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Summary

SUMMARY

This document contains the work done on the bearingless rotor hub for the 

24% scale model of the Rooivalk Attack Helicopter situated at the CSIR in 

Pretoria. This work forms part of the MSc Ing degree of Johannes Steyn.

This work was deemed necessary because of a movement away from the fully 

articulated rotor to one of hingeless and more recently bearingless rotors.

The main emphasis of this thesis is to be a technology demonstrator more 

than the design of a fully working bearingless rotor hub. With this in mind the 

final design in this report is not an optimal one, but the procedures and 

methodology in getting to a design are laid out in this document.

To verify the design, tests were identified and created. The procedures for 

these tests are also included in this document. For the fatigue test a test 

bench had to be designed and built. This document also includes the design 

of this test bench.
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Opsomming

OPSOMMING

Die dokument lewer verslag van die aktiwiteite vir die ontwerp van ‘n laerlose 

rotor van die 24% skaal model van die Rooivalk Helikopter, gelee by die 

WNNR in Pretoria. Die werk gedoen vorm deel van die MSc Ing graad van 

Johannes Steyn.

Die werk is nodig geag omdat daar ‘n tendens is om weg te beweeg van die 

volledig geartikuleerde rotor na die van ‘n skanierlose en meer huidig ‘n 

laerlose rotor.

Die hoof klem van die tesis is om as tegnologie demonstrator op te tree, 

eerder as die daarstel van ‘n werkende laerlose rotor. Na aanleiding van 

bogenoemde stelling kan die finale ontwerp nie as optimaal beskou word nie. 

Die prosedures en metodiek wat gevolg is om die ontwerp te kry word uitgele 

in die dokument.

Om die ontwerp te verifieer is toetse gei'dentifiseer. Die prosedures vir elk 

van die toetse word ook in die dokument ingesluit. Vir die uitputtingstoetse 

moes ‘n spesiale toetsbank ontwerp en gebou word. Die ontwerp van hierdie 

toetsbank is ook in die dokument.
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Nomenclature

NOMENCLATURE

ACRONYMS AND ABREVIATIONS

CROSEC

CSIR

DYMORE

FEA

FEM

FEMANA

FEMAP

FLEXBEAM

FOS

PREFEM

PSTFEM

Part of the DYMORE Program for Calculating Cross- 

Section Properties

Council for Scientific and Industrial Research 

Program for Calculating Static (e.g. Deflections and 

Stresses) and Dynamic (e.g. Natural Frequencies and 

Time Response) Behaviour of High Aspect Ratio Rotors. 

Developed by a Research Group at the Rensselaer 

Polytechnic Institute 

Finite Element Analysis 

Finite Element Methods

Part of the DYMORE Program for Doing the FEM 

Analyses

Finite Element Modelling Application 

Bearingless Rotor Hub 

Factor of Safety

Part of the DYMORE Program for Initialising the FEM 

Model

Part of the DYMORE Program for Doing the Post 

Processing
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SYMBOLS
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Introduction

A movement away from the fully articulated rotor towards the hingeless and 

later the bearingless rotor began almost 30 or so years ago. In the early days 

and still today there are a lot of companies doing feasibility and upgrade 

studies on these types of rotors for their various helicopters [1].

It was in regard of this that the CSIR contacted the University of Stellenbosch 

to do an upgrade study and conceptual design of a bearingless rotor hub for 

the Rooivalk Attack Helicopter. At that stage they wanted to know whether or 

not it could be manufactured locally. A study to determine this was done by 

Prof. N.J. Theron [2] from beginning of 1996 until middle 1998.

His study focussed only on the dynamic characteristics of the bearingless 

rotor and specifically the flexbeam to see whether a replacement was 

possible. Thus the strength of the system was not looked at. He did conclude 

that the torsional stiffness of the flexbeam would most probably be too high for 

field operations. The author joined him in that study at the beginning of 1998, 

investigating specifically the strength.

That study showed that replacing the rotor with a bearingless system would 

be possible, but that more work needed to be done on it. Unfortunately, 

because of financial constraints on the CSIR, future work on the full scale was 

suspended. Due to the outcome of that report and the potential it could have 

for the Rooivalk, the CSIR showed interest in a bearingless rotor hub 

development study for the 24% scale model [15] of the Rooivalk Attack 

Helicopter that they have at their facility in Pretoria. The main focus then 

switched from the full scale to the scale model.

This thesis contains the work that was done on the development of the 

bearingless rotor for the scale model. From the onset the main objective of 

this thesis was not to obtain an optimal design for the rotor, but to find a

CHAPTER 1: INTRODUCTION

1-1
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Introduction

design methodology to a design and so make possible future work on this 

topic faster.

Because the focus shifted towards the 24% scale model, the bearingless rotor 

that is mentioned in this document is not a scaled version of the full-scale 

rotor of the Rooivalk Attack helicopter, but a design done specifically for the 

24% scale model. The procedures laid out in this document are not just for 

the scale model, but are general procedures for designing a bearingless 

system; this means that it can be applied to any scale.

1-2
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Overview o f Rotors

2.1 General

Before any work can be done on the rotor system of a helicopter it is 

necessary to have a basic understanding of how helicopters and specifically 

the rotor system works. The various types of rotors and their advantages and 

disadvantages are also discussed.

2.2 Principles of Flight and Operation

Unlike fixed-wing aircraft, the helicopter's main airfoil is the rotating blade 

assembly, the rotor, mounted atop its fuselage on a hinged shaft connected 

with the vehicle's engine and flight controls. In comparison to airplanes, the 

tail of a helicopter is somewhat elongated and the rudder smaller. The tail is 

fitted with a small antitorque rotor, the tail rotor. The landing gear sometimes 

consists of a pair of skids rather than wheel assemblies.

The fact that the helicopter obtains its lifting power by means of a rotating 

airfoil greatly complicates the factors affecting its flight, for not only does the 

rotor turns, but it also moves up and down in a flapping motion and is affected 

by the horizontal or vertical movement of the helicopter itself.

The relative wind is the direction of the wind in relation to the airfoil. In an 

airplane, the flight path of the wing is fixed in relation to its forward flight; in a 

helicopter, the flight path of the rotor advances forward (to the helicopter's 

nose) and then rearward (to the helicopter's tail) in the process of its circular 

movement. Relative wind is always considered to be in parallel and opposite 

direction to the flight path. In considering helicopter flight, the relative wind can 

be affected by the rotation of the blades, the horizontal movement of the 

helicopter, the flapping of the rotor blades, and wind speed and direction. In 

flight, the relative wind is a combination of the rotation of the rotor blade and 

the movement of the helicopter.

CHAPTER 2: OVERVIEW OF ROTORS

2-1
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Overview o f Rotors

Like a propeller, the rotor has a pitch angle, which is the angle between the 

horizontal plane of rotation of the rotor disc and the chord line of the airfoil. 

The pilot uses the collective and cyclic pitch control to vary this pitch angle. In 

a fixed-wing aircraft, the angle of attack (the angle of the wing in relation to the 

relative wind) is important in determining lift. The same is true in a helicopter, 

where the angle of attack is the angle at which the relative wind meets the 

chord line of the rotor blade.

Angle of attack and pitch angle are two distinct conditions. Varying the pitch 

angle of a rotor blade changes its angle of attack and hence its lift. A higher 

pitch angle (up to the point of stall) will increase lift; a lower pitch angle will 

decrease it. Individual blades of a rotor have their pitch angles adjusted 

individually.

Rotor speed also controls lift: the higher the revolutions per minute (rpm), the 

higher the lift. However, the pilot will generally attempt to maintain a constant 

rotor rpm and will change the lift force by varying the angle of attack.

As with fixed-wing aircraft, air density (the result of air temperature, humidity 

and pressure) affects helicopter performance. The higher the density, the 

more lift will be generated; the lower the density, the less lift will be generated. 

Just as in fixed-wing aircraft, a change in lift also results in a change in drag. 

When enlarging the angle of pitch and thus the angle of attack increases lift, 

drag will increase and slow down the rotor rpm. Additional power will then be 

required to sustain a desired rpm. Thus, while a helicopter is affected like a 

conventional aircraft by the forces of lift, thrust, weight and drag, its mode of 

flight induces additional effects.

In a helicopter, the total lift and thrust forces generated by the rotor are 

exerted perpendicular to its plane of rotation. When a helicopter hovers in a 

windless condition, the plane of rotation of the rotor (the tip-path plane) is 

parallel to the ground, and the sum of the weight and drag forces are exactly 

balanced by the sum of the thrust and lift forces. In vertical flight, the 

components of weight and drag are combined in a single vector that is

2-2

Stellenbosch University http://scholar.sun.ac.za/



Overview o f Rotors

directed straight down; the components of lift and thrust are combined in a 

single vector that is directed straight up. To achieve forward flight in a 

helicopter, the plane of rotation of the rotor is tipped forward. (It should be 

understood that the helicopter's rotor mast does not tip but rather the 

individual rotor blades within the plane of rotation have their pitch angle 

varied.) For sideward flight, the plane of the rotation of the rotor is tilted in the 

direction desired. For rearward flight, the plane of the rotation of the rotor is 

tilted rearward.

Because the rotor is powered, there is an equal and opposite torque reaction, 

which tends to rotate the fuselage in a direction opposite to the rotor. This 

torque is offset by the tail rotor (antitorque rotor) located at the end of the 

fuselage. The pilot controls the thrust of the tail rotor by means of foot pedals, 

neutralizing torque as required.

There are other forces acting upon a helicopter not found in a conventional 

aircraft. These include the gyroscopic precession effect of the rotor: that is, 

the dissymmetry of lift created by the forward movement of the helicopter, 

resulting in the advancing blade having more lift and the retreating blade less. 

This occurs because the advancing blade has a combined speed of the blade 

velocity and the speed of the helicopter in forward flight, while the retreating 

blade has the difference between the blade velocity and the speed of the 

helicopter. This difference in speed causes a difference in lift: the advancing 

blade is moving faster and hence is generating more lift. If uncontrolled, this 

would result in the helicopter rolling. However, the difference in lift is 

compensated for by the blade flapping and by cyclic feathering (changing the 

angle of pitch). Because the blades are attached to a rotor hub by horizontal 

flapping hinges, which permit their movement in a vertical plane, the 

advancing blade flaps up, decreasing its angle of attack, while the retreating 

blade flaps down, increasing its angle of attack. This combination of effects 

equalizes the lift. (Blades also are attached to the hub by a vertical hinge, 

which permits each blade to move back and forth in the plane of rotation. The 

vertical hinge dampens out vibration and absorbs the effect of acceleration or

2-3
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Overview o f Rotors

deceleration.) In addition, in forward flight, the position of the cyclic pitch 

control causes a similar effect, contributing to the equalization of lift.

Other forces acting upon helicopters include coning, the downward bending 

effect on blades caused by centrifugal force; Coriolis effect, the acceleration 

or deceleration of the blades caused by the flapping movement bringing them 

closer to (acceleration) or farther away from (deceleration) the axis of rotation; 

and drift, the tendency of the tail rotor thrust to move the helicopter in hover 

[30, 31, 32],

2.3 Types of Rotors

Basically there are three types of rotors:

1) The fully articulated rotor

2) The hingeless rotor

3) The bearingless rotor

These three types of rotors are illustrated in Figure 2-1.

2-4
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2.3.1 Fully articulated

In this type of rotor the three rotational movements, i.e. flap, lead-lag and 

pitch, are carried by three sets of bearings in the hub and moments are not 

transferred to the rest of the helicopter structure. The blade is free to hinge 

around these bearings. Originally bearings were used because it was the only 

way that rotational movement could be taken up by the system due to material 

limitations especially fatigue life [30],

2.3.2 Hingeless

In the years following the fully articulated rotor, advances in material science 

made it possible to replace the flap and lead-lag bearings with elastomeric 

bearings. This was largely due to the advances in the field of composite 

materials. In this design the pitch bearing is however left to take up the pitch 

control.

2.3.3 Bearingless

In a bearingless rotor hub all three bearings are removed and replaced with 

an equivalent structure to absorb the rotational movements of the blade. This 

structure usually takes on the form of a beam that stretches between the drive 

axis of the helicopter and the blades. The properties of this beam must be so 

that not only the necessary dynamic performance of the helicopter, but also a 

satisfactory fatigue life can still be achieved and maintained.

The bearingless rotor hub is usually constructed of some sort of composite 

materials. There are three main reasons for this.

1. The strength to weight ratio of composites is very high, making it very 

suitable for the aviation industry.

2. Because of the unique property of composites that it is laid up into 

separate layers, it can be “tweaked’ to give the desired stiffness in the
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directions wanted, to ensure dynamic stability and correct “bearing” 

performance.

3. Composite materials have a better fatigue life than metals, when the 

right lay-ups are applied.

2.4 Advantages of Hingeless and Bearingless Rotors

The biggest disadvantage of the fully articulated rotor is its bulkiness and that 

means that aerodynamically it has a lot of drag. The bulkiness is a direct 

result of the three sets of bearings that needs to be housed in the rotor. In 

comparison to these bearings that the fully articulated rotor needs, the 

bearingless rotor has a structure that is much smaller, due to the fact that the 

bearings has now been removed, and thus an aerodynamically much cleaner 

design is obtained. If the design is aerodynamically much cleaner than there 

is less drag on the system and thus more power available.

Also when designing with composite materials it results in a design with 

considerable reduction in weight and a much smaller number of parts [10]. 

The second fact, namely the reduced number of parts plays a very important 

role especially when looking at issues such as maintenance and/or 

replacement of the parts. Smaller number of part means fewer parts that can 

fail and thus less maintenance. Also because there are now no moving parts, 

the necessity for lubricants is eliminated, again less maintenance.

Another advantage of the hingeless and specifically the bearingless rotor hub 

systems are that of stiffness. Because these systems are stiffer than the fully 

articulated hub, higher control moments can be applied to the system and that 

leads to greater responsiveness and gives better manoeuvrability of the 

helicopter, which could prove vital in a military application. [30]
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3.1 Overview

The original fully articulated rotor is part of the 24% scale model at the 

facilities of the CSIR in Pretoria. The model is used for scale testing of the 

Rooivalk Attack helicopter. It is for this model that the bearingless rotor had to 

be designed. The layout of the scale model is given in Figure 3-1

CHAPTER 3: ORIGINAL FULLY ARTICULATED ROTOR

3.2 Rotor Layout

Figure 3-1: Layout of 24% scale model rotor system

3.3 Forces and Constraints

The constraints on this model are situated at two points, firstly at the base 

where the rotor hub joins up with the drive shaft and secondly at the 

intersection of the rotor hub and the blade. On the scale model these occur at 

respective distances of about 50 mm and 189 mm. The three bearings are 

located between these distances.
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Another constraint is the limit on the pitch rotation of 20 degrees.

The forces acting on the structure were taken from those supplied by the 

CSIR and can be found in Appendix B.

3.4 Computer Simulation on Dymore

The fully articulated model was constructed with information and technical 

drawings given by the CSIR [24], It was necessary to construct a DYMORE 

[19, 20] computer model of the fully articulated rotor, because the new 

bearingless rotor had to be compared with the fully articulated model in as far 

as the dynamic characteristics were concerned. For this reason the fully 

articulated model’s Southwell plot was needed.

The DYMORE model consisted of

1) 27 triads

2) 96 nodes

3) 6 beam elements

4) 3 revolute joints, to model the three bearings

5) 14 cross-sections. These cross-sections included are those of the 

blade. For calculating the blade cross-sections information supplied by 

the CSIR was used, see Appendix A.

A quasi-static analysis was done to determine the natural frequencies of the 

system for the Southwell plot. It consisted of 121 time steps taking the rotor 

speed from 0% to 120%.

No other analysis was done on the fully articulated model, because only the 

Southwell plots was needed for comparison. The Southwell plot is given in 

Figure 3-2.
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3.5 Southwell Plot

Figure 3-2: Southwell plot: fully articulated rotor
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CHAPTER 4: DESIGNING A NEW BEARINGLESS 

ROTOR

4.1 Overview

As in the design of most structures this design was also an iterative process. 

The final structure was analysed on MSC/NASTRAN for stresses and 

displacements and the Southwell plot was generated on DYMORE. The 

preliminary designs were done only on the DYMORE package to save time.

