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SUMMARY 
 

 

As result of the increasingly competitive performance in today’s industrial environment, it 

has become necessary for production facilities to increase their efficiency. An essential step 

towards increasing the efficiency of these production facilities is through tighter processes 

control. Process control is a monitoring and modelling problem, and improvements in these 

areas will also lead to better process control.  

Given the difficulties of obtaining theoretical process models, it has become important to 

identify models from process data. The irregular behaviour of many chemical processes, 

which do not seem to be inherently stochastic, can be explained by analysing time series 

data from these systems in terms of their nonlinear dynamics. Since the discovery of time 

delay embedding for state space analysis of time series, a lot of time has been devoted to 

the development of techniques to extract information through analysis of the geometrical 

structure of the attractor underlying the time series. Nearly all of these techniques assume 

that the dynamical process under question is stationary, i.e. the dynamics of the process did 

not change during the observation period. The ability to detect dynamic changes in 

processes, from process data, is crucial to the reliability of these state space techniques. 

Detecting dynamic changes in processes is also important when using advanced control 

systems. Process characteristics are always changing, so that model parameters have to be 

recalibrated, models have to be updated and control settings have to be maintained. More 

reliable detection of changes in processes will improve the performance and adaptability of 

process models used in these control systems. This will lead to better automation and 

enormous cost savings. 

This work investigates and assesses techniques for detecting dynamical changes in 

processes, from process data. These measures include the use of multilayer perceptron 

(MLP) neural networks, nonlinear cross predictions and the correlation dimension statistic. 
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The change detection techniques are evaluated by applying them to three case studies that 

exhibit (possible) nonstationary behaviour.  

From the research, it is evident that the performance of process models suffers when there 

are nonstationarities in the data. This can serve as an indication of changes in the process 

parameters. The nonlinear cross prediction algorithm gives a better indication of possible 

nonstationarities in the process data; except for instances where the data series is very short. 

Exploiting the correlation dimension statistic proved to be the most accurate method of 

detecting dynamic changes. Apart from positively identifying nonstationary in each of the 

case studies, it was also able to detect the parameter changes sooner than any other method 

tested. The way in which this technique is applied, also makes it ideal for online detection 

of dynamic changes in chemical processes. 
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OPSOMMING 
 

 

Dit is belangrik om produksie aanlegte so effektief moontlik te bedryf. Indien nie, staar 

hulle die moontlikheid van finansiële ondergang in die gesig – veral as gevolg van 

toenemende mededinging die industrie. Die effektiwiteit van produksie aanlegte kan 

verhoog word deur verbeterde prosesbeheer. Prosesbeheer is ‘n moniterings en 

modellerings probleem, en vooruitgang in hierdie areas sal noodwendig ook lei tot beter 

prosesbeheer. 

Omdat dit moeilik is om teoretiese proses modelle af te lei, word dit al hoe belangriker om 

modelle vanuit proses data te identifiseer. Die ongewone optrede van baie chemiese 

prosesse, wat nie inherent stogasties blyk te wees nie, kan meestal verklaar word deur 

tydreeks data vanaf hierdie prosesse te analiseer in terme van hul nie-liniêre dinamika. 

Sedert die ontdekking van tydreeksontvouing vir toestandveranderlike stelsels, is baie tyd 

daaraan spandeer om tegnieke te ontwikkel wat inligting uit tydreekse kan onttrek deur die 

onderliggende geometriese struktuur van die attraktor te bestudeer. Byna al hierdie tegnieke 

aanvaar dat die dinamiese proses stationêr is, m.a.w dat die dinamika van die proses nie 

verander het tydens die observasie periode nie. Die vermoë om hierdie dinamiese proses 

veranderinge te kan identifiseer, is daarom baie belangrik. 

Ook in gevorderde beheerstelsels is vroegtydige identifisering van dinamiese veranderinge 

in prosesse belangrik. Proses karakteristieke is altyd besig om te verander, sodat model 

parameters herkalibreer moet word, modelle opgedateer moet word en beheer setpunte 

onderhou moet word. Meer betroubare tegnieke om veranderinge in prosesse te identifiseer 

sal die aanpasbaarheid van proses modelle in hierdie beheerstelsels verbeter. Dit sal lei tot 

beter outomatisering en sodoende lei tot enorme kostebesparings. 

Hierdie werk ondersoek tegnieke om dinamiese veranderinge in prosesse te identifiseer, 

deur die analise van proses data. Die tegnieke wat gebruik word sluit die volgende in: 
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multilaag-perseptron neurale netwerke, nie-liniêre kruisvoorspelling statistieke en die 

korrelasie dimensie statistiek. Die tegnieke is op drie gevallestudies toegepas om te sien of 

hulle die dinamiese veranderinge in die data kan identifiseer. 

Vanuit die navorsing is dit duidelik dat proses modelle nadelig beinvloed word deur nie-

stationêre data. Dit kan dien as ‘n indikasie van veranderinge in die proses parameters. Die 

nie-liniêre kruisvoorspellings algoritme gee ‘n beter indikasie van dinamiese veranderinge 

in die proses data, behalwe waar die tydreeks baie kort is. Toepassings van die korrelasie 

dimensie statistiek gee die beste resultate. Hierdie tegniek kon dinamiese veranderinge 

vinniger as enige ander tegniek identifiseer, en die manier waarop dit gebruik word maak 

dit ideaal vir die identifisering van dinamiese veranderinge in chemiese prosesse. 
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1 INTRODUCTION 
 

 

There is no doubt that quality has become a major feature in the survival plan of 

companies. With diminishing markets resulting from the improved competitive 

performance in today’s industrial environment, it is clear that unless there is a definite 

commitment towards increasing the efficiency of production facilities, they will loose 

their competitive edge. This will ultimately lead to elimination and the resultant harsh 

realities that come with it for the employees. 

Improving the efficiency of production facilities can have a positive impact on chemical 

processes in several ways: 

• Improvement in the quality of the final product 

• Increase in production 

• Decrease in the generation of hazardous wastes. 

 

The first two issues are probably most important for a company and could mean the 

difference between success and failure. In previous times, decreasing hazardous waste 

was usually not considered a main objective. Recently, however, production facilities 

have come under pressure to comply with increasingly stringent environmental 

regulations, which makes this an import consideration. For the production facility, these 

pressures translate into a continuous effort to reduce process variability and maintain 

stability. This is usually accomplished through tighter process control, and is the reason 

why so much time and effort goes into developing advanced control systems. 

One of the major problems with the use of advanced control systems is that process 

characteristics are always changing, so that model parameters have to be recalibrated, 

models have to be updated and control settings have to be maintained. More reliable 

detection of changes in processes will not only improve the performance and 

adaptability of process models used in control systems, but will also lead to faster 
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detection of dynamic changes and/or process upsets by monitoring these processes. This 

will lead to better automation and will result enormous cost savings.   

The overall goal of this work is to investigate and develop suitable measures for 

detecting dynamic changes in processes from process data, and evaluate their 

performance.  

 

1.1 Motivation 
The degree of automation in chemical process control plants is still low. Many of the 

processes involve human operators. These operators are able to cope with the 

complexities of systems by applying their know-how skills acquired over years of 

hands-on operation of the plant. Given the complexity of the system and vagueness of 

situations, human operators are not always able to cope with the problem and provide 

good control performance. Control of manufacturing processes that are based on 

chemical reactions is often difficult in practice. Among the reasons are the nonlinear 

behaviour of such systems, large dead-times, and sometimes there are many conflicting 

goals within the system. 

The control of chemical processes is a process monitoring and modelling problem. 

Improving monitoring and modelling techniques, will necessarily also lead to improved 

process control. 

Process monitoring: 

Through process monitoring it is possible to detect failing sensors and process upsets, 

which are important for reasons of safety and process efficiency. Process control based 

on faulty sensors is inefficient and can lead to unsafe operating conditions. Process 

upsets or disturbances can also lead to operating inefficiencies. An integral aspect of the 

overall process control problem is therefore timely identification of failed sensors and 

upsets. Apart from detecting failing sensors and process upsets, one also want to detect 

less trivial changes in the process dynamics. Doing so will further improve process 

monitoring, as it allows the identification of different dynamic operating regions in the 

process which can each be exploited separately. 
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Recent advances in process instrumentation and data collection techniques resulted in 

an increase in the amount of data recorded from chemical processes. Processes typically 

get more heavily instrumented, and measurements are done more extensively and more 

frequently. The result is a huge amount of process data. An increase in process data 

alone do not guarantee a better understanding of the process, and can be rather 

overwhelming and confusing. Much of the data may be redundant due to the high 

correlation of the measured variables.  The difficulty lies in extracting only the most 

significant information from the plethora of the data. Unless this is done, monitoring 

and modelling the process can become problematic as result of the magnitude of data. 

