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Abstract Although the involvement of immune mecha-
nisms in multiple sclerosis (MS) is undisputed, some argue
that there is insufficient evidence to support the hypothesis
that MS is an autoimmune disease, and that the difference
between immune- and autoimmune disease mechanisms has
yet to be clearly delineated. Uncertainties surrounding MS
disease pathogenesis and the modest efficacy of currently
used disease modifying treatments (DMTs) in the prevention
of disability, warrant the need to explore other possibilities.
It is evident from the literature that people diagnosed with
MS differ widely in symptoms and clinical outcome - some
patients have a benign disease course over many years
without requiring any DMTs. Attempting to include all
patients into a single entity is an oversimplification and
may obscure important observations with therapeutic con-
sequences. In this review we advocate an individualised
approach named Pathology Supported Genetic Testing
(PSGT), in which genetic tests are combined with biochem-
ical measurements in order to identify subgroups of patients
requiring different treatments. Iron dysregulation in MS is
used as an example of how this approach may benefit
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patients. The theory that iron deposition in the brain con-
tributes to MS pathogenesis has caused uncertainty among
patients as to whether they should avoid iron. However, the
fact that a subgroup of people diagnosed with MS show
clinical improvement when they are on iron supplementa-
tion emphasises the importance of individualised therapy,
based on genetic and biochemical determinations.
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Introduction

Whether iron supplementation is beneficial or harmful to
people with multiple sclerosis (MS) has been debated for
several years. The answer is of critical importance as it may
guide physicians to optimal treatment of a very complex
disorder (van Rensburg and van Toorn 2010). The intensity
of the iron-MS debate escalated substantially when Dr Paolo
Zamboni, a vascular surgeon, presented a hypothesis to the
Royal Society of Medicine that iron deposition in the brain
may contribute to the development of MS (Zamboni 2006).
This theory states that periventricular iron deposits are
formed in the brain, similar to those that form around veins
in the leg in chronic deep vein thrombosis. Iron released
from the deposits may cause oxidative damage resulting
in the recruitment of white blood cells into the brain
matrix (Singh and Zamboni 2009). The deposits are
thought to result from an inhibition of blood outflow
from the brain through the jugular veins due to venous
obstructions. The hypothesis is called chronic cerebrospinal
venous insufficiency (CCSVI), and it is suggested that
balloon dilatation or stents may be used to improve cerebral
venous drainage.
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The hypothesis and procedure were received with much
scepticism by the majority of the medical community. The
Cardiovascular and Interventional Radiological Society of
Europe (CIRSE) issued a commentary (Reekers et al. 2011)
in which they expressed the belief that the lack of clinical
trial data did not offer a sound basis for such treatments.
Filippi et al. (2011) stated that clinicians were generally
satisfied with the current prevailing theory of MS, and since
some studies have not confirmed the original results, “endo-
vascular treatment of presumed vascular abnormalities in MS
should be discouraged vigorously”.

The hypothesis however generated much optimism
amongst people with MS, since correction of cerebral ve-
nous drainage is anecdotally related to rapid improvement in
clinical outcome (reduced disability). Public urgency led the
US National MS Society to fund a number of independent
studies to investigate the relationship between CCSVI and
MS. The above scenario emphasises the complexity of MS
research, the diversity of treatment modalities available and
the uncertainty all of this creates among MS sufferers.
Evidence of this uncertainty is seen on the Internet where
patients and MS support groups actively communicate with
one another via Facebook, YouTube and blogs, raising
optimism for “liberation treatment”, as the CCSVI treatment
is called, contrary to the advice of clinicians (Filippi et al.
2011).

This raises the question: Is this not the time for the medical
fraternity to acknowledge patient perception that conventional
medicine does not benefit all patients? Recent studies, for
example, found that fewer than half of patients benefit from
interferon-f3, one of the standard treatments for MS (Byun et
al. 2008; Wekerle and Hohlfeld 2010). In non-responders,
interferon-3 may even cause worsening of disease outcome
due to a Th17 immune response (Axtell et al. 2011). Treat-
ment with disease modifying agents has been shown to reduce
relapse rates, but has limited effect on disability progression.
Such medications often have unpleasant side effects (Walther
and Hohlfeld 1999), and patient resistance to taking the injec-
tions is not infrequently reported (Hancock et al. 2011). Un-
fortunately, these findings are not always reflected in
randomised controlled trials, which may be attributed to se-
lection bias, i.e. enrollment of an enriched study sample that
differs from true population-based samples (Pittock and
Rodriguez 2008; Caplan 2011). The controversies surround-
ing disease pathogenesis in MS and lack of efficacy of
the currently used disease modifying agents to prevent
disability, warrant the need to re-explore MS disease
mechanisms, such as gaining an in-depth understanding
of the basic biochemical processes that take place during
demyelination. This would include the role played by
genetic defects and biochemical deficiencies, and subse-
quent intervention to alleviate them. Investigating the
role of iron in MS is especially important due to the
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uncertainty of whether it is safe for MS patients to take
iron supplements, or whether they should avoid ingesting
iron.

Is iron harmful or helpful in MS?

Proponents of the “iron is harmful” theory advocate reduced
iron intake or removal of iron by chelation therapy as a
means of reducing iron deposition in the brain (LeVine
and Chakrabarty 2004). Their justification is based on the
fact that poorly liganded iron generates free radicals via the
Fenton reaction that could damage various molecules and
tissues, including myelin (Kell 2009). Much of the research
in this field is performed on an animal model of brain
inflammation, experimental allergic (more recently: autoim-
mune) encephalomyelitis (EAE), which is widely believed
to be a model for MS. EAE is generated by injecting an
animal with an antigen such as myelin basic protein, togeth-
er with an adjuvant such as Mycobacterium tuberculosis and
pertussis toxin. In a study frequently cited to prove the
benefit of iron deprivation, mice did not develop EAE when
they were fed a low-iron diet (Grant et al. 2003). However,
the authors did point out that the severity of EAE was not
exacerbated in mice that were fed a high iron diet, and that
the positive outcome of the iron deprivation was related to
the impairment of CD4+ T cell development, rather than
having a central effect. Furthermore, the authors emphasised
that the potential harmful consequences of iron deficiency
anaemia should preclude the translation of this research to
humans, a warning that has not always been heeded.