It was necessary to use both of these packages, because the MSC/NASTRAN 

for Windows package is unable to determine natural frequencies with 

centrifugal acceleration.

From this point on in this document the bearingless rotor hub will be called the 

flexbeam. The flexbeam is that part of the bearingless rotor hub that in the 

case of this document consists of composite material.

For more detailed design specifications of the bearingless rotor see 

Appendix C.

4.2 Material Selection

Certain criteria were important in selecting an adequate material for the 

flexbeam design, these were:

1 Strength o f the material. The material has to withstand the forces 

acting on it.

2 Flexibility. Due to the fact that the flexbeam is replacing a bearing 

structure, it had to be flexible.

3 Fatigue properties. The flexbeam operates in a loading 

environment that is cyclic in nature.

4-1
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4 Cost. Although this was not a critical criteria due to the fact that the 

thesis turned out to be more of an academic exercise than a 

production prototype.

5 Availability. This is availability of the fibre for the University through 

the time-period of the thesis.

As stated in the introductory chapter it is only with the advent of composite 

materials that this kind of structure became possible. For this reason only 

composite materials were considered as a possible material.

Composite materials investigated were [6]:

1 Carbon fibre epoxy composite (67 vol %)

2 Glass fibre epoxy composite (73.3 vol %)

a. C-glass

b. E-glass

c. S-glass

3 Kevlar fibre epoxy composite (82 vol %)

Table 4-1: Materials Considered

Material E  (GN/m*) Tensile

Strength (MPa)

Availability Relative

Cost1

Carbon fibre 340-380 2200-2400 A 10

C-glass fibre 69 3100 NA NA

E-glass fibre 72.4 3400 A 1

S-glass fibre 85.5 4800 NA NA

Kevlar/epoxy 86 1517 A 10

A: A vail able NA: Not A vail able

After reviewing the options as stated in Table 4-1, E-glass/epoxy composite 

was finally selected as the material to be used. The reason for this choice 

was not only flexibility and strength to weight of E-glass/epoxy, but also the 

availability and cost of the E-glass during the manufacturing phase.

1 Prices obtained from Advanced Material Technologies Cape Ltd.
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For purposes of analysis complete material properties were needed, for the 

fibre it was obtained from MATWEB [33], see Table 4-2. The epoxy used was 

Epolam 2020 from AMT materials [34, 35], see Table 4-3.

Table 4-2: Properties of E-glass [33]

PHYSICAL
PROPERTIES VALUES COMMENTS

Density, g/cc 2.57 2.54-2.60 g/cm3

MECHANICAL
PROPERTIES VALUES COMMENTS

Tensile Strength, 
Ultimate, MPa 3448

At 23°C (73°F); Virgin strength, 50- 
75% variation in finished product; 
5310 MPa at -190‘C (-310°F); 2620 
MPa at 3 7 0 ^  (700°F); 1725 MPa at 
540 C  (1000°F)

Elongation %, break 4.8

Poisson’s Ratio 0.2

Modulus of Elasticity, 
GN/m2 72.5 72.4-72.5 GN/m2at 2 3 ^  (73°F); 72.3 

GN/m2 at 540°C (1000°F)

Shear Modulus, GN/m2 30 Calculated

THERMAL
PROPERTIES VALUES COMMENTS

CTE, linear 20aC, 5

CTE, linear 2502C, 5.4 From -30 to 250 <€ (-20 to 480 °F)

Thermal Conductivity, 
W/m-K 1.3

Heat Capacity, J/g-°C 0.81 At 23°C (73°F); 1.03 J/g-°C (0.247 
Btu/lbf-°F) at 200 °C (390 °F)

Melting Point, °C 1725 Upper limit
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Table 4-3: Properties of Epolam 2020 [35]

MECHANICAL PROPERTIES VALUES
Final hardness (ISO 868), D Shore 85
Tg (DSC) (see the curves), °C 82
Flexural strength (ISO 178), MPa 120
Flexural modulus of elasticity (ISO 178), MPa 3100
HEAT PROPERTIES VALUES
Tensile strength (ISO 527), MPa 80
Demoulding time at room temperature without accelerator, hr 48
Complete hardening time at room temperature, days 7

4.3 Problems Encountered from the Start

The initial goal was to attempt to place the new flexbeam into the space left by 

the fully articulated rotor (Figure 3-1). This proved to be a very optimistic goal, 

because of the torsional performance the rotor had to obtain. It was therefore 

decided to abandon this length constraint.

With the length constraint of 189 mm the factor of safety calculated from the 

stresses in the flexbeam was less than 0.1. This meant that failure of the 

structure was inevitable and would occur in the early stages of testing. The 

length was than systematically increased to the final length of 800 mm. This 

is a great deal more than initially intended, but inevitable due to the torsional 

load applied to the structure.

4.4 Calculating the Factor of Safety

As stated above, the preliminary design was analysed using the DYMORE 

[19] package. To compare designs the stress results from this package were 

extracted into three separate files, one for the nodal info, one for the 

elemental info and one for the stress info.

A FORTRAN [29] program, see Appendix D, was written to read in these three 

files and compute from them the factor of safety at every nodal position, as 

well as the warping, see Appendix E, of the cross-section. It was necessary to 

compute the warping of the cross-section to determine if the section would
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close on itself. The results of the factor of safety and warping calculations 

were then written to a FEMAP neutral file [17] and imported into 

MSC/NASTRAN for Windows [18] for graphical presentation.

4.4.1 Yield criteria investigated

4.4.1.1 Maximum normal stress theory

This theory states that failure will occur if any one of the principal stresses 

equals or exceeds the maximum allowable stress in that direction [4, 13, 26]. 

What this theory does not take into account is the interaction between the 

stresses.

For this theory the following inequalities must be satisfied [13]:

°L < ®LU 

I'LT  <  7 LTV

4.4.1.2 Maximum strain

This theory states that failure will occur if any one of the principal strains 

equals or exceeds the maximum allowable in that direction [4, 13, 26]. This 

theory is similar to the maximum stress theory; all the stresses are now just 

replaced with strains.

For this theory the following inequalities must be satisfied [13]:

£ l  <  £ l v  

£t  <  £TU

Y L T  <  YL TV

4.4.1.3 Von Misses

This theory states that yielding will occur whenever the distortion energy in a 

unit volume equals the distortion energy in the same volume when uniaxially 

stressed to the yield strength [4, 25, 26]. This theory takes into account the 

interaction between the different stresses.
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For this theory the following inequality must be satisfied [26]:

(o-! -c r2)2 + (a 2 -< t3)2 + ((j, - 0-3)2
2

In this form however the theory is not suited for composite materials.

4.4.1.4 Tsai-Hill

This theory is based on the Von Misses theory described above and 

expanded by Hill to include anisotropic bodies [4, 13, 25, 26].

For this theory the following inequality must be satisfied [25, 26]:

/  \ 2 (  \ f  \ f  \ 2 (  \
° L C Jj

+
O j

+
7 LT

\ f f LU \ G W \ a LU ) \ ® T U  J \ T LTU  /
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4.5 Preliminary Designs

4.5.1 Overview

The flexbeam itself went through a couple of changes throughout the thesis 

period. In total more than 60 iterations were done on the design. Not all 

these changes were major changes to the physical structure of the flexbeam, 

some were just changes to the fibre lay-up in the flexbeam.

In all the figures the different layers can be seen as they are presented by at 

least one row of elements.

Only the major design changes are mentioned in this document.

4.5.2 Designs

The first design investigated was one that was taken from work done by Prof 

NJ. Theron [2] on the full-scale version. This design consisted of two cross- 

sections; the reason for this was to isolate two distinctive zones, a flapping 

zone and a lead-lag zone. These two cross-sections are illustrated in Figure 

4-1 and Figure 4-2. Cross-section one is situated in the flapping zone and 

cross-section two in the lead-lag zone.

This design resulted in a flexbeam structure with a torsional stiffness that was 

too high. The result of that was failure due to the applied pitch rotation.
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Figure 4-1: Original cross-section one

Figure 4-2: Original cross-section two
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Modifications to cross-section one was then made to try and reduce the 

torsional stiffness of the structure. The modification is shown in Figure 4-3. 

Cross-section two was left unchanged, this was done because the torsional 

stiffness of cross-section two was much lower than that of section one.

Figure 4-3: Modified cross-section one

This change was unsuccessful and also resulted in a structure with a torsional 

stiffness that was too high. Modifications to the lay-up of these two structures 

also proved to be unsuccessful. Because these changes did not result in a 

satisfactory structure and actually did not even improve the existing ones, the 

two cross-sections as shown in Figure 4-2 and Figure 4-3 were abandoned.

It was decided to start over with two simplified cross-sections and to modify 

them until a structure with adequate torsional stiffness was obtained.

Therefore the next cross-sections that were looked at were a flat-bar piece as 

the one in Figure 4-1 and a plain I-beam profile (Figure 4-4).

From the analysis it became clear that the I-beam profile had the higher 

torsional stiffness. For this reason it was decided to modify it to lower the 

overall torsional stiffness. The evolution of this I-beam is shown in Figure 4-4 

to Figure 4-6.
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Figure 4-4: I-Beam iteration one
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Figure 4-6: I-Beam iteration three

At this point it became clear that the I-beam had to be modified even more to 

“open up” the structure to reduce the torsional stiffness even more. For this 

reason the flanges of the I-beam were modified. The new I-beam had three 

thinner flanges instead of two. The new cross-section can be seen in Figure

Figure 4-7: Three flange I-beam
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The torsional stiffness of this cross-section also proved to be too high, 

although it was encouraging that it was a factor of 6 lower than the original I- 

beam. This meant that the design was moving in the right direction. This 

cross-section was then modified to see whether there could be improved 

upon. The evolution of this cross-section can be seen in Figure 4-8 to Figure 

4-12.
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Figure 4-9: Multi-flange I-beam two

Figure 4-10:Multi-flange I-beam three
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Figure 4-11: Multi-flange I-beam four

Figure 4-12: Multi-flange I-beam five
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Although the torsional stiffness was brought down a factor of ten relative to 

the original I-beam design, failure would still occur in this design due to fatigue 

loading, because of high torsional stiffness. It must be said that in a static 

environment this design would most likely not show failure, because the factor 

of safety calculated for this structure was 1.2.

Due to the fact stated above and the fact that the structures as shown in 

Figure 4-11 and Figure 4-15 became difficult to manufacture it was decided to 

also abandon these sections.

The next cross-section that was tried came from two articles [5, 10] in the 

literature. It is basically a cross-type cross-section shown in Figure 4-13. The 

fist cross-section that was tried failed, also due to a too high torsional 

stiffness. Modifications to this cross-section eventually led to a design (Figure 

4-14) that gave results that was acceptable.

Further work that was done on this cross-section to model it into a three 

dimensional flexbeam is discussed in the next paragraph.
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4.6 The final design

At the end of the iterative process it was decided to conclude with the 

following design. This design is by no means the optimal design, but because 

of time constraints on a Masters Degree and because of the ultimate goal of 

the thesis, this design was adequate. The design is shown in Figure 4-15.

The lay-up of this structure consists exclusively of fibres that run in the axial 

directions of the flexbeam.

Figure 4-15: Final design

4.7 MSC/NASTRAN Model of the Final Design

The model was created using the Solid Edge Origin package and imported 

into MSC/NASTRAN as a Parasolid type. It was then meshed using this 

package’s own solid mesher and the result was that the model consisted of 

27782 nodes and 13719 CTETRA [36], 10-node tetrahedral elements. The 

model is shown in Figure 4-16.
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The model was constrained at the two holes where the flexbeam meets the 

drive shaft and on the other side on the intersection of the flexbeam and the 

blade.

The loads consisted of the peak values that the rotor would experience, as 

calculated from the data given by the CSIR. The axes are so defined that 

horizontal refers to a direction along the y-axis and vertical along the z-axis.

These included:

1) A axial load of 20000 N

2) A vertical shear force of 1000 N

3) A horizontal shear force of 1000 N

4) A vertical moment of 1000 Nm

5) A horizontal moment of 1000 Nm

6) A torsional load equivalent to a torsional angular displacement of 

20° from the neutral position

Figure 4-16: MSC/NASTRAN model
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4.8 Analysis Results

4.8.1 Overview

The six load cases were analysed using the static analysis method of the 

MSC/NASTRAN for Windows (version 4) FEA package. The results obtained 

from the analyses are discussed below. All results are maximum values for 

the stresses throughout the structure, because only the total strength of the 

structure was considered here.

Although all six load-cases are applied to the flexbeam at the same time 

during flight, they are discussed separately to establish which one of them is 

the crucial one for failure. In the last paragraph they are combined to 

investigate their effect on the stresses of the total flexbeam.

The maximum displacements of the flexbeam are not given, the reason for 

this is due to the fact that the constraints used in the FEA model represent the 

way that the model will be clamped into the test bench and are therefore not 

realistic deformations for the flexbeam during field operation.
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4.8.2 Load case 1

This load case is due to the centrifugal force that the blade exerts on the 

flexbeam. The rotating blades of the helicopter generate this centrifugal force 

during flight.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-4.

Table 4-4: Load Case 1 Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -1.893

Maximum 56.068
Solid Y Normal Stress Minimum -25.000

Maximum 9.339
Solid Z Normal Stress Minimum -2.240

Maximum 3.008
Solid XY Shear Stress Minimum -11.000

Maximum 11.759
Solid YZ Shear Stress Minimum -2.503

Maximum 2.357
Solid Von Mises Stress Minimum 5.267

Maximum 55.800
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Figure 4-17: Von Mises stress distribution for load case 1
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The hanging fuselage of the helicopter is attached to the blade at the shaft. 

This connection is the flexbeam, in the current design. That means the 

fuselage of the helicopter is hanging from the blade by means of the 

flexbeam. The blades also generated lift, a force that wants to lift the 

helicopter upwards. The combined effect of the lift and the hanging of the 

fuselage generate this load case. Here only the resulting shear force is 

applied to the FEA model.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-5.

4.8.3 Load case 2

Table 4-5: Load Case 2 Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -250.000

Maximum 257.000
Solid Y Normal Stress Minimum -18.000

Maximum 18.508
Solid Z Normal Stress Minimum -8.878

Maximum 9.956
Solid XY Shear Stress Minimum -16.000

Maximum 16.150
Solid YZ Shear Stress Minimum -10.000

Maximum 10.174
Solid Von Mises Stress Minimum 0.026

Maximum 258.000
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As mentioned in chapter 2 one of the forces acting on a rotating blade of a 

helicopter is that of drag due to air resistance. That drag causes a horizontal 

force along the blade. That horizontal force is then transferred into the 

flexbeam. Here only the resulting shear force is applied to the FEA model.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-6.

4.8.4 Load case 3

Table 4-6: Load Case 3 Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -150.000

Maximum 150.000
Solid Y Normal Stress Minimum -1.880

Maximum 2.570
Solid Z Normal Stress Minimum -2.170

Maximum 2.637
Solid XY Shear Stress Minimum -2.384

Maximum 6.286
Solid YZ Shear Stress Minimum -0.578

Maximum 0.578
Solid Von Mises Stress Minimum 0.023

Maximum 150.000
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This load case arises from load case 2. The reason is due to the fact that the 

blade has a finite length, which means that any force that is acting on the 

blade will cause a shear force and a moment on the flexbeam. The shear 

force part of this load is discussed in load case 2.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-7.

4.8.5 Load case 4

Table 4-7: Load Case 4 Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -480.000

Maximum 484.000
Solid Y Normal Stress Minimum -31.000

Maximum 29.608
Solid Z Normal Stress Minimum -16.000

Maximum 17.776
Solid XY Shear Stress Minimum -51.000

Maximum 44.904
Solid YZ Shear Stress Minimum -19.000

Maximum 21.005
Solid Von Mises Stress Minimum 0.007

Maximum 485.000
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Figure 4-20: Von Mises stress distribution for load case 4
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This load case arises from load case 3. The reason for this is the same as 

mentioned in load case 4. The shear force part of this load is discussed in 

load case 3.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-8.