This is also known as information overload. Ironically, most of the information is 

usually about less important process variables, and for the vital process variables (the 

ones that govern the process) there may be a lack of data. 

Part of the research involves the use of advanced data analysis techniques to overcome 

these common problems. 

Assessment of the validity of process models: 

Modelling has become an increasingly important aspect of chemical process control. 

This is evident by the progression of controller design methods. The modern era of 

process control started by applying PID (Proportional + Integral + Derivative) 

controllers, also known as conventional controllers. PID controllers account for more 

than 80% of installed automatic feedback control devices in the process industries 

(Willis & Tham, 1994). There are several drawbacks using PID controllers, as they tend 

to operate within a limited operating range and are only optimal for a second order 

linear process without time delays.  In practise, process characteristics are usually 

nonlinear and can change with time. PID controllers therefore do not cope well with 

nonlinearity in processes or changes in process parameters.  

Recent advances in process control algorithms, particularly the model based controller 

design methods, have further increased the reliance on process models. Controller 

design advanced to using process models in the actual setting of the PID tuning 

parameters by implementing the controller within an adaptive framework (Willis & 

Tham, 1994). In this setup (Figure 1.1), the parameters of a model are updated 

regularly to reflect the current process characteristics. The controller settings can be 

updated continuously according to changes in the process characteristics. To ensure 



INTRODUCTION 

 

1-4

optimal process control, rapid and reliable detection of changes in the process 

characteristics is vital. This is one area where improved change detection techniques 

will be particularly valuable. 

 

Figure 1.1: Simplified Schematic of the Structure of Adaptive Predictive Controllers 

The model-based control strategy that has been most widely applied in the process 

industries is model predictive control (MPC) (Perry & Green, 1997). One major 

advantage of MPC is that it can accommodate difficult or unusual dynamic behaviour 

such as large time delays, nonlinearities and inverse responses. It is also well-suited for 

difficult multi-input, multi-output control problems where there are significant 

interactions between the manipulated inputs and the controlled outputs. A key feature of 

MPC is that future process behaviour is predicted using a dynamic model and available 

measurements from the process. The controller outputs are calculated to minimise the 

difference between the predicted process response and the desired response (Figure 

1.1). At each sampling instance, the control calculations are repeated and the 

predictions updated based on current measurements from the process. MPC has the 

potential to provide “perfect” automatic control – that is if an ideal model of the process 

exists (Willis & Tham, 1994). This is why the critical factor in the successful 
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application of MPC (or any model-based technique for that matter) is the availability of 

a suitable dynamic model.  

A model is nothing more than a mathematical abstraction of a real process (Seborg et 

al., 1989). The equations that comprise the model are at best an approximation to the 

true process. The model, therefore, cannot incorporate all of the features, both 

macroscopic and microscopic, of the real process. Depending on how they are derived, 

there are three different model classifications: 

• Theoretical models developed using the principles of chemistry and physics. 

• Empirical models obtained from a statistical analysis of process data 

• Semi-empirical models that are a compromise between theoretical and empirical 

models 

 

Theoretical models have several advantages over statistical/empirical models. They can 

often be extrapolated over a wider range of operating conditions than purely 

statistical/empirical models, which are only accurate over a limited range. Theoretical 

models also provide the capability to infer how unmeasured or unmeasurable process 

variables vary as the process operating conditions change, which gives a deeper 

understanding of the process. 

The engineer normally has to seek a compromise involving the cost of obtaining the 

model, that is, the time and effort required to obtain and verify it. To establish a useful 

theoretical model, specialized knowledge about the system under study is needed.   

Theoretical models have parameters and fundamental relations that need to be evaluated 

from physical experiments. This can be time consuming and expensive. Furthermore, 

theoretical models are often compromised because they require so many simplifying 

assumptions in order to be tractable that they are often biased.  

Given all the difficulties of obtaining theoretical models, it has become increasingly 

important to identify models from process data. Such models, which simply describe 

the functional relationships between the system inputs (input space) and system outputs 

(output space), are referred to as black box models (Juditsky et al., 1995). Although the 

parameters of these models do not have any physical significance in terms of 

equivalence to process parameters, such as heat or mass transfer coefficients and 
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reaction kinetics, the aim is merely to represent trends in the process behaviour 

faithfully. A problem frequently encountered when attempting to build black box 

models, is the availability of process data for all the variables in the input space. All the 

relevant input variables necessary to build the model are either just not recorded 

(probably as result of the costs involved), or are impossible to record. Most of the time, 

the engineer’s only source of process data is that single output variable that needs to be 

controlled. Although such a modelling exercise might seem fundamentally flawed, a 

technique, called state space reconstruction1, does exist to reconstruct the input space 

from this one-dimensional output. In this approach, the process data are viewed as a 

time series. Unlike the analyses of random samples of observations that are discussed in 

the context of most other statistics, the analysis of time series data is based on the 

assumption that successive values in the process data represent consecutive 

measurements taken at equally spaced time intervals.  

The main assumption underlying time series analysis is that the properties or parameters 

describing the data, i.e. the dynamics governing the process, are constant (Schreiber, 

1997). In other words, the dataset must be stationary. In practice, this is rarely true. 

Process parameters are often subject to changes at unknown time instants. Process 

parameters can also slowly drift with time, which is a signature of the existence of 

nonstationarity. Nonstationarities in the data will therefore complicate time series 

analysis and can result in a process model that is inferior or unreliable. The overall 

process model can be improved by detecting dynamic changes in the process data and 

dividing it into stationary segments that can each be modelled separately. These sub-

models can be incorporated into a control strategy where the process is continuously 

being monitored for dynamic changes and where, depending on the process parameters, 

a different model is used for control. Once again, reliable methods that are sensitive to 

dynamic changes are vital for such an implementation. 

 

 

                                                 
1 The theory behind state space reconstruction is thoroughly explained in Chapter 2. 
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1.2 Goals, Scope and Approach 
The problem of detecting changes in properties of signals and systems has received 

increasing attention in the last twenty or so years.   Most of the work, however, has been 

done on linear stochastic systems (Basseville & Nikiforov, 1993). Change detection for 

nonlinear dynamical systems has not been investigated in any depth. This was largely 

due to a historically poor understanding of the subject. In the last few years, with 

computers being more accessible and processing power becoming increasingly cheaper, 

methods for analyzing nonlinear time series have seen dramatic progress.  These 

advances now make it possible to investigate more complex areas of interest, such as 

detecting dynamic changes in nonlinear systems, in much more detail.  

The main objective of this work is to detect changes (or nonstationarities) in dynamic 

process systems from process data. It includes changes that can occur both relatively 

fast or relatively slow with respect to the sampling period of the measurements. These 

changes by no means imply changes which are large in magnitude. The key difficulty is 

to detect intrinsic changes that are not necessarily directly observed and that are 

measured together with other types of perturbations. A key part of the research is to 

identify suitable methods for detecting changes in process systems, and evaluate their 

ability to detect changes quickly and reliably.  

The research is focused on nonlinear dynamic systems that exhibit deterministic 

behaviour, or at least mixed systems that have a dominant deterministic part. The theory 

behind nonlinear time series analysis forms an integral part of the research, and most of 

the work is done within this context.  

The change detection problem is approached by first classifying the data. It is important 

to determine whether the time series data are linear or nonlinear, and whether it exhibits 

stochastic or deterministic behaviour. This classification is a complicated part of time 

series analysis. Usually the data do not belong purely to a specific class and are 

therefore classified according to the degree of its behaviour.  Surrogate data analysis 

techniques will be used to classify the system. The outcome of this classification will 

indicate whether dynamic change detection techniques, as discussed within the context 

of this work, need to be applied, or whether traditional linear statistics would be 

sufficient to detect changes in the process. The next step will be to apply the identified 
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change detection techniques to various case studies consisting of simulated, as well as 

actual data from chemical processes. The techniques will then be evaluated on their 

ability to detect different kinds of dynamic change, as well as the time in which they 

could detect the dynamic change. 

