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Abstract 

The recent drive towards a sustainable green economy, along with changing environmental 

legislation to combat waste pollution, have promoted the search for alternative disposal 

techniques.  This study focuses on the thermochemical conversion namely pyrolysis of three 

waste streams from a paper recycling mill contaminated with plastic  and a sequential 

processing route where the three waste streams are first subjected to fermentation to produce 

bioethanol followed by pyrolysis. The primary objective of this study was to assess different 

valorisation techniques (pyrolysis and fermentation-pyrolysis) for the disposal of real world 

industrial waste streams, composed of lignocellulosic fibre and plastic that are currently 

disposed of at landfill sites, to produce fuel products for energy generation at a paper 

recycling mill as an alternative to landfilling. 

The first part of this study considered standalone pyrolysis (fast or slow) for the 

valorisation of three different paper mill wastes, classified as rejects. Slow pyrolysis of paper 

mill waste favoured the production of an energy dense char with an HHV and yield of up to 

32.9 MJ/kg and 77.3 wt.% respectively at a conversion temperature as low as 300 °C. The 

fast pyrolysis resulted in significant yields of the energy dense condensable (liquid) phase 

(HHV of up to 41.7 MJ/kg), with a yield of up to 53.6 wt.% which being obtained at 

conversion temperatures of 550 °C, which was ~ 21 wt.% higher than the yield obtained for 

slow pyrolysis. Increasing the conversion temperature to 550 °C for both slow and fast 

pyrolysis had a detrimental effect on the quality of the char product, with the HHV of char 

produced decreasing to between 16.9 to 21.7 MJ/kg for both pyrolysis processes. 

The second part deals with converting the lignocellulosic fibrous component in the 

waste into bioethanol via fermentation. The fermentation of the three waste streams resulted 
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in only one being chosen for scale up production. As the waste streams (W2 and W3) that 

contained significant amounts of plastic, resulted in clumping of plastic during fed batch 

fermentation, which prevented subsequent substrate feeds from reaching the fermentation 

broth. The waste stream W1 that contained the largest percentage of glucan (56.9 daf wt.%) 

and the smallest amount of plastic < 5wt.% produced satisfactory results, with ethanol 

concentration of 39.8 g/l being obtained. Pyrolysis processing of the fermentation residue 

resulted in the production of an condensable (liquid/wax) energy dense phase with yield of up 

to 13.2 wt.% for slow and 26.3 wt.% for fast pyrolysis with an associated HHV of 35.1 and 

32.1 MJ/kg respectively. This was ~17 MJ/kg higher than that produced from the slow and 

fast pyrolysis of the untreated waste stream.  

 The last part of this study assessed the economic viability of implementing pyrolysis 

in a waste to energy perspective at a paper mill as an alternative to waste disposal by 

landfilling, and resulted in a minimum fuel selling price (MFSP) of between 1.12 to 1.48 $/kg 

which was 2 to 3 times greater than the target value of 0.65 $/kg at current waste production 

rates. A study on scale revealed that an increase in size from current waste production rates of 

between 540 to 1378 kg/hr up to 8700 kg/hr greatly reduced the MFSP to between 0.27 $/kg 

to 0.73 $/kg, which was comparable to the targeted value of 0.65 $/kg. The additional waste 

required could be achieved by combining the waste streams produced at a mill and by 

aquireing the waste produced by similar paper mills in the vicinity.  

 The study has shown that pyrolysis of paper mill waste contaminated with plastic can 

be a viable alternative to landfilling with fuel products being produced that have a similar 

calorific value to traditional fuels. It is recommended that the study be scaled up to pilot scale 

along with testing of the combustion behaviour of the products from pyrolysis with 

traditional waste fuels. Were possible the waste streams from neighbouring industrial 

facilities can be combined in order to reach the required scale for economic viability.  
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Opsomming  

Die onlangse beweging na ’n volhoubare groen ekonomie, tesame met omgewingswetgewing 

wat verander om afvalbesoedeling te bestry, het die soeke na alternatiewe 

wegdoeningstegnieke verskerp. Van belang in hierdie studie, is die termochemiese 

prosesseringsroete, genaamd pirolise, en ’n sekwensiële prosesseringsroete waar die 

afvalvoerstof eers blootgestel is aan fermentasie om bioetanol te vervaardig, gevolg deur 

pirolise. Die primêre doelwit van hierdie studie was die assessering van verskillende 

valoriseringstegnieke (pirolise en fermentasie-pirolise) vir die wegdoening van industriële 

afvalstrome, wat bestaan uit lignosellulosiese veselstof en plastiek, om brandstofprodukte te 

vervaardig as ’n alternatief tot opvullingsterreine. 

 Die eerste deel van die studie het die onafhanklike pirolise (vinnig of stadig) vir die 

valorisering van drie verskillende papiermeul afval, geklassifiseer as uitskot, in ag geneem. 

Stadige pirolise van papiermeulafval het ’n energie-digte verkoolsel gelewer met ’n HHV en 

massa-opbrengs van tot 32.9 MJ/kg en 77.3 wt.%, onderskeidelik, by ’n 

omsettingstemperatuur van so laag as 300 °C. Die vinnige pirolise het ‘n beduidende 

opbrengs van energie-digte kondenseerbare (vloeistof) fase (HHV van tot 41.7 MJ/kg) tot 

gevolg gehad, met ’n massa-opbrengs van tot 53.6 % wat behaal is by ‘n  

omsettingstemperatuur van 550 °C. Dit was ~ 21 wt.% hoër as die opbrengs verkry met 

stadige pirolise. Die verhoging in omsettingstemperatuur na 550 °C vir beide stadige en 

vinnige pirolise, het ’n nadelige effek op die kwaliteit van die verkoolselproduk tot gevolg 

gehad, met die HHV van verkoolsel geproduseer wat tot tussen 16.9 en 21.7 MJ/kg vir beide 

pirolise prosesse afgeneem het. 

 Die tweede deel handel oor die omsetting van die lignosellulosiese veselagtige 

komponent in die afval na bioetanol deur middel van fermentasie. Die fermentasie van die 

drie afvalstrome het tot gevolg gehad dat slegs een gekies is vir vergrote skaal produksie. 

Stellenbosch University  https://scholar.sun.ac.za



iv 

Omdat die afvalstrome (W2 en W3) wat beduidende hoeveelhede plastiek bevat het die 

verklomping van plastiek tydens die voerbondel fermentasie tot gevolg gehad het, het dit die 

daaropvolgende substraat toevoere verhoed om die fermentasiesop te bereik. Die afvalstroom 

W1 wat die grootste persentasie glukan (56.9 daf wt.%) bevat het, en die kleinste hoeveelheid 

plastiek < 5 wt.%, het bevredigende resultate getoon, met etanolkonsentrasie van 39.8 g/l wat 

verkry is. Pirolise prosessering van die fermentasie reste, het tot die produksie van ’n 

kondenseerbare (vloeistof/was) energie-digte fase tot gevolg gehad, met opbrengste van tot 

13.2 wt.% vir stadige en 26.3 wt.% vir vinnige pirolise met ’n geassosieerde HHV van 35.1 

en 32.1 MJ/kg, onderskeidelik. Dit was  ~17 MJ/kg hoër as dit wat geproduseer is deur 

stadige en vinnige pirolise van die onbehandelde afvalstroom. 

Die laaste deel van die studie het die ekonomiese lewensvatbaarheid van die 

implementering van pirolise van ’n afval tot energie perspektief by ’n papiermeul as 

alternatief tot afvalwegdoening by die opvullingsterrein, geassesseer. Dit het ’n minimum 

brandstof verkoopsprys (MFSP) van tussen 1.12 tot 1.48 $/kg tot gevolg gehad, wat twee tot 

drie keer groter is as die teikenwaarde van 0.65 $/kg teen huidige afval produksie koerse. ’n 

Studie op skaal het gewys dat ’n toename in grootte van huidige afval produksie koerse van 

tussen 540 en 1378 kg/hr tot 8700 kg/hr die MFSP grootliks verminder tot tussen 0.27 $/kg 

en 0.73 $/kg, wat vergelykbaar is met die teikenwaarde van 0.65 $/kg. Die addisionele afval 

benodig kan bereik word deur die kombinasie van afvalstrome vervaardig deur ’n meule en 

deur die afval vervaardig deur soortgelyke papiermeule in die omgewing te bekom. 

Die studie het gewys dat pirolise van papiermeulafval gekontamineerd met plastiek, 

’n lewensvatbare alternatief tot opvullingsterreine kan wees, met brandstofprodukte wat 

vervaardig word met ’n soortgelyke hittewaarde as tradisionele brandstowwe. Dit word 

aanbeveel dat, waar moontlik, die afvalstrome van nabygeleë industriële fasiliteite 
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gekombineer word om die skaal te bereik wat voldoende is vir ekonomiese 

lewensvatbaarheid. 
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 Introduction 

1.1 Contextual Background  

The energy demands of both developed and developing nations are expected to grow by 

approximately 50 % by 2040 [1]. The current supply of energy is dominated by the use of 

non-renewable energy (coal, oil, gas and nuclear), which accounts for approximately 86 % of 

the world’s energy demands [1] with the remaining 14 % being comprised of renewable and 

sustainable energy resources [1]. Concerns over global warming and the decreasing supply of 

fossil fuels has prompted the search for sustainable forms of energy and the optimal use of 

the current available resources. One abundant source of energy that is poorly exploited is 

industrial waste that is comprised of a combination of either organic waste, plastic or a 

variety of other contaminates. The continuous generation of waste by households and 

industrial processes is becoming an ever increasing problem in both developed and 

industrialized countries [2–4] as the disposal of this waste by landfilling is undesirable due to 

the negative environmental effects and the impact on global warming that the disposal of this 

waste at landfill sites has [5–7].  

 The paper recycling industry in South Africa produces large quantities of waste 

(3264-4827 tons/month per industrial site) that is currently disposed of by landfill and which 

can be grouped into two main categories, paper waste sludge (PWS) and rejects [4,8]. PWS is 

comprised predominately of lignocellulosic fibres that have been discarded in the 

manufacturing of paper due to short fibre length and poor fibre quality [9,10]. Rejects 

originate from the pre-sorting activities that occur before the paper machine as a result of 

using recycled fibres as feedstock and are comprised mainly of lignocellulosic fibres and 

plastics along with small amounts of other contaminates [3,4,9]. Due to increasing costs and 

Stellenbosch University  https://scholar.sun.ac.za



 

 

2 

 

the negative environmental impacts associated with landfilling [3,11], an alternative disposal 

technique is required.  

 Low energy dense industrial waste represents a substantial source of energy that can 

be converted into valuable chemicals or an energy dense fuel product (liquid or solid) via 

either thermochemical or biological processing [12–14]. Fermentation a type of biological 

processing, utilises biological catalysts (enzymes, microbes) to convert the polysaccharide 

fraction of the biomass component of industrial waste into fermentable sugars to produce 

ethanol [15–17]. Thermochemical conversion covers a wide range of processes such as 

combustion, gasification and pyrolysis. Pyrolysis involves the thermal degrading of waste in 

the absence of oxygen to produce energy dense products (oil/wax, char and gas) [18–20]. The 

conversion of PWS fibres via hydrolysis-fermentation has been shown to be a promising 

option for bioethanol production as the fibres are mainly comprised of cellulose [17]. Such 

conversion  of PWS produces a fermentation residue that contains significantly less cellulose 

and is enriched in lignin and plastic[11,21,22], making it an improved feedstock for further 

conversion via pyrolysis. The presence of plastic in the starting feedstock for pyrolysis is 

likely to improve the quality of the final fuel products, as plastic is hydrocarbon in nature, it 

is likely to decompose into a stable, energy dense majority hydrocarbon product. 

 The distribution of products from pyrolysis is largely dependent on the feedstock 

properties, type of pyrolysis process (slow or fast) and the final temperature of conversion 

[23]. An advantage of pyrolysis is its ability to convert both the lignocellulosic fibre and 

plastic components into useable products in a single process. Fast pyrolysis utilises rapid 

heating rates (> 250 °C/min) and short vapour residence times (< 30s) to promote the 

formation of a condensable product (oil/wax) [24], whereas slow pyrolysis utilises slow 

heating rates (< 30 °C/min) and long vapour residence times (up to 60 min) for the promotion 

of equal amounts of products from lignocellulosic biomass (char, oil/wax and gas) [23]. The 
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oil and char products obtained from biomass have calorific values of between 17 -23 MJ/kg 

(oil) and 18 - 30 MJ/kg (char) [10,25]. The pyrolysis of plastic typically generates limited 

amounts of char. The oil/wax produced from plastic pyrolysis has a calorific value of 

between 30 - 45 MJ/kg, depending on the type or mixture of plastic waste under investigation 

[26].  The char and oil products from pyrolysis can be used for electricity generation or as a 

means to provide process heat at industrial plants via co-combustion with existing fuel 

sources [27,28]. The gas produced is usually used onsite to provide the process energy 

needed for processing activities associated with pyrolysis (heat for drying and pyrolysis, etc.) 

[23,29–31]. The utilisation of industrial waste to produce energy products via pyrolysis or a 

sequential fermentation-pyrolysis approach, where the residue from fermentation is used as 

the feedstock for pyrolysis conversion, has the potential to be a viable form of waste 

mitigation. 

 Literature about pyrolysis of fibre plastic mixtures has predominately been studied as 

mixtures of lignocellulosic biomass or pure cellulose with a known amount of a single pure 

plastic polymer. These studies have shown that it is possible to improve the total liquid yield 

when compared to the stand alone pyrolysis of biomass or pure cellulose polymer with 

increases in the total liquid yield of between 10 to 30 wt.%, depending largely on the 

predetermined mixture under investigation [32–38]. Further more the addition of a pure 

plastic polymer has resulted in the increase in the quality of the condensable product with the 

energy density increasing by up to 25 MJ/kg [33-35]. Studies on the application of pyrolysis 

for the conversion of real world industrial waste streams containing a mixture of fibre-plastic 

in unknown proportions is limited along with the fermentation of industrial waste composed 

of fibre and plastic waste to bioethanol. This study will focus on the conversion of real 

industrial waste streams containing  unknown amounts of  lignocellulosic and plastic  waste  

that are produced from the various sorting and pulping operations at a paper mill that utilises 
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recycled fibre as a feedstock and that are currently disposed off at landfill sites, with the aim 

of producing fuel products via pyrolysis (fast or slow) or sequential processing (fermentation-

pyrolysis), where fermentation is used to produce bioethanol from the lignocellulosic 

component of the waste stream followed by pyrolysis (fast or slow pyrolysis) for the 

generation of energy products that can be used by a paper recycling mill to produces process 

energy therby reducing there dependence on fossil fuel resources. After which a techno-

economic evaluation of the different processes will be conducted to evaluate the economic 

viability of the process scenarios.  

 

1.2 Overall Aim 

The overall goal of this project is to assess the potential of using pyrolysis or a sequential 

processing route (fermentation-pyrolysis) as a means of converting various paper mill 

residues, that contain an unknown mixture of fibre and plastic, into valuable energy products 

that can be used by a paper mill to produce process energy. The performances in terms of 

product yields, product qualities and energy yields as well as the economic benefits of the 

different processing routes will be investigated for the ultimate conversion of the industrial 

waste feedstock to provide a useful alternative to disposal by landfilling. The objectives of 

this studies are presented in detail in Chapter 3 

1.3 Thesis Outline 

This dissertation is organised into 8 chapters, Chapter 2 presents the origin and composition 

of paper waste sludge and rejects, and discusses the potential of pyrolysis and fermentation 

processes for their conversion. Chapter 3 details the main objectives addressed in this study. 

Chapter 4 presents the results obtained from the slow pyrolysis of the waste streams used in 

this study as well as the energy conversion assessment. Chapter 5 details the results from 
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fast pyrolysis of the waste streams and the potential use of the respective pyrolysis products. 

Chapter 6 presents the results from the sequential processing of waste streams via 

fermentation-pyrolysis and the mechanisms affecting the process route. Chapter 7 presents 

the results from the techno-economic study, comparing some promising processing routes 

identified in this dissertation and the industrial viability of each. Chapter 8 provides the main 

conclusions and recommendations.  
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 Literature Review 

In this section, after a description of rejects the type of feedstock considered in this work, an 

overview of the literature on pyrolysis of paper waste sludge and plastic is provided.  The 

origin, physico-chemical characterisation and pyrolysis behaviour, along with the 

applicability of pyrolysis to convert said waste into fuel products, is discussed.  

2.1 Waste Feedstocks from Pulp and Paper Mills 

In South Africa, the pulp and paper industry contributed approximately 0.5 % to the South 

African Gross Domestic Product (GDP) for 2014 [1] and can be divided into two main 

categories based on the nature of the raw feedstock: virgin pulp (typically pulp from the 

harvesting of trees) and recycled fibre (pulp from the recovery of paper and other items from 

various recycling activities) [2].  

 Pulp and paper mills make use of either virgin pulp or recycled fibre for the 

production of a wide variety of products (tissue, board, paper) and other cellulose based 

products. After initial pulping, before the raw material reaches the paper machine, it 

undergoes a wide variety of processing (sorting, de-inking, bleaching etc) which is largely 

dependent on the type of end product (Figure 2-1). Sorting is done to remove poor unsuitable 

fibre and unwanted contaminates (plastics, metals, etc. present during recycling) from the 

pulped streams. Pulp and paper mills produce two types of main waste namely paper waste 

sludge and rejects. The first, paper waste sludge (PWS), is collected from the primary 

clarifier. PWS is comprised predominately of short degraded fibres that are unsuitable as a 

raw material for paper making as well as a variety of other contaminates (inks, glues, clays 

and inorganics) that may be used in the recovery process [3]. 
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Figure 2-1: Process flow of common paper manufacturing processes (adapted from 

Gottumukkala et al. [2])  

The second is a group of waste streams that can be classified as rejects. Rejects originate 

from paper mills that make use of recycled fibre (Figure 2-2) as feedstock and originate from 

the various processing activities that occur before the paper machine.  

 

Figure 2-2: Feedstock used at a fibre recycling mill 

Processing residues like PWS are discarded in the paper making process due to the poor 

quality of the fibre and due to the various contaminates such as plastic that is found in the 
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waste stream. Rejects, which can be seen in Figure 2-3, are currently disposed of by 

landfilling as the primary disposal technique [3,4]. 

 

Figure 2-3: Rejects from a paper recycling mill making use of recycled fibre as feedstock 

2.2 Waste from Fermentation of Lignocellulosic Material Process 

Residues from the hydrolysis-fermentation of lignocellulose can be considered a waste by 

product and is primarily comprised of lignin, unconverted sugars, ash and any other 

contaminates such as plastic, found in the industrial lignocellulosic waste streams [5,6]. To 

extract the maximum amount of value out of waste based feedstocks such as PWS and 

rejects, the utilization of fermentation residues as a starting material for pyrolysis combines 

two processing routes namely fermentation and pyrolysis to extract as much value from the 

waste feedstock.  

2.3 Components of Paper Waste Sludge and Rejects  

Rejects from a paper recycling mill, as can be seen in Figure 2-3, are readily available wastes 

and can be considered as second generation feedstocks for energy production which are 

comprised predominantly of lignocellulosic fibres and a wide variety of plastic waste [3]. 
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This section describes the chemical and physico chemical composition of the main 

components identified in the waste stream and are presented in Table 2-1 and Table 2-2.  

2.3.1 Lignocellulosic Waste 

Lignocellulose waste can be described as waste that contains fibres that originate from a 

biomass source and are composed predominately of cellulose, hemicellulose and lignin. As 

rejects, along with PWS are produced as a sludge from the manufacturing of different types 

of paper grades from recycled fibre, their fibres are expected to be similar in structure. As the 

literature of PWS is more readily available, it is referred to in the discussion of the fibre 

component of rejects.  

 Cellulose 

The main structural component of a plant is a polymer constructed from oxygen containing 

polymers called cellulose [7,8].  It typically comprises between 40 to 50 wt.% of biomass 

(Table 2-1). Cellulose is a glucose linear polymer that is linked by β – (1-4) glycoside bonds 

with polymerisation ranging from 500 to 15 000 glucose molecules (Figure 2-4). Strong intra 

and inter molecular hydrogen bonding connect hydroxyl groups together to form micro-fibril 

sheets consisting of groups of cellulose polymers to form highly ordered complex patterns 

that provide a plant cell wall with its crystalline structure [8,9]. 

 

Figure 2-4: Cellulose polymer structure (Source [10]) 
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 Hemicellulose 

Hemicellulose comprises between 10-30 wt.% (Table 2-1) of lignocellulosic biomass with its 

main function being to bind the cellulose micro-fibril sheets and is found between the cell 

walls of cellulose [11]. Hemicellulose is composed of a variety of monosaccharides such as 

D-xylose, D-glucose, D-mannose, D-galactose (Figure 2-5) [9,12], that form highly branched 

and amorphous molecules with ~ 150 linearly connecting monosaccharide units [12] through 

alpha and beta bonds between the various units.  

 
Figure 2-5: Example of structural arrangement of a) hemicellulose monomers and b) the 

partial structure of xylan (Source [10]) 

 Lignin 

Lignin is generally found in the cell walls of plants and acts as a resin binding the cellulose 

fibres together and comprises between 10 to 25 wt.% of biomass (Table 2-1). Lignin is an 

aromatic heteropolymer with monomers that consists of a three carbon chain attached to a six 

carbon ring called phenyl-propanes [11]. The specific nature of lignin varies greatly 

depending on the biomass in question and can be altered after the lignin has been isolated by 

a wide variety of pre-treatment techniques. The degree of polymerisation of lignin can vary 

Stellenbosch University  https://scholar.sun.ac.za



 

 

16 

 

between 450 to 500 units, which are mainly joined by carbon-carbon or carbon ether bonds 

(Figure 2-6)[13] 

 

Figure 2-6: Structure of common lignin monomers (Source [10]) 

 

Table 2-1: Composition of various biomass-based industrial wastes (db wt.%) 

Biomass Cellulose Hemicellulose Lignin Extractives Reference 

Corrugated paper 

waste sludge  

47.7 16.0 11.7 7.1 [10] 

Virgin pulp paper 

waste sludge 

55.7 16.8 21.0 3.6 [10] 

Sugar cane  44.2 23.8 22.4 9.7 [14] 

Corn cobs 35.9 38.1 16.1 9.5 [14] 
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Table 2-2: Physico-chemical characterisation of typical biomass daf wt.%:  

 Volatile 

Matter 

Fixed  

Carbon 

Ash HHV 

(MJ/kg) 

Reference  

PWS: Virgin Pulp 82.3 14.6 3.5 18.8 [15] 

PWS: Recycled fibre high ash  62.1 9.5 21.1 13.1 [15] 

Sugar Cane  82.2 7.5 10.4 17.6 [14] 

Corn Cobs 83.9 14.4 1.7 17.3 [14] 

2.3.2 Plastic Waste 

A plastic is a polymer comprised of thousands of repeating units called monomers,  with 

polypropylene (PP), polyethylene (PE), polystyrene (PS), polyethylene terephthalate (PET) 

and polyvinyl chloride (PVC) being the mostly commonly found plastics [16]. PE is a long 

chain aliphatic hydrocarbon composed of numerous ethylene monomers (Figure 2-7). PE is 

comprised mainly of volatile matter (VM; >90 wt.%) (Table 2-3) and has a HHV of between 

43 to 47 MJ/kg [17–19] (Table 2-3). PP is similar in structure to that of PE (Figure 2-7) with 

the PP monomer containing a branched methyl group compared to PE and is comprised 

mainly of VM (>90 wt.%,Table 2-3) with an  HHV between 39 to 46 MJ/kg depending on the 

source of PP waste [17,19,20]. PS is comprised entirely of VM (Table 2-3) and has a HHV 

between 38 to 41 MJ/kg [20–22]. Unlike PP, PS and PE, PET is not comprised mainly of 

VM, but rather a combination of VM (86.85 %) and FC (13.15 %) (Table 2-3) [23] and has a 

corresponding HHV of between 22 to 28 MJ/kg (Table 2-3) [24,25]. The lower HHV of PET 

is primarily a result of the oxygen molecule found in the PET monomer (Figure 2-7). PVC 

like PET, consists of a combination of VM (85.90 %) and FC (6.90 %), with a corresponding 
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HHV of 18- 20 MJ/kg (Table 2-3) and is not readily found in waste as it is primarily used in 

long term applications.  

 

 

Figure 2-7: Structure of commonly found plastics, a) Polyethylene, b) Polypropylene, c) 

Polyethylene terephthalate, d) Polyvinyl chloride, e) Polystyrene  

 

Table 2-3: Physico-chemical characterisation of plastic waste [18,19,23] 

Plastic  VM (wt.%) FC (wt.%) ASH (wt.%) HHV (MJ/kg) 

PS 99.80 0.00 0.20 42.0 

PE 99.70 0.10 0.20 43 - 47 

PET 86.85 13.15 0.00 22 - 24 

PP 99.19 0.11 0.70 39 - 46 

PVC 85.90 6.30 7.80 18 - 20 
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2.4 Biorefinery Concept 

Biorefinery can be described as the optimised process route/routes for the conversion of a 

feedstock from biomass origin, that utilizes various integrated processes and technologies, to 

extract the maximum possible value from the feedstock, which results in the simultaneous 

production of a variety of value adding materials, chemicals, and energy products [26,27]. 

The use of a biorefinery is not a new concept and is attracting significant research, with it 

mainly being evaluated in terms of product yields, economic viability and environmental 

impacts [2,28,29]. A number of studies investigating the valorisation of lignocellulosic 

biomass by fermentation and pyrolysis as well as an integrated approach, have highlighted 

the practical feasibility of such processing routes as well as the potential of the products to 

contribute to various market and energy sectors [6,28,30–33]. As rejects are produced in large 

quantities from a paper recycling mill, an integrated approach to its valorisation could 

provide a greater benefit to paper recycling mills than standalone technologies.  

2.5 Energy Conversion Techniques  

The conversion of waste material (biomass and plastic) to useful forms of energy can occur 

via two main processing themes namely thermochemical and biochemical conversion. 

Thermochemical conversion of waste encompasses three main technologies 1) gasification, 

2) combustion and 3) pyrolysis with all three primarily used to produce energy. Biochemical 

conversion can be grouped into two main categories namely fermentation and anaerobic 

digestion (Figure 2-8) and is used to produced either fuels for energy application or high 

value chemicals. Recent studies into the fermentation of the cellulose fraction of paper waste 

sludge have yielded promising results with ethanol concentrations of >40g/l being 

obtained[5,6] Thermochemical conversion techniques, such as pyrolysis, can convert a wide 

variety of low energy dense feedstock into more homogeneous, energy dense products. 
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Pyrolysis is far more versatile conversion technique than fermentation as it can process both 

lignocellulosic and plastic wastes [30,34].   

 

Figure 2-8: Thermochemical and biochemical processing routes of industrial waste (adapted 

from Menon and Rao [35]) 

Hydrolysis-Fermentation 

Hydrolysis-fermentation is the breakdown of the cellulose and hemicellulose (carbohydrate) 

components of biomass into sugars in the presence of enzymes (enzymatic hydrolysis) and 

the subsequent conversion of the sugars to ethanol by fermentation in the presence of yeast 

[36].  After fermentation, a residue is obtained containing significantly less carbohydrates and 

increased amounts of lignin and ash [10].  In the case where the waste stream contains a 

mixture of fibres and plastic, this residue will be enriched in plastics and lignin, improving its 

suitability as a source to produce energy products via pyrolysis. 
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Pyrolysis  

Pyrolysis is the conversion of waste material into condensable volatiles, char and non-

condensable gas by the application of heat (400 °C-600 °C) in the absence of oxygen [36,37].  