4.8.6 Load case 5

Table 4-8: Load Case 5 Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -290.000

Maximum 295.000
Solid Y Normal Stress Minimum -9.914

Maximum 5.083
Solid Z Normal Stress Minimum -13.000

Maximum 13.698
Solid XY Shear Stress Minimum -7.407

Maximum 10.749
Solid YZ Shear Stress Minimum -2.104

Maximum 2.009
Solid Von Mises Stress Minimum 0.003

Maximum 295.000
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Figure 4-21: Von Mises stress distribution for load case 5
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The force of this load case is generated from the control stick the pilot 

operates. Thus the pilot has direct control over the pitch angle and the pitch 

force.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-9.

4.8.7 Load case 6

Table 4-9: Load Case 6 Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -4.794

Maximum 4.866
Solid Y Normal Stress Minimum -1.306

Maximum 1.285
Solid Z Normal Stress Minimum -0.616

Maximum 0.602
Solid XY Shear Stress Minimum -2.904

Maximum 3.119
Solid YZ Shear Stress Minimum -0.540

Maximum 0.588
Solid Von Mises Stress Minimum 0.003

Maximum 7.636
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The linear combination of the above six load cases was done to find the 

combined effect of the loads on the flexbeam.

A summary of the stresses as calculated with MSC/NASTRAN for Windows 

are shown in Table 4-10.

4.8.8 Combining the load cases

Table 4-10: Combined Case Results

Maximum/Minimum Stress Value (MPa)
Solid X Normal Stress Minimum -777.737

Maximum 840.835
Solid Y Normal Stress Minimum -46.293

Maximum 51.451
Solid Z Normal Stress Minimum -24.448

Maximum 27.206
Solid XY Shear Stress Minimum -62.361

Maximum 53.370
Solid YZ Shear Stress Minimum -28.944

Maximum 28.673
Solid Von Mises Stress Minimum 3.448

Maximum 842.561
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The critical values for failure in the case of this structure are the shear 

stresses. This can be assumed due to the high fibre strengths and the fact 

that the epoxy must withstand the shear forces generated by the blade 

rotation.

4.8.9 Summary

Table 4-11: Highest Stresses Per Load Set

Final Maximum/Minimum Stress Set Value (MPa)
Solid X Normal Stress Minimum 4 -480.000

Maximum 4 484.000
Solid Y Normal Stress Minimum 4 -31.000

Maximum 4 29.608
Solid Z Normal Stress Minimum 4 -16.000

Maximum 4 17.776
Solid XY Shear Stress Minimum 4 -51.000

Maximum 4 44.904
Solid YZ Shear Stress Minimum 4 -19.000

Maximum 4 21.005
Solid Von Mises Stress Minimum 6 0.003

Maximum 4 485.000

The allowable values for the normal Y- and Z-stresses were taken as the 

maximum allowable stress value of the resin, the reason for this is that these 

components of the stresses act through a vector that is normal to the fibre 

direction.

In the case of the shear stresses, the maximum allowable stresses were also 

taken as the maximum allowable stress value of the resin, here the reasoning 

was that the resin is the predominant load-carrying member of the shear 

component of the force.

As can be seen from Table 4-11, load case 4 is the critical load case of the six 

load cases that are applied to the flexbeam.

4-34

Stellenbosch University http://scholar.sun.ac.za/



Designing a New Bearingless Rotor

When a comparison between the maximum allowable stresses and the 

resulting combined stresses of Table 4-10 are made, it can be seen that the 

maximum stresses of the flexbeam are within the allowable values, although 

no great factor of safety can be expected.

With respect to the results above the design was deemed adequate as a first 

prototype for testing. Due to the relative high stresses, a long fatigue life for 

this prototype is not expected, but will serve to demonstrate whether or not the 

fatigue tests, as planned, are adequate.
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4.9 Computer Simulation on Dymore

After the stresses were determined to be in an adequate range, but by no 

means optimal or possibly flight ready, the dynamics of the design had to be 

determined. This was again done using the DYMORE [19] program. For this 

program the cross-sections at 8 positions, see Figure 4-24, throughout the 

flexbeam were taken. The PREFEM input file can be seen in Appendix F.

The individual cross-sections are illustrated in Figure 4-25 to Figure 4-32 with 

a summary of them in Table 4-12.

Figure 4-24: Cross-sections at 8 positions
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Table 4-12: Cross-Section Info for Final Design

Section Figure Distance (mmf Elements Nodes

1 Figure 4-25 0 448 1473

2 Figure 4-26 54 448 1473

3 Figure 4-27 234 288 953

4 Figure 4-28 302 64 233

5 Figure 4-29 334 138 493

6 Figure 4-30 804 180 627

7 Figure 4-31 833 392 1261

8 Figure 4-32 873 392 1261

Figure 4-25: Cross-section 1

Figure 4-26: Cross-section 2

2 This is the distance from the beginning of the flexbeam
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Figure 4-27: Cross-section 3

Figure 4-28: Cross-section 4
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Figure 4-29: Cross-section 5

Figure 4-30: Cross-section 6
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Figure 4-31: Cross-section 7

Figure 4-32: Cross-section 8
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They were then modelled on MSC/NASTRAN to get a 2-dimensional mesh of 

the section for each section. This mesh was imported into the CROSEC [21, 

22] program, to get the sectional stiffness that was used in the DYMORE 

program.

From this the Southwell plot was generated using the DYMORE program.
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4.10 Southwell plot

The Southwell plot that is given in this paragraph is a comparison plot 

between the fully articulated rotor and the new bearingless rotor. To simplify 

the figure and the comparison, only the first three modes, namely flap, lead- 

lag and torsion, are given, see Figure 4-33.

(A = Fully articulated, F = Flexbeam)
Figure 4-33: Comparison Southwell plot

As can be seen from the Southwell plot, the natural angular frequencies of the 

new design are considerably higher than that of the fully articulated design. 

Although this fact is an advantage in most cases, due to the higher 

manoeuvrability of the helicopter, in our case it proofs to be a disadvantage. 

The reason for this is that one of the design criteria stated that the dynamic 

response of the bearingless rotor had to correlate with that of the fully 

articulated rotor.
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CHAPTERS: DESIGNING TESTS FOR THE NEW 

DESIGN

5.1 Overview

The main reason for tests is to confirm that the stiffness, which the FEA model 

predicted for the flexbeam, agrees with the stiffness of the actual physical 

hardware. No dynamic performance tests were done, because of a lack of 

equipment and financial resources to facilitate tests on such a scale. It was 

also not deemed necessary to try to obtain such funds, because of the 

ultimate aim of this thesis.

5.2 Strain Gauges on the Flexbeam

5.2.1 Overview

For comparison of the stresses and strains that the FEA model predicted it 

was decided to fit the flexbeam with a couple of strain gauges. At the end it 

was decided to place these strain gauges only on the surface of the flexbeam.

The reason for this was firstly to facilitate easier manufacturing of the 

flexbeam, secondly so that better control over the condition of the strain 

gauges could be achieved and thirdly so as not to include any external 

substances into the flexbeam, that might induce cracking.

5.2.2 Number and placement

It was decided to measure the following strains on the flexbeam. See Figure 

5-1 for position detail.

1) Axial strains at positions 1 ,2 , 3  and 4

2) Torsional strains at positions 5 and 6
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The strain gauges will be wired into separate half-bridge configurations as 

follows:

1. At positions 1 and 2

2. At positions 3 and 4

3. At positions 5 and 6

Figure 5-1: Strain gauge positions

5.3 Static Tests

5.3.1 Overview

The main reason for these tests was as mentioned above, namely to 

determine the behaviour of the physical structure and to see how it compares 

to what the FEA model predicted. And to explain any differences that may 

occur between them.
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5.3.2 Axial

In this test the specimen is clamped with its axial axis in a vertical position and 

a known load is applied to the other end in the axial direction. The 

displacement of the end is measured with a dial gauge. Strains can also be 

read from the strain gauges.

5.3.3 Bending

In this test the specimen is clamped horizontally at the drive shaft end and a 

known load will be applied in both the horizontal and vertical directions. The 

displacement into the direction of the loads will again be measured with a dial 

gauge. Strains can also be read from the strain gauges.

5.3.4 Torsion

The specimen is clamped in a horizontal position at the drive shaft end and a 

arm of known length is horizontally attached to the blade end. At the end of 

the arm a known vertical load is applied. The angular displacement of the 

blade end is measured using two dial gauges, one at each corner. The 

reason for the two dial gauges is to compensate for the vertical displacement 

the flexbeam will undergo.

5.4 Fatigue Test

5.4.1 Overview

It has already been stated that the flexbeam design given in this document is 

not the optimal design, a fatigue test is nevertheless planned to complete the 

methodology of the process of designing a flexbeam, the aim of the thesis.

The life cycle of a flexbeam in the aviation industry is not known, but for this 

thesis it is not necessary to know that. When an actual working design of a 

flexbeam is to be made, it would off course be necessary to know or to
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establish this quantity. For this test no measurements from the strain gauges 

will be taken, as only the lifetime of the flexbeam needs to be determined.

5.4.2 Hardware Layout

The test hardware was divided into three main parts, the control program, the 

control interface and the physical test bench.

The control program is the computer code written to give the necessary 

displacements to the control interface to ensure a realistic fatigue test.

The control interface is defined as that part of the test equipment that provides 

the input for the physical test bench. This includes any computer hardware, 

cylinders, valves, strain gauges, displacement gauges and cabling that were 

used.

The test bench is that part of the test equipment that forms the physical 

interface to the flexbeam being tested.

5.4.3 Control program

5.4.3.1 Overview
It was decided to write the program in the computer language DELPHI [23]. 

The reason for this is that the ADDA cards [11] that were used have very good 

drivers for this language.

5.4.3.2 Program operation 

Sampling:

The program has to sample five strain gauges on the test bench to measure 

applied forces for comparison with the desired values. These strain gauges 

will be placed so as to measure the axial forces in the various cylinders.
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Then there are the five displacement transducers, one parallel to each 

cylinder. These transducers have a twofold purpose, namely:

1) To monitor the displacements of the cylinders

2) To act as feedback for the PID control

Controlling:

The main purpose of the control software is to supply the five hydraulic valves 

with the necessary input signals to ensure that the three forces and two 

moments are applied correctly.
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5.4.3.3 Flow diagrams

Figure 5-2: Main layout
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Figure 5-3: Card initialising
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The translation unit on the test bench is so designed as to apply the three 

translations and one rotation movement to the flexbeam with the use of only 

three cylinders. To facilitate this, the three cylinders have to move in 

synchronisation with each other in a certain way. The movement is governed 

by the following mathematical equations.

5.4.3.4 Mathematical formulation

1-2

b
Y

f \ 9

/

A *
/

Figure 5-4: Cylinder orientation layout

For the rotation 0:

Ll = L 2 = L 3 = r d

And for the translations, x and y:

Lx =  + x(2bx + x )-y (2 d l -  y) -  Lx

L 2 = ^ 2 L \  + x (2b2 + x ) - y ( 2 d 2 - y ) - L 2

L3 = yj2L]  + x(2b3 + x ) -  y(2di - y ) - L 3
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with:

L ' i

I- 2

L '3

Li

L2

L3

the final length of cylinder 1 

the final length of cylinder 2 

the final length of cylinder 3 

the initial length of cylinder 1 

the initial length of cylinder 2 

the initial length of cylinder 3

b1, b2, b3 the b and d measurements for each cylinder as depicted in

For the total length change of the cylinders the sum of the rotation and

translation displacements must be used.

5.4.4 Control interface

5.4.4.1 Computer hardware

The computer hardware used, consisted of a:

1. Pentium 100 MHz computer with Windows 95 operating system. The 

reason for using a Windows 95 operating system is that the control 

programs are written in Delphi 4.

2. Eagle PC166B ADDA card [28] to establish a connection between the 

computer and the valve control unit. This card is an analogue output 

card with 8 12-bit channels.

3. Eagle PC30G ADDA card [12] to establish a connection between the 

computer and the strain gauges needed to monitor the forces applied. 

This card is an analogue input card with 16 12-bit channels.

x, y 

0

Figure 5-4.

the desired displacement 

the desired rotation
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Except the computer hardware and physical test bench the following hardware 

were also used:

• Displacement gauges

• Valves

• Piping for the valves

• Cylinders

• Signal generators

• PID amplifiers

5.4.4.2 Other hardware

5.4.5 Test Bench

Because of the complex load condition acting on the bearingless rotor and the 

fact that there was not a test bench available, a special test bench had to be 

designed.

The load condition included a semi static axial load and 5 cyclic loads. These 

cyclic loads included two shear forces parallel to the cross-sections and two 

moments acting along the axis parallel to the cross-section. This combination 

gives you a five axis dynamic and one axis static load case.

To realistically simulate the fatigue problem that occurs here, all these above- 

mentioned forces have to act together on the flexbeam.

To simplify the operation of the test bench, it was decided to construct it in a 

modular fashion. One module would therefore not only apply forces to the 

structure, but also act as a constraint for forces applied by another module.

The test bench finally consisted of three modules, these were the

1. Airbag module.

2. Translation module.

3. Rotational module.
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5.4.5.1 Airbag module

The only purpose of this module is to transfer the axial load to the bearingless 

rotor. It was decided to use airbags in this module instead of only a preloaded 

cable. A length change in the flexbeam will result when bending and shear 

forces are also applied on the flexbeam. This length change, although very 

small, will cause an increase in the length of the cable (additional stretching of 

the cable) applying the force, increasing the preload if only a cable is used. 

By using airbags a constant preload can be maintained.

5.4.5.2 Translation module

The primary purpose of this module is to transfer the shear forces and the 

torsional force/displacement to the flexbeam. This is done with three cylinders 

arranged in a triangle. Its secondary purpose is to act as a constraint for the 

moments that are applied by the rotational unit.

5.4.5.3 Rotational module

The primary purpose of this module is the transfer of the moments to the 

flexbeam. This is done with two rings that can rotate within each other. The 

secondary purpose is to act as a constraint for the shear forces of the 

translation module.

5.4.5.4 How the bench works

Through the airbag module (Figure 5-5) a constant axial force is applied to the 

flexbeam. This is achieved by pressurising the airbags until the desired axial 

force is obtained in the connecting cable. This cable is on the one side 

connected to the airbags and on the other side to the pin on the inside of the 

torsional clevis (Figure 5-6). This torsional clevis is free to move up and down 

in the torsional plate (Figure 5-7), but is constrained for in-plane rotational 

movements (Figure 5-8). This torsional plate is located in the torsional 

module (Figure 5-9) with the use of three cylinders. With this configuration the 

torsion and translation can be applied to the clevis and thus the flexbeam.
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The flexbeam is on one side connected to the torsional clevis and on the other 

side to the rotational clevis (Figure 5-10). This clevis is welded to the 

rotational module (Figure 5-11). In this module the moment forces are applied 

to the flexbeam by the relative motion of the two interlocking rings (Figure 

5-12) with respect to each other and the rotation module as a whole.

The outer and inner rings are free to rotate around one axis provided by the 

two hinge pins on the outside of the outer ring. In addition to this the inner 

ring can also rotate around an additional axis. The combination of these two 

gives the system its two rotational freedoms.

When all of this is combined in a cyclic load condition, all six directional forces 

are applied at the same time. The complete layout of the test bench is given 

in Figure 5-13.
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Figure 5-11: Rotational module
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Figure 5-13: Test bench main layout
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CHAPTER 6: MANUFACTURING THE FLEXBEAM

6.1 Overview

As stated in Chapter 5, a unidirectional E-glass fibre and suitable epoxy resin 

were used to construct the flexbeam. The flexbeam was split into two halves 

along the z-axis neutral plane. In the manufacturing process each half was 

done separately, see Figure 6-1 to Figure 6-3, and then bonded together to 

form the whole.

Figure 6-1: Flexbeam half still in mould
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Figure 6-2: Close-up of flexbeam on blade side

Figure 6-3: Close-up of flexbeam on drive-shaft side
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6.2 Materials Used

To facilitate easier hand lay-up, an 80/20% woven mat instead of a 100% fibre 

bundle was used. The 80/20% has 80% of the fibres in one direction and 

20% of the fibres in a perpendicular direction.

The resin used as stated was an Epolam 2020 epoxy resin. This resin gave a 

21/4-hour time to gel, which with hindsight proved not to be adequate, because 

the resin started to gel before lay-up was completed.