Iron deprivation in MS would have been justified if
substantiated by studies demonstrating improved disease
outcome in people with MS who were iron restricted as in
the case of the EAE animals. However, a clinical trial
involving 9 chronic progressive patients with MS, who
received up to 8 courses of the iron chelator desferrioxamine
over 2 years, had a variable outcome (Lynch et al. 2000).
One patient improved, 3 remained stable, and 5 worsened on
the Expanded Disability Status Scale (EDSS) (Kurtzke
1983), the “gold-standard test” for neurological outcome.
The authors attributed the negative outcome of the chelation
therapy to an inadequate dosage schedule (Lynch et al.
2000). However, a more plausible explanation is that EAE
is not a model for human MS (Sriram and Steiner 2005). It
was designed to be an animal model for autoimmunity years
ago, when it was first postulated that MS was an autoim-
mune disease (Behan and Chaudhuri 2010). Rodriguez
(2009) has however pointed out that it is extremely difficult
to classify MS as an autoimmune disease, since extensive
research over more than 50 years has failed to confirm that
MS fulfills the criteria for autoimmunity as proposed by
Schwartz and Datta (1989; Table 1). A comparison with
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Table 1 Criteria for determining
a disease as autoimmune

Table adapted from Rodriguez
M. Have we finally identified an
autoimmune demyelinating
disease? Ann Neurol. 2009; 66
(5):572-573. Reproduced

with permission of John Wiley
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. Demonstration of an immune response to a precise autoantigen in all patients with the disease

. Reproduction of the lesion by administration of autoantibody or T cells into a normal animal

. Induction of lesion by immunizing an animal with relevant purified autoantigen

. Isolation or presence of autoantibody or autoreactive T cell from lesion (or serum)

. Correlation of autoantibody or autoreactive T cell with disease activity

. Presence of other autoimmune disorders or autoantigens associated with disease

. Immune absorption with purified autoantigen abrogates pathogenic autoantibody or autoreactive T cell
. Reduction of pathogenic autoantibody or T cell associated with clinical improvement

& Sons, Inc

neuromyelitis optica shows that whilst the latter fulfills
these criteria, MS does not (Rodriguez 2009).

Mind the gap

The autoimmune hypothesis, based to a large extent on results
obtained with EAE, states that potentially autoaggressive T
cells exist in the blood of patients with MS, having been
activated by an antigen that mimics myelin proteins. These
T cells then traverse the blood—brain barrier (BBB) and mi-
grate into the central nervous system (CNS) where they “or-
chestrate a complex series of interactions culminating in the
destruction of both myelin and axons” (Hohlfeld 2010). A
huge amount of literature, becoming ever more complex,
exists in this field, although “there is still a wide gap between
research in human MS and its animal models” (Hohlfeld
2010). The reason for this gap is that the 8 criteria for auto-
immunity (Table 1) are all based on the premise that a precise
autoantigen should be identified for the disease, similar to
rheumatoid factor in rheumatoid arthritis. However, such an
antigen has not yet been found in MS (Rodriguez 2009).
While several self- and environmental antigens activate im-
mune cells in patients with MS (Kimball et al. 2011), none of
them meet the criteria listed in Table 1. In EAE the antigen is
provided by the researcher, who decides which of the myelin
proteins to inject. Therefore, the evidence for autoimmunity in
MS remains elusive (Behan and Chaudhuri 2010; Steiner and
Mosberg-Galili 2010; Trapp 2004; Miravalle and Corboy
2010; Corthals 2011). In addition, it has been shown that the
oligoclonal B-cell response in the cerebrospinal fluid (CSF) of
patients with MS is not targeted against the myelin proteins
generally thought to direct the autoimmune attack: myelin
basic protein, proteolipid protein, or myelin oligodendrocyte
glycoprotein (Owens et al. 2009). Therefore, although the
involvement of immune mechanisms in MS is confirmed
(The International Multiple Sclerosis Genetics Consortium &
the Wellcome Trust Case Control Consortium 2011), this does
not necessarily provide proof for autoimmunity. Since there
appears to be a general misunderstanding regarding the differ-
ence between immune- and autoimmune disease mechanisms,
Table 1 may help to stimulate discussion in this regard.

The evidence for immune involvement in MS is that
alleles of the major histocompatibility complex (MHC) ex-
ert the single strongest genetic effect in MS disease suscep-
tibility (Ramagopalan and Ebers 2009; Ramagopalan et al.
2009). MHC molecules usually present antigen to CD4+ T
cells. However, it was demonstrated in mice that Class II
MHC molecules could exacerbate demyelination indepen-
dently of T cells (see below) (Hiremath et al. 2008), indicating
that there may be other mechanisms besides autoimmunity by
which the immune system may exert negative effects. It may
be possible that the immune response in MS is secondary to a
primary disease mechanism residing within the CNS (Trapp
2004). For example, in people predisposed to MS, Epstein-
Barr virus (EBV) (Levin et al. 2010) and other infections may
activate the human endogenous retrovirus (HERV), thereby
producing active virus particles which may in turn activate the
immune system (Perron and Lang 2010).

Contemplating the possibility that MS may not be an
autoimmune disease after all requires a huge mind shift,
since autoimmunity in MS has become an entrenched dog-
ma over the years. The assumption of MS as autoimmune
has created a mindset of a typically progressive disabling
condition which is incurable, since the origin of the disease
emanates from a permanently dysfunctional immune sys-
tem. Accordingly, the only hope is to delay disease progres-
sion by de-activating the immune system or to stop
peripheral immune cells from entering the brain by using
disease modifying treatments (DMTs). However, the auto-
immune hypothesis cannot explain “benign” MS, defined as
patients who have an EDSS score of 3 or less after 10 years,
and have a >90% chance of remaining free from disability
for >20 years without taking DMTs (Pittock et al. 2004;
Mastorodemos et al. 2010). The number of patients having a
favorable disease outcome may be significant, up to 30%
(Pittock and Rodriguez 2008).