 

1.3 Thesis Layout 
All the relevant issues concerning the state space analysis of time series are discussed in 

Chapter 2. This includes the theory behind state space reconstruction, surrogate data 

analysis, as well as various other advanced analysis techniques and statistics that are 

needed to quantify dynamic behaviour in processes from time series data. This theory is 

fundamental to the research and receives a great deal of attention. Chapter 3 focuses on 

the issue of dynamic changes in processes, and measures for detecting these changes are 

identified and discussed. In Chapter 4, the change detection methodology is put into 

practice and applied to three case studies. The selected change detection techniques are 

investigated in depth in this section. The conclusions and limitations of the change 

detection methodology, based on these case studies, are discussed in Chapter 5.  

 

 



2 STATE SPACE ANALYSIS OF TIME SERIES 

 

 

Time series data are sequences of measurements that follow non-random orders. Unlike 

the analyses of random samples of observations that are discussed in the context of 

most other statistics, the analysis of time series is based on the assumption that 

successive values in the data represent consecutive measurements, usually taken at 

equally spaced time intervals. There are two main goals for analyzing time series data: 

• Identifying the nature of the phenomenon represented by the sequence of 

observations 

• Forecasting – predicting future values of the time series variables.  

Both these goals require that the pattern of the observed time series data is identified 

and formally described. Once the pattern is established, it can be interpreted and 

integrated with other data (Statsoft, 1984). 

 

2.1 Dynamical Systems 
Time series analysis, and especially nonlinear time series analysis, are motivated and 

based on the theory of dynamical systems; that is, the time evolution is defined in some 

phase space (Kantz & Schreiber, 1997).  Since these systems can exhibit deterministic 

chaos1, this is a natural starting point when irregularity is present in a signal.  

A purely deterministic system is defined as a system where, once its present state is 

fixed, the states at all future times are determined as well. It is therefore essential to 

establish a vector space for the system.  Such a state space or phase space specifies the 

                                                 
1 Chaos – Irregular but deterministic motion which is characterized by a continuous, broadband Fourier spectrum. 

Possible only in a three-or-more dimensional nonlinear system of differential equations or a two-or-more 
dimensional nonlinear discrete time map. This nonlinear motion is slightly predictable, non-periodic and sensitive 
to changes in initial conditions.  (Abarbanel, 1998) 
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state of the system by specifying a point in the system. The construction of a state space 

makes it possible to study the dynamics of the system by studying the dynamics of the 

corresponding state space points. In theory, dynamical systems are generally defined by 

a set of first order ordinary differential equations acting on a state space. If certain 

conditions are met, the mathematical theory of ordinary differential equations ensures 

the existence and uniqueness of the trajectories2 in the state space. 

In a deterministic dynamical system, the state space is assumed to be a finite-

dimensional vector space, dℜ , where a state is specified by a vector d∈ℜx . The 

general form for an autonomous discrete-time dynamical system is the map 

 1 ( )n nx F x+ = ,           n∈  (2.1) 

where  1, d
n n− ∈ℜx x  and  : d dℜ →ℜF  is a diffeomorphism3. In the second case, 

time is a continuous variable: 

 ( ) ( , ( ))d t t t
dt

=x f x ,             t∈  (2.2) 

This form is normally referred to as flow. The flow is called autonomous if f  does not 

explicitly depend on time ( t ).  

A sequence of points ( nx or ( )tx ) solving the above equations is called a trajectory of 

the dynamical system, where the initial condition is 0(0) =x x . Depending on the 

initial condition and the form of F (or f ), the trajectory will either run away to infinity 

as time proceeds or stay in a bounded area forever. In a dissipative4 system, the points 

visited by the system after transient behaviour has died out will be concentrated on a 

subset of state space. The geometric object to which the trajectory orbits go in time is 

called the system attractor5. Figure 2.1 gives an illustration of a typical attractor. In this 

particular case, the attractor is three dimensional and each axis represents one of the 

variables by which the system is described. 

                                                 
2 Trajectory – The path that a signal follows through state space 
3 Diffeomorphism – A smooth mapping with a smooth inverse. 
4 Dissipative system – A system with sources and sinks of energy  
5 Attractor – The set of points in state space visited by a signal trajectory after the transients are gone  
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trajectory 

attractor 

x1 

x2

x3

It is important to note that even for non-deterministic systems the concept of the state of 

a system is still very powerful.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Illustration of a three dimensional attractor, where 1 2 3x , x , x  are the 

three variables governing the system. 

 

2.2 Linear Systems 
Consider the case where the flow in Equation (2.2) is linear. An autonomous linear 

system of f degrees of freedom, 1 2( ) [ ( ), ( ),...., ( )]ft x t x t x t=x , would yield the 

following equation (Abarbanel, 1993): 

 . ( )d (t) t
dt

=
x A x  (2.3) 
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Where A is a constant f f×  matrix. The possible courses of evolution of Equation 

(2.3) are characterized by the eigenvalues of the matrix A. The trajectories of the 

solution behave in one of the following ways: 

1) Directions in f-space along which the orbits shrink to zero – namely, directions 

along which the real part of the eigenvalues of A are negative, or 

2) Directions along which the orbits unstably grow to infinity – namely, directions 

along which the real part of the eigenvalues are positive, or 

3) Directions where the eigenvalues occur in complex-conjugate pairs along with 

zero or negative real part. When the eigenvalues have an absolute value of 

unity, the trajectories will follow closed circular or elliptical orbits (Honkela, 

2001).  However, in any situation where the eigenvalues has a positive real part, 

it is an indication that the linear dynamics are incorrect, and one must go to the 

nonlinear equations that govern the process to make a better approximation to 

the dynamics (Abarbanel, 1993). 

The linear case can be illustrated by means of a simple example, using the following 

two coupled linear differential equations: 

 
dx y
dt

ω= − ,               
dy x
dt

ω=  (2.4) 

The equations have a periodic solution in the form (Kantz & Schreiber, 1997): 

 0( ) .cos[ ( )]x t a t tω= − ,            0( ) .sin[ ( )]y t a t tω= −  (2.5) 

 

When inspecting Equation (2.5), as well as the visual illustration thereof (Figure 2.2 

and Figure 2.3), it is clear that the solution will stay finite forever. This demonstrates 

the fact that autonomous linear dynamic systems are too straightforward to describe any 

interesting phenomena. In practice, stable linear systems either exponentially converge 

to a constant value, or exhibit periodic behaviour.  

Linear time series analysis is therefore well defined (Statsoft, 1984), and established 

linear mathematical techniques sufficiently meet the requirements. 
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Figure 2.2: Plot of x and y vs. time showing periodic nature of the solution 

 

 

 

 

 

 

 

 

 

Figure 2.4: Plot of x vs. y showing the closed circular orbit of the attractor. 
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2.3 Nonlinear Systems and Chaos 
While the possible dynamics of linear systems are rather restricted, even very simple 

nonlinear systems can have very complex dynamical behaviour. Previously people 

believed that only a stochastic6 or noisy input to the system could create a stochastic 

output, and that only a deterministic input to a deterministic system created well-

behaved deterministic outputs. In addition, it was believed that a small change in the 

initial conditions of the dynamic equations created only a small change at any future 

time. It has now become common knowledge that this is not true for nonlinear 

dynamical systems (see Figure 2.4). Deterministic input to a deterministic dynamical 

system can create a stochastic or irregular noise-like chaotic output, and a small change 

in the initial conditions can lead to an entirely different output after some lapse of time. 

(Chang & Lee, 1996).  

Figure 2.4: a) Conventional concept of system behaviour;  b) Actual system behaviour 

 

Not all irregular motions are chaos. Irregularity may be caused by some other 

underlying reasons. For a process to be chaotic it must satisfy a series of tests. The most 

important test is that the signal has a sensitive dependence on initial conditions. It 

                                                 
6 Stochastic - Stochastic is synonymous with “random”. Opposite of “deterministic” 

 

SYSTEM 

SYSTEM 

deterministic input 
Stochastic or 

deterministic output 

(a) 

(b) 

stochastic input stochastic output 
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should also be indecomposable or ergodic 7 ; and have an element of regularity 

(Eckmann & Ruelle, 1985). 

