
A Design Framework for Aggregation in a

System of Digital Twins

April 2022

Dissertation presented for the degree of Doctor of Philosophy

in the Faculty of Engineering at

Stellenbosch University

Supervisor: Prof Anton Herman Basson

Co-supervisor: Dr Karel Kruger

by

Carlo Human

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof (save
to the extent explicitly otherwise stated), that reproduction and publication
thereof by Stellenbosch University will not infringe any third party rights and that
I have not previously in its entirety or in part submitted it for obtaining any
qualification.

Date: April 2022

Copyright © 2022 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

A Design Framework for Aggregation in a System
of Digital Twins

C. Human

Department of Mechanical and Mechatronic Engineering
Stellenbosch University

Dissertation: Ph.D. (Mechatronic Engineering)
April 2022

The digital twin (DT) concept has become a popular means of capturing and
utilising data related to physical systems and has been applied in many domains.
The data provided within DTs allow for the integration of services and models to
improve understanding and decision-making related to the physical system.
Through aggregation, multiple DTs can be combined to represent larger, more
complex system, while maintaining the separation of concerns.

The design framework presented in this dissertation aims to enable systematic,
effective decisions when designing a system of DTs to represent a complex
physical system. In particular, this framework adopts hierarchical aggregation as
one of its primary enablers and it considers the use of a services network, such as
a service-oriented architecture, as well. The design framework is intended to be
broadly applicable, by remaining vendor-neutral, and it enables traceability of
design choices.

The approach starts with an analysis of physical system complexity to identify key
needs related to managing complexity. A suitable requirements classification is
then introduced to help translate the needs into requirements that the system of
DTs should satisfy. Hierarchical aggregation is also introduced as a primary
architectural approach to manage complexity. Hierarchical aggregation allows for
the separation of concerns, computational load distribution, incremental
development and modular software design. The design framework is arranged in
six steps: 1) needs and constraints analysis, 2) physical system decomposition, 3)
services allocation, 4) performance and quality considerations, 5) implementation
considerations and 6) verification and validation.

The dissertation then introduces a general reference architecture that combines a
system of DTs (which follows hierarchical aggregation principles) with a services
network to allow for reliable and adaptable service provisioning. The design
framework is then discussed in the context of the general reference architecture.

Stellenbosch University https://scholar.sun.ac.za

iii

The design steps of the design framework are then moulded into six design
patterns, which simplify the design process by focussing of key quality attributes.
The quality attributes considered for the respective design patterns are
performance efficiency, reliability, maintainability, compatibility, portability and
security.

The use of the design framework and design patterns are then demonstrated and
validated through three case studies, two high-level case studies and one detailed
case study. The high-level case studies consider a water distribution system and a
smart city, respectively. The detailed case study considers a heliostat field.

The dissertation concludes that the design framework, as well as the design
patterns, enable a systematic approach to designing a system of DTs. The design
framework can also be applied to numerous and varying domains, such as the case
studies considered.

Stellenbosch University https://scholar.sun.ac.za

iv

Uittreksel

‘n Ontwerpsraamwerk vir Samevoeging in ‘n
Sisteem van Digitale Tweelinge

C. Human

Departement van Meganiese en Megatroniese Ingenieurswese

Universiteit Stellenbosch
Proefskrif: Ph.D. (Megatroniese Ingenieurswese)

April 2022

Die digitale tweeling-konsep het 'n gewilde manier geword om data wat met
fisiese stelsels verband hou, vas te lê en te gebruik en die konsep word in talle
gevalle toegepas. Die data wat binne ‘n digitale tweeling verskaf word, bied die
geleentheid vir die integrasie van dienste en modelle om begrip en besluitneming,
met betrekking tot die fisiese stelsel, te verbeter. Deur verskeie digitale tweelinge
saam te voeg kan groter, meer komplekse stelsel voorgestel word, terwyl die
skeiding van belange gehandhaaf word.

Die ontwerpsraamwerk wat in hierdie proefskrif voorgestel word, beoog om
sistematiese, effektiewe besluite moontlik te maak wanneer 'n stelsel van digitale
tweelinge ontwerp moet word om 'n komplekse fisiese sisteem voor te stel.
Hierdie raamwerk maak gebruik van hiërargiese samevoeging en dit oorweeg die
gebruik van 'n dienstenetwerk, soos 'n diensgeoriënteerde argitektuur. Die
ontwerpsraamwerk is bedoel om breed toepaslik te wees, deur verskaffer-
neutraal te bly, en dit maak naspeurbaarheid van ontwerpkeuses moontlik.

Die benadering begin met 'n ontleding van fisiese stelselkompleksiteit om
sleutelbehoeftes te identifiseer wat verband hou met die bestuur van
kompleksiteit. 'n Geskikte vereistesklassifikasie word dan ingevoer om die
sleutelbehoeftes te omskep in vereistes waaraan die stelsel van digitale tweelinge
behoort te voldoen. Hiërargiese samevoeging word ook ingevoer as 'n primêre
argitektoniese benadering om kompleksiteit te bestuur. Hiërargiese samevoeging
maak voorsiening vir die skeiding van belange, berekeningsladingsverspreiding,
inkrementele ontwikkeling en modulêre sagteware-ontwerp. Die
ontwerpsraamwerk is georden in ses stappe: 1) behoeftes- en
beperkingsontleding, 2) fisiese stelselverdeling, 3) dienstetoewysing, 4) prestasie-
en kwaliteitsoorwegings, 5) implementeringsoorwegings en 6) verifikasie en
validering.

Die proefskrif stel dan 'n algemene verwysingsargitektuur voor wat 'n stelsel van
digitale tweelinge (wat hiërargiese samevoegingsbeginsels volg) kombineer met 'n

Stellenbosch University https://scholar.sun.ac.za

v

dienstenetwerk om voorsiening te maak vir betroubare en aanpasbare
diensverskaffing. Die ontwerpsraamwerk word dan in die konteks van die
algemene verwysingsargitektuur bespreek.

Die ontwerpstappe van die ontwerpsraamwerk word dan in ses ontwerppatrone
gevorm, wat die ontwerpsproses vereenvoudig deur te fokus op
sleutelkwaliteiteienskappe. Die kwaliteitseienskappe wat vir die onderskeie
ontwerppatrone oorweeg word, is prestasiedoeltreffendheid, betroubaarheid,
instandhoubaarheid, verenigbaarheid, oordraagbaarheid en sekuriteit.

Die gebruik van die ontwerpsraamwerk en ontwerppatrone word dan deur drie
gevallestudies, twee hoëvlak gevallestudies en een in diepte gevallestudie,
gedemonstreer en gevalideer. Die hoëvlak gevallestudies oorweeg onderskeidelik
'n waterverspreidingstelsel en 'n slim stad. Die gedetailleerde gevallestudie
beskou 'n heliostaatveld.

Die proefskrif kom tot die gevolgtrekking dat die ontwerpsraamwerk, sowel as die
ontwerppatrone, 'n sistematiese benadering tot die ontwerp van 'n stelsel van
digitale tweelinge moontlik maak. Die ontwerpsraamwerk kan ook op talle en
variërende gevalle toegepas word, soos die gevallestudies wat oorweeg is.

Stellenbosch University https://scholar.sun.ac.za

vi

Acknowledgements

I would like to thank my supervisors, Prof AH Basson and Dr K Kruger, for their
tremendous guidance, kindness, and patience. Without them, I would not have
made it this far. I would also like to thank the MAD Research Group for all the
brainstorms and coffee breaks.

Thank you to Dr W Smit with STERG for providing funding for this PhD as part of
the larger PreMa project.

Thank you to my wife, Kelly, and my parents, Carl and Sabine, for all the love and
support. It has been much appreciated and I hope I have made you proud.

Finally, may this thesis bring glory to Jesus, the Father and the Holy Spirit.

Stellenbosch University https://scholar.sun.ac.za

vii

Table of contents

Declaration ... i

Abstract ... ii

Uittreksel .. iv

Acknowledgements ... vi

List of figures ... xii

List of tables ... xiii

List of abbreviations ... xv

1 Introduction .. 1

 Background .. 1

 Objective and contribution ... 2

 Motivation ... 3

 Methodology and dissertation overview .. 4

2 Literature review ... 7

 Qualifying criteria for digital twins .. 7

 Aggregation of digital twins .. 9

 The six-layer architecture for digital twins with aggregation 10

 Combining digital twins and service-oriented architectures 12

 Digital twin design frameworks ... 13

3 Needs related to managing system complexity .. 15

 Overview.. 15

 Multi-stakeholder complexity ... 16

 Integration complexity .. 17

 Evolutionary complexity .. 19

 Reliability related complexity .. 21

 Data related complexity .. 23

 Infrastructure complexity .. 24

 Development complexity .. 25

4 Requirements analysis ... 28

Stellenbosch University https://scholar.sun.ac.za

viii

 Background .. 28

 Requirements classification .. 28

 Alternative quality attributes .. 32

 Development constraints .. 34

 Quality attribute conflicts ... 35

4.5.1 Reliability vs agility .. 35

4.5.2 Interoperability vs security .. 36

4.5.3 Interoperability vs performance efficiency 37

4.5.4 Performance efficiency vs data detail 37

4.5.5 Performance efficiency vs portability.. 38

4.5.6 Security vs performance efficiency ... 38

4.5.7 Security and maintainability .. 38

5 Aggregation ... 39

 Aggregation definition and core concepts .. 39

 Complexity, hierarchies and aggregation.. 41

5.2.1 Dimensions of an aggregation hierarchy 42

5.2.2 Near decomposability.. 45

5.2.3 Intermediary forms.. 46

5.2.4 Reoccurring patterns ... 46

 How hierarchical aggregation helps to handle complexity 47

6 Overall reference architecture ... 50

7 Design framework ... 52

 Objectives of the design framework ... 52

 Design framework overview ... 52

 Needs and constraints analysis ... 53

 Physical system decomposition .. 56

 Services allocation ... 57

 Performance and quality considerations .. 59

 Implementation considerations .. 60

 Verification and validation .. 61

8 Services allocation ... 62

 Service patterns ... 62

 DTI and DTA scope identification .. 63

 Services in digital twins vs the services network 64

 Separation of conflicting services ... 65

8.4.1 Separation according to ownership .. 65

Stellenbosch University https://scholar.sun.ac.za

ix

8.4.2 Separation according to scope complexity 66

8.4.3 Separation according to dominant quality attributes 67

9 Performance and quality considerations .. 68

 Performance efficiency considerations ... 68

9.1.1 Latency considerations .. 69

9.1.2 Throughput considerations ... 69

9.1.3 Infrastructure considerations .. 70

 Data quality and detail considerations ... 71

9.2.1 Data quality and management considerations 71

9.2.2 Granularity related processing operations................................ 74

 Aggregation alternatives ... 75

9.3.1 Processing batch density ... 75

9.3.2 Pre-storage vs post-storage aggregation 76

9.3.3 Local-network aggregation vs cloud-based aggregation 78

9.3.4 Aggregate entity .. 78

10 Implementation considerations ... 80

 Security .. 80

 Management services ... 81

10.2.1 Central user interface .. 82

10.2.2 Security service .. 82

10.2.3 Gateway service .. 82

10.2.4 Directory service .. 83

10.2.5 DT monitoring service ... 83

10.2.6 Configuration Server.. 83

10.2.7 Orchestration service .. 84

 Messaging mechanisms... 84

10.3.1 Communications middleware ... 84

10.3.2 Messaging patterns ... 85

10.3.3 Messaging performance parameters and solutions 86

 Storage .. 87

10.4.1 SQL vs NoSQL ... 87

10.4.2 Operational and transactional vs analytical datastores 90

 Hosting options ... 91

10.5.1 Hosting positions ... 91

10.5.2 Virtualisation ... 93

11 Design patterns ... 94

 Performance efficiency ... 94

 Reliability ... 97

 Maintainability .. 99

Stellenbosch University https://scholar.sun.ac.za

x

 Compatibility ... 101

 Portability .. 103

 Security .. 105

12 High-level case studies... 108

 Water distribution system... 108

12.1.1 Scenario ... 108

12.1.2 Needs and constraints analysis ... 110

12.1.3 Physical system decomposition ... 112

12.1.4 Services allocation ... 115

12.1.5 Design pattern selection and application 119

12.1.6 Discussion .. 123

 Smart City .. 124

12.2.1 Scenario ... 124

12.2.2 Needs and constraints analysis ... 126

12.2.3 Physical system decomposition ... 128

12.2.4 Services allocation ... 132

12.2.5 Design pattern selection and application 134

12.2.6 Discussion .. 138

13 Detailed case study ... 139

 Heliostat field architecture design .. 139

13.1.1 Scenario ... 139

13.1.2 Needs and constraints analysis ... 141

13.1.3 Physical system decomposition ... 145

13.1.4 Services allocation ... 146

13.1.5 Design pattern selection and application 149

 Heliostat field implementation ... 151

13.2.1 Implementation scope .. 151

13.2.2 Physical architecture ... 152

13.2.3 Scalability experiments .. 153

13.2.4 Reconfigurability experiments .. 157

13.2.5 Heliostat field architecture evaluation 159

14 Design framework evaluation .. 160

 General evaluation .. 160

 Design step evaluation .. 161

14.2.1 Needs and constraints analysis ... 161

14.2.2 Physical system decomposition ... 162

14.2.3 Services allocation ... 163

14.2.4 Design pattern selection and application 164

14.2.5 Verification and validation .. 164

Stellenbosch University https://scholar.sun.ac.za

xi

14.2.6 Suggestions for future work .. 165

15 Conclusion ... 167

References ... 169

Stellenbosch University https://scholar.sun.ac.za

xii

List of figures

Figure 1: The six-layer architecture for digital twins with aggregation. (Adapted
from Redelinghuys, Kruger, et al., 2020) .. 10

Figure 2: Requirements classification. ... 32

Figure 3: Hierarchical digital twin aggregation .. 41

Figure 4: Reference architecture for the system of digital twins. 50

Figure 5: Overview of design framework for complex DT system design. 53

Figure 6: OAuth2.0 abstract protocol flow. (Adapted from IETF, 2012) 81

Figure 7: Basic water distribution system elements. Adapted from (Rossman,
2000) ... 113

Figure 8: KY12 water distribution system decomposition. (Adapted from
Hoagland, n.d.) .. 114

Figure 9: Internal architectures for the water distribution system DTs. 121

Figure 10: Communication architecture for the water distribution system’s DTs.
 ... 123

Figure 11: Smart city aggregation and communication architecture. 135

Figure 12: Heliostat field hierarchy decomposition .. 141

Figure 13: Internal design of the DTI (top left), DTA (top right) and service
network (bottom) ... 150

Figure 14: Aggregation hierarchy design ... 151

Figure 15: Internal physical architectures for heliostat field DTIs and DTAs 152

Figure 16: Limit point of the DT aggregation. .. 154

Figure 17: Number of DTIs and the collective message threshold for different
message frequencies. ... 156

Figure 18: Layer 4 breakdown of the DTI and the DTA 187

Figure 19: Number of DTIs and the collective message threshold for different
message frequencies. ... 189

Figure 20: Mean latency and percentage message loss for different message
frequencies. .. 190

Figure 21: Number of DTIs and collective message threshold for different
message sizes. ... 191

Figure 22: Mean latency and percentage message loss for different message
sizes. .. 193

Stellenbosch University https://scholar.sun.ac.za

xiii

List of tables

Table 1: Multi-stakeholder needs and how they are addressed in the design
framework. .. 16

Table 2: Integration needs and how they are addressed in the design framework.
 ... 17

Table 3: Evolutionary needs and how they are addressed in the design
framework. .. 19

Table 4: Reliability needs and how they are addressed by the design framework.
 ... 21

Table 5: Data related needs and how they are addressed by the design
framework. .. 23

Table 6: Infrastructure needs and how they are addressed by the design
framework. .. 25

Table 7: Development needs and how they are addressed by the design
framework. .. 26

Table 8: System and software product quality model. (Adapted from BSI et al.,
2011) ... 30

Table 9: Development constraints. (Adapted from Galster & Bucherer, 2008) 34

Table 10: Sub-dimensions and influence of span of reality. 44

Table 11: Relation of hierarchy principles to engineering design principles and
their benefits. .. 48

Table 12: Functional requirements for the heliostat field (excerpt) 54

Table 13: Non-functional requirements of the heliostat field (excerpt) 55

Table 14: Span of reality of a single heliostat. ... 57

Table 15: List of service patterns for DT services. (Adapted from Erikstad &
Bekker, 2021) .. 62

Table 16: Performance efficiency breakdown ... 68

Table 17: Conceptual comparison of request-response and publish-subscribe
messaging.. 85

Table 18: Descriptions for performance parameters with regards to messaging
protocols ... 86

Table 19: Functional requirements for the water distribution system 110

Table 20: Non-functional requirements for the water distribution system 111

Stellenbosch University https://scholar.sun.ac.za

xiv

Table 21: Span of reality of water distribution network operational zone. 115

Table 22: Potential services allocation, for WDS, based on span of reality. 118

Table 23: General functional requirements for a smart city 126

Table 24: Non-functional requirements for smart cities. 126

Table 25: High-level span of reality of the data available in a city ward. 131

Table 26: Functional requirements for the heliostat field. 142

Table 27: Non-functional requirements for the heliostat field 143

Table 28: Span of reality of a heliostat field CCU. ... 145

Table 29: Potential service allocation, for a heliostat field, based on span of
reality .. 148

Table 30: Extended list of NFRs for the heliostat field case study 180

Table 31: Span of reality of the heliostat field components. 183

Table 32: Scalability experiment results for multiple brokers and multiple
aggregates ... 194

Table 33: Broker results comparison ... 196

Stellenbosch University https://scholar.sun.ac.za

xv

List of abbreviations

AAS – Asset Administration Shell

ACID - Atomic, Consistent, Isolated, Durable

AES – Advanced Encryption Standard

AMQP – Advanced Message Queuing Protocol

API – Application Programming Interface

AWS – Amazon Web Services

BSI – British Standards Institute

CA – Certificate Authority

CCU – Cluster Controller Unit

CDBB – Centre for Digital Built Britain

Cloud IAM – Cloud Identity and Access Management

CoAP - Constrained Application Protocol

CICD – Continuous Integration Continuous Deployment

CPS – Cyber Physical Systems

CPU – Central Processing Unit

CRS – Central Receiver System

CS – Configuration Server

CSP – Concentrated Solar Power

CUI – Central User Interface

DNI – Direct Normal Irradiance

DS – Directory Service

DT – Digital Twin

DTA – Digital Twin Aggregate

DTE – Digital Twin Environment

DTI – Digital Twin Instance

DTM – Digital Twin Monitor

DTP – Digital Twin Prototype

ELT – Extract, Load, Transform

ESB – Enterprise Service Bus

Stellenbosch University https://scholar.sun.ac.za

xvi

ETL - Extract, Transform, Load

FCU – Field Controller Unit

FR – Functional Requirements

G - Gateway

GCP – Google Cloud Platform

GPRS – General Packet Radio Service

GPS – Global Positioning System

GPU – Graphical Processing Unit

GUI – Graphical User Interface

HDF – Hierarchical Data Format

HTTP - Hyper Text Transport Protocol

HTTPS - Hyper Text Transport Protocol Secure

ICT – Information Communication Technology

IDL – Interface Definition Language

IETF – Internet Engineering Task Force

I/O – Input/Output

IoT – Internet of Things

ISO – International Organisation for Standards

IT – Information Technology

IPv4 – Internet Protocol version 4

JSON – JavaScript Object Notation

JWT – JSON Web Token

LCU – Local Controller Unit

Mbps – Megabits per second

MCL – MAYA communication Layer

MQTT – Message Queuing Telemetry Transport

MSF – MAYA Simulation Framework

MSI – MAYA Support Infrastructure

MVCC – Multi-Version Concurrency Control

NDT – National Digital Twin

NFR – Non-Functional Requirement

Stellenbosch University https://scholar.sun.ac.za

xvii

NoSQL – Not only SQL

OPC UA – Open Platforms Communications Unified Architecture

OS – Orchestration Service

PLC – Programable Logic Controller

PLM – Product Lifecycle Management

PV – Photovoltaic

QoL – Quality of Life

QoS – Quality of Service

RAM – Random-Access Memory

RAMI4.0 – Reference Architecture Model Industry 4.0

REST – Representational State Transfer

RF – Radio Frequency

RPC - Remote Procedure Call

RTU – Remote Terminal Unit

SCADA – Supervisory Control and Data Acquisition

SDK – Software Development Kit

SLADT – Six Layer Architecture for Digital Twins

SLADTA – Six Layer Architecture for Digital Twins with Aggregation

SOA – Service-Oriented Architecture

SQL – Structured Query Language

SS – Security Service

STERG – Solar Thermal Energy Research Group

TLS – Transport Layer Security

VM – Virtual Machine

VPN – Virtual Private Network

WAN – Wide Area Network

WDS – Water Distribution System

WSN – Wireless Sensor Network

XML – Extensible Markup Language

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction

 Background

This dissertation is in the context of digital twins (DTs), a concept that was first
introduced by Michael Grieves in 2002 as the conceptual ideal for product lifecycle
management (Grieves & Vickers, 2017). The original premise was to create a
virtual representation of a physical product, where the virtual representation
could mirror the physical product throughout its lifecycle. Since then, the DT
concept has evolved and has become a significant enabler of Industry 4.0
initiatives (Durão, Haag, Anderl, et al., 2018). The industry 4.0 initiatives include
connectedness and intelligence to allow for decentralised and adaptable
production environments. Furthermore, the DT concept has been adopted in
domains outside of production to achieve the same principles of connectedness
and intelligence as part of larger digitisation movement.

The DT concept has become a popular means of capturing and utilising data
related to physical systems and has been applied in many domains, such as
manufacturing (Bao, Guo, Li, et al., 2018; Redelinghuys, Basson & Kruger, 2020),
smart city design (CDBB, 2018; Pan, Shi & Jiang, 2020), water treatment facilities
(Therrien, Nicolaï & Vanrolleghem, 2020), the maritime domain (Bekker, 2018),
wind turbines (Pargmann, Euhausen & Faber, 2018), aerospace (Glaessgen &
Stargel, 2012), healthcare (Lutze, 2019), etc. The data provided within DTs allow
for the integration of services and models to improve understanding and decision-
making related to the physical system (Kuhn, Schnicke & Oliveira Antonino, 2020;
Longo, Nicoletti & Padovano, 2019).

The dissertation title refers to a system of DTs. This concept is particularly relevant
considering complex systems. A complex system is a system that consists of a large
network of components which give rise to complex collective behaviour,
sophisticated information processing and adaptation via learning or evolution
(Mitchell, 2009). System complexity can be described as a measure of how difficult
it is to understand the behaviour of a system and how difficult it is to predict the
consequences of changing the system (SEBoK Editorial Board, 2021). Considering
that digital twins are recognised as a concept that could help understand and
manage the data related to complex system, there is a need to implement digital
twins for complex systems and systems-of-systems.

However, to feasibly apply the DT concept to complex systems, the aggregation of
DTs is necessary, which leads to a system of DTs. Minerva, Lee & Crespi (2020)
mention that the simulation and prediction of behaviour of complex systems,
based on an aggregated set of DTs, is a unique benefit of the DT concept.

Stellenbosch University https://scholar.sun.ac.za

2

Aggregation of DTs is a strategy to enhance separation of concerns,
reconfigurability, scalability, and it is therefore attractive for reflecting complex
physical systems (Ciavotta, Bettoni & Izzo, 2018; Lutze, 2019; Redelinghuys, 2019).
It is possible to view a system from different perspectives, by aggregating different
DTs and data features, while also allowing for different levels of detail for each
perspective (Borangiu, Oltean, Raileanu, et al., 2019; Ciavotta et al., 2018;
Villalonga, Negri, Fumagalli, et al., 2020). This ability to accommodate different
perspectives makes it easier to accommodate multiple stakeholders and it makes
the data more comprehensible (Lutters & Damgrave, 2019; Lutze, 2019).

Therefore, this dissertation considers a framework to aid in the design of a DT
aggregation hierarchy. The framework considers complex systems and provides
general principles to help design a DT aggregation architecture to manage the
complexity of the systems.

 Objective and contribution

The objective of this dissertation is to develop a design framework to guide the
detailed design of a DT aggregation architecture, or a system of DTs, to reflect
complex systems.

The framework makes use of hierarchical aggregation design principles. In
particular, the framework provides methods and principles that guide a user
through the design process. The framework also aims to make the user aware of
trade-offs that may form part of the design approach and provides aggregation
and implementation alternatives to manage the trade-offs.

The framework is intended to be independent of the domain of application of the
DTs, and thus it prescribes general design principles and best practices according
to prioritised design requirements. Using the framework, the user should be able
to design a detailed architecture for a DT aggregation hierarchy that reflects a
complex system within a given domain. The resulting detailed architecture should
provide a list of applicable DTs, the functionality of those DTs and how they relate
to each other. Furthermore, the framework also supports implementation
decisions related to key aspects to the architecture.

It is not feasible within the scope of a PhD dissertation to comprehensively
evaluate the decision framework. However, it is applied to different case studies
in different domains as a preliminary evaluation and to demonstrate the efficacy
of the framework.

This dissertation contributes to the body of knowledge on DT design through the
novel design framework. Most research on DTs involve the development of an
architecture to satisfy the needs of a particular domain or use case. Some

Stellenbosch University https://scholar.sun.ac.za

3

architectures are defined to be more generally applicable. However, being an
architecture, they explain the composition of the DT, but not how to approach the
design of the components and their interactions. Little research has been done on
methods and principles for the design of DTs. Furthermore, the design frameworks
that do exist are still quite limited because they consider the design of a single DT
or they only consider particular conceptual aspects of the DTs design.

The design framework presented here is intended to contribute to the digital twin
body of knowledge in the following ways:

• The framework considers the design of a system of DTs and how those DTs
can interact to represent a complex system.

• The framework enables a systematic approach to decision making during the
design of the system of DTs, starting with the fundamental needs and
associated requirements.

• The framework enables traceability from user defined needs and derived
needs to architectural and implementation choices.

• The framework makes provision for key sources of complexity, such as
multistakeholder environments and distributed computing environments.

• The framework considers the integration of DTs with a service-oriented
architecture.

• The framework is unique in its provisioning of design patterns according to
key quality requirements.

 Motivation

Although much has been published about DTs, the use of aggregation with DTs, is
fairly recent and poorly defined. The earliest papers in Scopus with "digital twin"
and "aggregation" in their title, keywords or abstract, were published in 2018
(Ciavotta, Bettoni & Izzo, 2018; Lutters, 2018). Therefore, there is a need for
research with respect to the aggregation of DTs since it is an enabler for the
effective digitisation of complex systems.

For example, the Centre for Digital Built Britain (CDBB) is researching the
possibilities of creating a digital twin of Britain, named the National Digital Twin
(CDBB, 2018; Lamb, 2019). This is a highly diverse, complex and large system with
numerous levels of subsystems. CDBB (2018) states: “The vision for the national
digital twin (NDT) is not that it will be a huge singular digital twin of the entire built
environment. Rather, it is envisaged to consist of ‘federations’ of digital twins
joined together via securely shared data.”

Stellenbosch University https://scholar.sun.ac.za

4

The complexities related to implementing DTs and systems of DTs are not yet fully
understood. A survey on DTs by Minerva, Lee & Crespi (2020) raised concerns
regarding the scalability and interoperability of DTs and the viability of the concept
when multiple stakeholders are present. Villalonga et al. (2021) also mention
some shortcomings of research with respect to distributed DTs, including 1) a lack
of well-defined frameworks to combine DTs, 2) the limitation of methods for
aggregating DTs and 3) the poor use of the gathered data. These concerns give rise
to research questions such as:

• What complexities arise when implementing a system of DTs, particularly with
regard to making the system of DTs scalable, interoperable and suitable for
multi-stakeholder environments?

• What challenges are addressed by using aggregation and what additional
challenges arise when aggregating DTs?

• What are some of the key aspects to consider when aggregating DTs?

• How can DTs and aggregations of DTs help to servitise data?

The design framework is intended to help identify and navigate some of the
complexities of implementing DTs, including aspects related to scalability,
interoperability and multi-stakeholder environments. Furthermore, the
framework allows for the distributed implementation of DTs and provides
methods and principles to help aggregate the DTs. Finally, the framework also
addresses the issue of data endpoints, where the framework incorporates
literature regarding the servitisation of data within and through DTs.

The novel contributions to the growing body of knowledge about digital twins,
indicated in the previous section, are further motivation for the dissertation.
These contributions are intended to improve the feasibility of developing a digital
twin system for complex systems and thereby make them more applicable to
industry.

 Methodology and dissertation overview

The primary deliverable of this dissertation is a design framework to help reason
about the design of a DT aggregation hierarchy. An overview of the design
framework is provided in Chapter 7.

To develop the design framework, software and systems engineering steps and
principles as presented by SEBoK Editorial Board (2021) and Bourque & Fairley
(2014) were considered. These general systems design guides include steps such
as performing stakeholders’ needs analysis, requirements engineering, identifying
design constraints, identifying design trade-offs, etc. Furthermore, these sources
suggest principles such as iteratively designing and testing the design and ensuring

Stellenbosch University https://scholar.sun.ac.za

5

traceability for good change management. Based on these design steps and
principles, the methodology detailed below discusses how the design framework
was developed.

A review of the relevant literature is presented in Chapters 2, 3 and 4. Chapter 2
presents literature related to DTs and particularly literature related to the
aggregation and design of DTs, as well as the integration of DTs and service-
oriented architectures (SOAs). Chapter 3 is devoted to the identification and
classification of general needs related to the complexities of DT system design and
implementation. The complexity needs were identified from digital twin literature,
as well as literature concerning similar software systems and technologies. In
particular, the related domains that were also investigated are: wireless sensor
network (WSNs), Internet of Things (IoT), edge, fog and cloud computing, big data
pipelines and service-oriented and microservices architectures.

The complexity needs were then analysed in the context of digital twins to
determine if they were applicable and if so, how they can be translated to a
general set of requirements to help manage the complexity. However, to
accomplish this, a requirements framework for digital twins was necessary.
Therefore, Chapter 4 discusses the set of requirements considered for this
dissertation and how they relate to the complexity needs identified in Chapter 3.

With the above inputs, the framework was developed iteratively. The iterative
process started by considering fundamental concepts of complexity management
in systems engineering and software engineering. The final set of fundamental
principles are presented in Chapter 5. The fundamental principles were then
related to architectural and implementations solutions within a given context to
determine how the principles can be embodied. Chapter 6 presents a reference
architecture that is intended to embody the aforementioned principles and it
provides context when applying the design framework.

Chapter 7 introduces the design framework. The chapter starts with the objectives
of the design framework and an overview is provided before each step of the
design framework is discussed. The design steps are discussed with a running
example to clarify the concepts.

Chapters 8, 9 and 10 each consider one of the design framework’s steps in more
detail. Chapters 8 considers the service allocation step, Chapter 9 considers
performance and quality aspects of the architecture and Chapter 10 expands on
Chapter 9 by providing guidelines with regards to key reoccurring implementation
choices. Each chapter also considers how the design choices can change
depending on the context.

The evolving framework was regularly tested against various digital twin
aggregation contexts that were being considered in the research group. These trial

Stellenbosch University https://scholar.sun.ac.za

6

applications helped to clarify the important distinctions (such as architectural and
implementation aspects) and the decision sequences that offers a systematic
approach with limited iteration overall, but intensive iteration inside the few
major steps. The results of the above development are presented in the
dissertation and not the process of the framework’s development.

In Chapter 11, the design framework is moulded to six design patterns. The design
patterns are intended to simplify the entire design process by highlighting the key
needs, architectural choices and implementation choices related to the
requirement that the design pattern is named after.

In Chapter 12, the design framework is applied to two high-level case studies: a
water distribution system and a smart city. The purpose of the high-level case
studies is to demonstrate the systematic approach of the design framework in two
different case studies. The case studies each present unique challenges and
considerations and by applying the design framework to each of these cases, the
general applicability of the design framework is also demonstrated.

A water distribution network is a critical piece of infrastructure in any city and thus
reliability is important. Water distribution networks also have a relatively long
operational lifetime and thus associated DTs will need to be maintained for the
duration of the water distribution network’s lifecycle. The water distribution
system also presents some noteworthy characteristics, such as the continuous
nature of the piping network and the large geographical distribution.

The smart city case study presents a are large systems with numerous
heterogeneous subsystems and a substantial amount of heterogeneous data,
making interoperability a major concern. Smart cities also have many different
stakeholders, where secure data sharing is a high priority. Furthermore, smart
cities have mobile entities, such as public transport vehicles, which present some
unique challenges.

In Chapter 13, the design framework is applied in a more detailed case study. The
purpose of this case study is to further demonstrate the systematic approach and
generality of the design framework. This case study further validates the design
framework’s approach by discussing how the architecture was implemented and
tested. The implemented architecture’s scalability and reconfigurability were
tested to validate the ability of the architecture in key areas of concern.

Chapter 14 presents an evaluation of the design framework, where overall aspects
of the design framework are discussed, as well as the individual design steps. The
dissertation concludes in Chapter 15, where the key findings are summarised.

Stellenbosch University https://scholar.sun.ac.za

7

2 Literature review

This section provides a short overview of literature applicable to DTs. Section 2.1
provides a definition and qualifying criteria for DTs. Section 2.2 reviews literature
related to the aggregation of DTs, whereas Section 2.3 reviews literature related
to the combination of DTs with SOAs. Finally, Section 2.4 considers existing DT
design frameworks. Furthermore, Chapters 3 and 4 also form part of the literature
review, where each of these chapters considers a particular subject related to the
design framework. Chapter 5 also makes extensive use of existing literature but
with the intention of formulating new concepts.

 Qualifying criteria for digital twins

DTs have been considered in a multitude of application domains with a multitude
of perspectives (as discussed in Section 1.1). The multitude of perspectives have
resulted in many definitions of digital twins. Drawing from a number of sources
(Grieves & Vickers, 2016; Kritzinger, Traar, Henjes, et al., 2018; Minerva et al.,
2020; Moyne, Qamsane, Balta, et al., 2020; Taylor, Human, Kruger, et al., 2020;
VanDerHorn & Mahadevan, 2021), a DT is defined here as the virtual
representation of a real-world entity (the physical twin), including that:

• The representation is maintained in soft real-time (or near real-time) through
data flows from the physical twin (sometimes referred to as synchronisation
between the physical and digital twins) and/or from associated models. Soft
real-time requires the virtual representation to be updated within a given
time-period. However, occasionally missing the deadline is not detrimental to
the decision-making performance (as opposed to hard real-time where failure
to meet a deadline can cause critical failure). Alternatively, near real-time only
requires the virtual representation to be updated as soon as feasibly possible.
The required update frequency will most likely be dictated by the decision-
making frequency or the potential rate of physical system change.

• Past representations are maintained (historical data storage).

• The representation is constrained to features of interest, which may differ for
the soft-real time and the historical representations. Furthermore, the
required fidelity of the model(s) within the digital twin is dependent on the
case. High-fidelity models are not always feasible (since not all states, inputs
and outputs can be measured) or even required (depending on the service
requirement). Aspects related to DT fidelity are further discussed in Section
9.2.1.

• The DT enables data-led decision making within and/or beyond the digital
twin. The decisions affect the physical twin and/or other systems.
Furthermore, data-led decision making requires that decisions be made based

Stellenbosch University https://scholar.sun.ac.za

8

on data of the physical reality (captured and generated in the virtual
representation), but it does not exclude the use of human observations,
expert experience and intuition, etc.

• Subject-matter-expertise (also known as domain expertise) of the physical
twin is embedded within the above aspects of the digital twin.

• The above aspects are tailored to one or more life cycle stages of the physical
twin (which can include design and planning, construction or manufacturing,
ongoing operations, support during the operational phase and/or disposal).

Further, a digital twin may include:

• Application-specific functionality, such as simulations or predictions of future
representations.

• Bi-directional communication between the DT and the physical twin to affect
the behaviour of the physical twin in response to decisions made
autonomously by the digital twin and/or decisions made outside the DT. Some
sources, such as Kritzinger et al. (2018), insist that a DT must have automatic
bi-directional communications. However, other sources, such as VanDerHorn
& Mahadevan (2021) and Minerva et al. (2020), do not require bi-directional
communication, arguing that requiring bi-directional communication is too
restricting, particularly when considering domains other than manufacturing.

• Facilities for integration with digital systems and services outside the DT, such
as providing data-related and/or modelling-related services as part of a larger
service-oriented architecture.

Therefore, regardless of the architecture used to develop a DT, it must be able to
continually (based on Ciavotta, Maso, Rovere, et al., 2020; Harper, Malakuti &
Ganz, 2019; Minerva et al., 2020; Redelinghuys, Basson, et al., 2020; Redelinghuys,
Kruger & Basson, 2020; Therrien et al., 2020; VanDerHorn & Mahadevan, 2021):

• Collect (possibly heterogeneous) data from its physical twin, where this
physical twin may contain multiple data sources such as sensors, human
observations, etc. This is also referred to as data acquisition.

• Process the data into a suitable, consistent format (typically, an agreed upon,
standard format). This is also referred to as data transformation or data pre-
processing.

• Store data that is ingested by or created within the DT, as well as metadata
and other static data that provides context. Note that not all ingested data
must necessarily be stored.

• Use models of the physical twin to generate information about the physical
twin's reality. The models use as inputs the data collected from the physical
twin or the collected data can be used for model validation.

Stellenbosch University https://scholar.sun.ac.za

9

• Utilise the data in a way that meets the users’ requirements. This may involve
services built into the DT (that may also be accessible via APIs), but these
services are constrained to the data captured within that DT. Utilisation is a
broad term that encompasses any functionality related to decision-making,
e.g. control, modelling, data visualisation, data analytics, etc. This is also
referred to as data consumption.

• Communicate the data, insights and decisions contained within the DT to the
physical twin (when applicable), as well as to other entities, such as operators
or other DTs.

 Aggregation of digital twins

Since its initial conceptualisation, the concept of aggregating DTs has evolved to
take various meanings.

The concept of aggregating DTs was introduced by Grieves & Vickers (2016) who
defined a DT prototype (DTP), a DT instance (DTI), a DT aggregate (DTA) and DT
environment (DTE). A DTP describes a prototypical physical object to the extent
that the physical object could be produced based on the information contained in
the DTP. A DTI is an instance of a DTP that is connected to a specific physical object
and it continues to gather information about the physical object during its
lifecycle. The DTA aggregates all the DTIs of a certain type to allow for a larger and
more complete dataset regarding the operation of a type of physical object. The
DTE is an integrated, multi-domain physics application space that makes use of the
DTs for multiple purposes, such as simulating future system behaviour.

In Borangiu et al. (2019) aggregation is used to collect, process and reduce data
from multiple DTs to inform a control application. Karanjkar, Joglekar, Mohanty,
et al. (2019) performs aggregation on historical data (captured within DTs) to
manage the large amount of historical data. Similarly, Pan, Shi & Jiang, (2020) use
hierarchical data format (HDF) data compression to aggregate large amounts of
heterogeneous data to deliver a more complete and unified data representation.

In Lutze, (2019) personal digital twins are used to keep individual medical records
of patients, while group digital twins and system digital twins are aggregations of
personal digital twins, based on certain criteria, that are used to train machine
learning models. While the personal DTs contain a collection of all relevant
medical data about a patient, the group and system DTs only collect data relevant
to the desired model and thus also omits data such as the patient’s name to
preserve patient privacy and anonymity.

Architectures for DT aggregations have been proposed. Villalonga, Negri, Biscardo,
et al. (2021) propose a hierarchical aggregation approach, where local digital twins

Stellenbosch University https://scholar.sun.ac.za

10

are concerned with asset health monitoring and diagnostics while global digital
twins are concerned with decision-making. Ciavotta et al. (2018) proposes a
framework where data from multiple digital twins are used to define layers of
information (where each layer addresses a concern) and these layers can then be
aggregated into different collections depending on the user’s interest and desired
level of detail. The six-layer architecture for digital twins with aggregation, SLADTA
(Redelinghuys, 2019; Redelinghuys, Kruger, et al., 2020), proposes a hierarchical
assembly of DTs. The following section considers SLADTA in more detail because
it is the reference architecture used for the internal design of the DTs in the system
of DTs.

 The six-layer architecture for digital twins with
aggregation

The Six-Layer Architecture for Digital Twins (SLADT) is a reference architecture for
digital twin development and it has been applied to a manufacturing cell for close
to real-time monitoring and fault detection (Redelinghuys, Basson, et al., 2020).
SLADT with Aggregation (SLADTA) is an extension of the SLADT framework that
allows multiple digital twins to aggregate data for a system level perspective
(Redelinghuys, 2019; Redelinghuys, Kruger, et al., 2020). SLADTA is presented in
Figure 1 where the individual DTs are designed according to the SLADT layers and
where aggregation of DTs is performed through layer 4.

Figure 1: The six-layer architecture for digital twins with aggregation. (Adapted
from Redelinghuys, Kruger, et al., 2020)

Stellenbosch University https://scholar.sun.ac.za

11

The six layers of the SLADT are 1) devices and sensors, 2) data sources, 3) short-
term data repositories, 4) IoT gateway, 5) long-term data repositories and 6)
emulation and simulation. Layer 1 (devices and sensors) refers to physical devices,
such as actuators and sensors, that can send and receive signals. Layer 2 (data
sources) refers to devices, such as controllers, that can virtualize data by
processing the signals received from Layer 1 and that are able to induce physical
changes based on virtual information. Layer 2 is considered separate from layer 1,
because it can perform functions in physical space as well as virtual space.
Together, these two layers form the physical twin.

Layer 3 (short-term data repositories) consists of data repositories that are
typically hosted near the physical twin. Such repositories would include a database
hosted on the Layer 2 device. For example, a Raspberry Pi microcomputer can be
used to perform the functionality of Layer 2 and host a local database to fulfil the
functionality of Layer 3. Although, smart sensors and controllers could send data
directly to the cloud, often there is a desire or a necessity for local short-term
storage, particularly in large systems. This could be for security, reliability, latency,
etc. and thus layer 3 is included in this architecture.

Layer 4 (IoT gateway) is custom-developed software that links layers 3 and 5 by
coordinating and managing data flow. This includes data reduction and basic data
pre-processing, for example, calculating a time difference as opposed to sending
a start and end timestamp. Layers 3 and 4 are typically responsible for aggregation
and thus, when considering the SLADTA, these two layers become essential.

Layer 5 (long-term data repositories) is intended to be a collection of long-term
storage databases, typically hosted in the cloud, that contain the data sent by
Layer 4. Layer 6 (emulation and simulation) is an information endpoint where the
information is utilized for an intended purpose. The most common purposes
include system monitoring, data visualization, data analysis and simulation
(Minerva et al., 2020).

The SLADTA adopts the terms DTI and DTA from (Grieves & Vickers, 2016), but the
term DTI refers to any DT that has a direct link to a physical twin, while a DTA refers
to any DT that aggregates data from multiple DTIs and/or other DTAs. In Figure 1,
three DTIs can be observed (where DTIs have Layers 1 and 2) and two DTAs can be
observed (Layers 1 and 2 are absent). The DTAs can be considered as a digital twin
of twins because they make use of other DTs to provide a system perspective.

In the case study presented by Redelinghuys (2019), the short-term local
repositories were Open Platform Communications Unified Architecture (OPC UA)
servers. In the case study, a DTI’s IoT gateway sends data to its OPC UA server
which passes the data to a DTA’s OPC UA server (if they use separate servers) and
then the OPC UA client in the DTA’s IoT gateway can access the data. Therefore,

Stellenbosch University https://scholar.sun.ac.za

12

aggregation is coordinated by Layer 4 but performed through Layer 3. Aggregation
through Layer 3, as described by Redelinghuys (2019), is enabled by OPC UA and
if any other short-term storage solution is used, this type of aggregation would
require DTs to have a shared database. However, it is not always feasible for DTs
to share a database, particularly in geographically distributed systems. Therefore,
this dissertation considers an adaptation of SLADTA, where aggregation is
performed through Layer 4, as discussed in (Human, Kruger & Basson, 2021).

The SLADTA is a vendor-neutral, general framework for the development of digital
twins. Through aggregation, the architecture enables system-level decision-
making by gathering only the necessary data from lower-level DTs, thereby also
limiting data exposure, for privacy and confidentiality reasons, and limiting data
bottlenecks. In this dissertation, the SLADTA has been chosen for the internal
design of DTs because it adheres to the criteria and functionality presented in
Section 2.1 and it allows for the aggregation of DTs.

 Combining digital twins and service-oriented
architectures

Microservices and SOAs have a high level of adaptability, making them an
attractive solution to exploit the data captured within DTs (Ciavotta et al., 2020;
Pernici, Plebani, Mecella, et al., 2020). Therefore, a number of approaches have
been proposed to combine DTs and SOAs.

The MAYA platform aims to join microservices, DTs and big data within a
manufacturing environment to extend the capabilities of cyber-physical systems
(CPSs) beyond control to include advanced simulation and big data capabilities
(Ciavotta et al., 2020). The MAYA platform consists of three high-level
components, namely the MAYA Communication Layer (MCL), the MAYA Support
Infrastructure (MSI) and the MAYA Simulation Framework (MSF) (Ciavotta, Alge,
Menato, et al., 2017; Ciavotta et al., 2020).

Essentially, the MCL is responsible for interfacing with the CPSs and integrating
them into the rest of the platform, the MSI is microservices and big data
middleware responsible for managing the DTs and the MSF contains the DTs
(encompassing simulations and models). Therefore, MAYA uses microservices (in
the MSI) to manage data between the CPSs (exposed by the MCL) and DTs (in the
MSF).

Kuhn et al. (2020) describes the use of the asset administration shell (AAS), as
proposed by the Reference Architecture Model Industry 4.0 (RAMI4.0) (Adolphs,
Bedenbender, Dirzus, et al., 2015), to create DTs of products, processes or
production machines within a manufacturing environment. The AAS captures data
about the physical asset or process and exposes that data in an SOA where a

Stellenbosch University https://scholar.sun.ac.za

13

stakeholder can then access the data via a dashboard. The dashboard makes use
of a service orchestrator and service registry to find and coordinate services to
achieve the application requirements.

The AgileChains architecture is a service-oriented DT approach in the context of
supply chain management (Pernici et al., 2020). The AgileChains architecture has
three primary components: the DTs, the coordinator and the smart dataspace.
This approach proposes that each DT exposes a set of services that are related to
the physical twin, such as monitoring, diagnostics and prognostics. The
coordinator orchestrates the services provided by the DTs to achieve a given
process plan. Finally, all the data is stored in the smart dataspace which is a
collection of heterogenous data sources that implements data mapping to
translate and exchange data between entities.

The service-oriented digital twin approach was proposed in the context of
manufacturing, specifically as a means to empower manufacturing employees to
make better decisions regarding the machines that they are responsible for (Longo
et al., 2019; Padovano, Longo, Nicoletti, et al., 2018). This architecture consists of
the service-oriented DTs that each expose a set of services through RESTful APIs.
The manufacturing employees (and other stakeholders) can then access these
services through a remote terminal unit (RTU), such as a smartphone or tablet. All
the communication between the DTs and the RTUs are facilitated by an enterprise
service bus (ESB).

The approaches discussed above can be divided into two groups. The first
approach is to keep the services separate from the DTs (the DTs only encapsulate
data, models and simulations) and then allow the services to interact with the DTs.
The ASS and MAYA platform follow the first approach. The second approach is to
include all the services within the DTs and then orchestrate the services between
the DTs using, for example, an ESB. The AgileChains and service-oriented digital
twins architectures follow the second approach.

