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Abstract 

 
One of the key focus areas for the management of a power utility in a regulated energy market 

is planned preventative maintenance of the power generating units in its power system. The so- 

called generator maintenance scheduling (GMS) problem refers to finding a schedule according 

to which the planned maintenance can be performed on the generating units in a power system. 

A novel bi-objective optimisation model is proposed in this dissertation for the GMS problem in 

which demand satisfaction reliability is maximised and electricity production cost is minimised. 

The first scheduling objective is one of the most common objectives in GMS problems in the 

literature, namely minimising the sum of squared net reserve levels. This objective serves to 

create an even (reliable) margin of generating capacity over expected demand. The second 

scheduling objective is the (linear) production cost associated with a maintenance plan of all the 

generating units in a system. The latter objective is aimed at exploiting the following correlation: 

planning maintenance on a cost-efficient power station during a high-demand period incurs a 

higher fuel cost. Production cost is simply taken as fuel cost in this dissertation since it is the 

most prominent production cost component of power generation. 

Dominance-based multi-objective simulated annealing is adopted as model solution technique. 

Solving the aforementioned model clearly demonstrates that maintenance schedules which min- 

imise the sum of squared reserves are typically also associated with low production costs, but 

that the lowest sum of squared reserves maintenance schedule does not necessarily achieve the 

lowest production cost (a sentiment also reported in the literature). Hence there is a need 

for adopting a multi-objective modelling approach in the context of GMS problems in search 

of trade-off solutions rather than adopting a standard single-objective modelling paradigm. A 

sensitivity analysis is performed in respect of model constraint relaxations and the degree of 

constraint violations. In the process, certain soft constraints which sensitively influence the 

model objectives are identified. 

A decision support system, whose working is based on the bi-objective optimisation model 

described above,  is designed and a concept demonstrator of this system is implemented on 

a personal computer. This concept demonstrator may be used to find and analyse trade-off 

solutions to instances of the GMS model and offers interactive features which facilitate sensitivity 

analyses in a very natural way. The viability and practical use of the concept demonstrator is 

finally illustrated by applying it to two realistic GMS case studies. It is found that the decision 

system is capable of producing high-quality sets of trade-off maintenance schedules in each 

case. 
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Uittreksel 

 
Een van die hooffokusareas vir die bestuur van ’n kragvoorsiener in ’n gereguleerde energiemark 

is beplande voorkomende onderhoud van die opwekkingseenhede in sy kragnetwerk. Die soge- 

naamde opwekkingseenheid-onderhoudskeduleringsprobleem (OOP) behels die soeke na ’n skedule 

waarvolgens beplande, voorkomende onderhoud van kragopwekkingseenhede in ’n kragnetwerk 

uitgevoer kan word. ’n Nuwe tweedoelige optimeringsprobleem word in hierdie proefskrif vir 

die OOP daargestel waarin vraagvoorsieningsbetroubaarheid gemaksimeer word en kragop- 

wekkingskoste geminimeer word. 

Die eerste skeduleringsdoel is een van die mees algemene doele in OOPe in die literatuur, naamlik 

die minimering van die som van gekwadreerde netto reserwevlakke. Hierdie doel is daarop gemik 

om ’n gelykmatige (betroubare) band van opwekkingskapasiteit bo en behalwe die verwagte 

vraag te lewer. Die tweede skeduleringsdoel is die (lineêre) produksiekoste wat met ’n onder- 

houdsplan vir al die opwekkingseenhede in ’n stelsel gepaard gaan. Laasgenoemde doel is daarop 

gemik om skedules te lewer wat die volgende korrelasie uitbuit: beplanning van onderhoud aan 

’n koste-doeltreffende opwekkingseenheid gedurende ’n periode van hoë vraag het ook ’n hoë 

brandstofkoste tot gevolg. Produksiekoste word in hierdie proefskrif bloot as brandstofkoste 

geneem, aangesien dit een van die mees prominente kostekomponente van kragopwekking is. 

Dominasie-gebaseerde, veeldoelige gesimuleerde tempering word as modeloplossingstegniek in- 

gespan. Oplossing van die bogenoemde model toon duidelik dat onderhoudskedules wat die 

som van gekwadreerde reservevlakke minimeer ook geneig is om skedules met lae gepaardgaande 

produksiekostes te lewer, maar dat die beste skedules in terme van die som van gekwadreerde 

reservevlakke nie noodwendig die laagste gepaardgaande produksiekostes tot gevolg het nie (’n 

sentiment wat ook in die literatuur gerapporteer word). Gevolglik is dit in die konteks van die 

OOP wenslik om ’n veeldoelige optimeringsbenadering in die soeke na afruilingsoplossings te volg 

eerder as om die standaard, enkeldoelige optimeringsparadigma aan te hang. ’n Sensitiwiteits- 

analise word ook met betrekking tot die modelbeperkings en die mate van oorskryding daarvan 

uitgevoer. In die proses word sommige sagte beperkings gëıdentifiseer wat die modeldoelfunksies 

sensitief bëınvloed. 

’n Besluitsteunstelsel, waarvan die werking op die bogenoemde tweedoelige optimeringsmodel 

gebaseer is, word ontwerp en ’n konsepdemonstrator daarvan word op ’n persoonlike rekenaar 

gëımplementeer. Hierdie konsepdemonstrator kan gebruik word om afruilingsoplossings vir spe- 

sifieke gevalle van die OOP te vind en te analiseer, en die demonstrator bied ook interaktiewe 

funksies waarmee sensitiwiteitsanalises op ’n baie natuurlike wyse uitgevoer kan word. Die haal- 

baarheid en praktiese werking van die konsepdemonstrator word uiteindelik gedemonstreer deur 

dit op twee realistiese gevallestudies toe te pas. Daar word bevind dat the stelsel in elke geval 

daartoe in staat is om hoë-kwaliteit afruilingsonderhoudskedules te lewer. 
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1.1 Background 

 
All things must rest and be subjected to routine maintenance in order to increase their survivabil- 

ity and sustainability. How much rest and/or maintenance is required typically involves a trade- 

off: too much of it and the entity becomes too unproductive, too little of it and the entity runs 

the risk of wearing out or breaking down. As important is the timing of the rest/maintenance 

granted.  This is applicable to both natural and manmade entities.  This dissertation focuses 

on preventative maintenance scheduling (MS) for one of the most important entities in electric 

power systems, namely power generating units. 

In modern society, energy production is a prerequisite for physical and economic wellbeing. En- 

ergy is required for the production of light, heat, and transport, to name but a few examples. 

Energy may be produced from fuel (e.g. oil, gasoline, uranium, gas, coal, or wood) or natural 

forces (e.g. wind, or water) [90]. Providing energy consistently, efficiently, reliably, and sustain- 

ably is of crucial importance in modern economies. This is becoming an especially difficult task 

in view of the globe’s growing electrical energy demand (as a result of population growth and 

development) and depleting resources. 

Figure 1.1 contains a map of the world’s electricity consumption during 2015 in terawatt hours 

(TWh). As may be seen in the figure, China and the United States of America consume by far 

the largest amount of electricity worldwide. Figure 1.2 illustrates the steadily increasing trend 

of electricity consumption around the world. As may be seen in the figure, the Asian market is 

growing substantially, and the trend for South Africa’s electricity consumption is illustrated in 

Figure 1.3. 

In order to meet this demand, a society will build a number of power stations to produce energy 

from different sources, usually within the borders of a country. These power stations are typically 

interconnected to form a power system or network. Such a power system is further responsible 
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Figure 1.1: World electricity consumption during 2015, totalling 20 568 TWh [70]. 
 

 
for the transmission and distribution of the power produced by these stations to industrial and 

urban end-users. 

A power station is complex in nature, requiring a large number of people and various types of 

equipment for its effective operations. Power stations essentially use some form of fuel (contain- 

ing potential energy) to create mechanical energy. A machine, called a generator, converts this 

mechanical energy into electrical energy by using electromagnetic principles. The main types 

of equipment required to accomplish this (e.g. boilers, steam (water) turbines, and generators) 

are often treated as single entities, called power generating units, in power system reliability 

analyses. A power station generally contains more than one generating unit [91]. 

Most power stations around the world burn fossil fuels (such as coal, oil, or natural gas) to 

generate electricity. Others use nuclear power, but there is an increasing use of cleaner renewable 

sources for this purpose (such as solar, wind, wave, and hydroelectric sources) [90, 86]. Coal is, 

however, still the world’s most abundant and widely distributed fossil fuel, and it fuels more than 

40% of the world’s electricity generation, although this figure is much higher in many countries, 

such as South Africa (93%), Poland (92%), China (79%), India (69%) and the United States of 

America (49%) [166]. 

The top five largest power stations in the world are hydroelectric stations, the largest being 

the Three Gorges Dam station in China with an installed capacity of 22 500 megawatt (MW) 

[205] and consisting of 32 power generating units [207]. Although currently only a proposal, 

the Grand Inga Dam station in the Congo will surpass all existing power stations in capacity 

when it comes into operation. If construction commences as planned, the design targets to top 

40 000 MW in installed capacity [112, 113]. To put this into perspective, it will be capable 

of producing (if it were to operate 24 hours a day, 365 days a year, with enough water) 350 

TWh, which is 56% of Africa’s 621 TWh energy consumption in 2015 (see Figure 1.2). Another 

proposal, the Penzhin Tidal Power Plant, is designed for an installed capacity up to 87 100 MW 

[205]. Kusile power station, which is expected to become the world’s largest coal-fired power 

plant upon completion, is currently being constructed in Mpumalanga, South Africa and will 

comprise six generating units, each rated at an 800 MW installed capacity for a total capacity 

of 4 800 MW. It is expected that the first of its units will be synchronised in 2017 [76]. 
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Figure 1.2: World energy consumption during the period 2000–2015 [70]. 
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Figure 1.3: South Africa’s energy consumption during the period 2000–2015 [70]. 

 

 
South Africa has experienced serious energy problems of late [180]. Eskom is the South African 

state-owned electricity utility which generates, transmits and distributes electricity in all sectors 

of South African society. It generates approximately 95% of the country’s electricity [73]. The 

utility predominantly generates electricity through coal-fired power stations,  as illustrated in 

Figure 1.4. Two coal-fired power stations in South Africa may be seen in Figure 1.5. 

Power outages in South Africa are mainly brought about by higher than expected demand, 

infrastructure failure or vandalism, and a diminishing reserve capacity (available capacity over 

and above demand). The reserve margin for generating capacity has decreased in recent years 

from the desired 15% to less than 8% [123]. As a result, South African power stations have 

recently been forced to operate virtually continuously at very high load factors (how hard a plant 

is operating on a percentage basis). In addition, the generating units of South African power 

stations are relatively old, which means that they require above-average levels of maintenance. 

These two aspects contribute significantly to the prevalence of unplanned power outages [168, 

p. 5]. Appropriate preventative maintenance (PRM) planning is crucial to mitigate the risk of 

unplanned outages and is one of the key focus areas for the management of a power utility 
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Figure 1.4: The distribution of Eskom’s power stations in South Africa in 2015 according to Hatton 
[104, p. 11]. OCGT is an acronym for open-cycle gas turbines. 

 
 

[46, 49, 124, 145] — especially for a power utility such as Eskom, which has been postponing 

maintenance plans on its already ageing stations [53]. Eskom has of late attempted to turn the 

tide on unplanned power outages by focussing its attention on planned maintenance during 2015 

and 2016 [110], and “this has resulted in a reduction of the number of plant breakdowns over 

the past seven months, positively impacting plant availability” [77]. 

 

 

1.2 Informal problem description 
 

As mentioned and motivated in the previous section, effectively planning PRM of the power 

generating units in the power system of a power utility is important, so as to satisfy demand 

as efficiently and effectively as possible [46, 49, 90, 124, 145]. MS plays an important role in 

improving the overall availability and extending the life of equipment [1] in power stations. It 

is also crucial in risk management [68]. As the number of generating units of a power utility is 

typically large and the operational constraints over the planning horizon are typically complex 

in nature, there is a growing need for developing new methods for planning PRM of power 

generating units [161]. 

A schedule for the planned maintenance outages of generating units in a power system is sought 

in the celebrated generator maintenance scheduling (GMS) problem [165]. A novel bi-objective 

 
  

 

● 

● 

● 

● 
● ● 

 

Capacity (MW) ● 150− 800 800− 1400 1400− 3000 3000−

4200 
 Type ● Coal ● Hydroelectric ● Nuclear ● OCGT ● Pumped storage 

Number 13 (60%) 2 (9%) 1(5%) 4 (18%) 2 (9%) 
Capacity 

     (MW) 37678 (86%) 600 (1%) 1800 (4%) 2426 (6%) 1400 (3%) 
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(a) Arnot power station in Mpumalanga, consisting 
of six ± 390 MW units adding up to 2 352 MW 

 
 

 

(b) Lethabo power station in the Free State, con- 
sisting of six 618 MW units adding up to 3 708 MW 

 

Figure 1.5: Two coal-fired power stations in South Africa [79]. 
 

 
approach to modelling the GMS problem is proposed in this dissertation as well as how the 

solution to this problem may be incorporated into a national power utility’s decision support 

software. It is envisaged that this modelling approach may, for example, be incorporated into 

Eskom’s existing Energy Flow Simulator (EFS). 

Power utilities across the world often employ such large-scale energy flow simulation models of 

their energy supply chains to inform decisions on operational and strategic levels. Foley et al. 

[85] provide an overview of electricity systems modelling techniques and discusses a number of 

key proprietary electricity system models used in the United States of America and Europe. 

These energy system models typically interconnect the conversion and consumption of energy 

[172], including operations involved with primary fuel supplies (e.g. mining and petroleum ex- 

traction), conversion and processing (e.g. power plants and refineries), and end-use demand for 

energy services (boilers and residential space conditioning). The demand for energy is normally 

disaggregated by sector (i.e. residential, manufacturing, transportation, and commercial) and 

by specific functions within a sector (e.g. residential air conditioning, heating, lighting, and hot 

water) [172]. These energy flow models usually serve to facilitate the investigation of what-if 

scenarios by decision makers [141], with some utilising optimisation techniques [71, 172]. It is 

within this decision support framework that MS solutions should ideally be incorporated in a 

dynamic fashion. 

Figure 1.6 provides an overview of the typical energy flow in South Africa. The EFS is a decision 

support software tool which models this energy supply chain from “fuel to fridge” [104, p. 3]. The 

working and various constituent components of this simulation tool are illustrated in Figure 1.7. 

The EFS focusses primarily on coal-generated energy (but also includes other energy sources), 

since coal is the predominant energy source in South Africa [104, 105, 131]. The EFS has been 

developed to function as a what-if analysis tool in the context of different future scenarios. It 

allows for the accommodation of different energy availability factors per station, different weather 

patterns, a variety of gross domestic product levels, varying coal supply levels and qualities, etc. 

The only simulation technique employed in the EFS is Monte-Carlo simulation. 

A simulation replication by the EFS is initiated by calling a consumption module (see Figure 

1.7(a)), which forecasts the national energy demand per region (central, eastern and southern) 

and customer type (residential, manufacturing, mining, and other) according to the selected level 

of gross domestic product (high, medium, or low) and weather scenario (hot, normal or cold). 
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Figure 1.6: Energy flow in the South African electricity industry in 2006 [104, p. 13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The demand thus forecast is then used by a production planning module (see Figure 1.7(b)) 

which employs a linear programming (LP) model to schedule the planned energy production per 

power station (including coal, nuclear, gas-turbine, hydro-electric, and renewable energy units) 

so as to minimise energy production cost. Demand must be met whilst taking into account 

production capacity. The third main component of the EFS is a primary energy module (see 

Figure 1.7(c)), which deals primarily with coal, because coal-fired power plants produce most 

of the utility’s electricity. The primary energy module facilitates what-if analyses in terms 

of a variety of different plans and scenarios, including unplanned power station maintenance, 

variation in the calorific value of coal, variation in the quantity of coal delivered, and variation 

in the coal burnt at each coal-fired power station. The final main component is a generation 

module (see Figure 1.7(d)). The energy production plan, supply reliability, and the quality 

and quantity of coal to be delivered are taken as input into the generation module which then 

quantifies emissions, such as sulphur and nitrogen oxides. System losses are also incorporated 

into the EFS [105]. 

Until recently, the EFS had no optimisation capacity (other than solving an LP problem in its 

energy production planning component (in Figure 1.7(b)). Many variable and parameter val- 

ues currently employed within the EFS are known to be sub-optimal, and a need has therefore 

arisen to be able to optimise decision variables within the EFS [104]. Two masters projects were 

subsequently carried out and finalised in 2015 [104] and 2016 [25] in order to add optimisation 

capabilities to the EFS. The first masters project by Hatton [104] involved the design of a single- 

objective (SO) optimisation component, using the cross entropy method (a metaheuristic), to 

determine good coal stockpile management policies for the primary energy module (in Figure 

1.7(c)).  In this study, the model minimised the cost related to coal on hand, coal shortages, 
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Figure 1.7: High-level representation of the EFS (adapted from [105]). 
 
 

emergency deliveries, and delivery cancellations. In addition, Hatton investigated and proposed 

future areas for simulation and optimisation within the EFS. The second follow-on masters 

project by Brits [25] further centred around a multi-objective (MO) coal inventory model for 

Eskom’s network of coal-fired power stations using the simulation outputs of the EFS in con- 

junction with an MO version of the cross entropy method. The objectives in the MO paradigm 

considered by Brits [25] included minimising the total average coal stokpile levels, the total coal 

transfers, and the total average coal inventory outside the warning limits. In addition, Brits [25] 

identified and modified some of the existing EFS architecture in order to improve its potential 

as a simulation and optimisation tool. These improvements included a conversion of the weekly 

resolution of the production planning module to a daily resolution. 

In 2011, Schlünz [168] carried out a masters project which determined optimal generator main- 

tenance schedules for a national power utility such as Eskom. In this study, only one scheduling 

objective was considered, namely levelisation of net reserve margins based on a maintenance 

schedule as input over the entire planning horizon. 

The GMS modelling approach proposed in this dissertation is designed specifically to allow for 

its incorporation into the above-mentioned improved EFS decision support framework, by in- 

corporating it into the improved daily production planning module (of Figure 1.7(b)) developed 

in [25]. Furthermore, the modelling approach proposed in this dissertation is bi-objective in na- 

ture, with the one scheduling objective seeking to levelise the net reserve margins over the entire 

planning horizon, very similar to the work done by Schlünz [168], while the other scheduling ob- 

jective seeks to minimise the expected generation cost, based on the improved daily production 

planning module (of Figure 1.7(b)) developed by Brits [25]. 

 

 

1.3 Dissertation scope and objectives 

 
The following nine objectives are pursued in this dissertation:  

I To conduct a thorough survey of the literature related to: 

c b 

 

 
 

De 
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energy 
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planning 

Quality and 

quantity delivered 
Weather Load forecast 

mand 

Generation 

Supply reliability 

Production plan Consumption 

System losses 
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(a) MS problems in general, 

(b) related problems in the energy sector, 

(c) models for MS of generating units in particular, 

(d) the nature and appropriate ranges of parameters required for maintenance of gener- 

ating  units, 

(e) multi-objective optimisation (MOO) studies in respect of the maintenance of gener- 

ating units and the solution of related energy problems, and 

(f) any other data required to generate instances of the bi-objective GMS problem de- 

scribed in §1.2. 

 

II To establish a suitable framework for evaluating the effectiveness of a given generator main- 

tenance schedule for a power utility in terms of the reserve margin associated with these 

generating units not in maintenance and the cost of producing energy by the generating 

units not in maintenance. 

 

III To formulate a bi-objective GMS model suitable for use as a basis for decision support in 

respect of the MS of the generating units of a power utility. The model should take as 

input the parameters and data identified in Objectives I(c)–(d), and function within the 

context of the framework of Objective II. 

 

IV To design a generic decision support system (DSS) capable of suggesting trade-off main- 

tenance schedules for user-specified instances of the bi-objective GMS model of Objective 

III. 

 

V To implement a concept demonstrator of the DSS of Objective IV in an applicable software 

platform. This concept demonstrator should be flexible in the sense of being able to take 

as input an instance of the bi-objective GMS model of Objective III via user-specification 

of the parameters and data mentioned in Objectives I(c)–(d) and produce as output a set 

of trade-off maintenance schedules for that instance. 

 

VI To verify and validate the implementation of the concept demonstrator of Objective V 

according to generally accepted modelling guidelines. 

 

VII To apply the concept demonstrator of Objective V to a special case study involving realistic 

GMS parameters. 

 

VIII To evaluate the effectiveness of the DSS and associated concept demonstrator of Objectives 

IV–VI in terms of its capability to identify high-quality trade-off solutions to instances 

of the bi-objective GMS model of Objective III and to identify possible improvements 

achievable by relaxing model constraints in the form of a sensitivity analysis. 

 

IX To recommend sensible follow-up work related to the work in this dissertation which may 

be pursued in future. 

 
The scope of the dissertation shall be restricted to the GMS problem, but will take cognisance of 

solutions to the related unit commitment (UC) and economic dispatch (ED) problems in order 

to estimate the (deterministic) energy production cost associated with a maintenance schedule. 

Forced/unplanned outages and transmission losses will not be taken into account. 
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1.4 Dissertation organisation 

 
This introduction is followed by eight additional chapters, a bibliography and a number of ap- 

pendices. In Chapter 2, a background on general maintenance activities is presented. The 

environment in which power systems operate and the typical problems prevalent in the energy 

industry are discussed. General GMS modelling considerations are presented. A comprehensive 

literature review on GMS model formulations and model solution approaches is also presented. 

The final section of the chapter contains a discussion on studies related to energy-related prob- 

lems utilising MOO principles and the very few GMS studies found in the literature employing 

truly MOO techniques. 

The newly proposed GMS model is formulated in Chapter 3. The decision variables are defined 

in conjunction with the constraints and the two scheduling objectives. A presentation finally 

follows of how the proposed model may be incorporated into an EFS. 

In Chapter 4, a number of basic notions in MOO are discussed. A description follows of various 

algorithms suited to GMS and the solution of MOO problems. Reasons are also given for the 

algorithm selected for implementation in this dissertation. Information is finally provided on 

the working of this algorithm, and its implementation is elucidated. 

In Chapter 5, data pertaining to two case studies employed in this dissertation to test the 

effectiveness of the proposed GMS model are presented. The first case study is a GMS benchmark 

system commonly found in the literature, whilst the second case study is a much larger instance 

designed for the South African power utility, Eskom. All the data required to solve the GMS 

instances embodied in these two case studies are presented. 

Chapter 6  contains the results of  an extensive parameter  optimisation experiment  aimed at 

uncovering suitable parameter values for the SA algorithm in the context of the two case studies 

of Chapter 5. 

In Chapter 7, numerical results are presented in respect of the verification and validation of the 

GMS model proposed in Chapter 3 in conjunction with the performance of the SA algorithm. 

These results are also compared to another common and well-performing algorithm in the MOO 

literature.  Reasons for GMS trade-offs are presented and a sensitivity analysis is conducted 

in respect of the constraint right-hand sides. The chapter closes with a number of suggested 

improvements to the MOO algorithm, including the use of parallel computing. 

The penultimate chapter of this dissertation, Chapter 8, focusses on the implementation of a 

DSS for solving instances of the GMS problem. The chapter opens with a discussion on the 

basic notions that have to be borne in mind when developing DSSs. The relatively scant work 

in the literature related to DSSs in the context of the GMS problem is presented, as well as an 

overview of DSSs currently in use in the energy industry. The design and implementation of a 

novel DSS for GMS is proposed, and this is followed by a description of a concept demonstrator 

of the proposed DSS. Feedback from Eskom after having been presented with this concept 

demonstrator is also reported. 

The dissertation closes with a summary of the work conducted and important findings, together 

with an overview and appraisal of the contributions made. Suggestions for future work related 

to GMS is finally presented. 

Stellenbosch University  https://scholar.sun.ac.za



10 Chapter 1. Introduction 
 
 

 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

 

 

 

 

 
 

 

CHAPTER 2 
 

 

 

Literature review 
 

Contents 

2.1 Maintenance ........................................................................................................................ 11 

2.2 Power systems .................................................................................................................... 14 

2.3 Related energy problems ................................................................................................... 15 

2.4 General GMS model considerations ................................................................................ 16 

2.5 GMS problem formulations .............................................................................................. 21 

2.6 GMS solution techniques and approaches ....................................................................... 44 

2.7 Pareto-based optimisation in energy problems ............................................................... 58 

2.8 Chapter Summary .............................................................................................................. 62 

 

 
This chapter opens with a discussion on various types of maintenance strategies. This is fol- 

lowed by a description of the energy industry environment and typical activities carried out in 

this environment. General modelling considerations for the GMS problem are presented next. 

A more substantial literature review follows on GMS problem formulations, including typical 

objectives and constraints found in the literature. This is followed by a review of GMS solu- 

tion approaches and techniques applied, predominantly to SO GMS models but also includes 

some simple MO analyses. The chapter closes with a discussion highlighting Pareto-based MOO 

modelling approaches found in the literature in the context of energy problems. 

 
 

2.1 Maintenance 
 

Maintenance generally involves planned and unplanned actions carried out to retain a system in 

order to restore it to an acceptable condition [176]. There are a variety of different (and often 

somewhat conflicting) types and classifications of maintenance in the literature. Some authors 

classify the different types of maintenance strategies or activities into two [5], three [134, 155], 

four [12] or five types [94], each with their own advantages and disadvantages [94, 155, 134]. 

Table 2.1 illustrates the different types of maintenance activities considered in the literature, 

while Figure 2.1 contains an example of a classification structure for the different maintenance 

strategies. 

In the earlier literature, the only type of maintenance considered was breakdown maintenance, 

also called unplanned maintenance, reactive maintenance, corrective maintenance or run to fail- 

ure maintenance, which takes place only after breakdowns have occurred [114, 134]. This type of 

strategy usually results in unscheduled down-time, typically at a high cost [155]. In this type of 
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Table 2.1: Different classifications of maintenance types/strategies. 

 

 Maintenance  Reference 

Corrective Preventive   [5] 

Corrective 
Periodic/ 

preventive 
Predictive  

[155] 

Unplanned Planned Condition-based  [134] 
Run to 

Failure 
Preventive Condition-based 

Design
 

improvement 
[12] 

Reactive Preventive Inspection Bac kup Upgrade [94] 

 

Maintenance strategy 
 

 

Unplanned breakdown 

maintenance 

Planned scheduled 

maintenance 

Condition-based 

maintenance 
 

Figure 2.1: Classification of different types of maintenance activities according to Martin [134]. 
 

 
strategy the maintenance crew’s duties might range from making adjustments to machinery to 

getting a facility back on line. Loss control is the most critical aspect of the reactive maintenance 

crew’s job. In many cases, temporary repairs may be made so that the facility may return to 

function quickly and be repaired correctly, or permanently, at a later time [94]. 

Planned maintenance (PM) activities are those activities that are undertaken in order to reduce 

the probability of unexpected breakdowns — their expected execution times, durations and 

contents are predetermined [134, 153]. PRM may be defined as comprising activities for which 

expected execution, frequencies, job contents, durations and resource requirements do not vary 

too much over time [153] or maintenance activities that reduce the probability of breakdown, by 

replacing worn-out components on a timely basis [94]. PRM is typically carried out regardless 

of the health status of a physical asset [114]. Some authors classify PRM as planned preventive 

maintenance or scheduled maintenance [206], or as time-based preventive maintenance [114]. 

As mentioned, these schedules are usually predetermined (based on, for example, the mean time 

between failures of certain components) or in more critical cases, schedules may be specified 

by legal or governmental bodies or other policy setters, in which case the amount of usage of 

the equipment (such as number of cycles, total operating hours, mileage) is typically used to 

determine regularly scheduled PM intervals [94]. 

If it is possible to predict the failure of the system components sufficiently in advance, a process 

called predictive maintenance, then the performance of the components may be optimised and 

enhanced while simultaneously reducing the maintenance expenditure [155]. One way of predict- 

ing failure in the future involves constantly monitoring the system components for symptoms, 

analysing the trend frequency of these symptoms, and making decisions as to the existence, loca- 

tion, cause, and severity of faults [155]. Martin [134] defines condition-based maintenance as PM 

based upon measuring the condition of all machine components during the normal operation of 

the machine. Certain characteristics (such as temperature, vibration, or cracks) are monitored 

continuously or periodically using special equipment [153]. These measurements facilitate the 

prediction of the time to failure for all elements and thus allow for maintenance to be planned 

before any elements fail. According to Gallimore and Penlesky [94] inspection activities may 

alter a PRM schedule by identifying instances in which maintenance should be performed either 
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Figure 2.2: Classification of maintenance activities according to Or [153]. 
 

 
earlier or later than the regular PRM schedule would dictate. 

A simple example of a PM program is maintenance for automotive vehicles, where time and 

distance determine fluid change requirements. Similarly, a good example of condition-based 

maintenance is the oil pressure warning light that provides notification that a driver should stop 

the vehicle, because the engine lubrication is insufficient and failure will most probably occur 

[206]. 

Backup equipment may be used as a maintenance element when either the cost or the risk of 

breakdown is extremely high (e.g. the multiple engines on a commercial aircraft). Backup is also 

effectively applied to operations in which time constraints do not permit proper PRM or repair 

procedures to be carried out [94]. Equipment may be upgraded when the existing equipment is 

redesigned or modified rather than being replaced by new machinery [94]. 

Or [153] has proposed a slightly different classification for maintenance activities, as illustrated 

in Figure 2.2. Notably, he distinguishes between corrective and breakdown maintenance. Inspec- 

tion activities are similar to PRM activities, but they have shorter durations and fewer resource 

requirements and they trigger corrective maintenance activities. Since these two activities are so 

similar, Or [153] considers PRM to include inspection activities. Corrective maintenance activ- 

ities are those in which expected execution times, job contents, durations and resource require- 

ments are predetermined, based on inspection, breakdown maintenance reports, and warnings 

from production units. They may, therefore, vary considerably from one execution to the next. 

Corrective maintenance activities usually require the related machinery to be down during their 

execution. Or [153] regards predictive maintenance as a special type of corrective maintenance. 

In shutdown maintenance, the entire facility is shut down for an extended period of time so that 

maintenance may take place [153]. 

MS plays a very important part in power systems [68], since other planning activities are di- 

rectly affected by it [125]. In power systems, the major components (including generators and 

transmission lines) require periodical maintenance [1] and one of the main decision variables in 

the problem of power plant maintenance is the MS of generating units [32].  While there are 

a number of different, overlapping and somewhat conflicting definitions of the various types of 

maintenance activities in the literature, the GMS problem is almost always described as involving 

the PRM of the power generating units in a power system [46, 49, 90, 124, 145]. This dissertation 

deals specifically with this type of planned preventative maintenance (PPM) in order to prevent 

generating unit failure or breakdown. Condition-based maintenance has, however, been applied 

more recently (2016), to determine optimal maintenance schedules for power generating units 

[160].  PM incurs a considerable expense in power systems, because it requires shop facilities, 
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skilled labor, keeping records, and stocking of replacement parts. The cost of downtime resulting 

from avoidable outages may, however, amount to ten or more times the actual cost of system 

component repair [186]. 

 

 

2.2 Power systems 

 
The energy industry is focussed on three main activities, namely production, transmission, and 

distribution [45, 90, 201]. Traditionally, the industry has been organised in the structured 

manner illustrated in Figure 2.3(a), where a single entity has monopoly over the entire energy 

system [45, 90]. Since the latter 1990s, however, deregulation of the power industry has opened 

up the electricity market to competition [45, 90]. This development is mainly due to the need 

for more efficiency in power production and delivery [154]. 

In restructured competitive power systems there are typically a number of independent entities, 

including generation companies (GENCOs), transmission companies (TRANSCOs), distribution 

companies (DISCOs), and retail companies (RETAILCOs), as illustrated in Figure 2.3(b) [90, 

95]. An independent service operator (ISO) is typically responsible for the reliability and security 

of the power system. It dispatches all or part of the energy transactions and can decrease loads 

on the network in order to avoid congestion [90]. In addition to the above-mentioned entities, 

there are also other actors in such a competitive system, but their roles are typically minor [90]. 

 

   
 

Powerflow 

Moneyflow 

 
Scope of the ISO 

Power flow 

Money flow 

(a) Regulated systems (b) Deregulated systems 
 

Figure 2.3: Interactions for regulated (a) versus deregulated (b) power systems [90]. 
 

Many countries like England, the United States of America, Canada, Australia, New Zealand, 

Chile, Argentina, Peru, Colombia, and the Scandinavian region, have already deregulated their 

electricity industries. Although there are some disadvantages associated with deregulating the 

market, there are some who claim that it is better than regulated power systems [154]. South 

Africa still has a regulated power system that is solely controlled by the parastatal electricity 

company Eskom [75]. 
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2.3 Related energy problems 

 
There are a variety of scheduling problems that have to be solved simultaneously in the manage- 

ment of power systems. Due to the complexity of the different time-scales involved, uncertainties 

of different orders of magnitude, and dimensionality difficulties in power systems, these prob- 

lems are, however, usually decomposed into scheduling subproblems which are solved separately 

[216]. This includes long-term scheduling (e.g. MS and nuclear refueling), mid-term schedul- 

ing (e.g. production scheduling and hydro scheduling), and short-term scheduling (thermal UC, 

short-term hydro, and ED) [216]. MS is an important overarching strategic planning operation 

in the energy sector which affects all the main activities in the energy sector, in the sense that 

all the above-mentioned energy-related problems all take a maintenance schedule as input [67]. 

 

2.3.1 The unit commitment problem 
 

The UC problem seeks to determine which available generating units (i.e. those not scheduled 

for maintenance) should be connected to the power generation system, so as  to  contribute 

actively to power generation. The verb “commit” may here be interpreted as turning a power 

generating unit on (that is, bringing the unit into operation), synchronizing it with the system, 

and connecting it so that it can deliver power to the network [212]. The reason for not simply 

committing all the available power generating units,  thus ensuring maximum expectation of 

satisfying demand, is the possibly exorbitant cost of keeping a power generating unit online 

unnecessarily; considerable cost saving is often possible if a power generating unit does not have 

to be committed [212]. 

Usually the objectives of the UC problem include minimising operating costs, minimising emis- 

sions, or maximising the demand satisfaction capability [173]. The objective of minimising oper- 

ating cost typically consists of minimising production cost, maintenance cost, start-up cost and 

shut-down cost. The production cost is usually determined by solving the ED problem, a typical 

subproblem of the UC problem [173, 212]. Instances of the UC problem are usually complex 

combinatorial optimisation problems [197]. Methods that have been used to solve such instances 

(exactly or approximately) include extensive enumeration, heuristic priority list (merit order) 

scheduling, dynamic programming (DP), Lagrangian relaxation, the branch-and-bound (B&B) 

method, expert systems/artificial neural networks, simulated annealing (SA), genetic algorithms 

(GAs), and network programming [173]. 

The UC problem is very similar to the GMS problem, but differs from it in that the UC problem 

is typically applicable over shorter time horizons (usually days or weeks, whereas in the GMS 

problem the planning horizon usually spans weeks or years) resolved into shorter decision periods 

(usually hours or days, whereas in the GMS problem it is usually days or weeks) [91]. Instances 

of the UC problem also require more accurate forecasted demand than do those of the GMS 

problem. MS of generating units (and transmission lines) affects UC and ED schedules. The 

GMS problem should therefore ideally be solved in conjunction with the UC problem, but it is 

often solved independently, in which case the GMS problem’s solutions are used as (availability) 

constraints for the UC problem [90, 168]. 

 

2.3.2 The economic dispatch problem 
 

The celebrated ED problem seeks to determine the optimal output from available generating 

units, so as to meet the expected demand at the lowest possible cost, subject to various con- 

straints. The ED problem is typically modelled as a subproblem of the UC problem [212]. The 
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UC problem deals with how many units to commit over a time period (usually incorporating 

integer variables) whereas the ED problem deals with how much power/energy each power gen- 

erating unit that has actually been committed should deliver (usually by the incorporation of 

continuous variables). If the ED problem objective is formulated as a nonlinear function, it can 

be solved by applying the Kuhn-Tucker method, the lambda iteration (search) method, or DP 

(usually involving nonconvex curves) [212]. If, on the other hand, the ED problem’s objective is 

formulated as a linear or piece-wise linear function, the ED problem can be solved by standard 

LP methods. The ED problem usually seeks to minimise fuel costs, which is also a common 

objective in the GMS problem. 

 

 

2.3.3 The transmission maintenance scheduling problem 

 
The transmission maintenance scheduling (TMS) problem is similar to the GMS problem, but 

in the TMS problem the transmission lines of a power system have to be maintained, whereas 

the generating units of a power system have to be maintained in the GMS problem. If generator 

units are in maintenance, the transmission lines connected to them are not in use and thus there 

may be an opportunity to perform transmission line maintenance on them. The GMS and TMS 

problems should therefore ideally be solved jointly as was done in [1, 68, 135, 137], although 

these problems are often solved independently in the literature [29, 32, 42, 90, 108, 10, 126, 147, 

169]. 

 

 
2.4 General GMS model considerations 

 
MS problems may be described as seeking to determine in advance a fixed preventative main- 

tenance schedule over a certain time horizon that satisfies the system constraints and optimises 

some objective function [68]. 

Typical decisions in GMS problems include when to start maintenance on a unit, when to shut 

down a unit for maintenance, when to re-start it again, and how much resources (e.g. technicians) 

to assign to the maintenance of a given unit during a given period [68, 90]. 

The GMS problem is well known in the operations research literature. Although the GMS prob- 

lem is related to a number of classical optimisation problems, such as the assignment problem, 

the travelling salesman problem and the vehicle routing problem, it is not one of these [168, p. 12]. 

Factors complicating formulations of the GMS problem result from attempts at incorporating 

“the peculiarity of maintenance scheduling” [124] as consequence of the following power system 

features: the fact that generated electricity cannot be stored; that the transmission network is 

limited and hence that a required amount of electricity must be generated at every instant; that 

an adequate amount of reserve capacity has to be available at all times; and the parallel nature 

of electricity supply within a power system (due to multiple generating units) [124]. 

The GMS problem is combinatorial in nature and is usually nonlinear, making it a difficult 

problem to solve.  Furthermore, the complexity of planning preventative maintenance is due 

to the enormous size of typical systems to be modelled. There are usually many variables, 

including binary variables, in GMS models which renders resolution of the problem difficult. 

This usually constrains the level of detail represented in models so that computational efficiency 

is achieved [32]. As noted by Canto [32], “balancing complexity, problem size, model calculating 

time, and reality approximation level is essential ” in GMS problems (and related power system 

PRM problems). 
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GMS problem instance solution times in the literature range from a few minutes [145, 167, 

170] to days [167], depending on the problem instance, the algorithm used, and the computing 

resources available. In [122] it is explained that if such a schedule is worked out manually by 

engineers it could take days or even weeks to schedule an instance involving 19 generating units 

over a six-month planning horizon. GMS is usually planned for entire years and thus the typical 

length of algorithmic computation time (if less than a few days) is not of that much concern. A 

more important concern is the quality of the solutions obtained [167]. 

 
 

2.4.1 GMS problem decision variables 
 

The GMS problem is typically formulated as a scheduling problem with binary decision variables 

representing whether or not maintenance of the various units should occur during each of a set of 

time periods. The number of independent variables in a GMS model is therefore determined by 

the number of generating units to be scheduled for maintenance and the number of time periods 

into which the scheduling window is discretised [147]. The number of units in GMS model 

formulations considered in the literature range from 5 [89], to 21 (a standard GMS benchmark 

system in the literature) [49] to as many as 157 (an Eskom case study) [170]. Maintenance 

plans usually span an annual time horizon [32, 68, 82, 89, 126], but this can vary, and planning 

horizons in the literature range from eight weeks [67] to five years [146]. Common time periods 

adopted in the GMS model formulations are one week [68, 126, 124, 169], but this also varies, 

with values ranging in the literature from single days [89, 170] and five-day periods [107] to 

monthly periods [4]. 

A maintenance schedule obtained for a national power utility, containing 157 generating units 

over 365 days is illustrated in Figure 2.4. 

 
 

2.4.2 GMS problem parameters 

 
Typically the inputs, and thus data required, to solve instances of the GMS problem include the 

installed capacity per unit, maintenance time window lengths (earliest and latest starting times 

within which maintenance of each unit should occur), the duration of the maintenance of each 

generating unit, the resources required to service each unit and the expected energy demand. 

Most of these parameters are pre-determined or estimated well in advance of the activity of 

determining maintenance schedules [91]. The parameters for a typical GMS benchmark system 

[49] in the literature is illustrated in Table 2.2, whilst the weekly peak load demands for another 

GMS benchmark system [49] are shown in Table 2.3. 

 

 

Maintenance windows for the generating units 

 
Each unit may have its own desirable maintenance time period or “window” [149]. This may 

be adjusted based on the decision maker’s preference or may be excluded/relaxed entirely from 

consideration. These values are typically based on the previous year’s maintenance schedule, 

allowing for a minimum and maximum time to occur between consecutive maintenance outages 

of a unit [65]. An outage that takes place too soon wastes money, since needless maintenance 

is performed. Waiting too long, on the other hand, may incur additional expenses, since the 

unit’s availability deteriorates owing to increased forced outages and repairs become more ex- 

pensive. These costs may be quantified and incorporated as scheduling objective or may simply 

be specified as subjective maintenance window constraints for each unit [149]. 
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Table 2.2: Input data for a 21-unit GMS benchmark system [49] commonly considered in the literature. 

 

Unit Capacity 

(MW) 
Earliest starting 

time (week) 
Latest staring 

time (week) 
Duration 

(weeks) 
Manpower required during 

each week of maintenance 

1 555 1 20 7 10,10,5,5,5,5,3 
2 555 27 48 5 10,10,10,5,5 
3 180 1 25 2 15,15 
4 180 1 26 1 20 
5 640 27 48 5 10,10,10,10,10 
6 640 1 24 3 15,15,15 
7 640 1 24 3 15,15,15 
8 555 27 47 6 10,10,10,5,5,5 
9 276 1 17 10 3,2,2,2,2,2,2,2,2,3 

10 140 1 23 4 10,10,5,5 
11 90 1 26 1 20 
12 76 27 50 3 10,15,15 
13 76 1 25 2 15,15 
14 94 1 23 4 10,10,10,10 
15 39 1 25 2 15,15 
16 188 1 25 2 15,15 
17 58 27 52 1 20 
18 48 27 51 2 15,15 
19 137 27 52 1 15 
20 469 27 52 1 15 
21 52 1 24 3 10,10,10 

 
 
 

Generating unit maintenance durations 

 
In GMS problems, the required maintenance duration of each generating unit is usually pre- 

determined [91]. The expected PM duration of units depends on a number of factors. Ideally 

the duration should be as short as possible, but there is a limit to how much the duration may be 

shortened. The duration may usually be shortened, but at an additional cost. A three-week PM 

outage may, for example, be reduced to a two-week period by scheduling overtime maintenance. 

Overtime is an expensive contributor to maintenance costs [59]. 

Minimum maintenance durations may vary as a function of individual tasks, due to the different 

characteristics of maintenance tasks [88]. The expected duration of PM typically depends on 

the type of power plant. Canto [32] provides the following guidelines: 

 
• Thermal power plants: 

 

– coal sources: 4 weeks 

– fuel oil: 3 weeks 

– natural gas sources:  3 weeks 
 

• Nuclear power plants: 6 weeks 
 

• Hydroelectric power plants: variable duration according to each power plant. 
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Table 2.3: The weekly peak load demands a 22-unit GMS benchmark system [67]. 
 

 
Week 

Demand 

(MW) 
 

Week 
Demand 

(MW) 
 

Week 
Demand 

(MW) 
 

Week 
Demand 

(MW) 
 

1 1 694 14 1 396 27 1 737 40 1 982 
2 1 714 15 1 443 28 1 927 41 1 672 
3 1 844 16 1 273 29 2 137 42 1 782 
4 1 694 17 1 263 30 1 927 43 1 772 
5 1 684 18 1 655 31 1 907 44 1 556 
6 1 763 19 1 695 32 1 888 45 1 706 
7 1 663 20 1 675 33 1 818 46 1 806 
8 1 583 21 1 805 34 1 848 47 1 826 
9 1 543 22 1 705 35 2 118 48 1 906 
10 1 586 23 1 766 36 1 879 49 1 999 
11 1 690 24 1 946 37 2 089 50 2 109 
12 1 496 25 2 116 38 1 989 51 2 209 
13 1 456 26 1 916 39 1 999 52 1 779 

 

 

 
 
 

In his GMS model Canto [32], however, assumes the same maintenance duration, namely one 

month, for all the units (even in different power stations). Some authors state that maintenance 

of thermal units takes relatively longer [145]. Naturally the size and quantity of equipment in 

the units will also affect the expected maintenance duration. 

 

 
Deterministic versus stochastic scheduling paradigms 

 
An important consideration is whether to adopt a stochastic or deterministic modelling approach. 

Stochastic GMS models usually incorporate the expected electricity demand and forced outages 

(breakdowns) of power generating units in a probabilistic manner. This is typically done to 

predict well-known stochastic “risk” measurements, such as the loss of load probability (LOLP) 

and expected unserved energy (EUE). 

Deterministic models, on the other hand, are generally easier and less time consuming to solve, 

but they naturally lead to less realistic models than those in a stochastic paradigm. 

 

 
Regulated versus deregulated power systems 

 
In deregulated markets, the nature of MS is different and slightly more complicated. In these 

market environments the GENCOs and TRANSCOs are usually responsible for maintaining 

their equipment, whilst the ISO ensures satisfactory levels of system reliability and security. 

This is illustrated in Figure 2.5, but the coordination procedure may vary depending on the 

system [90]. These three actors generally have conflicting goals. For example, the ISO will 

typically attempt to maximise the total system reliability throughout the entire planning period 

whilst the GENCOs will try to maximise profit [95] and will most likely schedule maintenance 

when the price of electricity is low [127], which may make it difficult for demand to be met [90]. 

These conflicting goals may be resolved through iterative modifications to proposed maintenance 

schedules or proposing a set of trade-off solutions. 
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Figure 2.5: Coordination procedure for MS in a deregulated power system [90]. 
 
 

2.5 GMS problem formulations 

 
The GMS problem is typically formulated as a scheduling problem with binary decision variables 

representing whether or not maintenance of each unit should occur during each of a set of discrete 

time periods. A maintenance schedule is usually modelled as follows [32]. Suppose there are n 

generating units in the power system in question and m decision time periods over the planning 
horizon. Let I = {1, . . . , n} denote the set of generating units and let J = {1, . . . , m} be the 

set of time periods. Define the binary decision variable Xij to take the value 1 if maintenance of 
generating unit i ∈  I commences during time period j ∈  J , or zero otherwise. Some 
researchers 
prefer to define the decision variables as integer values (for example, where Xi denotes the 

starting time for maintenance to occur on unit i, in which the case the range for Xi will be 
the set J ).  Finally, define the binary auxiliary variable1 Yij to take the value 1 if generating 

unit i ∈  I is in maintenance during time period j ∈  J , or zero otherwise. Then a 
maintenance schedule (such as that shown in Figure 2.4) is an assignment of zeros and ones 
to the n × m 

matrix Y  = [Yij ] of (auxiliary) decision variables satisfying a variety of constraints. 

 

2.5.1 GMS problem constraints 

 
The constraints included in formulations of the GMS problem may vary significantly, depend- 

ing on the nature and underlying assumptions of the power utility’s operations. The major 

constraints employed in the literature include the following [3, 90, 107, 124]: 

 
Maintenance window constraints ensure that each unit is serviced between an earliest and 

latest time period. These time windows are typically dictated by annual generating unit 

service frequencies, as imposed either by power utility policy or by operational service 

levels. 

Reliability constraints may be incorporated by specifying a reserve/safety margin over and 

above the expected peak demand for deterministic models.  Stochastic models may have 

minimum levels of stochastic reliability measures such as LOLP and/or EUE values [216]. 

Load constraints ensure that the expected load demand must be exactly met during each time 

period. This demand must, of course, be met by the planned production of generating units 

that are not scheduled for maintenance during the relevant time period. These constraints 

are also usually included in the UC and/or ED subproblems. 

Service contiguity constraints are imposed to ensure that the number of time periods re- 

quired to service a particular generating unit run consecutively over time. 
 

 

1Some authors actually define this as the primary decision variables, instead of Xij . 
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Resource constraints specify a limit on the amount of resources available for the purpose of 

maintenance. These resources may involve service budgets and the availability of spare 

parts. 

Crew/manpower constraints are, in fact, also a type of resource constraint, which focus on 

the availability of manpower for maintenance work. 