Chaos seems to be the rule, rather than the exception, in nature. It also frequently occurs 

in process systems engineering, where nonlinear complexity and a great number of 

describing equations govern the dynamics. This is especially true for chemical 

engineering, where chemical processes are inherently nonlinear and often have 

structurally unstable dynamics. Although chaotic behaviour often occurs in chemical 

engineering processes, it is usually attributed to process noise and treated as such. The 

statistical approach normally used in such situations is without doubt a powerful tool. 

However, in process systems engineering there has to be dealt with interactions of 

highly complex nonlinear phenomena with multiple units involving chemical reactions, 

heat and mass transfer, separations, fluid flow, etc. Since chaos can occur without any 

single noise input to any single unit, the complicated chaos resulting from all the 

individual units, integrated as a system, is just imaginable (Chang & Lee, 1996).  

Chaotic behaviour can be illustrated visually using the Hênon-map as an example: 

 2
1n n nx a x by+ = − + ,          1n ny x+ =  (2.6) 

The map yields irregular solutions for many choices of a and b. Setting a = 1.4 and b = 

0.3, for example, generates a typical sequence of xn that will be chaotic (Kantz & 

Schreiber, 1997). The irregular signals are shown in Figure 2.5. Especially note the 

interesting shape of the chaotic attractor (Figure 2.6). 

This illustration of the chaotic behaviour of the Hênon-map, verifies the earlier claim 

that even simple nonlinear systems can have very complex dynamical behaviour. It is 

therefore understandable that traditional linear analysis tools can usually not be applied 

to nonlinear, chaotic systems with great success.  Doing so would be much harder and 

conclusion drawn from the results would be fundamentally limited in range. 

 

 

                                                 
7 Ergodic theory says that a time average equals a space average, where the weight with which the space average has 

to be taken is an invariant measure 
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Figure 2.5: Chaotic x,y  signals of the Hênon-map. 

 

 

 

 

 

 

 

 

Figure 2.6: Chaotic attractor of Hênon-map 
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This predicament started the era of nonlinear time series analysis. Although nonlinear 

data analysis techniques are somewhat unconventional and often more difficult to use, it 

definitely is a big improvement on traditional methods. Even though long-term 

prediction of chaotic systems is impossible, it is often still possible to predict statistical 

features of its behaviour and find certain invariant8 features that provide a qualitative 

description of the system.  

 

2.4 State-Space Reconstruction 
Apart from nonlinear and chaotic behaviour, intelligent data analysis problems are often 

complicated by the following, seemingly contradictorily, situation (Bradly, 1996): 

simultaneous overabundance and lack of data. Take for example the following chemical 

reactor setup: 

 

Figure 2.7: Example of a chemical reactor to explain the reasoning behind state space 

reconstruction. 

 

The dynamics of this system are governed by, amongst others, the temperature inside 

the reactor, the pressure inside the reactor and the concentration of the species A, B and 

C. If there were only a temperature sensor installed on the reactor, one would have 

loads of information available about the temperature inside the reactor, but no data 

about other important quantities such as species concentration or pressure. This is 

                                                 
8 Invariant - Unchanged by a specified transformation or operation 
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usually the case when the other system properties are not sensor-accessible or hard to 

measure with available sensors. When doing intelligent data analysis, the analyst is 

therefore often required to extract meaningful conclusions about a complicated system 

using data from a single sensor. At first glance, the data analysis procedure would 

appear fundamentally limited. 

Probably the most powerful, and widely used, way of getting around this problem is a 

technique called time delay embedding. Time delay embedding is a method of 

reconstructing the internal dynamics of a complicated (nonlinear) system from a single 

time series. That is, time delay embedding can often be used to infer important 

information about unmeasurable variables, such as the species concentration or reactor 

pressure in Figure 2.7, from a single measured variable, e.g. the reactor temperature. 

The reconstruction produced by time delay embedding is not completely equivalent to 

the internal dynamics of the system in all situations. However, a properly done single 

sensor reconstruction can be extremely useful, because the results are guaranteed to be 

topologically (i.e. qualitatively) identical to the true internal dynamics of the system, 

and therefore the dynamical invariants must also be similar. This means that 

conclusions drawn from the reconstructed dynamics are also true of the internal 

unmeasured dynamics inside the “black box”. 

 

2.4.1 Embedding Theorems 
The solution to the problem of how to go from scalar observations to multivariate state 

space is contained in the geometric theorem, called the embedding theorem, attributed 

to Takens (1981): 

Let M be a smooth 2( )C  m-dimensional manifold that constitutes the original state 

space of the dynamical system under investigation, and let :t M Mφ →  the 

corresponding flow. Suppose that it is possible to measure some scalar quantity 

( ) ( ( ))s t h t= x  that is given by the measurement function :h M →ℜ  

where ( ) ( (0))tt φ=x x . It is then possible to construct a delay coordinate map that 

maps a state x  from the original state space M  to a reconstructed state space edℜ : 
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    : edF M →ℜ                                                                                                         (2.7) 

            ( ) ( ( ), ( ), ( 2 ),..., ( ( 1) )l l e lF s t s t t s t t s t d t→ = = + + + −x y x  

Here ed  is the embedding dimension and lt  is the lag or time delay used. 

Takens proved that for 2 1ed m≥ +  it is a generic property of F  to be an embedding 

of M in edℜ , that is : ( ) edF M F M→ ⊂ℜ  is a 2C − diffeomorphism. Generic 

implies that the subset of pairs ( , )lh t  is an open and dense subset in the set of all 

pairs ( , )lh t . The theorem was later generalized by Sauer, York and Casdagli (1991) in 

two ways: 

1) They replaced the condition 2 1ed m≥ +  by 02 ( )ed d A≥ , where 0 ( )d A  is the 

box-counting dimension of the attractor A M⊂ . 

2) They replaced the term generic by the term prevalent, which means that almost 

all ( , )lh t  will give an embedding. 

The first improvement is great progress for experimental systems that have a low-

dimensional attractor (e.g. 0 ( ) 5d A < ) in a very high dimensional (e.g. m=100) space. 

In this case Takens’ theorem says that only for very large embedding dimensions (e.g. 

201ed ≥ ) diffeomorphic equivalence can be expected, whereas Sauer et al. (1991) says 

that a small ( 10ed > ) embedding dimension will be adequate.  

The second modification was necessary because examples of open and dense (i.e. 

generic) sets were found that were rather thin (Sauer et al., 1991). They also showed 

that for dimension estimation an embedding dimension 0 ( )ed d A>  should be enough. 

Assume that the scalar signal ( ) ( ( ))s t h t= x  is sampled with a sampling time, st . The 

resulting time series { }ns  with ( )n ss s nt=  is used to reconstruct the states 

 2 ( 1)( , , ,..., )
en n l n l n d ls s s s+ + + −=ny  (2.8) 
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for 1,...,n N= . The symbol l  represents the delay time (lag) in units of the sampling 

time, l st lt=  (Parlitz, 1995). 

The ny  replace the scalar data measurements ns  with data vectors in a Euclidian d-

dimensional space in which the invariant aspects of the sequence of points nx  are 

captured with no loss of information regarding to the properties of the original system. 

The newly reconstructed space is related to the original nx - space by smooth, 

differential transformations. The smoothness is necessary in allowing the demonstration 

that all the invariants of the motion in the reconstructed space are the same as if they 

were evaluated in the original space. This suggests that just as much can be learned 

about a system studying the reconstructed state space, than studying the original (true) 

state space (Abarbanel, 1996). And herein lies the significance of state space 

reconstruction. A numerical example explaining the theory behind time delay 

embedding is given in Appendix A. 

 

2.4.2 Estimating Suitable Reconstruction Parameters 
State space reconstruction depends on two parameters: the lag (l) and the embedding 

dimension (de). For the reconstruction to be useful (e.g. for dynamic modelling), it is 

important to choose suitable (optimal) values for these parameters. The following 

sections discuss methods to estimate the embedding parameters.  

