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SUMMARY 

 

Up-to-date and accurate crop maps are needed to update agricultural statistics, aid in yield 

forecasting, and are often used in environmental modelling. In situ methods are associated with 

high production costs and inefficient use of time, which hinder crop map production and reduce 

the usefulness of crop maps. Remote sensing offers an unbiased, cost-effective, and reliable way 

of mapping crops at a local, regional, and national scale. Currently, the use of multi-temporal 

optical imagery produces the most accurate crop maps. However, multi-temporal imagery often 

results in high feature dimensionality (large numbers of variables), which can negatively impact 

crop classification accuracy. It is therefore important to assess the benefits and limitations of 

using multi-temporal optical data for crop-type differentiation. This study undertakes this 

assessment by conducting several experiments based on multi-temporal Landsat-8 imagery in the 

Cape Winelands of the Western Cape, South Africa. 

The first experiment assessed the effect of pansharpening (image fusion), a pre-processing 

technique, on supervised, multi-temporal classification of crops. A suitable number of Landsat-8 

images was collected based on a crop calendar of the study area. Two separate datasets, 

(comprising a standard resolution set of imagery and a pansharpened set of imagery) were used 

to create a range of image features. The images were then classified using several machine 

learning classifiers. Results showed that pansharpening had a significant positive influence on 

classification accuracy and that the support vector machine (SVM) classifier produced the most 

accurate results (95.9%).  

The second experiment utilized datasets produced in the first experiment to compare image 

analysis paradigms. The standard and pansharpened datasets were both segmented to produce 

image objects. Image object classification was then compared to the initial pixel-based 

classification to see which method was superior for crop differentiation with multi-temporal 

imagery. It was found that the object-based image analysis (OBIA) only slightly outperformed 

the pixel-based image analysis (PBIA), raising the question of whether the slight improvement in 

accuracy of the former approach is worth the effort of generating suitable image objects. 

In the third experiment, the capability of feature selection and feature extraction methods to 

mitigate high feature dimensionality were tested. Informed by the findings of the previous 

experiments, an OBIA approach with pansharpened imagery was used as input to feature 

selection and feature extraction. Results showed that feature selection did not improve the 

accuracy of the best performing classifier (SVM). It was concluded that feature selection is not 

necessary for crop differentiation when a relatively small set of features (< 200) is used.  
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In general, multi-temporal Landsat-8 imagery shows much potential for producing accurate crop 

type maps. However, more research is required to evaluate the methodology in other areas and 

climates. Investigations into how crop type maps can be generated without collecting large 

numbers of training samples are also needed.  

 

KEY WORDS 

Crop classification, machine learning, supervised classification, object-based image analysis, 

pixel-based image analysis, pansharpening, Landsat-8 
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OPSOMMING 

 

Bygewerkte en akkurate kaarte van gewasse word benodig om landbou statistieke op te dateer, 

opbrengs te voorspel, en word dikwels in omgewingsmodellering gebruik. Tradisionele in situ-

metodes word met hoë produksiekoste en ondoeltreffende gebruik van tyd geassosieer, wat die 

produksie van gewaskaarte belemmer en die nut van daarvan verlaag. Afstandswaarneming bied 

'n onbevooroordeelde, koste-effektiewe en betroubare manier om gewasse op plaaslike, streeks- 

en nasionale skaal te karteer. Tans word die akkuraatste gewaskaarte met die gebruik van multi-

temporele optiese beelde geproduseer. Multi-temporele beeldmateriaal lei egter dikwels tot hoë-

eienskapsdimensionaliteit (groot getalle veranderlikes), wat die akkuraatheid van 

gewasklassifikasie negatief kan beïnvloed. Dit is dus belangrik om die voordele en beperkings 

van die gebruik van multi-temporele optiese data vir die differensiasie tussen gewastipes te 

assesseer. Hierdie studie pak hierdie assessering aan deur verskeie eksperimente, gebaseer op 

multi-temporele Landsat-8 beelde in die Kaapse Wynland van die Wes-Kaap, Suid-Afrika, uit te 

voer. 

Die eerste eksperiment beoordeel die effek van panverskerping (beeldfusie), 'n 

verwerkingstegniek wat vooraf uitgevoer word, op gekontroleerde, multi-temporele klassifikasie 

van gewasse. 'n Geskikte aantal Landsat-8 beelde is op grond van 'n gewasskalender van die 

studiegebied ingesamel. Twee afsonderlike datastelle (wat bestaan uit 'n stel beelde van 

standaard resolusie en 'n panverskerpte stel beelde) is gebruik om 'n verskeidenheid 

beeldkenmerke te skep. Die beelde is dan met behulp van verskeie masjienleerklassifiseerders 

geklassifiseer. Uitslae het getoon dat panverskerping 'n beduidende positiewe invloed op 

klassifikasie-akkuraatheid gehad het en dat die ondersteuningvektormasjien (OVM) die 

akkuraatste resultate (95.9%) opgelewer het.  

Die tweede eksperiment het datastelle, wat in die eerste eksperiment geproduseer is, gebruik om 

beeldontledingsparadigmas te vergelyk. Die standaard en panverskerpte datastelle is albei 

gesegmenteer om beeldobjekte te produseer. Klassifikasie van beeldobjekte is dan vergelyk met 

die aanvanklike pixel-gebaseerde klassifikasie om die beste metode vir die differensiasie van 

gewasse met multi-temporele beelde te bepaal. Daar is bevind dat die objekgebaseerde-

beeldontleding (OGBO) net effens beter as die pixelgebaseerde-beeldontleding presteer. Die 

vraag is of dié effense verbetering in die akkuraatheid die moeite om gepaste beeldobjekte te 

genereer regverdig. 

In die derde eksperiment is kenmerkseleksie en kenmerk-ekstraksiemetodes se vermoë om hoë-

kenmerk dimensionaliteit te versag, getoets. In die lig van die bevindinge van die vorige 
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eksperimente is 'n OGBO-benadering met panverskerpte beelde as inset vir kenmerkseleksie en 

kenmerk-ekstraksie gebruik. Resultate het getoon dat kenmerkseleksie nie die akkuraatheid van 

die beste presterende klassifiseerder (OVM) verbeter het nie. Daar is bevind dat, wanneer 'n 

relatief klein stel eienskappe (< 200) gebruik word, kenmerkseleksie nie vir gewasdifferensiasie 

benodig word nie.  

Oor die algemeen toon multi-temporele Landsat-8-beelde baie potensiaal vir die vervaardiging 

van akkurate gewastipekaarte. Meer navorsing is egter nodig om die metodologie in ander 

gebiede en klimate te evalueer. Ondersoeke na hoe gewastipe-kaarte gegenereer kan word sonder 

om groot getalle opleidingsmonsters in te samel, is ook nodig.  
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CHAPTER 1:  REMOTE SENSING AND CROP TYPE MAPPING 

1.1 INTRODUCTION 

A successful agricultural sector is the foundation of developing economies and is critical to food 

security (Awokuse & Xie 2015). Accurate crop maps are needed as they can be used in 

environmental modelling (such as greenhouse gas variability in agro-ecosystems) and updating 

agricultural database statistics, and aid in yield forecasting (Monfreda, Ramankutty & Foley 

2008). Knowledge of crop distribution is also important for the application of land cultivation 

policy actions such as subsidy payments or the implementation of agro-environmental 

measurements (Peña-Barragán et al. 2011).  

Traditional methods of crop mapping and yield forecasting involve costly routine field visits, 

often based on biased sampling schemes (Castillejo-Gonzalez & López-Granados 2009). Remote 

sensing offers an unbiased, cost-effective, and reliable way of mapping crops at a local, regional, 

and national scale. However, the use of remotely sensed data to discriminate crops is 

complicated by agronomic factors, such as similar crop development patterns (similarities 

between different crop types) and varying crop development schedules (variability within the 

same crop) (Peña-Barragán et al. 2011). Financial and technical factors also limit the application 

of remote sensing for crop type mapping as suitable cost and quality relationships of imagery 

(with the right combinations of spatial, spectral, and temporal resolutions) are required 

(Castillejo-Gonzalez & López-Granados 2009). A sound methodology is needed to effectively 

deal with crop complexity and avoid high data costs.  

1.1.1 Optical remote sensing 

In recent years, optical remote sensing has gained popularity for its capacity to identify and 

monitor crop types (Vieira et al. 2012; Simms et al. 2014; Muller et al. 2015; Ozelkan, Chen & 

Ustundag 2015; Zheng et al. 2015). Optical remote sensing utilizes air- or space-borne sensors 

that take spectral readings of the Earth’s surface. Combining theoretical knowledge of crops and 

modern Earth observation methods with these spectral readings enables accurate classification 

(Campbell & Wynne 2011). Crops were traditionally classified using single-date optical 

imagery, mainly due to high data and processing costs. Progress and development in the field of 

remote sensing has allowed for the use of optical imagery from multiple capture dates for image 

classification (i.e. multi-temporal image classification). This classification approach integrates 

image data from different acquisition dates into a single spatial location. Multi-temporal data 

have been shown to improve crop identification, with multi-temporal optical (as opposed to radio 

detection and ranging) data being the preferred source (Blaes, Vanhalle & Defourny 2005; Serra 
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& Pons 2008; McNairn et al. 2009). For instance, Serra and Pons (2008) developed a 

methodology to map and monitor six Mediterranean crops using Landsat-5 TM (thematic 

mapper) and Landsat-7 ETM+ (enhanced thematic mapper plus) data. They concluded that 

multi-temporal data and the consideration of crop phenology is essential for obtaining high 

classification accuracy. Ozelkan, Chen & Ustundag (2015) evaluated multi-temporal Landsat-8 

data for the identification of agricultural vegetation and concluded that the sensor is an effective 

data source for such applications. Vieira et al. (2012) evaluated time-series Landsat TM and 

ETM+ data for crop discrimination and found that multi-temporal optical data is very effective 

for accurately mapping crops. They concluded that expert knowledge of crop phenology is 

critical to achieving good results. Zheng et al. (2015) and Muller et al. (2015), also utilizing 

multi-temporal Landsat data, made similar observations. As demonstrated by Simms et al. 

(2014), good results can even be obtained using low spatial resolution multi-temporal normalised 

difference vegetation index (NDVI) data derived from MODIS (Moderate Resolution Imaging 

Spectroradiometer) imagery. 

Castillejo-Gonzalez & López-Granados (2009), Peña-Barragán et al. (2011), and Zheng et al. 

(2015) stated that the selection of suitable image dates is critical for ensuring good results. There 

is no set number of images required for crop classification, but the dates that are selected should 

cover the key phenological stages of the crops of interest (Vieira et al. 2012). Selecting key 

phenological dates involves collecting growth schedule data (i.e. sowing, establishment, pruning, 

harvest etc.) for the crops of interest and using this information to select imagery. The most 

common way of doing so is by creating crop calendar tables, as done by Sakamoto et al. (2005), 

Peña-Barragán et al. (2011), Vieira et al. (2012), and Muller et al. (2015). All of these authors 

used different image dates and a different number of input images because of unique crop 

identification goals. Serra &Pons (2008) acquired 36 Landsat images (from different missions), 

Ozelkan, Chen & Ustundag (2015) used 13 Landsat-8 OLI images, Vieira et al. (2012) acquired 

four Landsat images (two Landsat TM and two Landsat ETM+), and Peña-Barragán et al. (2011) 

used six ASTER scenes. Hao et al. (2015) compared different multi-temporal MODIS image sets 

for crop classification with the random forest (RF) classifier. They found that the use of more 

than five image dates did not improve their crop classification, and concluded that a multi-

temporal image count of five is optimal if suitable image dates are selected.  

1.1.2 Pixel-based and Object-based image classification 

Pixels are traditional building blocks of remote sensing-based image classification (known as 

pixel-based image analysis (PBIA)). PBIA involves the assignment of an informational class 

(e.g. crop type) to each individual pixel on an image. However, with recent advances in 
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technology and improvements in remote sensing, there has been an increasing interest in the use 

of object-based image analysis (OBIA) (Peña-Barragán et al. 2011; Li et al. 2015; Ozelkan, Chen 

& Ustundag 2015). OBIA groups pixels based on spectral and contextual information into 

readily usable objects. Classification methods are then applied to these newly created objects 

rather than to the individual pixels (Otukei & Blaschke 2010). OBIA has an advantage over 

pixel-based image classification as its use of topological concepts (Blaschke 2010) facilitates 

improved integration between geographic information systems (GIS) and remote sensing (Pauw 

& Van Niekerk 2012). Other advantages of OBIA include the reduction of the salt-and-pepper 

effect (where individual spectrally-distinct pixels in large spectrally homogenous areas are 

assigned to different classes than the pixels surrounding them) which is a common occurrence in 

pixel-based classification (Otukei & Blaschke 2010). 

OBIA is the preferred paradigm when high spatial resolution data is used (Grzegozewski et al. 

2016). Castillejo-Gonzalez & López-Granados (2009) compared the capability of PBIA and 

OBIA to identify crops with Quickbird imagery and concluded that OBIA clearly outperformed 

PBIA. Bhaskaran, Paramananda & Ramnarayan (2010), and Yan et al. (2015) drew similar 

conclusions with OBIA outperforming PBIA by overall accuracies of 20% and 36% respectively. 

Weih & Riggan (2010) used a combination of aerial photography and SPOT-5 imagery for land 

use and land cover (including cultivation types) classification. Their experiments showed that 

OBIA outperformed PBIA by 10% when high and medium spatial resolution imagery were 

merged for input to supervised and unsupervised classification. Unlike most other recent studies, 

Duro, Franklin & Dube (2015) compared OBIA and PBIA for classifying SPOT-5 data and 

concluded that neither paradigm was superior for the classification of agricultural landscapes. 

Although it is generally accepted that OBIA is only preferred when the objects of interest are 

significantly larger than the pixels of the imagery (Pesaresi & Benediktsson 2001; Mathieu, 

Freeman & Aryal 2007; Blaschke 2010), Schultz et al. (2015) showed that OBIA can be applied 

to medium spatial resolution Landsat-8 imagery for crop classification. They achieved an overall 

accuracy of over 80% with five crop types in a sub-tropical climate using bi-temporal imagery 

and the RF classifier and found that an accurate segmentation to create objects was essential for 

classification success. This may be attributed to OBIA’s unique ability to deal with agricultural 

fields that are irregularly shaped and homogenous compared to other land cover features. 

1.1.3 Landsat imagery for crop type mapping 

Oruc, Marangoz & Buyuksalih (2004) compared OBIA and PBIA for general land use and land 

cover mapping with Landsat ETM+ imagery. Their study evaluated different classifiers for the 

OBIA and PBIA scenarios. Three traditional classifiers (parallelepiped, minimum distance, and 
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maximum likelihood) were compared with eCognition’s standard classifier, k-nearest neighbour 

(k-NN), by use of overall accuracy (OA) and kappa coefficient (K). The OBIA classifications 

outperformed the highest PBIA classifications by an OA of 14% and a K of 0.21, which lead to 

the conclusion that OBIA offers substantial advantages in terms of classification accuracy. This 

observation was shared by Yoon et al. (2003) who also tested OBIA for land cover and land use 

classification with Landsat ETM+ imagery. Although much work has been done on its 

predecessors, no published research has compared OBIA and PBIA for classifying Landsat-8 

imagery. Landsat-8 has enhanced spectral capabilities, improved sensor signal-to-noise 

performance (with associated radiometric resolution enhancements), and an improved duty cycle 

that allows the collection of a significantly greater number of images per day compared to its 

predecessors (Roy et al. 2014). The enhanced capabilities of the Landsat-8 operational land 

imager (OLI) sensor and the value of the higher spatial resolution (15 m) panchromatic band 

(which was introduced with Landsat-7) for crop type mapping warrants further investigation.  

1.1.4 Pansharpening (image fusion) 

Pansharpening is the fusion of a multispectral and panchromatic image. It results in a product 

featuring the spectral resolution of the former and the spatial resolution of the latter (Campbell & 

Wynne 2011). There are many different pansharpening methods available, but not all are suitable 

for quantitative analyses. It is inevitable that some of the spectral fidelity of the original 

multispectral information is lost during the fusion process, but some algorithms are designed to 

maximize spectral preservation (Zhang & Mishra 2012). Pansharpening algorithms designed to 

maximize spectral preservation have been proven to be effective not only for the visual 

enhancements of imagery (Ghodekar, Deshpande & Scholar 2016), but also for quantitative 

analyses such as land cover mapping (Ai et al. 2016).   

Johnson, Scheyvens & Shivakoti (2014) analysed the effects of pansharpening on two Landsat-8 

vegetation indices (NDVI and simple ratio) using fast intensity-hue-saturation, Bovey transform, 

additive wavelet transform, and smoothing filter-based intensity modulation. The results showed 

that these pansharpening algorithms were able to downscale both single-date and multi-temporal 

Landsat-8 imagery without introducing significant distortions of index values, suggesting that 

pansharpening holds much potential for multi-temporal Landsat-8 image classification. 

Finney (2004) and Lewinski (2007) compared the classification accuracies of standard and 

pansharpened Landsat ETM+ imagery for land cover mapping. Conflicting results were reported: 

Finney (2004) found that classification methods incorporating pansharpening achieved much 

higher classification results, whereas Lewinski (2007) found that pansharpening did not 

significantly improve classification accuracy. Other research on the effect of pansharpening on 
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classification accuracy include Kosaka et al. (2005) and Palsson et al. (2012), but to date nothing 

related to pansharpening of Landsat imagery for crop classification has been published.  

1.1.5 Image classification 

A classifier is an algorithm that assigns informational classes to pixels or objects with certain 

attributes. Classification algorithms can be grouped into supervised or unsupervised classifiers, 

where the former is defined as the process of using samples of known identity (training data) to 

classify pixels or objects of unknown identity (Campbell 2008). The analyst usually selects 

training areas by identifying and digitizing homogenous areas on the image and assigning a class 

label to each.  

Unsupervised classification is defined as the identification of natural groups of pixels within 

image data (Campbell & Wynne 2011). It involves clustering whereby spectral groups within an 

image are formed (Myburgh 2012). The analyst has the task of defining and/or merging the 

spectral classes into informational classes.  

Supervised classifiers have two distinct advantages over unsupervised methods: the first is that 

the analyst has more control over the classification result because the informational categories 

are defined prior to the analysis. The second is that spectral classes are automatically matched to 

information classes during the classification process (Campbell & Wynne 2011). Supervised and 

unsupervised classification is explained in more detail in Section 2.12. 

Supervised classification has been widely used for crop type mapping (Vieira et al. 2012; Simms 

et al. 2014; Muller et al. 2015; Ozelkan, Chen & Ustundag 2015; Zheng et al. 2015). Popular 

algorithms include decision trees (DTs), k-NN, RF, and support vector machine (SVM). DTs 

perform well for general land cover classification as demonstrated by Waheed et al. (2006) and 

Yang et al. (2003), while RF has been used successfully for crop identification, vegetation 

classification and change analysis (Pal 2005; Gislason, Benediktsson & Sveinsson 2006; Yuan et 

al. 2005). Myburgh & Van Niekerk (2013) found that SVM is a cost-effective solution for 

mapping land cover in large areas. Zheng et al. (2015) showed that SVM is also effective for the 

classification of agricultural land cover. K-NN has been used in many studies, partly because it 

used to be the only classifier available in the popular OBIA software eCognition. Examples 

include Myint et al. (2011), Mountrakis, Im & Ogole (2011), and Myburgh & Van Niekerk 

(2013). 