 Digital twin design frameworks

The design framework presented by VanDerHorn & Mahadevan (2021) consists of
four primary steps and only considerers a single digital twin, although it can be a
digital twin of a complex system. The four steps are 1) specify the intended
outcomes, 2) scope the solution (by defining the physical system of interest and
the levels of abstraction), 3) create a virtual representation and 4) establish the
required data interconnections.

Specifying the intended outcomes (step 1) refers to establishing measurable and
quantifiable deliverables that the DTs must provide to ensure user satisfaction.
Scoping the solution (step 2) consists of two sub-steps namely: 2.1) determining

Stellenbosch University https://scholar.sun.ac.za

14

the physical reality of interest and 2.2) determining the levels of abstraction of the
models. Determining the physical reality of interest (step 2.1) refers to
determining the boundary between the physical reality being reflected and the
environment it is operating in. Determining the levels of abstraction of the models
(step 2.2) refers to the process of determining the level of detail of the data
required for the models that form part of the DT.

Creating the virtual representation (step 3) involves the creation of the data model
(step 3.1) and then the creation of a computational model (step 3.2). The creation
of a data model (step 3.1) refers to determining what data features are applicable,
how the data will be stored and how the data will be visualised. The creation of a
computational model (step 3.2) refers to the development of computational
models that simulates the behaviour of the physical reality of interest.

Finally, establishing the required data interconnections (step 4) involves the
establishment of 4.1) how the data will be collected, 4.2) the frequency at which
data is collected and 4.3) how data is exchanged between physical and virtual
spaces.

An alternative design framework presented by Moyne, Qamsane, Balta, et al.
(2020), follows object-oriented programming principles. The authors present the
object-oriented DT framework which specifies four aspects with regards to their
baseline digital twin object-oriented framework, including:

• A DT object class, which specifies that each DT class is a type of DT that
delivers a specific capability to the DT client. Therefore, DTs belonging to the
same class must have the same generally defined scope and commonly
defined behaviour.

• A generalisation hierarchy and inheritance, which states that the output
metric, common behaviour and the scope of the sub-class must fall within the
super-class. The sub-class is typically a refinement of the superclass that
better suits a specific application. For example, a super class may be “motor”,
while a sub-class may be “conveyor motor” or “robot motor”.

• Aggregation hierarchy, which is a specification that allows for the combination
of DT object instances. Aggregation membership is specified in terms of
purpose and scope. For example, aggregate all entities that deliver a capability
to production line “A”.

• Instantiation and implementation, which refers to the instantiation of a given
DT implementation. The DT can occur anywhere in the hierarchy or it can be
restricted to be above or below a certain point. This essentially refers to
instantiation rules that govern which sub-class in a hierarchy of classes is
applicable to which physical objects.

Stellenbosch University https://scholar.sun.ac.za

15

3 Needs related to managing system
complexity

 Overview

A complex system is a system that consists of a large network of components
which give rise to complex collective behaviour, sophisticated information
processing and adaptation via learning or evolution (Mitchell, 2009). System
complexity can be described as a measure of how difficult it is to understand the
behaviour of a system and how difficult it is to predict the consequences of
changing the system (SEBoK Editorial Board, 2021).

Some of the most cited characteristics of complex systems are independence,
interconnectedness, diversity and adaptability (Page, 2009). Independence refers
to autonomous system elements that can make their own decisions, influenced by
information from other system elements. Interconnectedness refers to system
elements that are connected via physical connections, shared data or through
visual (sensory) awareness. Diversity refers to the differences between system
elements, for example technological differences or differences in function.
Adaptability refers to system elements’ ability to self-organise in response to their
environment to support themselves or the entire system.

Similar to complex systems, systems-of-systems are an assemblage of other
systems, where the following criteria must be satisfied: the subsystems must be
1) operationally independent, and 2) managerially independent (Maier, 1999).
Sage & Cuppan (2001) expanded the list of criteria to include: a system-of-systems
must 3) be geographically distributed, 4) have emergent behaviour and 5) evolve
over time (its structure, function and purpose is continually evolving).

This chapter classifies commonly cited needs related to software design for
complex systems, where software design refers to any software-based entities
such as data, models, services, etc. The needs are functionally defined and are
classified into multi-stakeholder, integration, evolutionary, reliability, data
related, infrastructure and development needs. The taxonomy introduced here is
to help make the needs more understandable and identifiable, but it must be
noted that most of these needs do span over more than one of the categories.
Each of the following subsections start with an introductory paragraph and table
that summarises the needs and indicates where each need is addressed by the
design framework. The table entries are explained after the table.

Stellenbosch University https://scholar.sun.ac.za

16

 Multi-stakeholder complexity

A system of DTs is expected to have many stakeholders involved in multiple parts
of the system’s lifecycle and these different groups of stakeholders should be
accommodated. Stakeholders can be divided into primary users, secondary users
and indirect users (BSI, ISO & IEC, 2011). Primary users are users who directly
interact with the system to achieve the goal of the system, such as machine
operators and data scientist. Secondary users are users who contribute to the
composition and functioning of the system, such as component suppliers and
system administrators. Finally, indirect users are users that rely on the outputs
from the system, but without interacting with the system directly. This section
highlights commonly cited needs related to multi-stakeholder environments
which are summarised in Table 1.

Table 1: Multi-stakeholder needs and how they are addressed in the design
framework.

Need
number

Need Design framework reference

N1 Handle service
requirement conflicts

Hierarchical aggregation (Chapter 5) helps
address this need as well as the service allocation
method discussed in Section 8.2.

N2 Enable secure data
sharing and storage

Section 10.1, as well as the security design
pattern (Section 11.6), address issues related to
secure data sharing and storage.

N3 Provide for
proprietary
technologies

This is part of the motivation for the design
framework being vendor neutral (Chapter 6) and
the compatibility design pattern helps address
interoperability issues (Section 11.4).

N4 Identify and address
requirements
imposed on the
system by external
regulatory bodies.

The design framework includes provision for
external requirements within its requirements
breakdown (Section 4.2). However, the
implications of such externally imposed
requirements are case dependent.

N1. Different stakeholders reasoning about different decisions regarding different
system components and subsystems will be interested in different datasets,
with different levels of detail (Durão et al., 2018; Villalonga et al., 2021). These
different datasets and levels of details are referred to as viewpoints by van
Geest, Tekinerdogan & Catal (2021). The differing viewpoints required by
different stakeholders may give rise to conflicting system and service
requirements (Galster & Bucherer, 2008). Therefore, the system of DTs must
provide mechanisms to handle requirement conflicts and to minimise trade-
offs.

Stellenbosch University https://scholar.sun.ac.za

17

N2. To maintain a competitive edge and to be rewarded for their investments into
research, many companies are concerned about their intellectual property and
data security (Moyne et al., 2020). In response to concerns about data security,
privacy and confidentiality, the Centre for Digital Built Britain (CDBB, 2018)
emphasise the need for the system of DTs to be trustworthy. This essentially
means that the system of DTs must enable secure sharing of relevant and
accurate data between different subsystem and data owners. It also requires
the secure storage and regulated access to data within the system.

N3. The system of DTs is intended to have multiple contributors to the physical
and software subsystems. These contributors are likely to have differing
preferences and requirements related to their subsystem. Therefore, there is
a need to provide for differing and proprietary technologies, such as differing
programming languages, communication protocols and data formats.

N4. Some domains, such as manufacturing and healthcare, have regulatory and
quality constraints that may inhibit the adoption of new technologies and may
require extended quality testing procedures (O’Donovan, Leahy, Bruton, et al.,
2015). Furthermore, institutions and countries also have specific data privacy
and confidentiality needs (Harper et al., 2019; O’Donovan et al., 2015)
Therefore, external quality and testing requirements, such as those imposed
by regulating bodies, must be identified and addressed.

 Integration complexity

Complex systems typically have many contributors, many of which may be third-
party service providers. To ensure that the system functions as expected, the
internal components from different development teams as well as the third-party
components, must all integrate seamlessly. Therefore, this section highlights
commonly cited integration and interoperability challenges. These challenges are
summarised in Table 2.

Table 2: Integration needs and how they are addressed in the design
framework.

Need
number

Need Design framework reference

N5 Provide guidelines
and standards for
software interaction

The design framework allows for better
communication of the software between
stakeholders (Chapter 6) as well as guidelines to
improve interoperability through the compatibility
design pattern (Section 11.4).

Stellenbosch University https://scholar.sun.ac.za

18

Need
number

Need Design framework reference

N6 Allow for retrofitting
and differing levels
of technological
maturity

The design framework considers issues related to
long-term maintenance and reconfiguration and
provides the maintainability (Section 11.3),
compatibility (Section 11.4) and portability
(Section 11.5) design patterns to help address such
issues. Hierarchical aggregation is also well suited
to handle reconfiguration problems (Chapter 5).

N7 Integrate with new
and existing
information systems

The design framework facilitates the identification
and management of data sources and relationships
in various parts of Chapter 9. The compatibility
design pattern (Section 11.4) also addresses such
issues.

N8 Allow for the
integration of
humans

The design framework does not directly address
the integration of humans, but the framework is
flexible enough to accommodate humans that are
represented by digital administration shells.

N5. Software artifacts must adhere to exacting specifications for proper
functioning and interaction, but there is no universal law that governs the
exacting specifications (Brooks, 1995). Therefore, guidelines and standards
must be agreed upon that allow for the interaction of the software artifacts.

N6. Complexity management related to long-term maintenance, repair and end-
of-life behaviour is increased by the succession of old devices with newer
versions, as well as by software and firmware updates (Lutters, 2018).
Therefore, the system must provide for differing levels of technological
maturity. Many companies have made significant investments into their
existing IT and automation infrastructures and often that infrastructure is still
fully operational and effective (O’Donovan et al., 2015). Therefore, the system
of DTs must provide for retrofitting to accommodate legacy systems (Liu, Leng,
Yan, et al., 2020).

N7. Aspects such as retrofitting, long-term maintenance and the adoption of new
technologies over time also give rise to the need to integrate with new and
existing information systems and solutions. For example, it may be necessary
to integrate with an existing local database and migrate it to a cloud platform.
Manufacturing system also typically have SCADA system already installed and
integrating with SCADA systems is a common need in the manufacturing
domain.

N8. Some industries are labour intensive and the role of humans within the system
of DTs may be uncertain. This may cause hesitance to the adoption of DTs and
similar enabling technologies (Bertoli, Cervo, Rosati, et al., 2021).

Stellenbosch University https://scholar.sun.ac.za

19

Furthermore, humans are more capable and/or more feasible options for
solving certain problems than digital or robotic solutions. Humans are often
integrated into digital environments using administrations shells that capture
and manage data related to the humans and their interaction with other
systems. Example of such administrations shells are the RAMI 4.0 AAS
(Adolphs, Bedenbender, Dirzus, et al., 2015; Kuhn et al., 2020) and the BASE
administrations shell (Sparrow, Kruger & Basson, 2021). Therefore, it is
important to provide for the integration of humans that are represented by
digital administration shells.

 Evolutionary complexity

Users’ interests and needs are likely to change over time. This is one of the main
drivers of system evolution and is (at least partially) addressed by changing aspects
of the system to adapt to the new needs. Physical components can be added,
removed, exchanged or changed to adapt to changing demands or changing
system ability. Software is also highly malleable (easily changed) and is the most
frequently changed part of a software intensive system (SEBoK Editorial Board,
2021).Therefore, this section considers needs related to system evolution and
these needs are summarised in Table 3.

Table 3: Evolutionary needs and how they are addressed in the design
framework.

Need
Number

Need Design framework reference

N9 Allow for
efficient system
reconfiguration

Hierarchical aggregation helps accommodate system
reconfiguration (Chapter 5). Furthermore, the service
separation guidelines (Section 8) and the
maintainability (Section 11.3) and portability (Section
11.5) design patterns further aid in reconfigurable
design.

N10 Verify and
validate system
changes and
manage
dependencies

Hierarchical aggregation helps to clearly define
system relationships (Chapter 5). The design
framework also promotes the traceability of design
choices which helps change management (Section 6).
Furthermore, the design patterns (Chapter 11)
provide some evaluation metrics.

N11 Provide support
services

The support services are detailed in Section 10.2 and
the design patterns in Chapter 11 also make
recommendations for support services.

N12 Provide decision
validation and
feedback where
possible

This need is not directly covered in this dissertation
since it is very case dependent.

Stellenbosch University https://scholar.sun.ac.za

20

Need
Number

Need Design framework reference

N13 Manage machine
learning model
changes

This need is not directly covered in this dissertation
since it is very case dependent.

N14 Allow for easy
system
maintenance and
extension

Hierarchical aggregation eases system maintenance
and extension (Chapter 5). The maintainability
(Section 11.3) and portability (Section 11.5) design
patterns help design systems for easier maintenance
and extension.

N9. Complex systems and systems-of-systems adapt and evolve over time,
meaning that they change in composition and orientation over time. (Sage &
Cuppan, 2001; SEBoK Editorial Board, 2021). However, large structures can be
difficult and expensive to design, maintain, and modify (Duffie, Chitturi & Mou,
1988; Ismail, Truong & Kastner, 2019). Software systems also often undergo
refactoring, which can affect multiple software components and services
(Engel, Langermeier, Bauer, et al., 2018). Therefore, the system of DTs must
allow for system reconfiguration (including the addition, removal, exchange or
change of components), while minimising the impact of the changes on the
surrounding subsystems.

N10. As the system evolves, the behaviour of the system may change and this
change may be desirable or undesirable, expected or unexpected. In some
domains, such as manufacturing and industrial automation, minimising system
downtime is vital. For this reason, such domains are very cautious to introduce
changes (such as software changes or new technologies) into the existing
system because these changes may introduce new faults and cause failures
(Ciavotta et al., 2020; Ismail et al., 2019; O’Donovan et al., 2015). Therefore,
there is a need to implement a means of assessing the effect of system changes
(physical or software changes), i.e. there is a need for DT verification and
validation in response to system changes (Moyne et al., 2020). A particular
subsection of this need is the need for dependency management in software
design (Aderaldo, Mendonça, Pahl, et al., 2017; Engel et al., 2018).

N11. Complex software architectures usually require additional support functions
and services to enable the components to work together and to work
efficiently despite some components changing regularly (Balalaie,
Heydarnoori, Jamshidi, et al., 2018; Ciavotta et al., 2020; Engel et al., 2018;
Karabey Aksakalli, Çelik, Can, et al., 2021). Examples of such services include
discovery services, coordination and orchestration services, debugging
services, load balancing, service monitoring, etc. Therefore, the system of DTs
must provide the necessary support functions for a particular use case.

Stellenbosch University https://scholar.sun.ac.za

21

N12. Understanding or even quantifying the effect of decisions made within and
about the system (where the effects can be short-term or long-term) can be
particularly difficult in complex systems. Therefore, feedback should be
provided, where possible, on the effect of decisions that have been made
regarding the system, i.e. provide decision validation and feedback where
possible (for both short-term and long-term decisions) (Villalonga et al., 2021).

N13. Lutze, (2019) mentions that the continuous learning ability of software (such
as periodically updating machine learning models with new datasets) presents
promising prospects for improving performance while simultaneously raising
severe concerns related to the deterioration of performance. Therefore, it is
important to manage machine learning model changes within the DT.

N14. Many companies lack the expertise and knowledge required to further
develop and maintain the software and infrastructure that forms part of the
system of DTs (Bertoli et al., 2021; Ciavotta et al., 2020; Kuhn et al., 2020).
Therefore, long-term system maintenance and extension should be simplified
as far possible.

 Reliability related complexity

The system evolves over time as discussed in Section 3.4 and new components
must be integrated into the system. Therefore, it is important to ensure that the
system remains available and performs its functions satisfactorily despite the
changes. This section highlights commonly cited needs related to system reliability
and availability. Table 4 provide a summary of these reliability needs.

Table 4: Reliability needs and how they are addressed by the design
framework.

Need
number

Needs Design framework reference

N15 Provide a fault
tolerant system

The reliability design pattern (Section 11.2)
makes suggestions for fault tolerant systems.

N16 Automate system
support functions

The support services in Section 10.2 help
automate tasks and the maintainability (Section
11.3) and portability (Section 11.5) design
patterns help incorporate such support
functions.

N17 Manage sensor health This need is not directly covered in this
dissertation.

N18 Ensure high
availability

The reliability (Section 11.2) and performance
efficiency (Section 11.1) design patterns help
design highly available systems.

Stellenbosch University https://scholar.sun.ac.za

22

Need
number

Needs Design framework reference

N19 Accommodate testing
methods and metrics

This need is not directly covered in this
dissertation but the design patterns do provide
some potential testing metrics.

N15. System components often rely on inputs from other components to inform
their own functioning and behaviour. However, other components might not
always be available, may be delayed in their response, might not provide the
expected response, etc. (the dependence of a component on other
components is referred to as the system’s vulnerability to volatile inter-actor
behaviours) (Engel et al., 2018; Lindsay, Gill, Smirnova, et al., 2021; Pernici et
al., 2020). Therefore, system components must be able to handle faulty
information, connection breakdowns, delayed connections, lost messages,
etc. to prevent undesirable component behaviour.

N16. Manually maintaining a large system of physical and software components
and services is cumbersome and time consuming (Ciavotta et al., 2020; Moyne
et al., 2020). Therefore, the automation of various aspects regarding the
testing and validation, (re)deployment, fault handling and configuration of DTs
is suggested by many researchers (Aderaldo et al., 2017; Ciavotta et al., 2020;
Moyne et al., 2020; Therrien et al., 2020; VanDerHorn & Mahadevan, 2021).

N17. Sensors and devices need to be maintained and they eventually degrade.
This influences the quality of the data being captured and can significantly
influence all downstream uses of that data such as modelling and services.
Therefore, sensor lifetime management, health checking and cross-validation
may be required. (Therrien et al., 2020)

N18. The system of DTs is intended to help users make better decisions related to
their area of interest. This is only possible if the user can use the system when
the decision(s) need to be made. Therefore, the system of DTs must be
available to users when they need it.

N19. Software testing and validation for distributed software components is non-
trivial because the software is deployed across different types of hardware,
the software must integrate with many other components (including external
components) and testing all possible scenarios and variations of software
execution is not feasible (Petrova-Antonova, Manova & Ilieva, 2020).
Therefore, good testing and validation procedures and methods should be
accommodated.

Stellenbosch University https://scholar.sun.ac.za

23

 Data related complexity

Complex systems have many data sources, data is exchanged between many
components and processing within components can differ. The abundance of data
sources, data processing and data endpoints can cause some difficulty related to
the management of the data within the system. Therefore, this section highlights
commonly cited issues related to managing data within a complex system. Table 5
summarises these data related needs.

Table 5: Data related needs and how they are addressed by the design
framework.

Need
number

Need Design framework reference

N20 Identify and address data
management issues

Section 9.2.1 lists some common data
quality and management issues and the
effect that those issues have on
aggregation and the architecture.

N21 Adequately structure and
supplement data

Considerations for heterogeneous systems
are made throughout the dissertation and
are summarised in the compatibility design
pattern (Section 11.4).

N22 Provide for multiple data
viewpoints

Hierarchical aggregation (Chapter 5) and
the inclusion of a service architecture
(Section 6) help to provide for multiple
system viewpoints.

N23 Facilitate heterogeneous
data handling

The compatibility design pattern (Section
11.4) helps design interoperable systems
despite heterogeneity.

N24 Provide for high data
capacity requirements

The performance efficiency design pattern
(Section 11.1) helps design system with
high throughput needs.

N20. Data generated by some components are used as inputs to other
components, meaning that data is widely shared among software
components. This results in data related issues such as data integrity,
consistency and persistence management across the distributed components
(Bourque & Fairley, 2014; Zimmermann, 2017). Therefore, the relevant data
management issues must be identified and structures and/or guidelines must
be put in place to facilitate them.

N21. Therrien et al. (2020) mention data collections called data swamps and data
graveyards, which refers to collections of data that have become unusable

Stellenbosch University https://scholar.sun.ac.za

24

because of their lack of structure and metadata. Therefore, data should be
adequately structured and supplemented with metadata.

N22. Lutters (2018) mentions how the increasing amount of data for decisions
support, as well as the difficulty of predicting the outcome of a decision, stifles
engineers’ ability to make decisions in a timely manner. This is because
engineers cannot inspect and understand all the information fast enough.
Lamb (2019) shares this concern and mentions that the national DT concept
(DT of Britain as proposed in (CDBB, 2018)) is highly complex, diverse and very
large and that it hinges on the ability to be: 1) multi-scale, being able to
represent small components to the whole system (referred to as variety in
spatial scale in (CDBB, 2018)), 2) multi-component, being able to model
distinct but interconnected assets, and 3) composite, including federated
models from different sources. Therefore, data obscurity should be prevented
by allowing for an information overview, while also providing quick access to
relevant viewpoints of different subsystems and components.

N23. Diversity in complex systems give rise to one of the most cited challenges in
complex system – the need for heterogenous data handling (Engel et al., 2018;
Ismail et al., 2019; O’Donovan et al., 2015; Pan et al., 2020; Pernici et al., 2020).
Diverse systems produce data that can differ in type, range, structure,
sampling rate, etc and extensive amounts of time and money are spent getting
data in the right format before it can be utilised (Lutters & Damgrave, 2019).
This is closely related to the need, expressed by many organisations, to
integrate data silos for a more holistic view of the system (Lamb, 2019).
However, to integrate data silos, efficient communication mechanisms and
network management are required to transmit the data effectively and this
may include the need to support heterogeneous communication protocols
(Ismail et al., 2019; Lutze, 2019; O’Donovan et al., 2015).

N24. The interconnectedness of complex systems results in large networks of
diverse components where each component displays individual behaviour,
while also contributing to a complex collective behaviour (Mitchell, 2009). To
digitally represent such a system, a large amount of data must be captured and
exchanged resulting in high levels of data traffic and complex processing
(Huang, Liu, Xiong, et al., 2020). Therefore, the system of DTs must have the
capacity to capture, process, transmit and store a large amount of data in a
timely manner (Bertoli et al., 2021; Pan et al., 2020).

 Infrastructure complexity

The infrastructure and hardware used to host the digital twins contribute to the
complexity of the system. Any software intensive system will be dependent on the
infrastructure used to support it and thus it is important to identify what
complexity may be encountered as a result. Therefore, this section highlights

Stellenbosch University https://scholar.sun.ac.za

25

commonly cited issues related to the hosting infrastructure. Table 6 summarises
these infrastructure related issues.

Table 6: Infrastructure needs and how they are addressed by the design
framework.

Need
number

Needs Design framework reference

N25 Provide for resource
constrained devices

The performance efficiency design pattern
(Section 11.1) helps design resource efficient
systems.

N26 Identify network
constraints

Section 9.1.3 provides some considerations
when determining network ability.

N27 Avoid physical resource
contention

The performance efficiency (Section 11.1) and
compatibility (Section 11.4) design patterns
help avoid resource contention (particularly
the hosting related recommendations)

N25. Data is often gathered using power and resource constrained devices, such
as IoT devices (Pourghebleh & Navimipour, 2017; Ullah, Azeem, Ashraf, et al.,
2021). Therefore, there is a need to provide for resource constrained devices
and sensors.

N26. Distributed architectures and software systems that make use of cloud
platforms are very reliant on the network infrastructure (Taibi, Lenarduzzi &
Pahl, 2018). Therefore, important network characteristics, such as network
latency, bandwidth and availability, must be identified and managed.

N27. Host machines and hardware often host more than one software component
to optimise resource usage (Bourque & Fairley, 2014; Karabey Aksakalli et al.,
2021). However, when some software components need to sustain high loads
they monopolise the resources (this is referred to as physical resource
contention) (Lindsay et al., 2021). This typically happens when there are very
dynamic workloads. Therefore, physical resource contention between
software components on the same host machine must be managed and
avoided.

 Development complexity

The development of any system is subject to numerous constraints that limit the
solution space that a design must fit into. These constraints significantly influence
the quality of the system since they inform decisions regarding trade-offs and they
place limitations on the extent to which a need can be met. Therefore, this section
highlights commonly cited needs related to development that have not been

Stellenbosch University https://scholar.sun.ac.za

26

mentioned in any of the other sections. Table 7 summarises these additional
development needs.

Table 7: Development needs and how they are addressed by the design
framework.

Need
number

Need Design framework reference

N28 Manage the balance
between cost, time and
quality.

The design framework is intended to promote
systematic and purposeful design and it
facilitates a common understanding and
purposeful communication amongst
stakeholders.

N29 Decompose the system
and data effectively

The aggregation hierarchy (Chapter 5) and
service separation guidelines (Section 8) help
with system decomposition.

N30 Improve primary users’
system understanding

The design framework provides some service
patterns for DTs in Section 8.1 that can help a
primary user understand how a DT can help
them.

N31 Improve secondary users’
mutual understanding of
the system

Design framework is also a framework for
project communication and it promote
traceability from user needs to design choices
(refer to Chapter 6). The separation of
concerns facilitated by the aggregation
hierarchy (Chapter 5) also makes the systems
more comprehensible.

N32 Track system changes The support functions in Section 10.2 are
intended to help track system changes.

N28. First and foremost is the famous triple constraint of project management:
cost (or resources) vs time (or schedule) vs scope (or quality). Many enterprises
prefer cheap, plug-and-play solutions that are easy to use and that cause
minimal disruption to existing operations (Bertoli et al., 2021). Furthermore,
high time pressure often results in a lack of quality (Chung & Do Prado Leite,
2009). Therefore, there is a need for modular solutions that are quick and easy
to integrate and a framework that can help ensure quality despite time
pressure.

N29. Software decomposition and data separation are not trivial and good
decomposition of complex software systems is a commonly cited difficulty in
software design (Engel et al., 2018; Karabey Aksakalli et al., 2021; Salah,
Zemerly, Yeun, et al., 2016). Poorly decomposed systems result in excessive

Stellenbosch University https://scholar.sun.ac.za

27

communication complexity, interface complexity and unit complexity.
Therefore, there is a need for decomposition guidelines and best practises.

N30. Moyne et al. (2020) expresses the need to improve the consistency,
understanding and assessment of DT benefits through agreed upon metrics.
Furthermore, O’Donovan et al. (2015) state that without understanding of
how a new technology can benefit an organisation, adoption of that
technology is not likely. Therefore, support should be provided to improve the
understanding and usability of the system and its components, as well as how
the components contribute to the system as a whole.

N31. Software has no physical presence and must thus be represented using
various methods, e.g. by using diagrams and code, to communicate the
composition of the system and the interactions between the components
(Brooks, 1995). Therefore, terminology, schematics, architectures, etc. must
be agreed upon to promote mutual understanding between contributors.

N32. Keeping an overview of the software system is a challenge, particularly in
large distributed systems, such as microservices systems, where services have
been independently developed and refactored separately (Engel et al., 2018;
Salah et al., 2016). Some related needs are the need for a code version control
repository (Aderaldo et al., 2017), the need for portable designs (Moyne et al.,
2020) and the need for good document management (Harper et al., 2019).
Therefore, there is a need to track system changes.

Stellenbosch University https://scholar.sun.ac.za

28

4 Requirements analysis

 Background

“A requirement is a condition or capability that must be met or possessed by a
system, system component, product or service to satisfy an agreement, standard,
specification or other formally imposed documents” (ISO, IEC & IEEE, 2010).
Requirements are typically separated into functional and non-functional
requirements, where function requirements (FRs) describe what functions the
system must perform and non-functional requirements (NFRs) describe how (or
how well) the system should perform its functions (ISO et al., 2010).

There are also multiple perspectives on what NFRs are. For example, NFRs can be
considered to be requirements that describe the properties, characteristics or
constraints of a software system. Alternatively, NFRs can be considered to be
requirements that describe the quality attributes that the software product must
have (Mairiza, Zowghi & Nurmuliani, 2010). Here NFRs are considered to include
properties, characteristics and constraints of the system.

NFRs are often neglected in the development of software system because 1) of a
lack in knowledge or experience in development, 2) NFRs are harder to model,
verify, test and measure than FRs and 3) high time pressure related to providing a
working system often results in a lack of attention to quality (Chung & Do Prado
Leite, 2009; Mairiza et al., 2010). In a review of NFRs in the context of agent-based
systems, Clark, Walkinshaw and Hierons (2021) also report that the majority of the
reviewed information artifacts did not facilitate specification or testing of NFRs.

NFRs should be incorporated early into the software development life cycle to
ensure acceptable software performance and customer satisfaction, particularly
in large and complex systems (Bajpai & Gorthi, 2012; Chung & Do Prado Leite,
2009; Galster & Bucherer, 2008; Lamb, 2019). Considering NFRs from the start of
the development process (as opposed to assessing the NFRs after
development/prototyping) is beneficial because it allows traceability from
requirements to implementation decisions and it provides a better basis for
architectural and project decisions and trade-offs (Poort & De With, 2004).
Therefore, the design framework provides a systematic approach that
incorporates NFRs and software quality requirements from the start of the design
process.

 Requirements classification

There are many different requirements classification models and methods.
However, finding the best method of classification is not as important as that the

Stellenbosch University https://scholar.sun.ac.za

29

development teams should all understand the classification methods and
terminology of the chosen classification model (Chung & Do Prado Leite, 2009).
With this in mind, this section combines the taxonomies presented by (Galster &
Bucherer, 2008; Poort & De With, 2004) and the ISO 25010 standard. Together,
these taxonomies form a comprehensive classification of the design requirements.

Poort & De With, (2004) classify the requirements as follows:

• Primary functional requirements: Functions that directly contribute to the
goal of the system or yield direct value to the user. They represent the
principal functionality of the system. All primary requirements are functional
requirements, but all functional requirements are not primary requirements.

• Supplementary requirements

o Secondary functional requirements: Functions that help achieve
the primary goals without contributing to the goals directly, e.g.
management functionality such as logging.

o Quality attribute requirements: Quantifiable requirements related
to the system quality.

o Implementation requirements: Constraints placed on the system
that cannot be measured by assessing the system, e.g. cost
constraints, development time constraints. They contribute to the
development process, but are not a measure of system quality.

Similarly, Galster & Bucherer (2008) classify the non-functional requirements
related to service-oriented development into three groups, namely process
requirements, service requirements and external requirements. Process
requirements relate to the development process of the services and include
aspects such as cost and time and thus it corresponds to the implementation
requirements of Poort & De With (2004). Service requirements are related to the
quality of the service, such as reliability, usability, security, scalability, etc and thus
they correspond to the quality attribute requirements in Poort & De With (2004).
Finally, Galster & Bucherer, (2008) add external requirements, which are any NFRs
that are not classified as process NFRs or service NFRs, such as legal constraints
and market conditions.

BSI et al. (2011) define a hierarchical decomposition of software quality that
further decomposes the service NFRs of Galster & Bucherer (2008). BSI et al.
(2011) decompose quality into attributes which in turn can be further
decomposed into sub-attributes, etc. The decomposition continues until a
measurable quality-related property is reached. The Systems and software Quality
Requirements and Evaluation (SQuaRE) model consists of three aspects: the
quality in use model, the product quality model and the data quality model. The

Stellenbosch University https://scholar.sun.ac.za

30

product quality model, which consists of eight quality attributes summarised in
Table 8, is the model of interest here.

Table 8: System and software product quality model. (Adapted from BSI et al.,
2011)

Quality
attribute

Definition Sub-attributes

Functional
suitability

The system’s ability to provide
functions that meet the stated and
implied needs of the user.

Functional completeness,
functional correctness,
functional
appropriateness.

Performance
efficiency

The system’s performance relative to
the amount of resources used.

Time behaviour, resource
utilisation, capacity.

Compatibility The system’s ability to exchange
information with other systems and/or
to perform its functions despite
sharing a hardware or software
environment.

Co-existence,
interoperability.

Usability The system’s ability to achieve
specified goals with effectiveness,
efficiency and satisfaction while being
used by specified users.

Appropriateness
recognisability,
learnability, operability,
user error protection,
user interface aesthetics,
accessibility.

Reliability The system’s ability to perform
specified functions under specified
conditions for a specified period of
time.

Maturity, availability,
fault tolerance,
recoverability.

Security The system’s ability to protect
information and data so that other
persons or systems can only have the
degree of access appropriate to their
level of authorisation.

Confidentiality, integrity,
non-repudiation,
accountability,
authenticity.

Maintainability The system’s ability to allow for
effective and efficient modification to
improve, correct or adapt to changes
in the environment and requirements.

Modularity, reusability,
analysability,
modifiability, testability.

Portability The system’s ability to be transferred
between hardware and software
environments, as well as between
operational and usage environments.

Adaptability,
installability,
replaceability.

A definition for each sub-characteristics is given on the ISO 25000 website (ISO &
IEC, 2021).

Stellenbosch University https://scholar.sun.ac.za

31

The quality model also specifies three different groups of stakeholders, as
mentioned in Section 3.2 (BSI et al., 2011):

• Primary user: Person who interacts with the system to achieve the primary
goal.

• Secondary user: Persons who provide support, such as content providers,
system administrators and security managers.

• Indirect user: person who receives output, but does not interact with the
system.

The quality in use for primary users is significantly influenced by: functional
suitability, performance efficiency, usability, reliability and security. The
performance efficiency, reliability and security will also concern other
stakeholders that specialise in these fields. The compatibility, maintainability and
portability are significant for the quality in use for secondary users. (BSI et al.,
2011)

Figure 2 presents the requirements classification that will be used further in the
design framework. It is a combination of the taxonomies discussed and includes
all the requirements classified either as FRs or NFRs. FRs are decomposed into
primary and secondary FRs (as described by Poort & De With (2004)), where
primary FRs directly contribute to the user needs (e.g. predictive analytics and
data dashboards), while secondary FRs provide support functionality (e.g. system
data logging for debugging).

The NFRs are here grouped into quality attributes, development constraints and
external NFRs. Quality attributes correspond to service NFRs (Galster & Bucherer,
2008) and quality attribute requirements (Poort & De With, 2004) while
development constraints correspond to process NFRs (Galster & Bucherer, 2008)
and implementation requirements (Poort & De With, 2004). External NFRs are as
defined by Galster & Bucherer (2008) and the external NFRs in Figure 2 are
examples of external NFRs, not necessarily all the possibilities.

The development constraints and external NFRs describe requirements placed on
the system that constrain the development of the system and thus also influence
the quality. The following section expands the quality attributes, describing
requirements placed on the system to ensure the system functions according to a
sufficiently high standard of quality to satisfy the user expectations. The quality
attributes are further decomposed according to the software product model as
described in BSI et al. (2011) and as summarised in Table 8. The design patterns,
presented in Chapter11, are also designed based on these quality attributes,
where each design pattern focusses on a quality attribute. The development
constraints decomposition is discussed in Section 4.4.

Stellenbosch University https://scholar.sun.ac.za

32

Figure 2: Requirements classification.

 Alternative quality attributes

The taxonomy presented in Section 4.2 does not cover all the NFRs that have been
used in research and in industry. Mairiza et al. (2010) present a list of 114 NFRs
and further mention that 252 NFRs were identified in their literature study.
Therefore, it is not feasible to consider all these NFRs, but this section relates some
of the most popular NFRs to the taxonomy to avoid confusion.

Responsiveness is a system’s ability to respond to user input in a timely manner
and is commonly referred to when referencing reactive architecture design and
The Reactive Manifesto (Bonér, Farley, Kuhn, et al., 2014). Responsive systems
focus on providing rapid and consistent response times. Responsiveness relates to
time behaviour, a sub-attribute of performance efficiency, as well as to availability,
a sub-attribute of reliability.

Stellenbosch University https://scholar.sun.ac.za

33

Resilience is a system’s ability to remain responsive despite failures (Bonér et al.,
2014). Resilience relates to the ISO 25010 requirement of reliability.

Scalability is a system’s ability to make use of more computing resources to
increase its workload while maintaining stable performance. It is measured as the
ratio of throughput gain to resource increase (Bonér et al., 2014; Márquez, Villegas
& Astudillo, 2018). Furthermore, scalability can be divided into, 1) vertical
scalability, which is the ability to scale to demand by adding resources to a single
instance of the program (Tovarnitchi, 2019), 2) horizontal scalability, which is the
ability to scale to demand by duplicating the program and load balancing between
the identical instances (Tovarnitchi, 2019), and 3) z-axis scalability, which is the
ability to scale to demand by duplicating the program by with different subsets of
data as presented by the AKF scale cube (Abbott, 2020).

For example, consider an online dictionary application that needs to meet
increased demand. Providing the dictionary application with more RAM and more
CPU time would be vertical scaling. Duplicating the dictionary application and then
load balancing requests between the duplicate instances would be horizontal
scaling. Duplicating the dictionary application functions but hosting one version
with words from A to M and another version with words from N to Z would be z-
axis scaling. Vertical scaling is typically achieved by using a better machine or by
using dedicated hardware. Horizontal scaling and z-axis scaling is typically
achieved by using multiple, lower-grade, machines.

Elasticity refers to the dynamic allocation of resources at runtime to increase or
decrease throughput as demand varies. Elasticity can only be achieved if a system
is scalable and thus elasticity is an extension of scalability (Bonér et al., 2014).
Therefore, both scalability and elasticity relate to the ISO 25010 quality attribute
for performance efficiency, particularly the relation between the sub-attributes of
capacity and resource utilisation.

Reconfigurability (in the context of manufacturing and cyber-physical systems) is
the ability of a system to allow for the addition, removal, exchange or change of
system components to respond to internal or external changes (Kruger & Basson,
2019). Good reconfigurability means that system components can be added,
removed, etc. with minimal system down time and ramp-up time, thus improving
availability. Reconfigurability more closely resembles the sub-attributes of
maintainability and portability, such as modularity, reusability, replaceability and
modifiability. Scalability is also one of the critical characteristics for
reconfigurability (Koren & Shpitalni, 2010) which is linked to performance
efficiency. Therefore, reconfigurability is a characteristic that promotes
performance efficiency, portability and maintainability as a means to improve
reliability.

Stellenbosch University https://scholar.sun.ac.za

34

Agility is a system attribute that allows for the quick, incremental addition of
features to provide new functionality in response to changing user needs (Ciavotta
et al., 2017). This relates to the ISO 25010 sub-attribute of modifiability (a sub-
attribute of maintainability) and adaptability (a sub-attribute of portability).

Extensibility is the system’s ability to integrate new interfaces, data types,
connectors and components (Ismail et al., 2019). This relates to the ISO 25010 sub-
attributes of adaptability (a sub-attribute of portability) and it is also dependent
of the system’s interoperability, which is a sub-attribute of compatibility.

 Development constraints

The development constraints are constraints placed on the development of the
system and thus limit the solution possibilities for the system. Galster and
Bucherer (2008) further divide the development constraints into ten sub-
categories which are given in Table 9. Each of these development constraints will
influence the degree to which the quality attributes can be achieved and it is
important to determine how the constraints may affect the design.

Table 9: Development constraints. (Adapted from Galster & Bucherer, 2008)

Development
constraints

Description Examples

Implementation Constraints on
implementation methods
or technologies.

This includes constraints such as
having to use AWS as a cloud
platform or having to use the
SCRUM development method.

Composition Constraints related to how
the software should be
composed.

All development must make use
of internally produced APIs or
only certain packages or
framework within a development
language are allowed.

Service provider
support

The degree of support
offered by external service
providers.

Technical support staff, Q&A
forums, documentation, tutorials
and community support forums
are examples of service provider
support.

Cost The allowed cost of
development, equipment,
deployment, etc.

A limit on deployment costs may
prevent to use of preferred
equipment.

Development time The amount of time
allowed to develop the
software or subsections of
the software.

Deadlines for milestone events
and the expected time-to-market
of features. The SCRUM
development method breaks the
development time into sprints.

Stellenbosch University https://scholar.sun.ac.za

35

Development
constraints

Description Examples

Industry standards Standards imposed by a
certain industry.

Conforming to the ISO 27001
standard for information security
management.

Documentation The documentation that
should be provided along
with the system.

Documentation should provide a
list of all systems APIs and
examples of how they are
intended to be used.

Solution
constraints

Constraints placed on the
solution space without
considering
implementation.

The need to integrate with legacy
systems is a common solution
constraint. The scope of the
solution being implemented also
constrains the solution since it
must receive certain, externally
determined, inputs and provide
certain outputs.

Auditability The degree to which the
system must provide
support for audits.

Software audits include aspects
such as a review and evaluation
of design and development
methods, testing and validation
procedures, implementation
procedures, etc.

To better balance and manage the development constraints, an incremental
implementation approach is often adopted (VanDerHorn & Mahadevan, 2021).
This typically helps to reduce upfront cost, reduce time to market and to identify
where enhancements are most urgently required. Incremental development
strategies also make the development more manageable by dividing the
development into attainable sub-tasks.

 Quality attribute conflicts

All the quality attributes are important to consider within a complex system, but
some of the attributes require conflicting solutions and thus trade-offs are
necessary. The relative importance of the quality attributes, the influence of
development constraints and external NFRs are case dependent. However, this
section provides some of the most cited trade-offs that may need to be
considered.

4.5.1 Reliability vs agility

Agility is the ability to change easily in response to a changing environment or
changing user needs. Software agility is closely linked to agile software design
methods which emphasise the incremental development and addition of new

Stellenbosch University https://scholar.sun.ac.za

36

features, functions and services as the operational lifecycle continues. This is
referred to as continuous integration and continuous deployment (CICD).

Agility is useful to reduce the time-to-market of software and it is useful to adapt
to constantly changing user needs. However, these changes increase the risk of
introducing new faults and failures into the current system and thus they increase
the risk of downtime (Ciavotta et al., 2020; Kuhn et al., 2020). Therefore, there is
a conflict between agility and reliability since reliability is focussed on minimising
downtime. Furthermore, one of the sub-attributes of reliability is maturity which
is hard to accomplish in a system where features can continually change.

Hardware agility can also negatively impact reliability. In the context of production
environments, Lutters (2018) mentions how components are replaced based on
their perceived ability to add value that older technologies are not capable of.
However, this adds to the complexity of the production environment and causes
the system to be less predictable and thus less reliable.

The conflict is caused by the desire for quick system changes in response to
external changes. Therefore, it is important to determine the degree to which
external changes need to be accommodated. In production and automation
environments, these changes need to be handled, but the system does not
necessarily have to change because of them. Therefore, in this context reliability
is often preferred. On the other hand, in microservices architectures, it is vital that
the needs of the users are met and thus agility gains priority. In this context
reliability is achieved through other means, such as replication and extensive
automated testing, despite the constant changes.

4.5.2 Interoperability vs security

The conflict between interoperability and security arises from the need to keep
data private and confidential, while also needing to share it among systems to fulfil
certain functionalities. In particular, Lamb (2019) mentions the difficultly related
to data sharing in an environment where companies want to protect their
intellectual property and competitive edge. This problem is echoed by the Centre
for Digital Built Britain (CDBB, 2018) and Ismail et al. (2019). Collaboration
agreements are cited as the most common solution to data sharing in highly
competitive environments. However, the negotiation related to the collaboration
agreements can last between six months to a year (Griffiths, 2018).

In some domains, such as healthcare, where data is being captured about people,
there is a strong need for data privacy. Therefore, when sharing data, there are
strict policies that need to be adhered to and, in such cases, people also have the
right to withhold consent (Lutze, 2019). The strict policies and need for consent
mean that data sharing and, by implication, aspects of interoperability are

Stellenbosch University https://scholar.sun.ac.za

37

hindered or prevented. Such issues must be identified and developers must
adhere to such policies.

Furthermore, using good, open standard security methods, such as the SSL/TLS
protocol, AES encryption and the OAuth protocol, helps secure data while still
maintaining an acceptable degree of interoperability.

4.5.3 Interoperability vs performance efficiency

The use of intermediaries, such as brokers, middleware or directories, is a
common way to improve interoperability. However, such intermediaries can
increase latency since they create extra communication steps and they often
perform protocol conversions that require additional processing time.
Furthermore, such intermediaries can become communication bottlenecks if they
are not properly designed (O’Brien, Merson & Bass, 2007).

High performance middleware technologies typically find a good balance between
interoperability and performance efficiency. Designing high performance
middleware typically makes use of concepts such as load balancing and message
queueing and industrial grade solutions are available for such tasks. Section 10.3
provides more details about messaging solutions for different scenarios.

4.5.4 Performance efficiency vs data detail

In the context of modelling within DTs, high fidelity models require more detailed
data and thus more processing, storage and network bandwidth than lower
fidelity models (VanDerHorn & Mahadevan, 2021). As a result, more resources
must be utilised to manage the increased data load and possibly the increased
latency. Therefore, it is important to determine what level of data detail is
required by models and services. In some cases it is useful to reduce data
dimensionality to improve the comprehensibility of the data, even though some
detail is lost (Fadlalla, 2005). Furthermore, structuring data to minimise the
number of data queries is a way of retaining detail with minimal effect on time
behaviour. Pre-computing computationally expensive queries and storing the
results of those queries is also common (Fadlalla, 2005), but there is then trade-
off between computational and storage resources that needs to be justified.

It is also important to consider data management aspects and how those influence
the performance efficiency. For example, when strong data consistency is
required, latency is often increased and data persistence management requires
long-term storage. The trade-off of performance efficiency vs data detail and
quality is further considered in Chapter 9.

Stellenbosch University https://scholar.sun.ac.za

38

4.5.5 Performance efficiency vs portability

In the context of distributed software systems, Lindsay et al. (2021) refer to the
conflict between generalisation and specialisation. Generalisation of software
refers to the software’s ability to handle a variety of scenarios without having to
change the software, whereas specialisation of software refers to the software’s
ability to perform a specific task exceptionally well. Generalisation prioritises
portability, particularly adaptability, whereas specialisation prioritises time
performance and resource efficiency (Lindsay et al., 2021). In this dissertation, this
issue is facilitated by the separation of concerns. Section 8 provides more details
regarding services separation.

4.5.6 Security vs performance efficiency

There is always a trade-off between security and performance (Gadge & Kotwani,
2017) because security requires additional processing and possibly extra
communication steps and storage. For example, encryption and decryption
increase message size and overhead (O’Brien et al., 2007), authentication and
authorisation can cause large initial delays in communication while a secure
connection is being established and security aspects such as non-repudiation and
accountability require logging and thus additional storage.

Security is always a concern in software systems and should never be sacrificed.
However, there are degrees of security and there are some methods of ensuring
security that do not influence performance too significantly. Typically, this
includes using industry standards for security, such as the SSL/TLS protocol and
the OAuth protocol, and making use of reputable cryptographic libraries. Security
issues are further discussed in Section 10.1 and the security design pattern
(Section 11.6) provides some recommendations for security.

4.5.7 Security and maintainability

In the context of service-oriented architectures, O’Brien et al. (2007) mentions the
trade-off between security and maintainability. Common methods of improving
maintainability are by promoting a loose coupling between services and through
the separation of concerns (Bachmann, Bass & Nord, 2007). However, security
measures such as encryption, authentication and authorisation increase the
interface complexity and responsibility of services, since the service must include
logic to handle security certificates, security tokens, etc. Furthermore,
authorisation and confidentiality concerns may cause some services to be
restricted making it harder to debug and test such services.

As discussed in Sections 4.5.2 and 4.5.6, it is recommended to prefer security
protocol standards for security and making use of reputable cryptographic
libraries also greatly eases maintenance issues.