 

A. Choosing time delays 

The embedding theorem states that any time lag is acceptable when reconstructing a 

state space. This, however, is not very useful when extracting dynamical information 

from the data. Different lags lead to reconstructions of the attractor that are 

diffeomorphically equivalent but geometrically different. If the lag (l) is too small, the 

coordinates  ( 1)n i ls + −=ny  will be so close to each other numerically, that they will be 

indistinguishable. This, from any practical point, will not provide two independent 

coordinates. On the other hand, when the lag is too large, the coordinates will be 
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statistically completely independent of each other and the projection of an orbit on the 

attractor is into two totally unrelated directions (Abarbanel, 1993).  

 

 

 

 

 

 

Figure 2.8: Illustration of a) too small, b) too large and c) optimal time delay. 

 

The fundamental issue is that there must be a balance between values of l that are too 

small, where each component of the vector does not add significant new information 

about the system dynamics, and values of l that are too large (Figure 2.8) . Large values 

of l create uncorrelated elements in ny  because of the instabilities in the nonlinear 

system that becomes noticeable over time. This will result in the components of ny  

becoming independent and convey no knowledge about the systems dynamics 

(Abarbanel, 1998).  
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It is therefore essential to determine an intermediate value for the lag that will give an 

optimal embedding. The linear autocorrelation function and the average mutual 

information (AMI) statistic are well-accepted methods for such calculations. 

 

Linear Autocorrelation Function: 

The linear autocorrelation function is defined as 

 ( )
[ ][ ]

[ ]
1

2

1

1

1

N

k l k
k

L N

k
k

s s s s
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s s
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+
=

=

− −
=

−

∑

∑
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where 

                       
1

1 N

k
k

s s
N =

= ∑  

The function gives information about the linear dependency of coordinates on each 

other. Higher values of LC  indicate a higher average linear correlation between 

coordinates at that specific lag (l).  

Determining the time lag where ( )LC l   first passes through zero will give a good 

estimate of l.  Choosing l to be the first zero of the function ( )LC l   would, on average 

over the observations, make the coordinates 2 ( 1)[ , , ,..., ]
en n l n l n d ls s s s+ + + −  linearly 

independent. It is important to note that this independency may have no relation to their 

nonlinear independence or their usefulness as coordinates of a nonlinear system. The 

approach is not a perfect solution to the problem, but it at least gives an indication of 

what lag (l) to choose.  

 

Average Mutual Information: 

While it is helpful to use linear dependence as criteria to determine optimal lag (l), it is 

preferable to use a measure that takes the aspect of chaotic behaviour into consideration. 
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Average mutual information (Frasier & Swinney, 1986) is such an approach and uses 

the concept of information theory to determine an optimal embedding lag.  

Mutual information is a way of identifying how much information one can learn about a 

measurement at one time, from a measurement taken at another time. Say there exist 

two sets of measurements, set { }iA a=  and set { }jB b= , with a probability 

distribution associated with each system governing the possible outcomes of 

observations on them. The mutual information between measurement ia  drawn from 

set { }iA a=  and measurement jb  drawn from set { }jB b= , is the amount of 

information (in bits) about measurement ia   that is acquired by observing jb . 

Mathematically this is represented by 

 2

( , )
( , ) log

( ) ( )
AB i j

AB i j
A i B j

P a b
I a b

P a P b
 

=  
  

 (2.10) 

where ( , )ABP a b  is the joint probability density for measurements from set A and B 

resulting in values a and b. ( )AP a  is the probability of observing a out of the set of all 

A and ( )BP b  the probability of finding b in a measurement from set B. The quantity 

( , )AB i jI a b  is called the mutual information of the two measurements ia  and jb , and is 

symmetric in how much is learned about jb  from measuring ia . In a deterministic 

system these probabilities are evaluated by constructing a histogram of the variations of 

the ia  or jb  seen in their measurements. 

If the measurement of a value from set A (resulting in ia ) is completely independent of 

the measurement of a value from set B (resulting in jb ), then ( , )ABP a b  factorizes to 

( ) ( )A BP a P b  and the amount of information between the measurements, ( , )AB i jI a b ,  is 

zero. The average mutual information between measurements of any value ia  from set 

A and jb  from B is the average over all possible measurements of ( , )AB i jI a b : 

 
,

( , ) ( , )
i j

AB AB i j AB i j
a b

I P a b I a b= ∑  (2.11) 
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This quantity is not related to the linear or nonlinear evolution rules of the quantities 

measured. It is strictly a set theoretical idea which connects two sets of measurements 

with each other and establishes a criterion for their mutual dependence based on the 

concept of information connection between them (Abarbanel, 1996). 

To place this definition in the context of observations from a physical system, the set of 

measurements ns  is considered set A; and the set of measurements n 1s + , a time lag l 

later, as set B. The average amount of information about n 1s +  that is acquired when 

making an observation of ns , or in other words, the average mutual information 

between observations ns  and n 1s + , is then  

 2
1

( , )( ) ( , ) log
( ) ( )

N
n n l

n n l
n n n l

P s sI l P s s
P s P s

+
+

= +

 
=  

 
∑  (2.12) 

and ( ) 0I l ≥ . 

As is the case with the linear autocorrelation function, the average mutual information 

function is used to determine a time lag (l) when the values of ns  and n ls +  are 

independent enough of each other to be useful as coordinates in a time delay vector, but 

not so independent as to have no connection with each other at all. Fraser and Swinney 

(1986) suggest, as a prescription, to choose the lag where the first minimum of 

( )I l occurs, as the lag (l) for the time delay reconstruction of the state space. This is a 

simple rule derived from their more detailed suggestion, but it serves quite well. 

The average mutual information is in fact a kind of generalization from the correlation 

function in the linear world to the nonlinear world (Abarbanel, 1993 & 1996).  

 

B. Choosing the embedding dimension 

Choosing optimal values for the embedding dimensions is just as important as choosing 

optimum time lag (l) values. If the chosen embedding dimension is too small, the 

conditions given in the embedding theorems are not satisfied. On the other hand, if the 
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dimension is too large, practical problems occur due to the fixed amount of points that 

constitute thinner and thinner sets in dℜ as d is increased (Parlitz, 1995). 

When considering possible values for embedding dimension, emphasis is placed on 

determining the integer global dimension where the number of coordinates chosen is 

just enough to unfold observed orbits from self-overlaps arising as result of projection 

of the attractor into a lower dimensional space. This means that if two points (or 

trajectory orbits) of a particular observation set lie close to each other in some 

dimension d they should do so because it is a property of the set of observations and not 

because of the small value of d in which the observations is viewed.  The lowest 

dimension that unfolds the attractor so that no overlaps remain is called the embedding 

dimension (de). In practice, it is possible to guess a suitable value for de by successively 

embedding into higher dimensions and looking for consistency in the results. 

(Abarbanel, 1993) 

From the previous, it should be clear that embedding data into a higher than necessary 

dimension does not create any ambiguity. The question now arises: why not always 

embed the observations into an arbitrary large dimension to be sure the attracter is 

totally unfolded? Two problems arise when working with dimensions that are larger 

than really required by the data and time delay embedding: 

1) Computational time for extracting interesting properties from the embedded 

attractor increases exponentially with increasing d.  

2) In the presence of noise or other high dimensional contamination of the data, the 

extra dimensions are not populated by dynamics already captured by a smaller 

dimension, but entirely by the contaminated signal. In an embedding space that 

is too large, unnecessary time is spend working around aspects of badly 

represented observations which are solely filled with noise. 

This realization motivated the search for techniques that can identify an optimal 

embedding dimension from the data itself.  
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False Nearest Neighbours: 

The false nearest neighbours technique developed by Kennel et al. (1992) is based on 

the following idea. For any point, ny , on an attractor one can ask whether its nearest 

neighbour, NN
ny , in a state space of dimension d is there for dynamical reasons, or if it 

is instead projected into the neighbourhood because the dimension is too low. That 

neighbour is then examined in dimension d+1 by simply adding another coordinate to 

ny  using the time delay reconstruction. If the nearest neighbour under examination 

remains a neighbour in the larger space, it is a true neighbour which arrived there 

dynamically. If the neighbour moves away from the point ny  as dimensions are added, 

it was a false nearest neighbour and only a neighbour because the dimension d was too 

low. Once the number of false nearest neighbours becomes zero, he attractor has been 

ambiguously unfolded because all crossings of the orbits have been eliminated.  