The nature of product qualities and yields from pyrolysis is determined by both the pyrolysis 

conditions applied and the composition of the waste material as this ultimately affects the 

thermal degradation behaviour of the feedstock intended for pyrolysis as described in the next 

section. 

2.6 Thermal Degradation of Lignocellulosic Biomass and Plastic 

Polymers 

The thermal degradation (studied under inert atmosphere) of biomass and plastic has 

distinctly different thermal behaviours which results in different operating regions for 

pyrolysis.  

2.6.1 Thermal Degradation of Lignocellulosic Fibre  

The thermal degradation of lignocellulosic waste biomass mostly occurs between 200 °C-500 

°C (Figure 2-9), with a maximum mass loss between 350 °C - 400 °C [9,15,38,39]. The 

degradation of the different constituents of lignocellulose biomass (cellulose, hemicellulose 

and lignin) occurs within this region and partially overlaps each other [9,11]. Cellulose 

pyrolysis is known to occur within a temperature range of 300 °C-400 °C, with a maximum 

mass loss rate between 320 to 350 °C (Figure 2-10) [9,40]. The hemicellulose degradation 

region (200 °C-290 °C)(Figure 2-10) occurs before that of cellulose with maximum mass loss 

rate at ~270 °C [9,41], while lignin has a degradation region between 200 °C-500 °C (Figure 

2-10) and a maximum mass loss rate between 360 °C - 420 °C [9,41,42]. As the structure of 

lignin, rich in aromatic rings, is significantly different to that of polysaccharides 
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(carbohydrates) (Section 2.3.1) the conversion of lignin can result in char yields of up to four 

times that obtained from both cellulose and hemicellulose [9].  

 

Figure 2-9: Thermal gravimetric curves (TG) and derivative thermal gravimetric curve of low 

ash paper waste sludge adapted from [15] 

 

Figure 2-10: The derivative thermogravimetric curve dTG of pure cellulose, hemicellulose 

and lignin adapted from [9] 

Stellenbosch University  https://scholar.sun.ac.za



 

 

23 

 

2.6.2 Thermal Degradation of Plastics 

The common plastics found in waste materials are structurally different from one another and 

exhibit different regions of thermal degradation that cover a wide range of 350 °C-500 °C 

(Table 2-4) [43–46], except for PVC where thermal degradation starts at a lower temperature 

of 280 °C (Table 2-4). The degradation ranges of PP and PE overlap one another with both 

having a maximum mass loss rate above 450 °C (Table 2-4) (Figure 2-11) and decomposing 

in a single step via random chain scission mechanism [47]. The thermal decomposition of 

PET occurs via β-hydrogen transfer, de-carboxylation and rearrangement mechanism that 

occurs in a single step [25,48], with a maximum mass loss rate occurring at ~427 °C (Table 

2-4). The thermal decomposition of polystyrene occurs via a free radical mechanism [49], 

which has a maximum mass loss rate around 440 °C (Table 2-4).  The majority of plastics 

decompose in a single step (Table 2-4) except for PVC, which has two decomposition steps. 

The first is a result of dehydrochlorination of PVC and occurs below 300 °C.  The second 

occurs at a temperature above 350 °C, with a maximum mass loss rate at 460 °C (Table 2-4) 

and is a result of the hydrocarbon backbone decomposing.   
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Figure 2-11:dTG of common waste plastics adapted from [48] 

 

Table 2-4: Thermal degradation ranges of waste plastics 

Plastic Heating rate  

(°C/min) 

Temperature  

Range (°C) 

Peak Temperature 1 Peak Temperature 2 Reference  

PE  10 410-520 505 N/A [43,44] 

PP 10 412-462 468 N/A [48,50] 

PET 10 383-477 427 N/A [51] 

PS 10 350-460 417 N/A [48,52] 

PVC 10 280-520 290 460 [53] 

N/A- not applicable  
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2.7 Conversion of Waste Components into Fuel Products  

This section will discuss the recent studies on the conversion of waste via pyrolysis and 

fermentation into products.  

2.7.1 Pyrolysis of Fibres  

The thermal degradation of lignocellulosic biomass results in the formation of three main 

components, a solid char product, a condensable fraction termed bio oil and a non-

condensable gas fraction.  The composition and fuel properties of these products are detailed 

in the following sections. There are two main types of pyrolysis techniques:  

Fast Pyrolysis  

Fast pyrolysis is mainly used for the production of bio-oil and occurs at rapid heating rates (> 

100 °C/min) and short vapour residence times (< 30s) [30].  

Slow Pyrolysis  

Slow pyrolysis employs slow heating rates (5 to 25 °C/min)  and long vapour residence times 

(1 to 60 min) and results in approximately equal distribution of the three products [30]. 

 Char  

Char obtained from the pyrolysis of lignocellulosic biomass is a solid product that is 

comprised mainly of fixed carbon, inorganic material (determined as ash during proximate 

analysis) and a small proportion of volatile matter. With most of the inorganic material (ash) 

present in the feedstock, remaining in the char after pyrolysis [15]. The organic fraction 

consists mainly of stable polyaromatic compounds [9,15,54]. Char has the potential to be 

used as a substitute for coal for the production of electricity or the supply of 

industrial/domestic heating applications, thus reducing the dependence on fossil fuels [55]. 
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 The production of char is favoured at low temperatures, between 200 °C–300 °C, and 

slow heating rates 5 to 30 °C/min [56–58], with yields in the region of 20 to 50 wt.% [59,60].  

The typical energy content of char varies between 18 MJ/kg to 32 MJ/kg, depending on the 

lignocellulosic biomass feed stock and pyrolysis conditions applied, with higher temperatures 

favouring the production of better calorific value chars due to the more extensive 

deoxygenation that occurs [56,59]. In case of high ash PWS (>20 wt.%) (Table 2-2) , a 

detrimental effect on the char HHV was observed, resulting in values sometimes below 10 

MJ/kg [59,61]. Besides their low calorific values, chars with a high ash content (> 50 wt.%) 

can potentially cause slagging and fouling during combustion in boilers [62], which would 

make them undesirable as a feedstock for energy generation. 

 Bio-oil  

Bio-oil from the pyrolysis of lignocelluloses is an organic liquid comprised mainly of a 

complex mixture of oxygenated organic compounds and water [63]. Bio-oil can be used 

either as an energy source or as a feedstock for the production of valuable chemicals [30,64]. 

The production of bio-oil is promoted (up to 75 wt.%) by application of rapid heating rates  

(>100 °C/min) and associated with reactor temperatures of 450-550 °C [14,15,65–67].  The 

application of higher pyrolysis temperatures typically results in further cracking of the 

volatile compounds and increased gas yields are observed. 

 A study on slow pyrolysis of low ash paper waste sludge by Strezov et al. [68] in a 

temperature range of 300-700 °C resulted in bio-oil yields between 11-36 wt.%, with the 

highest bio-oil yield of 40 wt.% being reported at 400 °C and 500 °C [68]. In a similar study 

by Lou et al. [60], PWS was slowly pyrolysed to 800 °C, resulting in a bio-oil yield of 24.4 

wt.% [60]. The slow and fast pyrolysis of PWS was compared by Ridout et al. [15,59] in a 

fixed and fluidised bed reactor respectively, with the highest liquid yield (59.9 wt.%) being 
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reported for fast pyrolysis compared to 35 wt.% obtained from slow pyrolysis [59]. The 

difference in yield was attributed to the production of condensable volatiles favoured by rapid 

heating rates (> 100 °C/min) and short vapour residence times (<30s).  

 Bio-oil has the potential to be a promising source of bio energy for transportation 

fuels, electricity and thermal energy [30,69,70].  Pyrolysis bio-oils derived from woody 

biomass typically have energy contents of between 17 MJ/kg-20 MJ/kg, which represents 

approximately 50 % of the energy content of conventional (diesel) fuels (~40 MJ/kg) [30].  

The energy content of bio-oil produced by slow and fast pyrolysis of PWS has been reported 

to vary from 10 MJ/kg for slow pyrolysis up to 21 MJ/kg for fast pyrolysis [59]. The poor 

energy content of the bio-oil derived from slow pyrolysis was attributed to the presence if 

oxygenated chemical compounds and the large fraction of water (> 50 wt.%) [59], which is 

generally observed with slow pyrolysis. Before bio-oil can be used as a substitute for 

conventional transportation fuels, it would require significant deoxygenation.  This can be 

achieved either by catalytic pyrolysis or hydro treating [30]. A study by Yang et al. [33] 

showed that bio-oil derived from PWS had sufficient energy to power a diesel engine, 

however, the presence of solids in the oil from PWS pyrolysis had a negative effect on 

combustion as a result of  clocking of the injection nozzles. 

 Gas  

The gas fraction produced via the pyrolysis of lignocellulosic biomass is generally comprised 

of carbon dioxide, carbon monoxide, hydrogen and methane. Gas phase being composed 

predominately of CO and CO2 when pyrolysis temperature is less than 400 °C producing a 

gas phase with a low energy content [71]. Increasing the temperature to above 600 °C 

promotes the formation of gas phase as secondary cracking reactions predominate at higher 

temperatures [63,72]. As the temperature of conversion increases, the formation of CH4 and 
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H2 are promoted in the gas phase increasing the HHV up to 12 MJ/m3 and represents 

approximately 22% of the energy content of natural gas (37 MJ/m3) [63]. The gas phase 

produced during pyrolysis is primarily combusted to provide the energy needed for process 

activities (heat for drying and pyrolysis oven, particle size reduction, etc.) [30,32,63].   

2.7.2 Pyrolysis of Plastic Waste  

The thermal degradation of plastic waste results in two main products, a condensable volatile 

fraction that can be either an oil, wax or a combination of the two, and a non-condensable gas 

fraction. The limited yield of a solid char product is due to the majority of waste plastic being 

comprised of VM, with only PET having a significant amount of FC (> 10 wt.%) that is 

likely to generate a char product (Table 2-3). As a result, only the oil/wax and gas fractions 

obtained from plastic pyrolysis are discussed below.  

 Condensable Volatiles from Plastic Pyrolysis  

The condensable volatile fraction from waste plastic pyrolysis consists primarily of aromatic 

and aliphatic hydrocarbons.  Depending on plastic composition and pyrolysis conditions, it 

can be found either as a liquid or as a wax.  The condensed volatile fraction can be used 

either as a feedstock for energy applications or the production of valuable chemicals, 

depending largely on the nature of the plastic feedstock. As the condensable fraction obtained 

from pyrolysis of waste plastic mixtures contains a complex mixture of chemicals in low 

yields that are difficult to isolate, its use as a fuel product is more favourable [73,74]. The 

production of condensable (liquid or wax) volatiles from the pyrolysis of individual plastic or 

a mixture of plastic waste has been effectively shown to be able to obtain a yield of the 

condensable phase of greater than 80 wt.% in a temperature region of 450 °C to 600 °C, with 

the condensed fraction having a calorific value of between 28 MJ/kg to 45 MJ/kg [75,76].   
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 The pyrolysis of PP and PE occurs in the region of 400 °C to 550 °C and produces a 

combination of liquid, gas and wax products, with the sum of liquid and wax yields up to 92 

wt.% being reported [21,77–79]. A study by Achilias et al. [77] using PE and PP as feedstock 

at a temperature of 450 °C produced a combined liquid and wax yield of 84.7 wt.% for PP 

and up to 96.8 wt.% for PE [77]. Similar studies conducted for both LDPE and HDPE 

resulted in liquid and wax yields greater than 85 wt.% for conversion temperature in the 

range of 450 °C to 600 °C [80,81], with the authors noting that the liquid fraction was 

composed mainly of paraffin and olefinic hydrocarbons [75,76]. As a result, the liquid 

fraction produced from PE/PP pyrolysis had a calorific value of between 39 to 41 MJ/kg 

[81,82]. The liquid yields from PET pyrolysis was reported to be in the region of 23 to 40 

wt.%, with the oil being comprised mainly of benzoic acid as noted by the review by 

Sharuddin et al.[81]. The low liquid yield as well as production of large benzoic acid content 

was attributed to the low volatile matter content of PET and the production of a significant 

gas yield.  Unlike PP and PE, the oil produced from PET has a calorific value of ~ 28 MJ/kg 

[81,83]. The differences in the calorific values of the oils are attributed to the increase in the 

oxygen content of PET which is clearly evident from its chemical structure as  PET contains 

an oxygen content of  33 wt.% [23](Figure 2-7). The pyrolysis of PS at temperatures in the 

region of 400  to 500 °C produced primarily an oil, which consisted mainly of styrene 

[84,85], and had a calorific value of ~43 MJ/kg [81].  As with PET, the production of a 

specific chemical was attributed to the stability of the benzene ring of the PS polymer 

(Section 2.3.2). 

 Gas  

The promotion of gas phase from pyrolysis of plastic is favoured at temperatures greater than 

550 °C, with yields between 5 to 20 wt.% [17,81,84] for PE, PP and PS, with PET producing 
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a gas fraction between 33 to 50 wt. % [21,81].  The composition of the gas phase depends 

largely on the type of plastic under investigation but is comprised mainly of methane, ethane, 

ethene, propane, propene, butane and butene for PP, PE and PS with the addition of CO2 and 

CO being produced for the pyrolysis of PET [76,81].  As gas produced from plastic pyrolysis 

is comprised of short chain hydrocarbons, it has the potential to be used as a source of energy 

for process activities.   

2.7.3 Co-pyrolysis of Biomass and Plastic Waste  

The co-pyrolysis of lignocellulose with plastic waste has mainly been studied as a means to 

improve the energy content of the condensable products from biomass pyrolysis [18,86,87].   

 Char  

The co-pyrolysis of lignocellulosic biomass with plastic waste has the potential to improve 

the energy content of the resulting char fraction, compared to char obtained from 

lignocellulosic biomass only.  Paradela et al. [88] noted improvements in the char from co-

pyrolysis of lignocellulosic biomass and plastic waste for conversion temperatures in region 

of 350 °C to 420 °C, having an energy content of 33 MJ/kg compared to that obtained from 

lignocellulosic biomass (15 to 22 MJ/kg) [88]. Similar studies reported improvements in the 

energy content of chars compared to that of lignocellulosic biomass, with an energy content 

varying between 28 MJ/kg to 35 MJ/kg [89,90]. These chars all have an energy content 

similar to that of coal that is currently used for power generation (ASTM D 388 coal ranking 

standard) and as such makes the chars obtained from co-pyrolysis potentially suitable for use 

in co-firing activities with coal [86]. 
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 Liquid  

The liquid produced from the co-pyrolysis of biomass and plastic waste has the potential to 

be a more suitable fuel than bio-oil produced by the pyrolysis of lignocellulose alone, with 

improvements in fuel properties for the liquid obtained from lignocellulose-plastic mixtures 

[86].  The majority of studies on co-pyrolysis with lignocelluloses have dealt with a certain 

plastic or predefined mixtures of plastics as co-feeds, with the main aim of improving the 

overall liquid yield from pyrolysis [86,90–92].   

 Jeon et al. [93], studied the slow co-pyrolysis of predefined mixture of PP and 

woodchips in 1:1 ratio and achieved a liquid yield of 63.1 wt.%, which represented an 

increase of 23.8 wt.% compared to the oil obtained from pyrolysis of woodchips alone [93]. 

A similar study containing a mixture of plastic waste (39 wt. % PE, 12 wt. % PS, 19 wt. % 

PP) and pine resulted in an increase of the liquid yield by ~21 wt.% compared to pine alone.  

Similar studies in literature have reported increases in the liquid yield when plastic is mixed 

with lignocellulose in 1:1 ratios and are summarized in Table 2-5.  

 

Table 2-5: Summary of recent studies on co-pyrolysis of biomass and plastic waste [86] 

Type of material T (ºC) Liquid Yield 

(wt.%) 

Energy Content (MJ/kg) 

Biomass Plastic  Biomass 

alone 

Mixture Biomass Mixture (1:1) 

weight ratio 

Palm Shell PS 500 46.13 61.63 11.9 38.01 

Potato 

Skin 

HDPE 500 23 39 32.0 45.6 

Pine 

Residue 

Plastic 

waste  

PE:56% 

PS:17 % 

PP: 27% 

400 32 53 20.0 45.0 
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 The co-pyrolysis of plastic with lignocellulose has proven to be effective in improving 

not only the quantity of the liquid product, but also the fuel quality, compared to that obtained 

from lignocellulose.  As discussed in Section 2.7.1, the oil produced from the pyrolysis of 

lignocellulose has an energy content between 17 MJ/kg to 20 MJ/kg and is a result of the 

high oxygen and water content of the oil. The improvements in the energy contents of the oils 

derived from co-pyrolysis of lignocellulose and plastics can clearly be seen in Table 2-5.  A 

remarkable increase in the energy content of the oils, up to ~46 MJ/kg, can be achieved.  The 

improvement in the energy content was mainly attributed to the increase in the hydrocarbon 

content of the oil, derived from plastics pyrolysis.  A recent study by Onal et al. [94] on the 

co-pyrolysis of almond shell and PE resulted in an increase in the H/C ratio from 1.60 to 2.28 

and a corresponding decrease in the O/C ratio of 0.33 to 0.035 of the oil product. The author 

noted that the increase in the H/C ratio was likely to result in an increase in the energy 

content of the oil compared to the oil obtained from the pyrolysis of biomass [94] and is in 

agreement with the results in Table 2-5.  

 Gas  

The production of gas in co-pyrolysis of plastic and lignocellulosic biomass, as in the 

pyrolysis of the individual components is favoured at high temperatures and is typically in the 

region of 10 wt.% to 23 wt.% [88,95].  The co-pyrolysis of lignocellulose and plastic 

mixtures resulted in a gas fraction having a higher HHV than that of lignocellulose-derived 

gas, which was due to the increase in the presence of hydrocarbon in the gas fraction. Sajdak 

& Muzyka [95] studied the co-pyrolysis of pine wood and PP, which resulted in the gas 

fraction having an  HHV of 24.20 MJ.m-3 compared to 17.00 MJ.m-3 for the pyrolysis of pine 

wood. This gas fraction produced from the pyrolysis of plastics is a much more valuable 

energy source than that derived from biomass and has the potential to not only be used to 
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provide the energy needed by pyrolysis and its associated process activities but also to 

provide heat needed for other process activities at an integrated industrial site.  

2.7.4 Fermentation of Paper Waste Sludge  

As the fibre component waste stream described as rejects is similar to that of PWS the 

fermentation of behaviour of PWS is discussed in the following section. The fermentation of 

PWS, namely primary clarifier sludge, has found an increasing amount of attention as a 

potential waste valorisation route. The production of bioethanol via fermentation of such 

second generation feedstocks is attracting increasing amount of attention as a possible 

alternative to fossil fuels for transportation [96,97]. Fermentation is the process whereby the 

cellulose and hemicellulose component of the biomass is broken down in the presence of an 

enzymatic catalysis to form sugars which can be converted to a variety of fuels or speciality 

chemicals (Figure 2-8) [98]. The production of bioethanol via fermentation can be achieved 

by following one of three main processing routes, with the most commonly occurring route 

being Simultaneous saccharification and fermentation (SSF) described below and represented 

schematically in Figure 2-12. 

Simultaneous saccharification and fermentation (SSF): Is the process whereby cellulose 

component is hydrolysed to form sugars in the presence of an enzyme and subsequently 

fermented in the presence of microorganisms to form ethanol in one integrated step [99]. SSF 

is essentially a two part process occurring simultaneously. The first part involves the 

hydrolysis of the cellulose component to form glucose. The second is the conversion of the 

formed glucose into ethanol which occurs immediately upon the formation of glucose from 

the first step. SSF is said to result in higher yields of ethanol as it has the ability to overcome 

the inhibitory effects that occur during separate hydrolysis and fermentation (SHF)as a result 

of glucose accumulation [98,99] 
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Figure 2-12: Schematic of chemical pathway of simultaneous saccharification and 

fermentation (SSF) process (redrawn from Lynd et al. [98])  

 One of the main concerns associated with the fermentation of paper mill waste is the 

mass and heat transfer limitations that are a result of ineffective mixing, in particular at high 

solids loading of > 20 wt.% [96,100]. As paper mill waste has a high water holding capacity 

of between 6.6 to 8.6 g water /g paper mill waste [5,96], there is a need for large agitation 

speeds (1500 rpm) [5] in order to overcome these limitations. Fed batch fermentation of 

paper mill waste has been shown to be an effective method compared to batch fermentation 

to overcome the mass transfer effects associated with water holding capacity of PWS and 

high solids loading (>20 wt.%) fermentation. As hydrolysis occurs, the cellulose component 

is converted into sugars which in turn results in more free water being available, thus 

reducing the viscosity of the fermentation broth. Boshoff et al. [96] studied the fermentation 

of corrugated recycled paper mill waste at solid loading of 27 wt.% and 11 FPU in feed batch 

culture with feeding occurring every 12 hours in 3 wt.% intervals and managed to achieve an 

ethanol concentration of 46 g/l (Table 2-6) which is above the threshold value of 40g/l for 

economic viability [100]. One of the main advantages of high solids loading fermentation is 

that the concentrations of substrate and products are increased and can result in more 

desirable final ethanol concentrations of > 40 g/l. Increasing the ethanol concentration has the 

potential to lower the associated water and energy input of an industrial facility and 

furthermore can reduce the capital and production cost as downstream processing operations 

can be operated in a more efficient manner [101]. 
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Table 2-6: Summary of process parameters for common paper mill waste 

Substrate Solids loading 

(g/l) 

Enzyme dosage 

(FPU/g dry 

substrate) 

Ethanol 

concentration 

(g/l) 

Reference 

Kraft 180 15 34 [96] 

Corrugated 270 11 46 [96] 

Recycled 208 15 48 [6] 

 

2.8 Implementation of Pyrolysis at a Paper Recycling Mill 

Process options need to be assessed to determine a feasible route for the valorisation of paper 

mill waste, with the ultimate goal of reducing the amount of waste dispose by industries at 

landfill sites as well as being more profitable by producing a marketable product. Potentially 

processing options can be assessed by means of a techno-economic analysis whereby a 

process simulation is first generated using simulation software such as Aspen Plus ® 

[102,103]. Some examples using this approach in the context of thermochemical processes 

can be found in literature. Nsaful et al. [104] studied the pyrolysis and combustion of sugar 

cane bagasse for energy production at a typical South African sugar mill at a total capacity of 

41 dry metric tons/h. Noting that the char produced along with a portion of the oil needed to 

be used to supply energy demand of the sugar mill and pyrolysis plant, resulting payback 

period and internal rate of return (IRR) of 17 years and 13.8 % respectively. Similarly Yang 

et al.[102] and Onarheim et al. [105] simulated an integrated approach of combined heat and 

power generation, where a different economic evaluation approach was taken to Nsaful et al. 

[104]. Both Yang et al. [102] and Onarheim et al. [105] set a fixed IRR value in order to 
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calculate the minimum selling price (MSP) of their chosen marketable product, which was 

either a combination of heat and power or just power. Both researchers noted that the 

feasibility of such an integrated process depended largely on plant size and the cost of the 

biomass feedstock. With Onarheim concluding that the cost of the biomass feedstock needed 

to exceed 25 €/MWh in order for the plant to be profitable.  

 Economies of scale is a concept that utilizes scale to make a process more 

economically profitable (Table 2-7). By applying learning effects and changes in consumable 

cost, a future MSP for a desirable product can be modelled [106]. Several researchers have 

concluded that there exists a case for economic viability of producing either a fuel equivalent 

or combined heat and power scenario utilising pyrolysis by increasing the size of a plant 

(Table 2-7) along with the application of government incentives and the decrease in capital 

cost that can be associated with an increase in plant size.  

 

Table 2-7: The economic viability for different uses of pyrolysis process in relation to their 

plant size 

Process Size (Metric tons/day) Profitable Reference 

Combined heat and power 24  Promising [102] 

Combined heat and power 438 No [105] 

Fuel product 2000 Yes [107] 

Fuel product 72 No [108] 

 

2.9 Conclusions 

The pulp and paper industry currently produces large quantities of waste that are currently 

disposed of by landfilling. Due to mounting industrial and governmental pressure, alternative 
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disposal techniques are sought. This study will consider two alternatives to the current 

disposal technique namely 1) Pyrolysis and 2) Integrated fermentation-pyrolysis approach. 

These techniques are considered for the conversion of paper mill waste streams that contain 

both lignocellulosic fibre and plastic (Rejects). Recent research on the pyrolysis of paper 

waste sludge has proven promising for the production of fuel products, yet limited to little 

research has dealt with waste streams similar to rejects from paper mills. Indeed, the clear 

majority of research on fibre plastic mixtures has dealt with predetermined mixtures (with 

known proportions) of cellulose or a typical biomass and one or more chosen plastic 

polymers. Furthermore, the fermentation-pyrolysis of fibre plastic mixtures has not yet been 

studied as a pathway to increase the total waste conversion into fuel products 
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 Objectives  

The following research questions were  identified:  

• Is pyrolysis a suitable technology for converting the waste mixtures of interest into 

valuable fuel products? 

• Which pyrolysis process offers the best fuel properties and highest gross energy 

yield? 

• What effect does fermentation have on the end pyrolysis products and energy yield? 

• Which process scenario offers the best option for producing energy products at a 

paper mill? 

 

The aim and research questions were realised through the following objectives:  

1) To assess the technical ability of pyrolysis to convert waste mixtures containing 

biomass and plastic obtained from a paper recycling mill into useful or marketable 

fuel products 

Three samples were obtained from two different paper recycling mills located in different 

parts of South Africa, namely Mpact Springs and Mpact Felixton. These waste samples 

varied in the nature and amount of plastic present (~5 to 50 wt.%) and were subjected to 

different pyrolysis processes. Several characterisation techniques were used to study the 

thermal behaviour and fuel properties of the samples. Pyrolysis and the effect of plastic 

composition on product yields and energy contents were investigated. The literature on co-

pyrolysis has predominately looked at improving the condensable (liquid/wax) product 

quality by the addition of pure plastic polymer such as PP or PE to lignocellulosic fibre. This 

addition has resulted in the HHV of the condensable (liquid/wax) co-pyrolysis product 

increasing by ~15 to 25 MJ/kg compared to bio-oil obtained from lignocellulosic fibre which 

typically has a HHV in the range of 16 to 22 MJ/kg. The increase in the HHV of the 
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condensable product (liquid/wax) results in it having a similar HHV to that of heavy fuel oil 

(~40 to 45 MJ/kg) which is commonly used for power generation. The effect this addition of 

plastic has on the quality of solid char product is rarely reported. This objective specifically 

looks at producing fuel products from rejects from a paper mill that could be used to reduce 

mills’ dependency on fossil fuels and was achieved using bench scale pyrolysis testing as 

outlined in Chapters 4 and 5.  

 

2) Quantify the mechanisms between biomass and plastic components during pyrolysis 

and their impacts on product yields and energy efficiency. 

As rejects from paper mills contain a variety of different components such as lignocellulosic 

fibre and varying amounts of plastic waste and plastic composition, it is essential to 

understand how these two components in the waste stream affect the final quality of the 

pyrolysis product and what their effect on the different pyrolysis processes are in order to 

obtain a fuel product with an acceptable quality. This objective was addressed in Chapters 4 

and 5. 

 

3) To evaluate the capability of each pyrolysis process in an energy context at varying 

operating conditions and the potential use of the products in an energy context   

The performance of slow and fast pyrolysis was assessed at varying reactor temperatures 

characteristic of each process to produce a useful fuel product and the potential use of these 

products from an energy perspective. The energy conversion of PWS for slow or fast 

pyrolysis has been reported to be in the region of 32 to 41% for char and 17 to 39 % for bio-

oil. While this energy conversion for the oil from PWS is particularly low, that obtained from 

the pyrolysis of lignocellulosic biomass (such as agricultural residues) has been reported to 

be > 50%. As the pyrolysis of PP/PE plastic produces mostly a fuel product (yields of >70 
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wt.%) with a HHV similar to that of HFO (~ 40 to 45 MJ/kg), its energy conversion to a 

condensable fuel product is in the region of 70 to 90 % depending largely on the pyrolysis 

process conditions. The energy conversion of different pyrolysis processes from industrial 

waste streams like rejects from a paper mill into useful fuel products (solid/condensable) is 

the specific focus of this objective and is addressed in Chapters 4 and 5. 

