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ABSTRACT  
 

Background:  The evaluation of laboratory assays in estimating HIV incidence has become a 

priority because of the complexity of HIV epidemics and the need to measure the impact of 

public health interventions targeting reduction of HIV incidence. Biomarkers should have test 

properties that allow the lowest possible False Recent Rate (FRR, or probability of 

diagnosing a long-term infection as recently infected) over the longest possible period (Mean 

Duration of Recent Infection or MDRI) during which the case is considered as a recent 

infection.  

 

Methods: We compared the BED Capture Enzyme Immunoassay (BED), Sedia Limiting 

Antigen (LAg) and Bio-Rad HIV ½ Plus O Avidity Incidence Assay (BRAI) using samples 

from a prospective cohort trial, the Zimbabwe Vitamin A for Mothers and Babies Project 

(ZVITAMBO) 1997–2000. We determined MDRI using 591 samples from 184 

seroconverting women, and determined FRR by testing  2825 cases known to be HIV- 

positive for >12 months. We used these results to estimate HIV incidence over the first 12 

months postpartum, and during the period prior to childbirth.  

 

Results: At recommended cut-offs MDRI values were: BRAI, 135 days (120 – 151) at 

Avidity Index (AI) 30%; LAg, 104 days (98 - 110) at ODn cut-off 1.5; BED,188 days (180 -

196) at ODn cut-off 0.8. All error bounds in this thesis signify 95% confidence intervals. The 

coefficients of variation (CV) of the MDRI estimates for BRAI, LAg and BED were 5.9%, 

2.9% and 2.1%, respectively. Corresponding FRRs were 1.1% (0.7-1.5) for BRAI, 0.6% (0.3-

0.9) for LAg and 4.8% (4.1-5.7) for BED. MDRI and FRR estimates, all derived using 

postpartum women, were lower than in other published studies. Using original ZVITAMBO 

HIV diagnoses, adjusted HIV incidence over the first 12 months postpartum was estimated 

as; BRAI, 2.7% (1.8-3.7); LAg, 3.7% (2.7-4.8); BED, 3.6% (2.4 -4.9). Follow-up incidence 

was 3.4% (3.0-3.8).  

 

When cases with viral load <1000 copies/ml were defined as long-term infections, regardless 

of serological biomarker level, FRRs were; BRAI, 1.0% (0.7-1.5); LAg, 0.2% (0.2 -0.7); 

BED 3.8% (3.1-4.6). MDRIs were; BRAI, 133 days (113-154); LAg, 101 days (87-115); 

BED, 177 days (155 - 199). Corresponding incidences, unadjusted for FRR, were: BRAI, 
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3.9% (2.9-4.9); LAg, 3.1% (2.1-4.0); BED, 6.2 % (5.0-7.3). Adjusted estimates were 2.7% 

(1.5-4.0), 2.5% (1.6-3.5) and 2.6% (1.6-3.7) respectively.  

 

At baseline, with no follow-up estimate for comparison, adjusted incidence for serological 

biomarkers used alone were; BRAI, 8.1% (6.6-9.7); LAg, 6.9% (5.7-8.1); BED 6.7% (5.5-

7.9). When viral load was also used, the adjusted and unadjusted incidence estimates were; 

BRAI, 7.3% (5.7-8.8) and 8.4% (6.8-10.0); LAg, 5.1% (3.9-6.3) and 5.7% (4.5-6.9); BED, 

5.4% (4.1-6.7) and 8.6% (7.3-10.0).  

 

Conclusion: At recommended cut-offs; BRAI FRR was 1.9 times higher than that of LAg.  

BRAI MDRIs were also 1.3 times higher, but with a relative standard error 2.4 times as high.  

Postpartum BRAI incidence estimates were consistently lower than follow-up estimates. 

Adjusted biomarker estimates under-estimated follow-up incidence when we used viral load 

in combination with either serological test.  
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1.0 Significance of this evaluation 
 
Zimbabwe participated in the characterization of the BED laboratory assay, using samples 

collected in the follow-up study of postpartum women in the Zimbabwe Vitamin A for 

Mother and Baby (ZVITAMBO) project.1,2 Using the BED analysis, researchers reported  a 

mean duration of recent infection (MDRI) of 196 (188-204) days for the ZVITAMBO cohort 

at a cut-off of 0.8. They used this to calculate an unadjusted annual incidence of 7.6% at 12 

months postpartum, very much higher than the follow-up estimate of HIV incidence of 3.4% 

(95% CI 3.0-3.8). The researchers attributed this discrepancy to a high false recency rate 

(FRR). That is to say, of women known to have been HIV positive for more than 12 months, 

5.2% (4.4-6.1) tested recent by BED.  When they accounted for this FRR, the adjusted BED 

estimate of incidence matched closely the follow-up estimate.  

 

In the current evaluation of the LAg and BRAI assays, we used the identical ZVITAMBO 

samples used to evaluate the BED assay, thus providing an opportunity for characterising 

MDRI and FRR values of the new assays and comparing their performance with the 

previously characterised BED assay. The study is unique in that it utilises samples collected 

from women within 72 hours of giving birth. This group of women had a different 

physiological make-up that is associated with period of pregnancy and are different from 

women in the general population. Follow-up samples collected from the same women during 

the postpartum period uniquely relate to the period during which there is active immune 

reconstitution. Moreover, the samples are highly unusual in that the research was carried out 

in a setting where anti-retroviral therapy (ART) was not generally available: there was, 

therefore, no confusing effect of ART on the probability that a case tested “recent”. 

 

This report is a comparison of the performance of the three assays based on the MDRI and 

FRR metric. For each assay, we compare the calculation of MDRI using different statistical 

methods. We varied the minimum number (ns) of samples required for a case to be included 

in the analysis, the pre-set cut-off (C), and the maximum time allowable between the last 

negative and first positive sample (t0).  The emphasis on the CV in this work (particularly for 

MDRI estimates) stems from the fact that the MDRI point estimates are generally similar, 

regardless of the methods used to estimate them. Therefore, CV is used to highlight 
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differences in precision and we use the 95% confidence interval to show any significant 

differences between the point estimates. 

   

We explored the impact of physiological differences on the MDRI by calculating the MDRI 

for women who seroconverted at differing times postpartum. The ZVITAMBO trial randomly 

assigned women at baseline to two study arms; the Vitamin A group and Placebo group in a 

clinical trial to study the effect of Vitamin A on the following medical outcomes for mothers 

and their infants: acquisition of HIV infections; survival of HIV positive case; survival of 

HIV negative cases. We compared MDRI by exposure to Vitamin A. 

 

A small proportion of samples that required retesting of HIV serology and remained 

discordant necessitated that we explore analysis in which we used the “Original” HIV 

diagnoses and where we used a “New” dataset incorporating changed HIV diagnoses. We 

calculated MDRIs, FRRs and HIV incidence estimates for the two datasets. Finally, this 

evaluation provided us an opportunity to compare observed HIV incidence from a follow-up 

cohort with calculated HIV incidence in which we applied the calculated test properties either 

in an assay using only a serological biomarker or a multi-assay algorithm where we used viral 

load as an additional screening tool.    
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2.0 Introduction 
 

The evaluation of laboratory assays for measuring HIV incidence has become a priority 

because of the complexity of HIV epidemics and the need to measure the impact of public 

health interventions that are currently being rolled out globally.1, 2,3, 4,5 Although follow-up 

cohort studies provide a direct measure of HIV incidence, their high costs, and biases due 

selection and loss to follow-up are problematic.3  Moreover, ethical considerations demand 

that one should be making every effort to ensure that persons found to be HIV negative 

remain uninfected. The researcher is thus constrained to attempt to alter the course of 

infection and thus the incidence that s/he is trying to measure. All of these effects make 

follow-up increasingly less desirable as a method for estimating HIV incidence. 

Mathematical modelling using prevalence and mortality data from population based surveys 

and antenatal clinic surveillance have been used to estimate incidence.4,5,6,7,8 Model outputs 

are, however, only as good as the data and parameters that are used to fit the models.9  

  

Laboratory assays that use samples collected in population-based surveys, offer an attractive 

alternative option for estimating HIV incidence.2,10,11,12  The idea behind such an approach is 

that we should use clinical tests not only to decide whether a given sample has been taken 

from a person who is either HIV positive or HIV negative, but also whether HIV positive 

cases have either been infected recently, or are long-term infections.  

 

Globally, there are efforts towards improving such laboratory-based assays to measure trends 

in HIV incidence using cross-sectional survey samples. 13,14,15,16,17 Two main parameters, the 

mean duration recent infection (MDRI) and false recency rate (FRR) are required for 

calculating HIV incidence from such tests for recency. They are therefore critical in defining 

a laboratory assay’s utility in the estimation of HIV incidence, either as a single assay or in 

combination with other biomarkers in a multi-assay algorithms (MAA).2 

 

The MDRI is the mean time that an infected person remains in a state of recent infection 

while infected for less than a predefined time (T). During this period, an HIV infected 

person’s blood sample returns an optical density (ODn), or avidity index (AI), below some 

pre-selected level, referred to as the cut-off value C.2  
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The FRR is defined as the proportion of individuals infected for greater than time (T, 

commonly set to 365 or 730 days) who are misclassified as recently infected. The ideal 

laboratory biomarker would have FRR=0; failing that, the FRR should be as low as possible, 

in order to minimise the number of long-term infections incorrectly diagnosed as recent. The 

FRR parameter is known to be sensitive to variations in HIV types i.e., viral diversity, disease 

stage as measured by CD4 cell count or viral load (VL), and use of antiretroviral therapy 

(ART).18,19  

  

Both the MDRI and FRR values will increase monotonically with increasing C: the higher the 

value of C, the longer it will take the biomarker level to exceed this mark and, thus, the 

longer the MDRI and the greater the number of case testing as recent at any time. Equally, 

the higher the value of C, the larger the proportion of cases that could still test recent at time 

T after seroconversion. 

 

The requirements of a biomarker make competing demands of the FRR and the MDRI. We 

want a biomarker where we can select a value of C that is low enough to minimise the FRR – 

i.e., where almost all patients with long-term infections have biomarker levels > C.  Lowering 

C will mean, however, a reduction in the numbers of HIV positive cases that test recent and 

thus an increase in the sample size required for accurate estimation of incidence over the 

predefined time T. 20,21 The ultimate value of a laboratory assay lies in its ability to provide an 

accurate estimate of HIV incidence and the right balance in its MDRI and FRR critically 

determines this utility.20  

 

Our evaluation  characterised two avidity based assays – the Limiting Antigen Avidity 

Enzyme Immuno-Assay (LAg)22,23 and the Bio-Rad Genetic Systems HIV-1/HIV-2 plus O 

Enzyme-linked Avidity Incidence Assay (BRAI).24 We estimated the MDRI and FRR, and 

calculated laboratory-based incidence rates, using samples from a well-characterised cohort 

of postpartum women infected predominantly with Clade C HIV. We used samples collected 

during the Zimbabwe Vitamin A for Mother and Baby (ZVITAMBO) Trial, 2002-2007.25,26  

These samples had been used in an earlier evaluation of the BED-Capture Enzyme Immune 

Assay (BED-CEIA, simply BED).27 This evaluation is particularly interesting because the 

ZVITAMBO samples are all from women who were not on ART and who provided blood 

and milk samples at baseline, within 96 hours of delivery, and at subsequent follow-up visits 

up to a period of two years postpartum. This study provides critical data on the performance 
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of the new avidity assays and contributes to the body of knowledge on how we can use these 

assays for HIV incidence surveillance purposes on samples collected in cross-sectional 

surveys.   
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3.0 Literature Review 
 
In this section, we highlight the methods used in calculating HIV incidence over-time and we 

explore the merits and de-merits of each method. We present the ongoing efforts to track new 

HIV infections in response to the growing need to control HIV epidemics and sub-epidemics.  

  

3.1 Modelling of HIV incidence trends using prevalence data 
 
Modelling of HIV prevalence data has made important contributions to the estimation and 

prediction of HIV incidence trends. Two main modelling approaches have been used i.e., the 

static (or steady state) and dynamic models. The latter accounts for time-dependent changes 

in the state of the system, while a static model calculates the system in equilibrium, and thus 

is time-invariant.  

  

Static models have used HIV prevalence among pregnant 15-24 year-old women, attending 

antenatal clinics, as a proxy for HIV incidence 28,4, 29  Over the years, countries have used the 

Epidemic Projections Package (EPP) and Spectrum models to create national estimates of 

HIV-1 incidence using time series HIV prevalence data from antenatal clinic surveillance, 

calibrated using population level trend data.30,31 An important advantage of the EPP Spectrum 

suite of models is that they generate HIV incidence estimates for earlier years of the 

epidemic. The main disadvantage, however, is that changes in HIV incidence are detected 

using the retrospective prevalence data and therefore are limited in their utility for tracking 

epidemics. In addition, these models do not make use of age-specific HIV prevalence data 

and cannot thus provide age-disaggregated HIV incidence estimates that are critical in 

targeting interventions.  

 

The use of static models for determining HIV incidence is further complicated by the 

growing influence of ART programs. The dynamics of increased survival of patients on ART, 

variations in individual patient clinical factors such as CD4 cell counts, viral loads, and the 

timing of ART initiation, all make it difficult to build mathematical models and to interpret 

these results.32 Ideally, trends in HIV incidence should measure the impact of treatment and 

prevention programs in preventing new infection and halting the perpetuation of epidemics.5 

Using data from Zimbabwe, Hallett et al. (2009) developed a dynamic model that 

incorporated the natural changes in an HIV epidemic as it matures with ART to model HIV 
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transmission.33 The model applied Bayesian Melding in which the model and observed trends 

in prevalence were compared in relation to sexual behaviour change.33  

 

Recently, Mahiane et al. (2012) suggested that using individual level data versus aggregate 

data results in improved age- and time-specific incidence measures.34 Building on the 

UNAIDS Modes of Transmission model (MOT), Borquez et al. (2016) proposed the 

Incidence Patterns Model for Sub-Saharan Africa.35 Using Bayesian uncertainty incidence 

estimation, the model accounts for marital status, sexual activity and belonging to a key 

population, geographical distribution and observational incidence and population level 

prevalence data to provide HIV incidence estimation.35 Although dynamic models are more 

robust than static models, their requirement for data elements and assumptions that may not 

be readily available, reduces their desirability for use in estimation of HIV incidence.  

 
Other models have used multiple data sources including AIDS case reports, mortality and 

selected risk behaviours to calculate HIV incidence among young people. 10 A back-

calculation of mortality data by Lopman et al. (2008) concluded that HIV incidence peaked in 

Zimbabwe in the period 1988 to 1990.6 Using data from household surveys conducted in 

Sub-Saharan African countries, Hallett et al. (2009) and Rehle et al. (2010) have successfully 

demonstrated the utility of serial measures of HIV prevalence in determining HIV incidence 

rates.7,36 The method is based on a calculation of change in prevalence among individuals age 

α in the first survey, and α + τ in the second survey, carried out at time τ later.7 The change in 

prevalence was attributed to incident infections and AIDS deaths. Although these models 

provide useful estimates of age specific distribution of new infections, they rely on the 

availability of accurate mortality data.  
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3.2 Measuring incidence using prospective cohort data in combination with 

modelling 
 

The HIV Prevention Trials Network (HPTN) has conducted multi-country clinical trials that 

have been useful for gauging the efficacy of treating sexually transmitted diseases (STDs), 

use of microbicides and antiretroviral therapy in reducing HIV transmission. These clinical 

trials, HPTN034, HPTN035 and HPTN 052 have provided measures of HIV incidence in 

cohorts attending STD clinics.37,38,39 

 

Very few cohort studies have been conducted to measure HIV incidence at population level, 

and these have been confined mostly to small geographic settings, thus making it difficult to 

generalise results to the rest of the population. Notable follow-up studies have been 

conducted in Uganda.40 Studies have also been conducted to measure HIV incidence among 

commercial sex workers in Thailand.41,42 

 

In Sub-Saharan Africa, Zimbabwe, has documented a few follow-up studies that provided 

measures of HIV incidence. Mbizvo et al. (1998) measured HIV incidence in a cohort of 

2,833 male factory workers (age 17-61years at last birthday).43,44  A follow-up data analysis 

compared HIV incidence obtained using prospective cohort methods and those obtained by 

modelling cross-sectional prevalence data.45 The HIV incidence obtained from age-

standardization was 2.02 (95% CI 1.57- 2.47) per 100 person-years compared to 1.98 - 2.74 

per 100 person-years obtained using cross-sectional methods. The variation in HIV incidence 

followed a similar pattern to the age categorized HIV prevalence. This analysis showed that 

data on cumulative incidence and survival are important in determining HIV incidence 

trends.45 A later factory worker study using cluster random sampling methodology, in which 

the experimental arm received vouchers to receive voluntary testing and counselling showed 

an HIV incidence of 1.21 per 100 person-years and there was no significant difference 

between the two arms.46 

 

The Manicaland cohort study initially enrolled 1,627 HIV negative adult males and 2,465 

HIV negative adult females recruited between 1998 and 2000.47 Subsequent cohorts were 

enrolled every two years. Informed consent at each visit allowed the researchers to collect 

individual level behavioural and biomarker data. The study estimated that incidence of new 
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HIV infections was as high as 19.9 (95% CI 16.3-24.2) per 1000 person years in men and 

15.7 (95% CI 13.0 -18.9) per 1000 person years for women in the study period.47 Other 

notable cohorts that have provided HIV incidence data  include the ZVITAMBO Project.25 

This study reported a cumulative HIV incidence of 3.4 per year (95% CI 3.0 -3.8) among 

9,562 postpartum women who were HIV negative at enrolment in antenatal clinics in greater 

Harare, the capital city of Zimbabwe.25 

 

While prospective cohort studies have the capacity to provide reliable estimates of HIV 

incidence, the cost of conducting such studies, loss to follow-up, selection biases and the 

difficulty of following a nationally representative sample, make them less attractive. A 

review of current methods in HIV incidence estimation by Brookmeyer (2010) noted that 

changing methods present challenges of reproducibility of results and this makes it difficult 

to compare HIV incidence trends.3 He concluded that there is an urgent need for providing 

simpler and more reproducible methods for estimating HIV incidence trends such as 

application of laboratory assays to samples obtained in cross-sectional surveys.3 
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3.3 Laboratory based estimates of HIV incidence 
 

Laboratory-based assays for estimating HIV incidence have evolved from dilution-based  

detuned assays that measure low HIV antibody titre, to complex and expensive synthetic-

based synthetic oligopeptides and recombinant antigen assays that can be used to measure 

HIV antigens.13 One of the early laboratory assays for estimation of HIV incidence measures 

the prevalence of the HIV protein, p24, in the absence of HIV antibody, as a marker for the 

transient status of recent infection.16 The shortcoming of this p24-based assay was the short 

window (usually 1-2 weeks). This characteristic renders the assay unsuitable for application 

to samples collected in a cross-sectional survey, where few if any persons are likely to have 

been infected within the narrow time-frame. Other variants of this assay include a combined 

anti-p24 and immune-gamma globulin 3 (IgG3) assay that measures a narrow and temporary 

response to p24 in the subclass of IgG. Immuno-dominant enzyme (IDE) assays such as IDE-

V3 (V3 refers to region) assay measures total response to selected gamma-protein (gp) 41 and 

gp120 epitopes that are commonly found in most antibody responses and so is therefore non-

specific and of very low sensitivity. Critical developments by Janssen et al. (1998) provided a 

basis for moving from a detuned assay to one of the first serological incidence-testing 

algorithm.48 This two-assay algorithm used a sensitive Enzyme-linked Immunosorbent Assay 

(EIA) diagnostic test to identify HIV-1 seropositive persons and a Less Sensitive (LS) EIA to 

distinguish recent from long-term infections.48 These assays have been found to have a high 

misclassification rate among persons with long-term infections and those on ART, and have 

not been evaluated beyond subtype B infections.48  

 

Further advances in laboratory-based assays include the use of avidity assays to determine 

HIV incidence.15,49,50,51 Avidity refers to the accumulated strength of multiple affinities 

between the viral protein (antigens) and HIV specific antibodies. Avidity assays use the 

properties that: 

  

(i) In response to exposure to HIV-1 virus, the immune system initially produces low 

avidity HIV-1 antibodies but, due to B-lymphocyte evolution and selection, the 

strength of the binding between the HIV antigens and human antibodies increases 

with time since infection; 

(ii) An Avidity Index (AI) is measured as a ratio of the OD of a denaturing well 

compared to the OD of the control well (with wash buffer) expressed as a 
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percentage in a two well avidity assay or as optical density readings that are 

normalised (ODn) by comparing readings to an external calibrator. This is done 

by adding a chaotropic (denaturing)  agent to the antigen/antibody mixture that 

breaks hydrogen  bonds: an optical density reading is then taken.15 

 

In early infection, weak binding results in the level of antibodies in the treated sample being 

lower than that in the control, and the AI then takes values less than one. For more 

established infection, antibody levels in the two samples are similar and the AI approaches a 

value of one. The subtype of virus can lead to weaker binding (low-avidity); therefore using a 

multi-subtype avidity assay can improve performance. The cut-off values at which these 

measurements are performed are critical in the characterisation of a biomarker. 10,51 

 

A laboratory assay with the biochemical capacity to qualitatively detect the presence of the 

HIV antigen, even before antibodies are detectable in the blood, would provide an accurate 

indication of the recency of infection. Researcher have evaluated INNO-LIA HIV I/II Score  

Blot Assay (Fujirebio, Zwignaard, Belgium).52 This assay uses the enzyme immuno-assay 

principle. The assay has five HIV-1 antigen bands: sgp120 and gp41 that detect HIV-1 

specific antibodies; and p31, p24 and p17 that may cross react with HIV-2. The antigens 

gp36 and sgp105 are applied to detect antibodies to HIV-2. When a test sample is incubated 

with sequential addition of multi-antigen strip, goat antigen IgG, alkaline phosphate, enzyme 

substrate and reaction stopped by sulfuric acid this results in colorimetric identification of 

HIV specific antibodies. This line-based measurement of the reactivity of synthetic 

oligopeptides and recombinant antigens with HIV antigens in the blood makes the assay more 

sensitive. The assay currently has had limited use in surveillance, however, because of its 

high cost.  

 

When applying laboratory assays to samples derived in cross-sectional surveys the 

calculation of HIV incidence requires three main inputs. Firstly, we require the number of 

samples that return an optical reading below a pre-set cut-off (C) such that we classify them 

as recently infected, while we classify those with a reading above C as long-term for a the 

HIV positive  population size (N). Secondly, we need to estimate parameters specific for the 

assay.  These are, the MDRI, which is the average time spent in a state of recency, while 

infected for less than some specified time T; and the FRR, which is the proportion of samples 

that continue to be misclassified as recent when the person has been infected for a time longer 
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than T. The MDRI and FRR are key indicators of the performance of a laboratory assay.2 

Evaluations comparing longitudinal data and laboratory based assay data have been critical in 

characterising laboratory assays. 

 

The BED assay has been applied to cross-sectional and longitudinal studies. Studies have 

established the FRR and MDRI in different HIV populations. 27,53 This assay misclassifies 

individuals as recent infections even when they have clearly been HIV positive for some 

years,27,54,55,56,57 and the rate at which this misclassification occurs varies with geographic 

location, age and duration between infection and seroconversion.56,58 

 

In the ZVITAMBO study, the BED HIV incidence estimate, unadjusted for the FRR, was 

7.6% per 100 person years. This was 2.2 times higher than the observed follow-up HIV 

incidence.27 However, once account was taken of the proportion of cases that tested as recent 

infections, despite being infected for more than one year, the adjusted BED estimate of 

incidence matched closely the follow-up estimate of 3.4% (95% CI 3.0 - 3.8). This gave some 

hope that the BED, or a similar assay with a lower false-recent rate, might be used to provide 

acceptably accurate estimates of HIV incidence from cross-sectional HIV surveys.27 

 

The synthetic peptide of the BED measures the increasing proportion (optical density) of 

HIV-IgG to total IgG after seroconversion. Highly active antiretroviral therapy (HAART) is 

reported to repair cell- mediated immunity. In the case of HIV infection, HAART suppresses 

replication of the virus and therefore this result in significantly reduced levels of HIV-IgG. 

When laboratory assays are used, these reduced HIV-IgG levels result in significantly 

reduced proportion of HIV IgG/Total IgG and misclassification of long-term infections as 

recent infections. It is therefore critical to rule out ART exposure for all individuals testing as 

recent infections.56,59  To obtain  reasonable estimates of HIV incidence, McDougal et al. 