Machine learning classifiers have been compared by Myburgh & Van Niekerk (2013), Peña et al. 

(2014), and Qian et al. (2015). Myburgh & Van Niekerk (2013) compared SVM, k-NN, and 

maximum likelihood for land cover mapping, while Qian et al. (2015) compared SVM, normal 
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Bayes, k-NN, and classification and regression trees (CART) for the same purpose. With the 

exception of Peña et al. (2014) who compared the multilayer perceptron, logistic regression, 

SVM, and DT for summer crop classification, no other research that compares the efficiency of 

machine learning classifiers for crop type mapping could be found in the published literature.  

1.1.6 Dimensionality reduction 

The use of multi-temporal data often results in very high feature (variable) counts (Lu & Weng 

2007; Heinl et al. 2009). Too many features can lead to the so-called “curse of dimensionality”, 

whereby classifiers perform poorly due to the presence of too many features (Rodriguez-Galiano 

et al. 2012). This is driven by the problem of sparsity, where training data becomes too sparse to 

cope with the increasing feature space brought on by large numbers of variables (Myburgh & 

Van Niekerk 2013). Sparsity is especially problematic for statistical classifiers (e.g. minimum 

distance and maximum likelihood), mainly because redundancy among features are too high, 

which makes it more difficult to find significant differences between classes (Myburgh 2012). 

Classifiers consequently require an increasing number of training samples as feature 

dimensionality increases.  

High dimensionality can be mitigated by the application of feature selection and/or feature 

extraction (Guyon & Elisseeff 2003). Feature extraction is the replacement of the original data 

by a new collection of features representing most of the variance in the original data 

(Benediktsson JA & Sveinsson 1997). The most common feature extraction method is principal 

components analysis (PCA), which transforms the data into a new set of features (called 

principle components), that describes the underlying structure of the original dataset 

(Benediktsson JA & Sveinsson 1997). Feature selection involves selecting a subset of important 

features from the original dataset to reduce data dimensionality (Guyon & Elisseeff 2003; Yu et 

al. 2006; Saeys, Inza & Larrañaga 2007). A more in-depth overview of feature extraction and 

selection techniques is provided in Section 2.10.  

Rodriguez-Galiano et al. (2012) assessed feature selection for Mediterranean land cover 

classification (including multiple crop classes) with multi-seasonal imagery. They found that 

feature selection using RF had a positive effect on image classification (OA increases of up to 

10%) and concluded that feature selection reduced the effect of the “curse of dimensionality”. 

Hao et al. (2015), utilizing RF feature selection for crop classification with multi-temporal 

MODIS imagery, also claimed that RF selected the optimal portion of features to accurately 

discriminate between crop types. Similarly, Conrad et al. (2011) analysed the effect of CART 

feature selection for crop classification using multi-temporal MODIS imagery and found that 

CART was able to improve classification accuracy by up to 7%. They attributed this to CART’s 

Stellenbosch University  https://scholar.sun.ac.za



 7 

ability to prioritize segments representing active phases of the different crop class phenological 

stages.  

1.2 PROBLEM FORMULATION 

Pansharpening algorithms designed to maximize spectral preservation have proven to not only be 

effective for visual enhancements of imagery (Ghodekar, Deshpande & Scholar 2016), but also 

for quantitative analyses such as land cover mapping (Ai et al. 2016). Johnson, Scheyvens & 

Shivakoti (2014) found that pansharpening algorithms were able to downscale both single-date 

and multi-temporal Landsat-8 imagery without introducing significant distortions of index 

values, suggesting that pansharpening may be beneficial for multi-temporal Landsat-8 image 

classification. An investigation into the value of pansharpening Landsat multispectral imagery 

for use in crop classification is warranted as no such work has been published to date.  

PBIA has traditionally been used for classifying remotely sensed images, but recent 

technological advances have led to an increase in the use of OBIA (Peña-Barragán et al. 2011; Li 

et al. 2015; Ozelkan, Chen & Ustundag 2015). Yoon et al. (2003) and Oruc, Marangoz & 

Buyuksalih (2004) showed that OBIA improves classification accuracy when imagery from the 

former Landsat sensors (TM and ETM+) were used. The radiometric and spectral improvements 

made to the latest Landsat sensor (OLI), coupled with OBIA, show much potential for crop 

classification as the target features (cultivated fields) are often regularly shaped and 

homogenous. To date no research that compares OBIA and PBIA for classifying Landsat-8 

imagery has been published.  

Machine learning has become popular in fields dealing with large and complex datasets and are 

increasingly being used for remote sensing applications. In spite of its clear potential, the 

efficiency of different machine learning classifiers for crop differentiation has received relatively 

little attention in the published literature. It is not known how well different algorithms will deal 

with the large number of (often redundant) features associated with multi-temporal imagery, 

especially within the context of classifying crop types that experience dynamic changes over 

time (within a season). Feature selection and reduction have been shown to reduce the negative 

effects of high dimensionality, but may compromise the temporal patterns (representing 

phenology) needed for differentiating different crops.  

Taking into consideration all of these gaps in the current research, four research questions were 

formulated, namely: 

1. Does pansharpening improve supervised crop classification accuracy when Landsat-8 

imagery is used? 
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2. Is OBIA more effective (than PBIA) for classifying crops with multi-temporal Landsat-8 

imagery? 

3. Which of the popular machine learning algorithms (e.g. DT, k-NN, RF, or SVM) are 

most adept at handling the large number of (often redundant) features associated with 

multi-temporal imagery, and how successful are they in differentiating different crop 

types? 

4. To what extent does dimensionality reduction benefit crop classification with multi-

temporal Landsat-8 imagery? 

1.3 RESEARCH AIM AND OBJECTIVES 

This research aims to evaluate the use of machine learning and multi-temporal Landsat-8 

imagery for mapping crops in the Cape Winelands region of South Africa. To achieve this aim, 

the objectives are to: 

1. carry out a literature review of the latest and most effective remote sensing techniques 

used for mapping crop types by means of multi-temporal satellite imagery; 

2. collect suitable reference data for classifier training and validation purposes; 

3. determine the value of increasing the spatial resolution of Landsat-8 imagery through 

pansharpening (image fusion); 

4. evaluate a range of machine learning classifiers for producing crop maps with multi-

temporal Landsat-8 imagery; 

5. compare PBIA’s and OBIA’s capability to differentiate between crops using multi-

temporal Landsat-8 imagery; 

6. assess whether dimensionality reduction improves classification results when multi-

temporal Landsat-8 imagery is used for mapping crop types; and 

7. make recommendations on the use of Landat-8 imagery for crop type mapping within the 

context of finding an operational solution.  
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1.4 STUDY AREA AND PERIOD 

This research was carried out in the Cape Winelands region of South Africa (Figure 1). The 

study site has an area of 1040 km2, which extends from 33°34'39" to 33°52'17" S and 18°32'24" 

to 18°54'43" E. The Cape Winelands has a Mediterranean climate with cool wet winters and 

warm dry summers, an average annual rainfall of 550 mm, and the mean annual temperature 

minima and maxima are 11°C and 22°C respectively (Tererai, Gaertner & Jacobs 2015). The 

area is generally mountainous, with multiple ranges, but also has broad, fertile valleys that are 

home to some of the country's finest vineyards (Tererai et al. 2013). This research focuses on the 

dominating crops within the study area.  

 

Figure 1 Location of the study area in the Cape Winelands, South Africa 

The study site was chosen because of the availability of multi-temporal cloud-free Landsat-8 

imagery and the variety of winter and summer crops produced in the region. The proximity to the 

research institution (Stellenbosch University), so as to make field visits more feasible, was also 

an important consideration. The period of study was 2015, as this was when field visits were 

carried out.  
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1.5 METHODOLOGY AND RESEARCH DESIGN 

This study is quantitative in nature and was carried out in a positivistic paradigm. It 

experimented with multiple classifying techniques and scenarios, which were then assessed to 

determine their efficacy for differentiating crops within the study area. Qualitative methods (i.e. 

visual interpretation) were also used to assess the classification results. Classification accuracies 

for all scenarios were assessed against empirical crop type information collected during field 

surveys. Statistical techniques such as OA, kappa coefficient, and McNemar’s test were used to 

assess classification results.  

This section shows the research steps for achieving the aims and objectives outlined in Section 

1.3 and illustrates the research design in Figure 2. Step 1 (overviewing the rationale and planning 

the research) is covered in Chapter 1. Chapter 2 is dedicated to the literature review (Step 2) and 

consists of an in-depth review of modern literature relating to crop type mapping using remote 

sensing methods and data. The literature review laid the foundation for data collection and 

processing overviewed in Chapter 3 (Step 3). The details in Chapter 3 relate directly to the 

subsequent experiments.  

Steps 4.1, 4.2, and 4.3 are represented in Chapters 4 and 5 and serve as the structural framework 

for answering the research questions posed in Section 1.2. Step 4.1 attempts to answer the first 

research question by comparing the accuracies of separate classifications using standard 

resolution imagery and pansharpened imagery. Step 4.2 addresses the second question, by 

comparing the classification accuracies of different machine learning algorithms when employed 

in the pixel-based and object-based paradigms. The fourth research question is the focus of Step 

4.3, in which OA, kappa coefficient, and McNemar’s test are used to compare the classifications 

produced by different feature-sets generated by employing different dimensionality reduction 

techniques. The third research question is addressed in all three of the above-mentioned steps.  

Step 5 (covered in Chapter 5) involves summarizing all the results obtained in this study, after 

which the research questions, as well as the aim and objectives are revisited. The thesis 

concludes with a discussion of the contributions and limitations of the research. 

Recommendations for further research are also made.  
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Figure 2 Research design for evaluating the performances of crop differentiation using pansharpened vs standard 

data, OBIA vs PBIA, and different feature selection methods. 

Stellenbosch University  https://scholar.sun.ac.za



 12 

CHAPTER 2:  LITERATURE REVIEW 

The adoption of a well-structured and appropriate classification approach is critical for the 

successful classification of satellite imagery. This chapter overviews aspects related to the data 

and methods associated with the discrimination of crops. A brief background of the 

fundamentals of remote sensing is given, followed by an in-depth review of the technical aspects 

of crop discrimination (including data and processing techniques). The chapter concludes with a 

summary that synthesises the most important information relating to the successful classification 

of crop types using remotely sensed imagery. 

2.1 ACTIVE AND PASSIVE REMOTE SENSING 

Energy emitted from the sun is either reflected or absorbed when it interacts with the Earth’s 

surface and objects on it. Remote sensing systems that record emitted and reflected energy are 

known as passive sensors. Passive sensors are only able to detect and measure energy when 

naturally occurring energy is available; therefore, they are only able to produce imagery during 

the day (when the Earth is being illuminated by the sun) (Campbell & Wynne 2011). 

Alternatively, active sensors are capable of functioning day and night as they produce their own 

source of energy by emitting radiation towards the object being investigated. The sensor then 

detects and records this energy once it has been reflected. Although these systems are capable of 

operating efficiently day and night, they require large amounts of energy to adequately illuminate 

their targets (Campbell 2008). Passive sensors are more commonly referred to as optical sensors, 

whereas examples of active sensors include LIDAR (light detection and ranging) and SAR 

(synthetic aperture radar).  

2.2 OPTICAL SENSORS 

Optical sensors have a long history of being employed for monitoring crops (Hoffer, Johannsen 

& Baumgardner 1966; Bauer 1975; Wardlow, Egbert & Kastens 2007; Zheng et al. 2015). Data 

from optical sensors are capable of representing the properties of vegetation and crop fields. 

These properties include the retrieval of surface characteristics that can be used for crop 

classification. The recorded reflection of visible and infrared energy from vegetation is directly 

related to plant structure, plant pigmentation, as well as leaf and canopy moisture (McNairn et al. 

2009). Since this information is produced by passive sensors, optical imagery has been widely 

used for the classification of crops (Vieira et al. 2012; Simms et al. 2014; Muller et al. 2015; 

Ozelkan, Chen & Ustundag 2015; Zheng et al. 2015).  
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The most commonly used modern optical instruments for agricultural applications include 

MODIS (moderate-resolution imaging spectroradiometer), SPOT (Satellite for observation of 

Earth), and Landsat. For this study, Landsat-8 imagery was used for analysis since it is freely 

available and easily accessible. The imagery generated in the Landsat programme has improved 

greatly in spatial, spectral, radiometric, and temporal resolution (USGS 2014). The first sensor, 

Landsat-1, was launched in 1972 and recorded data in four spectral bands (Green, Red, NIR 1, 

NIR 2). It had a spatial resolution of 60 m, a temporal resolution of 18 days, and a radiometric 

resolution of 6 bits (64 grey values). Landsat-8, launched in 2013, records data in 11 spectral 

bands (optical and thermal), has a spatial resolution of 30 m and a radiometric resolution of 16-

bit images (55000 grey levels), and scans the entire Earth every 16 days (USGS 2015). 

Landsat-8 carries two instruments, namely the operational land imager (OLI) and thermal 

infrared sensor (TIRS). OLI includes refined heritage bands along with three new bands (USGS 

2015) (Table 1). The data from Landsat-8 is available at no cost, making it ideal for crop type 

mapping over large areas. 

Table 1 Band allocation and description of Landsat-8 imagery 

Bands Wavelength (μm) Resolution (m) 

Band 1 – Coastal aerosol 0.43 - 0.45 30 

Band 2 – Blue 0.45 - 0.51 30 

Band 3 – Green 0.53 - 0.59 30 

Band 4 – Red 0.64 - 0.67 30 

Band 5 – Near-infrared (NIR) 0.85 - 0.88 30 

Band 6 – SWIR 1 1.57 - 1.65 30 

Band 7 – SWIR 2 2.11 - 2.29 30 

Band 8 – Panchromatic 0.50 - 0.68 15 

Band 9 – Cirrus 1.36 - 1.38 30 

Band 10 – Thermal infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 – Thermal infrared (TIRS) 2  11.50 - 12.51 100 * (30) 

 Source: USGS (2015) 

All of the Landsat-8 bands represent different portions of the electromagnetic spectrum (Table 

1). These portions (or bands) will interact differently with different material on the Earth and in 

the atmosphere (Campbell 2008). By combining these bands, spectral signatures for target 

objects can be generated.  
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2.3 SPECTRAL SIGNATURES 

All material on Earth has a unique spectral signature, therefore this spectral information can be 

used to discern one entity from another during image classification (Campbell & Wynne 2011). 

An object’s spectral signature can be visualized using spectral reflectance curves, which are 

functions of wavelengths. Figure 3 shows the typical spectral curves of three basic materials 

found on Earth, namely soil, vegetation, and water.  

 
Source: Siegmund & Menz (2005) 

Figure 3 The spectral signatures of soil, vegetation, and water in comparison to Landsat-7 bands 

The differences in vegetation’s response to electromagnetic energy are brought on by leaf 

pigment, cell structure and water content (McNairn et al. 2009). The pigment found in leaves 

(chlorophyll) strongly absorbs radiation in the visible wavelength, and the cell structure strongly 

reflects radiation in the near-infrared region (Campbell 2008). The absorption and reflection of 

plants or crops are not consistent during the year owing to different phenological stages (Peña-

Barragán et al. 2011). As crops grow and enter different phenological stages, their leaf 

chlorophyll content, cell structure, and water content change. Individual crop types may not all 

be in the exact same growth stage on a single image, but will exhibit similar growth patterns over 

multiple images (Vieira et al. 2012). By capturing images on multiple dates (also known as 

multi-temporal data), it is possible to build temporal spectral profiles of individual crop types. 

2.4 GEOMETRIC AND ATMOSPHERIC CORRECTIONS 

Pre-processing is defined as the operations prior to the main analysis (Campbell 2008). It is done 

to correct distorted or degraded data and create a more accurate representation of the original 

image. It typically involves the initial processing of raw image data to correct for issues such as 

geometric distortion, atmospheric effects, and image noise (Campbell & Wynne 2011).  
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Geometric correction is the process of manipulating a digital image so that the image’s 

projection precisely matches a specific projection surface or shape (Barret 2013). It corrects for 

variations in altitude, panoramic distortion, Earth rotation, and Earth curvature. Radiometric 

correction is performed to adjust digital values for the effect of the atmosphere such as haze, 

changes in scene illumination, and instrument response characteristics (Elachi & Van Zyl 2006). 

Noise reduction removes unwanted disturbances in image data caused by limitations in the 

sensor, signal processing, digitization, or data-recording process. Sources of noise include: 

malfunction of a detector, electronic interference between sensor components, and intermitted 

errors in the data transmission and recording sequence (Elachi & Van Zyl 2006). The last type of 

pre-processing – geo-referencing – is the process of assigning spatial coordinates to an image 

that has no explicit geographic coordinate system (Campbell 2008). 

Landsat-8 imagery can be acquired from the USGS (United States Geological Survey) as level 

1T data in top of atmosphere reflectance. This level of data processing provides systematic 

geometric and radiometric accuracy by using ground control points (GCPs), while employing a 

digital elevation model (DEM) for topographic accuracy. The geodetic accuracy of the data is 

dependent on the accuracy of the GCPs and resolution of the DEM used (DEM resolution varies 

due to different DEM data sources, which include Shuttle Radar Topography Mission, NED 

(National Elevation Dataset), CDED (Canadian Digital Elevation Data), GTOPO30 (Global 30 

Arc-Second Elevation), and the Greenland Ice Mapping Project. The GCPs used originate from 

the global land survey (GLS), which was a collaboration between the USGS and NASA 

(National Aeronautics and Space Administration).  

Song et al. (2001) tested the effects of atmospheric correction for classification and change 

detection using Landsat-5 TM imagery and found that all classifications in which atmospheric 

correction were used improved accuracy. However, according to the authors, atmospheric 

correction is not always necessary for image classification but is recommended when training 

data from one time or place is applied to another time or place. Liang et al. (2002), evaluating a 

custom atmospheric correction algorithm on Landsat-7 enhanced thematic mapper plus (ETM+) 

imagery, found that atmospheric correction is always desirable and that it clearly improved the 

imagery (based on visual analysis or haze reduction).  

2.5 IMAGE FUSION 

Pansharpening is an image enhancement technique that essentially combines the superior spatial 

resolution of a panchromatic band (required for an accurate description of texture and shapes) 

with the spectral information of the lower resolution multispectral bands (required for an 

accurate discrimination of informational classes) (Ghassemian 2016). As discussed in Section 
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1.1.4, pansharpening has proven to be effective not only for the visual enhancements of imagery 

(Ghodekar, Deshpande & Scholar 2016), but also for quantitative analyses such as land cover 

mapping (Ai et al. 2016). But not all pansharpening algorithms are suitable for quantitative 

analyses. It is inevitable that some of the spectral fidelity of the original multispectral 

information is lost during the fusion process, but some algorithms are designed to maximize 

spectral preservation. Zhang and Mishra (2012) reviewed a range of commercially available 

pansharpening techniques and concluded that the Pansharp algorithm, available in the software 

package PCI Geomatica, retained most of the spectral information of the original imagery and 

consistently produced superior results for all types of sensors, images and spectral bands 

considered (Zhang 2002a; Zhang 2002bB). MS-split, a pansharpening technique introduced by 

Guo-dong et al. (2015), also shows promise, but the technique is not yet available in commercial 

software.  