Besides benign MS, four subtypes of MS were stand-
ardised in 1996: relapsing-remitting- (RRMS), secondary
progressive- (SPMS), primary progressive- (PPMS) and
progressive relapsing MS (Lublin and Reingold 1996).
However, despite attempts to classify disease subtypes, the
diagnosis of MS remains confusing due to the heterogeneity
of the disease (Steiner and Mosberg-Galili 2010).
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Individualised treatment for subgroups of MS?

Are other disease mechanisms involved in MS besides au-
toimmunity? Apart from CCSVI, several other hypotheses
have been put forward. It could be argued that the demye-
lination in MS should be considered a common endpoint
originating from different etiologies, thus emphasizing the
importance of individualised therapy requirements (Fig. 1).
The role of iron in MS illustrates this concept. Over the last
15 years our research has identified a subgroup of patients
who, having presented with low iron parameters at diagno-
sis, subsequently followed a benign disease course only
when the iron deficiency was alleviated through continuous
lifelong supplementation (Kotze and Rooney 1997; Rooney
et al. 1999; Kotze et al. 2001; van Rensburg et al. 2006; van
Toorn et al. 2010). These patients are often non-anaemic
iron deficient; therefore it is not sufficient to test for anae-
mia, neither does a ferritin determination alone suffice. It is
not known whether this subgroup represents “true” MS,
since they evidently have a metabolic inability to adequately
absorb the iron required for myelin maintenance (Kotze et
al. 2001); however, they are clinically indistinguishable
from MS. Notably, iron deficient pediatric patients, who
present with extensive demyelination at diagnosis, respond
particularly well to this treatment (van Toorn et al. 2010).
This finding is very encouraging, sparing children the po-
tential harmful side effects of immunomodulators. Care
should be taken to prevent constipation in patients requiring
long-term iron maintenance therapy by prescribing an ap-
propriate iron formulation. It is furthermore important to
appreciate that iron deficiency may be only one component

Fig. 1 Flow diagram of a
hypothesis for genetic and
environmental factors
determining the aetiology
and disease progression
of multiple sclerosis.
Figure adapted from

Van Rensburg et al. 2009/2010.
Multiple Sclerosis. In:
MIMS Disease Review
2009/2010. Reproduced
with permission of

Avusa Media Limited
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of a complex picture encompassing genetic predisposition
and environmental factors causing apoptosis of oligoden-
drocytes (the cells that produce and maintain myelin in the
brain - see below), and subsequent demyelination (Fig. 1).

The accuracy of serum iron determination has been debated,
primarily because of diurnal variation (Dale et al. 2002);
therefore standardisation of iron determinations by blood col-
lection method and time, by comparing different iron param-
eters, i.e. serum iron, transferrin (Tf) saturation and ferritin, and
by repeating all determinations at follow-up are of critical
importance. It is furthermore essential not only to identify
patients with overt, unmistakable iron deficiency, but also
those with moderate iron deficiency, as they may also clinically
benefit from supportive iron supplementation. The previously
published MS study population is representative of what we
routinely find: high serum iron levels, although occurring in
some patients, are not the norm (van Rensburg et al. 2006);
about a third of patients have low serum iron (<10 pmol/I)
while 20% of the patients have very low levels consistently
over many years if they do not take iron supplements. This
may be related to environmental circumstances such as diet, or
variations in the genes coding for iron uptake proteins.

To our knowledge iron deficiency in MS is a novel
finding, since other researchers relate MS to iron excess
even if their results may suggest otherwise. For example,
increased soluble transferrin receptors (sTfR) in MS, attrib-
uted to increased iron turnover (Sfagos et al. 2005) could
alternatively signify iron deficiency (Suominen et al. 1998);
calculating the sTfR/log ferritin ratio (TfR-F Index) could
help to distinguish between these two concepts. If iron does
play a role in the aetiology of MS, it may well be that some
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patients may need supplementation, and others attenuation
of iron intake depending on their genetic make-up, making
the treatment of patients with MS particularly amenable to
the concept of Pathology Supported Genetic Testing (PSGT),
involving genetics as well as biochemical determinations
(Kotze et al. 2010).

The hypothesis of oligodendrocyte apoptosis

The role of iron in MS may be linked to an important
alternative hypothesis for the aetiology of MS. Investiga-
tions of early MS brain lesions by Barnett and Prineas
(2004) showed evidence of apoptosis (controlled cell death)
of oligodendrocytes, leading to the extensive demyelination
seen at diagnosis and during relapses. In early lesions the
demyelination is initiated not by peripheral immune cells,
but by microglia, the immune cells resident in the brain.
During apoptosis, phosphatidylserine is externalised on cell
membranes, which acts as an ‘eat me’ signal to phagocytes
such as microglia (Barnett et al. 2006). The activated micro-
glia clear the demised oligodendrocytes and the resulting
dysfunctional myelin from the axons (Barnett and Prineas
2004). Subsequently, peripheral macrophages are recruited
into the brain as scavengers, amplifying the inflammatory
response (Barnett et al. 2006). Remarkable is the fact that
oligodendrocyte precursors (adult stem cells) were observed
in the immediate vicinity of the apoptotic process (Barnett
and Prineas 2004). These cells, resident in the brain, mature
into new oligodendrocytes and remyelinate the axons.

These findings have important clinical implications for
disease outcome in MS since remyelination of the axons by
oligodendrocyte precursor cells (OPCs) would induce re-
mission and restoration of function, whilst lack of survival
of these cells would lead to progressive myelin loss, neuro-
nal injury and clinical disability.

Several questions arise:

(1) What causes oligodendrocyte apoptosis?

(2) Is oligodendrocyte demise preventable?

(3) Can remission be achieved and sustained by preventing
oligodendrocyte cell death and promoting OPC survival and
maturation?

