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Abstract

Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural
selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost
always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical
convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an
adverse effect on goodness of fit and estimates of substitution rates. We propose a ‘‘corrected’’ empirical estimator that
begins with observed nucleotide counts, but accounts for the nucleotide composition of stop codons. We show via
simulation that the corrected estimates outperform the de facto standard F3|4 estimates not just by providing better
estimates of the frequencies themselves, but also by leading to improved estimation of other parameters in the
evolutionary models. On a curated collection of 856 sequence alignments, our estimators show a significant improvement in
goodness of fit compared to the F3|4 approach. Maximum likelihood estimation of the frequency parameters appears to
be warranted in many cases, albeit at a greater computational cost. Our results demonstrate that there is little justification,
either statistical or computational, for continued use of the F3|4-style estimators.

Citation: Kosakovsky Pond S, Delport W, Muse SV, Scheffler K (2010) Correcting the Bias of Empirical Frequency Parameter Estimators in Codon Models. PLoS
ONE 5(7): e11230. doi:10.1371/journal.pone.0011230

Editor: Thomas Mailund, Aarhus University, Denmark

Received April 6, 2010; Accepted June 1, 2010; Published July 30, 2010

Copyright: � 2010 Kosakovsky Pond et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Joint Division of Mathematical Sciences/National Institute of General Medical Sciences Mathematical Biology
Initiative through Grant NSF-0714991, the National Institutes of Health, AI47745 and by a University of California, San Diego Center for AIDS Research/NIAID
Developmental Award to S.L.K.P. (AI36214). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: spond@ucsd.edu

Introduction

Virtually all codon models in wide use today (see [1,2] for recent

reviews) are members of the class of finite-state, continuous time

reversible Markov chains, each defined by an instantaneous rate

matrix Q. Transition matrices for finite amounts of time are found

via the matrix exponential of Q, so the probability that a position

initially occupied by codon I is occupied by codon J after t units of

time is PIJ (t)~ eQt
� �

IJ
(throughout the manuscript we will use

upper-case letters to index codons and lower-case letters to index

nucleotides). If M is a model in this class, the individual entries of

its rate matrix can be written in the canonical form QIJ~hIJ pM
J .

The hIJ can be thought of as ‘‘rate parameters’’ that govern the

relative rates of substitutions between different codons, while

parameters pM
J induce the equilibrium frequencies of the codons.

The choice of pM
J is the primary distinction between the two

popular families of codon models: MG (introduced in [3]) and GY

(introduced in [4]). How to best estimate the pM
J — or more

precisely, how to estimate model parameters that actually

determine the pM
J — from sequence alignments is the focus of

this note. In order to frame this discussion we need to define what

we mean by empirical frequencies, model parameters and equilibrium

frequencies (Figure 1). Given an observed alignment, the position-

specific empirical nucleotide frequencies, ep
a where a is a

nucleotide (A,C,G,T ) and p the codon position (1,2,3), can be

estimated directly by counts from the data, and the empirical

codon frequencies, eJ , can be estimated by counts as well (the

latter gives rise to the F61 codon frequency estimator [4]). Either

of these estimates can be used to set model parameters, however

typical alignments have insufficient information for the direct

estimation of empirical codon frequencies with a sufficient degree

of confidence. Rather, the empirical nucleotide frequencies are

used to set the nucleotide frequency parameters, wp
a, and by multi-

plication of their constituents, the codon frequency parameters,

pM
J . For example, in the original MG94 model of codon evolution

[3], the equilibrium frequency of codon J~xyz is given by

wxwywz

� �
= 1{Pstop

� �
, where Pstop~wT wAwGzwT wAwAzwT wGwA.

