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Thesis Summary (English version)

Chapter 1 presents a general literature review on the acute isocapnic hypoxic ventilatory

response (HVR).

The main findings from Chapter 2 indicate that our modified breathing circuit effectively

measured the HVR while maintaining isocapnia. The measured ventilatory variables

changed significantly with repeated short-term exposure to hypoxia over a 30-minute

period, and the within- and between-day variability did not differ significantly.

Furthermore, the variability in the HVR response (as measured by the coefficient of

variation, (CV» amounted to approximately 27% between tests in both parameters.

Repeated measures are recommended in future determinations of the HVR.

In Chapter 3 the main findings were that hypoxic sensitivity does not differ between

Caucasian and Xhosa sea-level populations in South Africa, and that ventilatory

components in both normoxia and hypoxia differed between these two populations. Two

distinct patterns of breathing were evident: shallow, rapid breathing among Xhosa

subjects, and deeper, slower breathing among Caucasians. Moreover, lower arterial

oxygen saturation levels during hypoxia among Xhosa subjects suggest that these two

patterns of breathing differ in the effectiveness with which they oxygenate the blood.

Inter-individual variation in HVR within each population is of the same high magnitude

as that reported in the literature (Beall et al., 1997), further supporting the use of repeated

measures in future studies.
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As previously reported (Sahn et al., 1977, Reeves et al., 1993), in Chapter 3 I document a

significant correlation between HVR and partial pressure of end-tidal CO2 (PETCO).

Future studies of HVR should consider PETCO
2
as a covariate, despite the fact that my

analyses of covariance (ANCOV A) showed no inter-population differences in HVR.

In Chapter 4 I report that regression analysis shows that the HVR of parents is not a

predictor of that of their offspring. No significant heritability was evident for any of the

additional key variables of hypoxic VE ,hypoxic Sa02, and the CV for HVR, but a priori

analyses showed that I tested too few subjects to be able to demonstrate heritability (or

the lack thereof) conclusively by means of regression analyses. Importantly, repeatability

estimates within populations (86 %) revealed that despite its high variability, the HVR is

highly repeatable, and therefore remains a useful comparative research tool for studies of

human adaptation to hypoxia.
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Tesis Samevatting (Afrikaans weergawe)

Hoofstuk 1 gee 'n algemene literatuuroorsig van die akute isokapniese hipoksiese

ventilatoriese reaksie (HVR).

Die hoofbevindinge uit Hoofstuk 2 dui aan dat ons gemodifiseerde asemhalingsbaan

HVR effektief meet terwyl isokapniese toestande gehantaaf word. Die ventilatoriese

veranderlikes gemeet, het betekenisvol verskil met herhaalde korttermyn blootstelling aan

hipoksie in a 30-minuut periode, en die binne- en tussen-daagse afwykbaarheid het nie

betekenisvol verskil nie. Verder het die afwykbaarheid van die HVR reaksie (soos bepaal

deur die koëffisiënt van variasie (KV)) ongeveer 27 % beloop tussen toetse van beide

parameters. Herhaalde metings word vir toekomstige bepalings van die HVR voorgestel.

In Hoofstuk 3 was die hoofbevindinge dat hipoksiese sensitiwiteit nie verskil tussen

Kaukasiese- en Xhosa- seevlak populasies in Suid-Afrika nie, en dat ventilatoriese

komponente in beide normoksie en hipoksie verskillend was tussen hierdie twee

populasies. Twee definitiewe asemhalingspatrone was duidelik merkbaar: vlak, vinnige

asemhaling in Xhosa proefpersone, en dieper, stadiger asemhaling in Kaukasiërs. Verder

het laer arteriële suurstof versadigingsvlakke gedurende hipoksie in Xhosa proefpersone

daarop gedui dat hierdie twee asemhalingspatrone moontlik verskil in hul effektiwiteit

om die bloed met suurstof te verryk.
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Inter-individuele variasie in HVR binne elke populasie was van dieselfde groot omvang

as wat in die literatuur gerapporteer word (Beall et al., 1997), wat die gebruik van

herhaalde metings in toekomstige studies verder ondersteun.

Soos voorheen gerapporteer (Sahn et al., 1977, Reeves et al., 1993), dokumenteer ek in

Hoofstuk 3 'n merkbare korrelasie tussen HVR en parsiële druk van eind-tidale CO2

(PET CO
2
). Verdere HVR studies behoort PET CO

2
as a kovariant te beskou, ten spyte van

die feit dat my analise van kovariansie (ANCOV A) geen inter-populasie verskille in

HVR getoon het nie.

In Hoofstuk 4 rapporteer ek dat regressie analise bewys dat die HVR van ouers nie 'n

voorspeller van dié van hul kinders is nie. Geen betekenisvolle oorerflikheid was duidelik

vir enige van die addisionele sleutelveranderlikes van hipoksiese VE ,hipoksiese Sa02, of

die KV van HVR nie, maar 'n vorige analise het getoon dat ek te min proefpersone

getoets het om oorerflikheid (of die gebrek daaraan) m.b.v. regressie analises te kan

demonstreer. Dit is belangrik dat intra-populasie herhaalbaarheidsskattings (86 %) getoon

het dat ten spyte van sy hoë afwykbaarheid, die HVR hoogs herhaalbaar is, en daarom 'n

nuttige vergelykende navorsingshulpmiddel is vir studies rakende menslike aanpassing by

hipoksie.

Stellenbosch University http://scholar.sun.ac.za



6

Acknowledgements

Chapter 1.

I would like to thank Laura Stockwell and Marc Riitschlin for their personal time proof-

reading and their useful comments for this chapter.

Chapter 2.

I am particularly grateful to Alan Thomas, Nick Robinson, Shaun Thaysen and the staff

of National Hyperbarics (Pty Ltd) for their help with gas mixing, helping us save both

money and time. Thanks to Peggy Schlie of Drager (Medizintechnik GmbH, Germany)

for providing the Oxidem 3000 demand valve. The quality and quantity of work on this

project are directly attributable to the dedication and professionalism of our mechanical

engineers, Henry Bennett, Jos Weerdenburg, and Heinie Foot, and our electrical engineer

Willie van Rooyen, who helped us develop the HVR system. We are grateful to all our

subjects for their cooperation.

Chapter3.

First, I would like to thank our subjects for their participation in this project from which

the data for Chapters 3 and 4 were generated. I also thank those who were instrumental in

helping me meet the families and recruit the subjects, in particular Danie Moolman.

I would again like to thank the staff of National Hyperbarics (Pty Ltd) in particular Alan

Thomas, Nick Robinson, and Shaun Thaysen, for their help with mixing gases and

providing the air so generously.

Stellenbosch University http://scholar.sun.ac.za



7

Chapter4.

I am impressed by the level of expertise in his field and remain extremely grateful to Bill

Louw (formerly of the Department of Genetics), for his generosity and assistance. He has

dedicated much personal time and knowledge on quantitative genetics and data analysis

for this chapter. I also thank him for his patience and the excellent recommendation of

literature in this field.

General:

I thank Andreas Fahlman for teaching me the methodology of the breathing circuit,

statistics, and educating me on the finer appreciation of caffeine, without which we would

surely be lost. Muchas gracias to Sue Jackson for listening to my ideas and giving me the

freedom to explore them. I also thank Sue for her patience and dedication to the project,

while playing a crucial role in the facilitation of my wildest dreams. Above all, thank you

to both Andreas and Sue for the right balance of constant support and encouragement; the

most essential ingredients in a student's education! Thanks also go to Kathryn Myburgh

for financial support and insightful comments throughout the last two years. I also extend

my thanks to Carine Smith for the speedy translations and technical assistance.

I am extremely grateful to Benjamin Harper for writing the data-capturing upgrades and

file conversion programme, and his excellent and personal service on matters of computer

maintenance. I would like to thank Carl Kritzinger for writing the Gas Conversion

programme, and his infuriating ease in understanding of data management and technical

Stellenbosch University http://scholar.sun.ac.za



8

problems. I am continuously indebted to Cader Ali for providing world-class technical

LT. support, and for resolving many confounding hardware issues.

I must thank Corlie Moolman for learning the technical jargon in Xhosa, assisting in

translating, and for her level of involvement which far exceeded her obligations as my

girlfriend. I thank my brother, Benjamin Herr, for insightful comments and unmatched

lateral thinking, and my mother, Charlene Herr, for the inspiration and support (not only

financial) without which I definitely would not have achieved my goals.

Lastly, I thank Maarten Turkstra, and in particular those mentioned above, who have

provided opportunities and contributed to my development as a scientist, student and

researcher. Hopefully I am a credit to them and will remain so in the future.

Funding:

This study was funded mainly by the NRF grant (GUN 2047146), but also by the Medical

Research Council of South Africa and Stellenbosch University Research Sub-Committee

B.

Stellenbosch University http://scholar.sun.ac.za



9

Contents Page

Title page .i

Writers Declaration (English) 1

Thesis Summary (English) " 2

Tesis Opsomming (Afrikaans) .4

Acknowledgements 6

Contents 9

Chapter 1- Introduction to the Hypoxic Ventilatory Response 12

Introduction to hypoxia 13

General Introduction 14

A definition of HVR 15

A definition of the severity of hypoxia 15

ACUTE AND CHRONIC HYPOXIA 17

FACTORS INFLUENCING THE HVR 26

References 33

UNiVERSITEIT STELLENBOSCH
BIBLIOTEEK

Stellenbosch University http://scholar.sun.ac.za



10

Chapter 2 -Variability of the ventilatory response to isocapnic hypoxia .42

Abstract. 43

Introduction 44

Methods 47

Results 60

Discussion 84

References 96

Chapter 3 - A comparison of oxygen sensitivity of two South-African sea-level

populations 105

Abstract 106

Introduction 108

Methods 111

Results 119

Discussion 131

References 141

Appendix 1 .149

Chapter 4 -Repeatability of the ventilatory response to hypoxia in two South-

African sea level populations 150

Abstract. 151

Introduction '" 153

Methods 159

Stellenbosch University http://scholar.sun.ac.za



Il

Results 161

Discussion 167

References 174

Chapter 5 - Conclusions & Summary 181

General Comments & Recommendations 187

References 190

Stellenbosch University http://scholar.sun.ac.za



Chapter 1

Introduction to the Hypoxic Ventilatory Response
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Introduction to Hypoxia

An increase in altitude is associated with a decrease in the partial pressure of oxygen

(P02) which has the same effect as a reduced oxygen concentration at 1 atm. Both result

in reduced P02, which leads to decreased O2 diffusion across the alveoli, followed by

reduced hemoglobin (Hb) saturation and decreased arterial oxygen saturation (Sa02).

This causes reduced aerobic performance, and an associated cognitive perception of

difficulty to breathe (air "hunger"). Humans compensate for decreased inspired P02 by a

progressive, time-dependent increase in ventilation, termed ventilatory acclimation to

hypoxia (VAH). The mechanisms involved differ in their absolute inhibitory or

simulatory effects on tidal volume (VT), respiration frequency (fR), and the time course

of these responses (Powell et al., 1998). The severity of hypoxia dictates the degree of

response. However, even with a fixed severity of hypoxia, individuals vary in their

degree of response.

To immediately place the literature review in the context of my thesis I present here at the

outset the objectives of my thesis. They are to:

1) Determine whether or not oxygen sensitivity as expressed by the ventilatory

parameter known as the Hypoxic Ventilatory Response (HVR), differs significantly

between two different populations.

2) Assess the heritability of the HVR by means of quantitative genetics.
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General Introduction

I will first present an overview defining hypoxia and the physiological mechanisms

applicable to the HVR. From there I will supply a background of the literature for my

project, including a description of current methods and principles relevant to HVR

research. In Chapter 2, I will present the methodology and setup of our system that was

used for the testing. Also in Chapter 2 I will present data regarding the variability of

HVR. These data were collected by a Postdoctoral Fellow with myself as research

assistant. Chapter 3 compares HVR in two populations and Chapter 4 assesses the

heritability and repeatability of this parameter. Finally, Chapter 5 is a summary and

conclusion.
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A definition of HVR

HVR can be defined as the magnitude of the change in ventilation in response to a

hypoxic challenge. It is expressed relative to a 1% change in arterial oxygen saturation,

with units of L.min-1.%-I, i.e. the difference between an individual's expired minute

ventilation (~ VE) in normoxia and in hypoxia, divided by the corresponding change in

that individual's oxygen saturation (~Sa02) (Rebuck & Campbell, 1974). The HVR test

is most commonly used to quantify levels of peripheral oxygen sensitivity in human

subjects.

A definition of the severity of hypoxia

Experimental hypoxia can be induced in two ways: first, by using a hypobaric chamber to

achieve reduced total and partial gas pressures; second, by reducing the percentage of

oxygen in air at a fixed atmospheric pressure. Measurements of HVR almost always use

the latter technique. Although there are no clearly defined terms for the severity of

hypoxia, for the sake of this thesis Iwill use the following categories of hypoxia: "mild"

refers to gas mixtures containing more than 18 % O2, "moderate" to those with 13 - 18 %

O2, "severe" to those with 12 - 10 % 02 and "extreme" to gas mixtures containing 9 %

O2 or less. To understand more clearly the relationship between altitude, and P02 and %

O2 see Figure 1.1a & 1.1b.
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ACUTE AND CHRONIC HYPOXIC EXPOSURE

General Mechanisms

The ventilatory response to hypoxia has the following components, discussed below in

the order in which they occur (Fig. 1.2):

1) The Acute Hypoxic Ventilatory Response (AHVR)

2) Hypoxic Ventilatory Depression (HVD)

3) Ventilatory Acclimation to Hypoxia or High Altitude (VAH)

1) The Acute Hypoxic Ventilatory Response

Ventilatory responses to hypoxia are influenced by both the severity and pattern of the

hypoxic exposure, and are mediated through several physiological mechanisms (Powell

et al., 1998). The simplest visible components of hypoxic exposure are increased fR and

VT, which together contribute to a significant increase in expired VE above resting

values (Weil & Zwillich, 1976, Easton et al., 1986) .

•
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Figure 1.2. Time course of VE during ventilatory acclimation to hypoxia (adapted from

High Altitude, pp 141,2001)

The AHVR is triggered by peripheral chemoreceptors in the carotid body, which are

sensitive to a reduction in the P02 of the arterial blood (Pa02), and send signals to the

respiratory control center in the medulla oblongata of the central nervous system. This

control center responds by increasing ventilatory drive, in an attempt to restore normal

oxygen delivery to the tissues. Carotid body-resected humans show no HVR (Honda,

1992).

The two main ventilatory control mechanisms identified in the control of hypoxic

ventilatory responses were a) peripheral (i.e. carotid aortic body) chemoreceptors and b)

central (i.e. superficial ventral medullary) chemoreceptors (Mitchell et al., 1963).
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The general function of the peripheral and central chemoreceptors is to maintain

homeostasis in the body by means of feedback control from the central nervous system

(CNS) which interacts to restrict cellular hypoxia as well as limit respiratory and

metabolic pH shifts.

The main stimuli of the peripheral chemoreceptors are pH (directly) and arterial

hypoxemia (02), while the central chemoreceptors are primarily stimulated by CO2 (pH

indirectly). The peripheral sensors are stimulated by the effect of reduced C02 (as a result

of respiratory or metabolic changes) and the consequent effects on H+-ion concentration.

The central chemoreceptors respond to cerebrospinal fluid pH changes that are

determined by both the arterial CO2 concentration and the environmental extracellular

fluid (ECF) of cerebrospinal fluid HC03 - concentration (Mitchell et al., 1963)

Quantifying the relative contributions of the peripheral and central chemoreceptor has

been attempted for the purposes of better understanding the ventilatory response to

hypoxia. However, an understanding of the relative contributions of the peripheral and

central components is complicated by the possibility of increased sensitivity of the

carotid bodies with duration of acclimatization (Smith et al., 2001).

The acute response involves an immediate escalation of minute ventilation at the onset of

hypoxia. At high altitude or during hypoxic exposure, the arterial hypoxemia stimulating

the peripheral drive increases ventilation, which promptly lowers the PaC02, and raises

the pH of cerebrospinal (central ECF). This decreases the central ventilatory drive, which

consequently decreases the synaptic output to the respiratory muscles and thus lowers
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depth and rate of ventilation. The acute ventilatory response results from the reflex

activation of a variety of respiratory muscles, and may terminate after the afferent input

caused by hypoxia has returned to normal (Powell et al., 1998). This may occur within

one breath of Pa02 changing at the carotid bodies. There is a decrease in ventilatory

activity at the termination of hypoxia. The acute response represents the effects of

changes in peripheral chemoreceptor afferent input to glutamatergic (and possibly other)

synapses in the nucleus of the solitary tract (Powell et al., 1998). This synaptic input

alters during the course of the different phases of the continuous respiratory cycle. While

the ventilatory response to acute hypoxia includes changes in both the respiratory timing

and amplitude, the pattern of change in fR and VT is highly variable and differs between

species (Powell et al., 1998). In unacclimatized low-altitude residents, an exponential

relationship exists between Pa02 and minute ventilation, with a marked increase in

ventilation occurring when the Pa02 drops into the low (60 mmHg) range (Sahn et al.,

1977). The greater the ventilatory response to hypoxia, the higher will be the alveolar

P02 and hence the arterial P02 and consequently the arterial oxygen saturation (although

other factors may serve to increase the alveolar-arterial oxygen tension difference) (Smith

et al., 2001). In light of the above information it is clear that the control ofe02 is of

importance in the accurate measurement of the ventilation response to hypoxia."

Various secondary response mechanisms (such as psychological factors, Kawakami et

al., 1982) complicate the primary physiological response, which makes analysis of

respiratory behaviour during hypoxia quite complex. Secondary responses may also
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contribute to the large inter-individual variability reported in the literature (Khamnei &

Robbins, 1990; Liang et al., 1997).

2) Hypoxic Ventilatory Depression

The immediate increase in expired minute ventilation (VE (in L·min-1)) in response to

acute hypoxic exposure is followed by a decline in this parameter to a higher-than-normal

baseline value, a phenomenon known as Hypoxic Ventilatory Depression (HVD) (Easton,

et a!., 1986). The hypoxic response is also accompanied by a decline in alveolar, hence

end-tidal CO2 (PAC02 and PETC02), as a consequence of the increased ventilation

volume tpoikilocapnic hypoxia) (Fig. 1.3). This has two important consequences: first,

hypocapnia decreases peripheral chemoreceptor sensitivity and second, it depresses

central chemoreceptor activity in the medulla (Easton et al., 1988), resulting in a

progressive fall in VE during poikilocapnic hypoxia.
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Figure 1.3 Time course of PAC02 during ventilatory acclimation to hypoxia (adapted

from High Altitude, pp 141,2001).

To remove the confounding effect of altered CO2 levels on ventilation, experimental

hypoxic challenges such as the AHVR test are performed while maintaining constant

PAC02leveis (isocapnic hypoxia), thereby isolating the ventilatory response of the

peripheral chemoreceptors to oxygen alone. During both isocapnic and poikilocapnic

hypoxic exposure the ventilatory response is biphasic; with an initial peak followed by

HVD. The mechanisms ofHVD are not fully elucidated, but more common explanations

for it are:

a) The metabolic suppression of the neurons induced by the hypoxic exposure

(Central Ventilatory Depression).

b) Inhibitory effects of neuro-effectors such as GABA (Gamma-aminobutyric acid),

adenosine, lactic acid, and endogenous opioids, (Smith et al., 2001), and

c) Hypoxaemic destabilization of the respiratory control system (Takahashi & Doi,

1993).

The influence of HVD on acclimation to hypoxia has not been assessed (Lahiri, 2001),

neither has the extent of inter-individual variation in HVD nor its interaction with VAH.

3) Ventilatory Acclimatization to Hypoxia

The primary factor characterizing ventilatory adaptation to prolonged hypoxia is the

gradual increase in VE (Powell et al., 1998). This acclimatization is a time-dependent
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process that results in systemic adaptations which can be measured as physiological

responses, e.g. changes in the HVR or haemoglobin concentration.

The process of ventilatory acclimatization has been linked to the carotid body-initiated

response (Beidleman et al., 1997, and references therein; Lahiri & Chemiack, 200 1).

Genotypic alterations in HVR have been invoked in inter-population comparisons (e.g.