This problem was overcome by means of a double lay-up procedure for each 

half. By this is meant that the main axial load carrying part of the flexbeam 

was first done, where after the mould was clamped. After about five hours of 

curing the top of the mould was removed and the rest of the lay-up completed. 

This gave a complete lay-up time per half of about 4 hours.

6.3 The Mould

The mould, see Figure 6-4 to Figure 6-7, was milled from super-wood on a 

manual milling machine. Thereafter it was treated with sanding sealer to 

prevent the resin from penetrating the wood. Five layers of sanding sealer 

were used.

When the application of the sanding sealer was finished, a further five coats of 

a PVA release agent were applied. The reason for this was to facilitate easier 

release of the flexbeam from the mould.

6.4 The Finished Product

As stated above, bonding the two halves together made the flexbeam. The 

half flexbeam can be seen in Figure 6-8 to Figure 6-11, while the full flexbeam 

can be seen in Figure 6-12.
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Figure 6-4: The mould for half of the flexbeam

Figure 6-5: Close-up on drive-shaft end of the mould
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Figure 6-6: Close-up on middle part of the mould

Figure 6-7: Close-up on blade side of the mould
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Figure 6-8: Half flexbeam

Figure 6-9: Close-up on blade side of half flexbeam
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Figure 6-10: Close-up on middle part of half flexbeam

Figure 6-11: Close-up on drive-shaft side of half flexbeam
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Figure 6-12: Full flexbeam with strain gauges
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7.1 Overview

In this chapter the results that were obtained from the tests as specified in 

Chapter 5 are presented. The static test results are compared with FEM 

analysis results as obtained from the MSC/NASTRAN for Windows package. 

For this FEM analysis the same model as used in Chapter 5 was used, but 

only the first three and last output sets were used in the comparison.

For all tests a 10 kg mass was used to apply the forces, for the torsional test 

the 10 kg mass was offset at a distance of 100 mm.

7.2 Static Tests

7.2.1 Axial

CHAPTER 7: TEST RESULTS

Table 7-1 Comparison Table for Axial Test

Position3
Measured 

Strain (//m/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

1,2 5 0.154 0.15 -3%

3,4 5 0.154 0.15 -3%

Measured displacement = 0.14 mm 

FEA displacement = 0.05 mm

% Difference = -64%

3 The position is as described in paragraph 5.2.2

7-1

Stellenbosch University http://scholar.sun.ac.za/



Test Results

7.2.2 Bending (Flap)

Table 7-2: Comparison Table for Bending Test

Position4
Measured 

Strain (//m/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

1,2 1334 41.2 24.3 -41%

Measured displacement = 28 mm 

FEA displacement = 9.6 mm

% Difference = -66%

7.2.3 Bending (Lead-Lag)

Table 7-3: Comparison Table for Bending Test

Position4
Measured 

Strain (//m/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

3,4 430 13.27 13.5 2%

Measured displacement = 2.76 mm 

FEA displacement =1.1 mm

% Difference = -60%

4 The position is as described in paragraph 5.2.2
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7.2.4 Torsion

Table 7-4: Comparison Table for Torsion Test

Position5
Measured 

Strain (jjm/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

5, 6 351 10.8 9.6 -11%

Measured angle = 2.38° 

FEA angle = 1.042°

% Difference = -56%

7.2.5 Summary

As can be seen from the results, an average difference of around 60% is 

measured between the physical structure and the FEA model. This at first 

seems to indicate that the FEA prediction was wrong, but in fact can be 

explained as follows.

It must be kept in mind during the following calculations that the lay-up (fibre 

direction) is constant throughout the flexbeam cross-section.

FEA Orthotropic Moduli of Elasticity6
Longitudinal modulus used in FEA model (EL) 78 GN/m2

Transverse modulus used in FEA model (Er) 26 GN/m2

Shear modulus used in FEA model (GLt) 13 GN/m2 

Assumed fibre % in FEA model 60%

5 The position is as described in paragraph 5.2.2 .
6 Values here were taken as first assumption before final material selection was made.
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Physical Structure Orthotropic Moduli of Elasticity
E-glass fibre Modulus of Elasticity {Ef) [Table 4-2] 72.5 GN/m2

E-glass fibre Shear Modulus {Gf) 30 GN/m2

Epolam 2020 Modulus of Elasticity (Em) [Table 4-3] 3.1 GN/m2

Epolam 2020 Shear Modulus (Gm) 1.24 GN/m2

Cloth: E-glass fibre % in x-direction 80%

Cloth: E-glass fibre % in y-direction 20% 

Physical structure fibre % (measured during the lay-up

procedure) 50%

Total fibre % in x-direction 40%

Total fibre % in y-direction 10%

The cloth and resin matrix can schematically be presented as two laminas. 

Where vu is the fibre volume fraction of the x-direction fibres and vTf is the 

fibre volume fraction of the y-direction fibres. The average of the two is 0.5 as 

it must be according to physical mass measurements.

x-direction

By using micromechanics equations: 

EL =±(vu x E , + v Lmx E J  + i &  + ̂ ) - '
E f  m

E, = -H0.8 x 72.5 + 0.2 x 3.1) + ^ ( - ^ -  + — )~1 =31.23 GN/m2 
L 2V ’ 72.5 3.1;

Er = + ^ ) - 1 + i ( v Tf x Ef + vTm X E J
* ~ f  m

Et = i ( - ^ - + ° ^ ) - 1 +-1(0.2x72.5 + 0.8x3.1) = 15.11 GN/m2 
r 2 72.5 3.1 2

vLf=  0.8, vLm = 0.2

VTf -  0 .2 , VTm =  0.8 O  0  o  °  o  ° o  °  O ° O 0  O ° o
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Glt = (-^ - + - ^ ) - 1 
LT Gf Gm

Glt = (—  + — ) '1 = 2.38 GN/m2 
LT 30 1.24

Thus

Physical structure Modulus of Elasticity in axial direction 31.23 GN/m2

Physical structure Modulus of Elasticity in transverse

direction 15.11 GN/m2

Physical structure Shear Modulus of Elasticity 2.38 GN/m2

% Difference in Modulus of Elasticity in axial direction -60% 

% Difference in Modulus of Elasticity in transverse

direction -42%

% Difference in Shear Modulus of Elasticity -82%

Thus the Modulus of Elasticity in the axial direction of the physical structure 

differs by about 60% from that of the FEA model and therefore explains the 

60% difference in measured displacement values (axial and bending test 

cases), the same can be said for the Shear Modulus of Elasticity (torsion test 

case). The transverse Modulus of Elasticity has a negligible effect on the 

values compared here.

As can be seen from Table 7-1 to Table 7-4 the stresses for the axial, bending 

(lead-lag) and torsional tests correlate very well with that of the FEA model, 

lying within 11%.

The stress of the bending (flap) test on the other hand does not correlate well 

at all with the FEA model. Seeing that the FEA model gave accurate results 

for all the other cases, the model can be assumed to be accurate. The model 

was also checked for defects with none found. Baring this in mind the only 

reason for the lack in stress correlation must be in measuring of the strains 

during the flap bending-test. Therefore this test was done four times, each 

time resulting in the same reading.

7-5

Stellenbosch University http://scholar.sun.ac.za/



Test Results

The reason for this difference in the stresses can therefore not be explained 

and present a point of concern. It is advised that this deviation in correlation 

be studied further to determine its possible cause.

7.2.6 FEA Correlation by Using Revised Moduli of Elasticity

To verify the deduction that was made in paragraph 7.2.5 with respect to the 

Moduli of Elasticity, it was decided to rerun the FEA model with this newly 

determined material properties. The results of this analysis are presented in 

this paragraph in the same way as was done in the previous one.

7.2.6.1 Axial

Table 7-5: Comparison Table for Axial Test

Position7
Measured 

Strain (//m/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

1,2 5 0.154 0.15 -3%

3,4 5 0.154 0.15 -3%

Measured displacement = 0.14 mm 

FEA displacement = 0.12 mm

% Difference =-14%

7 The position is as described in paragraph 5.2.2
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Test Results

7.2.6.2 Bending (Flap)

Table 7-6: Comparison Table for Bending Test

Position8
Measured 

Strain (jim/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

1,2 1334 41.2 24.0 -41.7%

Measured displacement = 28 mm 

FEA displacement = 24.4 mm

% Difference = -13%

7.2.6.3 Bending (Lead-Lag)

Table 7-7: Comparison Table for Bending Test

Position4
Measured 

Strain (/ym/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

3 ,4 430 13.27 14 5%

Measured displacement = 2.76 mm 

FEA displacement = 2.62 mm

% Difference = -5%

8 The position is as described in paragraph 5.2.2
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Test Results

7.2.6.4 Torsion

Table 7-8: Comparison Table for Torsion Test

Position9
Measured 

Strain (//m/m)
Measured 

Stress (MPa)
FEA Stress 

(MPa)
Percentage
difference

5, 6 351 10.8 9.6 -11%

Measured angle = 2.38° 

FEA angle = 2.44°

% Difference = 2.5%

7.2.6.5 Summary

Thus the assumption made about the Moduli of Elasticity reduction was a 

correct assumption, as can be seen from the above results.

9 The position is as described in paragraph 5.2.2
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7.3 Fatigue Test

Due to the prolong period of this type of test and the number of specimens 

that need to be tested, no life span for the flexbeam are given in this 

document. The main reasons for this are the time constraints that are put on 

an MSc Ing degree and the availability of the hydraulic power packs and 

equipment at the time of testing.

A shortened form of the test was none the less done to verify whether the test 

bench, more than the flexbeam, are working and if it would be adequate to 

handle these prolonged tests. The outcome of this test seems to indicate that 

the test bench is adequate for the type of tests that it was designed for.

It is recommended that more specimens of the flexbeam are build and tested 

to destruction on the test bench. This way an accurate life span for the 

flexbeam can be determined.

Test Results
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Conclusion

Due to the shift from a fully articulated rotor to a bearingless rotor it was 

deemed necessary to do a design for the 24% scale model of the Rooivalk 

attack helicopter at the CSIR in Pretoria.

Design specifications were drawn up for the proposed bearingless rotor 

system, specifying everything from the dimensions to the manufacturing and 

serviceability of the system. This document was drawn up using military 

specifications due to the fact that it was destined for ARMSCOR.

A numeric model of the scale model’s blade was done on the DYMORE 

package and various designs for bearingless rotor hubs were included in a full 

numeric model of the system. At this point only quasi-static analyses were 

run.

From these analyses it were found that the length constraint put on the design 

was not feasible, due to the torsional twist of 20 degrees that had to be 

obtained and was subsequently dropped. Various designs and fibre direction 

lay-ups were tried, most proved inadequate due to their high torsional 

stiffness.

After numerous iterations the final design was obtained. This design is not an 

optimal design for the problem, but would serve to validate the tests that 

would be decided upon. This design was then modelled on MSC/NASTRAN 

for Windows, a finite element analysis package, to determine the three 

dimensional stresses in the structure. From the DYMORE package a 

Southwell plot was generated.

CHAPTER 8: CONCLUSION
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Conclusion

The next phase of the thesis could then start. This included the identifying of 

various tests to verify the design. A number of static tests were identified, this 

included:

• Axial

• Bending

• Torsional

It also seemed necessary to do fatigue tests on the structure, due to its 

operational environment. For this test to be conducted a special test bench 

had to be designed and constructed. The tests bench had to apply oscillating 

loads in five directions and a static load in the axial direction.

Due to the time limitation on the MSc Ing degree it was decided that the 

fatigue tests would only be taken as far as to validate the usefulness of both 

the test and test-bench.

The last phase of the thesis was to manufacture the flexbeam from the 

specified E-glass/epoxy and the testing thereof.

To conclude: This thesis successfully contributed to the knowledge base for 

designing a bearingless rotor system and laid out procedures and 

methodologies to this effect.
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Appendix A: Blade Cross-Section Properties

APPENDIX A: BLADE CROSS-SECTION PROPERTIES

Table A -1: Blade Cross-Sections

Segment Obrd end Ref station Radial station Mass Elzz Elxx Glyy

m m kg/m Nm2 Nm2 Nm'

1 0.0336 0.0168 0.017968 0.008984 0 23890.17 23890.17 7962.978

2 0.0672 0.0372 0.035936 0.019893 0 23890.17 15926.78 7962.978

3 0.1032 0.0852 0.055187 0.045561 14.78 9397.38 9397.38 3025.923

4 0.144 0.1236 0.077005 0.066096 14.78 310.5599 3105.599 63684.4

5 0.1896 0.1668 0.10139 0.089198 14.78 398.1282 4301.967 63684.4

6 0.24 0.2148 0.128342 0.114866 3.24 644.6751 1194.302 172.0002

7 0.288 0.264 0.154011 0.141176 2.68 132.1997 1035.2 118.6492

8 0.336 0.312 0.179679 0.166845 1.21 114.6778 1512.92 113.0744

9 0.384 0.36 0.205348 0.192513 0.9072 94.75898 2548.12 99.53619

10 0.4512 0.4176 0.241283 0.223316 0.815 77.23704 5335.1 86.79559

11 0.528 0.4896 0.282353 0.261818 0.769 75.66668 6211.197 86.79559

12 0.624 0.576 0.33369 0.308021 0.6941 72.4433 6050.028 86.79559

13 0.72 0.672 0.385027 0.359358 0.6451 71.65812 5496.269 86.79559

14 0.756 0.738 0.404278 0.394652 0.6123 68.47607 5335.1 86.79559

15 0.8016 0.7788 0.428663 0.416471 0.9297 67.69089 5173.931 85.99801

16 0.84 0.8208 0.449198 0.43893 0.9112 66.0792 5095.413 85.99801

17 0.8784 0.8592 0.469733 0.459465 0.561 64.50884 5016.895 85.99801

18 0.936 0.9072 0.500535 0.485134 0.5437 62.89715 4855.726 85.99801

19 0.1008 0.972 0.053904 0.519786 0.5196 60.50028 4698.69 85.20456

20 1.1044 1.056 0.590588 0.564706 0.5115 58.92992 4301.967 83.60941

21 1.2 1.152 0.641711 0.616043 0.5023 58.14474 4140.798 78.8322

22 1.296 1.248 0.693048 0.66738 0.4954 56.53305 4061.04 73.25741

23 1.392 1.344 0.744385 0.718717 0.4856 42.19316 3503.561 67.68676

24 1.488 1.44 0.795722 0.770053 0.4666 39.01938 3424.217 58.92579

25 1.584 1.536 0.847059 0.82139 0.4435 31.05599 2707.222 49.37137

26 1.68 1.632 0.898396 0.872727 0.432 28.66738 3185.356 46.98277

27 1.752 1.716 0.936898 0.917647 1.221 25.4812 4301.967 31.8515

28 1.8 1.7766 0.962567 0.950053 1.475 20.70399 5256.582 29.46289

29 1.838 1.8192 0.982888 0.972834 0.2592 13.53818 3264.701 19.1109

30 1.87 1.854 1 0.991444 0.144 4.105258 1035.2 6.3703
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Appendix A: Blade Cross-Section Properties