Stellenbosch University https://scholar.sun.ac.za

39

5 Aggregation

This Chapter extends upon the concept of aggregating DTs as presented in
Sections 2.2 and 2.3. In particular, Section 5.1 introduces a definition and some
core concepts related to aggregation. Section 5.2 then discusses hierarchical
aggregation principles, while Section 5.3 discussed how the hierarchical
aggregation principles can be applied to design DT aggregation hierarchies.

 Aggregation definition and core concepts

The following definition for aggregation, suited to computing and software
environments, is used here:

Within a given domain, the process of collecting, and potentially contextualising,
various independent (and possibly heterogeneous) entities, followed by the
processing of those entities into a unified, coherent entity, where "entities" can be
data, information, models, microservices, etc.

This definition captures some specific aspects of aggregation that can be identified
when investigating literature. These aspects are:

• Aggregation is tailored to intended purposes and a certain context.

• Aggregation entails the collection of independent or nearly independent
entities (see Section 5.2.2 for a discussion on nearly independent entities).
Independent or nearly independent entities are entities that can be
considered as individuals, but they may interact and influence each other.
Therefore, considering them as a collective can also be beneficial.

• Aggregation entails some processing to be performed on the combination of
various entities to produce an aggregated entity.

• The output of the aggregation must be a unified, coherent entity, i.e., an
observer (such as a user) can interact with the aggregated entity without
knowledge about the entities being aggregated.

The definition of aggregation above, as well as the variety of processing
approaches that can form part of aggregation, mean that a single DTI (as defined
in Section 2.3) can already be considered an aggregation of, for example, multiple
data sources (environmental sensors, machinery, historical data stores) from
multiple lifecycle stages. Therefore, it is necessary to clarify what is meant by the
aggregation of DTs. The definition proposed for the aggregation in the context of
DTs is:

Stellenbosch University https://scholar.sun.ac.za

40

The process of collecting entities from multiple DTs (the child DTs), followed by the
processing of those entities into a single DT that represents an identifiable part of
physical reality which encompasses the child DTs' physical realities.

Therefore, a DTA (as defined in Section 2.3) is the single coherent result when DTs
(which can be DTIs or DTAs) are aggregated.

Some further principles related to the aggregation of DTs are explained with
reference to Figure 3. In Figure 3 the DTIs are labelled A, B and C and each of them
represent a given reality and they encapsulate data, models and services related
to that reality. Similarly, the DTAs are labelled AB, BC and ABC depending on which
DTIs are aggregated.

The key characteristics of DT aggregation applied here, with reference to Figure 3,
are:

• Aggregation follows a hierarchical structure, where DTIs make up the lowest
level and DTAs make up one or more levels above the DTIs.

• Entities from one DTI can be aggregated by more than one DTA (B is
aggregated by AB and BC) and a DTA can aggregate data from another DTA
(AB is aggregated by ABC). For example, data from a robot represented by DTI
B can be aggregated to the DTA the represents the cell containing the robot
(AB) and to an aggregation of all the robots of one manufacturer (BC).

• If a DTA can be reached by more than one aggregation path, care should be
taken to avoid redundant (and potentially conflicting) data. For example, ABC
is an aggregate of AB and C, as opposed to being an aggregate of AB and BC.
This restriction is intended to preserve data consistency, since AB and BC may
manipulate the entities from B in different ways.

• A DTA should be introduced into the hierarchy only where that DTA can add
value, such as by reducing data storage and flows by aggregating information
not stored long term by lower-level DTs, or by providing models that rely on
the data from multiple, lower level, DTs.

For the duration of this document, the term aggregation will refer to the process
of aggregating DTs. The term aggregation hierarchy refers to the concept of
dividing the system into subsystems with accompanying DTs and the aggregation
of those DTs into different DTAs. The following sections will clarify the term
aggregation hierarchy.

Stellenbosch University https://scholar.sun.ac.za

41

Figure 3: Hierarchical digital twin aggregation

 Complexity, hierarchies and aggregation

Hierarchies are one of the central structural schemes of any complex system
(Simon H.A., 1996). A hierarchy is a system composed of interrelated subsystems
where each subsystem can further be decomposed into subsystem until a lowest
level elementary element is reached. What constitutes the lowest level
elementary element is often a subjective decision and dependent on the case.
Hierarchical aggregation is the reverse of decomposition and it refers to the joining
of subsystems to create larger subsystems that can also be aggregated to form
even larger systems until the largest system perspective is reached.

WSNs and IoT networks along with concepts such as edge computing and fog
computing often also make use of hierarchical arrangement and aggregation to
manage complexity related to large amounts of data (Huang, Liu, Xiong, et al.,
2020; Pastor, Chamizo, Hidalgo, et al., 2018; Bertoli, Cervo, Rosati, et al., 2021;
Rajagopalan, Varshney, 2006; Pourghebleh, Navimipour, 2017). Hierarchies offer
a structured method of distributing processing and decision-making responsibility
across a network, making the system more manageable and comprehensible
(Ciavotta et al., 2018; Redelinghuys, Kruger, et al., 2020; Villalonga et al., 2020).
Similarly, in SOAs, service hierarchies promote the separation of concerns, loose
coupling and service reuse (Buenabad-Chavez, Kecskemeti, Tountopoulos, et al.,
2018).

Stellenbosch University https://scholar.sun.ac.za

42

Finally, in the context of DTs, hierarchical architectures provide a high degree of
reusability and modularity which allows the DTs to adapt to different applications
(Shangguan, Chen & Ding, 2019). Most existing DT architectures also make use of
hierarchical models, where each level of the hierarchy has its own function and
provides data or information to the level above (Villalonga et al., 2021).

The following subsections introduce some dimensions and principles related to
hierarchies in general and then translates those dimensions and principles to make
them applicable to aggregation hierarchies in DTs.

5.2.1 Dimensions of an aggregation hierarchy

 Simon (1996) introduces two dimensions to describe a hierarchy:

• The span of the system refers to the number of subsystems that the system is
composed of. The span of the system is often limited by, and thus determined
by, the system’s capacity for interaction.

• Hierarchies are often defined in terms of their intensity of interaction. The
intensity of interaction is typically quantified by the frequency of interaction
between entities. In physical systems the intensity of interaction is often
largely dependent on the spatial proximity of the subsystems, whereas for
social systems only the frequency of interaction is an indication of the
intensity of interaction.

These dimensions are discussed in the following subsections. For this discussion,
consider the example of multiple machines (with machine twins) within a
production line (with a production line twin) that forms part of a manufacturing
plant (with a plant twin).

5.2.1.1 Span of reality

To relate the “span” dimension of hierarchies to the aggregation of data and DTs,
the term span of reality is defined as:

The extent of the physical reality that is represented by a given digital twin, where
a smaller span of reality means a smaller subset of the physical system and its
environment is being represented.

Considering the above-mentioned example, a machine twin has a small span of
reality, whereas a production line twin has a larger span of reality and finally, the
plant twin has the largest span of reality. Therefore, span of reality can be specified
in part by specifying which DTs are being aggregated (and therefore which physical
subsystem(s) is/are being represented). This is referred to here as the physical
scope. However, since subsets of data can be aggregated and processed in

Stellenbosch University https://scholar.sun.ac.za

43

different ways it is useful to define another dimension here, namely data
granularity.

Data granularity refers to the detail of the data that is captured within a DTA,
where a finer granularity refers to a higher level of detail. Data granularity specifies
1) the desired subset of data features and 2) the time interval between
consecutively ingested data records of a feature (for batch data this refers to the
amount of data compression and for real-time data this refers to the sampling
frequency of the data). Choosing which DTs to aggregate from and defining a level
of data granularity helps to determine the data scope of the DTs.

If a DT provides data to a service hosted outside of the DT or if the data ingestion
is split from the data utilisation within a DT, then the data update frequency should
also be determined. Data update frequency is the rate at which data must be
output from the DT’s database. Data update frequency is largely determined by
the potential rate of physical system change, as well as the decision-making
frequency. In some cases, the data sampling frequency may be the same as the
required data update frequency, but they are not always the same. For example,
for real-time control, the sampling frequency and data update frequency might be
the same whereas for exploratory data analytics a fine data granularity may be
required (many data features with many data records) but the data may only need
to be updated once a day.

The Centre for Digital Built Britain (CDBB, 2018) mentions that a DT must provide
for a variety of temporal scales, such as an operational timescale, reactive
timescale, planned maintenance timescale, capital investment timescale, etc.
Each of these requires different levels of data detail. Therefore, the data
granularity is chosen according to the services’ data requirements. Determining
the desired data granularity will then inform what processing operations may be
required to produce the desired subset of data.

Furthermore, when choosing the span of reality of a DT, it is important to consider
the DT’s capacity for interaction. The capacity for interaction of a DT is heavily
influenced by the underlying hardware and refers to aspects such as:

• The number of concurrent connections that a DT can maintain.

• The amount of data that can be processed by the DT within a given timeframe.

• The storage capacity and memory allocated to the DT by the host machine.

Span of reality essentially describes the scope of the data that is available and
sustainable within a DT. This is important for service-to-DT mapping since a service
may require a particular set of data to perform its functions. Table 10 summarises
the sub-dimensions of span of reality.

Stellenbosch University https://scholar.sun.ac.za

44

Table 10: Sub-dimensions and influence of span of reality.

Sub-dimension of span
of reality

Significance of sub-dimension

Physical scope The scope of the physical reality of interest, i.e. which DTs
are being aggregated.

Data granularity Determines the scope of the data being aggregated and
informs which processing operations are required.

Capacity for interaction Determines the capability of the underlying hardware to
support data granularity, which can be a requirement if
new hardware will be obtained or a constraint if hardware
is already provided.

5.2.1.2 Intensity of interaction

Based on the intensity of interaction dimension, the physical system will most
likely be decomposed based on spatial proximity and interface complexity.
Therefore, each DTI will represent an elementary element based on spatial
decomposition (this may also be desirable for reconfigurability). However, DTs can
form social hierarchies and thus an aggregate entity should be defined according
to frequency of interaction rather than spatial proximity alone. As a result,
aggregate entities can aggregate according to different types of relations.

There are two primary types of relations that are considered here: a spatial
relation and a functional relation. A spatial relation refers to relationships based
on physical proximity. For example, aggregating various machines within a
production line into a production line twin is aggregation based on a spatial
relation. DTAs typically aggregate based on a spatial relation because this is how
humans naturally perceive reality and thus how DTs reflect reality.

Alternatively, aggregation can be based on a functional relation, where the
relationship is based on functional similarity. For example, aggregating all the
electrical information from various machines to determine energy consumption.
Services that form part of an SOA or microservices architecture typically aggregate
according to a functional relation, which is typically determined using domain-
driven design principles (Aderaldo et al., 2017; Salah et al., 2016; Tovarnitchi,
2017)

Therefore, the intensity of interaction can be spatially focussed, in which case
aggregation using a DTA may be preferred. Alternatively, the intensity of
interaction can be functionally focussed, in which case aggregation using a service
in a SOA may be preferred. Either way, the intensity of interaction is determined
by the related service’s required span of reality. There are also other

Stellenbosch University https://scholar.sun.ac.za

45

considerations when choosing an aggregate entity and these are discussed in
Sections 8.3 and 9.3.4.

5.2.2 Near decomposability

In hierarchical systems, a distinction can be made between interactions within a
subsystem and interaction among the subsystems. The interactions within a
subsystem are typically an order of magnitude higher than interactions among
subsystems. The principle of near decomposability states that the interaction
among subsystems is weak but not negligible when compared to interactions
within subsystems (Simon, 1996). This leads to two propositions that can be
exploited when considering nearly decomposable systems (Simon, 1996):

• The short-term behaviour of the component subsystems is nearly
independent of the short-term behaviour of other component subsystems.
Therefore, short-term behaviour can often be closely approximated as
independent of other component subsystems.

• The long-term behaviour of any one component subsystem depends on only
the aggregate behaviour of another component subsystem, i.e. component
subsystem A is not dependent on all the interaction within component
subsystem B, but only on the aggregate result of those internal interactions
within B. For example, consider two machines within a production line,
machine A and machine B, where machine A places a label and machine B
stamps the label placed by machine A. Machine B’s throughput is not
dependent on the power consumption, strain, temperature, etc of each
motor in machine A, instead machine B’s throughput is only influenced by the
throughput of machine A.

In terms of an aggregation hierarchy, the principle of nearly decomposable
systems relates to the concept of separation of concerns and the distribution of
data and logic across the system. When considering decisions related to the short-
term behaviour of a subsystem, only the data and logic internal to that subsystem
is required. Alternatively, when considering decisions related to the long-term
behaviour of a subsystem, only the aggregated data (that describes the net inputs
and outputs) and the associated logic is required. Therefore, there is a natural
separation of concerns within hierarchies allowing for distributed decision making.

The principle of near decomposability also highlights an important aspect within
aggregation hierarchies, namely that higher levels of aggregation typically have
reduced dimensionality and a higher level of abstraction than the lower levels
(Engel et al., 2018; Fadlalla, 2005). This means that higher levels of aggregation
have more aggregated DTs (a larger physical scope) but with reduced data
granularity (a smaller scope of data from each DT). This is how hierarchies manage

Stellenbosch University https://scholar.sun.ac.za

46

large data flows and how hierarchies improve the comprehensibility of complex
systems.

5.2.3 Intermediary forms

Intermediary forms are stable subassemblies of a system that can exist as
individuals and they can be assembled into larger systems (Simon, 1996). The
number and distribution of potentially stable intermediate forms is a critical
determinant of the time required for the evolution from simple elements to
complex systems. Potential for rapid evolution exists in any complex system that
consists of a set of stable subsystems, each operating nearly independently.
Therefore, to improve the evolutionary ability of the system, i.e. the system’s
ability to adapt to changes, there must be stable intermediary forms.

Relating this to system of DTs, the existence of intermediary forms refers to the
concepts of load distribution, incremental development and component reuse.
Intermediary DTs can function as individuals and as part of a collective. As
individuals they can be used to perform load distribution, where they are
responsible for any pre-processing related to the data that is contained within
themselves. As part of a collective they can then make the pre-processed data
available to other DTs or services. Furthermore, the distributed nature of the
intermediary DTs improves reliability and scalability since they allow for horizontal
scaling, individualised vertical scaling and z-axis scaling (Section 4.3 provides a
discussion on scalability).

Intermediary forms are also intended to be assembled into larger systems. This
relates to the ability to incrementally build hierarchies, where elementary
components are developed individually and then aggregated to form larger, more
complex systems. This also relates to the divide-and-conquer design strategy,
where a system is recursively subdivided into subsystems until a manageable unit
complexity is reached for a subsystem. The manageable subsystems can then be
developed separately and assembled to form the desired system (Bourque &
Fairley, 2014).

5.2.4 Reoccurring patterns

Finally, hierarchical systems often contain reoccurring patterns. Hierarchical
systems are usually composed of only a few different kinds of subsystems, but
they are present in various combinations and arrangements (Simon, 1996).
Similarly, in the context of complex production systems, Lutters (2018) mentions
how a production plant is recursive and thus a plant can be built from only a very
small number of typifications, even though there are a multitude of manifestations
and instantiations.

Stellenbosch University https://scholar.sun.ac.za

47

The identification and exploitation of reoccurring patterns in a hierarchy relates to
the concept of modularity and proposes that the ideal is to have only a few
modules that can be arranged in various combinations. This suggests an optimal
number of modules, where too few would mean a lack of generalisation and
reusability, while too many modules would cause unnecessary confusion and
complexity when ordering and integrating the modules. The intention of the
modularity is to improve the reusability of the software, so finding the optimal
number of modules could relate to a global optimal reuse rate

Simon (1996) also mentions that through appropriate “recoding”, the reoccurring
patterns that are present, but not obvious in structure, can often be made clearer.
This relates to the concept of self-similarity in hierarchies and is particularly useful
when a mutual problem is “recoded” to allow for a single solution. For example,
consider a software system with many interacting software programs but where
these programs have different communication protocols. Each program has the
problem of communication heterogeneity and instead of solving the problem for
each program, a middleware or broker can be used as the single solution to the
mutual problem.

Self-similarity also allows for module and solution reuse at various levels of the
hierarchy, which allows for reduced development times. Consider again the
example of multiple software programs that need to interact. However, in this
case the communication protocol has not yet been determined. Then, because all
the programs must communicate, a single communication module can be
designed that can be used by each program.

 How hierarchical aggregation helps to handle
complexity

This section considers the benefits of the hierarchical principles discussed in
Section 5.2. Table 11 provides a summary of the benefits and how they relate to
the quality attributes. A short discussion follows after the table.

Stellenbosch University https://scholar.sun.ac.za

48

Table 11: Relation of hierarchy principles to engineering design principles and
their benefits.

Hierarchy
principle

Related
engineering
design
principle

Benefits Quality
attributes
improved

Near
decomposability

Separation of
concerns

Allows for multi-stakeholder
and multi-services
provisioning

Enables parallel
development

Reduces data flows

Eases integration

Maintainability

Portability

Performance
efficiency

Intermediary
forms

Load
distribution

Incremental
development

Allows for scalability (in all
three axes)

Reduces unit complexity of
individual DTs

Allows for multi-scale
system representation

Eases integration

Maintainability

Portability

Performance
efficiency

Reliability

Redundancy Modularity

Self-similarity

Allows for larger, more
adaptable systems

Improves expansibility and
reconfigurability

Allows for solution reuse

Eases integration

Maintainability

Portability

Through the separation of concerns and because of the distributed data
acquisition and load distribution, the DT aggregation hierarchy can maintain a
single source of truth in the DTIs while providing data to multiple services.
Therefore, data-led decision making can be facilitated in multiple services and at
multiple levels of the system, while maintaining a degree of data consistency.
Furthermore, this also provides for the separation of data and service ownership
concerns (Harper et al., 2019). This is vital to building a multi-stakeholder
ecosystem (Harper et al., 2019) because requirement conflicts can often be

Stellenbosch University https://scholar.sun.ac.za

49

resolved by separating the system or subsystem and applying different solutions
to the separate components (Poort & De With, 2004).

The DT aggregation hierarchy also enables a combination of distributed, clustered
and/or centralised processing and/or decision making. This can be used to address
issues, such as computational load balancing and latency concerns, while also
allowing for centralised data visualisation, analytics and configuration
management (Bertoli et al., 2021). Furthermore, it allows for different data
granularities in different parts of the aggregation hierarchy. This allows for a
simple overview of one subsystem while also allowing for detailed data analysis
on another subsystem (Brandenbourger & Durand, 2018). Allowing for different
data granularities and levels of complexity is also advantageous for integration
since subsystems can be integrated as primitive data sources or sophisticated DTs,
depending on their capabilities.

The combination of distributed, clustered and/or centralised processing and/or
decision making also improves resource efficiency by making use of multiple
devices and computing processes (Villalonga et al., 2020). This is related to the
ability to scale horizontally, vertically and in the z-axis (O’Donovan et al., 2015).
Reliability is also improved through horizontal and z-axis scalability because they
allow for replication and partitioning, respectively (Tovarnitchi, 2019; Villalonga et
al., 2020).

The separation of concerns also allows for different development teams (including
third-party developers) to contribute to the different concerns in parallel, thereby
also allowing for the integration of domain expertise by the different developers
(Tovarnitchi, 2019). Furthermore, the different development teams can then
independently deploy and maintain the DT(s) related to their concerns (Taibi et
al., 2018). The different development teams can also develop in different
programming languages, provided that they use programming agnostic interfaces
or a programming agnostic communication protocol (Balalaie et al., 2018).

The modular design and self-similarity in DT aggregation hierarchies also allow for
larger and more adaptable system representations and services (Ciavotta et al.,
2020). The modularity, separation of concerns and distributed architecture also
allows for the easier integration of new technologies without disruption to other
subsystems (Tovarnitchi, 2019) and these aspects make the system more
reconfigurable (Adolphs et al., 2015).

Stellenbosch University https://scholar.sun.ac.za

50

6 Overall reference architecture

This chapter presents a reference architecture that provides context for the design
framework presented in Chapter 7. The design framework should produce an
architecture that resembles the reference architecture presented in this chapter.
However, when the design framework is applied to a specific case, variations of
the reference architecture are expected. For example, not all the management
services may be required or the services network may not need dynamic
orchestration.

The overall architecture of the system of DTs is provided in Figure 4, where the DT
aggregation hierarchy, the services network and the management services are
encapsulated within the overall architecture.

Figure 4: Reference architecture for the system of digital twins.

Stellenbosch University https://scholar.sun.ac.za

51

The roles of the main groupings in the architecture are as follows:

• The DT aggregation hierarchy represents the physical system in virtual space,
including data capturing and system modelling, as well as providing services
that directly pertain to the physical system and its data. The DT hierarchy is
designed according to the principles discussed in Chapter 5 and typical
services include physical system monitoring and physical system fault
diagnostics.

• The service network is intended to provide a more general set of functionally
decomposed services to further manipulate and interrogate the data. The
service network will likely follow a service-oriented or microservices
architecture. The services network also provides an entry point for external
services and any data that does not originate from the physical system but
that still has a bearing on the management of the physical system. For
example, financial data can be incorporated using the microservices
architecture and analysed together with production data to inform business
decisions.

• The management services are services external to any DT but that still help to
handle some of the complexity within the DT aggregation hierarchy. These
services are discussed in Section 10.2.

The overall purpose of the system of DTs is to provide a stakeholder with the 1)
appropriate level of interaction, from the 2) appropriate viewpoint, with 3)
appropriate filtering of information, at the 4) appropriate time (Lutters, 2020). To
fulfil its purpose, the system of DTs must 1) provide the right services with
adequate security and regulation, 2) provide the right span of reality to the
services, 3) aggregate the data appropriately and 4) respond to inputs in a timely
manner.

Furthermore, the combination of the digital twin hierarchy and the services
network is intended to support two (often conflicting) quality attributes, namely
reliability and agility (Section 4.5.1 discusses the conflict between reliability and
agility). The reliability of the system is supported by the digital twin aggregation
hierarchy. The digital twin hierarchy represents a stable physical reality, of which
the functionality, behaviour and possible interactions are likely to change slowly
and infrequently – promoting the development of robust, reliable software. In
contrast, the services network aims to satisfy dynamic user requirements and, as
such, should be developed to be adaptable and agile. The services network
enables faster provisioning of services as user needs change or as new users are
integrated into the system. It also allows for optimized hardware utilization and
dynamic resource allocation as services experience varying demand.

Stellenbosch University https://scholar.sun.ac.za

52

7 Design framework

 Objectives of the design framework

The design framework presented in this dissertation aims to enable systematic,
effective decisions when designing a system of DTs to represent a complex
physical system. In particular, this framework adopts hierarchical aggregation as
one of its primary enablers and combines it with a services network, as discussed
in Chapter 6. However, the focus of the design framework is the design of the DT
aggregation hierarchy according to the principles discussed in Chapter 5.

Furthermore, the framework aims to be broadly applicable to various DT
application domains and, as such, does not focus on the needs of any particular
complex system, but rather focusses on general complexity issues. The framework
also aims to be vendor neutral, avoiding the prescription of any specific
technologies, because complex systems are likely to involve multiple vendors and
typically software related technologies change rapidly.

The framework enables traceability from user needs and complexity
considerations to architectural and implementation decisions. By enabling this
traceability, design choices can be mapped to the needs they intend to fulfil. This
makes it easier to determine which needs have not been met and allows for better
change management when a need, implementation technology, etc. changes.
Finally, the framework also intends to provide a common set of terminology to
allow for better development team cooperation.

 Design framework overview

An overview of the system of DTs design framework is provided in Figure 5, where
the high-level design steps are divided into various blocks and the design steps are
further decomposed within each block. Furthermore, the outcomes of the design
steps are summarised next to the arrows leading to the next step. Within each
block, iteration and interaction should be expected. Although it is desirable to
progress from the first to the last high-level step without returning to a previous
step, such iterations are usually unavoidable in practice.

Each of the design steps are discussed in more detail in the following subsections.
To help clarify the concepts and the intended outcomes of each step, the heliostat
field case study will be used as a running example. The running example presented
in this chapter is an excerpt from the heliostat field case study presented in
Section 13.1.

Stellenbosch University https://scholar.sun.ac.za

53

Figure 5: Overview of design framework for complex DT system design.

 Needs and constraints analysis

This step involves the analysis and translation of user defined needs, as well as
derived needs, into requirements. The requirements are then grouped. This step
of the design framework relates to Chapter 4 which defines all the terminology
related the requirements.

Stellenbosch University https://scholar.sun.ac.za

54

The needs and constraints analysis step is tightly coupled with the physical system
decomposition since many of the derived needs are identified during physical
system decomposition. The needs and constraints analysis along with the physical
system decomposition are together considered the problem space. The problem
space refers aspects of the design that are given and thus the system designers do
not have control over such aspects. The decomposed design steps are:

• Analyse user needs to translate the user needs into FRs or NFRs. This step also
involves the identification and translation of derived needs into requirements.
Derived needs here refer to any needs that are not explicitly defined by the
user but have been identified as necessary to satisfy the user defined needs.
The physical system decomposition (discussed in Section 7.4) is a common
source of derived needs.

• List the FRs and group them into primary and secondary functional
requirements. Prioritise the two groups of functional requirements using the
classification of mandatory, highly desirable, desirable or optional (Bourque
& Fairley, 2014). The prioritisation of the functional requirements is important
for project planning, management and deployment and it helps to make
trade-off decision to, for example, save cost or development time (Poort & De
With, 2004).

• List and group the NFRs into quality requirements and development
constraints. Determine how the constraints may affect the final design and
which of the quality attributes should be prioritised for the case.

• Determine what external NFRs, if any, should be considered.

Outcomes of design step: List of prioritised primary FRs, list of prioritised
secondary FRs, list of prioritised quality attributes, list of development constraints
with their implications, list of external NFRs and their implications.

With reference to the heliostat field, Table 12 is an example of a list of grouped
and prioritised FRs. Similarly, Table 13 is an example of NFRs with their
implications.

Table 12: Functional requirements for the heliostat field (excerpt)

High-level
functional
requirements

Rationale Group
(Primary
or
secondary)

Priority

Remote
monitoring

The status of individual heliostats, as
well as the status of subsections of the
field need to be presented to a user.

Primary Mandatory

Stellenbosch University https://scholar.sun.ac.za

55

High-level
functional
requirements

Rationale Group
(Primary
or
secondary)

Priority

Event logging Considering that the heliostat field can
be controlled automatically or by a user,
it is considered good practice to log
events related to the heliostat field
control. The best practise is related to
maintenance for debugging purposes
and to security for accountability and
non-repudiation.

Secondary Mandatory

Table 13: Non-functional requirements of the heliostat field (excerpt)

Need Provide for large amounts of data. (Related to N24)

Related
NFR

Performance efficiency

Rationale
for NFR

Considering the size of the heliostat field, the amount of data
generated by each heliostat and the potential resource constraints,
there is a need to handle a large amount of data efficiently. Therefore,
resource utilisation, scalability and high throughput are primary
concerns and these are sub-characteristics of performance efficiency.

NFR
grouping

Quality attribute

Implication
of NFR

Use performance efficiency design pattern

Need Allow for retrofitting and integrate with existing information systems.
(Related to N6 and N7).

Related
NFR

Solution constraint and implementation constraint

Rationale
for NFR

Solution constraint - The consultants at STERG are responsible for
designing the heliostat field and its accompanying control systems.
Therefore, the digital twins must be able to integrate with the heliostat
field as if it were being retrofitted onto an existing system.

Implementation constraints - The Helio100 field makes use of a local
PostgreSQL database that serves as the current primary data source of
all historical data. Therefore, there is a preference to use PostgreSQL
because the current engineers are familiar with it.

NFR
grouping

Development constraint

Implication
of NFR

Some of the technologies related to the data acquisition are predefined
and must be integrated with. There is a preference for PostgreSQL as a
database.

Stellenbosch University https://scholar.sun.ac.za

56

When the entire list of NFRs was analysed and the stakeholders were consulted
again, it was determined which quality attributes are most important for the
proper functioning of the heliostat field. The heliostat field does not have any
identified external NFRs. However, an example of an external NFR could be the
Department of Energy that requires the storage of data related to energy
production for a minimum of seven years.

Furthermore, the examples presented in this dissertation are high-level needs and
requirements for the sake of brevity. However, in practice it is likely that these
needs and requirements may be defined in more detail, where each need can
include more details and sub-needs. For example, the implication of the
implementation constraint listed in Table 13 could include details of specifically
which technologies must be integrated with. The need for remote monitoring
could also be decomposed further if necessary.

 Physical system decomposition

This step involves the decomposition of the physical system and the
characterisation of the data that is expected to be available within the physical
system. Furthermore, during physical system decomposition, it is likely that some
needs will be derived to accommodate the complexity identified within the
system. These derived needs typically resemble the needs presented in Chapter 3.
The decomposed design steps are:

• Decompose the physical system, most likely according to spatial proximity and
interface complexity to represent the system effectively.

• Characterise the available data of the decomposed elements and/or
subsystems. This entails determining what data is available, in what format it
is and how it can be accessed. This is intended to help with the
contextualisation and integration of the data (Kuhn et al., 2020; O’Donovan
et al., 2015). O’Donovan et al. (2015) warn that this data characterisation
process can be challenging and the effort-to-benefit ratio is often perceived
as low. However, this phase is necessary and, if done well, the effort related
to subsequent data integration and contextualisation is greatly decreased.

Outcome of design step: Hierarchically decomposed physical system diagram and
data characterisation

An example physical system diagram is given in Figure 12 in Section 13.1.3 and
Table 14 is an example of the span of reality of a single heliostat. The span of reality
includes a physical scope, a data characterisation, a communication mechanism
and constraints and considerations. The data features within the data
characterisation were defined according to the following schema: <data feature>
- <number of observations if there is more than one>, <data type>, <data range>,

Stellenbosch University https://scholar.sun.ac.za

57

<(units)>, <frequency of observations>. This is an example of a highly detailed
characterisation that would typically be used during implementation.

Table 14: Span of reality of a single heliostat.

Physical component Heliostat with local control unit (LCU)

Physical system scope Individual heliostat.

Data characterisation
(Data granularity) of
data recorded/
generated by physical
component

Stepper motor positions – two, int, between 0 and 200 000,
(step count), generated every minute.
Battery value – float, between 5.5 and 8.2, (Volt), generated
every minute.
Timestamp – datetime, N/A, (N/A), generated every minute.

Data characterisation
(Data granularity) of
data sent to physical
component

Local coordinates of the sun – See CCU (presented in case
study in Section 13.1.3).

Translated operator control commands – details unknown.

Data format JSON formatted message.

Communication Radio frequency (RF) communication using a serial bus.

Considerations and
Constraints (Capacity
for interaction)

LCUs are power constrained and thus the activity of the
LCUs need to be minimised.

The LCUs can only support RF communication.

The design requires 10 002 individual heliostats and they
may differ slightly in composition (e.g. newer heliostats
make use of newer components and future heliostats may
have more sensors).

 Services allocation

The services allocation marks the start of defining the solution space. The solution
space refers to aspects of the design that are within the system designers’ control.
This step involves assigning services to DTs or to the services network based on
the span of reality (discussed in Section 5.2.1.1) requirements of the services, as
well as the intensity of interaction (discussed in Section 5.2.1.2). The service
allocation step is discussed in detail in Section 8.

The decomposed design steps are:

• Derive a list of services from the functional requirements and determine the
required span of reality of each service. It should be noted that a service can
address more than one FR and more than one service can address an FR. The
service patterns listed in Table 15 in Section 8.1 can be used as a reference for
possible services.

Stellenbosch University https://scholar.sun.ac.za

58

• Derive a list of DTs from the hierarchically decomposed physical system
diagram and span of reality characterisation. This provides a list of possible
DTs that reflect the decomposed physical system. Section 8.2 provides
guidelines when determining the scope of DTIs and DTAs.

• Using the list of services and the list of possible DTs, assign services to the DTs
by mapping their span of reality to each other. Service should initially be
assigned to the lowest-level DT that has the data required for the service.
Services may also be assigned to the services network portion of the overall
reference architecture (discussed in Chapter 6). Services that are assigned to
the services network are referred to as the delegated services.

• Separate services that have ownership or quality conflicts or separate services
when the DT’s scope and complexity become difficult to manage.

Outcome of design step: The service-to-DT mapping, a hierarchical layout of DTs
and a list of delegated services. The service allocation is primarily concerned with
functional allocation, i.e. determining what services will be provided by which
components.

In the example of the heliostat field, it was determined that a mirror service (as
described in Section 8.1) is required to fulfil the remote monitoring FR. For the
heliostat field, the mirror service can be applied to multiple levels of the system.
The mirror service described here will only consider the span of reality required
for individual heliostats, but the full span of reality description is available in
Section 13.1.4. The mirror service’s span of reality is:

Mirror service:

Description: The status of individual heliostats must be presented to a user.

Related primary functional requirements: Remote monitoring.

Related secondary functional requirements: Log files of events.

Required physical scope: Individual heliostats.

Required data granularity:

Individual heliostat scale:

• Data features: LCU level - Motor position values, battery values. CCU
level – heliostat status values.

• Timescale: All data features should be measured at one-minute
intervals.

Stellenbosch University https://scholar.sun.ac.za

59

Service characteristics:

• Required data update frequency: Real-time

• Degree of user interaction: Remote monitoring – periodic user
interaction

• Intensity of interaction: Spatially focussed service

• Persistence: Persistent data gathering.

Constraints and considerations: Remote monitoring requires access from
an external network and thus the service must either be cloud hosted or it
must allow for direct local network access, such as through a VPN or SSH
connection. The data throughput may become a critical factor in a large
field.

Furthermore, based on the physical system decomposition it is determined that
the DTIs should represent CCUs because the LCUs of the individual heliostats are
resource constrained and thus do not have capacity for interaction. A DTA would
represent the FCU. Both a DTI and DTA would have the right span of reality to host
the mirror service detailed above. Therefore, the mirror service is initially assigned
to each DTI, since the DTI is the lowest level DT that has the right span of reality.
In this example, there is no separation of services because there is only one
service.

 Performance and quality considerations

This step involves making decisions regarding the aggregation and architecture to
achieve the data quality requirements, as well as the desired system-level and
service-level quality attributes. This step is closely linked to the implementation
considerations discussed in Section 7.7. The performance and quality
considerations are discussed in detail in Section 9. The design patterns presented
in Chapter 11 are intended to simplify the architectural choices.

The decomposed design steps are:

• Choose a suitable internal architecture for the DTs. This dissertation makes
use of SLADTA as discussed in Section 2.3.

• Determine what the dominant quality attribute(s) is/are for each DT and its
associated service(s) and consider performance related architectural choices
according to the identified quality attribute. Section 9.1 discusses aspects
related to performance, while the design patterns (presented in Chapter 11)
are intended to simplify the aggregation and architectural decisions to
provide for the identified quality attributes.

Stellenbosch University https://scholar.sun.ac.za

60

• Check that the implemented architecture accommodates any data quality and
management issues as described in Section 9.2.1 and choose the required
granularity related processing operations as described in Section 9.2.2.

• Check that the solution constraints (identified during the needs analysis step)
are satisfied.

Outcome of design step: Architectural design choices. The performance
considerations step is primarily concerned with determining whether the quality
requirements are being met by the architecture.

For the example heliostat field, the mirror service requires high data throughput
and thus the performance efficiency design pattern is chosen. This includes
choices such as distributing the processing load, using pre-storage aggregation,
using local network aggregation and performing stream processing. Data
persistence is likely to be an issue in the heliostat field and thus in addition to a
local data store (for operational performance) a cloud-based data store is also
advised. Furthermore, the system of DTs must be retrofitted onto the heliostat
field and thus some infrastructure is already specified. No replication or
partitioning is required yet, but the DTA of the FCU might need to be partitioned.

 Implementation considerations

This step involves making recurring and important implementation decisions that
significantly affect the data and system quality. This step is closely linked to the
quality and performance considerations discussed in Section 7.6. The
implementation choices are discussed in more detail in Chapter 10. The design
patterns presented in Chapter 11 are intended to simplify the implementation
choices. Furthermore, such implementation choices are usually made with
reference to an internal DT architecture. In this dissertation the SLADTA was
chosen for the internal DT design as discussed in Section 2.3.

The decomposed design steps are:

• Select the security standards (this choice will impact all following choices).

• Select management services.

• Select communication mechanisms and standards.

• Select important storage solutions (solutions where a specific type of storage
is important).

• Select hosting position.

• Check that implementation constraints are satisfied.

Outcome of design step: Implementation decisions

Stellenbosch University https://scholar.sun.ac.za

61

With regards to the heliostat field, the performance efficiency design pattern is
being used. For the heliostat field, standard TLS security is advised and no
management services are recommended. A message-oriented middleware is
recommended for communication, a time-series database would be well-suited
for operational storage and a NoSQL database provides scalability for the long-
term storage. Local hosting with containers is preferred where possible.

However, the heliostat field has resource constrained devices and thus a more
lightweight communication mechanisms is preferred. Therefore, a lightweight
publish-subscribe protocol would be well suited because publish-subscribe is also
highly scalable. Furthermore, the heliostat field engineers are already using
PostgreSQL as a database and thus a PostgreSQL database is used instead of the
recommended timeseries database. Therefore, in context of SLADTA, the short-
term (Layer 3), local data repository is a PostgreSQL database, while the long-term
database should be a NoSQL database. The IoT gateway (Layer 4) will make use of
a publish-subscribe messaging protocol with SSL/TLS for security.

 Verification and validation

This step is concerned with verifying that all the needs have been addressed and
validating that the system does indeed satisfy those needs. The decomposed
design steps are:

• Verify that the implemented system or subsystems addresses all the needs
that were identified in the needs and constraints analysis.

• Determine quantifiable metrics (technical performance measures) for the
systems and subsystems to allow for validation after implementation.

Outcome of design step: Detailed system architecture and accompanying
documentation for traceability of the needs and validation of the requirements.

Stellenbosch University https://scholar.sun.ac.za

62

8 Services allocation

This chapter discusses the services allocation step (introduced in Section 7.5) of
the design framework in more detail. The following sections each discuss a step
within the services allocation.

 Service patterns

When considering what services can derived from the user needs, the eight service
patterns, identified by Erikstad & Bekker (2021), can be considered. The term
service pattern is used by the authors because they describe general aspects of
the services which can be applied to numerous contexts. These service patterns,
listed in Table 15, have been included here to help with the service identification
step within the services allocation.

Table 15: List of service patterns for DT services. (Adapted from Erikstad &
Bekker, 2021)

Name Description

Virtual sensor Infer sensor feeds from digital model to provide data that is not
captured in the real world. This provides compensation when sensor
placements are limited due to cost, access, hazardous
environments, etc.

Context
sensor

Provide insights into operational context by inverse inferences from
asset response measurements. This allows for load estimations
where load is not measured directly because of limitations.

Fingerprint Recognise operational response of real asset based on a catalogue
of behavioural patterns that were pre-generated within the digital
model. This can be used to pre-empt failures of critical assets.

Anomaly Detect abnormal behaviour by contrasting data from live sensor
feeds with data from trusted digital models. This can provide
notifications in case of anomalies and help to understand what
behaviour should be expected.

Root cause Determine the reason for asset response deviation. This is typically
done through a combination of physics-based simulations, as well as
real-time sensor readings.

Scout Simulate future behaviour of an asset to inform decision making.
This typically uses physics-based simulations, as well as data-based
models, such as machine learning models.

Life counter Track stresses incurred by an asset to determine remaining useful
life and/or to prescribe maintenance. This can be used to reduce
uncertainties related to prognostics.

Mirror Manage assets remotely through an immersive operators’
experience. This allows for more immersive and informed decision
making from remote locations.

Stellenbosch University https://scholar.sun.ac.za

63

 DTI and DTA scope identification

This section provides guidelines to determine the scope of a DTI and a DTA (as
defined in Section 2.3). Therefore, this section helps identify applicable DTs to
adequately represent the physical reality of interest. This relates to the DT
identification step of the services allocation.

Drawing from the discussion of span of reality in Section 5.2.1.1, the DTI has the
finest grained data about a certain subset of the physical reality, but also the
smallest physical scope. DTIs are therefore located at the lowest level of the
aggregation hierarchy. A DTI may reflect a complex physical entity that forms part
of a larger complex system, but it should remain the source of the finest grained
data of that physical entity. Therefore, a DTI can reflect any physical entity (simple
or complex), where the scope of the DTI is determined by the granularity of the
data required by the models and services within the DTI. Furthermore, the physical
entity being reflected may include environmental data, such as ambient
temperature, provided the environmental data is not already being captured
elsewhere.

In continuous systems where there are no physical divisions in the physical system,
such as water distribution systems or railway systems, the physical system should
be divided according to the respective concerns of the end-users or manageable
parts, such as district water distribution networks or sectors of railway line. These
continuous physical systems can then be represented by a number of DTIs that
represent similar, but still distinct, physical realities. These DTIs will be more
interdependent and exchange data among themselves, either directly or through
an aggregate.

In contrast, a DTA can be located at various levels within an aggregation hierarchy,
but not at the lowest (DTI) level. As a DTA is located higher in an aggregation
hierarchy, its physical scope increases, but typically its data granularity decreases
(refer to Section 5.2.2 for a discussion of this trend). Different DTAs on the same
level of aggregation can also reflect different aspects of reality by 1) aggregating
different DTs, 2) by aggregating different features from DTs and 3) by processing
the data differently. The span of reality of a DTA is determined according to the
data requirements of the associated models and services, where services are
typically focussed on a spatially distinct subset of the physical system (refer to
Section 5.2.1.2 for spatially versus functionally focussed services).

Furthermore, the more assets are represented by a DT, the more complex the
problems that can be addressed by the DT (Kuhn et al., 2020). Aggregation allows
for the combination of DTs and thus DTAs are generally used for more complex
decision making with regards to the physical system. Therefore, when models or
services require such a combination of other DTs, a DTA should be used. This is

Stellenbosch University https://scholar.sun.ac.za

64

likely to become increasingly applicable as the system evolves and needs to host
new services with their associated DTs. However, to keep the DTAs manageable,
Moyne et al. (2020) suggests that aggregation membership should be specified in
terms of purpose and the associated span of reality. This means a DTA must have
a clear purpose and span of reality and should only aggregate the necessary data
for decision-making, with the required sampling frequency, to meet its purpose
(Villalonga et al., 2021). When the scope of an DTA’s purpose becomes too large
and general, a DTA can quickly become too complex due to the amount of data
available from the lower levels of aggregation.

The number of aggregation levels depends on the complexity of the system, where
higher levels of complexity generally require more layers to represent reality
efficiently (Villalonga et al., 2021). The level of aggregation depends on the degree
of detail required for decision making and it depends on the efficiency
requirements, such as storage space and response times (Fadlalla, 2005).

In summary, the scope of a DTI or DTA is limited by its unit complexity. DTIs and
DTAs may contain multiple models and services, but if maintaining the DT
becomes too difficult, it may be desirable to partition the DT. Furthermore, if the
DT’s capacity for interaction is too limited, the performance of the DT will degrade.
Therefore, the scope of any DT must be large enough to accommodate the related
models and services, but small enough to remain responsive and manageable.

 Services in digital twins vs the services network

This section provides some considerations when allocating services to DTs and to
the services network. These considerations are in addition to the intensity of
interaction as discussed in Section 5.2.1.2.

In systems where different span of reality requirements exist, two broad
approaches can be followed to gather the data for the right span of reality: data
warehousing or data federation (Pathak, Jiang, Honavar, et al., 2006). Data
warehousing refers to the collection, transformation and storage of the relevant
data in a common format, that can then be queried for decision making. Data
federation refers to the collection and transformation of the relevant data as a
query is made by a service.

DTs tend to build a data warehouse and thus a span of reality related to a
particular asset or a group of spatially related assets. However, services in an SOA
are functionally focussed and thus data federation and orchestration are often
used to gather data as needed and sent to the appropriate services to be
processed as required. Therefore, services within DTs tend to have a specific
purpose with a specific data requirement and typically with stricter quality

Stellenbosch University https://scholar.sun.ac.za

65

requirements, while services in an SOA have a more general purpose and are
generally also more adaptable to user needs.

Domains such as manufacturing tend to prefer the services in DTs approach
because DTs are persistent and more dedicated to an asset or group of assets, i.e.
they are useful for real-time and persistent services, such as automatic process
control and fault detection (Ciavotta et al., 2020; Moyne et al., 2020; Therrien et
al., 2020). On the other hand, services in SOAs tend to be preferred for more
general and longer-term decision making that is only periodically required. For
example, long-term business planning using general data analytics. The services
mentioned in Section 8.1 are strongly related to physical assets and thus they are
also considered spatially focussed services. DTs are well suited to hosting spatially
focussed services because DTs also follow spatial decomposition.

In summary, DTs are generally the preferred host for services when services 1) are
spatially focussed, 2) have a specific purpose, 3) are persistent or periodically
invoked, 4) require real-time data and 5) have strict latency, throughput or
reliability requirements. If services are 1) functionally focussed, 2) more general,
3) periodically invoked (typically less frequently than periodically invoked services
in DTs) or event-driven and 4) only require historical data with no strict service
requirements, then the services network may be preferred.

 Separation of conflicting services

This section discusses the separation of services according to ownership (8.4.1),
scope complexity (8.4.2) and dominant quality attributes (8.4.3). These three
reasons for services separation are part of the final sub-step of the services
allocation step.

8.4.1 Separation according to ownership

Separation according to ownership is the simplest reason for separation to
understand, but it can be complex to handle. The premise is to separate DTs
according to ownership of the data, models and services. For example, in the
context of city management, the Centre for Digital Built Britain (CDBB, 2018) state:
“Each infrastructure owner or operator is likely to want DTs to improve the
management of their own assets.” Therefore, DTs and their associated services
are separated according to ownership and appropriate data sharing is facilitated
between these DTs. However, challenges arise when issues related to intellectual
property and competitive advantage hinder data sharing (this issue is discussed as
a multi-stakeholder complexity need (N2) in Section 3.2)

Stellenbosch University https://scholar.sun.ac.za

66

8.4.2 Separation according to scope complexity

The goal of a service is to provide a comprehensive set of data related to an area
of decision making, while the service must remain easy to use (Therrien et al.,
2020). Therefore, one of the primary goals of the DT is to provide the service with
the data that it needs. Some use cases require high levels of detail and high fidelity
models for decision making, while other use cases may not (VanDerHorn &
Mahadevan, 2021). Therefore, tailoring the span of reality of the DT to the service
can help make the service comprehensive while also maintaining usability. The
intention is to meet the intended outcomes without adding unnecessary
complexity or cost that may compromise the feasibility of the DT (VanDerHorn &
Mahadevan, 2021).

For example, in the context of manufacturing, Villalonga et al. (2020) classified DT
modelling and decision making into three main levels of detail: 1) local, 2) system
and 3) global, according the system being represented. Local represents the
dynamics of the equipment pieces in the production lines; system considers the
interaction between the equipment pieces that make up the production line; and
global replicates the behaviour of the entire shop floor production. Only data
needed for the decision making at the upper levels are sent to those levels.

The required timeframe and data update frequency are components of a service’s
span of reality. The timeframe and update frequency of various data features is
largely determined by the potential rate of physical system change captured by
the data feature, as well as the decision-making frequency. Typically, the physical
system change is described using models and decisions are made based on such
models. Therefore, the update frequency is determined by the DTs associated
models. Lamb (2019) also distinguishes between dynamic digital models and static
digital models. Dynamic digital models capture and react to real-time data to, for
example, perform control functions. Static digital models periodically update long-
term data and are typically used for strategic planning.