 

4) Assess the ability of a fermentation processing route to convert the lignocellulose 

component of fibre-plastic mixtures into bioethanol 

Fibre plastic mixtures contain degraded fibre that can be used as a source to produce sugar 

that can in turn be utilised to make a marketable fuel product in the form of bioethanol via 

fermentation. After which, the residue left after fermentation is enriched in lignin and plastic 

which is expected to enhance the fuel properties of pyrolysis product. The fermentation of 

PWS which has a similar fibre content to that of rejects considered in this study has been 

extensively studied in literature with ethanol concentration being obtained between 30 to 45 

g/l depending largely on the origin and chemical composition of the PWS. This specifically 

addresses the production of bioethanol on a kilogram scale of certain waste streams described 

as rejects in this study and is specifically addressed in Chapter 6. 

 

 

 

5) Assess the performance of fermentation pre-treatment on final quality of pyrolysis 

product and its potential use as fuel product 

After fermentation, a residue enriched in lignin, plastic and ash is left that due to the 

conversion of the cellulose component to ethanol contains a reduced oxygen content 

potentially making it an improved starting material for pyrolysis. The increase in the plastic 
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and lignin content is expected to improve the quality of the fuel product and conversion of 

energy into final useful products and as such the quality of pyrolysis products compared to 

that from the raw material. Furthermore, the effectiveness of fermentation pre-treatment on 

the conversion of energy during pyrolysis is also evaluated. Recent studies on fermentation-

pyrolysis of PWS has resulted in only slight improvements (+5 MJ/kg) for condensable 

product and up to +10 MJ/kg for the char product. However, the additional production of 

ethanol has been able to add up to an additional 32% to the estimated gross energy 

conversion. This objective specifically looks to address the potential improvement reducing 

the carbohydrate content from certain waste streams described as rejects and its effect on the 

quality of the final fuel products. This objective was addressed in Chapter 6.  

 

6) Assess the economic potential of pyrolysis processing scenarios as an alternative 

waste disposal technique in terms of a pyrolysis plant annexed to a paper mill  

This objective specifically looks at the trade-off between economic and technical viability of 

annexing a pyrolysis plant to a paper mill as an alternative disposal technique to landfilling 

and what process parameters are important to overcome, in order to find an economically 

feasible solution. This objective is specifically addressed in Chapter 7 

 

 

 

.
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 Pyrolysis of Fibre Residues with Plastic 

Contamination from a Paper Recycling Mill: Energy 

Recoveries 

 

This chapter has been published in Energy conversion and Management 133 (2017) 110-117 

(ISI impact factor of 4.801) and is reproduced in this dissertation with the copyright 

permission from Elsevier Limited  

Title “Pyrolysis of Fibre Residues with Plastic Contamination from a Paper Recycling 

Mill: Energy Recoveries” 

Authors: Logan Jeremy Brown, François-Xavier Collard, Johann Görgens 

 

Objective of the Dissertation in this Chapter  

This chapter addresses objectives 1-3 of this PhD study. The aim of this chapter was to 

assess the technical ability of slow pyrolysis to convert a paper mill waste stream containing 

a mixture of fibre and plastic into useful fuel products (objective 1). Furthermore, the effect 

that the presence of plastic has on the quality of the final fuel product in relation to the 

different plastic compositions is discussed (objective 2). Lastly, the industrial application of 

fuel products in an energy perspective is discussed in relation to the final pyrolysis 

temperature (objective 3). 

 The slow pyrolysis of the three waste streams produced solid fuel product (char) with 

a calorific value of char up to 32 MJ/kg at pyrolysis conversion temperatures of < 425 °C. 

The production of condensable phase at temperatures of > 425 °C, resulted in an aqueous 

phase (comprised mainly of water, >75 wt.%) and an energy dense tarry phase (HHV up to 
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42 MJ/kg) being produced. As the aqueous phase is made up almost entirely of water its use 

as a fuel product was not consider as on an industrial plant, waste streams similar in nature to 

the aqueous phase in this chapter are sent to waste water treatment. The gross energy 

conversion (EC) to char (>80%) was maximised for all three waste streams at lower 

temperature of 300 °C. A shift in the EC was observed for increases in temperature to 550 °C, 

as full conversion of waste stream produced the largest yield of energy dense tarry phase 

(38.9 wt.%), but decreased the HHV of the resulting char products to between 16.7 to 20.9 

MJ/kg and as a result  EC of up to 33% for char and 55 % for tarry phase was obtained.  
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Abstract 

Pyrolysis is a promising technology for the production of marketable energy products from 

waste mixtures, as it decomposes heterogeneous material into homogenous fuel products.  

This research assessed the ability of slow pyrolysis to convert three waste streams, composed 

of fibre residues contaminated with different plastic mixtures, into char and tarry phase 

products at three different temperatures (300, 425 and 550 °C).  The products were 

characterised in terms of mass yield, higher heating value (HHV) and gross energy 

conversion (EC).  Significant amounts of hydrocarbon plastics in the feed materials increased 

the calorific values of the char (up to 32.9 MJ/kg) and tarry phase (up to 42.8 MJ/kg) 

products, comparable to high volatile bituminous A coal and diesel respectively.  For all three 

waste streams converted at 300 °C, the majority of the energy in the feedstock was recovered 

in the char product (> 80 %), while deoxygenation of fibre component resulted in char with 

increased calorific value (up to 31.6 MJ/kg) being produced.  Pyrolysis at 425 °C for two of 

the waste streams containing significant amounts of plastic produced both a valuable char and 

tarry phase, which resulted in an EC greater than 74 %.  Full conversion of plastic at 550 °C 

increased the tarry phase yield but dramatically decreased the char HHV. The influence of 

temperature on product yield and HHV was discussed based on the pyrolysis mechanisms 

and in relation to the plastic composition of the waste streams. 

Keywords: Pyrolysis, energy conversion, fibre, plastic, paper recycling mill 
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4.1 Introduction 

The continuous generation of waste from industry is becoming an increasing problem in both 

developing and industrialized countries [1–3].  The renewed drive towards a 

sustainable/green economy is promoting the mitigation of waste disposal by reuse and 

recovery as primary processing routes [4,5].  The paper industry currently produces large 

quantities of waste, which is commonly disposed of by landfilling. Such waste is unsuitable 

for use in paper manufacturing due to the poor quality of the fibre and contamination with 

plastic, metals and other contaminants.  The waste streams can be grouped into two main 

categories: paper waste sludge (PWS) and rejects [1].  Rejects originate from the processing 

activities that occur before the paper machine, where PWS is the waste that is left over from 

paper manufacturing using recycled fibres.  PWS is composed mainly of fibres that contain a 

relatively high amount of inorganics [6].  A previous study by Ridout et al. [7] considered the 

pyrolysis of PWS into fuel products.  While it was possible to produce an oil with a HHV of 

22 MJ/kg, the HHV of the char product was relatively low (22 MJ/kg) due to its large ash 

content [7].  Depending on the waste source, rejects consist of waste fibre and varying 

amounts of different plastics waste that are likely to increase the HHV of the waste stream 

[1,5].  The valorisation of mixed waste material by pyrolysis is finding increasing application 

as it has the ability to convert a wide range of mixed organic materials (biomass, plastic and 

tyres) into marketable energy products by thermally upgrading the raw heterogeneous 

feedstock into a homogeneous and more energy dense product.  The application of pyrolysis 

to fibre-plastic mixes from fibre recycling operations in the paper and pulp industry is the 

focus of the present study. 

 Pyrolysis is a means of thermally degrading a raw material in the absence of oxygen 

into a solid residue (char) and a volatile fraction.  The volatile fraction can be separated into 

two phases, i.e. a condensable fraction (pyrolysis oil) and permanent gasses. The performance 
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of pyrolysis for energy production depends largely on the energy content and mass yields of 

the products.  To date, the majority of research has considered the gross energy conversion 

(EC) as an indication of the efficiency of pyrolysis to convert one energy product (feedstock) 

into a combination of more useful, higher quality energy products (char, oil or gas) [8,9].  

The EC can be calculated based on an overall energy conversion for the process (all products) 

or based on the EC of target products, allowing one to optimise the product distribution to 

maximise the EC.  The EC from biomass pyrolysis for char and oil (ECchar + ECoil) is in the 

region of 60 % to 80 % for fast pyrolysis and 33 % to 60 % for slow pyrolysis [7–10].  In the 

case of fast pyrolysis the oil product contains the majority of the energy content [9] whereas 

in slow pyrolysis the objective is to increase the energy density of the char [7,10].  A 

drawback of fast pyrolysis is that it requires extensive pre-processing of the raw material 

which adds to the overall energy requirements of the process [11].  The gas produced from 

pyrolysis is generally not targeted as a product because maximising gas yield requires higher 

conversion temperatures (> 600 °C) compared to those required for char and oil and due to 

transport issues.  As a consequence, gas is used primarily on site to provide process heat [12].  

When the process under investigation appears promising, the energy content of the gas needs 

to be taken into account, along with energy requirements for other process activities (heat 

needed for drying and pyrolysis, particle size reduction, etc.), to calculate the net energy 

conversion.  The majority of studies about co-pyrolysis of biomass/plastic mixtures have 

focused on the use of slow pyrolysis [13–15], with the main aim to improve the quality and 

quantity of the oil product [16,17].  

 The addition of plastic polymers to biomass has been considered an effective way to 

increase the total liquid yield and higher heating value (HHV) of the liquid phase by 20 % to 

40 %, while decreasing the char and gas yields [18,19].  Liquid yields as high as 69.7 wt.% 

have been reported from the slow co-pyrolysis of biomass and plastic [14,20–22], which is 
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significantly higher than that reported in literature for the slow pyrolysis of pure biomass 

streams [7,23] and is similar to the yields obtained from the fast pyrolysis of biomass 

[11,24,25]. 

 The purpose of this study was to evaluate the potential of slow pyrolysis for the 

conversion of fibre residues contaminated with plastic from a paper recycling mill into 

marketable energy products.  Particular attention was given to the fuel properties of the 

products (char and oil) and to the energy conversion assessment.  The relatively high water 

content of oil obtained from the conversion of biomass has a detrimental effect on the HHV 

of the pyrolysis oil.  By making use of an appropriate condensation train as shown in 

previous work [7], it is possible to fractionate the pyrolysis oil into two phases, an aqueous 

phase containing the majority of water produced during pyrolysis and an energy dense tarry 

phase containing the majority of the organic compounds.  In this study, a similar fractionating 

condensation system was used to improve the quality of the tarry phase product. 

4.2 Material and Methods 

4.2.1 Source and Preparation of Feedstock  

The waste streams used in this study were classified into the group described as rejects and 

were obtained from two different fibre recycling mills in South Africa. Two of the streams 

used in this study were sourced from the Mpact Springs mill and the third from Mpact 

Felixton mill.  Rejects are produced as a sludge from the manufacturing of paper and contain 

significant amounts of water (>50 %).  Each waste sample underwent a drying process in a 

tunnel greenhouse for a period of five days before being milled down to a particle size of 2 

mm using a Retsch SM 100 cutting mill.  In order to improve packing density inside the fixed 

bed reactor, the milled feedstock was pelletized.  This was done by rehydrating the dried 

milled material with 40 % water and passing it through ABC HANSEN pellet mill with a dye 
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size of 6 mm.  The pellets were subsequently dried at 60 °C until no further mass loss of the 

pelletized material occurred.  By pelletizing, an increase in packing density by a factor of two 

was achieved. 

4.2.2 Physico-Chemical Characterisation  

The moisture content of the as received samples was determined in accordance with TAPPI 

T264 om -88 standard procedure. A thermogravimetric analyser TGA/DCS 1 Star Systems 

Mettler Toledo was used for proximate analysis.  As observed in other studies [6,24], the 

fibres obtained from the paper recycling mills contained calcium carbonate (filler).  As a 

result, the proximate analysis of the pelletized recycling residues and char samples was 

conducted by making a modification to the standard ASTM E1131 testing method as 

suggested by Ridout et al. [24].  An additional step was added to the standard ASTM E1131 

where the sample was held at 650 °C for 5 minutes to drive off all the organic volatiles while 

avoiding the decomposition of CaCO3 which occurred from 700 °C (Eq1).  After this, the 

sample was heated to 900 °C and held there for an additional 5 minutes to ensure the full 

decomposition of CaCO3 occurred before the combustion of the fixed carbon.  As CaCO3 is 

an inorganic component unlikely to produce any fuel product, in the proximate analysis 

results (waste stream and char products) the percentage of CaCO3 was included in the ash 

content.   

𝐶𝑎𝐶𝑂3 →  𝐶𝑂2 + 𝐶𝑎𝑂 Eq 1 

 Ultimate analysis of the raw material was determined using an Elementar Microcrube 

ELIII.  This method estimates organic carbon based on the CO2 produced by carbon 

combustion.  As combustion occurred at temperatures above 700 °C, the decomposition of 

CaCO3 into CO2 was unavoidable.  A correction to the organic carbon content had to be 

made.  This was achieved by estimating the CO2 produced from the inorganic source by using 
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the weight percentage of CO2 produced from CaCO3 decomposition as measured by the TGA 

during the relevant step of proximate analysis.   

 HHVs of the feedstock samples and pyrolysis products were determined in 

accordance with the ASTM standard D5865-11a, using a Cal2K Eco Calorimeter, which was 

calibrated using benzoic acid.  Fourier transform infrared (FTIR) spectroscopy was 

performed on the raw materials using a Nicolet iS10 spectrometer operating in ATR mode 

with a diamond crystal. ThermoScientific OMNIC software was used for collection of data.  

This enabled the identification of different functional groups present in the sample.  Inorganic 

composition of waste streams was determined via X-ray fluorescence (XRF) analysis using 

an AXIOS PANalytical.   

 Thermal behaviour investigation was carried out using a thermogravimetric analyser 

TGA/DCS 1 Star Systems Mettler Toledo.  Experiments were carried out using 20 mg of 

sample from a temperature 30 °C to 900 °C with a heating rate of 10 °C min-1.  Nitrogen was 

used as the inert purged gas at a flow rate of 80 ml min-1. 

4.2.3 Pyrolysis Experiments  

 Bench Scale Experiments  

Pyrolysis experiments were carried out using a fixed bed reactor depicted in Figure 4-1.  The 

pyrolysis setup consisted of four distinct sections, 1) Pyrolysis oven used to provide heat of 

reaction, 2) 1m reaction tube made from quartz along with a quartz sample boat that housed 

12g of pelletized waste material, 3) A stepwise condensation train that consisted of 5 

condensers and 4) Nitrogen gas feeding system.  Technical grade nitrogen was fed at a flow 

rate of 0.5 L min-1.  Before each experimental run, the reactor was checked for leaks using a 

vacuum pump and subsequently purged with nitrogen for 10 minutes to maintain an oxygen 

free environment.  The first condenser (C1), kept at room temperature, was where a dark 
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brown viscous liquid/wax was collected, hereafter referred to as tarry phase.  Condensers 2 - 

3 (C2 and C3) were cooled using dry ice and were used to collect the aqueous phase.  In 

condensers 4 and 5 (C4 and C5), silica beads were placed to adsorb the aerosols remaining in 

the gas stream.     

 

Figure 4-1: Bench scale pyrolysis reactor 

 Pyrolysis experiments were carried out at 3 distinct temperatures (300 °C, 425 °C and 

500 °C) chosen based on the characteristic steps of conversion of the three samples 

(Section Thermal Behaviour).  The experiments were carried out at a heating rate of 25 

°C/min and once the desired temperature was achieved, held there for an additional 60 

minutes.  Once the experiment was completed, the reactor was cooled to 90 °C before 

dismantling took place.  All experiments were conducted in triplicate to ensure 

reproducibility of results and resulted in a standard deviation of char and tarry phase product 

yields of less than 2.5 and 3.3 wt.%  respectively. 
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 Product Yields 

The yields of pyrolysis products were calculated according to Equations 2 – 7 with Ychar 

standing for yield of char produced, Ytarry standing for the tarry phase produced, Yaqueous for 

the aqueous (watery) phase and Yaerosols for aerosols, mresidue  and mC1 to mC5 represents the 

mass of product collected in the sample boat (residue) and at certain points in the 

condensation system.  The water content of the aqueous phases produced from all three 

streams was determined in accordance with ASTM E203 standard, using a Metrohm 701 

Titrino Karl-Fischer Titrator, hydranal composite 5 titrant (Sigma –Aldrich).    

 

Ychar(wt.%)  = 
mresidue

msample

× 100 Eq 

4-2 

 

Ytarry(wt.%)  = 
mC1 

msample

× 100 Eq 

4-3 

 

Yaqueous(wt.%) = 
m C2+C3

msample

× 100 Eq 

4-4 

 

Yaerosols(wt.%) = 
m C4+C5

msample

× 100 Eq 

4-5 

 

Yoil (wt.%)= Ytarry+ Yaqueous + Yaerosols Eq 

4-6 
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Ygas  (wt.%)= 100 - (Ytarry+ Yaqueous + Ychar +  Yaerosols) Eq 

4-7 

 

4.2.4 Energy Conversion Assessment 

The energy conversion (EC) of the waste feedstock into pyrolysis products (char and tarry 

phase) was determined by Equation 8, mi and HHVi representing the mass and HHV of the 

respective pyrolysis products and msample and HHVsample representing the mass and HHV of 

the particular waste stream under investigation with ECi representing the energy conversion 

of chosen product.  

ECi(%)= 
mi×HHVi

msample×HHVsample

 ×100 
Eq 

4-8 

4.3 Results and Discussion  

A preliminary study using several characterisation methods in order to assess the composition 

of the waste streams was conducted.  Thereafter a detailed discussion on the fuel properties of 

pyrolysis products and a discussion on energy conversion of the pyrolysis experiments are 

presented.   

4.3.1 Waste Stream Characterisation  

 Thermal Behaviour  

The waste streams were subjected to a thermogravimetric study to identify the major 

components present in each sample.  As reported in literature [24,26] and observed in Figure 

4-2, lignocellulosic biomass and plastic have different devolatilization regions, with biomass 

decomposing mostly in the region of 200 °C – 400 °C and plastic between 400 °C – 500 °C.   
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 From visual observation of the waste streams, one of the waste streams contained a 

limited amount of plastic (W1), while the other two contained a significant amount (W2 and 

W3).  The derivative thermogravimetric (dTG) curve of W1 was comprised of one main peak 

occurring between 200 °C to 400 °C, with a mass loss of 64.43 wt.%, characteristic of the 

degradation of the fibre component [24,27].  This result confirmed that W1 was composed 

mainly of lignocellulosic fibres (Figure 4-2).  At a temperature greater than 400 °C, a further 

mass loss of 6.67 wt.% occurred and was attributed to further degradation of fibre and the 

conversion of the small amount of plastic present in the stream.  

 

Figure 4-2: Thermogravimetric (TG) and derivative thermogravimetric (dTG) curves of three 

waste streams 

 The dTG curves obtained from W2 and W3 were composed of two main peaks.  The 

first peak between 320 °C to 380 °C, characteristic of fibre decomposition, was significantly 

smaller than that of W1 and had associated mass losses of 45.14 wt.% and 43.64 wt.%, 

respectively.  The second observed peak between 420 °C to 500 °C was attributed to the 

degradation of the plastic component, corresponded to mass losses of 30.51 wt.% and 36.30 

0

10

20

30

40

50

60

70

80

90

100

0

0.05

0.1

0.15

0.2

0.25

150 250 350 450 550 650 750

M
as

s 
w

t.
 %

d
T

G
 (

w
t.

%
/s

)

Temperature (°C)

W1

W2

W3

Stellenbosch University  https://scholar.sun.ac.za



 

69 

 

wt.%, respectively.  Based on these mass losses and the fact that plastic is known to generate 

more volatiles during slow pyrolysis than fibres (> 90 wt.% vs 40-75 wt.%) [28,29], it is clear 

that fibres were the main component of both W2 and W3.  

 Due to the complex nature of the waste streams, the composition could not be 

accurately determined.  Together with fibres and common plastics found in waste (PP, PE, 

PET and PS), various other constituents were found to make up the waste sample (rubber, 

fabric, multilayer plastic, etc.).  Due to the various processing steps during recycling, 

particles were embedded in each other and could not be separated manually as illustrated in 

Figure A-1 (Appendix A).  As such, quantitative characterisation could not be achieved.  For 

both W2 and W3, the temperature of the peak corresponding to the main plastic fraction was 

480 °C, which is characteristic of polyethylene (PE) which has a degradation range between 

420 °C and 500 °C [30,31] and/ or polypropylene (PP) with a degradation between 400 °C 

and 480 °C [32,33].  While this peak was higher for W3, a small peak at 410 °C was also 

observed for W2.  Amongst the common plastics, the polymers known to degrade in this 

temperature region are polystyrene (PS) which has a degradation range between 350 °C and 

450 °C [30,34] and polyethylene terephthalate (PET) which has a degradation range between 

380 °C and 430 °C [35,36].  

 FTIR analysis (Figure 4-3) of the waste samples was conducted to identify 

characteristic functional groups and consider any differences between the plastics make-up of 

the samples.  The strong bands between 2900 cm-1 to 2800 cm-1 are attributable to stretching 

of aliphatic C-H bonds as a result of the presences of CH2 and CH3 groups and were a result 

of the waste sample containing either PP and/or PE [37,38].  The weak C-H peak of W1 in 

this region was consistent with the fact that the sample was comprised mainly of fibre 

residues as suggested by dTG (Figure 4-2).  The C-H peak in W2 and W3 was more 

prominent than that of W1 as a result of the sample having more CH2 and CH3 groups 
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confirming the significant presence of PE/PP, with the greater intensity for W3 confirming, 

as suggested by dTG analysis (Figure 4-2), that W3 was composed of more PE and/or PP 

than W2.  The band visible in W2 and W3 between 1750  cm-1 and 1700 cm-1 corresponded to 

that of a carbonyl group (C=O) and is characteristic of the band observed from PET [38].  

The difference in intensity of this peak between W2 and W3 together with the dTG curve of 

W2 where a peak was observed at 410 °C indicated that W2 contained more PET than W3.  

 

Figure 4-3: Fourier transform infrared spectroscopy spectra of waste streams 

 CaCO3 was known to be present in the fibres of waste streams from the manufacturing 

of paper as it is generally used as a filler and a pigment to whiten paper [24].  For the three 

waste streams, the small peak present in the range of 650 °C to 720 °C of the dTG curve 

(Figure 4-2) was characteristic of the degradation of CaCO3 in to CaO [24] (Eq 1). The 

presence of CaCO3 in the waste samples was confirmed during inorganic analysis by the 

detection of CaO (obtained by CaCO3 conversion, as explained in Section 2.2) as detailed in 

Section 3.1.2.  While the large amount of CaCO3 in some paper waste fibres (> 40 dry wt.%) 
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[6] compromises its use as an energy resource, its content in the waste streams studied in this 

work (< 5.2 wt.% based on CaO analysis) is acceptable. 

 Physico-Chemical Composition 

The results of the elemental, HHV and proximate characterisation of the three waste streams 

are presented in Table 4-1, Table 4-2 and Figure 4-4 respectively.  The proximate analysis 

results of W1 resembled those of certain PWS, with volatile mater (VM) (74.52 wt.%) and 

fixed carbon (FC) (10.80 wt.%) slightly lower than those usually reported for biomasses 

[24,26,39,40] and a higher ash content resulting in a relatively low HHV value of 16.3 MJ/kg 

(Table 4-2 and Figure 4-4).  W2 and W3 had a greater VM (79.29 wt.% and 85.08 wt.%) 

content compared to W1 (Figure 4-4), which was a result of the significant proportion of 

plastic present in the sample and more particularly of PE/PP, which are known to be 

comprised mainly of VM (> 95 wt.%) [41].  The C/O ratio of W1 (Table 4-1), close to 1, was 

typical of fibre with high polysaccharide content [24].  The C/O value of 3.1 for W3 was 

further evidence of the significant amount of hydrocarbon plastic in this waste stream. The 

intermediate C/O ratio of 2.1 for W2 was influenced by the increase in PET content of W2 

(C/O=1.9).   
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Table 4-1: Chemical characterisation of waste streams 

 W1 W2 W3 

Ultimate Analysis wt % (dry ash free basis)     

C 47.47 60.62 66.98 

H 6.74 9.97 11.16 

N 0.09 0.11 0.17 

S 0.13 0.17 0.13 

Oa 45.57 29.13 21.56 

Inorganic Content wt.%    

CaO 2.90 2.26 2.20 

Al2O3 1.50 1.36 0.90 

SiO2 3.19 3.83 1.06 

a determined by difference 
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Figure 4-4: Proximate analysis of the three different waste streams and the char products 

obtained from pyrolysis at different temperatures 

 

 The HHV results observed for W2 and W3 (Table 4-2) were consistent with the above 

interpretations.  Based on the HHV of hydrocarbon plastic PE (43 MJ/kg) and PET (24 

MJ/kg) [42], the higher HHV of 28.8 MJ/kg obtained for W3 compared to 22.5 MJ/kg for W2 

was expected. 

4.3.2 Pyrolysis Experiments  

The mass yields of pyrolysis products from the three different waste streams at different final 

conversion temperatures are presented in Figure 4-5, along with the corresponding product 

HHVs in Table 4-2.  The mass yields of the char and liquid products were determined in 

accordance with Equations 2 to 7, as described in Section Product Yields. 

 Char Yield and Characterisation 

 The highest yield for conversion of W1 to char (73.7 wt.%) was observed at 300 °C, 

where the waste stream was only partially pyrolysed.  The increased HHV of the char product 

(17.9 MJ/kg) compared to the feedstock (16.3 MJ/kg) was attributed to deoxygenation 

through dehydration reactions that predominated for the fibre component in a temperature 

range of 200 °C to 300 °C [43].  An increase in pyrolysis temperature at 425 °C and 550 °C 

resulted in more extensive conversion of W1 into volatile compounds (Section Liquid Yield 

and Characterisation) resulting in a decrease in char yield to 35.7 wt.% and 30.5 wt.% 

respectively (Figure 4-5), which was consistent with biomass samples that have a high ash 

content [44].  The increase in conversion temperature (425 °C and 550 °C) was expected to 

increase the C/O ratio of the char product and increase the resulting char HHV.  However, a 

decrease in HHV to below 17 MJ/kg was observed for both temperatures.   
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Table 4-2: HHV of waste feedstock and pyrolysis products (MJ/kg) 

 W1 W2 W3 

Waste Material 16.3±0.1 22.5±0.7 28.8±0.5 

Temperature (˚C) Char Tarry Phase Char Tarry Phase Char Tarry Phase 

300 17.9±0.2 - 27.1±0.1 - 31.6±0.1 - 

425 16.8±0.4 13.5±2.0 26.6±0.2 25.8±0.2 32.9±0.1 42.8±0.1 

550 16.7±0.2 16.8±1.0 18.6±0.1 30.9±2.3 20.9±0.7 40.4±1.6 

 

This trend, which was already reported for the pyrolysis of paper sludge with intermediate 

ash content [7], was mainly attributed to the large ash content of the char product 47.76 wt.% 

and 53.65 wt.% respectively (Figure 4-4).  