2.6 IMAGE TRANSFORMATIONS 

Image transformation is the method whereby the spectral information captured in an image is 

changed or modified to emphasize specific features (Campbell & Wynne 2011). This is usually 

done with local or neighbourhood raster operators and is created to enhance visual results and 

improve image classification (Campbell 2008). The image classification improvement is brought 

about by reduced data dimensionality, emphasized variation between features, new dimensions, 

and the reduction of noise. Common image transforms used for classification include indices, 

principal components, texture measures, and tasseled cap transforms (Heinl et al. 2009). These 

common transforms have been shown to have a positive effect on the accuracy of remote sensing 

classifications (Lu & Weng 2007). 

2.6.1 Indices 

Spectral indices are combinations of reflectance at two or more wavelengths that indicate relative 

abundance of features of interest (Jackson & Huete 1991). The most common group of spectral 

indices is vegetation indices (VIs), although other indices are available for water, geologic 

features, man-made features, and burnt areas (Campbell 2008). VIs are composites of two or 

more wavelengths designed to emphasize a certain property of vegetation (Huete, Justice & Liu 

1994). Numerous VIs have been formulated and published in scientific literature, but only a few 

have been systematically tested. Some of the most popular and systematically tested VIs include: 

NDVI (normalised difference vegetation index), ARVI (atmospherically resistant VI), EVI 

(enhanced VI), GCI (green chlorophyll index), GNDVI (green normalised VI), GI (greenness 
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index), RGRI (red green ratio index), SAVI (soil-adjusted VI), SRI (simple ratio index), NDWI 

(normalised difference water index), and NDMI (normalised difference moisture index). 

2.6.1.1 NDVI 

The NDVI is the most commonly used VI (Benedetti & Rossini 1993). It normalises green leaf 

scattering in the NIR wavelength and chlorophyll in the red wavelength, allowing it to 

effectively quantify green crops (Wardlow & Egbert 2008). NDVI is used extensively in modern 

research to monitor crops (Wardlow & Egbert 2008; Peña-Barragán et al. 2011; Simms et al. 

2014; Campbell et al. 2015; Zheng et al. 2015). It has also been used in conjunction with other 

features to successfully (90%+ accuracy) identify irrigated and cultivated crops using temporal 

Landsat-5 and Landsat-7 data (Zheng et al. 2015). NDVI is formulated as:  
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Equation 1 

 

where NDVI is the normalised difference vegetation index; 

 NIR is the near-infrared image band; and 

 RED is a red image band. 

NDVI is related to a large number of attributes (e.g. biomass, percentage of bare ground and 

vegetation), but it is not a direct measure of any of these attributes (Benedetti & Rossini 1993). 

NDVI is a general indicator of plant “vigour”, and several factors can influence the 

measurements or readings that it produces, including image scale, atmospheric conditions, plant 

moisture, soil moisture, overall vegetation cover, and soil type and management (Wardlow & 

Egbert 2008).  

Two of the primary factors that limit the use of NDVI include a loss of sensitivity to change in 

the amount of vegetation at the high biomass conditions and sensitivity to light reflected from the 

soil surface. The former limitation means that, as biomass increases, the changes in NDVI 

becomes unnoticeable. Therefore, for high NDVI values, a small change in reading may actually 

represent a very large change in vegetation (Wardlow & Egbert 2008) often referred to as the 

NDVI “saturation problem”. The effect of soil reflectance on NDVI is particularly problematic in 

arid and semi-arid regions that tend to have larger areas of exposed soil and rock in vegetated 

areas (Jackson & Huete 1991). This limitation of NDVI was the main reason for the 

development of the SAVI.  
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2.6.1.2 SAVI 

SAVI, developed by Huete, Justice & Liu (1994), was designed to minimalize soil brightness 

influences from spectral indices of red and NIR wavelengths. This is done by shifting the origin 

of reflectance spectra in the NIR region to account for first-order soil-vegetation interactions and 

differential red and NIR flux extinction through vegetation canopies (see Equation 2). 
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Equation 2 

 

where SAVI is the soil-adjusted vegetation index; 

 NIR is the near-infrared image band; 

 RED is the red image band; and 

 L is the relative soil constant. 

The L-value in Equation 2 is a constant added by Huete, Justice & Liu (1994), to help account 

for soil variation, known as the soil brightness correction factor. An L-value of 0 is used when 

there is minimal influence of soil in the area being analysed. Once L reaches 1, the influence of 

soil is minimized. Huete, Justice & Liu (1994) found that an L-value of 0.5 was able to minimize 

soil brightness variation and eliminate the need for additional calibration for different soils. 

SAVI is often used in modern research that seeks to monitor vegetation health, as seen in the 

work of Hunt et al. (2013) and Taghvaeian et al. (2015). 

2.6.1.3 ARVI 

ARVI uses reflective measurements in the blue wavelengths. It corrects for atmospheric 

scattering effects that register in the red region of the reflectance spectrum, therefore making it 

more resistant to atmospheric factors such as aerosols (Rondeaux, Steven & Baret 1996). ARVI 

has been utilized for the classification of vegetation when atmospheric effects had to be reduced 

(Rondeaux, Steven & Baret 1996). ARVI has been tested with Landsat TM (Kaufman & Tanr 

1992), but is yet to be tested on Landsat-8 imagery for the use of crop identification. The formula 

for ARVI is:  

))2((

))2((

BLUEREDNIR

BLUEREDNIR
ARVI

−+

−−
=  

Equation 3 

 

where ARVI is the atmospherically resistant vegetation index; 

 NIR is the near-infrared image band;  

 RED is the red image band; and 

 BLUE is the blue image band. 
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2.6.1.4 EVI 

The EVI leverages information from the blue region of the electromagnetic spectrum in areas 

with dense leaf canopy to address the saturation problem often experienced with NDVI (Jiang et 

al. 2008). The EVI enhances the vegetation signal with improved sensitivity in high biomass 

regions and improved vegetation monitoring through a de-coupling of background canopy 

signals and a reduction in atmosphere effects (Jiang et al. 2008). The enhancement of vegetation 

signal is done by using the blue band to correct for aerosol influences in the red band and 

addressing non-linear, differential NIR and red radiant transfer through a canopy with a canopy 

background adjustment (L) (Hess et al. 2009). The formula for EVI is:  

LBLUECREDCNIR

REDNIR
GEVI

+−+

−
=

)(2)(1

)(
 

Equation 4 

 

where EVI is the enhanced vegetation index; 

 G is canopy background adjustment; 

 NIR is the near-infrared image band;  

 RED is the red image band; 

 BLUE is the blue image band; 

 C1 is the first aerosol resistance coefficient; 

 C2 is the second aerosol resistance coefficient; and 

 L is a canopy background adjustment. 

 

Hess et al. (2009) utilized the EVI with MODIS imagery to detect seasonal patterns of leaf 

phenology. They showed that effective values for the algorithms coefficients are: L = 1, C1 = 6, 

C2 = 7.5, and G = 2. 5. EVI has been used to successfully identify individual crops using 

temporal data (Wardlow & Egbert 2008) and to monitor the different growth stages of rice crops 

using Landsat-5 TM and Landsat-7 ETM+ data (Oguro & Sura 2003; Jiang et al. 2008). 

2.6.1.5 GCI 

The GCI was developed by Gitelson, Gritz & Merzlyak (2003a) to indicate the total pigment 

content of a plant and estimate chlorophyll content. The GCI has shown promise for monitoring 

vegetation in Gitelson et al. (2003a), Gitelson et al. (2003b), Gitelson et al. (2005) and Viña et al. 

(2011). GCI is defined as: 
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1)( −= GREENNIRGCI  
Equation 5 

 

where GCI is the green chlorophyll index; 

 NIR is the near-infrared image band; and 

 GREEN is the green image band. 

2.6.1.6 GNDVI 

GNDVI is similar to NDVI, but uses both the red and green bands (Gitelson et al. 2003a), which 

makes it more sensitive to chlorophyll concentration than NDVI. The formula for GNDVI is: 

REDNIR

GREENNIR
GNDVI

+

−
=  

Equation 6 

 

where GNDVI is the green NDVI; 

 NIR is the near-infrared image band; 

 RED is the red image band; and 

 GREEN is the green image band. 

As with most of the indices discussed in this section, GNDVI is often used (in combination with 

other features) for vegetative analysis (Hunt et al. 2013; Mulla 2013; Hunt et al. 2014). 

2.6.1.7 GI 

The GI is a simple index used to monitor vegetation leaf pigments and greenness (Peña-Barragán 

et al. 2011). It has been used and refined by Gitelson et al. (2002) and adapted for ASTER by 

Peña-Barragán et al. (2011). The formula is given as:  

RED

GREEN
GI =  

Equation 7 

 

Where GI is the greenness index; 

 GREEN is the green image band; and  

 RED is the red image band. 

2.6.1.8 RGRI 

The RGRI is a measurement of reflectance that is useful for making foliage development 

estimations, indicating leaf stress and production, as well as indicating flowering in certain 

canopies (Gamon & Surfus 1999). Originally created by Gamon & Surfus (1999) as a narrow-
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band light use efficiency index, it has been modified for broad-band use (Yang, Willis & Mueller 

2008). RGRI is formulated as:  

)(

)(

GREENmean

REDmean
RGRI =  

Equation 8 

 

Where RGRI is the red green ratio index; 

 RED is the red image band; and 

 GREEN is the green image band. 

2.6.1.9 SRI 

SRI is a commonly used index that monitors vegetation status and canopy structure (Jordan 

1969).  It describes the ratio of light scattered in the NIR range to the light that is absorbed in the 

red range. The formula for the SRI is:  

RED

NIR
SRI =  

Equation 9 

 

where SRI is the simple ratio index; 

 NIR is the near-infrared band; and 

 RED is the red image band. 

Although SRI was not used as the primary index of any recent work, it has been used in 

combination with other more common indices for agricultural observations by Peña-Barragán et 

al. (2011), Hunt et al. (2013), Mulla (2013), and Zhao et al. (2016). 

2.6.1.10 NDWI 

NDWI is a commonly used index for monitoring water status and tree canopy. There are several 

variations of this popular index. The index (and its variations) are designed to maximize 

reflectance of water by minimizing the low reflectance of NIR by water features, and taking 

advantage of high reflectance in the NIR region by vegetation and soil features (Xu 2006). The 

version in Equation 10 (McFeeters 1996) gives positive values for water (i.e. emphasizing 

water), while vegetation and soil usually have values less than or equal to zero (suppressing 

vegetation and soil) (McFeeters 1996). 
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NIRGREEN

NIRGREEN
NDWI

+

−
=  

Equation 10 

 

where NDWI is the normalised difference water index; 

 GREEN is the green image band; and  

 NIR is the near-infrared image band. 

 

Xu (2006) noticed that the mean digital number of the Landsat TM band 5 (which represents 

middle infrared (MIR) radiation), is much greater than that of the Landsat TM band 2 (green 

band). Using this information, Xu (2006) developed a modified NDWI. 

MIRGREEN

MIRGREEN
MNDWI

+

−
=  

Equation 11 

 

where GI is the modified NDWI; 

 GREEN is the green image band; and  

 MIR is the middle infrared image band. 

 

 Another version of the NDWI is (Gao 1996): 

SWIRRED

SWIRRED
NDWI

+

−
=  

Equation 12 

 

where NDWI is the normalised difference water index; 

 RED is the red image band; and 

 SWIR is the short wave infrared image band. 

2.6.1.11 NDMI 

NDMI is an index commonly used to monitor the moisture content of vegetation.  It was 

proposed by Wilson & Sader (2002) and is defined as: 

 

 

SWIRNIR

SWIRNIR
NDMI

+

−
=  

Equation 13 

 

Where NDMI is the normalised difference moisture index; 

 NIR is the near-infrared image band; and 

 SWIR is the short wave infrared image band.  
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The NDMI has been used to classify agricultural areas and crops as done by Collingwood et al. 

(2009) and Singh, Agrawal & Singh et al. (2011). 

2.6.2 Principal component analysis 

Principal component analysis (PCA) is a statistical procedure that identifies patterns in data and 

then expresses the information in a way that highlights inherent similarities and differences 

(Smith 2002). This is done by using orthogonal projections to convert the possibly correlated 

data into a set of linearly uncorrelated variables called principle components. The number of 

components generated from the transformation is less than or equal to the original number of 

variables, with the first principal component representing the largest possible variance (Smith 

2002). The variance of the components is a measure of the data’s information content (Da Silva 

et al. 2015). By compressing the variance from all the image layers into a smaller composite of 

images (components), PCA can be used to reduce the number of dimensions in data (Smith 

2002). PCA has been used successfully for spatial applications ranging from general land cover 

mapping to crop monitoring (Bell, Caviglia-Harris & Cak 2015; Da Silva et al. 2015; Lee et al. 

2016). Bell, Caviglia-Harris & Cak (2015) characterized land use change using a temporal 

dataset in Amazonia with a focus on agricultural classes. They used PCA to produce new 

features from their original dataset, and used Eigenvalues to remove components to further 

reduce feature dimensionality. They commented that PCA allowed for effective comparison of 

variation within the informational classes. Da Silva et al. (2015) used PCA on time-series 

MODIS imagery to produce new features from the original dataset. This was done to aid in 

identifying soybean fields in Brazil. They selected the first three components and achieved 

satisfactory classification accuracies. Eigenvalues were also used select the most important 

components. Similarly, Lee et al. (2016) utilized PCA for feature extraction to differentiate 

individual tree species with multi-sensor imagery. They applied PCA to the imagery to prune the 

data and select the most important features for the classification. Lee et al. (2016) concluded that 

a robust PCA with machine learning has the potential to distinguish individual tree species using 

hyperspectral data.  

2.6.3 Tasseled cap transformation (TCT) 

The TCT is a process whereby spectral data from an optical sensor is compressed into a few 

bands associated with a scene’s physical characteristics while suffering minimal information loss 

(Huang et al. 2002). It was originally developed for the Landsat multispectral scanner, but has 

now been widely adapted to other sensors due to its value for developing insight into plant 

growth patterns in spectral space when using combinations of different bands (Kauth & Thomas 
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1976). When used on Landsat-8 data, the transformation produces six new components in a four-

dimensional space: brightness, greenness, wetness, fourth (haze), fifth, and sixth (Baig et al. 

2014). The Landsat-8 TCTs occupy a space described as a “transition zone” (Crist & Cicone 

1984) in three dimensions (Figure 4), which define two planes when used in the context of soils 

and vegetation. The process of creating these components involves the rotation of the Landsat-8 

spectral data in these three dimensions to tasseled cap coordinates (Crist & Cicone 1984). 

 

Source: Crist & Cicone (1984) 

Figure 4 Tasseled cap "transition zone" in imagery                                               

 

Because TCT was originally developed for the Landsat multispectral scanner, the coefficients 

used had to be adapted to the bands of later sensors. The Landsat-8 coefficients are provided in 

Table 2 (Baig et al. 2014).  

 

Table 2 TCT coefficients for Landsat-8 at satellite reflectance 

Component Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Brightness 0.3029 0.2786 0.4733 0.5599 0.508 0.1872 

Greenness -0.2941 -0.243 -0.5424 0.7276 0.0713 -0.1608 

Wetness 0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

TCT4 -0.8239 0.0849 0.4396 -0.058 0.2013 -0.2773 

TCT5 -0.3294 0.0557 0.1056 0.1855 -4349 0.8085 

TCT6 0.1079 -0.9023 0.4119 0.0575 -0.0259 0.0252 

 

It is best to apply these coefficients to calibrated Landsat-8 reflectance data rather than to raw 

digital numbers (Huang et al. 2002). 
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2.6.4 Image texture 

Texture represents the surface and structure of an image; it can be defined as a regular repetition, 

or pattern of an element, or pattern on a surface (Srinivasan & Shobha 2008). Texture measures 

can be grouped into two general approaches, namely statistical and structural (Long, Zhang & 

Feng 2002). Statistical texture measures entail the computation of values based on the statistical 

distribution of observed combinations and intensities at specified positions relative to other 

positions in the image (Kusumaningrum & Arymurthy 2011). By considering the number of 

pixels defining a local feature, the statistical approach can be further categorized into sub-

classes, namely first-order (one pixel), second-order (two pixels), and higher-order (three or 

more pixels). The structural approach views image texture as a set of pixels in a regular or 

repeated pattern (Srinivasan & Shobha 2008). Image texture derived from this approach 

represents the spatial relationship of pixels by using Voronoi tessellation. Examples of structural 

texture measures include image edges, shapes, and Voronoi polygons (Long, Zhang & Feng 

2002).  

The most commonly used texture extraction methods for remotely sensed data are two statistical 

approaches, namely grey level co-occurrence matrices (GLCM) and grey level difference vectors 

(GLDV) (Clausi 2002; Srinivasan & Shobha 2008). GLCM and GLDV have shown potential for 

remote sensing applications (Peña-Barragán et al. 2011; Vieira et al. 2012; Myburgh & Van 

Niekerk 2013; Avci & Sunar 2015). GLCM is a two-dimensional matrix made up of joint 

probabilities between adjacent pairs of pixels (Kusumaningrum & Arymurthy 2011). It is 

produced by forming a co-occurrence matrix of the image and then extracting the GLCM 

descriptors from the co-occurrence matrix. GLDV is an estimation of the probability density 

function for differences between image functions at locations based on specified pixel distances 

and angles (Khazenie & Richardson 1993). The resultant GLDV texture measure is based on a 

first-order statistic, whereas GLCM estimates the joint grey level distribution for two grey levels 

(second-order statistic). The most commonly extracted texture parameters from these two 

methods are GLCM contrast, GLCM correlation, GLCM entropy, GLCM homogeneity, GLDV 

correlation, GLDV entropy, and GLDV mean (Clausi 2002; Peña-Barragán et al. 2011; Vieira et 

al. 2012; Myburgh & Van Niekerk 2013; Avci & Sunar 2015).  

2.7 IMAGE SEGMENTATION 

The core concepts relating to OBIA and PBIA were covered in Section 1.1.2. Image 

segmentation is an essential step in OBIA and can be described as the process of partitioning an 

image into objects with point-based, edge-based, or region-based algorithms, as well as 

combinations of them all (Blaschke 2010).  
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Point-based image segmentation uses global threshold values to find groups of homogenous 

pixels within an image. It is done in two steps: 1) all pixels in the image are categorized based on 

a global threshold value; and 2) all of the spatially connected elements that fall into the same 

category are grouped into separate regions (Pesaresi & Benediktsson 2001). This approach is not 

favoured in RS applications as the spectral properties of a particular object may vary greatly at 

different locations within an image scene (Schiewe 2002).  

Edge-based image segmentation regards image element edges as boundaries. These boundaries 

are identified with an edge detection filter and are then transformed into object outlines by a 

contour-generating algorithm. This segmentation shows a very high sensitivity to image noise 

(Schiewe 2002). 

Region-based image segmentation compares pixels or objects with other pixels or objects to 

determine if they are similar (Mathieu, Freeman & Aryal 2007). It is done in one of two ways: 

region growing (bottom-up) or region splitting (top-down). Region growing starts with randomly 

sampled seed pixels that grow into bordering elements, whereas region splitting starts with the 

entire image and recursively splits it into smaller elements (Mathieu, Freeman & Aryal 2007). 