Exclusion constraints are employed when certain generating units are not allowed to be taken 

out of service simultaneously (e.g. two units in the same power station or too many units 

in the same geographical region). 

Transmission/network constraints have been incorporated recently and seek to ensure the 

transmission capabilities of the electrical network (e.g. maintaining voltage levels) or that 

a power station meets the demands of the geographic regions within its service area via 

the transmission network infrastructure. 

 
These major constraints and some other constraints found in the literature (such as precedence 

constraints, maintenance period constraints and some other defined GMS constraints) are de- 

scribed below in mathematical form. 

Maintenance is typically allowed only once2 during the entire scheduling window [32, 68, 89], and 

a maintenance window constraint set ensures that maintenance of a generating unit occurs during 

pre-specified time windows. The maintenance window constraint is formulated as follows. Let ei 

and fi denote the earliest and latest sting time periods, respectively, during which maintenance 

of  generating  unit  i ∈  I may  start.   Then  the  maintenance  window  constraint  set  may  be 
formulated [169] as 

Ri 

\ 
Xij = 1, i ∈  I. (2.1) 

j=ei 

Another way of formulating the above maintenance window constraint set [46] is to require that 
\ 

Xij = 1, i ∈  I, (2.2) 

j∈ Ji 

where Ji = {j ∈  J | ei ≤  j ≤  fi} is the set of time periods during which the maintenance 

of generating unit i ∈  I may start. If integer decision variables Xi are used instead of the 
binary 
decision variables Xij , then the maintenance window constraint set may be formulated [125, 

202] as 

ei ≤  Xi ≤  fi, i ∈  I. (2.3) 

The duration of maintenance typically varies per unit (as a result of size, type, etc.) and so the 

duration  constraint  set \ 
Yij = di, i ∈  I (2.4) 

j∈ J 

is usually enforced when using binary decision variables [32, 147], which also requires the con- 

straint  set 

Yij −  Yij− 1 ≤  Xij , i ∈  I, j ∈  

J 

Yi1 ≤  Xi1, i ∈  I, 

 
(2.5) 

ensuring that maintenance of a generating unit occurs over consecutive time periods. If inte- 

ger decision variables Xi are used instead of binary decision variables Xij , representing when 

2If units are to undergo more than one maintenance outage during the time period J , dummy units may be 

added to the problem — one for each unit outage during the entire scheduling period [168, p. 149]. 
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i 

 

maintenance commences, the above contiguity (non-stop) constraint set may be formulated [68] 

as 

Yij = 

(
1, for Xi ≤  j ≤  Xi + di −  

1 

0, for all other j. 

(2.6) 

 

In [125], the above constraint set is written more compactly, albeit nonlinearly, as 
 

Xi+di− 1 
n 

 
j=Xi 

Yij  = 1, i ∈  I. (2.7) 

 

One should, if possible, avoid including any nonlinear constraints or objectives in a model 

formulation, since it is much more difficult to solve a nonlinear optimisation problem than 

solving a linear optimisation problem. A more elegant way of representing the duration and 

contiguity constraints as a single linear constraint involves requiring that 
 

Xi+di− 1 
\ 

 
j=Xi 

Yij = di, i ∈  I (2.8) 

 

[124, 148, 169]. 

Reliability constraints for deterministic GMS models, usually called reserve margin or demand 

constraints (or less accurately load constraints), are usually enforced to ensure that the available 

capacity (the system’s total installed capacity less the installed capacity lost due to maintenance) 

is able to satisfy the electricity demand (usually plus a certain safety margin). For stochastic 

models, where usually only the demand and forced outage probabilities are treated as stochastic, 

reliability constraints are similarly enforced by specifying minimum LOLP, EUE, and other 

stochastic risk measures. These stochastic measures are explained in more detail in the next 

subsection.  The reliability constraints described here are for deterministic GMS models.  Let 
Iij denote the installed power generating capacity of unit i ∈  I during period j ∈  J and let Dj 

denote the peak load demand during time period j ∈  J (e.g. the peak demand as illustrated in 

Table 2.3). Also define 

rj = 
\ 

Iij (1 −  Yij ) −  Dj , j ∈  J , 

i∈ I 

as the net reserve margin during time period j. Then the simple and widely used constraint set 

rj ≥  rmin, j ∈  J , (2.9) 

ensures that the available power generating capacity is at least as large as a specified minimum 

reserve level rmin [42, 48, 46, 89, 161, 167]. Here rmin can be set to zero, meaning that the 

available power generating capacity should be at least as large as the expected peak demand 

[89, 48]. Some authors [107, 169] assume that rmin depends on the demand, so that the reserve 

margin is above the demand Dj together with a specified safety margin S so that constraint set 

(2.9) is slightly modified to 

rj ≥  Dj S, j ∈  J . (2.10) 

 
When the output levels of the generating units are introduced as additional variables (part of 

the UC and ED problems) in conjunction with the GMS problem, then load demand constraints 
may be enforced. Let pij  represent the generation output of power generating unit i ∈  I during 

time period j ∈  J , and let pmin  denote the minimum production level of power generating unit 
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i ∈  I. Usually a unit’s installed capacity Iij is constant over time and may be denoted by Ii. 
Then the load demand constraints 

 

 

 

 
and the power limit constraints 

 
pmin 

\ 
pij = Dj , j ∈  J (2.11) 

i∈ I 

i (1 −  Yij ) ≤  pij ≤  Ii(1 −  Yij ), i ∈  I, j ∈  J , (2.12) 

ensure load/demand satisfaction and adherence to minimum and maximum energy production 

levels [27, 29, 66, 82, 167]. As may be seen in (2.12), the optimal production plan is influenced 

by the PM auxiliary variables Yij , in that the generation output variable pij must be zero if 

maintenance of generating unit i occurs during that time period (i.e. if Yij = 1). 

Period constraints are defined in [32, 125] to limit the maximum number of maintenance outages 

ψj per period j ∈  J as 
\ 

Yij ≤  ψj , j ∈  J . (2.13) 

i∈ I 
 

Resource constraints are generally employed to ensure that the total maintenance scheduled 

during each period does not exceed the total amount of resources (e.g. personnel, parts, special 
tools, etc. [124]) available per time period j ∈  J , defined as σj .  If the amount of resources 

required to maintain unit i, denoted by Ri, is constant throughout its maintenance duration, 

then the simple constraint set 
\ 

RiYij ≤  σj , j ∈  J (2.14) 

i∈ I 

is usually adopted. In [125, 148], a simple resource constraint set is specified by requiring that 

\ 
Yij Ii ≤  Bj , j ∈  J , (2.15) 

i∈ I 

 

where Bj represents a set maximum amount of power allowed to be maintained in the power 
system during time period j ∈  J . This enforces that only a certain number of generating units, 

based on their installed capacity Ii, are allowed to be maintained at a time. 

In [6], a more complicated formulation of the resource constraints, which seems more practical, 
is employed. Let S = {1, . . . , p} be the set of power stations, let E = {1, . . . , u} be the set of 

equipment types (e.g. boilers, turbines, etc.), and let R = {1, . . . , f } be the set of resource types 

(e.g. parts).  Define the binary decision variable wsiej  to take the value 1 if equipment of type 

e ∈  E in power generating unit i ∈  I of power station s ∈  S during time period j ∈  J is not in 

preventative maintenance, or 0 otherwise. Then the constraint set 

\
(1 −  wsiej )Rsejr  ≤  σsejr , s ∈  S, e ∈  E , j ∈  J , r ∈  R (2.16) 

i∈ I 

 

will ensure that no more than the available amount of resources for maintenance is committed, 
where Rsejr is the amount of resources of type r ∈  R required by equipment of type e ∈  E in 

power station s ∈  S during time period j ∈  J and σsejr is the total amount of resources of 

type r ∈  R available for equipment of type e ∈  E in power station s ∈  S during period j ∈  
J . 

In [216], a similar approach is taken to incorporate r different types of resource constraints for 

the different types of resources, but the model only accommodates resources required per unit 
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cij 

m! 

i 

\ \ 
m!

 

 

i ∈  I, and no further equipment within the unit as in (2.16). Similarly, in [6] the maintenance 

crew constraint set 
\
(1 −  wsiej )msej ≤  Msej , s ∈  S, e ∈  E , j ∈  J (2.17) 

i∈ I 
 

ensures that no more than the available number of crew members required for maintenance is 
committed, where msej is the amount of manpower required for equipment of type e ∈  E in 

power station s ∈  S during time period j ∈  J and Msej is the total number of maintenance 

crew members available for equipment of type e ∈  E in power station s ∈  S during period j ∈  J 
. 
For the above two (resource and maintenance crew) constraints to hold, the amount of resources 
of type r ∈  R or the amount of manpower required must not change over the maintenance time 

period (as is the case in the 21-unit system in Table 2.2). In [6], however, the authors ignored 

these constraints by assuming that there is no shortage of the resources and maintenance crew 

required. 

If, however, the required resources or manpower needed for maintenance of unit i ∈  I changes 

during its duration, e.g. the manpower required becomes less over time (as is the case in the 

21-unit system in Table 2.2), the resource constraint formulation becomes more complicated to 

implement. This is because the resources required Rij has to be adapted depending on when 

maintenance starts, i.e. are dependent on the decision variables. One way of formulating this [46, 

89] is to employ additional dependent time period sets, which change depending on when unit 

maintenance starts. This is, however, only possible if the formulation allows one to know when 

maintenance starts (which is not the case when using the binary decision variables), i.e. for the 

integer decision variables formulations this is just the value Xi, or if employing a metaheuristic 

model solution technique this may be overcome by encoding strategies [46, 89]. 

In [169], an elegant approach is followed to overcome this problem. Let m! denote the required 
maintenance crew for unit i ∈  I when in maintenance during time period j ∈  J if 
maintenance were to commence during time period c ∈  J . Then 

(
m

j− c+1 

cij = i , if j −  c < 

di 

0, otherwise, 

(2.18) 

 

where mu denotes the maintenance crew required for unit i ∈  I in its u-th period of maintenance, 

and the maintenance crew constraint set may be formulated as 
 

j 

cij Xic ≤  Mj , j ∈  J , (2.19) 

i∈ I c=1 

where Mj denotes the total manpower (or crew) available during time period j ∈  J . Usually Mj 

is constant throughout the time period and so its subscript j is omitted in most formulations. 

If, however, the maintenance crew requirements mi of generating unit i ∈  I remains the same 

throughout its maintenance time period, then the manpower constraint may be expressed more 
simply as \ 

miYij ≤  Mj , j ∈  J . (2.20) 

i∈ I 

Exclusion constraints are sometimes incorporated into GMS models in order to prevent certain 

units from being in simultaneous maintenance (e.g. units within the same power station or 

class, or within the same geographical region [147, 168]). Sometimes the more specific name of a 

geographical constraint is applied [107] which helps to avoid larger transmission losses and lower 
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reserve capacity in one region and to limit the number of generator units under maintenance 

in each region. Consider the more general exclusion constraint where at most some specified 

number of units, within some subset of units, are allowed to be in simultaneous maintenance. 
Let K denote the set of indices of generating unit exclusion subsets. If there are K such subsets, 

then K = {1, . . . , K}. Define Ik ⊆  I as the k-th subset of generating units that form an exclusion 

set, with k ∈  K. The exclusion constraint set may then be formulated as 

\ 
Yij ≤  Kk , j ∈  J , k ∈  K, (2.21) 

i∈ Ik 

where Kk denotes the maximum number of units within subset Ik that are allowed to be in 

simultaneous maintenance during any time period [169]. In [32, 150], Kk is taken as 1, so that 

no two units can be in maintenance during the same period. 

Precedence constraints may be incorporated into GMS models [32, 42], indicating that some 

generating units should be in maintenance before others (e.g. based on different priority levels). 

If maintenance of unit i1 has to start before that of unit i2, the pair of constraint sets 

j \ 
Xi p −  Xi j ≥  0, j ∈  J , (2.22) 

1 2 

p=1 

Xi1j + Xi2j ≤  1, j ∈  J (2.23) 

ensures this precedence when using binary decision variables [32]. Constraint set (2.22) ensures 

that unit i2’s maintenance does not start before that of unit i1, and constraint set (2.23) prevents 

the simultaneous maintenance of the two units (i1 and i2) from occurring. When using the integer 

variables, the constraint 

Xi1 + di1  ≤  Xi2 , (2.24) 

ensures that maintenance of unit i2 will only start after the maintenance of unit i1 has been 

completed [125, 150]. 

More recently, transmission/network constraints have been included in GMS models, especially 

when the TMS problem is solved in conjunction with the GMS problem [1, 68, 135, 137]. This is 

done to limit the amount of energy sent over the power system’s transmission network. For these 

constraints to be formulated, the amount of energy that has to be sent out from each generating 

unit needs to be determined. This is usually accomplished by solving the ED subproblem [128] 

with the addition of constraints sets (2.11) and (2.12). From these generating unit output 

levels pij , a load flow problem is solved to obtain the line flows (the energy sent out along the 

transmission lines) [128]. Let L = {1, . . . , L} be set of indices of transmission lines (usually from 
one bus to another [128]). These computed line flows must adhere to the transmission constraint 

set 

|fR| ≤  FR, f ∈  L, (2.25) 

where fR  denotes the flow along transmission line f and FR  is the set maximum flow limit of 

transmission line f in the power network [68, 128]. 

Finally, the constraint sets 

Xij ∈  {0, 1}, i ∈  I, j ∈  J , (2.26) 

Yij ∈  {0, 1}, i ∈  I, j ∈  J (2.27) 

specify the logical nature of the decision (Xij ) and auxiliary (Yij ) variables. 

As noted in [17, 124] a rough distinction may be made between constraints that must not 

be violated and constraints which should be more or less satisfied, referred to as hard and soft 
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constraints, respectively. The decision maker may specify which constraints are to be considered 

hard and which are to be considered soft. 

Kralj and Petrović [124] classified the constraints for maintenance to occur within the planning 

period and achieving an adequate level of reliability (minimum deterministic or stochastic reli- 

ability measures) as hard constraints. Resource and crew constraints, on the other hand, were 

classified as soft constraints, since additional resources (including manpower) may be planned 

if required and/or overtime work may be scheduled so that more work may be accomplished 

[124]. This will all, however, come at an additional cost, but with more flexibility3. In [66], it is 

noted that a maintenance schedule with a high reliability but requiring additional crew is often 

acceptable in a power plant. The flexibility for the crew constraint in [66] was allowed to be 

violated by as much as 5%. 

Satoh and Nara [167], who employed a metaheuristic model solution technique, further classified 

GMS constraints as “easy” or “difficult” to satisfy and encode, which is especially applicable 

when not using mathematical programming techniques. Satoh and Nara classified the window, 

duration, precedence, and  generator  output limit  constraints  as  easy  constraints,  since  most 

of these may be dealt with by a suitable encoding of solutions, whereas exclusion, load, and 

reliability constraints were classified as difficult constraints since it is harder to find feasible 

solutions satisfying these constraints and it is also harder to enforce these in a solution encoding 

scheme. Finding feasible solutions for these difficult constraints is often certainly not easy, 

and a penalty is therefore typically associated with violating these difficult constraints. These 

penalties may be included in an objective function to be minimised by the incorporation of 

subjective penalty parameters [167, 169]. Kralj and Petrović [124] noted that some constraints 

can be built implicitly into the model (through the adoption of judicious encoding schemes) 

such as requirements as to when a unit must be maintained, that maintenance must occur over 

consecutive time periods (i.e. with no interruptions) and that the duration of unit maintenance 

is fixed. 

Baskar et al. [17] classified the maintenance window and contiguity constraints as soft con- 

straints, since the maintenance starting period of any unit can easily be selected in the “pre- 

ferred maintenance” interval. Furthermore, in [17], crew, demand, and a stochastic reliability 

constraint (involving the EUE) were treated as hard constraints, noting that it is very difficult 

to generate solutions satisfying these hard constraints. 

To conclude, the GMS problem is often a complex problem, and it is usually difficult to satisfy 

all its constraints [128]. Sometimes constraint violations are allowed for specified soft constraints 

and minimisation of these soft constraint violations is incorporated as a separate GMS objective 

(called a convenience criterion) [128, 63]. 

 

2.5.2 GMS problem objectives 
 

A wide variety of GMS objective functions may be found in the literature.  These objective 

functions are usually based on three dominant scheduling criteria, namely economic criteria, 

reliability criteria and convenience criteria [124, 169, 222], with the economic and/or reliability 

criteria most often occurring in the GMS literature. 

 
Economic criteria. The most common economic GMS objectives consist of minimising the 

total operating cost associated with a generator maintenance schedule, which includes 

energy production and maintenance cost [46].  Energy production cost includes fuel cost, 
 

 

3Huang et al. [107] actually used fuzzy set theory to deal with this uncertainty problem. 
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salaries and wages, costs related to energy production and generator start-up and shut- 

down costs. Maintenance costs, on the other hand, include replacement part costs and 

salaries and wages related to unit maintenance [168]. These economic costs typically vary 

from generating unit to generating unit and data related to these costs are sometimes 

difficult to obtain [168]. 

Reliability criteria. Depending on the model, reliability criteria may be either stochastic or 

deterministic in nature [145]. The most common deterministic objectives in this class 

involve measures on the reserve margin, either levelising the reserve margin or ensuring 

a satisfactory level of available power. When levelising the reserve margin over the time 

period, the most common formulation is to minimise the sum of squared reserves (SSR) 

[90, 145]. Another option is to maximise the smallest reserve load during any time period. 

Stochastic reliability objectives generally involve common stochastic risk measures, such as 

the total period’s LOLP and EUE [46]. Like deterministic criteria, another stochastic crite- 

rion involves levelising risk indices (such as LOLP) for each time period (this is commonly 

achieved by levelising the effective/equivalent reserve margins, which usually incorporates 

a stochastic installed capacity per unit, forced outage rate (FOR), and expected load) 

— typically by minimising the sum of squared effective/equivalent reserve margins [47]. 

Generally, it can be shown that optimal solutions obtained under either a deterministic or 

a stochastic reliability criterion are also acceptable (although not necessarily optimal) in 

terms of the other reliability criterion [147]. 

Convenience criteria. Examples of convenience criteria include minimising soft constraint 

violations, minimising deviations from a desired maintenance schedule, or minimising pos- 

sible disruptions to the power generation schedule. 

 

Depending on the model and objective function employed, these three categories of scheduling 

criteria are often conflicting, ultimately making the GMS problem MO in nature [124]. For 

example, Kralj and Petrović [124] noted that a compromise between several requirements must 

typically be achieved. Examples include ensuring adequate reliability with minimal fuel costs, 

ensuring minimal deviation from technologically optimal maintenance schedules, and maximis- 

ing the efficiency of the available resources and manpower while respecting all other constraints. 

Mukerji et al. [149] noted that the two most important optimisation criteria are maximising reli- 

ability in some sense and minimising production cost. Schedules with high reliability scores tend 

to have low production costs, and vice versa, but the schedule that gives the highest reliability 

may not have the lowest production cost [149, 216]. This phenomenon may be attributed to the 

fact that a utility having low reserves will have to bring online its more expensive expensive units 

more frequently [216]. Canto [32] noted that the electricity energy demand must be supplied 

under an adequate reliability level whilst the associated cost of electric generator shutdown has 

to be the smallest possible. 

SO and some MO formulations and solution approaches have been proposed for GMS problems 

[169], with most employing SO approaches, or including all but the one dominant criterion as 

constraints in model formulations [90, 124]. In SO approaches, deciding on which objective to 

choose for this purpose depends on the power system’s goals: for some power utilities, reliability 

objectives are more important than economic considerations (such as in regulated electricity 

markets, for example [168]) whilst other utilities prefer economic considerations (those in dereg- 

ulated electricity markets may only be concerned with maximising net revenue [89]). 

The different types of objectives formulated within the above three criterion categories are 

described in more detail in the remainder of this section, and this is followed by a discussion on 

how SO and MO GMS problem instances are typically solved. 
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ij 

ij 

pmin 

 

Economic criteria 

 
A number of different types of economic objectives are adopted in GMS models in the literature. 

In regulated systems, the goal is usually to minimise total cost4, typically focussing on production 

and maintenance costs [32, 42, 46, 90]. The deregulation of the electric power market in many 

countries has, however, shifted the focus away from operating cost and reliability more towards 

profitability [90, 127, 168, 201]. 

The total operating cost usually includes the cost of energy production and maintenance [46, 201, 

222]. Energy production costs include fuel costs [201, p. 248], salaries and wages of production 

personnel, costs related to energy production and generator start-up and shut-down costs [168]. 

Maintenance costs are usually partitioned into fixed and dependent maintenance costs [201, 

p. 248]. Fixed maintenance cost is normally constant and is not related to whether the generating 

unit is often in a state of operation. Dependent maintenance costs, on the other hand, are 

related to how the generating unit is operated, arising from wear and damage due to switching 

it on and off frequently, or prolonged operation. Dependent maintenance costs may also derive 

from implemented maintenance and operation standards, and the cost of  maintenance  may 

change when the maintenance time is allowed to float, resulting in additional overtime payments 

or payments of wages to extra staff [201, p. 248]. These economic costs typically vary from 

generating unit to generating unit, and data related to these costs are sometimes difficult to 

obtain [168], especially data related to maintenance costs [201, p. 249]. 

Let c
p

 denote the production cost associated with power generating unit i ∈  I during time 
and let cm  denote the maintenance cost incurred if power generating unit i ∈  I 

period j ∈  J ij 

is in maintenance during time period j ∈  J .  Also, let pij  represent the generation output of 

power generating unit i ∈  I during time period j ∈  J . Then the objective is often to minimise 

the total operating cost (production and maintenance costs), i.e. to 

minimise 
\ \

(c
p 

(pij ) + cmYij ), (2.28) 
ij ij 

i∈ I j∈ J 

where c
p 

(pij ) is the production cost associated with generator output pij  [27, 69, 122, 128]. In 

this case, the load demand constraints 

i (1 −  Yij ) ≤  pij ≤  Ii(1 −  Yij ), i ∈  I, j ∈  J (2.29) 
 

and \ 
pij = Dj , j ∈  J (2.30) 

i∈ I 

related to minimum and maximum production and demand satisfaction are usually enforced 

[27, 29, 66, 167]. As may be seen in (2.29), the optimal production plan is influenced by the 

PM decision variables Yij , in the sense that the generation output variable pij  must be zero if 

maintenance of generating unit i ∈  J occurs during that time period j ∈  J (i.e. if Yij = 1). 

Usually pij  is determined by solving an instance of the well-known ED problem (described 

in §2.3.2).  El-Sharkh et al. [69] noted that there are, in fact, two subproblems to be solved, 

namely a subproblem involving determination of the MS variables Yij , called the maintenance 

scheduling subproblem, and one involving determination of the production output variables pij , 

called the power system subproblem. Satoh and Nara [167] used SA to find optimal values for the 

maintenance schedule variables and then, based on these Yij -values, determined the production 

output variables, whose production (fuel) cost was formulated as a linear function, using the 
 

 

4Usually in regulated systems, a government regulates the system directly or indirectly. In this case the utility 
should not take advantage of the end consumer [90]. 
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SUMMARY HEAT RATE DATA 
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Figure 2.6: I/O curves for one of the Pacific Gas and Electric company’s power generating units (called 

“Hunters point 3”) [121]. 
 
 

equal incremental method to solve the ED problem. Methods employed to solve the ED problem 

depend on how the production cost c
p 

(pij ) is modelled. The formulation involves modelling each 

power generating unit’s fuel consumption (cost) associated with producing a certain amount of 

power. 

The fuel cost is the most significant cost associated with power generation and is sometimes 

merely called the production cost [201, p. 248]. To understand how the fuel cost is estimated, 

an understanding must first be gained of how a power generating unit’s heat rate (the ratio 

of thermal energy in to thermal energy out) is determined. The heat rate is the inverse of a 

power generating unit’s efficiency (i.e. how much energy is converted from the fuel source to 

output electric power). In order to determine heat rates, engineers first measure the fuel (input) 

required to maintain various levels of generation (output) [121, 212]. These (input, output) 

coordinates together constitute the so-called I/O curve of the power generating unit in question. 

From these values incremental and average heat rate values may be determined, as illustrated 

in Figure 2.6. The generation output is usually measured in MW, whilst the fuel input may 

be measured in units of weight per hour [e.g. tonnes/h], energy per hour [MBtu5/h], monetary 

expenditure per hour, calculated according to the cost of fuel in terms of monetary unit per 

weight ($/Tonnes) or per energy ($/MBtu) [$/h]. 

Depending on the data, the I/O curve (or the fuel/production cost rate) may be modelled as 
 

 

5The British thermal unit (Btu) is the traditional unit of work in the power industry. One Btu is approximately 
1055 joules. 

      

      

      

      

      

 

(% 

BLOCK 1 9 

) (MW)   ( 

 
% 10 

1000 Btu/hr) 

 
210,370 

(Btu/kWh) 

 
21,037 

(Btu/kWh) 

 
21,037 

BLOCK 2 25 % 27 378,378 9,883 14,014 
BLOCK 3 50 % 54 671,436 10,854 12,434 
BLOCK 4 80 % 86 1,063,476 12,251 12,366 
BLOCK 5  100 % 107 1,347,986 13,548 12,598 
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Figure 2.7: A nonlinear cost function approximated by a piecewise-linear function involving three linear 
segments [197, p. 70, 213]. 

 
 

approximately linear [17, 32, 167, 126, 128, 150, 216], piece-wise linear [33, 57], quadratic [67, 

66, 154] or cubic with varying degrees of accuracy [212]. 

Many authors formulate the fuel cost as the quadratic function 

c
f 

ij (pij ) = aip
2

 + bipij  + ci [$/h], (2.31) 
 

where ai, bi, and ci are cost coefficients pertaining to power generating unit i ∈  I. Some authors 

in literature and many power utilities, however, prefer to represent the fuel cost as linear or 

piecewise-linear cost functions [213, p. 68]. The nonlinear fuel cost function in Figure 2.7 is, for 

example, approximated by a piece-wise linear function containing three linear function segments. 

This local linearisation creates the problem of possibly achieving less accurate cost estimates 

(than when adopting a nonlinear cost function). Naturally, the degree of error of estimating 

the cost curve decreases with the number of segments used. This is illustrated by the example 

quoted from [213, p. 72] in Table 2.4. The example relates to three power generating units 

whose production output must be optimised. The standard solution, using the lambda search 

method, was employed in [213, p. 68] for the three quadratic representations of the units’ cost 

curves. Optimum scheduling results are compared to those obtained by approximating the three 

functions by piecewise-linear functions. 

It may be seen in Table 2.4 that the total cost does not differ much — using even one linear 

function segment results in a cost error of under 0.5%. There is, however, a more substantial 

difference in the corresponding generator output values, especially for Generator 3. This type 

of error is worth noting if the fuel or production cost is represented as a linear function. 

In the GMS problem in [165], the total fuel (called generation) cost was minimised using a merit 

(cheapest to most expensive) order dispatch logic. 

A substantial number of authors [201, 215, 216, 221] have claimed that operational costs (specif- 

ically those based on fuel cost) are not very sensitive to variation of maintenance plans, when 

the same amount of maintenance is performed in each case [167], with values in the literature 

ranging from 0.08% to 0.3% [149, 216, 221]. In [216], the insensitivity of production cost is 

attributed to most probably being the result of many simplifications made because of compu- 

tation difficulties. As noted in [221], however, the UC problem influences the production cost 

more significantly, with Johnson et al. [115] reporting a fuel cost saving of around 1%, and 

thus it is important to follow an accurate UC logic within the larger GMS problem instance. 

In [218], production costs (consisting of fuel cost with more elaborate formulations of start-up 

c 
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Table 2.4: Scheduling results emanating from piecewise-linear approximations of quadratic cost func- 
tions [213, Example 3C]. 

 

 

# of linear 

function segments 
Generator 1 

(MW) 
Generator 2 

(MW) 
Generator 3 

(MW) 
Total Cost 

($/h) 
 

Cost Error 

1 400 400 50 8 227.870 0.40899 % 
2 375 350 125 8 195.369 0.01236 % 
3 450 300 100 8 204.105 0.11897 % 
5 400 340 110 8 195.206 0.01037 % 

10 385 340 125 8 194.554 0.00242 % 
50 393 335 122 8 194.357 0.00001 % 

Standard solution 

with lambda search 
393.2 334.6 122.2 8 194.356  

 
 

and maintenance costs) varied as much as 6%. Importantly, GMS models involving production 

cost objectives also typically take much longer to solve than GMS models involving most other 

criteria (such as reliability criteria) [215, 216, 222] — in [216], for example, a run time increase 

of 64% is reported. In [149], a run time increase of 63% (166% when the model’s constraints 

are relaxed) is reported. In [222], a run time of 7 minutes is reported when minimising the 

expected energy production cost, whilst a run time of 0.14–0.27 minutes is reported for various 

reliability criteria measures — this means that it took 50–29 times longer to compute solutions 

in the former case. 

The maintenance cost associated with a maintenance plan represents the cost of suboptimality or 

lost opportunity as a result of adopting a maintenance schedule. It typically includes the cost of 

maintaining a power generating unit too early or too late [59, 149]. Each power generating unit 

usually has its own, ideal maintenance window. Maintenance of a unit that takes place too soon 

wastes money, because needless maintenance work is done. Waiting too long, on the other hand, 

can also be expensive, because the power generating unit’s availability deteriorates owing to an 

increased probability of forced outages, often causing repairs to become more expensive. Besides 

this increased probability of failure risk, higher costs will be incurred where overhauls are carried 

out too late as these will necessitate increased maintenance (parts would have been in service 

longer) [148]. These costs may be quantified and incorporated collectively as a model objective 

or as window constraints for each power generating unit separately [149]. The maintenance cost 

is usually expressed as a function of time elapsed between two successive maintenance outages 

[124]. 

El-Sharkh et al. [69] adopted a fuzzy logic approach toward modelling maintenance cost, since 

this cost varies according to the changes in market prices, availability of spare parts, weather 

conditions and the availability of maintenance crew. In [83, 186], the scheduling objective 

consisted only of maintenance costs, that is, the second part of (2.28), where the maintenance 

cost cm
 increases linearly with time (i.e. as a function of j), so that maintenance of power 

generating units is scheduled as early as possible, subject to reserve capacity, crew availability, 

maintenance window and maintenance duration constraints. Similarly, in [148], the scheduling 

objective is to 

minimise 
\ \ 

cmYij Ii. (2.32) 

i∈ I j∈ J 

The maintenance cost coefficients cm in (2.32) are at a minimum when a unit is in maintenance 
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Figure 2.8: The sum of underpreciated maintenance investment lost by maintaining a unit too early 

and the expected out-of-pocket (deterioration worsening maintenance work/cost and expected cost due 
to the likelihood of forced outages) maintenance cost in terms of time since the previous maintenance 
[59]. 

 
 

during its preferred period of maintenance; outside the preference window these costs increase 

linearly. The incremental cost of performing maintenance prior to the preferred period is a result 

of premature exchange or repair of the power generating unit’s components which might still be 

operating without failure [148]. Also, in (2.32) the maintenance cost is multiplied by the power 

generating unit’s installed capacity Ii so that precedence is given to the larger units’ preferred 

maintenance periods. The effect of including the model objective (2.32) is somewhat similar to 

incorporating a maintenance window constraint (i.e. when maintenance is allowed to occur). 

As noted by Dopazo et al. [59] and Kuzle et al. [127], the maintenance cost objective is usually 

formulated so as to facilitate finding an optimal balance between not scheduling units too early 

for maintenance, since part of the investment made during the previous maintenance is lost 

as the unit’s parts were meant to be in operation longer but are replaced prematurely, and 

not scheduling units too late for maintenance, which may incur additional expenses as a result 

of partial or full damage to machinery. This is illustrated in Figure 2.8 where the sum of 

underpreciated maintenance investment lost by maintaining a unit too early and the expected 

out-of-pocket (larger maintenance due to deterioration and expected cost due to the likelihood 

of forced outages) maintenance cost in terms of time since previous maintenance are plotted 

[59]. Curves like the one in Figure 2.8 may be developed for each generating unit of a power 

system. In the absence of constraints each unit would be maintained at its individual optimum 

point in time (the time period associated with the lowest value in the total maintenance cost). 

The presence of constraints will, however, probably affect where in time this optimum is [59]. 

Dopazo and Merrill [59] suggests minimising the overall system maintenance cost (which is the 

sum of all the units’ maintenance costs) associated with a maintenance schedule. 

If maintenance outage durations are allowed to vary (as mentioned they are usually fixed), a 

trade-off results between the energy production cost and the maintenance cost [46, 215]. Shorter 

outage durations lead to higher maintenance costs [222], since more crew (through overtime 

work or additional staff) are employed and parts are needed in a shorter time [215], but lower 

production costs are incurred since more expensive units do not have to be brought online as 

much during those times when cheaper units are in maintenance [46, 222]. As further noted in 

[59], a three-week outage could, for example, be reduced to a two-week period by scheduling 
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overtime (at a known cost), although overtime is an expensive contributor to maintenance costs 

[59] and will most probably very rarely be permitted. Also, the power system’s reliability (in 

terms of satisfying demand) will be higher as a result of shorter outage durations [222]. 

As noted in [201, p. 249], sometimes only the production cost is included in economic cost 

scheduling objectives since it is difficult to quantify maintenance cost accurately. Canto [32] 

furthermore noted that maintenance costs are typically insignificant compared to start-up and 

production costs. Maintenance costs were, in fact, found to be of the order of one thousand 

times smaller than generating unit start-up costs and of the order of one million times smaller 

than production costs [32]. 
 

Start-up costs are nevertheless sometimes included in scheduling objectives. Suppose power 
generating unit i ∈  I has a start-up cost cs  associated with it [32, 38, 42].  The UC problem 

typically has to be solved, based on the values of the maintenance schedule variables Yij , so as 

to determine the output variable values sijn, which take the value 1 if power generating unit 
i ∈  I starts up during subperiod n ∈  N of period j ∈  J . The specification of a finer 
grained subperiod set N = {1, . . . , o} (typically hours/days) within period j (typically 
days/weeks) is 
usually aimed at more accurately determining the expected electricity demand for the UC and 

ED problem (i.e.  daily or hourly demand).   For instance, Canto [32] takes the maintenance 

period set J as a set of thirteen one-month periods, and within the each period, there are 
six subperiods, corresponding to two parts, namely business days and weekdays, and within 

these parts, three more subparts, namely peak, middle, and low demand. In [32], the economic 

scheduling objective is to 

minimise 
\ \ \ 

(c
p
pijn + cssijn). (2.33) 
i i 

i∈ I j∈ J n∈N 

In [38, 42, 218], the start-up cost component of the profit maximisation objective is also modelled 

as in the second part of (2.33). 

The start-up cost may be modelled in a more complex manner, as noted in [197, 212], because 

the start-up cost for a thermal unit is actually a function of the time that the unit has been 

shut down. That is, it is cheaper to restart a warm power generating unit than a cold one. If 

such a complex model is employed, the start-up cost formulation in the second part of (2.33) is 

inadequate. In [197], for example, an exponential function is presented to estimate the start-up 

cost. 

As mentioned, the deregulation of the power industry has opened up the market to competition 

[90]. In a deregulated system, the economic scheduling objective for the GENCOs6 typically 

changes to the maximisation of profit (or revenue less costs) [38, 90, 95, 119]. The costs are 

similar to the ones described above (namely fuel costs, maintenance costs and start-up costs). 

The revenue component is, however, incorporated by including an energy (spot) price estimate 
λjn (typically measured in units of monetary cost per megawatt-hour) for period j ∈  J and 

subperiod n ∈  N [15, 38, 42, 95]. In general, GENCOs attempt to 

maximise 
\ \ \ 

(λjnpijn −  

(aip
2

 

+ bipijn + ci) −  cssijn −  cmYij Ii) (2.34) 

i∈ I j∈ J n∈N 
ijn i i 

[15, 38, 218]. The objective function in (2.34) represents the GENCOs’ profit (expected revenue 

less production cost less start-up cost less maintenance cost). GENCOs will want to deliver 

electricity when the price is high, and will attempt to schedule maintenance of generating units 

when the price is low [127]. 
 

 

6As has been noted for deregulated systems, the ISO is usually concerned with demand satisfaction and 
congestion avoidance, whilst the GENCOs (and TRANSCOs) seek to maximise their profits [90, 95]. 
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Reliability criteria 

 
Reliability scheduling criteria involve satisfying demand as reliably as possible. That is, the 

available capacity (the installed capacity less the capacity lost due to maintenance and outages) 

should be able to meet the expected demand according to a certain level of reliability. These 

reliability criteria may be either stochastic or deterministic in nature [23, 145, 201]. Deterministic 

models incorporate reliability more simply as the net reserve margin 

rj = 
\ 

Ii(1 −  Yij ) −  Dj , j ∈  J (2.35) 

i∈ I 

during period j. Sometimes forced outages are also included as a safety factor S on top of the 

demand. 

In contrast, stochastic models are able to accommodate reliability (which is usually rather 

expressed in terms of inverse risk measures) more accurately by taking into account the expected 

FORs and the variations in expected demand. In deterministic modelling approaches, the main 

criterion is usually to levelise the net reserve loads7 [90, 201]. In stochastic approaches, on 

the other hand, the risk of the expected available capacity not satisfying demand per period is 

also levelised or the sum of these risks per period is minimised. The objective functions that 

have been adopted to measure this type of risk include the LOLP, the loss of load expectation 

(LOLE), or the expected energy not served (EENS) [201]. Another technique is to levelise the 

effective/equivalent reserve margins (which incorporates a stochastic installed capacity per unit, 

FORs, and expected load), usually by minimising the sum of squared effective/equivalent reserve 

margins [47]. This effective/equivalent reserve margin per time period is calculated from the 

effective/equivalent load carrying capacity for each unit and the effective/equivalent load for each 

interval [47, 145]. 

In deterministic models, the most common objective function, when attempting to levelise the 

net reserve load, is to 

minimise 
\ 

r2
 (2.36) 

j∈ J 
 

[48, 46, 66, 89, 145, 161, 169, 170]. The scheduling objective in (2.36) penalises the deviation 
between the available capacity during period j ∈  J and the expected peak demand Dj  across 

the planning horizon. The reason for taking the square of rj instead of rj itself within the sum in 

(2.36) is that outliers are penalised more severely [168] in the former case. Since the maintenance 

outage duration is assumed to be constant, simply summing the reserves (
),

j∈ J rj ) will, in fact, 

always produce the same value for different maintenance schedule decision variables Yij [222]. 

In [145], the objective function (2.36) is slightly modified to 

minimise 
\ 

(rj −  rmin)
2 , (2.37) 

j∈ J 
 

where rmin is a set minimum reserve requirement.  The objective in (2.37) seeks to steer the 

reserve load as close as possible to rmin.  Similarly, some authors include a safety margin S, 

so that Dj  in (2.35) is replaced by Dj (1 + S).  Since S is a constant (usually between 8– 

15%), its value will not affect the decision variables in the objective function (i.e. the optimum 

maintenance schedule decision variables Xij ). The variable values might, however, be infeasible 

in the more constrained instance if they violate the widely enforced constraint that the available 
 

 

7The net reserve is the gross reserve less the capacity lost due to maintenance. Furthermore, the gross reserve 
is the total installed capacity (

),
 
∈ I 

Ii) less the expected demand for time period j ∈  J [67, 90, 215, 201]. i 
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capacity must be at least the demand plus a safety margin Dj (1 + S). A safety margin is usually 

included in deterministic models so as to take into account random factors, such as random unit 

outages [27]. 

Another way to levelise net reserves is to minimise the deviation of the net reserves rj from the 

average net reserve r̄  , that is to 
 

 

 

 
where 

minimise 
\
(r̄  

j∈ J 

−  rj ), (2.38) 

r̄  = 1 \ 
 

 

m 
j∈

J 

rj (2.39) 

is the average net reserve [67]. Similarly, the scheduling objective adopted in [17] is to 
 

minimise 
\ ( rj −  r̄j 

\

 
r̄j 

 
. (2.40) 

j∈ J 

 

Some authors [185], however, levelise the net reserve load according to the net reserve rate 

), 

rr j∈ J rj 

 

 
and the average net reserve rate 

j = 
j 
+ 

), i∈

I 

IiXij 
(2.41) 

r̄r =  
1

 
\ 

rr . (2.42) 
j 

 
 

In particular, their scheduling objective is to 

m j 

j∈ J 

 

 
  

rr
 

 
 

 
r   2 

minimise 
\

 

j∈ J 

j −  
r̄j 

r̄r
 

. (2.43) 

 

The objective function adopted in [202] is similar to (2.43), except that the calculation of the 

net reserve rate rr (2.41) is slightly different. In [42], the scheduling objective is to maximise 

the sum by period of the ratio of the net reserves to the gross reserves. 

Instead of the widely used levelling objectives described above, the reliability objective of max- 

imising the minimum net reserve, that is 

maximising min 
(
rj 

�
, (2.44) 

j∈ J 
 

has also been adopted [149, 152]. This objective is useful if a power utility wishes to focus its 

scheduling attention on the smallest available net reserve over the scheduling horizon. Also, this 

will in effect attempt to levelise the reserve margins as far as possible, but there will be more 

variations in the reserve compared to the case of the preferred minimisation of the SSR approach 

[45]. 

Models employing stochastic reliability measures  take into account the stochastic nature of 

predicting energy demand and the influence of random outages, as illustrated in Figure 2.9. 

Once the capacity (sometimes called generation) model and the load model have been formed, 

they are combined (convolved) to form an appropriate risk model. 

2 

D 
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Capacity Model 

 
 

 

 
 

Figure 2.9: Conceptual tasks involved in the evaluation of stochastic reliability measures for power 

generating systems [21, 200]. 
 
 

The types of load models typically used are first described below, and this is followed by a 

description of the types of capacity models. A description finally follows on how these two 

models may be used to develop various risk models (incorporating, for example, LOLP and 

EENS). 

The load in a power system is a stochastic process. A number of different load models may 

be derived from the primary data according to the extent of reliability calculations required 

[21, 23]. Most primary load data consist of the weekly or daily load as a percentage of the 

annual load, and/or the hourly peak load as a percentage of the daily peak [23, 9]. With these 

percentage data available and the annual peak load known, the hourly chronological load profile 

can be established [23]. The most widely used load model is the so-called load duration curve 

(LDC), illustrated in Figure 2.10, which represents the duration (or fraction of total) time (on 

the horizontal axis) during which the system load (measured in MW) is greater than or equal 

to a certain value (on the vertical axis). The LDC may simply be estimated without employing 

any mathematical formulae or algorithms by sorting the peak loads in descending order, as 

illustrated in Figure 2.11 for the Institute of Electrical and Electronics Engineers reliability test 

system (IEEE-RTS) established in 1979 [9]. 
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Figure 2.10: An example of an LDC, represented as a function of time based on (hourly or daily) load 

curves [201, p. 114]. 

 
The simplest and most widely used load model involves representing each day by its daily peak 

load. The individual daily peak loads may be arranged in descending order to form a cumulative 

load model, known as the daily peak load variation curve (DPLVC) [200], the assumption in this 

case being that the peak load of a day will last the entire day [23]. 
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Figure 2.11: (a) An example of peak loads per period (hour of the day) data. These data pertain 

to weekdays during the winter period of the IEEE-RTS benchmark system [9]. (b) A simple discrete 
estimation of the LDC achieved by sorting the loads in the load curve in (a) according to non-increasing 
order. 

 

 
A capacity model may be derived from a so-called capacity outage probability table obtained 

by applying techniques from reliability theory to the outage data. Such a table represents the 

capacity outage states of the generating system together with the probabilities of each state 

occurring [200]. The details pertaining to typical techniques employed to determine a power 

system’s capacity outage probability table are described next. 

In a power system, there are two fundamental types of outages, namely scheduled outages and 

forced outages [198]. Scheduled outages result when a component is deliberately taken out of 

service, usually for the purpose of preventative maintenance. Forced outages, on the other 

hand, result when a unit fails during service due solely to random events such as breakdown or 

malfunction of equipment [158, 198]. There are also two types of forced outages, namely partial 

forced outages and full forced outages. Partial forced outages take the form of reductions in the 

capability of a power generating unit, while full forced outages occur when a critical component 

in a power generating unit fails and the unit can no longer operate [34, p. 65]. Power equipment, 

such as generators, generator transformers and transmission lines are generally considered to 

be system components that are repairable [201, p. 104]. Boilers, steam (water) turbines and 

generators are often treated as single entities, called power generating units, in power system 

reliability analyses [201, 215]. 

The failure rate (or hazard rate) λ(t) of a component is the conditional probability that the 

component is working before the time instant t, but develops a fault during a small interval 

[t, t + ∆t] thereafter. It is believed that the failure rate function for power equipment follows 

the well-known “bath-tub” curve in Figure 2.12 comprising three stages: an early period with 

a decreasing failure rate, an occasional period with a constant failure rate, and a regenerative 

period with an increasing failure rate [201, p. 104]. Power generating units are generally sub- 

jected to preventative maintenance service during the occasional phase, where the failure rate 

is a constant, i.e. λ(t) = λ, and it is assumed that the interarrival times between failure times 

follows an exponential distribution, so that the mean time between failures (MTBF) is 1/λ [201, 
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Early life Useful life Wear-out 

 

p. 104]. The repair rate µ(t) of a component is defined similarly to its failure rate, but there 

is no consensus in the literature on an acceptable distribution of a component’s repair time. 

The distribution is often taken as an exponential distribution for convenience, in which case the 

mean time to repair (MTTR) is 1/µ. 
 

 

 

 

 

 

 

 

 

 

 

 

Time 

 

Figure 2.12: The failure rate of a system as a function of time, represented by the well-known “bath- 

tub” curve [5]. 

 
The status of a power generating unit is conventionally described as residing in one of sev- 

eral possible states [158]. A hierarchical representation of these possible states is shown in 

Figure 2.13. 
 

 

   

       
 
 

Figure 2.13:  Generating unit states [158]. 
 

Power generating units are usually described as alternating between two states, generally appli- 

cable to base load units [8, 21, 158, 200], or between four states, generally applicable to peaking 

or intermittent operating units [8, 21, 200], as illustrated in Figure 2.14. In the dual-state 

model of Figure 2.14(a), it is assumed that a generating unit only assumes one of two states: 

operational (referred to as unit up) or in repair (referred to as unit down). 

The FOR8 of a power generating unit is the probability that the unit will be out of service for 

reasons other than PM [90]. This probability is usually estimated as the unit’s unavailability 

[21]. For a dual-state generating unit i, the probability that the unit will be in repair is 

  FODi       λi     MTTRi   
qi = 

FOD + ISDi 
= 
λi + µi 

= 
MTTRi 

, (2.45) 
+ MTTFi 

where FODi  is the forced outage duration and ISDi  is the in service duration of generating unit 

i [23, 31, 200]. Furthermore, λi is the expected failure rate of unit i, µi is the expected repair 
 

 

8It is actually not a “rate” in reliability theoretic terms as it is the ratio of two time values [21, p. 21]. 

Forced Outage Scheduled Outage Shutdown In Service 

Unavailable Available 

Unit 

F
a
il

u
re

 r
a

te
 

i 

Stellenbosch University  https://scholar.sun.ac.za



40 Chapter 2. Literature review 
 

s 

 
 

   
(a) Two-state (b) Four-state 

 

Figure 2.14: (a) A two-state model, generally applicable to base load units [8, 21, 158, 200], where µ 

denotes the repair rate and λ denotes the failure rate, and (b) a four-state model, generally applicable 
to peaking or intermittent operating units [8, 21, 200], where additionally T denotes the average reserve 
shut-down between periods of need, D denotes the average in service time per occasion of demand, and 
ps denotes the probability of starting failure. 

 

rate of unit i, MTTFi is the mean time to failure (MTTF) of unit i, and MTTRi is the MTTR 

of unit i. The probability that unit i will be in service, 

pi = 1 −  qi, (2.46) 

is also called the availability of generating unit i.  Using the values qi  and pi  in (2.46), it 

is possible to construct a capacity outage probability table, as illustrated for two generating 

units in Table 2.5. Using the binomial theorem to calculate the entries of a capacity outage 

probability table for many units, however, becomes too time consuming. In such a case it is 

preferable to employ a recurrence/convolution algorithm for this purpose [200, 201]. In the case 

of the dual-state model, after the i-th new unit is newly added, 

Pi(X) = Pi− 1(X)(1 −  qi) + Pi− 1(X −  Ii)qi, (2.47) 

where Ii denotes the installed capacity of power generating unit i and qi denotes the FOR of 

power generating unit i. Furthermore, Pi(X) denotes the cumulative probability of a particular 

capacity outage state of X (measured in MW). This probability is obtained by means of the 

recurrence/convolution algorithm [21, 200, 201], where Pi− 1(X) is the cumulative probability of 

the capacity outage state of X before the i-th unit is added. The expression in (2.47) is initialised 

by setting Pi− 1(X) = 1 for X ≤  Ii. Otherwise, Pi− 1(X) = 0 and Pi− 1(X −  Ii) = 1 for X ≤  

Ii. 
The exact state probability pi(X) can be obtained similarly, changing only Pi(X) and Pi− 1(X) 

in (2.47) to the corresponding exact state probabilities (pi(X) and pi− 1(X), respectively). The 

initial conditions, however, are different [201, p. 123] in the exact state probability case.  An 

example of a capacity outage probability table populated by means of the convolution/recurrence 

algorithm in (2.47) may be found in Table A.2. 