(2009) proposed an estimator for adjustment under steady state assumptions to account for 

the long-term specificity.60 Hargrove et al. (2008) suggested a new estimator that depended 

only on the mean window period and false recent rate2 and McWalter and Welte (2009) 

proposed a similar estimator, based on a full mathematical analysis that accounts for a 

dynamic epidemic and provides a weighted incidence which can be applied to all assays.61 

More  recently two independent theoretical approaches have suggested that, where HIV 

incidence is estimated using biomarker methods, the incidence should be estimated over a 

finite time T.61,63 In these formulations the MDRI must be estimated among cases that have 
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been HIV positive for at most time T, not over their whole lifetime.63 The two key parameters 

are modified to MDRI (ΩT), the average time spent in the recent state while infected for less 

than Time (T) and the FRR (ƐT) as the proportion of cases testing as recent infections among 

those known to have been HIV positive for more than time T.2 

 

Using longitudinal cohort samples, the MDRI and FRR of BRAI avidity assay  have been 

compared to those of  BED assay.64,65 The BRAI assay  has been evaluated using the HIV-

NET- United States of America (USA) cohort (89 subjects provided 349 observation 

samples), VAX003 (105 subject, 95 observations) Thailand, VAX04- USA 962 subjects, 274 

observations), Reach- Nigeria (14 subjects, 131 observations), SIPP- USA (11 subjects, 95 

observations) cohorts.65,66 These cohorts included different HIV-1 subtypes but B was the 

most prevalent. Recent results of the BRAI evaluation show that the assay has a lower FRR 

(<1%) compared to >5% for BED. Recent data from Botswana confirm  improvements in the 

BRAI assay compared to BED.67 

 

The LAg has also been evaluated against BED.49,50,68 While the manufactures of LAg 

recommend excluding people who are on ART, elite controllers and those with CD4 cell 

count less than 200 cells/µl, Longosz et al.. (2014) argued  that this does not completely 

eliminate misclassification.68 They stated that the misclassification of cases by LAg was 

mainly due to viral load (VL) suppression because of antiretroviral therapy and lower CD4 

cell count. While other workers have observed these factors, they highlighted that it was 

important to determine the appropriate laboratory assay for the population of interest. Of 

concern in this evaluation was the definition of elite controllers who were classified on the 

basis of VL count less than 400 copies; despite the current threshold for classification as an 

elite controller, which is set at < 50 copies/ml. Notwithstanding this anomaly, other large 

scale studies have shown improvements in the performance of LAg assay50  

 
The manufacturers of LAg avidity assay have recently set a predetermined MDRI value for 

the calibrator at 141 days (95% CI 119-150) at a cut-off of 1.0. An analysis by Duong et al. 

(2015) now recommends a cut off of 1.5 which has a corresponding MDRI of 130 days (118-

142) for all subtypes and 152 days for subtype C.69 The differences in MDRI calculated using 

seven different methods were minimal at each cut-off.  Based on this analysis, an  optimal 

cut-off was determined based on the trade-off between a high MDRI and a low FRR.4  

Regardless of the method used in calculating the MDRI, the main focus is on the 
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development of  a laboratory assay whose test properties of  MDRI and FRR will allow 

calculation of precise HIV incidence estimates.69 
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3.4 Utility of multi-assay algorithms in improving measurements from 
single laboratory assays 
 
In attempting to improve the performance of laboratory assays, researchers have used multi-

assay algorithms. Brookmeyer et al. (2013) and Laeyendecker et al. (2013) used BED to 

measure incidence in Clade B samples in the United States of America, in an MAA which  

included HIV-VL and CD4 cell count and concluded that MAAs can be used to provide more 

accurate estimates of HIV incidence.70,71  

 

An earlier evaluation by Konikoff et al. (2013) assessed the performance of LAg as a single 

assay and compared it with the performance of MAAs.50 In this evaluation, the MDRI was 

119 days for a three assay MAA (CD4, LAg and BRAI) and 146 days for a four assay MAA 

(VL, CD4, LAg and BRAI). They concluded that, given the costs of four-assay algorithm, an 

optimised two assay MAA (LAg and BRAI) was reliable in providing HIV incidence 

consistent with follow-up and therefore could reliably be used for estimating HIV 

incidence.50  Recent work by Serhir et al. (2016) proposed that using BRAI first, then LAg in 

serial, was a more sensitive algorithm in screening out false recent cases and estimation of 

incidence.72  

  

Very few studies have compared three laboratory assays using the same specimens. Using 

well-characterised Sub-type B, German seroconverter cohort panel, Hauser et al. (2014), 

compared the FRR of BED, BRAI and LAg.64 The researchers found that the two avidity 

assays had a lower FRR (2%) than the BED (7%) among long term ART naïve patients. 

Among 14 patients on ART and 5 Slow Progressors, LAg misclassified 1/14 and 0/5 while 

BRAI misclassified 2/14 and 1/5 respectively. For recently infected individuals, BRAI 

correctly classified 88% compared to 48% by LAg.64 Based on these results, the researchers 

could potentially infer that there was a great improvement in the assays and the effects of 

ART were minimal: however, the small samples size does not warrant making such 

conclusions.  

 

Another multi-assay evaluation by Kassanjee et al. (2014) reported that, for all specimens in 

the evaluation, the FRR for LAg was 1.3% compared to 6.2% for BRAI.73  FRR was higher 

among patients infected in the past 2-3 years (2.5% LAg and 12.5% BRAI), and even higher, 

for both assays, among those on treatment (58.8% LAg and 50.0% BRAI). The researchers 
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concluded that the large proportion of false recent results in ARV-treated individuals affects 

assays’ performances and therefore assays required further optimisation. 73  

 

Following this large-scale evaluation, Kassanjee et al. (2013) concluded that, despite an 

individual assay’s shortcoming, the merits of an assay lie more in its ability to provide a 

precise measurement of HIV incidence.20 Based on these evaluations, there is a need to find 

an optimal trade-off between a sufficiently large MDRI and a sufficiently small FRR in order 

to achieve precise measurements of HIV incidence.20 

 

3.5 Measuring HIV Incidence using multiple methods 
 

Early in the race to find a suitable method for incidence estimation, Brookmeyer (2010) 

reported that the greatest challenge in estimation of HIV incidence is that different methods 

and analysis often produce different estimates for the same time points.3 Currently, no single 

method on its own provides a universally accepted measure of HIV incidence and advances 

in laboratory assays should not therefore preclude the more conservative approach of data 

triangulation. There are growing calls to use multiple methods and data sources to gain more 

understanding of the complex dynamics of HIV transmission.3 Rutherford et al. (2010) 

suggested using secondary data from multiple sources, for purposes of interpreting data sets 

that cannot be included in meta-analysis, as a useful method for assessing the impact of 

interventions.9 Kim et al. (2011) concluded that triangulation of methods is a useful way of 

determining trends in HIV incidence estimates.74 They recommended further systematic 

evaluation of new and existing laboratory assays to determine the reliability of national HIV 

incidence trends.74  

 

While the suggestions to triangulate methods in order to understand HIV epidemics are 

certainly valid, there is a need to have reliable methods that are both efficient and 

reproducible for use in routine surveillance. Laboratory assays may provide this solution, if 

they have characteristics that lead to increased accuracy (smaller bias) in measurement of 

HIV incidence. Our evaluation of the LAg and BRAI assays is critical in providing evidence 

in this regard.   
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4.0 Description of candidate laboratory assays 
 

4.1 BED-Capture Enzyme Immune Assay (Sedia HIV-1 BED Incidence EIA, 

Cat. No. 1000) 
Researchers in the United States Centres for Disease Control and Prevention (CDC) 

developed the BED one of the earliest incident laboratory assays.75 This assay uses a 

synthetic antigen containing sequences from multiple subtypes to measure the proportion of 

anti HIV-1 immuno gamma globulin (IgG) present in total IgG following seroconversion. 

Persons are classified as ‘recent’ seroconverters if their blood samples test positive by a 

standard HIV-1 ELISA and have an ODn below a pre-set cut-off on the BED assay. This 

assay has been extensively evaluated against observational data, mathematical models and 

recently against avidity based laboratory assays. It was shown to provide unreliable estimates 

of HIV incidence due to its high FRR a factor which is sensitive to geographic variance in 

population and reaction to disease stage.17, 76 

 

4.2 Sedia™ HIV-1 Limiting Antigen Avidity Enzyme Immuno Assay (LAg-

Avidity EIA)  

The LAg-Avidity EIA 22 is an in vitro quantitative limiting antigen assay used to determine 

recent and long-term HIV-1 infection status.27,49,50 The assay uses a 96 well plate coated with 

multi-subtype gp41 recombinant protein (rIDR-M). The assay plate is run with four controls, 

Negative Control (NC), Low Positive Control (LPC), High Positive Control (HPC) and 

Calibrator in the first four wells. The optical density readings values are optimised by 

dividing the specimen OD by the Calibrator OD. This way all 92 samples run on the same 

plate utilise the same calibrator reference point, thereby minimising plate-to-plate variability. 

All specimens with ODn>1.0 are classified as long-term infections and no further tests are 

required.  In order to rule out misclassification of samples as recent due to viral suppression 

in patients on ART and in cases of elite controllers, the manufactures recommend that all 

samples with an ODn ≤ 1.0, be tested for HIV-1 viral load. Specimens with a LAg assay ODn 

≤ 1.0 and a VL ≥ 1000 copies/ml are classified as recent HIV infection.  Samples with an 

undetectable VL (< 1000) and ODn <0.400 require HIV-1 serology retest in order to rule out 

false HIV+ serology.  
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4.3 Modified BioRad Genetic Systems HIV-1/HIV-2 plus O avidity-based 
assay (BRAI) 
 

The BRAI avidity assay was developed by modifying the BioRad Genetic System HIV-

1/HIV-2 Plus O (BRAI) protocol, by Centers for Disease Control and Prevention, Atlanta, 

GA. USA.24  The immunoassay is an IgG/IgM (3rd generation) enzyme immune-assay that 

uses recombinant proteins and synthetic peptides to detect antibodies to HIV-1/HIV-2.77 The 

modified assay is based on the avidity principle and can be run on plasma, serum and DBS 

eluate. The assay was modified to include a sample dilution of 1 in 10 using cold washing 

buffer and a first incubation at 40C. During the second incubation, one well is treated with 

0.1M Diethylamine (DEA), a chaotropic agent, and the other (reference) well is treated with 

wash buffer. The first incubation at low temperature and the use of a chaotropic agent allows 

the differentiation between low- and high-affinity HIV-1 antibodies. An avidity index (AI) is 

calculated for each sample by dividing the OD of the well containing DEA by the OD of the 

reference well and multiplied by 100 only if the OD in presence of wash buffer for the 

samples is equal or higher than the run cut-off (mean of Negative OD + 0.250). If the OD in 

presence of wash buffer is below the run cut-off the sample is invalid. Specimens with an AI 

value in the range of 20-50% should be repeated in duplicate and the final interpretation is 

determined by the mean of the duplicate results. Specimens with an AI below or equal to a 

predetermined cut-off, e.g. less than 30%, are classified as recent infections.24   
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5.0 Methods 

5.1 Description of ZVITAMBO cohort samples and historical tests conducted 
 

The ZVITAMBO Trial was a randomized, controlled clinical trial that measured incidence of 

HIV in mothers administered Vitamin A versus those given placebo.  The study enrolled, 

within 96-ours post-delivery, 14,110 mother-infant pairs recruited from maternity clinics and 

hospitals in Greater Harare. The mothers provided written informed consent, and were 

recruited in the period November 1997 to January 2000.(Figure 5-1: Schematic diagram of 

the ZVITAMBO study enrolment phases).25 Mother-baby pairs were followed-up at 6 weeks, 

3 months and 3-monthly thereafter for at least 1 year, and diminishing subsets at 3-mothly 

intervals for up to 2 years.25  Patients provided samples of blood and breast milk at enrolment 

(baseline) that were tested for HIV-1, viral load and CD4 cell count. Blood and breast milk 

samples were taken at each follow-up visit.  

 

Figure 5-1: Schematic diagram of the ZVITAMBO study enrolment phases 
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5.2 HIV tests and VL tests conducted on ZVITAMBO samples 
 
At delivery, mothers were tested for HIV antibodies using two ELISA tests run in parallel: 

Genescreen Diagnostics Pasteur, Johannesburg, South Africa (Genescreen HIV1/2) and 

Murex HIV 1.0.2 ICE (Murex HIV 1/2), Murex Diagnostics, Eden Vale, South Africa. 

Discordant results were confirmed using Western Blot (HIV 2.2, Genelabs Diagnostics SA, 

and Geneva Switzerland).  From the different blood draws, 9562 mothers tested HIV negative 

result at baseline, while 4495 mothers were HIV positive at baseline and subsequent blood 

draws. The ZVITAMBO study excluded fifty-three (53) mothers with baseline HIV 

indeterminate results. From the 9562 HIV negative at baseline, 353 women seroconverted 

during follow-up and subsequent samples were taken at each follow-up visit.  

 

Plasma samples were also tested for HIV viral load by quantitative HIV RNA testing (Roche 

Amplicor HIV-1 Monitor test) which had an ultra-sensitive detection limit of less than 400 

copies/ml.26,76 

   

5.3 Characterisation of BED using ZVITAMBO samples 
 
Of the women tested at baseline, 4495 women tested HIV positive and the samples they 

provided were archived: 3010 of these women were subsequently seen at 12 months 

postpartum and 2749 of them provided a sample that was later tested using BED, in order to 

estimate the False Recent Rate (FRR).   (Figure 5-1:Schematic diagram of the ZVITAMBO 

study enrolment phases).27  

 

At baseline (Figure 5-1), 9562 women tested HIV negative and 353 of these women were 

initially thought to have seroconverted (based on HIV serology tests performed at clinic visit) 

during follow-up. When we retested these samples, two women were found never to have 

seroconverted, thus leaving 351 women. We tested all samples from seroconverting women 

using BED and used the patterns of increase in optical density, with estimated time since 

seroconversion, in order to determine MDRI at various cut-offs2. Of these, 234 provided at 

least two (2) HIV positive samples and only 186 women were seen at visit 5. 
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5.4 Ethical considerations for ZVITAMBO samples 
 

All specimens were bar-coded and no personally identifying information was linked to the 

specimen, thereby assuring the anonymity of the participant. Participants in the ZVITAMBO 

cohort study gave permission to store samples and to use them for future additional tests. 

 

The original ZVITAMBO cohort study received ethical approval from Johns Hopkins 

University and the Medical Research Council of Zimbabwe (MRCZ). The current evaluation 

of laboratory incidence assays received approval from MRCZ, Research Council of 

Zimbabwe, Centers for Disease Control and Prevention, Atlanta, and Stellenbosch 

University.  
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6.0 Methods in the Evaluation of LAg-Avidity EIA and BRAI Avidity 
Assay 
 

6.1 Sample viability test 
 

As a precursor to this study we conducted preliminary work to establish the viability of 

ZVITAMBO samples. A total of 224 randomly selected ZVITAMBO samples were retested 

using BED and this step showed that the samples, which had been collected over a decade 

previously, were still viable and could be used to evaluate the performance of the LAg and 

BRAI assays for FRR, MDRI and estimation of HIV incidence. We were confident in 

proceeding to tests the available samples with LAg and BRAI assays. We present a schematic 

diagram of the current ZVITAMBO enrolment, BED, LAg and BRAI evaluations below 

(Figure 6-1). 
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 Figure 6-1: Schematic diagram of the BED, LAg and BRAI evaluation using 
ZVITAMBO project samples 
Schematic Diagram of the original ZVITAMBO Project 
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6.2 Laboratory testing using the Sedia™ HIV-1 LAg-Avidity EIA (Catalog No. 
1002)  
 
We used the single well protocol as  described previously by Wei et al. (2010) and as directed 

by the manuafacturers.15,22 A plate map was prepared for the 96 well plate, to include 

commercially supplied negative controls (in duplicate), calibrators (triplicate), low positive 

controls (triplicate) and high positive controls (triplicate) followed by samples in the  

remaining88 wells single wells for each plate. We increased the number of controls and 

calibrator (See section 4.2 Manufacture recommendation) in order to improve quality assurance 

for each plate. We diluted samples 1:10 with the propylene sample diluent and transferred 

100µl of the diluted sample into the appropriate well (as per plate map) of the avidity plate. We 

washed each micro well four times using wash buffer, then added 200µl dissociation buffer at 

pH 3.0 for 15 minutes at 370C. We repeated the washing procedure. We added 100 µL of 

diluted and freshly prepared (1:1001) Goat Anti-Human IgG-HRP Conjugate to each micro-

well, sealed microplate and incubated for 30 minutes at 370C followed by the wash procedure. 

We then added 100µl of Tetramethylbenzidine (TMB) solution, incubated for 15minutes at 

250C, and then stopped the reaction using the stop solution.  

 

We obtained optical density (OD) readings using a spectrophotometer at 450nm wavelength 

and reference filter of 620-650 nm. We entered all OD readings on the CDC supplied 

spreadsheet. We calculated the average for the negative control, the median optical density of 

the low and high positive and the median value for the calibrator and compared the range of 

values with the manufacture’s values in order to accept (valid) or reject (invalid) the plate 

values. We calculated the normalized optical density for each control, calibrator and specimen 

by dividing the OD value by the median OD of the Calibrator. The process of OD normalization 

by an internal calibrator decreases run-to-run variability and increases reproducibility.22  

 

We accepted all specimens with ODn > 1.0 as long-term infection and conducted no further 

tests. We retested samples with ODn ≤ 1.0 using LAg in duplicate We retested samples that 

returned an ODn <0.4 for HIV-1 and 2 serology status using Alere Determine TM HIV-1/2 Ag/Ab 

(Determine) then Biolytical Laboratories, INSTITM HIV-1.2(Insti) antibody test in serial and 

confirmed using confirmed using Calypte HIV-1 Western Blot (WB). 
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6.2.1 Use of viral load testing with LAg assay 
 
The presence of HIV-1/2 ribonucleic acid (RNA) confirms the presence of virus and in this 

regard can be taken as a confirmation of HIV serological status. Viral load is useful in 

resolving serologic status and simultaneous differentiation of recent and long term infections. 

Early infection is associated with rapid initial increase in VL count, followed by a decline as 

a result of virus selective pressure, the intervention of the host immune system and natural 

growth and death of virus.  

 

We retrieved all available results for viral load analyses from the ZVITAMBO database. 

Where there were missing data we attempted to retrieve samples but, in all cases, the samples 

were depleted and could not therefore be retested in this current evaluation (See results in 

Section 7.2).  

6.2.2 Retesting HIV serology for samples with LAg ODn < 0.400 
 
In accordance with the manufacturer protocol, we retested for HIV-1 antibodies those 

samples that returned a LAg ODn below 0.400. This was based on the premise that the 

sample could mistakenly have been diagnosed as HIV positive, when it was in fact sero-

negative. We therefore carried out the further serological tests as a confirmation of the HIV 

status. We used rapid HIV test kits, Determine™ HIV-1/2 Ag/Ab, and Insti in serial, 

confirmed using Western Blot. The full analysis of results are presented in Section 7.2. 

 

6.3 Laboratory testing using BioRad Genetic Systems HIV-1/HIV-2 plus O 
EIA (BRAI Avidity Assay)  
 
We prepared a plate map according to the BRAI avidity assay protocol (Genetic Systems 

HIV-1/HIV-2 plus O EIA) (Centers for Disease Control and Prevention, BRAI Laboratories, 

Atlanta GA, USA). The protocol map reserves the first two strips for controls, 3 Negative 

controls (NC) from the kit for the run’s cut-off calculations, Incident control (IC), HIV-

positive kit controls (HIV-1, HIV-2 and HIV-O) and Positive Control (PC) provided by CDC. 

We prepared reagents as per protocol instructions.24  

 

We diluted each specimen and the CDC Incident and Prevalent 1:10 with cold specimen 

diluent and loaded them in two wells following the plate map. We also loaded the negative 

controls in 3:4 dilution, sealed the plate and incubated at 40C for 60 minutes. We washed the 
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plate six times then added the second set of controls from the kit, NC, HIV-1, HIV-2 and 

HIV-O controls in single well. For each specimen, NC, IC and PC, we added 100 µl of wash 

buffer to the first well, wash buffer (WB) wells. We then added 100 µl of the 0.1 M DEA to 

the second well (DEA wells) for each sample, IC and PC. We sealed the plate and incubated 

at 370C for 30 minutes. We repeated the wash procedure, sealed and incubated for 40 minutes 

at 370C and added 100 µl of Working Conjugate Solution to all wells. We added 100 µl of 

the Working TMB Solution to all wells then incubated in the dark for 30 minutes at 

temperature 240C - 250C. We stopped the reaction using stopping solution and read the 

absorbance in a plate reader at wavelength of 450 nm and a filter 630 nm as reference. We 

recorded the OD for the WB and DEA wells for each sample on the work sheet (CDC Atlanta 

provided) and transferred the results to the database. We accepted a run as valid following the 

evaluation criteria in the protocol (run’s cut-off, IC and PC, kit’s HIV-positive controls 

within the recommended values). We calculated an avidity index (AI) when the OD in the 

presence of wash buffer was higher than or equal to the run’s cut-off (mean of NC+0.250); 

otherwise, the sample was termed “invalid”. We calculated the AI by dividing the OD of the 

DEA well by the OD of the wash buffer well and multiplying by 100. We retested, in 

duplicate, samples with AI in the grey zone (20-50%) as previously described and the result 

was the mean of the duplicate values. Samples with AI values >30% were classified as 

prevalent (long-term) infection and ≤ 30% were incident infections.   

 

6.3.1 BRAI Assay Invalid Results 
 

Specimens whose wash buffer ODn fell below the negative cut-off value of the assay 

returned an “invalid” result because the basis of the BRAI assay is a comparison of 

the antibody binding difference between the wash buffer and the DEA wells. A sample which 

is HIV serology negative, or is a very early infection when antibody titers are very low, may 

return an “invalid” result on the BRAI assay because there is no antibody binding with which 

to compare. We retested all invalid samples in duplicate using BRAI assay. For samples 

which remained invalid, we retested the HIV serology using rapid HIV test kits, Determine™ 

HIV-1/2 Ag/Ab, and Insti in serial, confirmed using Western Blot. We also retrieved the VL 

result from the ZVITAMBO database and used them for further determination of HIV status. 

The full analysis of these results are presented in Section 7.2. 
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6.4 Quality Control of Laboratory Assays 
 

We conducted internal quality assurance of laboratory assays by including manufacture-

supplied controls as well as CDC supplied QC samples with a predetermined optical density. 

We considered all plates with controls outside of pre-set values as invalid runs and repeated 

the tests.  

6.5 Sample selection for evaluation 
 
We have provide a schematic diagram of the actual number of samples tested using each 

assay in this evaluation. (Figure 6-2) 
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 Figure 6-2: Actual ZVITAMBO samples tested in the evaluation of BED, LAg and BRAI   
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6.6 Statistical analysis 
 

6.6.1 Samples in MDRI analyses 
 
Out of 9565 HIV-1 negative women, 353 women were initially classified as having 

seroconverted during follow-up (Figure 6-2). Of these 353 women, we reclassified 

two (2) as always being HIV negative, leaving 351 women who seroconverted and 

accounting for 593 HIV positive samples that contributed to MDRI calculation. Out 

of these 351 seroconverting women, 234 provided more than one HIV positive 

sample. This allowed us to conduct analysis of MDRI when the number of samples 

(ns), collected in subsequent visits after the HIV sero-status changed from HIV 

negative to HIV positive (posterior measurements) was varied between minima of    

ns =1 and ns=4. Our evaluation is one of the few studies that has been able to explore 

the impact of varying the number of samples included in MDRI calculation.  

  

 6.6.2 Statistical analysis of MDRI 
 
We analysed the pattern of increase in ODn, or AI, with time since seroconversion, in 

the series of positive samples collected from seroconverting cases. Since the shortest 

period between visits was 6 weeks, and was otherwise at least 3 months; and could be 

longer than this if a mother missed one or more visits; we never knew exactly when a 

case had seroconverted. We only knew that on a particular visit a case tested HIV 

negative for the last time and, on subsequent visits, always tested HIV positive. By 

definition, seroconversion occurred at some time in the interval (t0) between the time 

of the last HIV negative and first HIV positive tests. Clearly, the longer the time lag 

period t0, the less sure we can be about the timing of seroconversion. Accordingly, in 

our analyses, we investigated the effect of varying the maximum allowable value of t0 

for a case to be included in an analysis.         