Izz iyy Ixx Twist Twist rel. CG offset Shear centre offset

Kgm2 Kgm2 Kgm'' degrees to 75% R mm radial mm radial

0.2032 0.2032 0.4064 0 6.118 0 0 0 0

0.2032 0.2032 0.4064 0 6.118 0 0 0 0

0.2032 0.2032 0.4064 0 6.118 0 0 0 0

0.2032 0.2032 0.4064 0 6.118 0 0 0 0

0.2032 0.2032 0.4064 0 6.118 0 0 0 0

0.0261 0.2 0.2261 0 6.118 7 0.000899 0.8 0.000103

0.0235 0.263 0.2865 0 6.118 21 0.002696 2.5 0.000321

0.0208 0.326 0.3468 0 6.118 35 0.004493 4 0.000513

0.0182 0.388 0.4062 0 6.118 49 0.00629 5.6 0.000719

0.015 0.462 0.477 0 6.118 65 0.008344 7.5 0.000963

0.0133 0.484 0.4973 -0.2322 5.885805 53 0.006804 17 0.002182

0.0115 0.424 0.4355 -0.78946 5.328535 43 0.00552 20.7 0.002657

0.0105 0.359 0.3695 -1.40865 4.709347 31 0.003979 17.6 0.002259

0.0101 0.315 0.3251 -1.83434 4.283656 23 0.002953 15.5 0.00199

0.0147 0.305 0.3197 -2.0975 4.020501 18 0.002311 14.3 0.001836

0.0145 0.282 0.2965 -2.36839 3.749606 13 0.001669 5.4 0.000693

0.0094 0.257 0.2664 -2.61607 3.501931 11 0.001412 5 0.000642

0.0092 0.248 0.2572 -2.92566 3.192337 8 0.001027 4.5 0.000578

0.009 0.236 0.245 -3.34362 2.774385 6 0.00077 4 0.000513

0.0088 0.233 0.2418 -3.8854 2.232595 5 0.000642 1.6 0.000205

0.0086 0.23 0.2386 -4.50459 1.613408 4 0.000513 -0.9 -0.00012

0.0084 0.226 0.2344 -5.12378 0.99422 5 0.000642 -3 -0.00039

0.0075 0.222 0.2295 -5.74313 0.374871 5 0.000642 -15.5 -0.00199

0.0064 0.221 0.2274 -6.36248 -0.24448 8 0.001027 -16.9 -0.00217

0.0052 0.204 0.2092 -6.98184 -0.86384 4 0.000513 -28.5 -0.00366

0.0058 0.2 0.2058 -7.60119 -1.48319 3 0.000385 -26.8 -0.00344

0.0161 0.2358 0.2519 -8.14313 -2.02513 2 0.000257 -17.2 -0.00221

0.0191 0.2458 0.2649 -8.5341 -2.4161 1 0.000128 -10.5 -0.00135

0.0022 0.1885 0.1907 -8.615 -2.497 0 0 -5.6 -0.00072

0.0005 0.1829 0.1834 -8.615 -2.497 0 0 -1.8 -0.00023

IV
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APPENDIX B: AERODYNAMIC LOADS

Appendix B: Aerodynamic Loads

Table B -1 : Aerodynamic Loads

Azimuth 15 30 45 60 75 90 105 120

Station 1 r/R= 0.18

Fx -22.4788 -19.2161 -14.9971 -13.6713 -16.839 -21.9929 -24.7676 -23.1063

Fz -2.54448 -1.83661 -1.64881 -1.85762 -1.91595 -1.37717 -0.48131 0.044121

Mt -0.33936 -0.31147 -0.42977 -0.56885 -0.60367 -0.5049 -0.368 -0.34532

Station 2 r/R= 0.26

Fx -14.6552 -12.1176 -9.03673 -8.42157 -11.3769 -15.7557 -18.0905 -16.8795

Fz -1.13357 -0.42199 -0.81151 -1.38315 -0.88433 1.045624 3.294188 4.168043

Mt -0.21734 -0.18847 -0.28729 -0.41549 -0.46789 -0.40713 -0.29898 -0.27149

Station 3 r/R= 0.335

Fx -9.70275 -7.7901 -5.95209 -6.01417 -8.41424 -11.5348 -13.1491 -12.5015

Fz -2.70796 -1.8209 -1.84347 -2.05464 -1.43731 0.29803 2.219996 2.913587

Mt -0.13005 -0.10229 -0.18769 -0.30476 -0.36239 -0.32122 -0.22997 -0.19991

Station 4 r/R= 0.405

Fx -6.57628 -5.1961 -4.50198 -5.15759 -6.95059 -8.80214 -9.70968 -9.62516

Fz -3.55143 -2.67707 -2.42182 -2.3568 -1.86669 -0.74446 0.472848 0.903353

Mt -0.07583 -0.04866 -0.12177 -0.22721 -0.28583 -0.25805 -0.17979 -0.14797

Station 5 r/R= 0.47

Fx -3.44139 -2.59324 -3.06342 -4.29043 -5.37738 -5.8415 -6.01163 -6.57796

Fz -0.78141 -0.17208 -0.33831 -0.68068 -0.57618 0.171003 1.158958 1.666077

Mt -0.03373 -0.00711 -0.06832 -0.16262 -0.22255 -0.20843 -0.1438 -0.1111

Station 6 r/R= 0.53

Fx -0.88454 -0.33202 -1.37793 -2.88634 -3.64751 -3.46805 -3.30313 -4.17387

Fz -0.24225 -0.01854 -0.69688 -1.33341 -1.14956 -0.1054 1.099272 1.54492

Mt 0.001966 0.027216 -0.02401 -0.10851 -0.16938 -0.16739 -0.11534 -0.08235

Station 7 r/R= 0.585

Fx 1.230107 1.51589 -0.01445 -1.75295 -2.24023 -1.52061 -1.05732 -2.14198

Fz -0.07553 -0.13582 -1.15621 -1.97895 -1.73173 -0.48706 0.861374 1.279148

Mt 0.028847 0.05209 0.008643 -0.06718 -0.1272 -0.13355 -0.09125 -0.05845

Station 8 r/R= 0.635

Fx 2.624236 2.673311 0.721908 -1.19975 -1.42122 -0.20491 0.544649 -0.69376

Fz -0.20735 -0.39459 -1.46127 -2.2986 -2.09555 -0.92845 0.369981 0.812198

Mt 0.04383 0.064998 0.027782 -0.03999 -0.09706 -0.10774 -0.07224 -0.04012

Station 9 r/R= 0.685

Fx 3.362497 3.211605 0.919722 -1.11891 -1.06633 0.612864 1.634991 0.290238

Fz -0.14119 -0.3695 -1.35177 -2.16184 -2.1082 -1.18786 -0.03305 0.48986

Mt 0.048265 0.067482 0.036243 -0.02301 -0.0752 -0.0876 -0.05744 -0.02686

Station 10 r/R= 0.733

Fx 3.545063 3.263788 0.788663 -1.27202 -0.99477 1.01606 2.237735 0.849644

Fz 0.234177 -0.0028 -0.93637 -1.76196 -1.85399 -1.14032 -0.09419 0.533653

Mt 0.04501 0.06258 0.036738 -0.01439 -0.06098 -0.07357 -0.04778 -0.01953

Station 11 r/R= 0.77

V
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Appendix B: Aerodynamic Loads

Fx 3.488708 3.121116 0.590362 -1.42404 -0.98951 1.212768 2.555243 1.178439

Fz 0.295288 0.124161 -0.73443 -1.51809 -1.6495 -1.06376 -0.13396 0.543316

Mt 0.038917 0.054859 0.033737 -0.00989 -0.05086 -0.06304 -0.04121 -0.01581

Station 12 r/R= 0.81

Fx 3.347326 2.909628 0.411088 -1.50727 -0.97031 1.307396 2.705874 1.392204

Fz -0.4475 -0.43029 -1.0655 -1.64152 -1.68019 -1.18773 -0.44125 0.176247

Mt 0.031844 0.04576 0.029 -0.00713 -0.0421 -0.05345 -0.03562 -0.01356

Station 13 r/R= 0.845

Fx 3.2505 2.747609 0.31878 -1.49399 -0.91704 1.33007 2.721462 1.50835

Fz -2.07868 -1.75672 -1.97578 -2.16977 -2.02121 -1.60074 -1.08621 -0.68513

Mt 0.025832 0.037528 0.024128 -0.00557 -0.03505 -0.04536 -0.03094 -0.01203

Station 14 r/R= 0.875

Fx 3.1736 2.618525 0.285044 -1.42208 -0.85017 1.298075 2.644605 1.558989

Fz -4.08384 -3.41164 -3.10006 -2.79399 -2.40811 -2.09312 -1.92807 -1.95793

Mt 0.02077 0.030282 0.019533 -0.0046 -0.02904 -0.03815 -0.02673 -0.01084

Station 15 r/R= 0.905

Fx 2.76874 2.247114 0.230603 -1.22433 -0.70899 1.163843 2.352789 1.464191

Fz -4.54257 -3.75874 -3.2293 -2.69545 -2.15415 -1.79962 -1.76528 -2.12843

Mt 0.015599 0.022812 0.014885 -0.00332 -0.02237 -0.03019 -0.02194 -0.00929

Station 16 r/R= 0.93

Fx 1.953654 1.598205 0.195584 -0.81741 -0.43396 0.923923 1.797309 1.180963

Fz -2.21193 -1.83617 -1.77079 -1.6126 -1.09383 -0.34755 0.143768 -0.12562

Mt 0.01092 0.016275 0.011124 -0.00168 -0.01602 -0.02287 -0.01752 -0.0076

Station 17 r/R= 0.95

Fx 1.071929 0.929741 0.194042 -0.35748 -0.13377 0.657175 1.178172 0.834551

Fz 0.714525 0.518939 -0.04387 -0.38759 0.029743 1.12976 2.108611 2.087931

Mt 0.006982 0.010915 0.008128 -0.00025 -0.01082 -0.01699 -0.01406 -0.00641

Station 18 r/R= 0.97

Fx 0.370867 0.393607 0.16466 -0.03665 0.059421 0.400752 0.634513 0.497065

Fz 1.872077 1.433615 0.719105 0.24924 0.523681 1.483801 2.401618 2.499696

Mt 0.003576 0.006018 0.005123 0.000604 -0.00645 -0.01173 -0.01094 -0.00565

Station 19 r/R= 0.99

Fx 0.090681 0.118114 0.062103 0.003229 0.036299 0.150659 0.230004 0.187025

Fz 0.634296 0.475599 0.236527 0.100177 0.210715 0.517949 0.785287 0.79599

Mt 0.001032 0.00186 0.001764 0.000332 -0.00236 -0.00471 -0.00474 -0.00268

135 150 165 180 195 210 225 240 255

-19.2383 -17.4045 -19.583 -23.6054 -25.3991 -22.9985 -18.4967 -16.0629 -17.9616

-0.12596 -0.4825 -0.38965 0.044078 0.156761 -0.40738 -1.37145 -2.28396 -3.06802

-0.50674 -0.74717 -0.86316 -0.75732 -0.55592 -0.48437 -0.61913 -0.80085 -0.81931

-13.9582 -12.5776 -14.1531 -17.0032 -18.1384 -16.1457 -12.5251 -10.3331 -11.3936

2.996431 0.848814 -0.40964 0.11888 1.574843 2.2888 1.347467 -0.72682 -2.6668

-0.39951 -0.60978 -0.72879 -0.65759 -0.48897 -0.41511 -0.5137 -0.66107 -0.68092

-10.9126 -10.3382 -11.4124 -12.9758 -13.3423 -11.8689 -9.5082 -8.01777 -8.49652

1.810616 -0.18906 -1.46164 -1.17127 -0.0261 0.515857 -0.32336 -2.00798 -3.39651
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-0.30624 -0.49554 -0.6159 -0.56917 -0.42494 -0.3509 -0.42528 -0.55073 -0.57529

-9.32645 -9.48701 -10.0094 -10.2981 -9.96099 -9.08198 -8.0388 -7.28551 -7.1917

0.154324 -1.2264 -2.18853 -2.17813 -1.6561 -1.54937 -2.25036 -3.25896 -3.85655

-0.23618 -0.4062 -0.52472 -0.49623 -0.37229 -0.29978 -0.356 -0.46425 -0.49234

-7.67916 -8.57667 -8.41533 -7.29177 -6.28352 -6.22794 -6.75243 -6.80027 -5.96907

1.26999 0.294658 -0.42548 -0.35718 0.135567 0.143716 -0.72135 -1.82028 -2.26957

-0.18139 -0.33047 -0.44381 -0.43039 -0.32592 -0.25684 -0.29733 -0.3884 -0.41688

-5.90463 -7.10275 -6.58021 -4.78671 -3.51111 -3.92066 -5.22783 -5.62689 -4.36454

0.845773 -0.44494 -1.24872 -0.93047 0.028628 0.431698 -0.32798 -1.56477 -2.16374

-0.13626 -0.26491 -0.37123 -0.36968 -0.28273 -0.21795 -0.24525 -0.32064 -0.3483

-4.35711 -5.79658 -4.99807 -2.66918 -1.15477 -1.90658 -3.84507 -4.5834 -3.05856

0.416453 -1.03553 -1.87133 -1.39484 -0.122 0.599303 0.006676 -1.23325 -1.87994

-0.09917 -0.21019 -0.30912 -0.31613 -0.24349 -0.1829 -0.19997 -0.26275 -0.28995

-3.29925 -4.9386 -3.92067 -1.15263 0.578132 -0.42417 -2.88068 -3.95484 -2.30589

0.034795 -1.32304 -2.10405 -1.60061 -0.27255 0.556595 0.111096 -0.9741 -1.48856

-0.07117 -0.16793 -0.25962 -0.27207 -0.21044 -0.15376 -0.16355 -0.21687 -0.24385

-2.62316 -4.41791 -3.22159 -0.10685 1.787409 0.572703 -2.321 -3.70335 -1.99476

-0.0268 -1.09279 -1.69614 -1.16866 0.098766 0.883089 0.48232 -0.48772 -0.9111

-0.05047 -0.13441 -0.21811 -0.23378 -0.18162 -0.12945 -0.13399 -0.1792 -0.20519

-2.23281 -4.10502 -2.79342 0.521201 2.489911 1.114259 -2.07932 -3.67724 -1.94198

0.315358 -0.4114 -0.81379 -0.27612 0.907207 1.635479 1.238222 0.242885 -0.31907

-0.03794 -0.11083 -0.18622 -0.20309 -0.15884 -0.11176 -0.11315 -0.15151 -0.1753

-1.94523 -3.82273 -2.44961 0.945117 2.930742 1.460584 -1.89975 -3.62795 -1.89945

0.580279 0.143804 -0.16639 0.23674 1.260855 1.979524 1.658011 0.605478 -0.22177

-0.03031 -0.09314 -0.15991 -0.17663 -0.1393 -0.09777 -0.09744 -0.12975 -0.15055

-1.65472 -3.46906 -2.07708 1.302661 3.27375 1.787542 -1.61818 -3.42274 -1.76758

0.357914 0.076816 -0.32693 -0.25326 0.500235 1.231438 1.094177 0.105499 -0.87134

-0.02456 -0.07701 -0.13411 -0.14967 -0.11908 -0.08382 -0.08261 -0.10907 -0.12636

-1.36429 -3.06057 -1.69405 1.578278 3.50674 2.103016 -1.18932 -2.9933 -1.49118

-0.62322 -1.00383 -1.59993 -1.80741 -1.29792 -0.65528 -0.71953 -1.54214 -2.30481

-0.02013 -0.06325 -0.11119 -0.12499 -0.10005 -0.07059 -0.06918 -0.09086 -0.10508

-1.07616 -2.62476 -1.32928 1.744174 3.581608 2.333901 -0.68356 -2.37611 -1.06842

-2.27577 -2.89025 -3.53936 -3.71948 -3.30341 -2.95794 -3.32509 -4.1098 -4.35169

-0.01659 -0.05132 -0.09067 -0.1024 -0.08219 -0.05799 -0.0567 -0.07447 -0.08617

-0.75386 -2.06365 -0.96661 1.63729 3.200673 2.182983 -0.31029 -1.72641 -0.69741

-2.86892 -3.72352 -4.24339 -4.10851 -3.62027 -3.61917 -4.41374 -5.18856 -4.83739
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-0.01255 -0.03831 -0.06846 -0.07792 -0.06273 -0.0441 -0.043 -0.05674 -0.06602