Expression (2.47) may be modified to 

Pi(X) = 
\ 

psPi− 1(X −  Ci ) (2.48) 

s∈S 

1−ps 

T 

Reserve 

shutdown 
In service 

1 
D 

µ 

ps 

T 
µ λ 

1 
T 

Forced out 

but not 

needed 1 
D 

Forced out 

in period 

of need 

Unit up 

µ λ 

Unit down 
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Table 2.5: The capacity outage probability table for two power generating units (i = 1, 2 with installed 
capacities I1 and I2), assuming that both units adhere to the dual-state model of Figure 2.14(a) [201, 

p. 112]. 

 

Available capacity 

[MW] 
Outage capacity 

X [MW] 

Exact probability 

p(X) 

Cumulative probability 

P (X) 

I1+I2 0 p1p2 1 

I1 I2 p1q2 q1q2 + q1p2 + p1q2 
I2 I1 q1p2 q1q2 + q1p2 
0 I1 + I2 q1q2 q1q2 

 
in order to include multi-state unit representation (such as in Figure 2.14(b),  for example), 
where S = {1, . . . , s} is the set of unit states, Cs is the capacity outage value (measured in MW) 

is the probability of a unit being in state s. Note 
in state s for the i-th unit being added and ps 

that when s = 2, (2.48) reduces to (2.47) [21, 200]. 

The basic approaches adopted in the literature to develop the risk models, referred to above and 

illustrated in Figure 2.9, may now be described in terms of the above models for capacity outages 

and expected load. There are four major power generating system reliability indices, namely 

the LOLP/LOLE, the EENS or EUE, the frequency and duration and the system-minutes [201, 

p. 121]. Minimising the LOLP/LOLE is the most widely adopted technique [145, 215, 200]. The 

LOLP is generally defined as the probability of the available capacity (based on the expected 

FORs of the power generating units) not being able to meet the expected demand [145]. 
 

In order to explain the notions of the LOLP and related risk measurement calculations, consider 
the LDC graph in Figure 2.15.  Let L = {1, . . . , f} denote the set of capacity outage states in 

the capacity outage probability table. Let OR be the forced outage value for outage f (X in 

the capacity outage table), let PR  be the probability of forced outages in excess of OR  (i.e. the 

cumulative probability P (X)). Furthermore, let pR be the exact probability of forced outage OR 

and let ∆R be the time interval between the intercepts on the LDC for the two successive forced 

outage values OR and OR+1. Then 

 

 
or 

 

 
[21, 31]. 

LOLP = 
\ 

PR∆R (2.49) 

R∈L 

LOLP = 
\ 

pRtR (2.50) 

R∈L 

The LOLE is equivalently the expected number of periods (hours/days/weeks) when the avail- 
able capacity cannot meet the expected peak demand [201, p. 122]. Let A = {1, . . . , p} denote 

the set of periods in the LOLP calulcation. Then 

LOLE = LOLP × |A| (2.51) 

[201, p. 122]. Typical LOLE measurements found in the literature include days per year [185]. 

The United States of America and Canada stipulate that the LOLE should be less than 0.1 

days/year, while Europe and Japan stipulate that it should be less than 0.3 days/year [201, 

p. 123]. 

When the daily peak load variation curve (DPLVC), which assumes that the peak load of the 

day will last the entire day [23], is used instead of the LDC, the expression 

LOLP = 
\ 

Pk (ACk < D
p
) (2.52) 

k∈A 
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Figure 2.15: Calculation of the loss of load (LOL) and energy not served (ENS) due to outage f on 

the load duration curve. Any point on the curve denotes the fraction of time during which the expected 
demand is greater than or equal a certain pre-determined value. Adapted from [21, 23, 31]. 

 
 

is obtained [21, 200], where ACk is the available capacity during period k, D
p 

is the expected 

peak demand during period k and Pk (ACk < D
p
) is the probability of loss of load during period 

k. Furthermore, if TCk denotes the total capacity during period k, then 

Pk (ACk < D
p
) = P (TCk −  D

p
), (2.53) 

k k 

where P (TCk −  Dp
) is the cumulative probability of an outage exceeding TCk −  Dp

, which may 
k k 

be obtained from the capacity outage probability table. 

Since the LOLP/LOLE does not differentiate between small and large capacity outages [158] 

and does not indicate the frequency of loss of loads, other risk measures have also been defined 

in the literature. The EENS or the EUE is the expectation of the energy lost due to insufficient 

power supply [201]. If the ENS due to forced outage f (ENSR) is the area under the graph in 

Figure 2.15, then 

EENS = 
\ 

ENSRpR. (2.54) 

R∈L 
 

It is generally known that optimal solutions obtained under one of the risk criteria (LOLP, 

EENS, etc.) are also acceptable in terms of the others [147], but there are differences in optimal 

solutions resulting from the adoption of these objectives [222]. As noted in [217], the EENS 

criterion is preferred over the LOLP criterion, because of two potential problems with LOLP, 

namely that some systems having similar LOLP values may have considerably different EENS 

values, and systems having higher LOLP values can have lower EENS values than those with 

lower LOLP values. 

In the above risk models, it is assumed that no scheduled outages occur. When taking into 

account scheduled outages, however, the risk measurements (LOLP/LOLE, EENS, etc.) are 

calculated slightly differently. This is usually achieved by partitioning the total decision period 

(e.g. one year) into constant maintenance periods (e.g. weeks or days) with subperiods (e.g. 

days or hours) and calculating the above risk measurements (since the capacity model has to be 

updated) for all the subperiods. The total risk across the entire period is the sum of these risk 
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s=2 

k 

k 

 

measurements per period [21, 22, 200, 201]. The main difference when maintenance schedules 

are taken into account in the calculation of the risk measurements, is that the capacity outage 

probability tables have to be updated. When generating units are removed from the system, 

typically for scheduled maintenance, they are neither available for service nor for failure. It 

is, therefore, not necessary to recreate the capacity outage probability table from scratch, as 

explained above. The original capacity outage probability table (created assuming that no main- 

tenance is scheduled, as explained above) can merely be updated by means of a deconvolution 

algorithm (the reverse of (2.47) and (2.48)). That is, when a dual state unit i is removed, 

Pi(X) −  Pi− 1(X −  Ii)qi 

Pi− 1(X) = 
1 −  

qi 

, (2.55) 

where Pi− 1(X −  Ii) = 1 for X ≤  Ii [21, 200, 201].  When, however, a multi-state unit i 

is removed, 
Pi(X) −  

),S
 [Pi− 1(X −  Ii)qi] 

Pi− 1(X) = . (2.56) 
p1 

 

In [200], the LOLEj for maintenance period j, is calculated as 

LOLEj = 
\ 

Pk (Ck < D
p
) × |A|, (2.57) 

k∈A 

where k is an index labelling subperiod within in maintenance period j (in [200], for example, k 

is the day number during the week j), Ck  is the available capacity during subperiod k, and D
p

 

is the peak demand during subperiod k. In this case the scheduling objective is to 

minimise 
\ 

LOLEj . (2.58) 

j∈ J 

 

Another popular stochastic reliability technique, very similar to the deterministic approach of 

levelising the reserve method, is referred to as the levelised risk method, where the LOLP for 

each interval is levelised (instead of the total system’s LOLP or EUE) or more usually the 

effective/equivalent reserves (ER) (which incorporates a stochastic installed capacity per unit, 

FORs, and expected load) are levelised, normally by minimising the sum of squared ER [47]. This 

effective/equivalent reserve margin per time period is calculated from the effective/equivalent 

load carrying capacity for each unit and the effective/equivalent load for each interval [47, 145, 

161]. Note that levelising this ER will essentially also levelise the LOLP for each interval 

[161]. Mohanta et al. [145] compared results obtained by adopting stochastic and deterministic 

reliability modelling approaches. The deterministic approach involved levelising the reserve 

margins by minimising the SSR over time while the stochastic approach very similarly involved 

levelising the “risk” by minimising the sum of squared effective reserve margins over time. Both 

models were solved by a GA and by a GA/SA hybrid algorithm. Results comparing which 

method produces the lowest LOLP values logically supported the view that stochastic reliability 

measures produced better schedules in terms of risk, although longer computing time were 

required for calculating the stochastic reliability measures, as illustrated in Table 2.6. 

Note that minimising the stochastic risk measurements described above is, in principle, similar 

to maximising deterministic reliability measures [145]. In both cases, the aim is to ensure that 

there is enough available capacity to meet the expected demand. Stochastic measures, however, 

predict the load demands more accurately during each time period (deterministic measures 

merely use the peak demand per period). In addition, stochastic measures take into account 

the influence of random unplanned outages as well, whereas in deterministic reliability measures 
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Table 2.6: Comparison of the number of generations and computing time (measured in seconds) required 
for two different reliability objective approaches, namely a stochastic and deterministic measure by two 
similar algorithms for a 6-unit test system [145]. 

 

Objective GA GA/SA 

Levelise reserve (deterministic) 472 gen. (503.02 sec.) 295 gen. (305.62 sec.) 
Levelise risk (stochastic) 606 gen. (852.34 sec.) 297 gen. (464.12 sec.) 

 
 

these unplanned outages may be less accurately incorporated by specifying a safety margin over 

all the time periods. Note that since the LOLP objective seeks to minimise the number of times 

the available capacity is less than the expected peak demand, the objective does not levelise 

the risk over the period k — it rather minimises instances when the available capacity is less 

than demand (i.e. there may be instances when there is considerable reserve, much more than 

needed), but the LOLP will not penalise these instances. 

 
 

Convenience criteria 

 
Another class of scheduling criteria sometimes employed to solve GMS model formulations is re- 

ferred to as convenience criteria [124], which attempt to measure how satisfactory a maintenance 

schedule is (i.e. minimising the degree of constraint violations, minimising possible disruption to 

the existing schedule [124, 103], or minimising the deviation from an ideal maintenance schedule 

[222]). Sometimes it is hard to satisfy all the constraints in a GMS model, making it almost 

impossible to solve the problem instances within an acceptable computing time and using the 

available resources [128, 222]. The author is not aware of any work in the literature in which SO 

formulations of the GMS problem involve only convenience criteria. The formulations in [125, 

126, 128], however, include such criteria within an MO modelling paradigm. 

In [125, 126], convenience criteria, along with an economic criterion (fuel cost) and a reliabil- 

ity (EUE) criterion, were incorporated as the allowed number of thermal units simultaneously 

maintained within each plant. In [128], the degree of (reserve, maintenance crew, line flow, and 

maintenance duration) constraint violations were regarded as convenience criteria to be min- 

imised (although the convenience criteria were referred to as a reliability index [128]). These 

criteria were incorporated into a GMS model along with economic (fuel and maintenance cost) 

criteria. The approaches followed to solve these and other MO GMS models are described in 

some detail in the following section. 

Another type of convenience criteria that may be taken into account, is not the number of 

maximum crew available constraint violations, but the allocation of manpower [87], although this 

is not easily quantifiable (i.e. two schedules might both never require more than 25 maintenance 

crew during a week, but the amount of manpower allocated could vary greatly, in which case 

one may be more preferred than the other). 

 

 

2.6 GMS solution techniques and approaches 

 
A wide variety of solution techniques have been employed in the literature for solving instances 

of the GMS problem. Traditionally GMS models have been formulated as SO optimisation 

problems, usually incorporating the dominant scheduling criterion in the objective function, with 

some authors including other criteria as constraints [124].  A considerable volume of research 

Stellenbosch University  https://scholar.sun.ac.za



2.6. GMS solution techniques and approaches 45 
 

 

has appeared on solving MO energy-related problems, with only a few studies involving truly 

MO GMS problems, as described in this section. 

Solution techniques typically adopted for solving GMS problem instances include metaheuristics, 

mathematical programming techniques, DP, heuristic search algorithms, and fuzzy set theory 

[3, 90, 125, 169], the most popular techniques being metaheuristics, mathematical programming 

techniques and DP [90]. 

 
 

Mathematical programming techniques are typically used to solve SO instances of the 

GMS problem, and mostly include variations on the B&B method. Bender’s decomposition 

has also been used widely due to the large dimensions of realistic GMS problem instances. 

Metaheuristics are used when the dimensions of a GMS problem instance increases to the 

point where exact solution methodologies take too long to implement. These techniques 

rather often obtain very good (although not necessarily optimal) solutions within more 

acceptable computation time frames. Recently, metaheuristics have been used to solve 

GMS problem instances close to optimality within very limited computational times [168]. 

Typical metaheuristics applied to the GMS problem include GAs, the method of SA, tabu 

searches (TSs), ant colony optimisation (ACO), particle swarm optimisation (PSO) and 

hybrids of the above. 

Dynamic programming9 ideally suits the temporal nature and sequential decision process 

of MS problems [168, 90]. Until the 1990s, it was often used in the context of the GMS 

problem [90, 107, 108, 216, 221]. 

Fuzzy set theory is employed to address multiple objectives and uncertainties in GMS prob- 

lem constraints [169], and has been used in [46, 107]. 

Expert systems involve development of automated solution methodology by imitating the 

many years of experience of experts in the field [169] and have been used in the context 

of GMS in [129]. 

Heuristic search algorithms search and improve upon the quality of solutions based on trial 

and error, and are comparatively seldomly used in the literature [3], which may be due to 

the inferior quality solutions that they often produce and the significant operator input 

needed [46]. According to Canto [32], however, industry operators solve instances of the 

GMS problem via heuristic techniques in most cases. 

Constraint programming is a particularly useful method for finding exact solutions to highly 

constrained problem instances and has been used in the context of GMS in [91]. 

Game theory-based approaches have been applied to accommodate the conflicting criteria 

arising in deregulated power systems [90]. 

 
 

Some authors classify metaheuristics and fuzzy set theory as artificial intelligence techniques 

[47]. 

In the earlier literature on the GMS problem, instances were solved by means of mathematical 

programming and DP techniques, but this limits the size of the instance that can be solved due to 

the exponential increase of the memory requirements [46, 68] and the increasing computing time 

involved in the implementation of these techniques. Modern GMS solution methods therefore 

include metaheuristics, fuzzy set theory and expert systems. 
 

 

9Some authors [90, 118] classify DP as a mathematical programming technique. 
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2.6.1 Mathematical programming techniques 
 

Most SO GMS problems may be formulated as pure integer programming (IP) problems10, 0-1 

IP problems, or mixed integer programming (MIP) problems11. Generally the most common 

technique used to solve IP solution is the B&B method, or variations on the B&B method [209, 

p. 512]. Another popular IP solution technique is the cutting plane algorithm [209, p. 545]. The 

implicit enumeration technique, a type of B&B variation, is often used to solve 0-1 IP problems 

[209, p. 512]. Furthermore LP techniques, and specifically the simplex method, may be used in 

GMS and related energy problems when formulated as LP problems. 

 

 
The simplex method 

 
The simplex algorithm was developed by George Dantzig in 1947 and is a popular algorithm for 

solving LP problems. The journal Computing in Science and Engineering listed it as one of the 

top ten algorithms of the twentieth century [58]. The algorithm searches for an optimal solution 

along the extreme points of the feasible region of the LP problem. 

 

 
The branch-and-bound method 

 
The B&B method is a general algorithm that may be applied to solve IP (and MIP) problems. 

It may also be applied to solve combinatorial optimisation problems as well as nonlinear IP 

problems [124]. It systematically enumerates candidate solutions in the form of a tree search. 

The algorithm explores feasible branches of this tree, representing various disjoint subsets of the 

solution set. Before enumerating the candidate solutions of a branch, the quality of solutions 

of a branch is compared to upper and lower bounds on an optimal solution, and if it cannot 

produce a better solution than the best one found so far by the algorithm, the entire branch of 

the search tree is discarded. This method of pruning the search tree enables the algorithm not 

to enumerate all the possible branches (basically avoiding a brute-force enumeration), thereby 

eliminating the time and resources required to evaluate candidate solutions that will certainly 

not contain optimal solutions. 

For IP problems, the B&B method is initiated by solving the LP relaxation of the IP (i.e. 

allowing the decision variables to be non-integer values), typically via the simplex algorithm. 

If all the decision variables solved via the simplex algorithm assume integer values, then the 

optimal solution to the LP relaxation is also an optimal solution to the IP problem [209, p. 513]. 

If, however, some of the decision variables are not integer, then those variables are branched 

upon by creating smaller subproblems in an attempt to find optimal integer values for these 

decision variables. For MIP problems, only the variables that are required to be integers are 

branched upon [209, p. 523] — the other continuous decision variables are treated conventionally 

in the simplex algorithm. 

The SO MIP GMS models (based on economic criteria) in [4, 148] were solved by the B&B 

method. In [15], the GMS problem was solved in a deregulated environment, formulated as an 

MIP model.  The problem was initially solved via the B&B method, without any intervention 
 

 

10A pure IP problem is a LP problem in which all of the variables are additionally to assume non-negative 
integer values and is much harder to solve than an LP problem in which variables may assume real values [209, 
p. 375]. 

11An IP problem in which only some of the variables are required to be integers is called an MIP problem (some 
authors refer to such a problem as a mixed integer linear programming (MILP) problem). 
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from the ISO, after which consideration was afforded to the ISO’s corrective parameters to the 

model (namely the maximum maintenance allowed based on installed capacity). 

 

Benders decomposition 

 
The direct application of MIP solution techniques is sometimes not desirable since their com- 

putation times grow exponentially with the problem size [90]. To overcome this, decomposition 

methods may be employed. The most popular decomposition technique is Benders decomposi- 

tion [90]. Benders decomposition was first proposed by Benders in 1962 [19]. It is based on LP 

duality theory [118] and involves decomposing the large-scale problem into a master subproblem 

and several independent small-scale subproblems which are easier to solve. 

The Benders decomposition method has been used to solve GMS problem instances in [32, 127]. 

As stated in [90], Benders decomposition applies particularly well to MS problems in power 

systems because of the problems’ intrinsic two-stage structure, where the master problem is 

only concerned with the constraints related to the MS problem as well as the resources required, 

while load and network constraints, and fuel management constraints, may be moved to the 

subproblems [90]. 

 

Advantages and disadvantages of mathematical programming techniques 

 
Solutions obtained by mathematical programming techniques are preferred over other techniques 

(such as metaheuristics) as they are guaranteed to produce optimal solutions. Mathematical 

programming techniques, however, usually take too long to implement for realistically sized 

GMS problem instances. Mathematical programming techniques usually struggle more to find 

optimal solutions to nonlinear problem formulations within reasonable computing times. This 

is a serious problem in the context of GMS problems where, for example, the main reliability 

criterion used is the SSR [90]. Mathematical programming techniques are also not applicable to 

problems where the objectives and/or constraints are too complex to formulate in closed form 

(i.e. where black box approaches such as simulation are the only means of evaluating functions) 

and are also difficult to apply to problems exhibiting multiple scheduling criteria/goals (i.e. 

multiple conflicting objectives), as is usually the case in GMS problems. 

 

2.6.2 Metaheuristics 
 

Due to the typical NP-hardness of GMS problems for power systems and the large dimensions 

of real-world instances, metaheuristics are often applied to these problems [82, 90]. Metaheuris- 

tics allow for more flexibility to deal with nonlinear and/or very complex constraints and/or 

objectives [90]. In fact, metaheuristics do not require the objective(s) and constraints of an op- 

timisation problem to be mathematically formulated in closed form (i.e. black box approaches 

such as simulation may be used to evaluate a solution’s objective function values and constraint 

violations). 

Metaheuristics generally attempt to explore different areas in the search space associated with 

an optimisation problem in a “smart” way in order to uncover a near-optimal solution in less 

computation time and expend less memory resources. They evaluate only a subset of the feasible 

solutions, and are not guaranteed to find optimal solutions [164]. 

Metaheuristics may broadly be classified as trajectory-based or population-based searches. Traje- 

ctory-based metaheuristics function by manipulating and transforming a single solution at any 
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point in time during the search process — this marks them as having more exploitation capabil- 

ities (i.e. they have more capability to intensify the search in local regions). Population-based 

metaheuristics, on the other hand, function by manipulating and transforming multiple can- 

didate solutions (a population of solutions) simultaneously, so that an entire population of 

solutions evolves over time — this marks them as having more exploration capabilities (i.e. they 

have more capability for better diversification over the entire search space) [61, 187]. 

The four most widely known metaheuristics for general optimisation problems, according to 

Dréo et al. [61, p. V], are SA, TS, genetic and evolutionary algorithms, and ACO. In the context 

of the GMS problem, SA [27, 49, 82, 103, 167, 169, 165] and GAs [17, 27, 49, 200, 202] are the 

most commonly used metaheuristics, although TS [67, 27], ACO [89, 150] and PSO have also 

been applied in this context. Hybrids of the above-mentioned metaheuristics have also been 

applied to GMS problem instances [27, 46, 128]. 

 

Simulated annealing 
 
SA is a trajectory-based metaheuristic. This method emerged from the independent work of 

Kirkpatrick et al. [120] in 1983 and Č ernỳ [35] in 1985. SA is inspired by the annealing process 

in metallurgy, whereby a physical system is led to a lower energy state by heating it and then 

allowing it to cool gradually. Similar to the physical process, the algorithm generates a neigh- 

bouring solution by perturbing the current solution. If the neighbouring solution is better then 

the current solution it becomes the new current solution (basically a hill-climbing algorithm), 

whereas if this neighbouring solution is worse than the current solution it is accepted as the new 

current solution with a certain probability. This probability depends on how much worse the 

neighbouring solution is, where a much worse solution is less likely to be accepted than a slightly 

worse solution. This probability also depends on a parameter called the temperature of the sys- 

tem. The higher the temperature, the more easily non-improving solutions are accepted. The 

reason for probabilistically accepting a worse solution is so that the algorithm can explore the 

search space and avoid becoming stuck in local optima. The temperature is gradually lowered 

over time in the hope that the SA algorithm finally reaches a frozen state, where a near-optimum 

solution is found. The SA algorithm is classified as a memoryless method, since no information 

extracted dynamically is used during the search [187, p. 25]. The interested reader is referred 

to [61, 187] for further details on the SA algorithm. 

SA has been applied in the context of GMS problem instances [27, 49, 167, 169, 165, 103, 82], 

specifically for regulated power systems [90]. 

Satoh and Nara [167] illustrated the benefits associated with employing metaheuristics, specifi- 

cally SA, over mathematical programming techniques in the context of three realistically sized 

GMS systems, as illustrated in Table 2.7. The objective was to minimise the total production 

and maintenance cost. As may be seen in Table 2.7, for small-scale systems the SA algorithm 

returned optimal results as confirmed by an IP technique, and in considerably shorter computa- 

tional time. For the medium-scale system, the IP method could not obtain an optimal solution 

even after 310 hours (the search was terminated prior to it finding an optimal solution and 

the best solution found up to that point is reported). The SA algorithm, however, found a 

better solution (lower cost) within a much shorter time. There is, of course, no way of knowing 

whether this cost value obtained by the SA algorithm (namely 15 593) is the globally optimal 

result, but it is usually taken as a near-optimal result. For the large-scale system, IP was not 

even attempted due to computational limits and only the solution found by the SA algorithm 

is reported. 

Although the study in Table 2.7 was conducted some years ago (1991), and technology has 
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Table 2.7: Comparison of the results of the 1991 study by Satoh and Nara [167] applying a 0-1 IP 
technique, namely implicit enumeration, and the SA method to three realistically sized GMS problem 
instances [167]. 

 

Number Planning Number 
Size of 

system 

of units 

|I| 

horizon 

|J | (weeks) 

of 

constraints 
Simulated annealing 

Cost Time 
Integer programming 

Cost Time 

Small 15 25 5 7 768 3.5 min 7 768 41.2 min 
Medium 30 40 6 15 593 272.6 min 15 602 > 310.8 hrs* 
Large 60 52 10 31 686 1 295.9 min — — 

 
 
 

changed significantly since then, this finding generally still holds, namely that metaheuristics 

can typically find near-optimal solutions much quicker (and with less memory overhead) than 

mathematical programming (exact) techniques, especially as the problem dimensions and com- 

plexity increases. This is further highlighted by results obtained in 2014 [82], where it was found 

that an MIP GMS model formulated in [82] could not be solved, using GAMS 22.2 and the 

CPLEX solver, for real case studies because of the considerable computational burden associ- 

ated with the problem in view of its NP-hardness. 

Further specific advantages associated with using the SA algorithm include that it has been 

observed to generally achieve high-quality solutions, is a method that is very generally applicable 

and relatively easy to implement (encode), and offers considerable flexibility as one may add 

new constraints relatively easily [61, p. 44]. The main disadvantages include that the user has 

to specify a large number of the algorithm’s parameter values, including the initial temperature, 

the rate of decrease of the temperature, the length of the temperature stages, and the search 

termination criteria. Although recommended values for the parameters of the SA algorithm 

may be found in the literature, these are usually problem-specific and the user generally has 

to employ an extensive empirical research effort to determine the best combination of values 

for these parameters [61, p. 44]. Another disadvantage of SA is that the algorithm requires 

many iterations in order to achieve high-quality results. This may cause excessive computation 

times for problems in which it takes relatively long to evaluate a solution’s objective function 

values [61, p. 44]. Three specific directions are suggested in [61] to increase the effectiveness 

of the SA algorithm and minimise its computation time, namely to utilise/optimise adequate 

parameter settings, parallellise the algorithm over a number of processors, and incorporate 

statistical physics-based approaches to analyse and study disordered mediums [61, p. 44]. 

 
 

Genetic algorithms 

 
A GA is a population-based metaheuristic. It is a stochastic search procedure, inspired by the 

biological processes of evolution and natural selection. The solutions to a given problem instance 

are the individuals, and each individual is associated with a fitness value (usually determined 

by the solution’s objective function values). A population of individuals is randomly generated 

and allowed to evolve iteratively towards better solutions (based on their fitness values) over 

time until a stopping criterion is met. Operators employed by a GA include selection, mutation, 

and crossover whose parameter values have to be selected by the user. The term and usage of 

GAs became extremely popular after the publication of the book “Genetic algorithms in search 

optimization and machine learning ” by Goldberg et al. [100] in 1989. The interested reader is 

referred to this book [61] for further details on the working of GAs. 
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GAs have been applied to solve GMS problem instances in [17, 27, 49, 200, 202], specifically for 

regulated power systems [90]. 

Different solution coding schemes have been proposed for GMS problems (i.e. to represent 

maintenance schedules). This mostly includes binary representation [128, 146, 185] and integer- 

coding [17, 47] based on the maintenance starting times. Research performed to compare these 

two techniques for GMS problems points to integer-coding as the superior encoding scheme [17], 

being more efficient [202] since it generates a smaller search space [47], reduces the probability 

of infeasibility during the search process, and avoids the necessary overhead of coding a solution 

as a binary string (since binary length is longer than integer length) [90]. 

Real number encoding [17] has also been employed in the context of GMS problems. For example 

in [200], solutions were represented as real values between 0 and 1, obtained by dividing the 

maintenance starting time values by the number of periods in the planning horizon (|J |). 

 
Tabu searches 

 
The TS algorithm is a trajectory-based search metaheuristic which was first proposed by Glover 

[98] in 1986. It is inspired by and incorporates mechanisms of human memory. It avoids revisiting 

solutions by recording the recent history of the search in a short-time memory called a tabu list. 

It adopts an approach mostly opposite to the SA algorithm, which does not not utilise memory 

at all and thus cannot learn from lessons of the past [61, p. 7]. Like SA, a neighbourhood of 

solutions is generated from the current solution (in SA only one neighbour is generated). The 

best neighbouring solution found replaces the current solution, even if this solution is worse 

than the current solution. Hence when a local optimum is encountered, the search carries on by 

selecting a candidate worse than the current solution, in an attempt to avoid becoming stuck in a 

local optimum. In order to improve the performance of the TS, aspiration criteria, intensification 

strategies and diversification strategies are sometimes incorporated [61, p. 10]. 

Dréo et al. [61] noted that for certain optimisation problems, TS yields excellent results. In 

addition, in its basic form, it contains fewer parameters than does SA, which makes it easier to 

implement. The various additional mechanisms, however, like intensification and diversification 

strategies, often bring about notable complexity [61]. Talbi [187, p. 141] noted that theoretical 

studies carried out in respect of TS algorithms reveal that TS algorithms yield weaker results 

than those established by SA. 

TS has only  been applied  to solve  instances of  the GMS  problem in  [67, 27], specifically  for 

regulated power systems [90]. 

 

 

Ant colony optimisation 

 
ACO is a population-based metaheuristic which was first proposed by Colorni et al. [41] in 1991. 

It is a member of the class of swarm intelligence algorithms, which are collectively inspired by 

the behaviour of biological species such as ants, bees, wasps, termites, fish, and birds [187]. The 

two most successful swarm intelligence algorithms are ACO and PSO [187, p. 240]. ACO is 

specifically inspired by the foraging behaviour of ant colonies, whose members are individually 

equipped with very limited visual faculties, but which are nevertheless usually able to find the 

shortest path between a food source and their anthill. The key to the ants’ success is attributed 

to the indirect communication with one another by means of the dynamic modifications of the 

their environment, known as stygmergy [61, p. 13]. 
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ACO begins with a random set of candidate solutions to an optimisation problem instance. 

Over the iterations of the search, “ants” deposit pheromone on the components of promising 

solutions. In this way, the environment of the decision space is iteratively modified and the 

search is gradually biased towards more desirable regions of the search space, where optimal or 

near-optimal solutions may be found [89]. 

In order for ACO to be applied to GMS problems, instances the problem first have to be 

mapped onto (represented as) graphs, expressed as sets of points at which decisions have to be 

made (decision points) and sets of options that are available at each decision point (decision 

paths). For the GMS problem, these decision points consist of the generating units that need 

to be maintained and the corresponding decision paths are the potential starting times for 

maintenance [89]. 

ACO has been applied to solve instances of the GMS problem in [83, 87, 89, 150], specifically 

for regulated power systems [90]. 

 

Particle swarm optimisation 

 
The other successful swarm intelligence algorithm is PSO. PSO is also a population-based meta- 

heuristic which exhibits many similarites with GAs [90]. PSO is originally attributed to Kennedy, 

Eberhart and Shi [117, 177] in 1995. It mimics/simulates the social behaviour (specifically the 

movements) of organisms such as flocks of birds or schools of fish when they attempt to find a 

source of food by information exchange [187, p. 247]. 

In the basic model, a swarm consists of n particles moving around iteratively in the search space 

of the optimisation problem, where the position of a particle represents a candidate solution. 

Each particle is biased by its own position and velocity, but guided by previous individual or 

collective success in respect of uncovering local optima [187, p. 247]. 

The method was first intended only for continuous optimisation problems, but it has since been 

adapted to be applicable to integer and binary optimisation problems. PSO has been applied 

to solve instances of the GMS problem in [66, 122, 185]. 

 

Comparison of metaheuristics 

 
The celebrated no free lunch theorems [211] state “. . . that any two algorithms are equivalent 

when their performance is averaged across all possible problems” [210]. This means that no 

optimisation algorithm can be claimed to perform better than another algorithm in all problem 

instances. These theorems are, however, subject to intense and controversial debate [62]. The 

situation is different when treating specific classes of real-world problems, as there are general 

tendencies in specific classes of problems [151]. This was illustrated in the paper by Droste et al. 

[62] entitled perhaps not a free lunch but at least a free appetizer in which it was shown that a 

particular algorithm performs better over a subset of the entire function set in their example. 

This means that there can be a better algorithm to solve restricted classes of optmisation 

problems. In this paper they explained and tied together the seemingly contradictory statement 

of the no free lunch theorems and results in the literature which claimed that some algorithms 

performed better in certain problem instances. 

Choosing the correct metaheuristic (or other optimisation technique) for a given optimisation 

problem is not trivial. Dréo et al. [61, p. 17] elude to this difficulty as choosing an “efficient” 

method, able to produce an “optimal” solution — or a solution of acceptable quality — within 

a “reasonable” computation time. 
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Figure 2.16: Comparison of the relative performances of different metaheuristics, and an IP solver 
(LINGO), when used to solve a 21-unit system from in the literature [169]. The (reliability) objective 
was to minimise the SSR. 

 
 

Dréo et al. [61, p. 17] claim that the “optimal” adjustment of the various parameters of the 

metaheuristic, which can be recommended theoreticlly, is often of little help in practice, because 

it induces additional computation time. Generally the user must embark on extensive fine tuning 

experimentation (in terms of parameters, solution encoding, constraint handling, etc.) for any of 

the metaheuristics mentioned above to yield near-optimal results to a given optimisation problem 

instance within a reasonable computation time. It may thus be argued that any metaheuristic 

applied correctly to a given optimisation problem is a good choice. 

The results obtained when solving a well-known GMS benchmark system, the 21-unit system 

[47], by means of different techniques are summarised in Figure 2.16. The relative performance 

of three different types of metaheuristics (SA, GA, and ACO) and two additional hybrids are 

compared to the IP solver LINGO (version 9.0) in the figure. The objective was to minimise 

the SSR (a reliability criteria). LINGO was not able to find an optimal solution within a cut-off 

time of 12 hours, and so the best feasible result found up to that point is reported instead. 

This demonstrates the difficulty of solving a GMS problem instance exactly within a reasonable 

computing time [169]. A lower bound on the objective function value is reported as 11 997 600 

MW2, as calculated by LINGO after 12 hours. 

ACO, SA, and a SA/Heuristic hybrid found the best known objective function value of 13 665 000 

MW2, with the GA and GA/SA hybrid relatively close. Even for this relatively small GMS 

system (calling for maintenance scheduling of 21 generating units over a period of 52 weeks), all 

of the metaheuristics found better results than the IP solver (because of the quadratic objective 

function) after 12 hours, validating the use of approximate solution approaches towards solving 

instances of the GMS problem. It would be of great interest to compare the computing times 

required by the different metaheuristics. These computing times are, however, not reported as 

far as the author is aware, and even if they were it would be difficult to compare these computing 

times since the algorithms were implemented on different platforms. 

In [82] it was furthermore found that for nine 26-unit and and nine 36-unit test systems (18 
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in total), ACO slightly outperformed SA by an average of 0.76% (across all 18 systems) in 

terms of minising a cost objective (consisting of start-up, production, and maintenance cost), 

with Fattahi et al. [82] claiming ACO to be superior in the context of these test systems [82]. 

SA was, however, much faster, requiring on average 394 seconds less computation time (a 39% 

improvement) than ACO. 

 

 

2.6.3 Dynamic  programming 

 
DP, also known as dynamic optimisation, is a technique for solving complex or large temporal 

problems by breaking them down into a collection of simpler, smaller nested subproblems [209, 

p. 961] and putting the solutions to these subproblems together, working backwards in time, in 

order to arrive at a solution to the original problem. 

It has been stated that DP ideally suits GMS problems [3, 90, 124, 216]. This is attributed to 

the fact that DP is especially suitable for problems where (1) a sequence of interrelated decisions 

has to be taken, (2) the objective function need not be a continuous function of decision and 

state variables, and (3) an analytical form of the objective function or constraint functions is not 

required (as long as one can obtain function values at a given state) [216]. Until the 1990s, DP 

was often used [90] to solve GMS problem instances [107, 108]. In [107, 108], DP was combined 

with fuzzy logic. 

The “curse of dimensionality”, however, limits the application of this method to small sized GMS 

problem instances [3, 124, 216], as in the case with mathematical programming techniques. DP 

with successive approximations has, however, been developed to reduce the problem dimensions 

[124]. The DP with successive approximations technique does converge, but does not guarantee 

a global optimum [124]. Like DP, the DP with successive approximations was used earlier on 

for solving GMS problems as in [216, 221]. 

 

 

2.6.4 Fuzzy set theory 

 
Fuzzy set/logic theory is a mathematical theory in which set membership is represented by real 

numbers (usually between 0 and 1). The variables are considered to be fuzzy, which corresponds 

to the vagueness or fuzziness of their values [133, p. 4]. In essence, fuzzy sets are concerned with 

the degree of truth of a variable’s value or membership category. This is not to be confused with 

a degree of likelihood, which is dealt with in probability theory [133, p. 2]. The building block 

of fuzzy logic is the membership function of a fuzzy set or number [168, p. 38]. The interested 

reader is referred to the book entitled Fuzzy logic for planning and decision making [133] for 

more information on fuzzy logic. 

Fuzzy logic may be used to handle the uncertainties and multiple objectives present in GMS 

problems. It is typically used in conjunction with other solution techniques, such as DP and 

metaheuristics [168, p. 40]. 

In [107, 108], multiple GMS objectives (relating to reserve margin and production cost cri- 

teria) and soft constraints (manpower, time windows, and geographical/exclusion constraints) 

were fuzzified by triangular and trapezoidal membership functions. In [107], the membership 

functions’ parameter were adjusted by a heuristic and a GMS model was solved by DP, whilst 

further work in [108] by the same author, similarly involved solving the same model by DP, but 

the membership functions’ parameter were adjusted by a GA (metaheuristic), with the latter 

providing better results in both objectives, as illustrated in Table 2.8. 
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Table 2.8: Comparison of results obtained by a conventional fuzzy DP system where the membership 
functions’ parameters were adjusted according to a heuristic and a GA. These results are also compared 

to the Taiwan Power Company’s (TPC’s) actual schedule for 1992 [108]. 
 

 
 production cost Minimum Maximum 

TPC actual schedule 0.00% 59 1 112 
Fuzzy DP 0.03% 317 1 727 
Fuzzy DP with GA 0.15% 320 1 740 

 

In [146], fuzzy logic was used to take into the account the uncertainties related to FOR (by 

considering the uncertainties related to the MTTF and the MTTR for the generating units) and 

the uncertainties due to load forecasting which led to fuzzy LOLP indices. 

Further usage of fuzzy logic theory in GMS problems occurred in [48, 69]. Fuzzy logic seems to be 

a promising approach towards solving GMS problem instances [3], especially since many of the 

uncertainties and MO goals present in GMS models can thus be addressed [168, p. 40]. Fuzzy 

DP [3] and GAs with fuzzy evaluation functions [48] are an effective and practical approach 

towards finding good GMS solutions. The drawback of fuzzy logic approaches is the substantial 

amounts of data and expert knowledge required for their implementation [90]. 

 

2.6.5 Knowledge-based/expert systems 
 

Expert systems emulate the decision-making ability of a human expert. Most power utilities em- 

ploy an expert team to plan MS work [129]. Conventional mathematical programming, however, 

cannot include all these conditions completely due to the complexity involved in scheduling. As 

noted in [129], knowledge-based expert systems can be applied as alternatives. That is, the 

knowledge of experts may be included in an expert system in order to generate good GMS 

solutions. 

In [129], a knowledge-based expert system was used to solve an instance of the GMS problem 

for the Taiwan Power Company’s network. Knowledge-based expert systems have further been 

used in the context of the GMS problem in [14, 92]. Expert systems have also been used in 

conjunction with other solution techniques, for instance in [175], where an expert system was 

combined with a fuzzy modelling environment. 

 

2.6.6 Heuristics 
 

A heuristic12 is defined as any approach to problem solving, learning, or discovery that employs 

a practical method not guaranteed to be optimal, but sufficient (or good enough) for achieving 

the immediate goals. A heuristic attempts to find a solution to an optimisation problem by 

employing loosely defined rules-of-thumb and trial-and-error approaches, and is usually used 

when the quest for an optimal solution is impractical (as a result of time or memory constraints). 

In addition, heuristics may speed up the process of finding satisfactory solutions. 

In the context of the GMS problem, heuristics require significant operator input and may even 

fail to find feasible solutions [3, 45]. These methods are seldom used [3] to solve instances of the 
 

 

12The word heuristic is derived from the Greek word heuriskein which means “to find.” Metaheuristics are, in 
fact, extensions of heuristics, created by controlling and tuning basic  heuristic  algorithms,  usually  by  employing 
memory  and  learning  processes. 

Decrease in Reserve margin (MW) 
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GMS problem. According to Canto [32], however, the industry operators in most cases solve 

instances of the GMS problem via heuristic techniques. 

 

2.6.7 Constraint  programming 
 
Constraint programming (CP) is a modern programming paradigm in which relations between 

variables are stated in the form of constraints, particularly in combinatorial problems [43]. When 

appropriate variable propagation rules are employed, CP is especially useful for finding feasible 

solutions to highly constrained optimisation problems [90]. 

CP has been found to work well in the context of energy-related problems [24, 26, 99], but has 

not been used extensively in the context of GMS problems (the only case of such an application 

that author could find is [91]). This scarcity is attributed by Froger et al. [90] to the fact that 

CP is less suitable to problems in which the main goal of the algorithm is to find near-optimal, 

as opposed to exactly optimal, solutions, which is typically the case in GMS problems. 

 

2.6.8 Game theory 
 

Game theory deals with mathematical models of conflict and cooperation between intelligent 

rational decision makers [209, p. 803]. It has thus been applied more extensively in deregulated 

power systems, where conflicting market environments arise. Every GENCO, for example, at- 

tempts to predict its competitors’ decisions so as to stay one step ahead [90]. GENCOs are also 

often able to manipulate market prices through capacity withdrawal [37]. 

In [37, 119] a game theoretic model/framework was presented for analysing strategic decisions 

related to MS and generator output for the GENCOs in a deregulated power system. In [144], a 

model was presented for the coordination procedure of an ISO and three GENCOs. The results 

thus obtained indicated that the GMS for a profit-oriented GECNO may be modified to satisfy 

the reliability requirements of the ISO. The strategies adopted by the GENCOs in the studies 

mentioned above were defined by a Nash equilibrium of the game [90]. 

 

2.6.9 Simple multi-objective GMS modelling approaches 
 

Most real-world problems are MO in nature [183], including GMS problems [147, 222]. If there 

are trade-offs between the model objectives in question this will lead naturally to the notion of 

Pareto optimality where certain solutions are not dominated by other solutions and the goal is to 

find the smallest set of such non-dominating solutions. MOO problems are problems containing 

multiple objectives which have to be optimised simultaneously. A few researchers have lately 

shifted their focus to formulating GMS models as MOO problems and using appropriate solution 

techniques. 

Traditionally the techniques used to solve instances of the GMS problem focussed on optimising 

one objective and including all but the one dominant criterion as model attainment constraints 

[124]. Other GMS MO modelling approaches have focussed on optimising the objectives sep- 

arately [67, 149, 216], weighting and summing scheduling criteria into one objective function 

[128], or attempting to find objective function values that are as “close” as possible to some 

ideal point/value [125, 126]. These methods are described in some detail in this section. It is, 

however, stressed that these methods are not truly MOO techniques, since they do not itera- 

tively attempt to find some kind of Pareto front or approximation thereof, but only return one 

or a handful of solutions. An important distinction is made in this dissertation, between these 
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simple (and inferior) MO modelling approaches and Pareto-based MOO (generally known in the 

operations research literature just as MOO). Pareto-based MOO techniques have been applied 

to energy-related problems, but relatively infrequently to GMS problems (the author was able 

to find only two papers in which Pareto-based MOO techniques were employed). 

The importance of MO approaches in MS was already pointed out in 1991 by Mukerji et al. [149], 

who discussed the difference between schedules computed by pursuing two alternative schedul- 

ing criteria separately. The objectives involved minimising the production cost (an economic 

criterion) and maximising the minimum reserve (a reliability criterion). The schedules were com- 

puted by means of the implicit enumeration IP algorithm. Mukerji et al. also pointed out the 

benefits that may be achieved by relaxing some of the constraints. These results are illustrated 

in Figure 2.17. As may be seen in the figure, the difference between the schedule maximising 

only the minimum reserve (   in Figure 2.17) and that minimising only the production cost (  ) 

decreased the production cost from 327.72×106 to 327.45×106 (a mere 0.08% improvement), 
but lowered the minimum reserve from 165 to 152 MW (a 7.88% worsening). Relaxing some of 

the model’s constraints further resulted in the improvement of both objective function values. 

The schedule maximising only the minimum reserves, but relaxing some of the model constraints 

( ), increased the minimum reserve from 165 to 193 MW (a 16.97% improvement) and decreased 
the production cost from 327.72×106 to 327.09×106 (a 0.19% improvement). On the other 

hand, the schedule minimising only the production cost, but relaxing the model constraints ( ), 

increased the minimum reserve from 152 to 160 MW (a 5.26% improvement) and decreased the 

production cost from 327.45×106 to 327.08×106 (a 0.11% improvement). These results show 
that the optimum reliability and production cost values could be improved upon by relaxing 

some of the operating constraints. As noted in [149], the potential savings obtainable must be 

evaluated against the inconvenience and cost incurred by relaxing these constraints. 
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Figure 2.17: GMS case study results in [149] comparing two different optimisation strategies, namely 
maximising the minimum reserve and minimising the production cost. In addition, results are also 
included for the same two strategies whilst relaxing the model constraints. The production cost results 

are expressed in a fictitious unit of currency ( ), since the heat rate and fuel cost data were modified 

slightly from the true values for the case company. 

 
Leou [128] in 2006 combined a GA with the method of SA (a GA/SA hybrid) to solve a bi- 
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objective GMS model where the objectives were to minimise fuel cost and maintenance cost 

(an economic criterion) and to minimise reliability, crew, line flow, and duration constraint 

violations (a convenience criterion). These two objectives were, however, weighted together to 

form a single objective function to be minimised. 

Yamayee et al. [216] in 1983 used DP to minimise the production cost and optimise a reliability 

measure (LOLP) separately, as illustrated in Figure 2.18.   The production cost per unit was 

an average estimated cost (a constant $/MWh coefficient).  Minimising the LOLP objective ( 

in Figure 2.18) resulted in an improvement of 0.073 (22%) and minimising the production cost 

objective (  ) resulted in an improvement of a mere $5 000 (0.002%). In addition, the run time 

required to minimise the production cost objective was was much longer, 3:43 miniseconds13 

compared to 1:21 miniseconds (175% longer). This was attributed to the production cost being 

calculated from the individual energies of the units whereas calculation of the reliability objective 

involved calculation for the entire system. From these results Yamayee et al. [216] concluded that 

optimisation of the reliability objective (LOLP) is more desirable than minimising production 

cost. 
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Figure 2.18: LOLP and production cost results obtained by Yamayee et al. [216] when minimising each 
of these two objectives separately. DP was used to solve the model and the data were obtained from the 
GMS 21-unit benchmark system [216]. 

 
Kralj and Rajaković [125, 126] adopted a “multi-objective” B&B algorithm in 1994 and 1995 

to solve instances of a tri-objective GMS model including an economic objective (minimisation 

of fuel costs), a reliability-related objective (minimisation of the expected unserved energy over 

time) and a convenience-related objective (minimisation of constraint violations). Their results 

are illustrated in Figure 2.19. A solution was found by minimising the Euclidean distance 

between the ideal point and the objective function vector, which contained the values of the 

three objectives. This was an important study, because it is generally claimed to be the first 

time that a MO solution approach was used to solve a GMS problem. 

Moro and Ramos [147] in 1999 proposed a two-stage goal programming approach, solved by the 

B&B method, for instances of a bi-objective GMS model involving thermal units. A case study 

was performed for a Spanish electric power system, consisting of 71 thermal generating units 

(8 nuclear units (7 401 MW), 36 coal units (10 675 MW) and the rest being oil/gas units (7 910 
 

 

13The author assumes this to be another unit of measure, perhaps milliseconds. 
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Figure 2.19: Fuel cost (monetary unit (m.u.)), EUE and constraint violation results obtained when 
solving the 21-unit GMS benchmark system [125, 126]. 