The closeness of two points in the state space is determined by the Euclidean distance 

between them. In a dℜ - embedding, each point 

2 ( 1)( , , ,..., )n n l n l n d ls s s s+ + + −=ny , 

has a nearest neighbour 

2 ( 1)( , , ,..., )NN NN NN NN
n n l n l n d ls s s s+ + + −=NN

ny . 

If there is a large amount of data, the distance between them is relatively small. 

Expanding the state space to 1d+ℜ  yields the same points, 

2 (( 1) 1)ˆ ( , , ,..., )n n l n l n d ls s s s+ + + + −=ny  

and 

2 (( 1) 1)ˆ ( , , ,..., )NN NN NN NN
n n l n l n d ls s s s+ + + + −=NN

ny , 

in a d+1 dimensional space where the distance between them may or may not still be 

small. If the points where true neighbours they should separate relatively slow with 

successive increases in embedding dimension, and vice versa.   
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The increase in distance between the points is given only by the difference between the 

last components: 

 2 2 2
(( 1) 1) (( 1) 1)ˆ ˆ|| || || || ( )NN NN NN

n n n n n d l n d ly y y y s s+ + − + + −− − − = − . (2.13) 

The normalized increase in distance between these two points is calculated and the 

points are considered to be false nearest neighbours if  

 (( 1) 1) (( 1) 1)| |
|| ||

NN
n d l n d l

TNN
n n

s s
R

y y
+ + − + + −−

≥
−

. (2.14) 

A suitable value for TR  depends on the spatial distribution of the embedded data. If TR  

is too large, some false nearest neighbours will be missed, and if TR  is too small, some 

true neighbours will be counted as false. It is therefore important to choose a value 

for TR  that is suitable for the spatial distribution of the data under consideration. 

Typical values are 10 30TR≤ ≤  (Small, 1998). 

 

The dimension that corresponds to zero false nearest neighbours (or close to zero) is 

considered to be the minimum embedding dimension of the data; and is less than or 

equal to the sufficient dimension (remember that 02 ( )ed d A≥ ) found from the 

embedding theorem. 

 

C. Embedding by Singular Spectrum Analysis (SSA) 

An alternative approach to the method of delays (MOD) embedding is the use of 

singular spectrum analysis (SSA). Both methods are theoretically equivalent, but may 

differ in practice with limited amounts of possibly noisy data. Singular spectrum 

analysis (SSA) is based upon the theory of singular value decomposition and does not 

rely on the explicit calculation of embedding delay. Since the calculation of embedding 

delay is suspect in the presence of noise, the implicit calculation thereof makes SSA a 

particular attractive option (Barnard & Aldrich, 2000). 

The first step in the SSA method of reconstruction is to derive a large p-dimensional 

state vector, pℜ , from the scalar observations. This is achieved by embedding the 
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observations using a time lag of one, and an embedding dimension that is equal (at 

least) to the point of linear decorrelation of the observed time series. This point is the 

smaller of either the first minimum or the first zero crossing of the linear autocorrelation 

function. The value of the preliminary embedding dimension is the same as the delay 

value (l) used in a conventional, autocorrelation function determined, MOD 

reconstruction. Applying these parameters (l=1 and d=l) to the generalized 

reconstructed state space vector (Equation 2.8), 

                                            2 ( 1)( , , ,..., )n n l n l n d ls s s s+ + + −=ny , 

results in 

 1 2 1( , , ,..., )n n n n ls s s s+ + + −=n, py  (2.15) 

as the preliminary, p(=l)-dimensional, reconstruction. The covariance matrix of the 

embedding is calculated, and the eigenvalues of the covariance matrix are determined 

and ordered to decreasing rank. This is also known as Singular Value Decomposition 

(SVD). The final d-dimensional state vector is a projection onto the first d principle 

components defined by the data in pℜ , that is 

 , ,n d n p= ×y P y  (2.16) 

where  ,n dy  = final d-dimensional reconstruction  

             P  = first chosen principle components 

            ,n py  = preliminary p (=l)-dimensional reconstruction  

 

The difference between SSA and MOD is that in MOD the d-coordinates are samples 

separated by a fixed delay (l) and cover a specific time window length, ( 1)wl d l= − ; 

while in SSA all the available samples in wl  are initially used and then further 

processed with SVD so that the final d-coordinates are linear combinations of these 

measurements. The free parameter, d, in SSA is not critical at all and any choice over a 

lower limit would give essentially the same reconstruction, because the additional 

coordinates correspond to less significant singular values and give negligible variance – 

assuming the time window length is sufficiently large (Kugiumtzis & Christophersen, 

1997). To keep computational cost low it is sensible to choose smaller values for d, but 
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the reconstructed space, dℜ , should still explain at least 95% of the variance of the 

original data.  

  

The benefits of singular spectrum analysis are (Barnard & Aldrich, 2000): 

a) Robustness against noise in the observed data 

b) Simplicity of the calculations 

c) Low numerical cost of the calculations 

d) Significant reduction in measurement and dynamic noise 

 

 

 

2.5 Dimension Estimates: Invariants of the Dynamics 
Attractor dimension has been the most intensely studied invariant quantity for 

dynamical systems (Abarbanel, 1993). Generally, people think of real world objects as 

being one, two or three-dimensional. There, however, exist complex mathematical 

objects, known as fractals, which have non-integer dimensions. Attractors associated 

with regular (or integrable) systems always have an integer dimension, whereas 

attractors associated with chaotic dynamics usually have a fractal dimension. Evidence 

of fractal dimensions in experimental time series data demonstrates the existence of 

chaos in the real world, and this is what stimulates research in the area. 

Fractal dimensions are characteristic of the geometry of the attractor and relate to the 

way points on the attractor are distributed in d-dimensional space. It is invariant under 

the evolution operator of the system and is therefore independent of changes in the 

initial conditions of the attractor orbit. It is also independent of the coordinate system in 

which the attractor is observed, which means that it can be determined from the 

reconstructed state space. In other words, the fractal dimension of a dynamic system 

can be estimated from experimental data, which makes it an extremely valuable 

statistical quantity for classifying dynamical systems from experimental data. 
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2.5.1 The Box-counting Dimension 
The simplest concept of dimension is the number of coordinates needed to specify a 

state. This idea can be taken a step further by using the geometrically related concept of 

dimension, whereby volume scale as a function of a characteristic length (ε ) parameter: 

 ( ) dV ε ε∝  (2.17) 

Here (V ) is a measure of the volume, which can be length (one-dimensional), area 

(two-dimensional), volume (three-dimensional) or hyper-volume (multi-dimensional), 

depending on the geometry. The length scale is denoted byε  (e.g. the length of a cube’s 

side or the radius of a sphere) and the dimension of the object by d. If assumed that the 

relation in Equation (2.17) holds true for a general fractal, a universal relation to define 

dimension can be obtained: 

 
log ( )

log
Vd ε
ε

=  (2.18) 

First attempts to estimate dimension involved calculating the volume of the attractor. 

This is done by partitioning the d-dimensional attractor in phase space with a ε -sized 

grid and counting the amount of partitions that contain at least one data point. The 

amount of partition elements that conform to this criterion is used as a measure of the 

volume at that resolutionε . The procedure is repeated, each time with a smaller grid 

size, untilε  has spanned a large enough range (theoretically 0ε → ).  This approach to 

estimate the dimension is known as the box-counting algorithm and the calculated 

dimension is called the box-counting dimension (d0).  

The largest possible value of d0 that can be obtained through these calculations is the 

dimension used to do the initial embedding (de). If the embedding is two dimensional, 

but the attractor has not unfolded completely, one will get a (incorrect) value of 0 2d = . 