-0.3992 -1.35033 -0.59669 1.219322 2.291721 1.567676 -0.16387 -1.16067 -0.504

-1.14417 -2.21732 -2.55651 -2.03731 -1.40455 -1.55325 -2.41172 -2.90285 -2.15404

-0.00843 -0.02613 -0.04825 -0.05597 -0.04542 -0.03174 -0.03067 -0.04078 -0.04802

-0.0805 -0.65266 -0.25912 0.725354 1.276544 0.84381 -0.11504 -0.67876 -0.37681

1.047616 -0.04763 -0.23196 0.471679 1.136558 1.008194 0.403127 0.29349 1.110718

-0.00527 -0.01641 -0.03195 -0.03821 -0.03144 -0.02181 -0.02077 -0.02785 -0.03332

0.10888 -0.15109 -0.03454 0.294525 0.445135 0.255034 -0.09177 -0.31085 -0.27084

1.765636 0.997591 0.937397 1.498656 1.968853 1.903524 1.629881 1.749257 2.336183

-0.00315 -0.00841 -0.01757 -0.02199 -0.01844 -0.01264 -0.01177 -0.01595 -0.01941

0.062382 -0.02389 -0.00113 0.077153 0.104145 0.046645 -0.04335 -0.10416 -0.11234

0.572621 0.357712 0.355517 0.5278 0.666652 0.648446 0.569619 0.604271 0.778785

-0.00123 -0.00256 -0.00561 -0.00727 -0.00616 -0.00415 -0.00381 -0.00524 -0.00644

270 285 300 315 330 345 360

-22.5105 -25.8263 -25.4941 -22.6358 -20.4746 -20.9091 -22.5955

-3.99784 -5.15052 -6.10774 -6.35193 -5.7859 -4.735 -3.57785

-0.65726 -0.50607 -0.53987 -0.71813 -0.83797 -0.757 -0.53093

-14.6848 -17.354 -17.3691 -15.3153 -13.577 -13.7275 -14.8596

-3.73951 -4.23967 -4.78894 -5.43613 -5.57018 -4.63605 -2.84435

-0.55268 -0.43036 -0.45527 -0.59184 -0.67329 -0.58734 -0.38553

-10.4788 -12.3534 -12.7751 -11.8165 -10.7024 -10.3726 -10.4352

-3.98228 -4.25885 -4.90676 -5.88546 -6.43287 -5.8764 -4.34816

-0.47431 -0.37321 -0.39033 -0.49594 -0.5506 -0.4628 -0.27996

-7.84508 -8.89698 -9.73425 -9.9489 -9.58174 -8.8722 -7.88931

-3.99085 -4.27046 -5.12665 -6.22019 -6.75177 -6.24298 -4.94087

-0.4126 -0.32794 -0.33916 -0.4222 -0.45939 -0.37444 -0.20985

-5.05694 -5.17563 -6.49666 -8.03381 -8.52305 -7.45046 -5.3768

-2.04752 -2.02011 -2.83042 -4.03758 -4.56213 -3.81449 -2.22512

-0.35419 -0.28383 -0.29054 -0.35476 -0.37821 -0.29816 -0.15219

-2.62413 -2.25653 -3.8068 -5.98124 -6.87741 -5.63485 -3.06856

-1.93144 -1.78733 -2.5355 -3.76205 -4.26677 -3.37707 -1.62744

-0.29995 -0.24246 -0.24596 -0.29425 -0.30596 -0.23065 -0.1018

-0.71437 0.02839 -1.68377 -4.33079 -5.51473 -4.10736 -1.13718

-1.59817 -1.31631 -1.97297 -3.23036 -3.84043 -3.03671 -1.33719

-0.25376 -0.20719 -0.20827 -0.24376 -0.24642 -0.17584 -0.06194
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0.465939 1.504791 -0.31817 -3.33975 -4.76429 -3.22053 0.097717

-1.09725 -0.73159 -1.34434 -2.60817 -3.31209 -2.70965 -1.25867

-0.21712 -0.17897 -0.17822 -0.20444 -0.20158 -0.13654 -0.03585

1.105158 2.394871 0.493495 -2.8491 -4.50738 -2.88319 0.708789

-0.50104 -0.15047 -0.73101 -1.89592 -2.56427 -2.12288 -0.96476

-0.18562 -0.15409 -0.15197 -0.1715 -0.16611 -0.10832 -0.02089

1.371753 2.837117 0.896199 -2.65816 -4.49378 -2.86519 0.848149

-0.10078 0.150733 -0.34662 -1.30403 -1.83194 -1.44657 -0.46244

-0.1601 -0.13331 -0.13048 -0.14584 -0.1402 -0.09016 -0.01489

1.513063 3.071371 1.12756 -2.5102 -4.43157 -2.84458 0.846

-0.28684 -0.11152 -0.45726 -1.20623 -1.65073 -1.32294 -0.40871

-0.13803 -0.11499 -0.112 -0.12462 -0.11961 -0.07692 -0.01265

1.612715 3.18804 1.294499 -2.28979 -4.20294 -2.69172 0.852249

-1.09879 -0.90122 -1.08883 -1.74637 -2.2739 -2.10326 -1.247

-0.11589 -0.0965 -0.09378 -0.10418 -0.10002 -0.0646 -0.01122

1.69246 3.189518 1.400378 -1.9947 -3.80704 -2.37855 0.95287

-2.2925 -1.89655 -2.03041 -2.83097 -3.6363 -3.73073 -2.98537

-0.09629 -0.08017 -0.07797 -0.08664 -0.08315 -0.05377 -0.00969

1.767162 3.074719 1.417804 -1.67489 -3.30819 -1.96964 1.100185

-3.60621 -2.72887 -2.87946 -4.06742 -5.32501 -5.72798 -5.09496

-0.079 -0.06585 -0.0642 -0.0714 -0.06845 -0.04421 -0.00812

1.56308 2.576778 1.204848 -1.31061 -2.62368 -1.49108 1.065646

-3.32155 -2.02326 -2.26987 -3.84788 -5.46984 -6.07852 -5.54153

-0.06083 -0.05102 -0.04995 -0.05546 -0.0529 -0.03399 -0.0063

0.989653 1.672452 0.780403 -0.88728 -1.76632 -0.99025 0.770154

-0.5582 0.467192 -0.03077 -1.56695 -2.93829 -3.36848 -2.91217

-0.04483 -0.03814 -0.03756 -0.04139 -0.03905 -0.02489 -0.00477

0.378338 0.75962 0.355532 -0.47744 -0.94395 -0.55017 0.395873

2.226561 2.607348 1.915234 0.789992 0.0596 0.023966 0.420141

-0.03165 -0.02743 -0.0272 -0.02968 -0.02761 -0.01747 -0.00363

-0.07187 0.079131 0.036947 -0.17076 -0.33288 -0.24109 0.079026

2.849774 2.773918 2.181662 1.597033 1.414273 1.604568 1.86883

-0.01869 -0.01645 -0.01646 -0.01781 -0.01624 -0.01008 -0.00223

-0.08178 -0.04133 -0.02425 -0.04998 -0.08952 -0.08136 -0.0031

0.941098 0.935313 0.766152 0.578516 0.504068 0.555509 0.64009

-0.0062 -0.00546 -0.00552 -0.00598 -0.00538 -0.00327 -0.00075
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Appendix C: Design Specifications Of The 24% Scale Rotor [16, 27]

APPENDIX C: DESIGN SPECIFICATIONS OF THE 24% 

SCALE ROTOR [16, 27]

C.1 Scope

These specifications establish the performance, design, development and 

testing requirements for a bearingless rotor hub for the 24% scale model of 

the Rooivalk attack helicopter. The bearingless rotor hub is primarily intended 

as a technology demonstrator, and secondarily to be tested on the actual 24% 

scale model.

C.2 Applicable Documents 

C.2.1 Military Standards

MIL-STD-490A Military Standard Specification Practices

RSA-MIL-STD-8 Software Development, Minimum Requirements

for

C.2.2 Other Documents

DOC.NO. 103-000-00-28 System Specification for a Helicopter Rotor Test 

Facility

C.3 Requirements 

C.3.1 Prime Item Definition

C.3.1.1 General Definition

A bearingless rotor hub is a structure, usually manufactured of composite 

materials, that allows blade motion of flap, lead-lag and pitch through the 

elastic deformation of the structure rather than the use of discrete bearings 

that allow rotation between components.
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Appendix C: Design Specifications Of The 24% Scale Rotor [16, 27]

The prime item will be the bearingless rotor hub to be constructed primarily of 

composite materials. The dynamic performance of the bearingless rotor hub 

shall be, within tolerances, the same as that of the fully articulated hub.

C.3.1.2 Geometric Diagram of the Bearingless Rotor Hub

Figure C-1: Hub layout

C.3.1.3 Interface definition 

C.3.1.3.1 Prime item shaft interface

The interface between the bearingless rotor hub and the rotor shaft of the 

helicopter shall be changed to accommodate the new design. The hub shall 

however interface with the existing shaft without changing it.

C.3.1.3.2 Prime item blade interface

The interface between the bearingless rotor hub and the blade shall be 

determined by the interface on the side of the blade, ensuring that the blade 

interface shall not have to be altered.
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Appendix C: Design Specifications Of The 24% Scale Rotor [16, 27]

C.3.2 Characteristics

C.3.2.1 Performance

C.3.2.1.1 Operational envelope

The bearingless rotor hub shall be capable of a dynamic response equivalent 

to that of the original rotor hub. It shall be capable of angular velocities in the 

range of 0 to 125 rad/s and be able to withstand blade pitch inputs of up to 20 

degrees.

C.3.2.1.2 Structural envelope

The bearingless rotor hub shall withstand the static and dynamic loads 

imposed upon it by the blades. For the purpose of design and testing, an air 

load data set will be supplied by the CSIR. When the blades are in rest the 

hub shall ensure that the blades do not droop to a level that may cause a 

blade strike at start-up or shutdown with any part of the model or the ground.

C.3.2.2 Physical 

C.3.2.2.1 Dimensions

The bearingless rotor hub shall preferably have dimensions as depicted in 

Figure C-1, fitting into the space of the fully articulated hub. If this would not 

be possible then the bearingless hub shall have the smallest possible outside 

diameter.

C.3.2.2.2 Weight

The weight of the bearingless rotor hub shall not exceed that of the fully 

articulated hub.

C.3.2.2.3 Blade interface

The interface at the blade side shall be determined by the blade itself and the 

design of the bearingless rotor hub shall be altered to fit in with it.
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C.3.2.2.4 Shaft interface

The interface at the shaft end shall be altered according to the design of the 

bearingless rotor hub. A necessary interface shall be designed to replace the 

existing one.

C.3.2.2.5 Finish

The bearingless rotor hub shall be given a smooth polished finish to minimize 

the affects of air resistance.

C.3.2.3 Reliability

C.3.2.3.1 Failure identification

A failure of the structure shall be defined if any of the following happens;

• Delamination of composite fibres or layers

• Any cracking of the composite matrix

• Fracture of the structure

C.3.2.4 Maintainability 

C.3.2.4.1 General

The bearingless rotor hub shall have no maintenance done on it. When a 

failure of the structure is detected it shall be replaced and not repaired.

C.3.2.5 Downtime

The downtime shall not be more than with the fully articulated hub 

C.3.3 Design and construction

C.3.3.1 Materials

The materials used shall be primarily a composite fibre mat bonded together 

with an appropriate resin.

C.3.3.2 Processes

The process that shall the used is a hand lay-up procedure with the mould 

being put under pressure during the curing phase.

XIII

Stellenbosch University http://scholar.sun.ac.za/



C.4 Quality assurance provisions

C.4.1 Interface Definition

C.4.1.1 Prime Item Shaft Interface

It shall be checked with physical inspection.

C.4.1.2 Prime Item Blade Interface

It shall be checked with physical inspection.

C.4.2 Characteristics

C.4.2.1 Performance

C.4.2.1.1 Operational envelope

It shall be verified with a comparison between the fully articulated and 

bearingless rotor hubs. This comparison shall be done with finite element 

analysis of both the models.

C.4.2.1.2 Structural envelope

It shall be verified by means of physical testing of the flexbeam structure to 

determine its stiffness and strength.

C.4.2.2 Physical 

C.4.2.2.1 Dimensions

It shall be verified by means of measuring the final structure.

C.4.2.2.2 Weight

It shall be verified by weighing the final structure.

C.4.2.2.3 Blade interface

It shall be verified by physical inspection.

C.4.2.2.4 Shaft interface

It shall be verified by physical inspection.

Appendix C: Design Specifications Of The 24% Scale Rotor [16, 27]
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C.4.2.2.5 Finish

It shall be verified by physical inspection.

C.4.2.3 Reliability

C.4.2.3.1 Failure identification

It shall be verified by physical inspection as well as with measurement 

equipment.

C.4.2.4 Maintainability

C.4.2.4.1 General 

Not Applicable 

C.4.2.4.2 Downtime 

Not Applicable

C.4.3 Design and Construction

C.4.3.1 Materials 

Not Applicable

C.4.3.2 Processes 

Not Applicable

Appendix C: Design Specifications Of The 24% Scale Rotor [16, 27]
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Appendix D: Source Code for Calculating the Factor o f Safety

APPENDIX D: SOURCE CODE FOR CALCULATING 

THE FACTOR OF SAFETY
Program vfber 

use dfport

c---------------------------------------------------------------
c Die program is geskryf deur Johannes Steyn (9308873) 
c Die datum is 06 Mei 1999 
c
c Dit is geskryf as deel van my MSCEng Tesis om die veiligheids faktor 
c uit te werk van spannings data verkry deur crosec
c---------------------------------------------------------------

parameter maxnodes=20000
parameter maxelements=20000
common /iotp/ nr,nw
integer idum
real idumr
character*60 idumc
Integer nnode, nelement
Integer i , j , pos, nr, nw
double precision TM1(6,6), TM2(6,6)
double precision node(9), AA(1:6), BB(1:6), BBtemp(6,6)
double precision stress(10*maxelements,6)
double precision stresst(10*maxelements,6)
double precision gaussepunt(10‘ maxelements,2)
double precision nodelt(maxnodes,2)
integer elem(maxelements,9), upper, vfplek
double precision elemm(maxelements*9,3)
double precision vf(10*maxelements), vftem p(4), vfmin
double precision sigmal p,sigma1 m,sigma2p,sigma2m,sigma3p,sigma3m
double precision toult.touhars
character*8 Hour .begintime, endtime
double precision p h i, pi
double precision m2,n2,k2,l2

nr = 5 
nw = 6
pi = 3.141592653589793

c tho = 1,0d+03
open (nr ,file='vf.inp,,status=,old') 
open (nw ,file='vf.out',status='new') 
call time(Hour) 
call time(begintime)
write (nw,*) Hour," :Begining Analysis”

c......read number of nodes and elements
call time(Hour)
write (nw,*) H our," :Started reading number of nodes and elements" 
write (nw,*)
read (nr,*,err=900) nnode, nelement 

c write (nw,*) nnode, nelement 
read (nr,*,err=900) 
call time(Hour)
write (nw,*) H our," :Finished reading number of nodes and elements" 
write (nw,*)

c...... read nodal coordinates
call time(Hour)
write (nw,*) H our," :Started reading nodal coordinates" 
write (nw,*) 
do 200 i = 1 , nnode
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read (nr,2000,err=900) idum,nodelt(i,1),nodelt(i,2)
200 continue

read (nr,*,err=900) 
call time(Hour)
write (nw,*) Hour, ” :Finished reading nodal coordinates" 
write (nw,*)

c do 201 i=1 ,nnode
c write (nw,2000,err=900) idum,nodelt(i,1),nodelt(i,2) 
c 201 continue

c— read element info 
call time(Hour)
write (nw,*) H our," :Started reading element info" 
write (nw,*)
do 300 i = 1 , nelement
read (nr,3000,err=900) idum,idum,elemm(i,1),idum,elemm(i,2),

2 elemm(i,3),elem(i,1),elem(i,2),elem(i,3),
3 elem(i,4),elem(i,5),elem(i,6),
4 elem(i,7),elem(i,8),elem(i,9)

300 continue
call time(Hour)
write (nw,*) H our," fin ished  reading element info” 
write (nw,*)

c do 301 i = 1 , nelement
c write (nw,3000,err=900) idum,idum,elemm(i,1),idum,elemm(i,2), 
c 2 elemm(i,3),elem(i,1),elem(i,2),elem(i,3),
c 3 elem(i,4),elem(i,5),elem(i,6),
c 4 elem(i,7),elem(i,8),elem(i,9)
c 301 continue

c...... read stress info
call time(Hour)
write (nw,*) H our," :Started reading Stress and Gaussian info" 
write (nw,*) 
i=0
DO while (.NOT. EOF(nr)) 
i=i+1
read (nr,*)

read (nr,4000,err=900) idum, gaussepunt(i,1)
read (nr,5000,err=900) idum, gaussepunt(i,2),stresst(i,1),
1 stresst(i ,6) ,stresst(i ,5) ,stresst(i ,2),
2 stresst(i ,3) ,stresst(i ,4)