 A higher char yield was also observed during pyrolysis of W2 and W3 at 300 °C, 

compared to higher temperatures, similar to the trend for W1, as was a result of the feedstock 

being partially pyrolysed (Figure 4-5).  The increased HHVs of the char products at 300 °C 

for W2 (27.1 MJ/kg) and W3 (31.6 MJ/kg), compared to their respective feedstocks, was 

attributed to deoxygenation through dehydration reactions associated with the fibre 

component [43].  As evidenced by the thermal behaviour study (Figure 4-2), the conversion 

of the plastic component was limited at 300 °C, resulting in a char product still containing a 

substantial amount of VM greater than 70 wt.% (Figure 4-4).  A further increase in 

temperature to 425 °C significantly reduced the char yield (Figure 4-5).  The additional mass 

loss was due to the further decomposition of the fibre and partial decomposition of the plastic 

component, as confirmed by the tarry phase yield and HHV (presented in Section Liquid 

Yield and Characterisation).  The char yield decrease between 300 °C and 425 °C was more 

pronounced for W2 (-38.6 wt.%) than for W3 (-34.9 wt.%).  Moreover, it is worth noting that 
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the higher ash content of W2 compared to W3 always resulted in a higher char yield for W2, 

except at 425 °C.  This result was certainly due to the difference in the plastic composition 

between W2 and W3 (as detailed in Section Thermal Behaviour)  The higher content of less 

stable plastic (PET and PS) in W2 resulted in a higher degree of conversion at 425 °C than 

for W3.  

 

Figure 4-5: Product yields and product distribution of slow pyrolysis of waste streams 

The larger amount of unconverted plastic in the char product of W3 was confirmed by the 

higher VM content (61.27 wt.% for W3 vs 45.31 wt.% for W2).  For both W2 and W3, the 

HHV of the char product remained relatively constant as the temperature was increased from 

300 °C to 425 °C.  As the more extensive fibre deoxygenation and the increase in ash content 

had a positive and negative influence respectively, on the HHV, the influence of plastic was 

more difficult to predict, due to its partial conversion.  The higher degree of plastic 

conversion for W2 could explain the fact that the char HHV slightly decreased for this 

sample, while it increased for W3 due to the higher content of hydrocarbon plastic remaining 
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in the char.  A large decrease in the HHV of the char prepared at 550 °C were observed for 

both W2 and W3, with energy contents of 18.6 MJ/kg and 20.9 MJ/kg respectively.  This was 

a result of the full conversion of the hydrocarbon plastic component of the sample leaving 

behind a char containing a small amount of VM (6.18 wt.% -10.31 wt.%) and a large ash 

content (36.46 wt.% – 50.29  wt.%) (Figure 4-4).  

 Liquid Yield and Characterisation 

 The condensable volatile fraction collected during pyrolysis experiments using the 

fractionation condensation system (detailed in Section Product Yields) resulted in two main 

products, tarry phase and aqueous phase.  The conversion of W1,W2 and W3 at 300 °C was 

mainly dominated by the dehydration of the fibre component and produced a single aqueous 

phase comprised mainly of water (> 75 wt.%) with the highest yield obtained for W1 (12.1 

wt.%), the sample with the highest fibre content.  When the pyrolysis temperature was 

increased to 425 °C and 550 °C, depolymerisation mechanisms and the production of organic 

compounds were promoted.  As a consequence a significant amount of tarry phase product 

was produced for W1 (25.1 wt.%) at 425 °C and (28.7 wt.%) 550 °C.  The small increase in 

the yield between 425 °C and 550 °C was due to the further degradation of the fibre residue 

and small amounts of plastic present in W1.  The HHV of the tarry phase of W1 represented 

that of typical bio-oil produced by slow pyrolysis [7], with a HHV of 13.5 MJ/kg at 425 °C 

and 16.8 MJ/kg at 550 °C.  

 A significant tarry phase yield was obtained for W2 (24.9 wt.%) and W3 (25.2 wt.%) 

at the temperature of 425 °C.  This was due to the substantial conversion of the fibre 

component and partial conversion of plastic component (Figure 4-2).  As the temperature was 

increased to 550 °C, further degradation of the plastic component occurred, resulting in tarry 

phase yields of 36.2 wt.% and 38.9 wt.% for W2 and W3 respectively.  

Stellenbosch University  https://scholar.sun.ac.za



 

77 

 

 The HHVs of the tarry phase obtained at 425 °C for W2 and W3 were 25.8 MJ/kg and 

42.8 MJ/kg respectively (Table 4-2).  The differences in the HHV of the tarry phase were 

attributed to the difference in the elemental composition of the waste streams (Table 4-1).  

The higher content of oxygen in W2 (Table 4-1) was likely to result in a tarry phase 

containing more oxygen than for W3 and thus a lower HHV.  The higher content of PET in 

W2 certainly contributed to this trend [41].  As the temperature was increased to 550 °C, the 

additional tarry phase was mostly produced from the full conversion of the PP/PE 

component, as the conversion of the fibre component of the waste stream was expected to be 

limited above temperature of 390 °C as usually reported in literature [43] and observed from 

the dTG curve of W1 (Figure 4-2).  As a consequence, a further increase in the HHV of W2 

(30.9 MJ/kg) was observed, while that of W3 remained relatively high (Table 4-2).  

According to literature, the HHV of pyrolysis oil produced from PP and PE is usually higher 

than 40 MJ/kg [45] .   

 As the aqueous phases collected in the fractionation condensation system at 300 °C, 

425 °C and 550 °C were comprised mainly of water >75 wt.%, it could not be considered for 

fuel application and only the tarry phase was considered for the EC study discussed in the 

next section.  

4.3.3 Energy Conversion Assessment  

The results of gross EC of streams W1, W2 and W3 are presented in Figure 4-6.  In this work 

as discussed in Section Energy Conversion Assessment, gross EC assesses the ability of 

pyrolysis to convert the stored energy in the raw material to either a solid (char) or an oil 

(tarry phase).  With regards to the gas fraction (not analysed in this study), it is usually 

combusted to provide the heat required for the pyrolysis process [11] and therefore not 
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included in the calculation of EC.  There are various scenarios for gross EC in which either a 

trade-off between char production or tarry phase production has to be considered.   

 The EC profile obtained for W1 was comparable with previous results reported for the 

slow pyrolysis of PWS [7].  For the highest char yield at 300 °C, an EC of 81.2 % was 

obtained.  The upgrading of the raw material into a more energy dense char product was 

limited and resulted in char HHV of 17.9 MJ/kg comparable with lignite A coal (according to 

ASTM D 388 coal ranking standard).  The increase in conversion temperature to 425 °C and 

550 °C did not improve the fuel quality of the char obtained (HHV of 16.8 MJ/kg and 16.7 

MJ/kg respectively) and produced a low quality tarry phase that had a HHV < 17 MJ/kg with 

associated EC of 20.8 % and 29.7 % respectively.  Based on these results and from an energy 

perspective, the conversion of W1 through slow pyrolysis is not recommended. 

 

Figure 4-6: Energy conversion (EC) of pyrolysis products 

 For W2 and W3 the EC analysis resulted in results that are more promising.  For 

pyrolysis at 300 °C, most of the energy content of the sample remained in the char product 
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(93.1 % for W2 and W3 83.8 % for W3), producing chars with HHVs of 27.1 MJ/kg for W2 

and 31.6 MJ/kg for W3.  Fuel products with properties comparable to those of commercial 

coals were produced at a relatively low pyrolysis temperature.  The energy content of the 

waste streams considered in this study represents approximately 10 % of the coal required to 

produce steam for the paper manufacturing process (personal communication with mill 

personnel) and as such the co-feeding of the pyrolysis products should have little impact 

when combusted with existing fuel sources in existing infrastructure at the mill.  As noted by 

Chiaramonti et al. [46], based on the high throughput rates in industrial boilers and blending 

at less than 10 wt.%, the co-firing of the char produced from W2 and W3 at 300 °C should 

have little to no effect on stability of the boilers and thus making it possible to utilize existing 

infrastructure for the co-firing of pyrolysis products [46].  For a pyrolysis temperature of 425 

°C, a shift in energy towards the tarry phase (28.5 % for W2 and 37.4 % for W3) occurred, 

while more than 45 % of the energy in the feedstock remained in the char for both W2 and 

W3.  Moreover, the HHVs of the tarry phases and char products were greater than 25 MJ/kg.  

In particular, the conversion of W3, the stream with the highest content of hydrocarbon 

plastic, led to an overall EC of 84.6 %, while producing a char with an HHV of 32.9 MJ/kg 

and a tarry phase with an HHV of 42.8 MJ/kg.  These products are comparable to those of 

traditional fossil fuels, in particular high volatile bituminous coals (HHV >28 MJ/kg) and 

diesel (HHV 44 MJ/kg).  The increase in pyrolysis temperature to 550 °C led to a further shift 

in the EC to tarry phase, which contained 49.7 % of the energy content the waste stream for 

W2 and 54.6 % for W3.  However, the increase in the energy content of the tarry phase also 

lowered the overall EC of W2 and W3 by 5.7 % and 16.7 %, respectively, and substantially 

decreased the HHVs of the char products (< 21 MJ/kg).  The highest EC of liquid products 

occurred at 550 °C, and has the potential to be utilised in heavy fuel oil (HFO) boilers for the 

production of steam.   
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4.4 Conclusions 

This study assessed the suitability of slow pyrolysis for conversion of fibre residues 

contaminated with plastic from a paper-recycling mill into valuable energy products.  The 

conversion of the waste stream containing negligible amount of plastic via slow pyrolysis is 

not recommended, as it produced poor quality fuel products with HHVs < 19 MJ/kg.  The 

conversion of the waste streams containing significant amounts of plastic at 300 °C and 

425 °C resulted in char and tarry phase products with remarkably high HHVs up to 26.6 and 

32.9 MJ/kg and 30.9 and 42.8 MJ/kg respectively.  The energy conversion of all three 

streams decreased at 550 °C, but favoured the production of tarry phase product at the 

expense of the quality of the char product (HHV <21 MJ/kg) and as such conversion at 550 

°C is not recommended unless a tarry phase product is specifically required for use in heavy 

fuel oil (HFO) boilers.  Final pyrolysis conditions should be chosen in such a way that careful 

consideration is given to the requirements and existing infrastructure of the facility. 
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Objective of the Dissertation in this Chapter  

This chapter addresses objectives 1-3 of this PhD study. This chapter specifically deals with 

the production of a condensable fuel product via fast pyrolysis (objective 1) and the effect 

plastic percentage and composition has on the quality of the final condensable fuel product 

(objective 2). The usefulness of pyrolysis products, specifically gas, to meet the energy 

demand of two of the main energy requirements (feedstock drying and heat for pyrolysis) is 

discussed. Furthermore, the net energy surplus after the two main energy requirements (heat 

for pyrolysis and drying) was met and was discussed in relation to the final pyrolysis 

temperature and waste stream composition (Objective 3). 

 The fast pyrolysis of the three waste streams produced energy dense (HHV up to 42 

MJ/kg) condensable fuel products with yields up to 53.6 wt.%, which was signifcantly higher 

than the yields obtained for the slow pyrolysis (Chapter 4) of the same waste streams. All 

three waste streams produced low calorific value chars (HHV of between 18 to 22 MJ/kg) at 
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the highest conversation temperature. Even those HHV were significantly lower than the ones 

produced at temperatures <550 °C, however, they were still similar to low grade bitumous 

and lignite coal. The highest estimate yield of surplus energy of between 10 to 26 MJ/(kg dry 

feedstock) after the energy demand of the pyrolysis process had been met, occurred at 

temperature > 450 °C. 
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Department of Process Engineering, University of Stellenbosch, Private Bag X1,Matieland 7602, South Africa 

Abstract 

Pyrolysis is finding increasing application as a tool for the effective management of industrial 

waste, as it can process a wide variety of heterogeneous feedstock into energy dense 

products. Inductively heated fast pyrolysis with heating rate of 250 °C/min was applied for 

conversion into energy products of three industrial waste streams from a fibre recycling mill, 

contaminated with plastic wastes into energy products. Experiments were carried out at three 

different temperatures (350, 450 and 550 °C) and the yields and energy contents of the char, 

oil, wax and gas products were determined. For all three waste streams, conversion at 350 °C, 

mostly concentrated the energy in the char, resulting in calorific values between 20.9 MJ/kg 

and 35.1 MJ/kg which is comparable to common bituminous coal used for power generation. 

Pyrolysis at 450 or 550°C promoted the formation of condensable volatiles (wax/liquid) with 

total yields of up to 59 wt.% being obtained at 550 °C, with the calorific value up to 41.7 

MJ/kg at temperatures ≥ 450 °C comparable to heavy fuel oil. The estimate net energy yield 

for the three waste streams ranged from 10 to 25 MJ/(kg dry feedstock) with the largest 

energy yield (25 MJ/(kg dry feedstock)) being obtained at temperatures ≥ 450 °C for the 

stream containing the largest fraction of hydrocarbon plastics.  

Keywords: Fast Pyrolysis, plastic, energy yield, fibre recycling, fibre 
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5.1 Introduction 

The renewed drive towards a low carbon economy by developing and industrialized 

economies is promoting the mitigation of waste disposal by reuse or recovery as alternative 

processing routes to landfilling [1,2]. The South African paper industry currently produces 

large quantities of waste (600 to 1200 tons/month) from the manufacturing of different grades 

of paper from recycled fibres, and can be grouped into two main categories namely paper 

waste sludge (PWS) and rejects. PWS is typically obtained from the waste water treatment 

facilities of such mills, consists of degraded fibres and appreciable amounts of inorganics [3]. 

Rejects originate from processing activities that occur before paper machine and are 

comprised of degraded fibres (similar in nature to PWS) and varying amounts of plastic waste 

that differ in composition depending on the waste source used as feedstock [4–6]. 

 Thermochemical conversion techniques such as pyrolysis are finding increasing 

application in the mitigation of waste from industrial processes as they have the ability to 

convert a heterogeneous waste into a homogenous, energy-dense product [4,7]. A previous 

comparison of slow, vacuum and fast pyrolysis for the conversion of low ash PWS (below 

8.5 wt.%) has shown that fast pyrolysis is the preferred processing option for the production 

of oil with yields of up to 60 wt.%, as it was possible to obtain fuel product with a higher 

heating value (HHV) of 22 MJ/kg compared to 10 MJ/kg produced from slow pyrolysis. The 

char product from slow and fast pyrolysis had an HHV of 20 and 22 MJ/kg respectively [8]. 

Fast pyrolysis is the process whereby the feedstock is heated rapidly (>150 °C/min) to the 

pyrolysis temperature and the resulting pyrolysis vapour is rapidly removed from the reaction 

zone, limiting secondary cracking reactions and promoting the production of liquid fuel. It is 

well accepted that the maximum yield of bio-oil (>75 wt.%) from lignocellulosic biomass is 

achieved upon subjecting the feedstock to pyrolysis at elevated heating rates (>150 

°C/min)[9], while the slow pyrolysis of biomass promotes the formation of char and/or 
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gaseous fraction [10,11]. The fast pyrolysis of plastic waste at temperatures > 450 °C, like 

biomass promotes the formation of a condensable product, which is either reported as oil, 

wax or a combination of both with yields in a range of 68 to 92 wt.% being obtained [12,13] 

 Addition of a pure plastic polymer to biomass in a 50:50 mass ratio has been shown to 

improve the mass yields (by 15 - 20 wt.%) and HHVs of liquid products (by 10 – 25 MJ/kg) 

from slow pyrolysis [14–16], with total liquid yields up to 69.7 wt.% being reported [17,18]. 

This is significantly higher than what is expected from the slow pyrolysis of lignocellulosic 

biomass (10-30 wt.%) [10,19] and similar to the yields reported for the fast pyrolysis of 

lignocellulosic biomass ( >60 wt.%) [20]. Our recent study [6] has shown that it is possible to 

obtain both viscous liquid and solid fuel product from the slow pyrolysis of fibre 

contaminated with plastic that have HHVs up to 40 MJ/kg, similar to conventional fuels [6]. 

However, even the yield of this energy dense oil/wax phase did not exceed 38.9 wt.% during 

slow pyrolysis. Since fast pyrolysis is known to promote the formation of the condensable 

volatiles, a higher yield of oil/wax can be expected with these feedstocks, compared to slow 

pyrolysis. To date, the majority of research on the pyrolysis conversion of mixtures of 

lignocellulosic biomass and plastic has focused on the slow pyrolysis of synthetic mixtures 

with known composition [21,22].  

 This study focused on the fast pyrolysis of industrial fibre-rich wastecontaminated 

with plastic from a fibre recycling mill and determined its performance of the waste 

conversion into condensable fuel products. The gross energy conversion (EC) has been 

regarded as a reliable indication of the ability of pyrolysis to transfer the energy in the 

feedstock into one or more of the pyrolysis products [23,24]. For fast pyrolysis of 

lignocellulose, the majority of the energy contained in the raw feedstock has been reported to 

be found in the liquid product (> 45%) [8,23]. The overall EC of char and bio-oil produced 

from PWS being in the region of 60-70%, which has been observed to be between 20-36% 
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higher than for slow pyrolysis [8]. The gas fraction produced from pyrolysis is generally not 

one of the targeted products as obtaining large gas yields requires processing temperatures in 

excess of 600 °C. Although its composition is often not determined, the gas fraction is 

generally considered to supply the energy needs for pyrolysis conversion or a variety of other 

on-site processing activities[25]. The gas produced from co-pyrolysis of biomass-plastic 

mixtures should be a more valuable source of energy compared to its biomass counterpart. 

The presence of polypropylene(PP) and polyethylene (PE) plastic in the waste mixtures is 

likely to produce more short chain hydrocarbons (C2-C4) [26,27] thereby potentially 

increasing the calorific value of the gas fraction and the amount of heat that it can provide for 

the pyrolysis process [20].  

 This study assessed the ability of the fast pyrolysis process utilising an inductively 

heated reactor at three distinct temperatures for the conversion of three different fibre-rich 

waste streams contaminated with plastic from a fibre recycling mill into useful energy 

products. The main objective was to optimise the yield of the condensable product (organic 

fraction) while assessing the gross energy conversion, with particular emphasis on the factors 

affecting the yields and energy content of the pyrolysis products and their potential uses. 
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5.2 Material and Methods 

5.2.1 Raw material preparation 

The waste streams used in this study were obtained from two different fibre recycling mills in 

South Africa. Two of the waste streams were obtained from the Mpact Springs mill and the 

other from the Mpact Felixton mill and can be classified into the group described as rejects, 

which comprised of lignocellulosic fibres, a significant amount of plastic waste (10 –50 

wt.%) originating mainly from pre and post consumer waste (food cartons, food packaging,  

plastic bags and cooldrink bottles etc ) and water (>50wt.%). Each waste stream underwent a 

drying process in a tunnel greenhouse for a period of five days resulting in a moisture content 

of between 2 to 5 wt.% before being milled down and subsequently pelletized, resulting in a 

2-fold increase in the packing density of the feedstock.  The physico-chemical characteristics 

of the feedstock are presented in Table 5-1 and discussed in detailed in Section 5.3.1. 

5.2.2 Analytical Characterisation Techniques 

The analytical techniques used to characterise the waste feedstock and pyrolysis products are 

described below. As observed in previous studies with paper waste material [3,4], fibres from 

the rejects contained significant amounts of calcium carbonate (CaCO3), which is primarily 

used as a filler in paper [4]. Calcium carbonate degrades into calcium oxide and CO2 (2.1-3.9 

wt.% as observed by TGA, see Table 5-1) at temperatures around 700 °C (Eq 5-1) [3,4]. As a 

result, an adjustment had to be made to the standard proximate analysis testing method 

(ASTM E1131) as suggested by Ridout et al. (2015). An additional step at 650 °C for 5 min 

was added to the standard testing method to determine the volatile matter content, while 

preventing the decomposition of calcium carbonate from occurring. 
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𝐶𝑎𝐶𝑂3 →  𝐶𝑂2 + 𝐶𝑎𝑂 Eq 5-1 

 Ultimate analysis of raw material was conducted using an Elementar Microcrube EL 

III and adjustment to the carbon content had to be made as the carbon content is measured 

based on the production of CO2 formed during combustion.  Based on the weight percentage 

of CO2 produced from CaCO3 as measured by proximate analysis, a correction was made to 

take into account the CO2 released from calcium carbonate during combustion, to determine 

the content of organic carbon. A Cal2K Eco Calorimeter was used to measure the calorific 

value of waste feedstock and pyrolysis products (solid and condensed) in accordance with 

ASTM D5865-11a. The water content of the aqueous phases produced from all three streams 

was determined in accordance with ASTM E203 standard, using a Metrohm 701 Titrino Karl-

Fischer Titrator, hydranal composite 5 titrant (Sigma –Aldrich). In order to study the thermal 

behaviour of the samples and compare their fibre and plastic proportions, thermal milligram-

scale study was carried out using a thermogravimetric analyser TGA/DCS 1 Star Systems 

Mettler Toledo. Experiments were carried out in triplicates using 20 mg of sample at a 

heating rate of 10 °C min-1 from 30 °C to 900 °C using nitrogen as the inert purged gas at a 

flow rate of 80 ml min-1.   

5.2.3 Fast Pyrolysis Experiments 

Pyrolysis experiments were carried out in an inductively heated stainless steel tubular reactor 

having an outside diameter (OD) of 110mm and a heated reaction zone of 450 mm depicted 

in Figure 5-1. Infrared (IR) temperature measurement was used to monitor the reactor 

temperature and was calibrated using a trial and error approach, where the reactor was heated 

while a metallic thermocouple was placed at the centre. The emissivity of the IR temperature 

measurement was adjusted until the IR temperature sensor and the metallic thermocouple 

read the same value. A mass of 30 g of waste feedstock was loaded into the reactor and then 
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heated rapidly (250 °C min-1 ± 5 °C min-1) to the desired reaction temperature for all three 

reaction temperatures (350, 450, 550 °C).  

 

Figure 5-1: Schematic inductively heated pyrolysis setup 

The reactor was continuously purged with nitrogen at 2.5 L min-1. This relatively high flow 

rate resulted in an average volatile residence time of ~30s. The evolved volatiles were swept 

from the reaction zone to a condensation system that consists of two condensers cooled to a 

temperature of 5 °C, a collection pot where a product composed of two phase (oil and wax) 

was collected (Figure 4-1) and an electrostatic precipitator (ESP) set at 12 kV where an 

additional wax product was collected. The oil and wax mixture collected in the condensation 

pot was separated from each other via decantation, then the oil product was decanted from the 

pot and filtered to ensure it was free of precipitate after which the wax product (in the pot and 

filtration residue) was removed and added together with that formed in the ESP. The non-

condensable gas fraction was collected continuously for the duration of the experiment using 
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5L tedlar bags. Sample were collected for a period of two minutes to allow the tedlar bag to 

fill up before being replaced and subsequently  analysed using gas chromatography (G.A.S. 

CompactGC 4.0) This method allows for the quantification of the main gas compounds 

produced during the whole experimental run. The instrument was calibrated using standard 

mixtures of calibration gas (Afrox) to determine the concentration of N2, CO2, CO, H2, CH4, 

C2H6, C2H4, C3H8 and C4H10. N2 was used as an internal standard to determine the yield of 

each gas compound. The HHV (MJ/kg) of the gas phase was calculated by using a weighted 

summed average of the HHVs of the individual gas species according to Eq 5-2, with Xi 

representing the yield of individual gas species in kg, mtotal gas representing the total yield of 

gas (kg) and HHVi (MJ/kg) the HHV of the individual gas specie. 

𝐻𝐻𝑉𝑔𝑎𝑠 =  
∑ 𝑋𝑖 × 𝐻𝐻𝑉𝑖

𝑚𝑡𝑜𝑡𝑎𝑙 𝑔𝑎𝑠
 

Eq 5-2 

 

Once an experimental run of 30 min was complete, the reactor was cooled to ambient 

temperature and the resulting components that comprised the system as depicted in Figure 5-

1 were weighed to determine the yield of char and condensed products. For certain 

conditions, the product collected in the collection pot of the condensation system was 

composed of two main fractions, a brown liquid oil phase and a brown wax phase. These 

fractions were separated from each other, weighed and termed oil and wax respectively. The 

ability of pyrolysis to convert a sample into another form of energy can be assessed in 

accordance with Eq 5-3.   

ECi(MJ/(kg waste feedstock)= 
mi×HHVi

msample

 ×100 
Eq 5-3 

Where mi and HHVi represent the mass and HHV of a specific pyrolysis product and msample 

represent the mass waste stream of particular interest. ECi represents energy content of a 

pyrolysis product relative to a kg of waste feedstock. The estimate energy surplus estimate 
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(ES) of pyrolysis can be calculated after the energy required for drying (Edrying) and pyrolysis 

(Epyrolysis) is subtracted from the energy stored in the pyrolysis products and is calculated 

according to Eq 5-4  

ES (MJ/kg waste feedstock) = Epyrolysis products - Edrying  - Epyrolysis Eq 5-4 

 

 Pyrolysis experiments were conducted in duplicates to ensure repeatability of results. 

For the 3 waste streams, the maximum standard deviation for char, oil, wax and gas was 3.32 

wt.%, 3.19 wt.%, 2.76 wt.% and 1.43 wt.% respectively and the resulting mass balance 

closure between 90 to 96 wt.%. 

5.3 Results and Discussion 

After a description of the raw material characteristics, the subsequent sections detail the 

results from fast pyrolysis experiments and are discussed in relation to final conversion 

temperature and plastic composition of the waste streams. After which, applicability of fast 

pyrolysis to industrial waste streams containing both fibre and plastic from a fibre recycling 

mill is discussed in terms of the estimate energy yield.  
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5.3.1 Raw material Characterisation  

The physico-chemical composition of W1, W2 and W3 is presented in Table 5-1 is described 

in detail elsewhere [6]. The derivative thermogravimetric (dTG) curve (Figure 5-2) of the 

three waste samples consisted of two distinct mass loss regions, corresponding to the 

devolatilization regions associated with lignocellulosic biomass (200 °C – 400 °C) and plastic 

(400 °C – 500 °C). Though plastic wastes components were identified by visual inspection in 

all of the 3 waste streams during sample preparation, the dTG of W1 was composed of one 

main peak (Figure 5-2), corresponding to the degradation of the fibre component, with an 

associated mass loss of 64.43 wt.%.  

 

Figure 5-2: Thermogravimetric (TG) and derivative thermogravimetric (dTG) curves of W1, 

W2 and W3 at a heating rate of 10 °C/min, with arrows pointing to the respective axes 

The chemical composition of W1 confirmed the stream was predominantly composed of 

fibres, with volatile matter (VM) content of 74.52 wt.%, C/O ratio of 1.04 and a relatively 

low HHV of 16.3 MJ/Kg (Table 5-1), which is similar in composition to low ash paper waste 

sludge [4,28,29].  
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Table 5-1: Composition of waste streams from paper recycling mill 

 W1 W2 W3 

Proximate (wt.%)db    

Volatile Matter  74.52 79.29 85.08 

Fixed Carbon  10.80 8.13 7.53 

aCO2  3.88 2.47 2.09 

Ash (900 °C) 10.80 10.11 5.30 

Ultimate Analysis(wt. %)daf    

C 47.47 60.62 66.98 

H 6.74 9.97 11.16 

N 0.09 0.11 0.17 

S 0.13 0.17 0.13 

O* 45.57 29.13 21.56 

C/O 1.04 2.08 3.11 

Energy (MJ kg-1)    

HHV 16.3 22.5 28.8 

* Determined by difference, db: dry basis, daf: dry ash free, aCO2 from CaCO3 decomposition, Total ash =CO2 + Ash(900°C) 

 The dTGs of W2 and W3 consisted of two main peaks, the first associated with 

decomposition of the lignocellulosic component being significantly smaller than for W1 with 

mass losses of 45.14 wt.% and 43.64 wt.% respectively. The second peak between 420 °C - 

500°C corresponded to the degradation of the plastic component [30–32] had associated mass 

losses of 30.51 wt.% and 36.30 wt% respectively. Due to the complex nature of the waste 

stream, the exact composition of the plastic fraction could not be accurately determined. The 

plastic peak occurring at 480 °C was characteristic of polypropylene (PP)/polyethylene (PE) 

with the peak for W3 being larger than for W2. A small peak at 410 °C was identified for W2 
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and corresponded to the degradation of polyethylene terephthalate (PET), as identified in our 

previous work utilising Fourier transform infrared spectroscopy [6]. The higher content of PP 

and PE in W3 resulted in a larger fraction of VM (85.08 wt.%) compared to W2 (79.29 

wt.%). The significant proportion of PET (C/O of 1.9) in W2 explained the C/O ratio of 2.08, 

much lower than for W3 (3.11). The HHVs of 28.8 MJ/Kg for W3 and 22.5 MJ/kg for W2 

were consistent with their plastic compositions, based on the calorific values of the main 

plastics identified in these waste streams (PE: 39- 45 MJ/kg, PET: 24 MJ/kg [28,33]).  