Beall et al., 1997), and may have occurred in the following three ways (Hochachka, et

al., 1999):

a) changes in physiological systems due to genetic drift;

b) changes in physiological systems due to natural selection at rates proportional to

selection pressure; or

c) conservation of physiological systems for long time periods by stabilizing selection.
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3.1) Broad mechanisms of adaptation to hypoxia

Humans can adapt to hypoxia, although to a lesser degree than can other mammals such

as goats (Powell et al., 1998), by compensating at several levels (Samaja, 1997). A

chronological list of the various mechanisms of compensation that contribute to the

process of acclimatization follows:

a) Hypoxic stimulation of peripheral chemoreceptors causes an immediate increase

in alveolar ventilation and VE (Powell et al., 1998).

b) Initially, respiratory alkalosis resulting from lowered PaC02 shifts the oxygen-

hemoglobin curve to the left, facilitating alveolar oxygen loading in the period

before erythropoiesis (c, below) has occurred. Subsequently, increased 2,3-

diphosphoglycerate (DPG) production by erythrocytes shifts the oxygen-

hemoglobin dissociation curve back to the right, facilitating oxygen unloading

into the tissues (Vander et al., 2001).

c) Hypoxia stimulates secretion of the hormone erythropoietin (EPO), which

stimulates erythropoiesis in the bone marrow.

d) On a longer time scale, hypoxia increases mitochondrial concentration, muscle

myoglobin concentration and capillary density, all of which increase O2 transfer

rates (Kayar & Weiss 1992).

e) An increased loss of sodium and water in the urine is associated with arterial

hypoxemia (Hildebrandt et al., 2000). This diminishes the plasma volume,

resulting in an increased concentration of the erythrocytes in the blood, and in

extreme cases an increased viscosity. This can be deleterious, for example in the

case of "blood-doping" (see for example Spivak, 2001) but of more relevance to
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altitude-related studies plasma-volume contraction may confound the

measurement of hematocrit (Het), and can sometimes be mistaken for increased

RBC synthesis.

f) Combined exercise and hypoxia enhance Exercise-Induced Hypoxaemia (EIH),

providing a potent stimulus for the up-regulation in mitochondrial enzymes and

for a simultaneous down-regulation in Na+-K+-ATPase pump expression (Green

et al., 1999).

3.2) Circulatory adaptations to hypoxia

Hypoxia increases the effectiveness of circulatory oxygen delivery by the following

mechanisms (Samaja, 1997):

1) Immediate increases in cardiac output, followed by return to near normal levels in a

few days, when other systems (see above) have adapted sufficiently.

2) Increase in tissue capillarity.

3) Increase in erythrocyte production ofDPG.

4) Release of ATP from erythrocytes is believed to cause local vasodilation (Ellsworth,

2000), hence improved oxygen delivery.

3.3) Functional plasticity of respiratory responses

Physiological flexibility plays a crucial role in organisms' responses to variable

environments, a fact that has long been acknowledged by comparative physiologists and

more recently by human physiologists in some fields. Some of the compensatory

mechanisms described above retain a degree of functional plasticity in the ventilatory
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control system. An increase in carotid body sensitivity to hypoxia occurs with

acclimation and most likely plays a key role in this natural adjusting process. Phenotypic

or genotypic alterations in carotid body sensitivity may contribute to respiratory plasticity

(Lahiri & Chemiack, 2001).

FACTORS INFLUENCING THE HVR

1) Gender and Age

The timing of HVR testing in female subjects is important, because ovarian hormones

cause increased ventilation (Hannhart et al., 1990). Gender influences on HVR were

ignored in early studies, leading to contradictions between these and more recent

findings. The phases of the menstrual cycle may influence HVR, (White et al., 1983;

Muza et al., 2001), and women may have lower HVR values than men (White et al.,

1983), but Muza et al. found no differences (2001). Variations in reported HVR values

for women may reflect the wide variation in the endogenous ovarian hormone levels that

are common during phases of the menstrual cycle (Hannhart et al., 1990), as well as the

large degree of inherent intra-individual variability in the HVR (Sahn et al., 1977, Zhang

& Robbins, 2000). Metabolism, which differs between genders, also influences the

degree of hypoxic sensitivity (Sahn et al., 1977).

While a HVR has been extensively measured in young adults, there is relatively little

literature on the ventilatory responses to acute or sustained isocapnic hypoxia in older

healthy adults (Smith et al., 2001). Although some studies suggested that HVR among
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older men is reduced relative to that of younger men (Kronenberg et al., 1972), a recent

and very thorough study that accounted for many of the listed factors in this chapter,

showed that the acute isocapnic HVR is maintained with no decline into the eighth

decade in healthy, moderately active elderly men (Smith et al., 2000). Such

contradictions may result from the use of different techniques to measure HVR. These are

summarized below.

2) Inherent Variability of HVR

Large inter- and intra-subject variability in HVR confounds study of this parameter.

Original estimates were between 8 % and 64 % for intra-individual variability of the

HVR with later values of approximately 26 % (Sahn et al., 1977; Zhang & Robbins,

2000). Early studies showed that the inter-day variability is greater than the intra-day

variability (Sahn et al., 1977), but recent research does not support this (Zhang &

Robbins 2000; Fahlman et al., 2002). Such variability in HVR may reflect intra-

individual fluctuations in sensitivity as the effects of hypoxia on the brain alter the

arterial chemoreceptor signal or modify the interpretation of that signal by central

respiratory neurons (Lahiri & Chemiack, 2001). For more comprehensive discussion of

variability in the HVR, see Chapter 2.

3) The Effect of pH on HVR

Maintenance of isocapnia during HVR testing is important for two reasons: first, central

ventilatory drive is affected by PaC02; second, pH changes directly stimulate peripheral

chemoreceptors. Recall that plasma PC02 has a profound influence on pH. Reduced
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blood pH elicits a right-shift in the 02-haemoglobin curve, just as increased pH causes a

left-shift. Such shifts influence arterial oxygen saturation, a commonly measured

component of HVR, but to a lesser degree than the effect of a nett decrease in Pa02,

especially in the <60 mmHg range where the Hb-02 relationship is steepest (Wagner et

al., 2001).

In addition, if PaC02 changes during measurement of the HVR, concomitant changes in

pH directly influence the central respiratory drive (as discussed earlier). Furthermore, it

has been noted that in low-altitude residents an inverse relationship exists between end-

tidal CO2 and HVR (Reeves et a!., 1993), such that it may be implied that even sea-level

Pa02 can influence resting ventilation (Smith et a!., 2001). Maintenance ofisocapnia

during HVR testing is therefore of crucial importance. Diurnal variation in CO2

sensitivity may also influence the HVR (Spengler et al., 2000; Stephenson et a!., 2000).

Care should thus be taken to test all subjects at the same time of day. Inter-individual

comparisons show that sea-level HVR is inversely related to resting PETC02 (Sahn et al.,

1977; Reeves et al., 1993).

The effects of pH on the ventilatory system are reviewed by Powell et al. (1998). End

tidal PC02 is highly variable between subjects (Moore et al., 1984; Huang et al., 1984).

When steady-state conditions are maintained (e.g. diet, exercise, caffeine consumption,

altitude of residence, and time of day), within-individual variation of end-tidal PC02 is

low (e.g. Moore et al., 1984; Regensteiner et al., 1989). In addition, variability of the

HVR within an individual may be linked to fluctuations in blood pH (Anderton et al.,
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1964; Reeves et al., 1993). pH and temperature-induced shifts in O2 dissociation at a

given arterial P02 contribute to variation in chemosensitivity. Measurement ofP02 is

affected by changes in blood pH, PC02, and temperature (Vander et al., 2001).

Furthermore, the measurement of end-tidal PC02 is the most sensitive measure of the

effects of menstrual cycle variation of ovarian hormones on resting ventilatory drive in

women residing at a constant altitude (see for example Muza et al., 2001).

4) Population Differences

With applications ranging from biochemistry to anthropology and evolutionary genetics,

research into physiological variability between populations has far-reaching

consequences. Hypoxia tolerance in widely different populations living above 4000 m

has been well-studied, particularly among Andean and Himalayan peoples (Beall et al.,

1997, Zhuang et al., 1993; more detail will be presented on this in Chapter 3). Hypoxic

tolerance in such populations may have a high degree of genetic heritability, implying

that variations in response to hypoxia may have a genetic basis (Neubauer, 2001). This

implication is supported by the fact that Quechuas do not lose their hypoxia tolerance

after short-term adaptation to sea-level (Hochachka et al., 1999).

Physical limits have been compared between Kenyans living at moderate altitude and

Scandinavians adapted in the short-term to moderate altitude (Saltin et al. 1995a; Saltin et

al., 1995b). However, there have been no published studies of hypoxic ventilatory

responses of any African population, either from high or low altitude. The only published

study of ventilatory sensitivity in Africans investigated Nigerians' responses to
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hypercapnia in which Nigerians exhibited lower hypercapnic ventilatory responses

compared to young Nigerians (Elegbeleye & Femi-Pearse, 1980). Some measures of lung

capacity such as forced vital capacity (FCV) have been explored in Ethiopians (Harrison

et al., 1969). Brutsaert's (2001) recommendations for studying adaptation to hypoxia

suggest that a comparison of the widely-separated South-African Xhosa and Caucasian

populations will enhance our understanding of the effects of genes vs. environment on the

HVR. These two populations have lived for many generations at the same altitude but last

shared a common ancestor approximately 100 000 years ago (Cavalli-Sforza et al., 1994).

East Africans are regarded as one of the three main HA populations (Hochachka et al.,

1999) yet the only information regarding ventilatory sensitivity in Africans is Elegbeleye

& Femi-Pearse's (1980) study of hypercapnic sensitivity in West Africans.

It is unclear to what degree improved tolerance to hypoxia is a result of living at altitude

for a single lifespan, or of altitude adaptation over generations. In summary,

physiological adaptations to hypoxia in humans are well-documented but their genetic

basis and their importance relative to social factors and lifestyle choices still warrant

investigation, particularly in Africa (Moore, 2001).

6) Advances in HVR Testing

Many studies do not agree in terms of their findings in this research field, but this may be

in part, or even largely attributed to the different techniques and protocols that have been

used in these studies. Other differences occur between species (Neubauer, 2001).
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The earliest method of measuring HVR involved exposure of subjects to a certain

fraction of inspired O2 and measurement of their expired VE (Cormack et al., 1957).

Subsequently, progressive hypoxia was induced using the re-breathing technique (Rebuck

& Campbell, 1974), which does not allow for switching between gases. This method was

superseded by the computer-controlled dynamic end-tidal forcing technique (Robbins et

al., 1982; Howson et al., 1987), which permits rapid changing of gas fractions between

normoxia and hypoxia, and employs pre-mixing of gases to obtain subject-specific end-

tidal gas levels. However, this technique is expensive and non-portable, and so its use in

the field is impractical and non-existent. Furthermore, it may be construed as being non-

physiological, because it induces changes in PA02 far more suddenly than would occur

under non-laboratory conditions. These changes are achieved when subjects breath

several breaths of anoxic or hyperoxic gas mixtures.

The breathing circuit developed by Sommer et al., (1998) controls alveolar C02 (see

Chapter 2) and was refined in our laboratory by Fahlman et al., (2002) to allow for

complete study of all the characteristics of the HVR, while keeping the setup portable and

relatively inexpensive. This system induces less rapid changes between gas mixtures than

does the dynamic end-tidal forcing technique, and the length of the hypoxic exposure is

increased accordingly, but not enough to cause complicating effects such as HVD or

VAH (Powell et al., 1998).

HVR measurements only permit quantification of the rate of change, or speed of an

individual's response, when the data acquisition system being used has a sampling
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frequency that permits breath-by-breath or greater resolution. Mathematical models

(Khamnei & Robbins, 1990) and computer simulation techniques (Ursino et al., 2001)

have been developed to help assist understanding and clarification of the HVR's complex

and inter-related mechanisms, yet even with these advanced methods, ventilatory

research retains its difficulties.
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Chapter 2

Variability of the ventilatory response to isocapnic

hypoxia.

Note: This chapter has in part been used for two manuscripts: 1) "A simple breathing

circuit to maintain isocapnia during measurements of the hypoxic ventilatory

response" by Andreas Fahlman, Sue Jackson, John Terblanche, Joseph A. Fisher,

Alex Vesely, Hiroshi Sasano, and Kathryn H. Myburgh (accepted 7 August 2002,

Respiration Physiology & Neurobiology); 2) "Inter- and intra-day variability of the

hypoxic ventilatory response" by Andreas Fahlman, John Terblanche, Sue

Jackson, Charles McClure, and Kathryn Myburgh in preparation for the Journal of

Applied Physiology. I acted as research assistant during these studies.
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Abstract

We report the testing of a simple breathing circuit for measurement of the isocapnic

hypoxic ventilatory response (HVR) in humans and the assessment of the HVR

variability within and between days. The circuit permits rapid switching between two

gas mixtures with different partial pressures of oxygen. Subjects (n = 15) breathed

repeated cycles of exposure to normoxia (21 % O2, balance N2) and hypoxia (8.1 ±

0.1 % O2, balance N2). Hypoxia induced significant increases in minute ventilation

and its components, breathing frequency and tidal volume (P < 0.05). In addition, the

system successfully maintained isocapnia in all volunteers. Subjects experienced mild,

but significant hypoxic ventilatory depression (HVD) with repeated hypoxic

exposures, but HVD was not detected during the first hypoxic interval. There were no

systematic changes in any respiratory variables between tests done on the same day,

indicating that 60 min between tests was long enough to reverse the extent ofHVD

seen in this protocol. To assess between and within day variability of the HVR,

subjects were tested on a total of three days, either once (n = 6) or three times per day

(n = 9), intervened by a 60 min rest period. Variability of the HVR was computed

using only the data from the first norm oxic and hypoxic exposure in which no HVD

was detected. The variability in HVR within-day and between days did not differ, and

amounted to ~ 27% between tests.
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Introduction

Chronic exposure to hypoxia elicits a triphasic ventilatory response in humans.

Primarily, hypoxia causes increases in expired minute ventilation volume ( VE'

Lsmin") which is contributed to by amplified tidal volume (VT, L) and breathing

frequency (fR, breaths. min-I) above resting levels (Weil & Zwillich, 1976; Easton et

al., 1986). This initial acute response is rapid and develops over a few seconds

(Powell et al., 1998; Zhang & Robbins, 2000), but has been difficult to measure

because of contamination of the data with those from subsequent phases. During

stable hypoxic exposure lasting longer than two to five minutes, there is a second

phase entailing decreased ventilation, termed hypoxic ventilatory decline or

depression (HVD; Easton et al., 1986; Powell et al., 1998). During this second phase,

VT returns towards resting values while fR remains elevated for the entire hypoxic

exposure (Easton et al., 1986). In experiments to determine the hypoxic ventilatory

response (HVR), the imposed hypoxic challenge should be long enough for the full

response to develop but short enough to prevent the development of HVD

(Severinghaus, 1976; Khamnei & Robbins, 1990; Mou et al., 1995). In the third

phase, called ventilatory acclimatization to hypoxia (VAH), ventilation rises over

orders of hours during hypoxic exposure (Powell et al., 1998).

The most common technique used to measure HVR in humans is the re-breathing of a

fixed volume of air in a bag from which the CO2 is partially removed to maintain the

desired end-tidal CO2 partial pressure (PETCO
2
; Rebuck & Campbell, 1974; Beall et

al., 1997). This technique permits a single hypoxic exposure, but not the switching

between hypoxic and normoxic mixtures that allows repeated measurements.
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Repeated measurements are important for assessing the considerable intra- and inter-

individual variability in ventilatory parameters (Zhang & Robbins, 2000).

Another method is the end-tidal forcing system (Robbins et al., 1982; Howson et al.,

1987), which permits rapid changes of inhaled O2 and CO2 concentrations. This

system allows for repeated measurements of HVR within the same experiment, and

also permits exposure of subjects to rapidly alternating cycles of hypoxia and

normoxia for repeated measurements of HVR within the same experiment without

eliciting HVD. However, it requires a chamber with a high gas turnover and complex

computerized mixing equipment and is therefore costly and non-portable.

Sommer et al. (1998) recently developed a technique that controls alveolar CO2

concentration by providing a fixed flow of gas and a second flow of gas on demand.

For the current study, this circuit was modified so that it permits switching between

inspired gases with different P02 concentrations over several cycles of alternating

hypoxia and normoxia. The first goal of this chapter is to report tests ofthis system's

ability to keep subjects isocapnic during changes between two gas mixtures of

different O2 concentrations when applying a square wave protocol similar to that

described by Zhang and Robbins (2000), albeit without instantaneous attainment of

hypoxia.

The second main goal of this chapter is reporting the extent of variability inherent in

the HVR. Inter-individual variability in HVR is relatively well-documented (e.g.

Hirshman et al., 1975; Kronenberg et al., 1972; Rebuck et al., 1973). Although intra-

individual variability of this response between days is less well understood, early

studies suggested that this ranged from 7.6 % to 64 %, and repeated tests on different
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days on the same individual showed that HVR differs significantly between days in

some individuals (Sahn et al., 1977). Zhang and Robbins (2000) estimated that

between-day variability in HVR is on average approximately 26%. However, these

authors could not estimate within-day variability because tests performed on the same

day used different protocols. These authors found no significant differences between

the different protocols employed, but other studies have shown that different patterns

of hypoxic exposure yield different results for HVR (Mahutte & Rebuck, 1978). It

has also been suggested that different methods of analyzing the data may account for

the large variability (Sahn et al., 1977). Still, single measurements ofHVR have been

used to evaluate physiological differences between and within populations where

conclusions have been made regarding the genetic differences of the populations

(Beall et al., 1997; Hochachka & Monge, 2000).

I report here the results of repeated tests to assess within- and between-day variability

ofHVR. We aimed to establish whether the variability in HVR differs between tests

carried out 60 minutes apart, a time period long enough to reverse the HVD (Easton et

al., 1988), and between repeated tests carried out on different days. It would be useful

to know whether within-day variability in HVR is similar to or possibly even less than

that measured on different days, as time could be saved during testing and subjects

need not agree to so many visits. We are not aware of any published studies that have

done this. Furthermore, to establish HVR as a measurable and repeatable

physiological indicator of altitude adaptation (Beall et aI., 1997; Hochachka &

Monge, 2000), we require a better understanding of its inherent variability (Sahn et

al., 1977; Zhang & Robbins, 2000).
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Methods

Subjects & Laboratory conditions

Fifteen healthy subjects (seven male and eight female) of a low-altitude residency

(altitude <100m) participated voluntarily. Their mean body mass was 69.4 ± 11.8 kg

(± 1 SO), mean height 173.5± 10.3 cm, and age 25.5 ± 5.1 Y(individual data are

presented in Table 2.2). All experiments were performed at sea-level «100 m) in a

laboratory. As measured by the metabolic system (MetaMax™, Cortex Biophysik

GmbH, Leipzig, Germany), mean laboratory ambient temperatures, mean exhaled air

temperatures for all subjects and mean atmospheric pressure inside the laboratory

were 22.9 ± 1.5 "C, 31.3 ± 0.4 °c, 1005.8 ± 2.8 mBar (or 754.6 ± 2.1 Torr)

respectively for all the experimental days. None of the above varied significantly

between days (repeated measures ANOVA, P> 0.3).

All test procedures were fully explained to each subject, verbally and in written form,

before he/she signed a consent form. All subjects understood that they were free to

withdraw from the study at any time. Ethical approval for all procedures was granted

by the Subcommittee C of the Research Committee of the University of Stell en bosch,

which conforms to the internationally accepted ethical guidelines detailed in the

Declaration of Helsinki.

Isocapnic breathing circuit

The circuit described by Sommer et al. (1998) comprises a one-way valve, the

inspiratory port of which is connected to two gas sources. One gas source (fresh gas,

FG) is provided at a constant flow rate. During exhalation this constant flow allows a

gas reservoir to collect FG and provides it for inhalation with the next breath. The
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second gas (termed reserve gas, RG) is provided via a demand regulator only if the

ventilatory demand exceeds the flow of FG, causing the gas reservoir to collapse. The

RG contains gas comprising the desired fraction (F02) or partial pressure of O, (P02),

and 5.5 % CO2 (FC02) (Sommer et al., 1998). The equation given by Sommer et al.

(1998) describing the effect of various breathing parameters on alveolar ventilation is

described by:

[Eg.2.l]

where VA is the alveolar ventilation (L. min-I), or the ventilation that contributes to

CO2 exchange, the FGF is the fresh gas flow (L • min-I), VE the expired ventilation

during hyperpnea (L. min-I), and PVC02 and PRGC02 are the partial pressures of CO2

of the mixed venous blood and the RG, respectively.

[Eg.2.l] has two theoretical shortcomings. First, the rationale for the use of PVC02 in

the reserve gas is not correct. To eliminate the effects of ventilation on arterial PCO2

(PaC02), the reserve gas PC02 should be equal to that in the alveoli (PACO) or arterial

blood. Indeed, Sommer et al. (1998) found that adjusting the FRGC02 to 5.5 % (which

corresponds approximately to a normal PAC02) maintained isocapnic hypoxia better

than FRGC02 of 6.5 %, which corresponds more closely to PVC02 . In preliminary

testing we found the same and, accordingly, have used FRGC02 = 5.5 %.

Second, [Eg.2.1] does not take into account anatomical dead space. Clearly, in the

second term, the ventilation obtained from the reserve gas will not be ( VE - FGF) but

( VE - Vnan - FGF), where Vnan is the minute ventilation of the anatomical dead
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space. A modification of the equation described by Sommer et al. (1998) taking these

factors into account is:

. .. -I
VA = FGF + (VE - VDan - FGF). (P AC0

2
- PRGCO)' (PACO) [Eq.2.2]

where the PAC0
2
is assumed to be equal to the PET CO

2
'

To allow switching between normoxic (21 % 02, balance N2) and hypoxic (8 % 02,

balance N2) gas mixtures while maintaining isocapnia, a duplicate circuit of FG and

RG gas bottles were added containing hypoxic gas mixtures (Fig. 2.1). Consequently,

we had two FG bottles containing different fractions of O2 (8.3 % and 21 %, balance

N2), and two RG bottles containing 5.5 % C02 in addition to these two fractions of O,

(balance N2). The circuit worked as follows. The inspired gas was supplied from a 2

L reservoir filled continuously from a compressed gas cylinder containing normoxic

(21 % 02, balance N2) or hypoxic (8.3 ± 0.1 % O2, balance N2, n = 3 bottles used) gas

(Fig. 2.1). Flow into the bag was measured by a flow meter (Ohmeda, BOC

Healthcare, England) calibrated with air and with an 8 % 02, 92 % N2 mixture using a

water spirometer. Estimated flows were reproducible within 4 %.