An advantage of randomly generated seeds is that the process is autonomous and requires no 

input from the user.  Of all the available segmentation methods, region growing is the most 

popular (Van Niekerk 2010). One of the most commonly used region-based segmentation 

algorithms is multi-resolution segmentation (MRS).  

2.7.1 Multi-resolution segmentation (MRS) 

MRS is a region-merging, bottom-up algorithm that can perform segmentation on a pixel or 

object level (Blaschke 2010). Its input (pixel or object) is merged into a set of objects in such a 

way that the average heterogeneity of the set is minimized and the homogeneity within objects 

maximized (Benz et al. 2004). It merges using a mutual best-fit approach by which a seed 

element is located and best-fit neighbours identified (Blaschke & Lang 2006). The merging is 

only performed if the element falls under the specified range defined during the preparation of 

the segmentation (Tang et al. 2000). The algorithm will continue checking for neighbours to 

merge until the homogeneity threshold has been reached. MRS takes scale, shape, and 

compactness parameters as input. The scale factor determines the maximum change in total 

heterogeneity allowed when merging pixels into an object (Drăguţ & Blaschke 2006). The shape 

value determines how much importance is allocated to the shape of an object, compared to its 

spectral properties. Compactness will determine how much influence an object’s compactness 

will have on the resulting segmentation (Li et al. 2015).  
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MRS has been used in numerous remote sensing applications, including crop and vegetation 

classification. Castillejo-Gonzalez & López-Granados (2009) used MRS on Quickbird imagery 

while comparing OBIA and PBIA for crop classification (OBIA outperformed PBIA in 

classification accuracy). The authors emphasized the importance of the correct selection of 

segmentation parameters, a notion shared by many other authors using this method (Drăguţ & 

Blaschke 2006; Peña-Barragán et al. 2011; Schultz et al. 2015). Peña-Barragán et al. (2011) used 

an empirical discrepancy method to evaluate their segmentations and ended up using colour, 

shape, smoothness, and compactness parameters of 0.4, 0.6, 0.2, and 0.8 at a scale value of 50, 

while 0.9, 0.1, 0.3, and 0.7 were used at a scale value of 100. Using these parameters with multi-

seasonal ASTER data and the DT classifier, OAs of over 80% were achieved.  Schultz et al. 

(2015) also emphasized the importance of selecting suitable segmentation parameters. They used 

bi-annual Landsat-8 data and attempted to automate the process of crop discrimination. Their 

results showed that their best segmentation outperformed their worst segmentation by an OA of 

20%.  

Authors working on segmentation accuracy have employed different approaches to finding 

“optimal” segmentations. Factors contributing to the challenge of achieving optimal 

segmentation include the size of the image (due to a great amount of processing time needed for 

region growing algorithms), the aim of the classification, the type of landscape, the variation in 

objects being classified, and the imagery being used. The next section overviews a tool 

developed to assist analysts in the process of setting a suitable MRS scale value.  

2.7.2 Estimation scale parameter tool (ESP) 

The ESP tool is a procedure (developed for use in eCognition software by Drăguţ et al. (2014)) 

that automates the parameterisation of MRS. It utilizes the concept of local variance to detect 

scale transitions in geospatial data by first identifying the number of layers present in an 

eCognition project. It then iteratively segments the layers with MRS in a bottom-up approach, 

where the scale parameter value of the segmentation increases with every iteration. The local 

variance is calculated and used to determine when iterations are to be stopped (when the current 

scale level records a local variance lower than or equal to the previous iterations value). The 

output of ESP includes a graph that displays local variance, scale, and rate of change. By 

analysing the peaks and plateaus of the graph, one is able to judge which scale settings are most 

likely to produce suitable segmentations. According to Drăguţ et al. (2014), the ESP tool 

produces satisfactory results with very high resolution imagery.  
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2.8 IMAGE CLASSIFICATION 

Digital image classification is the process of grouping pixels or objects with certain spectral, 

textural, or image transform values into informational classes (Campbell 2008. There are three 

main techniques, namely unsupervised, supervised, and knowledge-based image classification. 

Each of these techniques are briefly overviewed in the following subsections. 

2.8.1 Unsupervised classification 

Unsupervised classification can be defined as the identification of natural groups of pixels within 

multispectral data (Campbell 2008). It uses clustering whereby natural groups within an image 

are identified (Myburgh 2012). Clustering involves the identification and labelling of distinct 

classes based on the information present in the feature-set (Campbell & Wynne 2011). Once 

these distinct classes have been identified, the user or expert assigns these natural groups of 

pixels or objects to more meaningful or appropriate informational classes (Mather 2004). 

Unsupervised classification is convenient when there is no information available on the study 

area prior to classification (Campbell & Wynne 2011). Because no user input is required, 

unsupervised image classification is quick and relatively easy to implement (Gao 2009). It is 

important to note that, although the process of creating classes by clustering is easy, it does not 

always correspond to informational classes of interest (Stephenson & Van Niekerk 2009). 

Popular unsupervised classification algorithms include ISODATA, k-means, and modified k-

means. These three unsupervised classifiers have been applied to a variety of classification 

problems (Nolin & Payne 2007; Lang et al. 2008) 

2.8.2 Supervised classification 

As explained in Section 1.1.5, supervised classification is the process of using samples of known 

identity (training data) to classify pixels or objects of unknown identity (Campbell & Wynne  

2011). There are many supervised classifiers available, ranging from traditional statistical 

(parallelepiped, minimum distance, and maximum likelihood) to modern machine learning 

algorithms. Statistical classifiers require training data to be normally distributed and are 

parametric. This means they rely on statistical measures such as mean, standard deviation, and 

probability to perform properly (Mather 2004). Machine learning classifiers often incorporate 

artificial intelligence into their learning process, and iteratively learn how to classify images 

(Campbell & Wynne 2011). They do not require training data to be normally distributed and are 

non-parametric. Because of this, they are considered to be more robust and tend to perform better 

than traditional classifiers (Myburgh 2012). Widely used machine learning classifiers include 
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decision trees (DT), k-nearest neighbour (k-NN), random forest (RF), and support vector 

machines (SVM).  

2.8.2.1 Decision tree (DT) 

A DT is a machine learning classifier that evaluates the given training samples and creates a set 

of thresholds used for binary separation (Brown et al. 2013). Brown et al. (2013) used the 

commercial DT classifier, See5, with time-series MODIS vegetation index data to classify 

agricultural land use. They managed to achieve overall classification accuracies of over 80%, but 

presented evidence that the DT models were overfitting the training data despite their best efforts 

to mitigate this through parameter tweaking. Overfitting occurs when a classifier describes 

random error to noise instead of the underlying relationship. Peña et al. (2014) used the C4.5 DT 

algorithm with OBIA to map summer crops. The C4.5 DT was only capable of achieving 79%, a 

relatively low score when compared to the logistic regression, SVM, and multilayer perceptron 

classifiers also tested in the same study. The authors did, however, note that the DT was 

computationally less expensive than the other methods. Salmon et al. (2015) also employed the 

DT4.5 decision tree to produce global irrigation maps at 500 m resolution using multiple RS 

sources. They did not specify the OA or kappa scores of their results, but showed that the DT4.5 

DT produced thematic maps that were very similar to the reference data.  

2.8.2.2 k-Nearest neighbour (k-NN) 

k-NN is a simple, non-parametric machine learning classifier (Campbell & Wynne 2011) that 

classifies unknown pixels or objects based on the k-nearest known values (Myburgh 2012). 

Objects or pixels are classified by a majority vote of its neighbours, with the object or pixel 

being assigned to the class most common among its k-nearest neighbours. If k = 1, then the 

object is simply assigned to the class of the single nearest neighbour (Mather 2004). Myburgh & 

Van Niekerk (2013) tested the effect of feature dimensionality on k-NN, maximum likelihood 

(ML), and SVM for object-based land cover classification. Their research showed that k-NN 

outperformed the ML classifier in scenarios with higher feature dimensionality. Richardson, 

Goodenough & Chen (2014) used k-NN for land cover classification using SAR time-series data 

with a hierarchical unsupervised approach. They found that k-NN is suitable for this application, 

provided that a suitable k-value is selected. Guan et al. (2016) suggested that classification 

systems utilizing other classification algorithms can be combined with the k-NN classifier to 

produce satisfactory crop monitoring results when dealing with multi-temporal satellite data.    
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2.8.2.3 Random forest (RF) 

RF is an ensemble learning method for classification, regression, and other tasks. Ensemble 

classifiers use a divide-and-conquer approach to improve performance. The principle behind 

ensemble methods is that a group of “weak learning algorithms” can be combined to form a 

“strong learning algorithm” (Liaw & Wiener 2002). RF functions by creating a set of DTs during 

model training and outputs the class that appears most often (for classification) or mean 

prediction (for regression) (Breiman 2001). RF input parameters include ntree and mtry. The 

ntree parameter represents the number of trees to grow and mtry represents the number of 

variables randomly sampled as candidates at each split. Benefits of using RF include its runtime 

being computationally effective, and its ability to deal with unbalanced and missing data. 

Weaknesses include the inability to predict beyond the range in the training data for regression, 

and overfitting in datasets that are particularly noisy (Liaw & Wiener 2002). 

RF is one of the leading classification methods when multi-source data is used (Gislason, 

Benediktsson & Sveinsson 2006). Duro, Franklin & Dube (2015) compared RF to SVM for crop 

type identification using SPOT-5 data and found that, although SVM outperformed RF, the latter 

algorithm achieved a very high accuracy (OA of 93%). Long et al. (2013) used RF and Landsat 

ETM+ imagery for crop classification (comparing object-based image analysis and pixel-based 

image analysis) and achieved an OA of 89% using PBIA. They concluded that RF is suitable for 

multi-temporal crop classification because of its ability to create multiple paths with different 

variable choices to classify the same class. Hao et al. (2015), using RF for crop classification 

with time-series MODIS data, achieved an OA of 88% and concluded that the RF algorithm is 

suitable for selecting features and classifying crops when large volumes of data are being used. 

2.8.2.4 Support vector machine (SVM) 

A SVM is a supervised, non-parametric statistical learning technique (Mountrakis, Im & Ogole 

2011). The SVM training algorithm aims to find a hyperplane that divides the input data into two 

discrete predefined classes similar to the training classes (Steinwart & Christmann 2008). 

However, it is often not possible to separate classes using a plane. Instead of attempting to define 

a complex separation surface in the datasets’ feature space, the SVM algorithm transforms the 

feature space using a kernel (a mathematical function) until a hyperplane can be used as 

separator (Myburgh 2012). SVMs are effective in high dimensional feature space, are memory 

efficient (as they use a subset of training points in the decision function), and are also very 

versatile due to their ability to utilize different kernel functions (Suykens & Vandewalle 1999). 

Issues with SVMs include the inability to directly provide probability estimates. If needed, it has 

to be calculated using expensive cross-validations. SVMs are also designed to separate two 
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classes (Suykens & Vandewalle 1999), whereas classification schemes with multiple classes are 

frequently used in remote sensing. SVM deals with multiple classes by using either the one-

against-all or the one-against-one approach (Steinwart & Christmann 2008). In the one-against-

all approach, several binary classifiers are trained to separate each class from all the others. This 

results in multiple binary classifiers being trained for a multi-class problem. A decision value is 

calculated for each class from these classifiers and data objects are assigned to the class for 

which the largest decision value was determined (Myburgh 2012). The one-against-one approach 

utilizes multiple binary classifiers for each pair of classes, resulting in several classification 

outputs. A majority vote is then applied to decide on the final class allocation for each data 

object (Steinwart & Christmann 2008). Duro, Franklin & Dube (2015) found that an object-

based implementation of SVM outperformed several other image analysis methods and achieved 

an OA of 94% for mapping crop types. Zheng et al. (2015), employing SVMs with multi-

temporal Landsat-5 and Landsat-7 NDVI data, demonstrated that they were very successful at 

differentiating nine main crop types, with an OA of over 90%. Kumar et al. (2015) managed to 

accurately map crops with an OA of 88% and concluded that SVM should be able to accurately 

map crop types in other areas and environments. 

2.8.3 Knowledge-based image classification 

Knowledge-based image classification makes use of an expert system approach. Expert systems 

are computer systems that emulate human decision making (a.k.a. artificial intelligence) by 

considering a predefined set of rules (Campbell & Wynne 2011). Rules are often ordered in a 

DT-like structure, but unlike in machine learning classification, the decision trees are built by 

humans and not machines. An expert system DT is essentially a hierarchical set of “if” 

statements that classifies objects or pixels into different informational classes based on expert 

knowledge of features (Campbell & Wynne 2011). Knowledge-based systems consist of three 

components: a knowledge base, an inference engine, and a database. The knowledge base stores 

expert knowledge in the form of a rule-set defined by the expert, while the inference engine 

stores protocols relating to how the rules in the knowledge base are applied. The database it a set 

of raw and transformed datasets. 

Stephenson & Van Niekerk (2009) compared an expert system approach to supervised 

classification for forest mapping using SPOT-5 imagery. They found that the accuracy of the 

knowledge-based rule-set classifier was high and comparable to that of a supervised classifier. 

Although it was very time-consuming to produce the knowledge base, it was deemed superior to 

supervised classification because of the potential of the former approach to be transferred to 

other areas without the need to collect training data. Similarly, Pauw & Van Niekerk (2012) 
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compared an expert system and supervised approach for wetland mapping using SPOT-5 and 

SAR imagery. They found that the k-NN classifier produced slightly more accurate results than 

the expert system approach.  

2.9 TRAINING DATA 

Training data is a set of data used to discover potentially predictive relationships between 

features. The training sets are selected by the user or expert, and represent the informational 

classes present in classification (Campbell & Wynne 2011). Campbell & Wynne (2011) proposes 

using at least 100 training pixels per class, whereas Mather (2004) suggests a minimum of 30 p 

per class, where p is the number of features used in the classification. GEOBIA changes the 

nature of training data used by learning algorithms as it groups pixels into objects, thereby 

effectively reducing the number of training samples available to the classifier (Myburgh 2012). 

Classifiers that perform well under conditions of limited training set size are consequently 

needed. Myburgh & Van Niekerk (2013) tested the use of various sizes of sample sets as input 

into the ML, NN, and SVM classifiers within a GEOBIA environment. They found that larger 

sample sets produced substantially higher classification accuracies compared to smaller sets, 

showing that an increase of information provided during training significantly improves 

classification results. High quality agricultural survey data could therefore be used as large 

sample sets for crop mapping.  

According to the land cover field guide of the Chief Directorate: National Geospatial 

Information, (Lück et al. 2010) agricultural land refers to areas where the natural vegetation is 

replaced by other types of vegetative cover of anthropogenic origin. This vegetation is artificial 

and requires human involvement to maintain it in the long term. In between the human activities, 

or before starting crop cultivation, the surface can be temporarily without vegetative cover. 

Spatialintel (SIQ) (Pty), a leading provider of agricultural and other surveys in South Africa, has 

created agricultural census datasets for Gauteng (2009), Limpopo (2011), and recently the 

Western Cape (2013). These datasets contain crop information for each individual cultivated 

field and were generated through an extensive aerial survey, supported by field surveys. The 

agricultural census dataset includes orchards and vegetables, as well as annual and perennial 

pastures. Crop datasets from SIQ are provided in vector format (Figure 5), with detailed attribute 

information linked to each individual field.  
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Figure 5 SIQ vector crop data for the Western Cape, South Africa 

The crop data acquired from SIQ are highly accurate and have a coefficient of variance (CV) of 

less than 2% on a national level (SIQ 2014).  

2.10 DIMENSIONALITY REDUCTION 

As introduced in Section 1.1.6, the term “feature dimension” refers to the number of features 

(image bands, image transforms, ancillary data) considered in a classification. When too many 

features are considered (i.e. high feature dimensionality), classification algorithms tend to 

perform poorly (Rodriguez-Galiano et al. 2012). One way of mitigating high dimensionality is to 

reduce the number of features used for classification. This can be done by extracting or selecting 

features (Gislason, Benediktsson & Sveinsson 2006).  

Feature extraction is the building of a new set of features from the original feature-set, while 

feature selection is the selection of a subset of features from the original feature-set. Feature 

extraction involves transforming the original feature space to yield an entirely new set of 

features. Examples of feature extraction methods include PCA and TCT, both of which were 

covered in Sections 2.6.2 and 2.6.3 respectively. These methods help classification algorithms to 

achieve maximum performance by limiting model variance and aid in the reduction of sparsity 

(Guyon & Elisseeff 2003).  

Feature selection can be categorized into four approaches: filters, wrappers, embedded methods, 

and semantic feature selection. Filter feature selection is a classifier independent pre-processing 
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step that uses a common (objective) measure to score each feature’s importance (e.g. variable 

importance) (Guyon & Elisseeff 2003). Once features have all received an importance score, 

they can be selected and used for classification (Guyon & Elisseeff 2003). Examples of filter 

methods include CART and RF.  

A wrapper selects features during the classification procedure and is considered superior to the 

filter approach because a particular filter algorithm may not be appropriate for all classifiers. 

However, wrappers are very computationally expensive and slow because they must be 

iteratively applied for each individual learning algorithm (when multiple learning algorithms are 

used). Wrappers randomly select a subset of features and apply a learning algorithm to it. The 

output is then compared against reference data to determine the subset’s performance. This 

process is repeated on many different subsets of features to determine which features 

consistently performed well. Examples of wrappers include recursive feature elimination, 

sequential feature selection algorithms, and genetic algorithms.  

Embedded feature selection methods are similar to wrappers in that they are also used to 

optimize the performance of a learning algorithm. They learn which features contribute the most 

to the accuracy of the classification while the model is being created. The difference between the 

embedded approach and wrappers is that in the first approach, an intrinsic model-building metric 

is used during learning. Examples of embedded methods include L1 (LASSO) regularization and 

DTs (Huang et al. 2016).  

The final approach, semantic feature selection, is simply the selection of features deemed most 

important by an expert. For instance, an analyst might decide to exclude the original image bands 

and only use indices instead.     

2.10.1 Classification and regression trees (CART) 

CART is a decision tree machine learning algorithm used for data mining, predictive modelling, 

and data pre-processing. It uses binary recursive partitioning to grow DTs while the Gini and 

Twoing methods search for important relationships and patterns, allowing better insight into data 

(Breiman et al. 1984). The binary recursive partitioning can be viewed as a DT. Classification 

trees are designed for dependent variables with a finite number of unordered values. Prediction 

error is measured in terms of misclassification cost (Loh 2011). Regression trees are suitable for 

classifying dependent variables with continuous or ordered discrete values. Prediction error is 

typically measured by the squared difference between the observed and predicted values 

(Breiman et al. 1984). 
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CART has frequently been used for feature selection in the field of remote sensing (Lawrence & 

Wright 2001; Bittencourt & Clarke 2004). It can be used as a filter or wrapper feature selection 

method. In the former approach, CART is applied to identify suitable features (by assigning 

variable importance values to features), after which the selected features are used as input to 

other learning algorithms (e.g. SVM, DT, RF, and k-NN) (Loh 2011). The same features can also 

be used as input to CART for producing a DT (which results in the wrapper feature selection 

approach). When CART is used as filter, there is no guarantee that it will produce a subset of 

predictor variables that will optimize other classifiers. However, many studies have shown that 

feature selection using CART also improves modelling using alternative classifiers (Miner, 

Nisbet & Elder 2009). For instance, CART has been successful in improving the accuracy of 

vegetation classifications when used as a filter feature selection method for input to k-NN, ML, 

SVM, and RF classifiers (Yu et al. 2006). 