 
 

MW)) grouped into 16 thermal plants. The system therefore had a total installed capacity of 

25 986 MW. The first objective was to minimise the total operational cost (TOC), including 

linear fuel costs, linear operation and maintenance costs , startup costs, and some penalty costs 

for unserved power. The second objective was to levelise the reserve margins (a reliability crite- 

rion), achieved by minimising the sum of the differences between the reserve margins percentage 

values of consecutive periods (defined as the available capacity divided by the period peak load 

demand). They first minimised the TOC objective and then optimised the reliability objective 

in a attempt to find the best trade-off between these two conflicting objectives. During the 

second stage the reliability objective was optimised whilst a constraint was added, constraining 

solutions to a minimum TOC value the user was willing to accept (for an improved reliability 

value), defined as 

TOC2 ≤  TOC1(1 + β), (2.59) 

where TOC1 is the minimum total operating cost found during the first stage, TOC2 is the total 

variable operating cost found during the second stage (which levelises the reserve margins), and 

β represents the amount of cost increase the maintenance planner is willing to tolerate, so as to 

improve the reserve margin objective. In the case study, β was set at 3% (with the final problem 

solved obtaining TOC1 = $2 625 × 106  and TOC2 = $2 704 × 106). Moro and Ramos noted that 
more “reliable” solutions could have been obtained by increasing β.  No further analysis was, 

however, reported in this respect (i.e. only one “optimal” solution was found, based on this 

single β-value). 

 

 

2.7 Pareto-based optimisation in energy problems 

 
MOO is a subfield of multiple criteria decision making that is concerned with optimisation 

problems requiring the simultaneous optimisation of more than one objective function. In this 

type of problem, optimal decisions usually have to be taken in the presence of trade-offs between 

two or more conflicting objectives. In an MOO problem there typically does not exist a single 

solution that simultaneously optimises each objective. In that case, the objective functions are 

said to be conflicting, and there exists a (possibly infinite) number of so-called Pareto optimal 
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solutions. A solution is called non-dominated, Pareto optimal, Pareto efficient or non-inferior, if 

none of their objective functions can be improved in value without degrading some of the other 

objective values. 

A critical element to the MO paradigm, is the decision maker, which is assumed to be a person 

who can provide further preference information concerning the desirability of Pareto optimal 

solutions. MOO methods may be classified as follows [143] with respect to the role of the 

decision maker: 

 
No preference methods are methods in which the decision maker is involved. A neutral 

compromise solution is instead identified without preference information provided by the 

decision maker. 

A priori methods are methods in which the decision maker articulates preferences before 

commencement of the optimisation process. Well-known examples of a priori methods 

include the utility function method, the lexicographic method, and goal programming. 

A posteriori methods aim to generate a representative set of Pareto optimal solutions after 

which the decision maker subjectively chooses the most suitable one among them. Most 

a posteriori methods are either mathematical programming-inspired techniques (such as 

the normal boundary intersection technique, the modified normal boundary intersection 

technique, the normal constraint technique, the successive Pareto optimisation technique, 

and the directed search domain technique) where algorithmic execution is repeated and 

each run of the algorithm produces one Pareto optimal solution, or metaheuristics (e.g. 

evolutionary algorithms) where one run of the algorithm produces an entire set of Pareto 

optimal solutions. 

Interactive methods allow the decision maker to guide the search by alternating optimisation 

and preference articulation (i.e. the decision maker is shown a Pareto optimal solution 

and asked to describe how the solution may be improved). This process is repeated until 

a satisfactory solution is obtained. 

 
Recently there has been a focus on applying MO metaheuristics to solve energy-related optimisa- 

tion problems. MO metaheuristics have become very popular in MOO due to their ability to (1) 

find multiple approximately Pareto optimal solutions in a single run, (2) work without objective 

function derivative information, (3) converge speedily to near-Pareto optimal solutions with a 

high degree of accuracy, (4) handle both continuous function and combinatorial optimisation 

problems with ease, and (5) be less susceptible to problems arising from the shape or continuity 

properties of the Pareto front. These issues are a real concern for mathematical programming 

techniques [183]. In addition, MO metaheuristics are not as susceptible to problems arising 

as a result of noncontinuous objective functions and large-scale search spaces, which are often 

insurmountable difficulties for traditional solution methods [217]. 

Most MO metaheuristics are evolutionary algorithms [61, p. 207] and are referred to as multi- 

objective evolutionary algorithms (MOEAs). The most popular MOEA is the non-dominated 

sorting genetic algorithm-II (NSGA-II) [217]. 

In 2009, Yang et al. [217] used the NSGA-II, to solve a tri-objective MS problem for regulated 

power systems (see Figure 2.3(a)), where the decision variables define the extent of maintenance 

strategies (no maintenance, minor maintenance, or major maintenance) of individual compo- 

nents in typical substations (very similar to the situation considered in the GMS problem). The 

conflicting objectives included an overall operation cost (consisting of the expected inspection 

cost and maintenance cost), the expected failure cost (which is a function of the failure prob- 

ability and average cost of failure for the components in the power system) and a reliability 
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Figure 2.20: Pareto fronts for the entire IEEE-RTS system proposed in [217]. (a) Operational cost 
versus energy not served, and (b) operational cost versus failure cost. 

 
 

objective (energy not served). The final results obtained by Yang et al. [217] are shown in 

Figure 2.20. Naturally, the operational cost (consisting of the expected inspection cost and 

maintenance cost) increases as the reliability is improved (energy not served is reduced), since 

more frequent maintenance has to occur in this case [217], as is illustrated in Figure 2.20(a). 

Also, the more maintenance is done, translating into an increase in the operational cost con- 

sisting of inspection and maintenance costs, the lower the expected failure cost will be, as is 

illustrated in Figure 2.20(b). Furthermore, as may be seen in Figure 2.20, the solutions occu- 

pying the two extremes of each Pareto front in the figures are consistent with those obtained 

when Yang et al. [217] optimised each objective individually. This means that the elitism of 

the NSGA-II effectively maintained the extreme solutions so that more diverse choices could be 

provided. 

In 2012, Guo et al. [102], used a novel MOEA, called the group search optimiser with multiple 

producers (GSOMP), to solve a dynamic economic emission dispatch problem14 for power sys- 

tems. The two conflicting objectives to be minimised were the fuel costs and emissions. The 

GSOMP algorithm is an extension of the SO group search optimiser (GSO), a newly developed 

population-based optimisation algorithm inspired by animal searching behaviour [106]. The 

GSMOP was developed by Wu et al. [214] to solve the MO problem of the placement of Flexible 

AC Transmission System devices in reactive power dispatch problems. The GSOMP algorithm 

performed well in the context of the dynamic economic emission dispatch problem [102] com- 

pared to the other well-known MOEAs, such as the NSGA-II and multi-objective particle swarm 

optimisation (MOPSO), as illustrated in Figure 2.21. It was also further reported that GSOMP 

consumed much less computation time than the NSGA-II algorithm, but required more compu- 

tation time than the MOPSO algorithm.  Both the NSGA-II and MOPSO algorithms have been 

applied to solve ED problems [102]. 

 

Pareto-based multi-objective optimisation in GMS problems 

 
Very few GMS studies in the literature employ Pareto-based MOO techniques (the author was 

only able to find two papers in which Pareto-based MOO techniques were employed) and those 

that do are limited to deregulated power systems (see Figure 2.3(b)).  This is not surprising, 

since MOO modelling techniques and the use of MOO metaheuristics are relatively new fields 

and as has been mentioned, power industries have only relatively recently shifted more towards 
 

 

14Note that this is not a GMS problem, but is rather an advancement of the ED problem, a typical subproblem 
of the GMS problem, as described in §2.3.2. 
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Figure 2.21: Approximate Pareto fronts obtained by three MOEAs in respect of the dynamic economic 

emission dispatch problem solved in [102]. 
 

 
deregulation of the market. In addition, the agents in deregulated power systems naturally 

pursue many conflicting goals. 

In 2014, Zhan et al. [218] proposed an MO GMS problem for deregulated systems with five 

objectives, namely the separate profits of three producers, a system reliability objective for the 

ISO, and the total generation costs of all three producers. System reliability was pursued in the 

form of minimisation of the standard deviation of a reliability index, which guarantees similar 

reserve capacities in the different time periods (i.e. levelising the reserve margin). The total 

generation cost to be minimised consisted of fuel cost, start-up costs, and maintenance cost. 

The profit in the market environment was calculated by subtracting these generation costs from 

the revenue of each of the three producers. The results obtained in the context of two benchmark 

systems, involving the 32-unit IEEE-RTS in [218] are shown in Figure 2.22. The GMS model was 

solved by the GSOMP, proposed in [102]. Although the generating cost was formulated quite 

extensively, including sophisticated start-up cost and expected maintenance cost formulations, 

in addition to quadratic fuel costs, the generators’ output levels were not “optimised” in any 

way (as in the ED problem), but were rather generated/modified as random values between 

allowable minimum and maximum values. 

Very similar to the paper by Zhan et al. [218], Chen et al. (Zhan being a co-author) [38] solved 

an almost identical MO GMS model (with one objective fewer, namely the total generation cost 

being excluded), but using the NSGA-II algorithm instead. 

The author is not aware of any further MOO research (which produce any kind of Pareto front) 

in GMS problems. This is confirmed in Table A1 of the GMS literature review paper [90], where 

only three references (out of 77 listed) were categorised as using MO approaches — one being 

the work reported above by Zhan et al. [218]. The other two references [126, 147] (described 

in the previous section) are not truly MOO approaches, since they only produce a very small 

subset (two to three solutions) along the Pareto front.   This sentiment is also shared in [87, 

p. 10]. Kralj and Petrović [126] adopted a “multiobjective” B&B algorithm to minimise the 

Euclidean distance between an ideal point and the objective function vector, which contained 

the values of the three objectives,  as was illustrated in Figure 2.19 (only three points were 

obtained). Moro and Ramos [147] proposed a two-stage goal programming approach (solved by 
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Figure 2.22: Approximate Pareto fronts obtained by the GSOMP algorithm in the context of a 32-unit 
IEEE-RTS case study. The graphs exhibit trade-offs between profits for producers 1, 2 and 3, the total 
generation costs (consisting of fuel cost, start-up costs, and the maintenance cost) for all the producers 
and reliable energy provision (levelisation of the reserve margin). For all the graphs, except (e), the 
smaller lighter points represent the approximate Pareto front considering all the objectives. The smaller, 
darker points represent the approximate Pareto fronts considering only two objectives [218]. 

 
 

the B&B method), in which the one objective is optimised whilst the other objective is added 

as a minimum constraint satisfaction requirement (2.59). This procedure produced only one 

“optimal” solution15. 

 

2.8 Chapter Summary 
 

The aim in this chapter was to provide the reader with an introduction to the energy industry 

in general and to GMS problem formulations in particular. This was followed by a more in- 

depth review of the large variety of GMS model formulations (constraints and objectives) and 

associated solution techniques employed in the literature. A brief description was also provided of 

some preliminary work on simple MO modelling approaches and analyses applied in the context 

of the GMS problem. Finally, recent work in the energy sector was highlighted which involves 

application of MOO techniques and the relatively few genuine MOO modelling approaches found 

for GMS problems. 
 

 

15A Pareto-front may, however, be traced out by this goal programming approach by iteratively changing the 
constraint lower bounds (i.e. producing a series of points), categorised as an a priori MOO method. 
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Table 2.9:  Summary of important literature reviewed on the GMS formulation of objectives and solution techniques, adapted from [82, 90].  Sorted 

according to reference publication years. The number of times the reference has been cited is according to Google Scholar as on 2016-09-01. 
 

 

System Criteria Approach 
 

     

Reliability  Economic C 

Det. Sto. Fuel cost 

  

Technique 

[216] 1983 122 ../     ../    ../       ../    
[149] 1991 87    ../       ../      ../    
[167] 1991 193 ../         ../   ../    ../    
[10] 1991 37 ../      ../   ../   ../    ../    

[126] 1995 44 ../      ../   ../      ../  ../   
[47] 1997 20 ../  ../              ../    
[29] 2000 175 ../         ../   ../    ../    
[91] 1998 16 ../            ../ ../  ../ ../    

[135] 1998 30 ../         ../   ../    ../    
[147] 1999 71 ../  ../       ../  ../ ../ ../       
[67] 2000 85 ../  ../        ../  ../ ../   ../    
[56] 2002 48 ../         ../   ../    ../    
[69] 2003 44 ../          ../  ../    ../    

[146] 2004 64 ../     ../  ../         ../    
[48] 1999 62 ../  ../              ../    
[42] 2005 121  ../ ../      ../ ../  ../ ../    ../    
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[128] 2006 50 ../         ../   ../   ../  ../   
[46] 2007 93 ../  ../              ../    
[87] 2007 30 ../  ../              ../    
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[32] 2008 83 ../         ../  ../     ../    
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[165] 2011 49 ../         ../           
[66] 2012 27 ../  ../        ../ ../ ../    ../    

[161] 2012 25 ../       ../         ../    
   [169]   2013 27 ../  ../              ../    

[185] 2013 22 ../       ../         ../    
[82] 2014 9 ../         ../  ../ ../  ../  ../    
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Game theory 
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A summary is provided in Table 2.9 of some of the major GMS literature, categorised into 

different categories. The table is adapted from similar tables in [82, 90]. The table is, however, 

not all-encompassing (not all the papers discussed in this literature review chapter appear in the 

table), but rather aims to represent the most important papers on different GMS modelling and 

solution techniques implemented in the literature. Each reference (Ref.) in Table 2.9 is classified 

according to: 

 
• The power system it targets, regulated (Reg.) and/or deregulated (Der.). 

• The criteria incorporated in objective function(s), namely reliability-based (Reliability), 

economic-based (Economic) and/or convenience-based (C) 

– The nature of reliability objectives: either deterministic (Det.) or stochastic (Sto.). 

These objectives usually take into account expected energy demand and forced out- 

ages (breakdowns) of power generating units models. Deterministic reliability mea- 

sures include those based on levelising reserves (LR) or minimising the maximum 

reserve (MMR). Stochastic risk (as opposed to reliability) measures include the min- 

imisation of total LOLP or EUE, or seek to levelise the equivalent/effective reserves 

(LER) per period. 

– Economic objectives include revenue (Rev.), fuel costs (Fuel costs), start-up costs 

(Sta.), maintenance costs (Mai.), other operational costs  (Ope.),  and  other  fixed 

costs (Fix.). Fuel costs, are modelled as linear (Lin.), or quadratic (Qua.) functions. 

• The  solution  approaches  employed,  either  categorised  as  SO16,  simple  multi-objective 

(MO), or Pareto-based multi-objective (PMO). 

• The specific solution technique(s) implemented. 

 
The context of the work contained in the remainder of this dissertation is indicated by means 

of shading in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

16If more than one objective is involved, then the objectives were optimised separately, weighted together in 
some way, or the non-dominant criteria were included as constraints. 
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As previously suggested a MO modelling approach is required in the context of GMS because of 

the inherent trade-offs between the various conflicting scheduling objectives. The two objectives 

proposed in this dissertation for inclusion in a GMS formulation are two dominant objectives 

commonly found in the literature on GMS (albeit usually separately), namely levelling reserve 

margins and minimising production cost. 

A maintenance schedule is usually defined as follows [32]. Suppose there are n generating units 
in a power system, indexed by the set I = {1, . . . , n}, and m decision time periods over the 

planning horizon, indexed by the set J = {1, . . . , m}. Define the binary decision variable Xij to 

take the value 1 if maintenance of generating unit i ∈  I commences during time period j ∈  J 
, 
or zero otherwise. Also define the binary auxiliary variable Yij to take the value 1 if generating 
unit i ∈  I is in maintenance during time period j ∈  J , or zero otherwise. Then a 
maintenance schedule is an assignment of zeros and ones to the n × m matrix Y = [Yij ] of 
auxiliary decision 
variables satisfying a variety of constraints. 

 

 

3.1 GMS model constraints 

 
It is generally assumed that maintenance of each generating unit is allowed only once1 during 

the planning horizon [59]. Let ei and fi denote the earliest and latest time periods, respectively, 

during which maintenance of generating unit i ∈  I may start.  Then the maintenance window 
constraints may be formulated as 

 
Ri 

\ 
Xij = 1, i ∈  I. (3.1) 

j=ei 

 
 

1If units are to be subjected to more than one maintenance outage during the planning horizon, dummy units 
may be added to the problem formulation so that this assumption is satisfied [168, p. 149]. 

 
65 
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cij 

µ! 

(
µ

j−

c+1 

i 

\ \ 
µ!

 

 

In order to ensure that maintenance of each generating unit lasts for a prespecified duration, 

the maintenance duration constraints 

Ri+di− 1 
\ 

 
j=ei 

Yij = di, i ∈  I (3.2) 

 

are included, where di  denotes the maintenance duration of generating unit i ∈  I.  The con- 

straints 
 

Yij −  Yi,j− 1 ≤  Xij , i ∈  I, j ∈  J \ 

{1}, Yi1 ≤  Xi1, i ∈  I 

 

(3.3) 

 

furthermore ensure that maintenance of each generating unit occurs over consecutive (uninter- 

rupted) time periods. 

Let Ii denote the installed power generating capacity of unit i ∈  I, let Dj denote the system 

peak load demand during time period j ∈  J and define 

rj = 
\ 

Ii(1 −  Yij ) −  Dj 

i∈ I 

as the net reserve margin during time period j ∈  J . Then the demand constraint 

rj ≥  Dj S, j ∈  J , (3.4) 

ensures that the available power generating capacity is at least as large as the expected load 

demand Dj together with a pre-specified safety margin S. 

Let µ! denote the required maintenance crew for generating unit i ∈  I when in maintenance 
if maintenance were to commence during time period c. Define 

during time period j ∈  
J  

cij = 

 

i , if j −  c < 

di 

0, otherwise, 

 

 
(3.5) 

 

where µu denotes the required maintenance crew for unit i ∈  I in its u-th period of maintenance. 

The maintenance crew constraint set may then be formulated as 
 

j 

cij Xic ≤  Mj , j ∈  J , (3.6) 

i∈ I c=1 

where Mj denotes the manpower available to perform maintenance operations during time period 

j ∈  J . If a generating unit’s maintenance crew requirements remains the same throughout its 

maintenance time period, then the manpower constraint may be expressed more simply as 

\ 
µiYij ≤  Mj , j ∈  J , 

i∈ I 

where µi denotes the required maintenance crew for generating unit i ∈  I when in maintenance. 

Exclusion constraints are sometimes incorporated into GMS model formulations in order to 

prevent certain units form being in maintenance simultaneously.   Consider the more general 

exclusion situation where at most some specified number of units, within some subset of units, 
are allowed to be in maintenance simultaneously. Let K = {1, . . . , K} denote the set of indices 

of the generating unit exclusion subsets and define Ik ⊆  I as the k-th subset of generating units 
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that form an exclusion set, with k ∈  K.  Then the exclusion constraints set may be formulated 

as \ 
Yij ≤  κk , j ∈  J , k ∈  K, (3.7) 

i∈ Ik 

where κk denotes the maximum number of units within subset Ik that are allowed to be in 

simultaneous maintenance during any time period. 

Finally, the constraint sets 
 

Xij ∈  {0, 1}, i ∈  I, j ∈  J , 

Yij ∈  {0, 1}, i ∈  I, j ∈  J . 

enforce the binary nature of the decision and auxiliary variables. 

 
 

3.2 First GMS objective: Levelling reserve margins 

 

(3.8) 

 

Although more elaborate stochastic risk criteria are sometimes used, including formulations 

based on LOLP, EUE, and effective reserve margins, it is generally known that optimal solutions 

under one reliability criterion are often also acceptable, though not necessarily optimal, in terms 

of others [147, 222]. Criteria which level the reserve margins, however, usually obtain less riskier 

solutions [147]. As mentioned, the most common method of levelling the reserve energy over 

and above the demand over all time periods may be accomplished by minimising the SSR over 

time [169]. The reserve margin during a particular time period is the difference between the 

available capacity and the expected demand. Minimising this SSR results in an even (more 

“reliable”) band of net reserve margins, as illustrated in Figure 3.1(a).  The first GMS model 

objective adopted in this dissertation is therefore to level the net reserve margins r1, . . . , rm by 
minimising the sum of squared rj values over time periods j ∈  J , in other words 

minimising 
\ 

r2. (3.9) 

j∈ J 

 

This first objective function (3.9) together with the constraints (3.1)–(3.8) are exactly the same 

GMS model formulated and solved in [168, 169]. In this dissertation, however, a second objective 

involving minimisation of production cost is proposed over and above (3.9), demonstrating how 

these two objectives may be accommodated together in an MO modelling paradigm. 

 
 

3.3 Second GMS objective: Minimising production cost 

 
As mentioned, the production planning module of an EFS (see Figure 1.7(b)) typically schedules 

the planned energy production by making use of available power generating units (including coal, 

nuclear, gas-turbine, hydro-electric and renewable generating units) with a view to minimise 

production cost. Power stations associated with cheaper production costs are typically scheduled 

first for production until demand is met, whilst taking into account production capacities of the 

various power stations [105]. 

Power stations generally contain more than one generating unit (e.g. a nuclear power plant, 

may for example, have two generating units) [91]. The production planning module proposed in 

this dissertation for use in estimating energy production cost is primarily an LP model whose 

decision variables are the planned energy production levels for the different power stations. The 
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Figure 3.1: (a) Available capacity versus peak demand (including an adequate safety margin) solved in [168, 169] for a 157-unit Eskom case study. The 
difference between these two is the reserve level (used in the first objective). (b) An example of the logic of an EFS’s production planning module (used 
in the second model objective in this dissertation) for days 150, 151, 152, and 153 in an annual scheduling horizon. 1-Cheapest power station, 12-Most 

expensive power station (measured in $/MWh or R/MWh). 
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Table 3.1: An example of how a maintenance schedule affects a station’s PCLF during a time period j. 
 
 

Power 

station 
Energy production 

cost rate ($/MWh) 
Generating 

unit 
Maintenance 

schedule 
 

PCLF 

 
s = 1 

 
110 

i = 1 

i = 2 
Y1j = 1 

Y2j = 0 
 

33.33% 

  i = 3 Y3j = 0  

  i = 4 Y4j = 0  

s = 2 150 
i = 5 
i = 6 

i = 7 

Y5j = 1 
Y6j = 0 

Y7j = 1 

50% 

...
 ...

 ...
 ...

 ...
 

s = 12 2 300 
i = 54 Y54j = 0 

0% 
i = 55 Y55j = 0 

 

 
 

auxiliary variables Yij described in §3.1 and §3.2 are used to calculate availability LP parameter 

values in the various power stations in a power system over time as described in some detail in 

this section.  Although a better resolution for the decision variables of the production planning 

module is possible (i.e. considering units separately instead of power stations) this will increase 

the memory and computing time requirements of the module (which are already high). The 

benefits of such an increased resolution therefore has to be weighed up against the increased 

burden of its adoption. It is, however, worth noting that the fuel costs associated with a power 

station’s generating units will typically be the same, thus there might not be much difference 

between formulating the LP model decision variables in terms of generating units separately and 

formulating them in terms of entire power stations. 

Generally, the production cost  and other operational costs  (including wear and tear due  to 

frequency of start-ups and shut-downs, the duration and level of operation of the generating 

facility, etc.) associated with a generating unit (or power station) may be represented as a 

constant rate for the amount of energy produced, i.e. a monetary unit per unit energy produced 

(e.g. $/MWh) [215]. 

To illustrate how a maintenance schedule may affect production cost, an example of a production 

plan is shown in Figure 3.1(b). If power station 1 (cheapest) has to undergo maintenance during 

days 152–153, this will decrease its planned capability loss factor (PCLF) (as illustrated in 

Table 3.1), which will, in turn, decrease the station’s energy availability factor (EAF). This 

latter value is an input parameter to the production planning module (in the form of capacity 

constraints in the linear programming model), translating into less energy production being 

scheduled for the station, although it is the cheapest power station, which will increase the overall 

production cost. It should therefore be attempted (if possible) to ensure that maintenance of 

cost-efficient power stations does not occur during high energy demand periods (e.g. winter, as 

seen in Figure 3.1(a)). 

The production cost objective adopted in this dissertation is based on the work of Brits [25], 

who improved the current production planning module of the EFS in 2016 by increasing the LP 

model decision variable resolution from weekly to daily. 

The LP proposed differentiates between peak and off-peak demand periods by sorting the hourly 

demand for each day in descending order. Each day of every time period within GMS planning 

horizon is partitioned into two time slices t ∈  T = {1, 2} of twelve hours each. The time slice 
with the highest demand (denoted by t = 1) is treated as the peak demand slice, while the time 
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slice with the lowest demand (denoted by t = 2) is treated as the off-peak demand slice, as 

illustrated in Figure 3.2. The decision variable of the LP model is 
(
energy production planned for power station s 

Zst = 
during time slice t (measured in MWh). 

(3.10) 

The set of power stations is denoted by 
 

 

p 

S = 
1 

Sh, (3.11) 
h=1 

where Sh denotes the set of power stations of type h. Hence p different power station types 

are included in the model. These types may encompass coal-fired, oil-fired, hydroelectric (con- 

ventional and pumped  storage),  nuclear,  and  gas-turbine  power  stations.  The  power  stations 
are arranged into a set Sbase  ⊆  S of base load stations, and a set Speak  ⊆  S of peak 
demand 
power stations.  It is assumed that base load stations are designed to operate continuously at 

a steady load and are generally only shut down for planned maintenance, in the case of emer- 

gency maintenance, or when there is very low demand.  Peak demand stations, on the other 

hand, are responsible for generating the additional demand placed on the system during peak 
demand periods over and above the base demand. Each subset Sh may contain base load and/or 

peak demand stations. One of these subsets, however, contains a single, virtual power station 

that represents unmet load. A very large energy production cost rate (measured in $/MWh) is 

assigned to this virtual station in order to penalise and hence discourage unmet demand. The 

energy production cost rate for power station s is denoted by Cs. The cost rate of the energy 

produced by the generating units of thermal and nuclear power stations vary depending on the 

stations’ fuel source costs and efficiencies (typically measured as their heat rates). Hydroelectric 

power plants have zero fuel costs, because the resource is freely available, and their start-up 

costs are also zero [32]. 
 

   
 

 

 

(a) Load curve (b) Load curve sorted 
 

Figure 3.2:  An example of how an EFS’s production planning module may use each day’s expected 
hourly electricity demand data (a) and sort it into two time slices t ∈  T = {1, 2} of 12 hours each (b). 

The available generation capacity of power station s ∈  S during time slice t ∈  T  is denoted by 

Ast  = 12IsEs, t ∈  T , s ∈  S, (3.12) 
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\ 
Zst ≤  

fmax 

\ 
Zst ≥  

fmin 

 

where Is is the installed generation capacity of power station s ∈  S (the sum of the installed 

generation capacities of its generating units) and Es is the EAF of power station s ∈  S across 

both time slices t ∈  T in the day. The factor is calculated as 

Es = 1 −  (Ps + Us + Os), s ∈  S, (3.13) 

where Ps denotes an unavailability proportion due to PCLFs at power station s during the day 

which represent power generation losses specifically planned by the management of the power 

system for maintenance purposes and other shutdowns. Similarly, Us denotes an unavailability 

proportion due to unplanned capability loss factors (UCLFs) which represent breakdowns (often 

as a result of a lack of planned maintenance), while Os denotes an unavailability proportion due 

to other capability loss factors (OCLFs) as a result of extraordinary events outside the control 

of the management of the power system, such as employee strikes or damage to transmission 

cables [104, 142]. The auxiliary decision variables Yij of the GMS model described above in the 

beginning of this chapter are used to calculate the unavailability proportion due to PCLFs per 
station s ∈  S.  This is how the GMS model interacts with the production planning module as 

was illustrated in Table 3.1. If, for example, one out of the four units in a power station are 
scheduled for maintenance, then the PCLF factor value Ps is 0.25 (across both time slices t ∈  T 

in the day) over the entire maintenance duration of the unit in question, provided that no other 

unit within the station also enters maintenance. 

Let Lt be the load demand forecast for time slice t ∈  T . Then the objective in the energy 

production planning module is to 
 

 

 

 
subject to 

minimise 
\ \ 

CsZst (3.14a) 

t∈T s∈S 

 

Zst  ≤  Ast, s ∈  S, t ∈  T , (3.14b) 
\ 

Zst = Lt, t ∈  T , (3.14c) 

s∈S 

Zst ≥  0, s ∈  S, t ∈  T . (3.14d) 

 
The objective function in (3.14a) represents the total production cost. Constraint set (3.14b) 

ensures that each power station’s planned energy production does not exceed its available capac- 

ity during any time slice. The balance between planned energy production and forecast demand 

during each time slice is ensured by constraint set (3.14c), while constraint set (3.14d) is a sign 

restriction constraint on the energy production decision variables. 

Depending on the power system’s generation mix, a number of additional constraints may be 

included. Generating units are usually designed to operate between specified minimum and 

maximum power levels (measured in MW) [32] and base load power stations (especially coal fired 

and nuclear stations) typically have maximum and minimum daily production requirements. The 

two constraint sets 

s , s ∈  S, (3.14e) 

t∈T 

s , s ∈  S (3.14f) 

t∈T 

may therefore be added to the model formulation. 
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s s 

\ 
Zst = freq 

 

Online Lmax Offline 
 

a1 = 

I1E1 
a2 = 

I2E2 
.
.
.
.
.
 a4 = 

Lmax −  O 
a5 = 

0 
.
.
.
 a7 = 

0 
 

 

I1E1 O 

Available capacities (MW) for base stations in merit order 
 

Figure 3.3: Illustrative example of the simple UC algorithm’s logic. The maximum daily peak demand 

(Lmax) is used to determine which base stations are to be online and which are to be taken offline. The 
algorithm is executed prior to solving the ED LP problem. 

 
 

The maximum and minimum daily loads for power station s are calculated as 

s = 
\ 

Astqs , s ∈  S, (3.15a) 

fmax  

t∈

T 

max 

s = 
\ 

Astqs , s ∈  S, (3.15b) 

fmin  

t∈

T 

min 

respectively where qmax
 and qmin

 represent the pre-specified maximum and minimum energy 

utilisation factors (EUFs) for stations s ∈  S, respectively.  If there are no maximum and mini- 
mum daily load restrictions on a station (gas turbine stations, for example, have more freedom 

of production), their EUF values may be set at the extremes (0 and 100%). 

Before solving the LP model (3.14a)–(3.14f), a simple algorithm is employed to find a solution to 

the UC problem2. This algorithm updates the maximum and minimum daily loads in (3.15a)– 

(3.15b) by performing the substitutions 

fmax max   as 

s ← fs 
 

 

IsEs 
, s ∈  Sbase, (3.16a) 

fmin min   as 

s ← fs 
 

 

IsEs 
, s ∈  Sbase, (3.16b) 

where as ∈  [0, IsEs] is the online capacity committed for station s ∈  Sbase. The algorithm 

calculates the values as based on the day’s peak hourly demand Lmax and the available capacities 

(IsEs) for the base stations sorted in increasing order of cost coefficients Cs, as demonstrated in 

Figure 3.3. Alternatively, if the maximum daily peak demand Lmax is larger than the sum of all 
the base power station’s available capacities, then all base load stations are committed (i.e. as = 

IsEs). The above station commitment algorithm satisfies the constraint that nuclear generating 

units are always connected, except when they are in a state of maintenance [32], since nuclear 

plants usually appear first in the ordered list of base power stations according to the increasing 

order of cost coefficients Cs. 

Certain power stations (base load and/or peak demand) may have an exact daily production 

requirement (e.g. hydro power plants operate according to a set amount of stored water energy). 
If this is the case, define the subset Sexact  ⊆  S of exact energy required power stations.  Then 

the constraint 

s   , s ∈  Sexact (3.17) 

t∈T 

may be added to the LP formulation. Hydro stations are typically installed with around 50% 

more capacity than energy (water) available [9]. If, however, considerable maintenance is per- 

formed on the generating units, so much so that the capacity available from generating units 
 

 

2In the proposed model it is actually a station commitment problem. 
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cannot match the energy available in the dam’s water, then the constraint above may be relaxed 

according to the available capacity. 

At pumped storage scheme stations, water is stored in an upper reservoir and, after running 

through a set of turbines, is discharged into a lower reservoir from where it is later pumped back 

to the upper reservoir. Pumping usually takes place during off-peak demand periods (t = 2) in 

order to have maximum generation capability during peak demand periods (t = 1). The pumps 

use energy while in operation and this energy requirement must therefore be included in the LP 
formulation as additional constraints. Let Sps ∈  S denote the set of pumped storage scheme 

stations and let Spsp ⊆  S be the set of corresponding pumps. Then the load balance constraint 

(3.14c) becomes 
 

\ 

s∈S/=Spsp 

Zst −  
\

 

s∈

Spsp 

Zst  = Lt, t ∈  T (3.18) 

in the case where pumped storage scheme stations are used. In addition, the two constraint sets 
\ 

Zat ≤  Ba 

\ 
Zbt, a ∈  Sps, b ∈  Spsp, (3.19) 

t∈T t∈T 

Zs1 ≤  0, s ∈  Spsp (3.20) 

should be added to the LP model formulation, where Ba is the efficiency of station a ∈  Sps 

(the pumped storage scheme stations). The production cost rate Cs of the pumps are zero, 

which means that they have no effect on the objective function in (3.14a). Constraint set (3.19), 

however, ensures that the energy required by the pumps are taken into account while (3.20) 

ensures that the pumps are not required during peak demand time slices (t = 1). 

The units of measurement for all the parameters and variables in the production planning module 

are provided in Table 3.2. 

Table 3.2: Units of measurement for the parameters in the production planning module 
 

 
Symbols 

Unit of 

measurement 
 

Symbols 
Unit of 

measurement 
Zst MWh Ba % 

Cs $/MWh Es % 
Ast MWh Ps % 

Lt MWh Us % 

fmax 
s MWh Os % 

fmin 
s MWh qmax 

s % 

f
req 
s MWh qmin 

s % 

Is MW  
 

The LP model is solved for each day over the GMS planning horizon to compute the planned 

energy production at each power station so that the daily production cost is at a minimum. The 

GMS cost function is therefore the sum of these daily production costs over the entire planning 

horizon. 

 
 

3.4 Incorporating GMS into an energy flow simulator 
 
Figure 3.4 illustrates how the architecture of an EFS may be updated in order to incorporate 

the newly proposed GMS model (Figure 3.4(e)) and how this model may interact with the other 
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c 
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components of the EFS [132]. The consumption module (Figure 3.4(a)) provides the demand 

per hour required for the production planning module as well as the peak demand Dj  per time 

period j ∈  J .  From these peak demand values Dj and the maintenance schedule values Yij , 
the SSR values may easily be determined. In conjunction with the same maintenance schedule 

Yij , the PCLFs for the power stations may be used by the production planning module (Figure 

3.4(b)) to determine the estimated production cost associated with the maintenance schedule. 

These two objectives may be incorporated in an MO modelling paradigm to optimise MS as 

explained in the following chapter. 
 

 

 

 

 

 

 

 
  

  a 

 Consumption 

 

 

 

 

 

 

  

 d 

Generation 

 
 

Figure 3.4: High-level representation of an EFS (dashed area) and how it is anticipated that the 

proposed GMS approach may form part of it, specifically in respect of the production planning module 
which follows a simple UC logic and its ED problem is formulated as a linear program. 

 
 
 

3.5 Chapter  summary 
 

In this chapter, a novel bi-objective GMS model was proposed. First the GMS constraints 

most commonly adopted in the literature were formulated in §3.1. The first GMS objective 

function, involving the minimisation of the SSR was formulated in §3.2. A more elaborate 

explanation followed in §3.3 of how the second GMS objective function, involving minimisation 

of production cost, may be estimated. How the proposed GMS model may form part of a typical 

EFS architecture was finally described in §3.4. 
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The general underlying principles of MOO are presented in the first section of this chapter. 

This is followed by a motivation for the choice of algorithmic solution approach adopted to solve 

the GMS model proposed in Chapter 3 and the different variants of this algorithm available 

for MOO. A description of the constraint handling technique adopted is further provided. It is 

finally described how the algorithm of choice was implemented in order to produce the numerical 

results reported later in this dissertation. 

 
 

4.1 Basic notions in multi-objective optimisation 
 

MOO is a subdiscipline of multiple criteria decision making which is concerned with solving 

optimisation problems involving the pursuit of more than one objective simultaneously. In MOO, 

the goal is to simultaneously maximise or minimise o objective functions, f1(x), f2(x), . . . , fo(x), 

which are functions of a vector of decision variables x = [x1, x2, . . . , xa]. Suppose, without loss 

of generality, that all the objective functions are to be minimised1. A MOO problem may then, 

in general, be expressed as 
 

minimise f (x) = [f1(x), f2(x), . . . , fo(x)] (4.1a) 
 

subject to the constraints  
gi(x) ≤  Gi, i = 1, . . . , u, (4.1b) 

hj (x) = Hj , j = 1, . . . , v, (4.1c) 

x ∈  Ra, (4.1d) 

where g1(x), . . . , gu(x) are the so-called inequality constraint functions and h1(x), . . . , hv (x) are 

the equality constraint functions.  Furthermore, G1, . . . , Gu  and H1, . . . , Hv  are assumed to be 

1An objective function to be maximised can instead be minimised after multiplication by − 1. 

 

75 
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(strictly positive) limiting values for the constraint functions. The set of all feasible decision 
vectors form the so-called decision space of the problem, denoted here by X . 

MOO techniques are employed in cases where the objective functions are conflicting, in which 

case a set of trade-off solutions is sought, which leads naturally to the notion of Pareto optimality 

as a result of the fact that there is typically no single solution x* that minimises all the objective 
functions simultaneously. A feasible decision vector x ∈  X dominates a decision vector y ∈  X 
, denoted by x  ≺  y,  if fi(x)  ≤  fi(y) for all i ∈  {1, . . . , o} and there exists at least one 
i* 

∈  {1, . . . , o} such that fi∗  (x) < fi∗  (y) [179]. 

A solution is said to be globally non-dominated, or Pareto optimal, if no other feasible solution 
dominates it. The solutions in the Pareto set Ps produce a set of objective function vectors, 

known as the Pareto front Pf , whose corresponding decision vectors are elements of Ps, that is 

Pf = {f (x) | x ∈  Ps}. 

 

 
4.1.1 The hypervolume indicator 

 
It is naturally difficult to measure and compare the quality of different Pareto front approxima- 

tions. A popular measure aimed at evaluating the relative performance of one non-dominated 

front in respect of another is the well-known hypervolume indicator [203, 220]. This indicator, 

also known as the hyperarea metric, S-metric, or Lebesgue measure and denoted here by H, 

measures the hypervolume of the objective function space that is dominated by solutions in 

the non-dominated front with respect to a preselected vector in objective space, known as the 

reference point, which is dominated by all solutions in the front under consideration [220]. A 

large hypervolume is desirable and it attains its maximum value if and only if the non-dominated 

front is, in fact, the true Pareto front [203]. Hypervolume is a preferred measure of the quality 

of an approximated Pareto front since it attempts to capture the closeness of the approximate 

solutions with respect to the Pareto optimal set, as well as, to a certain extent, the spread of so- 

lutions within a non-dominated set across the objective space [203]. In the bi-objective function 

space, the hypervolume represents the area enclosed between the approximate Pareto front and 

the reference point, as illustrated in Figure 4.1. Use of the notion of hypervolume as a measure 

of the quality of a non-dominated front in objective space has some disadvantages associated 

with it, three of the main being that it is sensitive to the relative scaling of the objectives and to 

the presence or absence of extremal points in a front, and that it is also sensitive to the choice 

of the reference point [203]. 

In order to illstrate the challenge of choosing a good reference point so as not to bias the 

indicator, consider the bi-objective optimisation problem example associated with Figure 4.1, 

and assume that the entries in objective space have been normalised. The reference point shown 

in Figure 4.1(b) is a poor choice, as it is (visually) apparent that the hypervolume is significantly 

more sensitive to changes in values of the first objective function (f1) than those of the second 

objective function (f2). The reference point in Figure 4.1(a) would be a better, less biased 

choice. 

 

 

4.1.2 Composite  functions 

 
A very popular approach towards converting an MO problem to a scalar optimisation problem is 

to minimise a linear combination of the different objectives in (4.1a) [50] into the single objective 
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Reference point 
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Reference point 

 

 

 

 

 

 

 

 

 

 

f2 f2 

 

 

 

 

 

 

f1 

(a) Good reference point for calculating H 

f1 

(b) Poor reference point for calculating H 
 

Figure 4.1: Hypervolume H of a non-dominated front with five points indicated by the surface area of 
the shaded region. Both the objective functions f1 and f2 are to be minimised. 

 

function 
 
 

o 

F (x) = 
\ 

wifi(x). (4.2) 

i=1 

Here the single composite objective F is a weighted combination of o objectives, using the 

weightings w1, . . . , wo as indicators of the relative contributions of the values of f1, f2, . . . , fo 

to the value of F . Certain decision vectors corresponding to points on the Pareto front of (4.1a)–

(4.1d) may be uncovered by a judicious choice of the weights in (4.2) when the objective 

functions in (4.1a) are replaced with the single function (4.2). It is, however, unclear what these 

weights should be in advance. 

Another problem related to scalarising an MOO problem is that even for convex Pareto fronts, 

an evenly distributed set of weights may fail to produce an even distribution of points along the 

Pareto front [50]. In fact, one of the principal advantages of MOO is that no preference is given 

to the objectives, rather seeking a non-dominated front from which the decision maker may 

choose a desired solution. Perhaps more importantly, parts of the Pareto front are inaccessible 

by any choice of weights w1, w2, . . . , wo for non-convex Pareto fronts. A proof of this claim is 

provided in [50], showing that for problems where the Pareto front is non-convex, an algorithm 

minimising weighted sums of the objectives will be unable to converge to some regions of the 

Pareto  front. 

Despite the drawbacks associated with composite functions such as (4.2), MOO techniques utilis- 

ing composite functions have been shown to perform well in some specific contexts, especially in 

respect of many-objective problems (those with a large number of objectives) [109]. It is further 

observed that many MOO algorithms utilising Pareto ranking (such as the NSGA-II) perform 

well when there are not too many objectives [159] — these algorithms are typically widely es- 

tablished and well developed for problems with two or three objectives [109]. It is noted in 

[109] that it is more effective to perform many SO optimisations than adopt a Pareto-based 

(or dominance-based) ranking optimiser in the context of many-objective problems. Lately, 

however, researchers have attempted to improve MOO algorithms based on rankings whose per- 

formance scales to many-objective problems.   Deb and Jain [51], for example, developed an 
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improved NSGA-III algorithm specifically for many-objective problems in 2014. 

 

4.1.3 Desirable properties of multi-objective optimisation algorithms 
 

In MOO, important properties of a good algorithm are [151]: 

 
Searching precision. The algorithm must find the Pareto optimal solutions, that are global 

optima in MOO. When this is difficult to achieve due to problem complexity, it must find 

solutions near to the Pareto optimal solutions in objective function space. 

Searching time. It must efficiently find the non-dominated set. 

Uniform distribution over the non-dominated set. The solutions found must be widely 

spread, or uniformly distributed, over the entire non-dominated  set  instead  of  clusters  of 

points  in  objective  function  space. 

Information about Pareto front. The algorithm must provide as much information about 

the Pareto front as possible. 

 

MOO has become an important research topic of late for scientists and researchers due to the 

MO nature of many real-world problems. Researchers have developed many MOO procedures 

[183], but it is difficult to compare results returned by one MO method to those returned by 

another, as there is typically not a unique optimum in MOO as in SO optimisation. 

 
 

4.2 Motivation for solution methodology chosen 
 

As eluded to in §2.6.2, algorithms perform on average equally well over all problem instances, but 

some algorithms do perform better in the context of restricted classes of optimisation problems. 

As mentioned, mathematical programming techniques, dynamic programming techniques, and 

metaheuristics are typically used to solve GMS problems. 

A metaheuristic approach was selected to solve the GMS model proposed in Chapter 3 since 

mathematical programming and dynamic programming techniques struggle to find solutions to 

realistically sized model instances within acceptable time frames. Mathematical programming 

techniques are also more suitable when the objectives and constraints are linear (and not too 

complex). The ED problem considered in this dissertation is furthermore formulated as an LP 

problem, and a metaheuristic may easily be equipped with an LP solver. Most importantly, 

metaheuristics have recently become very popular in MOO due to their ability to find multiple 

non-dominated solutions within a single run. They also function without derivatives, tend to 

converge rapidly to Pareto optimal solutions with appropriate parameter tuning, and are able 

to handle both continuous and combinatorial optimisation problems with ease. Metaheuristics 

are also less susceptible to shape or continuity complexities of the objective functions [183]. 

Of the metaheuristics that have been applied to GMS problem instances in the literature, SA 

and GAs are the most widely used [128, 147]. The method of SA is employed in this dissertation 

as it has been adopted successfully a number of times in the GMS literature [46, 165, 167, 169]. 

The SA hybrid developed by Schlünz and van Vuuren [169], for example, has outperformed a 

GA and GA/SA hybrid, and has matched the best known solution found via an ACO in the 

context of a 21-unit GMS benchmark system [169]. More specifically, an innovative MO SA 

algorithm, developed by Smith et al. [179], is adopted in this dissertation and is described in 

some detail in the following section. 
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Like most other metaheuristics, SA is able to accommodate objective functions with any arbi- 

trary degrees of nonlinearity, discontinuity, and stochasticity, and accommodate quite arbitrary 

boundary conditions and constraints imposed on these cost functions [111]. SA may furthermore 

be implemented quite easily with the degree of coding quite minimal relative to other nonlin- 

ear optimization algorithms and metaheuristics [111]. SA is also the only metaheuristic that is 

statistically guaranteed to find a globally optimal solution for SO optimisation problems [111] 

when the annealing schedule cools sufficiently slowly (i.e. run for a long time) [96, 101]. This 

theoretical result is, however, not of much practical benefit, since the time required to ensure a 

significant probability of reaching a globally optimal solution might not be less (or might even 

be more) than that required to perform a complete search of the solution space. SA nevertheless 

often yields excellent results when executed in conjunction with a faster cooling schedule [179]. 

Some negative features of the SA algorithm include that it may be quite time-consuming to find 

a near-optimal solution, that it may be difficult to fine-tune to specific problems and that if the 

cooling schedule is not selected appropriately the algorithm may not perform as expected [111]. 

 
 

4.3 The method of simulated annealing 

 
SA is a metaheuristic first proposed by Kirkpatrick et al. [120] in 1983, and may be thought 

of as the computational analogue of slowly cooling a metal so that it adopts a low-energy, 

crystalline state. In metallurgy, annealing is a heat treatment employed to optimise the physical 

and sometimes chemical properties of a material. After initial heating, the material is then 

cooled slowly in stages, keeping the temperature constant during each stage (called an epoch) 

for a sufficient duration. If applied correctly, this strategy should lead to a crystallined solid 

state, which is stable, and corresponds to a minimum energy state [61, p. 25]. The objective 

function in a minimisation problem is analogous to the free energy in the physical annealing 

system, while a feasible solution to the problem corresponds to a certain state of the material 

in the physical case. The final (possibly globally optimal) solution to the minimisation problem 

is finally analogous to the physical system being frozen in its ground state. 

In its original SO configuration, the aim of the SA algorithm is to minimise a specified objective 

function f (x) of a vector x of decision variables. During each iteration of the algorithm, the 

current solution x experiences a small, random change in order to obtain a neighbouring solution 

x!.  This neighbouring solution’s energy value E(xl) is usually taken as its objective function 

value f (xl) in most SO applications. The difference in energy between the neighbouring and 
current solution is simply defined as ∆E(xl, x) = E(xl) −  E(x). The neighbouring solution is 

accepted as the new current solution with probability 

P (xl) = min{1, e− ∆E(xl
,x)/T }, (4.3) 

where T is a control parameter referred to as the temperature of the system. An improving solu- 

tion xl (i.e. a solution with a lower energy value than that of x) is therefore always accepted as 

the new current solution. The probability P (xl) of accepting a worsening neighbouring solution, 

however, depends on the magnitude of the energy difference ∆E(xl, x) and the temperature T . 

At higher temperature values the probability P (xl) is large, resulting in the SA algorithm being 

likely to accept more worsening solutions, thus exploring the search space. At lower T values 

only neighbouring solutions exhibiting small increases ∆E(xl, x) in energy are, however, likely 

to be accepted, leading to limited exploration (i.e. exploitation). For this reason the SA algo- 

rithm is initiated with a high temperature value which decreases slowly over time so as to allow 

the search to explore the solution space initially, but then later settle on and converge to a local 

minimum. 
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4.3.1 Early multi-objective simulated annealing algorithms 
 

Many multi-objective simulated annealing (MOSA) algorithms are based upon a composite func- 

tion of the form (4.2), in which case 
 

o 

E(x) = 
\ 

wifi(x). (4.4) 

i=1 
 

The energy E(x) in SA is therefore a combination of the o objective functions in (4.1a) according 

to relative weightings w1, . . . , wo  in (4.2). Adopting this scheme, it follows that E(x) will be 

minimised. An equivalent alternative is to take the energy function as the sum of the values 

log f1(x), . . . , log fo(x) [72]. Other non-linear and stochastic composite energy formulations have 

also been considered [151, 178, 194]. 