 

We defined the MDRI for a biomarker as the time that the biomarker level stays 

below the value of a pre-set cut-off C, during some pre-defined time T. The cut-off is 

a pre-set, user-specified, optical density reading or avidity index. We classify samples 

returning values below C as recent (assay positive) infections: samples with higher 

values are classified as long-term infection (assay negative).  
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We explored these relationships (varying C, ns and t0) using several statistical 

methods. We wanted to be sure that whatever differences we observed in calculating 

MDRI for LAg and BRAI would not be attributable to the type of statistical analysis, 

and accordingly compared the estimates derived using a number of different methods. 

We used non-linear mixed modelling (NLMM) for BED and LAg assays, and 

variations of models by  Sweeting et al. (2010) and  Hargrove et al. (2012).21,63,77  

 

Since avidity index does not increase according to a parametric form, we used 

survival analysis and binomial regression analysis to calculate MDRI for BRAI.73 In 

addition to these methods, we also explored the use of a ratio method in which we 

determined the proportion of all seroconverters testing recent according to defined 

cut-off among seroconverters (r/s).  We describe the methods in more detail in Section 

8. 

 

The ZVITAMBO trial measured HIV incidence, by following-up and retesting 

women and babies who were HIV negative at baseline, and compared the incidence 

among mothers and babies administered Vitamin A, compared to those who received 

a placebo. Accordingly, we also explored the differences in MDRI by study arm. 

Furthermore, we compared MDRI for women who seroconverted during the first nine 

months (Visits 1 to 4) to those who seroconverted at least 12 months postpartum 

(Visits 5 to 8).   
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6.6.3 Samples in FRR analyses 
 
A total 4495 women tested HIV positive at baseline in the ZVITAMBO trial (Figure 

6-2). Of these, 3010 women were seen at Visit 5 (V5), 12 months postpartum. These 

women were known to have been HIV positive for at least one year (365 days), based 

on the original ZVITAMBO parallel rapid HIV testing using Genescreen HIV-1/2 and 

Murex HIV-1/2, with confirmation using Western Blot. We retrieved and tested 2825 

of these samples using LAg avidity assay and 2824 using BRAI avidity assay in the 

evaluation of the FRR for the two-biomarker systems.  

 

We focused on samples collected at baseline (Visit 0 or V0) and 12 months 

postpartum (Visit 5 or V5) for three reasons: (i) All women in the study were tested at 

baseline. At Visit 5, the ZVITAMBO team made every effort to locate, and test, every 

person in the study – particularly because financial constraints meant that it was 

necessary to drop people from the study, in increasing proportions, after V5. Visit 5 

thus produced the largest proportion of cases followed up out of all visits after 

baseline. (ii) Financial constraints also meant that it was not possible to test all 

samples from Visits 1, 2, 3 and 4 using BED, LAg and BRAI. (iii) Similar 

considerations meant that not all samples collected after baseline were tested for HIV: 

once a case had tested HIV positive on two different visits it was deemed unnecessary 

to test further samples for HIV.  

 

Infection occurred at different time points during the 24-month follow-up period and, 

accordingly, any case where a mother had ever previously tested HIV negative at any 

previous visit was tested for HIV and, where found to be HIV positive, tested also 

with BED, BRAI and LAg. In this way, we used all eligible samples from HIV 

positive results from seroconverters from all visits in the estimation of MDRI. 
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6.6.4 Statistical analysis of FRR 
 
We estimated the FRR for each marker as the proportion of HIV positive samples that 

return a recent result out of the total number of people known to be HIV positive for 

more than 1 year. We calculated FRR at different cut-offs for each assay and plotted 

graphs against varying C. In order to have comparable estimates, we also explored the 

relationship between the MDRI and FRR for different assay systems.  
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6.6.5 Incidence calculations 
 

We used the formulae proposed by Hargrove et al. (2012b) and Kassanjee et al. 

(2012) to estimate incidence, taking into account the MDRI and FRR parameters 

derived in the evaluation.  We calculated the HIV incidence from the cross-sectional 

survey data obtained at baseline, and at 12 months postpartum, in the ZVITAMBO 

study63,62   

  

The annual risk of infection is the probability of becoming infected within a period of 

one year. Formally the adjusted annual risk of HIV infection (JT) is calculated from: 
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Alternatively, the adjusted instantaneous incidence rate (IT) is given by:   
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where R is the number of recent cases among P testing HIV positive, N is the number 

testing HIV negative and T is the time (one year in our case) over which the MDRI 

(ΩT) and the FRR (ε) are defined.  The unadjusted values (jT and iT) are found by 

setting ε = 0 in Equations (1) and (2) to give:  
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This weighted mean incidence is ideally suited to calculate incidence for any biomarker 

without any interference from biomarker dynamics, epidemiological and demographic 

history. The South African Centre for Epidemiological Modelling and Analysis 

(SACEMA) online resource for calculation of incidence is found at;  

http://www.incidence-estimation.org/page/spreadsheet-tools-for-biomarker-incidence-

surveys 
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6.6.6 Follow-up incidence 
 
The follow-up HIV incidence in the original ZVITAMBO cohort study (1998 -2000) 

was based on Turnbull Survival analysis at 24 months with 95% CI calculated by the 

bootstrap method and censoring women at 24 months or time of last negative test.25, 27 

These follow-up estimates represent a cumulative probability of HIV infection over a 

specified period of time usually a year or greater as in the case of calculation by 

Hargrove et al. 2008.27 Kassanjee et al. (2012) proposed an equation for calculating a 

uniformly weighted average HIV incidence that refers to a period of time (T) 

preceding the cross-sectional survey.62 This formula accounts for the fact that there is 

continuous population dynamic such that incidence at time (t) contributes to the IT 

with a weight proportional to (i), in the susceptible population.62 This method, allows 

for the aggregation and averaging of substantial information arising from a large 

susceptible population. Unlike probability or proportion, the hazard rate of infection 

can be greater than 1.62 

 

In our evaluation, we based our HIV incidence estimates, using biomarker testing, on 

the adjusted instantaneous incidence rate method (Equation 2). Follow-up and 

biomarker-based incidence estimates each have their own problems. The biases 

inherent in follow-up study include the higher loss to follow-up for individuals that 

are at a higher risk of infection compared to those who remain under observation. On 

the other hand, biomarker-based incidence estimates are affected by the test properties 

of the biomarker, the MDRI (ΩT) and FRR (ε) of the biomarker assay. 

 

Our comparison of the follow-up incidence to the biomarker-based estimates does not 

provide a validation of one approach or the other. This is obviously true for our study, 

where we used the same data to estimate both the follow-up and biomarker estimates 

of incidence.  Even if we make the estimates using independent data sets, however, 

there are different biases and weightings involved in the different approaches. If, 

however, we find significant differences between the estimates calculated using the 

two approaches this can draw attention to problems with at least one of the estimates.    
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6.6.7 Coefficient of Variation and Confidence Intervals 
 
The coefficient of variation (CV), also referred to as the relative standard error, is a 

statistical measure of the dispersion (variability) of data points in a data series around 

the mean. We calculate the CV by dividing the standard error by the mean and the 

statistic is useful for comparing the degree of variation from one data series to 

another, even if the means are drastically different from one another. In the case of 

our evaluation, the CV provides an indication of the precision of the MDRI, FRR or 

incidence estimates for each of the assays. The emphasis on the CV in this work 

(particularly for MDRI estimates) stems from the fact that the MDRI point estimates 

may in general be similar regardless of the methods used, therefore CV is useful in 

highlighting these differences.    

 

Confidence intervals for means are intervals constructed using the delta method 

approximation, such that for a specified proportion of the time, typically either 95% 

or 99% of the time, they contain the population mean. We did not make any formal 

comparisons between credible and confidence intervals. In this thesis, we were 

interested only in situations where either:  

(i) There are major differences between estimates, such that there is no 

overlap of the 95% confidence/credible intervals, or  

(ii) The differences between the point estimates are small relative to the size of 

the confidence/credible intervals to the extent that the intervals concerned 

overlap the point estimate with which comparison is being made. 

Although we did not conduct the formal hypothesis testing, the visual representations 

of our comparisons were useful in highlighting differences in the MDRI and 

incidence. We acknowledge, however, that a 95% CI and point estimate can overlap 

and yet the difference would be significant in a hypothesis test with a significance 

threshold of 5% if the estimates were highly positively correlated. Many of the 

estimates in this thesis are not independent, and probably highly correlated.  

   

The Bayesian concept of a credible interval is sometimes put forward as a more 

practical concept than the confidence interval. For a 95% credible interval, the value 

of interest (e.g. size of treatment effect) lies with a 95% probability in the interval.   
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In this evaluation, we need the CV of the FRR order to calculate the CI around the 

incidence estimate, using Equation e7 in the Appendix to Kassanjee et al (2012) 62. 
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7.0 Analysis of HIV serology in the evaluation of BED, 
LAg and BRAI    
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7.1 Sample Viability Test 
 
Before the new assays could be applied to the ZVITAMBO samples we needed to 

ensure that the samples were still viable, in the sense that they provided very similar 

optical densities when analysed using the BED method that was used previously by 

Hargrove et al. (2008).27 We retested 224 randomly selected ZVITAMBO samples 

with the BED assay. Figure 7-1 shows that there was a high correlation between the 

optical densities originally observed in 2008 and those found in the new analysis. 

Moreover, the deviations observed appeared to be random with respect to the absolute 

value of the ODn reading, with no suggestion of systematic bias in the observed 

errors. We concluded that we could use these samples to evaluate the LAg and BRAI 

avidity assays. 
  

Figure 7-1: Results of ZVITAMBO sample viability test 
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7.2 Review of HIV serology results 
 
There have been significant advances in the development of laboratory tests to detect 

HIV infection. These tests can be classified into operational categories of assay that 

detect: 

1) The viral antigen (mainly HIV-1 p24) 

2) Antibodies against the virus (HIV-1 (Group M and O), and HIV-2) 

3) Viral nucleic acid and quantify load (Viral Load tests) 

4) T-Lymphocyte cell counts.  

 

Rapid HIV test kits that detect the presence/absence of antibodies have been widely 

used in screening for HIV in health programs. Two characteristics are important in 

describing the performance of a Rapid Test Kit (RTK): (i) Sensitivity; the ability of a 

test to identify correctly those with disease; (ii) Specificity; the ability of a test to 

identify correctly those without disease. Evaluations of RTKs show that none of them 

has been able to achieve 100% for both sensitivity and specificity; a small percentage 

of patients will thus always be misdiagnosed.78,79    

 

In early stages of infection, HIV-1 p24 viral antigens are the first markers for HIV 

infection, followed by the production of antibodies. Third and fourth generation RTKs 

have been developed that allow the simultaneous detection of HIV-1 p24 antigen and 

HIV-1/2 antibodies.78 This simultaneous detection of antigen/antibody is instrumental 

in reducing the period between the time of infection and the time when antibodies 

become qualitatively detectable. In this evaluation, we define HIV positive infection/ 

serology status as the presence of HIV-1/2 antibodies as well as HIV-1 p24 antigens 

in acute infection. 

 

The availability of antiretroviral therapy for suppression of viral replication supports 

the need for early detection of HIV infection. Beyond identifying the presence of HIV 

infection, the ability to provide a time variable to the infection by classifying an 

infection as either recent or long term is of importance in the control of the epidemic. 

The goal of a laboratory Test for Recent Infection (TRI) is to classify HIV positive 

people as either recent or long-term infections. The correct identification of the 

presence of HIV infection (HIV serology status) is therefore a critical first step 
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required for the application of a laboratory TRI to estimate the proportion of samples 

that test as recently infected with HIV. We have a two-step process in which we first 

classify a sample as either HIV positive or negative. We then classify the HIV 

positive cases as either recent or long term. Based on this, there is no pre-requirement 

that a laboratory assay should be able to detect HIV infection and simultaneously 

classify them as either recently infected or as long-term infection.      

 

In this evaluation, when we applied the LAg and the BRAI avidity assays to the 

ZVITAMBO prospective cohort samples, we found that we needed to retest HIV 

serology of some samples, where the OD/AI results suggested that their HIV 

serological status might have been misclassified.   

 

We used the manufacturer recommended criteria for resting HIV serology (see 

Section 6.0 Methods). For LAg assay, HIV serology retest was based on ODn < 0.400 

and VL< 1000 copies/ml: for BRAI it was based on those returning an “invalid” 

results following retesting in duplicate. 

 

We tested 113 plates (4,764 samples; baseline and seroconverters including repeats) 

using the BRAI avidity assay. We reviewed the raw data output for each plate. When 

the plate had 10% of the results showing an invalid result we considered this plate as 

having a high return on invalids and therefore required re-run of the entire plate.  

Eleven plates (236 /4,764 samples tested) required repeat testing due to high return of 

invalid results by the BRAI assay. This repeat testing resolved the status of 192/236 

samples.  Only 44/236 cases required testing in duplicate using BRAI assay, after 

which 20 cases originally diagnosed as HIV positive at baseline remained invalid by 

the BRAI. In Table 7-1, we show the results of this re-testing exercise, together with 

the results of all three biomarker tests carried out at Baseline (V0) and Visit 5 (V5) for 

each of the 20 cases.  
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Table 7-1: Results for 20 case originally diagnosed as HIV positive at baseline – 
but testing “invalid” by BRAI 

 HIV status BED Lag BRAI CD4 Viral load 
ID V0(O) V0(N) V5(O) V0 V5 V0 V5 V5 V0 V0 V5 
11413A 1 2 1 0.171 1.618 0.072 4.011 100 * 1 2201 
13006C 1 2 0 0.075 * 0.330 * * * 1 * 
13655D 1 1 1 0.043 1.979 0.438 3.812 100 559 5188 14586 
16058D 1 2 0 0.031 * 0.106 * * * 1 * 
16072G 1 2 0 0.037 . 0.139 * * * 1 * 
16190C 1 2 2 0.029 0.034 0.198 0.242 999 * 1 1 
16236D 1 2 0 0.033 * 0.122 * * * 1 * 
16310C 1 2 1 0.030 0.906 0.167 6.033 100 619 8411 5532 
16499Z 1 2 1 0.031 * 0.145 * * * 1 * 
19552A 1 2 1 0.038 * 0.127 * * * 1 * 
19891D 1 2 2 0.026 0.026 0.141 0.347 999 * 1 1 
20195F 1 2 0 0.035 * 0.151 * * 1246 1 * 
20424C 1 2 2 0.216 0.037 0.143 0.224 999 * 1 1 
20609D 1 2 2 0.028 0.038 * 0.313 999 * 1 1 
21891Z 1 1 1 0.031  1.288 0.253 3.435 100 638 179025 1819 
22068C 1 2 1 0.148 2.771 0.191 4.629 100 * 1 90289 
22120D 1 2 0 0.085 * 0.071 * * 992 1 * 
22150N 1 2 0 0.151 * 0.090 * * * 1 * 
22412F 1 2 1 0.041 * 0.366 * * * 1 * 
23012X 1 2 1 0.046 3.416 0.144 5.336 95 * 1 3769 

 

Key for column headings in Table 7-1  

ID = Unique patient identifier; V0 (O) = Original Baseline HIV diagnosis; V0 (N) = 

New Baseline HIV diagnosis; V5 (O) = Original Visit 5 HIV diagnosis; V0= Baseline 

viral load; V5= Visit 5 viral load  

 

Key for body of Table 7-1 

HIV status: 1= HIV positive; 2 = HIV negative; 0 = not tested for HIV. For BRAI, 

999 = “invalid result”; Viral load = 1 implies that no virus could be detected; * in any 

cell indicates a missing value. 

 

Highlighting:  

Blue = Original HIV positive diagnosis not changed because LAg ODn > 0.400 

and/or high viral load (>5000). 

Green = New V0 diagnosis is HIV negative, but clearly HIV positive at V5 [i.e., 

seroconverted]. 

 Purple = New V0 diagnosis is HIV negative, but originally HIV positive at V5 – but 

no biomarker tests [i.e., might have seroconverted]. 

Yellow = New V0 diagnosis is HIV negative, and, indeed, appears clearly HIV 

negative at V5 
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7.2.1 Retesting of cases providing an “invalid” BRAI test result at Baseline 
 
Our main interest here is in cases where the original test of the baseline sample 

produced a diagnosis of HIV positive. In one case (21356C), however, that originally 

tested HIV negative at baseline, and tested “invalid” by BRAI, the new serology 

indicated that the case was HIV positive. This was consistent with a LAg ODn at 

baseline >0.4 and a very high viral load (>800,000). This appears now to have been a 

very early infection: very low antibody titres can cause problems for the BRAI 

analysis and, as in this case, an “invalid” result in a case clearly infected with HIV.  A 

further case (10634D) tested HIV negative at baseline but appears, in retrospect to 

have been HIV positive: the LAg ODn was 3.38, the BRAI AI was 92 and the viral 

load >100,000.  

 

Twenty (20) cases originally tested HIV positive at baseline but returned a result of 

“invalid” by BRAI. In two of these cases it was decided that there was insufficient 

evidence to consider changing the diagnosis: in one case (13655D) the LAg ODn = 

0.438 > 0.4 and the viral load was 5188; in the other (21891Z), whereas the LAg ODn 

= 0.253 < 0.4, the viral load was very high (>105), indicating that the case was 

certainly HIV infected.  

 

In the other 18 cases (Table 7-2) one should consider changing the baseline HIV 

diagnosis to HIV negative, for the following reasons: (i) new HIV serology produces 

a negative result; (ii) LAg ODn<0.4 in all cases; (iii) very low BED ODn (<0.25) in 

all cases. In all cases except one (16310C) there was also no detectible virus; for the 

exceptional case, however, the extremely low BED and LAg values suggest that, if 

the case was truly infected with HIV, the infection was so new that the serology did 

indeed provide a correct diagnosis of negative.  One further baseline cases (12156Z) 

was considered for reclassification in the absence of a BRAI test, on the grounds of: 

(i) new HIV serology produces a negative result; (ii) LAg ODn<0.2; (iii) very low 

BED ODn (<0.05). Table 7-2 shows the results for the cases considered for 

reclassification.
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Table 7-2: Retesting of samples collected at Baseline (Visit 0)  

Patient 
ID 

Results string HIV status BED Lag BRAI Viral load 
Resall(old) Resall(new) V0(O) V0(N) V5(O) V5(N) BED0 BED5 LAg0 LAg5 BRAI0 BRAI5 VL0 VL5 

11413A 1001010000 2001010000         1        2       1        1   0.171   1.618   0.072   4.0114   999   100      1   2201  
12156Z 2100000000 2100000000         1        2       0        0   0.032       *   0.165        *     *     *   2575      *  
13006C 1000000000 2000000000         1        2       0        0   0.075       *   0.330        *   999     *      1      *  
16058D 1051000000 2051000000         1        2       0        0   0.031       *   0.106        *   999     *      1      *  
16072G 1100000000 2100000000         1        2       0        0   0.037     *   0.139        *   999     *      1      *  
16190C 1155550000 2255520000         1        2       2        2   0.029   0.034   0.198   0.2424   999   999      1      1  
16236D 1155500000 2155500000         1        2       0        0   0.033       *   0.122        *   999     *      1      *  
16310C 2155555000 2155515000         1        2       1        1   0.030   0.906   0.167   6.0328   999   100   8411   5532  
16499Z 1015505000 2015515000         1        2       1        1   0.031       *   0.145        *   999     *      1      *  
19552A 1110000000 2110010000         1        2       1        1   0.038       *   0.127        *   999     *      1      *  
19891D 1155550000 2255520000         1        2       2        2   0.026   0.026   0.141   0.3467   999   999      1      1  
20195F 1000000000 2000000000         1        2       0        0   0.035       *   0.151        *   999     *      1      *  
20424C 1155550000 2255520000         1        2       2        2   0.216   0.037   0.143   0.2243   999   999      1      1  
20609D 1355550000 2255525555         1        2       2        2   0.028   0.038       .   0.3130   999   999      1      1  
22068C 1001151110 2001111110         1        2       1        1   0.148   2.771   0.191   4.6293   999   100      1  90289  
22120D 1000000000 2000000000         1        2       0        0   0.085       *   0.071        *   999     *      1      *  
22150N 1115000000 2115000000         1        2       0        0   0.151       *   0.090        *   999     *      1      *  
22412F 2000030010 2000010010         1        2       1        1   0.041       *   0.366        *   999     *      1      *  
23012X 1001010000 2001010000         1        2       1        1   0.046   3.416   0.144   5.3361   999    95      1   3769  
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Key for Table 7-2:  

 

Column headings:  

Patient ID – Unique patient identifier;  

V0(O) = Original HIV status at Baseline            V0(N) = New HIV status at Baseline 

V5(O) = Original HIV status at Visit 5               V5(N) = New HIV status at visit 5; 

BED/LAg/BRAI (0) = Biomarker readings at Baseline      

BED/LAg/BRAI (5) = Biomarker readings at visit 5 respectively  

 VL0 = Viral load at Baseline                            VL5 = Viral load at Visit 5 .  

 

Body of Table:  

HIV status: 0=No sample; 1= HIV positive; 2 = HIV negative; 3=Indeterminate; 

5=Sample available but not analysed.  

For BRAI, 999 = “invalid result”.  

Viral load = 1 implies that no virus could be detected; * in any cell indicates a missing 

value. 
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7.2.2 Retesting of cases providing an “invalid” BRAI test result at Visit 5 
 
Among 3,250 women originally classified as HIV positive at Visit 5, 17 cases 

returned an “invalid” result based on the BRAI assay, and/or had no detectible viral 

load and/or a very low LAg (<0.4). We retested these cases for their HIV status and 

all tested HIV negative (Table 7-3).  They could thus potentially be reclassified as 

HIV negative at Visit 5. We made an exception for case 22967F, which we did not 

retest for HIV status, because it returned a LAg ODn slightly above 0.400 and we 

therefore classified the case as recent by LAg and invalid by BRAI.   

 

A further nine cases were anomalous as they had originally tested HIV positive at 

Baseline and HIV negative at Visit 5. All of the Visit 5 samples for these cases gave 

an “invalid” result when tested with BRAI, had very low viral loads (<200), and very 

low LAg (<0.4). Among the baseline samples, four cases had the same undetectable 

viral load and low LAg profile as the group just mentioned, the BRAI result was 

“invalid”, and the cases all tested HIV negative with the new serological test. These 

cases also appear in Figure 7-2 as cases that we could reclassify as HIV negative at 

Baseline. The final five cases continued to be anomalous: the new serology indicated 

that they were HIV positive at baseline but all indications were that they were HIV 

negative at baseline.  