5.3.2 Char Yield and Characterisation 

The mass yields and HHVs of the char products obtained from pyrolysis of the three waste 

streams, are presented in Figure 5-3 and Table 5-2 respectively. Pyrolysis of W1, the sample 

mostly composed of lignocellulosic fibres, resulted in substantial conversion at 350 °C (char 

yield of 43.02 wt.%) (Figure 5-3) and a significant increase in the HHV of the char product to 

20.9 MJ/kg, compared to the W1 feed (16.3 MJ/kg; Table 5-2).  

Table 5-2: Higher Heating Value (HHV) of pyrolysis products (MJ/kg) 

 
W1 W2 W3 

Temperature (°C) Char Oil Char Oil Wax Char Oil Wax 

350 20.9±0.2 *n/a 29.6±0.4 6.2±2.4 *n/a 35.1±0.2 5.0±1.4 *n/a 

450 19.5±0.2 16.5±0.4 30.1±0.1 11.2±1.0 33.1±1.2 33.3±0.1 12.2±0.4 40.2±0.2 

550 18.4±0.3 16.4±0.5 21.2±0.3 13.5±0.9 31.3±2.5 21.7±0.1 15.0±1.0 41.7±0.2 

*W1 Oil at 350 °C was not determined (it did not combust), W2 and W3 wax component was not formed at 350 °C 

This can be attributed to the extensive deoxygenation reactions that predominate in 

lignocellulosic material between 250 - 350 °C [34]. A further increase in the pyrolysis 

temperature to 450 °C and 550 °C led to more extensive conversion of the fibre component 

into volatile compounds (Section 5.3.3 & 5.3.4), resulting in char yields of 32.38 and 26.72 

wt.% respectively, which are lower than what was reported for slow pyrolysis of similar 

streams [6]. This result was expected as the higher heating rate and shorter vapour residence 
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time inside the reactor limited the formation of secondary reactions, which contribute to char 

production [35]. Generally an increase in temperature above 350 °C is expected to increase 

the HHV of char as typically observed with biomass samples [36]. However, the increase in 

the conversion temperature to 450 °C and 550 °C during fast pyrolysis of W1 resulted in a 

decrease in the energy quality of the char product to 19.5 MJ/kg and 18.4 MJ/kg respectively 

(Table 5-2). This trend can be attributed to the increase in the ash content of the char products 

reaching up to 35.44 wt. % and 39.78 wt.% respectively[3,6]. Similar HHV evolutions were 

observed from the pyrolysis conversion of fibre mill waste, especially for feedstock with high 

ash content (> 20 wt.%) [8,29].  

 

Figure 5-3: Product yields from fast pyrolysis of W1, W2 and W3 

 Though W2 and W3 were characterised by a higher volatile matter content than W1, 

the conversion of these streams at 350 °C resulted in char yields of 4.04 wt.% and 14.88 wt.% 

higher than for W1 respectively. This was attributed to the difference in plastic content of the 
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waste streams as significant conversion of the plastic fraction only occurs at temperatures 

higher than 350 °C [30–32], as observed from thermogravimetric analysis (Figure 5-2). The 

increase in the HHV of the char product for W2 (29.6 MJ/kg) and W3 (35.1 MJ/kg) 

compared to starting feedstocks(22.5 MJ/kg for W2 and 28.8 MJ/kg for W3, Table 5-1) was 

attributed mainly to the conversion and deoxygenation of the lignocellulosic fibre component, 

with limited conversion of the plastic components (Figure 5-2). An increase in pyrolysis 

temperature to 450 °C decreased the char yields for W2 and W3 by 7.54 wt.% and 16.63 

wt.% respectively. This relatively moderate conversion is a result of further degradation of 

the biomass residue and partial conversion of plastic component. The increase in conversion 

temperature to 450°C resulted in the char HHV of W2 and W3 remaining relatively high at 

30.1 and 33.3 MJ/kg respectively. A further decrease in the char yield by 17.92 wt.% for W2 

and 23.95 wt.% for W3 (Figure 5-3) was observed upon an increase in temperature to 550 °C. 

This trend was associated with the almost full conversion of the plastic component into 

volatile fraction, which led to the formation of a char product containing limited amounts of 

PE/PP residue and increased ash content of 29.54wt % for W2 and 33.95 wt.% for W3, 

ultimately resulting in a significant decrease in the energy content of the char product (21.2 

MJ/kg for W2 and 21.7 MJ/kg for W3). 

 The application of char for use at a paper mill depends largely on the desired 

application of the product and the infrastructure at the mills. Chars produced from all three 

waste streams had HHVs ranging from 18 MJ/kg for W1 up to a maximum of 35 MJ/kg for 

W3 (Table 5-2).. Due to the relatively high ash content of the char product (up to 39.78 

wt.%), conversion at 550 °C had a negative effect on char HHV (18 to 22 MJ/kg) (Table 5-2). 

It must be noted that even though the char produced at 550 °C is of a substantially poorer 

quality than that produced at lower temperatures, its energy content was comparable to that of 

lignite/bituminous grade coal (ASTM D 388 Coal ranking standard), which is commonly 
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used in power generation. As the waste streams used in this study collectively only represent 

10 wt.% of the coal requirements for steam and power generation at the fibre recycling mill 

where the waste stream was sourced, co-firing of the char product should have little to no 

effect on the operation and stability of the boilers due to the high throughput rate associated 

with power and steam generation [37].  

5.3.3 Condensable Product (oil and wax) Yield and Characterisation 

For certain conditions, the condensable volatile fraction collected in the condensation system 

could be separated into two main products via decantation, namely an aqueous oil phase and 

a waxy phase of higher density. The conversion of W1 at 350 °C was dominated by the 

conversion of the fibre component which produced a single oil phase with yield of 42.55 

wt.%, comprised of a large proportion of water (~70 wt.%) resulting in a poor quality fuel oil 

(Table 5-2). An increase in the conversion temperature to 450 °C and 550 °C resulted in 

further conversion of the fibre residue and degradation of the small plastic component of W1, 

increasing the liquid yield to 50.81 wt.% and 52.77 wt.% respectively. These results are 

higher by 10 to 30 wt.% than what was reported for slow pyrolysis of similar waste streams 

and is attributed to the higher heating rate (250 °C/min) associated with fast pyrolysis 

compared to 25 °C/min for slow pyrolysis, which promotes condesable volatile formation via 

depolymerisation mechanisms [6,8]. The energy content of the oil obtained from W1 

converted at temperatures ≥ 450 °C was similar to that of the waste stream with an HHV of 

~16 MJ/kg (Table 5-2) [38]. 

 Due to the lower content of lignocellulosic fibre (Figure 5-2), conversion at 350 °C 

resulted in oil yields of 35.81 wt.% for W2 and 31.39 wt.% for W3 (Figure 5-3). A poor 

quality fuel product with HHV of < 7 MJ/kg was obtained. The increase in the conversion 

temperature to 450 °C and 550 °C decreased the oil yield to < 15 wt.% for W2 and < 10 wt.% 
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for W3 (Figure 5-3). The substantial decrease in the oil yield (-21.24 to -26.52wt.% for W2 

and -24.9 to -25.8 wt.% for W3) (Figure 5-3) can be attributed to the decrease in the 

production of pyrolytic water as evidenced by the decrease in the water content of the oil 

from 70 wt.% at 350 °C to between 40-48 wt.% for both W2 and W3. The application of 

higher heating rates  (> 250°C/min) associated with fast pyrolysis is known to limit 

dehydration reaction and promote depolymerisation mechanisms, which result in higher 

yields of organic compounds [34]. Consequently, the HHV of the oil phase increased to 

between 11.2 -15.0 MJ/kg for W2 and W3 (Table 5-2), which is lower than the oil generally 

produced from the fast pyrolysis of biomass (18 to 22 MJ/kg) [38,39]. This result could be 

linked to the presence of a wax product, as a result of interactions occurring between the 

condensable products. It is likely that some of the less polar compounds from fibres were 

absorbed by the wax compound, due to interactions with the hydrophobic compounds 

produced from plastic to form part of the viscous wax phase. The yield of viscous wax phase 

at 450 °C was 28.59 wt.% for W2 and 40.40 wt.% for W3 (Figure 5-3). The HHV of the wax 

product was found to be particularly high with values of 33.1 MJ/kg for W2 and 40.2 MJ/kg 

for W3 (Table 5-2). A further increase in pyrolysis temperature to 550 °C resulted in the 

further conversion of the plastic components and an increase in the yield of the viscous wax 

phase to 48.2 wt.% for W2 and 53.6 wt.% for W3 (Figure 5-3). This represents an increase of 

the organic-rich fraction by 12.0 wt.% and 14.7 wt.% respectively, compared to a previous 

study on the slow pyrolysis of the same waste streams [6], with the HHV remaining relatively 

high, 31.3 MJ/kg for W2 and 41.7 MJ/kg for W3 (Table 5-2). The difference in the HHV of 

the two products can be related back to the plastic composition of the feedstock with W2 

containing a larger fraction of PET than W3. The conversion of W2 is likely to produce a 

wax composed of more oxygenated and cyclic condensable compounds, as typical products 

from the pyrolysis of PET at similar temperatures are benzoic and terephthalic acids [40–42]. 
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The viscous wax produced from W2 is likely to have a lower HHV than non-cyclic 

hydrocarbons produced from PP/PE [42,43]. 

 

5.3.4 Gas Yield and Characterisation  

The gas yields, compositions and HHVs from the fast pyrolysis of three waste streams are 

depicted in Figure 5-3 and Figure 5-4. The conversion of W1 at 350 °C and 450 °C resulted 

in gas yields of 9.92 wt.% and 11.88 wt.% respectively. Due to the large presence of CO (2.4-

3.0 wt.%) and CO2 (7.5-8.5 wt.%), typical of lignocellulosic fibre [26], the energy content of 

the gas phase was rather low with an HHV of 2.8 MJ/kg and 4.4 MJ/kg respectively (Figure 

5-4). An increase in conversion temperature to 550 °C promoted the formation of C1 to C2 

hydrocarbons, usually reported as degradation products of biomass [26], while the presence 

of C3 compounds were likely from the degradation of the small plastic component [12,42] 

(Figure 5-2). Consequently, the HHV of the gas phase increased to 9.3 MJ/kg (Figure 5-4).  

 The yield of the gas phase for W2 and W3 at 350 °C was 9.35 wt.% and 4.47 wt.% 

respectively. As observed for W1, the gas phase was comprised mainly of CO and CO2, 

resulting in the energy content remaining rather low, 2.7 MJ/kg for W2 and 3.3 MJ/kg for W3 

(Figure 5-4). An increase in the conversion temperature to 450 °C increased the yield to 

11.03 wt. % and 7.58 wt.% for W2 and W3 respectively (Figure 5-3), while the HHV 

increased to 5.6 MJ/kg and 11.0 MJ/kg for W2 and W3 respectively. The large increase (+7.7 

MJ/kg) in the HHV of W3 (Figure 5-4) can be attributed to the presence of C3 to C5 

hydrocarbons (1.2 wt.%), as a result of the partial degradation of the PP/PE plastic 

component [12]. A further increase of +3.69 wt.% for W2 and +5.89 wt.% for W3 occurred at 

a conversion temperature of 550 °C (Figure 5-3) and was attributed to the more extensive 
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cracking of the plastic component that occurred at higher temperatures with associated 

increases in the gas HHV of W2 and W3 to 12.5 MJ/kg and 30.8 MJ/kg respectively.  
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Figure 5-4: Gas yield and higher heating value (HHV) from W1, W2 and W3 as a function of 

pyrolysis temperature 
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The large difference in the energy content can be related back to the plastic composition of 

the waste streams (Section 5.3.1). The presence of PET in W2 was likely to contribute to the 

production of CO2 and CO as the main degradation products, due to CO2 being the main 

component that occurs in the gas phase from the decomposition of PET during pyrolysis 

[12,44]. The larger PP/PE component of W3 was likely to produce more C3 to C5 

hydrocarbons [12,42]. This was confirmed by the composition of the gas phase of W2 and 

W3, with W2 containing 3.7 wt.% more CO2 and 1.8 wt.% more CO than W3, and W3 

containing 4.1 wt.% more C3 to C5 hydrocarbons than W2 (Figure 5-4). 

5.3.5 Application of Pyrolysis Products 

It is often considered that the gas produced during pyrolysis can be used as a source of energy 

to provide the necessary heat/energy required for pyrolysis or other on site activities [25]. 

Two of the main energy requirements of pyrolysis are 1) the energy required to dry the as 

received feedstock to an acceptable moisture content of < 10 wt.% (2.0-3.0 MJ/(kg feedstock) 

and 2) the heat demand of the pyrolysis process (~1.5-2.5 MJ/(kg dry feedstock)) for 

lignocelluloses feedstocks [20,25,45]). These typical values of process energy demands were 

utilised to estimate the estimate the energy yield of pyrolysis process considered in this study.  

In order to meet the heat demand of pyrolysis and drying, utilisation of the entire gas phase 

(energy content of 0.1 to 0.3 MJ/(kg feedstock),Figure 5-5) with up to 52 % of char product 

for W1, W2 and W3 at 350 °C would be required and resulted in an energy surplus of 4, 9 

and 15 MJ/ (kg dry feedstock) for W1, W2 and W3 respectively (Figure 5-5). Increasing the 

conversion temperature to 450 °C produced gas products with energy contents of 0.5, 0.6 and 

0.8 MJ/(kg feedstock) for W1, W2 and W3. As with conversion at 350 °C, utilisation of up to 

71, 37 and 30% of the char product would be required for W1, W2 and W3 respectively to 

meet the process heat demand of ~ 5 MJ/(kg dry feedstock), ultimately resulting in an 
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estimate energy surplus of between 10 to 25 MJ/(kg dry feedstock) (Figure 5-5). Increasing 

the temperature to 550 °C increased the energy content of the gas streams to 1.4 MJ/ (kg dry 

feedstock) for W1 and 1.8 MJ/ (kg dry feedstock) for W2. Even though the energy content of 

the gas phase increased for W1 and W2, it was still insufficient to meet the estimated process 

energy demand (Figure 5-5) with up to 74 % of char or 42 % of the oil being required for W1 

and 69 % of char or 21 % of viscous wax for W2.  

 

Figure 5-5: Energy transfer to pyrolysis products per kg of feedstock 

The large increase in the supplementation of char for W2 can be related back to its HHV 

(Section 5.3.2) with the HHV of the char decreasing by 8.9 MJ/kg upon an increase in the 

conversion temperature to 550 °C which can be associated with the increase in the ash 

content of the char product (Section 3.2). Even though a large portion of the char or 

condensable product was required to meet the energy demand there was still a surplus of 10 

and 17 MJ/(kg dry feedstock) for W1 and W2 respectively which can be used to supply the 

energy demand for further process activities.  The conversion of W3 at 550 °C resulted in a 
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gas phase with a rather high energy content of 4.1 MJ/(kg dry feedstock) (Figure 5-5) and can 

be related back to the composition of the waste streams (as discussed in Section 3.4), with 

W3 being the stream containing the largest fraction of hydrocarbon plastic (PP/PE). As a 

result, W3 conversion produced a gas stream rich in C2 to C5 (6.26 wt.%) hydrocarbons, 

reducing the amount of either the char or viscous wax that would be needed to be utilised in 

addition to the gas phase. As a result, an energy surplus of 25 MJ/(kg dry feedstock) was 

obtained. Estimates of the energy balance indicated that conversion of all three waste streams 

should occur at temperatures ≥ 450 °C as this is where the largest amount of excess energy 

(between 10 to 26 MJ/(kg dry feedstock)) was generated. The increase in the energy surplus 

because of an increase in temperature from 350 to 450 °C can be attributed to the production 

of less pyrolytic water as at lower temperature a portion of the bonds in lignocellulosic fibre 

are converted to water via dehydration mechanism. Increasing the pyrolysis temperature 

promoted the formation of the better quality fuel products (gas, viscous wax) which in turn 

contributed to an increase in the energy yield. However, when choosing a conversion 

temperature, one needs to consider the end application of the pyrolysis products.  If the 

products are to be used for process energy generation, then the existing infrastructure at the 

chosen site has to be taken into consideration.  
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5.4  Conclusions  

This study assessed the ability of fast pyrolysis to convert fibre waste from a fibre recycling 

mill contaminated with plastic into valuable fuel products, with the objective to maximise the 

overall useful net energy yield. The high heating rate > 250 °C/min promoted the formation 

of condensable volatile fraction with yields of up to 53.60 wt.% being obtained. The 

conversion of W2 and W3 streams, containing large proportion of plastic waste, yielded a 

viscous wax product with and HHV up to 41.7 MJ/kg at conversion temperatures ≥ 450 °C. 

An increase in conversion temperature to 550 °C promoted the formation of viscous wax 

phase at the expense of the quality of the char product (HHV < 22 MJ/kg). The estimate net 

surplus energy, available after the energy demand of the pyrolysis process had been met, 

increased with an increase in temperature for all three waste streams. With a net surplus 

energy of up to 25 MJ/(kg dry feedstock) being obtained at temperatures ≥ 450 °C for waste 

streams containing the highest percentage of hydrocarbon plastic. The conversion 

temperature of pyrolysis should be chosen in such a way that gives due consideration to the 

requirements and infrastructure of the site as condensable products should only be produced 

if they are not intended for co-feeding in refinery or for co-combustion in existing heavy fuel 

oil boilers.  
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Objective of the Dissertation in this Chapter  

This chapter specifically addresses objectives 4 and 5. All three waste streams used in this 

study were first subjected to fermentation screening to determine if they were a viable source 

to produce bioethanol (Objective 4) upon which only the streams showing potential for 

bioethanol production were chosen for further investigation (Objective 5).  

 All three of the waste streams were screened for bioethanol production in a shake 

flask and produced ethanol concentrations of 17.3, 20.9 and 20.5 g/l on gram scale at 15wt.% 

which corresponds to an glaucous conversion to ethanol of ethanol  51, 83 and 87 % for W1, 

W2 and W3 respectively. However, the streams that contained a large percentage of plastic 

caused clumping during fed batch fermentation due to the accumulation of the undigested 

plastic in the shake flask at a relatively high solid loading of 15 wt.% and can be seen in 

Appendix B. It was thought that this accumulation of plastic could be overcome in a larger 

scale reactor that provided better agitation. The formation of a plastic layer on top of the 
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fermentation broth (Appendix B Figure B3) occurred once the solids loading reached 10wt.% 

which prevented subsequent substrate feeds from reaching the fermentation broth.   As a 

consequence, only waste stream W1, was chosen for upscaling to 20 L fermentation reactors. 

The large scale fermentation experiment produced an ethanol concentration of 39.8 g/l at a 

solids loading of 27 wt.% and resulted in a gross energy conversion of 26.9%. Subjecting the 

fermentation residue to slow and fast pyrolysis produced an energy dense phase (HHV up to 

35.1 MJ/kg) with the highest yield up to 26.3 wt.% being obtained for fast pyrolysis process. 

The gross EC for both SP and FP for the individual pyrolysis products char and wax was the 

highest at the conversion temperatures that produced the highest yields of the individual 

products. 
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Abstract 

The production of different energy fuels (ethanol, char, wax and gas) from fibre waste 

contaminated with plastic via a fermentation-pyrolysis route was investigated. Fibre was first 

converted to ethanol by simultaneous saccharification and fermentation(SHF), achieving an 

ethanol concentration of 39.9 g/L. The residue, enriched in plastics, was subjected to slow 

and fast pyrolysis. With char yields of 78.8 wt.% for SP and 49.9 wt.% for FP, the gross 

conversion of energy(EC) to char product (92.3% and 65.8% respectively) was maximised at 

their respective lowest conversion temperatures. Increasing the conversion temperature 

promoted the formation of an energy rich organic phase (oil/wax) with a calorific value up to 

35.1 and 32.1 MJ/kg and a yield of up to 13.2 wt.% and 26.3 wt.% (based on residue mass) 

for slow and fast pyrolysis. The EC of the wax, 28.4 % and 51.8% was obtained at 550°C for 

slow and fast pyrolysis respectively.  

Keywords: Pyrolysis, fermentation, fibre, paper recycling, energy conversion 
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6.1 Introduction 

The potential of industrial waste to contribute to energy security, while reducing the disposal 

of waste sent by landfill, has renewed the interest in waste-to-energy technologies as 

alternatives to disposal at landfill sites [1,2]. The utilisation of industrial waste streams rich in 

lignocellulosic biomass represents a potential untapped source for the production of fuels, 

thereby reducing the dependency on fossil resources. Recently it has been demonstrated that 

the fermentation for the production of bioethanol is a promising route for the valorisation of 

lignocellulosic waste [1,3]. However, the fermentation of lignocellulosic waste leaves behind 

a significant amount of fermentation residues (FR) that are rich in organic content [1,4] 

making it a suitable source for thermochemical conversion into chemical or fuel products[5].  

 The paper industry currently produces large quantities of waste that can be grouped 

into two main categories, namely paper waste sludge (PWS) and rejects. PWS is comprised 

predominately of degraded fibre and is the waste that is generated after the paper machines. 

Rejects from paper mills that make use of recycled fibre as feedstock originate from the 

primary processing activities that occur before the paper machine and are composed of 

degraded fibre, plastic and other contaminates [1,2,6,7]. Paper waste sludge (PWS) has been 

shown to be an effective feedstock for the production of bioethanol [3,8] as the crystalline 

structure of the cellulose has been degraded by mechanical and chemical pulping during the 

manufacturing process, increasing the accessibility of the cellulose for enzymatic hydrolysis 

into sugar (glucose) [1,3]. Hydrolysis-fermentation can either be performed as simultaneous 

saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF). SHF 

leads to long process times and high utility costs as separate sterilization of the hydrolysate 

has to occur, whereas SSF has one integrate step for hydrolysis and fermentation [1,9]. As a 

result, it decreases the inhibitory effect on cellulose during enzymatic hydrolysis, thus 

increasing the final ethanol yield [10]. Recent studies on SSF fermentation of PWS have 
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reported ethanol concentration above the threshold value for economic viability of 40 g/l 

from low and intermediate ash PWS [1,3] at relatively high solids loading (>20 wt.%). Such 

conversion results in the formation of a residue with an increased lignin content, that can 

reach 34 – 39  wt.% (on dry ash free basis) [3].  

 As with PWS, rejects contain degraded fibres that can no longer be used in the 

manufacturing of paper board, making it a potential source for the production of bioethanol 

by SSF of the lignocellulosic fibre component. Based on the rejects composition, such 

conversion should leave behind a residue rich in lignin and plastics, making it suitable as a 

feedstock for further thermochemical conversion, such as pyrolysis. Pyrolysis is the means of 

thermally degrading a feedstock in a single step at temperatures generally in the range of 400-

600 °C and under inert atmosphere, into energy dense products (char, oil and gas). Recent 

studies on the pyrolysis of lignocellulosic fibre and fibre-plastic mixtures (< 10 wt.% plastic) 

from a paper recycling mill have generated oil products with relatively poor fuel qualities 

with HHV ranging between 12 MJ/kg to 20 MJ/kg [6,11]. In order to improve the properties 

of fuel products, a pre-treatment such as the conversion of the cellulose constituent to an 

additional fuel product (bioethanol) prior to pyrolysis, is expected to be advantageous, 

through the reduction of the content of polysaccharides rich in oxygen and the increase in the 

carbon content of the starting feedstock for pyrolysis. Previously, the addition of pure plastic 

to biomass in a 1:1 ratio was considered an effective way to improve the energy content of 

the final condensable (oil/wax) and non-condensable (gas) pyrolysis products [12]. 

 This study focussed on the sequential processing of lignocellulosic waste streams 

contaminated with plastic from a paper recycling mill by first subjecting the feedstock to 

fermentation to convert a fraction of the polysaccharides to produce ethanol as a 

commodity/energy product. Thereafter, the residue from fermentation was subjected to 

different pyrolysis processes to produce usable energy products. Mass yields and energy 
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contents of the various products were considered, in order to estimate the overall gross 

energy yield obtained from sequential processes. 

6.2 Materials and Methods 

6.2.1 Source and Preparation of Feedstock 

The rejects waste stream used in this study was obtained from a paper mill utilising recycled 

fibre as feedstock in South Africa. Rejects are primarily produced as a sludge from the 

various processing activities (pulping, etc.) that occur before the paper machine and contain 

significant amounts of water (> 50 wt.%). Samples were dried in a tunnel greenhouse (40 to 

45 °C) for a period of 5 days before being milled down to a particle size of 6 mm. The dried 

and fermentation residue samples are designated as W1 and W1-FR respectively. Sample 

intended for pyrolysis was further processed to 2 mm before being pelletized to improve the 

packing density inside the tubular reactors. This was done by rehydrating the sample with 10-

30 wt.% water and passing it through an ABC Hansen pellet mill with a die size of 6 mm. 

The pellets were subsequently dried at 65 °C until no further mass loss of the pelletized 

material occurred.  

6.2.2 Physico-Chemical Characterisation 

The moisture content of the as received samples was determined in accordance with TAPPI 

T264 om -88 standard procedure. The chemical composition of raw waste streams and 

fermentation residues was determined in accordance with National Renewable Energy 

Laboratory (NREL) standard procedure (TP-510-42618, 42622 and 42619). A 

thermogravimetric analyser TGA/DCS 1 Star Systems Mettler Toledo was used for 

proximate analysis. As observed in other studies [6,7,13], the fibre component of waste 

streams obtained from paper recycling mills contained a significant fraction of calcium 
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carbonate, which is primarily used as a filler in paper manufacturing. As a result, the 

proximate analysis was conducted by making a modification to the standard analytical 

technique ASTM E1131 testing method, in order to estimate the amount of CO2 released 

around 700 °C from calcium carbonate degradation, as described elsewhere [6]. Ultimate 

analysis of the raw material was determined using an Elementar Microcrube analyser. This 

method estimates organic carbon based on the CO2 produced by carbon combustion. As 

combustion occurred at temperatures above 700 °C, the decomposition of CaCO3 into CO2 

was unavoidable. Based on the determination of the CO2 produced from the inorganic source 

by using the weight percentage of CO2 (3.9 wt.%) [6] produced from CaCO3 decomposition 

as measured by the TGA during the relevant step of proximate analysis, a correction was 

made to determine the organic carbon content.   