Serafini [174] in 1994 proposed one of the first MOSA algorithms. Different approaches were con- 

sidered for the construction of an energy function, including methods equivalent to the weighted 

sum (and products) method, the difference in whichever objective represents the greatest dif- 

ference between solutions, the minimum difference between objectives, and composites of these 

functions. Results obtained in this manner within the context of travelling salesman problem in- 

stances were presented, for which the algorithm performs well, but no comparison was performed 

with respect of results obtained by other optimisation techniques. 

Czyżak and Jaszkiewicz [44] in 1998 proposed a Pareto SA algorithm, employing several parallel 

annealing chains, each optimising a composite energy function. Results obtained by the algo- 

rithm in respect of a knapsack problem demonstrate superiority of the algorithm to Serafini’s 

MOSA algorithm [174]. 

In 1999, Ulungu et al. [194] proposed a MOSA that is very similar to Serafini’s MOSA algorithm 

[174]. The acceptance criterion is again calculated using a weighted sum of the objectives and 

an archived set of non-dominated solutions is maintained. Although results obtained by the 

algorithm in respect of a knapsack problem were presented, no comparison was performed in 

respect of the results obtained by either of the previously discussed MOSA algorithms. 

Suppapitnarm et al. [184] proposed a MOSA algorithm in 2000 which, instead of weighting and 

summing the objectives to produce a composite energy difference for the acceptance criteria, 

uses a multiplicative function with individual temperatures for each objective. These individual 

temperatures are adjusted independently by the algorithm. The multiplicative energy function 

is equivalent to a weighted sum of logarithms of the objectives. This negates the need for a priori 

weighting of the objectives, and may thus be considered to function as a weighted composite 

sum approach with controlled weightings determined by the algorithm. Results obtained by 

this algorithm for a range of test and real problems demonstrated that the algorithm performs 

comparably to other optimisation techniques. 

As mentioned by Smith et al. [178], one of the most promising MOSA algorithms is the one 

proposed by Nam and Park [151] in 2000, since the notion of dominance is utilised in that al- 

gorithm. If the neighbouring solution dominates the current solution, the neighbouring solution 

is accepted (i.e. representing an improving move). Otherwise, if the neighbouring solution is 

dominated by the current solution it is accepted based on modifications of the probability given 

in (4.3). Nam and Park define several schemes for calculating the energy difference control- 

ling acceptance similar to the methods adopted by Serafini [174]. Based on a small empirical 

study involving bi-objective problem instances, they suggest that the best of these schemes is 

the average difference in objective values. If there is no superiority between the current and 

neighbouring solution (i.e. one does not dominate the other), the neighbouring solution is still 
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F F Fx 

F 

F 

F 

 

accepted, because this promotes exploration of the search space and facilitates escape from local 

optima. As the dimensionality increases, however, so does the proportion of all moves which are 

accepted unconditionally according to this scheme, thus emulating a random walk through the 

search space when dealing with problems having many objectives. 

All of the MOSA approaches mentioned above utilise composite energy functions, with some 

of these offering variations on the weighted sum, such as the sum of logged objectives. An 

assurance of convergence can be established for a MO simulated annealer adopting a composite 

objective function and fixed weights as in (4.2) for convex optimisation problems [50]. The 

MOSA algorithm described in the next section may, however, be seen as superior in this regard, 

since it does not utilise any composite energy functions and is applicable to both convex and 

non-convex MOO problems. 

 

4.3.2 The dominance-based multi-objective SA algorithm 
 

A relatively recent and powerful dominance-based multi objective simulated annealing (DMOSA) 

algorithm proposed by Smith et al. (2004) [179] is employed in this dissertation. This DMOSA 

algorithm [179] assumes as energy function E(x) a suitable normalisation of the number2 of non- 
dominated solutions uncovered thus far during the search that dominate f (x).  Let F denote 

the set of mutually non-dominating solutions found thus far during the search (i.e. an archived 

non-dominated front), define ˜ = F ∪  {x} ∪  {xl} and let  ˜ be the elements of ˜ that 
dominate x, that is ˜ = {y ∈  ˜ | y ≺  x}. Then ˜ 

is taken as the energy E(x) of x and so 

F F Fx 

˜ ˜ 
∆E(xl, x) = 

|Fxl | −  |Fx| 
. (4.5) ˜ 

F| 

Division by | ˜| in (4.5) ensures that ∆E is always less than one and provides some level of 

robustness against fluctuations in the number of solutions in F . An example of the working of 

the acceptance mechanism employed in the DMOSA algorithm is provided in Figure 4.2. 

The probability of accepting a neighbouring solution xl in the DMOSA is the same as that in 

SO SA, defined in (4.3). Proposals that are dominated by one or more members of the current 

archive are accepted with the probability in (4.3). Consider, for example, Figure 4.2(a), where 

the neighbouring solution xl is dominated by more archived solutions than is x and therefore has 

a higher energy value (i.e. it is a worsening move). This neighbouring solution will be accepted 

based upon the probability in (4.3) which depends on the energy difference between the current 

and neighbouring solution in (4.5) and the temperature T . Consider Figure 4.2(b) next, where 

the neighbouring solution xl is dominated by fewer archived solutions than x and therefore has 

a lower energy value. This neighbouring solution would therefore automatically be accepted as 

it is considered to embody an improving move. It should be noted that this probability does 

not depend upon metric information in objective space, i.e. there is no weighting of multiple 

criteria into a single objective and the acceptance probability is unaffected by rescaling of the 

objectives [179]. 

Whenever ̃  is a non-dominated set, the energy difference between any two of its elements 
is zero.  The reason for inclusion of the current solution x and the neighbouring solution xl

 

in the definition of  ˜, is that ∆E(xl, x) < 0 if xl  ≺  x, which ensures that even if both 

the neighbouring and current solutions are dominated by the same number of non-dominated 
solutions in F , neighbouring solutions that are closer to the archived non-dominated front F are 

2If Pf  is a continuous set, the energy is taken as a Lebesgue measure (informally, the length, area or volume 

for problems with two, three, or four objectives, respectively). 

| 
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f1 

(a) Worse neighbouring solution 

f1 

(b) Improved neighbouring solution 
 

Figure 4.2: Example of the energy measure for a current solution x and its neighbouring solution 

xi, used to calculate the probability P (xi) of accepting the neighbouring solution, in a bi-objective 
minimisation problem. 

 
 

always accepted. Besides its simplicity and efficiency in promoting the storage of non-dominated 

solutions uncovered during the search process, another benefit of this energy measure is that 

it encourages exploration along the non-dominated front, regardless of the portion of the true 

Pareto front dominating a solution, as illustrated in Figure 4.2(b). 

In the implementation of Smith et al.’s DMOSA algorithm [179], a solution to a GMS problem 

instance is denoted by a vector X = (X1, . . . , Xn) which represents the integer scheduled main- 

tenance starting times for each of the n generating units. From these starting (integer) values 

the binary decision variables Xij are easily found and with the maintenance duration paramet- 

ric values di, the auxiliary variables Yij may be determined from which all the objectives and 

constraint functions of the model may be determined as described in Chapter 3. 

 
 

4.3.3 Interpolating the non-dominated front 
 
When there is a small number of points in the archived non-dominated front, the estimated front 

may be interpolated by points on the attainment surface, as described in [179], in order to achieve 

better energy representations, as illustrated in Figure 4.3. If only one point is in the current 

front, points may be interpolated between this single point and the previous non-dominated 

point added to the archive, as illustrated in Figure 4.4. 

If the number of points in the archived non-dominated front is below ten, then the archived front 

is interpolated in this dissertation by points on the attainment surface.  The number of interpo- 

lated points added to the archived non-dominated front is such that the total number of archived 

non-dominated points found thus far by the SA algorithm, together with the interpolated points, 

sum up to ten, as illustrated in Figures 4.3 and 4.4. 

When the algorithm initialises, the initial solution forms the current front (containing only one 
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f1 

(a) Before interpolating the front 

 

f1 

(b) After interpolating the front 
 

Figure 4.3: Interpolating the archived non-dominated front with points from the attainment surface A 
for a bi-objective minimisation problem. 

 

 
point) and obviously no previous non-dominated point has yet been added to the archive in order 

to interpolate the non-dominated front as illustrated in Figure 4.4.  In this case, the initial point 

is also substituted as the previous non-dominated solution added to the archive, in which case 

nine exactly similar points are to be added (as “interpolated” points). This in effect means that 

the front is not interpolated at all during the first iteration of the algorithm, but will naturally 

be later on as the search progresses. 

 

 

4.3.4 Constraint handling 
 

Constraint handling techniques for metaheuristics3 in the literature [39, 187] may be classified 

into the following seven classes: 

 

Rejecting strategies — A simply implementable approach where only feasible solutions are 

kept (considered) during the search process, i.e. infeasible solutions generated are dis- 

carded/rejected. These strategies are only effective when the proportion of feasible so- 

lutions is very large. These strategies do not, however, exploit infeasible solutions (i.e. 

guiding the search process to a feasible area by “travelling through” infeasible regions of 

the solution space in order to find desirable feasible solutions). A major disadvantage to 

these strategies is that if the proportion of feasible solutions is very small, then it may be 

difficult to find even feasible solutions within acceptable computation budgets. 

 

Penalising strategies — One of the most popular techniques due to the relative ease of im- 

plementation and effectiveness, where infeasible solutions are also considered during the 

search process, but objective function values are penalised when the solutions are infea- 

sible. These penalties may be linear or nonlinear, static or dynamic, or adaptive. A 

significant disadvantage of these strategies is that one has to choose a penalty function 

and parameters suited to the problem instance at hand, usually requiring a considerable 

amount of experimentation. 
 

 

3Considerably more work has been done on SO metaheuristics than on MO metaheuristics [39, p. 115]. 
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f1 

(a) Before interpolating the front 

 

f1 

(b) After interpolating the front 
 

Figure 4.4: Interpolating the archived non-dominated front, if only one point (A) is in the front, with 

the previous point (B) removed from archive. 
 
 

Repairing strategies — Here heuristic (mostly greedy) algorithms transform infeasible solu- 

tion into feasible ones. These heuristics are usually problem-specific. Repairing strategies 

may, however, be computationally expensive to implement. 

Decoding strategies — The topology of the search space is transformed/mapped to a space 

consisting only of feasible solutions by these strategies. 

Preserving strategies — These strategies incorporate problem-specific knowledge into the so- 

lution representation and search operators generate only feasible solutions during encoding. 

For some problems, however, such as the graph coloring problem, it is even difficult to find 

feasible initial solutions or a population of solutions to initialise the search. 

Treating constraints as objectives — Constraint violation values are ranked along with the 

objective function values by these strategies. Constraints may be summed together into 

one single function or may be considered as separate functions for each of the separate, 

violated  constraints. 

Selecting for feasibility — Selection rules preferring feasible solutions over infeasible solu- 

tions are employed by these strategies. This sort of scheme can easily be extended to 

MOEAs by employing, for example, binary tournament selection. 

 
GMS problem instances are usually highly constrained, rendering rejecting strategies undesir- 

able, since it may take too long to find (or even initiate the search with) feasible solutions. For 

some of the GMS constraints it is impossible to avoid violation merely through correct solution 

encoding, such as satisfying the load demand. Preserving and decoding strategies are therefore 

also not desirable in the context of the GMS problem. Selecting for feasibility strategies are 

more reserved for MOEAs. Treating constraints as objectives is an appealing technique, but 

this adds more complexity to the problem and the decision maker. (Later in this dissertation, 

some experimentation takes place on relaxing the constraints and incorporating some of the 

GMS constraint violations as another objective to be minimised.) 

In this dissertation, solutions are generated so that they always satisfy the hard constraints 

of the problem, namely earliest and latest maintenance starting times (3.1), the duration of 
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0, 

  

 

maintenance (3.2) and the requirement that maintenance must occur over consecutive time 

periods (3.3), which is a preserving strategy. The other constraints of the model, namely the 

demand constraint (3.4), the maximum crew availability constraint (3.6), and the exclusion 

constraints (3.7), are too difficult to satisfy by preserving (or decoding or repairing) strategies 

and are thus all treated as soft constraints. Their violations are minimised by a penalising 

strategy, since it is the most popular constraint handling technique for single and multi-objective 

EAs (as well as some other metaheuristics) [39, p. 113]. 

A multiplicative penalty function developed by Schlünz et al. [171] is employed whereby any 

constraint violation incurs a penalty value related to the magnitude of that violation. Define, 

for the constrained MOO problem (4.1a)–(4.1d) the total scaled constraint violation of the 

inequality constraint functions g1(x), . . . , gu(x) as 

 

 

 

 
Similarly, let 

 
u 

G(x) = 
\ 

max 
i=1 

( 
gi(x) −  

Gi 

Gi 

 
. (4.6) 

v     
hj (x) −  Hj 

 
 

H(x) = 
\  

 

j=1

 Hj
 

(4.7) 

be the total scaled constraint violation of the equality constraint functions h1(x), . . . , hv (x). 

Given a severity factor γ as a free parameter whose value is typically determined empirically, 

define the multiplicative penalty function as 

φ(x) = eγ(G(x)+H(x)). (4.8) 

The objective functions to be minimised are multiplied by this penalty violation function value, 

i.e. the problem is now to 
 

minimise f (x) = φ(x)[f1(x ), f2(x ), . . . , fo(x )]. (4.9) 

 
This multiplicative penalty function only involves one parameter whose value must be chosen 

judiciously, namely the severity of penalty factors γ. In other penalising strategies, in contrast, 

each constraint set will typically have its own severity parameter which therefore require consid- 

erably more parameter fine-tuning. In addition, this multiplicative penalty function scales each 

constraint to the amount of violation, thus avoiding having to scale weights for the violation of 

different constraints’ units of measure. 

 

4.3.5 Cooling and reheating schedules 
 

Convergence of the SA algorithm to a global minimum is guaranteed if and only if the cooling 

schedule is sufficiently gradual [178]. It has, however, been shown that SA may be a very effective 

metaheuristic optimisation technique even in conjunction with relatively rapid cooling schedules 

[111]. A SA algorithm is called a simulated quenching algorithm when the temperature schedule 

is too fast [111]. 

Although a variety of cooling schedules have been proposed for the SA algorithm, the predomi- 

nant cooling schedule used for GMS problems, is the well-known geometric cooling schedule [169]. 

Schlünz and van Vuuren [169] compared GMS results obtained using this and three other cooling 

schedules. The results indicated that the geometric cooling schedule achieved the second best 

solution quality, behind a cooling schedule proposed by van Laarhoven and Aarts [196], but the 
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Table 4.1: Solution quality and run-time results for different cooling parameters in the context of a 
large GMS problem instance solved by SA in [167]. The algorithm was terminated when the CPU time 
reached 60 minutes, in which case the time-out cost is marked by an asterisk. 

 

Cooling rate Cost Time 

0.950 41 858 35.6 min. 
0.955 36 733 42.0 min. 
0.960 37 204 45.0 min. 
0.965 31 819 53.4 min. 
0.970 38 367* 60.0 min. 
0.980 31 729* 60.0 min. 

 
 

SA search time associated with the geometric cooling schedule was less. Since the bi-objective 

model proposed in Chapter 3 takes relatively long to solve, the geometric cooling schedule is 

adopted in this dissertation. There are also other successful adaptive cooling schedules [192], 

where feedback is received from the algorithm in order to evaluate what the next decrement in 

temperature should be. In such cases the cooling schedule depends on the change in objective 

value at the end of any given epoch. Although such a change is easily measurable for solving 

SO optimisation problems, it is not clear how this is applicable to MOO problems. In addition, 

the geometric cooling schedule is simple, effective and by far the most widely applied cooling 

schedule [61, p. 30], especially in the context of GMS [169]. The updating rule for this schedule 

is 

Te+1  = αTe, e = 0, 1, 2, . . . , (4.10) 

where Te is the temperature during epoch e of the search process and α ∈  (0, 1) is a constant 

called the cooling parameter. 

A further addition to the geometric cooling scheduling, although not employed as often, is 

geometric reheating, which allows the SA algorithm to escape more efficiently from local minima 

[2, 13]. Reheating is achieved by increasing the temperature by some factor at the end of certain 

epochs (instead of cooling). A simple geometric reheating schedule, suggested in [2], is 
 

Te+1 = 

Te 
, (4.11) 

β 
 

where β ∈  (0, 1) is a constant called the reheating parameter. 

Suggestions in the literature for good values of α mostly range from 0.9 to 0.99 [46, 61, 103] (or 

sometimes even as far down as 0.85 [82]), with suggested values for β being similar [2, 28] or 

being equal to 0.5 [13]. It has been suggested that a lower value of β may be employed for faster 

reheating than cooling [2]. For instance, in [192] it is suggested that β-values typically range 

from 0.25 to 0.67. As noted in [60], however, empirical evidence in the literature for general 

SA applications supports the need for slow cooling, where typical values are in the range [0.8, 

0.99] with a bias to higher values of α (i.e. slower cooling). There are two conflicting factors 

to be taken into account when selecting the value of the cooling parameter, namely the quality 

of solutions uncovered and computing time, as illustrated in Table 4.1.  There is,  however, 

no general rule for choosing the value of α in (4.10) and β in (4.11). The optimal values for 

these parameters are problem-specific and must therefore be determined empirically through 

experimentation [167]. 

The number of iterations during each epoch (i.e. the length of each epoch) is determined dy- 

namically. This is adhered by implementing different variations of the suggestion in [61, p. 45], 
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(start ) 

 

which states that the inner Metropolis loop of the SA algorithm should terminate when one of 

the following two conditions is met: a maximum of 12N solutions are accepted, or a maximum 

of 100N solutions are attempted, where N is a measure of the number of degrees of freedom in 

the optimisation problem — in this case N = n (the number of units). 

 

4.3.6 GMS neighbourhood move operators 
 

Two types of SA neighbourhood move operators (perturbation of the current solution) are 

predominant in the GMS literature, the one being a special case of the other [169]. According to 

the first move operator, called the classical neighbour move operator and illustrated in Figure 

4.5, one unit is randomly selected according to a uniform distribution and its maintenance 

starting time is then randomly changed to a new value within the allowed maintenance window 

(again according to a uniform distribution). Another very similar operator restricts the new 

starting value to the two adjacent time periods (a slight change in starting time), e.g. if the 

selected unit’s starting time period is 3, then its new starting time period may only be 4 or 5. 

These two similar moves are classified as elementary moves. 
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(a) Schedule before the classical move is applied 
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(b) Schedule after the classical move is applied 
 

Figure 4.5: The classical move illustrated through an example. 
 

A second GMS move operator, classified as a compound move, was proposed in [169], is called 

the ejection chain neighbour move operator and is illustrated in Figure 4.6. The ejection chain 

operator initiates similarly to the classical move operator by randomly selecting a unit according 

to  a  uniform  distribution  and  perturbing  its  maintenance  starting  time  (start )  randomly  to 
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(start ) 

 

a new value (new start ) within its allowed maintenance window. Then another unit whose 

maintenance starts during this newly selected starting time (new start ) is chosen at random, 

and its maintenance starting time is randomly perturbed to a new value within its allowed 

maintenance window. This process is repeated until either the newly selected starting time 

for a unit corresponds to the initial unit’s starting time start, or no unit is found for which 

maintenance starts during the newly selected time (see Figure 4.6). The ejection chain is a 

more global move operator, typically affecting large changes to a solution, whilst the classical 

move operator is confined to more local changes. The ejection chain neighbourhood operator 

was found to be superior to the classical neighbourhood move operator when comparing the 

best objective function values found, but at the cost of potentially requiring significantly more 

solution time [169]. The ejection chain neighbourhood move operator is implemented in this 

dissertation. 
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Figure 4.6: The ejection chain move operator illustrated through an example. 
 
 

4.3.7 Algorithmic  initialisation 
 

An initial solution for the SA algorithm is determined as follows.   For each generating unit 

i ∈  I, a random maintenance starting time Xi is generated uniformly between its earliest (ei) 

and latest (fi) starting time.  The corresponding objective function values are determined, as 

described above (including incorporation of the constraint violations). 
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Figure 4.7: Flow chart of the process followed to implement the initial random walk heuristic before 

executing the DMOSA algorithm in order to calculate the desired initial temperature. 
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Figure 4.8: Flow chart demonstrating the working of the DMOSA algorithm as implemented in this 

dissertation. 
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The initial temperature T0  is calculated according to the average increase method presented in 
(+) 

[192], as T0  = −
∆E 

/ ln τ , where τ is the initial acceptance ratio (the number of accepted 

worsening moves to the number of attempted moves), which may be specified by the user and 

∆E
(+) 

is the average increase in energy (worsening of the objective function value). The value 

of ∆E
(+) 

may be estimated by executing a random walk (in this dissertation consisting of 100 

iterations) within the solution space, using the randomly generated initial solution as starting 

point. 

 

4.3.8 Algorithmic termination criteria 
 

The SA algorithm terminates when the temperature loop terminates according to pre-specified 

criteria. A number of such termination criteria have been proposed in the literature. In this 

dissertation, the following two termination criteria are implemented: termination occurs when a 

pre-specified number Ωfrozen of successive reheatings have been performed or when a pre-specified 

budget tmax  of computing time has elapsed. In this dissertation Ωfrozen = 3, as suggested in [61, 

p. 45], whilst tmax is taken as eight hours, so that the user may find a new maintenance schedule 

within the confines of a normal working day, or overnight. Some experimentation in terms of 

running the algorithm for longer is, however, performed later in this dissertation, especially for 

large GMS problem instances. 

 
 

4.4 Algorithmic implementation 
 

The DMOSA algorithm and all other calculations described in this chapter were implemented 

by the author in the programming language R (version 3.0.2) within the RStudio integrated 

development environment (IDE). The lpSolve package in R was used to solve the LP model 

for the ED problem proposed in §3.3. All the computation evaluations were performed on a 

personal computer with a 3.40 GHz Intel® Core™ i7-4770 CPU processor with 8.11 GB RAM 

and running in Ubuntu Gnome 3.10.04. 

Figure 4.7 contains a flow chart of the process followed to implement the initial random walk 

heuristic before executing the DMOSA algorithm in order to calculate the desired initial tem- 

perature, while Figure 4.8 contains a flow chart of the DMOSA algorithm as implemented in 

this dissertation to compute non-dominated fronts for the GMS model proposed in Chapter 3. 

 
 

4.5 Chapter  summary 
 

In this chapter, the details of the solution methodology employed in this dissertation were 

presented. General MOO principles were presented in §4.1 after which a motivation for the 

choice of the SA algorithm as a solution technique employed in this dissertation was presented 

in §4.2. The working of the SA algorithm and the different types of MOSA algorithms present 

in the literature were next described in §4.3. This discussion contained a description of how 

Smith et al.’s DMOSA algorithm [179] is implemented in this dissertation. Some technical 

implementation information was finally presented in §4.4. 
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Two case studies are carried out later in this dissertation in order to showcase the workability 

of applying the novel modelling approach proposed in Chapter 3 to existing GMS problem 

instances. The first case study is a 32-unit benchmark established in the literature. The second 

is a real-world case study involving the generating units of the South African Power Utility, 

Eskom, (involving slightly altered data in order not to divulge sensitive information). All the 

parameters and data required to solve the GMS model proposed in Chapter 3 in the contexts of 

these case studies are provided in this chapter. 

 

 
5.1 A 32-unit IEEE-RTS inspired case study 

 
In 2011, Schlünz and van Vuuren [168, 169] created a test system derived from the load model 

and generation system of the 1979 IEEE Reliability Test System (RTS) [9] with the addition of 

certain constraints and parameter values. This IEEE-RTS inspired case study consists of a GMS 

problem instance containing 32 generating units with a total installed capacity of 3 405 MW. 

The units require maintenance over a 52-week planning horizon, with the single objective of 

levelling reserves, by minimising the SSR over the planning period as specified in (3.9) [169]. 

The constraints of the system consist of the specification of maintenance windows, respecting 

exclusion constraints, meeting of the expected peak demand together with a safety margin, 

and adhering to the availability of maintenance crew as specified in (3.1)–(3.8).  In particular, 

S = 15% and Mj =25 for all j ∈  J . The other parameters required for the specification of the 
constraints may be found in the first eight columns of Table 5.1 and the interested reader is 

referred to [169, 9] for more details on this test system. 

The same data set as described above is also employed in this dissertation, but the data set 

employed here also includes additional information required for the added objective of minimising 

production cost. This additional information was inferred from the original 1979 IEEE-RTS [9], 

and is specified in the last five columns of Table 5.1. 
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Coal-3 12 000 0.12 14.40 60/100 

Oil-2 10 000 0.23 23.00 60/100 

Gas 
14 500 0.30 43.50 4/100 

Turbine 

 

 

 

 

 

 
Table 5.1: Data for the 32-unit IEEE-RTS inspired case study. 

 
 

 

 
 

Unit 

i 

Installed 

Capacity 

(MW) 

Ii 

Earliest sta- 

rting time 

(week) 

ei 

Earliest sta- 

rting time 

(week) 

li 

 
Duration 

(weeks) 

di 

Manpower required 

during each period 

of maintenance 

µu 
i 

Excl- 

usion 

set 

k 

Max 

# of 

units 

Kk 

 
 

Station 

Name 

 
Heat 

Rate1 

( Btu 
kWh ) 

 

Fuel 

Cost2
 

(   $    ) MBtu 

Cost2
 

Rate 
(   $ 

MWh ) 

Cs 

Min/Max 

EUF 

(%) 

qmin/qmax 
s s 

1 50 1 51 2 6, 6  6 3  

 
Hydro 

 

 
0 

 

 
0/100 

2 50 1 51 2 6, 6 6 3 
3 
4 

50 
50 

1 
1 

51 
51 

2 
2 

6, 6 
6, 6 

6 
6 

3 
3 

5 50 1 51 2 6, 6 6 3 
6 50 1 51 2 6, 6 6 3 
7 
8 

400 
400 

1 
27 

21 
47 

6 
6 

15, 10, 10, 10, 10, 
15, 10, 10, 10, 10, 

5 
5 Nuclear 10 000 0.60 6.00 100/100 

9 350 1 48 5 5, 10, 15, 15, 5  7 1 Coal-1 9 500 0.12 11.40 60/100 
10 155 1 23 4 5, 15, 10, 10  5 3  

Coal-2 
 

9 700 
 

0.12 
 

11.64 
 

60/100 
11 
12 

155 
155 

27 
1 

49 
23 

4 
4 

5, 15, 10, 10 
12, 12, 8, 8 

 

7 
 

1 
13 155 1 49 4 12, 12, 8, 8 7 1 
14 76 1 24 3 12, 10, 10  2 2  

Coal-3 
 

12 000 
 

0.12 
 

14.40 
 

60/100 
15 
16 

76 
76 

27 
1 

50 
24 

3 
3 

12, 10, 10 
12, 10, 10 

2 
1 

2 
2 

17 76 27 50 3 12, 10, 10 1 2 
18 197 1 23 4 8, 10, 10, 8  4 1  

Oil-1 
 

9 600 
 

0.23 
 

22.08 
 

60/100 19 197 1 23 4 8, 10, 10, 8 4 1 
20 197 27 49 4 8, 10, 10, 8 4 1 
21 100 1 50 3 10, 10, 15  3 1  

Oil-2 
 

10 000 
 

0.23 
 

23.00 
 

60/100 22 100 1 50 3 10, 10, 15 3 1 
23 100 1 50 3 15, 10, 10 3 1 
24 12 1 51 2 4, 4  5 3  

Oil-3 

 

12 000 

 

0.23 

 

27.60 

 

60/100 
25 12 1 51 2 4, 4 5 3 
26 12 1 51 2 4, 4 5 3 
27 12 1 51 2 4, 4 5 3 
28 12 1 51 2 4, 4 5 3 
29 20 1 25 2 7, 7  1 2  

Gas 
Turbine 

 
14 500 

 
0.30 

 
43.50 

 
4/100 30 

31 
20 
20 

1 
1 

25 
25 

2 
2 

7, 7 
7, 7 

1 
2 

2 
2 

32 20 27 51 2 7, 7 2 2 
1 This is taken as 100% output, which is not exactly correct as explained in §5.1.1, since this assumes that the power plant will always run at 100%. 

A constant heat rate is, however, usually adopted in approximate cost representations [136, 126] so that a constant production (or fuel) cost rate 

($/MWh) may be assumed, as in [126, 136, 216]. 2 Monetary value relative to 1979. 

9
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\ 
Zst ≤  

fmax 

\ 
Zst ≥  

fmin 

1   , (5.1f) 

5.1. A 32-unit IEEE-RTS inspired case study 95 
 

 

 
5.1.1 Generation cost LP for the 32-unit IEEE-RTS inspired case study 

 
The generation mix of the appended IEEE-RTS inspired case study described above (hereafter 

referred to as the IEEE-RTS inspired case study) consists of one conventional hydroelectric power 

station, one nuclear power station, three coal-fired power stations, three oil-fired power stations 

and one gas-turbine station. The index values for the various power stations are captured in 

Table 5.2, employing the same notation as in Chapter 3. 

Table 5.2: Index values assigned to the power stations in the 32-unit IEEE-RTS inspired case study. 

 

h Sh Description Type 

1 {1} Conventional hydroelectric Peak/Exact 

2 {2} Nuclear 
3 {3, 4, 5} Coal 

4 {6, 7, 8} Oil 

Base 

5 {9} Gas-Turbine Peak 

6 {10} Unmet Virtual 
 

Referring to Table 5.2 for the numbering, the power stations in subsets S2, S3, and S4 are 

considered base load stations, while those in S1  and S5  are considered peak demand stations. 

Each base load station has a maximum and minimum daily production requirement associated 

with it, while the conventional hydroelectric station has an exact daily production requirement, 

shown in Table 5.3. 

Given this information, the objective in the special case of the general LP generation cost model 

described in §3.3 to be solved for the IEEE-RTS inspired case study is to 

minimise 
\ \ 

CsZst (5.1a) 

t∈T s∈S 

subject to  

Zst  ≤  Ast, s ∈  S, t ∈  T , (5.1b) 
\ 

Zst = Lt, t ∈  T , (5.1c) 

s∈S 

s , s ∈  S2 ∪  S3 ∪  S4, (5.1d) 

t∈T 

s , s ∈  S2 ∪  S3 ∪  S4, (5.1e) 

t∈T 

\ 
Z1t = f

req 

t∈T 

Zst ≥  0, s ∈  S, t ∈  T . (5.1g) 

Constraint set (5.1b) ensures that the planned energy production Zst  of power station s ∈  S 

during time slice t ∈  T does not exceed its available capacity Ast during that time slice, while 
constraint set (5.1c) balances planned energy and the forecast demand Lt during time slice 
t ∈  T . The maximum production requirements, fmax and fmin respectively, for base load station 

s s 

s ∈  S2  ∪  S3  ∪  S4   are  ensured  by  constraint  sets  (5.1d)  and  (5.1e),  respectively.    The  daily 

production requirement for the conventional hydroelectric station in S1 is specified by constraint 

(5.1f), while constraint set (5.1g) is the usual sign restriction constraint. 
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Table 5.3: Hydro capacity and energy for the 32-unit IEEE-RTS inspired case study [9]. In the original 

system the total energy was specified as 200 GWh. This value has been reduced 100 GWh so as to enforce 
a tighter reserve. 

 

 

 
Quarter 

Capacity 

Available1(%) 
Energy 

Distribution2(%) 

1 100 35 
2 100 35 
3 90 10 
4 90 20 

1 100% capacity = 50 MW 
2 100% energy = 100 GWh 

 

 
The production cost rate ($/MWh) for the IEEE-RTS inspired case study was purely estimated 

as the fuel cost, by multiplying the maximal output (100%) heat rate values for the different 

power stations by the stations’ corresponding fuel rate costs given in [9], as illustrated in Table 

5.1. These fuel costs are, however, applicable to the 1979 value of money. In order to have 

more meaningful up-to-date monetary values, these fuel cost rates were inflated (for the United 

States of America) using an online inflation calculator [40], to represent realistic 2016 values. 

The cumulative rate of inflation used for this purpose was 231.5%, meaning that all original cost 

values were multiplied by 3.315. Although the above estimation is not entirely accurate, since 

power plants will not always run at 100% (their production rates will actually vary based on 

the production planning module described in §3.3), this cost modelling approach is nevertheless 

thought to embody a good representation serving the purpose of creating a constant fuel cost 

rate Cs ($/MWh). This approach has been used widely in the literature [32, 126, 137, 216]. 

The UCLF and OCLF values were set to zero, so as to only analyse how the PCLF values (which 

depend solely on the GMS decision variables) affect the fuel cost. 

 

5.1.2 Hourly load data 
 

The hourly loads were calculated from the original IEEE-RTS achieving an annual peak load of 

2 850 MW and the weekly, daily and hourly peak percentages of this annual load given in [9]. 

This yielded a total annual energy demand of 15 297.478 GWh, which almost exactly matches 

the energy demand calculated in the IEEE-RTS follow-on paper in 1986 [11] of 15 297.075 GWh, 

thus serving as validation of the hourly load data considered in this dissertation. Table 5.4 

contains the daily peak load demand (from the hourly data) for the 32-unit inspired case study. 

The weekly peak demand is used, as in [168, 169], to calculated the SSR. 

 

 

5.2 A 157-unit Eskom case study 

 
In 2011, Schlünz and van Vuuren [168,  170] created a larger and more realistic case study 

instance of the GMS problem based on the generating units of the South African electricity 

utility, Eskom. The Eskom case study consists of 105 generating units with a total installed 

capacity of 39 949 MW requiring maintenance over a 365-day period planning horizon, with 

the single objective of levelling reserves, by minimising the SSR over the planning period as 
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Table 5.4: Daily peak demand data for the 32-unit IEEE-RTS inspired case study [9], the 52 weekly 
peak demands were used to calculate the SSR as in [169]. 

 

Day 
Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) 

1 2 285 62 1 624 123 2 290 184 2 152 245 1 552 306 2 360 
2 2 457 63 1 582 124 2 242 185 2 109 246 1 868 307 1 933 
3 2 408 64 1 953 125 1 836 186 2 066 247 2 009 308 1 883 
4 2 359 65 2 100 126 1 789 187 2 023 248 1 969 309 2 345 
5 2 310 66 2 058 127 2 306 188 1 657 249 1 929 310 2 522 
6 1 892 67 2 016 128 2 480 189 1 614 250 1 888 311 2 472 
7 1 843 68 1 974 129 2 430 190 2 163 251 1 547 312 2 421 
8 2 385 69 1 617 130 2 381 191 2 326 252 1 507 313 2 371 
9 2 565 70 1 575 131 2 331 192 2 279 253 2 067 314 1 942 
10 2 514 71 1 895 132 1 910 193 2 233 254 2 223 315 1 892 
11 2 462 72 2 038 133 1 860 194 2 186 255 2 179 316 2 410 
12 2 411 73 1 997 134 2 332 195 1 791 256 2 134 317 2 591 
13 1 975 74 1 956 135 2 508 196 1 745 257 2 090 318 2 539 
14 1 924 75 1 916 136 2 458 197 2 123 258 1 712 319 2 487 
15 2 327 76 1 569 137 2 408 198 2 283 259 1 667 320 2 436 
16 2 502 77 1 529 138 2 358 199 2 237 260 1 842 321 1 995 
17 2 452 78 1 927 139 1 931 200 2 192 261 1 981 322 1 943 
18 2 402 79 2 072 140 1 881 201 2 146 262 1 941 323 2 491 
19 2 352 80 2 031 141 2 269 202 1 758 263 1 902 324 2 679 
20 1 927 81 1 989 142 2 440 203 1 712 264 1 862 325 2 625 
21 1 877 82 1 948 143 2 391 204 2 332 265 1 525 326 2 572 
22 2 211 83 1 595 144 2 342 205 2 508 266 1 486 327 2 518 
23 2 377 84 1 554 145 2 294 206 2 458 267 1 919 328 2 063 
24 2 329 85 1 866 146 1 879 207 2 408 268 2 063 329 2 009 
25 2 282 86 2 006 147 1 830 208 2 358 269 2 022 330 2 359 
26 2 234 87 1 966 148 2 149 209 1 931 270 1 980 331 2 537 
27 1 830 88 1 926 149 2 311 210 1 881 271 1 939 332 2 486 
28 1 783 89 1 886 150 2 265 211 1 914 272 1 589 333 2 436 
29 2 332 90 1 545 151 2 219 212 2 058 273 1 547 334 2 385 
30 2 508 91 1 505 152 2 172 213 2 017 274 1 919 335 1 953 
31 2 458 92 1 988 153 1 779 214 1 976 275 2 063 336 1 903 
32 2 408 93 2 138 154 1 733 215 1 935 276 2 022 337 2 497 
33 2 358 94 2 095 155 2 385 216 1 585 277 1 980 338 2 685 
34 1 931 95 2 052 156 2 565 217 1 544 278 1 939 339 2 631 
35 1 881 96 2 010 157 2 514 218 2 057 279 1 589 340 2 578 
36 2 229 97 1 646 158 2 462 219 2 212 280 1 547 341 2 524 
37 2 397 98 1 604 159 2 411 220 2 168 281 1 970 342 2 067 
38 2 349 99 1 911 160 1 975 221 2 124 282 2 118 343 2 014 
39 2 301 100 2 055 161 1 924 222 2 079 283 2 076 344 2 571 
40 2 253 101 2 014 162 2 351 223 1 703 284 2 033 345 2 765 
41 1 846 102 1 973 163 2 528 224 1 659 285 1 991 346 2 710 
42 1 798 103 1 932 164 2 477 225 2 120 286 1 631 347 2 654 
43 2 205 104 1 582 165 2 427 226 2 280 287 1 589 348 2 599 
44 2 371 105 1 541 166 2 376 227 2 234 288 1 972 349 2 129 
45 2 324 106 2 120 167 1 947 228 2 189 289 2 120 350 2 074 
46 2 276 107 2 280 168 1 896 229 2 143 290 2 078 351 2 651 
47 2 229 108 2 234 169 2 375 230 1 756 291 2 035 352 2 850 
48 1 826 109 2 189 170 2 554 231 1 710 292 1 993 353 2 793 
49 1 778 110 2 143 171 2 503 232 1 933 293 1 632 354 2 736 
50 2 136 111 1 756 172 2 452 233 2 078 294 1 590 355 2 679 
51 2 297 112 1 710 173 2 401 234 2 036 295 2 120 356 2 195 
52 2 251 113 1 999 174 1 967 235 1 995 296 2 280 357 2 138 
53 2 205 114 2 149 175 1 916 236 1 953 297 2 234 358 2 523 
54 2 159 115 2 106 176 2 282 237 1 600 298 2 189 359 2 713 
55 1 769 116 2 063 177 2 454 238 1 559 299 2 143 360 2 659 
56 1 723 117 2 020 178 2 405 239 1 924 300 1 756 361 2 604 
57 1 961 118 1 655 179 2 356 240 2 069 301 1 710 362 2 550 
58 2 109 119 1 612 180 2 307 241 2 028 302 2 335 363 2 089 
59 2 067 120 2 218 181 1 890 242 1 986 303 2 511 364 2 035 
60 2 025 121 2 385 182 1 841 243 1 945 304 2 461  
61 1 982 122 2 337 183 2 001 244 1 593 305 2 411  
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specified in (3.9) [170]. The data included in their GMS problem instance do not, however, 

represent the exact Eskom generation system, due to confidentiality concerns, but the case study 

nevertheless represents a realistic GMS scenario. Constraints in the Eskom case study instance 

are restricted to the adherence to maintenance windows, the system meeting the expected peak 

demand together with a safety margin, and respecting certain exclusion constraints. A safety 

margin of 8% was set (S = 8%) so as to ensure a minimum capacity of 2 000 MW over and 

above demand throughout the planning period. 

Some units require more than one maintenance outage during the planning horizon, but since the 

GMS model of Chapter 3 requires each unit to experience a single maintenance outage, dummy 

units were added to the problem instance — one for each unit’s additional outage during the year 

— thereby increasing the number of units in the system to 157. The resulting additional capacity 

that these dummy units provide to the system was subtracted from the new total capacity in 

order to render the system capacity unaffected by the addition of dummy units. Furthermore, 

the exclusion sets imposed on the system are only introduced to prevent dummy units from being 

in simultaneous maintenance with their corresponding (real) units. The parameters and data 

required for the specification of the model constraints may be found in the first eight columns 

of Table 5.5 and the interested reader is referred to [168] for more details on this test system. 

The dimensions of this GMS problem instance are considerably larger than those of other test 

systems in the literature. 

Table 5.5: Data for the Eskom case study sorted according to the merit order defined in Table 5.6. 
 

Earliest  Latest Production 

Unit Cap.  starting starting Duration Excl- Station cost rate Min/Max 

Unit Real name (MW) (day) (day) (days) usion (Table 5.5)  (R/MWh)  EUF (%) 

s Cs qmin/qmax 
s s 

 

3 0 100/100 
 

 
 

 

 

6 96 60/95 
 

 

 

 

 

7 114 60/95 

4 84 60/95 

i unit [168] Ii ei li di k Kk 

1 1 L1 900 225 282 84   
2 2 L2 900 0 0 0   
3 3 P1 615 1 50 42   
4 3 P1 615 302 323 7   
5 4 P2 615 71 92 7   
6 5 P3 615 323 331 35   
7 6 P4 615 43 85 28   
8 7 P5 615 85 127 28   
9 8 P6 615 190 211 7   
10 9 N1 593 43 85 28   
11 10 N2 593 0 0 0   
12 11 N3 593 99 141 28   
13 12 N4 593 29 50 7   
14 13 N5 593 78 99 7   
15 13 N5 593 316 338 28   
16 14 N6 593 15 36 7   
17 14 N6 593 218 260 28   
18 15 F1 575 0 0 0   
19 16 F2 575 71 148 70   
20 17 F3 575 211 239 14   
21 18 F4 575 0 0 0   
22 19 F5 575 1 78 70   
23 20 F6 575 232 288 45   
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Table 5.5 (continued): Data for the Eskom case study sorted according to the merit order defined in 
Table 5.6. 

 

Earliest  Latest Production 

Unit Cap.  starting starting Duration Excl- Station cost rate Min/Max 

Unit Real name (MW) (day) (day) (days) usion (Table 5.5)  (R/MWh)  EUF (%) 

s Cs qmin/qmax 
s s 

 
 
 
 
 
 

8 118 60/95 
 

 

 

 

 

 
 

 

 

10 130 60/95 
 

 

 

11 130 60/95 

 

 
 

 

 

14 180 60/95 
 

 

 
 

 

15 198 60/95 

13 170 60/95 

9 128 60/95 

i unit [168] Ii ei li di k Kk 

24 21 J1 190 0 0 0   
25 22 J2 185 1 78 92   
26 23 J3 190 0 0 0   
27 24 J4 190 92 120 14   
28 25 J5 190 204 267 50   
29 26 J6 190 0 0 0   
30 27 J7 190 113 141 14   
31 28 J8 190 1 43 28   
32 28 J8 190 260 288 14   
33 29 J9 190 281 309 14   
34 30 J10 190 218 260 28   
35 30 J10 190 302 338 28   
36 31 Q1 575 218 239 7   
37 32 Q2 575 0 0 0   
38 33 Q3 575 0 0 0   
39 34 Q4 575 1 50 42   
40 35 Q5 575 85 106 7   
41 36 Q6 575 239 282 84   
42 37 M1 475 1 36 21   
43 37 M1 475 288 330 28   
44 38 M2 475 1 78 84   
45 39 M3 475 323 345 21   
46 40 M4 475 0 0 0   
47 41 M5 475 0 0 0   
48 42 M6 475 0 0 0   
49 43 K1 640 330 343 23   
50 44 K2 640 1 22 7   
51 45 K3 640 295 330 23   
52 46 K4 640 323 344 5   
53 47 K5 640 1 71 57   
54 48 K6 640 85 106 5   
55 49 O1 612 1 43 28   
56 50 O2 612 106 127 7   
57 50 O2 612 260 310 56   
58 51 O3 612 99 120 7   
59 52 O4 669 64 113 35   
60 53 O5 669 330 351 7   
61 54 O6 669 351 358 8   
62 55 T1 585 85 99 4   
63 55 T1 585 274 306 60   
64 56 T2 585 92 120 12   
65 56 T2 585 344 358 4   
66 57 T3 585 64 78 4   
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Table 5.5 (continued): Data for the Eskom case study sorted according to the merit order defined in 
Table 5.6. 

 

Earliest  Latest Production 

Unit Cap.  starting starting Duration Excl- Station cost rate Min/Max 

Unit Real name (MW) (day) (day) (days) usion (Table 5.5)  (R/MWh)  EUF (%) 

s Cs qmin/qmax 
s s 

 
 

 

15 198 60/95 
 

 

 

 

 

 
 

16 211 55/95 
 

 

 

 

 
 

 
 

19 308 55/95 
 

 

 

 
 

21 2401 4/100 

 

 

22 2650 0/100 

20 2400 5/100 

17 231 55/95 

i unit [168] Ii ei li di k Kk 

67 57 T3 585 218 246 12   

68 58 T4 585 1 64 50   
69 58 T4 585 253 267 4   
70 59 T5 585 71 85 4   
71 60 T6 585 120 134 4   
72 60 T6 585 323 337 4   
73 61 D1 190 0 0 0   
74 62 D2 190 0 0 0   
75 63 D3 185 50 92 30   
76 64 D4 180 218 267 42   
77 65 D5 180 0 0 0   
78 66 D6 160 0 0 0   
79 67 D7 170 1 50 42   
80 68 D8 180 85 134 42   
81 69 C1 330 36 50 4   
82 69 C1 330 225 239 4   
83 70 C2 350 29 57 14   
84 70 C2 350 253 267 4   
85 71 C3 380 36 50 4   
86 71 C3 380 281 295 4   
87 72 C4 350 71 85 2   
88 72 C4 350 302 316 3   
89 73 C5 350 8 22 4   
90 73 C5 350 239 282 84   
91 74 C6 350 106 120 2   
92 74 C6 350 274 288 3   
93 75 I1 190 78 113 21   
94 76 I2 190 211 246 21   
95 77 I3 190 0 0 0   
96 78 I4 190 309 344 21   
97 79 I5 190 0 0 0   
98 80 I6 190 0 0 0   
99 81 B1 148 0 0 0   

100 82 B2 148 0 0 0   
101 83 B3 148 0 0 0   
102 84 B4 148 0 0 0   
103 85 H1 148 0 0 0   
104 86 H2 148 0 0 0   
105 87 H3 148 0 0 0   
106 88 A1 57 8 29 9 1 1 

107 88 A1 57 15 29 2 1 1 
108 88 A1 57 169 183 2   
109 88 A1 57 281 295 2   
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Table 5.5 (continued): Data for the Eskom case study sorted according to the merit order defined in 
Table 5.6. 

 

Earliest  Latest Production 

Unit Cap.  starting starting Duration Excl- Station cost rate Min/Max 

Unit Real name (MW) (day) (day) (days) usion (Table 5.5)  (R/MWh)  EUF (%) 

s Cs qmin/qmax 
s s 

 
 
 

 

22 2650 0/100 
 

 

 

 

 

 

 

 

 
 

23 2651 0/100 
 

 

 

 

 

 

 

 

26 0 0/100 
 
 

 
28 0 8/100 

27 0 6/100 

25 0 0/100 

i unit [168] Ii ei li di k Kk 

110 89 A2 57 15 29 2 2 1 

111 89 A2 57 15 36 9 2 1 
112 89 A2 57 169 183 2   
113 89 A2 57 281 295 2   
114 90 A3 57 15 29 2 3 1 
115 90 A3 57 29 50 9 3 1 
116 90 A3 57 176 190 2   
117 90 A3 57 288 309 7   
118 91 S1 57 50 64 2   
119 91 S1 57 85 141 45 5 1 
120 91 S1 57 176 190 2 5 1 
121 91 S1 57 295 309 2   
122 92 S2 57 15 85 56 6 1 
123 92 S2 57 57 71 2 6 1 
124 92 S2 57 183 197 2   
125 92 S2 57 302 316 2   
126 93 S3 57 57 78 7   
127 93 S3 57 183 197 2   
128 93 S3 57 302 316 2   
129 94 G1 90 71 99 11   
130 94 G1 90 246 246 120   
131 95 G2 90 15 29 2   
132 95 G2 90 232 246 120   
133 96 G3 90 43 71 11   
134 96 G3 90 295 323 14   
135 97 G4 90 1 85 121 4 1 
136 97 G4 90 113 127 2 4 1 
137 98 U1 120 22 57 21   
138 98 U1 120 120 162 31   
139 98 U1 120 267 288 5   
140 99 U2 120 85 106 5   
141 100 E1 250 8 64 44   
142 100 E1 250 134 148 1   
143 100 E1 250 281 295 1   
144 100 E1 250 316 344 14   
145 101 E2 250 8 64 44   
146 101 E2 250 330 344 1   
147 102 E3 250 29 43 1   
148 102 E3 250 267 295 14   
149 103 E4 250 8 22 1   
150 103 E4 250 50 64 3   
151 103 E4 250 309 337 14   
152 104 R1 200 22 57 25   

 

Stellenbosch University  https://scholar.sun.ac.za



102 Chapter 5. Case study data 
 

 

Table 5.5 (continued): Data for the Eskom case study sorted according to the merit order defined in 
Table 5.6. 