 

In Table 7-3 we show results for samples that were retested to confirm their HIV 

status because; 

 (A) samples, originally diagnosed as HIV positive; (i) gave an “invalid” test with 

BRAI and had no detectible viral load and/or LAg ODn<0.4 (not highlighted); (ii) had 

no detectible viral load and/or LAg ODn<0.4 (highlighted green):  

(B) originally tested HIV positive at baseline but HIV negative at Visit 5 and (i) had 

no detectible viral load at either visit and LAg ODn<0.4 at both visits (highlighted 

green); (ii) at baseline had high viral load (>2000) and LAg (>2.5) but, at Visit 5, very 

low viral load (<200) and LAg (<0.4).   
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Table 7-3: Retesting of samples collected at Visit 5 

Patient 
ID 

Results string HIV status BED Lag BRAI Viral load 
Resall(old) Resall(new) V0(O) V0(N) V5(O) V5(N) BED0 BED5 LAg0 LAg5 BRAI0 BRAI5 VL0 VL5 

10740Z 2002010000 2002020000 2 2 1 2 * 0.027 * 0.184 * 999 * 1 
11107K 2002010000 2002020000 2 2 1 2 * 0.031 * 0.105 * 999 * 1 
11289G 2000210000 2000220000 2 2 1 2 * 0.029 * 0.134 * 999 * 1 
11436Z 2002010000 2002020000 2 2 1 2 * 0.029 * 0.126 * 999 * 1 
12989A 2002010000 2002020000 2 2 1 2 * 0.038 * 0.099 * 999 * 1 
13653G 2002010000 2002020000 2 2 1 2 * 0.036 * 0.089 * 999 * 1 
13978N 2222212220 2222222220 2 2 1 2 * 0.037 * 0.068 * 999 * . 
14741X 2002010000 2002020000 2 2 1 2 * 0.038 * 0.135 * 999 * 1 
19652K 2002010000 2332320000 2 2 1 2 * 0.031 * 0.240 * 999 * 1 
22967F 2000010000 2300020000 2 2 1 2 * 0.029 * 0.442 * 999 1 1 
23238G 2002010000 2002020000 2 2 1 2 * 0.029 * 0.123 * 999 * 1 
23263F 2002010000 2002020000 2 2 1 2 * 0.029 * 0.143 * 999 * 1 
23514F 2002010000 2002020000 2 2 1 2 * 0.029 * 0.131 * 999 * 1 
14312P 2002010000 2332320000 2 2 1 2 * 0.031 * 0.182 * * * 1 
14069C 2002010000 2332020000 2 2 1 2 * 0.039 * 0.130 * * * 1 
17449N 2000010000 2330020000 2 2 1 2 * 0.048 * 0.343 * * 1 1 
17509Z 2000010000 2000020000 2 2 1 2 * 0.057 * 0.197 * * 1 1 
16190C 1155550000 2255520000 1 2 2 2 0.029 0.034 0.198 0.242 999 999 1 1 
19891D 1155550000 2255520000 1 2 2 2 0.026 0.026 0.141 0.367 999 999 1 1 
20424C 1155550000 2255520000 1 2 2 2 0.216 0.037 0.143 0.224 999 999 1 1 
20609D 1355550000 2255525555 1 2 2 2 0.028 0.038 * 0.313 999 999 1 1 
15080C 1015555500 1015525500 1 1 2 2 3.510 0.031 3.305 0.146 100 999 2709 1 
16769A 1051555500 1051525500 1 1 2 2 1.334 0.030 2.968 0.140 100 999 79239 1 
17136X 1155555000 1155525000 1 1 2 2 3.344 0.028 3.397 0.111 100 999 2171 1 
22097G 1005555555 1005525555 1 1 2 2 1.520 0.028 2.765 0.130 100 999 9582 1 
23847K 1155555555 1155525555 1 1 2 2 1.350 0.039 3.283 0.100 100 999 44114 157 
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Key for Table 7-3:  

 

Column headings:  

Patient ID – Unique patient identifier;  

V0 (O) = Original HIV status at Baseline            V0 (N) = New HIV status at Baseline 

V5 (O) = Original HIV status at Visit 5               V5 (N) = New HIV status at visit 5; 

BED/LAg/BRAI (0) = Biomarker readings at Baseline      

BED/LAg/BRAI (5) = Biomarker readings at visit 5 respectively  

 VL0 = Viral load at Baseline                            VL5 = Viral load at Visit 5 .  

 

Body of Table:  

HIV status: 0=No sample; 1= HIV positive; 2 = HIV negative; 3=Indeterminate; 

5=Sample available but not analysed.  

For BRAI, 999 = “invalid result”.  

Viral load = 1 implies that no virus could be detected; * in any cell indicates a missing 

value. 

 
 
Highlighting 

Green: Original and New diagnosis is HIV negative, but clearly HIV positive at V5 

(O) [i.e., seroconverted] and negative at V5 (New) 

Yellow: Original HIV diagnosis is positive but V0(N), V5(O/N) are all negative 

Blue: Original and New HIV are both positive while V5 (O/N) are both negative 
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7.3 Discussion on the implications of misclassification of HIV result in 
the BED, BRAI and LAg evaluation 
 

7.3.1 General considerations 
 
This evaluation highlighted ongoing challenges with HIV-1 misdiagnosis due to 

factors ranging from assay sensitivity and specificity to external factors.78,79,80,81 The 

ZVITAMBO study used Murex HIV-1/2 in parallel with Genescreen HIV1/2 and 

Western Blot as the tiebreaker for discordancy. Researchers have reported that Murex 

HIV-1/2 had a sensitivity of 100% and specificity of 99.3 (97.8-100), while 

Genescreen HIV1/2 had an equally high sensitivity of 100% and slightly lower 

specificity of 94.9% (91.0-98.7).78 However, the specificity of Murex may be much 

lower in African setting where there is a high prevalence of schistosomiasis.82 In the 

original ZVITAMBO study, only 53/14,110 cases remained indeterminate.26 

 
An evaluation of BRAI to determine its ability to detect p24 and HIV1/2 antibodies 

showed a high detection rate of 100% for both p24 and HIV1/2 antibodies.78, 84 

Although there appeared to be a very good correlation between the results of the 18 

Visit 5 samples that were retested following criteria of LAg<0.400 and a subsequent 

invalid result on BRAI, a decision as to whether to reclassify a sample as either 

negative or positive remains a subject of discussion. The observed results are 

consistent with the idea that the HIV testing algorithm used in the original 

ZVITAMBO trial may have had a higher sensitivity than the (re)testing algorithm that 

we used in the current project. Additionally, both a HIV negative case, and an HIV 

positive case that is very recently infected, will both have very low BED and LAg 

ODs and will in all likelihood test as “invalid” by BRAI. This is because, for the 

BRAI assay, an extremely low antibody titre in the sample gives a negative result in 

the wash buffer well and thus the AI value obtained is not valid. The basis of the 

BRAI assay is a comparison of the antibody binding difference between the two 

wells; the wash buffer and sample well. If the wash buffer well is negative, one is 

technically saying there is no antibody binding with which to compare, and we 

therefore get an “invalid” result. During early infection, p24 antigen rises rapidly until 

antibodies appear, but the antibody avidity is very weak at this time and, and the 

chance of an  invalid result remains high.85 In this regard, the “invalid” result returned 

by BRAI can be argued that these results reflect a recent infection and therefore do 

Stellenbosch University  https://scholar.sun.ac.za



49 
 

not warrant, reanalysis of HIV serological status. 

 

Addition of VL in an MAA for estimation incidence allows us to identify additional 

cases that may appear to be recent infections, given the serological biomarker 

analyses, but where the viral load suggest that they are really long-term infections. 

However, if the limit of detection is set at a high level, e. g. ~1000 copies/ml, this may 

not entirely remove false recent specimens. This means that those who are on ART 

and elite controllers will remain in the numerator as false assay positives (recent 

cases). In the original ZVITAMBO trial, viral load testing was conducted using the 

Ultra-Sensitive Roche Cobas Amplicor HIV-1 monitor that had detection limits of 50 

copies in milk and less than 400 copies in plasma.25,76  These levels of detection may 

explain why 291 (6.6%) of the 4,391 baseline HIV positive cases tested, had 

undetectable VLs. 

 

7.3.2 Specific implications for the ZVITAMBO study  
 
Reclassifications of Baseline diagnoses 
 
There are various implications of making changes in the original ZVITAMBO HIV 

diagnoses from HIV positive to HIV negative. Where we make these changes for the 

baseline diagnoses, these cases are, of course, no longer eligible to be included in the 

estimation of the False Recent Rate (FRR). 

 

On the other hand, if reclassified as HIV negative, these cases become eligible for 

consideration as seroconverters. We ask, therefore, how many of the 18 cases 

reclassified did seroconvert?  From Table 7-1, we see that in four of the cases the viral 

load at Visit 5 was undetectable, consistent with the idea that the case was never HIV 

positive.  A further three cases were never seen again after baseline. 

 

The other 11 cases appear to have seroconverted after baseline. Thus, four cases that 

tested HIV positive at Visit 5 had high viral loads ranging between 2000 and 90,000, 

and were clearly seroconverters.  Seven (7) other cases tested HIV positive prior to, or 

after Visit 5, though we could not assess viral loads, or BED, BRAI and LAg levels, 

for these cases.  It would appear, therefore, that at least four, and as many as 11, cases 
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out of 18 newly classified as HIV negative, seroconverted after baseline.  Moreover, 

given that three cases were never actually seen after baseline, the proportion 

seroconverting could be viewed as anywhere between 4/15 and 11/15.  Given that the 

HIV incidence, estimated by follow-up in the ZVITAMBO cohort, was of the order of 

3% per annum, the expected number of seroconversions out of 18 cases is <1 in a 

year. It is thus intuitively obvious that the probability of observing 11 seroconversions 

out of such a small samples is extremely small. In fact, a simple calculation shows the 

probability is of the order of 10-13 (Hargrove, personal communication). Moreover, 

even the probability of observing four seroconversions is ≈0.001. 

 

Reclassifications of Visit 5 diagnoses 

At Visit 5 there are 17 cases, originally diagnosed as HIV positive that could be 

potentially reclassified as HIV negative (Table 7-3). The effect of doing so has an 

important impact, as we shall see below, on the biomarker estimates of the HIV 

incidence over the first 12-months postpartum. The reasons for this are that: 

(i) In all 17 cases, the mother was originally diagnosed as HIV negative at baseline. 

(ii) If diagnosed as HIV positive at Visit 5 she was thus, by definition, a 

seroconverter. (iii) For all 17 cases, the BED and LAg ODn values measured at Visit 

5 were much lower than any feasible OD cut-off that might be chosen. (iv) It thus 

follows that, if diagnosed as HIV positive at Visit 5, all 17 cases would also be 

classified as recent seroconversions.   (v) Reclassifying all 17 as HIV negative at Visit 

5 would thus reduce the number of recent cases by 17 in every incidence calculation – 

and the incidence estimate is very sensitive to the numbers of infection classified as 

“recent”.  

 

The reclassifications would also influence the follow-up estimates of incidence, but 

the impact is smaller, because the reduction is now a proportion of all seroconverters 

over the period between birth and 12-months postpartum – and not simply among 

those judged as recent infections at Visit 5.    

 

The reclassifications could also affect the estimates of the MDRI – because, again, we 

would no longer view the 17 cases as seroconverters. Inspection of Table 7- 2 shows, 

however, that for virtually all cases, Visit 5 was the first and only time that these 
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women tested HIV positive. Given that, for LAg and BED, we always required at 

least two positive samples to be provided for a case to be included in MDRI analyses, 

the reclassifications have no effect on the MDRI estimation procedures.   

  

Impact of reclassifications on analyses: Differential impact depending on the 

biomarker(s) used to identify “recent” seroconverters 

 

As noted above, reclassifications of some cases as HIV negative affects FRR and 

(some) MDRI estimates and thus affects the resulting HIV incidence estimates.  The 

implications are, however, different for analyses using, on the one hand, BED and 

LAg and, on the other, BRAI. In the former cases we have to choose which diagnoses 

we are going to use. 

 

For BRAI there is no such choice, because all of the disputed cases always test 

“invalid” and should not be included in the analyses – unless we take the decision that 

the “invalid” result is incorrect and we simply decide to classify the samples as recent 

infections. If we take this view, however, there would then be no justification for any 

reclassifications and we would effectively just be using the old classifications.     

 

When we use viral load, together with the serological biomarkers, to identify recent 

infections, these problems largely fall away. The reason for this is that, when we use 

viral load, a case is only classified as “recent” if, and only if, the serological 

biomarker suggests that the infection is “recent” and the viral load is >1000. Since, 

however, we only ever reclassified a case as HIV negative if the viral load was <1000, 

it follows that the ambiguous cases are either classified as “long-term”, if we accept 

the original HIV diagnoses, or as HIV negative if we accept the new diagnoses. In the 

ZVITAMBO Trial, >65% of all cases were HIV negative, and ∼90% of HIV positive 

cases test as long-term infections at recommended values of the pre-set cut-off. 

Reclassifying a small number of “recent” cases as either “long-term” or “HIV 

negative” results in a relatively small change to a large number. The effect on ensuing 

parameter estimates is accordingly negligible. We discuss this matter further in 

Section 10.2.2 and Section 10.6.  
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Which classifications should we use? 

The very low LAg and BED ODn values and the general absence of detectable virus 

for cases that return an “invalid” BRAI test, coupled with an HIV negative diagnosis 

from the new serological tests, are all consistent with the idea that the cases were 

originally misdiagnosed as HIV positive. 

 

Conversely, the vanishingly low probability of observing such large proportions of 

seroconverters among cases reclassified as HIV negative at Baseline (see above) 

raises the possibility that the real reason for the problem arises from the higher 

sensitivity of the original HIV tests. The results are consistent with some or all of the 

disputed cases being extremely recent HIV infections, consistent with their very low 

BED and LAg ODn values – and with the “invalid” classification from the BRAI 

analyses. What is unexpected and finds no ready explanation is the absence of 

detectable virus. 

 

We are unable to provide an unequivocal solution to this problem.  Accordingly, 

given the uncertainty of the results, we explored analyses using both the “Original 

data” and revised data classified as “New data” in this report. Following data cleaning 

of datasets, the BRAI dataset had 4,466/4,495 (99.4%) baseline records and 

2,824/3010 (93.8%) V5 HIV positive, the LAg dataset had 4,468/4,495 (99.8%) 

baseline records and 2,825/3010 (93.8) V5-HIV positive and the BED dataset had 

4,418/4495(98.6%) and 2735/3010 (90.9%) HIV positive at V5 (Figure 6-2). The 

numerator refers to the actual number of samples tested and the denominators refer to 

the total sample that was in storage at ZVITAMBO laboratory and were available for 

testing in this current evaluation.  

 

When the new avidity assays are applied to cross-sectional surveys samples, there is a 

likelihood that misclassification of incident vs long term could result because of  

HIV-1 misdiagnosis, and this has potential to cause imprecise HIV incidence 

measures. This can be mitigated by continuous development of  test kits that have 

dual capacity to detect presence of HIV and concurrently  classify the infection as 

either recent or long term as well as use of MAA.83,84,86,86   
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7.4 Optical density patterns among seroconverters as observed using 
BED, LAg and BRAI 
 
We plotted the distribution of ODn and AI readings for all mothers who were HIV 

negative at baseline and seroconverted during the first 12 months of follow-up (V5) 

(Figure 7-2).  
  

Figure 7-2: Distribution of optical density (ODn) readings (BED and Lag) and 
AI (BRAI) for seroconverting mothers 

 
 
Visual inspection of normalised optical density (ODn) and Avidity Index (AI) 

patterns shows more evenly distributed ODn readings in LAg than in BED, and wider 

variation in AI for BRAI. 

 

We plotted graphs for ODn and AI against days since seroconversion for cases among 

182 seroconverters where t0 (the time between the last negative and first positive 

result) was at most 120 days, and where we took blood samples from the mother on at 

least three independent occasions after she seroconverted (Figure 7-3). 
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Figure 7-3: Distribution of ODn for BED and LAg and AI for BRAI by estimated 
days since seroconversion   

    
 

The increase in optical density, which is a measure of increase in antibody maturation 

for both the LAg and BRAI, showed that there was less variability for the two avidity 

assays than for BED. This visual depiction of the optical density by days since 

seroconversion provides an analytical picture of the biochemical interactions between 

the sample and assay in relation to days since initial infection.      

 

For the BRAI assay, the AI is set to increase to a maximum value of 100%, so the 

graph for BRAI shows a plateau at the 100% mark (Figure 7-3). It is possible that 

cases will fail to provide ODn/AI above the cut-off because they are elite controllers. 

However, Figure 7-3 shows that, for LAg, virtually all cases progressed above cut-off 

if seen for a sufficient length of time post-seroconversion.  Indeed, no case tested at a 

time >365 days since seroconversion had an ODn < 1.5, the recommended cut-off. 

We did, however, see non-progression in a few cases for BED and BRAI assay, 

suggesting that non-progression may be more a function of assay kinetics rather than 

the presence of elite controllers. The rates of change in optical density with time since 

seroconversion varied between individual women, and this variation between mothers 

was greatest for the BED assay and smallest for LAg.   
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We plotted the log optical density readings against the days since seroconversion for 

12 mothers who provided at least six samples following seroconversion (Figure 7-4). 

For purposes of comparison only, we multiplied each ODn and AI values by different 

constant factors for each biomarker.  

For all three assays, there was a general increase in ODn with increase in time since 

seroconversion (Figure 7-4). While for BED and LAg, the pattern of increase 

followed a somewhat regular pattern, for the BRAI the curve was less regular with 

some cases showing reversal in log ODn readings to below the cut-off (e.g. 10030G).  
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 Figure 7-4: Natural logarithm of optical density (BED, LAg) and avidity index (BRAI) readings against days since seroconversion  
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7.5 Discussion and conclusion on variation in optical density readings 
for BED, LAg and BRAI 
 

Measuring optical density or avidity index for seroconverting samples is the 

operational method by which samples are classified either as recent or long term 

based on whether the readings lie below or above a predefined cut-off. The plots of  

optical density readings are critical in showing how an assay performs in relation to 

the amount of antibody or antigen present as a function of time since infection; i.e., it 

is a direct measure of the size or magnitude of a positive EIA result, expressed as 

optical density (ODn).87 By plotting the distribution of the optical density readings of 

samples from seroconverting individual persons, we have shown the variations in 

kinetics of BED, LAg and BRAI.  

 

In our current evaluation conducted on sub-type C samples, BED had the widest 

variation in ODn plots with time since seroconversion. Changes in BRAI AI with 

estimated time since seroconversion showed markedly more variation than observed 

in the change in LAg normalised optical density (ODn). There is a rapid change in AI 

for recent infection as a result of BRAI’s ability to measure IgM. This can be 

explained by the fact that although IgM antibodies have low binding affinity each 

antibody has 10 antigen binding sites relative to two for IgG; therefore IgM detection 

may result in a high avidity reading early on compared to the two for IgG in later 

infection. Alternatively, this steep rise in BRAI may actually show a high avidity in 

cases with low total antibody levels and these cases may show low LAg values. In 

contrast, for the LAg assay we suggest that the lower values in early infection could 

be because of a concentration too low to saturate all antigen binding sites (limiting 

antigen in each well); or a true low avidity that result in a low value during early 

infection. We observed this in actual values for poorly correlated results, where LAg 

and BED had much lower ODn readings. These findings are consistent with changes 

observed in Fiebig’s acute HIV staging system.88  
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Based on the assays’ biochemical performance, very recently infected cases can be 

incorrectly classified as “invalid” by BRAI, or as long-term infections, consequent on 

low antibody titres in the reference well of the two-well assay. This problem does not 

occur for LAg, but cases incorrectly diagnosed as HIV positive will be (incorrectly) 

diagnosed as recent infections by LAg, whereas they will (appropriately) be classified 

as “invalid” by the BRAI assay. The manufacturer of LAg have mitigated this by 

requiring that all samples returning an ODn less than 0. 400, be retested for HIV-1-2 

serology using an algorithm with high sensitivity and specificity. 

 

A quantitative analysis of the increase in HIV Type I antibodies after seroconversion 

for BED assay showed wide variability of individual ODn plots that was attributed to 

subtype differences in the biology of infection leading to variability in antibody 

response.14,87 This analysis suggest that measurement accuracy is higher for BRAI and 

LAg than for BED, but particularly for the LAg assay. In the evaluation by Parekh et 

al. (2002), of 259 seroconverters using the LAg assay, results showed that the assay 

has an increased avidity for gp41 specific antibodies post-seroconversion that levels 

off after 500 days.53 In a few cases involving elite controllers, the avidity remained 

low and sub-optimal panels showed wide variations. This suggests the need to 

identify and remove such samples when calculating MDRI for selected populations in 

order to get better accuracy of the estimates. On the other hand, the BRAI assay is 

capable of measuring the IgM so that the AI rises rapidly in early infection. The two-

well calculation of the avidity index has a maximum of 100%. This poses a challenge 

when this proportion is beyond 100% such that AI variability plots assume a plateau. 

A cause for concern with BRAI is the increased variability beyond one year as shown 

by the return of AI below the cut-off value for some cases. This occurrence may be 

associated with inherent assay variability or immune escape variants arising with 

resulting new low affinity antibody responses to new antigen epitopes. Further work 

is required to elucidate the cause of these problems. 
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8.0 Determination of Mean Duration of Recent Infection 
(MDRI) for BED, LAg and BRAI assays 
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8.1.1 Introduction 
 
We define the MDRI for an assay as the mean time that a person remains in a state of 

recent infection, while infected for less than a pre-defined period T. During this 

period, an HIV infected person’s blood sample returns an optical density reading 

below a pre-selected ODn or AI, referred to as the cut-off value C. The laboratory test 

property of MDRI would require a C low enough to minimise the FRR (such that 

almost all patients with long-term infections would have values higher than C). At the 

same time, it must still be long enough not to require a very large sample size to 

estimate incidence for the predefined time T. 62,63,  

 

The estimation of MDRI depends on assay interactions with antibody kinetics, which 

vary between individuals, by HIV subtype and geographical region. In general, the 

MDRI increases with increasing cut-off value C. 21, 54,69 An increase in C results in the 

monotonic increase in absolute number of individuals categorised as recent and, may 

also result  an increase in the of proportion of false recent cases. In general, the exact 

time point at which seroconversion occurs is not known. We assume that it must 

occur at some point during the period (t0), i.e., between the last negative and the first 

positive HIV tests. Similarly, we do not know the exact time point at which a person 

leaves the state of recency i.e., when the ODn or AI value first exceeds C.  

 

Accordingly we estimate the time (τ) say, between seroconversion and leaving the 

recent state, and estimate the MDRI to be either the observed value of τ, if τ < T, or 

we estimate the MDRI as T, if τ ≥ T.  In this study we generally set T= 1 year (365 

days). Researchers suggested that extending T to a period of 2 years yields better 

estimation of HIV incidence derived using MDRI and FRR. 20, 65,73 The use of T = 2 

years seemed inappropriate for our study since only a small minority of cases were 

followed up for 2 years, and none for longer than that period. Nonetheless, we did 

compare MDRIs estimated using T as either 1 or 2 years.   

  

Stellenbosch University  https://scholar.sun.ac.za



61 
 

8.1.2 Effects of varying the value of Time (T) and Number of Samples (ns) 
on estimated values of MDRI  
 

Workers have proposed several statistical methods for calculating MDRI. Sweeting et 

al. (2010) explored two statistical methods for measuring the window period of an 

assay. 77 The first method uses survival analysis to derive a non-parametric maximum 

likelihood estimate of the window period.77 This analysis used the date of last 

negative and the first positive test results and assumes knowledge of defined interval 

where a person exists out of recent state α. They dismissed this method based on its 

failure to take into account repeated biomarker measurements and failure to account 

for errors in the biomarker process. The second method uses a mixed-effects model to 

describe the growth of an antibody assay while incorporating uncertainty associated 

with the seroconversion time. We found this method to be more plausible in 

estimation of MDRI.  

 

In applying the BED assay to prospective cohort samples, one of the major issues that 

became known was the over-estimation of HIV incidence estimates.27 One of the 

theories proposed to explain this discrepancy was the existence of a proportion 

individuals misclassifying as recent (ɛ now called FRR) despite being infected for 

periods greater than order one year. Another explanation was that the window period, 

the total time an HIV case spends as a recent in their entire life after infection was an 

under-estimate of the population MDRI.21 It was possible, therefore, that estimates of 

incidence derived using these parameters differed from estimates derived from the 

follow-up of cohort of initially HIV cases, as in the ZVITAMBO study, because the 

MDRI was being under-estimated. As a result of this, it has been proposed that both 

MDRI and FRR, and incidence estimates, should be calculated with reference to a 

fixed time period T.21 This T has been arbitrarily set at one year (365 days), but 

because of the observed increase in antibody beyond this period, 2 years has been 

proposed as an alternative option.20,63,62,73 Using T= 2 years did not seem appropriate 

for this present study as most women were not seen beyond T > 1. Nonetheless, we 

explored the effects of extending T beyond the 1 year, examining plots of optical 

density/AI versus time since seroconversion for BED, LAg and BRAI using all 

samples in Section 7. 
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We found that there was a rapid antibody maturation in the period <400 days (Figure 

7-3).  In this section, we took a closer look at the pattern of increases in ODn/AI 

versus time since seroconversion using only samples that seroconverted in the first 12 

months of  follow-up (Section 8- 2.1) in order to see if extending the period to two 

years would  yield any meaningful difference. We describe this sub-analysis in 

Section 8.2.4. 