From a biochemical point of view, oligodendrocyte apo-
ptosis may be caused by several factors (Fig. 1): (1) infec-
tive agents, (2) inflammatory mediators such as cytokines
(Cammer 2002), (3) poisons or toxins, e.g. components of
cigarette smoke (Healy et al. 2009), (4) deficiencies of
essential nutrients (van Rensburg et al. 20006), (5) oxygen
radicals (Kim and Kim 1991), depletion of antioxidants and
oxidative stress leading to the release of ceramide (Jana and
Pahan 2007), or (6) mitochondrial failure (Ly et al. 2003).

Iron may play a role in all of these insults as both iron
overload and iron depletion can induce apoptosis, albeit by
different mechanisms (Fassl et al. 2003). While iron excess
may increase oxidative stress, iron depletion causes an en-
ergy deficit and loss of membrane potential in mitochondria
(Koc et al. 2005). During infection/inflammation, iron is
sequestered by the immune system to overcome the infec-
tion and may therefore decrease the availability of iron to
oligodendrocytes. Iron deficiency may paradoxically also
generate free radicals (van Rensburg et al. 2004). Catalase,
one of the foremost antioxidant enzymes in oligodendro-
cytes contains 4 haem groups; its production and mainte-
nance is therefore dependent on a constant supply of iron. If
the catalase antioxidant system fails, oligodendroglial cell
death may follow (Kim and Kim 1991). Furthermore, inges-
tion of medication or toxic substances causes the induction
of cytochrome P450 which would suddenly have to be
mass-produced to metabolise these chemicals. Iron deficien-
cy could inhibit this process since each cytochrome P450
molecule contains a haem group.

The hypothesis of oligodendrocyte apoptosis unlocks the
possibility that the MS disease process may be influenced
by meeting the metabolic requirements of oligodendrocytes.
While these cells are extremely complex, their needs for
survival may be relatively simple to comprehend, since they
have been studied extensively and a wealth of information
already exists in the literature.

Iron requirement by oligodendrocytes

The essential requirement for iron in oligodendrocytes has
been systematically investigated in NIH-funded research by
the group of Connor since the 1980’s. They showed that
staining normal brain tissue with a dye that detects iron,
identifies oligodendrocytes as the main iron-containing cells
in the brain and that under normal circumstances these cells
accumulate iron (Gerber and Connor 1989). Oligodendro-
cytes need iron for the extremely high energy requirements
of producing and maintaining the complex myelin sheath
which is many times larger than the cell body (Connor and
Menzies 1996), indicating that iron deficiency could seri-
ously compromise the viability of these cells. The list of
iron-requiring enzymes in oligodendrocytes is extensive
(Todorich et al. 2009). Myelin consists mainly of lipids
and proteins synthesised by the oligodendrocytes them-
selves for their own requirements. Iron is essential for many
of these biochemical reactions, such as cholesterol synthe-
sis, which occurs at a higher rate in oligodendrocytes than
any other cell type in the brain (Pleasure et al. 1977).

Iron is also a prerequisite for the maturation of OPCs into
oligodendrocytes (Morath and Mayer-Proschel 2001;2002),
while Tf and ferritin also play crucial roles in this process
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(Connor 1994; Badaracco et al. 2010). In culture, iron
deficiency results in loss of viability of oligodendrocyte
precursors (Todorich et al. 2011). As may be expected in
such a high iron environment, OPCs are very sensitive to
oxidation and to the depletion of antioxidants such as
glutathione, even more so than mature oligodendrocytes
(Back et al. 1998; French et al. 2009). The survival and
maturation of OPCs may be especially vulnerable to
cigarette smoke — even passive smoking (Sundstrom et
al. 2008). This would imply that these cells would need
antioxidant protection during patient relapses, when there
is an increased concentration of inflammatory mediators
and reactive oxygen species (ROS).

Iron and microglia

Microglia have three functions with regard to oligodendro-
cytes: (1) they provide soluble survival factors to them,
including iron, under normal conditions (Zhang et al.
2006), (2) they clear away dysfunctional oligodendrocytes
and myelin by phagocytosis (Gray et al. 2008), and (3) they
assist in remyelination (Matsushima and Morell 2001).
During brain development, microglia release iron bound
to Tf to OPCs for a limited time as a trophic factor, but
as the OPCs mature into oligodendrocytes there is a
down-regulation of transferrin receptors (TfR). The main
iron transfer method for mature oligodendrocytes is
through H-ferritin, which accumulates in microglia in
the vicinity of oligodendrocytes when they start to pro-
duce myelin (Todorich et al. 2011). The H-ferritin iron
uptake system is unique to oligodendrocytes, since neu-
rons and other cells use the TfR-Tf system to aquire iron.
This is consistent with the fact that oligodendrocytes
need higher amounts of iron — ferritin can supply more
iron to oligodendrocytes than Tf, which transports 2 iron
atoms only (Hulet et al. 1999). A transport mechanism
for H-ferritin has also been identified on brain microvas-
culature (Fisher et al. 2007).