 

Earliest  Latest Production 

Unit Cap.  starting starting Duration Excl- Station cost rate Min/Max 

Unit Real name (MW) (day) (day) (days) usion (Table 5.5)  (R/MWh)  EUF (%) 

qmin/qmax 
s s 

 

 
8/100 

 

 
 

 

 
 

5.2.1 Generation cost LP for the 157-unit Eskom case study 
 

Eskom’s generation mix consists of sixteen coal-fired power stations, one nuclear station, four 

gas-turbine stations, two conventional hydroelectric stations and three pumped storage schemes. 

In addition, Eskom imports electricity from a power station in Mozambique. The utility also 

relies on independent power producers (IPPs) to feed power into the South African national 

transmission grid. The index values adopted for the various power stations are provided in 

Table 5.6. 

Table 5.6: Index values for the power stations in the 157-unit Eskom case study. 

 

h 

1 

Sh 

{1} 

Description 

Import 
2 {2} IPPs 
3 {3} Nuclear 
4 {4, 5, . . . , 14} Coal subset 1 
5 {15, 16, . . . , 19} Coal subset 2 
6 {20} Unmet (virtual) 
7 {21, 22, 23, 24} Gas-turbine 
8 {25, 26} Conventional hydroelectric 
9 {27, 28, 29} Pumped storage schemes 
10 {30, 31, 32} Pumped storage schemes (pumps) 

 

Referring to Table 5.6 for the numbering, the power stations in subsets S1, S2, S3, S4 and S5 are 

considered base load stations. The power stations in subsets S5, S6, S7, S8 and S9 are considered 

peak demand stations. Each base load station has a minimum and maximum daily production 

requirement associated with it while the two conventional hydroelectric stations each have an 

exact daily production requirement shown in Table 5.7. 

Given this information, the objective in the special case of the general LP generation cost model 

of §3.3 to be solved in the context of the Eskom case study is to 

minimise 
\ \ 

CsZst (5.2a) 

t∈T s∈S 

subject to  

Zst  ≤  Ast, s ∈  S, t ∈  T , (5.2b) 

i unit [168] Ii ei li di k Kk s Cs 

153 104 R1 200 127 141 1    
154 104 R1 200 239 253 1    
155 105 R2 200 36 71 25  28 0 
156 105 R2 200 141 155 1    
157 105 R2 200 232 246 1    
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\ 
Zst ≤  

fmax 

s , 

s   , 

 
\ 

s∈S/=S10 

Zst −  
\

 

s∈

S10 

Zst  = Lt, t ∈  T , (5.2c) 

s , s ∈  S1 ∪  S2 ∪  S3 ∪  S4 ∪  S5, (5.2d) 

t∈T 

\ 
Zst ≥  fmin 

t∈T 
1 min 

Zst ≥  
2 
fs , 

\ 
Zst = freq 

t∈T 
\ 

Zat ≤  Ba 

\ 
Zbt, a ∈  S9, b ∈  S10, (5.2h) 

t∈T t∈T 

Zs1 ≤  0, s ∈  S10, (5.2i) 

Zst ≥  0, s ∈  S, t ∈  T , (5.2j) 

where the various symbols have the same meanings as before. Constraint set (5.2b) ensures 

that each power station’s planned energy production during each time slice does not exceed 

its available capacity during that time slice, while constraint set (5.2c) balances the planned 

energy and forecast demand during each time slice. The maximum production requirements for 
the base load stations in S1 ∪  S2 ∪  S3 ∪  S4 ∪  S5 are ensured by constraint set (5.2d), while 

the minimum production requirements for stations in S1 ∪  S2 ∪  S3 ∪  S4 are ensured by 

constraint set (5.2e).  For the stations in S5, at least half of the minimum daily production 
must occur 
during the peak demand period and at least half must occur during the offpeak demand period. 

These additional requirements, which are ensured by constraint set (5.2f), were incorporated into 

the model in an attempt to keep these five power stations online during the night. The daily 

production requirements for the conventional hydroelectric stations are ensured by constraint 

set (5.2g). The load balance constraints for the three pumped storage schemes are enforced 

by constraint set (5.2h). The efficiency values B27, B28, and B29 of the three pumped storage 

scheme stations are 0.72, 0.75, and 0.745, respectively. Constraint set (5.2i) ensures that the 

pumps are not used during peak demand periods, while constraint set (5.2j) is the usual sign 

restriction constraint [25]. 

Table 5.7: The daily hydro energy available for the 157-unit Eskom case study. 

 

 
Month 

s = 25 

(MWh) 
s = 26 

(MWh) 

Jan 1 293 2 846 
Feb 1 681 2 393 
Mar 2 199 2 264 
Apr 2 587 1 229 
May 2 393 970 
Jun 1 552 1 035 
Jul 1 035 1 358 

Aug 1 358 1 876 
Sep 1 811 2 458 
Oct 1 681 2 782 
Nov 1 164 2 846 
Dec 1 035 2 976 

s ∈  S1 ∪  S2 ∪  S3 ∪  S4, (5.2e) 

s ∈  S5, 

s ∈  S8, 

t ∈  T , (5.2f) 

 
(5.2g) 
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Table 5.8: Daily peak demand data for the 157-unit Eskom Case study [168]. 
 

Day 
Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) Day 

Demand 
(MW) 

1 31 252 62 28 546 123 27 505 184 34 008 245 34 179 306 29 321 
2 30 890 63 31 000 124 27 454 185 34 197 246 34 333 307 29 839 
3 31 962 64 31 062 125 27 056 186 34 043 247 34 187 308 32 542 
4 31 704 65 30 857 126 28 862 187 32 829 248 34 625 309 32 344 
5 29 997 66 30 594 127 31 694 188 32 798 249 32 802 310 32 173 
6 29 114 67 31 061 128 31 554 189 34 902 250 31 153 311 31 974 
7 31 389 68 29 416 129 32 251 190 34 722 251 30 232 312 31 424 
8 31 116 69 29 007 130 31 283 191 35 453 252 32 849 313 30 186 
9 30 684 70 32 158 131 29 811 192 35 352 253 35 701 314 30 414 
10 30 558 71 31 917 132 29 779 193 33 711 254 35 199 315 32 626 
11 30 390 72 31 747 133 32 324 194 33 140 255 35 326 316 32 706 
12 29 515 73 31 780 134 32 555 195 32 558 256 33 948 317 33 061 
13 28 311 74 31 820 135 32 404 196 35 203 257 32 314 318 32 610 
14 30 548 75 30 198 136 32 907 197 35 841 258 32 033 319 31 614 
15 29 778 76 29 399 137 32 138 198 35 034 259 33 618 320 30 730 
16 28 690 77 32 039 138 30 351 199 35 654 260 33 651 321 31 031 
17 29 537 78 31 650 139 30 164 200 35 621 261 33 605 322 33 101 
18 29 835 79 31 440 140 33 279 201 34 464 262 33 359 323 32 462 
19 28 380 80 31 722 141 32 842 202 33 522 263 32 557 324 32 416 
20 27 703 81 31 073 142 33 674 203 36 036 264 30 996 325 31 818 
21 29 374 82 30 108 143 33 133 204 35 806 265 30 715 326 31 919 
22 27 893 83 29 823 144 32 864 205 35 636 266 33 649 327 30 761 
23 26 775 84 31 917 145 31 830 206 35 799 267 33 884 328 29 970 
24 25 588 85 32 275 146 30 963 207 34 406 268 33 102 329 32 701 
25 24 438 86 31 295 147 32 722 208 32 743 269 32 686 330 33 105 
26 24 992 87 31 249 148 32 455 209 32 834 270 31 114 331 32 253 
27 25 364 88 30 709 149 33 312 210 35 522 271 29 267 332 32 076 
28 27 468 89 29 318 150 33 114 211 35 457 272 29 380 333 31 155 
29 27 609 90 29 275 151 31 759 212 35 334 273 31 994 334 29 880 
30 27 674 91 32 305 152 30 672 213 35 478 274 31 586 335 29 126 
31 27 249 92 31 975 153 30 451 214 34 220 275 31 670 336 31 840 
32 25 544 93 32 390 154 33 942 215 32 366 276 31 427 337 31 946 
33 25 955 94 32 321 155 33 531 216 32 535 277 30 396 338 32 344 
34 26 510 95 31 425 156 33 509 217 35 619 278 29 107 339 31 781 
35 28 693 96 29 767 157 33 316 218 35 400 279 29 673 340 31 472 
36 29 705 97 29 864 158 32 459 219 35 136 280 31 929 341 29 975 
37 29 552 98 31 895 159 31 256 220 35 659 281 32 468 342 30 062 
38 29 846 99 31 456 160 30 527 221 34 236 282 32 321 343 32 479 
39 30 191 100 32 071 161 33 938 222 33 097 283 32 348 344 32 070 
40 28 515 101 31 894 162 33 627 223 32 942 284 31 243 345 32 521 
41 28 397 102 31 483 163 34 135 224 36 463 285 30 344 346 31 878 
42 30 494 103 30 314 164 33 903 225 36 559 286 30 245 347 30 996 
43 31 515 104 30 051 165 32 549 226 36 664 287 32 083 348 29 800 
44 31 149 105 32 312 166 31 609 227 36 256 288 32 003 349 29 781 
45 31 757 106 32 413 167 31 188 228 36 127 289 32 129 350 32 225 
46 31 064 107 31 702 168 33 431 229 34 199 290 32 594 351 32 198 
47 29 494 108 32 563 169 33 806 230 33 408 291 31 676 352 32 321 
48 28 916 109 31 525 170 33 822 231 35 680 292 30 495 353 32 751 
49 30 910 110 30 029 171 33 373 232 35 632 293 30 223 354 31 669 
50 31 111 111 28 841 172 33 151 233 36 104 294 32 420 355 30 478 
51 31 030 112 31 007 173 31 752 234 35 364 295 32 446 356 29 857 
52 31 862 113 32 273 174 31 774 235 33 695 296 32 189 357 31 587 
53 31 204 114 32 663 175 33 665 236 32 559 297 30 878 358 31 564 
54 29 352 115 32 301 176 33 731 237 32 611 298 29 227 359 32 430 
55 29 132 116 31 699 177 33 504 238 35 252 299 28 879 360 32 055 
56 31 156 117 29 685 178 33 543 239 34 638 300 28 932 361 31 912 
57 30 873 118 29 318 179 32 954 240 34 811 301 32 250 362 29 682 
58 30 899 119 32 605 180 31 560 241 34 183 302 32 562 363 29 684 
59 30 338 120 31 914 181 32 974 242 33 005 303 31 798 364 31 908 
60 30 577 121 31 675 182 34 836 243 31 906 304 31 785 365 31 798 
61 29 170 122 30 420 183 34 173 244 31 701 305 30 952  
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s 

qmax 

5.3. Chapter summary 105 

The production cost rates Cs (R/MWh) and the EUF values for the power stations (qmin and 

s ) were made available by the existing architecture of the EFS’s production planning in 2014 

[195]. As in the 32-unit IEEE-RTS case study, the UCLF and OCLF values were set to zero, so 

as to only analyse how the PCLF values (which depend solely on the GMS decision variables) 

affect the production cost. 

 

5.2.2 Hourly load data 
 

The hourly energy demand data for the annual planning horizon is presented on the compact 

disc described in Appendix B. Table 5.8 contains the daily peak load demand (from the hourly 

data) of the power system. These data were, in fact, represented in Figure 3.1(a). 

 
 

5.3 Chapter  summary 
 
The data pertaining to two case studies carried out later in this dissertation were described in 

this chapter. These case studies are referred to as the 32-unit IEEE-RTS inspired case study 

and the 157-unit Eskom case study. All the parameters and data required to specify these GMS 

problem instances were presented in tabular form. The GMS model proposed in Chapter 3 is 

solved in Chapters 6 and 7 in the contexts of the case studies reviewed here. 
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Algorithmic parameter evaluation 
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This chapter is devoted to determining good parameter values for the DMOSA algorithm de- 

scribed in Chapter 4. These values are determined more extensively for the 32-unit IEEE-RTS 

inspired case study than for the much larger 157-unit Eskom case study. In the latter case, the 

focus is rather to determine appropriate epoch lengths and, in relation, extending the proposed 

stopping criterion for the DMOSA algorithm. 

 

 

6.1 Algorithmic parameters 

 
The parameters that may be adjusted (fine tuned) for the DMOSA algorithm described in Chap- 

ter 4, include the epoch lengths (over how many iterations the temperature is kept constant), the 

cooling parameters, namely the geometric decrease rate and increase magnitude of temperature 

(α and β), the initial acceptance ratio (τ ), and the multiplicative constraint violation severity 

(γ). 

As discussed in some detail in §4.3.5, suggestions in the literature as to good α-values range 

from 0.80 to 0.99 [46, 60, 82, 61, p. 45] with β-values being similar [2, 28] or being selected 

slightly lower between 0.25 and 0.67 [13, 192] for faster reheating than cooling [2]. 

Suggestions in the literature for good τ -values range from 0.2 to 0.5 [179, 61, p. 45] whilst in 

[30] it is suggested that τ be taken as 0.8. In the relatively new multiplicative penalty function 

developed in [171], the penalty factor severity γ was set to 1. Based on these suggestions, 

three (low, medium and high) values are considered in this dissertation for each of the four SA 

parameters, as shown in Table 6.1.  Thus 34  = 81 cases are considered with a view to find a 

combination of parameter values that perform best. In each of these combinations, sixteen runs 
of the DMOSA algorithm are executed, resulting in 81 × 16 = 1 296 non-dominated fronts. 

The performance of the different parameter combinations are measured according to the hyper- 

volume indicator H described in §4.1.1. In order to determine H for the non-dominated front 

returned by each run of the DMOSA algorithm, the objectives are normalised (so that they 

 
107 
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Table 6.1: Parameter values considered in the algorithmic parameter evaluation experiment. 

 

Parameter Low Medium High Comments 

α 0.85 0.90 0.95 Geometric decrease (cooling) 
β 0.55 0.75 0.95 Geometric increase (reheating) 

τ 0.50 0.65 0.80 Initial rate of acceptance 

γ 0.50 1.00 1.50 Multiplicative constraint violation severity 

 
 

achieve values between 0 and 1). In addition, an adequate reference point had to be chosen. In 

this case, this is trivial [203], since the reference point chosen should not allow certain objectives 

to contribute more than others towards the hypervolume measures. A rule-of-thumb for the 

choice of a good reference point is to take the “corner point” of the objective space (i.e. either 

the bounds of the objective functions being maximised or minimised) [203]. All hypervolume 

indicators are calculated using the dominatedHypervolume function in the mco (abbreviation for 

multiple criteria optimization) package [140] in R. 

 

 

6.2 Parameter evaluation for the 32-unit IEEE-RTS case study 

 
In the case of the 32-unit IEEE-RTS case study, no strong trade-off values could be found between 

the two objectives proposed for the GMS model of Chapter 3, as illustrated in Figure 6.1(a). 

This means that the schedule maximising the reliability value (minimising the SSR) determined 
in the SO study in [169] (× in Figure 6.1) would also produce minimum or very close to minimum 

fuel cost schedules. 

This may be attributed to the fact that there is sufficient reserve capacity (even with large 

amounts of maintenance) to satisfy the load demand at minimal fuel cost, and therefore the 

amount of energy production planned for the more expensive power stations (if any) are not 

significant enough to cause large fuel cost differences. It is, however, interesting that when the 

load is increased1 more trade-offs are possible between schedules attempting to minimise the 

SSR (MW2) and the fuel cost ($), as illustrated in Figure 6.1(c). 

The IEEE-RTS’s load was increased by 15% in this dissertation in order to facilitate a comparison 

of results with those of Schlünz et al. [168, 169], who adopted a safety margin of S = 15% in 

(3.4). This increase ensures that the maintenance solutions proposed in this dissertation also 

still satisfy the demand constraint in [169]. 

For the 32-unit IEEE-RTS case study, the upper and lower bounds for normalising the objective 

function values and determining a good reference point for hypervolume calculations were esti- 

mated by evaluating all the non-dominated fronts found for the parameter tests (81×16=1 296 
runs).  These bounds are illustrated in Table 6.7.  With the objective functions normalised in 

respect of these bounds (see Table 6.7), the reference point was chosen slightly larger at (1.05, 

1.05). 

Experiments were initially conducted to determine a good epoch length criterion (i.e. for how 

many iterations the SA search should remain in a temperature stage), assuming the medium 

values in Table 6.1 for the other parameters. These values were considered in four multiples of 

the suggested scheme in [61, p. 45] which states that inner Metropolis loop should terminate 

when one of the following two conditions is met: a maximum of 12N solutions are accepted, or 
 

 

1Importantly, the peak demand remains the same for similar SSR value comparisons. 
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(c) Load increased by 15% (d) Load increased by 20% 
 

Figure 6.1: Non-dominated fronts found in respect of the IEEE-RTS case study for the different load 
increases. The increase in loads are only applicable to the ED LP model (the second objective). The 
peak demand used to calculate the SSR value remains the same so as to be able to compare results with 
those reported in [169]. 

 
 

a maximum of 100N solutions are attempted. Here N is a measure of the number of degrees 

of freedom in the optimisation problem — in this case N = n (the number of units). In order 

to measure the performance of each of these four epoch length stopping criteria, eight runs 

of the DMOSA were executed. The non-dominated front hypervolume averages and standard 

deviations achieved by employing these four epoch length stopping criteria are shown in Figures 

6.2(a) and 6.2(c). Figures 6.2(b) and 6.2(d) contain similar graphs and values for the case where 

the (combined) attainment front is considered. As may be seen in the figures, the 3N , 25N 

stopping criterion performed the best, on average, for the eight runs tested. These values are 

therefore adopted in the remainder of this dissertation when applying the DMOSA algorithm 

to the 32-unit IEEE-RTS inspired case study.  These values also produced the best (combined) 
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12N,100N 

6N,50N 

3N,25N 

1.5N,12.5N 

×106 

 
 

12N,100N 

6N,50N 

3N,25N 

1.5N,12.5N 

×106 

 

Table 6.2: Objective function upper and lower bounds for the 32-unit IEEE-RTS inspired case study 
(with a 15% increased load). These bounds are used to normalise the objectives and to determine an 
adequate hypervolume reference point. 

 

 

SSR  (MW2) 33 627 2921 37 354 828 

Production  Cost  ($) 649 516 204 664 202 101 

1 Best solution found for SO study in [168, 169] 

 

attainment front, as is evident in Figure 6.2(b). This attainment is beneficial in the paradigm of 

parallel computing, which is ideally suited to (MO) metaheuristics. These benefits are explored 

further in the next chapter. 
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(a) Non-dominated fronts for all 8 runs (b) Non-dominated attainment front from 8 runs 

 

   

12N,100N 0.773 0.077 

6N,50N 0.901 0.026 

3N,25N 0.920 0.033 

1.5N,12.5N 0.753 0.188 

(c) Non-dominated fronts for all 8 runs 

12N,100N 0.890 D 

6N,50N 0.955 D. 

3N,25N 0.972 0 
1.5N,12.5N 0.949 + 

(d) Attainment front from 8 runs 
 

Figure 6.2: Results pertaining to different epoch length stopping criteria for the 32-unit IEEE-RTS 

inspired case study. 

 
Adopting this 3N , 25N epoch length stopping criterion, sixteen runs of the DMOSA algorithm 

were subsequently executed for each of the 81 combination of parameters (shown in Table 6.1). 

The two best objective function pairs (according to average and maximum hypervolume values) 

are presented in Table 6.3. 

Table 6.4 summarises all the average hypervolume results for the 81 different parameter com- 

binations, along with the average numbers of solutions in the final non-dominated front and 

average numbers of iterations required to achieve the three parameter values (low, medium, and 
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1 0.8109 0.8080 0.807 1 0.8168 0.8084 0.8012 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.5 0.65 0.8 0.5 1 1.5 

 

Table 6.3: The best average and absolute maximum results found for the 32-unit IEEE-RTS inspired 
case study over all 81 different parameter combinations in Table 6.1. Sixteen runs were performed for 
each parameter combination. 

 

Measurement H α β τ γ 

Average 0.861 0.85 0.75 0.65 0.5 
Maximum 0.995 0.90 0.95 0.5 1 

 

 

high). These results are conditionally shaded in the table and the results are sorted in order of 

non-decreasing average hypervolume values for each of the 81 different parameter combinations. 

Figure 6.3 summarises all the hypervolume results thus obtained. This is represented statisti- 

cally in the form of a box and whisker plot with outliers. The mean is denoted by a in the 

Figure 6.3, with the corresponding value presented at the top of graph. In addition, the variance 

is represented by means of a violin trace. Each box and violin plot in Figure 6.3 is based on 432 
(27 × 16) hypervolume values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) Geometric cooling rate (b) Geometric reheating rate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(c) Initial acceptance ratio (d) Constraint penalty severity 
 

Figure 6.3: The distribution of hypervolume indicators for the 32-unit IEEE-RTS inspired case study, 

represented as box and violin plots, as well as the mean for each of the four different parameters in respect 
of their low, medium and high values. 
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Table 6.4: Parameter test results for the 32-unit IEEE-RTS inspired case study, including the average 
(Ave.) hypervolume H, the average number of solutions in the final non-dominated front |F|, the average 

number iterations (Iter.) and the corresponding H ranking. These values are sorted according to non- 
decreasing average hypervolume values. 

 

  
 

0.861 0.85 0.75 0.65 0.50 34 12 243 1 0.812 0.95 0.75 0.50 1.50 32 10 801 42 

0.858 0.85 0.55 0.50 0.50 43 12 723 2 0.811 0.85 0.75 0.50 1.00 37 11 570 43 

0.857 0.90 0.55 0.65 0.50 33 12 936 3 0.811 0.95 0.95 0.65 1.00 41 12 826 44 

0.855 0.85 0.75 0.80 0.50 23 12 274 4 0.810 0.90 0.95 0.50 0.50 30 11 106 45 

0.853 0.85 0.55 0.50 1.00 32 12 970 5 0.809 0.85 0.75 0.80 1.50 34 10 048 46 

0.853 0.90 0.95 0.80 0.50 36 12 281 6 0.808 0.95 0.75 0.50 1.00 39 12 679 47 

0.852 0.85 0.55 0.50 1.50 28 12 727 7 0.807 0.95 0.55 0.50 1.50 35 13 086 48 

0.848 0.90 0.75 0.80 1.00 39 12 899 8 0.806 0.90 0.95 0.50 1.00 32 10 223 49 

0.848 0.85 0.55 0.80 1.50 34 12 613 9 0.806 0.90 0.75 0.65 1.00 35 12 753 50 

0.847 0.90 0.95 0.65 1.00 30 11 816 10 0.804 0.85 0.95 0.80 1.50 24 8 670 51 

0.839 0.90 0.75 0.80 1.50 34 12 602 11 0.803 0.85 0.75 0.50 1.50 34 11 416 52 
0.839 0.90 0.55 0.65 1.00 31 12 909 12 0.802 0.95 0.95 0.50 0.50 30 11 769 53 

0.834 0.90 0.55 0.50 1.50 24 13 051 13 0.801 0.95 0.55 0.50 0.50 36 12 890 54 

0.833 0.85 0.95 0.50 0.50 35 9 020 14 0.800 0.90 0.95 0.80 1.50 40 11 654 55 

0.832 0.85 0.75 0.65 1.50 31 12 487 15 0.799 0.85 0.55 0.80 1.00 37 10 371 56 

0.831 0.85 0.55 0.80 0.50 25 11 853 16 0.798 0.85 0.95 0.65 0.50 30 6 541 57 

0.830 0.85 0.55 0.65 1.50 35 13 035 17 0.798 0.90 0.75 0.65 0.50 27 11 991 58 

0.829 0.90 0.75 0.80 0.50 34 12 652 18 0.797 0.95 0.75 0.80 0.50 34 12 836 59 

0.828 0.95 0.75 0.65 0.50 25 12 927 19 0.795 0.85 0.95 0.65 1.00 32 9 029 60 

0.827 0.90 0.75 0.50 0.50 31 11 992 20 0.794 0.85 0.95 0.65 1.50 34 7 961 61 

0.827 0.95 0.95 0.65 0.50 40 12 982 21 0.790 0.95 0.55 0.65 1.00 37 12 850 62 

0.827 0.85 0.95 0.80 1.00 23 10 442 22 0.790 0.95 0.75 0.80 1.50 34 12 935 63 

0.826 0.90 0.55 0.80 0.50 30 12 937 23 0.788 0.90 0.75 0.50 1.50 35 11 834 64 
0.826 0.95 0.75 0.50 0.50 35 12 787 24 0.788 0.85 0.95 0.50 1.00 30 8 038 65 

0.826 0.85 0.55 0.65 1.00 30 12 526 25 0.785 0.95 0.75 0.65 1.00 31 12 782 66 

0.826 0.85 0.55 0.65 0.50 39 12 901 26 0.782 0.95 0.55 0.80 1.00 38 12 998 67 

0.825 0.85 0.75 0.50 0.50 30 12 676 27 0.777 0.90 0.95 0.50 1.50 38 10 869 68 

0.824 0.90 0.55 0.80 1.50 22 13 055 28 0.777 0.95 0.95 0.80 0.50 28 12 838 69 

0.823 0.90 0.75 0.65 1.50 26 12 286 29 0.775 0.85 0.95 0.80 0.50 24 8 032 70 

0.822 0.90 0.55 0.50 1.00 35 12 756 30 0.774 0.95 0.95 0.50 1.50 27 12 702 71 

0.822 0.90 0.95 0.65 0.50 26 11 086 31 0.774 0.85 0.75 0.65 1.00 30 12 926 72 

0.821 0.90 0.55 0.65 1.50 30 13 089 32 0.769 0.95 0.55 0.65 0.50 24 12 070 73 

0.818 0.95 0.75 0.65 1.50 21 13 078 33 0.768 0.95 0.55 0.50 1.00 34 12 911 74 

0.816 0.90 0.75 0.50 1.00 24 12 314 34 0.765 0.85 0.95 0.50 1.50 34 8 878 75 

0.815 0.95 0.95 0.80 1.00 32 11 307 35 0.757 0.95 0.75 0.80 1.00 21 12 980 76 
0.815 0.95 0.95 0.80 1.50 29 12 913 36 0.754 0.95 0.95 0.65 1.50 32 10 806 77 

0.815 0.90 0.95 0.80 1.00 36 11 216 37 0.743 0.95 0.55 0.65 1.50 34 13 008 78 

0.814 0.90 0.55 0.50 0.50 36 12 470 38 0.742 0.90 0.95 0.65 1.50 30 8 878 79 

0.814 0.95 0.95 0.50 1.00 36 12 242 39 0.735 0.95 0.55 0.80 1.50 33 12 893 80 

0.812 0.85 0.75 0.80 1.00 25 12 219 40 0.728 0.95 0.55 0.80 0.50 34 13 098 81 

0.812 0.90 0.55 0.80 1.00 31 12 879 41         

Ave.  Ave. H 

   H α β τ γ |F|  Iter.  Rank 

Ave. Ave.  Ave. H 

   H α β τ γ |F|  Iter.  Rank 
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The only clear trend in Table 6.4 is that a slower cooling rate α (e.g. 0.95) produces a smaller 

hypervolume value. This is also evident in Figure 6.3(a). This observation is attributed to the 

algorithm spending more time exploring whilst at the higher temperatures. The observation 

is also because a timeout (of 8 hours) is enforced on the computation time expended by the 

algorithm — if this were to be increased, a different result may possibly have been achieved. This 

is evident in the literature related to SA, which states that there is a trade-off between solution 

quality and computing time expended (see Table 4.1, for example). As may be seen in the three 

other graphs in Figure 6.3, there is no clearly discernible trend for the other three parameters 

in relation to the hypervolumes attained. Naturally, the combination of the parameter values is, 

however, important as evident in Table 6.4. For example, the two worst performing parameters 

in terms of the hypervolume indicator (the last two rows in Table 6.4) are achieved when the SA 

algorithm cools slowly (α = 0.95) and has a large temperature increase (β = 0.55), attributed 

to the algorithm spending more time exploring at the higher temperatures, as explained above. 

A slight trend is visible in Table 6.4 for the constraint violation severity factor γ, where a lower 

value of 0.50 seems to perform well (the first rows in Table 6.4) in terms of the hypervolume 

indicator, while a higher constraint penalty violation severity value of 1.50 does not perform so 

well in this respect. This is attributed to the objective functions being penalised too severely 

and the algorithm not being allowed to search through the infeasible regions of the solution 

space in order to reach high-quality feasible solutions. 

No real clear trend is visible in Table 6.4 in respect of the influence that the initial acceptance 

ratio τ has on the average hypervolume H. 

Table 6.5 summarises the average number of iterations (accepted and attempted moves) required 

in each case by the algorithm, along with the average number of reheats and the average number 

of consecutive reheats, as well as the performance ranking according to the average hypervolume 

in Table 6.4. These results are sorted in non-descending order according to the average number 

of iterations required for each of the 81 different parameter combinations. Naturally, the larger 

the average number of reheats and specifically the larger the average number of consecutive 

reheats, the smaller the average number of iterations the algorithm requires, since the algorithm 

invariably terminates before the eight-hour computation time budget tmax has elapsed, as is 

evident in Table 6.5. 

As may be seen in the first rows of Table 6.5 (for fast cooling rates of α = 0.85 and small 

incremental reheating values of β = 0.95), the algorithm quickly decreases the temperature 

and with small increases in temperature (reheating by 1/(β = 0.95)) the algorithm therefore 

terminates due to the occurrence of three consecutive reheatings (Ωfrozen = 3) before the eight- 

hour computation time budget tmax has elapsed (hence the average number of iterations is 

much smaller). Reheating occurs when a maximum allowable number of solutions have been 

attempted (25N in this case). The reason why the algorithm reheats more frequently when 

assuming these parameter values (α = 0.95 and β = 0.95) is that at lower temperatures the 

probability of accepting a worsening solution is smaller and hence the algorithm less frequently 

accepts neighbouring solutions. The opposite response is observed for the reheating parameter, 

as may be seen the last rows of Table 6.5, where a large increase in temperature (reheating by 

1/(β = 0.55)) means that the algorithm explores more again in the next epoch and hence again 

starts accepting more neighbouring solutions. The algorithm typically terminates after eight 

hours, and so the number of iterations required is larger. 

No clear trend is visible in Table 6.5 with respect to the influence that the initial acceptance 

ratio τ has on the number of iterations required by the algorithm before termination (resulting 

in a larger number of search iterations). 
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Ave. Ave. Ave. H Ave. Ave. Ave. H 

 

 

Table 6.5: Parameter test results for the 32-unit IEEE-RTS inspired case study, including the average 
number of iterations (Ave. Iter.), the average number of times reheating occured (Reh.) and the average 
number of consecutive reheatings that occurred (CR) across the sixteen runs. The results are sorted 
according to non-decreasing average numbers of iterations. 

 
 
 

Iter. α β τ γ Reh. CR Rank Iter. α β τ γ Reh. CR Rank 

6 541 0.85 0.95 0.65 0.50 3.2 3.0 57 12 613 0.85 0.55 0.80 1.50 3.8 2.1 9 
7 961 0.85 0.95 0.65 1.50 3.9 3.0 61 12 652 0.90 0.75 0.80 0.50 3.2 1.9 18 
8 032 0.85 0.95 0.80 0.50 4.2 2.9 70 12 676 0.85 0.75 0.50 0.50 3.2 1.8 27 
8 038 0.85 0.95 0.50 1.00 4.2 2.9 65 12 679 0.95 0.75 0.50 1.00 2.3 2.1 47 
8 670 0.85 0.95 0.80 1.50 3.9 3.0 51 12 702 0.95 0.95 0.50 1.50 2.1 1.8 71 
8 878 0.85 0.95 0.50 1.50 4.8 3.0 75 12 723 0.85 0.55 0.50 0.50 4.1 1.9 2 
8 878 0.90 0.95 0.65 1.50 3.7 2.8 79 12 727 0.85 0.55 0.50 1.50 3.9 2.0 7 
9 020 0.85 0.95 0.50 0.50 5.0 2.9 14 12 753 0.90 0.75 0.65 1.00 3.0 1.7 50 
9 029 0.85 0.95 0.65 1.00 4.7 3.0 60 12 756 0.90 0.55 0.50 1.00 3.4 1.9 30 

10 048 0.85 0.75 0.80 1.50 4.2 2.6 46 12 782 0.95 0.75 0.65 1.00 1.6 1.4 66 
10 223 0.90 0.95 0.50 1.00 4.4 2.9 49 12 787 0.95 0.75 0.50 0.50 1.9 1.5 24 
10 371 0.85 0.55 0.80 1.00 3.2 1.6 56 12 826 0.95 0.95 0.65 1.00 2.3 1.7 44 
10 442 0.85 0.95 0.80 1.00 5.1 3.0 22 12 836 0.95 0.75 0.80 0.50 1.3 1.1 59 
10 801 0.95 0.75 0.50 1.50 2.9 2.3 42 12 838 0.95 0.95 0.80 0.50 2.1 1.8 69 
10 806 0.95 0.95 0.65 1.50 2.1 1.9 77 12 850 0.95 0.55 0.65 1.00 1.4 1.4 62 
10 869 0.90 0.95 0.50 1.50 4.1 2.6 68 12 879 0.90 0.55 0.80 1.00 2.3 1.5 41 
11 086 0.90 0.95 0.65 0.50 4.5 2.9 31 12 890 0.95 0.55 0.50 0.50 1.8 1.3 54 
11 106 0.90 0.95 0.50 0.50 4.3 2.6 45 12 893 0.95 0.55 0.80 1.50 0.9 0.9 80 
11 216 0.90 0.95 0.80 1.00 3.9 2.8 37 12 899 0.90 0.75 0.80 1.00 3.3 1.9 8 
11 307 0.95 0.95 0.80 1.00 4.4 2.8 35 12 901 0.85 0.55 0.65 0.50 4.1 2.1 26 
11 416 0.85 0.75 0.50 1.50 4.8 2.6 52 12 909 0.90 0.55 0.65 1.00 2.9 1.6 12 
11 570 0.85 0.75 0.50 1.00 4.8 2.4 43 12 911 0.95 0.55 0.50 1.00 1.7 1.4 74 
11 654 0.90 0.95 0.80 1.50 4.2 2.7 55 12 913 0.95 0.95 0.80 1.50 2.3 2.1 36 
11 769 0.95 0.95 0.50 0.50 3.8 2.9 53 12 926 0.85 0.75 0.65 1.00 1.6 1.2 72 
11 816 0.90 0.95 0.65 1.00 4.0 2.5 10 12 927 0.95 0.75 0.65 0.50 2.1 1.6 19 
11 834 0.90 0.75 0.50 1.50 3.8 2.4 64 12 935 0.95 0.75 0.80 1.50 1.7 1.4 63 
11 853 0.85 0.55 0.80 0.50 3.6 2.3 16 12 936 0.90 0.55 0.65 0.50 2.8 1.6 3 
11 991 0.90 0.75 0.65 0.50 3.9 2.4 58 12 937 0.90 0.55 0.80 0.50 2.6 1.4 23 
11 992 0.90 0.75 0.50 0.50 3.8 2.3 20 12 970 0.85 0.55 0.50 1.00 3.6 1.8 5 
12 070 0.95 0.55 0.65 0.50 1.6 1.4 73 12 980 0.95 0.75 0.80 1.00 1.5 1.3 76 
12 219 0.85 0.75 0.80 1.00 3.9 2.0 40 12 982 0.95 0.95 0.65 0.50 2.4 2.1 21 
12 242 0.95 0.95 0.50 1.00 2.9 2.3 39 12 998 0.95 0.55 0.80 1.00 1.4 1.3 67 
12 243 0.85 0.75 0.65 0.50 4.6 2.4 1 13 008 0.95 0.55 0.65 1.50 1.6 1.5 78 
12 274 0.85 0.75 0.80 0.50 4.2 2.1 4 13 035 0.85 0.55 0.65 1.50 3.6 1.6 17 
12 281 0.90 0.95 0.80 0.50 4.2 2.2 6 13 051 0.90 0.55 0.50 1.50 2.8 1.6 13 
12 286 0.90 0.75 0.65 1.50 3.5 2.0 29 13 055 0.90 0.55 0.80 1.50 2.4 1.4 28 
12 314 0.90 0.75 0.50 1.00 4.0 2.3 34 13 078 0.95 0.75 0.65 1.50 1.8 1.4 33 
12 470 0.90 0.55 0.50 0.50 3.2 1.9 38 13 086 0.95 0.55 0.50 1.50 1.6 1.3 48 
12 487 0.85 0.75 0.65 1.50 4.6 2.0 15 13 089 0.90 0.55 0.65 1.50 2.8 1.8 32 
12 526 0.85 0.55 0.65 1.00 4.2 2.1 25 13 098 0.95 0.55 0.80 0.50 1.1 1.1 81 
12 602 0.90 0.75 0.80 1.50 3.6 2.2 11         
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Table 6.6: Parameter test results for the IEEE-RTS case study sorted according to non-decreasing 
average numbers of feasible solutions accepted by the DMOSA algorithm. The table also contains the 
average hypervolume (Ave. H) and average hypervolume rank (H Rank). 

 

Feas.     Ave. H Feas.     Ave. H 
(%) α β τ γ H Rank (%) α β τ γ H Rank 

 

49.47 0.85 0.75 0.50 0.50 0.825 27 21.67     0.815 35 

46.59 0.85 0.75 0.50 1.00 0.811 43 21.54     0.798 57 

41.78 0.85 0.75 0.50 1.50 0.803 52 21.07     0.799 56 

39.37 0.85 0.95 0.50 0.50 0.833 14 21.05     0.800 55 

38.61 0.85 0.75 0.65 0.50 0.861 1 20.62     0.822 30 

37.54 0.85 0.55 0.50 1.00 0.853 5 20.36     0.826 23 

37.04 0.85 0.95 0.50 1.50 0.765 75 20.20     0.839 11 
36.82 0.85 0.75 0.80 1.00 0.812 40 19.34     0.826 24 

35.80 0.85 0.75 0.65 1.50 0.832 15 19.01     0.742 79 

35.20 0.85 0.75 0.80 0.50 0.855 4 18.90     0.824 28 

34.03 0.85 0.95 0.65 1.00 0.795 60 18.52     0.815 37 

33.50 0.85 0.55 0.50 1.50 0.852 7 17.80     0.821 32 

33.48 0.85 0.55 0.50 0.50 0.858 2 17.77     0.814 38 

32.47 0.90 0.95 0.65 1.00 0.847 10 16.73     0.812 41 

31.52 0.90 0.75 0.50 1.00 0.816 34 15.04     0.774 71 

31.42 0.85 0.95 0.80 1.00 0.827 22 14.54     0.827 21 

30.88 0.90 0.75 0.50 1.50 0.788 64 13.25     0.807 47 

30.74 0.90 0.95 0.50 0.50 0.810 45 12.48     0.828 19 

30.72 0.90 0.75 0.50 0.50 0.827 20 12.05     0.812 42 
30.26 0.85 0.95 0.65 1.50 0.794 61 11.99     0.818 33 

30.01 0.85 0.55 0.65 1.00 0.826 25 11.98     0.785 66 

29.79 0.85 0.55 0.65 1.50 0.830 17 11.96     0.811 44 

29.52 0.90 0.95 0.50 1.00 0.806 49 11.59     0.814 39 

27.79 0.85 0.95 0.50 1.00 0.788 65 11.20     0.802 53 

27.59 0.90 0.95 0.65 0.50 0.822 31 9.33     0.801 54 

27.13 0.90 0.95 0.50 1.50 0.777 68 9.25     0.807 48 

26.15 0.90 0.75 0.65 1.00 0.806 50 8.90     0.815 36 

25.97 0.90 0.75 0.80 1.00 0.848 8 8.07     0.757 76 

25.85 0.90 0.55 0.65 1.00 0.839 12 8.04     0.790 63 

25.55 0.90 0.75 0.80 0.50 0.829 18 7.94     0.777 69 

25.45 0.85 0.55 0.65 0.50 0.826 26 7.86     0.774 72 
25.42 0.85 0.55 0.80 1.50 0.848 9 7.83     0.790 62 

25.00 0.90 0.55 0.50 1.50 0.834 13 7.63     0.768 74 

24.42 0.90 0.95 0.80 0.50 0.853 6 7.61     0.743 78 

24.27 0.90 0.75 0.65 0.50 0.798 58 7.35     0.754 77 

24.13 0.85 0.75 0.80 1.50 0.809 46 7.08     0.797 59 

23.48 0.85 0.95 0.80 1.50 0.804 51 6.09     0.782 67 

22.60 0.90 0.75 0.65 1.50 0.823 29 5.76     0.769 73 

22.48 0.85 0.55 0.80 0.50 0.831 16 5.07     0.735 80 

22.33 0.85 0.95 0.80 0.50 0.775 70 4.51     0.728 81 

22.08 0.90 0.55 0.65 0.50 0.857 3        
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For the constraint violation severity factor γ, it may be seen in the last rows of Table 6.5 that 

a larger value (1.5) causes the algorithm not to reheat as often. The algorithm therefore tends 

not to terminate before the eight-hour computation time budget tmax has elapsed. 

Table 6.6 summarises the total percentage of feasible solutions accepted (all sixteen runs’ data 

combined) along with the average hypervolume and the corresponding rank. The feasibility per- 

centage in the table represents the number of times the DMOSA algorithm found and accepted 

feasible solutions over the total number of solutions accepted. As may be seen in Table 6.6, a fast 

geometric cooling rate (α = 0.85) produces a larger feasibility percentage, since the algorithm 

does not explore as long at high temperatures and therefore accepts fewer infeasible solutions 

(due to the multiplicative penalty constraint handling technique employed). The converse is 

also true, as illustrated in the last rows of Table 6.6, namely that a slow geometric cooling rate 

(α = 0.95) translates into more infeasible solutions being accepted (a low feasibility percentage). 

This is further evident in Figure 6.4(a) in which it is clear that the reheating parameter β also 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

(a) Geometric cooling rate (b) Geometric reheating rate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(c) Initial acceptance ration (d) Constraint penalty severity 
 

Figure 6.4: The distribution of feasible solutions accepted in the 32-unit IEEE-RTS case study, repre- 
sented as box and violin plots, as well as the mean for each of the four different cooling parameters and 
their low, medium and high settings. 

 
influences the feasibility percentage (the last rows of Table 6.6, where a reheating parameter 

value of 0.55 results in the algorithm exploring longer at higher temperatures). Naturally, the 
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Figure 6.5: Scatter plot for the 32-unit IEEE-RTS inspired case study of the average hypervolume as a 

function of (a) the percentage of feasible solutions accepted (data from Table 6.6) and (b) the percentage 
of feasible solutions uncovered (attempted and accepted). 

 
 
 

combination of slow cooling (α = 0.95) and fast reheating (α = 0.55) means that the algorithm 

spends a considerable amount of time exploring at high temperatures, resulting in a large num- 

ber of infeasible solutions being accepted (due to the multiplicative penalty constraint handling 

technique employed) as is evident in the last rows of Table 6.6 and in Figure 6.4(b). 

 
As may further be seen in Table 6.6 and Figure 6.4(c), the initial acceptance ratio τ affects the 

number of feasible solutions accepted. This is intuitive, since at higher values (τ = 0.8) the 

algorithm begins probabilistically accepting worsening and probably more infeasible solutions 

(due to the multiplicative penalty constraint handling technique employed). At lower values 

(τ = 0.5), on the other hand, the algorithm initially does not accept as many worsening solutions. 

 
For the multiplicative constraint penalty severity factor γ, no clear trend was found in respect 

of the influence on the percentage of feasible solutions accepted, as shown in Table 6.6 and 

Figure 6.4(d). A larger value (γ = 1.5), however, on average produces a smaller percentage of 

feasible solutions accepted. 

 
There is a correlation between the number of feasible solutions accepted (column 1 in Table 6.6) 

and the average hypervolume (column 3 in Table 6.6), as illustrated in Figure 6.5(a), in the sense 

that the more feasible solutions the DMOSA algorithm accepts, the better the performance of the 

final non-dominated front in terms of hypervolume. This is attributed to the search progressing 

more quickly towards the feasible space and finding the final non-dominated front quicker. Of 

further interest is Figure 6.5(b), which illustrates a correlation between the average hypervolume 

achieved and the feasible solutions uncovered (those accepted and attempted). Naturally, the 

percentage of feasible solutions uncovered is far lower than the percentage of feasible solutions 

accepted (see Figure 6.5), since not all the worse solutions (and most probably more infeasible 

solutions) are accepted. This further demonstrates that the GMS problem is usually a relatively 

tightly constrained problem. 

A
v
e
ra

g
e 

H
 

Stellenbosch University  https://scholar.sun.ac.za



118 Chapter 6. Algorithmic parameter evaluation 
 

 

6.3 Parameter evaluation for the 157-unit Eskom case study 
 

For the 157-unit Eskom case study, the upper and lower bounds employed for normalising 

the objective function values and for hypervolume reference point selection were estimated by 

studying all the non-dominated fronts found during the course of the research reported in this 

dissertation. These bounds are provided in Table 6.7. As in the case of the 32-unit IEEE-RTS 

inspired case study, the objective functions were normalised with respect to the bounds provided 

in Table 6.7. The reference point was again chosen slightly larger at (1.05, 1.05). 
 

Table 6.7: Objective function upper and lower bounds for the 157-unit Eskom case study. These values 

are used to normalise the objectives and to determine an adequate hypervolume reference point. 
 

 

SSR  (MW2) 11 101 712 7021   11 442 963 630 

Production  Cost  (R) 26 654 977 043 26 678 744 511 

1 Best solution found for the SO study in [168, 170] 

 
The 157-unit Eskom case study problem instance is considerably larger than the 32-unit IEEE- 
RTS inspired case study (a 157 unit × 365 day schedule versus a 32 unit × 52 week schedule). 

It therefore takes considerably longer to find non-dominated fronts of reasonable quality. It 

was found empirically that the epoch length criterion was more influential in respect of the 

performance of the DMOSA algorithm than the other four SA parameters (α, β, τ and γ). 

A less extensive parameter evaluation was subsequently performed in respect of the Eskom 

case study in the sense that the best α, β, τ and γ values uncovered in the context of the 

IEEE-RTS inspired case study (see Table 6.3) were employed in order to find a suitable epoch 

length stopping criterion. In addition, due to the larger problem instance size, the amount of 

computation time allowed (8 hours in the 32-unit IEEE-RTS inspired case study) naturally had 

an influence on the performance of the epoch length criteria, as is evident in Figure 6.6. Table 6.8 

contains the hypervolume values corresponding to the non-dominated fronts of Figure 6.6. 
 

Table 6.8: Hypervolumes of the non-dominated fronts for the 157-unit Eskom case study (where 

N = n = 157), according to different epoch length criteria over different computation time budgets, 
as illustrated in Figure 6.6. 

 

 D 

12N,100N 
D. 

6N,50N 
0 

3N,25N 

+ 

1.5N,12.5N 
  

0.75N,6.25N 
⊕  

0.375N,3.125N 
* 

0.1875N,1.5265N 

8 0.029 0.560 * 0.804 0.746 0.787 0.745 
16 0.029 0.560 0.765 0.805 0.835 0.788 — 
24 0.029 0.806 0.783 0.842 0.835 0.788 — 
48 0.724 0.878 0.826 — 0.865 0.829 — 
56 0.724 0.878 0.826 — — — — 
64 0.724 0.878 0.826 — — — — 

* No feasible non-dominated front found 

— Algorithm terminated by reheating stopping criteria 

 
As may be seen in Figure 6.6 and Table 6.8, the shorter the epoch length stopping criterion 

(e.g. * in Figure 6.6 and Table 6.8), the faster algorithm converges to a non-dominated front 

(since it dwells shorter at higher temperatures, thus accepting fewer worsening moves). It also 

therefore terminates much quicker due to experiencing three consecutive reheatings occurring 

Objective Lower Bound Upper Bound 
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Figure 6.6:  Non-dominated fronts uncovered during different epoch duration tests for the 157-unit 
Eskom case study. 