 

 Recall that we define the variable t0 as the time between the last HIV serology 

negative, and the first positive, test results. We need to decide on acceptable values of 

t0 in selecting the cases we use in estimating the MDRI. As t0 increases, we become 

less and less certain about the time of seroconversion. On the other hand, as t0 

decreases, fewer cases qualify for inclusion in the analysis. Similarly, there is a 

question about the minimum required number (ns) of independent HIV tests made on 

each HIV positive case before the case is included in the analysis.  If ns is large we 

will get a good picture about the pattern of increase in ODn, or AI, values, but 

reduced numbers of cases will qualify to be included in the analysis. When we reduce 

the required minimum for ns, the sample size increases but we are less certain about 

the pattern of increase. Clearly there is also a relationship between t0, the minimum 

number of samples per case (ns) and the resulting number (N) of cases (mothers) 

contributing to the test.21  

 

 

An important output from the calculation of MDRI is the coefficient of variation 

(CV), which is a measure of precision (variability) and calculated as the standard 

deviation (error) of the estimate divided the mean, and usually expressed as a 

percentage. The lower the value, the more precise the measurement and vice versa. In 

the Hargrove et al. (2012a) analysis, when the number of samples each person/case 

contributes was kept constant and t0 was increased from 80 to 160 days, the CV of the 

estimate declined.21 
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8.1.3 Methods 
 

Building on the work of Sweeting et al. (2010), Hargrove et al. (2012a) described five 

methods for fitting ODn data in order to derive the MDRI for BED.21,77 Although 

these five methods provided comparable estimates of MDRI, the Non Linear Mixed 

Model (NLMM), with a slight modification of the method suggested by Sweeting et 

al. (2010), provided the best fit for BED ODn data with the smallest variance among 

all the methods. While the method of Survival analysis (SA) (Turnbull, 1976) and 

Linear Mixed Model (LMM) had similar estimates, the coefficient of variation for SA 

estimates was at least 3 times that of NLMM when applied to BED data.89 Recently, 

Duong et al.(2015) conducted a recalibration of the LAg MDRI calculation.69 This 

exploration of the calculation of MDRI and FRR concluded that although there was 

coherence in different statistical methods, there was a need to balance a long MDRI 

and small FRR. They suggested the use of a cut-off of 1.5 for estimation of LAg 

MDRI as the optimum cut-off: they also suggested that binomial regression analysis 

as the preferred method for estimating the MDRI.  

 

Each method for calculating MDRI has its own assumptions about the exit from state 

of recent to non-recent. Some methods assume a single exit from the state of recent to 

non-recent while others assume multiple transitions between states. The feasibility of 

each method depends on the available data such as number of subjects and follow-up 

data points per subject. We give a brief description of some of the methods below:   

 

1. Graphical method: Consecutive ODn are plotted against the time since 

seroconversion. This method uses linear interpolation between two data points and 

produces  wide variations,  it was therefore not considered suitable for estimation 

of MDRI.21   
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2. Proportion of recent infections among seroconverters (r/s).                      

Assuming uniformly distributed seroconversion events over the time-period [0, T] 

the MDRI is estimated from the proportion of all seroconverters testing recent 

according to a pre-set ODn/AI cut-off. It has been argued that, if seroconversions 

are uniformly distributed, the ratio r/s (r and s, defined below) should provide an 

estimate of the MDRI close to the estimate required to ensure equality between 

follow-up and BED estimates of incidence.21, 62 This method may be useful where 

there are limited data points, even when only one follow-up data point is 

available.  The MDRI (ΩTrs), defined for a pre-set cut-off C, is estimated by; 

  

                                                Ω� 𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶) = 𝑟𝑟/𝑠𝑠                                                        (1) 

 

         where   s = Number of HIV positive samples at time T among cases that were 

       HIV negative at time 0 

  r = Number among s testing recent at cut-off C 
 
Hargrove et al (2011) showed that the ratio r/s should thus provide an estimate of the 

MDRI that is close to the estimate required to ensure equality between follow-up and 

biomarker estimates of incidence.   

3. Linear Mixed Model (LMM): This method uses a LMM with fixed and random 

effects to model a linear relationship between the ODn and time since infection 

(transformed according to the recommendation of the developer). This model 

yields a straight line for each woman, from which we estimated the time spent in 

the recent state, using an inverse prediction technique, with the upper limit 

restricted to T.  The equation for modelling the change in optical density reading 

is: 

 

�𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖  𝐼𝐼𝐼𝐼(𝑡𝑡𝑖𝑖𝑖𝑖 
0 ) + 𝑒𝑒𝑖𝑖𝑖𝑖                                              (2) 

 

Where Ai and Bi are constants containing fixed and random effects 

tij
0 = time at observation j since last HIV negative test and 

eij = Independent and identically distributed normal errors 
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Bootstrap techniques are applied to these individual estimates to obtain the final 

estimate of the MDRI as well as the associated confidence interval.21    

 

4. Non-linear Mixed Model (NLMM): This method models the relationship 

between assay ODn and time since infection. Sweeting et al. (2010) modelled the 

BED change in optical density reading from i to j as; 

                     

ijijiiiiij etcabaOD +−−+= )exp()(             (3) 

 

Where ai, bi and ci are constants, tij is the time since infection and eij are 

independent and identically normally distributed errors. 

 

Unlike the LMM, this function approaches finite asymptotes for short and long 

times since infection. The NLMM uses a Bayesian approach where, for this 

model, time of seroconversion is assumed to be uniformly distributed between the 

dates of last negative and first positive HIV tests. In this method, we used Markov 

Chain Monte Carlo (MCMC) methods to obtain the distribution of individual 

posterior recency duration up to a maximum period T. The method also assumes 

that the biomarker processes increase monotonically. So the MDRI and CI are 

obtained from this distribution of individual MDRIs.21 Hargrove et al. (2012) 

introduced a variant of this method that provided a better fit to the data for 

individual cases. 21,62 Using this method, we modelled increases in optical density 

with time (t) since HIV seroconversion as: 

 

ijijiiiiij etcabaOD +−−+= )exp()()log(     (4) 

 

where ci>0, ai>bi and eij are independent and identically distributed normal errors. 

 

In this model, the function approaches an asymptote for large values of t and most 

importantly, it goes to zero as t approaches minus infinity. This method is 

biologically more plausible than the LMM.21 
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5. Survival Analysis: The exact time of seroconversion and time to reach a 

predefined cut-off are unknown; therefore, there we need to assume the data are 

double interval censored. We obtain the intervals from longitudinal measurements 

of AI. The estimated dates of seroconversion lie the between dates of the last HIV 

negative and first HIV positive tests. We obtain the interval for the time to reach 

the predefined cut-off by using the date of the last ODn below cut-off and the first 

date with ODn above the cut-off.  Because this creates intervals of shortest and 

longest MDRI, for each individual Sweeting et al. (2010) used this to calculate the 

lower and upper bounds for MDRI. The method was discarded because it resulted 

in an incorrect likelihood function.78    Hargrove et al. (2012a) proposed an 

alternative approach. They approximated seroconversion to have occurred at 

midpoint between the last negative and first HIV positive test result.24    For the 

ZVITAMBO data, the average time was 83 days and a maximum of 120 days,  

therefore margin of error was likely to be minimal. This method uses single 

interval censored data and Turnbull’s modification of Product-Limit Estimator to 

obtain a survival function. When this is  integrated over [0,T],  it provides an 

estimate of MDRI (ΩTS) and its corresponding confidence interval.2 The main 

advantage of this method is that it does not have parametric assumptions so that 

the precision of the MDRI estimate is not affected by independent and varying 

parameters. 24 However, some limitations are that it does not use the shape of 

ODn/AI with time, because it assumes a continuous sojourn in a state and so it is 

not possible to measure multiple transitional states such as are consistent with TRI 

assays.  More detailed analysis of methods 1-5 are provided in Hargrove et al. 

(2012b)24 

 

6. Binomial Regression analysis: Regression techniques can be used to model the 

evolution of a quantitative biomarker with time since infection. This method 

estimates the probability of testing recent as a function of time since estimated 

date of detectable infection PR(t)69,73  

 

)()(( tftPg R =                             (5) 
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A number of parametric forms are possible, but we fit a linear binomial regression 

model for PR, as a cubic polynomial in t. MDRI is then the integral of PR (t) from 

zero to T. This has been arbitrarily set at 365 days or T= 1 year. We can model of 

𝑔𝑔 ( ) using the logit function and 𝑓𝑓(𝑡𝑡) a cubic polynomial in 𝑡𝑡 and the model is 

presented as; 

  
3

3
2

210))(1/()(ln( ttttPtP RR ββββ +++=−       (6) 

 

In this evaluation, we explored the estimation of MDRI using Turnbull SA, 

NLMM and binomial regression methods for BED, LAg and BRAI using the 

original HIV serology classification. 
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8.2 Results of MDRI Calculations 
 
MDRI calculation were conducted using samples from 351 women who tested HIV 

serology negative at baseline and seroconverted during the follow-up period 

(postpartum). We used samples obtained from 182 women who provided at least two 

(2) HIV positive samples after seroconversion, resulting in 593 samples that were 

included in the MDRI calculation.  

 

We present graphical plots of the optical density/avidity index reading by time since 

seroconversion for the three assays to highlight assay dynamics in response to 

antibody maturation.   

 

We present results of MDRI in which all samples use the original HIV serology 

classification, by itself, to diagnose cases as “recent”, if the serological level is <C – 

the pre-set optical density (ODn) or avidity index (AI) cut-off, or “long-term” 

otherwise. Then we present results of MDRI when we use both viral load (VL) and a 

serological biomarker in an MAA algorithm. We then classify a case as “recent” if, 

and only if, the measured level of the serological biomarker is <C and the viral load is 

≥1000.  Otherwise, we define the case as “long-term”.  Lastly, we present results for 

the data set in which we changed HIV diagnoses in the “Original data” from HIV 

positive to negative in a small number of cases, to produce what we call the “New 

Data”. 

 

Notice that the sample size is always smaller when we use viral load (VL) and a 

serological biomarker together, because there are some missing values for viral load 

and this can cause the number of samples per case to drop below the minimum 

required value of ns.  
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8.2.1 Changes in biomarker optical density as a function of time since 
seroconversion 
 

Hargrove et al. (2012a) plotted the ln(ODn) and ln(AI) readings against time since 

seroconversion for women who provided at least six samples following the first HIV 

positive result (Figure 8-1) 

 
Figure 8-1: Natural logs of BED optical density readings against days since 
seroconversion 

 
*Used with permission from Hargrove et al. 2012a.21 

 

For the BED assay (Figure 8-1), the pattern of increases in ODn with time since 

seroconversion for case i seen at visit j, is described by the function: 

  

loge(ODi,j) = ai + (bi - ai) exp(-citi,j) as described in Hargrove et al. 2012a.21  

 

In this evaluation, we plotted natural log of LAg optical density against the days since 

seroconversion for selected cases that had provided at least six samples after 

seroconversion (Figure 8-2). 
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Figure 8-2: Natural logs of LAg optical density readings against days since 
seroconversion for selected cases where the seroconverting mother produced at 
least six HIV positive blood samples after seroconversion 

 

 

For the LAg assay the pattern of increases in ODn with time since seroconversion 

(Figure 8-2) shows a similar mathematical form to the increases seen in BED.21 The 

rate of increase is much higher in LAg and follows an even closer adherence to a 

parametric model than the BED, suggesting the possibility of achieving better 

precision in the MDRI estimates. 
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In contrast, the development of the BRAI AI with time (t) since seroconversion-

conversion is less consistent than for BED and LAg (Figure 8-3). Some cases (A) 

show steady increase in AI with t, but in others (B) there are major trend reversals, 

sometimes with the cases re-entering the recent state (Figure 8-3). This causes 

departures from the kind of parametric model that could provide a good description of 

AI increases with time since infection. We therefore focused the analysis of BRAI 

MDRI on Turnbull SA methods and binomial regression. 
 

Figure 8-3: Natural logs of BRAI log optical density readings against days since 
seroconversion for selected cases  

 
Note: Seroconverting mother produced at least six HIV positive blood samples 
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 8.2.2 MDRI based on Turnbull Survival Analysis (SA) 
 
We varied t0, cut-off and calculated the corresponding MDRI and CI around these 

estimates for BED (Figure 8-4), BRAI and LAg (Figure 8-5). 

 

Regardless of the cut-off, the greatest precision, as defined by the smallest CV of the 

MDRI estimates was achieved with t0 = 120 days. The estimate with narrowest CI 

was achieved when we set t0 = 120 days and ns=2.  
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 Figure 8-4: MDRI for BED at different cut-offs and varying t0 using survival methods   
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 Figure 8-5: MDRI for BRAI and LAg at different cut-off using Turnbull SA methods
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Table 8-1: Summary MDRI for LAg and BRAI using Turnbull SA methods  

 
  
With constant values of ns=2 and C = 1.5, reproducibility – as defined by the CV – 

decreased with increasing t0; we saw the same trend for C = 2.0, but for each value of 

t0 the CV was higher for C = 2.0 than for C = 1.5 (Table 8-1). For BRAI, similarly, 

the CV decreased with increasing t0, so that and the most precise (narrow CI) MDRI 

estimate was achieved at t0=120 for either cut-off 30% or 40%.  There was very little 

difference, however, between the BRAI MDRIs estimated using C = 30% or 40%.   

The small increase of BRAI MDRI with C is consistent with the very rapid increase in 

AI in the early stage of infection that also increases with cut-off (Figure 8-5). 

 

We note several issues with the SA analysis for the three assays. Firstly, CIs for these 

measurements are wide, with CVs always exceeding 5%.  We note that the SA model 

is best designed to measure a single and continuous sojourn in a single state. For the 

biomarkers tested here, particularly BRAI, we observed multiple transitional states – 

i.e., cases were observed to leave and to re-enter the recent state. Re-entries into the 

recent state will result in under-estimation of the true MDRI using survival analysis. 

The real implications of this problem are investigated and discusses further in 

Sections 8.2.6a and Section 9.2.1.     

  

   

ns=2   t0=60 t0=90 t0=120 

 LAg               Cut-off= 1.5 

 

                         Cut-off =2.0 

105 (90-121) 

CV 7.69% 

115 (100 -128) 

CV 6.4% 

109 (98-125) 

CV 6.0% 

130 (97- 163)  

CV 12.8% 

142 (121 - 163) 

CV 7.5% 

136 (120 -152) 

CV 6.0% 

BRAI             Cut-off 30% 

                          

                         Cut-off 40% 

120 (93 -147) 

CV 11.7% 

144 (125-180) 

CV 7.6% 

135 (120-151) 

CV 6.0% 

127 (100- 153) 

CV 10.7% 

153 (130-188) 

CV 7.7% 

144 (128-160)   

CV 5.6%  
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8.2.3 MDRI Using Non Linear Mixed Methods (NLMM) 
 

The NLMM is not applicable to the BRAI method, since the avidity index (AI) does 

not increase according to a parametric form (Figure 8-3) and BRAI has a fixed upper-

limit of 100%, unlike the BED and LAg. Accordingly, we estimated the MDRI for the 

BRAI method using survival analysis as described above (Section 8.2.2). We used 

NLMM to calculate MDRI for the BED and LAg assays (Figure 8-6).  Using the 

NLMM method for both LAg and BED assays, the MDRI increased steadily with 

increase in cut-off, as expected (Figure 8- 6).   
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Figure 8-6: MDRI Estimates using NLMM for BED and LAg    
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In the case of BED and LAg where we were able to use the SA and NLMM methods, 

we compared the estimates derived using each method by varying cut-off.  

 

The MDRI estimates obtained using the NLMM had a lower variance than those 

obtained using SA for both LAg and BED (Figure 8-7). This is because the NLMM 

method utilises a well-defined mathematical function that provides a good fit to the 

data describing the increase in ODn values with time since seroconversion. Survival 

analysis makes no assumptions about the form of the increase with time.     
  
Figure 8-7: Comparison of MDRI estimates for BED and LAg obtained using SA 
and NLMM 
  

 
 
 
Our comparison of the NLMM method and SA is appropriate in that the former uses a 

Bayesian approach and so the interval we are quoting is a credible interval. This is 

denoted by the 2.5th and 97.5th percentiles of the posterior distribution of the mean 

MDRI. We did not make any formal comparisons between credible and confidence 

intervals. In this thesis, we were interested only in situations where, there are major 

Assay Survival Analysis NLMM 
LAg cut-off 1.5 109 (98-121) 

CV 6.0% 
104 (98 -110) 

CV 2.9% 
LAg cut-off 2.0 136 (120-152) 

CV 6.0% 
141 (134-148) 

CV 3.4% 
BED cut-off 0.8 178 (161 -196) 

CV 4.9% 
188 (180-196) 

CV 2.1% 
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differences between estimates, such that there is no overlap of the 95% 

confidence/credible intervals. Alternatively, that the differences between the point 

estimates are small relative to the size of the confidence/credible intervals to the 

extent that the intervals concerned overlap the point estimate with which comparison 

is being made. Although we did not conduct the formal hypothesis testing, the visual 

representations of our comparisons were useful in highlighting situations where the 

means are markedly different from each other.    

 

We compared the MDRI estimates arising from the use of the original code provided 

by Sweeting et al. (2010) with our modifications where we either: (i) introduced a 

time limit T for the maximum duration of recent infection; (ii) log-transformed the 

ODn data prior to analysis (Figure 8-8). 

 
Figure 8-8: Comparison of MDRI for LAg using variations of Sweeting’s 
Methods 
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At a cut-off of 1.5 for the LAg assay, there was no difference in MDRI estimated 

using the modified Sweeting et al. (2010) 77 method or the NLMM. For BED and LAg 

assays, we noted that SA and NLMM methods give approximately the same answers 

when T=1 year. The only difference is that NLMM produces estimates with smaller 

variance than SA and this is similar to Sweeting’s original method.   

 

8.2.4 MDRI Estimates Calculated When T=1 or 2 years 
 

We used linear binomial regression to estimate the LAg MDRI and also to test the 

hypothesis that extending the period T from 1 to 2 years can increase the MDRI, with 

the potential to improve the accuracy of the estimate.20,62, 65,73  We found no difference 

in LAg MDRI whether we set T equal to 1 year or 2 years: the point estimates differed 

by <0.1% (Figure 8-9a). The reason for this result appears to be the consistently rapid 

increase in LAg ODn in the ZVITAMBO situation. Thus, for example in the data 

plotted in Figure 7-3C, there was no case observed where a sample taken at >1 year 

post-seroconversion had a LAg ODn < 1.5. Obviously, therefore, extending T beyond 

1 year will make little difference to the MDRI.   

 

 Figure 8-9a: Comparison of MDRI estimates for LAg when T=1 and T=2 
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We explored MDRI estimates for BED, LAg and BRAI obtained using survival 

analysis, with T taken either 1 or 2 years.  For all analyses it was required that each 

case had a minimum of two HIV positive samples post-seroconversion and that the 

time between last negative and first positive HIV tests was at most 120 days. (Figure 

8-9b). 

 
 
Figure 8-9b: Comparison of MDRI estimates for BED, Lag and BRAI using SA 
method when T=1 and T=2 

 
For BED and BRAI, MDRI point estimates increased more than for LAg when T was 

increased from 1 to 2 years, but the differences only attained statistical significant for 

BED for larger values of C than are likely to be used in practice. Accordingly, we 

took T=1 year for all further calculations of MDRI for the different assays with 

(Section 8.2.5).   
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8.2.5 Comparison of MDRI based on NLMM, SA, Binomial Regression and r/s 
for the three assays  

We compared the MDRI obtained for all three serological biomarkers using binomial 

regression, survival analysis (SA) and the ratio r/s. For BED and LAg, but not for 

BRAI, we also used NLMM (Figure 8- 10).     

 

Using NLMM, at cut-off values of 0.8 for BED and 1.5 for LAg gives MDRI 

estimates of 188 (95% CI 180 -196) days and 104 (95% CI 98-110) days, respectively 

(Figure 8- 10).  The MDRI obtained using NLMM were lower than those obtained 

using binomial regression analysis by 6.3% for BED and 0.8 % for LAg at similar 

cut-offs. However, for both LAg and BED, the narrowest CI was always achieved 

when MDRI was calculated using the NLMM. 

 

Based on Turnbull SA methods at cut-off 30% and 40% for BRAI, the estimated 

MDRIs were 135 (95% CI 120 -151) and 144 (95% CI 128 -160) days, respectively. 

(Figure 8- 10).   In contrast, the estimates obtained using binomial regression analysis 

were lower by 6% and 7% at cut-off 30% and 40% respectively with wide confidence 

intervals for both estimates when T= 1 year. 

 

It will be noted that, when either BED or LAg is used alone (i.e., without using the 

viral load) to identify recent infections, all of the different methods provide very 

similar MDRI estimates (Figure 8- 10).  The low values of BED and LAg MDRI, 

habitually obtained using the ZVITAMBO data, do not appear to be due to some 

simple error in our statistical methods or their application.  

  

For BRAI, however, whereas the estimates derived using either survival analysis or 

binomial regression are closely similar, the r/s estimates are consistently and 

markedly lower. 

 

This comparative analysis of the different statistical methods using the original HIV 

serology data (Figure 8- 10).  It is useful in highlighting for each assay, the method 

that produces the most precise MDRI estimate (based on low CV) which is NLMM 

for BED and LAg while for BRAI it was the SA method. 
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From this evaluation, we note that there are merits and demerits for different 

statistical methods in calculating MDRI. Duong et al. (2015) highlighted that MDRI 

calculations can be affected by the duration between last negative and first positive 

results, the collection interval and frequency of specimen collection as well as avidity 

kinetics.69 Firstly, the NLMM is based on the Bayesian approach and so allows for 

use of all posterior measurement of individual readings after seroconversion. 

However, we could not apply the NLMM to BRAI, since the avidity index (AI) does 

not increase according to a parametric form and BRAI has a fixed upper-limit of 

100%, unlike the BED and LAg.  In contrast, the SA method is able to accommodate 

AI trend reversals observed with BRAI, thus making it a suitable method for MDRI 

calculation. Binomial regression models utilise all data points following 

seroconversion and can be applied to both LAg and BRAI. (Figure 8- 10). Hanson et 

al. (2016), reported that the major difference in MDRI calculated using SA 

(parametric or non-parametric) or binomial regression (parametric logit and 

parametric with random intercept) or non-parametric Generalized Additive Model 

(GAM) methods was in accuracy and precision.65  However, they recommended that 

for BRAI and BED, the revised SA method that take into account the probability of 

remaining in the recent state as a function of time since seroconversion should be 

applied in calculation of annual incidence in United States of America. 

 

As highlighted in methods section 6.6.7, there is generally no difference in the MDRI 

point estimate derived when we use the NLMM, Binomial and R/S methods (Figure 

8- 10). In this case we rely on the CV to show differences in precision of methods 

used.  The complete overlap of the 95% confidence intervals shows that there is no 

significant difference between the point estimates and so based on the CV, the only 

difference is their precision. 
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   Figure 8-10: Comparison of MDRI based on NLMM, SA, Binomial Regression and the Ratio (R/S) for BED, LAg and BRAI [ns>=2; t0 
<=120 days; T = 1 year] 

 

 
 

 
Method of calculating 
MDRI (95% CI; CV) 
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 Based on the above analysis, we do not know what the biases are: but what the results 

imply is that either: (i) If at least one of the methods provides approximately unbiased 

estimates then all of the methods provide approximately unbiased estimates. (ii) If all 

of the estimate are biased then they are biased to approximately the same extent. 

  

Stellenbosch University  https://scholar.sun.ac.za



86 
 

 8.2.6a Impact of adding VL to MDRI using Survival Analysis 
 
 
Recent studies have shown that viral load suppression in long-term infections is a 

strong confounder when serological assays are applied to long-term infections.87,90,91  

Results show that long-term infections return ODn/AI readings that mimic recent 

infection. Using VL as part of serological algorithms therefore helps in reducing 

misclassifications, and thus the FRR. This should thus result in improved HIV 

incidence measurements.   

 

We included results of the VL assay in the algorithm, for determining MDRI using 

the SA methods. We performed this analysis using the ZVITAMBO original HIV 

serology classification. We initially define cases with VL < 1000 copies/ml as long-

term infections and so they are not included in the calculation of MDRI.  We show the 

absolute number of samples remaining in the calculation of MDRI using Turnbull SA 

and ns=2 and t0=120 days for all three assays (Figure 8- 11).   

 
The addition of VL resulted in the reduction of the absolute number of cases that are 

included in the analysis, because cases were screened, based on the level of VL.  We 

show the number of samples (N) included in the analysis with or without VL (Figure 

8- 11). The resulting MDRI for all three assays is lowered by addition of VL for all 

three assays.   
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Figure 8-11: MDRI for BED, LAg and BRAI and VL MAA using Turnbull’s survival analysis (ns=2 and t0=120)  
 

 
 
 
 
 
 
 
 
 
 
 
 

*Included based on Kassanjee et al. 2014     
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8.2.6b Comparison of MDRI derived for assay and assay with VL based on 
Binomial regression, Survival Analysis and R/S Method 

 
We compared the MDRI obtained using a serological assay only and calculated using 

the Binomial Regression model, SA and R/S methods (Figure 8-12). We added the 

comparison of estimates obtained using an MAA in which we used VL in the initial 

screening to remove cases that were considered as long-term infections, if VL ≥ 1000 

regardless of the biomarker level. We used three analytical methods to estimate the 

MDRI for BED and LAg, and three for BRAI (Figure 8 - 12).  