 HHVs of the feedstock, fermentation residue and pyrolysis products were determined 

in accordance with the ASTM standard D5865-11a testing method, using a Cal2K Eco 

Calorimeter, calibrated using benzoic acid. Thermal behaviour investigation was carried out 

using a thermogravimetric analyser TGA/DCS 1 Star Systems Mettler Toledo. Experiments 

were carried out in triplicates using 20 mg of sample from 30 °C to 900 °C, with a heating 

rate of 10 °C min-1. Nitrogen was used as the inert purge gas at a flow rate of 80 ml min-1. 

6.2.3 Yeast Strain and Enzyme Cocktail  

Saccharaomyces cerevisiae MH 1000 was stored as glycerol stocks at -85 °C with 30 % (v/v) 

glycerol as cyroprotectant. Seed cultures for small and large scale fermentation were grown 

in medium containing per litre, 20 g glucose, 20 g peptone and 10 g yeast extract and 

incubated in an orbital shaker at 37 °C for 18 hours. Viscamyl flow (Danisco Genencor) was 

used as the enzyme for SSF experiments.   
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6.2.4 Fed Batch Fermentation 

Ethanol production was first screened on a gram scale in fed batch culture in 250 mL 

Erlenmeyer flask (100 mL working volume ) at enzyme dosage of 10, 15 and 20 FPU/gdS 

and final solids loading of 15 wt.% in order to determine a desirable enzyme dosage. The 

medium for fed batch SSF experiments consisted of 3g/L corn steep liquor and 0.62g/L 

MgSO4·7H2O. Initially 6 wt.% dry solids were added to media and autoclaved for 15 min at 

121 °C. The fermentation broth was inoculated with 5 % (V/V) S.cerevisiae seed culture, 

after which filter sterilized enzymes were added and incubated at 37 °C and 150 rpm. 

Subsequent feeds occurred every 12 hours in 3 wt.% intervals until the final solids loading of 

15 wt.% was reached.   

 High solids loading SSF fermentations were carried out at a solids loading of 27 wt.%  

in 20 L bioreactors (New Brunswick Scientific Edison, N.J, USA) with a final working 

volume of 10 L. Initial solids loading of 6 wt.%, similar to that in shake flask, was followed 

with further feedings of 3 wt.% every 12 h until the desired solids loading was reached. The 

bioreactors were inoculated with 500 mL (5% v/v) of S. cerevisiae seed culture together with 

the specified dosage of filter sterilized enzyme and were incubated for 156 h. The theoretical 

ethanol yield and concentration were calculated using Eq1 and Eq2:  

Theoretical maximum ethanol concentration = Solids fed (
g

l
) *Glucose Fraction*0.511 Eq1 

Ethanol Yield (%)=
Experimental ethanol concentration (

g
l

)

Theoretical max ethanol concentration (
g
l

)
 

Eq2  
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6.3 Pyrolysis Experiments  

6.3.1 Slow Pyrolysis 

Slow pyrolysis experiments were carried out using a tubular batch reactor depicted in Figure 

6-1a.  The pyrolysis setup consisted of four distinct sections 1) Pyrolysis oven used to 

provide heat of reaction 2) 1 m reaction tube made from quartz along with a quartz sample 

boat that housed 12 g of pelletized waste material 3) A stepwise condensation train that 

consisted of 5 condensers and 4) nitrogen gas feeding system. Technical grade nitrogen was 

fed at a flow rate of 0.5 L min-1. Before each experimental run, the reactor was checked for 

leaks using a vacuum pump and subsequently purged with nitrogen for 10 min to maintain an 

oxygen free environment.  The first condenser (C1), kept at room temperature, was where an 

organic rich phase composed of both liquid and wax was collected, hereafter referred to as 

wax and oil. Condensers 2 - 3 (C2 and C3) were cooled using dry ice and were used to collect 

the aqueous phase. In condensers 4 and 5 (C4 and C5), also cooled with dry ice, silica beads 

were placed to adsorb the aerosols remaining in the gas stream. The non-condensable gas 

fraction was collected continuously for the duration of the experiment using 5L tedlar bags. 

Samples were collected for a period of two minutes to allow the tedlar bag to fill up before 

being replaced and subsequently analysed using gas chromatography (G.A.S. CompactGC 

4.0) This method allows for the quantification of the main gas compounds produced during 

the whole experimental run. The instrument was calibrated using standard mixtures of 

calibration gas (Afrox) to determine the concentration of N2, CO2, CO, H2, CH4, C2H6, C2H4, 

C3H8 and C4H10. N2 was used as an internal standard to determine the yield of each gas 

compound. 

 Slow pyrolysis experiments were carried out at 3 distinct temperatures (300 °C, 425 

°C and 550 °C), chosen based on the characteristic steps of conversion of the lignocellulosic 
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and plastic materials (see dTG curves in Figure 6-2). The experiments were carried out at a 

heating rate of 25 °C/min and once the desired temperature was achieved, held there for an 

additional 60 min. All experiments were conducted in triplicates to ensure reproducibility of 

results and standard deviations of the char, tarry phase and gas product yields of less than 2.0, 

1.9 and 1.9wt.% were observed respectively 

6.3.2 Fast Pyrolysis Experiments  

Fast pyrolysis experiments were carried out using an inductively heated reactor as depicted in 

Figure 6-1b. The pyrolysis setup consisted of 1) Induction coil used to provide heat of 

reaction. 2) A 450 mm tubular stainless reactor. 3) Condensation system that consists of two 

condensers cooled to a temperature of 5 °C and connected to a collection pot where an oil and 

wax phase was collected simultaneously. An electrostatic precipitator (ESP) set at 12 kV was 

used to recover the aerosols remaining in the volatile fraction and 4) a nitrogen gas feeding 

system with a flow of 2.5 L/min. The non-condensable gas fraction was collected 

continuously after the ESP and analysed using the same method as for slow pyrolysis. 

Experiments were carried out at three temperatures of 350, 450 and 550 °C at a heating rate 

of 250 °C/min ± 5 °C/ min and once the targeted temperature was reached, held there for an 

additional 30 min until only trace amounts of permanent gases were detected. All 

experiments were conducted in triplicates to ensure reproducibility of results and standard 

deviations of the char, wax and gas product yields of less than 2.5, 3.3 and 1.8 wt.% were 

observed respectively 
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Figure 6-1: Schematic of a) electrically heated slow pyrolysis b) inductively heated fast 

pyrolysis experimental setups 
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6.4 Results and Discussion  

6.4.1 Simultaneous Saccharification and Fermentation (SSF) 

The comparison of the fibre sample contaminated with plastic, to lignocellulosic PWS from 

paper recycling mills in South Africa, revealed distinct similarities whereby both exhibited 

relatively large amounts of cellulose (~50 - 61 daf, wt.%) making it an attractive source for 

the production of bioethanol 

 The lignocellulosic waste stream was first screened for ethanol production on a gram 

scale at a solids loading of 15 wt.%, to determine the desirable enzymatic loading at 10, 15 

and 20 FPU/gdS and the results are presented in Table 6-1. The final ethanol concentration 

varied from 14.6 g/L to 17.3 g/l across the chosen enzyme dosage, with the lowest ethanol 

concentration of 14.6 g/l being obtained for an enzyme dosage of 10 FPU/gdS (Table 6-1). 

Increasing the enzyme dosage to 15 and 20 FPU/gdS increased the final ethanol 

concentration to 17.1 and 17.3 g/l respectively.  

Table 6-1: Ethanol results at 15 FPU/gdS for gram and kilogram scale fermentations.  

Parameter Units W1- gram scale W1 -kg scale 

Enzyme Dosage FPU/gdS 10 15 20 15 

Mass dry solids fed g 15 15 15 2700 

Volume Reactor L 0.2 0.2 0.2 20 

Ethanol concentration g/L 14.6 17.1 17.3 39.8 

Ethanol Yield % 42.0 49.5 50.4 69.1 

Productivity  g/(L h) 0.2 0.3 0.3 0.4 

 

The negligible difference between the ethanol concentrations at 15 and 20 FPU/gdS was 

likely a result of the complete hydrolysis of the available cellulose to glucose, resulting in 
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similar final ethanol concentrations that were significantly lower than the theoretical 

determined ethanol concentrations, and was consistent with previous studies on fermentation 

of PWS produced from the same pulping process [1,3]. The lower experimentally determined 

ethanol concentrations (solids loading 15 wt.%), resulted in yields of 42.0, 49.5 and 50.4 % at 

enzyme dosage of 10, 15 and 20 FPU/gds respectively can be attributed to physical properties 

of the fibre component that affects its digestibility during enzymatic hydrolysis [1,14].  

 The SSF fermentation was scaled-up in 20L reactors at an enzyme dosage of 15 

FPU/gdS and the results are presented in Table 6-1. A final ethanol concentration of 39.8 ± 

6.5 g/l was obtained, very similar to what has been reported for the fermentation of PWS 

produced from the same paper recycling mill (46.1 g/l) [3]. The difference in yield of ethanol 

between gram scale (0.11 g ethanol/gdS) and kilogram scale (0.15 g ethanol/gdS) can be 

attributed to the physical properties of the lignocellulosic fibre component, with the fibres 

produced from a paper recycling mill having an inherently high water holding capacity of 

between 6-8 g water/g fibre [1,3]. 

6.4.2 Changes in Composition Before and After Fermentation 

The compositions of the rejects waste stream and its fermentation residue, in terms of 

proximate analysis and lignocellulosic content, are presented in Table 6-2. Differences in the 

physico-chemical characterisation of W1 and its fermentation residues were observed, with a 

decrease in the cellulose content as evidenced by the decrease in glucan content from 56.9 to 

32.5 daf, wt.% (Table 6-2).  
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Table 6-2: Physico-chemical composition of the waste stream and its fermentation residue 

Waste Stream W1 W1-FR 

Proximate Analysis (db wt.%)   

Volatile matter (VM) 74.5 67.5 

Fixed carbon (FC) 10.8 13.4 

aCO2 3.88 4.6 

Ash (900°C) 10.80 14.6 

Waste stream composition (daf, wt %)   

Glucan  56.9 32.5 

Xylan 16.7 5.9 

Extractives 6.7 19.5 

Lignin + Plastic 19.6 42.0 

HHV (MJ/kg) 16.3 17.1 

db: dry basis ; daf: dry ash free basis, aCO2 from CaCO3 decomposition, Total ash =CO2 + Ash(900°C) 

The decrease in the polysaccharide content (indicated by glucan and xylan) is due to its 

conversion to sugars and subsequently ethanol during enzymatic hydrolysis and fermentation. 

Consequently plastic/lignin content increased from 19.6 to 42.0 daf, wt.% (Table 6-2). 

Because of the partial hydrolysis of cellulose and hemicellulose components, an increase in 

the HHV of W1-FR was expected as lignin and plastic have a higher carbon content than 

polysaccharides [15,16] . However, as was observed previously for fermentation residue from 

fibre mill waste [4], an increase in the ash content (19.1 wt.%) (Table 6-2) which is 

comprised predominately of calcium carbonate [6,7] mitigated the effect the decrease in 

cellulose content has and as a result the HHV of FR remained relatively constant 17.1 MJ/kg 

(Table 6-3). 
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 The thermal gravimetric (TG) curves of W1 and its fermentation residue and their 

respective derivatives (dTG) are presented in Figure 6-2. The thermal decomposition of the 

polysaccharides present in lignocellulosic fibres under inert atmosphere occurs 

predominantly in the temperature region of 250– 300 °C for hemicelluloses (amorphous 

polymer) and 300 – 400 °C for cellulose, while further fibre decomposition (400-500 °C) is 

mostly due to the conversion of lignin [17].  

 

Figure 6-2: Thermogravimetric (TG) and derivative thermogravimetric (dTG) curves of the 

waste stream and its fermentation residue (FR) at heating rate of 10 °C/min 

The plastic component is also expected to decompose at temperatures above 400 °C [16]. The 

dTG curve of W1 was comprised of one main peak between 250 and 400 °C, corresponding 

to the degradation of the polysaccharides component with a mass loss of 64.43 wt.% [16,18]. 

The mass loss of 6.67 wt.% occurring between 400 °C – 500 °C without any clear dTG peak 

(Figure 6-2), evidenced that plastic content was relatively low. The dTG of W1-FR was 

comprised of four degradation steps. The intensity of the first peak (250– 400 °C), divided by 

a factor two and characterised by a reduced mass loss (43.28 wt.%) compared to W1 (Figure 
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6-2), confirmed the reduction in the amount of polysaccharides in the sample as a result of 

SSF conversion. The change in the structure of the fibre component as result of the enzymatic 

hydrolysis step during SSF probably contributed to this phenomenon. Following the 

reduction in polymer chain lengths of cellulose and hemicellulose, some of the 

polysaccharide residues becomes soluble and were extracted during the determination of the 

extractive content (Table 6-2)[4,9], resulting in an underestimation of the polysaccharides 

content. A partial degradation of the polysaccharides structure (leading to decreases in the 

thermal stability) due to SSF is also consistent with the difference in degradation rate 

observed by TGA (Figure 6-2), with higher intensity observed for the fermentation residue at 

T< 300 °C. Lignin degradation peak is generally reported around 410 °C [17] where the 

second peak was observed, while the peak at 480 °C (mass loss of 18 wt.%) was attributed to 

the plastic component. In particular, polypropylene and polyethylene, two plastics commonly 

found in waste streams that are known to degrade at similar temperatures [16]. The 

appearance of more distinct peaks at 410 and 480 °C was a result of their increased content as 

a consequence of the limited effect of SSF had on these materials. A peak characteristic of 

calcium carbonate decomposition (700 °C) was observed for both W1 and the fermentation 

residue 
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6.4.3 Pyrolysis of Fermentation Residue 

The product yields from the slow and fast pyrolysis of fermentation residues at varying 

temperatures are presented in Figure 6-3 and Figure 6-4 respectively; the energy contents of 

the products are detailed in Table 6-3. Slow pyrolysis of lignocellulose-rich feedstocks often 

produces char, oil and gas products in equal proportions, although when the target is to 

produce an energy dense char product with relatively high yield, temperatures as low as 300 

°C are sometimes employed [19–21]. As a consequence, slow pyrolysis experimental runs 

were implemented at 300, 425 and 550 °C. The use of fast pyrolysis processes is primarily 

for the conversion of a significant proportion of the lignocellulosic material into condensable 

volatiles, therefore the minimum fast pyrolysis temperature was set at 350 °C, followed by 

temperature of 450 and 550 °C.  

 Char Yield and Characterisation 

The pyrolysis of fermentation residue resulted in the highest char yields at the lowest tested 

temperatures for each process, with yields of 78.8 wt.% and 49.9 wt.% (Figure 6-3) for SP 

and FP respectively. Conversion at the respective lowest temperatures for SP and FP resulted 

in an increase in the HHV of the char product by 2.4 MJ/kg and 4.4 MJ/kg (Table 6-3) 

compared to the fermentation residue and increases of 3.2 MJ/kg and 5.2 MJ/kg compared to 

W1 (HHV of 16.3 MJ/kg). This increase was attributed to the extensive deoxygenation 

reactions that predominate in the lignocellulosic material in the temperature region of 250 °C 

to 350 °C [17]. Increasing the conversion temperature led to more extensive conversion of 

lignocellulosic fibre component (Figure 6-3) into volatile compounds, resulting in char yields 

of 43.4 wt.% for SP at 425 °C and 39.9 wt.% for FP at 450 °C. Char yields of 34.4 and 31.9 

wt.% were obtained at 550 °C for SP and FP respectively.  
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Table 6-1: Higher Heating Value (HHV) of products from slow and fast pyrolysis of 

fermentation residues (the oil and wax products were collected in condenser C1 for slow 

pyrolysis and in the collection pot for fast pyrolysis (see Figure 6-1); the HHV of the aqueous 

fraction collected in condensers C2 and C3 for slow pyrolysis could not be determined due to 

too high water content) 

Slow Pyrolysis 

 
Char Oil Wax Gas 

300°C 19.5± 0.1 n/a n/a 1.9±0.6 

425°C 19.7±0.1 4.3±1.0 28.1± 1.4 5.5±0.1 

550°C 16.2±1.6 8.7±0.8 35.1± 2.4 10.4±0.5 

Fast Pyrolysis 

 
Char Oil Wax Gas 

350°C 21.5±0.2 n/a n/a 3.1±0.6 

450°C 20.3±0.1 6.6 ± 0.1 28.2± 1.2 6.7±2.6 

550°C 17.7 ± 0.4 7.6± 1.0 32.1±2.1 9.9±0.4 

n/a HHV could not be determined due to too high water content 

The lower char yields obtained by fast pyrolysis can be attributed to the higher heating rates 

and short vapour residence times (<10s), which are known to promote volatile formation via 

depolymerisation mechanisms that limit secondary charring reactions [17]. The increase in 

the conversion temperature for both SP and FP was expected to increase the C/O ratio of char 

products, thereby increasing their HHVs, as is typically observed for lignocellulosic biomass 

[22,23]. However, in comparison with the char generated at lower temperature, the HHV of 

the char product from SP remained relatively constant at 425 °C, while that from FP 

decreased by 1.2 MJ/kg at 450 °C. This phenomenon can be attributed to the large ash 

component (40-50 wt.%) of the char product, offsetting the effect an increase in fixed carbon 

content had on the product quality [6,24].  Increasing the conversion temperature to 550 °C 
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resulted in a significant decrease in the HHV of the char product for both pyrolysis processes 

to below 18 MJ/kg. Similarly, this trend was likely a result of the significant ash 

accumulation in the char product. The devolatilization of the plastic components (dTG peak 

at 480 °C), generally characterised by relatively high energy content [12,16], also contributed 

to this evolution. 

 Condensable Volatile Yield and Characterisation 

For certain conditions the condensable organic-rich fraction collected in the condensation 

system (C1 for SP and collection pot for FP, see Figure 6-1), used for fast and slow pyrolysis, 

could be separated into a liquid oil phase and a solid wax phase. Conversion of FR at 300 and 

350 °C was predominated largely by the conversion of fibre component, which produced a 

single oil phase with yields of 6.2 wt.% and 33.7 wt.% for SP and FP respectively, producing 

a poor quality fuel product comprised mainly of water ( >75 wt.%). Indeed, deoxygenation 

reactions are known to predominate in lignocellulosic fibre in this temperature region [16,17]. 

An increase in the conversion temperature to 425 °C and 450 °C produced both an oil (17.0 

wt.% and 21.0 wt.%) and a wax phase (7.5 wt.% and 23.8 wt.%) for SP and FP respectively.  

 

78.8

49.9
43.4 39.9

34.4 32.8

6.7

33.7

17.0 21.0
24.2

21.4

4.1

6.8 7.5

7.5 23.8 13.2
26.3

1.4

2.0
3.7

3.4
9.5

12.0

13.2 14.6
14.8

0

10

20

30

40

50

60

70

80

90

100

300-SP 350-FP 425-SP 450-FP 550-SP 550-FP

Y
ie

ld
 w

t.
%

Temperature (°C)

Gas

Aerosols

Wax

Aqeous

Oil

Char

Stellenbosch University  https://scholar.sun.ac.za



 

141 

 

Figure 6-3: Product yields from slow (SP) and fast (FP) pyrolysis of fermentation residues 

 

An increase in the oil yield for SP by 10.3 wt.% occurred, primarily because of significant 

conversion of the lignocellulosic fibre component (Figure 6-3)[11]. In the case of FP, a 

significant decrease in the oil yield (-12.7 wt.%) was observed. This decrease can mainly be 

attributed to the decrease in pyrolytic water yield, as the application of higher pyrolysis 

temperatures (≥ 450 °C) together with rapid heating rates (> 250 °C/min) is known to limit 

dehydration reactions and promote volatile formation via depolymerisation mechanisms, 

ultimately resulting in more organic compounds being formed [17]. The HHV of the oil 

phase remained low with an HHV of 4.3 MJ/kg and 6.6 MJ/kg (Table 6-3), which is lower 

than what is typically reported for bio oils (12 -18 MJ/kg) produced from lignocellulosic fibre 

[25,26]. The presence of a wax product from the pyrolysis of FR is due to the presence of 

plastic in the FR and the subsequent formation of hydrophobic molecules during pyrolysis. 

Lignin pyrolysis products are known to be particularly viscous and hydrophobic [27]. In 

comparison with lignocellulosic biomass, the high content of lignin in the FR explained the 

formation of a product particularly viscous. Wax has also been described as the main product 

obtained from the pyrolysis of plastic such as polypropylene and polyethylene [2,28]. The 

presence of plastic-derived products could have contributed to the precipitation of the lignin –

derived products into a wax. It resulted in the formation of an energy dense phase that had an 

HHV of 28.2 and 28.1 MJ/kg for SP and FP respectively (Table 6-3). A further increase in 

pyrolysis temperature to 550 °C resulted in an increase in the viscous wax yield to 13.2 wt.% 

and 26.3 wt.% for SP and FP respectively with a resulting increase in the HHV to 35.1 MJ/kg 

for SP and 32.1 MJ/kg for FP (Table 6-3). This result was largely attributed to the more 

extensive degradation of the plastic component of the feedstock that occurred at temperatures 

between 450 and 550 °C as evidenced by the dTG curves (Figure 6-2). 
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 Gas Yield and Characterisation 

The conversion of FR at temperature ≤ 450°C resulted in gas yields of up to 13.2 wt.% with 

the gas phase composed mainly of CO (18.2-23.4 gas wt.%) and CO2 (70.6-81.6 gas wt.%),  

which arise from the degradation of the remaining lignocellulosic component of the FR [23]. 

The significant presence of CO2 in the gas phase negatively affected the calorific values, with 

the HHV ranging from 1.9 to 3.1 MJ/kg (Figure 6-4) at the lower conversion temperatures up 

to 6.7 MJ/kg for the intermediate pyrolysis temperature of 425 and 450 °C (Table 6-3). 

Increasing the conversion temperature to 550 °C increased the gas yield to 14.6 wt.% and 

14.8 wt.% for SP and FP respectively, with CO and CO2 still being the most abundant 

compounds. However, the formation of short chain hydrocarbons (C1 – C4) from the more 

extensive degradation of the remaining lignocellulosic fibre component and the plastic 

component of the waste stream (Figure 6-2) (2.1 wt.% for SP and 2.0 wt.% for FP), resulted 

in an increase in the HHV of gas product to 10.4 MJ/kg for SP and 9.9 MJ/kg for FP.  

 

Figure 6-4: Gas yield and compositional distribution from the pyrolysis of fermentation 

residue, a) Slow pyrolysis and b) Fast pyrolysis 
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6.4.4 Energy Assessment of Fermentation Residues 

The gross energy conversion (EC) from fermentation residue to pyrolysis products is 

presented in Figure 6-5. Only the solid, liquid/wax and gas products that can be utilised for 

energy application were considered in the discussion bellow. As the aqueous phase produced 

from SP and the oil phase produced from both SP and FP had relatively poor calorific values 

because of a significant water content, these phases have been excluded from the discussion.  

On industrial pyrolysis plants oil/liquid products that have poor fuel properties are more 

likely to be sent to waste water treatment [29,30], if more useful application cannot be 

identified. In comparison with standalone pyrolysis, the production of an additional fuel in 

the form of bioethanol, with the concentration and energy conversion of 39.8 g/l and 26.9 % 

being obtained. The low gross EC for fermentation was attributed to the low conversion of 

glucan to ethanol  of 69.1% (Figure 6-5) 

 The EC profile obtained for the conversion of fermentation residue at 300 °C and 350 

°C for SP and FP respectively resulted in the majority of the energy being conversed in the 

char product (92.3% for SP and 65.8% for FP (Figure 6-5) and was similar to that obtained 

for the SP and FP of the untreated sample, as reported in a previous work [6,31]. However, 

the calorific value of the chars were only upgraded by +2.4 MJ/kg to 19.5 MJ/kg for SP and 

by 4.4 MJ/kg to 21.5 MJ/kg for FP compared to the FR. The energy transfer to the gas phase 

for both SP and FP was particularly low, not exceeding 1.5% (HHV <3.1 MJ/kg, Figure 6-5) 

and can be related back to the composition of the gas phase with CO2 being the main species 

as decarboxylation mechanisms are known to predominate in this temperature region [17,23].  

 The intermediate conversion temperature for both SP (425 °C) and FP (450 °C), 

concentrated the EC in the char product, with values of 53.7% and 49.7% for SP and FP 

respectively. This resulted, as with the lower conversion temperature, in a char product that 

had a similar quality to that of low grade subbituminous and lignite coal (ASTM D 388 coal 
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ranking standard), that is commonly used in power generation [32]. Increasing the conversion 

temperature for SP (425 °C) and FP (450 °C) along with char product, promoted the 

formation of an energy dense viscous wax phase (EC of 12.9% for SP and 41.2 % for FP, 

Figure 6-5) with resulting HHV of ~ 28 MJ/kg for both processes ( Figure 6-5). The 

difference in the EC of the two processes can be attributed to the conversion temperatures 

with more extensive conversion of lignin/plastic component occurring for FP. 

 

 

Figure 6-5: Energy conversion assessment of pyrolysis products based on residue mass from 

fermentation 

 A further increase in the conversion temperature to 550 °C, resulted in the lowest 

concentration of energy in the char product (34.2% for SP and 35.6% for FP). The decrease 

in the EC was a result of the increase in the ash content of the char product up to 48.7 wt.%, 

resulting in a decrease in the HHV to 16.2 MJ/kg for SP and 17.7 MJ/kg for FP (Table 6-3) 

and was similar to that of lignite coal (ASTM D 388 coal ranking standard). The increase in 

conversion temperature to 550 °C promoted the transfer of energy to viscous wax phase 
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(28.4% for SP and 51.8% for FP, Table 6-3). For both SP and FP, a significant increase of the 

calorific value of the wax phase by up to 7 MJ/kg was observed and was attributed to the 

increase of plastic-derived compounds in the wax product, as discussed in Section 6.4.3.2.  

 In both cases, the HHV (35.1 MJ/kg for SP and 32.1 MJ/kg for FP) is much higher 

than what was obtained for bio-oil produced from either the slow or fast pyrolysis of 

untreated lignocellulosic material (~18MJ/kg) [11], making it a more suitable fuel to be 

blended with conventional liquid fuels (HHV of ~40 MJ/kg). Indeed, submitting 

lignocellulose to higher heating rates is known to promote the formation of condensable 

products. This assumption is supported by the higher wax yield obtained by FP (26.3 wt.% vs 

13.2 wt.% for SP). Therefore, if the targeted product was wax, FP at 550 °C should be the 

preferred process as it results in EC of 51.8% (28.4% for SP).  Along with the energy dense 

wax product produced from the pyrolysis of fermentation residue, the ethanol produced in the 

first fermentation step can also be used for blending with traditional liquid fuels. 

6.5 Comparison between Pyrolysis and Fermentation Pyrolysis 

Processing Route  

This section provides an overview of the difference in yield and energy conversion for the 

standalone pyrolysis and fermentation pyrolysis processing route of W1. The yields from 

pyrolysis and fermentation pyrolysis along with the energy conversion are presented in 

Figures 6-6 and 6-7 

6.5.1 Char Yield  

The highest yield of char for the respective pyrolysis processes of the raw waste feedstock 

occurred at the respective lowest conversion temperatures of 300 and 350 °C. This can be 

attributed to the deoxygenation of the fibre component that predominates in this temperature 
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region [17]. As with the pyrolysis processing route, the fermentation-pyrolysis processing 

route also yielded the highest char yield of 34.6 wt.% and 21.9 wt.% for the respective 

pyrolysis processes at 300 and 350 °C (Figure 6-6). Further increasing the conversion 

temperature for pyrolysis as well as the fermentation pyrolysis processing route resulted in a 

decrease in the char yields by up to 43.2 wt.% for pyrolysis and 19.5 wt.% for the 

fermentation-pyrolysis processing route. The lower decrease in the char yield for the 

fermentation pyrolysis processing route compared to pyrolysis was a result of the increase in 

the lignin + plastic (Table 6-1) component of the W1 as a result of the conversion of the 

sugar component by fermentation to produce ethanol, as lignin is known to produce more 

char than condensable volatiles during pyrolysis [17,19]. 