Iron deposits in the brain

Examining putative brain iron content in healthy subjects
and in patients with MS using sophisticated imaging tech-
nology is a subject of ongoing research (Haacke et al.
2009;2010; Khalil et al. 2009; Ceccarelli et al. 2009); how-
ever, these novel techniques have not been considered for
diagnostic purposes since they are not yet standardised
(Poloni et al. 2011). The iron measured includes hemoglo-
bin in blood vessels, ferritin in brain parenchyma and he-
mosiderin as iron deposits, as well as iron in MS lesions and
amyloid plaques. Iron may vary with respect to age, brain
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region, hypertension, as well as microbleeds (Rodrigue et al.
2011). Adams (1988) found that the iron deposition in MS
reflected damage to vessel walls and “old” hemorrhages in
the vicinity of plaques, and that the incidence of hemosid-
erin deposition in MS was 30% compared to 6% in non-MS
cases; furthermore, he suggested that inflammation in vessel
walls might be exacerbated by surges in intracranial venous
pressure. Haacke et al. (2010) found that increased iron
content in MS basal ganglia and thalamus formed a partic-
ular pattern of iron deposition in the medial venous drainage
system at the confluence of the veins draining these struc-
tures. Zamboni (2006) postulated that iron mobilised from
such deposits may enter the brain parenchyma and become
the source of damage to neurons, thereby promoting disabil-
ity progression. Worthington et al. (2010) investigated this
hypothesis, reasoning that if iron from haemolysed erythro-
cytes were released into brain parenchyma, it should be
reflected by increased ferritin in the CSF. Ferritin is one of
the pivotal antioxidant defenses in the brain, providing
protection against labile iron. Their results showed that
CSF ferritin levels in patients with RRMS and PPMS were
essentially normal, largely remaining within the range of
less than 12 ng/ml. Unexpectedly, in SPMS a relative increase
of'the concentration of CSF ferritin from baseline to follow-up
was related to the degree of improvement of lower limb
function and improvement of the T1 lesion volume on MRI.
The authors speculated that ferritin in these patients may
reflect a physiologic reaction promoting remyelination
(Worthington et al. 2010). Furthermore, there was no correla-
tion of baseline CSF ferritin levels with the baseline EDSS,
and no significant increase of CSF ferritin levels over a 3-year
follow-up period, arguing against a gradual build-up of iron.
If deposition of iron in the brain in MS were an important
predictor of morbidity, it should correlate with disability.
However, a study by Ceccarelli et al. (2009) demonstrated
that patients with benign MS and SPMS had similar
amounts of iron deposition, suggesting that disability in
MS may be related to factors other than iron deposition.
Furthermore, if the procedure of relieving venous conges-
tion as proposed by Zamboni (2006) is indeed followed by
rapid relief of MS symptoms, it is unlikely to be related to
immediate resolution of iron deposits. The fact that clinical-
ly benign MS may occur despite large lesion loads on MRI
has been described as paradoxical (Strasser-Fuchs et al.
2008); the “clinical-radiologic paradox’ (Poloni et al. 2011).
Iron deposition has also been described in other brain
disorders, such as Parkinson’s disease (PD) (Elolf et al.
2007; Michaeli et al. 2007). However, investigations of
systemic iron concentrations revealed significantly lower
blood iron parameters in PD compared to controls
(Logroscino et al. 1997; Marder et al. 1998). These authors
hypothesised that a shift of iron from the blood compart-
ment to the brain compartment had taken place due to iron
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dysregulation, leading to iron deposition due to excess iron
in the brain. They furthermore hypothesised that iron removal
by blood donation should limit the negative effects of excess
iron and lower the risk of PD (Logroscino et al. 2006). To test
this hypothesis, they studied 38,411 participants in the Health
Professionals Follow-Up Study who provided details of blood
donation. The results were unexpected: although the number
of blood donations was inversely related to the ferritin levels,
no association was found between the number of blood
donations and risk of PD (P for trend=0.6); however, the
risk of PD was higher among men who had reported
recent multiple blood donations (P for trend=0.05). Since
dopamine synthesis is dependent on iron availability, iron
restriction may cause apoptotic demise of dopaminergic
neurons in susceptible individuals (Levenson et al. 2004).
Furthermore, Marder et al. (1998) observed that lower
serum iron concentrations and elevated serum Tf recep-
tors were associated with mortality in patients with PD,
but not in controls. These unexpected findings may em-
phasise the essential requirement of iron for the viability
of dopaminergic neurons and that the iron deposition in
PD may represent cells that suffered damage paradoxi-
cally as a result of inadequate iron availability. This may
confirm that additional biochemical factors need to be
considered when iron restriction or removal by chelation is
advocated (Levenson et al. 2004).

The role of iron in the cellular antioxidant system

Contrary to the belief that iron is harmful and invariably
causes oxidative damage, it may paradoxically represent the
key component of the entire antioxidant protection system
of the oligodendrocyte, since:

(1) TIron is required for the production of ATP, which is
essential for the synthesis of NADPH, the reducing
power of the cell. NADPH constantly regenerates the
reduced form of glutathione, an important component of
oligodendrocyte antioxidant protection. NADPH is pro-
duced in oligodendrocytes by the pentose phosphate
pathway (PPP) (Todorich et al. 2009). The phosphate
group of glucose-6-phosphate, the substrate of the rate
limiting enzyme of the PPP (glucose-6-phosphate dehy-
drogenase), comes from ATP (Voet and Voet, 2004). A
genetic variation in hexose-6-phosphate dehydrogenase,
which generates NADPH in the endoplasmic reticulum,
was found to be associated with MS (Alcina et al. 2010).

(2) More directly, iron forms part of the structure of
catalase, an antioxidant enzyme that converts H,O,
to water and oxygen (Kirkman and Gaetani 2007).
NADPH is responsible for maintaining the active
form of the 4 haem groups of catalase.

(3) NADPH and iron are also involved in anabolic reactions.
NADPH provides the reducing power for the synthesis
of lipids such as cholesterol, which are produced by
oligodendrocytes for their own membranes (Morell and
Jurevics 1996; Todorich et al. 2009). The synthesis of
one cholesterol molecule requires 19 reductions by
NADPH (Voet and Voet 2004). To make one molecule
of palmitic acid, a component of sphingomyelin, requires
12 NADPH reductions. Haem cofactors in cytochrome
P450 enzymes catalyse the essential hydroxylation reac-
tions in the synthesis of cholesterol. Furthermore, the
hydroxylations that produce 1,25(OH), D3 (active vita-
min D) from cholesterol are carried out by a cytochrome
P450 enzyme called CYP27B1. A significant association
of a genetic variant of CYP27B1 with MS has been
found (Sundqvist et al. 2010; Ramagopalan et al.
2011). Oligodendrocytes express vitamin Dj recep-
tors and respond to 1,25(OH), D5 (Baas et al. 2000).
Some cells can produce antibacterial proteins to over-
come infections by synthesizing 1,25(0OH), D; (Kamen
and Tangpricha 2010), but they will only be able to do so
in the presence of sufficient iron, because the relevant
cytochrome P450 enzyme has to be synthesized as well,
and each enzyme would need a haem group.