 

In our comparison of MDRI obtained using the serological biomarker assay only, we 

note that the three analytical methods provide estimates that are numerically similar 

for BED and LAg. The complete overlap of the 95% confidence intervals in each case 

shows that the estimates do not differ significantly at the 0.05 level of probability 

(Figure 8 - 12 A, C). 

 

The same is true for BRAI, when we compare the estimates derived using survival 

analysis and those emerging from binomial regression. The r/s estimates, however, 

are consistently lower than those calculate using the other two methods (Figure 

8 - 12E).    

 

When both serology and VL are used to identify recent infections, the NLMM can no 

longer be used for any of the serological biomarkers and only three methods are 

compared. For LAg and BRAI the binomial regression and survival analysis estimates 

are closely similar, whereas the r/s estimates are consistently lower (Figure 8 - 12 B, 

D and F). In contrast, the survival analysis estimates for BED are lower than those 

from binomial regression with generally no overlap in the 95% confidence intervals. 

In this case the r/s estimates are intermediate between the estimates from the other 

two methods. 
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Figure 8 - 12: Comparison of MDRI for BED, LAg, BRAI with VL estimated 
using Binomial regression, SA or R/S. [ns>=2; t0<=120 days; T = 1 year] 
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8.2.7 Exploration of low MDRI for BED, LAg and BRAI arising from 
ZVITAMBO postpartum cohort 
 
The MDRI of an assay is a key input in the calculation of HIV incidence. Several 

evaluations have been conducted to determine the MDRI of laboratory assays 

including BED, LAg and BRAI as highlighted in Section 3.3 and Section 8.0. 

Researchers have estimated MDRIs using different statistical methods. 65, 69, 73 In most 

cases the analysis have provide slight differences in the MDRI obtained for each 

laboratory assay. 65, 69, 73 

 

In general, differences in MDRI have been attributed to HIV-subtypes, geographic 

location, host factors such as age, duration of HIV infection and to kinetics of the 

humoral response. The number of samples and interval of specimen collection also 

affect this parameter. 

  
The ZVITAMBO cohort study samples (1997-200) used in this current evaluation 

were first used in Zimbabwe to characterise MDRI for the BED-capture EIA.2   At OD 

cut-off = 0.8, the estimated BED MDRI was 196 (95% CI 188 - 204) days. The 

CEPHIA trial (2014) evaluated the BED, LAg and BRAI assays among others and 

obtained MDRI values that were much higher than those observed in current 

evaluation (Figure 8- 13).73  Based on these observations, in Sections 8.1-8.2.7 we 

have provided an analysis of MDRI using several statistical methods with variations 

in T0 and ns.  This analysis led to a further exploration of the data and resulted in the 

publication of a Short Communication by Hargrove et al. (2017).92   

 

The Hargrove et al. (2017) paper tested the hypothesis that the low MDRI values 

obtained for LAg and BRAI in a population of postpartum women, compared to the 

general population, were due in part to differences in physiological state. Postpartum 

women exhibit a heightened antibody response compared to women in the general 

population. The analysis tested this by comparing MDRI values estimated using data 

for women who seroconverted at different times after giving birth. In making these 

calculations we used at T=2 years in order to match the published data.92 We present 

the detailed sub-analysis in Sections 8.2.7a-b and Section 8.2.8. 

 

Stellenbosch University  https://scholar.sun.ac.za



91 
 

8.2.7 a MDRI for BED, LAg and BRAI by stage of seroconversion 
 

For the ZVITAMBO postpartum women, the analysis of MDRI was conducted for 

women who seroconverted in the first 9 months (Visits 1-4) compared to those 

seroconverting at 12 months and later. We used NLMM to estimate MDRI values for 

LAg and BED and Turnbull SA for BRAI: we used the recommended pre-set cut-off 

values for C (LAg=1.5, BED=0.8 and BRAI=40%). 

 

In the initial analysis, when all seroconverting samples (ns=101) are included in the 

analysis of MDRI were 192 (180-201; ns=96) for BED, 104 (98-110; ns=101) for 

LAg and 144 (128-160; ns=96) for BRAI. These MDRI were 33%.32% and 52% 

lower than the 287(248-328), 152 (128-178) and 298 (262-338) days on respective 

assays of Clade C samples. 69, 73, 92 

 

When the data were analysed by stage of seroconversion, 0-9months and >12months, 

the MDRI obtained in the first group were 185 (176-195; ns=65) for BED, 99 (92-

106; ns=70) for LAg and 139 (115-164; ns=65) days for BRAI. MDRI in >12months 

group were 195 (171-231; ns=31) for BED, 113 (101-126; ns=31) for LAg and 171 

(153-189; ns=31) for BRAI (Figure 8 - 13).92  We note that cases classified as later 

seroconverters does not mean that they were not seen for at least a year after infection. 

It means simply that the cases first tested HIV positive at, or after, Visit 5 (12 months 

postpartum). Criteria for inclusion of these cases in the analysis were still that the 

time between last HIV negative and first HIV positive tests could not exceed 120 days 

since they were supposed to be followed up every 3 months.  Regardless of stage of 

seroconversion, all point estimates of MDRI were consistently lower than the 

published results for all three assays. 
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Figure 8-13: MDRI for BED, LAg, and BRAI by stage of seroconversion and compared to published results 
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8.2.7b Comparison of MDRI by Vitamin A arm in original ZVITAMBO trial 
  
Humphrey et al. (2006) reported no difference in rates of acquisition of HIV infection 

postpartum among women and their infants who received Vitamin A and those who 

received placebo.25 We explored the impact of Vitamin A and placebo treatment on 

MDRI.  In particular we needed to exclude the possibility that the very low MDRI 

values we estimate are an artefact of the vitamin A treatment. We explored this using 

analysis of LAg MDRI (Figure 8- 14).92  
  

Figure 8-14: Comparison of MDRI by Vitamin A status for LAg 

  
 
 

At each cut-off, there was no difference in MDRI between women who received 

Vitamin A and those who received placebo. Therefore it was not likely that the low 
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 8.2.8 Comparison of MDRI for Clade C and Clade B using BRAI Assay 
 
The BRAI assays has been evaluated using Clade B samples in America.65 We 

compared our results for BRAI MDRI on Clade C to the analysis of BRAI MDRI on 

clade B.65 Data and analyses were kindly provided by Debra Hanson (Figure 8- 15).65 
  

Figure 8- 15: MDRI obtained using BRAI on Clade C (ZVITAMBO) compared 
to MDRI on Clade B (USA) 

 *Used with permission from Debra Hanson65 

 

The MDRI is markedly lower for the postpartum women with clade C, ZVITAMBO 

samples than for clade B samples from a general population in the USA. We point out 

that the differences in the Clade differences shown here could be attributable to the 
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8.3 Discussion of results of MDRI for BED, LAg and BRAI in this 
evaluation 
 
We found variations in MDRI estimates obtained using different statistical methods 

and when ODn and AI cut-off were varied for BED, LAg and BRAI.21, 65 ,69, 73  These 

differences can be explained partly by the variations in assay kinetics in response to 

antibody maturation and growth. For BED and LAg, we found that there was no 

statistically significant difference between estimates derived using the NLMM and 

binomial regression methods, but the former estimates had lower CVs. Survival 

analysis estimates for BED and LAg had larger CVs. For BRAI, where we could not 

use NLMM, there was no statistically significant difference between estimates 

derived using survival analysis and binomial regression methods 

 

The recalibration of MDRI by Duong et al. (2015) showed that, for the same cut-off, 

there were no significant differences in MDRI obtained for the LAg assay by using 

different analytical methods.69 Our evaluation showed, likewise, that four different 

analytical techniques produced closely similar estimates over a large range of C 

(Figure 8-10). 

 

For the NLMM method, the MDRI at cut-off 2.0 was 141 days (134-148), 

significantly higher than the MDRI at C = 1.5 of 104 (98-110). This suggests the 

possibly that a cut-off of C = 2.0 could be more appealing, provided the FRR remain 

low as was found to be the case in this evaluation (Section 9.0). 
 
Although, the r/s method makes use of samples that are HIV negative at baseline thus 

precluding any long-term false serology positive samples, the high CV across MDRI 

for all assays estimates warrants a cautious approach in their use. In practical terms 

using the r/s method requires that all cases be HIV negative at the beginning and 

seroconvert during the follow-up period. In a cross-sectional survey set-up, this is not 

feasible, therefore this calculation is only useful in showing an alternative and 

rudimentary calculation of MDRI.  

 

Other noteworthy findings include the finding that, for the LAg assay, the MDRI did 

not differ between the women who received Vitamin A and those on given a placebo. 

This supports the finding that Vitamin A did not alter the immune composition of the 
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postpartum cohort.25,26  

 

 A major finding in this evaluation is the fact that the MDRI for LAg and BRAI were 

much lower than those published of 287 days (95% CI 248 -328) for BED), 177 days 

(95% CI 150 -206) for LAg  and 298 days (95% CI 262 -338) for BRAI applied to 

clade C samples.73 A recalibration of incidence data by Duong et al. (2015) suggested 

that at the optimum cut-off for LAg of 1.5, the associated MDRI was 152 (128-178) 

days.69 A recent evaluation of GS HIV Combo Ag/Ab (BRAI, Redmond, WA) using 

Clade B samples found that MDRI ranged from 50.6 days at AI 20% to 275.6 days for 

AI of 90%. 91 The developers recommended that BRAI assay cut-off be raised to 50% 

to provide an MDRI of 135 days.91  If we considered an AI of 50% in this evaluation, 

the BRAI MDRI would be 163 (95% CI 142 - 183), and would still fall below the 298 

days established in the CEPHIA study.73 Similarly, for LAg, using a cut-off of 2.0 

would result in an MDRI of 141 (134-148) days for NLMM methods and much lower, 

137.0 (95% CI 121.1 -153.1) when SA methods are applied. This analysis clearly 

shows that our low values of MDRI are not attributable to the statistical methods that 

were used and therefore we need to find a plausible explanation as to why these 

discrepancies exist.  

 

We suggest that the low MDRI estimates obtained using the ZVITAMBO samples are 

result from the fact that these samples are from an immunologically unique group of 

people. Studies have highlighted that there are immune-suppressive processes that 

occur during pregnancy that are required to maintain the pregnancy: there is then 

immune reconstitution in the postpartum period.93,94 We were able to show that when 

the analysis was stratified by stage of follow-up, the MDRI values were lower for 

women seroconverting during the first nine months of follow-up compared to those 

who seroconvert at later times postpartum. These findings are consistent with work 

showing that the postpartum period is characterised by heightened and activated 

innate and specific immune defences. Furthermore, when the postpartum period is 

compared with non-pregnant women, these responses are elevated in women who are 

breastfeeding, rather than for those women with formula-fed infants 93 In the 

ZVITAMBO situation, where 99.1%, 94.0%, and 59.1% of the women breastfed their 

babies for at least 6, 12, and 18 months postpartum, respectively, it is therefore 
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expected that we find decreased MDRI values for women seroconverting during the 

first year, relative to the second, year postpartum.95,95  

 

Given that pregnant women exhibit a state of relative immune-suppression, relative to 

non-pregnant women, thereby increasing the tolerance to foetal antigens, it is  

plausible  that MDRI values appropriate for non-pregnant women might be even 

higher than the values we estimate for the second year postpartum period.94, 96 While 

in this current evaluation, we acknowledge that the differences in MDRI were not 

significant at the 5% level of probability, these results may be limited by the limited 

numbers of samples seroconverting in the period >9 months postpartum, thus limiting 

the power of statistical analysis. Further evaluations of impact of gender and immune 

response on MDRI are critical for ongoing developments of laboratory assays in HIV 

incidence surveillance.  

 

MDRI estimates will vary according to the estimated timing of HIV infection, which 

depends on the HIV test system employed.  Kassanjee et al. (2014) used a Western 

blot to define infection, while the ZVITAMBO study employed two independent Elisa 

tests, with a Western blot tiebreaker in cases where Elisa results were discordant. 

Studies have shown, however, that the difference between the time of infection 

estimated using the two diagnostic systems differ by only about 5 days.96  It is 

therefore unlikely that this small difference accounts for the large differences in the 

published MDRI and those obtained in this evaluation.   

 

The low MDRI estimates in this cohort of postpartum women reinforce the need to 

establish values appropriate for any given population. Since incidence estimates 

change linearly with the inverse of the MDRI, application of inappropriate MDRI 

estimates will inevitably lead to errors in incidence estimates. Theoretically, because 

of the immune suppressed status of pregnant women, MDRI values might higher in 

pregnant than in postpartum women – but there is no information on the MDRI values 

appropriate for pregnant women.95  In general, it is clearly important to obtain MDRI 

values appropriate for any given study population. Given the importance of antenatal 

clinic samples in monitoring changes in HIV prevalence and incidence, it is 

particularly important that we accurately estimate MDRI values appropriate for the 

analysis of samples emanating from pregnant women. Most importantly, this 
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evaluation supports the fact that MDRI not only varies by subtype but also varies by 

physiological status of participants even when infected with the same clade virus.  

 

Researchers have advocated that an MDRI should be long enough to allow the 

counting of all recent cases and this was proposed to be at least six months to one 

year.20 The values obtained for LAg or BRAI fall below this desired optimum. This 

evaluation and other studies either points to the need to re-evaluate the utility of this 

arbitrary value or that the assays need further refinement to meet this criterion. 69,73 

 

Finally in our current study the higher values of MDRI obtained using SA for BRAI 

(135 days) should favour this assay over LAg (104 days), but of concern is the higher 

coefficient of variation round MDRI for BRAI compared to that of LAg. While it is 

desirable to have a high MDRI value, the best value is one where there is a balance 

between a sufficiently large MDRI and an accompanying low FRR.  
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9.0 False Recency Rate (FRR) of HIV Infection 
 
We retrieved and tested 2825 samples using LAg and 2824 using BRAI assay in the 

evaluation of FRR. Those women who tested HIV positive at enrolment and at 12 

months in the ZVITAMBO trial study provided a good opportunity to measure FRR. 

However, because of the 18 samples that appeared to show a different HIV serology, 

we explored analysis using both the original data and the reclassified “New” data. 

 

9.1 Distribution of ODn readings for BED and Lag and AI for BRAI  
 

For each of the three assays, we plotted the distribution of ODn/AI values for women 

who were HIV positive at baseline. We also plotted these values for the subset of 

these women who were then also tested a period of 1 year later (Figure 9 1). This 

analysis of distribution patterns allowed us to see the distribution patterns of OD/AI 

readings for the same sample of women tested by the three different assays. Although 

this is not of great analytical value, the analysis enables us to see a crude picture of 

frequency and distribution of the readings that can be related to assay performance. 

Both for the women who were HIV positive at baseline and for those who 

seroconverted during follow-up, BED had the widest spread (distribution) of ODn 

readings. In comparison, the LAg had a symmetrical (normal) distribution, while the 

AI readings for BRAI clustered at the tail end of the graph. The BRAI pattern 

characterises the assay’s kinetics whereby avidity quickly reaches the maximum 

100% for with increase in time after infection.  
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Figure 9-1: Distribution of optical density (BED, LAg) or avidity index (BRAI) 
readings by assay 

 
 

 

 

  

 BED LAg  BRAI 
Mean OD/AI for Women HIV 
positive at V0 ( 95% CI) 

2.353 (n=2,735) 
(2.321 - 2.368) 

 

3.724 (n=4,468) 
(3.692 -  3.755) 

88.12% (n=4,463) 
(87.39 -88.84) 

Mean OD/AI  for Women HIV 
positive at  V0 &V5 (95% CI) 

2.635 (n=2,735) 
(2.594 -2.676) 

4.371 (n=2,823) 
(4.338 - 4.404) 

94.98% (n=2,814) 
(94.51 -   95.45) 
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9.2 FRR for BED, LAg and BRAI when Original and New Data are used 
with or without viral load 
 
We define the False Recent Rate (FRR) for any test for recency as the proportion of 

cases that test as recent when we know that they have actually been HIV positive for 

some pre-defined (extended) time T: for analysis of the ZVITAMBO Trial data we 

defined T = 1 year. To estimate the FRR we used samples from women who tested 

HIV positive at baseline and then at 12-months postpartum. We carried out these 

analyses for all three assays using both the original HIV serology classifications (the 

“Original data-set”) and the “New” dataset based on the reclassifications detailed in 

Section 7.2. We calculated FRRs for recency tests based only on the serological 

biomarkers, and then on tests where each of three biomarkers was used in conjunction 

with viral load. 

 

9.2.1 Viral loads for cases testing HIV positive at Baseline and Visit 5  
 
We also used viral load (VL) results in an MAA to screen samples before applying 

the laboratory assay and calculating FRR.  When all samples with VL <1000 were 

classified as long-term, we calculated the proportion that remained recent for each 

assay.  

 

Figure 9 - 2A and B  show the distributions of log(10) viral loads for samples testing 

HIV positive at Baseline, and for those testing positive at Visit 5, that had tested HIV 

positive at Baseline 12-months previously. The peaks at the origin indicate cases with 

undetectable viral load. For all cases where virus was detectable, the means for the 

log(10) viral load were: Baseline, 4.11 (95%CI; 2.79 – 5.44, N = 4100); Visit 5, 4.23 

(95% CI; 2.93 – 5.43; N = 2659). Given the complete overlap of the 95% confidence 

intervals for the means of the two distributions, there is clearly no statistically 

significant difference between the means.  
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Figure 9-2A: Distributions of viral loads for samples taken at A. Baseline, for 
cases testing HIV testing positive at that time 

 
   

 

Figure 9-2B: Visit 5 for cases testing HIV testing positive both at Baseline and at 
Visit 5 

 
  Note: The difference in scales on the two X axes. The peaks at the origin indicate 

cases with undetectable viral load. 
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Table 9 -1 provides the numbers of samples testing “recent” or “long-term” as a 

function of log(10) viral load for cases who (A) tested HIV at Baseline or (B) tested 

HIV positive at both Baseline and Visit 5. 

 
Table 9-1: Distribution of cases testing as “recent” or “long term” infections 
(using LAg with a cut-off of 1.5) as function of log(10) viral load   
  LAg infection status  

 
 
 

Log(10) 
Viral load 

 Recent Long Term Missing Total 
         2         39        271          2        312  
         3         13        352          0        365  
         4         51       1437          1       1489  
         5         66       1603          3       1672  
         6         30        509          1        540  
         7          3         27          0         30  
     Missing          6         76          5         87  
     Total        208       4275         12       4495  

Note: - 1. Values denote the upper limit of each interval  
             2. Baseline samples: restricted to cases testing HIV positive at baseline. 
 
 
We used the latter samples in the calculation of the FRR. Notice that, in principle, the 

44 missing viral load values could mean a much-reduced sample size when we use 

both viral load and LAg serology to diagnose false-recent cases at Visit 5. In fact, 

however, the problem is mainly a theoretical one and does not pose a real practical 

problem. Thus, we define as “long-term” any case that tests as such by LAg serology,  

regardless of its viral load or even if no viral load is available. Problems could thus 

only arise when a samples tests “recent” by LAg serology. For those samples, only, 

we need to know whether the viral load is greater, or less than, 1000.     
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From Table 9-2 we see, however, that the above problem does not arise in practice. In 

all cases where the viral load was missing, the case either tested “long-term” by LAg, 

or was anyway also missing the LAg assay.  Thus, in this example, when LAg alone 

is used to identify recent infections, a total of 16 cases test recent: when viral load is 

used as well, the number is reduced only by 5 – those that test recent by LAg, but 

where log(10) viral load < 3, i.e., viral load < 1000. 

 
Table 9-2: Distribution of cases testing as “recent” or “long term” infections 
(using LAg with a cut-off of 1.5) as function of log(10) viral load   
  LAg infection status  

 
 
 

Log(10) 
Viral load 

 Recent Long Term Missing Total 
         2         5        136          1        142  
         3         1        161          0        162  
         4         4        872          5        881  
         5         3       1140          1       1144  
         6         3        441          1        445  
         7         0         25          0         25  
     Missing         0         34         10         44  
     Total       16       2809         12       2843  

Note: 1.Values denote the upper limit of each interval 
          2. Baseline samples: restricted to cases testing HIV positive at baseline and V5 

 
Highlighting:  

Blue: Cases where missing viral load means we cannot decide if a case is “recent” or 

“long term”.  

Green: Cases testing “recent” by LAg, but “long term” by viral load. 

 
We plotted comparative analyses of the FRR results obtained using the “original’ vs 

“new” HIV serology classification and serological assay only vs serological assay + 

VL at different cut-offs (Figure 9-2). Our results show minimal variation in the FRR 

when we compare results derived using Original or New data. This lack of any visible 

difference is likely due to the fact that we only changed the HIV serology status in 17 

cases. 

 

When we used VL in conjunction with a serology biomarker to assess recency of HIV 

infection, FRR values were numerically lower for each of the three biomarkers tested. 

The reduction was more marked for BED, but very much smaller for LAg and almost 

negligible for BRAI. This decrease in FRR is to be expected since a case is now only 

classified as “recent” if it has both ODn/AI < C and VL>1000.  
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Figure 9-3: FRR by different cut-offs for BED, LAg and BRAI assay either used 
alone or in combination with VL 
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The FRR increases monotonically with cut-off, doing so much more rapidly for BED 

than LAg or BRAI. The FRR for LAg is much lower than for the BED for all C < 2.0. 

However, comparisons of FRR to cut-off are complicated by the fact that MDRI also 

increases with cut-off and comparisons between the FRR for LAg and BRAI and are 

also complicated by the differences in the ranges on the C axis (Figure 9- 4).  

 
Figure 9-4: Summary of FRR by cut-off for BED, LAg and BRAI 
 

 
 
By varying the assay cut-off, we increase the threshold for classifying cases as recent 

and, as expected, the FRR increases with increasing cut-off (Figure 9 - 4).  
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The MDRI and FRR are inter-related indicators that characterise the performance of 

an assay. In characterising the laboratory assay’s ability to measure  HIV incidence 

with increased accuracy, researchers have concluded that the MDRI must be 

sufficiently large to capture all truly recent cases, while the FRR must remain small.20  

To overcome the problem of the differences in axis for BED, LAg and BRAI, we 

plotted the FRR against MDRI for the three assays (Figure 9- 5).    

 
 
 Figure 9-5: Summary FRR vs MDRI for BED, LAg and BRAI 
 

 
 
 
Since FRR and MDRI both increase with the pre-set cut-off C, FRRs also increase 

with increasing MDRI. For BED, we observed a steep increase in FRR with 

increasing MDRI: for LAg or BRAI, the rate of increase was much lower for all 

MDRIs less than about 140 days. At their respective recommended cut-offs, LAg has 

a smaller FRR (0.6% at C = 1.5) than for BRAI (1.1% at C = 30%). However, when 

FRRs are compared at similar values of MDRI we find that, for MDRI values 

between 115 and 165 days there was no significant difference (CI overlap) between 

the LAg and BRAI FRRs. For example, at an MDRI of 141, the LAg and BRAI FRRs 

are closely similar; 0.96% and 1.1%, respectively (Figure 9-5). 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

80 90 100 110 120 130 140 150 160 170 180 190

FR
R 

(%
)

MDRI (days)

MDRI vs FRR for BED, BRAI and LAg

BED

LAg

BRAI

Stellenbosch University  https://scholar.sun.ac.za



108 
 

9.3 FRR by Age Group of Mother 

 
We investigated, for each of the three serological biomarkers, the effect of maternal 

age on FRR. For this analysis, we assigned each mothers to one of five age categories; 

< 20, 20-24, 25-29, 30-34 and ≥35 years old. We cross-tabulated the numbers of 

samples testing recent, or long-term, among HIV positive samples taken from mothers 

at Visit 5, among those who had previously tested HIV positive at Baseline. For all 

three serological biomarkers there was no significant difference between the 

proportions of “recent” diagnoses found in the different age categories (P>0.5, χ2, 4 

df). We illustrate the results graphically in Figure 9-6, from which it is clear that there 

is no consistent trend in FRR with age. 

 
 
Figure 9-6: FRR by maternal age 
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9.4 Comparison of MDRI and FRR evaluation results to other studies  
 
Evaluation studies have shown that the MDRI and FRR depend on HIV subtype. We 

compared our results with published results based on evaluations done on Clade C 

subtype. In order to be able to compare our estimates to those published by Kassanjee 

et al. (2014) or Duong et al. (2015), we did not include viral load as an initial 

screening tool (Table 9-3) 

Table 9-3: Estimates of MDRI and FRR values for clade C HIV made in this 
study compared to studies of Kassanjee et al. (2014) and Duong et al. (2015). 