6.5.2 Condensable Yield  

For certain conditions obtained from the pyrolysis of fermentation residues the condensable 

product could be separated into an energy dense wax phase and a watery oil phase. 

Conversion of the W1 and W1-FR at 300 and 350°C was dominated by the conversion of the 

fibre component of the biomass with an oil yield of up to 42.6 wt.% for pyrolysis and up to 

34.6 wt.% for the fermentation-pyrolysis processing route (Figure 6-6), producing a poor 

quality fuel that had a water content >75wt.%. Increasing the conversion temperature to 425 

and 450°C promoted the formation of condensable product for the pyrolysis processing route 

with yields of 25.1 and 50.8 being obtained with a corresponding HHV of 13.45 and 16.5 

MJ/kg for SP and FP respectively. Increasing the conversion temperature for the pyrolysis of 

the fermentation residue (FR) produced an oil comprised mainly of water with a yield of 1.9 

wt.% for SP and 2.9 wt.% for FP and an energy dense wax phase (HHV of 28.1 for SP and 

FP) with a yield of 12.3 wt.% for SP and 10.5 wt.% for FP (Figure 6-6). A further increase in 

temperature promoted the formation of the energy dense phase from FR to 15.4 wt.% for SP 
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and 11.6 wt.% for FP. A further increase in the HHV for both SP and FP to 35.1 and 32.1 

MJ/kg (Table 6-3) was observed and is a consequence of the degradation of the remaining 

plastic and lignin component. This represents an increase +18.3 MJ/kg for SP and +15.7 

MJ/kg for FP compared to pyrolysis of untreated waste stream (HHV of up to 16.5 at 550°C). 

 

Figure 6-6: Total Yields from a) standalone pyrolysis of W1 and b) the fermentation- 

pyrolysis of W1 

6.5.3 Energy Conversion Comparison of different Processing Routes  

The gross energy conversion of the pyrolysis and fermentation pyrolysis processing route is 

presented in Figure 6-7. Only the solid, liquid/wax and ethanol products that can be utilised 
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for an energy application were considered in the discussion below. The oil phase produced 

from the pyrolysis of fermentation residue was comprised mainly of water. It is not 

considered for energy application as on an industrial scale such a stream would be sent to 

waste water treatment to be disposed of. 

 The EC obtained for fermentation of waste stream W1 to ethanol was 26.9%. The low 

EC to ethanol can be attributed to the low conversion of the glucan component of the waste 

stream to ethanol of 69.1%. This resulted in an ethanol yield by mass of only 14.7 wt.%. The 

energy conversion profile for the fermentation-pyrolysis processing route resulted in the 

highest EC to char product of 40.6%  and 28.9% at the lowest conversion temperature of 300 

and 350°C for FP and SP, similar to that obtained for the EC profile of char obtained from the 

fast and slow pyrolysis of W1 (Figure 6-7). The fermentation-pyrolysis processing route 

resulted in a lower EC to char product and improvement in the calorific value of the char 

product by 2.4 MJ/kg for SP and by 4.4 MJ/kg for FP was observed (Table 6-3). The overall 

EC from slow pyrolysis 67.5% was lower than that obtained from SP of the W1 (EC of 

81.2%) where that from FP was the same.  

 The intermediate conversion temperature concentrated the EC in the char product for 

both W1 and W1-FR for SP and FP, with values of 35.7% and 32.4% for W1 and 19.5% and 

17.5% W1-FR. This resulted, as with the lowest conversion temperature resulted in a char 

product that had similar properties to low grade subbituminous coal (ASTM D388 coal 

ranking standard). The increase in temperature promoted the formation of an energy dense 

phase for both SP and FP of W1 and W1-FR. This resulted in an EC of 20.8 and 51.3% for 

SP and FP of W1 and an EC of 5.7% and 18.1% for SP and FP of W1-FR. Even though there 

is a decrease in the EC of the energy dense condensable phase for W1-FR, the quality of the 

product improved significantly by +14.8 MJ/kg for SP and +11.7 MJ/kg for FP. The overall 
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EC for the fermentation-pyrolysis route for SP and FP at 425°C and 450 °C was 57.9% and 

69.2%.  

 

Figure 6-7: Energy conversion profiles of a) pyrolysis of W1 and b) fermentation pyrolysis of 

W1 

 A further increase in the conversion temperature to 550 °C resulted in the lowest 

concentration of energy in the char product for both W1 and W1-FR (Figure 6-7). This 
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decrease can largely be attributed to the increase in the ash component (up to 53.7wt.%) of 

chars from W1 and W1-FR, which resulted in a decrease in the HHV of the char product to 

16.7 and 18.4 MJ/kg for SP and FP of W1 and 16.2  and 17.7 MJ/kg for SP and FP of W1-

FR. The increase in temperature promoted the energy transfer to the condensable phase for 

both W1 and W1-FR up to 52.8% for W1 and 15.4% for W1-FR. As with the conversion at 

the intermediate pyrolysis temperature, the fermentation-pyrolysis processing route resulted 

in a lower EC to condensable phase than pyrolysis. However, there is a significant increase in 

the quality of the product by up to 15.6 MJ/kg compared to that obtained from the pyrolysis 

of W1. In both cases the HHV (35.1 MJ/kg for SP and 32.1 for FP) from condensable phase 

produced from W1-FR was higher than that obtained from either the slow or fast pyrolysis of 

W1 (HHV ~16 MJ/kg) potentially making it a more suitable fuel to be blended with 

traditional fossil fuels. 

6.6 Conclusions  

This study assessed a fermentation-pyrolysis processing route for the conversion of an 

industrial waste stream contaminated with plastic into fuel products. Ethanol concentrations 

of  39.8 g/l were obtained by SSF. The fast pyrolysis process produced significant amounts 

(23.8-26.3 wt.%) of wax phase compared to slow pyrolysis (7.5 -13.2 wt.%) at conversion 

temperature ≥425 °C, with HHV of the wax phase between 28.2 to 32.1 MJ/kg for both slow 

and fast pyrolysis. Gross energy yields of up to 51.8 % were obtained. As such if an energy 

dense wax phase is the desired product, FP at a temperature of 550 °C is recommended. 

Along with the energy dense wax phase, ethanol produced from the first step (fermentation) 

can be used for blending with traditional liquid fuels.  
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 Energy Production from Paper Mill Waste 

Contaminated with Plastic Annexed to a Paper Mill 

This chapter appears as a draft manuscript  

Title “Energy Production from Paper Mill Waste Contaminated with Plastic Annexed to a 

Paper Mill” 

Authors: Logan Jeremy Brown, Abdul Petersen, François -Xavier Collard, Johann Görgens 

 

Objective of the Dissertation in this Chapter  

This chapter specifically addresses objectives 6. The results obtained from Chapter 5, with 

only one waste stream being viable for a fermentation-pyrolysis processing route along with 

preliminary simulation results from fermentation, that resulted in an ethanol selling price of 

R20/l, that was more than doubled the targeted value of R8/l. As a consequence, only the 

pyrolysis processing routes discussed in Chapters 4 and 5, were chosen for technoeconomic 

analysis. The experimental determined pyrolysis resulted yielded a phase that was composed 

largely of water. As a result, the condensation system used in the technoeconomic model was 

designed with the main purpose of eliminating most of the water from the condensable 

product stream. This water stream was first sent to anaerobic digestion to be treated before 

being disposed off 

 The different pyrolysis processes produced the largest coal supplement (up to 477 

kg/h for SP and 277 kg/h for FP) at their respective lowest conversion temperatures (300 °C 

(SP) and 350 °C (FP)). Increasing the conversion temperature to 550 °C, promoted the 

formation of a fuel oil with a yield of up to 41.8 wt.% for SP and 51.4 wt.% for FP.  The 
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increase in temperature to 550°C reduced the minimum fuel selling price (MFSP) from 

between 18.3 to 48.8 $/kg to 1.12-1.32 $/kg. However, this result was still above the targeted 

value of 0.65 $/kg for fuel oil. Increasing the size of the pyrolysis plant from a maximum of 

1378kg/h to 8700 kg/h decreased the MFSP to below the targeted value of 0.65$/kg. In order 

to achieve the scale of 8700 kg/h a centralized pyrolysis facility would have to be built, 

which process multiple waste streams from different sources. 
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Abstract 

The disposal of paper mill waste at landfill sites is becoming an increasing problem and is 

seen as a source of sustainable feedstock for combined heat and power generation from a 

waste to energy facility annexed to a paper mill. To ensure the economic viability of such 

processing route, an understanding of the trade-off between technical optimum and an 

investment case must be understood. This work presents the assessment of disposing of three 

different paper mill waste streams, using a pyrolysis plant annexed to a paper mill.  

 The pyrolysis plant was simulated using 6 experimentally determined conditions for 

the waste streams found in literature, with process temperatures ranging from 300°C - 550°C. 

A minimum fuel selling price (MFSP) in the range of 1.12 to 48.78 $/kg was obtained. The 

process condition that produced the most realistic economic scenario occurred at 550 °C. 

This produced a MFSP of 1.12 to 1.48 $/kg for the three waste streams and was between 2 to 

3 times higher than the targeted value of 0.65$/kg. Increasing the flow rates of the three waste 

streams to the pyrolysis plant to 2900 and 8700 kg/h reduced the MFSP to 0.26-0.76 $/kg. 
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7.1 Introduction 

The pulp and paper industry in South Africa and around the world produces large quantities 

of waste (600 to 2000 wet tons/month per industrial site) from the manufacturing of different 

types of paper grades and products. This waste is currently disposed of primarily by 

landfilling [1–3]. The pulp and paper mills’ waste can be categorised into two main groups 

namely paper waste sludge (PWS) and rejects [1,2,4]. PWS is produced from the primary 

clarifiers at a pulp and paper mill and is comprised predominantly of lignocellulosic fibres 

and inorganic material that are unsuitable for paper manufacturing [1,2]. Rejects originate 

from the pre-sorting and pulping activities as a result of using recycled fibre as feedstock and 

are composed of degraded fibre and a wide variety of plastic wastes and other contaminates 

(inorganics, staples and metal ) [2,4]. Given the rapidly changing situation around disposal of 

rejects, pulp and paper mills are pressed to find alternative disposal methods that if possible 

can add sustainable value to their business model [5,6].  

 Pyrolysis is a thermochemical technique of upgrading low energy dense 

heterogeneous wastes such as PWS, lignocellulosic biomass and rejects (HHV of 16-22 

MJ/kg [1,7]) into homogenous higher energy dense products [8,9] by controlled thermal 

degradation [5,10]. A recent study by Nsaful et al. [11] investigated the feasibility of 

annexing a bagasse-based pyrolysis plant to a sugar mill in order to meet the sugar mill’s 

energy demand, as well as that of pyrolysis. As a consequence  all of the gas, biochar and up 

to 61 wt.% of the bio-oil produced had to be consumed to meet the energy demands of the 

sugar mill and pyrolysis plant. Yang et al. [5]  assessed a pyrolysis system as a means of 

producing electricity and district heating for the local market and noted that the minimum 

selling prices (MSP) for economic viability was 4 times higher than the targeted price and 
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that in order to be competitive in the current market further incentives for heat and power 

generation from renewables needs to be developed [10–12].  

 

Recently the use of pyrolysis to convert paper mill waste has been technically shown to be a 

potential alternative to disposal at landfill [1,13]. An investigation of the pyrolysis of rejects 

has shown that it was possible to produce products that have an energy content similar to that 

of traditional fuels, with char and condensable product having an HHV of up to 35.1 MJ/kg 

and 41.7 MJ/kg respectively [2,7]. Fast pyrolysis of rejects from paper recycling at 

temperatures  of 550 °C has yielded large quantities (53.6 wt.%) of energy dense (HHV of 

41.7 MJ/kg) viscous wax phase [7,12], which is similar in energy content to heavy fuel oil 

[12]. Slow pyrolysis produced equal quantities of char and energy dense tarry phase [7], with 

char fraction having an energy content of up to 32.9 MJ/kg at a conversion temperature of 

300 °C [2]. 

 The challenges associated with recovering pyrolysis condensable products are related 

to efficient recovery and product stability. In a previous study, a fractionation condensation 

system was employed to reduce the water content of the final pyrolysis oil [14,15]. This was 

achieved by indirectly cooling the vapours according to their boiling point with the heavier 

fraction condensing in the first condenser followed by the lighter organic fraction and lastly 

water, which condenses in the last condensation step. This approach results in a pyrolysis oil 

having a water content of approximately 5 % [16]. An alternative condensation system to 

reduce the water content of the pyrolysis oil consisted of 1) a primary condenser to remove 

all the high boiling points compounds, 2) an absorption column that recovered the light 

products and 3) a liquid-liquid phase separator (decanter) [17].The resulting water from the 

decanter was processed using anaerobic digestion [18].  
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 This work seeks to assess the economic viability of valorising paper mill waste 

contaminated with plastic into energy to be used onsite and saleable fuel oil product through 

a pyrolysis plant that is integrated with a paper mill. All excess thermal energy generated by 

the pyrolysis plant is exported back to the paper mill so as to reduce its dependency on fossil 

fuels. 

7.2 Material and Methods 

7.2.1 Overview of Waste to Energy Plant 

The pyrolysis plant considered in this study will be annexed to a paper mill (PM), located in 

the Gauteng province of South Africa, and makes use of recycled fibre as feedstock. The 

waste streams consist of degraded fibre and varying amounts of plastic which are generated 

during the pulping of recycled fibre and the variety of screening steps that occur before the 

paper mill [2,7]. The average flow rate of the three waste streams as well as their composition 

that is used as input into the pyrolysis plant simulation, are presented in Table 7-1 
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Table 7-1: Waste stream characterisation and flow rates for waste to energy plant [2,7] 

 W1 W2 W3 

Flow rate (kg/h, db) 1378 540 540 

Moisture (As received, wt.%) 75 75 75 

Proximate analysis (db, wt.%)    

Volatile matter  74.52 79.29 85.08 

Fixed Carbon  10.80 8.13 7.53 

Ash  14.68 12.58 7.39 

Ultimate Analysis (daf, wt.%)    

C 47.47 60.62 66.98 

H 6.74 9.97 11.16 

N 0.09 0.11 0.17 

S 0.13 0.17 0.13 

Oxygena 45.57 29.13 21.56 

HHV (MJ/kg) 16.3 22.5 28.8 

*db dry basis, daf dry ash free, a determined by difference 

 

 The overview of the proposed waste to energy plant is depicted in Figure 7-1 and is 

made up of the following processing units: pre-treatment, pyrolysis, char separation, fuel oil 

collection system, waste water treatment, and combustion/steam turbine generation. The 

pyrolysis plant receives the waste streams from the paper mill after pulping and initial sorting 

activities are carried out. A selected waste stream from the paper mill feeds the pyrolysis 

plant at the pre-treatment stage where it undergoes drying and particle size reduction. After 

which, the waste stream is fed to the pyrolysis system, which generates a char and 
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condensable and non-condensable vapour product. The condensable vapour fraction is 

recovered in a series of condensation steps and then a portion of the non-condensable fraction 

is fed back to the pyrolysis system to provide an inert environment inside the pyrolysis 

reactor. A portion of the non-condensable gas phase along with one or both char/oil that is 

produced is needed to provide the energy needed for pyrolysis. The remaining thermal energy 

and char is exported back to the paper mill (PM) to reduce its dependency on fossil fuels 

(coal or heavy fuel oil (HFO)) while the condensable fuel oil is sold as an energy product.  

 

Figure 7-1: Overview of the pyrolysis system used for the production of fuel product 

7.2.2 Choice of Scenarios 

In this study, a total of 3 scenarios were simulated for the pyrolysis plant to convert rejects 

from a paper mill into valuable energy products as an alternative disposal technique to 

landfilling. The first scenario (S1) (base case) was simulated  at the experimental conditions 

300, 425, and 550 °C for slow pyrolysis (SP) and 350, 450 and 550°C for fast pyrolysis (FP) 

as obtained by Brown et al. [2,7] at the respective average yearly flow rates (Table 7-1) for 

waste streams W1, W2 and W3. Scenario 2 (S2) assumes that on an industrial scale, in 
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addition to the 3 waste streams simulated in this study, the flow rate to the pyrolysis plant is a 

sum of all the waste streams at the paper mill which results in a total flow rate of 2900 kg/h 

(personal communication with mill personnel) being fed to the pyrolysis plant for each waste 

stream. The proposed pyrolysis plant annexed to a paper mill in this study is in an industrial 

area of South Africa that has two additional paper mills similar in size that make use of 

recycled fibre as feedstock and currently also dispose of their waste at landfill sites. Scenario 

3 (S2) proposes that the pyrolysis plant processes the waste from all three paper mills, 

thereby bringing the total input to 8700 kg/h.  

7.2.3 Development of Mass and Energy Balance  

Aspen Plus® simulation software was used to derive mass and energy balances for the three 

process scenarios described in section 7.2.2. All processes were modelled to incorporate the 

highest level of energy integration to minimize waste energy recovery and improve process 

efficiency. As a result of the complex nature of the waste mixture and only the ability to 

qualitatively analyse the waste streams as described by Brown et al.[2], the waste stream 

could not be accurately described by the Aspen Plus® data base. The waste streams were 

entered as a non-conventional component into Aspen Plus®,  which required the elemental 

and proximate analysis data (Table 7-1) in order to estimate the thermodynamic properties 

[12,19]. 

7.2.4 Technical Evaluation 

The performance of the simulated pyrolysis plant in Aspen Plus® was analysed and 

compared to the following criteria: the amount of coal that can be replaced by steam 

generated from waste heat integration and in certain instances, the amount of remaining char 

produced from pyrolysis after the energy demand of the system was met. The equivalent 

amount of steam that can replace coal was calculated using a steam coal correlation described 
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by Petersen et al. [20]. The amount of saleable fuel oil product that can be produced. The 

overall thermal efficiency of the pyrolysis plant was calculated according to the method 

described by Nsaful et al [11] and detailed by eq 7.1 

η
overall 

(%)= 
Echar replacement + Efuel product exported

Eth waste fuel

 
Eq 7.1 

Where Echar replacement (MW) is the thermal energy in the amount of char that can be exported 

to the paper mill, Efuel product exported is the amount of energy exported in the saleable fuel oil 

produced by the pyrolysis and Eth waste fuel is the thermal energy in the waste feedstock 

inputted into the pyrolysis plant.  

7.2.5 Economic Evaluation 

The economic performance of the different pyrolysis scenarios described in section 7.2.2 and 

simulated in this study, will primarily be assessed on the ability of the processes to produce a 

fuel oil product that can be sold as HFO equivalent based on the determination of the 

minimum fuel selling price (MFSP). The main inputs to the economic model are summarised 

in Table 7-2. In all the economic models, the total capital investments (TCI) was calculated 

from an in house tool using the mass and energy balances obtained from Aspen Plus® and 

described in detail by Petersen et al. [21]. Included in the TCI cost was capital expenditure 

cost (CAPEX) which was calculated from parameter cost calculations found in literature. 

CAPEX considers cost of installation, sundry equipment cost, indirect capital cost and 

working capital which was calculated as 5% of TCI (Table 7-2).  
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Table 7-2: Main parameter inputs into the economic model [11,12,25]  

General Investment Parameters 

Plant Life 20 years 

Operating hours 8000 hr/year 

Working capital 5 % of TIC [30] 

Tax rate  28% [30] 

Interest rate  9.5 %  

Operating Cost Parameters 

Disposal cost  0.12 $/kg  

Electricity cost  0.11 $/kW 

Coal cost  120 $/ton  

Targeted fuel selling price 0.65 $/kg  

 

 

Operating cost (OPEX) was calculated as a combination of feedstock cost, disposal cost and 

other fixed costs.  The main costs used in the economic model are summarised in Table 7-2. 

The feedstock cost considered in this study was assigned a negative value. The waste streams 

considered in this study are currently disposed of by landfilling and as such, the 

implementation of a pyrolysis plant as a disposal technique will divert a substantial amount of 

material being disposed of at landfill sites. Therefore, the cost associated with avoiding 

landfilling the waste streams can be seen as an additional income to the pyrolysis plant. 

  

Stellenbosch University  https://scholar.sun.ac.za



 

169 

 

7.3 Process Description and Model Development. 

7.3.1 Pre-treatment  

The pre-treatment section receives the initial waste stream from the paper mill. The material 

first undergoes a drying cycle, which involves pressing the as-received waste feedstock to a 

moisture content of approximately 50%. The pressed sludge is then subjected to direct 

contact drying using spent flue gas (130 °C) recovered from the pyrolysis plant, followed by 

indirect drying using low pressure steam, to produce a sludge with the required moisture 

content of < 10 wt.%. The dried feedstock is further processed in a shredder to reduce the 

particle size to 6 mm before being sent to the pyrolysis reactor. The energy consumption of 

the shredder is modelled as 20 kWhr/ton of processed waste material [22].  

7.3.2 Pyrolysis and Char Separation 

After pre-treatment, the material, along with the sweeping gas used to supply the inert 

environment, is sent to the pyrolysis reactor where it undergoes pyrolysis at the desired 

conversion temperature. This step produces a char, condensable products and non-

condensable gas. The pyrolysis reactor is modelled using a yield reactor, utilising the RYield 

process block which considers only the direct feed (dried waste stream) as input in Aspen 

Plus®. Experimental determined yields and gas compositions were used as input into the 

pyrolysis simulation and were obtained from bench scale data from Brown et al. [2,7]. The  

char product is separated from the vapour product by means of a cyclone directly after the 

pyrolysis reactor [11,19]. The entire or a portion of the char product, where necessary, was 

combusted along with a portion of the non-condensable gas product to meet the energy needs 

of the pyrolysis plant. 
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 In order to describe the composition of oil produced from the pyrolysis of fibre-plastic 

mixtures, 17 compounds (Table 7-3) were chosen to represent the fuel oil that is produced. 

Compounds related to the biomass component were identified from previous work on the 

pyrolysis of paper waste sludge (PWS) and complemented with data from literature [10,23–

25]. The plastic component of the oil was modelled using 3 compounds which covered the 

boiling range of light, medium and heavy compounds produced from the pyrolysis of plastic 

wastes (Table 7-3) [12,26].   

Table 7-3: Model compounds used to represent the oil fraction obtained from pyrolysis.  

Lignin Compounds 

4-vinylguaiacol Eugenol Apocycnin Phenol 

Guaiacol 2,3-dimethylphenol 2,6-dimethylphenol  

Carbohydrate Compounds 

2-furanmethanol Furanone 5-hydroxymethylfurfural Levoglucosan 

Glycol aldehyde 2-cyclopente-1-one   

Plastic Compounds 

n-decane n-hexadecane n-octadecane  

 

7.3.3 Condensable Volatile (Oil/Wax) Recovery 

In the fuel oil recovery section, the char free hot gas stream that exits the pyrolysis and char 

separation units are sent to product recovery to give an energy dense fuel product. As had 

been done in previous Aspen Plus® pyrolysis simulations, the NRLT activity coefficient 

model was used [11,27] with binary interaction parameters that were not available in the 

NRLT database estimated using the UNIFAC model.  
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 The condensable volatile fraction from pyrolysis is composed of a mixture of high 

and low boiling point compounds and water depending on which waste stream is being 

investigated. The condensation system used in this study was designed to eliminate most of 

the water produced during pyrolysis. This was achieved by first cooling the hot gas stream to 

ensure that the high boiling point components produced during pyrolysis are condensed and 

separated from the remaining vapours in an initial condenser [16] with the temperature of the 

condenser being set at 60 °C [11,28,29]. The resulting non-condensed products which can be 

described as a light/medium fraction along with pyrolytic water is first cooled using a series 

of indirect heat exchangers. This condensation step results in the recovery of waste heat that 

can be used to produce superheated steam that is either used for drying of the wet waste 

feedstock in the pre-treatment section or exported to the paper mill. The vapour that exits the 

first condensation step is cooled to 16 °C, using a combination of process cooling water and 

refrigeration, before it enters an absorption column. The liquid product of the absorber enters 

a decanter where the aqueous and organic phases are separated from each other and  

approximately 95 % of the organic fraction is recycled back to the column via a refrigeration 

unit that cools it to 10 °C [17]. The recovered light-medium oil fraction is then blended with 

the heavy oil fraction before being sold as a value adding product.  

 The aqueous phase generated from the decanter is first heated to 35°C using a 

proportion of the recovered heat and sent to an anaerobic digester. Approximately 60 % of 

the organic compounds in the organic phase are removed and the resulting biogas that is 

generated is sent to the pyrolysis furnace where it is combusted along with other pyrolysis 

products (gas, char) to supply the heat needed for the pyrolysis furnace. 
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7.3.4 Combustion and Steam, Electricity Generation 

The non-condensable gas fraction that is required to provide the inert environment during 

pyrolysis is removed before the remaining off gas and other pyrolysis products (provided 

they are required for the energy needs) are sent to the combustor. The heat generated during 

combustion is used to supply the energy needs of the pyrolysis reactor. The remaining 

process heat in the exhaust gas is recovered and used to generate steam at 20 bar along with 

heat recovered from the condensation of the fuel oil product via a heat transfer medium such 

as glycol in the heat recovered steam generator (HRSG). The superheated steam is then 

expanded in a back-pressure turbine to produce electricity and low-pressure steam at 4 bar 

that is used for biomass drying. The excess electricity and low-pressure steam that is 

produced are exported back to the paper mill.  

7.4 Results and Discussion 

7.4.1 Technical Evaluation of Base Case Scenarios  

The technical performance of the base case scenarios for the experimentally determined 

conditions of slow and fast pyrolysis were assessed according to the criteria described in 

section 7.2.4 and are presented in Figure 7-2, Figure7-3 and Table 7-4. 

 The largest coal substitute of between 207 to 477 kg/h for SP and 173 to 274 kg/h for 

FP was produced at the lowest conversion temperature of 300 and 350 °C, the condition that 

yielded the highest experimentally determined char yield [2,7], for both pyrolysis processes.  

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

173 

 

Table 7-4: Total char from the pyrolysis system produced that can replace coal (kg/hr) 

 
W1 

 
300°C 350°C 425°C 450°C 550°C SP 550°C FP 

Coal Replacement equivalent steam 16 27 77 26 20 15 

Char (pyrolysis) 461 247 0 0 0 0 

Total coal replaced 477 274 77 26 20 15 

 
W2 

Coal Replacement equivalent steam 12 8 22 8 25 15 

Char (pyrolysis) 198 127 0 0 0 0 

Total coal replaced 210 136 22 8 25 15 

 
W3 

Coal Replacement equivalent steam 14 9 66 7 63 9 

Char (pyrolysis) 193 164 0 0 0 0 

Total coal replaced 207 173 66 7 63 9 

 

Though the lowest conversion temperature for both SP and FP produced the largest amount 

of char that could be exported to the paper mill, the yield of this coal supplement was 

between 34.6 to 38.9 wt.% for SP and 19.8 to 31.9 % for FP. This yield was lower than the 

experimentally determined values obtained by Brown et al.[2,7] and was a result of the 

combustion of a portion of the char product in order to supply the process energy needed. The 

production of a condensable phase was not favoured due to the low conversion temperature 

(300 °C for SP and 350 °C for FP). As a consequence, a maximum production rate of up to 

34.1 kg/h for SP and 108.1 kg/h for FP for all three waste streams was obtained (Figure 7-2). 