Iron deficiency in MS

Iron deficiency may contribute to the finding that more
females than males are diagnosed with MS (Warren et al.
2008). In females, deficiencies of iron availability to the
brain may arise by (1) iron use elsewhere in the body, such
as before and during menstruation when iron is re-routed to
synthesise erythrocytes, and (2) iron loss during pregnancy
and childbirth, which may amount to 20-25% of maternal
iron (de Jong et al. 1990). Relapses are often experienced
after childbirth, leading some clinicians to advise women
with MS not to have children. In an ongoing study we found
that relapses are prevented when women take iron supple-
ments (together with other nutrients) during and after preg-
nancy (results to be published elsewhere). Furthermore,
fatigue is a frequent symptom of MS. Some patients present
at diagnosis with such low iron levels that intravenous iron
may be required, and if given timeously, demyelination may
be reversed and disease progression stopped (Kotze et al.
2010). In our study population two females and a male were
diagnosed with MS after blood donation. The male reported
frequent multiple blood donations. Although his hemoglobin
was normal (12.1 g/dl), all his other iron measures were
extremely low: his serum iron fell to 1.9 umol/l (range
10.0-30.0), his Tf saturation to 2% (20-50) and his ferritin
to 7.6 png/l (22-322). He recovered rapidly following iron
supplementation and has remained in remission, an indication
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of the importance of taking a detailed history at diagnosis and
doing biochemical measurements (Haug PD and van
Rensburg SJ, unpublished case studies). Notably, Newman
(2006) has suggested that blood donation may cause harm to
menstruating females, including neurological sequelae, and
the REDS-II Donor Iron Status Evaluation (RISE) study has
issued recommendations for iron supplementation in blood
donors (Cable et al. 2011).

The link between iron deficiency and obesity may also be
of relevance in MS, since obesity may be a risk factor for
MS in adolescent females (Munger et al. 2009). Iron defi-
ciency in obese women has been ascribed to chronic, low
grade inflammation (Cepeda-Lopez et al. 2011).

Other requirements of oligodendrocytes

Iron, vitamin B12 and folate influence the absorption of one
another. Myelination grinds to a halt if the folate-vitamin
B12 pathway is blocked by mutations or by deficiencies of
the substrates (Surtees et al. 1991; Ilniczky et al. 2002;
Selzer et al. 2003), because folate-vitamin B12 metabolism
is required for methylation of DNA, lipids (such as the
production of phosphatidyl choline from phosphatidyl
ethanolamine) and proteins, such as myelin basic protein
(Baldwin and Carnegie 1971). The oligodendrocyte also
requires amino acids for protein synthesis and for protection
against retrovirus HERV’s envelope protein ERV, which
blocks amino acid uptake receptors (Perron and Lang 2010).
Glycine and glutathione (glutamate-cysteine-glycine) are used
in cellular detoxification reactions. Oligodendrocytes also
need antioxidants and essential fatty acids for synthesising
lipids (Nordvik et al. 2000). Sufficient vitamin D is protective
against MS diagnosis (Ascherio et al. 2010) and is associated
with improved clinical and MRI outcomes (Weinstock-Guttman
et al. 2011), although the biochemical mechanism has not yet
been elucidated. Since the life of oligodendrocytes depends on
adequate blood flow for provision of nutrients and removal of
toxic waste products, it is evident that all components of the
cerebral vascular system need to function optimally.

Genetics of iron metabolism in MS

The role of iron in MS will only be fully elucidated once
more information becomes available about the effects of
genetic variations regulating iron metabolism, including
those leading to iron deficiency. The regulation of iron
uptake and transport is extremely complex and involves
many different biochemical factors, some of which are
unexpectedly involved.

The genetics of iron metabolism in MS has to date largely
focused on the analysis of the SLC1/A1 (NRAMPI) and
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HFE genes involved in iron transport and absorption
(Table 2). Insights gained from studies performed in a
genetically homogeneous South African population paved
the way to a better understanding of the close relation-
ship between iron absorption and immune function in
MS (Kotze et al. 2001; 2003; 2006). The statistically
significant association observed between MS and a func-
tional promoter polymorphism in the SLCI1/AI gene,
supports the notion that iron trapping in macrophages
upon infection may be detrimental in a subgroup of MS
patients that are iron deficient (Kotze et al. 2003; van
Rensburg et al. 2006). The HFE gene may be in linkage
disequilibrium with an MS susceptibility allele in the
HLA complex on chromosome 6 (Rubio et al. 2004;
Kotze et al. 2006). Lack of clinical manifestation of
hereditary hemochromatosis (HH) without any signs of
organ damage in two South African sisters with MS
found to be homozygous for the C282Y mutation in the
HFE gene, further substantiates the role of iron dysregu-
lation in the aetiology of MS (Kotze et al. 2006). Nota-
bly, iron deficiency anaemia was reported in one of these
patients during her child-bearing years. Iron regulation
by hepcidin may account for these contradictory findings.

Hepcidin is an iron-regulatory hormone which together
with its receptor ferroportin, controls the dietary absorption,
storage and tissue distribution of iron (Ganz 2011). Infection
and inflammation (strongly implicated in MS) rapidly
increases hepcidin synthesis and leads to decreased iron
absorption and retention of iron in macrophages. Although
genetic variation affecting the hepcidin-ferroportin axis is a
major cause of iron overload, the presence of inflammation
could lead to iron-restricted anaemia. Differential expres-
sion of hepcidin and ferroportin during infection and inflam-
mation links iron metabolism to host defence and decreases
iron availability to invading pathogens. This response also
restricts the iron supply to erythropoietic precursors, thereby
contributing to anaemia of chronic disease (the anaemia
associated with infections and inflammatory disorders).
The resultant hypoferraemia limits iron availability to
microorganisms but may therefore also lead to cellular iron
deficiency in MS during inflammatory episodes. Recently, it
was discovered that the TMPRSS6 gene encodes a protein
that negatively regulates hepcidin expression (Cau et al.
2010). Some polymorphisms or sporadic mutations in this
gene cause hepcidin overexpression and iron deficiency
anaemia (Beutler et al. 2010).