 Cut-off Published ZVITAMBO 
  MDRI (days) MDRI (days)    [CV %] 

BED 0.8 287 (248 - 328) 188 (180 - 196)    [2.1%]1 
     197 ( 174 - 221)     [6.0%]2 

LAg  1.5 177 (150 - 206)3 104 (  98 - 110)    [2.9%]1  

  152 (128 - 178)4 109 ( 98 -121)      [5.3%]2  

 2.0     141(134-148)       [2.4%]1 

 

                                                                                    136 (120 -152)      [6.0%]2 

BRAI 30%   135 (120 - 151)    [5.9%]2 
 40% 298 (262 - 338)3 144 (128 - 160)    [5.6%]2 

  FRR FRR 
BED 0.8 7.3% (2.6 - 15.7)3 4.8% (4.1 - 5.7) 

LAg 1.5 1.3% (0.0 - 7.2)3 0.6% (0.3 - 0.9) 

 2.0  0.96%  (0.6-1.4) 

BRAI 30%  1.1% (0.7 - 1.5) 

 40% 6.7% (2.2 - 14.9)3 1.5% (1.1 - 2.0) 
Notes: 1= NLMM   2=SA   3=Kassanjee et al. (2014)   4= Duong et al. (2015)  
 

As we have seen above, the MDRIs for BED, LAg and BRAI were significantly 

shorter, at the same cut-off, than those observed in Clade C samples from the general 

population. The FRRs are also all smaller: thus, we report FRRs of 4.8%, 0.6%, 

1.06% and 1.5% for BED, LAg and BRAI at the standard cut-offs of 0.8, 1.5, 30% 

and 40% respectively. These are significantly lower than the 7.3%, 1.3% and 6.7% 

established in Subtype C cohorts within the region for BED, LAg and BRAI.68, 69, 73 

For the LAg assay, using to a cut-off of 2.0 yields an FRR of 0.96 at an MDRI of 137 

days. 
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9.5 Discussion of the evaluation FRR for BED, LAg and BRAI assays 
 
We carried out our evaluation on a cohort of postpartum women during a period when 

ART was not generally available in Zimbabwe. Because HIV affects fertility, it is 

biologically plausible that our sample did not include women who had been infected 

for an extended period. The availability of ART was limited to private sector clients 

in Zimbabwe during the period 1997-2002, and it is thus highly unlikely that our 

sample included women who had initiated and were already on ART at enrolment in 

the ZVITAMBO study. The limited availability of VL data for all women in the 

ZVITAMBO Trial makes it difficult to rule out the presence of elite controllers.  We 

believe that  our inability to rule out the presence of elite controllers or to rule out that 

any women were on ART does not in any way affect the accuracy of the results 

obtained in this evaluation. We believe that we can use the FRR and MDRI values 

obtained in this evaluation to estimate HIV incidence among postpartum women 

infected with sub-type C virus.  

 

 An evaluation by Hauser et al. (2014) suggested that BRAI has results that are more 

accurate for people recently infected with Subtype B virus.64 In Hauser’s  evaluation 

among recently infected individuals, 60% (15/25) were correctly classified by BED, 

88% (22/25) by BRAI and 48% (12/25) by LAg.64 The FRR for BRAI and LAg were 

both 2% in other subtype B samples and 6% for non-type B and for BED, 7% subtype 

B (7/101) and 25% non-subtype B (4/16). Our evaluation did not have the same 

capacity to evaluate explicitly FRRs by stage of infection: this aspect requires further 

exploration.  

 

In a detailed review of serological assays compared to newer molecular diagnostics 

technologies, used for determining recent HIV infections, Moyo et al. (2015) 

highlighted the significant progress made in improving accuracy and precision, but 

found that there were still challenges.67, 97, Serological tools that use anti p24 IgG3 and 

avidity assays were more sensitive than the detuned assays and more stable to 

variations in immune response, HIV subtype and the use of ART. Better still, 

molecular diagnostic tools displayed greater improvements by returning even lower 

misclassification rates.18, 19,98   Combination tools that detect both antigens and 

antibodies provide simultaneous detection of HIV infection and prevalent 
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infection.16,83, 91 These, and many other, tools provide innovative and cost effective 

means of improving sensitivity and specificity of assays for determining population 

level incidence.  

 

The relationship between FRR and MDRI is such that an increase in MDRI is also 

associated with an increase in FRR. 20,73  The  right combination of MDRI and FRR 

characteristics are critical in the performance of an assay. The utility of these 

parameters is defined by the need to have a sufficiently low FRR in order to screen 

out false assay positives (false recent) cases while ensuring that the MDRI maximally 

captures incident cases using minimal sample size. When applied in the calculation of 

HIV incidence, they should provide HIV incidence estimates that closely match 

follow-up estimates. The sample size required to achieve this accuracy is important, 

and workers at CDC and SACEMA have accordingly provided calculators for these 

considerations. Given the inter-variability between MDRI and FRR, Kassanjee et al. 

(2014) suggested that developers should focus on ensuring that, regardless of the 

optimum values, they judge assays on their ability to provide precise estimates of HIV 

incidence.20 
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10.0 Incidence Estimates derived using the three biomarkers 
 

10.1 Preamble  
 
Although the MDRI and FRR of a laboratory assay are key indicators of  laboratory 

assay’s performance, assay, the ultimate goal is its ability to provide an accurate 

measure of HIV incidence.20, 62 The idea is to use some physiological measure 

(biomarker) that increases with time after HIV infection, set a convenient cut-off 

value for the biomarker, and define cases, which return a measure below predefined 

cut-off as recent infections. A true validation of such an assay would require that the 

assay be applied to samples collected from a different cohort of samples (than in 

which the FRR and MDRI where derived). In this evaluation, our analysis was limited 

to the same cohort.   

 

Following significant investments in the development of laboratory assays, the USA 

Centers for Disease Control and Prevention (CDC) and UNAIDS, FHI 360 and the 

Bill and Melinda Gates Foundation have supported evaluations of candidate assays. 

The CEPHIA evaluation (2013), is probably one of the most significant evaluations 

that characterised five candidate assays; BED-CEIA, LAg avidity EIA, Vitros-Less 

Sensitive, Vitros Avidity and Bio-Rad Avidity Index EIA.73 This evaluation 

concluded that, although LAg had a low FRR (1.3%) and a relatively high 

corresponding MDRI of 188 days for all specimens, none of the candidate assays met 

the criteria deemed critical for the accurate measurements of HIV incidence on their 

own2, 73,97,98   

 

A test for recent infection need to have an MDRI that was long enough to include all 

incident cases (> 6 months) and a low FRR (<2%). Kassanjee et al. (2014) made a 

strong point that the primary focus of an assay’s suitability should not be anchored on 

the assay’s ability to correctly classify individuals as incident or long term (i.e., 

sensitivity or specificity) but rather on its ability to measure HIV incidence. However,  

this could only be achieved by ensuring an optimal trade-off between the FRR and 

MDRI.73 The most precise estimates of HIV incidence are produced when the MDRI 

is large enough (to include all recent infections), while maintaining a small FRR (to 
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exclude long-term infections). Given the wide variations in immune response, i.e., 

antibody titre or maturation kinetics in response to HIV infection, HIV subtype and 

other demographic variations there is clearly a need to continue optimization of assays 

in order to improve on their performance.  

 

 The CEPHIA evaluation had a large diverse sample of ~ 2500 samples. While this 

large sample allowed for the determination of FRR and MDRI in sub-groups and a 

large diverse sample, our current evaluation provides a critical next step in that we 

provide FRR and MDRI for BED-CEIA, LAg and BRAI in a different sample and our 

evaluation is coming after two years of continuous improvements on the laboratory 

assays. Additionally, these samples are coming from a cohort where it was possible to 

document follow-up incidence estimates.25  

 

Using the MDRI and FRR derived in this evaluation through the testing of 

ZVITAMBO trial samples collected at Visit 5, we were able to calculate HIV 

incidence estimates for the 12 months postpartum period and compare them to the 

longitudinal follow-up incidence. We note immediately that we are aware of the fact 

that both sets of estimates are derived from the same set of data, and that, in 

particular, the data have been used to estimate both the MDRI and FRR used for 

incidence estimation. If, therefore, all calculations have been correctly carried out, 

and all underlying assumptions are valid, there should be a good correspondence 

between the follow-up and biomarker estimates of incidence. Such correspondence 

does not, therefore, constitute a validation of the biomarker estimation procedure. 

Such a validation can only be achieved through the application of the methodology to 

data that have been independently derived. The importance, and interest, of the 

comparisons arises when there are differences between the follow-up and biomarker 

incidence estimates and/or differences between the various biomarker incidence 

estimates themselves. 

 

We also used these MDRI and FRR parameter estimates to estimate HIV incidence 

using the baseline (V0) samples. These incidence estimates pertain to the period when 

the women were pregnant: we have independent estimate of HIV incidence for this 

period but it is of interest to compare these incidence estimates with those calculated 

from the Visit 5 samples.  
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We used the HIV serology results derived in the ZVITAMBO project trial to create a 

file of “Original Data”. We also explored analysis with the “New Data” in which the 

HIV serology was changed for 18 out of the total 269 cases that were originally 

classified as seroconverting at V5 to reflect the revised status based on HIV serology 

retest and on HIV VL results. In addition, we assumed an FRR of zero for unadjusted 

analysis and used FRR in adjusted analysis at different cut-off values. We used the 

SACEMA ABIE Version May 2015-incidence calculator to calculate HIV incidence 

from our data.99     

 

 10.1.1 Samples used for HIV incidence estimation 
 

Baseline testing of 14,110 mothers recruited to the ZVITAMBO study produced 4495 

HIV positive and 9562 HIV negative results; 53 women could not be unequivocally 

classified as either HIV positive or negative. Among the HIV positive cases, the 

number testing as recent infections depends, of course, on the biomarker being used 

and the pre-set cut-off that has been chosen. When LAg was used with an OD cut-off 

of 1.5, 208 cases tested as recent infections. 

 

At 12-months postpartum similar testing showed that 3081 women now tested HIV 

positive and 6537 HIV negative. The HIV positive cases included 2843 women who 

had tested HIV positive at baseline, and 231 who had seroconverted between baseline 

and 12-months postpartum. There were also 7 cases where the women whose HIV 

status could not be determined unequivocally at baseline, but who tested HIV positive 

at 12-months postpartum. When LAg was used with an OD cut-off of 1.5, 86 cases 

tested as recent infections. 
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10.2 HIV incidence rates over the first 12-months postpartum as 
estimated by follow-up and calculated using BED, LAg or BRAI.   
  

The ZVITAMBO Project was able to measure follow-up incidence among postpartum 

women enrolled for follow-up for periods ranging from 12 - 24 months. Of the 9562 

HIV negative women enrolled at baseline, 351 HIV women seroconverted in the first 

12 months postpartum follow-up period. ZVITAMBO estimated HIV incidence using 

Turnbull’s analysis with 95% confidence intervals calculated by the ‘bootstrap’ 

method.89,100  The HIV incidence estimate for the first 12 months postpartum was 

3.4% (95% CI 3.0-3.8) per annum.25 

 

Data from the prospective follow-up provided us an opportunity to compare this ‘gold 

standard’ with HIV estimates calculated using all three of the serological biomarkers 

studied here, with the appropriate MDRI and FRR derived in this evaluation. We 

carried out these analyses for the categorisations made using the serological 

biomarkers by themselves, and for categorisations made using viral load plus a 

serological biomarker. Moreover, we carried out all of these analyses using either the 

“original” or the “new” data. 

 

We draw attention to the fact that we have used ZVITAMBO data from 

seroconverting mothers to estimate MDRI values, and have used long-term infections 

to estimate the FRR values, and that these same ZVITAMBO data have been used to 

estimate the follow-up HIV incidence estimates. Where we have appropriate MDRI 

and FRR estimates, and have satisfied assumptions about the distribution of 

seroconversion events, there must then be a close correspondence between the follow-

up and biomarker incidence estimates. The more interesting situations, which require 

explanation, arise when there is not a close correspondence between the estimates 

arising from the two approaches. 

  

We also calculated incidence where we used viral load as an additional screening tool 

for removing cases that were long-term HIV infections. In this analysis, cases with 

VL <1000 were considered as long-term infections and were accordingly reclassified 

as long term, regardless of the level of the serological biomarker.  
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In all analyses, we show the confidence bounds of these estimates and the follow-up 

rate (black horizontal lines) in order to show these estimates in relation to the follow-

up estimates. 

 

In our initial analysis, we calculated HIV incidence rates using MDRI values 

estimated using either SA or NLMM for BED and LAg, but just SA for BRAI (Figure 

10-1). We used our estimates of FRR to calculate the adjusted HIV incidence, but also 

set the FRR to zero, to calculate the (biased) unadjusted estimates. We acknowledge 

that unadjusted estimates are biased (not accurate) since in reality laboratory assay 

will misclassify some patients as recent, therefore when FRR is set to zero, the 

incidence estimates are indeed erroneous. The value of calculating the unadjusted 

estimates is to provide a measure of the error involved when we do not account for the 

FRR, and to see how this error varies when we estimated incidence using different 

biomarker systems.  

 

10.2.1 Estimates using only serological biomarkers: original data. 
 

The unadjusted incidence estimates for BED were always higher than the follow-up 

and adjusted estimates, and the discrepancy increased with increasing cut-off C 

(Figure 10-1A). For LAg, the difference between the adjusted and unadjusted 

incidence estimate was always much smaller – in keeping with the much reduced 

FRR for LAg (Figure 10-1B). Nonetheless, the unadjusted incidence estimates were 

still biased and over-estimated the follow-up incidence. By contrast, the adjusted 

incidence estimates for both BED and LAg, over almost the range of C, lay within the 

95% confidence intervals of the follow-up incidence (Figure 10-1A, B). 

 

For BED and LAg, NLMM and survival analysis give very similar MDRI estimates 

and, accordingly, the resulting HIV incidence estimates are similar whichever of the 

sets of MDRI estimates we use. For comparisons between the LAg and BRAI 

incidence estimates, we use the survival analysis MDRI estimates, since it was not 

possible to use NLMM to estimate the BRAI MDRI. 
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Figure 10-1 C and D show that, whereas for LAg the adjusted incidence estimates 

show a close correspondence with the follow-up estimate, the BRAI estimates lie 

consistently below the lower 95% confidence interval band for follow-up estimate. 

 
Figure 10-1: HIV Incidence over the first 12 months postpartum derived using 
ZVITAMBO original data. 

Notes:  
A and B: BED and LAg (MDRI calculated using NLMM).  
C and D: LAg and BRAI (MDRI calculated using survival analysis).  
Notice the difference in scales on the Y-axis for A and B vs C and D. 
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We compared HIV incidence estimates obtained when we used the original data 

compared to when we changed the HIV serology of 17 samples from HIV positive, 

and recent, infections to HIV negative. This analysis is key in showing the potential 

impact of the misclassification of HIV serology (Figure 10-2). This analysis is based 

on ns=2, t0> 120 days and MDRI calculated using NLMM for BED and LAg and SA 

for BRAI.  

  
Figure 10-2: Adjusted HIV incidence estimates for BED, LAg and BRAI 
comparing Original and New Data  
 

 
 
  
The adjusted estimates using the original data for BED and LAg had values within the 

95% CI, while the adjusted values for BRAI assay were below the lower bound of the 

95% CI, whether we used the original or the new classifications. Using both 

recommended cut-off values considered in other evaluations, we found that, for the 

LAg assay, there was no difference between incidence established at cut-off 1.5 or 

2.0. However, the “new” estimates were lower than when we used the original 

classifications. These differences, between incidence estimates arising from the use of 

original vs new classifications, were not obvious when we applied BRAI analyses to 

the samples. (Figure 10-2) 
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10.2.2 Estimates using serological biomarkers plus viral load. 
 

As seen from the results presented so far, the HIV incidence estimates can vary 

according to the biomarker we use to make the estimates – and whether we use the 

original or the new diagnoses. The situation is further complicated if we explore the 

possibility of using viral load as an additional tool for identifying recent infections.   

We now illustrate this situation with reference to estimates made using the LAg 

biomarker. 

 

When we use LAg only to identify recent infections, using the original HIV 

diagnoses, then we see, as above, that there is a close correspondence between the 

adjusted HIV incidence estimates at Visit 5 and the ZVITAMBO follow-up estimates 

(Figure 10- 3A).  When we also identify any case with a viral load <1000 as a long-

term infection, regardless of the LAg reading, the estimated incidence drops by order 

25%  and, for almost all values of C used, the point estimates lie below the lower 

bound of the 95% confidence interval of the follow-up incidence. (Figure 10- 3A).      

 

When, however, we used the new HIV diagnoses there was virtually no difference 

between the estimates made using LAg with or without the added use of viral load 

levels. (Figure 10- 3B).  Moreover, these estimates were closely similar to the 

estimates obtained when we used both LAg and viral load in the analysis of the 

original data. (Figure 10- 3B).       

 

These results can be understood when we realise that all of the disputed cases that 

constitute the difference between the old and the new data are samples which had 

viral load<1000.  Accordingly, we always classify these cases as long-term infections, 

whether we are using the old or the new diagnoses. Moreover, when we are using the 

new diagnoses, all of these cases are classified as HIV negative and, accordingly do 

not appear as recent infections. 
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Figure 10-3: Annual risk of infection as calculated using LAg with or without VL and using either the original or the new HIV 
diagnoses.  

 
Note: MDRI estimated using survival analysis: ns = 2; t0 = 120 days. 
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For BRAI, it made no difference whether we used the original or the new diagnoses, 

or whether we use BRAI alone, or in combination with viral load, to identify recent 

infections (Figure 10- 4). This differed from the results for LAg and BED using 

similar situation in that the estimates obtained using BRAI applied to the original data 

no longer differed from the other estimates – and were consistently lower than the 

follow-up estimates. We can understand this result on the basis that the 18 samples 

are always classified as “invalid” when analysed using BRAI. They can therefore 

never be classified as recent infections, regardless of whether we use the new or old 

data set, nor whether we use, or do not use, viral load to identify recent infections. 

 

We compared the estimates of HIV incidence when MDRI was calculated using SA 

methods for all three assays using original (Figure 10- 5) and new data (Figure 10- 6).
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Figure 10-4: Annual risk of infection as calculated using BRAI with or without VL and using the original and new HIV diagnoses.  
 

 
Notes: MDRI estimated using survival analysis: ns = 2; t0 = 120 days. 
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Figure 10-5: Annual risk of infection for BED, LAg and BRAI with VL using SA methods for MDRI and Original Data 
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Figure 10-6: Annual risk of infection for BED, LAg and BRAI with VL using SA methods for MDRI and New Data 
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10.3 Baseline HIV Incidence using BED, LAg and BRAI with or without 
viral load 
 

10.3.1 Using serological biomarkers only 
 
Women who were enrolled in the study, within 96 hours postpartum, provided a 

baseline blood sample. Using samples that were HIV positive, we calculated the 

baseline HIV incidence. We assume that these HIV incidence estimates are useful in 

inferring HIV incidence associated with the period when the women were pregnant. 

 

There is published evidence that the risk of infection is higher during pregnancy than 

it is during the postpartum period.101  In presenting the baseline incidence estimates 

we have also shown the postpartum follow-up incidence estimate, simply to show the 

differences between our HIV incidence estimates during two very different 

physiological states. There is no implied suggestion about the validity of either set of 

estimates. 

 

Using the most precise MDRI estimates (NLMM estimates for BED and LAg, and SA 

for BRAI) and associated FRRs, we calculated the HIV adjusted and unadjusted 

incidence estimates at baseline. We also calculated a multi-assay incidence where we 

used the viral load results to identify as long term infections any samples with 

VL<1000 copies per ml. 
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For the BED assay, at the recommended cut-off of 0.8, baseline unadjusted HIV 

incidence was 10.5% (95% CI 9.4- 11.5) and 10.1 % (9.1 -11.1) for old and new data 

respectively (Figure 10-7). In contrast, the adjusted incidence were, as expected, 

significantly lower and did not show the strong monotonic increase with increasing C 

that was seen in the unadjusted estimates. Indeed, the incidence estimates declined 

slightly between cut-off 0.8 to 1.2. The adjusted estimates at C = 0.8 were 6.7% (95% 

CI 5.5 - 7.9) and 6.1% (95% CI 4.9 - 7.2) for original and new data, respectively. As 

expected, these adjusted estimates are higher than the follow-up rate of 3.4% obtained 

in the ZVITAMBO trial. Of note was the fact that the coefficient of variation in the 

estimate of adjusted incidence took a unique minimum at the preferred C = 0.8%.  

 
Figure 10-7: Baseline (V0) HIV incidence for BED by cut-off using original and 
new data 
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For the LAg assay, both the adjusted and unadjusted estimates increase with C, in 

contrast to the BED results, where adjusted estimates were independent of C (Figure 

10- 8) For the LAg assay, the coefficient of variation decreases with increase in cut-

off over the entire range of cut-off that we tested. There were no significant 

differences between ‘Original’ and ‘New’ data. At the standard cut-off =1.5 the 

adjusted incidences were 6.9 % (95% CI 5.7- 8.1) and 6.1% (95% 5.0- 7.1) for old 

and new data respectively. 
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Figure 10-8: Baseline (V0) HIV incidence for LAg by cut-off using original and 
new data 
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For the BRAI assay both the unadjusted and adjusted estimates are largely 

independent of cut-off (Figure 10- 9).  Moreover, the overlap of the 95% confidence 

intervals shows that there was no statistically significant difference between the 

adjusted and unadjusted incidence estimates – though the former were consistently 

lower at every cut-off point. 

 
Figure 10-9: Baseline (V0) incidence for BRAI by cut-off using original and new 
data 
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For an easy visual comparison of these variations for the three different serological 

biomarkers we plot the baseline incidence against cut-off for each assay (Figure 

10- 10).   
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Figure 10-10: Baseline incidence estimates for BED, LAg (NLMM) and BRAI (Survival) unadjusted and adjusted estimates (original 
data) 
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The difficulty with comparing the incidence estimates obtained, for different 

biomarkers, over a range of values of the pre-set cut-off values (C) is that C has 

analysis entirely different range for each of the biomarkers  and each range is 

associated with a quite different range of MDRI values. 

 

Accordingly, in an attempt to get a more meaningful comparison of biomarker 

performance, we plotted the estimated baseline HIV incidence against estimated 

MDRI for the three different assay systems (Figure 10- 11).  We calculated HIV 

incidence estimates using the most precise estimate of MDRI i.e., NLMM estimates 

for BED and LAg, and SA estimates for BRAI.  

 

Unadjusted HIV incidence estimates increased approximately linearly, from about 6% 

to 10%, across the whole range of observed MDRIs of 60-210 days, with the results 

for all biomarkers lying close to the same trend line. The trend for BRAI is not as 

clearly marked because the MDRI changes relatively little with changes in C (Figure 

10- 11A).  

 

Adjusted HIV incidence estimates were, of course, lower than the unadjusted 

estimates for all three assays (Figure 10- 11B).  In keeping with the markedly higher 

FRR for BED, the adjusted incidence estimates for this biomarker were significantly 

lower than for the other two biomarkers (Figure 10- 11B).  Adjusted estimates 

increased noticeably with MDRI for LAg (5.3%-8.2% for MDRI 67-164 days) and 

BED (4.7%-6.1% for MDRI 107-206 days). For BRAI the small range of MDRI 

values again made it difficult to discern a trend.  
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Figure 10-11: Baseline incidence estimates for BED, LAg (NLMM) and BRAI (Survival) unadjusted and adjusted estimates (New data) 
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10.3.2 Using viral load in conjunction with a serological biomarker for 
baseline estimates of incidence 
 

In this evaluation, we considered all samples with viral load (VL) <1000 copies/ml as 

long-term infections. The baseline adjusted HIV incidence estimates were lower when 

we used VL together with BED or LAg although, at most values of C overlap of the 

95% confidence intervals showed that the means did not differ significantly (Figure 

10-12). For BRAI, the situation was reverse, with the estimates derived using the 

BRAI by itself producing lower estimates than when we used BRAI in conjunction 

with VL. Again, however, there were no significant differences between the means 

 

When we use viral load as well as serology to identify recent infections, there will be 

fewer cases testing recent in any cross sectional survey. This tends to decrease the 

HIV incidence estimate. However, the FRR and the MDRI are also lower when viral 

load is used and those changes tend to increase the incidence. It is thus not easy to 

predict how the two sets of estimates will differ. The point to bear in mind is that 

there exists a true incidence level – and if our estimation procedures are good, and the 

MDRI and FRR estimates appropriate, then we should get estimates that approximate 

the true incidence level, whether we use just the serology or the serology plus the viral 

load. 
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 Figure 10-12: Comparison of baseline HIV incidence for BED, LAg and BRAI assays used either alone or in combination with VL 
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10.4: HIV incidence as a function of age or parity 
 

In the ZVITAMBO cohort of 14,011 women, about 58% were below 24years old, 

37% were in the age-group 25-34 and only 5% were 35-42 years. We estimated HIV 

incidence as a function of baseline maternal age, since age can be an important 

predictor of disease acquisition and progression.102 For all three assays, adjusted 

baseline HIV incidence decreased with age, and was particularly high in young 

women 15-24 years (Figure 10-13). These results mirrored the follow-up estimates 

observed in the ZVITAMBO cohort where incidence declined from 5.4% (age <20) to 

0.6% (age 38-41 years).25  

Figure 10-13: Baseline incidence estimates and maternal age for BED, LAg, and 
BRAI  
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We explored the rates of infection by parity of women in the ZVITAMBO cohort at 

baseline. Naturally older women tend to have more children than the younger women.  