The flow ofFG was set to equal each subject's VA [Eq. 2.1], estimated as:

[Eq. 2.3]

where VE was measured during the initial S min period before the hypoxic/normoxic

exposure, and 0.70 is the estimated fraction of VE contributing to gas exchange

(Tortora & Grabowski, 1996). When VE was equal to or less than FG, inspired gas

consisted entirely of FG. When VE exceeded that supplied by the FG, the reservoir

emptied and a low resistance demand valve (opening pressure -0.5 mBar; Oxidem
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3000, Drager Medizintechnik GmbH, Germany) opened to supply the RG with 5.5 %

C02 and the same F02 as the FG. This arrangement maintained the subject's PETC0
2

at his or her normal resting values during both normoxia and hypoxia, despite the

increases in ventilation produced by hypoxia. The seal of the facemask was ensured

by asking the subject to cover the port (the large-diameter opening in the mask where

connection to the switch-apparatus is made) with his or her hand and attempting to

inhale and exhale. If air leaked during this procedure, a mouthpiece was substituted

for the facemask.
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One-way valve Reserve Gas Flow

Demand regulator

Subject

Fresh Gas
reservoir bag

airflow

Switch valve

Arrows indicate direction

Figure 2.1. Schematic representation of the breathing circuit designed to maintain isocapnia in subjects breathing either a normoxic (21% O2,

balance N2) or a hypoxic gas mixture (8% O2, balance N2).
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Gas Exposure Protocol

After the initial resting normoxic phase (Pre), subjects were exposed to 4 square-

waves of inspired O2 that alternated every 120 s between 8.3 (± 0.1) and 21 % O2.

Each test was therefore divided into nine intervals, five exposures to normoxic gas

and four to hypoxic gas. The period of each of the four waves was therefore 240 sand

longer than the 120 s used by Zhang and Robbins (2000) because their dynamic end-

tidal forcing system allows steady PET02 values to develop within 5 s (one to two

breaths) of switching from normoxia to hypoxia. The PET02 of subjects breathing

through our circuit only stabilised one minute after switching. If inspired P02 is not

dropped to extremely low values for one or two breaths at the start of the hypoxic

exposure, mixing of inhaled air with that in the dead space and the residual volume

causes arterial P02 to lag behind inspired P02 (Anthonisen & Fleetham, 1987). Our

subjects inhaled a gas mixture with a constant FI02 (8.3 %; P02 = 60 mmHg) and

therefore required approximately 60 s to reach steady PET02 values, as did subjects in

a recent study using a partial re-breathing circuit (Garcia et al., 2001). Thereafter,

fifty seconds at a steady, hypoxic PET02 is long enough for full development of the

acute HVR yet short enough to prevent a significant HVD (Mou et aI., 1995; Zhang &

Robbins, 2000).

Published studies using various protocols, some of which, like ours, do not

instantaneously induce hypoxia, show that ventilatory decline begins two to three

minutes after introduction of hypoxia (Severinghaus, 1976; Weil & Zwillich, 1976;

Easton et al., 1986; Khamnei & Robbins, 1990; Bascom et al., 1992; Paterson et al.,

1993; Powell et al., 1998; Garcia et al., 2001). Although Howard and Robbins (1994)

and Mou et al. (1995) recommend use of a 50 sec bout of hypoxia, the slower
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switching of our circuit meant that this would not have been long enough for our

subjects to reach the required PA02. Powell et al. (1998) suggest that 120-180 s of

hypoxic exposure may be short enough to prevent HVD. We therefore chose a

hypoxic interval of 120 s to induce adequate hypoxia, causing significant desaturation

of arterial blood (to a mean value of82.5 ± 5.5%) while reducing the risk of

development ofHVD. The total period incorporating one hypoxic and one normoxic

interval was thus 240 s. For each subject, we repeated this 240 s hypoxia-normoxia

cycle four times.
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Figure 2.2. Representative responses of minute ventilation (a) VE' L. min-I; upper
panel), arterial oxygen saturation (b) Sa02, expressed as a percentage; middle panel),
and end-tidal CO2 (c) PET CO

2
, mmHg; lower panel) to repeated 2 min bouts of

exposure to air (21 % O2, balance N2) and hypoxic gas (8.3% 02, balance N2) in a
single subject with a 'steady' response (A; subject ID 8, Table 2.2) and illustrated on
the next page, a subject with a variable response (B; subject ID 7, Table 2.2) ..
Triangles on axes represent switch in gas mixture. VE and PETc0

2
, are expressed in

BTPS.
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Protocol for testing variability

The subjects were randomly assigned to two groups depending on the number of visits

they were willing to make to the laboratory. The protocol structure, sample and

number of tests is represented in Table 2.1. Each member of Group 1 (Gd) underwent

three HVR tests on a single day, each separated by 60 min, and repeated this series of
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three tests on three separate days (n = 9; five males and four females, Table 2.1).

Each member of Group 2 (Gr2) conducted three identical HVR tests on each of three

different days (n = 6; two males and four females). Tests on different days were

separated by at least two and at most 36 days. All eight female subjects were studied

during the follicular phase of their menstrual cycle. Subjects were asked to refrain

from drinking alcohol and caffeine-containing beverages from the evening before the

tests. Before the study, each subject completed one or two preliminary tests for

familiarization with the breathing circuit and the study protocol. During the first of

these preliminary tests the subject's height (cm) and weight (kg) were measured. The

number of preliminary tests for each subject was dictated by his or her comfort and

ability to relax, demonstrated by stable and consistent resting values for VE and

breathing frequency (fR, breaths. min-I).

Table 2.1. Group number (Grl or Gr2), number of subjects in each group (n), number

of tests within each day (WD), or between days (BO), and total number of tests for

each group for all subjects.

Group Within Day
(WD)

Between Day
(BD) Total

Grl
(n =9)
Gr2

(n = 6)

3 3 81

3 18

Data recorded

Expired minute volume (VE' L. min-I at standard temperature and pressure dry,

STPO), tidal volume (VT, L, STPO), and breathing frequency (fR, breaths per minute)

were sampled by a metabolic system (MetaMax™, Cortex Biophysik GmbH, Leipzig,
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Germany) and average values recorded every lOs. The end-tidal partial pressure of

CO2 (PETCO
2
at body temperature, pressure and saturation, BTPS) was sampled by a

capnograph placed approximately 5 em from the face-mask attachment point

(Microstream™, Microcap, Oridion Medical Ltd, Jerusalem, Israel) and average

values recorded every 5 s and converted to STPD.

Arterial O2 Saturation (Sa02, %)

During the tests, subjects' Sa02 was measured continuously using a pulse oximeter

(Nellcor N-395 Pulse Oximeter, Mallinkrodt, Inc., St Louis, MO, USA). Each subject

was fitted with a forehead sensor (Nellcor RS 10, Mallinkrodt, Inc., St Louis, MO,

USA) that measured the Sa02 (%). To improve the blood flow to the region of the

sensor, the subject's forehead was rubbed with an ointment containing capsaicin (0.25

g per 100 g, Sloan Heat Rub, Warner-Lambert, South Africa) (Benoit et al., 1997).

The Sa02 data were captured every 4 s and averaged over a 30 s period corresponding

to the VE values' 30 sinterval.

Data Assessment and Statistical Analysis

All values are reported as means ± 1 standard deviation (SD), unless otherwise

specified. Data from the start of the test up to the last two minutes of the Pre period

were discarded.

Means of all variables for the last 30 softhe initial normoxic interval before hypoxic

exposure (Pre) were regarded as baseline values for that subject and that test. The
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remaining four intervals of normoxi a (NI-N4) each alternated with an interval of

hypoxia (HI-H4). Mean values of all variables were calculated using only the final

30 s (60 s for PETCO) of each 120 sinterval.

Initially, the 30 s means for each of the five normoxic (Pre, NI-N4) and four hypoxic

intervals (HI-H4) for each subject were compared, using repeated measures ANOVA

to test for differences in each of the respiratory variables with interval number for

each condition. A Bonferroni multiple comparison test was used to determine any

systematic differences in mean values for intervals in normoxia or hypoxia. Repeated

measures ANOVA was also used to determine ifthere were systematic differences in

the HVR between the three tests conducted on each day, and between those conducted

on different days. Coefficient of variation (CV) was calculated as the SD divided by

the mean. For analysis of within-day variability, only subjects from Group 1 who

were tested repeatedly on the same day were used (n = 9). For analysis of between-

day variability, all subjects from Groups 1 and 2 were used, but only the data from the

first test of each day were used (n = 15). The Kolmogorov-Smirnov non-parametric

test was used for data with unequal variances and F-tests were used for non-

parametric repeated measures data with unequal variances. Departures from

normality were corrected by appropriate transformations in the case of unequal

variances non-parametric statistics were used. Statistical analyses were performed

using the NCSS 2000 statistical package (NeSS statistical software, Kaysville, Utah).

Acceptance of significance was set to the P < 0.05 level, unless otherwise stated.
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Estimation of HVR

The change in VE (LlVE) in response to hypoxia is linearly related to the change in

Sa02 (Rebuck & Campbell, 1974; Sahn et al., 1977). Consequently, we estimated

HVR for each hypoxic interval as LlVE • LlSa02-1 (L. min-I. %-1) using the 30 s

means for VE and Sa02 from the normoxic period that preceded it, i.e. Pre vs. HI. We

called the magnitude of this variable HVR. The initial base line VE was computed as

the average VE of the last 30 softhe Pre period. During the hypoxic period, data

from the last 30 s of VE and Sa02 were selected for the estimation of the hypoxic

response.
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Results

Subjects

In some subjects, VE' Sa02, and PETCO
2
were repeatable between each

hypoxia/normoxia cycle (Fig. 2.2, panel A), while others showed irregular ventilatory

patterns (Fig. 2.2 panel B).

All subjects completed all three days of the study, and in only one case did a test end

early (at the last normoxic interval) because the subject felt light-headed. No other

subject complained of discomfort, although several reported that their breathing felt

difficult during hypoxia. Several subjects also reported a sensation of relief during

the normoxic period following certain hypoxic periods. Each subject's PETC02

remained stable with minor fluctuations immediately after the switch between gas

mixtures (Fig. 2.2).

Rates of oxygen consumption and carbon dioxide production

For all subjects, neither V02 nor V C02 measured during Pre differed between

days, nor were there differences between tests on the same day in subjects from Group

1 (P> 0.3, repeated measures ANOVA). The mean and standard deviation for each

subject are given in Table 2.2.
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Table 2.2. Group number (Grl or Gr2), subject identification number (ID), gender, weight, height, mean oxygen consumption (V02) and

carbon dioxide production (V C02) rates for each subject in the variability study. X is the grand mean value, ± the SO of the X.

Group ID Gender Age Weight Height V02 VC02
(years) (kg) (cm) (L. min-I) (L. min-I)

Grl SI M 31 81.5 186.5 0.40 ± 0.02 0.33 ± 0.02
Grl S2 M 28 78.2 179.0 0.42 ± 0.04 0.36 ± 0.03
Grl S3 M 22 86.0 183.5 0.43 ± 0.05 0.38 ± 0.05
Grl S4 F 22 65.2 159.5 0.33 ± 0.03 0.29 ± 0.03
Grl S5 F 21 52.0 163.5 0.23 ± 0.04 0.21 ± 0.04
Grl S6 F 21 60.0 166.0 0.34 ± 0.04 0.31 ± 0.04
Grl S7 F 22 66.0 170.5 0.35 ± 0.04 0.28 ± 0.04
Grl S8 M 33 67.0 171.5 0.42 ± 0.03 0.34 ± 0.02
Grl S9 M 25 81.5 185.5 0.32 ± 0.04 0.26 ± 0.04
Gr2 SlO F 23 46.2 158.5 0.34 ± 0.02 0.30 ± 0.02
Gr2 SII F 28 76.4 174.0 0.39 ± 0.01 0.35 ± 0.02
Gr2 S12 F 38 65.4 176.0 0.31 ± 0.01 0.28 ± 0.01
Gr2 S13 M 21 82.5 188.5 0.39 ± 0.07 0.35 ± 0.06
Gr2 S14 M 24 73.6 179.5 0.47 ± 0.03 0.40 ± 0.04
Gr2 S15 F 23 60.0 160.0 0.29 ± 0.05 0.24 ± 0.04

X 25.5 69.4 173.5 0.36 0.31
SO + 5.1 ± 11.8 ±10.3 ± 0.06 ± 0.05
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Table 2.3 a. Comparison of minute ventilation (VE' ± I SD) and end-tidal PC02 (PETCO) at rest and during hyperventilation in air (without

addition of CO2 to maintain hypercapnia). Resting VE ( n = 13) and PETCO
2
(n = 25) were averaged during the two minutes prior to the first

hyperventilation; values of hyperventilating VE and PETC0
2
were averaged from three measurements during the last 30 s. X, grand mean for all

subjects. All values given as BTPS.

Rest Hyperventilation

VE PETC02 VE PETC02

Subject ID (L • min-I) (mmHg) (L. min-I) (mmHg)
1

36.4 ± 1.1 18.9 ± 0.7 28.6 ± I.l8.7 ± l.l
.., 6.5 ± 1.8 36.6 ± 05 19.7±3.5 29.7 ± 1.6.)

4 11.5 ± 0.8 38.9 ± 0.8 18.8 ± 1.2 31.8 ± 0.4
5 8.1±1.8 37.7 ± 0.6 16.8 ± 0.8 27.4 ± 1.7
6 9.5 ± 1.6 34.8 ± 0.4 24.7 ± 1.5 25.6 ± 0.4
7 9.1 ± 0.8 39.4 ± 1.0 19.8±3.0 33.1 ± 0.8
8 6.0± 0.5 37.5 ± 0.5 12.7 ± 1.0 31.4±0.7
9 8.9± 0.6 39.5 ± 0.5 19.6 ± 1.1 32.0 ± 1.6

X 8.5 37.6 18.9 30.0
SD ± 1.7 ± 1.6 ± 3.3 ± 2.6
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Testing the breathing circuit: maintenance of isocapnia

To compare changes in PET CO
2
with and without the addition of CO2, eight of our 15

subjects returned to repeat the test in 1 atm air without the addition of C02 (Table

2.3a).we chose to do these additional experiments in normoxic air to avoid the

discomfort of hyperventilation in combination with hypoxia. Subjects breathed

normally for 5 min while we measured their resting VE and PET CO
2
' Each subject

was then instructed to increase his or her VE to a level equivalent to that measured

during the hypoxic exposure, for 1 min. VE and PET CO
2
were measured and averaged

during the last 30 s of hyperventilation. This procedure was repeated three times,

allowing enough time between each measurement for PET CO
2
to return to the subject's

resting level. Averages of the three VE and PETC0
2

values from each run were

compared with corresponding values for each subject obtained during hypoxia.
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Table 2.3 b. Comparison of PETCO
2
values (mean ± SD in mmHg; given in BTPS) for

Pre Normoxic and Hypoxic intervals. The mean of three tests Pre Normoxic values (n
=3) as obtained from averaging the last two minutes of the normoxic period PETCO

2

(in mmHg); the Hypoxic means for three tests and each of the 4 cycles within those
three tests (n = 12), which uses data from the last 30 seconds of the respective period.

PETC02( in mmHg)
Pre Normoxia Hypoxia

Subject Mean ±SD Mean ±SD
ID
1 34.32 1.37 35.00 1.00
2 34.15 0.47 34.21 0.76
3 33.21 0.61 33.78 0.97
4 32.96 0.96 33.52 0.86
5 32.17 1.92 33.22 2.05
6 38.80 1.44 38.79 1.099
7 30.75 0.73 31.69 0.89
8 34.97 0.63 35.47 0.84
9 33.69 0.47 33.48 0.57
10 36.00 0.63 36.14 0.86
Il 34.66 2.44 34.10 1.85
12 34.89 1.60 34.37 0.70
13 32.85 1.84 32.98 1.03
14 35.14 0.79 35.48 0.34
15 33.51 0.76 33.67 0.43
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PETCO
2
differed significantly before and after hyperventilation in normoxia (P < 0.01,

paired two-tailed t-test) when the mean change was -7.6 ± 1.4 mmHg (range -6.1 to

-10.3 mmHg), or -20.4 ± 4.3% (Table 2.3a). The mean decrease in PETC0
2
during

hyperventilation in hypoxia with the addition of CO2 was -0.2 ± 0.3 mmHg (range 0.4

to -0.8 mmHg, Table 2.3a), or -0.4 ± 0.8%, All subject's PETCO
2
values for Hypoxia

were within our target range of within 1 mmHg of that subject's resting Pre Normoxia

PETco
2
(Table 2.3b). A range of 1 mmHg has been considered acceptable for

maintaining isocapnia in recent studies of isocapnic hypoxia (e.g. Banzett et al.,

2000). The change in PETC0
2
of -20.4% (Table 2.3a, n = 8) during hyperventilation

in air was significantly different from the change of -0.4% during hyperpnea in

hypoxia with the addition of CO2 (Table 2.3a, n = 11, Mann-Whitney, P < 0.01).
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Table 2.4. Estimated absolute hypoxic ventilatory rate response (HVR, L • min" • %.') and

pre-hypoxic exposure ventilatory rates CVE' L.min") calculated as the average VE for all

the hypoxic intervals (HI-H4) minus the normoxic baseline value (Pre, NI-N4), per unit Sa02

(HVR and VE). The values are means of all three tests on each of the three successive days,

for subjects 1-9 (n = 3), and for all three tests on day one for subjects 10-15 (n=3).

X represents the mean ± 1 SO of the group (n = 3 tests). The coefficient of variation (CV) for

each day is calculated using the mean CV for all subjects for that day and is expressed as a

percentage.

Subject HVR VE
ID

Day 1 Day2 Day3 Day 1 Day 2 Day3
SI 1.35 ± 0.49 1.38 ± 0.27 1.48±0.11 7.3 ±0.2 7.5 ± 0.5 7.4 ± 0.4
S2 0.58 ± 0.07 0.64 ± 0.24 0.66 ± 0.35 8.5 ± 1.7 8.8 ± 0.4 8.1 ± 0.4
S3 1.54 ± 0.45 1.58 ± 0.26 1.65 ± 0.12 9.3 ± 2.4 9.4±1.4 9.0 ± 1.3
S4 0.55 ± 0.11 0.53 ± 0.28 0.43 ± 0.03 8.1 ± 0.2 7.7 ±0.8 8.0 ± 0.5
SS 0.11 ± 0.04 0.06 ± 0.06 0.15±0.07 4.6 ± 1.2 6.0±1.4 4.5 ± 0.5
S6 0.22 ± 0.02 0.24 ± 0.05 0.24 ± 0.04 6.9 ± 0.7 5.7 ± 1.3 6.6 ± 0.1
S7 0.49 ± 0.20 0.93 ± 0.37 0.87 ± 0.21 7.7 ± 0.6 8.4 ± 1.2 9.4 ± 1.0
S8 0.37 ± 0.12 0.39 ± 0.08 0.34 ± 0.05 9.6 ± 0.4 8.6 ± 1.2 9.8 ± 0.2
S9 0.68 ± 0.32 0.53 ± 0.14 0.40 ± 0.08 6.1 ± 0.6 7.1 ±0.4 6.5 ± 1.6
SlO 0.26 ± 0.05 6.9 ±0.7
S 11 0.64 ± 0.06 8.7 ± 0.6
S12 0.45 ± 0.06 7.1±0.5
S13 0.70 ± 0.12 8.6 ± 1.3
Sl4 0.24 ± 0.04 10.7 ± 0.8
SIS 0.40 ± 0.14 5.9 ± 1.1
CV 30 38 22 12 13 9

X 0.57 0.70 0.69 7.7 7.7 7.7

SD ± 0.40 ±0.51 ± 0.54 ± 1.5 ±1.3 ± 1.7
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Table 2.5. Estimated absolute hypoxic ventilatory rate response (HVR, L • min" • %") and

pre-hypoxic exposure ventilatory rates ( VE' L • min-i) calculated as the average VE for the

first hypoxic interval (HI) minus the normoxic baseline value (Pre), per unit S.02 (HVR and

VE)' using data for all intervals (Pre, NI-N4, HI-H4). The values are means (n = 3) for

subjects (S I-S9) across three days for the first, second and third tests (Tests I, 2 and 3)

conducted on each day. X represents the mean ± I SO (n = 3 tests). The coefficient of

variation (CV) for each test is the mean CV for all subjectS for that test expressed as a

percentage.