Furthermore, the decision-making frequency can be classified as real-time,
periodic or event-driven. It is also important to recognise that ‘real-time’ is context
specific and it depends on the frequency of data required to make effective
decisions. For example, for control applications such as motor speed control, this
frequency is very high (data needs to be sampled multiple times per second)
because the physical system can change rapidly and the related control decisions
must react faster than the change of the system. However, for the control of a
heliostat’s position, this frequency is very low (only one sample per minute)
because heliostats only adjust position once per minute. Further, in the context of
power transformers, operational decisions are made on a hour to week
timeframe, maintenance decisions are made on a week to year timeframe and
planning decisions are made on a year to 10 year timeframe (Pathak et al., 2006).

Stellenbosch University https://scholar.sun.ac.za

67

Ultimately, the services form part of the scope of a DT and if the DT’s scope
becomes too complex, it may be desirable to partition the DT. Section 8.2
discussed DT scoping considerations.

8.4.3 Separation according to dominant quality attributes

Different services may have different quality requirements and often these
requirements can be conflicting. One of the best ways to deal with such
requirement conflicts is to separate the services (Poort & De With, 2004).

For example, consider a high-value or critical asset within a physical system. There
may be a fault detection service related to the asset that needs to be reliable.
There may also be a need for data analytics related to the high value assets which
emphasises agility. Even though these services rely on the same span of reality,
their quality attributes are in conflict and thus is may be better to separate the
services. Section 4.5 provides a discussion on some of the most cited quality
attribute conflicts.

Stellenbosch University https://scholar.sun.ac.za

68

9 Performance and quality considerations

This section discusses the performance and quality considerations step
(introduced in Section 7.6) of the design framework in more detail. Specifically,
this section considers aspects related to the aggregation hierarchy’s performance
in Section 9.1, as well as aspects related to the management and quality of the
data within the hierarchy in Section 9.2. Some aggregation alternatives are then
provided in Section 9.3 to help manage the trade-off of performance versus data
detail and quality. This trade-off is discussed in Section 4.5.4 and the trade-off is
also captured within the span of reality where performance efficiency is related to
the capacity for interaction, whereas the data detail and quality are related to the
physical scope and data granularity.

 Performance efficiency considerations

Regardless of the dominant quality attribute of a DT and its associated services,
the performance of the DT must still be acceptable for a good user experience.
Therefore, this section considers aspect related to the performance of a DT.

Performance efficiency is sub-divided in the ISO 25010 standard (BSI et al., 2011)
into time behaviour, capacity and resource utilisation. These sub-divisions can be
quantified as latency, throughput and infrastructure measures, respectively. Table
16 provides a summary of the performance efficiency sub-division and the
associated performance measures, which are further considered in the
subsections that follow the table.

Table 16: Performance efficiency breakdown

Performance
efficiency sub-
division

Performance measures Dimensions of performance
measures

Time behaviour Latency Intermediary communication time:
Transmission, I/O and processing time

Number of intermediary
communications

Capacity Throughput Message size

Message frequency

Number of parallel message streams

Resource utilisation Infrastructure measures Network: network speed, network
bandwidth, network availability

Computation: CPU, GPU, memory

Storage: I/O speed, storage capacity

Stellenbosch University https://scholar.sun.ac.za

69

9.1.1 Latency considerations

Latency is the amount of time it takes for a message to be captured, transmitted,
processed and received when sent from a source to a destination.

When considering communication from a sensor (source) to where a decision can
be made, such as a user interface within a cloud platform (destination), the
communication can be broken into intermediary communications (O’Brien et al.,
2007), where each intermediary communication consists of data input/output
(I/O), transmission and processing operations. For example, intermediary
communications can be from sensor to local storage, from local storage to cloud
storage and then from cloud storage to user interface. There might also be
additional communications involved, such as communication through a service
gateway or intermediary communications between services. Therefore, when
considering latency between a source and a destination, the intermediary
communication time and the number of intermediary communications should be
considered.

The latency related to each part of an intermediary communication is tightly
coupled with the underlying hardware. The I/O latency is related to the storage
device’s read/write speed, the transmission latency is related to the network
speed, as well as the network bandwidth and availability and the processing
operation latency is related to the CPU, GPU, and RAM. These hardware aspects
are further discussed in Section 9.1.3.

Furthermore, some intermediary communications may be more time critical than
others. For example, transfer time from sensor to cloud database may be less
important than minimising the transfer time from cloud database to user
application. Therefore, optimising the transfer time from database to user
application at the cost of transfer time between sensor and database is sometimes
desirable. This would typically be achieved by pre-processing the data before it is
stored so that less processing is required when the data is queried.

9.1.2 Throughput considerations

Throughput is a measure of the amount of data that is transferred between source
and destination within a given time interval.

Throughput is influenced by multiple factors such as message size (further
influenced by the size of the datapoints and the number of datapoints), message
frequency and the number of message streams. The configuration of these factors
is often influenced by the latency requirement and the limitations imposed by
existing infrastructure, as well as the number of data sources.

Stellenbosch University https://scholar.sun.ac.za

70

9.1.3 Infrastructure considerations

The computing and network infrastructure can be considered a limitation in cases
where the infrastructure is already installed and when DTs are being retrofitted
onto the physical system. In other cases, however, the DT developers may have
freedom to choose some or even all the infrastructure components. Therefore, it
is important to establish what infrastructure is already available and what
infrastructure needs to be added. The considerations in each case, however,
largely remain the same and thus this section provides considerations for
retrofitting onto existing infrastructure and when choosing new infrastructure.

Infrastructure considerations have here been divided into three subsections:
network, computational resources and storage. Alternative methods of
infrastructure hosting, such as local hosting vs cloud hosting and the effects of
virtualisation, are discussed in Section 10.5.

Network considerations include:

• Network bandwidth: The upload and download capacity. This is the maximum
amount of data that the network can transmit per second, typically measured
in megabits per second (Mbps).

• Network speed: The transmission speed between network nodes, which has
a significant impact on transmission latency. Network speed is typically
measured through ping messages. Network speed is dependent on factors
such as (Kajati, Papcun, Liu, et al., 2019): 1) transmission medium, 2) the
physical distance between nodes (this plays a significant role when using
cloud services), 3) the number of network relays (such as routers or switches),
4) internet service provider (for external connections) and 5) cloud platform
and cloud offering (e.g. throttling limits imposed by a certain cloud service).
Time of day and the day of the week have negligible impact on network
latency (Kajati et al., 2019). Another factor to consider is the repeatability of
the messaging latency, where the standard deviation of the latency values
may be too great even though the mean value may be acceptable (Kajati et
al., 2019). Standard deviation is particularly applicable when considering
applications that require high reliability.

• Network availability: The fraction of time that the network can be used by the
various nodes within a given timeframe. A stable and continuous network
connection may not always be available, for example when using wireless
connections or when devices are mobile and move between connection
points. Therefore, the amount of time that a device is unable to connect to
the network contributes to the latency of the communication. Intermittent
network connections also require additional provisioning for asynchronous
communications, such as message queues and message patterns that
acknowledge message delivery, to prevent data loss.

Stellenbosch University https://scholar.sun.ac.za

71

Network connectivity may also be challenging when designing for physically
dispersed systems that require multiple access points. In such cases, network
availability may be a limiting factor and it may also limit some of the aggregation
options. For example, local network aggregation may not be feasible for physically
dispersed systems.

Computational resource considerations include CPU, GPU and memory
considerations. The computational resources are related to the processing latency
between source and destination as mentioned in Section 9.1.1. Therefore, when
dealing with processing heavy workloads, such as workloads that require
extensive image processing, computational resources become a critical factor to
reduce latency. Furthermore, processing latency can be significantly increased by
data format conversions, for example when parsing, validating and transforming
text-based data formats (O’Brien et al., 2007) and when encrypting and decrypting
data.

Storage considerations include the read/write speed of the storage drive and
storage space. I/O latency is heavily influenced by the storage drive’s read/write
speed as well as the database type and the database management system.
Furthermore, the required storage capacity must also be considered.

 Data quality and detail considerations

The data detail is described by the data granularity and it is directly proportional
to the physical scope being represented. However, having detailed data that is of
poor quality does not help and thus data quality is also considered here. Section
9.2.1 highlights some data quality and management related considerations that
influence how the data may be aggregated, while section 9.2.2 considers
processing operations that form part of the aggregation process to produce the
desired data granularity.

9.2.1 Data quality and management considerations

The data quality and management considerations are subjective by nature and
thus they are case specific. However, there are some general guidelines about how
these considerations can influence the aggregation strategy, as well as the
performance and data quality within the DTs.

Data veracity refers to the trustworthiness of the data. It is generally unwise to
aggregate data that is trustworthy and accurate with data this is low quality. For
example, in healthcare, Lutze (2019) mentions that digital trust should be
established between user and digital system and thus it is important to determine
if high-quality clinical data should be combined with behavioural and biometric
data from smart wearables.

Stellenbosch University https://scholar.sun.ac.za

72

Furthermore, the difference in veracity as a result of the level of processing of the
dataset should be considered. For example, a raw data dataset, a cleaned dataset
and a summarised dataset have different levels of veracity. The data veracity is
also highly influenced by the method of collection and if the data collected is of
poor quality it will be detrimental to the service(s) being rendered (Therrien et al.,
2020). The pre-processing of data can help to mitigate shortcomings of poor
collection, but only to a point (Therrien et al., 2020).

Data worth refers to the importance of the data. Data with high worth may justify
more data reliability measures, such as duplication and redundancy, within the
aggregation hierarchy. Factors that influence the worth of the data could be
aspects such as 1) number of sources (data with fewer sources may have higher
worth), 2) the frequency at which the data is recorded (less frequently recorded
by have higher worth), 3) the likelihood of a particular data point value (in some
services such as anomaly detection, anomalous values should not be aggregated
away) and 4) long-term availability of the data (when data is collected through a
third party, it may be useful to duplicate the data for long-term availability).

Data accuracy refers to how closely the captured data reflects the actual data
about the system and this is an important aspect of DT fidelity, i.e. how closely the
DT reflects reality. Fidelity is significantly influenced by data granularity
(Brandenbourger & Durand, 2018), but finer detail does not always produce more
accurate models/ predictions. For example, aspects such as sensor measurement
accuracy influence the fidelity as well as modelling aspects, such as overfitting or
underfitting data.

The Centre for Digital Build Britain (CDBB, 2018) states that a DT must represent
reality at a level of accuracy suited to its purpose and this depends on 1) the
accuracy of the data, 2) the fidelity of the models (including the validity of the
algorithms and assumptions) and 3) the quality of the visualisation and
presentation. Furthermore, Moyne et al. (2020) suggests including a parameter
for prediction uncertainty and simulation accuracy, such as a probability value.

Data consistency refers to the consistency of the data across multiple instances of
the data in use. Without proper data consistency, different stakeholders may
receive different data values for the same features of the physical system. Data
consistency can refer to strong consistency, where any update to a partition of the
dataset is immediately reflected in any subsequent access, or weak consistency,
where updates may experience a delay before being propagated through the
system (Lindsay et al., 2021).

Ensuring strong data consistency will likely cause an increase in latency because
data changes must be propagated through the distributed instances before the
data can be accessed again. The severity of the increase in latency is dependent

Stellenbosch University https://scholar.sun.ac.za

73

on the time it takes the data to propagate through the system and thus how many
distributed instances there are, how physically far apart the instances are and how
the instances are connected.

Data persistence refers to the management of long lived data that also relates to
the need to store massive amounts of data (Bourque & Fairley, 2014; Pan et al.,
2020). In some domains, the data persistence and life-cycle management of data
are dictated by domain related policies and governance (Ismail et al., 2019).
Therefore, adequate storage capacity and scalability are important factors when
data persistence is important.

Villalobos, Ramírez-Durán, Diez, et al. (2020) present a three-level hierarchical
architecture to manage persistent data effectively. The architecture follows the
multi-temperature data management paradigm, which is a paradigm that tailors
storage hardware choices according to the frequency with which data is accessed.
An example is to use high performance SSDs for hot (real-time data that requires
high read and write speeds) and standard HDDs for warm data (frequently
accessed but older data). Furthermore, the architecture proposes the use of a pre-
processing service to clean data being transferred from the hot storage to warm
storage and a data reduction service is proposed to reduce data when transferring
data from warm storage to cold storage. A data management layer is also used to
manage the data flows between the different storage units as well as between the
storage units and a user.

Data synchronisation refers to the matching of data values as they were recorded.
Synchronisation is applicable when data features are generated at different rates.
The need to cross-validate sensor readings of the same parameter and the need
to draw correlations between parameters means that the data must be
synchronised. The synchronisation of data can cause increases in latencies
because when data needs to be matched in time, the slowest sampling frequency
dictates the latency of the synchronised data.

Data inference and interpolation relates to the observation that all automatically
captured and treated data is likely to contain gaps and dealing with these gaps is
important (Therrien et al., 2020). There are various strategies, such as
interpolation techniques or model-based gap filling. Depending on the methods
used to infer data, the computational demand placed on the system may be
significant.

Data heterogeneity relates to the heterogeneity of the data with regards to
various aspects. These aspects are:

• Data structure - Data can be structured, semi-structured or unstructured and
some processing may be required to make data more structured.

Stellenbosch University https://scholar.sun.ac.za

74

• Data features - Data features can differ in data type, as well as the units that
they use and some conversion may be required. This also includes
heterogeneity of the level of processing of the data points. For example,
sensor signals (voltage value), sensor readings (bit-value, such as an 8-bit
value of 0-255) sensor unit value (e.g. temperature in Degrees Celsius).

• Data format - Data format conversion may be necessary, especially when
working with different types of databases. For example, converting data
between XML, JSON, CSV or text formats.

• Communication protocol - Some nodes within the network might need to
utilise more than one communication protocol or, alternatively, an
intermediary may be required to translate messages from one
communication protocol to another.

9.2.2 Granularity related processing operations

The desired data granularity is achieved during aggregation through a combination
of the following processing operations:

• Data removal such as the removal of redundant data and invalid data: Data
removal helps alleviate data persistence and storage issues (Pan et al., 2020)
and contributes to smaller transmission payloads. Data removal also helps
alleviate network strain and downstream processing strain (Huang et al.,
2020).

• Data cleaning such as missing value handling and outlier detection and
handling: Data cleaning methods typically increase the data veracity but at the
cost of increase processing time.

• Data homogenisation: This includes aspects such as structuring data into a
common format (Pan et al., 2020) or receiving data from multiple protocols
and outputting it in one protocol (Huang et al., 2020). Data homogenisation
requires data and protocol conversions that increase the processing time.

• Data summation, such as calculating descriptive statistics (minimum,
maximum, average, and standard deviations etc.) (Huang et al., 2020): Data
summation can also entail the structured summation of unstructured data,
for example, provide structured, text-based data that describes the contents
of an audio file. Data summation can significantly reduce downstream
latencies related to processing, transmission or I/O operations and it reduces
the storage requirements of downstream entities.

• Data selection and filtering based on certain criteria or thresholds (Huang et
al., 2020): Similar to data summation, selection and filtering can significantly
reduce the latencies and loads placed on downstream entities.

Stellenbosch University https://scholar.sun.ac.za

75

The processing approaches above are often split into two groups. The first group
is data removal, data cleaning, and data homogenisation. The second group of
approaches is data selection, data filtering, and data summation. The first group
of approaches is typically done before medium to long-term storage and is used
when dealing with relatively smaller amounts of data and real-time data (like
within edge devices). The second group of approaches is usually done after storage
and is used when dealing with relatively large amounts of data, such as data from
large historical datasets or data from many child entities (like fog servers and data
mining practices within big data pipelines).

 Aggregation alternatives

The aggregation alternatives refer to various architectural decisions that
influence, on the one hand, performance efficiency requirements discussed in
Section 9.1 and, on the other hand, the data quality and management
requirements discussed in Section 9.2.

9.3.1 Processing batch density

Processing batch density differentiates between stream processing, micro-batch
processing and batch processing, where the batch density is influenced by:

• Datapoint size: The size of individual datapoints of a given data feature. For
example, a single sensor reading is typically a small datapoint, whereas a
single photo is typically a large datapoint.

• Number of datapoints per message: This refers to the number of data features
in the message, as well as the number of datapoints per data feature.

• Message frequency: The rate at which messages are being transmitted.

• Number of messages per aggregation: This refers to the number of data
sources that are being aggregated from.

Furthermore, these choices are mutually exclusive for a single intermediary
communication, but consecutive intermediary communications may utilise
different processing batch densities.

In stream processing, single data points from multiple sources are processed
together. This type of processing happens frequently (relative to the frequency of
micro-batch and batch processing). Therefore, this entails the frequent processing
of small bits of data and is typically used when processing real-time data and when
processing few data points from many sources. In some cases, stream processing
is also used to break up a batch of data that is too large to process effectively. For
example, when transmitting and processing a batch of 1000 photos, it may be

Stellenbosch University https://scholar.sun.ac.za

76

more effective to send and process the photos as individual messages as opposed
to a single, large message.

Stream processing is typically used for applications that demand low latency. The
small batch densities require less computational power, but the network
infrastructure can be significantly strained. Stream processing is also not typically
suited to data synchronisation or data inference applications. Furthermore, data
cleaning or data summation would not typically coincide with stream processing
unless there are pre-determined rules that can be applied to single datapoints.

In micro-batch processing, small collections of data points from multiple sources
are processed together. This type of processing occurs less frequent than stream
processing, but more frequent than batch processing. Micro-batch processing is
typically used when processing relatively few data points from multiple sources
that also require data synchronisation or in cases where network strain needs to
be reduced (such as when sensors collect data at a very high frequency).

As with stream processing, micro-batch processing can be used to break up a batch
of data that is too large to process effectively. Micro-batches are also used to
break-up a batch of data for fault tolerance and diagnosability reasons. For
example, when a fault can cause an entire batch process to fail, the batch can be
divided into parts where only certain parts may incur faults. Therefore, only a part
of the batch needs to be debugged and processed again, as opposed to the entire
batch.

Batch processing entails the processing of a large collection of data, at a low
frequency. Typically, batch processing combines fewer data sources, but many
data points are collected per source, such as when aggregating large amounts of
historical data from two or three datasets. The difference between micro-batch
and batch processing is not clearly defined but is rather a difference of degree.

Batch processing can be very computationally intensive and thus is not preferred
when low latencies are important or when computational power is limited.
Furthermore, processing large batches of data can cause data inconsistencies
when failures cause the processing to terminate early (this scenario is the premise
for the Atomicity principle in database management systems that follow the ACID
principles; refer to Section 10.4 for a discussion on database management
systems). On the other hand, data inference also typically makes use of large
batches of data and it is easier to discern difference in data veracity when large
batches of data are compared.

9.3.2 Pre-storage vs post-storage aggregation

Aggregation before the data has been placed in medium-term to long-term
storage is referred to as pre-storage aggregation, while aggregation after

Stellenbosch University https://scholar.sun.ac.za

77

medium-term to long-term storage is referred to as post-storage aggregation. For
example, in SLADTA (Section 2.3), medium-term to long-term storage corresponds
to Layer 5 of a DT and thus when data is aggregated before it is stored in a DTI’s
Layer 5 (through Layer 4) it is classified as pre-storage aggregation. Conversely,
aggregation that aggregates data from Layer 5 through Layer 6 is classified as post-
storage aggregation. It is possible to split the aggregation responsibilities across
pre-storage and post-storage aggregation. For example, high frequency sensor
data can be pre-storage aggregated, whereas low frequency sensor data can be
post-storage aggregated.

Pre-storage aggregation is common when aggregating real-time data since it
allows for reduced storage requirements by, for example, removing duplicate
sensor values before storing the data. Pre-storage aggregation also has lower
latencies than post-storage aggregation because data is exchanged before the
database transactions need to be executed. Pre-storage aggregation is also more
suited to multi-cloud environments because data can be aggregated before it is
stored in numerous repositories in numerous cloud platforms.

Pre-storage aggregation is typically more applicable when considering network
and resource constrained devices that are not able to maintain their own
repositories or when aggregating data with a high sampling rate. However, these
benefits may be negated if each of the aggregated entities still maintain the
aggregated data in their own data repositories. Typically, pre-storage aggregation
makes use of stream or micro-batch processing and is not suited to batch
processing.

Furthermore, pre-storage aggregation is not typically applied to data that has high
veracity or high worth. Pre-storage aggregation also typically entails data removal,
data homogenisation and in some cases data cleaning and selection using pre-
determined rules.

Post-storage aggregation is common when aggregating larger batches of data and
when aggregating low frequency or historical data. Post-storage aggregation
allows for more asynchronous and selective aggregation, but at the cost of higher
latencies. Asynchronous aggregation here refers to the ability to wait for and
aggregate a batch of data, such as aggregating historical data. Selective
aggregation refers to the ability to select certain data features over certain
timeframes without losing the original data.

Furthermore, post-storage aggregation also allows for more redundancy of the
data when data has a high level of worth or high level of veracity, since the original
data is not lost when aggregating. Typically, post-storage aggregation makes use
of micro-batch or batch processing.

Stellenbosch University https://scholar.sun.ac.za

78

9.3.3 Local-network aggregation vs cloud-based aggregation

Aggregation of data within a common, local network is referred to as local-
network aggregation, whereas the aggregation of data from different networks
within the cloud is referred to as cloud-based aggregation. In cases where data is
aggregated in the local network, but the data sources are from different networks,
the characteristics of the aggregation may resemble either local-network or cloud-
based aggregation. The distinction depends on 1) the number of external network
connections, 2) the physical distance between aggregated and aggregating entity
and 3) the capacity of the local infrastructure.

For clarification, local-network aggregation is considered to have far fewer
external connections, much shorter distances between entities and sufficient
computing capacity. In contrast, cloud-based aggregation has many external
connections, there are large distances between entities and there is abundant
computing capacity. Therefore, local-network and cloud-based aggregation are
not all-encompassing, but they provide two distinct reference points. As with pre-
storage and post-storage aggregation, the aggregation responsibility can also be
split between local-network and cloud-based aggregation in a given DT and, even
more so, in an implementation of a DT hierarchy.

Local-network aggregation is common in environments requiring low latencies
and high throughput or it can be used to accommodate network and resource
constrained devices. Aggregating within the local network also means that fewer
external network connections are required which is also beneficial for privacy and
security. Furthermore, local-network aggregation is typically more reliable (in
terms of message loss) and typically has less latency variability. These qualities
make local aggregation useful when dealing with high veracity and high worth
data. However, local-network aggregation requires more and better local
infrastructure compared to cloud-based aggregation. Finally, in multi-cloud
environment, local-network aggregation is preferred because the data is
aggregated before it enters multiple cloud platforms.

Cloud-based aggregation provides scalability in terms of computing resources and
storage, making it easier to manage large processing loads and persistent data.
Cloud-based aggregation also reduces the amount of on-premises computing and
storage infrastructure required and thus the expertise required to design, install
and maintain the infrastructure. However, cloud-based aggregation is very
dependent on the network infrastructure and typically displays lower message
transport reliability and higher network latencies and latency variability.

9.3.4 Aggregate entity

Section 8.3 discussed when it is appropriate to allocate service to a DT or to a
service. This section further explains the differences when aggregating with a DTA

Stellenbosch University https://scholar.sun.ac.za

79

as opposed to a service in the services network. The distinction is intended to
promote the separation of concerns.

DTs in the DT hierarchy typically share a messaging mechanism internal to the DT
hierarchy, as opposed to making data available through a service or API.
Therefore, DTAs can make use of this common communication mechanism for
lower latency, pre-storage aggregation that is beneficial for near real-time
applications, such as operational control scenarios. DTAs can also pre-process and
pre-structure data that can then be stored for faster querying ability.

Services in a service network are typically cloud hosted and thus typically make
use of data sharing mechanisms, such as APIs. As such, the services in the services
network are not afforded access to the messaging mechanism internal to the
aggregation hierarchy. Therefore, these services cannot make use of pre-storage
or local aggregation. This restriction is intended to limit communication through
the DT hierarchy messaging mechanism, to allow for simpler devices with lower
resource requirements and to ensure more reliable and secure aggregation and
communication within the DT hierarchy.

Stellenbosch University https://scholar.sun.ac.za

80

10 Implementation considerations

This chapter discusses the implementation considerations step (introduced in
Section 7.7) of the design framework. This chapter discusses some of the most
often encountered and most important implementation decisions when designing
individual DTs, as well as an aggregation hierarchy. In particular regarding security,
support services, messaging mechanisms, storage solutions and hosting options.

 Security

Security is generally associated with the following principles (BSI et al., 2011;
O’Brien et al., 2007):

• Confidentiality: Degree to which the system ensures that only authorised
entities (either human users or other software programs) have access to data.

• Authenticity: Degree to which the identify of entities can be confirmed.

• Integrity: Degree to which unauthorised access and/or modifications to data
or programs can be prevented.

• Accountability: The degree to which the actions of an entity can be traced
back to that entity.

• Non-repudiation: The degree to which events can be proven to have taken
place.

Furthermore, some developers also consider availability to be an aspect of security
since some security attacks (such as denial of service attacks) seek to disrupt the
normal functioning of the system, as opposed to stealing data.

Security is often divided into security in transit and security at rest. Security in
transit refers to the security of data when it is sent between nodes in a network,
whereas security at rest refers to the security of data when it is stored on a device.

Ensuring that systems have adequate security is a continual and changing process,
but some security standards are provided here.

Federated identity (such as single sign-on) is the preferred method of
authentication and authorisation with an API Gateway in a services network
(Gadge & Kotwani, 2017). This approach allows for the decoupling of the
authentication and authorisation functions. It also makes it easier to centralise
these two functions, to avoid a situation where every service must manage a set
of credentials for every user. There are three major federated identity protocols:
OpenID, SAML and OAuth (Gadge & Kotwani, 2017). Figure 6 provides a diagram
of the OAuth2.0 protocol flow where a client must request access from a resource

Stellenbosch University https://scholar.sun.ac.za

81

owner and then be authorised by a server before the requested resource can be
acquired from the resource server (IETF, 2012). OAuth2.0 is industry-standard
protocol for authorisation at the time of writing.

Figure 6: OAuth2.0 abstract protocol flow. (Adapted from IETF, 2012)

To prevent message tampering and thereby improve integrity and confidentiality,
encryption is standard practice (Gadge & Kotwani, 2017). The SSL/TLS protocol is
a standard for authentication and encryption during transit and at the time of
writing TLS 1.3 is the latest version. TLS works by using asymmetric cryptography
(also known as public key cryptography) to authenticate one or both connected
parties. Once the parties have been authenticated, they exchange a symmetric
encryption key that is valid for that session (Dierks & Rescorla, 2008).

Furthermore, additional security measures can also be undertaken to further
improve the security of the system. For example, hosting services in a subnet that
can only be made accessible through a proxy, such as an API gateway (Gadge &
Kotwani, 2017) or making use of multi-factor authentication.

 Management services

This section lists some management service that are often used in distributed
computing environments. The management services mentioned in this section
were derived from Ciavotta et al. (2017, 2020), Gadge & Kotwani (2017), Kuhn et
al. (2020), Taibi et al. (2018). The management services discussed in this section
were introduced as part of the overall architecture in Chapter 6.

Stellenbosch University https://scholar.sun.ac.za

82

10.2.1 Central user interface

The purpose of the central user interface (CUI) is to provide a single entry-point
into the system of DTs. The CUI can serve as a flexible dashboard to display data
for other services. However, it is expected that some DTs and their associated
services may have their own dashboards and thus the CUI can help discover and
redirect to other dashboards too.

Furthermore, when considering a single DT or a small group of DTs and/or services,
it is feasible to have a separate interface for each DT or service. In complex
systems, however, it may be more reasonable to have a single entry-point into the
system which can serve as a single flexible dashboard or as a directory for users to
find the appropriate DT or service for their needs.

10.2.2 Security service

The purpose of the security service (SS) is to fulfil the role of the authentication
server when protocols such as OAuth2.0 are used. By having a central security
service, other services can delegate authentication and authorisation
functionality. This also promotes the separation of concerns since each service
does not have to implement its own security. Furthermore, updates in security
information, such as changes to the user roles, do not have to propagate through
the system. However, having a central security service is a trade-offs that benefits
performance efficiency and usability more than security (Gadge & Kotwani, 2017).
It is often considered an acceptable trade-off since there are many other methods
of further strengthening security and it can be very cumbersome to implement
security in every individual service.

10.2.3 Gateway service

The purpose of the gateway (G) is to route service requests to the appropriate
services or DTs and it is closely linked with the CUI. The CUI allows users to make
requests, whereas the gateway transforms and directs those requests as
necessary. The gateway can also be used by services to establish connections with
each other. Gateways are further often used to transform data formats or
communication protocols between internal and third-party provided services.

The gateway is intended to simplify communications (since services do not have
to implement service discovery logic) and this reduces the number of requests
made by a client. The gateway can allow for better service interoperability since
the services only have to interface with the gateway as opposed to interfacing with
each other. However, the API gateway can become a bottleneck and it can become
complex when load balancing and multiple interfaces for different services are

Stellenbosch University https://scholar.sun.ac.za

83

considered. Server-side discovery is preferred with gateways because discovery
logic is removed from services and it makes maintenance easier.

10.2.4 Directory service

The purpose of the directory service (DS) is to serve as a central metadata
repository that can be queried for discovery information about DTs and services
within the system. This typically includes metadata about the DTs such as a short
description of the DTs’ contents (such as what physical subsystem is being
reflected, what models are available, what services are offered, etc.) and how to
contact the DT (such as an IP address or related messaging topic). Similarly, for the
service network, the directory provides metadata about the services’ functionality
and connection details.

To implement the directory, the DTs and services must register themselves when
they start up or a log must be manually maintained that provides all the relevant
metadata.

10.2.5 DT monitoring service

The DT monitoring (DTM) service is responsible for monitoring individual DTs (and
other software components within the system) to ensure maximum availability of
the DTs. Typically monitoring is split into two categories, i.e. health monitoring and
load monitoring.

Health monitoring checks the connection status of DTs and resource availability
within DTs to determine whether they are functioning as expected.
Recommended measurements for health monitoring are (Gadge & Kotwani,
2017): 1) CPU, memory and thread usage, 2) network connectivity, 3) security
alerts and 4) maintenance of logs.

Load monitoring of DTs is intended to provide data on DT performance and it
allows for load-balancing between replicated DT instances. Recommended
measurements for load monitoring are (Gadge & Kotwani, 2017): 1) number of
service requests, 2) performance statistics and 3) success and exception messages

Furthermore, the DT monitor should keep interactions with the DTs to a minimum
and should rather interact with the platform or host that the DT is running on,
when possible.

10.2.6 Configuration Server

The configuration server (CS) is a central server that contains the start-up and
operation configuration settings for the different digital components (DTs,
services, brokers, etc.) of the system. Non-volatile operational configuration
settings, such as user-specific settings, preferences, etc. can also be captured

Stellenbosch University https://scholar.sun.ac.za

84

within the configuration server. Having a centralised configurations server allows
for the automatic deployment and redeployment of digital components and it
makes the reconfiguration of distributed systems much easier.

10.2.7 Orchestration service

The purpose of an orchestration service (OS) is to logically sequence other services
to achieve the desired data transformation and application functionality. This is
likely only applicable to the services network where multiple functions need to be
performed consecutively to achieve an outcome. Services hosted within DTs are
expected to encapsulate all the functionality required to achieve the purpose of
the service. There may be cases where the DT delegates functionality to the
services network, but in such cases the DT is regarded as a client and not part of
the services network.

 Messaging mechanisms

Messaging mechanisms form a critical part of any distributed system and they can
be complex in their own right. This section provides guidelines when considering
alternative messaging and communication mechanisms.

10.3.1 Communications middleware

The purpose of a message-oriented middleware is to help manage heterogeneity
and high message loads from many sources. A middleware can be used to facilitate
communication and aggregation within or between DTs and middleware should
be agnostic to the contents of the message and thus no processing should be
performed on the contents of the message.

Furthermore, the middleware decouples communication in time (allows
asynchronous communication) and space (allows software to run in separate
processes), in addition to decoupling communication from a specific protocol. A
middleware can also implement certain communication patterns, such as a circuit-
breaker pattern, to improve the reliability of the connected services (Santana,
Andrade, Delicato, et al., 2021).

Message-oriented middleware is typically preferred in large systems with many
concurrent users and requests and for asynchronous communication that involves
large data loads. Some message-oriented middleware technologies also have
support for multiple communication protocols and they are commonly required
to have low latencies and high reliability (Karabey Aksakalli et al., 2021;
Tovarnitchi, 2017).

Stellenbosch University https://scholar.sun.ac.za

85

10.3.2 Messaging patterns

Messages can be exchanged according to different patterns and these patterns
have different benefits and drawbacks. The messaging patterns can be broadly
categorised into synchronous and asynchronous. Synchronous typically refers to
request-response (such as APIs that make use of the RESTful approach) and it is
commonly used for inter-platform communication (Bertoli et al., 2021).
Asynchronous communication typically refers to publish-subscribe
communication or asynchronous request-response. Publish-subscribe makes use
of a broker or other message-oriented middleware, while asynchronous request-
response typically makes use of message queue.

Publish-subscribe also allows an entity to simultaneously be a data provider and a
data receiver and this is often used for inter-service communication within the
same platform (Bertoli et al., 2021; Tovarnitchi, 2019). Publish-subscribe is
typically preferred for one-to-many or many-to-many messaging and it is also very
beneficial with regards to fast changing systems since the broker decouples
publishers and subscribers, allowing for easy reconfigurations (Karabey Aksakalli
et al., 2021).

Table 17 provides a conceptual comparison between request-response and
publish-subscribe messaging based on certain characteristics. The event-bus is
conceptually very similar to publish-subscribe and is thus not considered on its
own in Table 17.

Table 17: Conceptual comparison of request-response and publish-subscribe
messaging.

Characteristic Request-response Publish-subscribe

Pattern One-to-one One-to-many

Participating entities Client, server Publisher, broker (usually),
subscriber

Data flow Bi-directional Uni-directional (per topic)

Coupling Tighter
Client and server must be
acquainted

Looser
Subscriber can be
anonymous

Synchronous/
Asynchronous

Synchronous or
asynchronous

Asynchronous

Typical usage Inter-platform
communication

Intra-platform
communication

Stellenbosch University https://scholar.sun.ac.za

86

10.3.3 Messaging performance parameters and solutions

This section provides an overview of how a messaging solution can be chosen and
provides some of the most popular messaging protocols and technologies used
industry and in research.

Choosing the most appropriate protocol depends on several characteristics of the
use case, but the most important are: environmental conditions, network
characteristics, the amount of data transferred, security levels and quality of
service (QoS) requirement (where QoS in the context of messaging refers to the
level of guarantee that a message is delivered) (Ferrández-Pastor, García-Chamizo,
Nieto-Hidalgo, et al., 2018). Based on the use case characteristics, certain
performance parameters will be prioritised when considering a messaging
solution. Table 18 provides some common performance parameters used to
compare messaging solutions.

Table 18: Descriptions for performance parameters with regards to messaging
protocols

Parameters Description

Latency The amount of time it takes for a message to be
captured, transmitted, processed and received when
sent from a source to a destination.

Transport
reliability

The ability of a protocol to transport data with
minimal to no data loss under given conditions and for
a given time interval. This includes a protocol’s ability
to compensate for faulty networks with differing QoS
levels, message queues and similar functions.

Security Security refers to authentication, integrity and
encryption, as described in Section 10.1.

Interoperability The ability of a protocol to allow communication and
data transfer between functional units in a manner
that requires minimal to no knowledge of the unique
characteristics of the involved units.

Resource usage The use of the elements of a processing system that
are required to perform an operation. This includes
the required bandwidth for communication, as well as
the CPU and memory usage of the protocol.

Throughput A measure of the amount of data that a message
protocol is transferring within a given time interval.

Scalability A protocol’s ability and capacity to adapt to changes in
network size and scale.

Usability
(Support/
existing
technologies)

The provisioning of services and materials that allow
for the use and improvement of a protocol. This
includes support for multiple programming languages
and documentation to help with implementation.

Stellenbosch University https://scholar.sun.ac.za

87

Parameters Description

Complex
communication
suitability

The ability of a protocol to allow for different
communication architectures and data exchanges,
such as publish-subscribe, request-response and
contract exchanges.

Message order A protocol’s ability to ensure correct message order
on the recipient’s side.

Message priority For asynchronous communication, the ability of a
protocol to prioritise certain messages in the message
queue over others, depending on a priority score.

HTTP based protocols such as RESTful APIs have good interoperability and are thus
good for cross-platform integration (Bertoli et al., 2021; Longo et al., 2019). HTTP
is a synchronous, request-response protocol but, for asynchronous request-
response, HTTP based protocols are often combined with message queues
(Karabey Aksakalli et al., 2021).

RabbitMQ is cited as a good option for a message-oriented middleware (Karabey
Aksakalli et al., 2021; O’Donovan et al., 2015) because of its scalability and
reliability and it supports multiple protocols and messaging patterns. Apache
Kafka is often cited as a good technology for unidirectional data streaming because
of its scalability and low latencies (Ciavotta et al., 2020; Ismail et al., 2019). MQTT
and CoAP are popular lightweight and open protocols typically used in IoT where
power and resource efficiency are important (Tovarnitchi, 2017). MQTT follows a
publish-subscribe pattern, whereas CoAP follows a HTTP compatible request-
response pattern.

Binary protocols such as gRPC and Apache Thrift are good for large, heterogeneous
service environments because they require the user to publish interface
definitions using a Interface Definition Language (IDL) (Protobuf and Thrift for
gRPC and Apache Thrift, respectively) (Karabey Aksakalli et al., 2021). Binary
protocols also allow for polyglot programming.

 Storage

Storage solutions are required in every DT, as well as in some of the services and
thus this section provides some considerations when choosing data storage
solutions.

10.4.1 SQL vs NoSQL

10.4.1.1 SQL (relational database)

Relational databases are databases that store data in two-dimensional tables with
rows and columns according to a schema-on-write model. The schema predefines

Stellenbosch University https://scholar.sun.ac.za

88

the type of data that can be inserted into a column with strict rules to ensure that
the data is consistent. Relational databases use structured query language (SQL)
to perform queries.

SQL is preferred for highly structured data that requires consistency (relational
databases are good at ensuring consistent data across multiple instances of a
database for multiple applications), complex queries (multiple operations can be
performed using a single transaction) and no duplication (because of relational
propagation of data as opposed to writing to multiple tables) and is often used for
cases like banking information and order logs. SQL is also very reliable, durable
and it follows the ACID (atomic, consistent, Isolated, durable) model.

Relational databases also allow for stored procedures, which are functions internal
to the database, that ensure consistent functions and processes for multiple
instances of the same database. Stored procedures also allow connecting tables
to one another (create relations) to further improve consistency. Examples of
relational databases are MySQL and PostgreSQL.

10.4.1.2 NoSQL (non-relational database)

NoSQL databases typically follow the BASE paradigm (Basically Available, Soft
state, Eventually consistent) meaning that they typically lose consistency to
improve availability and performance (Bonnet, Laurent, Sala, et al., 2011). This
tends to make NoSQL more scalable (Ismail et al., 2019) and better for cross-node
operations and thus they are good for large volume data processing in distributed
environments (Bonnet et al., 2011).

Furthermore, NoSQL is schema-less which makes the database more adaptable to
evolutional change and better suited to handling heterogeneous data (Ismail et
al., 2019). However, this does come at the cost of data consistency as mentioned
above and the lack of a schema can cause data to become excessively
unstructured which negatively impacts performance and usability. Some NoSQL
systems do employ Multi-Version Concurrency Control (MVCC) to mitigate this
issue by proving “weak consistency” (Bonnet et al., 2011). Non-relational or NoSQL
databases can be further divided into document stores and wide column stores.

Document stores (e.g. MongoDB) are intricate key-value stores where data is
saved in parts known as documents. These documents typically contain relatively
small amounts of semi-structured data in the form of JSON or XML. Documents
typically represent a single data entry and thus documents are grouped into
collections to represent multiple related data entries, such as multiple data entries
from a single source. Documents do not have any set schema and thus entries do
not necessarily have the same features etc. This is good for reconfigurability and
adaptability, but data can become excessively unstructured if not managed well.

Stellenbosch University https://scholar.sun.ac.za

89

Document stores are also well suited to read intensive workloads (Bonnet et al.,
2011).

Wide column stores (also known as column-family databases, such as Cassandra
or Bigtable) are data stores that still use a table-row-column format but different
rows can have different column formats, i.e. there is some structure, but there is
no strict schema. Wide column stores typically have fast write speeds, allowing for
high throughput and low latencies but they are not as consistent or predictable as
relational databases (Bonnet et al., 2011). Furthermore, some wide column stores,
such as Apache Cassandra, have good decentralisation support which is well-
suited to distributed environments (Ciavotta et al., 2020).

10.4.1.3 Specialised datastores

There are some other storage options, often grouped with NoSQL databases, that
have more specialized functions. Some of these more specialised datastores are
listed below along with their typical usage.

Key-value data stores (e.g. Redis or Memcached) are a temporary data storage
solution often used for caching. Key-value stores use system memory and thus
have exceptionally low latencies but the storage is volatile, i.e. the storage is short-
term and temporary. They also only support simple queries.

Object or file storage (e.g. Google Cloud Storage or Azure Blob Storage) solutions
are typically used for file sharing and it uses a hierarchical, tree-like, file storage
format. They are often used when dealing with large amounts of unstructured
data such as images, videos, audio files and large csv files.

Graph databases (e.g. Neo4J) are databases that consist of nodes and edges,
where nodes represent entities and edges represent relationships between
entities. This is commonly used when the relationships between nodes is an
important factor in the data. For example, graph databases are popular for fraud
detection because relationships between people and places can be identified
more easily.

Specialised time-series datastores (e.g. InfluxDB) are available that are specifically
designed to collects large amounts of real-time data from multiple sources.
Typically, time-series datastore are optimised for many small data entries that are
rarely updated or deleted.

Full-text search engines (e.g. Elasticsearch) are another type of data store that is
specifically used for text-based searches, but they are not durable and should not
be used as a primary data store.

Stellenbosch University https://scholar.sun.ac.za

90

10.4.2 Operational and transactional vs analytical datastores

Operational datastores (technical operations data) and transactional databases
(business data) are datastores that record the day-to-day data generated within a
company. This often entails many simple read-write operations that require low
latencies so that multiple concurrent applications have access to real-time data.
This type of datastore is primarily used for dynamic real-time data used to answer
short-term questions (Therrien et al., 2020).

In contrast, analytical datastores are data storage systems that specialize in storing
data for data analytics. There are various types of analytical datastores but the
most common is a data warehouse. Other types analytical datastores include data
lakes and data marts. Analytical datastores are typically concerned with high
volumes of historical data that rarely changed after entry and, thus, reading and
querying ability is often emphasised over writing speeds with analytical
datastores. Analytical datastores are often classified according to the order of
extraction, transformation and loading. Extract refers to the gathering of data
from multiple sources, transform refers to the transformation of data into a more
useful structure and format and load refers to writing the data to the store for
further use.

A data warehouse is subject-oriented, integrated (data is transformed and stored
in a standard format) datastore, that typically organises data by time period. In
data warehouses, data is not updated in real time but rather updated periodically
because they typically contain data for data analytics and long-term strategic
decision-making (Suba, 2018). Data warehouses conform to an extract, transform,
load (ETL) method of data entry, meaning a schema is enforced when writing data.
Therefore, data warehouses typically makes use of a relational database model to
store data in a structured format (Therrien et al., 2020).

An alternative analytics datastore to a data warehouse is a data lake, which
conforms to an extract, load, transform (ELT) model of data entry. Data lakes do
not enforce a schema when writing data. This makes them easy-to-use with
unstructured data but this also holds the risk of the data becoming so unstructured
and lacking in metadata that data becomes overlooked, misused, corrupted and
ultimately unusable (Therrien et al., 2020).

Furthermore, data warehouses often make use of data marts, where a data mart
contains a subset of data that is applicable to a particular group of people within
the company. The top-down approach of designing a data warehouse entails the
analysis of business requirements and then designing and implementing the data
warehouse according to those requirements. Dependent data marts (dependent
because data comes from data warehouse) are then linked to the data warehouse
to provide specific data. This generally ensures better consistency and

Stellenbosch University https://scholar.sun.ac.za

91

standardisation but the design stage may take longer and cost more to deploy
(Suba, 2018).

The bottom-up approach of designing a data warehouse implements independent
data marts (data marts do not get their data from the data warehouse) as quickly
as possible. The data warehouse is then built by integrating conformed dimensions
from the data marts (Suba, 2018). This generally provides data storage solutions
quickly but special care must be taken to enforce standards for seamless
integration (Suba, 2018).

 Hosting options

Hosting options refer to the hardware or platform that the software is hosted on
as well as virtualisation techniques that can help to better exploit the potential of
the hardware. Practical solutions would most likely consider a combination of
hosting positions as well as making use of virtualisation.

10.5.1 Hosting positions

10.5.1.1 Overview

Hosting positions are here divided into three categories: local device, fog server
and cloud. Local devices (also known as edge devices) refer to any device that is
directly connected to the sensors and actuators that are being monitored. For
example, a Raspberry Pi or a PLC can be local devices because they receive,
interpret and respond to signals from sensors.

Fog server refers to dedicated servers at the network edge that are typically used
to provide additional computational and storage capacity within the local
network. Fog servers are typically used when the local devices do not have
sufficient computing capacity or power to perform all the tasks required of the
digital system within the local network.

The cloud refers to any computing infrastructure that is managed and maintained
by a recognised third-party provider, where the computing infrastructure is in an
off-premises, specialised facility. Examples of cloud providers are Google Cloud
Platform (GCP), Amazon Web Services (AWS) and Microsoft Azure. The cloud is
often associated with exceptionally accessible, scalable and “serverless”
computing resources (serverless meaning the physical servers are managed and
maintained by the cloud provider).

10.5.1.2 Comparison of hosting positions

Local devices are typically used for low latency, real-time decision making within
the local data context (Villalonga et al., 2021), such as health monitoring of a

Stellenbosch University https://scholar.sun.ac.za

92

critical asset. The local device can also be used for time synchronisation and data
stream buffering to, for example, manage a few high-frequency sensors (Karanjkar
et al., 2018). Local devices can also be used to compensate for other resource
constrained devices by providing network connectivity and relatively simple
processing (in comparison to the processing done using fog servers or the cloud)
(Kuhn et al., 2020). This is typically the case in wireless sensor networks, where
resource constrained sensors transmit their data to the local device using short-
range communication protocols, such as Bluetooth Low Energy.

Fog computing was designed to overcome the shortcomings of cloud technology
with respect to real-time applications and physically distributed systems (Bertoli
et al., 2021), while also overcoming the problem of limited resources found in local
devices. Therefore, fog servers are suited to applications such as near real-time
control of multiple devices and low latency local analytics, which require more
computing resources than a local device typically has available (Ullah et al., 2021).
Fog servers are also often used to reduce network congestion (Ferrández-Pastor
et al., 2018) and to ensure reliable data transfer within the local network as well
as to external networks (Ciavotta et al., 2020).

Furthermore, fog servers are also intended to improve security and
interoperability. Security is improved because fog servers can host sophisticated
security software, such as firewalls, antivirus and anti-malware software, and can
then act as proxies for other local devices to external networks (Cisco, 2015;
VanDerHorn & Mahadevan, 2021). Security policies can also be met using fog
servers since they provide location awareness that allows for specific security
measures in accordance with local government (Bonomi, Milito, Zhu, et al., 2012).
Fog servers are also used to improve interoperability within the local network by
hosting sophisticated middleware (Ullah et al., 2021).