2.10.2 Random forest 

RF, overviewed in Section 2.8.2.3, produces a variable importance score that can be used for 

feature selection. It has been used in remote sensing as a filter method by Guan et al. (2012), 

Rodriguez-Galiano et al. (2012), Abdel-Rahman, Ahmed & Ismail (2013), and Hao et al. (2015). 

Guan et al. (2012) used RF as a filter for land use classification with LIDAR and orthoimagery. 

Using 48 DEM derivatives, VIs, and textural features ranked by variable importance, they 

concluded that feature selection with RF can be used to facilitate accurate land use classification. 

Abdel-Rahman, Ahmed & Ismail (2013) used RF to select spectral bands from hyperspectral 

imagery for sugar cane leaf nitrogen detection. They found that RF successfully reduced 

redundancy in the data, but that more research is needed to better understand what ntree and mtry 

settings will achieve optimal algorithm performance. Rodriguez-Galiano et al. (2012) and Hao et 

al. (2015) used RF to filter multi-temporal data to monitor crops. Both recommended the use of 

RF for selecting multi-temporal features, claiming that it has positive effects on classification 

accuracy. 

2.11 ACCURACY ASSESSMENT 

Research on crop mapping using remote sensing methods usually aim to improve the speed and 

accuracy of the process. Two commonly used methods to assess the accuracy of thematic maps 

generated through classification are OA and kappa coefficient (K). OA is derived from a 

confusion (error) matrix, which is a table that summarizes the performance of an algorithm 

(Campbell & Wynne 2011). Each column of the confusion matrix represents the instances in a 

predicted class, while each row represents the instances in an actual class (or vice-versa). OA is 

Stellenbosch University  https://scholar.sun.ac.za



 36 

the total number of correctly classified objects/pixels in a classification result. K is essentially a 

measure of how well the classifier performed compared to how well a random classification 

would have performed (i.e. simply generated by chance) (Congalton & Green 2008). OA is 

easily interpreted because the percentage of classified pixels or objects corresponds to errors of 

commission and omission, while K can be used to assess statistical differences between 

classifications (Congalton & Green 2008). In addition to using K to compare the performances of 

different classifiers with one another, an additional method known as McNemar’s test can be 

employed to determine whether results are significantly different.  

McNemar’s test (McNemar 1974) is a non-parametric procedure based on a two-by-two cross 

tabulation of dichotomous data. It is based on the chi-square statistic that takes correctly and 

incorrectly classified samples as input (the overall accuracies of two separate classifiers in the 

case of thematic classification) and produces a two-tailed P-value as output. The P-value is used 

to describe the statistical significance of the difference between the two samples. Using 

McNemar’s test to statistically assess significant differences in classification accuracy has been 

recommended by Foody & Atkinson (2002) and used by Yan et al. (20015, Whiteside et al. 

(2011), and Duro, Franklin & Dube (2015). 

2.12 SUMMARY 

This chapter provided a review of the literature on the use of remote sensing for crop 

classification. It is clear that the use of multi-temporal optical imagery is the most effective and 

feasible way of achieving good accuracies, with Landsat-8 imagery being the best source of 

imagery for the period of study (Sentinel-2 imagery became available during the course of this 

research, but was not yet available at the time the field surveys were carried out). Landsat-8 

imagery meets all the requirements for regional crop classification, with a suitable spatial, 

spectral, and temporal resolution. Some of the technical aspects relating to crop classification 

with Landsat-8 imagery that require investigation were outlined in Section 1.2.  This includes the 

effects of pansharpening, the performances of machine learning classifiers, the comparison of 

OBIA and PBIA, as well as the effects of dimensionality reduction. This chapter expanded on 

these concepts and is meant to provide a foundation for the following chapters.  

The next chapter focuses on the effects of pansharpening and the performances of several 

machine learning classifiers for crop differentiation using multi-temporal Landsat-8 imagery. 

The results are then used in Chapter 4 which focuses on the effects of dimensionality reduction 

on crop classification accuracies.  
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The next two chapters were published as research articles in Computers and Electronics in 

Agriculture. The content of these articles were kept as published (although the formatting was 

changed to conform to the rest of the thesis). Given that the same study area and input data were 

used for both articles, some of the content is duplicated. 
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CHAPTER 3:  PANSHARPENED LANDSAT-8 IMAGERY FOR CROP 

DIFFERENTIATION WHEN USING MACHINE LEARNING AND 

OBIA 

3.1 ABSTRACT 

This paper evaluates the potential of machine learning and object-based image analysis (OBIA) 

for the differentiation of crops in a Mediterranean climate (Western Cape, South Africa). Several 

Landsat-8 images covering all calendar seasons and multiple phenological stages were acquired. 

The remotely sensed images were used to produce a range of spectral values, textural values, 

vegetation indices, and colour transformations. These spatial variables were input for the 

decision trees (DTs), k-nearest neighbour (k-NN), support vector machine (SVM), and random 

trees (RT) classifiers, reaching overall classification accuracies of 85%, 78%, 95%, and 88% 

respectively. The accuracies achieved were produced by experimenting with both the OBIA and 

pixel-based image analysis (PBIA) paradigms. The OBIA classification scenarios included a 

favourable segmentation, an over-segmented image and an under-segmented image. The PBIA 

scenarios included a standard 30 m spatial resolution image and a pansharpened 15 m spatial 

resolution image. 

3.2 INTRODUCTION 

Agricultural productivity is the foundation of developing economies and is critical to food 

security (Awokuse & Xie 2015. Accurate crop maps may strengthen an agricultural sector’s 

health and therefore ensure food security, as they can update agricultural database statistics and 

forecast yields (Monfreda, Ramankutty & Foley 2008). Traditional methods for crop mapping 

and yield forecasting involve routine field visits, which are costly and biased (Castillejo-

Gonzalez & López-Granados 2009). Remote sensing offers an unbiased, cost-effective, and 

reliable way of mapping crops at a local, regional, and national scale. Remotely sensed data play 

an important role in crop monitoring as it can be easily related to factors such as biomass, 

climate, plant stress, relative plant health, soil properties, terrain, and light use efficiency 

(McNairn et al. 2009; Xin et al. 2015). Knowledge of the state of these factors will help farmers 

gain awareness of crop health and moisture content, which can support decisions regarding the 

optimization of fertilisation and irrigation (Monfreda, Ramankutty & Foley 2008).  

In recent years, optical remote sensing has gained popularity for its use in the identification and 

monitoring of crop types (Vieira et al. 2012; Simms et al. 2014; Muller et al. 2015; Ozelkan, 

Chen & Ustundag 2015; Zheng et al. 2015). Multi-temporal data have been shown to improve 

crop identification as it can better represent crop growth cycles, with optical (as opposed to radio 
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detection and ranging) multi-temporal data being the preferred data source (Blaes, Vanhalle & 

Defourny 2005; McNairn et al. 2009; Serra & Pons 2008). Ozelkan, Chen & Ustundag (2015) 

evaluated multi-temporal Landsat-8 data for the identification of agricultural vegetation and 

concluded that it was an effective data source. Vieira et al. (2012) tested with Landsat data (TM 

and ETM+), and showed that multi-temporal optical data allowed accurate crop mapping and 

that expert knowledge of crop phenological information was of high importance. Similar remarks 

were made by Zheng et al. (2015) and Muller et al. (2015) who also used multi-temporal Landsat 

data. This general notion was also supported by Simms et al. (2014) who acquired crop 

information using MODIS NDVI and ancillary data.  

The two different paradigms for image classification are PBIA and OBIA, which have been 

compared often in recent years. Castillejo-Gonzalez & López-Granados (2009) compared the 

performances of PBIA and OBIA for the identification of crops with Quickbird imagery and 

concluded that OBIA clearly outperformed PBIA. Myint et al. (2011) tested the two paradigms 

using Quickbird imagery for urban land cover and found that OBIA outperformed PBIA by up to 

27.6%. Similar conclusions were also achieved by Bhaskaran, Paramananda & Ramnarayan 

(2010) and Yan et al. (2015) who saw OBIA outperform PBIA by overall accuracies of 20% and 

36% respectively. Weih & Riggan (2010) used aerial photography and SPOT-5 for land use and 

land cover supervised classification and showed that by merging high and medium spatial 

resolution imagery, supervised OBIA outperformed both supervised and unsupervised PBIA by 

10%. Duro, Franklin & Dube (2015) tested both OBIA and PBIA with SPOT-5 data, and, unlike 

most other modern literature, concluded that neither method produced significantly better results 

than the other. Results such as those seen by Duro, Franklin & Dube (2015) may be the result of 

OBIA being preferred over pixel-based classification, provided that the objects of interest are 

significantly larger than the pixels of the imagery (Pesaresi & Benediktsson 2001; Mathieu, 

Freeman & Aryal 2007; Blaschke 2010). Landsat-8 imagery will not always be preferred, as 

certain crops may be in fields smaller than 30 m spatial resolution. In order to mitigate this, the 

images were pansharpened to a 15 m resolution.   

Pansharpening combines the superior spatial resolution of the panchromatic band (required for 

accurate description of texture and shapes) with the additional spectral resolution from the 

multispectral bands (required for accurate class discrimination of land covers) (Ghassemian 

2016). There seems to be no clear superior method in modern literature; however, the comments 

made about PCI Pansharp make it preferable (Zhang & Mishra 2012; Guo-dong et al. 2015). 

Zhang and Mishra (2012) reviewed all commercially available pansharpening techniques and 

concluded that PCI Pansharp constantly produced the best fusion quality for all types of sensors, 
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images, and spectral bands. Guo-dong et al. (2015) proposed a new fusion method, MS-split, that 

outperformed Pansharp in four out of five tests. The results obtained by Guo-dong et al. (2015) 

suggested that MS-split was superior; however, MS-split was not yet commercially available for 

testing at the time of image processing and Pansharp still outperformed all other methods. 

Both OBIA and PBIA are affected differently by different classifiers. In this research, supervised 

classification was utilized. Supervised classification, the process of using training data to classify 

objects of unknown identity, was chosen due to better efficiency and more control compared to 

unsupervised classification (Campbell 2008). Four classifiers were evaluated, namely: decision 

trees (DTs), k-nearest neighbour (k-NN), random trees (RTs), and SVM.  DTs have been tested 

in multiple cases for land cover classification and have performed well in the cases of Waheed et 

al. (2006) and Yang et al. (2003). RTs have been successfully used for crop identification, 

vegetation classification, and change analysis, as seen in the cases of Pal (2005), Gislason, 

Benediktsson & Sveinsson (2006), and Yuan et al. (2005), while SVM has been successful at 

classifying agriculture (Karimi et al. 2006; Zheng et al. 2015). k-NN has been included in many 

research instances for comparison purposes (e.g. Myint et al. (2011); Mountrakis, Im & Ogole 

(2011); Myburgh & Van Niekerk (2013); Otukei & Blaschke (2010)) because it was the standard 

classifier for OBIA in eCognition. 

Two commonly used methods to assess the accuracy of thematic maps in remote sensing include 

overall accuracy (OA) and kappa coefficient (K). OA is easily interpreted because the percentage 

of classified pixels or objects corresponds to errors of commission and omission (Campbell & 

Wynne 2011), while K can be used to assess statistical differences between classifications. This 

paper employed the same testing and training samples for each classification to ensure that each 

classification is independently assessed, warranting the use of K (Foody & Atkinson 2002). 

Testing for statistically significant differences in classification accuracy by the different 

approaches was done by means of the McNemar’s test, as recommended by Foody & Atkinson 

(2002) and used by Yan et al. (2015), Whiteside, Boggs & Maier (2011), and Duro, Franklin & 

Dube (2015). 

This paper experimented with the use of multi-temporal Landsat-8 imagery for crop 

differentiation. Two important, yet under-examined, questions were investigated: 1) Is object-

based image analysis beneficial for discriminating crops? 2) What effect does pansharpening 

have on crop classification? 
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3.3 MATERIALS AND METHODS 

3.3.1 Study area 

Classification was carried out in the Cape Winelands region, South Africa (Figure 6). The area 

which stretches from 33°34'39" to 33°52'17" S and 18°32'24" to 18°54'43" E was chosen for 

three reasons: the availability of multi-temporal cloud-free Landsat-8 data of the area, its variety 

of crops, and its proximity to the research location (Stellenbosch University), making field 

validation more efficient and feasible. The area has a Mediterranean climate with cool, wet 

winters and warm, dry summers, with an average rainfall of 550 mm, while the average annual 

temperature minima and maxima are 11°C and 22°C respectively (Tererai et al. 2013; Tererai, 

Gaertner & Jacobs 2015). The area allows a wide array of crops to be grown, the most common 

of which include canola, grape, lucerne, lupine, olive, pasture, and wheat. 

 

Figure 6 Location of the study area in the Western Cape, South Africa 

3.3.2 In situ data 

A crop-vector dataset, created through extensive aerial surveys combined with supporting field 

visits by Spatialintel (SIQ) (Pty), was used to select objects for classifier training and accuracy 

assessment. The SIQ shapefile, which contains polygons for all agricultural ground in the region, 

is highly accurate, with a coefficient of variance (CV) of less than 2% on a national level. 
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Further uncertainty was reduced through field validation by the author’s visits to points in the 

study area correlating to the polygons in the SIQ crop dataset. Stratified random sampling was 

applied to 150 fields, with a minimum of 20 samples per class. The SIQ data displayed an 

accuracy of 99.5%. 

3.3.3 Satellite data and image date selection 

Landsat-8 level 1T data were acquired from the USGS (United States Geological Survey). Image 

dates (from 2015) chosen were:  7 February, 11 May, 12 June, 31 August, and 5 December. 

Dates chosen were based on the developed crop calendar with phenological data (Figure 7) and 

analysing times were chosen according to times used in other research (Serra & Pons 2008; 

McNairn et al. 2009; Peña-Barragán et al. 2011). The temporal conclusion of five months was 

based on Hao et al. (2015) who found that five months was the optimal time-series. The calendar 

was developed by using phenological stage information for all crops of interest, obtained from 

production guidelines provided by the South African Department of Agriculture, Forestry, and 

Fisheries, as well as additional data sources such as private agricultural companies, interviews 

with local agricultural experts, and field visits. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Canola     Sowing    Harvest   

Grape  Harvest   Pruning Sowing    

Lucerne  Multiple cutting options (colour and vigour varies) 

Lupine     Sowing   Harvest    

Olive    Harvest       

Pasture     Establishment Possible summer senescence 

Wheat     Sowing    Harvest 

Figure 7 Phenological information for informational classes. Dark grey represents important phenological stages, 

light grey indicates the presence of the crop, and white represents bare field. Selected imagery dates are shown with 

dotted lines. 

3.3.4 Pre-processing 

Landsat-8 data were atmospherically corrected and pansharpened in Geomatica. PCI Pansharp 

was used as recommended by Zhang (2002a) and Li et al. (2015) to resample the images from 30 

m to 15 m spatial resolution. ATCOR (atmospheric and topographic correction) was applied to 

all images due to its positive effects on land cover classification, as seen in Vanonckelen, 

Lhermitte & Van Rompaey (2013) and Li et al. (2015). 
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3.3.5 Segmentation 

Multi-resolution segmentation (MRS), a region-merging pair-wise algorithm that segments on 

pixel or object level based on scale, shape, and compactness was used. The ESP (estimation 

scale parameter) tool developed by Drǎguţ, Tiede & Levick (2010), which attempts to 

quantitatively estimate an optimal scale parameter, was run but did not produce a satisfactory 

scale recommendation. Scale parameters derived from ESP were used as a base for further 

segmentations. Combining ESP with qualitative analysis by comparing segmentations to 

shapefiles of digitized and verified crop fields, as well as reviewing past literature of similar 

segmentation attempts, lead to the eventual optimal segmentation. ESP recommended a scale of 

35, which served as the base segmentation. After each run, the scale, shape, and compactness 

were tweaked until an object delineation was deemed optimal. Based on visual assessment, a 

favourable delineation of objects was achieved using 0.45, 0.55, and 14 for shape, compactness, 

and scale respectively. Heavier weighting for the green, red, near-infrared, and shortwave 

infrared spectral bands were used without any thematic layers. This favourable delineation is 

seen as E in Figure 8 below.  

 

Figure 8 A canola field on which the five different classification methods were used. A) Shows the standard 30 m 

resolution pixels, B) the Pansharpened 15 m resolution pixels, C) the large object size for both pixel sizes, D) the 

small object size for both pixel sizes, and E) the preferred objects size for both pixel sizes. 
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The end parameters for the five different classification scenarios are seen in Table 3. 

Table 3 Identification of all classification scenarios.  

ID Approach Scale Shape Compactness 

P30 Standard 30 m pixels - - - 

P15 Pansharpened 15 m pixels - - - 

SS35 Under-segmented objects 35 0.45 0.55 

SS07 Over-segmented objects 7 0.45 0.55 

SS14 Best segmentation objects 14 0.45 0.55 

SPS34 Under-segmented objects 34 0.45 0.55 

SPS06 Over-segmented objects 6 0.45 0.55 

SPS12 Best segmentation objects 12 0.45 0.55 

Note: Included is the parameters used for all three Object Oriented (OO) segmentations. “P” represents “pixel” for both pixel 

types, “SS” represents “segmentation standard” for segmentations on the standard 30 m pixels, and “SPS” represents 

“segmentation pansharpened” for the segmentations on the 15 m pansharpened pixels. 

3.3.6 Features 

In addition to the spectral bands provided by the sensor, several other variables such as textural 

information, vegetation indices, and image transforms were also considered in the classification. 

Table 2 outlines the various feature types, which resulted in a total of 205 features (41 per image 

capture date). Most features were created using standard RS software. The tasseled cap 

transformation images were produced using the coefficients derived by Baig et al. (2014).  

Table 4 Features used as input for the DT, NN, SVM, and RT classifiers 

Type Subtype Features 

Spectral features Mean Blue, Green, Red, NIR, SWIR 1, SWIR 2, Panchromatic 

 Standard 
deviation 

Green, Red, NIR, SWIR 1, SWIR 2 

Indices  ARVI, EVI, GCI, GNDVI, Greenness, NDVI, RGRI, SAVI, SRI 

Textural features GLCM Contrast, Correlation, Entropy, Homogeneity  

 GLDV Contrast, Entropy, Mean 

Image transforms PCA PC1, PC2, PC3, PC4 

Tasseled cap Brightness, Greenness, Wetness, Transformation 4, Transformation 
5, Transformation 6 

HSI Hue, Saturation, Intensity 

Textural features used include contrast, correlation, and entropy, as recommended by Clausi 

(2002). The spectral bands coastal aerosol (Band 1), cirrus (Band 8), thermal infrared 1 (Band 
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10), and thermal infrared 2 (Band 11) were not included since they are designed for other 

applications, as specified by the USGS (USGS 2015). 