Subject VE "VR
ID Test 1 Test 2 Test 3 Test 1 Test 2 Test 3
SI 7.5 ± 0.2 7.1 ± 0.1 7.7 ± 0.3 1.30 ± 0.12 1.52 ± 0.29 1.39 ± 0.45
S2 8.3 ± 0.5 7.8 ± 1.0 9.3 ± 0.9 0.70 ± 0.30 0.64 ± 0.29 0.55 ± 0.06
S3 8.0 ± 0.5 8.7 ±0.6 11.1 ± 0.8 1.44 ± 0.34 1.50 ± 0.18 1.83 ± 0.08
S4 7.8 ± 0.6 7.7 ± 0.4 8.3 ± 0.4 0.43 ± 0.04 0.60 ± 0.21 0.48±0.19
S5 4.3 ± 0.9 5.6 ± 1.4 5.3 ± 1.2 0.11 ± 0.03 0.08 ± 0.05 0.12 ± 0.11
S6 6.5 ± 0.2 5.7 ± 1.3 7.0 ± 0.6 0.24 ± 0.03 0.26 ± 0.03 0.21 ± 0.03
S7 9.1 ±0.7 8.8 ± 1.4 7.6 ± 0.6 0.78 ± 0.47 0.76 ± 0.22 0.74 ± 0.36
S8 9.2 ± 0.4 8.9 ± 1.5 9.8 ± 0.2 0.29 ± 0.01 0.37 ± 0.03 0.44 ± 0.09
S9 6.3 ± 1.0 6.3 ± 1.1 7.1 ± 1.0 0.54 ± 0.11 0.58 ± 0.40 0.49 ± 0.05
CV 10 14 9 21 33 30

X 7.4 ± l.5 7.4 ± 1.3 8.1 ± 1.7 0.65 ± 0.46 0.70 ± 0.50 0.69 ± 0.56
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Ventilatory variables

It is well known that extended exposure to hypoxia causes HVD (Howard & Robbins,

1994, Powell et al., 1998). To determine if our protocol caused HVD with repeated

exposure to hypoxia and normoxia, seen as a decrease in the ventilatory response with

increasing cycle number, we analyzed the mean values separately for the hypoxic and

normoxic exposures. For this analysis we used repeated measures ANOVA, with cycle

number as a fixed factor and gender as a nested factor, followed by Bonferroni multiple

comparisons in the case of significant differences between cycles. We used all the data

for each subject and assumed that each test was independent. For clarity, Figures 2.3 to

2.12 show the mean values for all subjects in addition to the mean values with genders

separated. Where gender dependence was not significant, the genders were combined for

multiple comparison analyses and when computing mean values. When the repeated

measures ANOV A analysis showed a significant difference between genders, multiple

comparisons were also made within each gender.
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Table 2.6. Estimated absolute hypoxic ventilatory response (HVR, L • min"1 • % "I) and

pre-hypoxic exposure ventilatory rates (VE ,L. min") for all subjects (S I-S 15)

calculated as the average VE for the first hypoxic interval (HI) minus the normoxic

baseline value (Pre), per unit Sa02 (HVR and VE). The values are means of all tests for

subject (S) 1-15 (n = 9, SI-9; n = 3, SI0-15).

Subject ID VE HVR

SI 7.4 ± OJ 1.40 ± 1.29
S2 8.5 ± 1.0 0.63 ± 0.22
S3 9.3 ± 1.5 1.59 ± 0.27
S4 7.9 ± 0.5 0.50 ± 0.16
SS 5.1 ± 1.2 0.10 ± 0.07
S6 6.4 ± 0.9 0.24 ± 0.03
S7 8.5 ± 1.1 0.76 ± 0.33
S8 9J ± 0.9 OJ7 ± 0.08
S9 6.6 ± 1.0 0.54 ± 0.21
SlO 6.9 ± 0.7 0.26 ± 0.05
S II 8.7 ± 0.6 0.64 ± 0.06
SI2 7.1±0.5 0.45 ± 0.06
SI3 8.6 ± 1.3 0.70 ± 0.12
SI4 10.7 ± 0.8 0.24 ± 0.04
SIS 5.9 ± LI 0.40±0.14

Normoxia

Because body size differs between genders, this Chapter focuses on systematic changes in

ventilatory variables with increasing cycle number rather than on gender differences

within each square wave period. In Chapter 3, size-related gender differences are further

explored using ANCOV A with Body Mass Index and/or gender as a covariate.

When comparing the different normoxic periods, Figure 2.3 shows a moderate but

statistically insignificant increase in VE from Pre to Nl with males and females

combined (P > 0.1). VE differed between genders (P < 0.01), but not between cycles
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(Figure 2.3, P> 0.05). The Sa02 during normoxia decreased after each successive

exposure hypoxia (Figure 2.4, P < 0.05). FR increased from a mean Pre value of 14.1 ±

breaths. min-I to 15.2 ± breaths. min-I during N3 (P < 0.05, multiple comparison), but

there were no significant differences across the other intervals (Fig 2.5). VT among males

was approximately - 0.12 L larger in males (P < 0.05, repeated measures ANOVA), but

did not differ from baseline values for either gender (Figure 2.6). The PETCO
2
increased

between the baseline and the NI-N4 intervals (P < 0.05; Figure 2.7).
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Figure 2.3. Mean minute ventilation (VE' L. min-I; ± SEM for the purposes of multiple
comparisons) for the initial baseline resting period (Pre) and each of the four intervals
(NI-N4) for all subjects (n = IS) breathing normoxic gas (21 % 02, balance N2). Overall
means for males and females are presented both pooled, and separated by gender (male n
= 7, female n = 8). Males were significantly larger than females (P < 0.01). Bonferroni
multiple comparisons revealed no systematic change in VE' with increasing cycle
number for all subjects, and for males and females considered separately (P > 0.05
repeated measures ANOVA). All values are expressed at STPD.
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Figure 2.4. Mean arterial 02 saturation (Sa02, %; ± SEM) for the initial baseline resting
period (Pre) and each of the four intervals (NI-N4) for all subjects (n = 15) breathing
normoxic gas (21 % 02, balance N2). Overall means for males and females are presented
both pooled, and separated by gender (male n = 7, female n = 8), but males and females
did not differ consistently (P > 0.05 repeated measures ANOV A). tSignificant difference
relative to the initial baseline resting period (Pre), or :t: to the first normoxic interval (P <
0.05, Bonferroni multiple comparison for all subjects pooled).
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Figure 2.5. Mean breathing frequency (fR, breaths. min-I; ± SEM) for the initial baseline
resting period (Pre) and each of the four intervals (NI-N4) for all subjects (n = 15)
breathing normoxic gas (21 % 02, balance N2). Overall means for males and females are
presented both pooled, and separated by gender (male n = 7, female n = 8), but males and
females did not differ consistently (P > 0.05 repeated measures ANOV A). tSignificant
difference relative to the initial baseline resting period (Pre; P < 0.05, Bonferroni multiple
comparison for all subjects pooled).
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Figure 2.6. Mean tidal volume (Vr, L; ± SEM) for the initial baseline resting period (Pre)
and each of the four intervals (NI-N4) for all subjects (n = 15) breathing normoxic gas
(21 % O2, balance N2). Overall means for males and females are presented both pooled,
and separated by gender (male n = 7, female n = 8), and values for males were
consistently larger than those for females (§, P> 0.05 repeated measures ANOVA). All
values are expressed at STPD.
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Figure 2.7. Mean arterial end-tidal pe02 (PETCO
2
, mmHg; ± SEM) for the initial baseline

resting period (Pre) and each of the four intervals (NI-N4) for all subjects (n = 15)
breathing normoxic gas (21 % O2, balance N2). Overall means for males and females are
presented both pooled, and separated by gender (male n = 7, female n = 8), but males and
females did not differ consistently (P > 0.05 repeated measures ANOVA). tSignificant
difference relative to the initial baseline resting period (Pre; P < 0.05, Bonferroni multiple
comparison for all subjects pooled). All values are expressed at STPD.
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Hypoxia

VE was significantly higher among males than females (Fig 2.8, P < 0.05), and decreased

with increasing interval number in male subjects (Fig 2.8, P < 0.05). Males hypoxic Sa02

values were significantly higher (P < 0.05) than females (Fig 2.9). Sa02 declined steadily

with increasing hypoxic interval number, the trend was not statistically significant in

males, although Sa02 changed with interval number in females (P < 0.05). FRwas higher

during HI than during H2 and H4 (Fig 2.10, P < 0.05). VT among males was 0.37-0.54 L

higher than among females (P < 0.05) (Fig. 2.11). VT among males changed significantly

with repeated exposures to hypoxia (P < 0.05), whereas PETC0
2
was unchanged between

intervals (P > 0.3)(Fig. 2.12) and males and females did not differ consistently.
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Figure 2.8. Mean minute ventilation (VE; L. min-I; ± SEM) for each of the four intervals
(HI-H4) for all subjects (n = 15) breathing hypoxic gas (8 % O2, balance N2). Overall
means for males and females are presented both pooled, and separated by gender (male n
= 7, female n = 8). Values for males were consistently larger than those for females (§, P
< 0.05 repeated measures ANOVA). tSignificant difference relative to the first hypoxic
exposure (HI; P < 0.05, Bonferroni multiple comparison for all subjects pooled). All
values are expressed at STPD.
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Figure 2.9. Mean arterial O2 saturation (Sa02, %; ± SEM) for each of the four intervals
(HI-H4) for all subjects (n = 15) breathing hypoxic gas (8 % 02, balance N2). Overall
means for males and females are presented both pooled, and separated by gender (male n
= 7, female n = 8). Values for males were consistently higher than those for females (§, P
< 0.05 repeated measures ANOVA). tSignificant difference relative to the first hypoxic
exposure (Hl; P < 0.05, Bonferroni multiple comparison for all subjects pooled).
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Figure 2.10. Mean breathing frequency (fR, breaths. min-I; ± SEM) for each of the four
intervals (HI-H4) for all subjects (n = 15) breathing hypoxic gas (8 % O2, balance N2).

Overall means for males and females are presented both pooled, and separated by gender
(male n = 7, female n = 8), but males and females did not differ consistently (P > 0.05
repeated measures ANOV A). tSignificant difference relative to the first hypoxic period
(Hl; P < 0.05, Bonferroni multiple comparison for all subjects pooled).
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Figure 2.11. Mean tidal volume (VT, L; ± SEM) for each of the four intervals (HI-H4)
for all subjects (n = 15) breathing hypoxic gas (8 % O2, balance N2). Overall means for
males and females are presented both pooled, and separated by gender (male n = 7,
female n = 8). Values for males were consistently larger than those for females (§, P <
0.05 repeated measures ANOVA). tSignificant difference relative to the first hypoxic
exposure (Hl; P < 0.05, Bonferroni multiple comparison for all subjects pooled). All
values are expressed at STPD.
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Figure 2.12. Mean end-tidal pe02 (PETC0
2
, mmHg; ± SEM) for each of the four intervals

(H1-H4) for all subjects (n = 15) breathing hypoxic gas (8 % O2, balance N2). Overall
means for males and females are presented both pooled, and separated by gender (male n
= 7, female n = 8) but males and females did not differ consistently (P > 0.05 repeated
measures ANOV A). Bonferroni multiple comparisons revealed no systematic change in
PETCO

2
with increasing cycle number for all subjects, and for males and females

considered separately (P > 0.05 repeated measures ANOVA). All values are expressed at
STPD.
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HVR: Variability within and between days

The consistent and significant differences between VE with increasing interval number

suggested that the subjects experienced HVD during repeated exposures to hypoxia, but

the actual HVR values did not change with increasing interval, indicating that HVD (as it

is recognized in the literature) was not experienced. The HVR is calculated as the change

in VE with each percentage change in Sa02 (L • min-I. %-1 , Vargas et al., 1998). But for

repeated tests performed on the same day, HVR was not significantly different from each

other (P > 0.3, repeated measures ANOVA). Therefore, in Table 2.4, the HVR and VE

are averaged over all tests on a given day. Table 2.5 shows the average HVR and VE for

each test over the three days. There was no systematic change in the HVR between days

(P> 0.4, repeated measures ANOVA). The variability (estimated using the coefficient of

variation (CV)) for HVR, within a particular day was between 22-38 % and between days

it was 21-33 %. For VE the within day CV was between 9-16 % and between days it was

9-15 %.

Changes in the magnitude of HVR versus changes in variability

There was a significant positive correlation between a subjects average HVR and the

variability (measured as standard error of mean) between tests (Fig 2.13, P < 0.05, r2 =

0.55).
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Figure 2.13. Mean HVR for all tests versus standard error of mean (SEM) for all subjects

in group 1 (Grl, n = 9 subjects over 9 tests) and group 2 (Gr2, n = 6 subjects over 3 tests).

There was a significant positive correlation (P < 0.05, / =0.552).
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Discussion

The main findings from this study are:

a) the system effectively measured the HVR while maintaining isocapnia during hypoxia,

b) the measured ventilatory variables changed significantly with repeated short-term

cycles of exposure to hypoxia over a 30-min period, and

c) the within- and between-day variability in HVR did not differ significantly, and

amounted to approximately 27% between tests.

Breathing circuit

The breathing circuit successfully maintained isocapnia in our subjects, who showed

minimal but significant changes in PETCO
2
from their eucapnie resting levels during both

hypoxic and normoxic intervals. PETCO
2
did not differ between hypoxic and normoxic

intervals, but between normoxic intervals increased slightly by a maximum of 0.7 mmHg

from the Pre interval. There are two possible explanations for this. First, subjects may

have hypoventilated for a few seconds during the transition from hypoxia to normoxia, as

was reported in subjects exposed to five minutes of hypoxia (Georgopoulos et al., 1989;

Holtby et al., 1988). Such hypoventilation would result in increased PETC0
2
' The VE

was computed from the last 30 softhe Pre interval, representing the resting normoxic

VE before hypoxia exposure. There was no systematic change in the VE between Pre and

NI-N4, which one would expect if subjects hypoventilated in normoxia after exposure to

hypoxia. This apparent discrepancy between VE and PETCO
2
may be explained by the

fact that the VE was computed as the average during the last 30 s of each normoxic

Stellenbosch University http://scholar.sun.ac.za



85

interval, excluding changes during the first 90 s after the change in inspired gas. Thus,

the significantly higher PETCO
2
in normoxia could reflect only a transient hypoventilation

in normoxia, hypoventilation that was invisible in the analyses of VE based on a

restricted portion of the data. This highlights the importance of using all data within the

time window selected when making conclusions about respiratory changes over short

intervals, and advises against selecting certain portions for analysis.

Second, the slight increase in PETCO
2
may be a function of the design of our breathing

circuit (see Fahlman et al., 2002). For maintenance of isocapnia with this circuit, it is

important that the reserve gas have a fractional concentration of CO2 (FRGco2) equal or

close to the subject's arterial value, and that the fresh gas flow (FGF) be equal to the

subject's alveolar minute ventilation (VA) (see Fahlman et al., 2002). Consequently, the

slight increases in PETCO
2
between different normoxic intervals that we observed may

result from a normoxic FRGc02 that was slightly higher than most subjects' resting

values, or a FGF set slightly lower than the subjects' VA. PETC0
2
did not differ between

normoxic and hypoxic intervals, or Pre and hypoxic intervals. We sought to maintain

isocapnia in association with hypoxia, the primary stimulus under investigation, and since

the PETCO
2
was not different between Pre and any of the hypoxic intervals it is unlikely

that this slight elevation of PETCO
2
during intervening normoxic episodes influenced our

subjects' HVR.
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The non-significant decrease in PETCO
2
of -0.2 mmHg in hypoxia relative to normoxia

may be due to a slightly lower C02 fraction in the RG (FRGco2) than in each subject's

mixed venous blood, or to an FG flow slightly higher than resting VA. Both situations

would lead to enhanced elimination of CO2 from the blood into the lungs and thence the

expired air. Maintenance of isocapnic eucapnia requires an FRGc02 that is not too low

and a FG flow equal to VE. Moreover, the VE 's of several subjects declined to slightly

less than their initial normoxic baseline values immediately after a switch from hypoxia

to normoxia. This result forced us to either increase the PETCO
2
during the hypoxic

interval or to maintain it at a level consistent with initial resting values. We chose to do

the latter, to maintain isocapnia at eucapnie levels.

We modified the breathing circuit described by Sommer et al. (1998) by adding an

additional pair of FG and RG gas cylinders. The original circuit described by Sommer et

al. (1998) was designed for a different purpose and maintained isocapnia during increases

in ventilation using a single gas mixture drawn from one tank ofFG and one ofRG. Our

modification facilitates changes in the inspired gas mixture that permit rapid alteration

between experimentally-induced normoxia and hypoxia in isocapnic human subjects.

The breathing circuit described here allowed us to adequately titrate the subjects' PETC0
2

during rapid changes in inspired F02. We were acutely aware of the need to avoid HVD

during the slightly prolonged hypoxic intervals mandated by the lag in stabilization of

Sa02 that we observed because of our switching system.
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Weiskopf and Gabel (1975), Weil and Zwillich (1976) and Easton et al. (1986) were

among the first to report the development of HVD during more than three minutes of

exposure to hypoxia. They reported an initial acute ventilatory increase during which

both VT and fR rise significantly. Following this, VT returns almost to the base line

value, while fR remains elevated for the entire hypoxic exposure. The net effect is an

initial rapid increase in VE followed after two to five minutes by a decline that

nonetheless does not reach the resting value for the duration of the entire hypoxic

exposure (Easton et al., 1986). Our choice of hypoxic exposure falls within the period

preceding development of HVD described by these authors. Had our prolongation of the

hypoxic exposure from 60 to 120 s led to HVD we might have expected systematic

changes in VE with progressive cycles of hypoxia, with VT increasing less while fR

remained elevated. We saw no such changes, suggesting that the hypoxic exposure

interval of 120 s we used is short enough to preclude the development ofHVD.

Moreover, there were no systematic changes in the HVR itself with repeated exposures to

hypoxia, further suggesting that our subjects' sensitivity to hypoxia was not altered.

However, the slight non-significant decline (P > 0.05) in the Sa02 with repeated

exposures to hypoxia and normoxia and the small sample size suggest that this protocol

requires further study, and that repeated hypoxic exposures following the initial one be

treated with caution.

Across all individuals, VE' fR and VT in every cycle and every test increased

significantly from normoxia to hypoxia. For all subjects, there was a non-significant
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increase in mean PETCO2of 0.2 mmHg in normoxia relative to hypoxia, with the largest

difference in anyone subject being +0.8 mmHg. Ventilatory responses to decreased PC02

(Sahn et al., 1977; Ren & Robbins, 1999; Mahamed & Duffin, 2001) suggest that a

decrease in alveolar PCO2of ~ 1 mmHg would elicit a change in VE of approximately 3 L

• min-I. Comparison of this value with the standard deviation around the increased

VE resulting from hypoxia reported here (0.4 - 3.2 L • min-I) shows that the potential

increase in VE due to stimulation of the CO2-sensitive central chemoreceptors is well

within the confidence limits of our measurements. Moreover, separate analyses ofthe

mean PETCO2values during normoxia and hypoxia for each subject reveal that in no

subject did PETC02differ in hypoxia versus normoxia (P > 0.05, two-tailed t-test). As

mentioned earlier, the main difference was from the Pre to the other normoxic sections of

the test. In addition, no subject's PETC02for individual tests exceeded our experimental

criteria range of ± 1 mmHg during the hypoxic versus the normoxic periods. Our criteria

lie within the accepted range for the maintenance of isocapnic hypoxia (e.g. Howard &

Robbins, 1994).

Our second experiment on subjects coached to hyperventilate while breathing air showed

that PETCO2changed substantially (~ 40 fold) more during hyperventilation on air

without the addition of supplementary CO2, far more than it did during hypoxia when

CO2 was added via the circuit's demand valve. This observation is a clear indication that

the circuit satisfactorily compensated for potential changes in PETCO2'
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The HVR values reported here are comparable to those obtained using the end-tidal

forcing (Zhang & Robbins, 2000) and the re-breathing (Rebuck & Campbell, 1974; Beall

et al., 1997) techniques. The CV between subjects was 70% and is consistent with data in

the literature (Zhang & Robbins, 2000, 47%; Rebuck & Campbell, 1974, 72%; and see

Chapter 1). We conclude that the HVR can be measured using this circuit, but the

inherent variation in HVR should be taken into account and be acknowledged in

discussion of results when this parameter is measured in future studies.

Responses of ventilatory variables to repeated hypoxic exposures

The literature suggests that a steady hypoxic PETO
2
over 50 s is long enough for full

development of the acute HVR, yet short enough to prevent a significant HVD (Mou et

al., 1995), whereas 120 s of steady PETO
2
led to HVD (Howard & Robbins, 1994; Zhang

& Robbins, 2000). Alternatively, induction of stepwise hypoxia using seven 50 s periods

of increasing or decreasing PETO
2
(Mou et aI., 1995) did not lead to significant HVD,

suggesting that as long as the exposure to a steady hypoxic PETO
2
does not exceed 50 s,

HVD can be avoided. In our subjects the switch from normoxic to hypoxic inspired gas

was followed by a transitional period where the subjects' Sa02 remained stable for ~ 20

s, then dropped continuously for the next 40-50 s before stabilizing for an additional 50-

60 s, presumably indicating a steady PETO
2
' Therefore, our chosen protocol using

intervals of 120 s should adequately prevent the development ofHVD during each test.