As most of the char that was produced was required to help meet the energy demand of the 

process, the process thermal energy efficiency of 40.1%, 48.0% and 43.2% for SP and 41.5%, 

35.0% and 41.5% for FP was obtained for W1, W2 and W3 respectively (Figure 7-3).  
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Figure 7-2: Technical outcomes as a function of the minimum fuel selling price (MFSP) of 

the base case scenario  

 Increasing the conversion temperature to an intermediate pyrolysis temperature for 

both slow (425 °C) and fast (450 °C) pyrolysis of W1 resulted in a decrease in the production 

of a coal supplement from 477 to 77 kg/h for SP and 274 to 26 kg/h for FP (Table 7-4). The 

coal supplement comprised entirely of process heat that was recovered in the form of steam 

(Table 7-4), as all the pyrolysis char had to be burnt to help meet the energy demand of the 

process. The thermal energy exported in the form of a coal supplement decreased from 38 to 
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5.7 % for SP and 25.5 to 2.2 % for FP, upon an increase in the respective pyrolysis process 

conversion temperatures. The increase in the conversion temperature promotes the formation 

of fuel oil with a yield of 17.6 wt.% for SP and 36.4 wt.% for FP. The low fuel oil yield was a 

result of char and gas streams being insufficient to meet the process energy demands, with 

174 kg/h for SP and 175 kg/h for FP (Figure 7-2) of the product oil being sent to the 

combustor along with char and gas products. Therefore, the overall process thermal 

efficiency was 24.0% for SP and 33.3% for FP (Figure 7-3). Increasing the conversion 

temperature for W1 up to 550 °C resulted in the lowest char substitute being obtained (20 

kg/h for SP and 15 kg/h for FP) (Table 7-4). The decrease in coal substitute was attributed to 

the increasing energy demand of the pyrolysis system at elevated temperatures as well as the 

low char yield obtained at a pyrolysis temperature of 550 °C [2]. At a conversion temperature 

of 550 °C, all the gas and char that is produced with up to 208 kg/h of the final fuel oil must 

be combusted to meet the energy demand (Figure 7-2). As a consequence, the thermal energy 

efficiency of the process was 25.1% for SP and 33.7 % for FP (Figure 7-3).  
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Figure 7-3: Thermal energy efficiency of different process simulations for base case scenario 

 The simulated conversion of W2 and W3 at intermediate pyrolysis temperature for 

both slow and fast pyrolysis followed a similar trend as W1, with a subsequent decrease in 

the amount of char (coal substitute) that could be exported to the paper mill (22 and 8 kg/h 

for W2 and 66 and 7 kg/h for W3) for SP and FP respectively (Table 7-4). This resulted in the 

thermal energy transfer of the coal supplement not exceeding 3.9% for W2 and 9.3% for W3 

(Figure 7-3). The production of fuel oil increased to 172 kg/h and 235 kg/h for W2 and 162 

kg/h and 253 kg/h for slow and fast pyrolysis (Figure 7-2). The increase in temperature 
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resulted in an increase in the thermal energy transfer to the fuel oil product, 46.9% and 64.3% 

for W2 and 41.9% and 65.4% for W3 for slow and fast pyrolysis respectively. A further 

increase in conversion temperature to 550 °C required that up to 60 kg/h for W2 and 47 kg/hr 

for W3 of the fuel oil product for slow and fast pyrolysis be sent to the combustor to provide 

heat needed for the process. As a consequence, the final fuel oil yields for slow and fast 

pyrolysis of 31.3 and 46.0 wt.% for W2 and 41.8 and 51.4 wt.% for W3 were obtained. The 

smaller amount of the fuel product required for W2 and W3 at a conversion temperature of 

550 °C compared to W1 can be related back to the composition of the waste stream as 

evidenced in our previous work [2]. As W2 and W3 contained a larger percentage of plastic, 

they produced a gas phase that contained a larger concentration of C1 to C5 hydrocarbons 

resulting in a more energy dense gas phase than that produced from W1 [7]. Consequently, a 

larger proportion of the energy demand was met by the char and gas phase, thereby reducing 

the amount of final oil product that was needed to supplement the pyrolysis process. As a 

result, the thermal energy transfer to the fuel oil for slow and fast pyrolysis process of 46.0 

and 67.7% for W2 and 58.4 and 71.7 % for W3 (Figure 7-3) were obtained. The higher 

thermal efficiency obtained for W2 and W3 was a consequence of the composition of the 

waste streams. As discussed previously, W2 and W3 had a larger percentage of hydrocarbon 

plastic that when degraded at evaluated temperature produced a fuel product that has a similar 

energy content (~40 MJ/kg) to that of heavy fuel oil.  

7.4.2 Minimum Fuel Selling Price (MFSP) Analysis of Base Case Scenarios 

The MFSP and total capital investment from the simulation of the base case scenario are 

presented in Figure 7-2 and Figure 7-4. As discussed in section 7.4.1 the largest amount of 

char that could be exported to the paper mill was obtained at the lowest conversion 

temperature for both pyrolysis processes and resulted in the highest MFSP of 18.25 and 4.56 
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$/kg for W1, 26.18 and 9.29 $/kg for W2 and 48.78 and 10.41$/kg for W3 for SP and FP 

respectively (Figure 7-2), which resulted in a total capital investment of up to 11.1, 6.8 and 

6.9 million $ for W1, W2 and W3 respectively.  

 

Figure 7-4: Total capital investment (TCI) of the different base case scenarios 

The large MFSP obtained at the lowest conversion temperature for both SP and FP can be 

attributed to the low cost of coal (US$ 120/ton) that the pyrolysis char was meant to replace, 

as the cost of coal was 5 times cheaper than the targeted selling price of the pyrolysis oil or 

equivalent heavy fuel oil (HFO) (Table 7-3) and the low yield of fuel oil obtained at 

conversion temperatures of 300 and 350°C. A reduction in the MFSP to 2.42 and 1.08 $/kg 

for W1, 2.19 and 1.53 $/kg for W2 and 2.46 and 1.4 $/kg for W3 for slow and fast pyrolysis 

was observed at an intermediate pyrolysis temperature of 425 (SP) and 450 °C (FP), while 

the capital investment remains relatively constant (Figure 7-4). The decrease in the MFSP 

was largely attributed to the increase in the production of the marketable fuel product (Figure 
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7-2), however the obtained MFSP was still approximately 2 to 4 times higher than the 

targeted value of 0.65 $/kg (Table 7-3). The low cost of coal at $120/ton (Table 7-3) 

contributed to the high MFSP as the amount of char that can replace coal was considered as 

an income. When considering the overall coal consumption of a paper mill (2800 – 4200 

tons/month), the coal replacement achieved by the pyrolysis system on the average 

consumption of a paper mill was at most 10 wt.%. Increasing the conversion temperature to 

550 °C for both pyrolysis processes, promoted the formation of fuel oil product (as discussed 

in Section 7.4.1) and as a result decreased the MFSP to 1.84 and 1.12 $/kg for W1, 2.29 and 

1.48 $/kg for W2 and 1.78 and 1.32 $/kg for W3 for slow and fast pyrolysis respectively. The 

MFSP obtained for both SP and FP was still 2 to 3.5 times higher than the targeted value of 

0.65 $/kg (Table 7-3).  

7.4.3 Technical and Economic Analysis of Scenarios 2 and 3 

This section looks at the effect that upscaling of a pyrolysis plant annexed to a paper mill has 

on the overall economics of the process and is presented in Table 7-5 and Figure 7-5. The 

larger scale scenarios were simulated at the FP experimental condition of 550 °C. This 

condition was chosen as it produced the lowest MFSP for all three waste streams and, except 

for W1, the largest net process thermal efficiency. The first simulated scenario S2 (as 

described in Section 7.2.2), considered that on an industrial scale one pyrolysis plant will be 

built to process all waste streams at a respective paper mill. As a consequence, the total daily 

flow rate is approximately the sum of all the waste streams at a mill, which was estimated to 

be 2900 kg/h (S2). The second simulated scenario (S3) considered that the paper mill used in 

this study was located in an industrial area of South Africa that has three similar paper mills 

within a 20 km radius. A centralized facility will be built to process the waste from the three 

paper mills and as such, the total input into the pyrolysis plant for S3 is 8700 kg/h.  
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 Total oil production for scenario S2 was 1468, 1659 and 1673 kg/h for W1, W2 and 

W3 respectively (Table 7-5). In order to meet the energy demands of the process, a portion of 

the oil (15 wt.% for W1, 11 wt.% for W2 and 7 wt.% for W3, Table 7-5) had to be consumed 

along with the entire char and gas fractions. This resulted in a final saleable oil yield of 36, 46 

and 50 wt.% for W1, W2 and W3 respectively. As a result of the entire char stream being 

consumed for process energy production, only energy in the form of steam, which is 

recovered through process integration, can be exported back to the paper mill and results in 

an equivalent amount of coal of 32, 83 and 63 kg/hr for W1, W2 and W3 respectively. 

Scenario (S3) followed a similar trend for oil production with a portion of it being required to 

meet the energy demands of the process (Table 7-5). As a result of the increase in plant 

capacity size, a slightly larger amount of steam could be recovered and converted to the 

equivalent amount of coal and as such, a coal supplement of 100, 252 and 195 kg/h was 

obtained (Table 7-5). The small coal supplement equates to between 1.0 to 2.4 wt.% for S1 

and 2.9 to 7.2 wt.% of a single paper mills current coal requirement.  
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Figure 7-5: Effect of scale on the minimum fuel selling prices (MFSP) for base case 

scenarios, S2 (2900 kg/hr) and S3 (8700 kg/h) 

 

 

 

 

 

 

 

 

 

 

 

 

1.12

1.48

1.32

0.73

0.56
0.52

0.36

0.27 0.26

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

W1 W2 W3

M
F

S
P

 (
$

/k
g
)

Sceanario

Base case S2 S3

Stellenbosch University  https://scholar.sun.ac.za



 

182 

 

Table 7-5: Summary of technical and economic outcomes from scenario 2 (S2) and scenario 

(S3) 

 W1 W2 W3 

 S2 S3 S2 S3 S2 S3 

Inputs (kg/hr)       

Plastics  2900 8700 2900 8700 2900 8700 

       

Total Oil Produced 1468 4405 1659 4977 1673 5018 

Saleable Product Oil 1030 3090 1335 4005 1461 4382 

Oil to combustor  438 1315 324 972 211 636 

       

Total coal replaced (kg/hr) 32 100 83 252 63 195 

       

Total Capatial Investment ($ million) 17.044  

 

33.307 

 

17.815 

 

35.342 

 

17.813 

 

35.439 

 

Opex ($ million /year) -0.277  -2. 939 -0.505 

 

-3.649 

 

-0.415 

 

-3.368 

 

MFSP($/kg) 0.73 0.36 0.56 0.27 0.52 0.26 

 

 Increasing the size of a pyrolysis plant has a significant effect on the TCI and MFSP, 

with TCI increasing up to a maximum of 17.8 and 35.4 million $ for S2 and S3 respectively. 

The MFSP obtained from S2 and S3 reduced significantly compared to the base case scenario 

(Figure 7-5) with the MFSP reducing to 0.73 and 0.36 $/kg for W1, 0.56 and 0.27 $/kg for 

W2 and 0.52 and 0.26 $ /kg for W3 for S2 and S3 respectively. The large decrease in the 

MFSP can be attributed to indirect income received from the migration of waste from landfill 
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sites. The cost associated with disposal of the waste at landfill sites can be considered as an 

income for the pyrolysis plant and outweighed the OPEX of the proposed pyrolysis plant 

(Table 7-5). As a result, the MFSP for simulated scenarios S2 and S3 for waste streams W2 

and W3 was below the target value of 0.65 $/kg. The simulated scenario S2 for W1 produced 

a MFSP (0.73 $/kg) only slightly above the targeted value of 0.65 $/kg (Figure 7-5)  

7.5 Further Comments 

The local industry in South Africa, regulated by the Paper Manufacturing Association of 

South Africa (PAMSA), has endeavoured to promote the conversion of paper mill waste 

either by biological or thermochemical routes as alternatives to landfill. As such, the disposal 

of paper mill waste at landfill sites is being discouraged with landfill costs in the coming 

years set to increase by orders of magnitude. Such increases in disposal cost will eventually 

make the disposal of paper mill waste at landfill sites unviable, increasing the economic 

attractiveness of small scale pyrolysis plants at current paper mill flow rates.  

7.6 Conclusions and Recommendations 

This work presents a study of the trade-off between economic and technical optimisation 

when integrating a pyrolysis plant at a paper mill as an alternative disposal technique to 

landfilling.  

 The largest coal/energy supplement from pyrolysis occurred at the lowest conversion 

temperature for all three waste streams with coal substitution of up to 476 kg/hr being 

obtained at current paper mill flow rates. This resulted in the highest minimum oil selling 

price being obtained (up to 49 $/kg). The lowest minimum fuel selling price occurred at a 

conversion temperature 550 °C for fast pyrolysis process for all three waste streams. It was 

associated with the lowest coal substitution being obtained (up to 15 kg/hr) as the entire gas, 
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char and a portion of the condensable fuel product must be burnt to meet the energy demands 

of the pyrolysis plant. 

 The benefits of increased scale on the economic outcome are clearly shown with both 

scenarios S2 and S3, producing a MFSP (0.36 to 0.73 $/kg for W1, 0.27 to 0.56 $/kg for W2 

and 0.26 to 0.52 $/kg for W3) in the range of the targeted value of 0.65 $/kg. Increasing the 

size of a pyrolysis plant indirectly generates additional revenue as a result of the avoided cost 

of disposal at landfill sites. Ongoing legislation evolution and the recent drive away from 

disposal at landfill sites combine favourably for a pyrolysis plant as an alternative disposal 

technique to landfilling. 
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 Conclusions and Recommendations 

 

Industrial waste streams contaminated with plastic from a paper mill, making use of recycled 

fibre as feedstock, have the potential to be used as a source to produce high calorific value 

fuels. After using a fraction of the products (especially the gas) for the pyrolysis process to be 

energy self-sufficient, the char or condensable (oil/wax) product obtained can be used to 

partially meet the energy demands of a paper mill. The main findings and recommendations 

for future work on the uses of industrial paper mill waste streams classified as rejects are 

discussed in this chapter.  

8.1 Conclusions  

The valorisation by pyrolysis of industrial waste described as rejects for fuel product 

generation showed that the pyrolysis process in question (fast or slow) and conversion 

temperature had a vital role in influencing the quality and yield of the final pyrolysis product. 

The production of a char phase with increased energy density (17.9, 27.1 and 31.2 MJ/kg for 

W1, W2 and W3) from slow pyrolysis was favoured at temperatures as low as 300 °C with 

associated yield of 73.7, 77.3 and 76.1 wt.% for W1,W2 and W3 respectively. Increasing the 

slow pyrolysis temperature up to 550 °C produced condensable energy dense tarry phase 

(combination of oil and wax) with an HHV of up to 42.8 MJ/kg.  

 The application of fast heating rates (> 250 °C/min) and short vapour residence times 

(<10s) limited the effect of secondary charring reactions and promoted the formation of 

condensable volatiles. As such, fast pyrolysis resulted in yields of energy dense oil/wax phase 

of up to 52.8, 48.2 and 53.6 wt.% for W1, W2 and W3, with an HHV of up to 41.7 MJ/kg for 

the waste stream that contained the largest percentage of hydrocarbon plastic. The increase in 
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conversion temperature had a detrimental impact on the quality of the char product for both 

slow and fast pyrolysis with the calorific value of the char product decreasing by as much as 

11 MJ/kg. 

 Attempts to convert the lignocellulosic component of the waste streams for W2 and 

W3 during fermentation resulted in the accumulation and clumping of the plastic component 

along with sterilization difficulties. As such these streams were not considered as a viable 

feedstock for a fermentation-pyrolysis route. The waste stream W1 was successfully 

fermented on large scale (20 L reactors) and resulted in ethanol concentrations of 39.8 g/L. 

The residue obtained was subjected to both slow and fast pyrolysis which resulted in an 

energy dense phase (oil/wax) with a yield up to 13.2 and 26.3 wt.% of a high calorific value 

(HHV of 35.1 MJ/kg for slow and 32.1 MJ/kg for fast pyrolysis) respectively.is The 

significantly improved quality of the product compared to what was obtained for slow and 

fast pyrolysis of the untreated waste stream (HHV of 16.8 MJ/kg for slow and 16.5 MJ/kg for 

fast pyrolysis) was a consequence of the conversion of a large fraction of the polysaccharide 

fraction present in the fibres.  

 Assessing the potential of utilising pyrolysis as an alternative disposal technique in 

the form of a pyrolysis plant annexed to a paper mill at current waste generation flow rates 

from a mill, produced a minimum fuel selling price of 1.12, 1.48 and 1.32 $/kg for fast 

pyrolysis at 550 °C, the temperature identified as the most advantageous (based on techno-

economic assessment) for the three waste streams under investigation. The selling price of the 

fuel was between 2 to 3 times higher than heavy fuel oil equivalent. In order to meet the 

energy demand of the pyrolysis plant at the process condition that resulted in the best 

minimum fuel selling prices (550 °C), the entire char and gas products had to be combusted 

along with a proportion of the saleable condensable (oil/wax) product, with up to 209 kg/hr of 
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oil/wax being directed to the combustor. As a consequence, a saleable fuel oil yield of 35.5, 

46.0 and 51.4 wt.% was obtained for W1, W2 and W3 respectively. 

 

8.2 Recommendations 

Based on the findings from this work, further research could be conducted into the following 

key focus areas.  

8.2.1 Pelletization of Raw Material for Refused Derived Fuels Combustion 

The pelletization of the raw material for use as a refused derived fuel pellet (RDF). As the 

starting pelletized waste material used in chapters 4 and 5 had a HHV of between 16 to 28 

MJ/kg. They could be used for co-firing directly in the existing boilers. Alternative to directly 

co-firing the waste feedstock is to pelletize the char product produced at 300°C utilising the 

small quantity of oil that is produced as a binder to form char pellets that can be co-

combusted in the existing coal boilers.  

8.2.2 Scaling up of Pyrolysis Process 

As the pyrolysis set-up used in this study can be classified as bench scale, the most promising 

scenarios should be scaled-up to a kilogram scale pyrolysis system. As the main energy dense 

condensable phase produced from both W2 and W3 was predominately a viscous wax phase, 

this could present problems in the condensation train during continuous operation due to its 

viscosity and as such heat tracing along the entire condensation could be recommended. The 

performance of the pyrolysis system at bench scale (mass yields) can be used to update the 

technoeconomic model.  
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8.2.3 Combustion Testing of the Pyrolysis Products  

The combustion behaviour of the products obtained during pyrolysis should be assessed and 

compared to that of traditional fuels. The effect of the blending ratios on the combustion 

behaviour with traditional fuel sources should be determined as it can have a significant 

influence on the boiler performance as the addition of too much pyrolysis oil or char can lead 

to boiler instability.  

 

8.2.4 Updating the Economic Model 

The economic model in this study utilised the input from gram scale pyrolysis experiments.  

Updating the economic model with data obtained from a pilot plant and detailed 

compositional data of the pyrolysis condensable product will allow for a more accurate 

comparison with traditional fossil fuels. Along with data obtained from the combustion 

testing and from lesson learnt from the operation of the pilot scale pyrolysis system, could 

provide a more accurate estimate of the economic viability of the process
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Appendix A: Additional Information for Chapter 4 

 

 

Figure A-1: dTG (derivative thermogravimetric) curves of some tentatively sorted 

components from waste streams representing characteristic peaks of PET, PE and fibre. 

Contamination of fibre component can be observed between 450 and 500 °C, PET and PE 

contamination (probably due to fibre) can be seen between 280 and 400 °C. 
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Appendix B: Additional Information for Chapter 5 

 

Figure B-1: Picture of shake flask experiments of waste streams W3, showing the clumping 

of plastic waste that occurred during fermentation.  
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Figure B-2: Ethanol concentration of waste stream W2 and W3 at solids loading of 6wt.% 

and three different enzyme loadings of 10,15 and 20 FPU/gdS 
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Appendix C: Detailed Experimental Method  

This section describes the step by step procedure for preparation of waste streams W1,W2 

and W3 along with the experimental procedure for conduction, slow and fast pyrolysis 

experiments and bench scale fermentation experiments.  

C.1 Pre-treatment of Material  

• The as received feedstock was dried for a period of 7 days in a tunnel green house 

with an approximate temperature of 40 °C. 

• The dried material was subsequently milled to a particle size of 2mm using a Retsch 

SM 100 cutting mill. 

• The milled sample was subsequently pelletized to increase the packing density inside 

both the slow and fast pyrolysis reactor setups. Pelletization occurred using an ABC 

Hansen pellet mill where the dried material was rehydrated with 30 wt.% water and 

passed through a 6 mm die.  

• The pellet material was subsequently dried in an oven at 40 °C for a period of  7 days.  

The low drying temperature was to ensure that no degradation occurred to the 

biomass and plastic components of the waste stream. 

C.2 Slow Pyrolysis Experimental Setup 

The schematic of the slow pyrolysis unit can be seen in Chapter 4 Figure 4-1. The setup 

consists of a nitrogen gas supply system, a tubular reactor, an electrically heated furnace 

and a stepwise condensation train. The detailed experimental procedure is described 

below.  

C.2.1 Slow Pyrolysis Experimental Setup 

• Weigh the quartz reactor tube and the sample boat. Then weigh off approximately 

30grams of pelletized waste stream under investigation.  Insert the quartz reactor 
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tube into the furnace and place the sample boat at the centre of the furnace. 

Connect the end caps and tighten each bolt alternatively to ensure the o ring seals 

correctly.  

• Weigh condensers 1 to 3 and ensure that they are arranged in a stepwise manner 

(one slightly below the other) 

• Place silica beads in condensers 4 and 5. This is done to trap any small molecules 

that are still entrained in the gas phase. Subsequently weigh the condensers. As 

with condensers 1 to 3, ensure that condensers 4 and 5 are placed in a stepwise 

manner.  

• Weigh the rubber connectors and connect the condensers to each other.  

• Before starting to purge the reactor system a leak test must be done. This is done 

by attaching vacuum pump to the end of the condensation system and checking 

that the vacuum pressure remains constant for 5 minutes.  

• Start the flow meter and allow it to warm up. Once the reading on the flow meter 

reaches 0 ± 0.1 lpm, open the nitrogen gas bottle and set the flow rate to 0.5 lpm 

and allow the system to purge for 30 minutes. 

• While the system is purging, collect the cooling medium (dry ice) and place it 

around condensers 2 to 5. 

• Once the reactor is finished purging, start the heating program. The heating 

program for slow pyrolysis was as follows:  

o The sample was heated to the desired temperature at 25 °C/min. 

o Once the desired temperature was reached, the sample was held there for 

an additional 60 minutes. 

• Once the heating program has finished switch off the furnace and allow the 

reactor to cool down to 80 °C. 
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• Once the reactor has reactor 80 °C start dismantling and weighing the 

condensation and all connection pipes, starting with condenser 5. 

• Once the condensation system has been dismantled and weighed, the reactor is on 

average at a temperature of < 40°C. Before dismantling the reactor system, turn 

off the nitrogen flow by set the control valve position of the flow meter to closed. 

Proceed to weigh both the quartz reactor tube and the sample boat. Once this is 

done and all samples have been collected, commence with the cleaning of the 

experimental setup. 

C.3 Fast Pyrolysis Experimental Setup 

Due to the laminations associated with the heating rate that the slow pyrolysis system could 

provide, a new induction heating pyrolysis system was developed for fast pyrolysis 

experiments and is depicted in chapter 5 Figure 5-1.  

C.3.1 Calibration of Infrared Thermocouple 

Induction heating can be defined as the process by which a metal object is heated by high 

frequency alternating current. The main difference between induction heat and conventional 

resistance heating is that heat is generated inside the object (the metal reactor) compared to 

an external heat source which transfers heat to the object by conduction. As a result of an 

induction system using an alternating electrical current, the use of a standard K type 

thermocouple to measure the temperature at the surface of the reactor was not possible, as the 

induction current interferes with the thermocouple distorting its reading. In order to measure 

the temperature at the surface of the reactor an infrared (IR) thermocouple was used. IR 

thermocouple works by measuring the emissivity of a material and relates this back to a 

temperature. The emissivity of the IR thermocouple used in this study was set by a trial and 

error approach. The reactor was heated to the desired temperature. Once the desired 

temperature was reached, the induction field was turned off and a K type thermocouple 
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connected to a hand held temperature reader was placed inside the reactor to measure the 

temperature. Depending on the temperature difference, the emissivity was either increased or 

decreased until the IR thermocouple and the K type thermocouple read the same temperature 

to within 1°C.  

C.3.2 Experimental Procedure of Fast Pyrolysis  

• First weigh the stainless steel reactor, graphite gasket and sample boat. Once this is 

done, weigh 30grams of pelletized waste sample. Place the sample boat in the middle 

of the reactor and assemble it by tightening the bolts alternatively to ensure the reactor 

seals correctly. Once done, place the reactor inside the induction coil.  

• Weigh the components that make up the condensation train (metal condensation pot, 

shell and tube condensers and electrostatic precipitator (ESP)). Assemble the 

condensation system and connect it to the reactor, making sure that the sample boat 

inside the reactor is not disturbed from its position. 

• Check for leaks using the vacuum pump and that the vacuum pressure remains 

constant for 5 minutes.  

• Once the leak test is done, start to purge the system with nitrogen for 30 minutes.  

• Connect the cooling water flow pipes to the two condensers  and start the chiller. 

Make sure the chiller’s temperature is set at 5°C. 

• Collect dry ice to place round the collection pot. 

• Once the system has purged, first set the flow rate to 2.5lpm and connect the ESP 

power source and ensure it is set at 12 KV. 

• Once this is done, start the heating program. The heating program for fast pyrolysis 

was as follows: 

o The sample was heated to the desired temperature at 250 °C/min. 
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o Once the desired temperature was reached, the sample was held there for an 

additional 30 minutes. 

• Once the heating program has finished, switch off the furnace and allow the reactor to 

cool down to 80 °C. 

• Once the reactor has reached 80 °C, start dismantling and weighing the condensation 

and all connection pipes starting with the ESP. 

• Once the condensation system has been dismantled and weighed, the reactor was on 

average at a temperature of < 40°C. Before dismantling the reactor system, turn off 

the nitrogen flow by setting the control valve position of the flow meter to closed. 

Proceed to weigh both the stainless steel reactor and gasket and the sample boat. Once 

this is done and all samples have been collected, commence with the cleaning of the 

experimental setup. 

C.4 Experimental Procedure for 20L Fermentation  

This section describes the experimental procedure for 20l fermentation experiments.  

C.4.1 Sterilization and Preparation of Feedstock and Fermentation Medium.  

• A total of 7.3L fermentation medium consisting of 3g/L of corn steep liquor and 0.62 

g/l of MgSO4·7H2O was added to the 20L reactor. Along with the initial amount of 

substrate to bring the solids loading to 6wt.%  

• The reactor was sterilized by making use of steam at 121 °C and a pressure of 200 

kPa for a period of 15 minutes. Once this was done, the reactor was allowed to cool 

down to the fermentation temperature of 37 °C. 

• The inoculum consisting of yeast MH1000 and enzyme (viscamyl flow) was added in 

the following amounts: 

o MH 1000 5% v/v 

o Enzyme 15 FPU/gdS  
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• The fermentation was allowed to proceed for 12 hours before a sample was taken to 

be analysed for ethanol. Sampling was done before any subsequent substrate feeds 

occurred.  

• Additional substrate was fed at 3wt.% until final solids loading of 27wt.% was 

achieved. All additional substrate was first sterilized in an autoclave at 121°C for 15 

minutes before being fed to the reactor.  

• Additional ethanol samples were taken up until the final solids loading was reached. 

To ensure that the conversion of the substrate was completed. ethanol sample was 

taken for an additional 24 hours after the last substrate feed.  
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