End DO 
upper=i 
call time(Hour)
write (nw,*) H our," :Finished reading Stress and Gaussian info" 
write (nw,*)

call time(Hour)
write (nw,*) H our," beginning analysys"
write (nw,*)
pos=0

c
do 800 j = 1 , nelement

c ............................................................................
c Konvergeer die spannings van XY na LT

if ((elem(j,5) .EQ. 0) .AND. (elem(j,4) .NE. 0)) then
c --------------------------------------------------
c Reghoekige element met 4 nodes 
c --------------------------------------------------
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c Bereken hoek phi

z1 =gaussepunt(pos+1,2) 
z2=gaussepunt(pos+2,2) 
z3=gaussepunt(pos+3,2) 
z4=gaussepunt(pos+4,2) 
y1 =gaussepunt(pos+1,1) 
y2=gaussepunt(pos+2,1) 
y3=gaussepu nt(pos+3,1) 
y4=gaussepunt(pos+4,1)

z8=(z3+z4)/2 
y8=(y3+y4)/2 
z5=(z1 +z2+z3+z4)/4 
y5=(y1 +y2+y3+y4)/4

phi=atan((z8-z5)/(y8-y5))

c Transformasie matriksl

k2=cos(phi)
I2=sin(phi)

TM1(2,2)=k2**2;
TM1 (2,3)=I2**2;
TM1 (2,4)=2*k2*l2;
TM1 (3,2)=I2**2;
TM1 (3,3)=k2**2;
TM1 (3,4)=-2*k2*l2;
TM1 (1,1 )=1;
TM1(5,5)=k2;
TM1 (5,6)=-l2;
TM1 (6,5)=I2;
TM1(6,6)=k2;
TM1 (4,2)=-k2*l2; 
TM1(4,3)=k2*l2;
TM1 (4,4)=(k2**2-l2**2);

c Transformasie Matriks2

m2=cos(elemm(j,3)*pi/180) 
n2=si n(elem m (j ,3)*pi/180)

TM2(1,1 
TM2(1,2 
TM2(1,6 
TM2(2,1 
TM2(2,2 
TM2(2,6 
TM2(3,3 
TM2(4,4 
TM2(4,5 
TM2(5,4 
TM2(5,5 
TM2(6,1 
TM2(6,2 
TM2(6,6

=m2**2;
=n2**2;
=2*m2*n2;
=n2**2;
=m2**2;
=-2*m2*n2;
= 1 ;

=m2;
=-n2;
=n2;
=m2;
=-m2*n2;
=m2*n2;
=(m2**2-n2**2);

do 410, i = 1, 6 
AA(i)=stresst(pos+1 ,i)

410 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 411, i = 1 ,6  
stress(pos+1 ,i)=BB(i)

411 continue
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do 412, i = 1, 6 
AA(i)=stresst(pos+2,i)

412 continue

BBtemp=matmul(TM2,TM1)
BB=matmul(BBtemp,AA) 
do 413, i = 1 ,6  
stress(pos+2,i)=BB(i)

413 continue

do 414, i = 1 ,6  
AA(i)=stresst(pos+3,i)

414 continue

BBtemp=matmul(TM2,TM1)
BB=matmul(BBtemp,AA) 
do 415, i = 1 , 6 
stress(pos+3,i)=BB(i)

415 continue

do 416, i = 1, 6 
AA(i)=stresst(pos+4,i)

416 continue

BBtemp=matmul(TM2,TM1)
BB=matmul(BBtemp,AA) 
do 417, i = 1 , 6 
stress(pos+4,i)=BB(i)

417 continue

pos=pos+4

elseif ((elem(j,5) .NE. 0) .AND. (elem(j,4).EQ. 0)) then
c--------------------------------------------------
c Driehoekige element met 6 nodes

z1 =gaussepunt(pos+1,2); 
z2=gaussepunt(pos+2,2); 
y 1 =gaussepunt(pos+1,1); 
y2=gaussepu nt(pos+2,1);

phi=atan((z2-z1 )/(y2-y1));

c Transformasie matriksl

k2=cos(phi);
I2=sin(phi);

TM1(2,2)=k2**2;
TM1(2,3)=I2**2;
TM1 (2,4)=2*k2*l2;
TM1 (3,2)=I2**2;
TM1(3,3)=k2**2;
TM1 (3,4)=-2*k2*l2;
TM1 (1,1 )=1;
TM1 (5,5)=k2;
TM1(5,6)=-I2;
TM1 (6,5)=I2;
TM1 (6,6)=k2;
TM1(4,2)=-k2*l2;
TM1 (4,3)=k2*l2;
TM1 (4,4)=(k2**2-l2**2);

c Transformasie Matriks2

m2=cos(elem m (j ,3)*pi/180)
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n2=sin(elemm(j,3)*pi/180)

TM2(1,1)=m2**2;
TM2(1,2)=n2**2;
TM2(1,6)=2*m2*n2;
TM2(2,1)=n2**2;
TM2(2,2)=m2**2;
TM2(2,6)=-2*m2*n2;
TM2(3,3)=1;
TM2(4,4)=m2;
TM2(4,5)=-n2;
TM2(5,4)=n2;
TM2(5,5)=m2;
TM2(6,1)=-m2*n2;
TM2(6,2)=m2*n2;
TM2(6,6)=(m2**2-n2**2);

do 418, i = 1 ,6  
AA(i)=stresst(pos+1 ,i)

418 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 419, i = 1 ,6  
stress(pos+1,i)=BB(i)

419 continue

do 420, i = 1, 6 
AA(i)=stresst(pos+2,i)

420 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 421, i = 1 , 6 
stress(pos+2,i)=BB(i)

421 continue

do 422, i = 1, 6 
AA(i)=stresst(pos+3,i)

422 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 423, i = 1 , 6 
stress(pos+3,i)=BB(i)

423 continue

do 424, i = 1, 6 
AA(i)=stresst(pos+4,i)

424 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 425, i = 1 , 6 
stress(pos+4,i)=BB(i)

425 continue

do 426, i = 1, 6 
AA(i)=stresst(pos+5,i)

426 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 427, i = 1 , 6 
stress(pos+5,i)=BB(i)

427 continue
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do 428, i = 1, 6 
AA(i)=stresst(pos+6,i)

428 continue

BBtemp=matmul(TM2,TM1)
BB=matmul(BBtemp,AA) 
do 429, i = 1 , 6 
stress(pos+6,i)=BB(i)

429 continue

do 430, i = 1 ,6  
AA(i)=stresst(pos+7,i)

430 continue

BBtemp=matmul(TM2,TM1)
BB=matmul(BBtemp,AA) 
do 431, i = 1 , 6 
stress(pos+7,i)=BB(i)

431 continue

pos=pos+7

elseif ((elem(j,5) .EQ. 0) .AND. (elem(j,4) .EQ. 0)) then

c ...........................................................................
c Driehoekige element met 4 nodes

z1 =gaussepunt(pos+1,2); 
z2=gaussepunt(pos+2,2); 
y1 =gaussepunt(pos+1,1); 
y2=gaussepu nt(pos+2,1);

phi=atan((z2-z1)/(y2-y1));

c Transformasie matriksl

k2=cos(phi);
I2=sin(phi);

TM1(2,2)=k2**2;
TM1 (2,3)=I2**2;
TM1 (2,4)=2*k2*l2;
TM1 (3,2)=I2**2;
TM1 (3,3)=k2**2;
TM1 (3,4)=-2*k2*l2;
TM1(1,1)=1;
TM1(5,5)=k2;
TM1(5,6)=-I2;
TM1(6,5)=I2;
TM1(6,6)=k2;
TM1 (4,2)=-k2*l2;
TM1 (4,3)=k2*l2;
TM1 (4,4)=(k2**2-l2**2);

c Transformasie Matriks2

m2=cos(elemm(j,3)*pi/180)
n2=sin(elemm(j,3)*pi/180)

TM2(1,1)=m2**2;
TM2(1,2)=n2**2;
TM2(1,6)=2*m2*n2;
TM2(2,1)=n2**2;
TM2(2,2)=m2**2;
TM2(2,6)=-2*m2*n2;
TM2(3,3)=1;
TM2(4,4)=m2;
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TM2(4,5)=-n2;
TM2(5,4)=n2;
TM2(5,5)=m2;
TM2(6,1)=-m2*n2;
TM2(6,2)=m2*n2;
TM2(6,6)=(m2**2-n2**2);

do 432, i = 1, 6 
AA(i)=stresst(pos+1 ,i)

432 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 433, i = 1 , 6 
stress(pos+1 ,i)=BB(i)

433 continue

do 434, i = 1, 6 
AA(i)=stresst(pos+2,i)

434 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 435, i = 1 , 6 
stress(pos+2,i)=BB(i)

435 continue

do 436, i = 1, 6 
AA(i)=stresst(pos+3,i)

436 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 437, i = 1 , 6 
stress(pos+3,i)=BB(i)

437 continue

pos=pos+3

elseif ((elem(j,5) .NE. 0) .AND. (elem(j,4) .NE. 0)) then
c --------------------------------------------------
c Reghoekige element met 8 nodes

z5=gaussepunt(pos+5,2); 
z8=gaussepunt(pos+8,2); 
y5=gaussepunt(pos+5,1); 
y8=gaussepu nt(pos+8,1);

phi=atan((z8-z5)/(y8-y5));

c Transformasie matriksl

k2=cos(phi);
I2=sin(phi);

TM1(2,2)=k2**2;
TM1 (2,3)=I2**2;
TM1 (2,4)=2*k2*l2;
TM1(3,2)=I2**2;
TM1(3,3)=k2**2;
TM1(3,4)=-2*k2*l2;
TM1 (1,1 )=1;
TM1(5,5)=k2;
TM1(5,6)=-I2;
TM1 (6,5)=I2;
TM1 (6,6)=k2;
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TM1 (4,2)=-k2*l2; 
TM1(4,3)=k2*l2;
TM1 (4,4)=(k2**2-l2**2);

c Transformasie Matriks2

m2=cos(elemm(j,3)*pi/180)
n2=sin(elemm(j,3)*pi/180)

TM2(1,1)=m2**2
TM2(1,2)=n2**2
TM2(1,6)=2*m2*n2
TM2(2,1)=n2**2
TM2(2,2)=m2"2
TM2(2,6)=-2*m2*n2
TM2(3,3)=1
TM2(4,4)=m2
TM2(4,5)=-n2
TM2(5,4)=n2
TM2(5,5)=m2
TM2(6,1)=-m2*n2
TM2(6,2)=m2*n2
TM2(6,6)=(m2**2-n2**2)

do 438, i = 1, 6 
AA(i)=stresst(pos+1 ,i)

438 continue

BBtemp=matmul(TM2,TM1) 
BB=matmui(BBtemp,AA) 
do 439, i = 1 , 6 
stress(pos+1,i)=BB(i)

439 continue

do 440, i = 1, 6 
AA(i)=stresst(pos+2,i)

440 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 441, i = 1 , 6 
stress(pos+2,i)=BB(i)

441 continue

do 442, i = 1, 6 
AA(i)=stresst(pos+3,i)

442 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 443, i = 1 , 6 
stress(pos+3,i)=BB(i)

443 continue

do 444, i = 1, 6 
AA(i)=stresst(pos+4,i)

444 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 445, i = 1 , 6 
stress(pos+4,i)=BB(i)

445 continue

do 446, i = 1, 6 
AA(i)=stresst(pos+5,i)

446 continue
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BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 447, i = 1 , 6 
stress(pos+5,i)=BB(i)

447 continue

do 448, i = 1, 6 
AA(i)=stresst(pos+6,i)

448 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 449, i = 1 , 6 
stress(pos+6,i)=BB(i)

449 continue

do 450, i = 1, 6 
AA(i)=stresst(pos+7,i)

450 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 451, i = 1 , 6 
stress(pos+7,i)=BB(i)

451 continue

do 452, i = 1, 6 
AA(i)=stresst(pos+8,i)

452 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 453, i = 1 , 6 
stress(pos+8,i)=BB(i)

453 continue

do 454, i = 1, 6 
AA(i)=stresst(pos+9,i)

454 continue

BBtemp=matmul(TM2,TM1) 
BB=matmul(BBtemp,AA) 
do 455, i = 1 , 6 
stress(pos+9,i)=BB(i)

455 continue

pos=pos+9

end if 
c end van if

c write (nw,*) phi

800 continue 
c end van for

call time(Hour)
write (nw,*) Hour, ” :Analysis Completed" 
write (nw,*) 
call time(Hour)
write (nw,*) H our," :Begining calculation of Factor of Safety" 
write (nw,*)
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c Druk j en pos uit
c ------------------------
c write (nw,*)
c write (nw,*)
c write (nw,*)
c write (nw,*)
c write (nw ,*) j, pos

c Bereken veiligheidsfaktor

c Insette van materiaal maks waardes 
c Carbon/ T300

sigm alp = 1500e6 
sigm alm  = -1500e6 
sigma2p = 40e6 
sigma2m = -246e6 
sigma3p = 40e6 
sigma3m = -246e6 
toult = 68e6 
touhars = 68e6

do 850 j = 1 , upper

if (stress(j,1) .GE. 0) then 
s1tmp=(stress(j,1)/sigma1p) 

else
s1 tmp=(stress(j, 1 )/sigma1 m) 

end if

if (stress(j,2) .GE. 0) then 
s2tmp=(stress(j,2)/sigma2p) 

else
s2tmp=(stress(j,2)/sigma2m) 

end if

s6tmp=(stress(j,6)/toult)

if (stress(j,2) .GE. 0) then 
s4tmp=(stress(j,2)/sigma1 p) 

else
s4tmp=(stress(j,2)/sigma1 m) 

end if

vftemp(1)=1/((s1tmp**2+s2tmp**2+s6tmp**2-s1tmp*s4tmp)**0.5)

if (stress(j,3) .GE. 0) then
vftemp(2)=(touhars/stress(j,3))

else
vftemp(2)=(-touhars/stress(j,3)) 

end if

if (stress(j,4) .GE. 0) then
vftemp(3)=(touhars/stress(j,4))

else
vftemp(3)=(-touhars/stressQ,4)) 

end if

if (stress(j,5) .GE. 0) then
vftemp(4)=(touhars/stress(j,5))

else
vftemp(4)=(-touhars/stress(j,5)) 

end if

vf(j)=minval(vftemp)
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850 continue

vfmin=vf(1) 
do 851 i=2,upper 
if (vf(i) .LT. vfmin) then 
vfmin=vf(i) 
vfplek=i 
end if

851 continue

call time(Hour)
write (nw,*) H our," :Factor of Safety calculations completed" 
write (nw,*) 
write (nw,*)

call time(Hour)
write (nw,*) "Die veiligheidsfaktor matriks is:'' 
write (nw,*) 

c write (nw,*) vf(1:20) 
write (nw,*) 
write (nw,*)
write (nw,*) "Die minimum veiligheidsfaktor is :" , vfmin 
write (nw,*)
write (nw,*) "By posisie:" ,  vfplek

call time(Hour) 
call time(endtime)
write (nw,*) H our," :Analysis complete"

write (nw,*) 
write (nw,*) 
write (nw,*) 
write (nw,*)
write (nw,*) "Analysis Started = ",begintime 
write (nw,*) "Analysis Ended = ".endtime

stop
900 write (nw,*) 'input file read error' 
1000 Format (T10,110)
2000 Format (110,E15.5,E15.5)
3000 Format (2110,I7,I5,F7.2,F12.2,915) 
4000 Format (110, E15.5)
5000 Format (110, E20.5.6E14.5)

end
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APPENDIX E: SOURCE CODE FOR CALCULATING 