This time to reach steady Sa02 is similar to that reported by Easton et al. (1986), and can

be explained by the mixing of inhaled gas with that contained in the dead space and the

residual volume, causing alveolar P02 to lag behind inspired P02 (Anthonisen &
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Fleetham, 1987). In contrast, the dynamic end-tidal forcing system (Zhang & Robbins,

2000) allows steady PETO2values to develop within five seconds (one to two breaths) of

switching of the inhaled gas mixture, after which the subjects remain at a steady PET02

for 60 s. Previously, we argued that alternation of hypoxic and normoxic intervals of 120

s each would prevent significant changes with repeated intervals, because hypoxia was

not at steady state for more than 50-60 s (Fahlman et al., 2002). However, in this study

both male and female subjects consistently showed systematic decreases in Sa02 in both

hypoxia and normoxia with increasing interval number although this trend was

statistically significant only among females. Since the Sa02 (an indication of the hypoxic

challenge) changed with interval number, the VE should have increased with interval

number if there was no HVD. However the VE in hypoxia decreased for males but was

unchanged for females. In addition, significant differences in fR and VT between hypoxic

intervals suggest that each exposure to hypoxia affected the subsequent response.

HVD within each interval

The above trends suggest that our subjects experienced HVD during the course of the 4-

cycle test. However, it was not clear if HVD also developed during each hypoxic

interval. To investigate this possibility, we computed average VE 's using data from the

period from 80 to 110 s after gas switching (T-IO) and 70 to 100 s after switching (T-20),

and compared these with values computed with data from the last 30 s (T, 90 to 120 s

after switching) of each interval. Across all subjects, mean VE calculated for the T-10

period was not different from the T period, but that for the T-20 period, on the other

hand, tended to be lower than that calculated for the T period (P < 0.09, one way
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ANOVA followed by Bonferroni multiple comparisons). If 120 s of hypoxic exposure

was long enough for HVD to develop within each interval, we expected the VE for the T-

10 or T-20 periods to be higher than that during the T period. The results suggested that

this was not the case, and contrary to supplying evidence for HVD, suggested that when

using this circuit the full HVR only develops after 90-120 s. In addition, this is consistent

with the literature (Easton et al., 1988).

Comparison with other studies

Recovery from hypoxic exposure lasting 25 min takes 15 - 60 min and is accelerated by

inhalation of 100 % O2 (Easton et al., 1988). Consequently, if variables for each hypoxic

interval are not independent of those for previous intervals within the same test due to a

carry-over effect, and if the intervening normoxic periods are too short to allow full

recovery, one would expect a certain degree of HVD to occur over the course of each

test. Across all subjects, we report an initial increase in Vr during the first hypoxic

interval, followed by a decline, suggesting that repeated hypoxic exposures caused a

certain degree of HVD in our subjects (Easton et al., 1988) and that the decline is not

short-term ventilatory depression (Powell et al., 1988). Furthermore, Easton et al. (1988)

reported that the subjects showing the largest ventilatory response to hypoxia also

showed the largest HVD (Easton et al., 1986). Accordingly, we compared ventilation

changes between the Pre, Hl, and H4 intervals, but we found no indication that this was

so in our data (P > 0.1, r2 = 0.17, n = 15).
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The consistent but non-significant decline in Sa02 with increasing interval number that

occurred both in hypoxia and normoxia may have resulted from too short a recovery time

between hypoxic exposures, so that subjects' VE 's did not regain the original value. An

alternative possibility for the decline in Sa02 values with cycle number may be that the

effect of the capsaicin ointment wore off to some degree as interval number increased.

Zhang and Robbins (Fig. 1, 2000) reported data suggesting a similar decrease in VEwith

increasing interval number, although they did not analyze and point this out. By

extrapolating the values on their graph, we estimated that mean resting VEbefore hypoxia

was ~ 20 L. min-I and that during the first hypoxic interval the mean VE increased to ~

55 L • min-I. After four hypoxic intervals the mean VEhad decreased by ~ 5 L • min-I to

~ 50 L • min-I, a decrease of ~ 14 % of the initial increase of 35 L • min-I. Therefore,

measuring multiple exposures with a 120 s recovery between hypoxia does not seem to

be feasible option for us.

The HVR values that we report are comparable in magnitude to those from other studies

(Garcia et aI., 2001; Zhang & Robbins, 2000), but the mean value (~0.60 L. min-I. %-1)

is only half that reported by researchers using the end-tidal forcing technique mainly as a

result of the chosen units in BTPS (Zhang & Robbins, 2000), as opposed to ours which

are given in STPD. Our method is a combination of rapidly induced hypoxia during the

transition period immediately after switching the gas mixture, followed by approximately

50-60 s of steady-state hypoxia. Mahutte and Rebuck (1978) suggested that the HVR

estimated by induction of gradual hypoxia might be smaller than that observed during
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steady state hypoxia such as that used by Zhang and Robbins (2000). Moreover, the

protocol used by Zhang and Robbins (2000) maintains a hypercapnic isocapnia, whereas

we chose to maintain isocapnia at eucapnie levels. Their increased level of PET CO
2

(approximately 2 mmHg) for the maintenance ofisocapnia can contribute to a 6 Llmin

difference in VE and this would account for the observable differences in HVR values

between our study and that of Zhang and Robbins (2000). Alternatively, hypercapnia

elicits increased VE (Sahn et al., 1977) and enhances hyperventilation in hypoxia (Lloyd

et al., 1958; Sahn et al., 1977), and may present an additional explanation for the

difference between our results and those of Zhang and Robbins (2000).

Inter- and intra-day variability in HVR

Many studies estimating HVR have reported its intrinsically large variability between and

within subjects (Hirshman et al., 1975; Kronenberg et al., 1972; Rebuck et aI., 1973), but

very few have investigated the intra- and inter-day variability within each subject (Sahn

et al., 1977; Zhang & Robbins, 2000). Moreover, early studies suggested that the

magnitude of this variability may differ between different test protocols (Anderton et al.,

1964; Kronenberg et al., 1972), but this was not supported by later studies (Sahn et al.,

1977; Zhang & Robbins, 2000). Our study has quantified this inter- and intra-day

variability preparatory to use of our breathing circuit as a comparative research tool. As

in other studies (Sahn et al., 1977, Zhang & Robbins, 2000), our data showed no

systematic difference in HVR within or between days. Unlike Sahn and co-workers

(Sahn et al., 1977), we report similar coefficients of variation (CV) both within and

between days. However, we only repeated the test three times on a given day and on
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three different days separated by 36 days at most, while Sahn et al. (1977) repeated their

test five times within 2 h, and up to seven times over seven months. This may have

influenced the lower mean variation reported by them. The consistent and considerable

variation in HVR reported here and by others (Sahn et al., 1977; Zhang & Robbins, 2000)

further highlights the importance of conducting repeated tests for comparative purposes.

Knowledge of the magnitude of HVR variability will help determine the sensitivity of

comparisons and the likelihood that differences between the groups under investigation

are masked by that variability.

How might HVR variability influence comparative studies?

To use a physiological parameter in comparative studies, the variability of the parameter

should not mask differences between the populations under study. Examples of the use of

HVR in comparative studies include exploration of human adaptation to altitude by

comparison of HVR between highlanders and lowlanders (Beall, 2000; Beall et al., 1997;

Lahiri et al., 1976; Sahn et al., 1977) and within and between highland residents from

different parts of the world (Curran et al., 1997; Moore et al., 1998). Within-population

studies ofHVR in lowlanders (Lahiri et al., 1976) or in highlanders living at different

altitudes (Curran et al., 1995), and of the responses of individuals translocated to high

altitude (Sato et al., 1992), have explored the phenotypic plasticity of the HVR, as have

training studies focusing on the relationship between endurance training and ventilatory

responsiveness (Levine et al., 1992). The genotypic component of the HVR has been

assessed in familial studies (Collins et al., 1978, Scoggin et al., 1978), and the
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development of ventilatory sensitivity through the life of individuals has been studied in

rats (Ling et al., 1997) and humans (Lahiri et al., 1976).

All of the studies mentioned above used a single value for each individual subject in their

analyses. The high inter-individual variability we report here begs the question: how

representative of each individual are such values? The larger an individual's HVR, the

greater the variability in his or her ventilatory responsiveness to hypoxia. For each study

population, we recommend that repeated measures of HVR on each test subject be

incorporated into study designs to permit informed decisions about the best protocol to

use, and to increase the power of the comparisons being made. Without such variability

analyses, researchers may fail to detect real differences and risk drawing invalid

conclusions from their data.

In addition, we conclude that our circuit can be used successfully to measure HVR.

Because it is simple, inexpensive to construct and maintain, and portable, the circuit is

particularly well-suited for studies requiring large sample sizes or many repeated

experiments. Our data suggest that further assessments of variation in HVR are

warranted, and field comparisons of HVR between human populations with differing

degrees of altitude adaptation. However, we suggest that the protocol be changed to

include only one hypoxic interval of 120 s preceded and followed by a normoxic period.

Repeated tests can be performed on the same day given at least 60 min between tests.
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Chapter 3

A comparison of oxygen sensitivity in two South-

African sea-level populations.
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Abstract

Ventilatory sensitivity to hypoxia differs between populations native to high altitude

(HA) and those native to low altitude (LA), and even between two HA populations

of different heritage. I am not aware of any published studies comparing hypoxic

sensitivity between two LA populations of distinctly different heritage. Here, I

make such a comparison using measurements of the ventilatory parameter known as

the acute isocapnic hypoxic ventilatory response (HVR; L • min-I • %-1) in two LA

South African groups represented by twenty families (10 Caucasian (C); 10 Xhosa

(X); total n = 63). The HVR was calculated as the change in minute ventilation

(.1VE , L • min-I) divided by the change in arterial oxygen saturation (L1Sa02,%).

Caucasians were taller (C: 1.79 ± 0.09 m; X: 1.59 ± 0.07 m; P < 0.001), while their

BMI was lower (X: 28.6 ± 8.30 kg • m-2; C: 23.0 ± 2.44 kg • m-2; P < 0.001) than

that of Xhosas. ANCOV A with BMI and gender as covariates showed no

significant difference between HVR's of the two groups (F = 1.04; P> 0.31) with

mean absolute HVR values ofO.323 ± 0.395 and C: 0.432 ± 0.417 L. min-I. %-1

for Xhosas and Caucasians respectively. Minute ventilation (VE) was similar for

both groups under normoxic and hypoxic conditions (P > 0.40). Estimates of

alveolar ventilation confirmed that effective ventilation did not differ between

groups. However, the components of VE differed significantly, with C showing

larger tidal volumes (VT; P < 0.012) and lower breathing frequencies (fR, breaths •

min-I; P < 0.010) than did X for both normoxia and hypoxia. Similar differences in

breathing patterns have been reported for different mouse populations, for which

HVR may be regulated by as few as two major genetic determinants. Moreover,
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hypoxic oxygen saturation (Sa02) was higher among Caucasians then Xhosas,

suggesting that differences existed with respect to oxygenation of the blood.
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Introduction

Ventilatory sensitivity to hypoxia differs between populations native to high altitude

(HA) and those native to low altitude (LA) (Zhuang et al., 1993; Hochachka, Gunga, et

al., 1998 Hochachka et al., 1999), with HA natives exhibiting blunted hypoxic

sensitivity. Two HA populations living at similar altitudes in different global regions

differ in hypoxic sensitivity (Beall, Strohl et al., 1997), and also in two HA populations

with different lineage living at similar elevations and in similar global regions (Zhuang, J.

et al., 1993). Although Lahiri et al. (1976) did a within population study in lowlanders, I

am not aware of published studies comparing hypoxic sensitivity between two LA

populations of distinctly different heritage, such as those living in coastal South Africa.

Furthermore, I am not aware of any published inter-population differences in hypoxic

sensitivity in either LA or HA populations in African (Niermayer et al., 2001), although

East Africans are recognised as one of the three main HA populations in the world

(Hochacka et al., 1999). This study serves to assess baseline ventilatory responses to

hypoxia in a low-altitude African population, and additional comparison with low-

altitude southern-African Caucasian peoples.

By using Brutsaert's (2001) optimal study design to assess genetic influence of

adaptation to hypoxia, a within-population comparison of East Africans living at high and

low altitude would enhance our understanding ofthe effects of genes and environment on

the hypoxic ventilatory response. However, the present exploratory study seeks to

establish baseline values for ventilatory sensitivity to hypoxia in African populations

living only at sea level, since a field study was beyond the scope of the assignment. This
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study selected two low altitude populations both residing in the same town. The two

populations last shared an ancestor approximately 100 000 years ago (Cavalli-Sforza et

al., 1994). Motivation for the selection of the Xhosa population was the fact that this

study site is one of very few LA locations where these two populations reside in the same

town. This is the first study of hypoxic sensitivity among Africans. Furthermore, the

study assessed feasibility of working in the field of ventilatory chemosensitivity in

Africa.

The hypoxic ventilatory response (HVR) is a widely accepted measure of hypoxic

sensitivity for inter-population comparisons (Beall, Strohl, et al., 1997; Hochachka &

Monge, 2000). Accumulating evidence of the high variability in HVR with repeated

testing (Sahn & Zwillich, 1977; Zhang & Robbins, 2000; Fahlman et al., submitted)

should influence the design of testing protocols. Such variability does not reduce the

usefulness of HVR as a research tool, but without repeated measurements the accuracy of

the deductions that can be made from the acquired data is severely limited, and perhaps

even false. Studies using single measures with fewer than 6 subjects to support

conclusions about ventilatory responses are not uncommon (e.g. Insalaco et al., 1996).

Existing knowledge of the high intra-individual variability in the HVR mandates further

testing of theories based on such limited data. High variability in HVR within populations

(Beall et al. 1997; Hochachka et al., 1998; Hochachka et al., 1999; Hochachka & Monge

2000) does not preclude comparisons of HVR between populations, but necessitates large

sample sizes.
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By measuring HVR, I aimed to determine non-invasively whether two sedentary LA

South African populations, both residing at similar altitudes and living under similar

environmental conditions, differ in their hypoxic sensitivity. In view of the variability in

HVR (Chapter 2), my second aim was to calculate HVR values more representative of

each individual by repeated testing and appropriate subsequent treatment of the raw data.

These values will be used in the inter-population comparisons that follow.
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Methods

Subjects

20 South African families (10 Caucasian, C, and 10 Xhosa, X, total individuals n = 63)

who participated voluntarily in the study.

Family Criteria

The families invited to participate in the study had to comply with the following selection

criteria.

a) The progeny were offspring of the parent(s) tested.

b) A minimum of two progeny and one parent were tested.

c) The youngest of the progeny was no younger than 15 years of age.

d) The oldest parent was less than 70 years of age.

e) All individuals had non-athletic lifestyles and never participated in national or

international sports.

f) All families lived at sea-level in the same town.

g) For Xhosa speaking families, the family for at least two previous generations was

of only Xhosa-speaking origin, i.e. they had not interbred with any people from

another native South African tribe.

Where necessary, language differences between the investigators and subj ects, were

overcome using translators. All experimental procedures were fully explained, verbally

and in written form, before each subject signed a consent form. Under-age subjects

signed a consent form in the presence of their parent. Participants understood that they
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were free to withdraw from the study at any time. Ethical approval for all procedures was

granted by the Subcommittee C of the Research Committee of the University of

Stellenbosch, which conforms to the internationally accepted ethical guidelines detailed

in the Declaration of Helsinki.

Questionnaires

Each subject completed a questionnaire encompassing the following characteristics.

Subjects were identified as either smokers (S) or non-smokers (NIS) (including ex-

smokers). Subjects were classified as having an altitude history (AH; having been born at

an altitude of greater than 1000 m above sea level, either with a history of acute hypoxia

such as prior involvement in similar tests or frequent high altitude exposures, as may be

seen in mountaineers or pilots) or not (NIAH; born at LA, and with no previous altitude

exposures). All subjects had lived in Stellenbosch for more than 11 years. Subjects were

further identified as having respiratory (e.g. asthma) or haematological (such as anaemia)

disorders whether treated or untreated) (D), or having no disorders (NID). Subjects with

chronic respiratory or haematological disorders were excluded. Female subjects were

asked when they had last menstruated enabling me to determine whether they were in the

follicular (F) or luteal (L) phases. Subjects who were not menstruating (NM) were either

post-menopausal, breastfeeding or using injectable contraceptives (e.g. Depo-provera)

that prevent menstrual cycles.
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Isocapnic breathing circuit

During exposure to hypoxia or air (normoxia), isocapnia at normocapnic partial pressures

was maintained during hyperventilation using the non-rebreathing method described in

Chapter 2 (see also Fahlman et al., 2002). Additional modifications to the system were

completed prior to this study, namely a) the reduction of the dead space to approximately

220 ml, (half the dead space in the original circuit described by Fahlman et al., 2002),

and b) the relocation of the demand valve to nearer to the mouthpiece, permitting more

rapid changes in the inspired flow of oxygen (Fi02) and the subsequent Sa02 response

curve, which proved successful (Appendix 1).

Protocol

Before the study, the subjects each completed one or two preliminary experiments

involving normoxic and hypoxic exposures identical to the actual experiments for

familiarisation with the breathing circuit and the study protocol. The number of

preliminary experiments was determined by each subject's comfort and ability to relax,

demonstrated by stable and consistent resting values for minute ventilation (VE, L •

min-I) of at least 5 min, or longer when necessary. Data from preliminary experiments

were used to calculate coefficients of variation for the HVR and establish levels of end-

tidal CO2partial pressure (PETCO), otherwise data were discarded. Experiments were

conducted on each subject a minimum of three and a maximum of five times including

familiarisation tests, separated by a minimum of 60 min. Subjects were asked to refrain

from drinking alcohol and caffeine-containing beverages from the evening before the

experiments. Subjects were reassured that they could remove the mask and discontinue
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the test if they became uncomfortable, in which case the experiment would be re-started.

Restarting of the test was not required more than once per individual, and on not more

than three occasions in each population group and when this occurred, the subject was

allowed 10 - 15 minutes to recover. During each test the HVR (L • min-I. %-1) was

measured using the square wave protocol described by Fahlman et al., (2002) with a

specific modification (see later).

Each subject was seated in front of the apparatus with his or her face level with the

directional valve (see Chapter 2, Fig 2.1), and allowed to rest for 10-15 min, during

attachment of oximeter probe (Nell cor RS 10, Mallinkrodt, Inc., St Louis, MO, USA) and

headphones. Subjects read and/or listened to music on a personal stereo. The subject was

then fitted with a facemask (8930 Series, 47.2 mL dead space, Hans Rudolph Inc., Kansas

City, MO, USA) and the seal of the mask was checked as described in Chapter 2, (page

47). If the facemask did not seal properly, the subject breathed through a mouthpiece

attached to the same circuit. Expired volume (VE, L • min-I, STPD), tidal volume, (VT,

L, STPD), and fR (breaths • min-I) was sampled by a metabolic system (MetaMax™,

Cortex Biophysik GmbH, Leipzig, Germany) and average values recorded every 10 sec.

The end-tidal C02 partial pressure (PETCO
2
at body temperature, pressure and saturation,

BTPS) was sampled by a capnograph (Micro stream TM, Microcap, Oridion Medical Ltd,

Jerusalem, Israel) and average values recorded every 5 sec. All values are given in STPD

unless otherwise stated.
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For the first five minutes subjects breathed normoxic air (21 % O2, balance N2). Both

subject's resting VE and PETC0
2
were averaged during the last two minutes ofthis

period. If these two variables were not stable, the initial period was extended until stable

values were attained. Inspired gas was then switched instantaneously to 8.2 % (± 0.3 %,

n = 3 bottles of compressed gas) followed after 120 sec by 21 % 02 (± 0.2 %, n = 7

bottles of compressed gas). The full period of this "square wave" was therefore 240 sec

(Chapter 2; Fahlman et al., 2002). Although Fahlman et al. (2002) used four such waves,

only one for this study was used.

I modified the experimental protocol of Chapter 2 (see also Fahlman et al., 2002) by

reducing the number of hypoxic exposures from four to one, because it was found that a

non-significant decline occurred in the HVR over the period of four square waves,

indicating mild hypoxic ventilatory decline (HVD; Chapter 2; Fahlman et al., 2002). Use

of only one hypoxic exposure per test eliminated the possibility of acute HVD. The total

experimental time was thus nine minutes and comprised the following: an initial resting

phase (Nl) lasting 5 minutes or more until stable resting values were reached; followed

by two of hypoxia (H), then two minutes of normoxia (N2), during which the subject was

simply monitored to ensure full recovery of all the ventilatory parameters and Sa02 to

resting levels. Tests were performed a minimum of 60 min apart.

Each subject's PETc0
2
was maintained at his or her normocapnic levels (± 1 mrnHg),

ascertained during the final two minutes of Ni, Subjects were separated from the switch

controls by a screen, and were therefore blind to gas switching. Care was taken to ensure
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similar levels of gas pressure in all cylinders to reduce any obvious noises accompanying

the switch between gas cylinders.

Arterial 02 Saturation (Sa02, %)

Sa02 was measured using a pulse oximeter (Nellcor N-395 Pulse Oximeter, Mallinkrodt,

Inc., St Louis, MD, USA) with a forehead sensor (Nellcor RS 10, Mallinkrodt, Inc., St

Louis, MD, USA). The area of application of the sensor was massaged with a mild

capsaicin ointment (0.25 g per 100 g, Sloan Heat Rub, Warner-Lambert, South Africa)

approximately two minutes before attachment to promote surface blood flow. Analogue

signals from the oximeter were relayed to the metabolic system, which recorded Sa02

every 10 seconds.