A common extension of this model, referred to as MG94 F364,

allows the three codon positions to have their own nucleotide fre-

quency parameters and leads to equilibrium codon expressed as:

pxyz~ w1
xw2

yw3
z

� �
= 1{Pstop

� �
: ð1Þ

In this expression the superscripts indicate the position, and the

equation for Pstop is modified in the obvious way. If we set all of the

model nucleotide frequency parameters to be equal, i.e. wp
a~0:25,

the result is equal equilibrium frequencies for all codons, i.e.

pJ~1=61 for all J. This vector of codon equilibrium frequencies

allows us to easily tabulate, via marginalization, the equilibrium
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frequencies of each nucleotide at each position:

1

61

A : 16 14 14

C : 16 16 16

G : 16 15 15

T : 13 16 16

0
BBB@

1
CCCA~

A : 0:262 0:230 0:230

C : 0:262 0:262 0:262

G : 0:262 0:246 0:246

T : 0:213 0:262 0:262

0
BBB@

1
CCCA: ð2Þ

Note that there are only 13 occurrences of T in the first position,

14 of A in the second position, etc because the model explicitly

disallows (TAG,TAA,TGA) as is standard for all other codon

models. The finding from this exercise is that when one sets all the

wp
a~0:25, each of the codon equilibrium frequencies, pJ takes the

anticipated value of 1=61. However, remarkably, the equilibrium

nucleotide frequencies generated by this model are not the

anticipated 0:25. For instance, the equilibrium frequency of A at

the first position is 1=61|16~0:262. Traditionally, the empiri-

cal nucleotide frequencies are used to set nucleotide frequency

parameters, and it is therefore assumed that the induced equili-

brium nucleotide frequencies are equal to those observed in the

alignment. However, given that the nucleotide composition of stop

codons is not accounted for, this practice is flawed, because

wp
a=pp

a. The conflation of frequency parameters (wp
a) and equili-

brium nucleotide (pp
a) frequencies results in incorrect estimates of

equilibrium nucleotide (and codon) frequencies as demonstrated in

(2) above. This phenomenon is not restricted to the MG family of

models. It is simple to demonstrate the exact same behavior for the

GY family of models, again because of the incorrect designation of

nucleotide frequency parameters in the rate matrix as equal to

empirical nucleotide frequencies. We show that the traditional

identification of frequency parameters and observed nucleotide

frequencies leads to a cascade of problems. Model frequency

parameters are estimated with bias, which leads to biased estimation

of the equilibrium codon frequencies, which leads to compensatory

biased estimation of the substitution rate parameters. We propose a

correction, and a maximum likelihood frequency parameterization

and show that both these approaches are not similarly biased, and

therefore advocate their use in codon models.

Materials and Methods

To ensure clarity of presentation, we first carefully introduce the

necessary notation (summarized in Figure 1). For a given substitution

model, let pJ be the frequency of sense codon J (J~1,2,3, . . . ,61)

in its equilibrium distribution, and pp
a, a~1,2,3,4 be the equili-

brium frequency of nucleotide a in codon position p~1,2,3. When

necessary, we will indicate specific models via a superscript (ie, MG

or GY). The position specific nucleotide equilibrium frequencies, pp
a,

are uniquely determined by the codon equilibrium frequencies, pJ ,

through marginalization, e.g. p1
T is simply the sum of frequencies of

the 13 sense codons that have a T in their first position, e.g. as in

equation (2).

These equilibrium frequencies, of both nucleotides and codons,

have traditionally been assumed equal to empirical frequencies

observed in a sequence alignment, eJ or ep
a, and used to set model

Figure 1. Relationships between empirical frequencies, frequency parameters and equilibrium frequencies in codon models.
doi:10.1371/journal.pone.0011230.g001

Codon Model Frequencies
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parameters. If the specified model is correct, eJ converges to pJ

and ep
a to pp

a as the sequence length N increases. (However, note

that this result requires that the evolutionary process itself be at

equilibrium; many important biological mechanisms— notably

directional positive selection— are likely to disrupt equilibrium;

see [5–7]).

Because the simple example in equation (2) demonstrated that

the empirical and equilibrium nucleotide frequencies are not

synonymous, we strive to obtain an expression that relates the

equilibrium nucleotide frequencies to the model nucleotide

frequencies, wp
a, and through extension –to the observed empirical

frequencies. Even though the MG and GY models treat

equilibrium codon frequencies differently, it is a fortunate

coincidence that in either case the pJ have identical forms when

written in terms of wp
a. Given twelve MG nucleotide frequency

parameters, only 9 of which are independent because
P

a wp
a~1

for each position p, the equilibrium frequency of codon J~xyz
induced by their values is as in equation (1).