3.3.7 Classification and accuracy assessment 

Classification and accuracy assessment software used was developed by the Centre for 

Geographic Analysis in Stellenbosch, South Africa. The software employs four classifiers: DTs, 

k-nearest neighbour (k-NN), RTs, and SVM. It was developed using C++ and the Microsoft® 

VisualStudio®2010 development environment to automate the process of classification and 

accuracy assessment. SVM classification was performed using Libsvm (Chang & Lin 2011) 

where the radial basis function kernel was chosen as recommended by Hsu, Chen & Chen 

(2010). The k-NN classification used OpenCV 2.2 (Bradski & Pisarevsky 2000) with a k-value 

of 1 as used by Qian, Root & Saligrama (2015). The geospatial data abstraction library was used 

to manipulate shapefiles and raster files, while a 3:2 object split ratio was employed for the 

classification and accuracy assessment. The software output included OA and K, both of which 

were loaded into SPSS for the McNemar’s test. 

3.4 RESULTS AND DISCUSSION 

Both the OBIA and PBIA methods achieved satisfactory results (when compared to most modern 

literature) by using pansharpened imagery (See Table 5). The highest result was obtained with 

SPS14 using the SVM classifier, which achieved an OA and K of 95.93 and 0.95 respectively. 

PBIA was not far behind, with P15 achieving 94.30 and 0.93 for OA and K respectively (also 

with the use of SVM). 
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Table 5 Overall accuracies and kappa coefficients for each classification and dataset 

  DT   NN   RF   SVM   OA  K  

  OA K OA K OA K OA K AVG SD AVG SD 

P30 74.07 0.69 55.59 0.47 75.36 0.71 79.32 0.75 70.09 10.38 0.73 0.02 

P15 85.15 0.82 77.45 0.73 88.75 0.86 94.30 0.93 86.41 6.12 0.84 0.07 

SS34 55.56 0.47 51.97 0.43 66.00 0.59 69.33 0.68 60.72 7.16 0.54 0.10 

SS06 74.01 0.69 52.30 0.43 74.91 0.70 77.74 0.73 69.74 10.16 0.64 0.12 

SS12 74.56 0.70 52.20 0.43 72.76 0.76 80.67 0.77 70.05 10.71 0.67 0.14 

SPS35 59.04 0.50 52.87 0.44 68.86 0.63 75.69 0.71 64.12 8.78 0.57 0.11 

SPS07 77.71 0.73 73.59 0.68 86.50 0.83 90.73 0.89 82.13 6.81 0.78 0.08 

SPS14 81.76 0.78 78.90 0.75 87.54 0.85 95.93 0.95 86.03 6.51 0.83 0.08 

AVG 72.54 0.67 61.86 0.56 77.59 0.74 82.96 0.80     

SD 10.33 0.12 11.58 0.14 8.28 0.09 8.96 0.10     

 

The high overall accuracies for both methods are considered impressive when taking into 

account the medium spatial resolution, complexity of the classification, and factors such as intra-

crop variation. Intra-crop variation can be caused by factors such as different time schedules 

being followed, moth balling (leaving parts of a field to die), and variations in cover crops. 

Farmers in the region do not always plant crops on the exact same date, resulting in different 

phenological stages of crops on image capture dates. Crop fields themselves may also be 

different because of cover crops, an example of which is the grape class that can have triticale, 

weeds, wheat, or fynbos as its ground-cover crop. The above results show that even with all of 

these difficulties, both the OBIA and PBIA are capable of successfully monitoring the crops in 

the study area with machine learning classifiers.  

Table 5’s results are expected based on recent literature. OBIA was slightly more accurate than 

PBIA. OBIA is preferred over PBIA, provided that the objects of interest are significantly larger 

than the pixels of the imagery, therefore Landsat-8 OBIA was not expected to greatly outperform 

PBIA due to its medium spatial resolution. Although many of the crop fields classified in this 

research are larger than the Landsat-8 pixels, it is not often by as much as seen in Table 6. The 

objects of interest in this case (crop fields) are not significantly larger than the pixels of the 

imagery, which will explain why OBIA only marginally outperformed PBIA.  However, at such 

a high level (> 90%), the small 1.63% increase in OA and 0.02 increase in kappa is important for 

developing accurate crop inventories. 

Table 6 The average sum of pansharpened pixels per SIQ crop polygon/field 
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Crop type Area (m2) Pixel count (15 m) Pixel count (30 m) 

Canola 5623 25 6 

Grape 5862 26 6 

Lupine 1718 7 1 

Olive 1324 5 1 

Pasture 5529 24 6 

Plum 757 3 1 

Wheat 6100 27 6 

Pansharpening approximately quadruples the amount of pixels per crop field (making objects of 

interest become larger relative to pixel size), which may explain why P15 outperformed P30 by 

14.98%, making PBIA with pansharpening a more effective option for crop differentiation. 

McNemar’s test showed that, without pansharpening, OBIA is a more effective way to 

discriminate crops than PBIA using Landsat-8. The McNemar’s test on P30 and S14 highest 

OA’s yielded a P-value of 0.0033, which by conventional criteria is considered statistically 

significant. This was also seen when comparing P30 to P15, which produced a P-value of 

0.0071, showing that pansharpening is beneficial to the classification of crops when using PBIA, 

as 0.0071 is also considered statistically significant. The final McNemar’s test used P15 and S14 

OA’s and yielded a P-value of 1, showing that OBIA and PBIA do not produce statistically 

significant results for crop discrimination if the Landsat-8 data is pansharpened.  

Of the three segmentations, the OA results were as anticipated. The under-segmented dataset 

(S35, the scale recommended by the ESP tool) had the poorest results, most likely due to objects 

being too large and additional data (from fields such as roads and pathways) being incorporation 

within them. The under-segmentation also amplifies the effects of intra-crop variation. As 

mentioned earlier, larger objects include entities such as trees that may be near or within the 

field, thus reducing the informational classes’ spectral purity. S07 and S14 both produced 

satisfactory accuracies, possibly due to the fields being broken up by objects and because it was 

possible to exclude noise such as the pathways and trees mentioned above. S14 produced better 

results than S07, indicating that the qualitative visual assessment used to deem S14 optimal was 

successful. 

All classifiers displayed clear performance patterns (Figure 9). The SVM classifier produced the 

highest OA, RF the second highest, next was DT, with NN producing the lowest OA in all 

classification scenarios. 
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Figure 9 Overall accuracies for all classifiers grouped by dataset 

The SVM classifier achieved great results, which can most likely be attributed to the radial basis 

function kernel recommended by Hsu et al. (2010). NN constantly had the lowest OA and kappa 

scores, probably because of its reduction of predictive accuracy in higher dimensions. The 

accuracies of the DT and RF classifiers were usually very similar, with RF not far off from the 

SVM results. Since the two tree classifiers are also known for being highly accurate classifiers, 

the likely reasons why they did not perform as well as SVM were that the SVM parameter tuning 

was better, or that the number and type of informational classes were better suited for SVM. 

3.5 CONCLUSION 

The results produced by this study provide insight into the performance of crop classification 

under different OBIA and PBIA scenarios with multi-temporal data. The highest accuracy was 

achieved with the SVM classifier using OBIA of 95.93%, which shows that using Landsat-8 data 

with a PBIA paradigm, in conjunction with pansharpening, is a feasible and effective way of 

monitoring crops in a Mediterranean climate. The P-value of 1, generated by McNemar’s test 

when comparing P15 and SPS14, shows that there is no statistical difference in OA when using 

either pansharpened pixels or well-delineated objects. The lack of a significant statistical 

difference between P15 and SPS14 suggests that PBIA, with pansharpening, may be a more 

feasible approach for crop discrimination. It is clear that pansharpening of Landsat-8 is beneficial 

when classifying crop fields and that correct image segmentation is crucial for achieving high 

accuracies. The choice of whether or not to pansharpen Landsat-8 imagery has a much more 

profound effect on crop discrimination than the selection of either OBIA or PBIA. 
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CHAPTER 4:  VALUE OF DIMENSIONALITY REDUCTION FOR 

CROP DIFFERENTIATION WITH MULTI-TEMPORAL IMAGERY 

AND MACHINE LEARNING  

4.1 ABSTRACT 

This study evaluates the use of automated and manual feature selection – prior to machine 

learning – for the differentiation of crops in a Mediterranean climate (Western Cape, South 

Africa). Five Landsat-8 images covering the different crop class phenological stages were 

acquired and used to generate a range of spectral and textural features within an object-based 

image analysis (OBIA) paradigm. The features were used as input to decision trees (DTs), k-

nearest neighbour (k-NN), support vector machine (SVM), and random trees (RT) supervised 

classifiers. Testing was done by performing classifications (using all spatial variables) and then 

incrementally reducing the feature counts (based on importance allocated to features by filters), 

feature extraction, and manual (semantic) feature selection. Classification and regression trees 

(CART) and random forest (RF) were used as methods to filter feature selection. Feature-

extraction methods employed include principal components analysis (PCA) and Tasseled cap 

transformation (TCT). The classification results were analysed by comparing the overall 

accuracies and kappa coefficients of each scenario, while McNemar’s test was used to assess the 

statistical significance of differences in accuracies among classifiers. Feature selection was found 

to improve the overall accuracies of the DT, k-NN, and RF classifications, but reduced the 

accuracy of SVM. The results showed that SVM with feature extraction (PCA) on individual 

image dates produced the most accurate classification (96.2%). Semantic groupings of features 

for classification also revealed that using the image bands and indices is not sufficient for crop 

classification, and that additional features are needed. The accuracy differences of the classifiers 

were, however, not statistically significant, which suggests that, although dimensionality 

reduction can improve crop differentiation when multi-temporal Landsat-8 imagery is used, it 

had a marginal effect on the results. For operational crop-type classification in the study area 

(and similar regions), we conclude that the SVM algorithm can be applied to the full set of 

features generated. 

4.2 INTRODUCTION 

Crop maps assist in maintaining the health of an economy’s agricultural sector as they are used 

to update agricultural statistics and aid in yield forecasting (Castillejo-Gonzalez & López-

Granados 2009). An additional benefit of up-to-date crop maps is increased environmental 

sustainability as these maps are required for modelling greenhouse gas variability in agro-

Stellenbosch University  https://scholar.sun.ac.za



 50 

ecosystems (Monfreda, Ramankutty & Foley 2008). Crop-mapping has traditionally been done 

using routine field visits. This methodology is costly and can be inaccurate when biased 

sampling schemes are utilised (Castillejo-Gonzalez & López-Granados 2009). Remote sensing 

offers an unbiased, cost-effective, and reliable way of mapping crops at a local, regional, and 

national scale. Crop discrimination using remotely sensed data is, however, not without 

challenges. Certain crop types have similar spectral signatures, which makes it difficult to 

differentiate them from one another when using multispectral imagery. Since different crop types 

have divergent temporal spectral profiles, the consideration of temporal (phenological) variations 

between crops have been shown to improve classification accuracies (Castillejo-Gonzalez & 

López-Granados 2009). However, some crop types may display intra-class temporal variability 

(different phenological growth patterns) from farm to farm due to either natural development 

variation or diverse crop-management decisions made by farmers (Peña-Barragán et al. 2011). 

Nevertheless, the value of multi-temporal data for crop discrimination has been demonstrated by 

Wardlow, Egbert & Kastens (2007), Ozelkan, Chen & Ustundag (2015), and Zheng et al. (2015). 

Multi-temporal data allows for the generation of a large number of features (variables) for each 

image acquisition date, which has been shown to substantially improve results (Heinl et al. 

2009). However, the use of multi-temporal data often leads to very high feature counts (Lu & 

Weng 2007; Heinl et al. 2009). Too many features will lead to the so-called “curse of 

dimensionality”, whereby the performance of classifiers is hampered by the imbalance between 

training samples and features (Rodriguez-Galiano et al. 2012). This is driven by the problem of 

sparsity, where training data becomes too sparse to cope with the large volume of feature space 

brought on by large numbers of variables (Myburgh & Van Niekerk 2013). Classifiers 

consequently require an increasing number of training samples as feature dimensionality 

increases. 

Large sets of training samples are not always feasible due to the high costs associated with field 

visits (Castillejo-Gonzalez & López-Granados 2009). Another approach to mitigate high 

dimensionality is to carry out feature extraction and/or feature selection (Guyon & Elisseeff 

2003). Feature extraction involves the replacement of the original data by a new collection of 

features representing most of the variance of the original data (Benediktsson & Sveinsson 1997). 

The most common feature-extraction method is PCA, which transforms the data into a new set of 

principle components (PCs) that describes the underlying structure of the original dataset (Zhang 

and Mishra 2012). Other feature-extraction methods include tasseled cap transformation (TCT) 

and the generation of spectral indices. The TCT is a process whereby spectral data from an 

optical sensor (predominantly Landsat) is compressed into a few bands associated with a scene’s 
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physical characteristics while suffering minimal information loss (Huang et al. 2002). Spectral 

indices are essentially arithmetic operators performed on multispectral imagery (or any 

additional data), which results in a new composite image (Campbell & Wynne 2011). Examples 

include NDVI (normalised difference vegetation index), SAVI (soil-adjusted vegetation index), 

and EVI (enhanced vegetation index). PCA, TCT, and spectral indices are commonly used when 

classifying crops with remotely sensed data (Simms et al. 2014; Campbell et al. 2015; Zheng et 

al. 2015). 

Feature selection involves picking a subset of important features from the original dataset to 

reduce data dimensionality (Guyon & Elisseeff 2003). The main feature-selection approaches are 

wrappers, embedded methods, semantic groupings, and filters. A wrapper evaluates various 

subsets of features during the classification process by making use of the learning algorithm 

itself (Kojadinovic & Wottk 2000). The advantages of wrappers include interaction between 

model selection and feature-subset search, and the capability to take feature dependencies into 

account. However, wrappers have a high risk of overfitting and are also computationally 

intensive, as every feature subset proposed by the subset selection measure is evaluated in the 

context of the learning algorithm (Saeys, Inza & Larrañaga 2007). Examples of wrappers include 

recursive feature elimination (Shahi, Shafri & Hamedianfar 2016), sequential feature selection 

(Lagrange, Fauvel & Grizonnet 2016), and genetic algorithms (Persello & Bruzzone 2016). 

Embedded feature-selection methods are similar to wrappers as they are also used to optimize the 

performance of a learning algorithm (Guyon & Elisseeff 2003). Embedded techniques learn 

which features contribute the most to the accuracy of the classification while the model is being 

created. The difference between an embedded approach and a wrapper is that the former method 

utilizes an intrinsic model-building metric during learning. Examples of embedded methods 

include L1 (LASSO) regularization and DTs (Huang et al. 2002). Semantic feature selection 

simply involves the selection of features according to their type or those deemed most important 

by an expert. Examples include using only spectral features, only indices, only texture features, 

etc. 

A filter is a pre-processing step that is independent of the learning algorithm (Fourie 2011). This 

step results in a faster learning pipeline for the feature-selection algorithm (when multiple 

classifiers are used), but filters tend to not perform as well downstream due to an absence of 

interaction with the classifier (Kojadinovic & Wottka 2000). Three popular filter methods used 

in remote sensing are Jeffries-Matusita distance, CART, and RF (Miner, Nisbet & Elder 2009; 

Rodriguez-Galiano et al. 2012; Hao et al. 2015). CART is a decision-tree machine learning 

algorithm used for data mining, predictive modelling, and data pre-processing. It uses binary 
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recursive partitioning to grow DTs, while the Gini and Twoing methods search for important 

relationships and patterns, allowing better insight into data (Breiman et al. 1984). It can be used 

to create a short list of predictor variables for use with another predictive method (Miner, Nisbet 

& Elder 2009).). Yu et al. (2006) used CART for detailed vegetation classification with high 

spatial resolution imagery and found that it improved classification accuracy. Yu et al. (2006) 

started with two out of 52 variables and found an increase in overall accuracy with the addition 

of features from 1 to 27, after which accuracies began to decline. Conrad et al. (2011) analysed 

the effect of CART feature selection on crop classification accuracy using multi-temporal 

MODIS imagery. They found that CART was able to improve classification accuracy by up to 

7% and ascribed this to the prioritization of segments representing active phases of the different 

crops’ phenological development. 

RF is a collection of DTs that form an ensemble learning method for classification or feature 

selection (Pal & Mather 2003). Rodriguez-Galiano et al. (2012) assessed the effect of RF feature 

selection on Mediterranean land-cover classification (including multiple crop classes) with 

multi-seasonal imagery and texture. They found that feature selection using RF had a positive 

effect on image classification (overall accuracy increases of up to 10%) and commented that 

feature selection reduced the effect of the “curse of dimensionality”. Hao et al. (2015; 2016) 

utilized RF feature selection for crop classification with multi-temporal MODIS imagery and 

claimed that the technique allowed the identification of the optimal portion of features required 

for an accurate discrimination between crop types. 

Compared to the traditional pixel-based image analyses (PBIA), OBIA approaches have been 

shown to produce higher classification accuracies in some cases (Castillejo-Gonzalez & López-

Granados 2009; Yan et al. 2015), while Duro, Franklin & Dube (2015) found that both 

paradigms produced similar results. In general, OBIA is preferred only if the objects of interest 

are significantly larger than the pixels of the imagery (Blaschke 2010). 

This study evaluates the use of multi-temporal, object-based supervised classification for the 

differentiation of crops in a Mediterranean climate (Cape Winelands, South Africa). Five 

Landsat-8 images were used to generate a large (205) set of features. A small set (159) of fields 

representing the seven major crops in the region was selected to train and assess the classifiers. 

The size of the in situ dataset was purposefully limited to evaluate the classifiers’ ability to 

perform with minimal training data (i.e. under sparse training conditions). Filter feature selection 

(using CART and RF), feature extraction (using PCA and TCT), and thematic feature groupings 

were applied to the full feature-set to assess whether these techniques improve classification 

accuracies. The different feature-sets were used to train four machine learning classifiers, namely 
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DT, k-NN, RF and SVM. The classification results are interpreted in the context of finding an 

operational solution for the production of accurate crop-type maps in the Cape Winelands region. 

4.3 MATERIALS AND METHODS 

4.3.1 Study area and period 

 The experiments were carried out in a 1040 km2 area within the Cape Winelands region, South 

Africa (Figure 10). The area, which stretches from 33°34′39″ to 33°52′17″ S and 18°32′24″ to 

18°54′43″ E, was selected due to the availability of multi-temporal cloud-free Landsat-8 data, 

and the variety of summer and winter crops being produced in the region. The study site has a 

Mediterranean climate with cool, wet winters and warm, dry summers. The average rainfall is 

550 mm, while the average annual temperature minima and maxima are 11 °C and 22 °C 

respectively (Tererai, Gaertner & Jacobs 2015). A wide range of crops are grown in the area, of 

which the most common are canola, grape, lucerne, lupine, olive, pasture, and wheat. The period 

of study was 2015, as this was when in situ data were collected. 