The cloud offers accessibility and scalability in data storage and processing power
(Harper et al., 2019; Therrien et al., 2020; VanDerHorn & Mahadevan, 2021) and
it has exceptionally high availability (Tovarnitchi, 2017). The cloud also consists of
more than just hardware and typically there is also a selection of service that help
manage the cloud platform as well as help utilise its hardware more quickly and
efficiently. Using cloud infrastructure also saves the cost of server acquisition,
maintenance and eventual upgrade, but fast and reliable internet access is
required (Therrien et al., 2020).

The cloud can be divided into public cloud and private cloud. The private cloud is
not accessible through the internet but is only accessible from the local network
(and using VPNs). This offers better reliability, control, performance, privacy and
security but at the cost of lower accessibility and interoperability (Givehchi, Imtiaz,
Trsek, et al., 2014). Private cloud is typically used in industrial environments where

Stellenbosch University https://scholar.sun.ac.za

93

services do not focus on the user, but rather on managing a device on behalf of a
user.

In practice, a hybrid between public and private cloud is often used. Hybrid cloud
combines the easier access of public cloud with the reliability and performance of
private cloud. Generally, applications with inconsistent rising and falling demand
for network resources are best served by the public cloud, whereas applications
that require consistent, high levels of network resources are better served by the
private cloud. (Odun-Ayo, Ananya, Agono, et al., 2018)

10.5.2 Virtualisation

Virtualisation refers to the creation of virtual hardware to allow for more versatile
and efficient use of the actual hardware. Two forms of virtualisation are
considered here: virtual machines (VMs) and containers.

VMs partition a part of the hardware resources to host a separate operating
environment. Therefore, VMs provide resource and operating environment
isolation between software components and VMs in the cloud are also able to take
advantage of some cloud support for load balancing and scaling to improve
availability (Karabey Aksakalli et al., 2021). VMs are good for implementing
security measures around a service. However, VMs are relatively slow to deploy in
comparison to containers and, furthermore, VMs employ static resource
partitioning.

Containers also partition a part of the hardware resources to host a separate
operating environment, but the method used to do this allows for dynamic
resource allocation and faster deployment than VMs (Karabey Aksakalli et al.,
2021). Containers are typically deployed using a cluster manager (such as
Kubernetes or Docker Swarm) to help monitor and manage them (Akbulut &
Perros, 2019).

Both VMs and containers are good for reliability since they allow for environment
reproducibility (where dependencies are packaged with the software) and failure
isolation (Santana et al., 2021). VMs enforce a more severe partitioning and thus
greater isolation and security, but at the cost of resource elasticity and
deployment speed.

Stellenbosch University https://scholar.sun.ac.za

94

11 Design patterns

The preceding sections give a large number of design considerations that often
have to be balanced in compromises. The number of choices can be daunting.
However, in practice, many applications are characterised by having one high-
priority (even dominant) quality attribute. This section provides six design
patterns, where each design pattern is focussed on a different quality attribute. It
should be noted that the quality attributes are interdependent and thus changes
to one quality attribute will likely also influence others.

The quality attributes that the design patterns focus on are performance
efficiency, reliability, maintainability, compatibility, portability and security.
Usability and functional suitability do not have design patterns because they are
too dependent on the use case.

In the context of the research presented here, the design patterns serve as
abstract case studies that demonstrate the application of the information
presented in Chapters 9 and 10.

In practical applications, the benefits of a pattern-based software architecture
include ease of maintenance and reuse (Aderaldo et al., 2017) and they provide
common solutions to common problems that can be applied to a given context
(Bourque & Fairley, 2014). Various DTs in the aggregation hierarchy can make use
of different design patterns. Furthermore, it is likely that more than one design
pattern would be applied to a given DT, to iteratively improve a particular quality
attribute.

For the sake of brevity, the core aspects of each design pattern are not worded in
full sentences.

 Performance efficiency

Related priorities:

Responsiveness, scalability, timeliness, capacity, resource utilisation.

Related needs:

The related complexity needs are: N18, N24, N25, N27. The performance
efficiency design pattern is also applicable when the latency, throughput and
resource usage of a particular service needs to be improved.

Performance metrics:

Stellenbosch University https://scholar.sun.ac.za

95

Latency, throughput, infrastructure measures. See Table 16 in Section 9.1.

Conflicts:

Data detail and DT fidelity, security, portability and interoperability (see Section
4.5).

Recommended aggregation choices:

• Design for the separation of concerns and the distribution of load across
multiple DTs to improve the scalability of the architecture. DTs can also be
replicated for horizontal scalability, partitioned for z-axis scalability or
provided with more resources for vertical scalability. This scalability is enabled
by the hierarchical aggregation architecture as discussed in Section 5.3.
Furthermore, the separation of concerns reduces the amount of data that
needs to be exchanged between subsystems.

• The span of reality should be narrowly defined and should serve a specific
purpose to improve query response times. This includes the following:

o Data granularity should be chosen to include only the necessary
data for the intended purpose.

o Typically, a DTI or DTA is used, depending on the physical scope
being considered, because they are more dedicated to an asset and
they encapsulate functionality as opposed to orchestrating
functionality as done in services networks.

o As the physical scope gets larger, the data granularity should get
coarser and the processing operations should be more extensively
applied.

• Pre-storage aggregation should be used where possible to reduce latencies
and/or to reduce storage requirements. This includes:

o Pre-processing and pre-structuring data before storage for faster
response times to queries. This may include performing data
homogenisation and data synchronisation before storage.

o Exchanging data through a messaging mechanism internal to the
aggregation hierarchy for more rapid data to propagation to the
higher levels of aggregation.

o Reducing the data (e.g. by removing duplicate values) before
storing the data.

• Local aggregation should be used where possible to increase throughput and
to reduce latencies. This includes:

Stellenbosch University https://scholar.sun.ac.za

96

o Making use of local infrastructure (i.e. local devices and fog servers)
for reduced latencies and increased throughput.

o Reducing the physical distance between DTIs and aggregates for
reduced latencies

o Avoiding limitations imposed by cloud platforms such as throttling.

• Aggregate through stream processing or micro-batch processing.
Furthermore, it may be beneficial to implement the aggregation processing
operations’ logic in the DTIs to prevent the DTA becoming a bottleneck.

Recommended implementation choices:

• Minimise the number of intermediaries between data source and data
destination (for automatic decision making) or requester and responder (for
human decision making).

• Minimise the physical distance between source and destination to minimise
network latencies.

• Minimise the required amount of data formatting and protocol conversions
that need to be made, by using a commonly agreed upon format and protocol.

• Request-response messaging patterns tend to have lower point-to-point
latencies, but publish-subscribe is more scalable. Some message-oriented
middleware may allow for both.

• NoSQL databases can support higher throughput and lower latencies than SQL
databases and NoSQL databases are more scalable. Using a specialised
storage solution such as a time-series data store or a key-value store for
temporary storage may also be useful.

• Make use of local infrastructure or private cloud offerings where possible.
Furthermore, hosting DTs and services in containers will allow for elasticity
which is good for resource efficiency and it makes load balancing easier.

Further recommendations:

• Multi-threading can reduce I/O latency and multi-processing can reduce
computational latency. However, this is also dependent on the resources that
are available in the DTIs and DTAs.

• A component can save resources by delegating some functions to other
components, particularly processing intensive workloads. For example, a local
device can save resources by using a secure fog server as a proxy where the
fog server performs security services.

• Caching frequently queried data as opposed to accessing the database for
every query can greatly reduce latencies but at the cost of higher memory
usage.

Stellenbosch University https://scholar.sun.ac.za

97

 Reliability

Related priorities:

Maturity, availability, fault tolerance, recoverability, resilience, robustness.

Related needs:

The related complexity needs are: N15, N18. The reliability design pattern is also
applicable when network availability is uncertain, when messages have high
veracity or worth, when power outages may cause disruptions, when applications
are safety critical, etc.

Reliability metrics:

The length of downtime after system or component failure. The number of faults,
failures or error messages within a given timeframe. The percentage of time that
a system or component remains available within a given timeframe. The number
of downstream failures (the number of failures caused by an initial failure).

Conflicts:

Agility (See Section 4.5).

Recommended aggregation choices:

• Design for separation of concerns (distribution of functional logic) and the
distribution of load to allows for fault isolation. For example, service such as
fault monitoring can be implemented on locally hosted, distributed DTIs (as
opposed to a central DTA) so that even if the external network connection
fails or if there are failures in an aggregate, the DTIs remain operational.
Furthermore, replication and partitioning also contribute to reliability by
improving scalability which is complementary to reliability since it allows for
a better response to load disruptions.

• The span of reality should be defined to leave reserve capacity for interaction,
i.e. the full infrastructure capacity of the system should rarely be utilised. This
essentially serves as a safety factor so that when there is some disruption to
the system, it has additional capacity to compensate. Therefore, often a
reliable upper bound of resource utilisation is identified that allows for stable
hardware functioning and allows for some disruption.

• Typically, DTIs and DTAs are used to host services with high reliability
requirements because querying data from a single source, such as a data
warehouse within a DT, is more predictable than data federation. The
encapsulation of functionality within a persistent and dedicated DT is also
more reliable than service orchestration.

Stellenbosch University https://scholar.sun.ac.za

98

• Post-storage aggregation is generally better for reliability because data is
stored before it is transferred or manipulated, which allows for some
redundancy. If latency is also important, a key-value store with periodic
persistence, such as Redis, can be used as low latency temporary storage
before aggregation.

• Local aggregation is generally more reliable because the low latencies and
high throughput of a local network allows for a higher capacity for interaction.

• Stream processing and micro-batch processing should be used for aggregation
to prevent large batch failures. Furthermore, it may be beneficial to
implement the aggregation processing operations’ logic in the DTIs to prevent
the DTA becoming a bottleneck. However, this is also dependent on the
resources that are available in the DTIs and DTAs.

Recommended implementation choices:

• A DT monitoring service’s primary focus is to ensure maximum DT uptime.
Therefore, a DT monitoring service should be used and the extent of the
monitoring is dependent of the level of reliability required. However, at the
very least, a heartbeat monitor or watchdog service should be implemented.
Furthermore, if the middleware makes use of load-balancing or the circuit
breaker design pattern, the monitoring service will have to capture
performance metrics to enable those functions.

• Message-oriented middleware is generally beneficial for reliability because
middleware typically makes use of short-term and temporary storage, which
ensures some redundancy. Middleware also decouples components in time,
space and protocol, i.e. asynchronous communication and processing are
enabled and interoperability between components is improved. Furthermore,
middleware can employ load balancing and/or reliability focussed software
design patterns such as the circuit breaker pattern.

• In resource constrained environments, publish-subscribe messaging is
typically more reliable than request-response because the broker decouples
publishers and subscribers in time and space.

• For persistent storage, SQL databases are typically more reliable and durable
than NoSQL and they have better data consistency.

• Private cloud hosting is the most reliable hosting position for service with
constant loads, whereas the public cloud is the most reliable option for highly
dynamic loads and when the service must be publicly available. However,
transmission within the local network is more reliable than transmission
across networks. Therefore, if reliability is required to prevent message loss,
the services should be hosted in the cloud with short-term local storage for
data redundancy. However, if reliability is required because of intermittent

Stellenbosch University https://scholar.sun.ac.za

99

network availability, then it may be preferable to host services locally on a fog
server.

• Virtual machines provide the best resource and operating environment
isolation. However, they do take longer to deploy which means that when
they do fail, they will have a longer downtime than containers.

Further recommendations:

• Digital twins should employ default safe state logic in case of external failures
such as network or communication failures.

• When components need to be replaced within the system, introduce new
components using a split load approach, where possible. For example, when
a new version of a service is available, the load can be split between the old
and the new version until the new version proves adequately reliable. Cloud
platforms, such as Google Cloud Platform, provide services that enable this
type of load splitting.

• Make use of physically and logically partitioned communication for different
types of communication. For example, the aggregation communication can be
separated from the digital twin’s internal communication, where different
hardware modules are used by different OS processes.

 Maintainability

Related priorities:

Modularity, reusability, analysability, modifiability, testability, reconfigurability.

Related needs:

The related complexity needs are: N6, N9, N14, N16.

Maintainability metrics:

The time required to add, remove or rearrange system components without
introducing failures. The reuse rate of software modules. The time it takes to
identify the cause of a failure.

Conflicts:

Security (see Section 4.5). Performance efficiency and reliability (because testing
and maintaining distributed software logic can be harder than maintaining
centralised logic).

Recommended aggregation choices:

Stellenbosch University https://scholar.sun.ac.za

100

• The separation of concerns increases the modularity and reusability of
software, which makes it easier to maintain the system. Modularity also
improves the scalability and expansibility (as defined in Section 4.3) of the
system and makes it more adaptable. However, replication and partitioning
of DTs may cause data consistency and code versioning issues (e.g. where one
DT gets updated but its replicant does not).

• The span of reality should serve a clear purpose and should be defined to
produce self-contained and modular DTs with few, well-defined and simple
interfaces. Therefore, the more complex the system, the more aggregates and
levels of aggregation there are likely to be.

• Spatially focussed services would be more maintainable in a DT whereas a
functionally focussed service may be better maintained in the services
network.

• The choice of pre-storage vs post-storage aggregation is not likely to affect
maintainability much. However, it may be beneficial if DTAs establish the
aggregation communication. This means that the DTA contains all the
aggregation metadata, such as which DTs are aggregated and which features
are relevant. Furthermore, it would be easier to maintain the aggregation
processing operations’ logic if it is implemented in the DTA, but this may cause
the DTA to become a bottleneck.

• Cloud-based aggregation could be better for maintainability because of the
additional support services that are provided by most cloud platforms.

• The processing batch density is not likely to affect the maintainability of the
DTs much, if at all.

Recommended implementation choices:

• Making use of a central user interface, security service, gateway service,
directory and configuration server should be beneficial for maintainability,
where more complex systems would benefit more. Each of these
management services encapsulate a particular functionality that helps to
separate concerns. This separation of concerns allows DTs and services to be
focussed on a single responsibility by delegating functions to the management
services.

• Message-oriented middleware would be test best option with regards to
maintainability. Message-oriented middleware decouples entities in time and
space, which reduces dependencies and thus simplifies interfaces.
Furthermore, some message-oriented middleware, such as RabbitMQ, can
also support multiple communication patterns and protocols, which also
simplifies interfacing. In resource constrained environments, the publish-
subscribe pattern is likely to be better than request-response because the
broker still decouples entities in time and space.

Stellenbosch University https://scholar.sun.ac.za

101

• The best storage solution for maintainability depends on the data. Structured
data may be more maintainable in an SQL database or wide column store,
whereas semi-structured or unstructured data may be better maintained in a
wide column store or document store. Furthermore, NoSQL datastores are
generally better in distributed environments and some datastores such as,
Apache Cassandra, employ multi-version concurrency control which eases the
management of distribute data.

Specialised datastores may also be preferred. For example, a graph database,
such as Neo4j, provides a visual data interface that can make some data more
comprehensible and thus manageable.

• The cloud offers “serverless” computing which means that the maintenance
related to hardware is delegated to the cloud provider. Furthermore, cloud
providers often offer additional support services to help deploy and manage
software in the cloud.

• Containers are widely regarded to be beneficial for maintenance since they
provide resource and operating environment isolation. Containers are usually
deployed using a cluster manager, which makes aspects such as software
performance monitoring and load balancing easier.

Further recommendations:

• Code versioning services, such as GitHub, are widely recognised as a means to
manage code versioning more effectively, particularly when multiple
developers are contributing to the code.

• Check that software is backward compatibility and designing new systems
with backward compatibility in mind can greatly contribute to maintainability.

• Incrementally develop modular and testable software features with
accompanying reusable unit tests.

• Implement good document management practices so there is a dependable
reference for system components, functions, relationships, etc.

• Allow for over the air (OTA) programming for easier reprogramming of
distributed devices.

 Compatibility

Related priorities:

Interoperability, co-existence.

Related needs:

The related complexity needs are: N3, N5, N6, N7, N23, N27.

Stellenbosch University https://scholar.sun.ac.za

102

Compatibility metrics:

The time required to add a new component and/or to integrate with external
services. The processing time required to transform heterogeneous data formats
and protocols.

Conflicts:

Security, performance efficiency (see Section 4.5).

Recommended aggregation choices:

• The separation of concerns and modularity of the architecture simplifies the
interfaces with the DTs and services, making them more interoperable. The
degree of isolation provided by the separation of services across DTs and the
services network also enables easier replacement and expansion of the
system’s functionality. However, replication and partitioning may cause
resource contention and thus poor co-existence if it is not managed
appropriately.

• The span of reality should serve a clear purpose and should be defined to
produce self-contained and modular DTs with few, well-defined and simple
interfaces. Therefore, the more complex the system, the more aggregates and
levels of aggregation there are likely to be.

• The services network is intended to interface with external data source and
services as discussed in Chapter 6.

• Pre-storage aggregation may be beneficial for interoperability because data
can be homogenised and structured before storage, making later querying
easier.

• Local aggregation is likely to be better for interoperability is cases where
multiple cloud platforms are present (e.g. as when multiple DT owners use
different cloud platforms) because data can be exchanged between entities
before entering the different cloud platforms.

• The processing batch density is not likely to make a difference in terms of
interoperability.

Recommended implementation choices:

• A gateway service and directory service can both be beneficial for
interoperability. The gateway service simplifies interfacing between services
because services can be designed to interface with the gateway as opposed
to multiple other services. In some cases, gateways are also used to convert
between communication protocols. The directory service can be queried by
DTs to retrieve interfacing information about other DTs. For example, when

Stellenbosch University https://scholar.sun.ac.za

103

multiple DT owners form part of the system, the DT directory can be queried
to determine what data is available in which DTs.

• Openly available message-oriented middleware is good for interoperability
because it decouples the communicating entities. Furthermore, some
message-oriented middleware can support multiple communication
protocols and programming languages. Furthermore, binary protocols, such
as gRPC, can also support multiple development languages for better
interoperability.

• In some cases, having a strict data schema can be beneficial for
interoperability and in such cases an SQL database may work best. However,
when dealing with semi-structured and unstructured data, it would likely be
better to use NoSQL databases or specialised databases since they are better
suited to handling heterogeneous data.

• Hosting software entities in the cloud will ensure the best co-existence.
Furthermore, hosting software entities in containers and VMs provide
resource partitioning for better co-existence, where VMs implement stricter
partitioning. Containers and VMs also help with versioning control which is
important since not all versions of software are backward compatible.
Furthermore, hosting databases and services in the public cloud makes them
more accessible to clients (whether the clients are humans or other software
entities).

Further recommendations:

• The data format should strive to be syntactically and semantically consistent
across different DTs and metadata should be incorporated to provide context.

• Making use of open industry standards for data formats, communication
protocols and security protocols can greatly improve interoperability.

 Portability

Related priorities:

Adaptability, installability, replaceability.

Related needs:

The related complexity needs are: N6, N9, N14, N16.

Portability metrics:

Stellenbosch University https://scholar.sun.ac.za

104

The time it takes to install new components. The time it takes to replace
components. The time it takes to transfer a software package from one platform
to another or from one operating environment to another.

Conflicts:

Reliability (See Section 4.5).

Recommended aggregation choices:

• The separation of concerns and modularity help make components more
replaceable and interchangeable. The ability to aggregate existing DTs into
new DTs also allows for the adaptable and incremental development of
increasing more complex DTAs and services.

• Span of reality should be defined to be modular and may be defined with a
more general purpose than some of the other design patterns. More DTs and
more levels of aggregation may also be preferred to increase the pool of DTs
that can be aggregated from.

• Services in a service network are generally preferred for adaptability because
functionality can be orchestrated as required.

• Post-storage aggregation may be preferred since services in the services
network make use of post-storage aggregation. Post-storage aggregation also
allows for more asynchronous and selective aggregation.

• Cloud-based aggregation may be preferred since cloud platforms are highly
elastic and can thus adapt more easily to varying processing loads.

• The processing batch density is not likely to make a difference to portability.
However, services in the services network are more likely to make use of
batch processing.

Recommended implementation choices:

• A directory service allows for automatic lookup of relevant information that
can be useful for adaptability. An orchestration service may be required for
services in the services network.

• A message-oriented middleware and publish-subscribe messaging with a
broker are beneficial for adaptability and replaceability since both patterns
decouple the communicating entities.

• NoSQL databases are more adaptable than SQL databases since they do not
enforce a strict schema. Furthermore, the JSON type data format of document
stores makes them particularly adaptable to changing data features. Object
datastores are also well suited to storing large, unstructured data, such as
images and videos.

Stellenbosch University https://scholar.sun.ac.za

105

• The cloud is the most adaptable hosting position since it is highly elastic and
provides a multitude of hardware configurations to choose from. This also
makes it easy to replace and upgrade hardware as demand on the system
increases.

• VMs and containers are both very beneficial for portability since they allow
for environment reproducibility across multiple platforms and types of
hardware. Containers are particularly popular for portability since they also
allow for dynamic resource allocation as well as fast deployment and
redeployment.

 Security

Related priorities:

Confidentiality, integrity, authenticity, authorisation, accountability, non-
repudiation.

Related needs:

The related complexity needs are: N2, N4. Security become increasingly important
when working with confidential information and often governments enforce data
privacy requirements as well.

Security metrics:

The security of the system is hard to quantify but some metrics that can be used
are the number of vulnerabilities that have been identified and the percentage of
those that have been patched. The impact of a vulnerability being exploited,
typically rated on a low to high scale. The attack area - the number of open
external network connections within the local network.

Conflicts:

Interoperability, maintainability, performance efficiency.

Recommended aggregation choices:

• Distributing services across multiple DTs and the service network decreases
the impact of a vulnerability exploit since only a subdivision of the data and
functionality would be exposed. DTs can be replicated and partitioned to
separate data processing over multiple instances. If one instance is
compromised, other instances can remain unaffected and continue activity.
Furthermore, if one instance of a partitioned DT is compromised, only the
data within the DT instance is compromised and not all the data.

Stellenbosch University https://scholar.sun.ac.za

106

• The capacity for interaction should make allowance for security related
processing and storage. For example, encryption and decryption require some
processing, while storage is required to log activities and to keep track of
whitelisted connections, such as approved IP addresses.

• Services in DTs are likely to be more secure than services in the services
network since DTs encapsulate the functionality and data required for a
service and thus DTs require fewer external connections.

• Post storage aggregation may be beneficial to create data redundancy.

• Local network aggregation is more secure since the network can be closely
monitored for suspicious activity and making use of firewalls, antivirus and
anti-malware software can further secure the local network. The local
network can be further isolated from the internet by using proxies.

• Stream processing and micro-batch processing are preferred to allow for data
partitioning to reduce the severity of exposure.

Recommended implementation choices:

• Standard security protocols should be employed for all communication. This
may include authentication, authorisation and encryption between all entities
as opposed to using federated security. This may also include implementing
individual security measures in each DT and/or service, such as password
protected access and multi-factor authentication measures.

• A DT monitoring service can be used to monitor DT activity. This can help by
detecting slow connections, by providing notifications about access by
suspicious IP addresses and other security alerts, etc.

• Messaging protocols and messaging technologies should support the use of
security protocols. For example, MQTT provides easy integration with the
SSL/TLS protocol and AMQP is a protocol that is known for its security
provisioning. Furthermore, message-oriented middleware and brokers can
apply additional security restrictions such as regulated access to topics and
resources.

• DTs should never allow direct access to a database but should rather provide
a regulated service through which database queries can be made.
Furthermore, any reputable database management system, whether it is an
SQL or NoSQL database, should provide multiple features related to security.
This typically includes provisioning for multiple users with differing levels of
access. Encrypting data before storage in another means of securing data
within a database.

• Fog servers are often used to provide security. Fog servers form part of the
local network and can thus communicate within a local private network. Fog
servers also have substantial computing resources to implement security

Stellenbosch University https://scholar.sun.ac.za

107

measures. The private cloud is also preferred for security over the public cloud
because the private cloud is linked to the local network and not the internet.

• For virtualisation, VMs are preferred in terms of security because they provide
better support for security and isolation than containers.

Further recommendations:

• DTs and services can be hosted in a private subnet that can only be accessed
through a secure proxy with a list of whitelisted connections.

• Vulnerable legacy systems should be retrofitted with new technologies that
implement security measures.

• Multi-factor authentication can be applied in individual DTs.

Stellenbosch University https://scholar.sun.ac.za

108

12 High-level case studies

This chapter presents two high-level case studies. These case studies focus on
architectural aspects, with limited implementation detail. The detailed case study
presented in the next chapter does include more implementation details.

The purpose of the case studies presented here is to demonstrate the systematic
approach of the design framework in two different case studies. The case studies
each present unique challenges and considerations and by applying the design
framework to each of these cases the general applicability of the design
framework is also demonstrated.

 Water distribution system

12.1.1 Scenario

A water distribution system (WDS) is responsible for the transportation of water
from storage sources to consumers with appropriate quality, quantity and
pressure. To achieve this, the physical integrity, hydraulic integrity and water
quality integrity of the WDS must be monitored and maintained (Van Zyl, 2014).
Physical integrity refers to the ability to have correctly functioning components
that also maintain a barrier between the water in the network and the external
environment. Hydraulic integrity refers to the ability of the distribution system to
meet all the users’ demand (domestic, commercial, industrial, etc.) while ensuring
desirable pressures, velocities and water age in the system. Water quality integrity
refers to the distribution system’s ability to deliver water of acceptable quality to
its users.

The scope of the WDS considered in this case study includes the infrastructure
systems that are intended to deliver water to consumers with appropriate quality,
quantity and pressure. This includes water storage systems, pipe networks,
pumping stations and water treatment facilities. For this case study, a Kentucky
WDS, KY12, that forms part of a set of benchmark WDSs will be used (Jolly, Lothes,
Sebastian Bryson, et al., 2014). The KY12 WDS is the largest of the set of 12 WDS
defined in Jolly et al. (2014) and some metadata about the data captured within
the WDS is freely available on the University of Kentucky website (University of
Kentucky, n.d.). Therefore, it serves as a good representative WDS for this case
study.

Concerns raised by researchers in the water sector include:

• Increases in urban populations cause increases in demand, as well as water
quality degradation (Butler, Farmani, Fu, et al., 2014).

Stellenbosch University https://scholar.sun.ac.za

109

• Changing weather conditions and changing rainfall patterns are creating
uncertainty with regards to water supply. In South Africa, this has placed
tremendous pressure on water supply and infrastructure management
(Archer, Landman, Malherbe, et al., 2019).

• Infrastructure is aging and, in many cases, has not been maintained properly.
Therefore, some infrastructure needs to be replaced and demand for water
must be managed during the development of the new infrastructure (SAICE,
2017).

• There is a lack of water engineering and artisanal expertise within South Africa
and there is a lack of resources to support the expertise that is available
(Brown, Keath & Wong, 2009; Sharma & Vairavamoorthy, 2009). This means
that there is insufficient expertise and capacity to undertake the
infrastructure development mentioned in the previous point.

Researchers in the water sector have turned to digitisation to alleviate some of
the concerns mentioned above. However, current monitoring and control
technology can vary significantly in terms of communication methods and
capabilities. For example, some subsystems make use of SCADA systems, while
others make use of varying IoT communication methods such as 3G-based
protocols, Sigfox or LoRaWAN. Furthermore, much of the sensor and control
infrastructure is installed and maintained by third-party providers that provide
access to the data through webhooks or APIs.

In this context, digital twins are being proposed as a potential method to integrate
and manage the data to facilitate services that can help alleviate some of the
challenges. Owen (2018) provides a list of potential services that may be applicable
to WDSs, including:

• Active leak control prioritisation: Prioritisation of leak repairs, as well as
pressure management in response to leaks, to minimise water loss.

• Benchmarking: Comparing operational zones within a WDS and comparing
various WDSs.

• Anomaly detection: Detecting abnormal operation and irregular performance
within the distribution network.

• Burst awareness: Generating real-time alerts in response to bursts along with
locational pinpointing for improved remediation.

• Works optimisation: Optimised scheduling of maintenance to balance effort
with impact.

Stellenbosch University https://scholar.sun.ac.za

110

12.1.2 Needs and constraints analysis

This section presents the needs and constraints analysis for the WDS case study.
The high-level FRs are listed in Table 19 along with a rationale for the FR, a
grouping and a prioritisation (as discussed in Section 7.3).

Table 19: Functional requirements for the water distribution system

High-level
functional
requirements

Rationale Group
(Primary
or
secondary)

Priority

Demand
estimation

The growing population is causing
increased demand for water supply and
this demand must be accurately
estimated so that adequate water
supply can be ensured.

Primary Mandatory

Supply
estimation

There is considerable uncertainty with
regards to the supply, including
uncertainty about rainfall and
evaporation losses, uncertainty about
the infrastructure’s ability, the inability
to perform effective maintenance, etc.

Primary Mandatory

Pressure
management

To supply sufficient pressure and thus
quantity of water, the pumps and
pump stations must be scheduled
appropriately.

Primary Mandatory

Leak/ burst
detection

Considering the uncertainty with
regards to water supply and the aging
infrastructure, it is important to detect
leaks and burst quickly and accurately
to minimise losses.

Primary Mandatory

Demand
characterisation

For certain areas, particularly industrial
areas, there is a need to characterise
the demand to allows for services such
as anomaly detection.

Primary Desirable

Maintenance
scheduling

Effective maintenance and repairs
scheduling is required to fully utilise
the available resources and expertise,
while also maintaining adequate
supply.

Primary Desirable

Reporting The government expects regular
(weekly to monthly) updates of the
water quality to ensure that it is within
acceptable bounds. Therefore, having a
reporting service would save managers’
time so that they can focus elsewhere.

Primary Highly
desirable

Stellenbosch University https://scholar.sun.ac.za

111

Furthermore, the NFRs are listed in Table 20, where the needs are given in the
grey rows, followed by the related NFR, a rationale, an NFR grouping and an
implications description for the NFRs (as discussed in Section 7.3).

Table 20: Non-functional requirements for the water distribution system

Need Provide for proprietary technologies, integrate information silos
and integrate with existing data systems. (Related to N3, N7 and
N23)

Related NFRs Compatibility, composition constraint, service provider support.

Rationale for
NFRs

The variety of monitoring and control systems that have been
implemented by different third-party providers have resulted in
data silos. The DTs must integrate with the third-party
technologies to create a holistic view of the WDS and this requires
interoperability.

NFR grouping Quality attribute, development constraints.

Implication of
NFRs

Use the compatibility design pattern to help overcome
heterogenous communication mechanisms and data formats.
The composition of the DTs must provide for the inclusion of APIs
and webhooks to interface with the third-party providers.

Need Provide for legacy systems and facilitate effective system
maintenance and extension by allowing for efficient
reconfiguration, possibly through some system automation.
(Related to N6, N9, N14, N16)

Related NFR Maintainability, solution constraint.

Rationale for
NFR

The WDS consists of old and new infrastructure while the variety
of monitoring and control systems also differ in their technological
maturity. The differences in maturity are a result of periodic sensor
installations and system replacements etc. over the lifetime of the
WDS. Therefore, the DTs must allow for such differences in
technological maturity by facilitating easy system maintenance and
by allowing for easy reconfigurations.

NFR grouping Quality attribute, development constraint.

Implication of
NFR

Use the maintainability design pattern. The system must also make
provision for legacy systems that do not have internet connectivity
(many of the subsystems use short range communication).

Need Provide reliable and highly available services. (Related to N15,
N18)

Related NFR Reliability.

Rationale for
NFR

The WDS is a critical piece of infrastructure and the fast and
efficient identification of leakages or other anomalies is important.

NFR grouping Quality attribute.

Implication of
NFR

Use the reliability design pattern.

Need The system must provide for data veracity, data accuracy and
data persistence management. (Related to N20)

Related NFR Reliability, solution constraint.

Stellenbosch University https://scholar.sun.ac.za

112

Rationale for
NFR

The DT must ensure that the services and models receive all the
relevant data for reliable supply and demand estimates. Therefore,
the DT must ensure high veracity data, accurate data and the data
must be managed for long-term use.

NFR grouping Quality attribute, development constraint.

Implication of
NFR

Use the reliability design pattern. The solution space is constrained
in its ability to aggregate since high veracity and high accuracy data
is usually post-storage aggregated. Persistent data must be
managed and periodically reduced.

Need The distributed nature of the system results in the use of wireless
networks. (Related to N26)

Related NFR Composition constraint.

Rationale for
NFR

WDSs often make use of WSNs to capture data and these networks
typically make use of short-range communications to send data to
a sink node (a sink node collects the data from multiple sensors
and sends it to a server or to the cloud). Therefore, the system of
DTs must provide for the use of wireless networking infrastructure.

NFR grouping Development constraint.

Implication of
NFR

The reliability design pattern should be used to compensate for
the uncertainty of the network ability. The network infrastructure
is largely constrained to mobile network connections.

Need Provide for resource constrained devices. (Related to N25)

Related NFR Performance efficiency, solution constraint.

Rationale for
NFR

The sensors and devices that take measurements on the pipe
network are typically battery powered and thus they are limited in
terms of their processing ability.

NFR grouping Quality attribute, development constraint.

Implication of
NFR

Use the performance efficiency design pattern for efficient
resource utilisation and limit the load placed on the sensors and
the battery powered devices.

12.1.3 Physical system decomposition

The basic components of a WDS are presented in Figure 7, where the elements
are arranged in a simple diagram. These elements are typically used within
hydraulic modelling software, such as EPANET, to build hydraulic models.
Junctions are links in the network that join pipes or that mark a point where water
enters or exits the network. Reservoirs are water storage units and typically they
also have water treatment facilities, tanks are simple water storage units, pumps
are links that impart energy to the water and valves are links that limit pressure or
flow. Pipes are the conduits that transport the water and there are multiple types,
such as transmission lines, arterial mains, distribution mains, etc.

Stellenbosch University https://scholar.sun.ac.za

113

Figure 7: Basic water distribution system elements. Adapted from (Rossman,
2000)

The KY12 WDS physical system diagram is presented in Figure 8 where all the
hydraulic modelling elements are present except that the junctions are not
explicitly shown. In Figure 8, the “pump” symbol represents a pump station which
consists of more than one pump. In total the KY12 WDS consists of one reservoir
with a water treatment facility, seven water tanks, 21 pressure reducing valves, 16
pumps spread across four pumping stations, 2262 junctions and 649,4 km of
piping.

Furthermore, the WDS has been divided into operational zones which are arbitrary
divisions used to manage the size of the WDS. Operational zones are commonly
used in practice, although other terms, such as district metering area, are used in
similar contexts. In practice it is also common to use pressure flow zones to divide
the WDS into areas according to similar pressure requirements (these areas are
typically at the same elevation). However, this case study adopts the operational
zones concept because it allows for divisions according to parameters other than
pressure.

Stellenbosch University https://scholar.sun.ac.za

114

Figure 8: KY12 water distribution system decomposition. (Adapted from
Hoagland, n.d.)

Table 21 presents the formal span of reality of an operational zone, but for the
sake of brevity, the other physical components are only briefly discussed. The
elementary components are the pipes, values, pumps and tanks. Tanks are
relatively simple and typically only have a water level measurement. Pipes (and
junctions), as well as pumps, can be fitted with pressure meters, flow velocity
meters and vibration sensors.

A reservoir with a water treatment facility is a complex system and many
measurements can be taken to monitor and control the treatment process and
water quality throughput the process. This case study does not consider the water
treatment facility in detail and is only concerned with the reservoir’s water level.
Pump stations typically consist of a collection of pumps, pipes and valves and the
measurements that go along with them. The various sensors are also scattered
across the pipe network and are typically located in key areas, such as areas where
the elevation changes significantly. Furthermore, all the components also have
static data such as longitude, latitude and elevation values.

The frequency of data capturing within the WDS can typically be between a
measurement every ten minutes to one measurement a day. However, for some
components, such as the pumps, measurements can be taken more frequently.

Stellenbosch University https://scholar.sun.ac.za

115

Table 21: Span of reality of water distribution network operational zone.

Physical component Operational zone (OZ) 1

Physical system scope Two water tanks, two pressure reducing values, three
pumping stations, unknown length of pipe, unknown
number of junctions.

Data characterisation
(Data granularity) of
data recorded/
generated by physical
component

None

Data characterisation
(Data granularity) of
data within physical
component

Pump station data: Number of pumps, number of valves,
pipe data, valve data.

For each pump: pressure at inlet (kPa), inlet flow velocity
(m/s), pressure at outlet (kPa), outlet flow velocity (m/s),
power usage (kWh), status.

Water tank data: Water level (m), volume (kL).

Valve data: Pressure at inlet (kPa), pressure at outlet
(kPa), status.

Pipe data: Length (km), diameter (cm), material, pressure
at node (kPa), flow velocity at node (m/s), vibrational
data.

Data format Unknown

Communication Sigfox and LoRaWAN. Other protocols not known

Considerations and
Constraints (Capacity for
interaction)

OZ 1 shares a boundary with OZ 2, where two pipes are
bisected. OZ 1 also shares a boundary with OZ 3 where
one pipe is bisected.

12.1.4 Services allocation

Service identification and characterisation:

Many services can be developed with the data from the WDS. The services
suggested for the WDS are briefly discussed below except for the virtual sensor
service, which is used as an example for the extensive service characterisation.
The suggested services were identified from the scenario in Section 12.1.1, as well
as by using Table 15 in Section 8.1.

• Benchmarking (which is similar to the fingerprint service in Table 15) is a
service that compares an operational zone’s demand and supply ability with

Stellenbosch University https://scholar.sun.ac.za

116

its history, as well as with other operational zones, to better estimate demand
and to detect trends.

• Anomaly (which is a service in Table 15) is a service to detect water leaks and
burst pipes, as well as other irregular component operations. Examples of
irregular operations include irregular pressures at nodes or in pumps, low
water tank or reservoir levels, unsafe water quality, the detection of
cavitation, etc. The benchmarking service is similar to the anomaly service,
but the anomaly service is used to detect irregular operation, whereas the
benchmarking service is used to detect irregular demand or supply.

• Scout (which is a service in Table 15) is a service that simulates future
behaviour of the WDS or the behaviour of a sub-network. Simulation
programs, such as EPANET, are used to design WDSs, where the supply of a
WDS can be estimated to determine if a specified demand can be met. The
scout service would likely just build upon an existing simulation application,
such as EPANET, to make the simulation more applicable the WDS being
represented.

• Optimised maintenance scheduling is a service intended to schedule
maintenance to make optimal use of the available resources. This service will
likely require information generated by the other services, as well as
information about the available personnel, costs, etc. For example, the
anomaly service could be queried to identify where maintenance is needed,
while the scout service could be queried to determine which repairs would be
most beneficial. The maintenance scheduling service can then use this
information to assign the appropriate technician for the job, record that the
job was executed and verify that the repair was effective.

• Reporting is a service that is intended to automate the reporting of data to
the government. The reporting is primarily concerned with water quality data.

• Pump scheduling is a service that schedules pump operation to maintain
adequate pressure throughout the WDS.

Virtual sensor service:

Description: The virtual sensor service can make use of existing modelling
frameworks, such as EPANET, to infer various values at any point within the system
based on current sensor inputs. This is required since fitting sensors to all 2396
pipes and all 2262 junctions is not feasible. The virtual sensor service will likely
serve as an input to the benchmarking, scout and reporting services.

Related primary functional requirements: Supply estimation, demand estimation,
pressure management.

Related secondary functional requirements: None identified yet.

Stellenbosch University https://scholar.sun.ac.za

117

Required physical scope: Operational zone with known boundary node values or
full WDS.

Required data granularity:

• Data features: From pipes and junctions – size, pressure and flow velocity
values. From pump stations – pressure and flow velocity values. From valves
– pressure and flow velocity values. Form tanks – water level and volume.
From reservoir – water level and volume.

• Required sampling frequency: For pipes and junctions, pump stations and
valves – measurement once every ten minutes is the norm. For tanks and
reservoir – measurements once per day is the norm.

Service characteristics:

• Required data update frequency: Near real-time (which is the same rate as
the sampling frequency for this case).

• Degree of user interaction: Periodic and possibly infrequent. The virtual
sensing service serves more as an input to other services.

• Intensity of interaction: Spatially focussed.

• Persistence: Periodic or event-based

Constraints and considerations: The virtual sensing service makes use of the
current sensor measurements to infer measurements at other points in the WDS.
Therefore, if the service is provided with or has access to the historical sensor
measurements, the inferred sensor measurements can be recalculated as
opposed to stored. This approach will further help to ease the data persistence
management required for the actual sensor measurements. However, if latencies
become a problem within the user interface, the virtual sensor values may need
to be periodically pre-calculated and stored. This may be applicable if virtual
sensing is done for a lengthy historical period.

DT identification:

Considering the physical system decomposition, the following digital twins may be
feasible:

• DTIs of pumps. The pumps are critical components within the WDS and their
operation is closely monitored using pressure meters, flow velocity meters
and vibrations sensors. Therefore, each pump may need its own DTI for
reliable representation and high fidelity.

• DTIs of clusters of pipes, junctions, valves and tanks. The geographic
distribution and prevalence of short-range wireless communications likely
means that there are multiple clusters of sensors spread across the WDS.

Stellenbosch University https://scholar.sun.ac.za

118

Therefore, DTIs can be designed to represent the elements being represented
by such clusters, where a cluster does not necessarily have to contain all the
elements. However, the exact distribution of the sensors is unknown and this
may need to be verified.

• DTAs of pump stations. The pump stations are a collection of pumps, pipes,
junctions and valves that must work in unison. Therefore, a DTA of the pump
station, which aggregates from the individual pump DTIs and an internal
cluster DTI, is recommended.

• DTA of the reservoir and treatment facility. The reservoir and treatment
facility are together likely to be a DTA depending on the complexity of the
treatment facility. However, the KY12 WDS dataset does not provide data or
metadata about the water treatment facility, which makes is difficult to
determine the complexity and composition of the treatment facility.

• DTAs of the operational zones. The operational zones are arbitrary divisions
of the WDS, but the divisions help manage the data and, importantly, help
with supply and demand estimations through benchmarking. The operational
zone divisions are chosen to minimise the interconnections between zones,
i.e. the divisions were chosen to cross the least number of pipes possible.
Furthermore, the dividing lines are drawn close to potential sensor clusters so
that the boundary values can be determined by sensor values.

• DTA of the full WDS. The WDS DTA provides a full overview of the WDS,
including the supply and demand of the entire WDS, as well as representing
the interconnections between the operational zones.

Services allocation:

Table 22 summarises the services allocation, where all potential hosting position
for each service are indicated.

Table 22: Potential services allocation, for WDS, based on span of reality.

Services Pump
DTI

Cluster
DTI

Pump
station
DTA

Reservoir
DTA

OZ*
DTA

WDS
DTA

Services
network

Virtual sensor X X X

Benchmarking X X

Anomaly X X X X X X X

Scout X X

Optimised
maintenance
scheduling

 X

Reporting X X

Stellenbosch University https://scholar.sun.ac.za

119

Services Pump
DTI

Cluster
DTI

Pump
station
DTA

Reservoir
DTA

OZ*
DTA

WDS
DTA

Services
network

Pump
scheduling

 X X X X

 *OZ: operational zone

Based on Table 22 and considering that initially services are allocated to the lowest
level DT that can host the service, the services allocation is:

• Anomaly -> Pump DTI

• Anomaly -> Cluster DTI

• Pump scheduling -> Pump station DTA

• Reporting -> Reservoir DTA

• Virtual sensor -> OZ DTA

• Benchmarking and scout -> WDS DTA

• Maintenance scheduling -> Service network

Furthermore, the only DT that is hosting more than one service is the WDS DTA.
However, these services do not have any obvious conflicts and thus no separation
is required.

12.1.5 Design pattern selection and application

As discussed in Section 2.3, the SLADTA is used as the reference architecture for
the internal structure of each DT. Based on the needs and constraints analysis, the
quality attributes that are most important for this case study are maintainability,
reliability and compatibility. Of these, maintainability is considered the most
important because the exact data characteristics of the system are not known and
thus future changes will be necessary. Furthermore, the WDS has a history of
incremental expansion and development and thus the system must make
provision for such changes.

Reliability is also an important factor in the lower-level WDS components and their
accompanying services. The pumps and pump stations, the tanks, critical junctions
and the transmission and arterial pipes are all important components and thus the
services related to their real-time operation must also be reliable.

Finally, compatibility is important because of the variety of communication
mechanisms that are used within the WDS. For the communication heterogeneity,
the DTIs would have to implement some homogenisation logic before sending the
data further.

Stellenbosch University https://scholar.sun.ac.za

120

The proposed internal architectures for the DTs are presented Figure 9 and the
aggregation and communication architecture is presented in Figure 10. With
regards to the internal architectures, the pump DTIs’ anomaly detection service
has been separated into anomaly training (hosted in the cloud portion of the DTI)
and anomaly model (hosted on the local portion of the DTI). Anomaly training
refers to data exploration and training functions related to building an anomaly
detection model. The anomaly detection model is the model implemented to
identify anomalies during operation. This separation has been made to ensure that
the anomaly detection has enough storage and processing power to perform
training, while also ensuring reliability of the service execution during operation
despite network failures.

Furthermore, the pumps and pump stations each have locally hosted publish-
subscribe (pub-sub) clients to allow for local network communication between the
pump DTIs and pump station DTA. The pump station also has a watchdog service
(as proposed by the reliability design pattern) that periodically pings the pump
DTIs and the pump scheduling service to ensure that all the components are
active. The middleware client (present in all DTs except the pump DTI) is the
common communication mechanism within the DT hierarchy to ensure
interoperable and reliable messaging within the DT hierarchy. Furthermore,
according to the SLADTA, where a DT has layers hosted locally and in the cloud,
data transfer from local layers to cloud layers is handled through Layer 4.

The cluster DTI also has a webhook component within its Layer 4. The webhook is
an HTTP message that gets pushed to a pre-defined endpoint based on the
occurrence of events. This mechanism follows an asynchronous request-response
pattern (discussed in Section 10.3). This is the pattern that some of the pre-defined
communication mechanisms, such as Sigfox, use to make their short-range
communication data available over the internet and thus it is mirrored here.

In terms of the separation of concerns, the generated architecture spreads the
services across multiple DTs, where each DT has a clear purpose in fulfilling the
needs of the services attached to it. There are also multiple levels of aggregation
which help make the architecture more maintainable by lowering the unit
complexity of each of the DTs and services (as discussed in Section 5.2.3).

In terms of the services hosting, most of the services (except for the maintenance
scheduling) are primarily focussed on the physical system and thus they can be
encapsulated in DTs. The encapsulation should allow for more predictable
functioning, which is good for reliability, while also reducing the need for service
orchestration. Furthermore, the maintenance scheduling service requires data
that is not captured by the DTs, such as personnel and financial data, and thus this
service is located within the service network.

Stellenbosch University https://scholar.sun.ac.za

121

Figure 9: Internal architectures for the water distribution system DTs.

Stellenbosch University https://scholar.sun.ac.za

122

For the communication architecture in Figure 10, there are three primary
communication facilitators: the local broker, the message-oriented middleware
and the gateway. The local broker is a locally hosted, lightweight, publish-
subscribe broker which is solely dedicated to facilitating communication within a
pump station. The pump DTIs and the pump station DTA all have local network
presence. Therefore, pre-storage aggregation is sensible to allow for reliable
transmission, while the short-term local storage can used to capture, for example,
two weeks’ worth of data to still provide data redundancy.