By using ep
a to directly estimate wp

a in equation (1), one obtains

the popular F3|4 estimator of codon equilibrium frequencies –

by far the most common estimator used in literature for both MG

and GY classes of models. The statistical and computational

appeal of F3|4 lies in its use of only 9 nucleotide parameters to

describe 61 codon frequencies. However, the key shortcut— direct

estimation of nucleotide frequency parameters with empirical

nucleotide frequencies from the data— is flawed. The empirical

nucleotide frequencies are unbiased estimates of the true

equilibrium frequencies; unfortunately, the model parameters

they are being used to estimate are something different. Thus, a

fundamental problem with current practices is that use of the

F3|4 estimators with either MG or GY models leads to biased

estimates of the wp
a, and in turn the pJ . As we will show below, the

problems do not end there, and lead to biased estimation of other

model parameters.

We first present two approaches for correcting these estimation

errors. The obvious, but more computationally demanding

method is to estimate the wp
a by maximum likelihood along with

other model parameters. We dub this approach MLF3|4.

Theory suggests that estimates from this methodology will have

all the desirable properties of maximum likelihood estimation.

Maximum likelihood estimation of these values has been available

in some software packages, e.g. in HyPhy [8], for a number of

years, but to our knowledge it has rarely been used.

The second strategy, described here for the first time, relies on

finding an expression for the induced equilibrium frequency of

nucleotide a at codon position p (pp
a) as a function of wp

a. Since the

Figure 2. Comparison of frequency parameterizations fitted to simulated alignments. The top row (A,B) shows the comparison of log L
scores on simulated data obtained with different corrected frequency estimates; C) Bias in the estimate of the substitution rate hCT~2:0 in near-
asymptotic regime (L~32000) is apparent under F3|4, but does not exist for the other two estimators; D) variance of the CF3|4 estimate for hCT

is reduced with increasing sample size.
doi:10.1371/journal.pone.0011230.g002
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wp
a define codon equilibrium frequencies (equation 1), we can

readily obtain such equations by marginalization:

p1
a~w1

a 1{
X

ayz[X
w2

yw3
z

� �
=(1{pX )

p2
a~w2

a 1{
X

xaz[X
w1

xw3
z

� �
=(1{pX )

p3
a~w3

a 1{
X

xya[X
w1

xw2
y

� �
=(1{pX ):

ð3Þ

Here, 1{pX is simply scaling for the absence of stop codons:

pX ~
P

xyz[X p1
xp2

yp3
z , and X~fTAA,TAG,TGAg defines the set

of stop codons. The corrected F3|4, or CF3|4 estimator equates

pp
a with observed nucleotide frequencies ep

a, and then solves the

nonlinear system (3) for wp
a to obtain estimates of the latter.

Because
P4

a~1 wp
a~

P4
a~1 pp

a~1, the above system of 12 non-

linear equations relate 9 independent observed statistics (ep
a, e.g. for

a [ fA,G,Tg) with 9 independent model parameters wp
a. We were

unable to obtain a closed form solution to the system, but it can be

easily solved numerically at a negligible computational cost.

We conducted simulations to further investigate the effects of biases

in the equilibrium frequencies on parameters typically estimated

using phylogenetic models. We generated two-sequence codon align-

ments with uniform codon frequency composition (wp
a~0:25). We

used hAC~0:5, hAG~1, hAT ~0:8, hCG~0:3, hCT ~2:0, hGT~0:1
as substitution bias parameters in the MG94xREV model [9], and

set the nonsynonymous/synonymous substitution rate ratio v to 0:25.

The two sequences were 10% divergent on average, and the length of

the alignment, N , was one of 400, 1,600 or 32,000 codons. 100

replicates were generated for each value of N . We compared the fits

of F3|4, CF3|4 and MLF3|4 on simulated data sets, and

furthermore compared simulated to inferred parameter estimates

with each of the three frequency parameterizations. In addition to the

simulated data, we fitted all three frequency parameterizations to a

sample of 856 alignments from the carefully curated Pandit database

[10]. All alignments were chosen to contain between 10 and 20

sequences and at least 200 reliably aligned codon sites. Given that

each estimator has the same number of independent parameters (9),

an improvement in log-likelihood under one of the models is

considered as evidence in favor of the better fitting model, e.g. under

the BIC [11] criterion. All new estimators for the MG94 class of

models are implemented in HyPhy.