An important development in the field of genetics in MS
has been the use of a novel approach to investigate the
effects of genetic variation on clinical outcome (Ramagopalan
et al. 2008a). When comparisons are made of MS cases
selected from opposite extremes of the disease outcome
spectrum, i.e. the prognostic best 5% (benign MS) and
worst 5% (malignant MS) as assessed by the EDSS, the
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Table 2 Summary of susceptibility and disease outcome studies performed in MS patients and controls in relation to genetic variation in the iron-

related SLC1141 and HFE genes

Gene Country Study size Association References
SLC11A1  South Africa 104 MS patients, 522 controls including 32 Yes Kotze et al. 2001
parental alleles as family-based controls
Spain 195 MS patients, 125 controls No Comabella et al. 2004
Sardinia 66 MS patients, 60 controls Yes Gazouli et al. 2008
Turkey 100 MS patients, 100 controls No Ates et al. 2010
HFE Tasmania 166 MS families, 489 MS patients, No clinical, despite 3-fold increase Rubio et al. 2004
104 control families of C282Y in MS
Slovenia 314 MS patients, 400 controls No, although earlier onset of MS symptoms  Ristic et al. 2005
noted in C282Y carriers
South Africa 118 MS patients, 102 controls No, although two sisters with MS Kotze et al. 2006
(without HH) were C282Y++
UK 112 benign and 51 malignant MS patients ~ No Ramagopalan et al.
2008a, b
Portugal 373 MS patients No, although MS patients with mutation Bettencourt et al. 2011

C282Y had a worse prognosis

HH hereditary hemochromatosis

effective sample size increases about 40 times, and pro-
vides more than 99% power to detect a quantitative trait
locus contributing to only 2% of the phenotypic variance
(DeLuca et al. 2007). Using this method, no evidence
was found that mutations in HFE have any effect on
clinical outcome in MS (Ramagopalan et al. 2008a).
The likelihood that a diagnosis of MS affects the clinical
manifestation of HH could however not be excluded (Kotze
et al. 2000). A further 45 different genes, reviewed by
Ramagopalan et al. (2008b), both MHC and non-MHC-relat-
ed, had no effect on clinical outcome: the genes selected were
related to immune function, neurobiology, autoimmunity and
myelin proteins. Interestingly, the -308 A allelic variant in the
promotor region of TNF-a gene significantly decreased the
risk of MS (Yang et al. 2010), while in another study this
variant was shown to increase iron uptake (Krayenbuehl et al.
2006). These subtle effects of iron regulation in MS should be
further investigated.

The role of Human Leukocyte Antigen (HLA) in MS

Risk for MS diagnosis has previously been attributed to
specific haplotypes of the MHC II immune system
(HLA in humans) which may increase MS risk with an
odds ratio of more than 30 (Ramagopalan and Ebers, 2009).
Whilst MS susceptibility is linked to HLA-DRBI1*1501, pro-
tection against disease progression may be afforded by HLA-
DRBI1*01 (DeLuca et al. 2007). The classical role of MHC II
(e.g. in EAE) is to activate T cells by antigen presentation.
However, an in vivo cuprizone model in mice (Hiremath et al.
2008; Matsushima and Morell 2001) revealed that MHC 11

may be involved in demyelination independently of T cells.
Cuprizone is a copper chelator which exclusively affects
oligodendrocytes causing mitochondrial injury, downregula-
tion of mRNA and subsequent apoptosis. This occurs in the
absence of T cells, since the BBB stays intact. It was assumed
(Matsushima and Morell 2001) that the susceptibility of oli-
godendrocytes to cuprizone was due to their extreme depen-
dence on energy production for maintenance of the vast
myelin sheath, a situation that parallels iron deficiency as
discussed above.

MHC II molecules are expressed on activated microglia.
In the cuprizone model, microglia are activated not by
antigen presentation but through cell signaling (Hiremath
et al. 2008). Activated microglia produce TNF-«, IL-1 f3
and NO which exacerbate the process of demyelination.
Interestingly, microglia of mice in which MHC II was ab-
sent (I-A({/ ) showed reduced activation and cytokine pro-
duction, while other mice with truncated B chains (I-Ap")
showed similar results, indicating that the cytoplasmic tail of
the MHC II molecule was necessary for microglial activa-
tion, cell signaling and cytokine production. The mutant
mice exhibited significantly reduced demyelination at week
3, however after 5 weeks of cuprizone treatment the amount
of demyelination was similar between wild type and mutant
mice. If mice were transferred to a cuprizone-free diet within
6 weeks, full remyelination occurred (Matsushima and
Morell 2001), demonstrating that an energy deficiency
in oligodendrocytes can initiate demyelination and micro-
glial activation. These intriguing results tempt us to
speculate that different genetic variants of HLA II may
contribute to the underlying genetic predisposition to MS
(Fig. 1) and affect MS outcome differentially due to the
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effects of these alleles on microglial activation - some
genetic variants may cause over-activation or an inability
of microglia to terminate their activation when needed
(“water damage caused by the fire brigade”). We further-
more hypothesise that if oligodendrocytes and OPCs
were protected against apoptosis, microglial activation
would be prevented, leading to prolonged remission in
MS (Fig. 1). Such an approach would help to shift the
focus in MS towards preventative care (Collins 2010).
However, it also has implications for MS treatment.
Microglial activation is attenuated by cortisone (Kaur et
al. 1994), CD200 (Koning et al. 2009), antipsychotic
drugs (Doorduin et al. 2009), polyunsaturated fatty acids
(Liuzzi et al. 2007) and vitamin D (Lefebvre d’Hellencourt et
al. 2003). Microglia express vitamin D receptors, and are
able to synthesize 1,25(OH), D3 (Neveu et al. 1994);
again, iron would be required for the relevant cytochrome
P450 enzyme.

It would be of interest to establish whether HLA alleles
affect the role of microglia in remyelination, whereby they
deliver insulin-like growth factor-1 (IGF-1) (Matsushima
and Morell 2001), TNF-« (Arnett et al. 2001) and iron
(Zhang et al. 2006) to oligodendrocyte precursors.