Data Processing

Data from the start of the experiment up to the last two minutes of the initial resting

period (N I)were discarded. Resting values of VE' Sa02, VT and fR for each subject were

calculated as means for the final120 seconds of N, (number of data points, n = 22 ± 1),

except in the case of PETCO
2
where the last 60 seconds were used (number of data points,

n = 20 ± 1). For all variables during the hypoxic exposure, a 30 second period was used

(H; number of data points, n = 7 ± 2).
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Calculations

The average of the last 120 seconds of the N I period was used in the calculation of the

resting normoxic VE for determination of the HVR·. Normoxic variables were

calculated as the last 120 sec for N I. Hypoxic variables were calculated during the lowest

30 seconds of Sa02. This was always the last 30 second period before Sa02 started to

rise. The averages of two test values (calculated immediately, but excluding the

familiarisation tests) were used, unless the coefficient of variation (CV) of the calculated

HVR values between the two experiments was greater than 26% (Zhang & Robbins,

2000), in which case a third experiment was performed and the median of the three test

values was used to calculate population or group means for all variables.

Statistical Analysis

All data are reported as means ± 1 standard deviation (SD), unless otherwise specified.

Initially, paired comparisons between NI and H were made to test for the effects of

hypoxia and isocapnia in all subjects. Thereafter, inter-population comparisons were done

using chi-square tests for categorical data, or two-tailed Student's t-tests, or when

appropriate, Mann-Whitney tests to determine differences in mean values between tests

or groupings (Zar, 1996).

Multiple regressions were performed to isolate suitable covariates for analyses of

covariance. Gender, and weight and height (combined as BMI) were thus identified as

• Mean values for VE over the last 120 seconds of the Nl period and for the last 30 seconds of the same
period were compared using a paired Student's t-test. In some individuals 120 sec and 30 sec averages
differed significantly. To obtain values that were as representative as possible, I chose the longer time
period.
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covariates for respiratory variables. In all cases of repeated data sampling, repeated

measures analysis of variance or covariance was used when justifiable. For each subject,

averages (n = 2) or medians of data (n = 3) were used to assess differences between and

within the groups (Winer et al., 1991). The HVR and primary components of the HVR,

namely VE and Sa02 (both for N I and H) were analysed by means of ANCOV A. In these

cases, BMI, but not gender, proved to be a statistically justifiable covariate for inter-

population ANCOVA comparisons of the HVR and VE' as required by the analyses, but,

these factors did not prove to be significant covariates in either hypoxic or normoxic

periods for comparisons of Sa02. For Sa02 the only justifiable covariant was PETC0
2
, and

this was duly used for ANCOVA's. PETC0
2
was also justifiable as a covariate in

ANCOV A comparisons of inter-population HVR.

Further inter-population comparisons were performed on the components of VE' namely,

VT and fR, for both the Hand NI periods. BMI and gender were significantly justifiable

covariants for ANCOVA comparisons of V'Tduring H and NI. Neither BMI nor gender

was justifiable as a covariant for ANCOV A comparisons of fR. and therefore standard

Student's t-tests and ANOVA's were used for the inter-population comparisons of this

parameter during Hand NI.

Analyses were performed using NCSS 2000 statistical package (NCSS statistical

software, Kaysville, Utah). Acceptance of significance was set to the P < 0.05 level,

unless otherwise stated. Whole body variables were not divided by body mass or by
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metabolic rate, rather I used ANCOVA with BMI and or gender as covariates (Hayes,

2001), as stated previously.

Results

Across all subjects, VT, fR, VE, and Sa02 differed significantly between normoxic and

hypoxic intervals, but PETCO
2
did not differ between Nl, Hand N2 (31.5 ± 0.16, 31.1 ±

0.16 and 31.7 ± 0.16 mmHg, respectively; ANOVA, P > 0.18).

1. Inter-Population Comparisons:

Subject characteristics:

Of the 63 subject's significantly more Caucasians smoked than Xhosas (Table 3.1).

Although all subjects had resided at sea-level for many years, a significantly larger

proportion of the Caucasian group had been born at moderate altitude (from 1000 m to

1600 m). Of the 11% with diseases reported in Table 3.1, 65 % were asthmatics, using

occasional self-medication when required, and had not recently suffered any episodes.

The others who fell into this category had disorders such as elevated blood pressure, and

all cases were self-medicated.
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Table 3.1. Caucasian and Xhosa subjects who were smokers, had historically lived at high altitude

«IOOOm), or had respiratory or haematological disorders.

Group Smokers (%) Altitude History (%) Diseases (%)
C (n = 33)
X (n = 30)

61
13*

51
10*

9
13

Chi-square test (* P < 0.05).

C were significantly taller than X (P < 0.01), and BMI's were significantly lower (P <

0.01) among C (Table 3.2). All other parameters in Table 3.2 were not different between

the two populations. Since height and BMI were different between the two groups, and

there were differences between genders within the two groups, these factors were tested

for their influence on the respiratory variables using correlations and comparisons of P-

values.

Table 3.2. Characteristics of Xhosa (X) and Caucasian (C) subjects.

Group Age Height Weight BMI (kg.m")
(years) (m) (kg)

C (all) (n = 33) 32.9± 15.4 1.79 ± 0.09 73.5 ± 10.9 23.0 ± 2.44
X (all) (n = 30) 27.4 ± 12.3 1.59 ± 0.07t 71.5 ± 16.8 28.6 ± 8.30*
C (a) (n = 23) 30.5 ± 15.2 1.83 ± 0.06 64.8 ± 4.90 22.7 ±1.83
X (O')(n = 5) 22.0 ± 5.66 1.69 ± 0.03t 60.5 ± 8.51 21.3±3.51
C (C() (n = 10) 38.5 ± 15.4 1.69 ± 0.02 77.3 ±10.6 23.1 ±2.70
X (C() (n = 25) 28.4 ± 13.1 1.57±0.0It 73.7 ± 17.3 30.1 ± 8.23*

Student's t-test (unpaired, two-tailed) or Mann-Whitney comparison between Xhosa and Caucasian

subjects. (t: p < 0.01). *: P < 0.05).
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Respiratory variables:

Equal variance and F-tests confirmed normal distributions of VE values (P > 0.1) in

normoxia and hypoxia, and for PETc0
2
and V02 (P> 0.3) during the Nl period for both

groups.

For the following comparisons of HVR, the mean of two tests was used when the CV was

less than or equal to 26 %, and the median of 3 tests was used when the HVR values CV

was greater than 26 %. Each subject is therefore represented by one value, (n = 30 for X,

and n = 33 for C). Misrepresentation of a subject's HVR caused by one extreme value is

minimized with this system. The mean intra-individual CV for HVR among the Xhosas

(173 ± 389 %) was significantly greater than that for the Caucasians (30 ± 117 %; Mann-

Whitney, P < 0.01).

Beta-coefficients and their P-values for all ANCOVA's exploring the effects of gender

and race on respiratory variables are given in Table 3.5.

HVR Differences:

HVR's did not differ between the Xhosa and Caucasian populations (ANOVA, P > 0.35;

t-test, P > 0.16; Table 3.3). ANCOVA with normoxic PETC0
2
as a covariate, found no

significant difference between X and C (P > 0.43). An a priori power analysis, using the

obtained difference (0.42 vs. 0.34, an a = 0.05, and a p = 0.7) showed that a sample size

of greater than 260 would be necessary to detect any significant difference in HVR

between X and C. Regression analysis indicated that the BMI accounted for more
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variability than did age, weight or height successively, and additional consequent

multiple regression analyses ofHVR between groups using BMI and gender as co-factors

found no difference (P > 0.34, F = 1.04, df= 59).

Table 3.3. Means ofNI V02, NI PETC0
2

and HVR in Xhosa (X) and Caucasian (C) subjects.

HVR'II V02§ PETC0
2
§

Group (Lominol.% ol)
(Lsmin') (mmHg)

C (all) (n = 33) 0.42 ± 0.33 0.37 ± 0.007 32.0 ± 3.6

X (all) (n = 30) 0.34 ± 0.36 0.36 ± 0.007 31.5 ± 4.2

§ Unpaired two-tailed Student's t-test (NS: Not significantly different, P> 0.5).

'II ANCOV A (Not significantly different, P> 0.4)

Corrected HVR

The large intra-individual variation in HVR prompted me to calculate a "corrected HVR",

using % ~ VE instead of ~ in absolute VE (L 0 min"), divided by ~ Sa02 (%).

Corrected HVR did not differ between the two study populations (two-tailed unpaired t-

test, P> 0.09), although in this case the Xhosas revealed a trend towards lower corrected

HVR values than the Caucasians.
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HVR Components:

Table 3.4. Normoxic (Nl) and Hypoxic (H) values for VE' VT, fR, and Sa02 in all subjects for Caucasians

(C) and Xhosa (X).

Group VE VT fR Sa02

(Lsmin") (L) (breaths-min'] (%)

8.52 ± 2.38 0.66 ± 0.21 13.8 ± 3.8 99.3 ± l.6

9.41 ± 3.59 0.50 ± 0.19* 19.6 ± 5.3* 99.6 ± 0.9

15.08 ± 4.29 UI ±0.32 14.3 ± 4.2 81.7 ± 4.7

16.18 ± 4.57 0.75 ± 0.20 t 22.2 ± 5.7 t 78.4 ± 4.7*

Nl C (0 = 33)

NtX (n = 30)

H C (n = 33)

HX (n =30)

* Statistically different (P < 0.05) t Statistically different (P < 0.01).

Table 3.5 Beta-coefficients and their P-values for all ANCOVA's exploring the effects of gender and race

on respiratory variables.

Dependant Variable

Gender Race

Independent Significant
(3-co-efficient P-Value (3-co-efficien t P-Value

Variable Covariate

VE (Hyp) BMI 0.896 0.496 0.215 0.872

VT(NI) BMI; Gender 0.114 0.056 -0.153 0.012

VT(H) BMI; Gender 0.218 0.006 -0.338 0.000

HVR PETC02 -0.003 0.817 0.109 0.311

Sa02 (H) PETC02 l.794 0.204 -3.04 0.036
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VE was similar in both populations in normoxia (NI) (t-test, P > 0.20), and in hypoxia

(H) (X: 16.2 ± 4.6 L • min-I; C: 15.1 ± 4.3 L • min-I; t-test, P > 0.16; ANCOVA, P >

0.80, df= 59; see Fig 3.1) and ANCOVA with BMI as covariate revealed no differences

(P> 0.70, df= 59). In both of these cases gender was not a significant covariate, but

gender differences in VE (see below) prompted me to perform multiple regression

analysis using gender as a co-factor, which also detected no differences between

populations (P > 0.4). In both groups hypoxic exposure elicited an increase in VE (Fig

3.1).
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Figure 3.1. Mean VE (L • min-I) in hypoxia and normoxia (ANCOVA, P> 0.7)

O...L,_------------L.--..I......r-
Nonnoxia

companng groups.
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Neither BMI nor gender proved justifiable as covariates for ANCOV A of fR.Xhosas

displayed significantly higher fRfor NI (19.6 ± 5.3 breaths • min-I; t-test, P < 0.0 1;

ANOVA, P < 0.01 ), and H periods (22.2 ± 5.7 breaths > min-I; t-test, P < 0.01;

ANOVA,P<O.OI )thandidCaucasians(NI: 13.8±3.8breaths· min-1;H: 14.3±4.2

breaths • min-I; see Fig 3.2).
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VT
ANCOVA with BMI and gender as covariates revealed significantly larger VT values in

Caucasians than Xhosas for NI (X: 0.499 ± 0.185 L; C: 0.661 ± 0.210 L; P < 0.01, F =

6.66, df= 59) and H (X: 0.750 ± 0.19 L; C: 1.110 ± 0.32 L; P < 0.01, F = 19.44, df= 59)

(Fig 3.3).

When BMI was used as a covariate, there was a significant interaction between gender

and race (F-Ratio 4.86; P < 0.05). Caucasian Males exposed significantly larger VT than

Caucasian Females, Xhosa Males, and Xhosa Females.

1.6 -,------------------------,

c:::::=J Caucasian
1.4 1,,%iC:.1 Xhosa

1.2 t
1.0

---....l
'-' 0.8f-
>

0.6

0.4

Normoxia Hypoxia

Figure 3.2. Mean fR (breaths • min-I) in H and NI for Caucasian and Xhosa groups.
t: p < 0.01; two-tailed t-tests and ANOY A.
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1'/ ,< I Xhosa
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Normoxia

t

Hypoxia

Figure 3.3. Mean VT (L) in normoxia and hypoxia for Caucasian and Xhosa groups.
t: ANCOVA, P < 0.01.

Baseline Nl Sa02 did not differ between populations (X: 98 ± 1 %; C: 97 ± 2 %; P >

0.41), but hypoxic Sa02 was significantly lower among Xhosas (X: 77 ± 5 %; C: 80 ± 5

%), using either ANCOVA with PETC0
2
as the covariate, (P < 0.05, F = 4.60, df= 59)

(Fig 3.4); or an unpaired, two-tailed t-test, (P < 0.01). After two minutes of normoxia, the

Sa02 of both populations returned to similar baseline levels of Sa02 (X: 99 ± 2 %; C: 98

±4%,P>0.21).
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Using Eq. 2.3 (page 46) alveolar ventilation rates eVA; Llmin) was determined and

compared between X and C. Similar levels of mean VA were obtained for both groups

(C: 10.6 ± 3.0 Llmin; X: 11.3 ± 3.2 Llmin; two-tailed T-test; P> 0.33).

100

,-..., 90
~
~.....
'-'

tN 850
e<:lo:

80

95

75

70 ~----------~--~r

c:==J Caucasian
Xhosa

Figure 3.4. Mean Sa02 (%) in normoxia and hypoxia for Caucasian and Xhosa groups.

Normoxia Hypoxia

t: ANCOVA, P < 0.05; unpaired, two-tailed t-test, P < 0.01).

Stellenbosch University http://scholar.sun.ac.za



129

2. Inter-Population Gender Comparisons:

Anthropometric data:

Caucasian males (n = 23) were significantly taller than Xhosa males (n = 5) (P < 0.01)

(Table 3.3 for this and all anthropometrical comparisons), and Caucasian females (n = 10)

were significantly taller than Xhosa females (n = 25), (P < 0.01). In contrast to the male

subjects, where Caucasians were significantly heavier than Xhosas (P < 0.01), Caucasian

females BMI's were significantly lower than Xhosa females (P < 0.01).

HVR Differences:

Caucasian males displayed HVR's of significantly greater magnitude (i.e. far more

hypoxic sensitivity) than did Xhosa males (C: -0.46 ± 0.35; X: -0.13 ± 0.10; ANCOVA, P

< 0.05) in contrast to the lack of difference in HVR between groups when genders are

pooled. There were no differences in HVR among females between different phases of

their menstrual cycle.

HVR Components:

For brevity, only significant differences will be reported in this section.

Caucasian females had significantly lower VE than Xhosa females during NI (P < 0.05),

and H (P < 0.01). Caucasian males had significantly larger VE in H than Xhosa males (P

< 0.05). Caucasian females had significantly lower fR than Xhosa females in the NI (P <

0.01), H (P < 0.01), and N2 period (P < 0.01). Caucasian males had significantly lower fR

values in H than Xhosa males (P < 0.05). Caucasian males' VT'S were significantly
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larger than Xhosa males in H (P < 0.01). Caucasian males Sa02 was significantly greater

than Xhosa males in H (P < 0.01). There were no significant differences in PETCO
2
for

any of the above comparisons. A robust regression weighted for number of tests showed a

significant correlation between normoxic PETC0
2
and HVR (r2 = 0.44, df= 60, P < 0.001)

for all subjects (Fig. 3.5).

0.2

0.0

-0.2
,.-.,. -0.4
~

-0.6
-;-cï§ -0.8
.....:l
'-' -1.0
0:::>::r: -1.2

-1.4

-1.6

-1.8
15

o 0
•• 0 •

0
• 0

gp .",0 0

o •0 &0
0

0 •0

• Xhosa
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• 0

20 25 30 35 40

PETC02 (mmHg)

Figure 3.5. PETC0
2
(mmHg) and HVR (L.min-l.%-1) are significantly correlated for all

subjects (robust regression, r2 = 0.44, P < 0.001). Recall that, because HVR carries a

negative sign, the negative correlation above means that individuals with greater hypoxic

sensitivity have higher resting PETCO
2
•
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Discussion

The main findings from this study are that a) hypoxic sensitivity (HVR) does not differ

between the two populations, and b) ventilatory components (VT and fR) differ between

Caucasian and Xhosa subjects during both normoxia and hypoxia. This suggests two

distinct patterns of breathing: Xhosas demonstrated shallower, more rapid breathing, and

Caucasians exhibited deeper, slower breathing. Despite these differences, we estimated

that alveolar ventilation was similar in the two groups. This being so, the lower arterial

oxygen saturation levels during hypoxia among the Xhosa subjects suggest less effective

oxygenating of the blood, which will be more fully discussed below.

PETCO
2
and Sa02 results indicate that the breathing circuit successfully induced hypoxia

while maintaining isocapnia in all subjects as was previously shown for the same circuit

(Fahlman et al., 2002) prior to the reduction of dead space that I introduced.

It is clear from the CV for the HVR that the intra-individual variation within each

population studied is as large as that reported in the literature (Beall et al., 1997),

supporting the use of repeated measures in future studies as recommended in Chapter 2.

While Xhosa subjects exhibited significantly larger intra-individual CV for their HVR

than did Caucasians, and it is possible that additional testing may reduce the amount of

variability significantly, one should remain cognisant of the fact that under the same

experimental conditions these two populations exhibited vastly different levels of

variability, which warrant study in future. As this is not the key focus of the study I will
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not pursue these findings in depth, and without further investigation it is difficult to

comment extensively on this point. However, the likelihood that these differences

between the two populations occur as a direct result of innate intra-individual variability

does exist.

A priori analysis of power and repeated measures

I obtained the desired repeated measures of the HVR by continuous assessment of the CV

between tests within an individual. This reduced the possibility of false conclusions

regarding differences in hypoxia tolerance between the two populations. The a priori

power analyses for the HVR data suggest that this measure of hypoxic sensitivity may

require so many subjects that its effectiveness as a research tool is greatly reduced, and it

may be necessary to consider alternative methods of assessing hypoxic sensitivity in

future. Potential problems arise with ANCOV A if invalid covariates are selected or

because of error in the measurement of covariates. In order to assess this possibility

analyses of variables were performed on data with gender pooled and separately.

Corrected HVR calculated using the percentage change in VE rather than the absolute

change may be useful in correcting for differences in subjects' body sizes but it should be

used cautiously as body size is not the only factor affecting HVR. For example, it does

not resolve inter-individual PETCO
2
differences. This method of calculating HVR, if used

in conjunction with statistical analyses such as ANCOV A that take variation in PETCO
2

into account, may prove to be a useful comparative tool.
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Baseline comparisons

Comparisons between studies are difficult because HVR is highly variable. Inter-

population differences in mean height and BMI underline the need for correction for body

size using ANCOV A. Methodologies and numerical conventions differ e.g. Smith et al.

(2001) standardised VE for height by use of the equation ~ VE x (mean heightj' x

(subject height)" (as originally proposed by Burr et al. (1985)) while Townsend et al.

(2002) use no correction of VE. Therefore, I propose that general conventions should be

developed and utilised to facilitate comparisons between published studies in this field. In

light of the current information, new attempts should be made to group the existing

population information in a coherent and comparable manner. I recommend that the

design of protocols become standardised, while repeatability and methodological issues

(such as fitness levels, gender and statistical analyses) are taken into consideration.

The similarity in baseline normoxic (NI) V02 levels across the two study populations

implies similarity in resting metabolic rate. Normality of data distribution and similar

normoxic VE and PETC0
2
means, and standard deviations were confirmed in subjects in

both groups prior to hypoxic exposure. Similar PETCO
2
in both populations further

indicates similar stimuli for ventilatory drive under sea level conditions. Conversations

with subjects, and their behaviour before the tests, indicated that subjects in both

populations were comfortable with the test environment. Both groups were sampled

randomly from within their communities and neither group contained any individuals

who had participated previously in tests of ventilatory sensitivity. Furthermore, while the

Xhosa population may be of a different social status to the Caucasian, and not living
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equally distributed throughout the town, there is daily interaction between the two groups

in work environments.

Inter-population HVR comparisons

The two populations presented similar levels of hypoxic sensitivity as expressed by the

HVR even after covarying for body size. Our data for these two groups provide us with a

comparative means for assessing baseline hypoxic sensitivity in LA African populations

without the confounding effect of HA environments. Cross-sectional studies in endurance

athletes have demonstrated a diminished HVR compared with mountaineers or sedentary

controls (Schoene, 1982; Masuyama et al., 1986). Conversely, short-term altitude

acclimatization may increase the HVR (Levine et aI., 1992). Natives to HA have a

blunted HVR (Severinghaus et al., 1966; Milledge & Lahiri 1967; Zhuang

et al., 1993; Hochachka & Monge, 2000). Beall et al. (1997) showed a difference of

approximately 50 % in HVR between two HA populations from different global regions.