Results and Discussion

We simulated data with a uniform codon frequency composition

and fitted all three frequency parameterizations for alignments of

various sequence lengths. The suboptimal nature of the F3|4

estimator is immediately apparent from Figure 2a, where the

improvement in log L scores of the model equipped with the

corrected estimator CF3|4 is shown. For all replicates, the CF3|4

estimator yielded better log L, with median improvements of 2:29,

9:46, and 184 (for 400,1,600, and 32,000 codons respectively), or

approximately 0:006 likelihood points per codon site. Note that as the

sample size increased, the estimators from (3) effectively matched the

performance of the maximum likelihood estimator (Figure 2b). Even

more importantly, the use of the F3|4 frequency estimator led to

biased inference of other model parameters. Maximum likelihood

estimates of some substitution rates were biased under the F3|4,

and the bias was progressively more pronounced with increasing

sample size (Figure 2c). Indeed, for N~32,000, a simple likelihood

ratio test rejected the (true) null of hCT~2:0 at pv0:05 for all 100

replicates. Biased MLEs of the substitution rate parameter hCT is a

result of the under/overestimates of pp
T and pp

C using F3|4. Similar

results were seen for the other hIJ . To our relief, the maximum

likelihood estimate (MLE) for the v ratio was not noticeably affected

even for the largest sample size (mean 0:2494, median 0:2495, IQR

0:2445{0:2539 under F3|4; mean 0:2500, median 0:2501, IQR

0:2452,0:2545 under CF3|4, Figure 2d).

Figure 3. The effect of the frequency estimator on the inference of v and hCT (relative to the hAG rate) substitution rate from 856
alignments sampled from the Pandit database [10]. The estimate of hCT under F3|4 is biased downwards relative to MLF3|4.
doi:10.1371/journal.pone.0011230.g003
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For the Pandit alignments log L values were, of course, higher

for the models estimated using MLF3|4 than for those using

F3|4. However, the magnitudes of the differences were

impressive (median 17:59, IQR 10:29{27:55, max 453:2). The

CF3|4 estimator improved the log L score of the F3|4

estimator for over 80%(692=856) of the alignments by a median

of 7:4 points; in the remaining cases the median decrease in log L
score was 2:9 points. As with the simulated data, the MLEs of v
were largely unaffected by the choice of frequency estimators (but

there were some datasets where the difference was large), while

some substitution rate estimates appeared biased (Figure 3). For

example, the estimates of hCT were strongly linearly correlated

between MLF3|4 and F3|4 methods (r2~0:952), but the

regression line was estimated as F3|4~0:073z0:930MLF3|4,

which recapitulates the downward bias observed on simulated data

(if the estimates were unbiased, we would expect an intercept of

zero and slope of one).

We have demonstrated through simulations that the almost

universally used F3|4 estimator of equilibrium frequencies in

codon substitution models is biased, and we have pointed out how

a misinterpretation of standard codon model parameters is

responsible for these biases. Although this bias appears to have

little effect on estimation of ‘‘composite’’ parameters such as the

nonsynonymous/synonymous rate ratio (v) and branch lengths

(results not shown), the bias has considerable damaging effects on

the estimation of substitution rate parameters in the instantaneous

rate matrix. This problem will become acutely relevant as

researchers pursue finer-scale studies of the evolutionary process,

such as developing substitution models with protein residue-

dependent codon substitution rates [12,13]. Since the computa-

tional burden of the F3|4 estimator is virtually identical to that of

our proposed CF3|4 estimator, which in turn is only marginally

faster than MLF3|4, we recommend the use of either of the

alternatives offered in this manuscript over the F3|4 estimator.

Our current recommendation is to obtain CF3|4 estimates and

use them to initialize the optimization procedure for MLF3|4 to

speed up convergence.
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