The message-oriented middleware and gateway are both cloud hosted
communication mechanisms. The message-oriented middleware is responsible for
reliable and secure communication within the DT hierarchy, while the gateway
serves as a proxy for external services and service within the services network. It
would be possible to join them, but this would be less secure, less reliable and
more prone to becoming a bottleneck. Furthermore, the message-oriented
middleware is expected to facilitate publish-subscribe messaging, whereas the
gateway is expected to facilitate service requests through REST APIs.

The local broker and message-oriented middleware, both of which are in the DT
hierarchy, make use of periodic micro-batch processing. This is because the
frequency of sensor readings can vary significantly depending on the phenomena
being measured and many of these are relatively infrequent (measurements are
in the order of minutes to tens of minutes). The gateway, on the other hand,
makes use of event-driven batch processing, where events are requests from
other service or from a primary user.

Stellenbosch University https://scholar.sun.ac.za

123

Figure 10: Communication architecture for the water distribution system’s DTs.

12.1.6 Discussion

The proposed WDS architecture separates the service across all six DTs, as well as
delegating some services to the services network. This is in accordance with the
reliability and maintainability design patterns to distribute the service offerings
across multiple DTs to allow for better fault isolation and separation of concerns.
Reliability is also improved by hosting most of the services in DTs, which
encapsulate the data and functionality required for the services, to minimise
external dependencies. The minimised dependencies are also in accordance with
the maintainability design pattern.

Furthermore, local, pre-storage aggregation is facilitated between the pump DTIs
and the pump station DTA using a local broker. The local network communication
provides reliable communications, while the broker decouples the pump DTIs and
pump station DTA to further improve fault isolation. Although pre-storage
aggregation is used, data redundancy is ensured through the local, short-term
storage solution. Making use of the short-term storage for data redundancy is

Stellenbosch University https://scholar.sun.ac.za

124

feasible in this case study because the data sampling frequency is relatively slow.
The pump station DTA also makes use of a watchdog, service to further improve
reliability.

The message-oriented middleware is hosted in the cloud, using a container, to
provide secure and reliable communication for all the DTs in the hierarchy. Hosting
the middleware in a container in the cloud ensures scalability and easier
replication with load balancing. This is in accordance with the maintainability
design pattern, which suggests making use of cloud support for easier
management. The message-oriented middleware also decouples the DTs to
provide fault isolation.

Finally, the individual DTs use an SQL database for better reliability and
consistency, as recommended by the reliability design pattern. The services
network includes central UI, directory service and configurations server to further
improve the maintainability of the system of DTs.

 Smart City

12.2.1 Scenario

The concept of smart city refers to the combining of information and
communication technology (ICT) and other technologies to improve the quality of
life (QoL) for the citizens in the city, to improve the competitiveness of the city and
to improve the operational efficacy of urban services, while ensuring the
availability of social, economic and environmental resources for the current
generation and for generations to come (Kondepudi, Ramanarayanan, Jain, Singh,
Agarwal, Kumar, et al., 2014). Another description of smart cities is: to seek to
improve the institutional (governance), social (intellectual and human capital and
QoL), economic (economic and job growth) and physical (natural and
manufactured resources) infrastructure of the city, in a sustainable way, to
ultimately improve the wellbeing of the citizens in the city despite increases in
population (Mohanty, Choppali & Kougianos, 2016).

Smart cities are typically composed of other smart systems and these smart sub-
systems can vary from city to city depending on how well developed the city is.
Some of the most common smart sub-systems are (Silva, Khan & Han, 2018):

• Smart energy which refers to the ability to produce enough energy in a
sustainable manner with minimal adverse effects to the environment and
community.

• Smart buildings which primarily refers to the management of buildings to
reduce energy consumptions and to improve the physical security of the
building and thus the people in it.

Stellenbosch University https://scholar.sun.ac.za

125

• Smart waste management which refers to the effective collection, disposal,
recycling and recovery of waste within the city.

• Smart transport which refers to the effective management of traffic flow
within the city.

Other smart sub-systems that have been mentioned in literature include smart
healthcare, smart water management, smart warehouses and smart supply
chains.

Examples of smart cities include Smart London (United Kingdom) and Smart
Santander (Spain). Smart London is one of the top ranked smart cities according
to Berrone, Ricart, Carrasco, et al. (2018). Some of the most renowned initiatives
that Smart London have employed include traffic congestion management
through street monitoring and number plate recognition (for traffic modelling
purposes) while smart public transport schemes are also being heavily invested in.
Furthermore, Smart London also gets the citizens involved by providing platforms
where citizens can comment and provide feedback. Large amounts of data
captured within Smart London are also made available to citizens through London
Datastore (Greater London Authority, 2021) to stimulate application development
and innovation among citizens.

Smart Santander has implemented the Smart Santander testbed (Smart
Santander, n.d.) which is a large-scale IoT infrastructure deployment available to
researchers. The Smart Santander testbed is primarily focussed on environment
and traffic monitoring. It includes 2000 IoT devices for environment monitoring,
150 mobile environment monitoring units on public vehicles, 400 parking sensors,
60 traffic monitoring sensors and 50 irrigation related sensors for the parks.

The Smart Santander IoT infrastructure deployment makes use of three types of
devices: 1) IoT nodes which have various sensors built in, 2) repeaters which
receive data from IoT nodes and forward them to the gateway to improve the
range of the WSN and 3) the gateway which is a WiFi, ethernet or GPRS enabled
device that either forwards the data to a central command unit or stores the data
and makes it available through a web interface. Static deployments are typically
located on streetlights and building facades, whereas mobile deployments are
located on public transport vehicles.

For this case study, as hypothetical smart city will be considered based on Smart
London and Smart Santander. The hypothetical case study will be considered at a
higher level than the WDS case study presented in Section 12.1. The WDS would
typically be a sub-system within a smart city and thus the smart city case study will
focus on demonstrating the design framework on a system-of systems.

Stellenbosch University https://scholar.sun.ac.za

126

12.2.2 Needs and constraints analysis

The FRs mentioned in Table 23 are general FRs that would each likely be part of
multiple services. For example, remote monitoring allows an operator to recognise
traffic congestion, which can then be acted on by sending notifications to public
servants, such as police officers, while sending directed messages at an ambulance
to help them follow an alternative route. Furthermore, these are considered to be
fundamental functions that will allow for a multitude of other functions.

Table 23: General functional requirements for a smart city

High-level
functional
requirements

Description Group
(Primary
or
secondary)

Priority

Remote
monitoring

Allow users to monitor activity and
conditions within the city from a
central command position.

Primary Mandatory

Notification Notify citizens, workers or authorities
about activities or conditions within
the city that are relevant to them.

Primary Mandatory

Directed
communication

Allow for directed communications to
selected users to enable particular
services. For example, notifying an
ambulance about an alternative, less
congested route.

Primary Mandatory

Exploratory
analytics

Allow various users to analyse data
about various parts of the city for
various services.

Primary Highly
desirable

Furthermore, Table 24 provides some of the NFRs that are expected to be most
applicable in the smart city context.

Table 24: Non-functional requirements for smart cities.

Need Accommodate multiple stakeholders with different levels of
access to different subsets of data. (Related to N2)

Related NFRs Security.

Rationale for NFRs A smart city is expected to consist of multiple DTs that
represent multiple infrastructure systems that are each
managed by a different group of people. Furthermore, some
data is expected to be available to the public, some data will
only be for internal use and some data may even be restricted
to individuals. Secure data sharing and data privacy are some
of the primary concerns in smart cities. (Silva et al., 2018)

NFR grouping Quality attribute.

Stellenbosch University https://scholar.sun.ac.za

127

Implication of NFRs Use the security design pattern to ensure secure data sharing
and storage.

Need Integrate with new and existing data systems, allow for
retrofitting and allow for the integration of humans. (N6, N7,
N8)

Related NFRs Compatibility, security.

Rationale for NFRs Interoperability is one of the most cited concerns in smart city
research because of the variety of data, the variety of data
acquisition techniques and the variety of vendors involved in
the system composition (Silva et al., 2018). Furthermore,
smart cities can also collect data from participating citizens
which further emphasises the need for data privacy and
security.

NFR grouping Quality attributes.

Implication of NFRs Use the compatibility and security design patterns.

Need Allow for easy system maintenance and extension. (N14)

Related NFRs Maintainability.

Rationale for NFRs A smart city deployment is expected to be extended over the
span of years. Furthermore, the city itself will also change and
thus the system of DTs must be able to change along with the
city.

NFR grouping Quality attribute.

Implication of NFRs Use the maintainability design pattern.

Need Data management issues that are applicable within the
smart city are veracity, consistency, persistence and
synchronisation. (Related to N20)

Related NFRs Solution and implementation constraints.

Rationale for NFRs Given the variety of contributors and the variety of data
acquisition methods, ensuring the trustworthiness of the data
may become challenging. Some data will also likely be shared
amongst multiple users and it is important that these users
receive the same data. The volume of the data will make data
persistence a pressing issue and given that variety of sensors,
as well as the intermittent network availability, data
synchronisation will be required.

NFR grouping Development constraints.

Implication of NFRs To ensure that data is trustworthy, certain measures will need
to be put in place. Such measures may include imposing a
data standard, implementing cross-validation of sensor values
(comparing sensor values with the values from other nearby
sensors) and implementing rule-based data cleaning.
The data consistency issue will require database support for
consistency, the persistence issue may require automated
data reduction on older data (such as the multi-temperature
data management paradigm) and data synchronisation will
limit the data transfers to micro-batch transfers.

Need Facilitate heterogeneous data handling. (Related to N23)

Stellenbosch University https://scholar.sun.ac.za

128

Related NFRs Compatibility.

Rationale for NFRs Smart cities can collect data from sensors, cameras, mobile
devices and from people who comment (Smart London
provides multiple methods for people to comment on their
experiences within the city). This means there will be highly
structured data from the sensors, as well as highly
unstructured data in the form of user comments.

NFR grouping Quality attribute.

Implication of NFRs Use the compatibility design pattern.

Need Provide for resource constrained devices. (N25)

Related NFRs Solution constraint, Performance efficiency.

Rationale for NFRs Many of the sensing devices used in Smart Santander are
battery powered devices. This is covered in more detail in
Section 12.2.3.

NFR grouping Development constraint, quality attribute.

Implication of NFRs Resource constrained devices are limited in their processing
ability and typically have very infrequent sensor readings.
Furthermore, in Smart Santander, these devices also make
use of power efficient short-range communications that are
designed to the IEEE 802.15.4 protocol.

Need Provide for intermittent network availability. (Related to
N26)

Related NFRs Solution constraint, reliability.

Rationale for NFRs The mobile devices and sensors in Smart Santander either
make use of General Packet Radio Service (GPRS), which is a
mobile data standard that makes use of 2G and 3G cellular
communication, or mobile devices connect to a gateway
when within range of one.

NFR grouping Development constraint, quality attribute.

Implication of NFRs Mobile sensing devices must store data so that when network
connectivity is not available, the data does not go lost. This
also means that micro-batch transfers are common for such
mobile devices.

This case study will focus on the compatibility and security design patterns
because interoperability and security are two of the most cited concerns in smart
cities (Silva et al., 2018). Further consideration will also be given to maintainability
of the smart city system of DTs.

12.2.3 Physical system decomposition

The physical system decomposition of the city, can be done in various ways, as is
the case for most complex systems. However, what makes the decomposition of
the smart city difficult is that some sub-systems are spatially concentrated and
static, whereas other sub-systems are widely dispersed and others are mobile.

Stellenbosch University https://scholar.sun.ac.za

129

For the physical decomposition in this case study, a spatially focussed
decomposition will be followed, but keeping in mind the functional decomposition
as well. This case study considers the following high-level functional sub-systems
of a smart city:

• Energy systems: Infrastructure related to energy provision. This includes
distribution infrastructure, sub-stations, metering systems, etc.

• Water distribution systems: Infrastructure related to water provisioning. This
includes water storage, pump stations, piping networks, etc.

• Transport systems: Infrastructure related to the transportation of people and
goods. This includes roads, railways, public transport mechanisms, etc.

• Waste management systems: Infrastructure related to the collection,
disposal, recycling and recovery of refuse (municipal solid waste) within the
city. This includes refuse removal trucks and teams, landfills, recycling plants,
etc.

• Sanitation systems: Infrastructure related to the removal of sewage. This
includes the piping infrastructure, treatment plants, etc.

• Emergency systems: Infrastructure related to emergency response and
physical safety and security. This includes health services, law enforcement
and fire and rescue services.

• Goods distribution systems: Infrastructure related to the distribution of
goods. This includes warehouses, shopping centres, retail outlets, etc.

As for the physical decomposition, cities are typically divided into arbitrary
sections by municipalities to help with governance. For example, Stellenbosch
municipality is divided into 22 wards and the city of Cape Town is divided into 116
wards, where each ward has a different councillor that presides over it. These
wards are spatially divided sections that can be large (more than 100 km2) or small
(0,30 km2) and they are related to parameters such as the population density.
Within wards there are various combinations of the following components:

• Citizens: The people within the city are ultimately the most important part of
the city. People are a dynamic, multifaceted and fully integrated part of any
city. The city is there to help serve the needs of the people, but the people are
also largely the means through which a city achieves its functions.

• Buildings: Smart buildings are an important component in smart cities and
smart buildings are primarily focussed on optimised power consumption and
improved physical safety and security. Furthermore, some buildings have
specialised functions, such as hospitals, university buildings, shopping
centres, etc.

• Vehicles: Smart vehicles are cars, busses, taxis, etc. that capture and transmit
data. In Smart Santander, public transport vehicles are used to capture data

Stellenbosch University https://scholar.sun.ac.za

130

about the environment (such as ambient temperature, luminosity, air quality,
etc.), as well as to capture statistics about public transport usage. As with
buildings, some vehicles can be specialised vehicles, such as ambulances or
police cars, in which case their contents may also need to be logged.
Furthermore, vehicles can monitor and keep track of their own usage
statistics, such as speed travelled, distance travelled, maintenance history,
etc.

• Static infrastructure components: Static infrastructure refers to small
infrastructure components such as streetlights and traffic lights.

• Land use areas: An area whose components share a purpose, such as a
housing estate, a golf course or a business park. Such an area can consist of
multiple citizens, vehicles, buildings, etc. but they are typically still smaller
than a ward.

• Utility networks: Distinct infrastructure systems that perform core functions
related to cities, such as water distribution systems, sewage systems, power
distribution systems, urban transport systems etc. These are infrastructure
systems that form continuous networks across a city and thus they can span
across multiple wards.

For the span of reality, the Smart Santander IoT deployment has been used as a
reference (Smart Santander, n.d.), while further possibilities are also considered
based on literature. A map of the Smart Santander IoT infrastructure deployment
is available at: https://maps.smartsantander.eu. For brevity, only a high-level data
characterisation of a hypothetical ward will be considered here.

Stellenbosch University https://scholar.sun.ac.za

131

Table 25: High-level span of reality of the data available in a city ward.

Physical component Ward

Physical system scope Citizens, buildings, vehicles, static infrastructure
components, land use areas and a subsection of a
utilities network.

Data characterisation
(Data granularity) of data
within physical
component

Citizens – GPS coordinates, comments and feedback,
smart wearables data.

Buildings – Water usage, electricity usage, security data
(such as CCTV video), occupancy measurements, HVAC
system information, temperature, luminosity, noise.

Vehicles – Vehicle related data (such as speed and
distance travelled), public transport related data (such as
passenger count), environment data (such as
temperature, luminosity, noise, air quality).

Static infrastructure components – Electricity usage,
environmental data, traffic data (such as parking space
availability, traffic volume, road occupancy, vehicle speed
or queue length).

Land use areas – Environmental data, irrigation data (in
parks and gardens), traffic data (in parking areas or large
roads), occupancy measurements, power consumption.

Utility network subsystem – Depends on the
infrastructure but power consumption and water usage
are likely measurements.

Data format Unknown

Communication (Based on the Santander IoT infrastructure for
environment and traffic monitoring)

Sensing devices – IEEE 802.15.4 based protocols (e.g.
Zigbee, 6LoWPAN, Thread)

Repeater devices - IEEE 802.15.4 based protocols

Gateway devices - IEEE 802.15.4 based protocols and
WiFi or ethernet or GPRS. Specific protocols not defined.

Considerations and
Constraints (Capacity for
interaction)

None

Stellenbosch University https://scholar.sun.ac.za

132

12.2.4 Services allocation

Service identification and characterisation:

The potential for services within a smart city is substantial and covering each
possibility here would not be feasible. Therefore, the service characterisation here
is rather going to focus on core services that would enable the creation of other
services. The core service suggested here are:

• A mirror service: The mirror service here refers to the ability of the DT to
capture, manage and present data in a meaningful way for decision-making
regarding the physical system being represented. It also includes the ability to
send information or commands back to the physical system if applicable.
Furthermore, the mirror service is intended to allow for remote monitoring
and control.

• An anomaly service: The anomaly service may not be applicable to all DTs, but
it is expected to form part of most DTs and thus it is included in this list. The
anomaly service, in this context, is a service that helps operators identify
potential unusual activity and may also include an automated notification
service. Some examples of what an anomaly service could be used for is to
help identify traffic congestion, help to identify excessive power consumption
or to help identify faulty hardware.

• System directory and navigation: The system directory is part of the
management services mentioned in Section 10.2 but it is mentioned here
because navigation between DTs will be important for a good user experience.

DT identification:

Based on the physical system decomposition the following DTs are identified:

• Citizens may each have their own DTs, but the composition of such a DT is
uncertain. Citizens can form part of various other systems. For example, their
data can be tracked as a worker or their medical data can be recorded for
hospital use, etc. Furthermore, there would be strict security and privacy
concerns, assuming the citizens provide permission to track the data.
Therefore, this case study will not consider DTs of citizens, but will rather
consider citizens as voluntary data sources to other DTs.

• Specialised buildings are likely to consist of multiple levels of DTs. For
example, a hospital contains complex machinery, as well as specialised rooms
and floors, that can each be represented if the need arises. Therefore, DTs of
such buildings will be DTAs. Some less sophisticated buildings may only consist
of a single DTI.

Stellenbosch University https://scholar.sun.ac.za

133

• Static infrastructure is likely to form part of a utilities network or land use area
and thus this case study does not consider separate DTs for each static
infrastructure component.

• Vehicles are each likely to have their own DT. As in Smart Santander, DTs of
vehicles can capture data about the vehicles, as well as the environment.
Furthermore, vehicle DTs can be designed to allow an automotive
manufacturer to monitor vehicle performance to allow for better future
designs. Some vehicles, such as ambulances and fire trucks, may also have
important contents that need to be monitored, such as medicines or rescue
supplies. Therefore, similar to citizens, vehicles are very versatile and a single
vehicle can be applicable to many stakeholders.

• Land use areas may be represented through a DTI or DTA depending on the
size of the area and the amount of data captured within the land use area.
However, it is likely that a land use area would be a DTA that aggregates from
multiple buildings, vehicles, citizens, etc. as well as other data sources, such
as irrigation system data, static infrastructure data and environmental data.

• Utility networks are likely to have their own DTs, such as the WDS presented
in Section 12.1. Therefore, there is likely to be a DTA of the utility network
that would be integrated with for the smart city representation.

• Wards would be represented by a DTA that could aggregate data from various
land use areas, buildings, vehicles, citizens, etc.

• The Smart City DTA will be a high-level DT that aggregates the data from
various ward DTs to represent the city.

Services allocation:

This section does not explicitly assign services to DTs, but instead makes some
recommendations that may be applicable within the smart city context. Services
that are focussed on operational decision-making, such as services related to
traffic congestion or irrigation control, would likely be better served within DTs.
Furthermore, service that require confidential data are also suggested to form part
of the DT hierarchy. Services that citizens can interact with, such as parking spot
directories or citizen notification services, would likely be better served in the
services network.

In terms of service separation, separation according to ownership is highly likely.
In particular, the respective utility network systems are likely to be owned and
managed by different stakeholders. Some buildings are also likely to separate
services according to ownership. For example, a hospital may have some services
for doctors and others for administrators. An office block that accommodates
more than one business would also likely have separation according to ownership.
Furthermore, the different wards each have a different councillor and each

Stellenbosch University https://scholar.sun.ac.za

134

councillor would likely be interested in different aspects of their ward. For
example, one ward might experience heavy traffic congestion, another ward may
be more concerned with water usage and another ward may be more concerned
with crime statistics.

Separation according to scope complexity will also play role in a system such as a
smart city. To allow for minimal interface complexity and interchangeability of
components, the number of services assigned to a DT should be limited. Some DTs
may even be dedicated to a single persistent service. This separation also creates
a greater degree of service isolation which is beneficial for security. However, it
should be noted that any DT is expected to be able to share data to authorised
clients (people or programs) despite the number of services hosted within the DT.

Furthermore, the compatibility and security design patterns suggest a span of
reality that has a specific purpose and thus a higher degree of separation is
beneficial. The span of reality should also be defined to allow for additional
processing and storage related to security functions.

12.2.5 Design pattern selection and application

This case study will focus on the compatibility and security design patterns
because interoperability and security are two of the most cited concerns in smart
cities (Silva et al., 2018). However, the design should also allow for maintainability
and system extension.

This case study will not consider the internal architecture of the DTs since there
are many possibilities and will rather focus on the communication between the
DTs, as well as the services in the services network. The proposed architecture is
presented in Figure 11.

Stellenbosch University https://scholar.sun.ac.za

135

Figure 11: Smart city aggregation and communication architecture.

In terms of aggregation, the most likely scenario would be pre-storage aggregation
within the DT hierarchy, where the DT has short-term storage to provide some
redundancy. Pre-storage aggregation will allow for some pre-processing and pre-
structuring of the data before it is stored in a long-term repository. This is intended
to help structure and manage the data to help prevent data persistence issues,
such as data swamps or data graveyards (discussed in N21). Furthermore, it is
highly likely that the different stakeholders will make use of different cloud
platforms and pre-storage aggregation is more suited to multi-cloud
environments.

Local aggregation is suggested where possible, but the physical distribution of a
smart city is likely to necessitate aggregation across networks. Therefore, the
aggregation will resemble both local network aggregation and cloud-based

Stellenbosch University https://scholar.sun.ac.za

136

aggregation (refer to Section 9.3.3 for a discussion on this phenomenon). It is
expected that many gateway devices (as in Smart Santander) and fog servers (such
as in a hospital or traffic control centre) would be located within the city.
Therefore, Wide Area Network (WAN) aggregation can be done to still allow for
aggregation before the data enters a cloud platform. Furthermore, a private WAN
can be used for better throughput, better security and better reliability.

Considering that much of the data acquisition in smart cities is done using WSNs,
micro-batch processing and transmission is likely to be necessary. Micro-batch
processing allows for data synchronisation and it is more suited to environments
with intermittent network connectivity.

Some DTs in Figure 11, such as the building DTs, show multiple lines of
aggregation. Some of these DTs may aggregate to a land use area, if it forms part
of a land use area with a DT, and otherwise some buildings may aggregate directly
to the ward. However, the same data should not be aggregated by both the land
use area DT and the ward DT since this could cause data consistency issues as
discussed in Section 5.1. The “Other DTs” refer to more specific DTs, such as a DT
of an irrigation system in a park.

The vehicle DTs capture data about the vehicle, as well as the environment and
they can contain other data, such as logs about important contents or data
captured by vehicle manufacturers. The variety of stakeholders and the mobile
nature of vehicles means that the vehicle DTs do not have a strong intensity of
interaction with any specific DTAs. For example, a vehicle captures environment
data and could be aggregated a ward DTA, but the vehicle will likely drive through
multiple wards in a day. This means that the vehicle DT will constantly cause
hierarchy reconfigurations and the ward DTAs will only receive data intermittently
and possibly at unpredictable intervals. Therefore, even though a vehicle may be
represented by a DT, its data is aggregated by the services network since it does
not share a strong spatial relationship with any other DTs in the hierarchy.

The services network has also been expanded from the reference architecture
presented in Chapter 6. The services in the expanded services network are
classified into: 1) management services (as discussed in Section 10.2), 2) external
data integrators (services that acquire data not captured within the DT hierarchy,
such as citizen comments), 3) proprietary developed services (services designed
by data owners that have full access to the applicable data), 4) data manipulation
and processing services (service that manipulate the data to make it suitable for
third-parties) and 5) third-party services (services that are designed by third-
parties who do not have full access to the raw data).

For messaging within the DT hierarchy, multiple message-oriented middleware
that support a binary protocol with a publish-subscribe messaging pattern is

Stellenbosch University https://scholar.sun.ac.za

137

suggested. Considering the variety of stakeholders and the size the system, having
a single message-oriented middleware is not feasible. Instead, a message-
orientated middleware for each group of aggregates may be more feasible and, in
some cases, individual DTAs may require a dedicated message-oriented
middleware. For example, some building DTAs, such as a DTA of a hospital, may
require a dedicated middleware, whereas all the buildings in a land use area, such
as a university, may use the same middleware.

Furthermore, reputable message-oriented middleware, such as RabbitMQ or the
Mosquitto broker, have built-in security features, such as regulated data topics,
and support for the TLS protocol. Making use of a message queue within a
middleware, as well as making use of a publish-subscribe pattern, further
accommodates the need to provide for intermittent network connectivity. Finally,
protocols such as MQTT and AMQP are also binary protocols and thus allow for
better interoperability. For messaging within the services network, REST APIs are
commonly used along with a federated security approach, such as OAuth2.

For database queries, a proxy service should be used as opposed to allowing direct
access. A proxy service for database queries can be beneficial for various reasons,
including additional security, it allows for load balancing, it can make use of
caching to improve response times to frequently made queries, it can be used to
check queries, etc.

In terms of hosting, services that require low latencies, higher security standards
and location awareness are better served on fog servers. Services that are open to
the public and services that entail intensive periodic processing, such as training
machine learning algorithms, are better served in the public cloud. Furthermore,
different stakeholders may make use of different cloud platforms and thus
multiple services networks may also be present. In such cases, the services
networks of other stakeholders can be considered as external services to the
services network being considered.

Furthermore, services that require stricter security measures or greater isolation
can make use of VMs, but the most popular hosting option is likely to be
containers. Containers’ ability to dynamically allocate resources allows for more
efficient resource utilisation and containers provide more support for
performance and reliability monitoring. Furthermore, periodically invoked
services will also benefit from containers’ ability to deploy faster.

Finally, multifactor authentication can be employed for more secure services. This
level of security may be beneficial for services that deal of safety and security
issues. For example, a traffic congestion control service that allows for directed
communications can benefit from multifactor authentication. Health related
services are also services that may employ multifactor authentication.

Stellenbosch University https://scholar.sun.ac.za

138

12.2.6 Discussion

The smart city case study demonstrates the ability of the design framework to be
applied to a larger and more abstract case. The design steps, principles and
patterns can thus be applied to multiple levels of abstraction and it can be applied
recursively to help further design sub-systems of the larger system. The security
and compatibility design patterns were able to direct designers towards a feasible
architecture and the few conflicts that arose between the design patterns were
easy to resolve.

For the smart city case study, the physical system decomposition and data
characterisation were a vital starting point. The smart city decomposition, both
functionally and spatially, provided a top-down perspective, while the data
characterisation provided a bottom-up perspective of the smart city. Taking both
views into account was very useful for the needs and constraints analysis, as well
as all subsequent steps (particularly the DT identification step).

Having a list of typical complexity needs (as presented in Chapter 3) helped to
identify applicable needs within the smart city context. However, it is advisable to
use domain related terms to rephrase the general complexity needs for the case.
This helps to make the needs more specific to the case and more understandable
when referred to later.

This case study also introduced mobile DTs, such vehicles (and potentially citizens),
which present some noteworthy characteristics. Firstly, these mobile DTs are not
spatially bound and thus do not fit well into a DT hierarchy. Therefore, mobile DTs
are aggregated by the services network to prevent the need to continually
reconfigure the DT hierarchy. Secondly, the mobility of the DTs means that they
capture data that may be applicable to many other DTs. For example, in Smart
Santander, data is captured about the vehicle, which may be applicable to the
vehicle owner, as well as the manufacturer, while also capturing data about the
environment throughout the city. In such cases, where a single DT captures data
applicable to many other DTs and stakeholders, the need for good metadata
becomes paramount. Many data management systems make use of “tags”, which
are functional or object-oriented categories to help users identify what data is
applicable to them.

In terms of communication, it is likely that multiple message-oriented middleware
instances may be required to help manage the data load. This variety of
middleware instances may cause some management issues and the effect of this
still needs to be investigated. In terms of the services network, the inclusion of
various service network groups may prove useful and this should also be further
investigated.

Stellenbosch University https://scholar.sun.ac.za

139

13 Detailed case study

The purpose of this case study is to further demonstrate the systematic approach
and generality of the design framework. This case study further validates the
design frameworks approach by discussing how the architecture was
implemented and tested. The implemented architecture’s scalability and
reconfigurability were tested to validate the ability of the architecture in key areas
of concern.

Section 13.1 presents the architecture design, whereas Section 13.2 discusses the
implemented architecture and the results of the experiments. Appendix A
provides additional details about the case study and the related testing.

 Heliostat field architecture design

13.1.1 Scenario

Concentrating solar power (CSP) plants are a method of utilising solar energy for
power production. CSP plants generally consists of three major subsystems: a
concentrating subsystem, a thermal storage subsystem and a power generation
subsystem (Xiao, Xie & Deng, 2018). Heliostats are orientable high-reflectance
mirrors that form part of the concentrating subsystem. Heliostats reflect solar
energy onto a central receiving tower which contains a heating medium, typically
molten salt, that is heated up and redirected to the thermal storage or steam
generation subsystems (Cruz, Alvarez, Redondo, et al., 2018).

To sufficiently heat the molten salt, a typical heliostat field can consist of tens of
thousands of heliostats. For example, Malan (2014) designed a prototype heliostat
field for operation in South Africa, where 10 000 heliostats were required for a
5 MW energy generation plant. Larger heliostat fields, such as the 392 MW
Ivanpah heliostat field in California, can have over 300 000 software-controlled
heliostats (BrightSource, 2013).

The scope of this case study is the design of a heliostat field system of DTs for a
5 MW heliostat field as presented by Malan (2014). Therefore, the design
considers a heliostat field of about 10 000 heliostats. Malan, (2014) contributes to
a larger research project lead by researchers from Stellenbosch University’s Solar
Thermal Energy Research Group (STERG). STERG uses a prototype heliostat field
called Helio100 for research and development purposes. Therefore, technical
information about the field is gathered from the Helio100 heliostat field.

The physical system's composition has an effect on the needs analysis and,
therefore, the physical decomposition is given here:

Stellenbosch University https://scholar.sun.ac.za

140

The heliostat field can be decomposed into three tiers, namely the heliostats with
their local controller units (LCUs), the cluster control units (CCUs) and the field
control unit (FCU). Each heliostat consists of: a mirror, two stepper motors (that
act as the actuators), an LCU, a battery, and some photovoltaic (PV) solar panels
to charge the battery. The LCU is used to send control signals to the stepper
motors to orientate the mirror and the LCU is the data source of the individual
heliostats.

Heliostats are also arranged into groups of six according to their support structure.
The six heliostats that are supported by the same structure are called a pod. The
heliostats in the Helio100 field are named according to their pod number and
heliostat number within that pod. For example, heliostat four in pod nine would
have the ID number 9.4 (<pod number>.<heliostat number>).

The CCU is a small computer, such as a Raspberry Pi microcomputer, that
calculates the motor positions for all the LCUs that are connected to it. Typically,
a CCU has 24 LCUs (4 pods) or 30 LCUs (5 pods) connected to it via a short-range
wireless communication protocol (radio frequency communication with serial bus
for the Helio100 field). Furthermore, multiple CCUs are connected to the FCU
using an ethernet connection that also provides power to the CCUs.

The FCU at the Helio100 field is a single desktop computer that is responsible for
six CCUs. Furthermore, the FCU also collects data from the central receiving tower
and the weather station. For a larger field, the desktop computer would likely be
replaced with a dedicated server. Figure 12 depicts the heliostat field’s physical
decomposition, where a heliostat forms part of a pod, four or five pods
communicate to a CCU and multiple CCUs are connected to the FCU.

Stellenbosch University https://scholar.sun.ac.za

141

Figure 12: Heliostat field hierarchy decomposition

13.1.2 Needs and constraints analysis

STERG is the only known stakeholder of the heliostat field and they expressed the
following needs:

• Heliostat fields tend to be in remote locations, such as desserts, and thus the
field needs to be monitored remotely. Furthermore, the system of DTs must
allow for supervisory control. For example, when the wind is too strong and
may cause damage to the heliostats, the operator must be able to command
the heliostats to move into their home position.

• Heliostat field performance is highly dependent on the weather and thus
analytics are required to better understand how the weather effects the
energy production.

• Manual inspection of the heliostats in a heliostat field is not feasible and thus
physical fault detection and prognostics are needed.

• New heliostats are often added to the heliostat field during its operational
lifetime, to either replace damaged heliostats or enable higher energy

Stellenbosch University https://scholar.sun.ac.za

142

production. Therefore, the system of DTs must be able to easily accommodate
the loss or gain of heliostats, where newer model heliostats may be slightly
different to the old models.

• One of the largest barriers to the wider adoption of heliostat fields is their
high initial cost and thus cost effectiveness is a primary concern.

Based on the above, Table 26 lists the functional requirements for the heliostat
field.

Table 26: Functional requirements for the heliostat field.

High-level
functional
requirements

Description Group
(Primary
or
secondary)

Priority

Remote
monitoring

The status of individual heliostats, as
well as the status of subsections of the
field need to be presented to a user.

Primary Mandatory

Supervisory
control

It must be possible to send commands
to individual heliostats for calibration
purposes and it must be possible to
send the same command to subsections
of the field for operational control.

Primary Mandatory

Exploratory
analytics

 The relationship between the weather
and the production capacity of the
heliostat field is unknown and some
insight into this relationship is required.

Primary Highly
desirable

Physical fault
detection

Given the number of heliostats, it is not
feasible to do manual inspection of
each heliostat. Therefore, it must be
possible to identify faulty hardware
using the DT.

Primary Mandatory

Prognostics Scheduled maintenance of all the
heliostats is not feasible and thus
predictive maintenance is required to
identify which heliostats need
maintenance within a two-week
timeframe (two weeks was given as the
average time it takes to get new parts).

Primary Highly
desirable

Stellenbosch University https://scholar.sun.ac.za

143

High-level
functional
requirements

Description Group
(Primary
or
secondary)

Priority

Event logging Considering that the heliostat field can
be controlled automatically or by a
user, it is considered good practice to
log events related to the heliostat field
control. The best practise is related to
maintenance for debugging purposes
and to security for accountability and
non-repudiation.

Secondary Mandatory

The applicable NFRs, presented in Table 27, were identified using the needs tables
in Chapter 3 with reference to the scenario and physical system decomposition in
Section 13.1.1. For the sake of brevity, Table 27 only presents the first two needs
in detail, while the subsequent needs are only listed with their implications. Table
30 in Appendix A.1 contains a more detailed description of each of the NFRs listed
in Table 27.

Table 27: Non-functional requirements for the heliostat field

Need Provide for large amounts of data. (Related to N24)

Related NFR Performance efficiency.

Rationale for NFR Considering the size of the heliostat field, the amount of data
generated by each heliostat and the potential resource
constraints, there is a need to handle a large amount of data
efficiently. Therefore, resource utilisation, scalability and
high throughput are primary concerns and these are sub-
characteristics of performance efficiency.

NFR grouping Quality attribute.

Implication of NFR Use performance efficiency design pattern.

Need Provide for resource constrained devices. (Related to N25)

Related NFR Performance efficiency, solution constraint.

Rationale for NFR The required performance metrics must be reached with
minimal resource usage to increase the longevity of the
resource constrained devices. The LCUs of the individual
heliostats are battery powered and the batteries are charged
using photovoltaic (PV) panels. Therefore, the LCUs are
energy constrained and as a result the heliostat control
engineers have limited the computational responsibilities of
the LCUs. The resource constraints of the CCUs and FCU are
unknown.

NFR grouping Quality attribute.

Implication of NFR Use performance efficiency design pattern.
Additional code, other that the heliostat control program,
may not be implemented on the LCUs.

Stellenbosch University https://scholar.sun.ac.za

144

Need Allow for system changes with minimal impact. (Related to
N9)

Implication Use portability and maintainability design patterns.

Need Provide for intermittent network availability and limited
network bandwidth. (Related to N26)

Implication The performance efficiency design pattern should be used
with elements of the reliability design pattern to compensate
for the intermittent network availability.

Need Avoid physical resource contention amongst software
components. (Related to N27)

Implication Use the performance efficiency design pattern and
incorporate elements of the compatibility design pattern
related to co-existence.

Need Allow for retrofitting and integrate with existing
information systems. (Related to N6 and N7).

Implication The compatibility and portability design patterns must be
applied to ensure that different technologies and
components can be replaced without disrupting the system.
Some of the technologies related to the data acquisition part
of the DT are predefined and must be integrated with, such
as the use a PostgreSQL database for local storage.

Need Verify and validate the behaviour of DTs in response to
system changes. (Related to N10)

Implication Use the maintainability design pattern to improve the
testability of the digital twins.

Need Structure the data to prevent it becoming unusable.
(Related to N21)

Implication Make use of the maintainability design pattern.

Need Provide a cost-effective solution. (Related to N28)

Implication The cost constraint will limit the amount of development
time that can be spent on quality assurance and testing.

Need Allow for easy long-term maintenance and extension.
(Related to N14)

Implication Use the maintainability and portability design patterns. The
portability design pattern is particularly important in this
case since STERG emphasised the need to adapt to changes
in hardware.

Based on Table 27 and in further consultation with the consultant at STERG it was
determined that the performance efficiency is the primary quality attribute,
particularly with respect to the limited resource usage and high throughput
requirements. Furthermore, the portability was cited as the next most important
quality attribute to allow for easy hardware changes as they need to take place.

Therefore, the architecture will primarily use the performance efficiency design
pattern, supplemented with the portability design pattern. Furthermore, the

Stellenbosch University https://scholar.sun.ac.za

145

constraints will also influence some of the design choices, particularly where there
are trade-offs involved.

13.1.3 Physical system decomposition

The physical system decomposition was done based on consultations with the
engineers at the Helio100 field, a site visit to Helio100 and documentation
provided by the engineers at Helio100. The decomposition is given in Section
13.1.1.

Table 28 provides the span of reality for a CCU, while the LCU and FCU are briefly
discussed after the table. Table 31 in Appendix A.2 provides a detailed span of
reality for each component of the heliostat field.

Table 28: Span of reality of a heliostat field CCU.

Physical component Cluster control unit (CCU)

Physical system scope 24 or 30 heliostats (4 or 5 pods)

Data characterisation
(Data granularity) of
data recorded/
generated by physical
component

Unique identifier for each heliostat (<pod
number>.<heliostat number>).

Status value for each heliostat – [start-up, manual move,
running, standby, home, calibration, e-stop, offline].

Translated operational commands – The commands are
unknown.

Grena algorithm inputs – Fractional Universal Time (UT),
date, time difference between UT and terrestrial time,
longitude and latitude of heliostats.

Grena algorithm outputs – Global coordinates of the sun,
local coordinates of the sun.

Data characterisation
(Data granularity) of
data sent to physical
component

Operation commands (from FCU).

Grena algorithm inputs (from FCU) – Air pressure,
ambient temperature.

Individual heliostat parameters (from every LCU in the
CCU’s scope) – Battery value, stepper motor positions,
timestamp.

Data format JSON formatted message.

Communication ZeroMQ messaging over TCP/IP and WLAN/ethernet.

Stellenbosch University https://scholar.sun.ac.za

146

Considerations and
Constraints (Capacity
for interaction)

Available processing and storage capacity of CCUs is
unknown.
Assuming each CCU controls 4 pods, 417 CCUs will be
required. Assuming each CCU controls 5 pods, 334 CCUs
will be required.

The LCU collects data from the battery and the two stepper motors at one-minute
intervals. The FCU collects operational data from the central receiving tower, such
as the temperature of the molten salt and the operational data of the various
pumps and valves. The weather station’s data is also sent to the FCU, as well as
the calibration images taken using an IP camera.

13.1.4 Services allocation

Services identification and characterisation

According to the service patterns described Section 8.1, the requirements can be
captured by the following service patterns: mirror, life counter and root cause.
Mirror captures the requirements for remote monitoring and supervisory control
while the life counter relates to the requirement for prognostics and the physical
fault detection requirement relates to the root cause service.

The exploratory data analysis does not neatly fit into any of the proposed service
patterns in Table 15 and thus it will simply be referred to as exploratory data
analytics. Therefore, there are four services to capture the five functional
requirements. The mirror service is discussed in detail below, whereas the other
services are only briefly discussed.

Mirror service

Description: The status of individual heliostats, as well as the status of subsections
of the field need to be presented to a user. It must be possible to send commands
to individual heliostats for calibration purposes and it must be possible to send the
same command to subsections of the field for operational control. The actual
control logic is performed by the CCUs and is outside the scope of the service, but
the CCU must be sent the right commands based on user inputs.

Related primary functional requirements: Remote monitoring and supervisory
control.

Related secondary functional requirements: Log files of events and log files of
operator details and issued commands.

Required physical scope: Individual heliostats – Some control operations are
applicable to single heliostats, e.g. during calibration, single heliostats may need
to be adjusted.

Stellenbosch University https://scholar.sun.ac.za

147

Heliostat clusters – Heliostats related to a CCU may need to be configured
differently since the heliostat technology may differ.

Field overview – An overview of the operational state of the heliostat field is
required for general operational checking and full field commands, such as “move-
to-home”, are required when the wind becomes too strong and may cause
damage.

Required data granularity:

Individual heliostat scale

• Data features: LCU level - Motor position values, battery values. CCU level –
all Grena algorithm values, heliostat status values. FCU level - calibration
images.

• Timescale: All data features, other than the calibration images, should be
measured or calculated at one-minute intervals. The calibration images are
only taken during heliostat calibration and 3 to 5 photos are taken per second.

Heliostat clusters scale

• Data features: CCU level - heliostat status values.

• Timescale: Status levels should be determined once per minute.

Full field scale

• Data features: FCU level - Cluster status summaries, weather data.

• Timescale: Cluster status summaries need to be updated every minute.
Weather data is also measured once per minute.

Service characteristics:

• Required data update frequency: Real-time (at all levels).

• Degree of user interaction: Remote monitoring – periodic user interaction.
Supervisory control – user driven.

• Intensity of interaction: Spatially focussed service.

• Persistence: Persistent data gathering and possibly model validation. Periodic
user interaction.

Constraints and considerations: Remote monitoring requires access from an
external network and thus the service must either be cloud hosted or it must allow
for direct local network access, such as through a VPN or SSH connection. The local
storage capacity is likely to become a constraint. The data throughput may
become a bottleneck in a sufficiently large field.

Stellenbosch University https://scholar.sun.ac.za

148

The other services that are considered within the heliostat field case study are:

• Life counter service: This is a prognostics service that makes use of historical
data from a heliostat to determine when maintenance is required. The
consultants at STERG expressed the need to be notified at least two weeks
before a heliostat failure. This service would most likely make use of trend
analytics and possibly machine learning.

• Root cause service: This service is intended to identify physical system faults
or failures. For example, the consultants at STERG mentioned that when PV
panels or batteries get old, they cannot provide enough power anymore. In
such cases, the heliostat’s movement becomes sluggish or the heliostat
becomes inactive. The root cause service must be able to identify such faults.

• Exploratory analytics service: This service is intended to allow the consultants
at STERG to investigate trends in power production, such as the influence of
the weather. Therefore, large amounts of cleaned historical data are required
along with adequate processing ability.

Digital twin identification and characterisation

Based on the physical system decomposition, it is possible to build DTs of the CCUs
and the FCU. The LCUs of individual heliostats are resource constrained and thus
the control engineers have restricted the responsibilities of the LCUs to the
heliostat control only. However, the CCUs do have all the LCU data of each of its
associated heliostats. Therefore, DTIs can be built to represent CCUs and the FCU
would be represented by a DTA.

Service to digital twin allocation

Table 29 provides a list of DTs that have the span of reality required by the various
services.

Table 29: Potential service allocation, for a heliostat field, based on span of
reality

Service CCU DTI FCU DTA Service Network

Mirror X X

Root cause X X X

Life counter X X X

Exploratory analytics X X

The initial service allocation is according to the lowest level DT that has the correct
span of reality. Based on this, the root cause and life counter should be allocated
to the individual DTIs, while the mirror service should be allocated to the DTA and
the exploratory analytics should be allocated to the service network. The
exploratory analytics service has been delegated to the services network because

Stellenbosch University https://scholar.sun.ac.za

149

it is a more generally defined, functionally focussed service that is periodically
invoked.

In terms of service separation, the root cause and life counter are separated. The
life counter service is hosted in the DTI’s cloud platform and the root cause is
hosted in the local portion of the DTI. This is because the root cause service has a
high reliability requirement since its primary function, in this case, is to identify
system faults (in near real-time) and notify the appropriate stakeholders
accordingly. The life counter service, on the other hand, is more of an analytics
service and thus computational performance and adaptability is likely to be more
important.

13.1.5 Design pattern selection and application

The primary quality attributes related to the system are performance efficiency
and portability as identified in Section 13.1.2. Therefore, the performance
efficiency design pattern will be applied to the mirror service, while the portability
design pattern will be applied to the exploratory analytics and life counter
services. However, the root cause service will be designed according to the
reliability design pattern.

The internal architectural design of the DTIs, DTAs and the service network is given
in Figure 13. The internal architectural design of the DTs is done according to
SLADTA as discussed in Section 2.3. The internal design also shows the services
allocation. The life counter service is hosted in the cloud portion of the DTI, to
allow access to large amounts of stored data, as well as computational resources.
The root cause service is hosted in the DTI’s local portion for better reliability. The
services network includes the exploratory analytics services, as well as a directory
to improve the adaptability of the design. To further improve their portability, the
services should be hosted in containers.

It should be noted that the mirror service should ideally be hosted within the local
portion of the DTA, where the local network’s benefits (higher throughput and
reliable connection) can be exploited. However, the requirement for remote
monitoring limits this. Therefore, the mirror service has been separated into the
mirror service dashboard (hosted in the cloud portion of the DTA) and the mirror
service computation (hosted in the local network portion of the DTA). This allows
for aggregation within the local network, while only sending the necessary
aggregated data to the mirror service dashboard.

Regarding the DT’s internal design, PostgreSQL databases are specified for each
DTs’ short-term local data repository, because the heliostat field engineers are
familiar with PostgreSQL. Layer 4 consists of a publish-subscribe client, which
relates to the aggregation and communication architecture discussed later in this
section. The long-term data storage on Layer 5 is intended for data analytics and

Stellenbosch University https://scholar.sun.ac.za

150

for each DT a NoSQL database is recommended, as per the performance efficiency
and portability design patterns. NoSQL databases tend to have better scalability
and latency performance, while also allowing for more adaptability because they
do not enforce a strict schema.

Figure 13: Internal design of the DTI (top left), DTA (top right) and service
network (bottom)

The aggregation hierarchy design is given in Figure 14. The broker, which is a
locally hosted, lightweight broker, facilitates publish-subscribe communication, as
recommended by the performance efficiency and portability design patterns.
Publish-subscribe communication is scalable and it is well-suited to many-to-one
communication as is the case for the heliostat field. Publish-subscribe also
decouples the DTs, which is beneficial for reliability and replaceability.