Embedding the data in increasingly higher dimensions will yield 0 ed d= , until the 

attractor’s geometrical structure is fully unfolded. At this point higher dimensional 

embeddings will not increase the box-counting dimension (d0) significantly. This 

saturated fractal dimension is the proper value for d0. 
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In Equation (2.16) the volume is related to the amount of points in the space. Theiler 

(1987) proposed a more general form of Equation (2.16): 

 dim ensionbulk size=  (2.19) 

which results in  

 
log( ) log( )
log( ) log( )

bulk bulkd
size ε

= =  (2.20) 

The past few years researchers has spend quite some time developing techniques to 

improve the measuring of “bulk”, resulting in various dimension estimators. The 

generalized dimension ( qd ) is defined by  

 
0 0

loglog( ) 1lim lim
log( ) 1 log

q

q size

bulkd
size qε

ρ
ε→ →

= =
−

∑  (2.21) 

where ρ  is the natural density of points in the phase space. This definition of qd  

provides a whole spectrum of invariant quantities for q−∞ < < ∞ . A more detailed 

explanation of how qd  is derived from basic principles can be found in the article by 

Abarbanel (1993). Letting 0q =  in Equation (2.21) results in  

 0
0

log
log

Nd
ε

−
=

,
 (2.22) 

which is simply the definition of the box-counting dimension as previously discussed.  

 

 

2.5.2 The Information Dimension 

The information dimension ( 1d ) is another frequently cited dimension estimate. As with 

the box-counting dimension, the attracter is partitioned by a ε -sized grid in the phase 

space. Instead of simply counting the number of partitions containing data points, the 

“volume” of the attractor contained within each partition is calculated. This measure 

seeks to account for differences in the distribution density of points covering the 

attractor. 
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The information dimension ( 1d ) is defined by letting 1q =  in the generalized 

dimension ( qd ) (Equation 2.21).  Using L’Hopital’s rule:  

 1 0

log
lim

log

i i
i

p p
d

ε ε→
=

∑
 (2.23) 

where ip  is the probability of data points from the attractor occurring within the ith 

element of the partition: 

 
( )( )

( )
i

i
i

i

n xp x
n x

=
∑

 

 

The difference between the measures 0d  and 1d  is in the way the “bulk” (Equation 

2.19) is calculated. The 0d  statistic measures “bulk” by counting the number of 

nonempty partitions in the phase space. This means that regardless of how many data 

points a ε -sized partition contains, it contributes the same amount to the “bulk”. 

Contrary to this, 1d  is calculated so that each partition element’s contribution to the 

“bulk” is proportional to how many data points it contains. “Bulk” in 0d  is simply the 

volume the attractor covers, whereas in 1d  “bulk” is equivalent to the mass of the 

attractor. 

 

 

2.5.3 The Correlation Dimension 

The calculation of the box-counting dimension ( 0d ) and information dimension ( 1d ), in 

practice, usually requires a prohibitive amount of computation time. This is why the 

most commonly used dimension estimate for attractors is the correlation dimension 

( cd ). Calculation of the correlation dimension ( cd ) is computationally efficient and 

relatively fast when implemented as an algorithm for dimension estimation. 

Consider the case where 2q =  in the generalized dimension (Equation 2.21): 

 

2

2

log
lim

log

i
i

o

p
d

ε ε→

−
=

∑
 (2.24) 
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Here 2d  refers to the measure known as the correlation dimension ( cd ). The 

numerator in Equation (2.24) constitutes a two-point correlation function which 

measures the probability of finding a pair of random data points within a specific 

partition element (Compare this to the significance of the numerator in 1d : Equation 

2.23) .  The numerical value of 2
i

i
p∑  can be estimated by counting how many pairs of 

points have a separation distance less than some value ε . 

In 1983 Grassberger and Procaccia suggested a simple and computationally efficient 

way of estimating the 2
i

i
p∑ - term in the correlation dimension equation. Let 1{ }N

i n=y  

be an embedding of a time series in edℜ . The correlation function, ( )NC ε  , is defined 

by: 

 ( )
1

0
( )

2N i j
i j N

N
C Iε ε

−

≤ ≤ ≤

 
= − < 
 

∑ y y  (2.25) 

 

Here ( )I X  is a Heavyside function whose value is one (1) if condition X  is satisfied 

and zero (0) otherwise. The ⋅ -term is the distance function in edℜ .  The points, iy , 

are points on the reference trajectory and jy  are other points on the attractor in the 

vicinity of iy .   If the distance between point iy  and jy  is within ε , ( )I X  takes a 

value of one; and if the distance between the points is outside ε  it takes a value of zero. 

This means that the sum ( )i j

i
I y y ε− <∑  is the number of points within a distance 

ε  of point iy . 

The calculation and interpretation of the correlation dimension estimates forms an 

integral part of this thesis, so it is worth spending time understanding the physical 

meaning of Equation (2.25). The idea is illustrated by Figure 2.9 where a hypersphere 

of radius ε  is centred on one of the points defining the trajectory of the attractor.                               
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Figure 2.9: Probing hypersphere on the attractor 

 

The number of other points on the attractor within the hypersphere is counted. The 

hypersphere is then moved from point to point along the trajectory and each time the 

number of points within is counted. The cumulative sum of points is then divided by 

( 1)N N −  to give the correlation sum ( NC ) for a hypersphere of a particular size. For 

each value of the hypersphere size (ε ) there will be a different value for the correlation 

sum ( NC ). The maximum value of NC  is unity and this happens when the radius of the 

probing hypersphere is large enough to include the whole attractor, i.e. all the points of 

the attracter are counted. The minimum value of NC  is 2 [ ( 1)]N N −  and occurs when 

only the closest two points on the attractor are counted. One should notice that the 

correlation sum counts the closest near neighbour twice as the probing hypersphere 

visits both points on its journey around the attractor. This is the reason for the 2 in the 

numerator (Addison, 1997) 

 

                         

 

ε y 
i 
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A. The Grassberger-Procaccia Algorithm  

The method traditionally most often employed to estimate the correlation dimension is 

the Grassberger-Procaccia algorithm (Grassberger & Procaccia, 1983). They used the 

assumption that the correlation sum ( NC ) scaled with the hypersphere radius ( ε ) 

according to a power law in the form  

 cd
NC ε∝ , (2.26) 

where cd  is the correlation dimension of the attractor. 

 

In this method, the correlation sum ( NC ) is calculated for different sizes of the 

hypersphere radius (ε ). A graph is constructed that plots log ( )NC ε  versus logε . The 

gradient of this graph in the limit as 0ε →  should approach the correlation dimension. 

The problem, however, is that the graph will jump about irregularly for small values of 

ε  when using a finite amount of data. This can be overcome by looking at the graph 

when using moderately small ε -values. A typical curve (Figure 2.10) from this plot 

will have three distinct features: 

1) For large hypersphere sizes (ε ) the graph will flatten. The flattening happens 

because the attractor has a finite size. 

2) At moderate ε -sizes the graph has a “scaling region” which is approximately 

linear. 

3) For small ε -sizes the graph jumps about irregularly. The irregularity is a result 

of having only a finite amount of data, so that the contribution to the correlation 

function by a specific pair of points is seen as a jump in the graph. 

The extremes of the graph coincide with very large and very small scales that tend to be 

nonlinear. The correlation dimension is calculated from the slope of the “linear” part of 

the graph.  
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Figure 2.10: The log(ε)-log(CN) plot for determining the correlation dimension via the 

Grassberger-Procaccia algorithm. 
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B. Judd’s Algorithm 

Conventional implementations of the Grassberger-Procaccia method assume that most 

of the information about the dimension is contained in the linear (scaling region) of the 

log(ε)-log(CN) plot and proceed by fitting a straight line to the scaling region. As Judd 

(1992) points out there are deficiencies in the Grassberger-Procaccia algorithm: 

1) From a sample trajectory of length n there are ( 1) 2n n −  interpoint distances, 

but these distances are not all independent. The triangle inequality states that 

the distance between two points is no more than the sum of the distances from a 

third point. This problem is inherent to all methods that are based on 

calculations of interpoint distances. 

2)  The smoothness in the correlation function is misleading because it contains a 

lot of statistically correlated information. This is because the value of ( )NC ε  is 

based on the number of points in the ε -sized hypersphere, which becomes 

more statistically correlated as ε  is increased. Any fit of this function should 

take this into account by giving the larger values of ε  less weight. 