Not surprisingly, therefore, we observed a similar trend in the relationship of parity 

and HIV incidence as that observed with age and HIV incidence (Figure 10-14).    
  
Figure 10-14: Baseline incidence estimates by parity for BED, LAg and BRAI 
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10.5 Comparison of HIV incidence estimated from samples at 
Baseline and at 12-months Postpartum   
 
We plotted the annual risk of HIV infection against varying MDRI for the three 

assays for HIV estimates made using samples collected either at baseline or at 12 

months postpartum (Figure 10-15). HIV incidence is markedly higher, at all levels of 

MDRI, when estimated at Baseline than at 12-months postpartum. Moreover, 

particularly for BED and LAg estimates, incidence measured at baseline changes 

markedly as a function of MDRI. By contrast, incidence estimated from samples 

collected at 12-months postpartum shows much less variation with MDRI. 

 

 
 

Stellenbosch University  https://scholar.sun.ac.za



139 
 

Figure 10-15: Comparison of adjusted baseline and postpartum incidence estimates obtained by application of the BED, LAg and BRAI 
assays to the ZVITAMBO original data. 
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10.6 Summary HIV Incidence at Baseline and 12 Months Postpartum 
 
Table 10-1: Summary of estimates for BED, LAg and BRAI serology (Original 
data) 

 
 

 
Table 10-2: Summary of estimates for BED, LAg and BRAI when VL is included 
(Original data) 

 
 
In summary, when only serological biomarkers were used to identify recent 

infections, the unadjusted HIV incidence for postpartum period derived for BRAI and 

LAg were numerically higher than the adjusted estimates (Table 10-1) although not 

significantly different (CI overlap). The BED unadjusted estimates were significantly 

higher than the adjusted estimates. BRAI unadjusted incidence, estimated from Visit 5 

samples, were slightly higher (3.9%) than the ZVITAMBO follow-up rate, whereas 

the adjusted incidence was slightly lower (2.7%). For the Lag, unadjusted incidence 

(3.1%) was higher and the adjusted incidence (2.6%) was lower than the follow-up 

value. 

   Serological biomarkers only

          Baseline
C MDRI CoV FRR CoV adjusted unadjusted   adjusted unadjusted

(ci) (%) (ci) (%) (ci) (ci) (ci)
BRAI(SA) 30% 135 5.9 1.1% 18.2 2.6 3.9 8.1 9.1

(120-151) (0.7-1.5) (1.6-3.7) (2.9 -4.9) (6.6-9.7) (7.6-10.7)
  

BED (NLMM) 0.8 188 2.1 4.8% 8.5 2.7 6.2 6.7 10.1
(180-196) (4.1-5.7)  (1.5 - 4.0) (5.0 - 7.3) (5.5 -7.9) (9.1-11.1)

    
LAg NLMM 1.5 104 2.9 0.6% 24.9 2.5 3.1 6.9 7.1

(98-110) (0.3-0.9) (1.6 - 3.5) (2.1-4.0) (5.7 - 8.1) (6.0-8.1)

Follow-up   
3.4   

(3.0 -3.8)

Incidence estimates 

Postpartum 

 

          Baseline
C MDRI CoV FRR CoV adjusted unadjusted   adjusted unadjusted

(ci) (%) (ci) (%) (ci) (ci) (ci)
BRAI(SA) 30% 133 7.8 1.0% 18.5 2.7 3.9 7.3 8.4

(113-154) (0.7-1.5) (1.5-4.0) (2.9-4.9) (5.7-8.8) (6.8-10.0)
  

BED (NLMM) 0.8 177 6.4 3.8% 9.7 2.5 6.2 5.4 8.6
(155-199) (3.1-4.6) (1.6-3.5) (5.0-7.3) (4.0-6.7) (7.2-10.0)

    
LAg NLMM 1.5 101 7 0.4% 31.6 2.6 3.1 5.1 5.7

( 87-115) (0.2-0.7) (1.6-3.7) (2.1-4.0) (3.9-6.3) (4.5-6.9)

Follow-up   
3.4   

(3.0 -3.8)
 

 Serological biomarkers plus viral load Incidence estimates 

Postpartum 
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At baseline, where there is no follow-up rate for comparison, the adjusted incidence 

estimate for BRAI (9.1%) was numerically, but not significantly, higher than for BED 

(10.1%) and LAg (7.1%). The incidence estimates derived from samples collected at 

baseline provide a proxy measure for HIV acquisition during pregnancy and so we 

expect the incidence rates to be different.  

 

The addition of viral load in multi-assay analysis affects the data by removing some 

of the false assay positives (recent) from the numerator. The incidence estimates are 

generally lower than when only the serological biomarker is used to identify recent 

infections (cf Tables 10-1 and Table 10-2). This analysis is based on the original data. 
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10.7 Discussion of HIV incidence estimates 
 

In order to evaluate the performance of the new avidity assays, LAg and BRAI, we 

measured the MDRI and FRR of each assay, and used these parameters to calculate 

HIV incidence using blood samples collected during the ZVITAMBO cohort. We 

compared the HIV incidence, derived using these parameters, to the prospective 

cohort follow-up rate, measured over the first 12-months postpartum and reported by 

the ZVITAMBO project in 2006.32 Given that there was large overlap in the data used 

to make the two sets of estimates, we anticipate that the two approaches should give 

very similar estimates. Agreement between the estimates does not, therefore, 

constitute validation of the biomarker estimates. On the other hand, differences 

between the sets of estimates may be informative about possible problems with the 

biomarker approach.  

10.7.1 Using serological biomarkers only to identify recent infections 
 
When we used the original ZVITAMBO diagnoses for HIV infection status, we found 

that, at the recommended cut-offs of 30% and 40% AI, BRAI has MDRIs of 135 days 

(95% CI 120 - 151) and 144 days (128 - 160), respectively. The LAg has MDRI 104 

days (95% CI 98 - 110) at cut-off 1.5 and 141 days (134-148) at cut-off 2.0. The 

coefficient of variation (CV) of these MDRI estimates for BRAI were 5.9% and 5.6% 

and those for LAg were 2.9% and 3.4%, respectively. The FRR associated with these 

cut-offs were 1.1% and 1.4 for BRAI and 0.6% and 1.0% for LAg. 

 

When we used these parameters at cut-off 30% AI for BRAI and 1.5% for LAg, the 

estimated, unadjusted, annual rates of postpartum HIV incidences were 3.9 (95% CI 

3.0 -4.9) and 4.7% (95% CI 3.7-5.7), respectively. The adjusted rates were 2.9% (95% 

CI 1.9-3.9) and 3.8% (95% CI 2.7-4.9), respectively. The 95% confidence intervals 

for these adjusted estimates overlapped the follow-up incidence estimate of 3.4% 

(95% CI 3.0 -3.8%) and did not thus differ significantly from that value. The BRAI 

estimate did however, lie below the lower 95% confidence band. 

 

In earlier analyses of the ZVITAMBO data using the BED biomarker there were 

large, statistically significant, differences between the unadjusted and adjusted 

estimates. With the much-reduced FRR values typical of the BRAI and LAg 
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biomarkers the differences between unadjusted and adjusted postpartum HIV 

incidences for BRAI and LAg were also much reduced.  Nonetheless, the adjusted 

estimates were closer to the follow-up estimates.  

 

Given the uncertainty about the HIV status of a small number of samples, we repeated 

the analyses using the suggested new diagnoses. This involved reclassifying 18 cases 

at Baseline, and 17 cases at Visit 5, where the initial diagnosis was HIV positive and 

we considered that there was sufficient evidence to change the diagnosis to HIV 

negative. When we used this new/revised data set, we found that the incidence 

measured at Visit 5 using LAg declined substantially from the 3.80% quoted above, to 

2.85% (95% CI 1.85-3.87). Again, the 95% confidence interval overlaps the mean 

value of 3.80%. Nonetheless the point estimate obtained using the new diagnoses is 1-

2.85/3.80 = 25% lower than the estimate obtained using the original data. 

 

At first sight, this appears a large change given the small proportion of reclassified. 

The reason for the large effect is that the HIV incidence estimator is very sensitive to 

small changes in the number of recent cases. The effect is accordingly large, because 

all of the case reclassified were not only HIV positive cases, but were all also 

classified as “recent” infections.  

 

The BRAI postpartum adjusted estimate remained approximately unchanged. Using 

the old, and new, diagnoses the estimates were 2.88% (95% CI 1.87-3.90) and 2.86% 

(95% CI 1.85-3.87), respectively. This may appear contradictory, given the relatively 

larger change seen when using LAg. The reason here is that, in using the BRAI 

method for estimating the incidence, we were never able to make sensible use of cases 

that tested “invalid”. When we assumed that the “original” diagnoses were correct, we 

simply had to ignore any cases that tested “invalid”: we were assuming that the case 

was HIV positive, but we had no information to decide whether the case was a 

“recent” or a “long-term” infection. When we assumed that the “new” diagnoses were 

correct, there was no need to test the samples with BRAI. 

 

It will be clear from the previous paragraph that the number classified as “recent”, 

using BRAI, is the same whichever data set we choose to accept as correct. The only 

difference between the two analyses lies in the total numbers of cases classified as 
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HIV positive and negative. Since these numbers are much larger than the numbers 

classified as “recent”, the resulting HIV incidence estimates differ little, whether we 

use the “original” or the “new” data. 

10.7.2 Using serological biomarkers together with viral load to identify 
recent infections 
 
We found that addition of viral load resulted in slight declines in incidence as 

measured using BRAI (-0.1%) and LAg (-1.2%). When we use both serology and VL 

<1000 copies to identify recent infections, the issue of discordant HIV serology 

becomes irrelevant, regardless of whether we use BED, LAg or BRAI.  This is 

because all of the discrepant cases had very low or undetectable viral load. Thus, in 

the event that we used the “original” diagnoses, all of these cases were categorised as 

“long-term” infections, regardless of the level measured using the serological 

biomarker. Alternatively, if we used the new diagnoses, they were classified as HIV 

negative. In neither case, therefore, were any of them classified as “recent” (HIV 

positive) cases. The difference in the outcome, between the use of original or new 

data sets, thus rests on relatively small changes in the numbers of either HIV negative, 

or HIV positive long-term, infections. 

 

Using viral load as an initial screening tool ensures that samples that are HIV serology 

negative, suppressed on antiretroviral therapy or are elite controllers are not 

considered in the overall assay data (since laboratory assay are only applied to HIV 

positive samples) and subsequently they are removed from the numerator as false 

positives. These findings provide evidence in favour of the inclusion of VL as part of 

an MAA in the estimation of HIV incidence using cross-sectional survey samples. 

Inclusion of VL would guard against situations where significant proportions of 

samples are misclassified as HIV positive. Inclusion of VL would also be useful in 

epidemiological studies of risk factors for seroconversion and especially where 

individualised treatment or partner notification based on HIV incidence results are 

implemented. The Swaziland HIV Incidence Measurement Survey (SHIMS) study 

showed that using VL results in HIV incidence results that are similar to follow-up 

estimates. This finding is further supported by recent publications by Kassanjee et al. 

(2016) 103 
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10.7.3 High HIV incidence measured at Baseline 
 
 
While there are no independent estimates of HIV incidence over the pregnancy period 

with which to compare the baseline biomarker-based HIV incidence estimates, these 

results are useful in showing the risk of infection by physiological status of the 

individual. The baseline incidence pertains to the risk of HIV acquisition during 

pregnancy. The adjusted HIV incidence at baseline of 8.1% per annum  (95% CI 6.6 - 

9.7) for BRAI and 6.9% per annum (95% CI 5.7 - 8.1) for LAg are significantly 

higher than the follow-up level of 3.4% per annum, and the adjusted biomarker rates 

measured 12 months postpartum.  

 

The high baseline adjusted incidence estimates suggest a high rate of seroconversion 

during pregnancy The condition of pregnancy is characterised by immune suppression 

that facilitates embryonic implantation, its  maintenance and growth of the foetus as a 

foreign body.94 The higher baseline HIV incidence supports this hypothesis. An 

alternative explanation for the high baseline HIV incidence is that the true levels of 

MDRI and FRR during pregnancy are markedly higher than the estimates we 

estimated from samples collected in the postpartum period.  

  

The addition of viral load resulted in a decrease in unadjusted and adjusted baseline 

estimates for all three assays, but most markedly for the BED assay, consistent with 

the fact that BED has a higher assay FRR.   

 

While evaluations have focused on the performance of a laboratory assay in 

characterizing an infection as either recent or long term in the estimation of HIV 

incidence, Kassanjee et al. (2014) made a strong point that the focus should be on the 

accuracy of the final incidence estimator. The focus should not be on the laboratory 

assay’s performance in terms of sensitivity/specificity.20 The similarity of calculated 

unadjusted and adjusted annual incidence at 12 months postpartum measured by 

BRAI and LAg to the ZVITAMBO prospective cohort estimate support the 

application of these assays for measuring incidence among postpartum women.   

  

Stellenbosch University  https://scholar.sun.ac.za



146 
 

11.0 Limitations of the study 
 
The most serious concern we have about our study relates to the uncertainty of the 

HIV diagnoses in a number of samples collected during the ZVITAMBO study. One 

should, however, put these concerns in perspective. At baseline, there is a suggestion 

that we should reclassify 18 cases as HIV originally diagnosed as HIV negative: this 

is only 0.4% of the 4495 originally classified as HIV positive at baseline. The 

problem is that we must classify all of the disputed cases are as “recent” infections if 

we decide that they are indeed classified as HIV positive. We could not resolve this 

dilemma with the data available – particularly as we had no way of doing any further 

testing of viral loads.  

 

We note, further, that the samples used in this study were collected in the 

ZVITAMBO study 1997-2000.  Although we conducted viability tests in which we 

compared the BED optical density readings on specimens tested in 2013-2014 against 

readings obtained in the 2006 BED evaluation and found that the correlation was 

good, we cannot rule out the possibility that some of the HIV serology classifications 

were affected by the long-term storage. 
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12.0 Conclusion   
 
We observed significantly lower MDRI and FRR values for LAg and BRAI when we 

applied these avidity assays to ZVITAMBO samples as compared to evaluations 

conducted on Clade C samples from the general population. At the recommended cut-

offs, BRAI has a longer MDRI (141days) than LAg (104 days) but, conversely, the 

FRR was 1.1% for BRAI and only 0.6% for LAg.  

 

The primary goal of a biomarker assay is to classify an infection accurately either as a 

recent, or as a long-term, infection – as defined relative to a predefined ODn/AI cut-

off. To this end, the kinetics of an assay are an important predictor of its performance 

when applied to population level samples. The major difference in the two assays is 

the variations in plots of avidity index versus the cut-off in BRAI when compared to 

plots of optical density versus cut-off for LAg. For the BRAI assay, while the 

expected progression of the avidity is a plateauing at 100%, we observed that in some 

instances, AI, increased to a maximum then returned to below the cut-off AI. This 

reversal in trend is potentially problematic in that we will misclassify as recent a 

sample taken at the point where there is a reversal of AI to below the cut-off. The 

plots of variation in AI/OD versus cut-off are important in showing the capacity of 

assay in tracking biological changes as indicated by increase in ODn/AI as measures 

of increase in antigen/antibody with infection  

 

Another important finding in this evaluation was that when we used different 

statistical methods to calculate MDRI, the NLMM method provided more precise 

estimates for the LAg assay than SA or binomial regression analyses.  When SA was 

applied to both new biomarkers, the MDRI for LAg  at cut-off 1.5 (112 days 95% CI 

99-125 CV 6.0%) and cut-off 2.0 (137days 95% CI 122 -154, CV 6.0%)  had 

narrower CI and slightly lower CV than BRAI at 30% (141days 95% CI 122-166 CV 

6.9%) or at 40% (153 days 95% CI 134 -173 CV 6.6%). 

  

In our analysis of MDRI for LAg and BRAI, the results suggested that beyond HIV 

subtype, the host’s humoral response might be a key determinant in the estimation of 

MDRI. When we compared the MDRI in this evaluation to those published for Clade 

C samples from the general population, our point estimates of MDRI at similar cut-
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offs were lower for both BRAI and LAg. Further work is critical in establishing more 

conclusively whether MDRIs among postpartum women are indeed consistently 

shorter than for women in the general populations. Alternatively is our result peculiar 

to our study population, or perhaps only to women in Zimbabwean? Or do other 

factors such as genetic make-up, or even ethnicity, have a role in the performance of 

laboratory assays? Until we have answers to these questions we cannot know to what 

extent our MDRI and FRR estimates can be used in using BRAI and LAg to estimate 

HIV incidence from samples collected in Zimbabwe, or indeed further afield. More 

generally, we need to know whether our findings are in any way generalizable to 

people other than postpartum women.  

 

In countries experiencing a generalised epidemic and simultaneously scaling up 

antiretroviral treatment programs, an assay with a low FRR is highly desirable. The 

lower FRR at cut-off 1.5 for LAg compared to BRAI at cut-off 30% AI favour the use 

of LAg in population surveys such as HIV Impact Assessments that are currently 

being rolled out in Sub-Saharan Africa. We note, however, that at similar MDRI of 

141 days, the FRR for both LAg and BRAI were 1.1%.  

 

While the adjusted and unadjusted rates of annual risk of infection for BRAI and 

adjusted estimate for LAg closely approximate the follow-up ZVITAMBO rate, the 

correct classification of HIV status remains a critical piece in incidence estimation. At 

a population level, the HIV serology misclassification may result in either over- or 

under-estimation of HIV incidence. The development of fourth generation laboratory 

assays that have dual capabilities to both screen for HIV serology and classify as 

recent or long term is critical, but rigorous evaluations are required before we can use 

these in avidity assays. A benefit of a fourth generation assay is that it could detect 

cases that are antibody negative but have p24 antigen, which may bind avidly to the 

patient’s p24 antigen.  However, this may provide confounding results in that there is 

detection of both antibody and antigen in one compartment. By adding p24 antigen, 

one increases the window of detection at the left side (very early infections) by adding 

perhaps 1-2 weeks. One may, however, lose in terms of the correct identification of 

recent infections, and this problem is compounded if MDRI is shorter and/or if the 

FRR is bigger, as observed in the evaluation of fourth generation assay for incidence 

testing 98 
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The ZVITAMBO results show that LAg + VL algorithm gives incidence estimates at 

2-month postpartum that are similar to the observed incidence, without any further 

adjustment (FRR=0.0). This is an interesting finding and similar to what was 

observed in the Swaziland SHIMS study where the combined use of LAg + VL 

resulted in unadjusted HIV incidence estimates  that were close to the observed 

follow-up estimates.104  At a population level, the combined use of serology and VL 

biomarkers should likely result in improvements in the accuracy of HIV incidence 

estimates. One view is that the combined use of two biomarkers lowers the FRR to the 

point that further adjustment leads to under-estimation of the incidence and that 

therefore it is inappropriate to adjust for FRR. On this argument, we could regard the 

unadjusted incidence estimates as adequate. This is, however, a dangerous argument, 

based just on a correspondence between biomarker and follow-up incidence estimates 

that might be entirely coincidental. In our own study, we note that – when we used 

VL testing in conjunction with serological biomarkers – we see a reasonable 

correspondence, for both BRAI and LAg biomarkers at their recommended cut-offs, 

between unadjusted biomarker estimates and follow-up estimates. This matter 

requires further investigation.  

 

We do note that adjusted incidence estimate at 12 months postpartum, using 

biomarkers alone, are largely independent of the cut-off used. This is not the case with 

unadjusted estimates, whether we use serological biomarkers by themselves or in 

tandem with viral load: estimated incidence increases with increasing cut-off. This is 

consistent with the fact that, as we increase the cut-of, we incorrectly classify an 

increasing number of cases as recent infections. The adjusted incidence estimates are 

more in tune with follow-up estimates. When measured over different periods 

postpartum in the ZVITAMBO Trial, seroconversion rates, measured using follow-up 

testing, were relatively constant over the first 24 months postpartum1.      

  

Baseline incidence estimates were higher, at all values of C, than estimates of 

incidence over the first 12 months postpartum. We ascribe this, provisionally, to a 

generally heightened risk of HIV infection during pregnancy. The adjusted incidence 

estimates also increased with increasing values of the pre-set cut-off C and thus of the 

MDRI. This, in turn we could explain if risk of infection were lower towards the end 
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of pregnancy. If that were the case, using higher values of C would result in 

measurement of HIV incidence over a longer time-frame prior to parturition and 

would thus involve women at progressively higher risk  

 

In conclusion, the much-reduced FRR associated with BRAI and LAg avidity assays 

mark a major improvement in performance relative to assays such as the BED. The 

major difference between the performance of the BRAI and LAg assays, as measured 

only on the basis of the ZVITAMBO evaluation exercise, stems from the greater 

variability in the pattern of increase in BRAI AI than in LAg normalised OD. This 

implies better precision of LAg estimates compared to BRAI. We also note that our 

assessment of the relative merits of the LAg and BRAI methods is deliberately limited 

here to the results arising from the current evaluation exercise. Issues such as cost, 

and cost-effectiveness, are outside scope of this evaluation. Regardless of close 

approximations in the final incidence rates, the kinetics displayed by BRAI suggest 

the need to invest in improvements of the assay’s performance compared to the LAg 

assay. Whichever method is used in the field it will be necessary to ensure that 

appropriate values of MDRI and FRR are chosen for the population being studied. 
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13.0 Recommendations from evaluation 
 

This evaluation has successfully characterised the performance of LAg and BRAI in 

terms of their MDRI and FRR using samples from postpartum women in Harare, 

Zimbabwe. Based on this evaluation we recommend that: 

 

1. Where possible MDRIs and FRRs should be estimated in other populations of 

postpartum women, in Zimbabwe and elsewhere, to establish the 

generalisability of our findings. 

2. Similarly, MDRIs and FRRs should be estimated for LAg and BRAI in 

Zimbabwe using cohorts in the general population in order to provide values 

appropriate for the local population. 

3. The MDRI and FRR parameter estimates we derived should be used in the 

estimation of HIV incidence from other cohorts of postpartum pregnant 

women, in Zimbabwe and elsewhere, in order to provide further testing of the 

validity of our estimates. 

4. The MDRI and FRR values can and should be used for estimating HIV 

incidence among postpartum populations in Zimbabwe 

5. There is need to continue exploration of the combined use of LAg and BRAI 

laboratory assays and Viral Load in estimation of incidence within the context 

of Surveillance.   
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15.0 Glossary 
 

Term Definition 

 

Avidity Index The factor obtained by dividing the optical density of the 

well containing the dissociating agent by the optical 

density of the untreated well.  This is multiplied by 100 

and presented as a percentage 

 

 

Test for recent infection (TRI) 

 

A laboratory test or combination of tests and the 

supplementary clinical information used to classify an 

HIV infection as recent or not recent 

 

 

Mean duration of recent infection 

(MDRI) (ΩT) 

previously known as “window 

period” 

The mean duration of recent HIV infection (MDRI) is 

defined as the average time that a person spends and is 

classified as recent by a given assay, for less than a 

predefined time  (T)   

 

 

 

False recent rate (FRR) The proportion of individuals infected for greater than 

time (T set at 365 days) who are misclassified as recently 

infected when in fact they have been HIV positive for a 

longer time.  
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