Randomised clinical trials for iron in MS?

Medical regulations dictate that treatment of MS patients
should be guided by Evidence-based Medicine (EBM), i.e.
by the highest available standard of evidence obtained from
randomised clinical trials (RCTs). However, Caplan (2011)
argues that the effective clinical neurologist should ask the
question: “How well does the evidence from trials apply to
the care of individual patients?” For most clinicians, the
requirement for iron (or not) in MS should be relatively
simple to investigate by doing RCTs. Unfortunately, this
method may probably not provide the answer. Although
iron chelation therapy has been promoted as a potential
treatment, the trial by Lynch et al. (2000), in which one
patient improved while others worsened, illustrates the point
that iron requirements differ, and raises the question of
whether it is useful to treat all MS patients according to
the one-size-should-fit-all approach of RCTs, that deter-
mines similar intervention in all patients because a signifi-
cant number of patients (but not all) responded during the
trial. Steiner and Mosberg-Galili (2010) have questioned the
reliability of even testing DMTs with RCTs in MS, since it is
not known whether MS is a single disease or rather a group
of various disease entities. When such an extremely hetero-
geneous population is recruited into RCTs, results are diffi-
cult to interpret. Steiner and Wirguin (2000) have argued
that “the almost identical results of clinical trials using
different agents, and their inability to go beyond the 33%
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line, raise the possibility that the entire observed benefit is
only a placebo effect, and that the significant deviation from
the true placebo might be the outcome of partial unblinding
of patients by the side-effects”. The failure of DMTs to stop
disability progression contributes to this view (Filippini et
al. 2008). RCTs of iron in an unselected population of MS
patients cannot be informative, since iron deficiency does
not occur in all patients with MS; if iron deficiency is
identified in a particular patient, it would be unethical not
to prescribe iron. The same is true for haemochromatosis:
even though HFE screening is one of the most common
genetic tests requested in general practice, no RCT has yet
been done to determine treatment strategy, since excessive
iron levels already necessitate clinical intervention. Further-
more, supplying the oligodendrocyte with only one essential
element when it needs multiple different nutrients would be
like inundating a car factory with rubber. Once enough
wheels have been manufactured, more rubber will only clog
the system. Future RCTs for MS should take cognizance of
the existence of different MS subgroups that may respond
differently to different intervention modalities.

The advantages of individualised treatment

In the light of the heterogeneity of MS (Steiner and
Mosberg-Galili 2010) and the extreme variability of disease
outcome (DeLuca et al. 2007), it has been suggested that
individualised treatment of MS patients would have more
success (Wekerle and Hohlfeld 2010), but this should extend
further than deciding which drug to prescribe. Rather than
waiting for autoimmune biomarkers to be found (Hohlfeld
2010), biochemical biomarkers (such as iron, vitamin B12
and vitamin D) are already available and should be utilised
to alleviate deficiencies and to ensure that blood levels
remain within the optimal range for myelination. The symp-
toms of vitamin B12 deficiency may mimic those of MS
(Ungley and Campbell 1951); misdiagnosis of MS with
consequent disability is particularly tragic in light of the fact
that vitamin B12 deficiency is an easily diagnosed and
treatable disorder. Objective evidence for improvement is
provided by doing the EDSS; differences can already be
seen over 3—6 months and can be confirmed over longer
periods (Nordvik et al. 2000; van Rensburg et al. 2006).
Since MS patients differ it should never be assumed that
disease progression is inevitable. Do all health professionals
take note of the evidence for MS risk factors such as smok-
ing and vitamin D deficiency? Since it is assumed that
patients will inevitably experience disease progression,
smoking is sometimes tolerated on the basis of “it is their
only remaining pleasure”, instead of actively working
with each patient to minimize their risk. Furthermore,
pharmacogenetics may provide useful information, since
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immunosuppressive drugs such as azathioprine and
methotrexate will have adverse effects in patients with
mutations in the methylation pathway. Increased relapse
rates have been recorded for patients on some of these
drugs (Confavreux et al. 2000).

In the clinical setting, the needs of clinicians and patients
differ. Patients need encouragement instead of being in-
formed at diagnosis that they need to prepare themselves
for inevitable disability. Many patients lose hope at that
point, some even dropping out of the workplace, while
the truth is that rehabilitation is possible (Fink et al.
2010) and that up to a third of patients may have a
benign disease course (Pittock et al. 2004). Does the fact
that benign patients have minimal disability after more
than 20 years indicate that these patients are doing some-
thing right, possibly protecting their oligodendrocytes
against cell death? Research should be encouraged to
investigate whether the favorable outcome of these
patients is related to genetics, or to environmental fac-
tors, or both (Mastorodemos et al. 2010). A recent study
reported that sequencing the genome of monozygotic
twins discordant for MS provided no evidence that the
DNA of the twins differed in DNA sequence, DNA
methylation or gene expression (Baranzini et al. 2010).
Among our own patients, investigation of a similar
monozygotic pair of twins discordant for MS revealed
that the unaffected twin does not smoke, while the twin
with MS smokes and has low blood levels of essential
biochemicals, due to the fact that she was under the
false impression that nutrient supplementation would
“activate her immune system”. Since it may be difficult
to defend autoimmunity in MS at this time (Rodriguez
2009; Steiner and Mosberg-Galili 2010), it may need to
be reconsidered whether it is reasonable to motivate
patients to administer DMTs if they have fewer exacer-
bations when they abstain (Hancock et al. 2011).

Conclusion

The conundrum of iron in MS may be solved when it is
approached from an individualised point of view. The
heterogeneity of the disecase warrants the following
question: What factors are present that may impact on
demyelination and how should they be alleviated in
individual patients? Adequate research already exists
on essential requirements for oligodendrocyte survival
and remyelination. The value of biochemical testing
performed in conjunction with a medical, lifestyle and
genetic assessment when appropriate (Pathology Sup-
ported Genetic Testing), should not be under-estimated.
Further studies are essential to establish the validity of
these concepts.
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