12N,100N   6N,50N   3N,25N   1.5N,12.5N   0.75N,6.25N   0.375N,3.125N   0.1875N,1.5625N 

P
ro

d
u

c
ti

o
n

 c
o

st
 (
×

1
0

6
R

) 
P

ro
d

u
c
ti

o
n

 c
o

st
 (
×

1
0

6
R

) 
P

ro
d

u
c
ti

o
n

 c
o

st
 (
×

1
0

6
R

) 

Stellenbosch University  https://scholar.sun.ac.za



120 Chapter 6. Algorithmic parameter evaluation 
 

 
earlier. This may be viewed as a case of simulated quenching, rather than simulated annealing. 

Alternatively, the larger the epoch stopping criterion (e.g. D in Figure 6.6 and Table 6.8), the 

longer the algorithm takes to converge to a non-dominated front (see Figure 6.6(a)), spending 

more time exploring the solution space (accepting worsening moves). As time increases, how- 

ever, it converges to better non-dominated fronts more slowly, and is expected to overtake the 

algorithm having shorter epoch length stopping criteria in terms of resulting solution quality 

as computing time continues. This is evident in Figure 6.6 and Table 6.8, again reconfirming 

the common notion for SA schedules and, in fact, most metaheuristics that there is a trade-off 

between solution quality and computing time. 

As may be seen in Figure 6.6 and Table 6.8, the epoch length stopping criterion should be 

altered based on the amount of time available to compute GMS solutions. Another interesting 

point is that one may instead employ shorter epoch lengths, yet lower reheating values β, or 

extend the algorithm’s run time by increasing the number of consecutive reheatings allowed 

before termination (currently Ωfrozen = 3) so as to extend the performance of the shorter epoch 

length stopping criterion over time. 

 
 

6.4 Chapter  summary 
 

The purpose of the chapter was to describe an empirical experiment performed in search of 

adequate parameters for the DMOSA algorithm (reviewed in Chapter 4) for both case studies 
discussed in Chapter 5, namely the 32-unit IEEE-RTS inspired case study (a 32 × 52 schedule) 

and the 157-unit Eskom case study (a 157 × 365 schedule). In the former case study, all param- 

eters were extensively analysed. As the decision space is, however, far larger in the latter case 

study (and the system is more tightly constrained), more focus was placed on determining an 

adequate epoch length criterion and a suitable stopping criterion. 

In the following chapter, numerical results are presented in respect of the two case studies 

mentioned above, using the best-performing parameter values uncovered in this chapter. Addi- 

tionally, verification and validation, as well as an analysis, of the results is documented. 
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This chapter is devoted to a presentation of the results obtained by the DMOSA algorithm 

when solving the bi-objective GMS model of Chapter 4 in the context of the two test systems 

of Chapter 5 and adopting the algorithmic parameter values identified in Chapter 5. The model 

proposed in Chapter 3 is verified and validated, and an indication is given of the performance 

of the SA algorithm. A graphical representation of the bi-objective solution space is presented 

of the 32-unit IEEE-RTS inspired case study. Analyses are also performed of the trade-off ef- 

fects achieved by generator maintenance schedules aimed at optimising the two model objective 

separately. Furthermore, a sensitivity analysis is performed in respect of the effects of the GMS 

model constraints, as well as the effect of considering these constraints as another (composite) 

objective to be optimised within the MO GMS paradigm. Finally, a number of algorithmic im- 

provements and alterations are tested in an attempt to improve the performance of the DMOSA 

algorithm. 

 
 

7.1 Verification and validation of the proposed model 
 

Validation of a model is concerned with how accurately the model represents the real-world 

process. In layman’s terms, the following question is therefore considered during the model 

validation process: Is it the right model ? Verification of a model, on the other hand, is concerned 

with the accuracy of the model and whether it performs as expected; in layman’s terms, the 

following question is therefore considered during the model validation process: Is the model 

right ? In studies utilising simulation and algorithmic techniques, verification primarily entails 

ensuring correct coding. Verification and validation overlap in many cases and hence they are 

dealt with jointly in this section. 

In this section, the energy production planned by the generation cost minimisation LP-module 

of Brits [25], as described in §3.3, is compared with an energy schedule plan in the literature for 

the 32-unit IEEE-RTS inspired case study. In addition, the DMOSA algorithm’s performance is 

 
121 
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Model 
proposed [11] 

 

measured against those of two NSGA-II off-the-shelf packages available in R. Further validation 

of the GMS model of Chapter 3 is considered in the next chapter regarding its implementation 

and feedback received from Eskom with respect to a DSS in which the model is embedded. 

 

7.1.1 Verification and validation of the ED LP model 
 

The output of the production planning module for the 32-unit IEEE-RTS inspired case study 

proposed in §5.1.1 was compared with the production plan determined in the IEEE-RTS follow- 

on paper by Allan et al. in 1986 [11], as illustrated in Figure 7.1. Allan et al. determined 

the energy supplied (Table VIII in [11]) by each unit using an energy-based evaluation method 

described in [11]. This method is based on a merit order (similar to Table 5.1) of the units 

and the IEEE-RTS’s FORs for each unit provided in the 1979 IEEE-RTS [9]. It is assumed 

that Allan et al. also took into account the planned generator maintenance schedule provided 

in Table XI in [11]. This generator maintenance schedule was determined by Billinton and El- 

Sheikhi [20] who adopted a levelised risk scheduling criterion. Allan et al. [11], furthermore, 

assumed that there are no capacity limitations associated with the hydro units and no energy 

limitations (i.e. rendering constraint (5.1f) and Table (5.3) inapplicable in the IEEE-RTS). Thus 

the EUF values for the power stations (qmin and qmax) were set at the extremes, namely 0% and 
s s 

100%. This maintenance schedule was provided as input to the model proposed in §3.3, and the 

corresponding planned energy production for each unit was determined, as shown in Figure 7.1. 
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Figure 7.1: Comparison of the energy production scheduled for each generating unit in each power 
station of the 32-unit IEEE-RTS inspired case study according to the model proposed in §3.3 and the 
modelling approach in [11]. 
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Table 7.1: Comparison between the energy production scheduled according to the model proposed in 

§3.3 and the modelling approach in [11] for the 32-unit IEEE-RTS inspired case study. Columns three 
and four are represented graphically in Figure 7.1. 

 

 
 
 
 

Hydro 
 

 

 

 
Coal-1 

 

 

 

Coal-3 
 
 

 
 

Oil-2 

 

 

 

GT 
 
 

 
 

 

Table 7.1 further contains a comparison of the energy production planned for the generation cost 

LP model proposed in this dissertation with the energy production planned by Allan et al. [11] 

in 1986, as well as the production difference in energy (GWh) and cost ($). As may be seen in 

Figure 7.1 and Table 7.1, although the LP model of §3.3 planned less production for the hydro 

stations, it planned more production for the nuclear units and the next stations in the merit 
order of Table 5.1, resulting in a $4 770 139 ($391 463 705 −  $386 693 566) cheaper production 

plan (representing a 1.22% improvement). Per station, the LP model of §3.3 scheduled similar 

values to those in [11], as is evident in Figure 7.1. The LP model of §3.3, however, only plans per 

1 
Rate in Table 5.1 inflated from 1979 to 2016 (× 3.315) . 

 

 
Oil-3 

 

Oil-1 

 

Coal-2 

Nuclear 

Station 

Name 
 
Unit 

Model 

(GWh) 
[11] 

(GWh) 
Difference 

(Gwh) 
Cost rate1 

($/MWh) 

Model 

($) 

[11] 

($) 

Difference 

($) 

1 420 432 − 12 0 0 0 0 
2 420 432 − 12 0 0 0 0 
3 420 432 − 12 0 0 0 0 
4 420 432 − 12 0 0 0 0 
5 420 432 − 12 0 0 0 0 
6 420 432 − 12 0 0 0 0 
7 3 091 3 075 16 20 61 483 968 61 163 182 320 786 
8 3 091 3 068 24 20 61 483 968 61 016 195 467 773 
9 2 682 2 522 160 38 101 346 251 95 298 963 6 047 288 

10 764 964 − 200 38 29 369 302 37 059 735 − 7 690 433 
11 764 834 − 70 38 29 369 302 32 056 523 − 2 687 222 
12 764 678 86 38 29 369 302 26 061 468 3 307 834 
13 764 527 236 38 29 369 302 20 276 602 9 092 700 
14 176 218 − 42 48 8 401 113 10 385 301 − 1 984 188 
15 176 186 − 10 48 8 401 113 8 883 717 − 482 605 
16 176 154 22 48 8 401 113 7 345 807 1 055 306 
17 176 123 53 48 8 401 113 5 867 327 2 533 785 
18 51 196 − 145 73 3 765 907 14 346 479 − 10 580 572 
19 51 97 − 45 73 3 765 907 7 073 511 − 3 307 604 
20 51 41 11 73 3 765 907 2 975 019 790 888 
21 0 10 − 10 76 0 751 699 − 751 699 
22 0 6 − 6 76 0 431 623 − 431 623 
23 0 3 − 3 76 0 237 808 − 237 808 
24 0 0 0 91 0 24 520 − 24 520 
25 0 0 0 91 0 22 691 − 22 691 
26 0 0 0 91 0 20 952 − 20 952 
27 0 0 0 91 0 19 214 − 19 214 
28 0 0 0 91 0 17 750 − 17 750 
29 0 0 0 144 0 38 214 − 38 214 
30 0 0 0 144 0 33 743 − 33 743 
31 0 0 0 144 0 29 562 − 29 562 
32 0 0 0 144 0 26 101 − 26 101 

 15 297 15 296 2  386 693 566 391 463 705 − 4 770 139 
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Settings nsga2 function in mco package nsga2R package 

 

Table 7.2: Capabilities and parameter settings, together with their default values, in two off-the-shelf 
NSGA-II packages available in R. 

 
 
 

Constraints ../  

Upper & lower bounds ../ ../ 

Generations (g) 100 20 
Population size (p) 100 100 
Crossover probability 0.7 0.7 
Crossover distribution index 5 5 
Mutation probability 0.2 0.2 
Mutation distribution index 10 10 
Tournament size  2 

 
 

station and so the energy production per station is equally spread across the generating units, 

whilst the energy production plan in [11] plans per unit, and thus the energy production per 

unit is much more varied (see Table 7.1 and Figure 7.1). This validates the LP model of §3.3 

and adds verification that the LP production model by Brits [25] was coded correctly in R and 

implemented correctly by the author. 

 

 

7.1.2 Comparison of results with those obtained by an off-the-shelf NSGA-II 
implementation 

 
Most MO metaheuristics reside within the class of evolutionary algorithms [61, p. 207] and as 

such are typically referred to as MOEAs. The most popular MOEA is the NSGA-II [217]. More 

information on the working of the NSGA-II may be found in [52], a paper that has been cited 

a staggering 17 735 times according to Google scholar. 

There are two NSGA-II implementations available as packages in R, namely the nsga2 function 

in the mco (standing for multiple criteria optimization) package [140] and the nsga2R package 

[193]. Both packages are off-the-shelf algorithmic implementations which may be used relatively 

easily to find Pareto-optimal solutions to MOO problems. No additional coding implementation 

for the NSGA-II is required in these packages, which means that the packages automatically 

execute routines such as fast non-dominated sorting, crowding distance measurement, tourna- 

ment selection, simulated binary crossover, and polynomial mutation. The user must specify 

the number and range of the decision variables, the objective functions, constraints (not avail- 

able for the nsga2R package which is applicable to box-constrained MOO problems only), and 

important parameters of the algorithm. These parameters include the population size, tour- 

nament size, crossover probability, crossover distribution index, mutation probability, mutation 

distribution index, and the number of generations. The recommended/default algorithmic pa- 

rameter settings for the packages, as presented in Table 7.2, were adopted by the author, whilst 

a slightly different population size and number of generation were employed. The NSGA-II 

packages in R are only capable of handling continuous decision variables. That said, a gross 

simplification for converting the discrete starting times for each unit (the decision variables Xi 

in the model of Chapter 3) was achieved by rounding the continuous decision variables produced 

by the NSGA-II, whereupon all the GMS objective and constraint functions could be further 

determined. 

The non-dominated front obtained by a single eight-hour DMOSA run with the best parameter 
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settings uncovered in Chapter 6 (according to average H values in Table 6.3) is compared with 

results obtained by the affiliated NSGA-II packages available in R for different paramter settings 

in Figure 7.2 (also allowing eight hours of computation time). As may be seen in Figure 7.2, the 

DMOSA algorithm found non-dominated solutions relatively close to the best-known SO solution 

found by Schlünz and van Vuuren [169] which only minimises the SSR objective. As may be 

further seen in Figure 7.2, the DMOSA algorithm implemented by the author outperformed the 

two different NSGA-II packages available in R for all the different parameter combinations. The 

NSGA-II’s performance could naturally be improved if it were to compute longer, with possibly 

larger population sizes and if rounding of its continuous variables did not take place. 

It was not unexpected that the DMOSA algorithm outperformed these off-the-shelf packages 

since the NSGA-II implementation have not been tailored specifically to the GMS problem’s 

combinatorial nature and form. The above comparison should therefore not be considered to 

imply that the DMOSA algorithm is superior to the NSGA-II in respect of solving the model 

of Chapter 3. The purpose of the comparison was merely to validate whether the DMOSA 

algorithm was an appropriate choice and to verify whether the non-dominated fronts returned 

by the DMOSA algorithm are acceptable in terms of quality. In addition, it is a concern of 

the author that the DMOSA algorithm takes long to uncover non-dominated fronts due to the 

manner of its encoding. The NSGA-II R packages, were also observed to take relatively long to 

find adequate non-dominated fronts, which may be attributed to the relatively long computation 

time associated with the production planning LP model of Brits [25] employed in both cases to 

estimate the production cost objective of the model of Chapter 3. 
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Figure 7.2: Comparison of non-dominated fronts found by the DMOSA algorithm and the NSGA-II 

packages in R, for the 32-unit IEEE-RTS case study. All search runs took approximately 8 hours to 
complete. 
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7.2 Non-dominated GMS solution uncovered 

 
Figure 7.3(a) contains a representation of the objective space of the model of Chapter 3 dis- 

covered for the 32-unit IEEE-RTS inspired case study (both feasible and infeasible solutions) 

during the extensive parameter evaluations of Chapter 6. Figure 7.3(b) contains only the feasible 

GMS solutions in the objective space, showing that there is no strong trade-off present between 

levelising reserve margins (minimising the SSR) and minimising production cost based on the 

generation cost minimisation LP model derived by Brits [25]. This means that minimising the 

SSR objective will generally lead to minimum or close-to-minimum production costs, which is 

attributed to the fact that if there are sufficient net reserves (more achievable in GMS problem 

instances with low gross reserve levels1 when levelising the net reserves), then there are fewer 

instances where energy has to be produced by more expensive units. A solution with the lowest 

SSR value does, however, not necessarily achieve the smallest production cost. This is confirmed 

in the GMS literature [149, 216], as mentioned before. 
 

As may be seen in Figure 7.3(b), different feasible GMS solutions may exhibit more variation 
in respect of SSR objective function values (changes as large as 10.51%, representing ± 3.5 × 

106 MW2) whilst the production cost objective is not as sensitive (changes as large as 2.40%, 
representing ± $16 × 106). 
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Figure 7.3: (a) Objective space representation of the feasible and infeasible GMS solutions uncovered by 

the DMOSA algorithm for the 32-unit IEEE-RTS inspired case study. (b) Objective space representation 
(zoomed in) of only the feasible solutions in part (a) of the figure. 

 
Figure 7.4 further illustrates the degrees of specific constraint violations embodied in the GMS 

solutions of Figure 7.3(a).  As may be seen in Figure 7.4(b), the main reason for so many 

infeasible solutions achieving larger (worse) values in both objectives (see Figure 7.4(a)) is that 

these solutions predominantly violate the demand constraints. Intuitively, a GMS solution 
 

 

1The net reserve is the gross reserve less the capacity lost due to maintenance. Furthermore, the gross reserve 
is the total installed capacity (

),
 
∈ I 

Ii) less the expected demand during time period j ∈  J [67, 90, 215, 201]. 

P
ro

d
u

ct
io

n
 c

os
t 

($
) 

2
.4

0
%

 

i 

Stellenbosch University  https://scholar.sun.ac.za



7.2. Non-dominated GMS solution uncovered 127 
 

 
 

 
 

350 
 

 
300 
 

 
250 
 

 
200 

 
  

 

 
 

 
 

350 
 

 
300 
 

 
250 
 

 
200 

 
 
 

x106
 

Feasible 
False True 

Demand violations (MW) 

 

1160 

 
 

995 

 

 

829 

 

 

663 

36 

 
 

40 44 

 

36 40 44 

Sum of squared reserves (MW2) x106
 Sum of squared reserves (MW2) 

x106

 

 

 

x106
 

(a) (b) 

Exclusion violations Crew violations 

 

1160 

 
 

995 

 

 

829 

 

 

663 

36 

 

40 44 

 
 

x106
 

 
 

36 40 

 
44 

x106
 

Sum of squared reserves (MW2) Sum of squared reserves (MW2) 

(c) (d) 
 

Figure 7.4: Objective space representation of the feasible and infeasible GMS solutions returned by 

the DMOSA algorithm, for the 32-unit IEEE-RTS inspired case study. The objective function values are 
shown in (a) for all solutions. The same representation is shown in (b) [(c) and (d), respectively] together 
with an indication of the degree of load constraint variations [exclusion constraint violations and crew 
availability constraint violations, respectively]. 

 

 
violating the demand constraints will achieve larger (worse) SSR and production cost values. 

There is, however, no clear trend in this respect between the exclusion constraint violations and 

the two GMS objective function values (i.e. the violations are more spread out in Figure 7.4(c)). 

GMS solutions that violate the crew availability constraints more tend to also achieve larger 

(worse) SSR-values (and sometimes larger production cost values), as may be seen in Figure 

7.4(d). The reason for this is that GMS solutions achieving fewer crew constraint violations will 

generally also be more spread out (i.e. not too many units will be scheduled for maintenance 

during any one period), and will thus, depending on the expected demand profiles, exhibit 

more levelised reserves (lower SSR-values). In the next section, a further analysis is conducted 
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in respect of the sensitivity of possible trade-offs uncovered when relaxing some of the GMS 

model’s constraints. 

The final attained front, obtained from the non-dominated fronts from all the experiments 

conducted in this dissertation for the 32-unit IEEE-RTS inspired case study is shown in Fig- 

ure 7.5(a). In addition, the best solution obtained by the SO SA algorithm minimising the SSR 

in [169] is also plotted in the figure for comparison purposes. Figures 7.5(b), 7.5(c) and 7.6 

contain comparisons of the daily available capacity and daily fuel costs for the two extremal sce- 

narios in Figure 7.5(a), whilst Figure 7.7 contains a graphical comparison of their corresponding 

maintenance schedules for the 32 generating units. 

As may be seen in Figures 7.5(b) and 7.5(c), if the net reserves are smaller, i.e. more maintenance 

is performed, the fuel cost is higher on any day. This increased cost is attributed to the more 

expensive units having to be bought online. This is especially evident when the two large and 

cheap nuclear units are scheduled for maintenance (see Figure 7.7). In scenario B, for example, 

the first nuclear unit was scheduled for maintenance earlier, starting in week 4 (day 28), than in 

Scenario A (see Figure 7.7) which forced the more fuel-expensive units to pick up the load that 

the nuclear unit would have supplied (since it is the cheapest), as may be seen in Figure 7.6. 

More variation is exhibited in the SSR dimension of objective space than in the fuel cost di- 

mension of objective space, as may be seen in Figure 7.5(a). It may be further of interest 

to the decision maker to note the daily and total variation in energy production per station 

(see Figure 7.6). A maintenance schedule may be preferred not just in terms of fuel cost, but 

other reasons. Schedules according to which less production scheduled at older and/or more 

environmentally harmful stations may, for example, be preferred over other schedules. 

The attainment front for the 157-unit Eskom case study parameter tests conducted in §6.3 (see 

Figure 6.6) is illustrated in Figure 7.8(a). In addition, the best solution obtained by the SO SA 

algorithm minimising the SSR in [168, 170] is also plotted in the figure for comparison purposes. 

Figures 7.8(b), 7.8(c) and 7.9 contain a graphical comparison of daily available capacity and 

daily fuel costs for the two extremal scenarios in Figure 7.8(a), whilst Figure 7.10 contains a 

similar comparison of their corresponding maintenance schedules for the 157 generating units. 

Only the power stations that achieve a difference in fuel costs (according to the two schedules 

in the two extremal scenarios) are represented in Figures 7.6 and 7.9. Thus some stations are 

not included in these figures due to either their fuel cost rate being zero, their difference in daily 

energy produced being zero across the entire planning horizon, or no energy being produced at 

these power stations on any day of any of the two maintenance schedules scenarios (probably 

because all the cheaper stations were able to meet the load). As may be seen in Figure 7.9, only 

the first twelve coal-fired power stations (in the merit order) make up for the relatively small 

R4 946 483 fuel cost difference between maintenance schedules in Scenarios A and B. 

As may be seen in Figure 7.8(a) the number and spread of points in the non-dominated front 

is substantially less than in the 32-unit IEEE-RTS inspired case study (compare the figure with 

Figure 7.5(a)). For the two extremal scenarios A and B in Figure 7.8, there is not as much 

variation in the generator maintenance schedules (see Figure 7.10), compared to the extremal 

schedules obtained for the 32-unit IEEE-RTS inspired case study (see Figure 7.7). This is 

attributed to the Eskom case study exhibiting tighter constraints in terms of the earliest (ei) 

and latest (fi) starting times allowed (i.e. narrower maintenance windows, which translates to 

restricted freedom of variation for the decision variables) than in the IEEE-RTS case study, as 

described in Tables 5.1 and 5.5, respectively. In the next section, an analysis is performed in 

respect of relaxing these maintenance window constraints. 
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Figure 7.5: (a) The estimated Pareto front (the attainment front obtained from all the non-dominated 

fronts produced during all search runs in this dissertation) for the 32-unit IEEE-RTS inspired case study, 
with the minimum cost solution in the front (B) compared to the SO SA solution (A) found in [169], 
which only minimises the SSR. (b) The daily available capacity for these two extremal scenarios (A and 
B in part (a) of the Figure). (c) The daily fuel cost for the two extremal scenarios. 
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Figure 7.6:  The daily fuel cost difference between the two extremal scenarios (A minus B in Figure 
7.5), for the 32-unit IEEE-RTS inspired case study. The vertical axis is measured in units of $103. 
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Figure 7.7: Comparison of the maintenance schedules corresponding to the two extremal scenarios (A 
and B in Figure 7.5), for the 32-unit IEEE-RTS inspired case study. The bars represent unit values of the 
binary GMS auxiliary decision variables Yij. Scenario A represents the best solution found by Schlünz 

and van Vuuren [168, 169]. The units are arranged according to the merit order given in Table 5.1. 
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Figure 7.8: (a) The attainment front obtained from all the non-dominated fronts produced during the 

search runs reported in Chapter 6 for the 157-unit Eskom case study, with the minimum cost solution in 
the front (B) compared to the SO SA solution (A) found in [168, 170], which only minimises the SSR. 
(b) The daily available capacity for these two extremal scenarios (A and B in part (a) of the figure). 
(c) The daily fuel cost for the two extremal scenarios. 
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Figure 7.9: The daily fuel cost difference between the two extremal scenarios (A minus B in Figure 7.8), 

for the 157-unit Eskom case study. The vertical axis is measured in units of R103. 
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Figure 7.10: Comparison of the maintenance schedules corresponding to the two extremal scenarios (A 
and B in Figure 7.8) for the 157-unit Eskom case study. The bars represent unit values of the binary GMS 
auxiliary decision variables Yij. Scenario A represents the best solution found by Schlünz and van Vuuren 

[168, 170] and was also presented in Figure 2.4. The units are arranged according to the order given in 
[168], not in the merit order of Table 5.5. 
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7.3 Sensitivity analysis in respect of constraint relaxations 
 

As mentioned in §2.5.1, a rough distinction may be made between constraints that must not 

be violated and constraints that are only required to be more or less satisfied [17, 124]. Some 

constraints (such as the amount of crew available) may be relaxed in order to find better GMS 

solutions [66]. This section is therefore dedicated to analyses in respect of how relaxing some 

of the GMS constraints may affect the objective function values of GMS solutions and at what 

cost, by including certain GMS constraints as another (composite) objective to be optimised 

within an MO paradigm. 

 

7.3.1 Relaxing the soft constraints entirely 
 

Figure 7.11 contains the non-dominated front returned found by the DMOSA algorithm before 

and after the manpower constraints in the 32-unit IEEE-RTS inspired case study were relaxed. 

This was easily achieved as a result of the elegant multiplicative constraint penalty function 

employed, where the multiplicative penalty severity factor γ may be set to 0. This results in the 

exponential multiplicative penalty factor taking the value 1, and thus rendering the objective 

function values unaffected by the amount of soft constraint violation (see §4.3.4). 
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Figure 7.11: The non-dominated fronts returned by the DMOSA algorithm within 8 hours before and 

after relaxing the soft constraints in the 32-unit IEEE-RTS inspired case study. 

 
Figure 7.12 contains a representation of the same data as those in Figure 7.11, but specifically 

illustrates how much each of the two constraint sets (exclusion and crew constraints) were vio- 

lated, as well as the maximum number of crew required to implement the maintenance schedule. 

No demand violation penalties are therefore present in the results of in Figure 7.12. This absence 

is attributed to the fact that intuitively those GMS solutions that violate demand constraints 

exhibit larger (worse) SSR-values and production cost values as discussed above and illustrated 

in Figure 7.4. In addition, the gross reserves for the 32-unit IEEE-RTS inspired case study are 

sufficiently high and so not many instances of demand constraint violation occur. 
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Figure 7.12: Improved non-dominated front obtained by relaxing the soft constraints in the 32-unit 
IEEE-RTS inspired case study. 
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violated, whilst efforts may of course be made, to a certain extent, to employ more crew members 

in the case of crew availability constraint violations. Figure 7.13 represents the non-dominated 

fronts before and after relaxation of the crew availability constraint set. Only the number of crew 

available was altered — all the other constraints sets (exclusion and demand constraints) were 

satisfied. As may be seen in Figure 7.13, further improvements in both (the SSR and production 
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cost) objectives are achievable by increasing the number of maximum crew available. This will 

naturally come at an additional expense (requiring employment of more full-time crew). As 

may further be seen in Figure 7.13, there is a stronger trade-off between satisfying the crew 

availability constraint and minimising the production cost objective than between satisfying 

the crew available constraints and minimising the SSR. This strong trade-off is attributed to 

the fact that usually schedules which have lower SSR-values, will usually involve maintenance 

that is typically more spread out during the year (as dictated strongly by the expected peak 

demand profile), and so the amount of crew required will also be more spread out, resulting in a 

situation where a smaller number of crew members is required. The presence of the production 

cost objective, however, results in scheduling most of the cheaper units during low energy demand 

periods so that cheaper units are online during times of high demand, which will translate into 

less spread-out maintenance schedules and possibly more maintenance crew required during 

certain periods — hence the stronger trade-off. These trade-offs are explored further in an MO 

paradigm in the next section. 
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Figure 7.13: Improved non-dominated front obtained by relaxing only the maximum crew availability 

constraint in the 32-unit IEEE-RTS inspired case study. 

 
The 157-unit Eskom case study does not have any crew constraints, but has demand and ex- 

 
 

Stellenbosch University  https://scholar.sun.ac.za



138 Chapter 7. Numerical results 
 

 
×106

 

S = 8% S = 0% 

S = 8% & windows relaxed  S = 0% & windows relaxed 

SA [170] 

26 660 

26 650 

26 640 

 

clusion constraints. The exclusion constraints may not be violated since they are, in fact, only 

present to avoid that real units and their virtual copies are in simultaneous maintenance (which 

is not physically possible). The demand constraints ensure that the available capacity during 

any period j is at least as large as the expected peak demand Dj plus a pre-specified safety 

margin (S = 8% in this case). The gross (and subsequently the net) reserves are much tighter 

in the Eskom case study than in the IEEE-RTS inspired case study — compare Figure 7.5(b) 

to 7.8(b). Since the demand constraints are tighter in the 157-unit Eskom case study, relaxing 

them will have a larger impact for the Eskom case study. This is illustrated in Figure 7.14, 

where decreasing the safety margin from 8% ( in Figure 7.14) to 0% ( ) allowed the DMOSA 

algorithm to return considerably better non-dominated fronts. 
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Figure 7.14: Improved non-dominated fronts obtained by the DMOSA algorithm for the 157-unit Eskom 

case study within 8 hours2 by relaxing the right-hand sides of some of the model’s constraints, namely 
the safety margin S in the demand constraints, as well as the earliest and latest maintenance starting 
times (making the windows as wide possible). 

 
Figure 7.14 illustrates the improved non-dominated fronts achievable if the earliest and latest 

maintenance starting times are relaxed to the extreme values in the maintenance window. This 

maintenance window constraint relaxation was tested for both the normal safety margin of 8% 

( ) and when relaxing this value to 0% ( ). The improvements achievable are attributed to more 

GMS solutions being available to choose from (i.e. more freedom of variation for the decision 

variables). When both the demand and window constraints’ right-hand side values were relaxed 

( ) and the DMOSA algorithm was allowed to run considerably longer than eight hours, very 

few, but encouragingly small, SSR and production cost value combinations were found. It is 

assumed that if the DMOSA algorithm were to be allowed more computation time, further 

improved fronts (than ) would be returned. Since the domain of the decision variables is much 

larger (as a result of wider maintenance windows), there are many more maintenance scheduling 

possibilities available. Since the earliest and latest maintenance starting times specified in the 

Eskom case study naturally force most maintenance to occur during low demand periods, the 
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algorithm therefore finds good SSR-values (and associated low production cost values) more 

quickly (compare  with  in Figure 7.14). This points to the fact that the maintenance window 

and demand constraints of the 157-unit  Eskom case study are such that they restrict GMS 

solutions to seemingly good solutions in terms of the two GMS objectives proposed in Chapter 3. 

The earliest and latest maintenance starting times are tighter in the Eskom case study than in 

the IEEE-RTS inspired case study — compare these values in Tables 5.1 and Table 5.5. This is 

also assumed to be one of the reasons why fewer non-dominated solutions are available in the 

Eskom case study (see Figure 7.5) than in the IEEE-RTS case study (see Figure 7.8), but this 

could also occur if the demand and window constraints were not as restricting. 

Figure 7.14 illustrates the fact that the safety margin (and thus the demand constraint) is more 

restricting on the GMS model objective functions than the maintenance window starting times 

since, as may be seen in Figure 7.14, the non-dominated fronts in the former case ( ) are better 

than those in the latter ( ). This observation is, however, specific to the degree of constraint 

relaxation — in this instance this relaxation is from 8% to 0% for the safety margin and for the 

maintenance window the extreme points (the scheduling window start and end). 

 

7.3.2 Maximum crew trade-offs 
 

Instead of only considering the maximum crew available as a constraint to be satisfied, one could 

rather interpret the maximum number of crew members required over the entire scheduling 

window to carry out a maintenance schedule as another objective to be minimised within an 

MO paradigm. This was done separately for the two objectives (the SSR and production cost). 

The resulting model was also solved using the same DMOSA algorithm, and the results are 

reported in Figures 7.15 and 7.16. As has been stated in §7.3.1, and may further be seen in 

Figures 7.15 and 7.16, there is a stronger trade-off between the maximum crew required and the 

minimisation of production cost than between the maximunm crew required and minimisation 

of the SSR. 

In addition many more iterations were possible (44 038) within the same computation time 

budget of eight hours for the objectives involving calculating the maximum crew required and 

minimising the SSR (see Figure 7.16) than (15 291) for the objective involving calculating the 

maximum crew required and minimising the production cost (see Figure 7.16). This is mainly 

due to the fact that the production cost takes much longer to calculate. 

An important point to stress is that although a schedule may require a smaller maximum number 

of crew members across the entire scheduling window, the crew required per time period might 

not be that well spread out over the scheduling window (i.e. large variations may occur between 

the number of crew members required over the scheduling window), meaning that some of the 

crew might be idle during certain time periods of the planning horizon. It may therefore be of 

interest to develop another GMS objective which levelises the crew required over the planning 

period, possibly borrowing from the formulations described in §2.5.2, in respect of levelising the 

reserve margins over the planning horizon. 

 

7.3.3 Reducing the maintenance duration 
 

If maintenance outage durations are allowed to vary (as mentioned they are usually fixed), a 

trade-off results between the energy production cost and the maintenance cost [46, 215]. Shorter 

outage durations generally lead to higher maintenance costs [222], since more crew and parts 

are typically required in a shorter time [215], but lower production costs are incurred since more 
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Figure 7.15: Trade-offs uncovered by the DMOSA algorithm within 44 038 iterations (8 hours) for the 

32-unit IEEE-RTS inspired case study between minimisation of the SSR and the maximum crew required. 
 

 
expensive units do not have to be online as much during those times when cheaper units are 

in maintenance [46, 222]. As further noted in [59], a three-week outage could, for example, 

be reduced to two weeks by securing overtime crew (at a known cost), although overtime may 

be an expensive contributor to maintenance costs [59] and will most probably very rarely be 

permitted. The power system’s reliability (in terms of satisfying demand) will, however, be 

higher as a result of shorter outage durations. 

Figure 7.17 contains a representation of the objective space for the different GMS model re- 

quiring the normal durations of maintenance (as in Figure 7.3(a)), halving the times required 

for maintenance and dividing the times required for maintenance by four (rounding up in both 

cases), and the extreme where no maintenance occurs ( in Figure 7.17). Naturally, the SSR- 

value will be larger as maintenance duration decreases since the available capacity will be higher. 

Similarly, the production cost will be lower as maintenance duration decreases since there will 
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Figure 7.16: Trade-offs between the production cost objective and the maximum crew required uncov- 

ered by the DMOSA algorithm for the 32-unit IEEE-RTS inspired case study within 15 291 iterations (8 
hours). 

 
 
 

be more net reserves available, ensuring that the more expensive units do not have to be brought 

online. As mentioned in §2.4.2, the maintenance durations should ideally be as short as possible, 

but there is a limit to how much the duration can be shortened. An analysis may be performed 

to estimate the benefit to cost ratios achievable when shortening the maintenance durations, in 

terms of the energy production cost savings and higher reserves possible. The SSR and fuel cost 

values associated with the situation in which no maintenance is performed throughout the year 

was determined as 62 415 010 MW2 (constant available capacity) and $605 928 459, respectively 
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Figure 7.17) cost ($652 290 534) — a substantial 7.11% saving. This, however, will be at the 

infeasible expense of scheduling absolutely no maintenance throughout the year. Similar obser- 

vations are presented in [221], where the basic production cost, which represents the cost if no 

maintenance were to occur, is estimated at $96 909 400 (in 1975), while the maintenance schedule 

incurs the larger cost of $100 475 600, thus corresponding to a $3 566 200 (3%) production cost 

saving. 
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Figure 7.17: Comparing the GMS objective space of the 32-unit IEEE-RTS inspired case study when 
shortening the maintenance duration time. 

 
 
 

7.4 Algorithmic  improvements 
 

Two alterations are suggested in this section to improve the performance of the DMOSA al- 

gorithm. The first suggestion is that the algorithm should be initialised from a good starting 

point, namely a minimum SSR-value as determined by an SO SA algorithm (minimising only 

the SSR objective function). The other improvement involves the use of parallel computing for 

different parallel runs of the DMOSA algorithm. 

 

7.4.1 Minimising the SSR first 
 

Maintenance schedules achieving high reliability tend to incur a low production cost, and vice 

versa, but a schedule corresponding to the highest reliability may not result in the lowest pro- 

duction cost [149, 216]. This phenomenon may be attributed to the fact that a power utility 

with low net reserves will have to bring its more expensive units online more frequently [216]. 

This is evident in Figure 7.3.   Importantly,  production cost-related objectives also typically 
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take much longer to minimise than optimising other GMS objectives (such as reliability-related 

objectives) [216]. In this dissertation it was found that the time taken to minimise the SSR 

objective (around 0.001 seconds for the IEEE-RTS related case study) was much less than the 

time required to minimise the fuel cost (around 1 second for the IEEE-RTS related case study) 

in the R programming language. Similarly, though not as extreme, it was also reported in [216] 

that a computation time increase of 64% was observed for the production cost objective over a 

reliability objective. Furthermore, a similar computation time increase of 63% was reported in 

[149] (166% when the model’s constraints are relaxed). 

Based on these observations, it is anticipated that it might be possible to find (possibly better) 

non-dominated fronts faster if an SO SA algorithm initially only minimises the less computa- 

tionally expensive SSR objective function for a certain time period and uses its result as an 

initial solution for the DMOSA algorithm to further uncover non-dominated fronts based on 

both objective functions (i.e. having the MO algorithm start at a good initial solution found 

by an SO algorithm, instead of a random initial solution). A motivation for this suggestion is 

that it is an attempt to bypass the long time the DMOSA algorithm spends moving from the 

top right-hand corner in the objective space of Figure 7.5(a) to the desired bottom left (due to 

the computationally expensive production cost estimate). This suggestion will essentially cause 

the algorithm to spend more time computing production costs for more desirable maintenance 

schedules and may be very beneficial in cases where the computation time is subjected to a 

shorter budget. Also, this alteration may help the algorithm to navigate more quickly towards 

(and possibly initialising with) feasible solutions due to the nature of the GMS problem. There 

are, however, also drawbacks to this suggestion. For example,  it may be necessary for the 

metaheuristic to start at a random (or even poor) solution in order to allow it to find good 

solutions. 

Exploratory experimentation was carried out employing the above-mentioned suggestion. An SO 

SA algorithm was allowed 0.5 hours to find a GMS solution associated with a small SSR-value. 

As may be seen in Figure 7.18, the algorithm uncovered a maintenance schedule associated with 

an SSR-value that is very close to the best-known solution in the literature for the IEEE-RTS 

inspired benchmark, as reported in [169]. From this initial solution, either the DMOSA algorithm 

was further deployed, initialising from this good SSR-value solution ( in Figure 7.18) or the SO 

SA algorithm was further employed but switched to minimising only the production cost (  ), 

i.e. running from the top left-hand corner to bottom right in Figure 7.18. This alteration to the 

model solution approach produced a better non-dominated front in one test case for the IEEE- 

RTS inspired case study than the standard model solution approach via the DMOSA algorithm, 

as reported in Figure 7.18. 

As may be seen in Figure 7.18, the SO SA algorithm further only minimising the production cost 

from a good SSR-value starting solution ( ) did manage to find lower production cost solutions, 

but these solutions are still dominated by the solutions uncovered by the DMOSA algorithm. 

This result highlights the importance of employing MOO techniques, because although a spread 

of non-dominated solutions was found by the SO SA algorithm employed to minimise the two 

objectives sequentially, no notion of dominance is used to monitor and encourage the search 

progression. Note that the good parameter values for the DMOSA algorithm determined in 

Chapter 6 were also rather suboptimal for the different SO SA algorithm. 

The above mentioned alteration for the initialisation of the DMOSA algorithm was further tested 

in respect of the 157-unit Eskom case study and the result is shown in Figure 7.19 (which is the 

same plot presented in Figure 6.6 for the standard DMOSA algorithm, but with the addition of 

the solutions obtained by this altered DMOSA algorithm). This alteration did, in fact, manage 

to find better non-dominated fronts than the standard DMOSA algorithm (initialised with a 
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Figure 7.18: Non-dominated fronts achieved for the IEEE-RTS inspired case study by the standard 

DMOSA algorithm and the improvement suggested, namely incorporating an initial SO SA algorithm to 
minimise the SSR whereupon either the standard DMOSA algorithm initialising with a solution achieving 
a good SSR-value and explores further or the SO SA algorithm switches to minimising the production cost. 

 
 

random initial solution) for some of the different epoch length stopping criteria after eight hours 

of computation time (see Figure 7.19(a)). The epoch length stopping criterion for this DMOSA 

algorithmic variation was taken as 3N, 25N . It was found that the shorter epoch length stopping 

criteria in Figure 7.19 for the standard DMOSA algorithm yield solutions that dominate the 

non-dominated fronts uncovered by the DMOSA algorithmic variation relatively early on during 

the search (see Figure 7.19(a)) but, as for the standard DMOSA algorithm (whose initial solution 

is generated randomly), the longer-length epoch stopping criteria eventually render results that 

dominate solutions returned via their shorter counterparts as time progresses, as may be seen 

in Figure 7.19. 
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Figure 7.19: Non-dominated fronts achieved for the Eskom case study by the standard DMOSA algo- 

rithm and by the DMOSA algorithm altered according to the suggestion in §7.4.1. 
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7.4.2 The use of parallel computing 
 

Another possible avenue available for improving the DMOSA algorithm involves the use of 

parallel computing. Parallel metaheuristics utilise techniques of parallel programming to execute 

multiple metaheuristic searches in parallel so as to guide the search process more effectively. For 

trajectory-based metaheuristics, such as SA, three models commonly employed in the literature 

include [7]: 

 

Parallel moves. This model is also called the parallel exploration and evaluation of the neigh- 

bourhood model and involves a low-level master-slave implementation that does not alter 

the behaviour of the technique. A sequential search would compute a result of the same 

quality, but slower. At the beginning of each iteration, the master duplicates the cur- 

rent solution between distributed computing nodes. Each node separately manages its 

candidate solutions and the results are returned to the master. 

Parallel multi-starts. This model involves simultaneously launching several trajectory-based 

methods aimed at computing better and robust solutions. These parallel methods may 

be heterogeneous or homogeneous, independent or cooperative, start from the same or 

different solution(s), and may be configured with the same or with different parameters. 

Move accelerations. In this model the quality of each metaheuristic move is evaluated in a 

parallel centralised way. The model is particularly interesting when performing function 

evaluations is CPU time-consuming and/or I/O intensive and the (constraint or objective) 

functions may be parallelised. In that case, the function may be viewed as an aggregation 

of a certain number of partial functions that may be evaluated in parallel. 

 

Figure 7.20 illustrates the working of these different models graphically. Only the parallel multi- 

start model is suggested for use in conjunction with the DMOSA algorithm. Several DMOSA 

algorithmic instances are, in effect, simultaneously launched from different starting/initial solu- 

tions. The search runs operate independently according to their own archived fronts uncovered. 

A final attainment front of all the non-dominated fronts uncovered during all of the parallel runs 

is finally computed. 

R’s foreach [163] and doParallel [162] parallel computing packages were used to implement 

independent parallel SA algorithms with different starting solutions according to this suggestion. 

The number of pre-specified parallel runs may be specified by the user. 

 

 
(a) (b) (c) 

 

 

Figure 7.20:  The three classical parallel models for implementing trajectory-based metaheuristics: 
(a) parallel exploration of the neighbourhood (or the “parallel moves model”), (b) the parallel multistart 
model, and (c) parallel evaluation of fitness (or the “move acceleration model”) [7]. 
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Figure 7.21 illustrates the improvements that are achievable by means of parallel computing, 

whilst Table 7.3 contains a summary of the efficiency improvements (how many iterations may 

be computed in total within eight hours). As may be seen in Figure 7.21, improved non- 

dominated fronts may be achieved by employing more parallel search runs as opposed to just 

one single run. Naturally, the more iterations that may be performed within the set computation 

time budget tmax (when employing parallel computing), the better the final attainment front 

obtained (compare to in Figure 7.21). In addition, intuitively having several stochastic 

DMOSA algorithms initialising from different starting solutions is likely to result in a wider 

search yielding a more spread-out non-dominated front. In one instance it was found that the 

attainment front of two parallel DMOSA algorithmic  runs  (+)  outperformed  the  attainment 

front obtained when four parallel runs were executed ( ). This is because the DMOSA search 

algorithm is a stochastic algorithm. A more comprehensive study is expected to alleviate this 

anomaly in support of the notion that the more parallel computing resources are available, the 

better the expected algorithmic performance. 
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Figure 7.21:  The attainment fronts obtained by parallel DMOSA runs for the 32-unit IEEE-RTS 

inspired case study. 
 

Table 7.3: Comparison of the speed-ups possible by employing R’s doParallel and foreach packages. 

 

Processes Total iterations Total time Time per total iterations Speed-up 

8 87 479 8 hours 0.33 sec. 5.06 
6 72 146 8 hours 0.40 sec. 4.18 
4 61 129 8 hours 0.47 sec. 3.55 
2 32 271 8 hours 0.89 sec. 1.88 
1 17 266 8 hours 1.67 sec. 1 

 
 

Table 7.3 illustrates the amount of time saved (or the increase in the number of iterations possible 

within a fixed computation time budget) when using the parallel computing packages in R. The 

“total iterations” in the table represent the number of iterations performed across all the cores in 

the parallel search. It is observed that as the number of parallel runs increases, the speed increase 

is approximately linear initially, but is slightly lower than the theoretically expected value later 

on (e.g. 1.88 is slightly lower than the theoretically expected value of 2, etc.). Once the number 
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or parallel processes exceeds the number of physical cores (four physical cores in this case), 

the increases in performance diminishes on account of the fact that operations are performed 

in random access memory. This means that the hyper-threading capability is underutilised as 

there are fewer CPU cycles that are otherwise waiting on disk access operations [182]. This 

finding agrees with results obtained by others adopting a parallel computing paradigm in R [18]. 

The performance intricacies of parallel computing are complex and lie deep within the field of 

computer science. 

 
 

7.5 Chapter summary 
 
This chapter was devoted to a presentation of the results obtained by the DMOSA algorithm for 

the bi-objective GMS model. This included a verification and validation of the energy produc- 

tion plan model described in §3.3 in conjunction with the performance of the DMOSA algorithm 

with two off-the-shelf NSGA-II packages. A graphical representation of the bi-objective solution 

space was presented for the 32-unit IEEE-RTS inspired case study. An analysis was further per- 

formed in respect of two extremal schedules obtained by optimising the two scheduling objectives 

separately in the model of Chapter 3, for both the 32-unit IEEE-RTS inspired case study and 

the Eskom case study, illustrating some of the reasons for conflicting schedules. Furthermore, a 

sensitivity analysis was performed in respect of the effects of the GMS model constraints, as well 

as the effect of considering these constraints as another (composite) objective to be optimised 

within the MO GMS paradigm. The chapter closed with two suggested improvements to the 

DMOSA algorithm, namely including an initial SO SA algorithm aimed at finding good initial 

solutions for the DMOSA algorithm and adopting a parallel computing approach. 
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In this chapter, a computerised DSS is presented for solving instances of the GMS problem in an 

MO paradigm. The chapter opens with a discussion on the basic notions that have to be borne 

in mind when developing DSSs. The relatively scant work in the literature related to DSSs in 

the context of the GMS problem is presented, as well as an overview of DSSs currently in use in 

the energy industry. The design and implementation of a novel DSS for GMS is proposed, and 

this is followed by a description of a concept demonstrator of the proposed DSS. Feedback from 

Eskom after having been presented with this concept demonstrator is also reported. 

 
 

8.1 Basic notions in decision support systems 
 

A DSS may be defined as any computer-based information system that supports decision-making 

activities [157]. Power [157] describes a DSS as an “interactive computer-based system intended 

to help managers make decisions.” Some authors have extended the definition of a DSS to 

encompass any system that makes some contribution to decision making [181]. A DSS departs 

from the traditional management information system in that it emphasises the support of deci- 

sion making in all its steps, although the decision is still finally made by the decision maker [116, 

p. 31]. Sprague Jr. [181] chose rather to define a DSS by its characteristics. These characteristics 

are that it 

 
• is more applicable to the less well-structured, underspecified problems that managers often 

face, 

• will combine traditional data access and retrieval functions with the use of models or 

analytic techniques, 

• incorporate features which make it easy to be operated by noncomputer users in an inter- 

active mode, and 

 
149 
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• focus on flexibility and adaptability in order to allow for changes in the environment and 

the user’s decision making approach. 

 
Power [156, p. 6] also defined three major characteristics of a DSS, namely that DSSs 

 
• are especially designed to assist in operations, 

• should support decision making, rather than automate it, and 

• should be capable of responding quickly to the changing needs and environment of the 

decision maker(s). 

 
Power [156, p. 16] further defined the following five broad categories of DSSs: 

 
Communication-driven DSSs. This type of DSS supports multiple users working on a shared 

task. Examples include tools like Google Docs or Groove music. 

Data-driven DSSs. This type of DSS (also called a data-orientated DSS) emphasises access 

to and manipulation of a time series of internal (and sometimes external) data. These 

systems include file drawer and management reporting systems, data warehousing and 

analytical systems, executive information systems, and spatial DSSs. 