 

Figure 10 Location of the study area 
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4.3.2 In situ data 

A crop-type database in vector geographical information system (GIS) format was obtained from 

the Western Cape Department of Agriculture. The database contains polygons representing 

agricultural fields and crop types, as determined during extensive aerial and field surveys in 

2013. A stratified random sampling was used to select 159 crop fields from the database. This 

represented 7.63% (2,340 ha out of 31,443 ha) of the fields occurring in the study area. A 

minimum of 20 samples (fields) per class (crop type) was set, as recommended by Myburgh & 

Van Niekerk (2013). A small training-set was purposefully selected to investigate the 

performance of the classifiers when limited training data are available. Using small sets of 

training data will reduce the costs associated with operational in situ data collection, especially at 

regional scales. Because annual crops in the study area are often rotated, the selected fields were 

visited during a field survey in 2015. Several fields were found to have been incorrectly labelled 

and the database was updated accordingly. 

4.3.3 Satellite data and image date selection 

As suggested by Hao et al. (2016), five Landsat-8 level 1T images – captured on 7 February, 11 

May, 12 June, 31 August, and 5 December 2015 – were acquired from the United States 

Geological Survey. The image dates were chosen to correspond with phenological data and 

agricultural production phases (Figure 11) of the crops occurring in the region (Peña-Barragán et 

al. 2011). The phenological stages for each individual crop were derived from growing guides 

provided by South Africa’s Department of Agriculture, Forestry, and Fisheries and confirmed by 

interviews with local farmers. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Canola     Sowing    Harvest   

Grape  Harvest   Pruning Sowing    

Lucerne  Multiple cutting options (Colour and vigour varies) 

Lupine     Sowing   Harvest    

Olive    Harvest       

Pasture     Establishment Possible Summer senescence 

Wheat     Sowing    Harvest 

Figure 11 Phenological information on crop types  

In Figure 11, dark grey represents important phenological stages, light grey the presence of the 

crop, and white represents bare field. Selected imagery dates are shown with dotted lines. 
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4.3.4 Pre-processing 

Landsat-8 images were pan-sharpened and atmospherically corrected using the PCI Geomatica 

software package. As suggested by Gilbertson, Kemp & van Niekerk (2017), PCI PANSHARP 

was used to resample the multispectral images from 30 m to 15 m spatial resolution (Lin et al. 

2015). ATCOR (atmospheric and topographic correction) was applied to all images to convert 

them to surface reflection. 

4.3.5 Segmentation 

Multi-resolution segmentation (MRS) was used to group pixels with similar spectral values. 

MRS uses scale, shape, compactness, and layer weighting as input parameters. The impact of 

different segmentations on classification accuracy was reported in Gilbertson, Kemp & van 

Niekerk (2017). Given that the purpose of the present study was to compare different feature 

selection methods, the best-performing segmentation from Gilbertson, Kemp & van Niekerk 

(2017) was chosen as a generic set of objects for all classifiers. The image layers and weights 

used to produce this segmentation were first principle component (25%), panchromatic band 

(20%), green band (10%), red band (20%), near-infrared band (20%), and short-wave infrared 

band (5%). Setting image segmentation parameters is considered an ill-structured problem 

(Verhulp & Van Niekerk 2016) and these weights were set based on a qualitative trial-and-error 

approach in which each individual layer was assessed according to how well it represented the 

spectral variations of crops in the study area. Although the estimation scale parameter tool 

(Drǎguţ, Tiede  & Levick 2010) was used to quantitatively estimate an optimal scale parameter, 

it did not produce a satisfactory scale recommendation (it resulted in considerable under-

segmentation). Instead, a visual assessment was made by comparing segmentations to shapefiles 

of digitised and verified crop fields. A favourable delineation (slight over-segmentation) of 

objects was achieved using 0.45, 0.55, and 14 for shape, compactness and scale respectively. 

Although the chosen parameters (input layers, weights, shape, compactness and scale) are 

unlikely to be optimal, it was assumed that a sub-optimal segmentation layer would affect all 

classifiers and feature selection methods equally. 

4.3.6 Image feature-set generation 

In addition to the Landsat-8 spectral bands, several other features were considered in the 

classifications (Table 7). Coastal aerosol (band 1), cirrus (band 8), thermal infrared 1 (band 10), 

and thermal infrared 2 (band 11) were excluded as they were deemed unsuitable or had 

resolutions that were too low for crop-type differentiation. Nine indices commonly used in 

vegetation studies were generated from the remaining bands. These bands were also used as 
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input to PCA, which was applied to the entire dataset (all available spectral bands of all dates) as 

well as to the spectral bands of the individual image acquisition dates. The PCs to be used for 

classification were selected by means of a scree test and eigenvalues. Components accounting for 

80% or more of the image variance were retained. TCTs were calculated using the coefficients 

obtained from Baig et al. (2014). Textural features included contrast, correlation, and entropy as 

recommended by Clausi (2002). The final feature-set consisted of 205 features (38 per image 

capture date and 15 from PCA on all images dates combined). 

Table 7 Features considered in the classifications 

Type Subtype Features 

Spectral features Mean Blue, Green, Red, NIR, SWIR 1, SWIR 2, Panchromatic 

 Standard 
deviation 

Green, Red, NIR, SWIR 1, SWIR 2 

Indices  ARVI, EVI, GCI, GNDVI, Greenness, NDVI, RGRI, SAVI, SRI 

Textural features GLCM Contrast, Correlation, Entropy, Homogeneity  

 GLDV Contrast, Entropy, Mean 

Image transforms PCA PC1, PC2, PC3, PC4 

Tasseled cap Brightness, Greenness, Wetness, Transformation 4, Transformation 
5, Transformation 6 

4.3.7 Feature selection 

Several dimensionality-reduction methods were evaluated. CART and RF, as implemented in 

Salford Systems data mining and predictive software, were used as tools for filtering feature 

selection. PCA was used as a feature-extraction technique and was executed in ArcMap. Manual 

(semantic) feature-subset selection was also carried out. 

For RF, Gini importance was selected and the number of trees to build set to 1000. The number 

of variables to be considered at each node was set to the square root of K (where K is the number 

of predictors), as recommended by Breiman et al. (1984). Bootstrap sample size was left at 

AUTO (using a sample that includes only ⅔ of the original training data), and a balanced class 

weighting was applied as recommended by the Salford Systems user’s manual. 

For CART, the search intensity was set to max (400) and the splitting method was set to Gini, as 

recommended by Yu et al. (2006). The V-fold cross-validation was set to 10, as was done by 

Lewis (2000) and recommended by the Salford Systems user’s manual. The maximum number 

of nodes and depth was set to AUTO and no penalties were applied to any variables. The 

variable importance scores provided by RF and CART was used to select subsets of features. 

This was done iteratively with intervals of 75, 50, 25, 20, 15, 10, 5, 4, 3, 2, and 1 feature(s). 
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The final feature-dimensionality reduction-method involved grouping the features into semantic 

subsets. These were: (1) mean band values (BANDS1); (2) mean band values and band standard 

deviations (BANDS2); (3) PCs of all spectral bands (PCA1); (4) PCs of spectral bands per 

acquisition date (PCA2); (5) TCT; (6) indices (INDICES); (7) PCs per image date, TCT, and 

indices (TRANS); and (8) texture measures (TEXTURE). 

4.3.8 Classification and accuracy assessment 

The supervised learning and image classification environment (SLICE) software, developed by 

the Centre for Geographical Analysis (Myburgh 2012), was used for classification and accuracy 

assessment. The software makes use of OpenCV 2.2 (Bradski and Pisarevsky 2000) and Libsvm 

(Chang & Lin 2011) libraries and includes a range of classification algorithms, including DTs, k-

NN, RF (called RT in OpenCV), and SVM. In the interest of brevity, the reader is referred to Pal 

(2005) and Al-doski, Mansor & Shafri (2013) for an overview of these classifiers. 

Parameters for DT and RF were set as recommended in the OpenCV library documentation. For 

DT, the maximum depth was set to 50, K-fold cross-validation was disabled, the minimum 

number of samples was set to one, and pruning harshness was set to the minimum. For RF, the 

maximum depth was set to 50, the minimum sample count to one, and the square root of the total 

number of features (14) was used for the size of the randomly selected subset of features at each 

tree node. The k-parameter of the k-NN classification was set to one, as suggested by Qian, Root 

& Saligrama (2015). For SVM, the radial basis function kernel was chosen, as recommended by 

Hsu, Chang & Lin (2003). The geospatial data abstraction library was used to manipulate the 

vector and raster files. 

A 3:2 sample split ratio was employed for classification and accuracy assessment (i.e. 60 of the 

150 samples were randomly excluded from classifier training and used exclusively for assessing 

the accuracy of the resulting models). The same set of training and testing samples were used for 

all experiments. 

SLICE automatically generates confusion matrixes, and calculates overall accuracies (OA) and 

the kappa coefficients (K) for each experiment. OA is easily interpreted as it represents the 

percentage of classified pixels or objects that corresponds to errors of commission and omission 

(Campbell & Wynne 2011), while K can be used to assess statistical differences between 

classifications (Foody & Mathur 2004). McNemar’s test, ANOVA and t-tests (as implemented in 

IBM SPSS software) were used for assessing the statistical significance of the accuracies 

obtained from the experiments, as recommended by Foody & Mathur (2004) and applied by 

Duro, Franklin & Dube (2015). 
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4.4 RESULTS 

The results of the classifications are summarized in Table 8. The first scenario in Table 8 

(labelled NONE) represents the classification results when the full set of features were used as 

input (i.e. no dimensionality reduction applied). Scenarios 2–19 represent the classification 

results when CART and RF filter methods were applied. The semantic feature groupings are 

listed as Scenarios 20–27. The total feature count (n) per scenario is also provided. 

Table 8 Overall accuracies and kappa coefficients for all classification scenarios (all scenarios are also assigned a 

unique scenario number)  

# Scenario n 
DT DT k-NN k-NN RF RF SVM SVM AVE AVE 

OA K OA K OA K OA K OA K 

1 NONE 205 81.8 0.78 78.9 0.75 87.5 0.82 95.9 0.95 86.0 0.83 

2 CART75 75 86.3 0.83 88.1 0.85 89.3 0.87 93.9 0.92 89.4 0.87 

3 CART60 60 83.0 0.79 87.1 0.84 88.7 0.86 92.3 0.90 87.8 0.85 

4 CART50 50 80.2 0.76 78.4 0.74 84.9 0.82 91.9 0.90 83.9 0.81 

5 CART40 40 75.2 0.70 77.7 0.73 84.5 0.81 90.2 0.88 81.9 0.78 

6 CART30 30 73.8 0.68 76.9 0.72 82.3 0.79 87.7 0.85 80.2 0.76 

7 CART20 20 73.8 0.68 64.6 0.58 79.4 0.75 82.4 0.79 75.1 0.70 

8 CART10 10 68.2 0.62 63.4 0.57 72.5 0.67 74.0 0.69 69.5 0.64 

10 RF150 150 78.9 0.75 82.0 0.78 85.0 0.82 90.5 0.88 84.1 0.81 

11 RF100 100 83.7 0.80 91.6 0.90 89.5 0.87 93.7 0.92 89.6 0.87 

12 RF75 75 84.8 0.82 94.9 0.93 89.5 0.87 94.9 0.93 91.0 0.89 

13 RF60 60 81.8 0.78 89.9 0.88 88.5 0.86 92.4 0.91 88.2 0.86 

14 RF50 50 81.0 0.77 88.2 0.86 86.6 0.84 92.1 0.90 87.0 0.84 

15 RF40 40 80.2 0.76 87.5 0.85 86.3 0.84 89.8 0.87 86.0 0.83 

16 RF30 30 76.7 0.72 84.4 0.81 79.2 0.75 90.8 0.89 82.8 0.79 

17 RF20 20 76.4 0.72 78.0 0.74 79.1 0.75 89.0 0.87 80.6 0.77 

18 RF10 10 73.4 0.69 73.5 0.68 78.9 0.75 82.1 0.78 77.0 0.73 

20 BANDS1 35 71.3 0.66 88.7 0.86 86.2 0.83 90.5 0.88 84.2 0.81 

21 BANDS2 70 72.6 0.67 89.8 0.87 86.0 0.83 92.9 0.91 85.3 0.82 

22 PCA1 20 67.5 0.61 83.1 0.79 84.5 0.81 89.1 0.87 81.1 0.77 

23 PCA2 20 82.1 0.78 93.0 0.91 90.1 0.88 96.2 0.95 90.4 0.88 

24 TCT 30 78.0 0.73 94.5 0.93 84.4 0.81 92.7 0.91 87.4 0.85 

25 INDICES 45 67.2 0.61 64.6 0.58 78.6 0.74 87.8 0.85 74.6 0.70 

26 TRANS 95 85.7 0.83 84.1 0.81 92.1 0.90 95.2 0.94 89.3 0.87 

27 TEXTURE 35 49.8 0.40 56.2 0.48 55.4 0.47 58.1 0.50 54.9 0.46 

 MEAN  76.5 0.7 81.6 0.8 83.6 0.8 89.0 0.9 82.7 0.8 

Note: Colours range from green (high) to red (low) along rows and consequently visualize accuracies per classifier. Bold 

numbers represent the highest OA per scenario. The header “n” represents the number of features for each dataset. 

The best OA (96.2%) was achieved when the SVM classifier was applied to the PCA2 set of 

features (Scenario 23, PCA2). This was, however, only marginally (0.3%) higher than when 

SVM was applied to the entire feature-set (Scenario 1, NONE). According to McNemar’s test, 

the difference between these results is not statistically significant. Similarly, these results were 
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not significantly higher than when SVM was applied to Scenario 26 (TRANS), which achieved 

an OA of 95.2%. 

The superior performance of SVM was observed in all of the crop classification scenarios and 

achieved a mean OA of 89%. This is significantly higher (two-tailed t-test: P = 0.02) than the 

second-best classifier RF (mean OA = 83.6%). Overall DT was the worst performing classifier 

(mean OA = 76.5%). 

The best performing DT scenario was Scenario 2 (CART75), which suggests that DT benefitted 

from the filtered feature selection, although the difference between Scenario 1 and 2 was not 

statistically significant (P = 0.596). The DT classifier also achieved a relatively high 

classification accuracy (85.7%) when all of the available image transforms were used (Scenario 

26). When the RF was used as filter for feature selection, the best accuracies were achieved with 

100 and 75 features. Based on these results, it would seem that CART was better suited to filter 

features for the DT classifier (compare CART75 and RF75), but only marginally, as the 1.6% 

difference in OA of Scenarios 2 and 12 was not statistically significant (P = 0.311). 

The best classification result (94.9%) for the k-NN classifier was achieved when using the 75 

most important features, as determined by RF (Scenario 12). In comparison, the CART75 

feature-set produced a much poorer classification (88.1%). The second and third best k-NN 

classifications were achieved with feature-sets TCT (94.5%) and PCA2 (93%) respectively. 

The TRANS-subset (Scenario 26) produced the best classification result (92.1%) when RF was 

used as the classification algorithm. This result is substantially (4.6%) higher than when the full 

set of features was used (Scenario 1), although this increase was statistically insignificant 

according to McNemar’s test (P = 0.286). As with k-NN, the PCA2 feature-set produced a 

relatively good result (90.1%) when used as input to RF. Other notable RF results include the 

RF75, RF100, and CART75 feature subsets (89.3–89.5%). 

In general, OA decreased with a reduction in feature count (see Figure 12). Slight improvements 

in accuracy were observed at 75 features for all classifiers (apart from SVM) when CART and 

RF were used as filters for feature selection. According to McNemar’s tests, only the 

improvement of the k-NN classifier was statistically significant. Interestingly, apart from NN, all 

classifiers suffered an initial penalty in accuracy when RF was used as feature selection method. 

At 150 features, the accuracies of SVM, DT and RF were 5.4%, 2.9% and 2.5% lower than when 

the full set of 205 features was used as input. 
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Figure 12 Overall classification accuracies as feature-sets were reduced when using CART and RF as filters 

When all the classifiers are considered, the best overall feature-set scenario was when RF was 

used to select the 75 most important variables (Scenario 12, RF75), with an average OA of 91%. 

This was only marginally (0.6%) higher than the average of Scenario 2 (CART75), which 

yielded the second-best overall results for the classifiers evaluated. The difference between the 

means of these two scenarios were statistically insignificant (P = 0.87). This result suggests that 

there is no difference in the performance of CART and RF as filter methods when multiple 

classifiers are considered (although clear differences were observed for individual classifiers). 

According to an ANOVA test, the differences between Scenarios 1, 2, and 12 were not 

significant, which means that the filter methods did not improve classification accuracies. 

Semantic feature groupings provided insight into the importance of certain types of features. 

Using only the original spectral data (mean band values per object) as input to the classifiers 

(Scenario 20, BANDS1) resulted in an average OA of 84.2%. The addition of standard deviation 

values to the objects (Scenario 21, BANDS2) improved the average OA only marginally to 

85.3%. 
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Applying PCA to all features (Scenario 22, PCA1) and choosing the 20 PCs that contributed the 

most to variation yielded poor results (average OA = 81.1%). In contrast, good results were 

consistently obtained when PCA was applied to the individual images (Scenario 23, PCA2), with 

an average OA of 90.4% for all classifiers. Compared to PCA, TCT (Scenario 24) was not as 

successful (average of 87.4%), especially considering that the PCA feature-set was much (33%) 

smaller. 

Using only indices (Scenario 25) produced relatively poor results (average OA = 74.6%). In 

contrast, the inclusion of all transforms (Scenario 26) was more successful (average OA = 

89.3%). Scenario 27, in which only texture measures were considered, yielded the worst 

classification results for all four algorithms evaluated. 

The mean classification accuracies for all feature-sets give the impression that a feature count of 

approximately 75 was optimal for this dataset. However, when redundancy was removed using 

PCA, only 20 features were required. 

4.5 DISCUSSION 

From the results, it is clear that SVM outperformed the other classifiers. It produced the 

classification with the highest individual accuracy (Scenario 23, PCA2), and had the highest 

mean OA of all four classifiers considered. The relatively strong (95.9%) performance of SVM 

when all 205 features were used as input (Scenario 1) suggests that SVM was more robust to 

high dimensionality compared to the other classifiers. This is supported by the observation that 

SVM was the only classifier that did not benefit from the CART and RF feature selection at 75 

features (Scenarios 2 and 12). These results correspond to the findings of Duro, Franklin & Dube 

(2015), Myburgh (2012), and Poursanidis, Chrysoulakis & Mitraka (2015) who also noted that 

SVM outperformed other classifiers and was relatively robust to high dimensionality. This is 

attributed to SVM’s use of an optimized sample to generate a kernel (representing the feature 

space) and for calculating the support vectors (defining the hyperplane). Samples that lie on the 

edge of the class distribution in feature space are prioritized (Zheng et al. 2015) and are most 

useful for forming an accurate hyperplane to discriminate classes (Foody & Mathur 2004). The 

higher the number of input-variables for selecting samples are, the more the classifier is able to 

develop accurate hyperplanes. Reducing the number of variables can have a negative effect on 

the sample-set, which can lead to diminished classification results (Lu & Weng 2007; Myburgh 

& Van Niekerk 2013). 

Another explanation for SVM not benefitting from the filter methods may be that CART and RF 

are ineffective at identifying the most important features for use in SVM. Both CART and RF 
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are tree-based algorithms; therefore, they will benefit RF and DT more. Interestingly, a slight 

improvement (0.3%) in accuracy was observed when PCA was used to remove redundant data 

per image date (Scenario 23). Although this increase was not statistically significant, the 

accuracies of Scenario 23 are notably higher than that of Scenario 22 in which PCA was applied 

on all the features. This is attributed to the loss of temporal (phenological) information when 

PCA is applied to all features. 

