but this has no effect on the performance of the 
other DTIs. 

Adding or removing a DTA: 

As with the DTI, when a DTA is added to the system of DTs, changes need to be 
made to the DTI Layer 4, DTA Layer 4 and the cloud platform. 

In Layer 4 of the DTI: 

• If a DTI must send data to the new DTA, the same reconfiguration must be 
followed as described for aggregation (point two) in a DTI’s Layer 4. 

• If a DTA fails, the DTI connected to the DTA will continue to operate normally, 
and still send the full set of data to the IoT Core. 

In Layer 4 of the DTA: 

• For communication to a DTA’s Layer 5, the same reconfigurations can be 
applied as described for the DTI’s Layer 4. 

• For aggregation and communication through the Mosquitto brokers, the CA 
certificate, private key, and private key certificate must be provided along 
with the hostname of the broker. The pod numbers of all the heliostats that 
need to connect must be specified and the desired profile data must be 
specified (only if the DTA aggregates different data than previous DTAs). The 
logic to process different data must also be added if applicable. 

In the cloud platform: 

• A new IoT Core device must be added and provided with the right public key. 
If applicable, a new registry must be created in the IoT Core and it must be 
linked to a new or existing Cloud Pub/Sub topic.  

• If a DTA fails, IoT Core will log the error and continue to serve other digital 
twins. 

As with the DTI, all the changes mentioned above are configuration file changes. 
The one exception would be if the new DTA applied different aggregation or 
processing logic, in which case a source code change would be required. 
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Adding or removing a broker: 

To create a new Mosquitto broker, the TLS credentials (the CA certificate, the 
public key and private key certificates) must be specified in the configuration file. 
The private key certificate must also contain the IP address and/or domain name 
of the new Mosquitto broker. In addition, the password file, i.e. the file with 
allowed usernames and passwords, must be provided in the broker’s configuration 
file. 

If the Mosquitto broker fails, it can be configured to automatically start-up again 
using a batch script. While the broker is down, however, no aggregation will take 
place. Once the broker is available again, all the clients should reconnect, provided 
their MQTT clients are configured to do so. 

For Pub/Sub, creating a new broker would be to create a new Pub/Sub topic and 
subscription. This can be done using two lines of Google SDK batch script. The new 
topic name and subscription name would have to be supplied to the DTIs and DTAs 
that need to use it. In the case that a Pub/Sub client stops sending to or receiving 
from a topic, it is unsure whether the messaging will continue automatically. In 
the experiments where a client did stop sending or receiving messages, the 
messaging only continued when the DTI or DTA was restarted. 

 

Stellenbosch University https://scholar.sun.ac.za