Understanding the -25 % lower HVR, albeit non-significant, in Xhosas compared to the

Caucasian subjects is complicated. It is difficult to assess subjects' previous residence at

high altitude, which may cause a blunting in HVR (Leon-Velarde et aI., 1996)

Intermittent hypoxia may be a more potent stimulus for adaptation than is continuous

hypoxia (Prabhakar, 2001), along with the developmental plasticity effects which

confound the study of chemosensitivity (Gozal & Gozal, 2001; Mitchell et al., 2001;

Okubo & Mortola, 1990), these results remain difficult to interpret thoroughly.
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The complete absence of published information on hypoxic tolerance in African

populations limits my ability to compare my data and suggests that more work on this

continent is required to test the generality of the hypothesis that long-term HA residents

develop blunted HVR (Hochachka & Monge, 2000). The only published data of

ventilatory sensitivity in African populations of which I am aware show that elderly

Nigerians exhibit lower hypercapnic ventilatory responses compared to young Nigerians

(Elegbeleye & Femi-Pearse, 1980), but these data are not directly comparable to those

presented for the Xhosas. Forced vital capacity among Ethiopians has been measured

(Harrison et al., 1969), although this does not directly relate to my study.

HVR Components

The genetic influence on the control of ventilation and its components has been a topic of

much interest (Neubauer, 2001). In rats there may be a strong genetic component

underlying levels of hypoxic sensitivity (Strohl et al., 1997; Weil et al., 1998).

Tankersley et al. (1994; 1997; 2000) observed different breathing patterns in different

mouse populations during normoxia and exposed to hypoxia and similar results were

obtained in different rat strains (Strohl et al., 1997). Tankersley's results (e.g. 2000)

suggested that ventilatory control in mice may be controlled by as few as two major

genes. My data show a similar dichotomy in breathing patterns between two human

populations responding to hypoxia. Therefore, in both mice and humans, marked

differences in the two respiratory components OfVE, namely the fR and VT, are evident.

Although similar normoxic and hypoxic VE values are achieved in both groups, the more

rapid, shallower breathing in the Xhosas and the deeper, slower breathing of the
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Caucasians represent two distinct breathing patterns during hypoxia and in normoxia.

These similarities suggest the possibility that in humans the control of the two major

respiration components (breathing frequency and tidal volume) may lie in the same two

major genes proposed by Tankersley for mice. Further study of the human counterparts of

these genes should provide important information regarding a genetic component in

ventilatory control and chemosensitivity.

The two populations in my study display different hypoxic Sa02 levels, but comparable

data are not available from Tankersley's studies. Interestingly, estimations of alveolar

ventilation showed that effective ventilation is similar in both populations, and it is likely

that the differences in breathing patterns do not attribute to the observed saturation

differences. The significantly lower Sa02 values that I report for Xhosa subjects, in

conjunction with their smaller hypoxic VT, suggest that the two patterns of respiration

differ in their ability to oxygenate the blood effectively during hypoxia. I explored this

theory further since it is logical, that shallow breathing is less effective in increasing

alveolar ventilation than is deep breathing, which reduces the relative contribution of

respiratory dead-space to total VE , thereby increasing the fraction of fresh air reaching the

alveoli, and ensuring slightly higher levels of PAO2. However, upon calculation of

alveolar ventilation by means ofEq. 2.3 (page 46) the results indicated that alveolar

ventilation was not significantly different between the two groups. However, these results

do not preclude the possibility that the Xhosa subjects may have a decreased efficiency of

pulmonary gas exchange either by reduced ventilation-perfusion matching or by diffusion

limitations ofhaematological or alveolar wall origin. Another possibility may be that the
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Xhosa subjects' erythrocytes are lower in Hb-concentration, but since the study was

meant to be non-invasive in nature, we did not determine haematological parameters and

these speculations require further testing. It is unlikely that the lower Sa02 values

obtained were as a result of measurement error in Xhosa subjects, as Bothma et al. (1996)

presented evidence that skin pigmentation does not inhibit pulse oximetry performance.

The breathing circuit that we developed uses non-invasive techniques to quantify the

acute isocapnic HVR. Since the HVR may be subjected to higher brain inputs such as

psychological factors (Kawakami et al., 1982), the measurement of ventilation as a

response to hypoxia may be confounded. Non-invasive techniques do not permit

comparisons of carotid-body stimulation at the site of the hypoxic stimulus. Nonetheless,

inter-population differences in hypoxia tolerance, manifested as Sa02 differences, beg the

following question: are ventilatory differences between the two groups of phenotypic or

genotypic origin?

Confounding factors

Unbalanced gender ratios in the two study populations may have complicated our

findings, because of the anthropometric differences associated with gender. ANCOVA

took gender and BMI into account, resolving this problem in the inter-group

comparisons. The sample of Xhosa males is too small to be considered representative of

the entire population therefore conclusions regarding inter-population gender

comparisons are highly arbitrary at this point in time. Additional subjects may not alter

the results, but it is impossible to know this until tested. Although all subjects had

Stellenbosch University http://scholar.sun.ac.za



138

sedentary lifestyles, inter-population differences in habitual exercise levels resulting from

socio-economic differences between the two populations may have affected my results.

Although Caucasian subjects practised recreational exercise more frequently than did the

Xhosas, the latter performed more lifestyle-related physical exertion (such as walking to

work) than did Caucasians, thus compensating partially for this difference, although

exercise intensity may have been less among Xhosa subjects. Subjects with a history of

respiratory or haematological disorders made up similar proportions for both groups,

while there were more smokers and previous HA exposures among the Caucasians.

Intermittent hypoxia may be a more potent stimulus for adaptation than is continuous

hypoxia (Prabhakar, 2001), in particular developmental plasticity (e.g. changes in

neurotrophic factor enhances glutamatergic synaptic currents in phrenic motoneurons,

increasing their responsiveness to bulbospinal inspiratory inputs (Mitchell et aI., 2001)),

and carotid body sensitivity from hypoxic exposures occurring during developmental

years (e.g. Okubo &Mortola, 1990) would further complicate our findings.

Activities such as regular breath-holding may not result in a significant difference

between controls and elite breath-hold divers suggesting that regular breath-holding does

not alter HVR (Grassi et al., 1994) it remains difficult to account for effects of

developmental plasticity on chemosensitivity. Furthermore, the effects of intermittent

hypoxia upon intra-individual variability of HVR have not been studied, and

understanding of this topic is required for its consequential effect on statistical analyses

of ventilatory parameters. The effects oflong-term moderate intermittent hypoxia in
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humans remain unqualified, and studies of hypoxic sensitivity should take potential

confounding factors into account, such as breath-holding, regular flying in un-pressurized

aircraft or mountaineering, and matching of subjects with respect to timing and duration

of such exposures should at least be attempted.

Allometry could also influence ventilation (Packard & Boardman, 1987). Smaller people

do not have relatively larger lungs (Schmidt-Nielsen, 1984), and so a theory that shorter

people have a relatively larger hypoxic dose than larger people (e.g. Smith et al., 200 1)

does not seem applicable to my data. However, this does not account for possible size-

related differences in anatomical dead-space. I report no correlations between height and

Sa02, and so conclude that there is no evidence for a size-dependent hypoxic dose,

although this conclusion may be premature due to the group size and possible

confounding variables such as gender. However, VT and Sa02 were related in my

subjects. Comparison of these values across the published literature and for larger sample

sizes is likely to be instructive.

Conclusion

To summarise, South-African sea-level populations exhibit normal ventilatory responses

to isocapnic hypoxia, and hypoxic sensitivity among Caucasian and Xhosa peoples is

similar. The differences in ventilation patterns between the two groups suggest that

further study of African populations' ventilatory control may be of value to our

understanding of hypoxic ventilatory chemosensitivity. Care should be taken to ensure

well-balanced gender ratios and anthropometrically similar subject groups. Furthermore,
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the observation that there were no differences between estimations of the two

populations' alveolar ventilation despite arterial oxygen saturation differences, provokes

questions regarding the effective differences of ventilation:perfusion mismatching during

hypoxia and possible haematological differences affecting hypoxia. Finally, this is the

first study of hypoxic sensitivity in African peoples, and provides useful baseline

information for low altitude African populations while once again emphasizing the need

for more research on high altitude African populations.
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APPENDIX 1. The time course of the response of Sa02 (%) to hypoxia before (A) and

after (B) the reduction of dead-space in the circuit and relocation of the demand valve to

a position nearer to the mouthpiece. All four tests were performed on the same subject.
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Chapter 4

Repeatability of the ventilatory response to hypoxia in

two South-African sea level populations
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Abstract

High levels of intra-individual variability of the hypoxic ventilatory response (HVR)

raise questions regarding the repeatability of this phenotypic trait and its potential use in

experimental research in future. Knowledge of the repeatability of the HVR is of critical

importance to the planning of ventilatory chemosensitivity studies. To understand the

repeatability of the HVR, Iundertook a family study with a 'single parent and two

siblings' structure, using repeated measures to quantify the acute isocapnic HVR (L •

min-I. %-1) in twenty families from two populations (lO Caucasian, 10 Xhosa, total n of

individuals = 60). The HVR was calculated from the change in minute ventilation (~VE ,

L • min-I) divided by the change in arterial oxygen saturation (~Sa02, %). Standard

quantitative genetics were used to analyze the repeatability of the HVR within and

between individuals in the two populations for each gender separately. Parent-sibling

regression analysis assessed heritability of the HVR, its intra-individual variability

(expressed as the CV (%), the hypoxic components of VE (L· min-I) and the Sa02 (%)),

however the analysis revealed no significant heritability for any of the four selected

components. Repeatability within populations was greater in the Caucasian than in the

Xhosa group when separated into different gender (C Female: 98.1 %; C Male: 95.1 %; X

Female: 77.3 %; X Male: 69.2 %). Repeatability within populations (genders pooled) of

the HVR (86 %, one-way repeated measures ANOVA) was higher than expected on the

basis of our current knowledge of high intra-individual variability. Repeatability of HVR,

as weU as that of hypoxic Sa02, differed significantly between populations (P < 0.05) but

not between families, probably because of the high variation between families within the
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same population. In conclusion, the estimated repeatability levels, in conjunction with

current knowledge of high innate intra-individual variability, indicates that the HVR

requires repeated measurements but need not be precluded as a comparative tool from

future research providing sufficient sample sizes are used.
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Introduction

Evidence for heritability of the hypoxic ventilatory response (HVR)

The mechanisms underlying the ventilatory drive have been well-documented, yet the

etiology remains unclear (Neubauer, 2001). The notion that hereditary factors have an

important influence on ventilation responses appears consistently in the literature (Collins

et al., 1978; Scoggin et al., 1978; Kawakami et al., 1982; Chatterjee & Das, 1995; Beall et

aI., 1997; Hochachka & Monge, 2000; Neubauer, 2001; Fagan & Weil, 2001) but

findings substantiating this idea are few, and many issues remain unresolved (Chatterjee

& Das, 1995; Fagan & Weil, 2001; Neubauer, 2001).

Early attempts at linking ventilatory responses with hereditary factors in familial studies

(Moore et al., 1976; Collins et al., 1978; Scoggin et al., 1978) revealed the possibility

that genetic factors playa major role in responses to hypoxia. Using comparisons of

cellular or ventilatory responses to hypoxia in recent comparisons of inter-strain

differences among inbred mice (Tankersley et al., 1994, 1997,2000; Soutiere &

Tankersley, 2001) and rats (Strohl et al., 1997; Weil et al., 1998, Hodges et al., 2002)

support this theory, but human evidence remains insubstantial. Older literature may be

outdated in terms of methodological advancements in this field (Powell et al., 1998) and

also in the understanding of the innate variability of this response (Zhang & Robbins,

2000; see also Chapter 2), and thus utilization of the conclusions that have been made

could be unjustified. Use of quantitative genetics has recently been supplanted by the

belief that modem rapidly advancing genetics could provide an answer by means of a
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molecular analysis approach (Wenger, 2002). This does not necessarily mean that the

issue has been resolved at the whole body response level, or even adequately dealt with,

and many questions remain unanswered (Soutier & Tankersley, 2001; Wenger, 2002).

It has been proposed that the site and duration of the genetic influence on control of

breathing are still to be determined (Yoshikazu et al., 1982; Neubauer et al., 2001). The

genetic determinants of physiological responses to hypoxia are probably complex,

involving both major genes with larger effects and minor genes with smaller effects

(Neubauer et al., 2001). Their exposition will probably require new analytical methods

that explicitly take into account genotype-environment interaction, such as quantitative

trait loci (QTL, Hartl, 2000; Neubauer, 2001). However, recent mouse studies have

provided evidence that hypoxic breathing components may be controlled by as few as

two genes (Tankersley et al., 1997, Tankersley, 2000), and that aerobic capacity is largely

attributable to genetic factors (Lightfoot et al., 2000; Feitosa et al., 2002), similar genetic

control in humans has not yet been confirmed.

The best evidence that genetic determinants influence the HVR in humans has been

derived from monozygotic and dizygotic twin studies (Arkinstall et al., 1974; Collins et

al., 1978; Hubert et al., 1982; Kawakami et al., 1982), although these studies did not

control for a "common-environment effect" (Falconer & Mackay, 1996; Hartl, 2000).
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Repeatability estimation

Repeatability expresses the variance of a measurement that is equivalent to the proportion

due to permanent differences between individuals due to both genetic (VG) and

environmental (VE) effects (Falconer & Mackay, 1996). The intra-class correlation

coefficient r (also known as repeatability) is the ratio of the inter-individual component to

the total phenotypic variance (Vp). Repeatability analysis allows the separate estimation

of the component of intra-individual variance (VEs) due to the special environment arising

from temporary circumstances as a fraction of the total, and the component of the inter-

individual variance (or general environmental variance) (VEg) attributable to the

environmental variance that contributes to the inter-individual component which arises

from the permanent circumstances. The repeatability is the correlation between repeated

measurements of the same individual. Total phenotypic variance is partitioned into two

components and is expressed by the repeatability. The two components referred to are

VEs versus the sum of VG and VEg, so that the repeatability is

(Eq.4.1)

This allows the separate estimation of the component VEs due to the special environment,

(as a proportion of the Vp). This is given by

(Eq.4.2)

The variance components for the trait in question may also be partitioned within a

population as follows:

(Eq.4.3)
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where cri is the total variance within the population, and cr~ and cr~ are the total

variances between and within individuals within that population respectively. In other

words repeatability can be given as

(Eq.4.4)

Repeatability differs considerably depending on the nature of the character in question,

the genetic properties of the population, and the extent of the influence of the local

environmental conditions experienced by that population's individuals. Repeatability

estimates have become an important tool in evolutionary and ecological physiology in

which the concept of repeatability has repercussions in the identification of traits.

Significant repeatability may facilitate the study of selection acting on natural

populations (Dohm, 2002). Repeatability can also set the upper limit to heritability

(Falconer & Mackay, 1996); as long as certain assumptions are not violated (Dohm,

2002).

Heritability and Quantitative Genetics

The aim of quantitative genetics is " ... to analyze the amount and nature of genetic

variation within a population or a continuously varying phenotypic trait, and to partition

total phenotypic variance into genetic and environmental components ... "

Brutsaert, 2001
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Most importantly, quantitative genetics (QG) can playa key role in the identification of

an underlying genotype, should evidence for heritability exist in the phenotype. Gene

mapping and segregation analyses can be used thereafter to determine the chromosomal

locations of the genes. This approach has seen application in clinical research, and has by

means of QTL, aided the discovery of genes such as the breast cancer (BRCA) genes that

code for tumour suppressor proteins.

Heritability (h2) is a statistic that describes the proportion of the total phenotypic variance

that is due to genetic differences between individuals within a population (Falconer &

Mackay, 1996). Heritability may have a broad and a narrow meaning. The broad meaning

would refer to the total proportion of phenotypic variance attributable to all genetic

effects, while heritability in the narrow sense would refer to the proportion of phenotypic

variance due to additive genetic effects alone (Brutsaert, 2001). While QG strives to

estimate heritability in the narrow sense, this is not always possible. Quantifying narrow

sense heritability requires parent-sibling or half-sibling regression analysis and an

understanding ofthe underlying genotype. In the case of HVR it is only possible to obtain

a value for the broad sense heritability as the genotype is unknown (for more information

on analysis of complex traits see Chapter 4 in Hartl, 2000).

The partitioning of variance in this manner is useful to plant and animal breeders (e.g.

Butler & Dolling, 1992) because an understanding of heritability tells them a priori

which traits are amenable to alteration through artificial selection. QG has also been

embraced by evolutionary biologists over the past three decades and has provided
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interesting comparisons in studies of the HVR in high altitude (HA) populations (Beall et

al., 1997; Hochachka & Monge, 2000). These studies have shown significant heritability

for certain key phenotypes associated with HA populations, including chest dimensions,

pulmonary function, hemoglobin concentration, and resting ventilation. QG has also been

used to support a suggestion that a major gene explains the variance in resting Sa02

levels among different high altitude populations (Beall et al., 1997).

Limitations of Quantitative Genetics

The main limitations of a QG approach to analysis of the HVR that I am aware of, reside

in the lack of information about the genetic structure of the trait, its inheritance patterns,

and the presumed genees) position(s) on the chromosome(s), gene products, functional

effects of the genes on the phenotype, and differences in the pattern of underlying genetic

variation affecting the trait between population groups (Hartl, 2000). The last is of

particular importance, and may emphasize the fact that the quantitative genetic analysis

takes place within populations as opposed to between populations of interest (Falconer &

Mackay, 1996). Many of the calculations for h2 strongly rely on assumptions of

Mendelian transfer, and also assume that the putative gene is not gender-linked.

Aims

The main aim ofthis chapter was to establish intra-individual repeatability levels in the

hypoxic ventilatory response (HVR), by using repeated measurements of the HVR in two

LA African populations residing in the same town. A second aim was the estimation of

the heritability of the HVR and selected key components. Heritability assessment by
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means of the 'parent-sibling' approach has proved successful in determining the

heritability of many traits in domestic livestock (e.g. the quality and production of wool

(Butler & Dolling, 1992)) and in exercise-related parameters such as the Family

HERITAGE studies in America (e.g. Feitosa et al., 2002).

Methods

Measurement and calculation of the acute isocapnic HVR and its associated components

was executed precisely as described in Chapter 3.

Subjects

20 South African families participated voluntarily (lO Caucasian (C); 10 Xhosa (X); total

individuals n = 60) in this study.

Family Criteria

The families invited to participate in the study had to comply with the following selection

criteria.

a) The progeny were offspring of the parent(s) tested (although not objectively

assessed, several lines of questioning were used to 'cross-check').

b) Two progeny and one parent were tested.

c) The youngest of the progeny was no younger than 15 years of age.

d) The oldest parent was less than 70 years of age.
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e) All individuals had non-athletic lifestyles and had never participated in national or

international sports.

f) All families lived at sea-level in the same town.

g) For Xhosa-speaking families, the family for at least two previous generations was

of only Xhosa-speaking origin, i.e. they had not interbred with any people from

another native South African tribe.

Where necessary, language differences between the investigators and subjects were

overcome using translators. All experimental procedures were fully explained, verbally

and in written form, before each subject signed a consent form. Under-age subjects

signed a consent form in the presence of their parent. Participants understood that they

were free to withdraw from the study at any time. Ethical approval for all procedures

was granted by the Subcommittee C of the Research Committee of the University of

Stellenbosch, which conforms to the internationally accepted ethical guidelines detailed

in the Declaration of Helsinki.

Data Processing

HVR and ventilation parameters were measured according to the protocol fully described

in Chapter 2. Data from the start of the experiment up to the last two minutes of the initial

resting period (N I)were discarded. Resting values for each subject were calculated as

means of each variable for the final 120 seconds ofN 1 (number of data points, n = 22 ±

1), except in the case of PETCO
2
where the last 60 seconds were used (number of data

points, n = 20 ± 1). For the hypoxia exposure (H; number of data points, n = 7 ± 2).
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Statistical analysis

A mean of two siblings in one family and a value for the related siblings' one parent was

calculated from the obtained repeated measures (as in Chapter 2). Siblings' means were

compared to parents' means using regression analysis on the selected variables (NeSS,

2000) when nested for population and also weighted for test number. These regression

analyses were also performed without nesting and without weighting. Regression

coefficients thus obtained were used for the analysis of the heritability of HVR. Analyses

of components such as coefficient of variation (CV, standard deviation/mean) of the

HVR, expired minute ventilation volume CVE' L· min-I) and arterial oxygen saturation

(Sa02, %) were also performed. Further estimations were made using sibling data (i.e.

parents excluded) by one-way repeated measures Analysis of Variance (ANOV A) for

calculation of variance within populations, and used for determination of repeatability

(Falconer & Mackay, 1996), while nesting the number of test repetitions within siblings

within families and within population groups. The variance component within families

was greater than that between families and therefore the grouping for families was

discarded and data were pooled within each population.

Results

Estimation of variation represented by data of reduced mean squares is presented in Table

4.1. This data provides information relevant to the treatment of data in the next step of

estimation of repeatability.
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Table 4.1. Reduced Mean Squares of populations, individuals within populations and
repetitions within individuals (families & siblings pooled due to greater variance between
families than between siblings).