Variations within crop types (e.g. ground crop, crop condition, temporal variations) have been 

shown to negatively affect classifications using remotely sensed imagery (Peña-Barragán et al. 

2011). SVM is known to be less sensitive to intra-class variations compared to other classifiers 

(Myburgh & Van Niekerk, 2013) and this attribute was likely a major factor contributing to its 

superior performance in this study. SLICE’s implementation of SVM is particularly powerful as 

it uses a supervised grid search method to automatically tune (optimize) the C and gamma 

parameters. This supports the findings of Schwert et al. (2013) and Zheng et al. (2015) who 

showed that SVM parameter tuning substantially improves classification accuracies. 

All the classifiers (apart from SVM) benefitted from filtered feature selection, albeit marginally 

and only when 60 to 100 features were considered. K-NN benefitted the most, particularly when 

RF was used (compare Scenarios 1 and 12). DT benefitted the most from CART as feature-

selection method (compare Scenarios 2 and 12), likely because both algorithms are based on 

tree-building (i.e. it functioned almost like a wrapper). Conversely, there is nearly no difference 

between Scenarios 2 and 12 when RF was used as the classifier, possibly because feature 

selection is inherent in the RF algorithm. 

For k-NN, DT and RF, the use of the 75 most important features (Scenarios 2 and 12) produced 

the best results, but very similar accuracies were obtained in Scenario 23 (PCA2) in which only 

20 variables were considered. This implies that CART and RF do not adequately consider 

redundancy when used for feature selection. It was found that many of the selected “important” 

features were strongly correlated. The use of features with high levels of redundancy often 

negatively affects accuracy (Olden & Poff 2003). It seems that RF fared better than CART in this 

respect, particularly when the results of k-NN are considered (compare Scenarios 2, 12, and 23). 

The observation that 75 features generally produced the best results is likely data-specific 

(combination of training-set size and total number of features), and should not be regarded as an 

“optimal” number of features to use for crop-type mapping. 

The finding that RF feature selection imposed on SVM, DT and RF an initial penalty when the 

features were reduced from 205 to 150 was unexpected. This suggests that, either some 

important variables were excluded in the initial purge of the 45 “least important” variables, or 
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that redundancy increased as a result of the purge. It also brings into question whether feature 

selection based on variable important lists is effective. 

The results of the semantic feature groupings highlighted the importance of using a mixture of 

feature types. For instance, texture measures have been shown to be very effective in 

discriminating between crop types (Peña-Barragán et al. 2011), but on its own (Scenario 27) 

performed poorly in this study. This is attributed to the relatively low (30 m, pan-sharpened to 15 

m) spatial resolution of the imagery used. Informative texture properties of crops (e.g. texture 

differences of woody plants and graminoids; variations in row plantings) are not observable at 

this resolution (Hall-Beyer 2017). At a 15 m resolution, few pixels are available for texture 

generation per object and it is likely that high texture at the edges of fields (due to pixels mixed 

with pixels of roads and adjacent fields) confused the classifiers. 

Using only the spectral bands (Scenarios 20 and 21) resulted in high (88.7% and 89.8% 

respectively) classification accuracies but ultimately fell short of the overall highest OA by over 

6.0%, which emphasises the importance of carrying out image transformations for crop-type 

classifications (Scenario 26). Another notable observation is that the use of only indices 

(Scenario 25) also resulted in relatively poor classifications. While many multi-temporal crop-

mapping studies only consider vegetation indices as features (Wardlow et al. 2007; Hao et al. 

2016), our results clearly show that the incorporation of other features substantially improved 

classification accuracies. 

This study focussed on the impact of filtered feature selection, extraction and groupings when 

Landsat-8 imagery is used as input to machine learning classifiers in an object-based paradigm. 

It consequently did not pay attention to other factors that may affect classification accuracies. 

These factors include the use of pixels instead of objects, variations in image segmentations 

(algorithms and parameters), optimal selection of images (dates and number of images), the use 

of other sources of optic imagery (e.g. Sentinel-2, SPOT6/7), fusion of other types of data (e.g. 

synthetic aperture radar), the use of other feature-selection methods (e.g. wrappers), and alternate 

classification algorithm parameters. Additional research is needed to investigate the impact of 

these factors. More work is also needed to investigate the value of specific features for 

recognising and differentiating particular crops and to examine which features have the greatest 

impact on classification accuracy. 

4.6 CONCLUSION 

This study evaluated the use of four machine learning classifiers for the differentiation of crops 

in a Mediterranean climate (Western Cape, South Africa). Because of the costs associated with in 
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situ data collection, a small set of training samples was used to evaluate how the classifiers will 

perform under conditions of sparseness – a likely scenario for operational implementations. 

Filtered feature selection (using CART and RF), feature extraction (using PCA and TCT), and 

thematic feature groupings were applied to assess whether these techniques can improve 

classification accuracies. The results showed that filtered feature selection marginally improved 

classification accuracies of the DT, k-NN, and RF classifiers (particularly when the 75 most 

important features were selected), but were unable to improve the SVM classifications. 

The thematic feature groupings highlighted a number of interesting observations. Using only the 

spectral bands as input to classification produced relatively poor results (even when SVM was 

used as classifier). Poorer results were recorded when only indices (e.g. vegetation indices) were 

considered. This is of particular significance as many crop-type classification studies (and 

operational implementations) are performed on vegetation indices only (i.e. they mainly focus on 

the phenology of crops and ignore their spectral and textural characteristics). This study showed 

that the use of a more diverse set of features (e.g. TCT, PCA, texture) dramatically increased 

accuracies (on average by more than 10%). 

SVM significantly outperformed the other classifiers. The best classifications were obtained 

when all the features were used as input (95.6%), and when PCA feature extraction was 

performed per image (96.2%). This shows that SVM is not greatly affected by high-feature 

dimensionality and that PCA holds much potential for crop-type classification (PCA also 

benefitted the k-NN and RF classifiers). However, the additional expense of generating and 

selecting the PCs does not warrant the marginal improvements in accuracies observed. For 

operational crop-type classification in the study area (and similar regions), we conclude that the 

SVM algorithm can be applied to the full set of features generated. Hopefully this finding will 

lead to the generation of more accurate, cost-effective, and timely crop-type maps in the Cape 

Winelands and improve food security in the region. 
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CHAPTER 5:  DISCUSSION 

This chapter summarizes and evaluates the findings of this research. The first section revisits the 

aims, objectives, and research questions, while the following section reflects on the value of the 

study. The penultimate section highlights some limitations of the research and makes 

recommendations for future work. Conclusions are drawn in the final section.  

5.1 REVISITING AIMS AND OBJECTIVES 

This research aimed to evaluate the use of machine learning and multi-temporal Landsat-8 

imagery for mapping crop classes in the Cape Winelands region of South Africa. The research 

was conducted because countries such as South Africa require accurate crop maps to strengthen 

their agricultural sectors by providing up to date information regarding about crop extent. 

Several studies have evaluated Landsat-8 imagery for crop type mapping, but a number of 

factors required further investigation. OBIA, for instance, has been shown to produce accurate 

land cover classifications (Schultz et al. 2015), but has not yet been compared to traditional 

pixel-based methods when using Landsat-8 images as input. There is also evidence that 

enhancing spatial resolution using pansharpening has positive effects on land cover 

classifications (Palsson et al. 2012), but no work has been done on its effect on Landsat-8 

imagery for crop type mapping. Although many supervised classification algorithms are 

available, there have not been any comparisons between some of the most popular machine 

learning classifiers (e.g. DT, k-NN, RF, and SVM) for crop type mapping. Another aspect that 

has not yet been fully explored within the context of crop type mapping is the impact of 

dimensionality reduction. Many methods exist (e.g. filters, wrappers, feature extraction) but their 

value for crop type differentiation has not yet been assessed, especially when multi-temporal 

Landsat-8 imagery is used.  

The literature review (Objective 1) revealed a body of research on the use of remote sensing for 

crop type discrimination. Much of this research suggests that that high classification accuracy 

can be achieved if the appropriate techniques are applied, but very little evidence is offered to 

indicate which combination of techniques will produce the best results when multi-temporal 

Landsat-8 imagery is used. A series of experiments involving different combinations of 

techniques were consequently carried out in this study to determine which methods will work 

best in the Cape Winelands region.  

Collecting suitable reference data for classifier training and validation (Objective 2) was 

accomplished by obtaining a historical crop type map from which a sample of fields was drawn. 
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The sampled fields were then validated during a field survey. Details of the initial crop type map, 

sampling, and validation procedure were provided in Section 2.9.    

Determining the value of pansharpening (Objective 3) was addressed in Chapter 3. The literature 

review shed light on which algorithms are the most effective for this purpose. The Pansharp 

algorithm showed the most potential (Zhang 2002a; Zhang 2002b) and was applied to the 

imagery. The multi-temporal Landsat-8 data were separated into two datasets: one with standard 

30 m spatial resolution and one with 15 m spatial resolution (after pansharpening). The results of 

the experiments showed that 80.7% was the highest classification accuracy achieved when 

standard resolution Landsat-8 imagery was used. In contrast, the highest accuracy achieved using 

pansharpened imagery was 95.9%, a substantial and statistically significant improvement.   

Objective 4 was devised in order to evaluate a range of machine learning classifiers (DT, k-NN, 

RF, and SVM) for producing crop maps with multi-temporal Landsat-8 imagery. As reported in 

Chapters 3 and 4, SVM produced the highest accuracy (96.2%) and consistently maintained a 

higher OA than the other classifiers. Overall, RF produced the second best results, followed by 

the DT and k-NN classification algorithms. It was concluded that SVM has the potential to 

produce accurate crop maps and that it is best suited for classifying multi-temporal Landsat-8 

imagery within the study area when a relatively small number of training samples are used (as 

was the case in this study).  

The comparison of OBIA and PBIA for crop discrimination was performed in Chapter 3 to 

address Objective 5. The DT, k-NN, RF, and SVM classifiers were utilized with five datasets: 

standard pixels, pansharpened pixels, preferred objects, over-segmented objects, and under-

segmented objects. For OBIA, the highest OA achieved was 95.9%, which compared favourably 

to the 94.3% of the best PBIA classification.  

Objective 6 aimed to assess whether dimensionality reduction improves classification results 

(again using the DT, k-NN, RF, and SVM algorithms) when multi-temporal Landsat-8 imagery 

is used for mapping crop types. Several dimensionality reduction methods (filter feature 

selection, feature extraction, and semantic feature grouping) were evaluated in Chapter 4. When 

all the classifiers are considered, the use of RF as filter method was the most successful (91% 

average OA). Feature extraction (PCA) also performed consistently well (90.4% average OA) 

and produced the single best classification result (96.2%) when SVM was used as classifier. 

However, the 0.3% difference between the feature extraction result and when no dimensionality 

reduction was performed (i.e. using all features) was marginal when SVM was used as classifier.    

Recommendations on the use of Landsat-8 imagery for crop type mapping (Objective 7) will be 

addressed in Section 5.3 of this chapter.  
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5.2 MAIN FINDINGS AND VALUE OF RESEARCH 

The main findings of this research can be summarized as follows: 

▪ Landsat-8 data, in conjunction with pansharpening, is a feasible and effective way of 

monitoring crops in the study area. 

▪ There was no statistical difference between the accuracies when using pansharpened 

pixels or when using well-delineated objects, i.e. OBIA and PBIA produced similar 

results. 

▪ A good image segmentation was critical for achieving high accuracies, which can reduce 

OBIA’s appeal for operational implementations. 

▪ The use of a more diverse set of features (e.g. TCT, PCA, and texture) dramatically 

increased crop classification accuracy.  

▪ Filter feature selection, feature extraction, and sematic feature selection did not 

substantially improve crop classifications.  

▪ PCA holds much potential for crop type classification, but must be performed per image 

and not on the full dataset. 

▪ SVM is relatively robust under conditions of high feature dimensionality and small 

training datasets. 

As demonstrated in Chapter 3, it is clear that pansharpening Landsat-8 imagery is highly 

beneficial for crop differentiation. This finding agrees with those of Finney (2004) and Ai et al. 

(2016), who found that pansharpening Landsat data achieved higher classification accuracies for 

land cover mapping. However, the current study is the first to evaluate the effect of 

pansharpening of Landsat-8 imagery for crop type classification. The dramatic increases (up to 

15%) in accuracy is also unprecedented. This is attributed to the almost quadrupling of the 

number of pixels per crop field, which increases inter-field variations and helps with crop type 

discrimination.  

In Chapter 3 it was shown that there was no statistically significant difference between pixel-

based and object-based crop discrimination when pansharpened Landsat-8 images were used as 

input to the machine learning classifiers. A good image segmentation (to produce objects that 

adequately represent fields) was also critical for achieving high accuracies in the OBIA 

approach. Similar observations were made by Castillejo-Gonzalez & López-Granados (2009), 

Duro, Franklin & Dube (2015), and Li et al. (2015). Achieving a “good” image segmentation is 

not a simple task as it often requires a time-consuming and subjective selection of segmentation 
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parameters through trial and error (Drăguţ & Blaschke 2006; Peña-Barragán et al. 2011; Schultz 

et al. 2015). This study showed that the process of finding suitable image segmentation 

parameters could be circumvented by simply using a PBIA approach. This finding has practical 

value for operational implementations as PBIA can more easily be automated.  

Chapter 4 showed that a more diverse set of features dramatically increases crop classification 

accuracy and that the various feature dimensionality reduction methods (filter feature selection, 

feature extraction, and semantic feature selection) did not significantly improve crop 

classification when SVM was used as classifier. Although the use of additional features to 

enhance thematic land cover classification is not new (Lu & Weng 2007; Heinl et al. 2009), the 

study improved our understanding of the relevance of different features for crop monitoring. Of 

all the features chosen for image classification (Table 8), the feature type that displayed the most 

potential was principle components generated with PCA. This finding agrees with Bell, Caviglia-

Harris & Cak (2015), Da Silva et al. (2015), and Lee et al. (2016) who demonstrated its 

effectiveness for reducing dimensionality of remotely sensed data for crop mapping. The current 

study showed that the application of PCA on individual image capture dates produced the 

highest OA, which implies that CART and RF do not adequately consider redundancy. It seems 

that CART and RF selected “important” yet strongly correlated features and that the use of 

features with high levels of redundancy may have negatively influenced accuracies (Olden & 

Poff 2003). This suggests that crop type identification can be achieved using a small set of 

uncorrelated features, but more work is needed to investigate how such features can be 

automatically selected.  

In Chapter 4 it was observed that SVM performed well with the full feature-set (205 features) 

when compared to DT, k-NN, and RF. SVM was capable of accurate crop classification when 

using a relatively small set of training samples. This suggests that SVM is comparatively robust 

to high feature dimensionality and effective with a small training sample. This finding agrees 

with those of Duro, Franklin & Dube (2015), Myburgh (2012), Zheng et al. (2015), and 

Grzegozewski et al. (2016), and can likely be attributed to SVM’s use of an optimized sample to 

generate a kernel (representing the feature space) and for calculating the support vectors 

(defining the hyperplane).  

In summary, the findings of this research provide a good foundation for establishing automated 

procedures for the operational implementation of crop type mapping in the Cape Winelands.  

 

 

Stellenbosch University  https://scholar.sun.ac.za



 69 

5.3 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Other studies have shown that the selection of appropriate image dates is critical to accurate crop 

classification. In this study, five Landsat-8 images were used, but the many image date 

combinations and image scenarios may influence classification accuracy. It is consequently 

recommended that different image capture dates and different image counts be used and 

compared in future studies.  

This study showed that pansharpening of Landsat-8 imagery was very useful for discriminating 

crops, but only one method (Pansharp) was utilized. Many other pansharpening algorithms are 

available, with the MS-split technique introduced by Guo-dong et al. (2015) showing great 

promise. It is recommended that MS-split and other algorithms are assessed for crop type 

mapping with Landsat-8 imagery.  

The comparison of OBIA and PBIA in this study showed that the two approaches produced very 

similar results and that pansharpening had a greater effect on accuracy than the image analysis 

paradigm used. However, the results did show that a suitable segmentation is important for crop 

discrimination when OBIA is used. This adds a level of complexity (and source of error) to this 

approach. This research only evaluated one segmentation algorithm (MRS) and one tool (ESP) to 

produce a suitable segmentation. Future work should focus on improving image segmentation 

and providing clear guidelines for obtaining suitable segmentation results. One method that 

shows much potential is supervised segmentation (Poggi, Scarpa & Zerubia 2005). Alternatively, 

a super-pixel (over-segmenting and producing objects around the same size) approach can be 

assessed (Qureshi et al. 2016).  

Although all the machine learning classifiers evaluated in this study produced relatively good 

results (> 85%), it has been shown that different parameterisations can substantially affect 

algorithm performance (Myburgh & Van Niekerk 2013). In this study, only one set of input 

parameters per classifier was employed (except for SVM, which included an automated tuning 

capability). More work is needed to evaluate the effects of using different input parameters. 

There are also many other classification algorithms available that have proven to produce 

accurate remote sensing classifications. Notable examples include boosting, oblique tree-based 

ensembles, artificial neural networks, and other “deep learning” techniques (Ciregan, Meier & 

Schmidhuber 2012; Maggiori et al. 2017; Poona, Van Niekerk & Ismail 2016; Wang et al. 2017).  

In Chapter 4 it was found that feature extraction with PCA led to better classification accuracies 

compared to those of the CART and RF filter feature selection methods. This is likely because 

some of the “important” features identified by CART and RF are correlated (i.e. contains 

duplication). Many factors such as the size of the dataset, the types of features, or parameter 
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tuning could have influenced these results. Therefore, it is necessary to carry out more 

experiments on the reduction of features and redundancy for successful crop classification. 

Research on the efficacy of wrappers (Poona & Ismail 2013; Poona et al. 2016) is needed, while 

other filter methods such as infinite feature selection and eigenvector centrality feature selection 

should also be assessed (Wang et al. 2007; Abedinia, Nima & Hamidreza 2017).  

5.4 CONCLUSIONS 

The research presented in this thesis aimed to evaluate the use of machine learning and multi-

temporal Landsat-8 imagery for mapping crops in the Cape Winelands region of South Africa. 

The aim was addressed by the six objectives outlined in Section 1.3. These objectives were all 

achieved and three main conclusions were drawn. First, pansharpening Landsat-8 imagery had a 

much more profound effect on crop discrimination in the study area than the image analysis 

paradigm (OBIA or PBIA). Second, the SVM classifier is very well suited to crop type mapping 

as it is less sensitive (compared to DT, k-NN, and RF) to high feature dimensionality (resulting 

from using multi-temporal imagery and a small set of training data). Third, CART and RF filter 

feature selection is less effective than PCA feature extraction when reducing dimensionality for 

crop type identification with multi-temporal imagery, likely because they do not adequately 

consider feature redundancy. These conclusions provide valuable insights into improving the 

accuracy of crop type discrimination. It is recommended that the procedures evaluated in this 

research are operationalized in the Cape Winelands region (and possibly elsewhere) so that crop 

type maps can be produced on a regular basis. Hopefully this will contribute towards food 

security and economic growth in the region.  
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