Document-driven DSSs. This is a new type of DSS, which retrieves, manages, and manip- 

ulates unstructured information (examples including policies  and procedures, catalogs, 

product specifications, corporate records, important correspondence, and corporate his- 

torical documents such as minutes of meetings) in a variety of electronic formats. Some 

authors call this type of system a knowledge management system. A search engine is, for 

example, a powerful decision-making tool associated with a document-driven DSS. 

Knowledge-driven DSSs. This type of DSS imparts specialised problem solving expertise, 

usually stored as facts, procedures, and rules to the user. A related concept is data mining. 

Model-driven DSSs. This type of DSS emphasises access to and manipulation of a financial, 

statistical, optimisation, or simulation model. Model-driven DSSs use data and parameters 

provided by users to aid decision makers in analysing a scenario — they are not necessarily 

data-intensive. Dicodess [55, 93] is an example of an (open source) model-driven DSS 

generator. 

 
Operations researchers primarily focus on optimisation and simulation models as the “real” DSSs 

[157]. Power [157] further differentiates between enterprise-wide DSSs and desktop DSSs. An 

enterprise-wide DSS is connected to large data warehouses and serves many users. Alternatively, 

a desktop (or single-user) DSS is a small system that is implemented and runs on an individual 

user’s PC [157]. 

Usually optimisation software packages and DSSs built around them are commonly implemented 

as single-user desktop packages [157]. The DSS proposed in this dissertation is a desktop model- 

driven DSS for the GMS problem. 

The three fundamental components of a DSS architecture are: the database (or knowledge base), 

the model (i.e. the user criteria and decision factors), and the interface to the user. The users 

themselves are also critical components in the DSS architecture [156]. 

The user interface (UI), sometimes referred to as the human-computer interface or the man- 

machine interface, is the space where interactions between humans and machines occur [208]. 

This occurs especially in the industrial design field of human-machine interaction [208], which is 
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also sometimes referred to as human-computer interaction, man-machine interaction or computer- 

human interaction [204]. The tools used for including human factors in the interface design are 

typically developed based on a knowledge of computer science, such as computer graphics, op- 

erating systems, and programming languages [208]. 

There any many types of UIs, one of the most important being a graphical user interface (GUI). 

Nowadays, the expression GUI is attributed to human-machine interfaces on computers, as 

nearly all of them now use graphics. Furthermore, due to the increased use of personal com- 

puters and society’s decreasing awareness of heavy machinery, the term UI is also just generally 

assumed to mean the GUI, whilst in the industrial control panel and machinery control design 

environment, for example, the term human-machine interface is preferred [208]. 

 

 

8.2 DSSs in energy and maintenance problems 
 

The only literature found on a DSS designed specifically for the GMS problem is the work by 

Schlünz and van Vuuren [168, 170], on which this dissertation builds. The solution approach 

employed in the DSS in [168, 170] was the single-objective SA algorithm attempting to minimise 

the SSR. A patent was, however, also found by the author entitled “A decision support system 

(dss) for maintenance of a plurality of renewable energy generators in a renewable power plant” 

[219]. 

 

 

 
Figure 8.1: Screenshot of the GUI presented to the user by the GMS DSS in [168, 170] upon launching 
the system, developed in MATLAB. 

 
The DSS proposed by Schlünz and van Vuuren [168, 170] was implemented in the MathWorks 

software suite MATLAB (version R2009a) [188]. The DSS in essence consisted of a collection 

of MATLAB script files with a corresponding GUI. A screenshot of the GUI presented to the 

user upon launching the GMS DSS is presented in Figure 8.1. Results related to the generator 

maintenance schedule returned by the SA algorithm (in terms of minimum SSR-values) is pre- 

sented in Figure 8.2. These results include the actual maintenance schedule (see Figure 8.2 (a)), 

together with its corresponding available capacity versus the load’s peak demand (see Figure 
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8.2 (b)), as well as its net reserve levels (see Figure 8.2 (c)), the maintenance crew utilised (see 

Figure 8.2 (d)), and the number of units in simultaneous maintenance within each exclusion 

subset (see Figure 8.2 (e)). 

 

 

   

(a) Best schedule found (b) Demand and available capacity levels 

 

   

(c) Reserve levels (d) Maintenance crew utilised 

 

 

(e) Number of units in simultaneous maintenance 
 

Figure 8.2: Examples of the output figures generated by the DSS in [168]. 

 
There has been much more activity related to the development of DSSs for general maintenance 

scheduling applications including, for example, ROBODOC, a diagnosis and maintenance con- 

sultant, which is an off-line decision support utility that helps maintenance staff diagnose and 

correct robotic failures [155]. Or [153] proposed a simple DSS for maintenance planning in the 

context of a large foundry satisfying casting demand for the automotive industry. 
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Figure 8.3: Screenshots of the PLEXOS
® software’s GUI [81]. 
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Naturally there are also DSSs for GMS and energy-related problems in industry. Foley et al. 

[85] provided an overview of electricity systems modelling techniques and discussed a number 

of key proprietary electricity systems models used in the USA and Europe. These systems 

include AURORAxmp, EMCAS, GTMax, PLEXOS, UPLAN, WASP IV and WILMAR. The 

most notable of these is the PLEXOS software tool, which is claimed to be the “the most widely 

used commercial integrated energy market software in the world” [80]. It has also been applied 

in the South African and Sub-Saharan African contexts [80, 54]. 

The PLEXOS® Integrated Energy Model software for power systems was developed and is sup- 

ported by Energy Exemplar®. It is an integrated electric power/water/gas simulation software 

tool which models, optimises (mainly through the use of mathematical programming techniques) 

and integrates many energy-related problems. Stochastic simulation techniques, such as Monte 

Carlo simulation, are also utilised. The software is equipped with a modern GUI. Examples of 

screenshots of this GUI are shown in Figure 8.3. 

The features of the model include capacity expansion planning, power generation planning, 

hydro-thermal co-optimisation and maintenance optimisation amongst many others [81]. It is 

claimed that the maintenance optimisation feature of the PLEXOS software seeks value-based 

reliability by optimising the timing of maintenance events with respect to all system costs and 

accounting for constraints such as crew limits [81]. It is mentioned that this may be achieved by 

equalising capacity reserves across all peak periods: hourly, daily or weekly [199]. The author 

could find no further public information on how the maintenance planning optimisation of the 

PLEXOS software works. 

 

 

8.3 Eskom’s Tetris maintenance planning tool 

 
Eskom uses their own “flexible outage schedule optimisation tool,” called the Tetris maintenance 

planning tool, for determining power generating plant maintenance [78, 84, 74]. This tool is aptly 

named since it mimics the game Tetris, in which a player is required to fit differently shaped 

building blocks into a constrained space, ensuring they are correctly orientated, with the aim 

of preventing the tower of blocks from growing too high. Maintenance planners may adopt 

this Tetris analogy, associating the blocks in Tetris with planned shutdown periods [78]. If 

the “tower” of planned shutdowns grows larger than a pre-defined constrained space then load 

shedding will have to be implemented. An overview of Eskom’s proposed maintenance plan 

(sourced form [138]) for the first quarter of 2016 is shown in Figure 8.4. This figure illustrates 

the analogy of planned maintenance of generating units to the game of Tetris. 

According to Eskom, the critical benefit of this Tetris planning tool  over  the  previously  used 

method of planning maintenance (the author is not aware of the nature of this previous method) 

is that it is more visual, user-friendly and  operates  in  real-time.  The  system  is  an  automated 

online system that planners may immediately consult should any of the variables in the system 

change. In February 2016, Eskom stated that “The power system has been stable throughout 

the last quarter resulting in almost 6 months of no load shedding. This is due to the Tetris 

maintenance planning tool — supporting the execution of more planned maintenance without 

load shedding ” [78]. 

The author is not aware of what optimisation strategies are employed in the Tetris planning tool 

(if any). The tool is used more as a graphical tool for visualisation of proposed maintenance 

schedules. As may be understood from the description of this maintenance planning tool and 

the illustration in Figure 8.4, it visually highlights how well the capacity lost due to a planned 

maintenance schedule corresponds to the expected peak demand over the planning horizon (the 

Stellenbosch University  https://scholar.sun.ac.za



8.4. Proposed decision support system 155 
 

 
 

 
 

Figure 8.4: A Maintenance plan generated by Eskom, illustrating the visual analogy between the 

software and the game of Tetris [138]. 
 
 

SSR minimisation objective seeks to spread out this quantity evenly over time), whilst satisfying 

the demand constraint that there should be enough available capacity (thus avoiding a necessity 

for load shedding). 

 

 

8.4 Proposed decision support system 

 
The DSS concept demonstrator proposed in this dissertation is designed so that the user may 

solve the GMS model described in Chapter 3 by means of the DMOSA algorithm reviewed in 

Chapter 4. The user may vary the many different parameters of the GMS and ED models in a 

fashion similar to that in the Eskom EFS’s current weekly production planning DSS. In addition, 

the user may also vary some key parameters of the DMOSA algorithm. 

 
 

8.4.1 System development 
 

The RStudio project (the most popular IDE for the R programming language) [189] developed 

and supports the package Shiny [36] for R [190]. Shiny is an elegant and powerful web framework 

for R, typically used to building interactive reports and visualisations in R — with or without 

web development skills [189]. The package may be used to create a UI that changes dynamically, 

based on R script files, and was adopted in the GMS DSS concept demonstrator. Eskom’s current 

EFS structure also utilises R’s Shiny package. 

Furthermore, the relatively recent googleVis R package [97] is used to interface with the Google 

Charts API (abbreviation for application programming interface), allowing for the easy imple- 

mentation  of  interactive  charts  (based  on  data  frames).   This  interactive  chart  capability  is 
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employed so that the user may interactively and visually analyse the results returned by the 

SA algorithm embedded within the DSS. The current Eskom EFS structure does not have any 

interactive chart capabilities. A demonstration1 of the proposed GMS DSS is available online 

[130]. 

 

 

(a) Unit data file 

 

 

(b) Station data file 
 
 

Figure 8.5: Format of the input template files required by the GMS DSS concept demonstrator in 

respect of the maintenance and generating unit parameters. The values shown are those for the 32-unit 
IEEE-RTS inspired case study. 

 
 

1No algorithmic computations may be performed. Instead, the results reported in §7.3, as illustrated in Figures 
7.11 and 7.12, are presented to the user for analysis purposes. 

 
 

 
 

 
 

Stellenbosch University  https://scholar.sun.ac.za



8.4. Proposed decision support system 157 
 

 

In order to standardise procedures in the DSS, the planning resolution is taken as daily. If, 

however, the parameters of the model are to be based on a weekly planning resolution (as 

in the 32-unit IEEE-RTS inspired case study) then these values must be adapted to a daily 

resolution. Only comma separated values (CSV) files are allowed to be uploaded to the DSS 

concept demonstrator. Four .csv template files should be provided to the DSS (in an appropriate 

folder). Examples of the input template files are provided in Figures 8.5 and 8.6. 
 
 

 

(a) Expected hourly load demand data (b)  Expected  daily  energy 
(water) available for the hy- 
droelectric stations 

Figure 8.6: Format of the input template files required by the GMS DSS concept demonstrator in 

respect of the expected hourly demand and daily energy available at hydroelectric stations. The values 
shown are those for the 32-unit IEEE-RTS inspired case study. 

 

The generating unit data file for the 32-unit IEEE-RTS inspired case study is shown in Figure 

8.5(a). The file should contain the GMS parameters, including each generating unit’s installed 

capacity, the fixed duration of maintenance required, the earliest and latest starting times for 

planned maintenance of each generating unit, exclusion sets and parameters, and crew member 

parameters. The appended symbols shown in red in Figures 8.5 and 8.6 illustrate how the 

columns in the input .csv file relate to the GMS model parameters defined in Chapter 3. The 

data required for the fixed 32 power stations are illustrated in Figure 8.5(b). Importantly, the 

user has to modify the Station Number column in the generating unit data file (see Figure 

8.5(a)) so as to match each unit with the correct power station (a number between 1 and 32). 

There are a maximum of 32 stations in the Eskom EFS production planning module. If there 

are fewer stations in the GMS problem instance under consideration (as, for example, in the case 

of the 32-unit IEEE-RTS inspired case study), then the non-applicable (Empty) power stations’ 

total installed capacities (INSTCAP column) and number of units (NO UNITS column) should be 

set to zero (as in Figure 8.5(b)). Other parameters that may be changed in this input file include 

each station’s cost rate and the maximum and minimum EUF values (see Figure 8.5(b)). 

The expected hourly loads (MWh or MW) for each day must be uploaded to the GMS DSS in 

the format of the input template file provided (see Figure 8.6(a)). The DSS computes the daily 

(maximum) peak demand to be used in SSR calculations. The expected daily energy (water) 

available (MWh) at hydroelectric stations must be uploaded to the GMS DSS in the format of 

the input template file shown in Figure 8.6(b). 
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(a) Before data files have been uploaded 
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(b) After having uploaded data files 
 
 

Figure 8.7: Screenshots (with appended descriptions in red) of the proposed GMS DSS concept demon- 
strator’s page for uploading the necessary input data (.csv files). The page contains interactive cells and 
graphs of the data uploaded to help the user verify the data contained and interpreted in the uploaded 
.csv files. 

Graph for user to check 

Hovering over point on graph, 

displays information 

Graph for user to check 

Information on data uploaded for user to check 
 

Interactive (can change 

and graph will update) 

Tabs 

 

 

 

 

 

Upload .csv file 

 

 

Calculations based 

on uploaded data 
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These four sheets are conventionally uploaded to the GMS DSS (and used for further calcula- 

tions) via the use of Shiny ’s fileInput button, as illustrated in Figure 8.7(a). Once the files 

have been uploaded (as shown in Figure 8.7(b)) various output cells display key information on 

the files uploaded to the user, which the user must verify before continuing. For example, there 

are 32 rows (units) in the corresponding .csv files (see Figure 8.5(a)) and there are 364 rows of 

data in the uploaded file containing the expected hourly loads. 

In addition, two interactive googleVis charts are plotted based on the load and hydroelectric data 

files uploaded (see Figure 8.7(b)) by the user. The first plot contains the maximum, minimum, 

and average hourly load demand per day. If there were any missing (i.e. a value of zero) or 

incorrect data values, this would most probably be discernible in the plot. This first plot also 

contains the system’s total installed capacity cell value, which is initially calculated by summing 

the Capacity column in the unit data file (see Figure 8.5(a)), but may subsequently be changed 

by the user (in the case of dummy units or when additional power is available from other sources). 

All the (googleVis) charts in the DSS have interactive capabilities, meaning that the user may 

hover (move the computer’s cursor over) and/or click on a chart upon which further information 

on the selected value is displayed. 

Once the user is satisfied with the GMS data uploaded, he or she may navigate to the next 

tab/page which contains general and algorithmic settings (see Figure 8.8) of the GMS model 

and the SA algorithm. As may be seen in Figures 8.7 and 8.8, two types of Shiny widgets 
are used to change parameter values — either via Shiny ’s numericInput element (e.g. the 

maximum crew allowed (M ) value in Figure 8.8(a)) or via Shiny ’s slidernput element (e.g. 

the safety margin (S) value in Figure 8.8(a)). The slidernput element is conveniently used 

when the parameter setting in question has a feasible or desired range (minimum and maximum 

allowed/suggested values) which the user may not violate. Initial/default values are populated 

in these user input fields, based on expected better-performing parameter values (such as those 

achieved in Chapter 5), which the user may leave unchanged or change as desired. The user 

may additionally (optionally) upload his or her own maintenance schedule in order to compare 

its performance with those of the solutions proposed by the GMS DSS (see Figure 8.8(a)). 

The user may then navigate to the next tab/page which contains the settings of the DMOSA 

algorithm (Figure 8.8(b)). Once again the user is initially (by default) presented with suggested 

values for the GMS parameters, which may remain as-is or may be changed, as desired. Fi- 

nally, the user may modify the three SA stopping criterion values, namely that the algorithm 

should terminate when either (i) the maximum number of iterations has occurred (20 000 in 

Figure 8.8(b)), (ii) the specified budget tmax of computing time has elapsed (8 hours in Figure 

8.8(b)), or (iii) the specified number Ωfrozen of successive reheatings have been performed (3 in 

Figure 8.8(b)). Once any one of the three criteria is satisfied, the algorithm will terminate. 

The Solve button (an actionButton element in Shiny ) runs an R script file containing the 

DMOSA algorithm. A progress bar of the algorithmic search is displayed and updated at every 

iteration of the algorithm (top left of Figure 8.8(b)). In addition, more specific information 

on the progress of the algorithm is displayed (see top right corner of Figure 8.8(b)), including 

the date and time at which the user clicked Solve, the number of iterations performed by the 

algorithm, and the maximum time until completion of the algorithmic search. 

Once the algorithm has terminated, all the information obtained regarding the final non-domina- 

ted solutions is stored and may be further analysed by the user in the results tab, as may be 

seen in Figure 8.9. To illustrate the capabilities of the interactive googleVis charts and tables 

available to the user, the non-dominated front returned by the DMOSA algorithm when all 

the constraints are relaxed for the 32-unit IEEE-RTS inspired case study in §7.3 (illustrated 

in Figures 7.11 and 7.12) is used as an example in Figure 8.9.  As may be seen in Figure 8.9, 
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(a) General settings (b) SA parameters 
 
 

Figure 8.8: Screenshots (with appended descriptions in red of the proposed GMS DSS’s pages) of the 

settings the user may change. Initial/default values are suggested which the user may or may not choose 
to change. In some instances, a range of suggested or allowed values are represented in slider format. 

 

the final non-dominated front is plotted using the gvisMotionChart function in the R googleVis 

package. In this Motion2 chart, the user may change the horizontal and vertical axes (by default 

the SSR and production cost values are associated with these axes, as may be seen in Figure 

8.9), as well as the scale graphic values, i.e. the colors and sizes of the (bubble) points (in this 

case the maximum crew required and the exclusion violation values, respectively), as illustrated 

in Figure 8.9. If any solution in the front is hovered over, its values on the four axes (horizontal, 

vertical, color scale, and size scale) are displayed as may be seen by the four   -values in Figure 

8.9. Another very convenient feature of the googleVis Motion chart is that the user may zoom 

in and out with ease on a desired portion of the non-dominated front in order to further inspect 

certain areas of the non-dominated front (see Figure 8.9). 

Using Shiny ’s sliderInput element, the user may filter the GMS constraint violations or values 

allowed (top right of Figure 8.9) which will update the data frames from which the googleVis 

Motion chart is created, thereby interactively removing/adding solutions based on the user’s 

preferred constraint violations or values allowed. In addition, each solution is provided with a 

unique identification (ID), in this case a number (115 non-dominated solutions were returned 

by the algorithm for this example). Furthermore, if the user uploads a maintenance schedule, 

its corresponding GMS constraint and objective function values are also plotted for comparison 

purposes. The solution uploaded in Figure 8.9 (ID is 0 Uploaded) is, in fact, the solution 

obtained by Schlünz and van Vuuren [169] who used a SO SA algorithm to minimise only the 

SSR objective. 

Referring to the unique ID attached to each solution in the non-dominated front, the user may 
 

 

2The reason why it is called a Motion chart is because the chart incorporates a time dimension, whose values 
are slider inputs that the user may drag (or press play) upon which the chart will update. 
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Figure 8.9: Screenshot (with appended descriptions in red) of the 32-unit IEEE-RTS inspired case study results reformed by the DMOSA algorithm in 

pursuit of minimising both the SSR and the production cost, with the GMS constraints relaxed as was discussed in §7.3 and illustrated in Figures 7.11 and 
7.12. The Motion chart, Gantt chart and the Table are all created using the googleVis package in R. These charts have a variety of interactive capabilities. 
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compare any two maintenance schedules (from all the non-dominated solutions returned and 

uploaded) in the form of a googleVis gvisTimeline chart (bottom left of Figure 8.9 — note 

that this figure has been cropped, and so it does not show the 32 generating units). This chart 

is interactive; the user may hover over or click on a bar and further information will be provided 

(as seen in Figure 8.9). More specific information on the two solutions selected by the user 

(which are plotted in Gantt chart format) are provided in a googleVis gvisTable table (bottom 

right of Figure 8.9), whose only interactive capability is that it is able to sort by columns. The 

values in this table may be copied, and pasted into an Excel sheet, for example, for further 

reporting and analysis purposes. 

 
 

8.4.2 Feedback received from Eskom 
 

In September 2016, the proposed GMS model (with its assumptions, parameters, and approach), 

along with key results found for the Eskom case study (the results in Chapter 7), as well as a 

concept demonstrator of the GMS DSS was presented to a panel of experts at Eskom. This 

panel included the current production assurance manager [139] (who is a key decision maker in 

terms of the planned maintenance of generating units), other decision makers at Eskom involved 

in maintenance and production planning, and some stakeholders of the EFS project described 

in §1.2. 

The panel was generally pleased with the GMS model proposed as well as with the working of 

the GMS DSS concept demonstrator. Some key discussion points raised by the panel included 

that the decision makers had not thought of the notion that maintenance of cheap (large) 

generating units should preferably not be planned during high electricity demand periods, which 

the model seeks to avoid by minimising the production cost, subject to the constraints described 

in Chapter 3. 

It was also noted that when a power system (such as Eskom) is under severe pressure due to low 

gross reserves (low installed capacity compared to expected demand), the reliability of the system 

is usually more important (so to avoid load shedding) than other objectives, such as minimising 

cost. As the gross reserves, however, become larger (a situation that Eskom is seeking to achieve 

with its planned increase of installed capacity), the reliability of the system becomes less pressing 

and other objectives (such as minimising cost) may become more important. MOO is desirable 

in this sense as it seeks to provide a best possible set of trade-off solutions. It was furthermore 

stated that it would be beneficial to include another GMS objective that measures the risk of 

unit failure (the LOLP, for example) within the MO paradigm proposed in this dissertation. The 

stakeholders mentioned that they would prefer the algorithm not to run too long — preferably 

overnight (12–16 hours) or perhaps during the day (± 8 hours). Another important point raised 

was that, as the gross reserves become larger, the cost of “dumping3” electricity will become 

more prominent and should also be included in the production planning module. This may be 

achieved by including another virtual station (opposite in nature to the unmet virtual station) 

which has a certain cost rate (measured $/MWh) associated with dumping electricity and whose 

energy cost is included in the cost objective to be minimised. 

The author is scheduled to further test, implement, and demonstrate the working of the GMS 

DSS in the form of a two-day workshop in November 2016 for relevant decision makers and 

stakeholders at Eskom interested in further using the GMS DSS. The author also plans to add 

further improvements to the DSS, such as a viewing capability for the available capacity versus 
 

 

3Dumping is the general term used when a power system cannot suddenly reduce its output power (especially 
for nuclear units). If, for example, demand drops and this electricity must be dumped somewhere until the reactor 
output is reduced. 
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peak demand associated with a maintenance schedule (similar to Figure 7.5(b)), as well as the 

daily total and station production costs associated with a maintenance schedule (similar to 

Figures 7.5(c) and 7.6). 

 

8.4.3 DSS deployment and maintenance 
 

There are a few avenues available along which to deploy the GMS DSS developed in R’s Shiny 

environment so that users can run it on their computers [191]. These include having the Shiny 

application (app): 

 

Accessible over the web. In this case, the users are not required to have R and Shiny installed 

on their computers; they only need a web browser. This may be of considerable benefit 

to nontechnical computer users. Two possibilities are available, namely to host the app 

developed through the Shiny Server program or to use Shinyapps.io, which is RStudio’s 

hosting service. The app demonstration developed by the author [130] which is available 

for viewing online is, in fact, hosted through the Shinyapps.io hosting service. Usually 

these hosting services are free of charge up to a certain extent after which a fee is charged. 

Run locally. In this case, the user will have to have R and Shiny installed on his or her 

computer. The code required for the app may either be hosted online (for example, 

on a GitHub repository) which the user may download through R, or as a (.zip) file 

made available to the user to personally install on his or her computer. The former is 

more desirable in that maintenance and updates to the code may be performed more 

structurally in a remote fashion by the developer, which the user may then download 

(seen as an “update”) more easily. For the latter, i.e. a (.zip) file (emailed or shared), 

maintenance and updates of the app must be sent manually to the user, which the user 

then has to unzip and whose files must be placed in the current apps directory or in 

another appropriate location. In addition, the use of a repository (such as GitHub) is of 

great benefit if other developers are interested in maintaining and updating the DSS. 

 
The author plans to analyse and test the above deployment methods before implementing the 

DSS at Eskom in November 2016. 

 
 

8.5 Chapter summary 
 

Various basic notions related to DSSs were reviewed in this chapter. The very few studies 

pertaining to DSSs in the GMS literature were discussed as well as some of the more abundant 

DSS references available for general maintenance scheduling problems and proprietary DSS 

software available in the energy industry. Some basic aspects of Eskom’s Tetris maintenance 

planning tool were also described. The proposed GMS DSS concept was finally demonstrated 

and industry feedback received from stakeholders at Eskom on the proposed GMS model and 

the DSS concept demonstrator was relayed. 

Stellenbosch University  https://scholar.sun.ac.za



164 Chapter 8. Decision support system 
 
 

 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

 

 

 

 

 
 

 

CHAPTER 9 
 

 

 

Conclusion 
 

Contents 

9.1 Dissertation summary ...................................................................................................... 165 

9.2 Appraisal of dissertation contributions .......................................................................... 166 

9.3 Suggestions for future work .................................................................................................168 

 

 
A summary of the research reported in this dissertation is presented in the first section of this 

chapter. This is followed by a brief appraisal of the dissertation contributions in §9.2, and the 

chapter finally closes in §9.3 with a number of suggestions for future work. 

 
 

9.1 Dissertation summary 
 

The first chapter of this dissertation provided the reader with some background to the energy 

industry, including electricity consumption statistics (both worldwide and in the South African 

context). Background information on the types and sizes of power generating units required to 

supply this demand was also provided. The importance of maintenance planning for generating 

units was highlighted, especially in South Africa. An EFS designed for a national power utility 

such as Eskom, was introduced. This was followed by a motivation for the real-life requirement 

to optimise decision variables in the EFS. This optimisation requirement provided the context 

for the informal description of the problem considered in this dissertation, which is to add a DSS 

GMS optimisation capability to such an EFS within an MO paradigm. The dissertation scope 

and objectives were also outlined in Chapter 1, and this was followed by a brief description of 

the structure of this document. 

Chapter 2 opened with an introduction to the various types of maintenance strategies considered 

in the literature. This was followed by a description of the energy industry. General modelling 

considerations were then presented for the GMS problem. The remainder of the chapter was 

devoted to an extensive review of traditional and current state-of-the-art modelling approaches 

in the GMS literature. This included a survey of the limited and fairly recent MOO GMS 

studies available in the literature. The contents of the chapter stand in fulfilment of Dissertation 

Objective I of §1.3. Finally, a summary table was presented of the major GMS literature reviewed 

in the chapter in terms of the different GMS modelling and solution techniques adopted and 

highlighting the context and nature of the work carried out in this dissertation. 

The GMS model adopted in this dissertation was derived in Chapter 3.  This included mathe- 

matical formulations of the GMS constraints taken into consideration in addition to describing 
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how the two GMS objectives were formulated. The chapter closed with a presentation of how 

the proposed model may be incorporated into an EFS, in fulfilment of Dissertation Objectives 

II and III. 

In Chapter 4, a number of basic notions in the theory of MOO were discussed, and this was 

followed by a description of the various algorithms suited to GMS and the solution of MOO 

problems. Information on the working and implementation of the MOO metaheuristic selected 

for implementation in this dissertation was presented, including how the GMS constraints are 

handled, in partial fulfilment of Dissertation Objectives IV and V. 

Chapter 5 contained a comprehensive description of the data pertaining to the two case studies 

conducted in this dissertation in order to test the effectiveness of the proposed GMS model, in 

partial fulfilment of Dissertation Objective VII. 

An extensive parameter optimisation experiment was performed in Chapter 6 so as to determine 

suitable parameter values for the SA algorithm in the contexts of the two case studies of Chapter 

5. The best parameter values thus uncovered were employed as suggested values in the DSS 

proposed in this dissertation, in partial fulfilment of Dissertation Objective IV. 

In Chapter 7, the GMS model of Chapter 3 was verified and validated, and the performance of 

the DMOSA algorithm described in Chapter 4 was compared to results obtained by an off-the- 

shelf implementation of the NSGA-II, in partial fulfilment of Dissertation Objective VI. Reasons 

for the GMS trade-offs between the minimisation of SRR and production cost objectives were 

presented. A sensitivity analysis was performed in respect of the GMS constraint right-hand 

sides, showing to what extent the constraints affect the objective function values attainable. 

The chapter concluded with suggested improvements to the MOO algorithm, including the use 

of parallel computing. The results of this chapter formed the foundation for the design of the 

DSS proposed in fulfilling part the Dissertation Objectives IV and VIII. 

The penultimate chapter of this dissertation, Chapter 8, contained a description and demonstra- 

tion of the design and implementation of a novel DSS for solving instances for the GMS problem, 

in fulfilment of Dissertation Objective IV. The chapter contained a discussion on other DSSs in 

the literature and in industry, as well as a tool currently employed by Eskom for maintenance 

planning. The working of a concept demonstrator of the DSS proposed in this dissertation was 

presented and the method according to which the DSS suggests trade-off solutions to the user 

and identifies possible improvements achievable by relaxing model constraints were described, 

in fulfilment of Dissertation Objective V. Feedback received from Eskom after having presented 

them with the GMS model and DSS concept demonstrator was also reported, in partial ful- 

filment of Dissertation Objectives IV–VIII. The chapter closed with a discussion on how it is 

envisaged that the DSS will run on a decision maker’s computer. 

 
 

9.2 Appraisal of dissertation contributions 
 

Six main contributions were made in this dissertation. These contributions are described and 

elucidated in this section. 

Contribution 1 An extensive review on the literature relating to MO GMS problems. 

Although the recent (2016) literature review paper by Froger et al. [90] presents the most im- 

portant literature on maintenance in the electricity industry (including the GMS, TMS and fuel 

management problems), the author similarly detailed the major GMS literature in Chapter 2, 

but in addition discussed, analysed and provided illustrations of the current state of MO GMS 

models in far more depth. This and additional aspects for the major GMS literature was also 
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summarised in an easily interpretable table (Table 2.9) highlighting the difference between sim- 

ple MO GMS modelling approaches1 and Pareto-based MOO approaches, which Froger et al. 

[90] (and other authors) do not recognise. 

Contribution 2 A novel multi-objective model for the GMS and ED problems. 

Another contribution of this dissertation is the proposed MOO GMS problem formulation in- 

corporating two of the most common GMS criteria, namely reliability and cost [90] (which are 

usually considered separately). As mentioned in §2.7, the author could only find two references2 

in which a Pareto-based MOO paradigm was adopted in a GMS model. In 2014, Zhan et al. [218] 

proposed an MO GMS problem for deregulated systems with five objectives, namely maximising 

the profits of three different energy producers, maximising system reliability, and minimising the 

total generation cost of all three producers. The system reliability objective was formulated in 

terms of the standard deviation of a reliability index which pursues similar reserve capacities in 

all periods (i.e. leveling the reserve margin). The total generation cost to be minimised consisted 

of the fuel cost (formulated as a quadratic function), unit start-up costs, and maintenance cost. 

Profit in the market environment was calculated by subtracting these generation costs from the 

revenue for each of the three producers. One of the benchmark systems solved for demonstration 

purposes in [218] involved a 32-unit IEEE RTS case study similar to the one considered in this 

dissertation. The GMS model was solved by means of the GSOMP algorithm. Similar to the 

approach adopted by Zhan et al. [218], Chen et al. [38] (Zhan being a co-author) solved an 

almost identical MO GMS model (with one objective fewer, namely the total generation cost 

being excluded), but by employing the NSGA-II algorithm instead. 

Although the generating cost adopted by Zhan et al. [218] was formulated quite extensively, 

including sophisticated start-up cost and expected maintenance cost formulations (in addition 

to quadratic fuel costs) the generators’ production output levels were not optimised in any way. 

They were instead treated as variables assuming random values between specified minimum and 

maximum allowable values. The GMS model proposed in this dissertation diverges from this 

sophisticated MO GMS approach in that it determines unit output levels through optimisation 

via a production planning module which involves solving an LP model for the ED problem in 

conjunction with a simple UC logic. In addition, the model in this dissertation utilises the 

constraints in the generation cost minimisation LP by Brits [25] to model the amount of water 

available during each time period at hydro power stations and the logic for power systems 

containing the pumped storage scheme. The reliability scheduling objective adopted in this 

dissertation also involves the pursuit of levelised reserve margins, but instead employs the more 

popular minimisation of the SSRs. 

Furthermore, varying maintenance durations were not allowed in [218] (all the units’ maintenance 

duration values were taken as two-week periods) whereas in this dissertation these values may 

vary (based on the different types and sizes of units). Moreover, no manpower constraints were 

incorporated in [218] and there are no earliest and latest maintenance starting time constraints 

in [218] (these values are set at the extremes of the planning horizon). 

Contribution 3 Analysing the reason for the occurrence of trade-offs between two very common 

GMS objectives. 

In §7.2, the author analysed the two extremal schedules obtained by optimising the two schedul- 
 

 

1The models contain multiple objectives but these are either optimised separately, by including the less dom- 
inant objective(s) as constraint(s), by weighting and summing together scheduling criteria into one objective 
function, by attempting to find objective function values that are as close as possible to some ideal point/value, 
or by adopting a goal programming solution approach, producing one to three trade-off solutions, as discussed in 
§2.6.9. 

2Also confirmed in the literature review in [90], as discussed in §2.7. 
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ing objectives in the model of Chapter 3 separately, thus motivating the desirability of pursuing 

trade-offs between these objectives instead of adopting one of them. The author compared the 

changes in these two very common GMS objective functions (namely the SSR and production 

cost) obtained for the two extremal scenarios in the non-dominated front. These extremal sched- 

ules and their corresponding effects on the reserves and the total and station-specific production 

costs per time period were also analysed. This type of analysis has not been caried out in the 

literature within an MOO paradigm in the GMS context. It was found that the SSR objective 

produces solutions that also obtain a low production cost (in much less computing time). The 

general sentiment in literature is that schedules with high reliability tend to achieve low pro- 

duction costs, and vice versa, but the schedule that gives the highest reliability may not be one 

that achieves the lowest production cost [149, 216]. This may be attributed to the fact that a 

power utility having low net reserves will have to bring its more expensive units online more 

frequently [216], as was shown in an MO modelling paradigm. 

Contribution 4 Development and implementation of an MO GMS DSS. 

A further contribution of this dissertation is a computerised DSS capable of computing GMS 

solutions within an MO paradigm. Based on the user’s input requirements, this DSS has been 

designed to be used in conjunction with an EFS, and specifically in conjunction with a power 

consumption module (for determining the expected loads) and the improved production planning 

LP by Brits [25], as described in §3.4 and elucidated in Figure 3.4. This dissertation also marks 

the first research project adding an optimisation capability to an EFS in which a DSS was 

developed (the two previous projects by Brits [25] and Hatton [104] did not propose a DSS 

concept  demonstrator). 

Contribution 5 A sensitivity analysis in respect of GMS constraints within an MO modelling 

paradigm. 

Sensitivity analyses were performed in respect of the relaxation of some of the model constraints 

in §7.3 (specifically the maximum crew constraint) as well as incorporating the constraints to be 

satisfied as an objective to be minimised within an MO paradigm. This analysis illustrated the 

effect of shortening the fixed maintenance duration required in respect of both the reliability and 

cost objectives. In addition, it was shown in §7.3 that some constraints, such as the earliest and 

latest maintenance starting times, limit the range of solutions available and thus ultimately limit 

the density and spread of non-dominated solutions attainable in objective space. The author is 

not aware of any GMS literature demonstrating how these GMS constraints affect GMS solution 

quality and efficiency in an MO paradigm. This analysis may also be used in future to help 

distinguish which GMS criteria should be included as scheduling objectives and which should 

be defined as fixed constraints to be satisfied. 

Contribution 6 Appending data pertaining to two GMS case studies. 

Data were appended to the 32-unit IEEE-RTS inspired case study, a benchmark system in the 

literature, as well as to the 157-unit Eskom case study. These appended test instances now 

represent more realistic studies. The data appendices include linear production cost rates and 

minimum and maximum EUF values required to solve the ED problem. 

 
 

9.3 Suggestions for future work 
 

Eight suggestions are made in this final section in respect of possible future work following on 

the research reported on this dissertation. 

Suggestion 1 Incorporate stochastic reliability (or risk) measures in a GMS model formulation. 
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An important aspect not included in the scope of this dissertation was the risk of unit failure 

(except through requiring a deterministic safety margin  over and above the peak  demand). 

Including a more explicit measure of the maintenance schedule in terms of its risk of failure to 

the power system as a scheduling criterion in a GMS model should be an interesting avenue of 

future investigation. Many such measures exist in the GMS literature, such as the LOLP or 

EUE. These measures also take into account the stochastic nature of the load demand, something 

not done in this dissertation. 

It would also be of interest to incorporate the risk of unit failure (unplanned outages) either as 

a GMS objective in an MO modelling paradigm, or as a constraint to be satisfied. This notion 

was also expressed during the panel discussion with Eskom described in §8.4.2. Furthermore, it 

is suggested that the risk of unit failure influences the right-hand sides of the earliest and latest 

starting times for maintenance to occur. A proposal for the inclusion of such an objective or 

constraint to the GMS model and its interaction with an EFS is provided in Figure 9.1. 
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Figure 9.1: High-level representation of the working of an EFS (dashed area) and how the GMS 

approach proposed in this dissertation should form part of it.  This structure is appended (in red) in 
order to demonstrate how Suggestion 1 may be incorporated into the simulation framework if the risk 
measure adopted is the risk of unit failure. 

 
Suggestion 2 Consider including costs other than operating costs in the GMS model proposed 

in this dissertation. 
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Production cost was taken to mean fuel cost in this dissertation (although in the DSS the user 

may increase this linear cost rate accordingly, so as to simulate the inclusion of other (linear) 

production costs), since it is the most significant cost associated with power generation. 

Other common GMS operating costs, however, include generator start-up and shut-down costs 

(heavily affected by the UC problem), as well as fixed and variable maintenance costs, as dis- 

cussed in §2.5.2. These costs may be incorporated in the GMS cost function in addition to the 

current production cost (focussing on fuel cost). Furthermore, the focus in this dissertation was 

on regulated power systems. As more countries around the world are, however, opening up their 

power systems to deregulation, the need increasingly arises to include the price of electricity 

so as to maximise the profit resulting from a GMS programme, as described in §2.5.2. Includ- 

ing this price aspect in the GMS planning process will also offer more trade-off possibilities, 

since cheap generating units (such as hydro or nuclear units) will, for example, be scheduled for 

maintenance during high price periods in order to maximise profit [88]. 

Suggestion 3 Consider incorporating a nonlinear fuel cost formulation in the GMS model. 

The energy production cost in this dissertation was treated as a linear increase in fuel cost 

per generation output ($/MWh). As mentioned in §2.5.2, however, there are also many GMS 

model formulations that incorporate a nonlinear (usually quadratic) fuel cost.  The benefits 

of this increase in realism in respect of estimating fuel cost should be weighed up against the 

considerable increase in computing time required to solve nonlinear optimisation problems as 

opposed to linear problems. The computing time required to solve the existing linear production 

cost model is currently already rather long. 

Suggestion 4 Speed up the computing time of the DMOSA algorithm. 

The main reason why the GMS model proposed in this dissertation takes relatively long to solve 

is the fact that the generating cost minimisation LP-module by Brits [25] (implemented in the 

programming language R) is solved during each iteration of the SA algorithm so as to estimate 

the production cost. Possible options to improve this computational burden include using a 

faster programming language. An appealing example is the Rcpp package [64] in R. It offers 

a seamless integration of R and C++, meaning that certain slow-running parts of the R script 

may be coded in C++ (if the user is proficient in the language), which holds the potential of 

drastically speeding up the solution process, perhaps even by orders of magnitude. This would 

mean that the entire coding of the algorithm and the DSS may still take place in R, but that 

the certain parts of the algorithm that take particularly long to execute, may be improved by 

coding the relevant section in C++ syntax. This suggestion is applicable to an EFS structure 

which is completely coded in the R programming language. As R is a high-level language, it 

reduces the time spent developing code, at the cost of increased computational time. 

Suggestion 5 Consider including resources other than available maintenance crew in the GMS 

model formulation. 

The only resource requirement considered in the GMS model proposed in this dissertation was 

to satisfy the maximum maintenance crew availability constraint. Other types of GMS resource 

constraints, involving available tools and parts may similarly be included in the model formu- 

lation, as described in §2.5.1. In addition, different crew types may be incorporated into the 

model formulation (i.e. engineers, technicians, welders, etc.). This sentiment was also shared by 

an Eskom employee [16]. 

In §7.3.2, an analysis was performed in respect of alternatively minimising the maximum crew 

availablity constraint’s right-hand side, which showed that increasing/decreasing this  value 

brings about slight trade-offs with the SSR objective, but more significant trade-offs with the 
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production cost objective. In addition, the current constraint specifying a maximum amount of 

crew available does not strongly support levelised workload of the maintenance crew. Adopting 

this constraint may lead to instances (especially during periods of high demand) when no crew 

is dispatched for maintenance, and the crew might be idle during such periods. A GMS objec- 

tive that levelises the crew required across the planning horizon may be of benefit and may be 

incorporated in a GMS MO paradigm. 

Suggestion 6 Consider employing other types of model solution techniques. 

Other solution techniques might perform better than the DMOSA algorithm implemented in 

this dissertation. Hence, further analysis is required in respect of the relative performances of 

other MOO algorithms in the context of the GMS problem. It may, for example, be of interest 

to tailor and compare the performance of a population-based MOO metaheuristic, such as the 

NSGA-II, for GMS. 

Another promising technique that has not been applied frequently to GMS is CP. Froger et al. 

[90] attribute this scarcity to the fact that CP is less suitable to problems in which the main 

goal of the algorithm is to find near-optimal, as opposed to exactly optimal, solutions, which 

is typically the case in GMS problems. CP might, however, uncover adequate feasible (though 

not necessarily optimal) GMS solutions in the presence of multiple, tight constraints (objectives 

may also be included by setting minimum/maximum constraint satisfaction values) in a shorter 

solution time than achievable by conventional optimisation techniques employed in the GMS 

literature. 

Suggestion 7 Consider solving the transmission maintenance scheduling problem in conjunction 

with the GMS problem. 

As was mentioned in §2.3.3, the GMS and TMS problems are interdependent and should there- 

fore ideally be solved jointly as has been done in some instances in the literature. These problems 

are nevertheless most often solved independently in the literature. The TMS problem may also 

hold considerable benefit in the context of an EFS. 

Suggestion 8 Consider solving the GMS problem in conjunction with a more sophisticated UC 

logic than that adopted in this dissertation. 

As mentioned in §2.3.1, the UC problem seeks to determine which available generating units 

(i.e. those not scheduled for maintenance) should be connected to the power generation system, 

so as to contribute actively to power generation. Usually the objectives of the UC problem 

include minimising operating costs, minimising emissions, or maximising the demand satisfaction 

capability [173]. The objective of minimising operating cost typically consists of minimising 

production cost, maintenance cost, start-up cost and shut-down cost. The production cost is 

usually determined by solving the ED problem, a typical subproblem of the UC problem [173, 

212]. 

A simple UC logic was employed in the generation cost minimisation LP-module of Brits [25], 

as discussed in §3.3 and illustrated in Figure 3.3. The UC and GMS problems are very much 

interlinked and thus an improved algorithm may be used to either solve these two problem 

together or sequentially. 
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188 Appendix A. IEEE-RTS reliability and outage data 

 

 

IEEE-RTS reliability and outage data 

 
The IEEE-RTS power generating system’s capacity outage probability values in Table A.2 of 

this appendix have been prepared by means of the recursive/convolution algorithm (2.47) from 

the units’ forced outage rates in Table A.1, assuming that all 32 units adhere to the dual-state 

model in Figure 2.14(a). 
 

Table A.1: The original IEEE-RTS power generating system’s unit reliability data [9]. 

 

 
Type of 

Unit 

 

 
Fuel 

 
Unit Size 

(MW) 

 
# of 

Units 

 

 
FOR 

 
MTTF 

(hours) 

 
MTTR 

(hours) 

Scheduled 

Maintenance 

(weeks/year) 

Fossil Steam #6 Oil 12 5 0.02 2 940 60 2 
Combustion Turbine #2 Oil 20 4 0.10 450 50 2 

Hydro  50 6 0.01 1 980 20 2 
Fossil Steam Coal 76 4 0.02 1 960 40 3 
Fossil Steam #6 Oil 100 3 0.04 1 200 50 3 
Fossil Steam Coal 155 4 0.04 960 40 4 
Fossil Steam #6 Oil 197 3 0.05 950 50 4 
Fossil Steam Coal 350 1 0.08 1 150 100 5 

Nuclear LWR 350 1 0.12 1 100 150 6 
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Table A.2: The capacity outage probability for the IEEE-RTS 32 unit system, prepared by means of 
the recursive/convolution algorithm (2.47). The values for 0 ≤  X ≤  2 450 are taken from [9], while 
the values for 2 600 ≤  X ≤  3 405 are taken from [201, p. 128]. 

 

X P (X) X P (X) X P (X) X P (X) 

0 1.000 000 420 0.186 964 1 020 0.003 624 1 650 0.407 × 10− 5 
12 0.763 604 440 0.151 403 1 040 0.003 257 1 700 0.158 × 10− 5 
20 0.739 482 460 0.137 219 1 060 0.002 857 1 750 0.721 × 10− 6 
24 0.634 418 480 0.126 819 1 080 0.002 564 1 800 0.291 × 10− 6 
32 0.633 433 500 0.122 516 1 100 0.002 353 1 850 0.152 × 10− 6 
36 0.622 712 520 0.108 057 1 120 0.002 042 1 900 0.469 × 10− 7 
40 0.622 692 540 0.101 214 1 140 0.001 889 1 950 0.215 × 10− 7 
44 0.605 182 560 0.084 166 1 160 0.001 274 2 000 0.724 × 10− 8 
48 0.604 744 580 0.075 030 1 180 0.000 925 2 050 0.295 × 10− 8 
50 0.604 744 600 0.062 113 1 200 0.000 791 2 100 0.843 × 10− 9 
52 0.590 417 620 0.054 317 1 220 0.000 690 2 150 0.305 × 10− 9 
56 0.588 630 640 0.050 955 1 240 0.000 603 2 200 0.927 × 10− 10 
60 0.588 621 660 0.047 384 1 260 0.000 490 2 250 0.232 × 10− 10 
80 0.559 930 680 0.044 769 1 280 0.000 430 2 300 0.797 × 10− 11 
100 0.547 601 700 0.042 461 1 300 0.000 401 2 350 0.166 × 10− 11 
120 0.512 059 720 0.040 081 1 320 0.000 305 2 400 0.469 × 10− 12 
140 0.495 694 740 0.038 942 1 340 0.000 257 2 450 0.104 × 10− 12 
160 0.450 812 760 0.030 935 1 360 0.000 164 2 600 0.625 × 10− 15 
180 0.425 072 780 0.026 443 1 380 0.000 122 2 800 0.142 × 10− 18 
200 0.381 328 800 0.024 719 1 400 0.000 102 3 000 0.982 × 10− 24 
220 0.355 990 820 0.018 716 1 420 0.000 084 3 200 0.332 × 10− 31 
240 0.346 093 840 0.015 467 1 440 0.000 071 3 400 0.120 × 10− 47 
260 0.335 747 860 0.013 416 1 460 0.000 056 3 405 0.120 × 10− 47 
280 0.328 185 880 0.012 136 1 480 0.000 046   
300 0.320 654 900 0.011 608 1 500 0.000 040   
320 0.314 581 920 0.009 621 1 520 0.000 027   
340 0.311 752 940 0.008 655 1 540 0.000 020   
360 0.283 619 960 0.006 495 1 560 0.000 013   
380 0.267 902 980 0.005 433 1 580 0.000 010   
400 0.261 870 1 000 0.004 341 1 600 0.000 008   
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Contents of the accompanying disc 

 
The compact disc included in this dissertation contains the hourly load data (for a year) for 

the two case studies presented in this dissertation, namely the 32-unit IEEE-RTS inspired case 

study and the 157-unit Eskom case study. The compact disc contains two .csv files. The first 

one of the files contains the hourly load data used in the 32-unit IEEE-RTS inspired case study 

and the other contains the hourly load data used in the 157-unit Eskom case study. These 

files are also in the correct format for the input files as required by the DSS (and as shown in 

Figure 8.6). 
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