Stellenbosch University https://scholar.sun.ac.za

151

The aggregation within the DT hierarchy, i.e. between the CCU DTIs and the FCU
DTA, is pre-storage, local aggregation performed through stream processing.
These are all recommendations made by the performance efficiency design
pattern. Pre-storage aggregation allows for reduced data storage and lower
latencies, while local aggregation further allows for lower latencies and higher
throughput. Stream processing further lowers latencies.

Communication and aggregation through the gateway are intended for event-
driven, batch data or service requests. The exploratory analytics service can use
the gateway to request data from DTIs or the DTA and combine it with external
data where necessary.

Figure 14: Aggregation hierarchy design

 Heliostat field implementation

13.2.1 Implementation scope

The implementation of the case study is intended to contribute to validating the
design framework and design patterns by testing the architecture that was
developed. However, a full implementation of the architecture is not feasible in
the scope of this dissertation and instead a proof-of-concept implementation is
presented here. The proof of concept is aimed at assessing the scalability and
portability of the architecture to contribute to validating the performance
efficiency and portability design patterns, respectively. Furthermore, the
architecture will be validated against the complexity needs and NFRs in Table 27.

Stellenbosch University https://scholar.sun.ac.za

152

For the proof of concept, the implementation of the heliostat field system of DTs
only considers the DT hierarchy and not a services network. Furthermore, the
scope of the DT hierarchy is limited to a rudimentary mirror service which simply
displays the relevant data. The mirror service is a suitable subject for the
assessment since it requires good scalability. To assess the portability of the
architecture, some reconfiguration scenarios are investigated.

Furthermore, the proof of concept focusses on assessing the scalability and
portability enabled by the aggregation hierarchy. For this case, pre-storage
aggregation is performed and thus the experiments focus on assessing the
scalability and portability of the DTs hierarchy’s internal communication, which
relates to Layer 4 of SLADTA.

13.2.2 Physical architecture

The internal physical architectures for the DTIs and DTAs are presented in Figure
15. Appendix A.3 presents a more detailed description of the physical architecture
and the aggregation communication.

Figure 15: Internal physical architectures for heliostat field DTIs and DTAs

The heliostats and CCUs (Layer 1 and 2, respectively) have been simulated to allow
for more flexibility to change experimental parameters, while also allowing for a
scale of data that is not feasible in a laboratory environment. The short-term, local
PostgreSQL database is used because the heliostat field control engineers are
familiar with PostgreSQL. The long-term, cloud-based Firestore database (which is
a NoSQL database) is a design choice according to the performance efficiency
design pattern.

Stellenbosch University https://scholar.sun.ac.za

153

The DTIs’ and DTAs’ Layer 4 are custom developed Python programs, as well as
some Google Cloud Platform (GCP) services. This Layer contains two MQTT clients
per DT: one to send data to the cloud and another for aggregation. In the cloud,
the GCP IoT Core, Pub/Sub and Cloud Functions services were used to receive data
from the local Layer 4 and write the data to the appropriate data repository.

Furthermore, three aggregation scenarios are considered in this case study. For
the three cases, the message-oriented middleware that facilitates aggregation is:
1) a locally hosted Mosquitto broker, 2) a cloud-based Mosquitto broker and 3) a
GCP broker. The local Mosquitto broker performs pre-storage, local aggregation
using MQTT, which is a lightweight publish-subscribe protocol. The cloud-based
Mosquitto broker (hosted in a cloud-based GCP VM) performs pre-storage, WAN
aggregation using MQTT. The cloud-hosted Mosquitto broker represents WAN
aggregation because it only makes use of a VM hosted within the cloud and does
not make use of any cloud specific services. Therefore, the data and the data
pipeline components remain fully in the control of the developer.

The GCP broker refers to GCP’s Pub/Sub service, which makes use of HTTP and a
message queue to perform publish-subscribe communication. The Pub/Sub
service performs pre-storage, cloud-based aggregation. The Pub/Sub service
represents a typical cloud offered solution that could be used as a broker for
aggregation. Furthermore, all the brokers facilitate stream processing.

13.2.3 Scalability experiments

The purpose of the scalability experiments is to contribute to validating the design
framework by testing the scalability of the architecture discussed in the previous
section. The scalability of the architecture is a key concern in this case study and
thus these experiments aim to determine whether this concern has been satisfied.

The scalability of the architecture was tested by performing various experiments
using the various brokers described in the previous section. In particular, the
scalability of each broker scenario was measured for varying message frequencies
(discussed in Appendix A.4), varying message sizes (discussed in Appendix A.5), as
well as through partitioning of the aggregate and/or broker (discussed in Appendix
A.6). The scalability experiments were designed to stress the system of DTs until
failure or until significant performance degradation occurs.

13.2.3.1 Procedure and measurement method

To quantify the scalability (as defined in Section 4.3), the broker being tested, as
well as a DTA, were started before periodically adding DTIs (one DTI was added
per minute) to gradually increase the data throughput that needed to be
sustained. The round-trip latency was then monitored to determine when the
system became unstable. The round-trip latency is the collective time it takes a

Stellenbosch University https://scholar.sun.ac.za

154

message to 1) travel from DTI to broker, 2) travel from broker to DTA, 3) be
processed by the DTA, 4) travel from DTA to broker and 5) travel from broker to
original DTI. Round-trip latency is a standard method of measuring latency
because the start and end timestamps are generated by the same machine to
ensure accurate measurements.

To better understand the experimental method and the variables, please refer to
Figure 16, which is an example of a typical scalability experiment output graph. In
this graph, the coloured vertical lines indicate where a DTI is initialised and the
jagged graph thereafter (in the same colour) is the time a message was received
(x value) plotted against the round-trip latency for that message (y value).

Figure 16: Limit point of the DT aggregation.

Some terms that will be used to explain the behaviours of the data pipeline are:

• The limit point is defined as the point where the latency starts increasing
rapidly and probably unbounded (circled in red in Figure 16). This was a
common occurrence for all the scalability experiments.

• The threshold period is defined as the minute before the limit point is reached
and it is one minute long because there is a one-minute interval between the
start of successive DTIs. This threshold period is the period during which the

Stellenbosch University https://scholar.sun.ac.za

155

system of DTs was able to sustain the largest throughput, and thus indicates
the data pipeline’s best performance while stable. The one-minute delay
period between DTI starts was a choice that allowed the data pipeline to reach
steady-state before increasing the load further.

13.2.3.2 Discussion of results

Figure 17 presents the results of the message frequency experiments for each of
the broker scenarios (discussed in Section 13.2.2), given a single broker and a
single DTA configuration. The vertical bars in the figures indicate the range of the
values observed in repeated experiments, while the lines pass through the mean
values. The latency and percentage message loss results, as well as all the results
for the varying message size experiments are available in Appendices A.4 and A.5,
respectively.

Figure 17 presents the number of DTIs that could be sustained at different
message frequencies, as well as the collective message threshold at different
message frequencies. The number of DTIs refers to the maximum number of DTIs
that could be sustained (measured within the threshold period) and the collective
message threshold refers to the number of messages that were processed by the
DTA per second (within the threshold period). The message frequency refers to
the frequency at which DTIs send their messages and it was controlled by adjusting
the sleep time of the DTIs. The sleep time is the time in between logic execution
cycles of a DTI, where a logic execution cycle refers to the DTI reading data,
processing data and sending the data as a message (Appendix A.3 describes the
modules that relate to these steps).

Stellenbosch University https://scholar.sun.ac.za

156

Figure 17: Number of DTIs and the collective message threshold for different
message frequencies.

The results of these experiments indicate that message frequency of the DTIs have
a significant effect on the number of DTIs that can connect to the broker and DTA,
while the collective message threshold remains relatively constant. This is
significant because it indicates that throughput (represented by collective
message frequency) is relatively constant and thus to accommodate more DTIs,
the message frequency should be reduced. It also provides a basis to extrapolate
how many DTI could connect to a DTA and thus how many heliostats could be
represented.

The results also indicate that message size is not as significant as message
frequency when considering the scalability. However, at sufficiently large message
sizes (20 kB or more for this case study) the message size does become increasingly
more important to consider. The message size experiments also emphasised the
need to make provision for poor network connectivity and MQTT was ideal for
this. With a QoS level of 1 (QoS = 1 is supposed to guarantee that each message is
received at least once), the message loss was very low, even near maximum DTA
capacity. Therefore, in this architecture, MQTT and the Mosquitto broker (which

Stellenbosch University https://scholar.sun.ac.za

157

was the message-oriented middleware) allowed the architecture to satisfy N26 in
Table 27 (the need to provide for intermittent network connectivity).

Extrapolating the results (as presented in Appendix A.7), it was determined that
the locally hosted Mosquitto broker could sustain 460 DTIs (13800 heliostat), the
cloud-hosted Mosquitto broker could sustain 310 DTIs (9300 heliostats) and the
Pub/Sub service could sustain 80 DTIs (2400 heliostats). The limiting factor was the
DTA’s processing ability when using the Mosquitto brokers or cloud throttling
when using the Pub/Sub service. The network bandwidth also became a limiting
factor when large messages were being communicated. Based on the extrapolated
results, the locally hosted Mosquitto broker and single DTA configuration could
sustain the data load for the proposed 5 MW heliostat field. Therefore, for this
case study, the architecture satisfies the need to sustain a large amount of data
(N24 in Table 27).

To further demonstrate the scalability of the architecture, the DTA and/or broker
were/was partitioned. In particular, four cases were investigated: 1) a local and a
cloud-based Mosquitto broker with a single DTA, 2) a local and a cloud-based
Mosquitto broker with a DTA dedicated to each broker, 3) a single cloud-based
Mosquitto broker with two DTAs and 4) the Pub/Sub service with two DTAs. The
results are presented in Table 32 in Appendix A.6.

The results demonstrate the scalability of the architecture, where an additional
DTA resulted in a 50% increase in message throughput in comparison to the best
single broker, single DTA equivalent (36 messages per second in comparison to 24
messages per second). In comparison to the single cloud-hosted Mosquitto broker
with a single DTA, the partitioning resulted in a 125% increase in message
throughput. Similarly, the Pub/Sub service achieved a 78% increase in throughput
with an additional DTA. It should be noted that these results were achieved
through static partitioning, where half the field as assigned to one DTA and the
other half to the other DTA. If dynamic partitioning were used or if the load was
distributed according to each host machine’s ability, the result may be better.

Based on the results discussed above, the architecture was able to scale to the
demand required for the heliostat field. Therefore, in terms of scalability, the
design framework and performance efficiency design pattern were able to guide
the design of a feasible architecture.

13.2.4 Reconfigurability experiments

The purpose of the reconfigurability experiments is to contribute to validating the
design framework by testing the reconfigurability of the architecture discussed in
Section 13.2.2. Therefore, this section discusses the effort required to perform
certain reconfigurations on the system of DTs and thus it serves as a qualitative
evaluation of the portability and maintainability of the architecture. Three

Stellenbosch University https://scholar.sun.ac.za

158

reconfiguration scenarios were investigated: adding or removing a DTI, adding or
removing a DTA and adding or removing a broker. The reconfigurations required
for each scenario are discussed in Appendix A.8.

The modularity of the Layer 4 design (as discussed in Appendix A.3) means that
many of the software modules (such as the communication modules) of the DTIs
and DTAs are the same (differences in communication are accommodated through
the configuration file). Therefore, the DTIs’ and DTAs’ reconfigurations are also
similar (as discussed in Appendix A.8). Adding a new DT (DTI or DTA) into the
system of DTs requires changes to three components: the DTI’s Layer 4, the DTA’s
Layer 4 and the cloud platform. All these changes are configurations file changes
and thus no source code changes have to be made. The most time and effort were
spent on configuring and generating the security credentials, such as assigning
new security certificates and encryption keys to the DTs.

In terms of failures, if a DTI fails, it causes a notification within the cloud platform,
but it does not influence the performance of any of the other DTIs and the DTA
will simply stop updating the data profile of the DTI that failed. If a DTA fails, it
causes all aggregation related to that DTA to cease, but the DTIs still communicate
their data to their respective long-term repositories within the cloud. As soon as
the DTA recovers and reconnects to the broker, the aggregation automatically
continues.

Furthermore, a Mosquitto broker can also be added to the system of DTs by
specifying the appropriate parameters in the configuration file. Similarly, the
Pub/Sub service also only requires a configuration change to accommodate
another DTA. If either broker fails, the aggregation ceases, but the broker can be
automatically restarted using batch script. Broker failure also required the DTs to
be restarted before they could reconnect to the broker. However, the DTs could
implement an exponential backoff reconnection approach to remedy this
problem, but this would have to be verified.

The results of the reconfigurability experiments contributed to demonstrating the
portability of the architecture, while also demonstrating how horizontal and z-axis
scalability are achieved within the architecture. Furthermore, these experiments
demonstrated how reoccurring patterns and the concept of self-similarity within
aggregation hierarchies (as discussed in Section 5.2.4) can be exploited to create
modular and reusable software.

The observations made about the architecture through the reconfigurability
experiments demonstrate the architecture’s ability to allow for system changes
with minimal impact (N9 in Table 27). The portability of the architecture also
allows for easier long-term system maintenance (N14 in Table 27), while making
use of the cloud to host proprietary technology (such as the cloud-based

Stellenbosch University https://scholar.sun.ac.za

159

Mosquitto broker) can further ease maintenance. These qualities also contribute
to the need to allow for differing levels of technological maturity N6 in Table 27.
Therefore, in terms of portability, the design framework and portability design
patterns were able guide the design of a feasible architecture.

13.2.5 Heliostat field architecture evaluation

The architecture that was implemented for the experiments was able to address
scalability needs, N24 and N26, from Table 27 (as discussed in Section 13.2.3), as
well as the portability needs, N6, N9 and N14, from Table 27 (as discussed in
Section 13.2.4). Furthermore, by comparing the broker scenarios, it can be
determined that the locally-hosted Mosquitto broker induces the least amount of
strain of the DTs and it induces the least variation is strain. Therefore, it is the best
option to satisfy the resource constraints (N25 in Table 27), as well as the resource
contention (N27 in Table 27). Making use of the cloud platform, where it is
appropriate to do so, also contributes to alleviating the resource constraints of the
heliostat field.

Furthermore, the needs listed in Table 27 that were not directly addressed using
the architecture are: the need to verify and validate DT behaviour (N10), the need
to structure data (N21) and the need for a cost-effective design (N28). For this case
study, the DT behaviour was validated using system and program logs, as well as
through the services provided by the cloud to monitor program execution. DT
behaviour could be further validated through unit testing.

The data was structured according to heliostat, where each heliostat had its own
subcollection in the Firestore database. This data structuring was made easier and
more scalable using the GCP Cloud Functions. The cloud functions also allow the
local portion of the DT to delegate processing responsibilities to the cloud where
appropriate. Finally, some provisions were made to reduce costs, such as using the
cloud to reduce the upfront cost of computational hardware.

Based on the results from the experiments, the design framework, along with the
performance efficiency and portability design patterns, were able to guide the
design of a feasible architecture for the system of DTs to represent the 5 MW
heliostat field. The architecture managed to address most of the needs that were
identified and the needs that were not addressed directly were still provided for
to some degree.

Stellenbosch University https://scholar.sun.ac.za

160

14 Design framework evaluation

The general evaluation, presented in the next subsection, discusses overall aspects
of the design framework, such as the systematic approach, generality, traceability
and facilitation of communication. The design step evaluation, presented in
Section 14.2, considers the individual design steps.

 General evaluation

The design framework provides a systematic design approach. The sequence of
design steps, proposed by the design framework, follow well on each other and,
for all the case studies, very little iteration was required between consecutive
design steps. The most iteration occurred within the needs and constraints
analysis, where needs and constraints were updated and added as the design
process continued. In particular, the quality attributes and constraints were
closely linked to the physical system decomposition, as expected. However, for
the WDS case study, the uncertainty about the services allocation may cause some
iteration when implementing the architecture.

Furthermore, the systematic approach helps developers identify system derived
needs, such as the complexity needs listed in Chapter 3. These derived needs can
then be related to NFRs to determine their influence on the design choices. In
particular, the applicable quality attributes associated with a derived need can be
used to choose and apply design patterns that help a developer design software
with satisfactory quality. The heliostat field case study contributed to
demonstrating the feasibility of this quality focussed approach by applying the
performance efficiency and portability design patterns and testing the resulting
architecture. This systematic and quality focussed approach to software design
should enable better software design in a shorter period of time.

The variety of case studies also demonstrated the generality of the design
framework and the accompanying design patterns. The heliostat field presented a
system with many similar devices, where scalability and portability were
important. The WDS presented a continuous network system that required high
reliability and maintainability, whereas the smart city presented a large scale
heterogenous system where interoperability and security were important. These
cases also contain different types of physical entities, for example discrete
heliostats, a continuous pipeline and mobile vehicles in, respectively, the heliostat
field, WDS and smart city. The level of abstraction and detail also differed amongst
the case studies, demonstrating the recursive nature of the design framework,
where the framework can be applied to a system, as well as its individual
subsystems.

Stellenbosch University https://scholar.sun.ac.za

161

In terms of traceability, having short descriptive paragraphs, such as the rationale,
and implication (see Table 20, Table 24 and Table 27) in the needs and constraints
analysis proved highly useful. Similarly, the constraints and considerations section
(see Table 21, Table 25 and Table 28) for the services characterisation was also
very useful. However, the traceability can be obscured when constraints prevent
certain architectural choices and it is suggested that a method for assessing need
conflicts during the needs and constraints analysis be further investigated.

Furthermore, the span of reality definitions for both the services and the physical
components, with their DTs, were helpful to map the services to DTs. Based on the
span of reality, the potential service allocation tables (Table 22 for the WDS and
Table 29 for the heliostat field) could be setup, which makes initial service
allocation easy and it provides a reference for alternative hosting positions should
the need arise.

During meetings and interviews with other researchers in the research group, the
design framework allowed for targeted discussion. For example, the complexity
needs in Chapter 3 provided a reference to establish which needs were applicable
to the WDS, when consulting a fellow researcher on the topic. The physical system
decomposition step aided in developing a system-focussed top-down perspective
of the WDS, as well as bottom-up data-focussed perspective. The service patterns
(provided in Table 15) also helped to stimulate discussion about the possibilities
of the system of DTs in the WDS. Therefore, with regards to needs related
communication, such as an interview with a client, the design framework provides
examples and considerations for stakeholders to discuss. With regards to design
related communication, the common requirements taxonomy, physical system
decomposition and span of reality characterisation, provide a common problem
space to consider.

In terms of research about the complexities and architecture implementation, the
service allocation provides each DT with a clear purpose to focus on when
designing the architecture and when choosing implementation technologies. The
needs and constraints analysis helps focus research on key areas of concern and
complexity, while the design patterns guide research in key areas of interest, such
as an appropriate communications technology.

 Design step evaluation

14.2.1 Needs and constraints analysis

The needs and constraints analysis tables are useful to refer to while designing the
architecture and while making implementation choices. The rationale and
implication sections are particularly so. The rationale helps understand the reason
for the requirement which is useful to know when making trade-off decisions. For

Stellenbosch University https://scholar.sun.ac.za

162

example, knowing whether the performance efficiency design pattern is being
applied to improve scalability, latency or to reduce resource usage has an effect
on where compromises can be made when conflicts arise with other design
patterns. The implication section is useful when determining if all the needs and
constraints have been met.

The rationale that relates needs to a requirement can also be used to group similar
needs. This is useful when communicating the needs. Furthermore, using the
general complexity needs listed in Chapter 3 can help identify relevant needs, but
it is useful to use domain related language to express the need.

14.2.2 Physical system decomposition

The physical system decomposition helps the designer(s) understand the context
and composition of the system, as well as the external dependencies. The span of
reality characterisation helps identify data dependencies and thus component
dependencies within the system. Having a span of reality table (such as Table 21,
Table 25 and Table 28) to refer to for information about the data characteristics,
communication details and data formats, is helpful during service identification,
as well as during implementation.

Together, the physical system decomposition and span of reality characterisation
help a designer make more informed decisions because the decomposition
provides a top-down perspective of the system while the span of reality
characterisation provides a bottom-up perspective. The smart city case study was
a good example of this where the city was decomposed both functionally and
spatially, while the existing IoT infrastructure was used to identify what data is
captured, how it is captured and how it can be used. The top-down and bottom-
up perspectives also help identify many of the system derived complexity needs
that form part of the needs and constraints analysis.

It should be noted that the physical system decomposition is not always simple. In
the WDS case study the division of the continuous network presented a challenge.
The network was divided into arbitrary sections (as is the common practice in the
industry) but choosing where to make these divisions can be confusing. Some
principles do make the divisions easier, such as dividing where there are minimal
interactions between sections and dividing where boundary nodes are known, but
such information may not always be available. It was found that proposing many
decompositions and then narrowing down the options during DT selection makes
the decomposition and DT selection easier (because alternatives are known and
because data and services should also be known by then).

Furthermore, from the heliostat field case study, it was found that the span of
reality characterisation can be long and very detailed, making it harder to use for
quick references. Therefore, it may be appropriate to have a secondary document

Stellenbosch University https://scholar.sun.ac.za

163

that contains the full characterisation while the tables in the span of reality
characterisation section of the design framework only contain summaries. The
data characterisation can also be cumbersome to setup, but it is very useful to
refer to when designing the services and architecture and during implementation.

14.2.3 Services allocation

When identifying applicable services, it is very useful to have a list of potential
service, such as the service patterns in Table 15, to refer to. This helps to simulate
stakeholders’ ideas about the possibilities of the system of DTs and it helps
developers focus their design efforts toward a common goal. Furthermore, the
characterisation of the services was particularly useful in the WDS case study,
where a service hierarchy was identified. Some services were dependent on inputs
form other services (such as the benchmarking service receiving data from the
virtual sensor service) and this influenced the allocation of the services. Services
at a higher level in the service hierarchy were subsequently located at a higher
level in the DT hierarchy.

Identifying DTs is relatively easy when the physical system decomposition has
already been done. However, it is important to carefully consider the scope of the
DTIs because they affect the data available to the DTAs and they perform much of
the homogenisation of the data and protocols. If the DTI scope is too small, the
DTI may be too simple to host any services, whereas if the DTI scope is too large,
the DTI may experience poor performance or it may become difficult to maintain.
Deciding when a DTI scope it too large can be difficult and the problem is
exacerbated for continuous network cases, such as the WDS. The
interconnectedness of the continuous network also raises the concern of how
boundary values should be shared amongst the DTs without causing data
inconsistencies. Furthermore, deciding on the scope of a DTI is also harder when
the data characteristics and services are not yet known or if they are very vague.

The smart city case study also introduced mobile DTs, such vehicles (and
potentially citizens), which present some noteworthy characteristics. Firstly, these
mobile DTs are not spatially bound thus do not fit well into a DT hierarchy.
Therefore, the mobile DTs were aggregated by the services network to prevent
the need to continually reconfigure the DT hierarchy. Secondly, the mobility of the
DTs means that they capture data that may be applicable to many other DTs and
stakeholders. For example, vehicle DTs capture data about the vehicle that may
be applicable to the vehicle owner, as well as the manufacturer, while also
capturing data about the environment throughout the city. In such cases where a
single DT captures data applicable to many other DTs and stakeholders, the need
for good metadata becomes paramount. Many data management systems make
use of “tags” which are functional or object-oriented categories to help users
identify what data is applicable to them.

Stellenbosch University https://scholar.sun.ac.za

164

For the service allocation, the potential service allocation tables (Table 22 and
Table 29) were particularly useful, not only to make initial service allocations but
also to be aware of alternative hosting positions. The potential services allocation
table was informed by the span of reality of the services and DTs and the span of
reality seemed to work well for this purpose. However, the span of reality
requirements of some services is hard to determine if the details about the
services, such as data requirements, are not known.

14.2.4 Design pattern selection and application

The design patterns help narrow down architectural and implementation choices
to allow for more focussed research and more rapid development. The services
allocation is useful when identifying which design pattern(s) to apply because they
give the DTs a specific purpose. Different design patterns can also be applied to
different subsystems so that the most appropriate quality attribute(s) are
emphasised for individual DTs and services. For each of the case studies, the
applicable design patterns were able to produce a feasible architecture. The
heliostat field case study helped demonstrate the feasibility of the architecture
and it helped to validate the design choices recommended by the performance
efficiency and portability design patterns.

More than one design pattern can also be applied to a single DT or service, but this
presents some difficulty. The design patterns can be in conflict about some design
choices and then it is up to the designer to decide on a suitable compromise. These
compromises are largely informed by the rationale and implication sections of the
needs and constraints analysis, as well as the constraints and considerations
section of the services characterisation. However, without metrics to refer to, it
can be hard to decide what would be a good compromise.

Despite the uncertainty inherent to some of the previous steps, the design
patterns could still be applied to guide the design of a feasible architecture. One
issue that arose while designing the communication for the architecture was
services navigation. Navigating between the widespread services could be
cumbersome and thus it could be beneficial to have a centralised dashboard
within a DTA that serves all the DTs below it. This will also help limit the complexity
of designing the central UI, where the central UI would redirect to a DTA
dashboard instead of serving as the single dashboard to all the services. This may
also be beneficial for security, for reliability when considering intermittent
networks and for the separation of concerns.

14.2.5 Verification and validation

The verification and validation step was not discussed in detail, but some
observations can still be made based on the heliostat field case study. The
implications paragraph in the needs and constraints analysis tables is useful when

Stellenbosch University https://scholar.sun.ac.za

165

identifying which needs and constraints still need to be satisfied. It may be
beneficial to include a secondary table that only summarises the implications.

The experiments performed, as part of the heliostat field case study, also
demonstrated how the performance metrics can be applied to validate the
performance of a DT. Using host machine logs, as well as DT program logs are
useful to identify faults and inconsistencies in the system.

14.2.6 Suggestions for future work

This section makes suggestions for future work.

• The distinction between system-level requirements and service-level
requirements is not always clear. Initially, the FRs are imposed on the system
but some of the FRs are delegated to services in different DTs as the design
progresses. This transition from system-level to service-level is not always
clear and it can cause confusion, particularly when more than one service
addresses an FR and when more than one FR is addressed within a service.
Therefore, it could be useful to investigate a taxonomy or mechanism that can
help discern what requirements are applied to a given level of abstraction.

• In table format it can be hard to identify which needs are overlapping or
conflicting. Therefore, an additional diagram could be added to help clarify
need and requirement interactions. Furthermore, nested and chained needs
can be difficult to deal with and the framework does not make provision for
handling this.

• More research is required to determine the intricacies of developing a DT
hierarchy for a continuous network. The continuous nature of the network
creates a higher degree of dependency between DTs at the same level of
aggregation and thus more horizontal data sharing is required. Network
elements such as boundary nodes will have data applicable to both DTs that
represent the sections being divided by the boundary. How such data should
be shared is uncertain. For example, should DTs communicate directly
through a message-oriented middleware or with a request-response protocol,
should DTs communicate through a DTA or should DTs share their data via API
request as is typically done with a service in the services network.

• Further work is required to determine the efficacy of the services allocation
and the joining of the DT hierarchy and the service network. The subdivision
of the services network, as presented in the smart city case study, may also
prove useful and should be further investigated.

• The framework has not considered having a central DT dashboard separate
from the services network. It may be beneficial to have a secondary
dashboard that can serve as the central dashboard for the local DTs. This may

Stellenbosch University https://scholar.sun.ac.za

166

also be particularly relevant when there are numerous locally hosted services
in DTs that may need to function despite external network failures.

• Some services can be implemented with multiple spans of reality. For
example, the mirror service in the heliostat field case study can be used to
monitor and control single heliostats or the entire field. Such services present
a trade-off decision where the service can either be completely centralised in
a high-level DT for maintainability or it can be distributed for better
performance efficiency and reliability. However, it is uncertain whether this
service should be separated without metrics to determine the effects.

• More thorough evaluation is still required for the reliability, maintainability,
compatibility and security design patterns. These design patterns have only
been assessed at a high level.

• Testing parameters, methods and procedures should still be added to the
verification and validation section.

• Some aspects related to data quality require more attention. Suitable
methods for handling aspects such as the data consistency, veracity and
persistence (see Section 9.2.1), should be investigated in more detail.
Furthermore, additional data quality aspects, such as data provenance, can
also be considered. Data provenance is concerned with the documentation of
the origin of a piece of data, as well as documenting how and why it got to its
present position (Gupta, 2009).

Stellenbosch University https://scholar.sun.ac.za

167

15 Conclusion

A system of DTs is able to represent complex physical systems, while maintaining
the separation of concerns. This is enabled through hierarchical aggregation of
DTs, while also making use of a services network.

The main objective of this dissertation was to develop a design framework to guide
the design of a DT aggregation architecture, or a system of DTs, to reflect complex
systems. The design framework had to enable the systematic, traceable design of
a system of DTs, while remaining domain independent.

To achieve this objective, the dissertation investigated the needs related to
managing physical system complexity. Considering these needs, the dissertation
presents a design framework to help design a system of DTs, according to
hierarchical aggregation principles, to meet the needs identified in a particular
case. The design framework is arranged in six steps: 1) needs and constraints
analysis, 2) physical system decomposition, 3) services allocation, 4) performance
and quality considerations, 5) implementation considerations and 6) verification
and validation. These design steps were then moulded into six design patterns,
which simplify the design process by focussing of key quality attributes. The quality
attributes considered for the design patterns are performance efficiency,
reliability, maintainability, compatibility, portability and security.

The use of the design framework was then demonstrated and validated through
three case studies, i.e. two high-level case studies and one detailed case study.
The high-level case studies were a water distribution system and a smart city. Each
of these high-level case studies presented unique characteristics, such as the
continuous nature of the water distribution network and the mobility of elements
within the smart city. For each of these case studies, the design framework, along
with the applicable design patterns, was able to guide the design of a feasible
architectures for a system of DTs.

The detailed case study, which considered a heliostat field, allowed for a more in-
depth demonstration and validation of the design framework. As with the high-
level case studies, the design framework was able to guide the design of a feasible
architecture for a system of DTs to represent a heliostat field. In particular, the
performance efficiency and portability design patterns were applied to produce
the resulting architecture. The architecture was then validated through an
implementation case study, where the scalability and portability of the
architecture was tested.

The scalability of the architecture was tested through the scalability experiments,
which considered three types of broker and aggregation scenarios: a local
Mosquitto broker - which performed local aggregation, a cloud-based Mosquitto

Stellenbosch University https://scholar.sun.ac.za

168

broker – which performed WAN aggregation and GCP broker – which performed
cloud-based aggregation. The scalability experiments demonstrated the scalability
of the architecture for different message frequencies and different message sizes,
as well as through DTA partitioning. The experiments validated the design choices
made according to the performance efficiency design pattern.

The portability of the architecture was tested through the reconfigurability
experiments, which considered three reconfiguration scenarios: the addition and
removal of a DTI, the addition and removal of a DTA and the addition and removal
of a broker. Each of these reconfigurations could be made with just a configuration
file change. However, there are cases of more extensive reconfiguration that
require source code changes. These experiments helped to validate the design
choices made according to the portability design pattern.

In general, the design framework achieved its objectives. It was successfully
applied to three different case studies, that each presented different challenges.

Stellenbosch University https://scholar.sun.ac.za

169

References

Abbott, M. 2020. The Scale Cude. [Online], Available:
https://akfpartners.com/growth-blog/scale-cube [2021, September 20].

Aderaldo, C.M., Mendonça, N.C., Pahl, C. & Jamshidi, P. 2017. Benchmark
Requirements for Microservices Architecture Research. in Proceedings - 2017
IEEE/ACM 1st International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering, ECASE 2017. 8–13.

Adolphs, D.P., Bedenbender, D.H., Dirzus, D.D., Ehlich, M., Epple, P.U., Hankel, M.,
Heidel, R., Hoffmeister, D.M., et al. 2015. Status Report - RAMI4.0. [Online],
Available:
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikatione
n/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie
_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf.

Akbulut, A. & Perros, H.G. 2019. Performance Analysis of Microservice Design
Patterns. in IEEE Internet Computing, vol. 23, no. 6, pp. 19-27.

Archer, E., Landman, W., Malherbe, J., Tadross, M. & Pretorius, S. 2019. South
Africa’s winter rainfall region drought: A region in transition? Climate Risk
Management. 25(April):100188.

Bachmann, F., Bass, L. & Nord, R. 2007. Modifiability Tactics. [Online], Available:
www.sei.cmu.edu/publications/pubweb.html.

Bajpai, V. & Gorthi, R.P. 2012. On Non-Functional Requirements : A Survey. 2012
IEEE Students’ Conference on Electrical, Electronics and Computer Science On. 8–
11.

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A. & Lynn, T. 2018.
Microservices migration patterns. Software - Practice and Experience.
48(11):2019–2042.

Bao, J., Guo, D., Li, J. & Zhang, J. 2018. The modelling and operations for the digital
twin in the context of manufacturing. Enterprise Information Systems. 13(4):534–
556.

Bekker, A. 2018. Exploring the blue skies potential of digital twin technology for a
polar supply and research vessel. in Marine Design XIII Vol. 1. 135–146.

Berrone, P., Ricart, J.E., Carrasco, C. & Duch, A. 2018. IESE cities in motion index
2018. University of Navarra.

Stellenbosch University https://scholar.sun.ac.za

170

Bertoli, A., Cervo, A., Rosati, C.A. & Fantuzzi, C. 2021. Smart node networks
orchestration: A new e2e approach for analysis and design for agile 4.0
implementation. Sensors. 21(5):1–25.

Bonér, J., Farley, D., Kuhn, R. & Thompson, M. 2014. The Reactive Manifesto.
[Online], Available: https://www.reactivemanifesto.org/ [2021, September 01].

Bonnet, L., Laurent, A., Sala, M., Laurent, B. & Sicard, N. 2011. Reduce, you say:
What NoSQL can do for data aggregation and BI in large repositories. in
Proceedings - International Workshop on Database and Expert Systems
Applications, DEXA. 483–488.

Bonomi, F., Milito, R., Zhu, J. & Addepalli, S. 2012. Fog computing and its role in
the internet of things. MCC’12 - Proceedings of the 1st ACM Mobile Cloud
Computing Workshop. 13–15.

Borangiu, T., Oltean, E., Raileanu, S., Anton, F., Anton, S. & Iacob, I. 2019.
Embedded digital twin for ARTI-type control of semi-continuous production
processes. in Service Orientated, Holonic and Multi-agent Manufacturing Systems
for Industry of the Future - Proceedings of SOHOMA 2019 T. Borangiu, P. Leitão,
V. Botti, D. Trentesaux, & A.G. Boggino (eds.). Springer Nature Switzerland AG T.
113–133.

Bourque, P. & Fairley, R.E. 2014. Guide to the software engineering body of
knowledge (swebok) V3.0. [Online], Available: http://www.swebok.org

Brandenbourger, B. & Durand, F. 2018. Design Pattern for Decomposition or
Aggregation of Automation Systems into Hierarchy Levels. in IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA Vols 2018-
September. IEEE. 895–901.

BrightSource. 2013. Ivanpah Project Facts. [Online], Available:
www.brightsourceenergy.com.

Brooks, F. 1995. The Mythical Man-Month. Anniversary ed. Boston, MA,USA:
Addison Wesley Longman Inc.

Brown, R.R., Keath, N. & Wong, T.H.F. 2009. Urban water management in cities:
historical , current and future regimes. Water Science and Technology. 59(5):847–
855.

BSI, ISO & IEC. 2011. Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality
models. BSI Standard Publication. First Edition.

Stellenbosch University https://scholar.sun.ac.za

171

Buenabad-Chavez, J., Kecskemeti, G., Tountopoulos, V., Kavakli, E. & Sakellariou,
R. 2018. Towards a Methodology for RAMI4.0 Service Design. in 2018 Sixth
International Conference on Enterprise Systems (ES). 188–195.

Butler, D., Farmani, R., Fu, G., Ward, S. & Diao, K. 2014. A New Approach to Urban
Water Management : Safe and Sure. Procedia Engineering. 89:347-354.

CDBB. 2018. The Gemini Principles. Centre of Digital Built Britain: University of
Cambridge, UK.

Chung, L. & Do Prado Leite, J.C.S. 2009. On non-functional requirements in
software engineering. Borgida, V.K. Chaudhri, P. Giorgini, & E.S. Yu (eds.)
Conceptual Modelling: Foundations and Applications. Lecture Notes in Computer
Science Vol. 5600 LNCS. A.T. Springer, Berlin, Heidelberg. 363–379.

Ciavotta, M., Alge, M., Menato, S., Rovere, D. & Pedrazzoli, P. 2017. A
Microservice-based Middleware for the Digital Factory. Procedia Manufacturing.
11(June):931–938.

Ciavotta, M., Bettoni, A. & Izzo, G. 2018. Interoperable meta model for simulation-
in-the-loop. in Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS
2018 IEEE. 702–707.

Ciavotta, M., Maso, G.D., Rovere, D., Tsvetanov, R. & Menato, S. 2020. Towards
the Digital Factory: A Microservices-Based Middleware for Real-to-Digital
Synchronization. In: Bucchiarone, A. et al. (eds) Microservices. Springer, Cham.
273–297.

Cisco. 2015. Cisco Fog Computing Solutions: Unleash the Power of the Internet of
Things. Cisco. [Online], Available: https://docplayer.net/20003565-Cisco-fog-
computing-solutions-unleash-the-power-of-the-internet-of-things.html.

Clark, A.G., Walkinshaw, N. & Hierons, R.M. 2021. Test case generation for agent-
based models: A systematic literature review. Information and Software
Technology. 135.

Cruz, N.C., Alvarez, J.D., Redondo, J.L., Fernández-Reche, J., Berenguel, M.,
Monterreal, R. & Ortigosa, P.M. 2018. A new methodology for building-up a robust
model for heliostat field flux characterization. Solar Energy. 173:578–589.

Dierks, T. & Rescorla, E. 2008. The Transport Layer Security (TLS) Protocol Version
1.2. [Online], Available: https://www.semanticscholar.org/paper/The-Transport-
Layer-Security-(TLS)-Protocol-Version-Dierks-
Rescorla/6a74a8573cb1bd15c5f4fa4e047613d2340e61b9

Stellenbosch University https://scholar.sun.ac.za

172

Duffie, N.A., Chitturi, R. & Mou, J.I. 1988. Fault-tolerant heterarchical control of
heterogeneous manufacturing system entities. Journal of Manufacturing Systems.
7(4):315–328.

Durão, L.F.C.S., Haag, S., Anderl, R., Schützer, K. & Zancul, E. 2018. Digital twin
requirements in the context of industry 4.0. IFIP Advances in Information and
Communication Technology. 540:204–214.

Engel, T., Langermeier, M., Bauer, B. & Hofmann, A. 2018. Evaluation of
microservice architectures: A metric and tool-based approach. In: Mendling J.,
Mouratidis H. (eds) Information Systems in the Big Data Era. CAiSE 2018. Lecture
Notes in Business Information Processing, vol 317. Springer, Cham.

Erikstad, S.O. & Bekker, A. 2021. Design Patterns for Intelligent Services Based on
Digital Twins. In Bertram V. (ed.) 20th International Conference on Computer and
IT Applications in the Maritime Industries. 235–245.

Fadlalla, A. 2005. An experimental investigation of the impact of aggregation on
the performance of data mining with logistic regression. Information and
Management. 42(5):695–707.

Ferrández-Pastor, F.J., García-Chamizo, J.M., Nieto-Hidalgo, M. & Mora-Martínez,
J. 2018. Precision agriculture design method using a distributed computing
architecture on internet of things context. Sensors. 18(6).

Gadge, S. & Kotwani, V. 2017. Microservice Architecture : API Gateway
Considerations. San Jose. [Online], Available: https://www.globallogic.com/wp-
content/uploads/2017/08/Microservice-Architecture-API-Gateway-
Considerations.pdf.

Galster, M. & Bucherer, E. 2008. A taxonomy for identifying and specifying non-
functional requirements in service-oriented development. Proceedings - 2008 IEEE
Congress on Services, SERVICES 2008. PART 1:345–352.

van Geest, M., Tekinerdogan, B. & Catal, C. 2021. Design of a reference
architecture for developing smart warehouses in industry 4.0. Computers in
Industry. 124:103343.

Givehchi, O., Imtiaz, J., Trsek, H. & Jasperneite, J. 2014. Control-as-a-service from
the cloud: A case study for using virtualized PLCs. in IEEE International Workshop
on Factory Communication Systems - Proceedings, WFCS IEEE. 1–4.

Glaessgen, E. & Stargel, D. 2012. The Digital Twin Paradigm for Future NASA and
U.S. Air Force Vehicles. in Structures, Structural Dynamics, and Materials
Conference. 1–14.

Stellenbosch University https://scholar.sun.ac.za

173

Greater London Authority. 2021. London Datastore. [Online], Available:
https://data.london.gov.uk/ [2021, October 24].

Grieves, M. & Vickers, J. 2016. Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems. in Kahlen F.J., Flumerfelt S., & Alves A.
(eds.) Transdisciplinary Perspectives on Complex Systems: New Findings and
Approaches. Cham: Springer International. 85–113.

Griffiths, H. 2018. Smart city demonstrators: a global review of challenges and
lessons learned. Future Cities Catapult. [Online] Available:
https://cp.catapult.org.uk/wp-content/uploads/2021/01/SMART-CITY-
DEMONSTRATORS-A-global-review-of-challenges-and-lessons-learned.pdf

Gupta A. 2009. Data Provenance. In: LIU L., ÖZSU M.T. (eds) Encyclopedia of
Database Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-
39940-9_1305

Harper, E., Malakuti, S. & Ganz, C. 2019. Digital Twin Architecture and Standards.
IIC Journal of Innovation. (November):1–12.

Hoagland, S. n.d. System id: KY 12. [Online], Available:
https://uknowledge.uky.edu/wdst/index.2.html

Huang, M., Liu, A., Xiong, N.N., Wang, T. & Vasilakos, A. V. 2020. An effective
service-oriented networking management architecture for 5G-enabled internet of
things. Computer Networks. 173(September 2019):107208.

Human, C., Kruger, K. & Basson, A.H. 2021. Digital Twin Data Pipeline using MQTT
in SLADTA. in Service Orientated, Holonic and Multi-agent Manufacturing Systems
for Industry of the Future - Proceedings of SOHOMA 2020 Borangiu T., Leitão P.,
Botti V., Trentesaux D., & Boggino A.G. (eds.). Springer

Internet Engineering Task Force (IETF). 2012. The OAuth 2.0 Authorization
Framework. [Online], Available: https://datatracker.ietf.org/doc/html/rfc6749
[2021, September 28].

Ismail, A., Truong, H.L. & Kastner, W. 2019. Manufacturing process data analysis
pipelines: a requirements analysis and survey. Journal of Big Data. 6(1):1–26.

ISO & IEC. 2021. ISO/IEC 25010. [Online], Available:
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010 [2021,
September 01].

ISO, IEC & IEEE International Standard. 2010. Systems and software engineering –
vocabulary. in ISO/IEC/IEEE 24765:2010(E).

Stellenbosch University https://scholar.sun.ac.za

https://cp.catapult.org.uk/wp-content/uploads/2021/01/SMART-CITY-DEMONSTRATORS-A-global-review-of-challenges-and-lessons-learned.pdf
https://cp.catapult.org.uk/wp-content/uploads/2021/01/SMART-CITY-DEMONSTRATORS-A-global-review-of-challenges-and-lessons-learned.pdf

174

Jolly, M.D., Lothes, A.D., Sebastian Bryson, L. & Ormsbee, L. 2014. Research
Database of Water Distribution System Models. Journal of Water Resources
Planning and Management. 140(4):410–416.

Kajati, E., Papcun, P., Liu, C., Zhong, R.Y., Koziorek, J. & Zolotova, I. 2019. Advanced
Engineering Informatics Cloud based cyber-physical systems : Network evaluation
study. Advanced Engineering Informatics. 42(August):100988.

Karabey Aksakalli, I., Çelik, T., Can, A.B. & Tekiṅerdoğan, B. 2021. Deployment and
communication patterns in microservice architectures: A systematic literature
review. Journal of Systems and Software. 180.

Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D. & Sundaresan,
R. 2018. Digital twin for energy optimization in an SMT-PCB assembly line. in
Proceedings - 2018 IEEE International Conference on Internet of Things and
Intelligence System, IOTAIS 2018 IEEE. 85–89.

Kondepudi, S.N. Ramanarayanan, V. Jain, A., Singh, G.N., Nitin Agarwal, N.K.
Kumar, R., Singh, R., Bergmark, P., Hashitani, T. & Gemma, P. 2014. Smart
sustainable cities analysis of definitions. The ITU-T focus group for smart
sustainable cities.

Koren, Y. & Shpitalni, M. 2010. Design of reconfigurable manufacturing systems.
Journal of Manufacturing Systems. 29(4):130–141.

Kritzinger, W., Traar, G., Henjes, J., Sihn, W. & Karner, M. 2018. Digital Twin in
manufacturing: A categorical literature review and classification. IFAC-
PapersOnLine. 51(11):1016–1022.

Kruger, K. & Basson, A.H. 2019. Evaluation criteria for holonic control
implementations in manufacturing systems. International Journal of Computer
Integrated Manufacturing. 32(2):148–158.

Kuhn, T., Schnicke, F. & Oliveira Antonino, P. 2020. Service-Based Architectures in
Production Systems: Challenges, Solutions Experiences. 2020 ITU Kaleidoscope:
Industry-Driven Digital Transformation, ITU K 2020.

Lamb, K. 2019. Principle-based digital twins: a scoping review. Centre for Digital
Built Britain: University of Cambridge, UK.

Lindsay, D., Gill, S.S., Smirnova, D. & Garraghan, P. 2021. The evolution of
distributed computing systems: from fundamental to new frontiers. Computing
103:1859-1878.

Stellenbosch University https://scholar.sun.ac.za

175

Liu, Q., Leng, J., Yan, D., Zhang, D., Wei, L., Yu, A., Zhao, R., Zhang, H., et al. 2020.
Digital twin-based designing of the configuration, motion, control, and
optimization model of a flow-type smart manufacturing system. Journal of
Manufacturing Systems. 58(Part B):52-64.

Longo, F., Nicoletti, L. & Padovano, A. 2019. Ubiquitous knowledge empowers the
Smart Factory: The impacts of a Service-oriented Digital Twin on enterprises’
performance. Annual Reviews in Control. 47:221–236.

Lutters, E. 2018. Pilot production environments driven by digital twins. South
African Journal of Industrial Engineering. 29(3 Special Edition):40–53.

Lutters, E. & Damgrave, R. 2019. The development of Pilot Production
Environments based on digital twins and virtual dashboards. in Procedia CIRP Vol.
84. Elsevier B.V. 94–99.

Lutze, R. 2019. Digital Twins in eHealth: Prospects and Challenges Focussing on
Information Management. in Proceedings - 2019 IEEE International Conference on
Engineering, Technology and Innovation, ICE/ITMC 2019.

Maier, M.W. 1999. Architecting principles for systems-of-systems. Systems
Engineering. 1(4):267–284.

Mairiza, D., Zowghi, D. & Nurmuliani, N. 2010. An investigation into the notion of
non-functional requirements. in Proceedings of the ACM Symposium on Applied
Computing. 311–317.