CROSS-SECTION WARPING
Program Warping 

use dfpo.t

c Die program is geskryf deur Johannes Steyn (9308873)
c Die datum is 06 Mei 1999 
c
c Dit is geskryf as deel van my MSCEng Tesis om die veiligheids faktor
c uit te werk van spannings data verkry deur CROSEC 
c

parameter maxelem =20000
common /iotp/ nr,nw
integer idum
Integer nnode.nelem
Integer i, j, n, pos, mr, nw, n2, nvf
double precision elem(maxelem,9), elemm(maxelem,3)
double precision Warp(maxelem*10.3)
double precision Warpl(maxelem*10,3)
double precision Warp2(maxelem*10,3)
double precision Warp3(maxelem*10,3)
double precision Warp4(maxelem*10,3)
double precision Warp5(maxelem*10,3)
double precision Warp6(maxe1em*IO,3)
double precision Coord(maxelem*10,3)
double precision vfwaarde
integer Elemtype, upper
character*8 Hour
double precision F1 (3), max(3)

c----------------------------------------------------------------
nr =10 
r1w =11 
n2 =12 
nvf =13
open (nr, file='warping.inp',status='old') 
open (nw, file='warping.neu',status='new') 
open (n2, file='cros.inp',status=,old') 
open (nvf,file='vfmatrix.out',status=’old')

write (*,*) 'Input F1 (l),F1 (2),F1 (3),F1 (4),F1 (5),F1 (6)' 
read (*,*) F1(1),F1(2),F1(3),F1(4),F1(5),F1(6)

read (n2,*) nnode.nelem 
read (n2,*)

c call time(Hour)
C write (nw,*) Hour," :Begining Analysis”

Kry aantal inskrywings 
read (nr,*) 
read (mr,*) 

c write(nw,*) nnode 
c—  Stel Warp = 0 

Warp=0
C
c-----  Lees in Warp matriks 1 en 2
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Coord = 0
do 50, j = 1, nnode
read(n2,*) idum,coord(j,2),coord(j,3),idum,idum,idum 
continue

read(n2,*)

do 60 i = 1, nelem
read (n2,6000) idum,idum,elemm(i,1),idum,elemm(i,2),elemm(i,3), 

elem(i,1),elem(i,2),elem(i,3),
2 elem(i,4),elem(i,5),elem(i,6),
3 elem(i,7),elem(i,8),elem(i,9) 

continue

do 200 , i = 1, 5, 2

do 100, n = 1, nnode 
read (nr,*) idum,Warpl(n,1),Warpl(n,2),Warpl(n,3),

2 idum,Warp2(n,l),Warp2(n,2),Warp2(n,3)
continue 

Bereken Warp Matriks 
Warp = Warp + Warpl*FI(i) + Warp2*FI(i+l) 

continue

Coord=Coord+Warp 
write (nw,2000) 
write (nw,3000)
write (nw,1000) (i,Coord(i,:),i=l,nnode)
write (nw ,*)" -1"
write (nw,4000)
do 300 , i = 1, nelem
if elem(i,4) .EQ. 0) then
elemtype = 3
else
elemtype = 5 
end if
write (nw,*) i,"124",'' 1"," 19 ".elemtype," 11","0" 
write (nw ,7000) (elem(i,j),j=l,9)
write (nw ,*)" 0"," 0"," 0",'' 0"," O'',” 0"," 0"," 0"," 0"," 0" 
write (nw ,*)" 0"," 0"," 0" 
write (nw ,*)" 0"," 0"," 0" 
write (nw ,*)" 0"," 0"," 0"
write (nw ,*)" 0"," 0”,n 0"," 0"," 0"," 0'7' 0",” 0"," 0"," 0"

continue 
write (nw,*)" -1"

Writing vf to neutral file

write (nw,7500)
W rite (nw,8000) 
read (nvf,*) upper 
read (nvf,*) 
do 400 i = 1 , upper 
read (nvf,9000) vfwaarde 
write (nw,*) i,vfwaarde 

continue 
write (nw,*) "-1 0" 
write tnw ,*)" -1"

max = maxval(warp, dim=1)

write (nw,*) 
write (nw,*) max
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c call time(Hour)
c write (nw,1*) Hour,” "Analysis Complete"

1000 format (18, 0 ","0 ","1 ","46 0"," 0",” 0"," 0"," 0",” 0"
1 E23.16," ",E23.16," ",E23.16)

2000 format (4X,"-174X,“1007“<NULL>7"4.174X,"-1")
3000 format (4X,“-17"403")
4000 format (4X,"-17"404")
5000 format (4X /-17“450")
6000 Format (2110,I7,I5,F7.2,F12.2,915)
7000 format (9i 10)
7500 format (4X,"-17"4507"1 "/"Crosec Case 17"4 1 T 0 .T 1 7

2 "Done by JSteyn74X,’'-l“)
8000 format (4X,"-17"4517"1 7033 17"Factcr of Safety"/"1 0

2 "100233 150233 200233 250233 0 0 0 0 0 0"/
3 "0 0 0 0 0 0 0 0 0  07
4 "0 0 4 8T1 0 1")

9000 format (E20.14)
end
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APPENDIX F: DYMORE PRE-PROCESSOR INPUT FILE

i PRF-1 : TITLE LINE 

Rooivalk fully articulated rotor blade 
@@@@@@ PRF-2 : CONTROL PARAMETERS

97 27 1

0 7 0 1

0 17 0 1

7 0 0 0

1 0 0 0

0 0 0
0 0

0
1.0e-15

0
0 0 0 0

@@@@@@ GEO-1 : TRIAD DEFINITION

1 0 0.0 1.0 0.0 0.0 0.0 1.0

2 0 0.0 1.0 0.0 0.0 0.0 1.0

3 0 0.0 1.0 0.0 0.0 0.0 1.0

4 0 0.0 1.0 0.0 0.0 0.0 1.0

5 0 0.0 1.0 0.0 0.0 0.0 1.0

6 0 0.0 1.0 0.0 0.0 0.0 1.0

7 0 0.0 1.0 0.0 0.0 0.0 1.0

8 0 0.0 1.0 0.0 0.0 0.0 1.0

9 0 0.0 1.0 0.0 0.0 0.0 1.0

10 0 0.0 1.0 0.0 0.0 0.0 1.0

11 0 0.0 1.0 0.0 0.0 0.0 1.0

12 0 0.0 1.0 0.0 0.0 0.0 1.0

13 0 0.0 1.0 0.0 0.0 0.0 1.0

14 0 0.0 0.0 1.0 0.996194698 0.087155742 0.0

15 0 -0.087155742 0.996194698 0.0 0.0 0.0 1.0

16 0 -0.087155742 0.996194698 0.0 0.996194698 0.087155742 0.0

17 0 -0.087155742 0.996194698 0.0 0.0 0.0 -1.0

1815 0.0 0.982169321 -0.187998466 0.0 0.187998466 0.982169321

19 15 0.0 0.985902742 -0.167319404 0.0 0.167319404 0.985902742

2015 0.0 0.989200825 -0.14656646 0.0 0.14656646 0.989200825

21 15 0.0 0.992062114 -0.125748798 0.0 0.125748798 0.992062114

22 15 0.0 0.994485347 -0.10487561 0.0 0.10487561 0.994485347

23 15 0.0 0.996469453 -0.083956113 0.0 0.083956113 0.996469453

24 15 0.0 0.998013555 -0.062999544 0.0 0.062999544 0.998013555

25 15 0.0 0.999116973 -0.042015157 0.0 0.042015157 0.999116973

26 15 0.0 0.999779219 -0.021012217 0.0 0.021012217 0.999779219

27 0 0.996194698 0.087155742 0.0 -0.087155742 0.996194698 0.0

@@@@@@ GEO-2 : NODAL COORDINATES

1 0 0 0.0 0.0 0.0 1 1 1 1 1 1

2 0 0 0.0 0.0 0.0 1 1 1 1 1 1

3 0 0 0.0 0.0 0.0 1 1 1 1 1 1

4 0 0 0.0 0.0 0.0 1 1 1 1 1 1

5 0 0 0.0 0.0 0.0 1 1 1 1 1 1

XXX
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6 0 0 0.0
7 0 0 0.0

8 0 0 0.0

9 0 0 0.0

10 0 0 0.0
11 0 0 0.0

12 0 0 0.0
13 0 0 0.0

14 0 0 0.0

15 0 0 0.0

16 0 0 0.0

17 0 0 0.0

18 0 0 0.0

19 0 0 0.0

20 0 0 0.0

21 0 0 0.0

22 0 0 0.0
23 0 0 0.0

24 0 0 0.0

25 0 0 0.0

26 0 0 0.0

27 0 0 0.0

28 0 0 0.0
29 0 0 0.0

30 0 0 0.0
31 0 0 0.0

32 0 0 0.0

33 0 0 0.0

34 0 0 0.0

35 0 0 0.0

36 0 0 0.0

37 0 0 0.0

38 0 0 0.0

39 0 0 0.0

30 0 0 0.0
41 0 0 0.0

42 0 0 0.0
43 0 0 0.0

44 0 0 0.0

45 0 0 0.0

46 0 0 0.0
47 0 0 0.0

48 0 0 0.0
49 0 0 0.0
50 0 0 0.0

51 0 0 0.0

52 0 0 0.0

53 0 0 0.0
54 0 0 0.0
55 0 0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0
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56 0 0 0.0 0.0 0.0 1 1 1 1 1

57 0 0 0.0 0.0 0.0 1 1 1 1 1

58 0 0 0.0 0.0 0.0 1 1 1 1 1

59 0 0 0.0 0.0 0.0 1 1 1 1 1

60 0 0 0.0 0.0 0.0 1 1 1 1 1

61 0 0 0.0 0.0 0.0 1 1 1 1 1

62 0 0 0.0 0.0 0.0 1 1 1 1 1

63 0 0 0.0 0.0 0.0 1 1 1 1 1

64 0 0 0.0 0.0 0.0 1 1 1 1 1

65 0 0 0.0 0.0 0.0 1 1 1 1 1

66 0 0 0.0 0.0 0.0 1 1 1 1 1
67 0 0 0.0 0.0 0.0 1 1 1 1 1

68 0 0 0.0 0.0 0.0 1 1 1 1 1

69 0 0 0.0 0.0 0.0 1 1 1 1 1

70 0 0 0.0 0.0 0.0 1 1 1 1 1

71 0 0 0.0 0.0 0.0 1 1 1 1 1

72 0 0 0.0 0.0 0.0 1 1 1 1 1

73 0 0 0.0 0.0 0.0 1 1 1 1 1

74 0 0 0.0 0.0 0.0 1 1 1 1 1

75 0 0 6.66976200E+00 5.226965000E+00 o b o o o o o m + o o 1 1 1 1 1

76 75 15 0.0133 0 0 0 0 0 0

0

77 75 15 0.0267 0 0 0 0 0 0

0

78 75 15 0.04 0 0 0 0 0 0

0

79 78 15 0.054 0 0 0 0 0 0

0

80 78 15 0.234 0 0 0 0 0 0

0

81 78 15 0.302 0 0 0 0 0 0

0

82 78 15 0.334 0 0 0 0 0 0

0
83 78 15 0.803 0 0 0 0 0 0

0
84 78 15 0.832 0 0 0 0 0 0

0

85 78 15 0.873 0 0 0 0 0 0

0

86 78 18 0.874 0 0 0 0 0 0

0

87 78 18 0.875 0 0 0 1 1 1

1

88 78 18 0.874 0 0 1 1 1 1

1

89 88 19 0.18666672 0 0 0 0 0 0

0

90 88 20 0.37333344 0 0 0 0 0 0

0

XXXII
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91 88 21 0.56000016 0 0 0 0 0 0 
0

92 88 22 0.74666664 0 0 0 0 0 0

0

93 88 23 0.93333336 0 0 0 0 0 0
0

94 88 24 1.12000008 0 0 0 0 0 0

0

95 88 25 1.30666656 0 0 0 0 0 0
0

96 88 26 1.49333328 0 0 0 0 0 0

0

97 88 15 1.68000000 0 0 0 0 0 0

0

@@@@@@ BLD-1 : BEAM ELEMENTS DEFINITION

1 1 75 78 76 77 15 15 15 15 1 2 1 1

2 1 78 81 79 80 15 15 15 15 2 5 3 4

3 1 81 84 82 83 15 15 15 15 5 16 6 15

4 1 84 86 85 0 15 15 15 0 16 7 17 0

5 1 86 91 89 90 15 21 19 20 7 10 8 9

6 1 91 94 92 93 21 24 22 23 10 13 11 12

7 1 94 97 95 96 24 15 25 26 13 14 14 14 

@@@@@@ PRD-1 : PRESCRIBED DISPLACEMENTS DEFINITION
1 86 87 4 1 

@@@@@@ TIM-1 : TIME STEPS DEFINITION 

0.0 0.2 0.001652893 5 0 

1.00E-05 1.25 1.0E-06 1.0e-02 0.06 5 
@@@@@@ TIM-3 : USER DEFINED TIME FUNCTIONS 

1 4

0.0 0.0 0.04 0.184 0.2E+00 0.3490659 1 0.3490659 

@@@@@@ GRV-1 : DEFINITION OF GRAVITY VECTOR 

0.0 0.0 0.0

@@@@@@ RIG-1 : RIGID BODY ROTATION DEFINITION 
1 75 0.00 -112.67845 0.0 

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 1

0

@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

RIGID BEAMS

7.746E+10 3569194.3 3569194.3 0 456307717 2.483E+10

2.483E+10 0

0.0373248 0.719998 0.359999 0.359999
0.0 0.0 0.0 0.0 0.0 0.0 

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3 

1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 
crossl.lcc 

1

@ @@@@@ CRS-1 : CROSS-SECTION DEFINITION 3 

1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION

XXXIII
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cross2.lcc
1

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3

1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 

cross3.lcc

1

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3

1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 

cross4.lcc
1

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3
1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 

cross5.lcc

1

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 

0

@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

JOINT AT NODE 84,85,86,87 

131250492213.6456 102.66864 0 2637.7946 4206746.4 4206746.4

0

0.9569347 0.3643052 0.3544957 0.0098096

0.0 0.0 0.0 0.0 0.0 0.0 
@@@@@@ CRS-1 : CROSS-SECTION DEFINITION

0
@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 88 

127686536153.2395 71.87385 0 6415.4206 4092516.9 4092516.9 0

0.7452498 0.4444368 0.4383123 0.0061245

0.0 0.0 0.0 0.0 0.0 0.0 
@@@@@@ CRS-1 : CROSS-SECTION DEFINITION

0
@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 89 
119456845309.8068 68.410744 0 6001.932 3828744.9 3828744.9 0

0.8884653 0.3309174 0.323895 0.0070224

0.0 0.0 0.0 0.0 0.0 0.0 
@@@@@@ CRS-1 : CROSS-SECTION DEFINITION

0

@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 90 
106129154874.3653 62.156524 0 5332.3022 3401575.5 3401575.5

0
0.6026792 0.2569655 0.2519365 0.005029

0.0 0.0 0.0 0.0 0.0 0.0 
@ @ @ @ @@ CRS-1 : CROSS-SECTION DEFINITION

XXXIV
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o
@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 91 

9904582.3 4533.9644 57.885722 0 4976.4108 3174545.6

3174545.6 0

0.5065351 0.240044 0.2357302 0.0043138

0.0 0.0 0.0 0.0 0.0 0.0 
@@@@@@ CRS-1 : CROSS-SECTION DEFINITION

0
CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 92

9161759.8 3693.5622 52.286903 0 4603.1906 2936461.5 

2936461.5 0

0.490253 0.229665 0.22571 0.003955

0.0 0.0 0.0 0.0 0.0 0.0

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION

0
@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 93
7988054.9 2905.3611 35.075141 0 4013.4799 2560274 2560274 0

0.4528504 0.2162937 0.2134724 0.0028213

0.0 0.0 0.0 0.0 0.0 0.0 
@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 

0
@@@@@@ CRS-3 : SECTIONAL PROPERTY DEFINITION 

BLADE AT NODE 94,95,96 

7783175.2 2873.101 29.829545 0 3910.5411 2494607.4 2494607.4

0
0.4347508 0.2020075 0.1996544 0.0023531

0.0 0.0 0.0 0.0 0.0 0.0 
@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3

1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 

cross6.lcc

1

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3

1

@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 

cross7.lcc

1

@@@@@@ CRS-1 : CROSS-SECTION DEFINITION 3

1
@@@@@@ CRS-2 : SECTIONAL PROPERTY DEFINITION 

cross8.lcc

1
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APPENDIX G: ACCOMPANING CD

On this CD you can find

• The MSC/NASTRAN models of the final design

• The DYMORE files of the final design

• All technical drawings of the final design

• All technical drawings of the test bench

• All FORTRAN source code for both the factor of safety and warping 

programs

• DELPHI source code for the control program

All files are filed under unique and identifiable names on the CD.
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