Groups DF HVR Sa02 VE
Populations 1 1.114 387.05 9.33

Individuals within
38 0.222 45.42 68.91

Populations

Repetitions within
51 0.016 9.89 10.36

Individuals

Statistical Analysis: One-way repeated measures ANOV A

The components of variance which contribute to repeatability and the estimated

repeatability for all factors are given in Table 4.2. Larger values are greater contributors

to that groups variance.

Table 4.2. Components of variance (average of2.08 observations per individual) and
repeatability values.

Groups HVR Sa02 VE
Populations 0.043 16.425 0.000
Individuals within

Populations 0.099 17.082 28.147

Repetitions within

Individuals 0.016 9.893 10.364

Repeatability within

populations (families & sibs 0.862 0.633 0.731
pooled)

Statistical Analysis: One-way repeated measures ANOYA * CP< 0.05)
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Table 4.3a Repeatability of Caucasian subjects calculated for Males and Females separately. The

source refers to the type of variance, either among or within individuals, (SS: Sum of squares;

MS: Mean Squares; DF: Degrees of Freedom; one- way repeated measures ANOYA).

Gender Source DF SS MS Repeatability

Females among 9 2.419725 0.268858 0.981

Females within 19 0.038016 0.002001

Males among 21 10.41672 0.496034 0.951

Males within 49 0.483163 0.00986

Table 4.3b Repeatability of Xhosa subjects calculated for Males and Females separately. The

source refers to the type of variance, either among or within individuals. (SS: Sum of squares;

MS: Mean Squares; DF: Degrees of Freedom; one- way repeated measures ANOYA).

Gender Source DF SS MS Repeatability

Females among 24 9.638804 0.401617 0.773

Females within 60 2.499832 0.041664

Males among 4 0.298043 0.074511 0.692

Males within 14 0.155854 0.011132

The overall means and correlations for HVR and additional selected components are

displayed in Table 4.4.
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Table 4.4. Overall means (diagonal) and correlations (off-diagonal) for HVR, hypoxic
Sa02 and hypoxic VE
Population HVR Sa02 VE
Caucasian HVR -0.486 -0.584 -0.905

Sa02 82.065 0.463
VE 19.002

Xhosa HVR -0.264 -0.176 -0.646
Sa02 77.920 -0.367
VE 18.358

HVR

No significant correlation was found between HVR for the parent-sibling method (all

subjects P> 0.7, r2= 0.01; X: P> 0.68, r2= 0.03; C: P > 0.70, r2= 0.02; Fig 4.1).

HVR (Llminl%) for Xhosa and Caue in parent-sibs

0.0

• •
•-0.2 • 0 • •·0
0

-0.4
0

0 •'"CJ) •.5
:0
(ij

-0.6 0

0 • 0

-0.8

I
• Xhosa I
0 Caucasian 0

-LO
-1.8 -1.6 -1.4 -1.2 -LO -0.8 -0.6 -0.4 -0.2 0.0 0.2

Parent

Figure 4.1 No relationship in parent-sibling comparison of mean HVR (L • minot • %-1) in
Xhosa and Caucasian subjects. No relationship was found when all subjects were pooled.
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Ventilation components

No significant correlation between parents and sibling pairs was found for the hypoxic

VE (X: P> 0.44, r2= 0.03; C: P> 0.53, r2= 0.02; Fig 4.2) and the change in VE

expressed as a %, and nor for the hypoxic Sa02 (X: P> 0.81, r2 = 0.01; C: P> 0.25, r2 =

0.16; Fig. 4.3). There was no significant correlation in CV for either group, (X: P> 0.55,

r2 = 0.05; C: P> 0.48, r2 = 0.13; Fig. 4.4).
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Figure 4.2 Relationship of parent-sibling hypoxic VE (L· min-I) for Caucasian and
Xhosa subjects.
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• • •
76 •• 0
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Figure 4.3 Relationship of parent-sibling hypoxic Sa02 (%) for Caucasian and Xhosa
subjects.
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Figure 4.4 Relationship of parent-sibling intra-individual CV (%) ofHVR in Xhosa and

Caucasian subjects.

Discussion

The main finding in this study was the relatively high repeatability values obtained. The

Xhosa subjects' HVR displayed lower repeatability than the Caucasian subjects when

split into gender, in accordance with the higher variability (CV) obtained by the Xhosa

group relative to the Caucasian group in Chapter 3. In both populations, HVR in females

presented greater repeatability than in males. A relatively high repeatability estimate in

conjunction with prior information exposing high variability (Chapter 2; Zhang &

Robbins, 2000) revealed information indicating that the HVR may be highly variable but

also highly repeatable. This is mainly as a result of the fact that the inter-individual

variance is much greater than the within individual variance. Conclusions regarding the
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HVR as a parameter suggest repeated measures should be used for determination of

physiologically representative data, but based on the high inter-individual variability

combined with high repeatability, the HVR need not be precluded from physiological

research. With the estimation of repeatability, of primary concern in this relatively

limited study are the unbalanced gender ratios and the possible interaction of gender with

HVR estimation. In future, better matching of subjects for age, sex, and anthropometry

should be considered a priority.

In addition, regression analysis of the HVR, hypoxic VE' hypoxic Sa02, and the intra-

individual CV for HVR using the parent-sibling approach showed no evidence for

heritability of these as traits. A major concern from this aspect of the study is the

indication for a lack of sufficient subjects for the determination of heritability.

The concept of repeatability and implications for heritability

Repeatability may set the upper limit to heritability should the trait in question be

properly defined and measured (Dohrn, 2002). This has potential interpretations that may

be of use, since often the heritability estimation cannot be achieved. However,

repeatability estimates may not set the upper limit to heritability when significant

genotype-environment interaction is present or if the traits are influenced by maternal

effects (Dohrn, 2002). Since one or both of these factors may apply in the case of the

HVR, I must caution the reader that in this study, it is not appropriate to use my

repeatability estimates to set the upper limit to heritability of the HVR.
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Repeatability

For traits with low repeatability within the same individual this information may lead the

researcher to believe that there are practical problems with the measure such as high

variability (Falconer & Mackay, 1996), or that some aspect of the testing is not

accounting for consistency of the parameter in question (Arnold et al., 1995), such as

may occur with equipment or data capturing failure. Relatively high repeatability such as

that which I found may have three implications. First, the repeatability is supposed to set

the upper limit for the broad and narrow-sense heritability (see above) of a trait because it

includes both the genetic and environmental basis of variation while heritability includes

only the genetic differences among individuals (Falconer & Mackay, 1996; Dohm, 2002).

Second, significant repeatability could be an important determinant of the efficacy of

natural selection on the temporal moderation of the trait in question, due to its

relationship with heritability (Boake, 1989; Dohm, 2002). Third, high levels of

repeatability indicate that individuals perform relatively consistently and therefore there

may be little practical reason to obtain multiple measurements (Falconer & Mackay,

1996; Dohm, 2002). This finding appears paradoxical, but may be explained simply in

the following manner. Repeated measurements of the HVR have indicated that there is a

high degree (26 %) of intra-individual variation (Sahn et al., 1977; Zhang & Robbins,

2000, and see Chapter 2), while my data provide contrary information as obtained

through repeatability estimation. What appears to be high intra-individual variability by

comparison with other physiological and biochemical parameters is, in actuality, not

particularly high when compared with the magnitude of inter-individual variability,

which may be up to 10 times greater. In this situation, apparently high repeatability may
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occur with simultaneously high variability. I propose this be termed the 'HVR variability

paradox'. The conclusion drawn from this is that repeated measures with the appropriate

statistical analyses (Bland & Altman, 1995) should still be used to account for intra-

individual variability and obtain values of physiological accuracy, but that for the

purposes of inter-population comparisons, the HVR is sufficiently consistent to support

conclusions based primarily on high inter-individual variability. Caution should be used

in ensuring data normality and sufficient sampling.

Comparisons with other studies

Although I report no significant correlations between respiratory parameters of parents

and siblings, nevertheless there may be a heritable component to the HVR. Lack of

parent-sibling correlations simply mean that the additive environmental influences on the

parameters studied probably outweighed the genetic influences, making analysis of HVR

by this method highly limited. Other HVR studies, such as those of twins (e.g. Collins et

al., 1978; Kawakami et al., 1982; Chatterjee & Das, 1995) and of HA natives (Beall et

al., 1994; 1997), suggest that ventilatory responses have a strong genetic component, yet

other variables related to lung function, such as Vo2max and running economy, appear to

have minimal genetic influences (Rodas et al., 1998). Small sample sizes, insufficiently

homogenous subject groups, and different statistical methods (Bouchard et al., 1992) may

all lead to differing estimations of heritability for the same variable.
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Possible Confounding Factors

Conclusions drawn from a pair-wise comparison of two sea-level populations, such as the

one I present here, are limited because the study does not encompass comparisons of

members of these same populations exposed to high altitude for different lengths of time,

within and between generations. Such comparisons, combined with correction for the

genetic distances between populations, are necessary for partitioning of environmental

and genetic factors. Such studies may require a lifetime of dedication by the researcher

(Brutsaert,2001). Second, comparisons between two species, or two populations, may be

insufficient to support conclusions about phenotypic adaptation (Garland & Adolph,

1994). Finally, it is very difficult to account for the environmentally-induced phenotypic

plasticity inherent in long-term hypoxic exposure. This plasticity may occur over short

periods oftime (acclimatization), the growth and development period (developmental

acclimatization), or even over generations, as when non-genetic maternal effects

influence the first few generations of lowlanders recovering from altitude-induced low

birth weights of founder members (Brutsaert, 2001). Respiratory plasticity (as referred to

in Chapter 1) may be associated with hypoxia's ability to provoke changes in gene

transcription (Kline et al., 2002). Hypoxic exposures as shorts as 1 min can result in

adaptation at the level of gene transcription, (which may therefore complicate any

analysis), although no information is available regarding whether different tissues

respond differently to continuous or intermittent hypoxia (Neubauer, 2001).

Different levels of daily activity between my two study groups may have confounded my

analyses by influencing subjects' aerobic capacities, hence their ventilation. Traits
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strongly correlated with physical fitness affect heritability estimations, and the HVR may

be related to fitness levels, particularly when subject's train at high altitude (Levine et aI.,

1992; Neubauer, 2001). However, all my subjects came from similarly sedentary

backgrounds. Due to the possible relationship of HVR with fitness, the connection

between the metric trait and fitness may be causal, and may confound heritability

calculations. Heritability has been implied by familial aggregation reported in maximal

and sub-maximal aerobic performance (Feitosa et al., 2002; Rodas et al., 1998). Torroni

et al. (1994) showed that mutations in major genes (e.g. dwarfism in humans) are

unlikely to playa major role in adaptation to HA.

Limitations of heritability studies

An important assumption of heritability analyses, probably met in most studies of the

HVR, is that the trait studied does not result from a mutated gene. Furthermore,

heritability studies do not provide information about the mode of gene transfer (e.g.

dominant or recessive, mono- or polygenic; Falconer & Mackay, 1996), although this is

often inferred from heritability calculations (e.g. Beall et al., 1997), nor do they provide

information about the locus/loci of the putative genetic factor/s, the time courses of and

stimuli for their expression, and the mechanisms whereby they control ventilation.

There are conceptual, methodological and statistical issues that should be carefully

considered when evolutionary presumptions are made from mean phenotypic

comparisons between different population groups. While challenging, the approach of

comparing phenotypes to isolate genetic adaptation have not yet been fully utilized
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(Brutsaert, 2001). The relevance of continued study at the phenotypic level despite rapid

advances in molecular biology should be emphasized, since natural selection acts on the

phenotype only. Therefore, an integrative approach accounting for the interaction of the

environment with the gene should be assessed relative to the production of a beneficial

phenotype.

Summary

To summarise, the main finding in this study was the relatively high repeatability seen in

the Caucasian subjects' HVR compared with those in the Xhosa when split into gender,

or when both genders were pooled. In both populations, HVR in females presented

greater repeatability than in males. Caucasians may perform more consistently in tests of

ventilatory chemosensitivity to hypoxia than Xhosa, and females may perform more

consistently than males.
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5.1 High repeatability and high intra-individual variability in the HVR

Data presented in Chapter 2, Chapter 4 and also in the published literature (Sahn et al.,

1977; Zhang & Robbins, 2000) demonstrate high intra-individual variability of the HVR,

making it difficult to obtain a single physiologically representative value for an

individual. High levels of inter-individual variability in conjunction with a priori

analyses suggest that larger sample sizes and repeated measures be used in future to

support conclusions regarding ventilatory chemosensitivity to hypoxia.

5.2 Heritability of the HVR

There is strong evidence that a major gene controls lung function (Wilk et al., 2000) and

another resting Sa02 in HA populations (Beall et al., 1997). However, the location(s) and

sequence(s) of these putative gene(s) remain elusive. Because of the large samples

required to demonstrate heritability using a parent -sibling approach (see 5.1 above), HVR

may not be a suitable research tool to explore hypoxic sensitivity. More reassuring were

its high levels of repeatability within individuals, suggesting that it is heritable but that

inter-individual variability may confound HVR studies if incorrect statistical analyses are

used. Although the mechanisms are still unclear, some researchers have suggested that a

gene-environment interaction may influence human HVR, and it's likely the

physiological responses to a hypoxic challenge could be altered (Neubauer, 2001).

Differences in breathing patterns in rodents (e.g. Strohl et al., 1997; Tankersley et al.,

2000) and humans (Chapter 3) suggest that a study exploring possible genetic differences

in humans should be attempted in order to identify whether the mouse model for genetic
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control of hypoxic ventilation and chemosensitivity is applicable to humans (Soutiere &

Tankersley,2001).

5.3 Inter-population differences in ventilation

Hypoxic sensitivity, measured as the acute isocapnic hypoxic ventilatory response is

evident in low altitude South African populations. While the magnitudes of the HVR in

the Xhosa and Caucasian groups were comparable, a priori analyses suggest that larger

sample sizes are required before decisive conclusions about differences between these

two groups can be drawn.

Blunted HVR in HA populations is accepted as an adaptation to hypoxia (e.g. Hochachka

et al., 1999 or Huang et al., 1984). Natives to HA show acclimation abilities far superior

to those of SL natives, attributable to various physiological mechanisms such as enlarged

chest capacity and thus larger lung capacity, increased right cardiac capacity, greater

capillary density, and higher oxygen delivery by the blood to the tissues (Hochachka et

al., 1999). Among the Bolivian Aymara, this improved 02-carrying capacity is largely

attributed to high Hb concentrations in the RBC's (Beall et aI., 1998). Furthermore, these

HA natives utilize O2more efficiently (Matheson et al., 1991) and display higher work

efficiencies (Hochachka et al., 1991) than do lowlanders.

Although breathing pattern differences within individuals forced to breath in a pattern

unlike their normal resting pattern suggest that there are no differences in energy

efficiency in normoxia (Mallios & Hodgson, 1994), the differences in unforced breathing

Stellenbosch University http://scholar.sun.ac.za



184

between populations that I report here may be attributed to different histories of residence

at moderate altitude but this is unlikely. A difference in energy-efficiency of the two

breathing patterns may be a cause of these underlying mechanisms (Mil ie-Emili &

Orzalesi, 1998), and may have developed as a result of adaptations to specific altitudes of

residence, but this theory remains to be explored in the future (see also MacIntyre &

Leatherman, 1990). In ground squirrels, alterations in breathing patterns have been

closely linked to reduced body temperature and changes in metabolic rate (Zimmer &

Milsom, 2002). Oxygen extraction abilities may also differ between LA populations, but

this too requires further scrutiny. A different explanation for the observed differences in

respiratory patterns would be mechanoreceptor reflexes that are possibly related to

anthropometric differences in the populations rather than an altitude history as such.

Reflexes from respiratory muscle mechanoreceptors and airway slowly and rapidly

adapting receptors have a much greater influence on breathing pattern than

chemoreceptors (Smith et al., 2001). In future, better matching of subjects for gender, age

and anthropometrical data could resolve issues regarding the nature of conclusions that

may be drawn from comparative studies, such as that reported in Chapters 3 and 4.
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5.4 End-tidal peD2 is correlated with HVR

Although my findings contradict those of Reeves et al., (1993), and while there is a large

body of information available on the topic, the significant negative correlation I report

between PETco2and HVR suggests that further investigation of the HVR under

experimentally varied PETCO2 would be of value. Experiments testing this relationship

should be informative. Also apparent from Chapter 3, was the fact that PET CO2 can be a

justifiable covariate for use in comparative studies such as altitude training studies (e.g.

Levine et al., 1992) or ofHA and SL populations (e.g. Huang et al., 1984) who may

display differences in resting PETC02'

5.5 The primary response: are we really measuring a physiological hypoxic response?

Carotid body stimulation can be quantified in rats (Weil et al., 1998) through in vivo

measurement of carotid sinus nerve (CSN) activity or in vitro using fluorimetry of

cytosolic calcium, thereby eliminating confounding factors such as psychological effects

(via nerve inputs), and improving the accuracy of measurement of the physiological

response to hypoxia at the site of stimulus. Measurements of the ventilatory response to

hypoxia are confounded by higher brain inputs other than simply the hypoxia in question

(Kawakami et al., 1982), and in my opinion, may form a critical point around which

future physiological research should focus as this may be a cause of contradictory

research in the existing HVR literature. Confounding effects of undesirable inputs could

be eliminated by an approach such as that of Wei I et al. (1998).
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Intra-individual variability in the HVR may be reduced when subjects are all exposed to

the same level of isocapnic hypoxia (i.e. to a fixed Sa02 value) and their VE' fR and VT

are directly compared. This approach effectively avoids the misuse of ratios such as the

change in ventilation relative to the change in saturation used to calculate the HVR. Use

of ratios to represent data that do not scale isometrically with body mass-related

parameters, such as VE' leads to both type I and type II errors, and evolutionary

physiologists have replaced such analyses with ANCOV As (Packard & Boardman, 1987;

Beaupre & Dunham, 1995; Hayes, 2002). I propose that human studies using body-mass

related variables employ this approach, which by removing the confounding effects of

body mass, may improve understanding of the remaining factors contributing to

variability.

Heart rate during hypoxia may be a more precisely quantifiable response than is HVR

(Sato et al., 1996) and may therefore be more appropriate as a non-invasive tool for the

measure of physiological adaptation to hypoxia. In the interests of science, future

exploration into this parameter must be recommended. Furthermore, a test displaying

lower inter-individual variability may prove financially and temporally more viable than

the HVR systems currently in use. Future researchers should be aware of potential

problems in the literature, in particular a lack of repeated measures designs in studies of

chemosensitivity.
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General Comments & Recommendations

A powerful and widely used tool in comparative physiology, ANCOV A is under-utilized

in human physiology studies that often attempt to correct for body mass or height using

ratios, thus risking the misinterpretation of data (Packard & Boardman, 1987), while

whole-body values are still recommended as the best way to handle data that are

correlated with body mass (Hayes, 2001).

The influence of intermittent hypoxic exposure on physiological plasticity (e.g.

Prabhakar, 2001) and anatomical (e.g. Niermeyer et al. 2001) plasticity, and the potential

complications arising from the poorly-studied effect of developmental plasticity (e.g.

Okubo & Mortola, 1990) suggest that researchers measuring ventilatory chemosensitivity

should consider their subjects' history of exposure to chronic or intermittent hypoxia

when establishing exclusion criteria. Better understanding of the influence of

developmental plasticity on HVR will improve our ability to control for this. However,

exclusion criteria based on a subjects' lifetime history of hypoxic exposure may be

impractical, because such histories are difficult to assess accurately.

Other methods for measuring a response to hypoxia should be considered, particularly

those that avoid a psychological influence by operating on a cellular or enzymatic level.

Optimal sample sizes may be so large that measuring HVR could prove to be a waste of

time and money in future.
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As a function of mammal maturity, the short- and long-term effects of hypoxia on the

modulation of neurotransmitter release, receptor binding and expression, intracellular

signalling cascades, transcription regulation, and gene expression are almost completely

unknown (Gozal & Gozal, 2001).

5.6 Summary

In this thesis, I have successfully described a modified breathing circuit for measurement

of the acute isocapnic hypoxic ventilatory response (HVR). The intra-individual

variability of the HVR was estimated to be similar across days and within days and on

average 27 % in magnitude either way. The comparison of two LA South African

populations has provided novel information regarding the hypoxic sensitivity of African

peoples, which can be used as a baseline in future comparative investigations of HA

Africans, especially in hitherto unstudied East Africans. I am unaware of any published

measurements of the hypoxic chemosensitivity in African populations such as those

available for HA populations in the Himalaya and Andes. Data presented in this thesis

also indicate that the HVR is evident in both the South African Caucasian and Xhosa sea-

level populations, and that they are comparable in magnitude. Repeatability calculations

have enhanced our understanding of the HVR. The Caucasians' HVR present greater

repeatability than the Xhosa population, and males are more repeatable than females in

either population. This study revealed that the repeatability of the HVR is relatively high

within an individual relative to the inter-individual variation, which provides information

related to the variability and heritability in not only the HVR, but components too.

Heritability conclusions were limited since the data analyses indicated sample sizes were
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inadequate, and were further confounded by the high variability both within and among

individuals within a population. A priority for future studies is the better matching of

populations for gender and anthropometry. Future HVR studies should employ repeated

measurements, and samples greater than those generally used in the past are probably

necessary to make conclusive deductions about hypoxic sensitivity.
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