Malan, K.J. 2014. A Heliostat Field Control System. Master’s Thesis. Stellenbosch
University. [Online], Available: http://scholar.sun.ac.za/handle/10019.1/86674

Márquez, G., Villegas, M.M. & Astudillo, H. 2018. An Empirical Study of Scalability
Frameworks in Open Source Microservices-based Systems. in Proceedings -
International Conference of the Chilean Computer Science Society, SCCC Vol.
November.

Minerva, R., Lee, G.M. & Crespi, N. 2020. Digital Twin in the IoT Context: A Survey
on Technical Features, Scenarios, and Architectural Models. Proceedings of the
IEEE. 108(10):1785–1824.

Mitchell, M. 2009. Complexity: A guided tour. Oxford University Press, Inc.

Mohanty, S.P., Choppali, U. & Kougianos, E. 2016. Everything you wanted to know
about smart cities. IEEE Consumer Electronics Magazine. 5(3):60–70.

Stellenbosch University https://scholar.sun.ac.za

176

Moyne, J., Qamsane, Y., Balta, E.C., Kovalenko, I., Faris, J., Barton, K. & Tilbury,
D.M. 2020. A Requirements Driven Digital Twin Framework: Specification and
Opportunities. IEEE Access. 8:107781–107801.

O’Brien, L., Merson, P. & Bass, L. 2007. Quality attributes for service-oriented
architectures. in Proceedings - ICSE 2007 Workshops: International Workshop on
Systems Development in SOA Environments, SDSOA’07. 3–9.

O’Donovan, P., Leahy, K., Bruton, K. & O’Sullivan, D.T.J. 2015. An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale smart
manufacturing facilities. Journal of Big Data. 2:25(1):1–26.

Odun-Ayo, I., Ananya, M., Agono, F. & Goddy-Worlu, R. 2018. Cloud Computing
Architecture: A Critical Analysis. Proceedings of the 2018 18th International
Conference on Computational Science and Its Applications, ICCSA 2018.

Owen, D.A.L. 2018. The Technologies and Techniques Driving Smart Water. in
Smart Water Technologies and Techniques: Data Capture and Analysis for
Sustainable Water Management Vol. 1. 57–78.

Padovano, A., Longo, F., Nicoletti, L. & Mirabelli, G. 2018. A Digital Twin based
Service Oriented Application for a 4.0 Knowledge Navigation in the Smart Factory.
in IFAC-PapersOnLine Vol. 51. Elsevier B.V. 631–636.

Page, S.E. 2009. Understanding Complexity. Chantilly, VA, USA: The Teaching
Company.

Pan, Z., Shi, J. & Jiang, L. 2020. A Novel HDF-Based Data Compression and
Integration Approach to Support BIM-GIS Practical Applications. Advances in Civil
Engineering. 2020.

Pargmann, H., Euhausen, D. & Faber, R. 2018. Intelligent big data processing for
wind farm monitoring and analysis based on cloud-Technologies and digital twins:
A quantitative approach. in 2018 3rd IEEE International Conference on Cloud
Computing and Big Data Analysis. 233–237.

Pathak, J., Jiang, Y., Honavar, V. & McCalley, J. 2006. Condition data aggregation
with application to failure rate calculation of power transformers. in Proceedings
of the Annual Hawaii International Conference on System Sciences. 1–10.

Pernici, B., Plebani, P., Mecella, M., Leotta, F., Mandreoli, F., Martoglia, R. & Cabri,
G. 2020. Agilechains: Agile supply chains through smart digital twins. in Baraldi P.,
Di Maio F., & Zio E. (eds.). Proceedings of the 30th European Safety and Reliability
Conference and the 15th Probabilistic Safety Assessment and Management
Conference. Singapore: Research Publishing. 2678–2684.

Stellenbosch University https://scholar.sun.ac.za

177

Petrova-Antonova, D., Manova, D. & Ilieva, S. 2020. Testing web service
compositions: Approaches, methodology and automation. Advances in Science,
Technology and Engineering Systems. 5(1):159–168.

Poort, E.R. & De With, P.H.N. 2004. Resolving requirement conflicts through non-
functional decomposition. in Proceedings - Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA 2004). 145–154.

Pourghebleh, B. & Navimipour, N.J. 2017. Data aggregation mechanisms in the
Internet of things: A systematic review of the literature and recommendations for
future research. Journal of Network and Computer Applications. 97(April):23–34.

Redelinghuys, A.J.H. 2019. An Architecture for the Digital Twin of a Manufacturing
Cell. PhD Dissertation. Stellenbosch University. [Online], Available:
http://scholar.sun.ac.za/handle/10019.1/108283.

Redelinghuys, A.J.H., Basson, A.H. & Kruger, K. 2020. A six ‑ layer architecture for
the digital twin: a manufacturing case study implementation. Journal of Intelligent
Manufacturing. 31:1383–1402.

Redelinghuys, A.J.H., Kruger, K. & Basson, A.H. 2020. A six-layer architecture for
digital twins with aggregation. Studies in Computational Intelligence. 853:171–
182.

Rossman, L.A. 2000. EPANET 2 User’s Manual EPA/600/R-00/57. [Online],
Available: https://www.epa.gov/water-research/epanet.

Sage, A.P. & Cuppan, C.D. 2001. On the systems engineering and management of
systems of systems and federation of systems. Information knowledge systems
management journal. 2(4):325–345.

SAICE.2017. SAICE 2017 Infrastructure Report Card for South Africa. South African
Institution of Civil Engineering. [Online], Available: https://saice.org.za/wp-
content/uploads/2017/09/SAICE-IRC-2017.pdf

Salah, T., Zemerly, M.J., Yeun, C.Y., Al-Qutayri, M. & Al-Hammadi, Y. 2016. The
evolution of distributed systems towards microservices architecture. in 2016 11th
International Conference for Internet Technology and Secured Transactions,
ICITST 2016. Infonomics Society. 318–325.

Santana, C., Andrade, L., Delicato, F.C. & Prazeres, C. 2021. Increasing the
availability of IoT applications with reactive microservices. Service Oriented
Computing and Applications. 15(2):109–126.

Stellenbosch University https://scholar.sun.ac.za

178

SEBoK Editorial Board. 2021. The Guide to the Systems Engineering Body of
Knowledge (SEBoK), v. 2.4, R.J. Cloutier (Editor in Chief). Hoboken, NJ: The Trustees
of the Stevens Institute of Technology.

Shangguan, D., Chen, L. & Ding, J. 2019. A hierarchical digital twin model
framework for dynamic cyber-physical system design. in ACM International
Conference Proceeding Series Vol. Part F1476. 123–129.

Sharma, S.K. & Vairavamoorthy, K. 2009. Urban water demand management:
prospects and challenges for the developing countries. Water and Environment
Journal.23(3):210–218.

Silva, B.N., Khan, M. & Han, K. 2018. Towards sustainable smart cities: A review of
trends, architectures, components, and open challenges in smart cities.
Sustainable Cities and Society. 38(February):697–713.

Simon, H.A. 1996. The Sciences of the Artificial. Cambridge, Massachusetts: MIT
Press.

Smart Santander. n.d. Santander facility. [Online], Available:
https://www.smartsantander.eu/index.php/testbeds/item/132-santander-
summary [2021, October 24].

Sparrow, D.E., Kruger, K. & Basson, A.H. 2021. An architecture to facilitate the
integration of human workers in Industry 4.0 environments. International Journal
of Production Research, DOI: 10.1080/00207543.2021.1937747.

Suba, C. 2018. Data Warehousing Methods and its Applications. International
Journal of Engineering Science Invention (IJESI). 12–19. [Online], Available:
www.ijesi.org.

Taibi, D., Lenarduzzi, V. & Pahl, C. 2018. Architectural patterns for microservices: A
systematic mapping study. in CLOSER 2018 - Proceedings of the 8th International
Conference on Cloud Computing and Services Science. 221–232.

Taylor, N., Human, C., Kruger, K., Bekker, A. & Basson, A.H. 2020. Comparison of
Digital Twin Development in Manufacturing and Martime Domains. In Borangiu T.,
Leitão P., V. Botti V., Trentesaux D., & Boggino A.G. (eds.) Service Orientated,
Holonic and Multi-agent Manufacturing Systems for Industry of the Future -
Proceedings of SOHOMA 2019 Volume 853 ed. Springer Nature Switzerland AG.
158–170.

Therrien, J.D., Nicolaï, N. & Vanrolleghem, P.A. 2020. A critical review of the data
pipeline: How wastewater system operation flows from data to intelligence. Water
Science and Technology. 82(12):2613–2634.

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1080/00207543.2021.1937747

179

Tovarnitchi, V.M. 2017. Cloud-Based Architectures for Environment Monitoring. in
Proceedings - 2017 21st International Conference on Control Systems and
Computer, CSCS 2017. 708–714.

Tovarnitchi, V.M. 2019. Designing distributed, scalable and extensible system
using reactive architectures. in Proceedings - 2019 22nd International Conference
on Control Systems and Computer Science, CSCS 2019. 484–488.

Ullah, A., Azeem, M., Ashraf, H., Alaboudi, A.A., Humayun, M. & Jhanjhi, N.Z. 2021.
Secure Healthcare Data Aggregation and Transmission in IoT - A Survey. IEEE
Access. 9:16849–16865.

University of Kentucky. n.d. Kentucky Dataset. [Online], Available:
https://uknowledge.uky.edu/wdst/index.2.html [2021, October 18].

VanDerHorn, E. & Mahadevan, S. 2021. Digital Twin: Generalization,
characterization and implementation. Decision Support Systems.
145(February):113524.

Villalobos, K., Ramírez-Durán, V.J., Diez, B., Blanco, J.M., Goñi, A. & Illarramendi,
A. 2020. A three-level hierarchical architecture for an efficient storage of industry
4.0 data. Computers in Industry. 121.

Villalonga, A., Negri, E., Fumagalli, L., Macchi, M., Castaño, F. & Haber, R. 2020.
Local Decision Making based on Distributed Digital Twin Framework. in IFAC World
Congress 2020, July 11-17, 2020, Vol. 53. 10568–10573.

Villalonga, A., Negri, E., Biscardo, G., Castano, F., Haber, R.E., Fumagalli, L. &
Macchi, M. 2021. A decision-making framework for dynamic scheduling of cyber-
physical production systems based on digital twins. Annual Reviews in Control.
(December 2020).

Xiao, Y., Xie, Q. & Deng, Z. 2018. A review on heliostat field layout and control
strategy of solar tower thermal power plants. in Proceedings of the 2018 Chinese
Automation Congress (CAC) IEEE. 1909–1912.

Zimmermann, O. 2017. Microservices tenets: Agile approach to service
development and deployment. Computer Science - Research and Development.
32(3–4):301–310.

van Zyl, J.E. 2014. Introduction to Operation and Maintenance of Water
Distribution Systems. First edit ed. Pretoria, South Africa: Water Research
Commission.

Stellenbosch University https://scholar.sun.ac.za

180

Appendix A : Heliostat field case study
details

A.1 Extended needs and constraints analysis

Table 30 provides a more complete description for each need and NFR related to
the heliostat field case study.

Table 30: Extended list of NFRs for the heliostat field case study

Need Provide for large amounts of data. (Related to N24)

Related NFR Performance efficiency.

Rationale for NFR Considering the size of the heliostat field, the amount of data
generated by each heliostat and the potential resource
constraints, there is a need to handle a large amount of data
efficiently. Therefore, resource utilisation, scalability and high
throughput are primary concerns and these are sub-
characteristics of performance efficiency.

NFR grouping Quality attribute.

Implication of NFR Use performance efficiency design pattern.

Need Allow for system changes with minimal impact. (Related to
N9)

Related NFRs Portability, maintainability.

Rationale for NFRs New heliostats, that may utilise newer technology, can be
added to the heliostat field during the heliostat field’s
operational lifetime.
Portability – Considering the large number of heliostats, the
system requires automatic reconfigurability to be feasible.
Maintainability – Modularity will help to minimise
dependencies between systems and reusability will help to
reduce the number of modules required to represent the
heliostat field.

NFR grouping Quality attributes.

Implication of NFRs Use portability and maintainability design patterns.

Need Provide for resource constrained devices. (Related to N25)

Related NFR Performance efficiency, solution constraint.

Rationale for NFR The required performance metrics must be reached with
minimal resource usage to increase the longevity of the
resource constrained devices. The LCUs of the individual
heliostats are battery powered and the batteries are charged
using photovoltaic (PV) panels. Therefore, the LCUs are
energy constrained and as a result the heliostat control
engineers have limited the computational responsibilities of
the LCUs. The resource constraints of the CCUs and FCU are
unknown.

Stellenbosch University https://scholar.sun.ac.za

181

NFR grouping Quality attribute.

Implication of NFR Use performance efficiency design pattern.
Additional code, other that the heliostat control program,
may not be implemented on the LCUs.

Need Provide for intermittent network availability and limited
network bandwidth. (Related to N26)

Related NFR Performance efficiency, reliability.

Rationale for NFR The Helio100 field has no wired of fibre connections and only
makes use of radio frequency communication between LCUs
and CCUs and of WLAN/ethernet between CCUs and FCU(s).
Therefore, the local network has good capacity, but because
of the location of the heliostat field, the external network
connection is likely to be wireless, which is comparatively
poor.
Performance efficiency – The data throughput must be
optimised to allow for the required data acquisition despite
the limited network bandwidth.
Reliability – The intermittent network availability will require
some reliability measures to ensure that data does not go
lost.

NFR grouping Quality attributes.

Implication of NFR The performance efficiency design pattern should be used
with elements of the reliability pattern to compensate for the
intermittent network availability.

Need Avoid physical resource contention amongst software
components. (Related to N27)

Related NFR Performance efficiency, compatibility.

Rationale for NFR To optimise hardware usage and thus also save costs,
software components will have to be hosted together on a
single host machine. Therefore, resource contention may
become an issue.
Performance efficiency – The digital twins must be resource
efficient to allow for multiple DTs per host.
Compatibility – Co-existence is a sub-division of compatibility
that relates to efficient resource usage of software
components to minimise the impact on other components on
the same host.

NFR grouping Quality attributes.

Implication of NFR Use the performance efficiency design pattern and
incorporate elements of the compatibility design pattern
related to co-existence.

Need Allow for retrofitting, differing levels of technological
maturity and integration with existing information systems.
(Related to N6 and N7)

Related NFR Compatibility, portability, solution and implementation
constraints.

Stellenbosch University https://scholar.sun.ac.za

182

Rationale for NFR The consultants at STERG are responsible for designing the
heliostat field and its accompanying control systems.
Therefore, the digital twins must be able to integrate with the
heliostat field as if it is being fitted onto an existing system.
Solution constraint – the design must allow for retrofitting
onto a heliostat field similar to the Helio100 field without
interfering with the existing control network.
Implementation constraints - The Helio100 field makes use of
a local PostgreSQL database that serves as the current
primary data source of all historical data. Therefore, there is a
preference for PostgreSQL because the current engineers are
familiar with it.
Compatibility – The differing technologies must be
interoperable.
Portability – System components must be replaceable.

NFR grouping Quality attributes, development constraints.

Implication of NFR The compatibility and portability design patterns must be
applied to ensure that different technologies and components
can be replaced without disrupting the system.
Some of the technologies related to the data acquisition part
of the digital twin are predefined and must be integrated
with, such as the use a PostgreSQL database for local storage.

Need Verify and validate the behaviour of DTs in response to
system changes. (Related to N10)

Related NFR Maintainability.

Rationale for NFR The proper functioning and performance of the heliostat field
must be ensured after physical parts are replaced and after
software components are updated. Considering that there is a
high opportunity for software reuse, the impact of software
changes can also be widespread.
Maintainability – Testability is a sub-characteristic of
maintainability that directly links to the verification and
validation of system components.

NFR grouping Quality attribute.

Implication of NFR Use the maintainability design pattern to improve the
testability of the digital twins.

Need Structure the data to prevent it becoming unusable. (Related
to N21)

Related NFR Maintainability.

Rationale for NFR Reusability of data should be ensured despite the increase in
volume.

NFR grouping Quality attribute.

Implication of NFR Make use of the maintainability design pattern.

Need Provide a cost-effective solution. (Related to N28)

Related NFR Cost constraint.

Rationale for NFR The high initial costs of heliostat fields are a deterrent to their
adoption and thus the cost must be minimised.

Stellenbosch University https://scholar.sun.ac.za

183

NFR grouping Development NFR.

Implication of NFR The cost constraint will limit the amount of development time
that can be spent on quality assurance and testing.

Need Allow for easy long-term maintenance and extension.
(Related to N14)

Related NFR Maintainability, portability.

Rationale for NFR Maintainability – A heliostat field has a long operational
lifetime and software maintenance must be provided for the
duration of the physical system’s lifecycle.
Portability – The long operational lifetime of the heliostat field
means that new technologies will be developed during the
operational lifetime of the heliostat field. Therefore, provision
must be made to allow for changes in software and hardware
technology.

NFR grouping Quality attributes.

Implication of NFR Use maintainability and portability design patterns. The
portability design pattern is particularly important in this case
since STERG emphasised the need to adapt to changes in
hardware.

A.2 Extended span of reality for the heliostat field

Table 31 presents an extended span of reality for the components of the heliostat
field.

Table 31: Span of reality of the heliostat field components.

Physical component Heliostat with local control unit (LCU)

Physical system scope Individual heliostat

Data characterisation
(Data granularity) of
data recorded/
generated by physical
component

Stepper motor positions – two, int, between 0 and 200 000,
(step counts), generated every minute
Battery value – float, between 5.5 and 8.2, (Volts),
generated every minute
Timestamp – datetime, N/A, (N/A), generated every minute

Data characterisation
(Data granularity) of
data sent to physical
component

Local coordinates of the sun – See Cluster control unit
below.
Translated operator control commands – details unknown

Data format JSON formatted message

Communication Radio Frequency (RF) communication using a serial bus.

Considerations and
Constraints (Capacity
for interaction)

LCUs are power constrained and thus the activity of the
LCUs need to be minimised.
The LCUs only support RF communication.

Stellenbosch University https://scholar.sun.ac.za

184

The design requires 10 002 individual heliostats and they
may differ slightly in composition (e.g. newer heliostats
make use of newer components and future heliostats may
have more sensors).

Physical component Pod of heliostats

Physical system scope 6 Heliostats

Data characterisation
(Data granularity)

No data added at this level

Data format None

Communication No communication to a pod

Considerations and
Constraints (Capacity
for interaction)

There is no hardware or software implemented at pod
level.
The design will have 1667 pods.

Physical component Cluster control unit (CCU)

Physical system scope 24 or 30 heliostats (4 or 5 pods)

Data characterisation
(Data granularity) of
data recorded/
generated by physical
component

Unique identifier for each heliostat – String, N/A, (N/A)
static value
Status value for each heliostat – String, [start-up, manual
move, running, standby, home, calibration, e-stop, offline],
(N/A), generated every minute or on request (the CCU
generates a status value per minute but an operator can
force a state aswell)
Translated operational commands – The commands are
unknown but the operational commands come from the
FCU, are translated by the CCU and sent to the LCU in a
format familiar to the LCU.
Grena algorithm inputs:
Fractional Universal Time (UT) – Float, between -12.00 and
+12.00, (N/A), every minute. Fractional UT is the time in
hours and fractions of hours from the Greenwich midnight.
Date – three (day – d, month – m, year - y), int, d – 1 to 31;
m – 1 to 12; y – 2003 to 2023, (N/A), every minute. The
Grena algorithm is valid for 20 years, after which the
algorithm parameters must be adjusted.
Time difference between UT and terrestrial time – float,
unknown, (seconds), every minute.
Longitude - Float, unknown, (radians), every minute.
Latitude - Float, unknown, (radians), every minute.
Grena algoritm outputs:
global coordinates of the sun – two, Float, unknown,
(radians), every minute. The global coordinates are right
ascension and declination
local coordinates of the sun – three, Float, unknown,
(radians), every minute. The local coordinate angles are the
hour angle, zenith angle and azimuth angle.

Data characterisation
(Data granularity) of

Grena algorithm inputs:
Air pressure - See FCU for details

Stellenbosch University https://scholar.sun.ac.za

185

data sent to physical
component

Ambient temperature – See FCU for details
Operation commands – See FCU for details

Data format JSON formatted message

Communication ZeroMQ messaging over TCP/IP and WLAN/ethernet

Considerations and
Constraints (Capacity
for interaction)

Available processing and storage capacity of CCUs is
unknown
Assuming each CCU controls 4 pods, 417 CCUs will be
required. Assuming each CCU controls 5 pods, 334 CCUs
will be required.

Physical component Field control unit (FCU)

Physical system scope Six CCUs (Which is the whole field)

Data characterisation
(Data granularity) of
data recorded/
generated by physical
component

Operational commands (from a user) - String, unknown,
(N/A), user driven.

Data characterisation
(Data granularity) of
data sent to physical
component

Calibration images – images (format unknown), N/A, N/A,
32 images are taken at a rate of 3-5 images a second for
every heliostat calibration sequence. A calibration
sequence is triggered by a user.
Weather data:
Direct normal irradiance (DNI) – float, unknown, (W/m^2),
every minute.
Wind speed – float, unknown, (m/s), every minute
Air pressure - Float, unknown, (atm), every minute
Ambient temperature – Float, unknown, (°C), every minute.

Data format JSON formatted message

Communication With CCUs - ZeroMQ messaging over TCP/IP and
WLAN/ethernet
With weather station – HTTP
IP camera (for calibration) – Unknown

Considerations and
Constraints (Capacity
for interaction)

Available processing and storage capacity of the FCU is
unknown and thus the number of CCUs that can be
supported by a single FCU is unknown.
The current FCU design stores all the captured data locally
in a PostgreSQL database with no reduction being applied.

A.3 Extended physical architecture description

The physical architecture in Figure 15 presents the internal structure of DTs
implemented as part of the heliostat field system of DTs. Layers 1 and 2 of the DTI
were simulated to allow for the flexibility to add and remove heliostats and CCUs
as the experiments required. The simulated heliostats and CCUs also allow for a
scale of data that would not be feasible in a laboratory environment. The

Stellenbosch University https://scholar.sun.ac.za

186

simulated heliostats and CCUs generated data that mimicked the data of a
heliostat field as described in Table 28. This amounted to a message size of 300
bytes which contained all the relevant data for the mirror service concerning a
heliostat. However, the frequency that data was generated at was adjusted as
required by the various experimental scenarios.

Furthermore, the simulated CCUs collected the data from multiple simulated
heliostats before writing the data to a PostgreSQL database in Layer 3. The
simulated heliostat’s battery values and motor values were programmed to
fluctuate and can trigger a simulation status change (if the values deviated from
the expected ranges) or the heliostat simulation could generate a “fault” (an
artificial fault could be triggered). These value fluctuations and artificial faults
were introduced so that typical pre-processing and fault handling could also be
mimicked within the DTs’ Layer 4.

The DTIs’ and DTAs’ Layer 4 are custom developed Python programs, as well as
some Google Cloud Platform (GCP) services. The Layer 4 composition of both DTIs
and DTAs are presented in Figure 18. The DTIs’ local Layer 4 consists of five
modules: data ingestion, processing, communication, orchestration and
configuration. The data ingestion module reads data from the PostgreSQL
database. The processing module performs a data format conversion (from csv to
JSON), as well as some rule-based checks and fault handling on the data (such as
out-of-bound value checks). The communication module contains an MQTT client
with the connection and callback logic, as well as SSL/TLS security logic to secure
all communications. Two communication modules were used per DT: one to send
data to the cloud and another for aggregation. The orchestration module is the DT
program’s entry point and coordinates the other modules, while the configuration
file contains information unique to each DT (such as an ID, SSL/TLS security
certificates, connection information, etc.)

The cloud-based portion of Layer 4 is fulfilled using GCP’s IoT Core, Pub/Sub and
Cloud Functions services. The IoT Core contains an MQTT broker which receives
data from one of the local Layer 4’s MQTT clients. The Pub/Sub service essentially
acts as an MQTT client within the cloud and makes the data in the IoT Core
available to the rest of the cloud platform. Cloud Functions are standalone,
stateless and temporary functions that are triggered by events within the cloud.
In this case study, these functions were triggered by the Pub/Sub service when
new data became available within the cloud. Once triggered, the functions write
the data to a Firestore database, which is a NoSQL document store.

It should be noted that it is possible to write directly to the Firestore database
from the local Layer 4, using the Firestore APIs. However, the method above is
generally preferred when many devices are interacting with the database, because

Stellenbosch University https://scholar.sun.ac.za

187

the IoT Core and Pub/Sub services provide support for features such as device
monitoring, load balancing and temporary data storage for reliability.

The DTA modules are similar to the DTI modules, except that the DTA does not
have a data ingestion module and the processing module aggregates the data
instead of doing format conversion. The aggregation is done through a broker and
since it is aggregation through Layer 4, it is pre-storage aggregation.

Figure 18: Layer 4 breakdown of the DTI and the DTA

The long-term database on Layer 5 is a Firestore database. Firestore is a document
store and it was chosen because of its scalability, reconfigurability and
compatibility with the JSON data format. Finally, Layer 6 makes use of GCP’s App
Engine service which is a service that helps deploy web applications within GCP. In
this case, App Engine was used to deploy a basic mirror service that simply
displayed the data available in the Firestore database. Therefore, the mirror
service just served as validation that the data, sent by the simulated heliostats,
were captured in long-term storage.

Stellenbosch University https://scholar.sun.ac.za

188

A.4 Varying message frequency experiments

The purpose of the varying message frequency experiments is to determine the
sensitivity of the architecture to changing message frequency (which is a
component of throughput as discussed in Section 9.1.2). Scalability is essentially
the ratio between throughput and resource usage (as discussed in Section 4.3).
The host machines used for the experiments were kept constant and thus at full
load the resource usage in each case was also constant. Therefore, the difference
in throughput is a result of the different aggregation methods and technologies.

Throughput can be adjusted by changing the message frequency, changing the
message size and by increasing the number of messaging channels, i.e. the number
of DTIs (as discussed in Section 9.1.2). Therefore, for the experiments that tested
the effect of varying message frequency, the message size was kept constant and
the number of DTIs was periodically increased as discussed in Section 13.2.3.1. The
results of these experiments are presented in Figure 19 and Figure 20. The vertical
bars in the figures indicate the range of the values observed in repeated
experiments, while the lines pass through the mean values.

Figure 17 presents the number of DTIs that could be sustained at different
message frequencies, as well as the collective message threshold at different
message frequencies. The number of DTIs refers to the maximum number of DTIs
that could be sustained (measured within the threshold period) and the collective
message threshold refers to the number of messages that were processed by the
DTA. The message frequency refers to the frequency at which DTIs send their
messages and it was controlled by adjusting the sleep time of the DTIs. The sleep
time is the time in between logic execution cycles of a DTI, where a logic execution
cycle refers to the DTI reading data, processing data and sending the data as a
message (Section 13.2.2 describes the modules that relate to these steps).

Figure 17 shows that the local Mosquitto broker can sustain the most DTIs at a
given message frequency, followed by the cloud-based Mosquitto broker and then
the Pub/Sub service. For example, at a frequency of one message per second, the
local Mosquitto broker can sustain 25 DTIs, the cloud-based Mosquitto broker can
sustain 17 DTIs and the Pub/Sub service can sustain 6 DTIs. Similarly, at a fixed
number of DTIs, the local Mosquitto broker can sustain the highest message
frequency, followed by the cloud-based Mosquitto broker and then the Pub/Sub
service. Furthermore, the collective message threshold fluctuates slightly, but
remains relatively consistent across multiple message frequencies. Therefore, the
collective message threshold is likely the maximum throughput that can be
sustained by the system of DT for the given experiment configuration.

Stellenbosch University https://scholar.sun.ac.za

189

Figure 19: Number of DTIs and the collective message threshold for different
message frequencies.

The collective message threshold of the cloud-based Mosquitto broker does,
however, fluctuate more than the other brokers’ collective message threshold.
The reason for this deviation from the expected result is uncertain but is likely
because of network effects since it does not seem to correlate with the number of
DTIs, message frequency, percentage message loss or mean latency.

Figure 20 presents the mean latency and percentage message loss at various
message frequencies. Figure 20 shows that the mean latency of the local
Mosquitto broker is the lowest and it displays the least variation in latency. The
Pub/Sub service displayed the highest latencies, as well as the highest variation in
latencies.

Furthermore, the cloud-based Mosquitto broker displays the lowest percentage
message loss, followed by the local Mosquitto broker and then the Pub/Sub
service. The cloud-based Mosquitto broker also displays the lowest variation in
percentage message loss, followed by the local Mosquitto broker and then the
Pub/Sub service. However, it is important to note that the DTIs were using a
quality of service (QoS) of 0 (QoS = 0 does not guarantee that a message is

Stellenbosch University https://scholar.sun.ac.za

190

received) when aggregating via the local Mosquitto broker. When aggregating via
the cloud-based Mosquitto broker, the DTIs were using a QoS of 1 (which is
supposed to guarantee that each message is received at least once). Originally the
DTIs used a QoS of 0 for both Mosquitto brokers, to minimise latencies and
prevent possible data duplication, but the cloud-based Mosquitto broker was
losing more that 20% of the messages when QoS was set to 0. Therefore, the DTIs’
QoS levels were adjusted to 1 for the cloud-based Mosquitto broker. The DTAs
used a QoS of 1 to send data back to the DTIs, regardless of which broker was
being used.

Figure 20: Mean latency and percentage message loss for different message
frequencies.

The experiment results presented in this section indicate that message frequency
of the DTIs have a significant effect on the number of DTIs that can connect to the
broker and DTA, but the collective message threshold sustained by the DTA
remains relatively constant. This is significant because it indicates that throughput
is relatively constant and thus to accommodate more DTIs, the message frequency
should be reduced.

Stellenbosch University https://scholar.sun.ac.za

191

Furthermore, these experiments contributed to validating the performance
efficiency design pattern by demonstrating how local network aggregation is
better for lower latencies and higher throughput than cloud-based aggregation.
The reliability of the local network aggregation is likely to be better, with a lower
percentage messages loss, less variation in percentage message loss and less
variation in latency.

A.5 Varying message size experiments

The purpose of the varying message size experiments is to determine the
sensitivity of the architecture to changes in message size. As mentioned in
Appendix A.4, throughput can be adjusted by adjusting the message frequency,
message size or number of messaging channels. For the experiments discussed in
this section, the message frequency was fixed while the message size was
changed. The results of the experiments are presented in Figure 21 and Figure 22.

Figure 21: Number of DTIs and collective message threshold for different
message sizes.

Stellenbosch University https://scholar.sun.ac.za

192

Figure 21 shows that the local Mosquitto broker can sustain the greatest number
of DTIs and the greatest collective message threshold, followed by the cloud-based
Mosquitto broker and then the Pub/Sub service. Therefore, the local Mosquitto
broker again displays the best throughput, followed by the cloud-based Mosquitto
broker and then the Pub/Sub service.

The results from Figure 21 further indicate that the effect of message size is not
significant before the 20kB message size but thereafter a new bottleneck is
reached. Before the 20kB point, the number of DTIs for each broker remains within
expected range and the collective message threshold drops off slightly by one
message per second for each Mosquitto broker. However, after the 20 kB message
size, a significant downward trend can be observed for both Mosquitto brokers.
The Pub/Sub service on the other hand remains relatively stable for all the
message sizes, where only a slight downward trend is observed for the number of
DTIs.

For the Mosquitto brokers, the bottleneck is most likely the network bandwidth.
The reasoning behind this is that as the message size increases after the 20kB
point, the number of DTIs decreases. Considering that message frequency was
kept constant, the throughput is also likely keeping constant at its maximum
threshold.

For the Pub/Sub service, the bottleneck is likely a cloud platform throttling limit.
The reasoning behind this is that for the varying message frequency and varying
message size experiments, the collective message threshold remains relatively
constant, around 5 messages per second, regardless of any other changes made
to the system. This observation is further supported by Kajati et al. (2019), where
a similar observation was made while using Microsoft Azure.

Furthermore, Figure 22 shows that the local Mosquitto broker also has the lowest
latency, followed by the cloud-based Mosquitto broker and then the Pub/Sub
service. The bandwidth bottleneck at the 20 kB point also marked a significant
increase in latency for both Mosquitto brokers. The reason for the increase in
latency for the Pub/Sub service, however, is uncertain but is likely related to the
decrease in percentage message loss.

For the Mosquitto brokers, the DTIs used a QoS level of 0 for aggregation through
the local Mosquitto broker, whereas the DTIs used a QoS level of 1 for aggregation
through the cloud-based Mosquitto broker (the reason for this is discussed in the
previous section). For the smaller message sizes, the cloud-based Mosquitto
broker displayed a lower percentage message loss than the local Mosquitto
broker. However, as message size increased, the difference in percentage message
loss between the brokers became smaller. This is likely because fewer messages
were sent at the larger message sizes.

Stellenbosch University https://scholar.sun.ac.za

193

Figure 22: Mean latency and percentage message loss for different message
sizes.

The experiment results presented in this section indicate that message size is not
as significant as message frequency when considering the scalability. However, at
sufficiently large message sizes (20 kB or more in this case) the message size does
become increasingly more important to consider. The message size experiments
also emphasised the need to make provision for poor network connectivity and
MQTT was ideal for this. With a QoS level of 1, the message loss was very low,
even near maximum DTA capacity. Therefore, in this architecture, MQTT and the
Mosquitto broker (which was the message-oriented middleware) allowed the
architecture to satisfy N26 in Table 27 (the need to provide for intermittent
network connectivity). However, in performance efficiency scenarios, good
network hardware, such as ethernet connections and network switches, would
make a significant impact.

Furthermore, the results discussed in this section further support the conclusions
that local network aggregation has lower latencies and better throughput than
cloud-based aggregation.

Stellenbosch University https://scholar.sun.ac.za

194

A.6 Multiple aggregate, multiple broker experiments

The purpose of the multiple aggregate and multiple broker cases is to demonstrate
the scalability of the architecture through partitioning. In particular, four cases
were investigated: 1) a local and a cloud-based Mosquitto broker with a single
DTA, 2) a local and a cloud-based Mosquitto broker with a DTA dedicated to each
broker, 3) a single cloud-based Mosquitto broker with two DTAs and 4) the
Pub/Sub service with two DTAs. Each of these cases have a fixed message
frequency and fixed message size, while DTIs are periodically added to the system
of DTs to gradually increase the messaging load.

The results of the various cases are summarised in Table 32, where each
experimental case was conducted twice to consider the repeatability of the
results. The respective results of an experimental case are marked as a and b,
while the cases have been separated with alternating light and dark rows.

Table 32: Scalability experiment results for multiple brokers and multiple
aggregates

Case
number

Brokers DTAs Threshold
number of
DTIs

Collective message
threshold

Total
message
loss

1a L&Ci 1ii 6 10.60 0.40%

1b L&C 1 8 10.97 0.30%

2a L&C 1&4iii 21+iv 36.58+ 0.56%

2b L&C 1&4 20 34 1.95%

3a Cv 1&4 20 32.67 3.74%

3b C 1&4 21+ 35.05+ 4.91%

4a Pub/Sub 1&4 8 7.82 0.00%

4b Pub/Sub 1&4 9 8.23 2.47%

i - L&C means that both the Local Mosquitto and the Cloud Mosquitto brokers were active.
ii - 1 here refers to Host 1. Therefore, the DTA being used is the one on Host 1.
iii - 1&4 means that the DTA on Host 1 was active as well as the DTA on Host 4.
iv - The “+” operator indicates that the system never reached a limit point.
v - C refers to the Cloud Mosquitto broker.

The results of Case 1 (two Mosquitto brokers with one DTA) indicate that adding
brokers without adding DTAs decreases the throughput of the system of DTs. The
likely reason for this is that the DTA must sustain a third MQTT client (one client
for the IoT Core and one client for each Mosquitto broker) and this requires the
DTA to sustain an additional thread (each MQTT client requires their own thread
because MQTT clients enter a blocking loop to allow for the receipt of messages).
Therefore, forcing the DTA to switch between more threads negatively impacts

Stellenbosch University https://scholar.sun.ac.za

195

the throughput of the DTA. This can be observed in the data captured during the
experiments which show that the DTA’s mean processing time per message goes
up from 0,01 – 0,02 seconds per message to 0,03 – 0,05 seconds per message.
That is roughly double the processing time and as a result roughly half the
throughput when compared to the single DTA and single broker case with the
same experimental parameters.

The results of Case 2 (two brokers with two DTAs) indicated that the partitioning
of the DTIs between two brokers and two DTAs produced the best throughput. In
this case, the DTIs were divided into two groups, where one group was aggregated
through one broker to one DTA, while the other group was aggregated through
the other broker to the other DTA. This allowed for a collective message threshold
of up to 36.58 messages per second, 12 messages per second more (50% increase)
than a single local Mosquitto broker and 20 messages per second more (125%
increase) than the single cloud-based Mosquitto broker with otherwise the same
experimental parameters.

The results of Case 3 (a single cloud-based Mosquitto broker with two DTAs)
proved to be very insightful. The single cloud-based Mosquitto broker with two
DTAs was able to sustain a collective message threshold twice as high as the cloud-
based Mosquitto broker with a single DTA (all other parameters being the same).
Therefore, this experimental case indicates that the DTA was the limiting factor in
the scalability experiments, involving the Mosquitto brokers, that investigated
varying message frequencies presented in Appendix A.4.

It is suspected that the DTA was the bottleneck because it was unable to process
and return all the messages fast enough. This means that the collective message
threshold is the maximum number of messages that the DTA could receive,
process and send back before becoming unstable. The difference in throughput
for the local Mosquitto broker versus the cloud-based Mosquitto broker is likely
because of a combination of three factors: 1) the difference in messaging latency,
2) the difference in time it takes the DTA to acknowledge and/or resend messages
to the respective brokers (the DTA uses a QoS of 1 regardless of the broker as
mention in Appendix A.4) and 3) the DTA must likely resend more messages to the
cloud-based Mosquitto broker.

Finally, the results of Case 4 (the Pub/Sub service with two DTAs) show that the
Pub/Sub service with two DTAs shows about a 78% increase in throughput when
compared to a single DTA. This means that the cloud platform throttling discussed
in Appendix A.5 is likely being applied to the number of messages being sent and
received by each DTA or on the respective host machine that the DTAs are being
hosted on.

Stellenbosch University https://scholar.sun.ac.za

196

Case 1 demonstrates the effect of increased processing time within the DTA,
where the number of DTIs that could be supported were halved when DTA
processing time was doubled. Therefore, this supports the performance efficiency
design pattern’s suggestion to decentralise processing logic from the DTA to the
DTIs where possible to improve performance and to prevent the DTA from being
a bottleneck. The results of cases 2, 3 and 4 demonstrates the scalability of the
architecture by partitioning the DTA to improve the throughput, where each of
these cases displayed significant increases in throughput after partitioning. This
also validates the performance efficiency design pattern’s recommendation to
replicate or partition to improve performance.

Furthermore, during the multiple brokers and DTA experiments it was determined
that the DTA is the likely bottleneck for these experiments. To alleviate this
bottleneck, the DTA was partitioned (as shown by case numbers 2 and 3 in Table
32) and the throughput was significantly increased.

A.7 Real world scenario

The previous experiments investigated the system scalability in various
configurations, as well as the potential limitations to the scalability of the system
of DTs. The real-world scenario, presented here, aims to determine how many
heliostats can potentially be monitored using one broker and one DTA with typical
heliostat field data parameters. The results of the experiments for each broker are
summarised in Table 33. The discussion after the table extrapolates the results to
determine the potential number of CCUs and heliostats that could be monitored.

Table 33: Broker results comparison

Broker Threshold
number of
DTIs

Collective message
threshold [msg/s]

Total
messages loss

Mean
latency [s]

GCP Pub/Sub 28+ 2.68+ 2.19% 1.126
±0.231

Local
Mosquitto

31+ 2.92+ 0.29% 0.049
±0.019

Cloud
Mosquitto

32+ 3.05+ 0.00% 0.725
±0.116

In general, the threshold number of DTIs and the collective message threshold for
each broker case are similar, where none of the cases reached a limit point.
Instead, the maximum number of DTIs that the host machines could sustain, given
the broker configuration, was reached. Therefore, the experimental hardware was
the limiting factor during these experiments. Despite this limitation, the results
are extrapolated to provide an indication of how many heliostats could potentially
be sustained.

Stellenbosch University https://scholar.sun.ac.za

197

The experiment shows that the Pub/Sub service can at least sustain 28 DTIs. The
messages are also being sent back and forth (because round-trip latency is being
measured) and thus it is possible that the data pipeline can sustain a higher
number of DTIs when fewer messages are sent back to the DTI. This is particularly
likely given the conclusion that the DTA is the bottleneck because it must resend
messages to the DTIs (as discussed for Case 3 in the previous section).

Given that the number of threshold messages per second remained relatively
constant during the experiments discussed in Appendix A.4, this could be a good
indicator of the data pipeline’s potential scale. If the collective message threshold
for the Pub/Sub service was capped at 4 messages per second, and no other
problems are incurred (such as bandwidth limitations, or throttling), the system of
DTs could theoretically sustain 41 DTIs. If the DTIs are also only required to send
data frequently and not to receive data frequently, the number of threshold DTIs
might even be 80. If each DTI had 5 pods connected to it, the number of heliostats
represented by system of DTs would be 2400 heliostats.

For the local Mosquitto broker all 31 of the available DTIs were able to connect.
Extrapolating according to the same logic as for the Pub/Sub service and based on
a collective message threshold of 22 messages per second, the broker should be
able to support about 233 DTIs. Then assuming a relatively high frequency of
messages sent per second and a low frequency of messages received, the potential
number of threshold DTIs could be as high as 460, equating to 13800 heliostats.
Similarly, the cloud-based Mosquitto broker could theoretically be able to support
310 DTIs, equating to 9300 heliostats (assuming a message threshold of 15
messages per second).

Based on the extrapolated results, the local Mosquitto broker would be the only
broker configuration that could sustain the data capturing requirements of the
5 MW heliostat field. However, further consideration should also be given to the
partitioning of the heliostat field amongst two or three DTAs and brokers for the
sake of reliability. If this advice were to be followed, the cloud-based Mosquitto
broker would also be capable of sustaining the data capturing.

A.8 Reconfigurability experiments

The purpose of the reconfigurability experiments is to contribute to validating the
portability of the aggregation hierarchy, as well as the design choices made
according to the portability design pattern. Therefore, this section discusses the
effort required to perform certain reconfigurations on the system of DTs and thus
it serves as a qualitative evaluation of the portability and maintainability of the
architecture. Three reconfiguration scenarios are discussed: adding or removing a
DTI, adding or removing a DTA and adding or removing a broker.

Stellenbosch University https://scholar.sun.ac.za

198

Adding or removing a DTI:

Adding a new DTI into the system of DTs requires reconfiguration on three
components: the DTI’s Layer 4, the DTA’s Layer 4 and the cloud platform. The
reconfigurations required on each component are discussed below.

In Layer 4 of the DTI:

• For communication to Layer 5 of the DTI, the authentication credentials must
be generated and the MQTT client must be configured to connect to the right
IoT Core device (the IoT Core device is a cloud-based avatar for the actual
device which is the DTI’s Layer 4 in this case). The authentication credentials
consist of the CA certificate for the TLS protocol and a private key to sign the
JWT.

• For aggregation and communication through the Mosquitto brokers, the CA
certificate, the private key, and the private key certificate for the TLS protocol
must be configured. The MQTT client must also be configured to connect to
the right broker, connect to the right DTA, and connect with a unique ID.
When using the Pub/Sub service, the DTI only requires a service account for
authentication and the correct Pub/Sub topic (that links to a certain DTA)
must be specified.

In Layer 4 of the DTA:

• For a new DTI to connect to the DTA, only the pod numbers associated with
that DTI need to be specified in the DTA’s configuration file. The DTA also
needs to know the DTI’s unique device id, but that is part of the metadata of
the JSON message sent by the DTI.

In the cloud platform:

• For communication to a DTI’s Layer 5, a new device, with an accompanying
public key, must be created within an existing registry of GCP IoT Core. Care
must be taken to link the right public-private key pairs. The most effective way
to do this is to use the Google SDK and batch script to create all the required
IoT Core devices with their accompanying public keys. No changes have to be
made in Cloud Pub/Sub, Cloud Functions or in Firestore.

• If aggregation is done using the Pub/Sub service, Cloud IAM must be used to
create a service account for the DTI, or an existing service account can also be
used.

These are the minimum reconfigurations that need to be done to create a new
DTI. None of these reconfigurations require source code changes. All the changes
can be done by changing the specifications in the configuration file of the DTI and
DTA, respectively. Changes made to the cloud platform components are also
configuration changes that are done through a GUI provided by the cloud

Stellenbosch University https://scholar.sun.ac.za

199

platform. The most time and effort were spent on configuring and generating the
security credentials.

Furthermore, if a DTI suddenly stops working, the rest of the DT system can
function normally. The DTA will simply stop updating the DTI’s related profiles (a
profile is a class within the DTA responsible for aggregating and keeping track of
data for each heliostat). The IoT Core will raise an error to indicate that the DTI
has stopped sending messages, but this has no effect on the performance of the
other DTIs.

Adding or removing a DTA:

As with the DTI, when a DTA is added to the system of DTs, changes need to be
made to the DTI Layer 4, DTA Layer 4 and the cloud platform.

In Layer 4 of the DTI:

• If a DTI must send data to the new DTA, the same reconfiguration must be
followed as described for aggregation (point two) in a DTI’s Layer 4.

• If a DTA fails, the DTI connected to the DTA will continue to operate normally,
and still send the full set of data to the IoT Core.

In Layer 4 of the DTA:

• For communication to a DTA’s Layer 5, the same reconfigurations can be
applied as described for the DTI’s Layer 4.

• For aggregation and communication through the Mosquitto brokers, the CA
certificate, private key, and private key certificate must be provided along
with the hostname of the broker. The pod numbers of all the heliostats that
need to connect must be specified and the desired profile data must be
specified (only if the DTA aggregates different data than previous DTAs). The
logic to process different data must also be added if applicable.

In the cloud platform:

• A new IoT Core device must be added and provided with the right public key.
If applicable, a new registry must be created in the IoT Core and it must be
linked to a new or existing Cloud Pub/Sub topic.

• If a DTA fails, IoT Core will log the error and continue to serve other digital
twins.

As with the DTI, all the changes mentioned above are configuration file changes.
The one exception would be if the new DTA applied different aggregation or
processing logic, in which case a source code change would be required.

Stellenbosch University https://scholar.sun.ac.za

200

Adding or removing a broker:

To create a new Mosquitto broker, the TLS credentials (the CA certificate, the
public key and private key certificates) must be specified in the configuration file.
The private key certificate must also contain the IP address and/or domain name
of the new Mosquitto broker. In addition, the password file, i.e. the file with
allowed usernames and passwords, must be provided in the broker’s configuration
file.

If the Mosquitto broker fails, it can be configured to automatically start-up again
using a batch script. While the broker is down, however, no aggregation will take
place. Once the broker is available again, all the clients should reconnect, provided
their MQTT clients are configured to do so.

For Pub/Sub, creating a new broker would be to create a new Pub/Sub topic and
subscription. This can be done using two lines of Google SDK batch script. The new
topic name and subscription name would have to be supplied to the DTIs and DTAs
that need to use it. In the case that a Pub/Sub client stops sending to or receiving
from a topic, it is unsure whether the messaging will continue automatically. In
the experiments where a client did stop sending or receiving messages, the
messaging only continued when the DTI or DTA was restarted.

Stellenbosch University https://scholar.sun.ac.za