3) It is possible that the scaling (linear) region may not reflect information about 

the dimension of an attractor. According to Judd (1992) examples can be 

constructed were the scaling region reflects only large-scale properties of an 

attractor, and not the dimension. The scaling region is also a subjective, but 

critical choice, and sometimes a small change in the scaling region significantly 

changes the correlation dimension estimate. It often happens that the analyst 

chooses a scaling region that is not straight, but curved. When using a certain 

scaling region, information about small distances between points (which is still 

information about scaling) is ignored. There is no basis on which this 

information can be thrown away. 

He also states in a later paper (Judd, 1994) that linear correlation in the data set misleads 

the algorithm to falsely show convergence to some low dimension, which could then be 

misinterpreted for inherent low-dimensional dynamics. 
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Judd (1992) proposes a different algorithm for calculating the correlation dimension. 

His algorithm is a modification of the Grassberger-Procaccia algorithm that, in contrast 

to conventional implementations, considers the contribution of the interpoint distances 

directly and not the correlation function. The significance of this is that problems (2) 

and (3) are completely avoided. He demonstrates that the following equation is a better 

description of the correlation function, valid for 0ε ε< : 

 ( ) ( )cd
NC qε ε ε≈  (2.27) 

where ( )q ε  is a polynomial of order t, the topological dimension of the set. The 

topological dimension is the smallest dimension of embedding space in which the 

attractor fully unfolds. The correlation dimension ( cd ) is a function of 0ε and written as 

0( )cd ε . 

Where the Grassberger-Procaccia method assumes a linear scaling region by fitting 

cd
NC ε∝ , the new method of Judd fits ( ) ( )cd

NC qε ε ε≈  which allows for the 

presence of an additional polynomial term that takes into account variations of the slope 

within and outside of the scaling region. Judd’s method dispenses with the need for a 

scaling region and substitutes a single scale parameter, 0ε . This has an interesting 

benefit, which is especially useful for the purpose of detecting dynamic changes (which 

will become evident in Chapter 3). Many natural objects do not have a constant 

dimension at all length scales. Consider a large river stone as an example. If one 

examines the surface at its largest length scale, it is almost two-dimensional. However, 

at smaller length scales (when the stone is examined closely and in more detail) one can 

discern the details of grains, which add to the complexity and increase the dimension at 

smaller scales. This is the same with attractors reconstructed from time series data. 

Have a look at the reconstructed attractor in Figure 2.11.  At its largest length scale 

(Figure 2.11(a)) the attractor seems to be low dimensional. However, when zooming in 

on a smaller part of the attractor (Figure 2.11(b)), i.e. examining the smaller length 

scales, it is obvious that the complexity and therefore the dimension of the attractor 

increases. 
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It is therefore natural to consider the dimension (in this instance the correlation 

dimension) as a function of ε . Figure 2.12 illustrates how the correlation dimension for 

the attractor in Figure 2.11 change with different length scales. As expected the 

correlation dimension ( cd ) has smaller values at larger length scales, and vice versa.  
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Figure 2.11(a): A reconstructed 

attractor from Chua’s circuit that  

seem low dimensional from a 

distance. 

Figure 2.11(b): Zooming in on part of 

the attractor reveals the high 

dimensional nature of the object 
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Figure 2.12: A typical graph illustrating Judd’s method where dc is a function of ε. 

 

 

By allowing the correlation dimension to be a function of length scale, estimates that 

are both more accurate and informative can be produced. Some of the approximation 

necessary to define correlation dimension as a single number can be avoided when 

using Judd’s method, but most important, more detailed information on the topology of 

the attractor can be extracted. 

 

 

2.6 Surrogate Data Analysis 
Data from nonlinear deterministic processes require more complex and time-consuming 

analysis techniques (i.e. state space reconstruction) that are much less understood than 

the classical methods used for linear stochastic process data. Before blindly applying 

these advanced data analysis and modelling techniques, it is important to check whether 

the data exhibits such nonlinear behaviour that would deserve more advanced treatment. 



STATE SPACE ANALYSIS OF TIME SERIES 2–33

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time index

X

It would be particularly useful to have answers to the following questions (Kantz & 

Schreiber, 1997): 

• Is the apparent structure in the data most likely owing to nonlinearity or rather 

due to linear correlations? 

• Is the irregularity of the data most likely due to nonlinear determinism or rather 

due to random inputs to the system or fluctuations in the parameters? 

The analyst should be aware that linear stochastic processes can also create very 

complicated looking signals and that not all irregularities in a data set are due to 

nonlinear dynamics within the system.  

To confirm this statement, consider the following simple linear stochastic process: 

                                                   10.99n n nx x η−= +  (2.28) 

Here nη are independent Gaussian random numbers. Successive values in this linear 

time series are strongly correlated and already yield some structures. Figure 2.13 

illustrates the irregular behaviour of this process.  

 

 

 

 

 

 

 

 

Figure 2.13: Irregular output from a simple linear process 
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The output can be made even more complex by observing the values from the process 

through a nonlinear measurement function: 

  3
n ns x=  (2.29) 

Note that although the measurement function is nonlinear, there are no nonlinear 

dynamics in this process. All the dynamics is contained in the linear AR(1)9 part and the 

nonlinearity is purely static. Figure 2.14 shows the spiky irregular output from such a 

linear system. 

 

 

 

 

 

 

 

 

 

Figure 2.14: Irregular output from linear process observed through a nonlinear 

measurement function 

 

A time series can be anything between purely random and strictly deterministic. When 

looking at the previous examples it is understandable that linear structures can easily be 

mistaken for (nonlinear) determinism. It is therefore important to have a reliable test to 

classify the given time series with confidence.  
                                                 
9 Autoregressive process of order one. 
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The test most successfully applied by researchers and analysts, makes use of the method 

of surrogate data (Theiler et al., 1992). This test involves a null hypothesis against 

which the data are tested, using a discriminating statistic. The data under investigation 

are first assumed to belong to a specific class of dynamic processes, e.g. linear 

stochastic. Surrogate data sets are generated from the original data, using this 

assumption.  An appropriate statistic then is calculated for both the original data and the 

surrogate data sets. If the resulting statistic is significantly different for the surrogate 

data than for the original data, the null hypothesis is rejected. This means that the 

process (linear stochastic in this instance) that generated the surrogate data sets is not 

from the same class than that of the original data.  By repeating this procedure, and 

through trail-and-error elimination, it is possible to get a good idea of the characteristics 

of the original process (Barnard et al., 2000). One should always progress from simple 

and specific assumptions to broader and more sophisticated models. 

More formally, the test can be explained as follow. Let ψ be a specific hypothesis and 

Fψ be the set of all process systems consistent with that hypothesis. The time series 

( ns ) under investigation, which consists of n scalar measurements, can be expressed as 

ns∈ℜ . Let : nT Uℜ →  be a statistic which will be used to test the hypothesis that s  

was generated by some process F Fψ∈ . Generally, U will be ℜ , and it will be 

possible to discriminate between the original data ( s ) and the surrogates ( is ) consistent 

with the hypothesis given by the approximate probability density , ( )T Fp t , i.e. the 

probability density of T given F (Small & Judd, 1998).   

 

2.6.1 Hypothesis Testing 
It is important to realise that it is only possible to reject a hypothesis; it is not possible 

show that it is correct. Data can be consistent with a hypothesis even if the hypothesis is 

not correct. However, if data are inconsistent with the hypothesis, the data show that the 

hypothesis is not correct. So, although data can definitely reject a hypothesis, it can only 

suggest in an informal way that a hypothesis is correct. One should keep in mind that a 

hypothesis can contain many hidden assumptions and if a hypothesis is rejected, one 

may actually be rejecting these hidden assumptions.  
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Classes of hypothesis 

Different types of surrogate data are generated to test membership of specific dynamical 

system classes, referred to as hypotheses. Three commonly used classes of hypothesis 

are discussed here. They are equivalent to the following assumptions: 

1)  The data are identically, independently distributed noise (type 0) 

2) The data are linearly filtered noise (type 1) 

3) The data are a monotonic non-linear transformation of linearly filtered noise 

(type 2) 

To test if the data are consistent with a particular hypothesis, a model is build that is 

consistent with that hypotheses and has the same properties as the original data. 

Surrogate data are then generated from the model: 

1) Type 0 – Shuffles (randomises) the data 

2) Type 1 – Randomizes the phases of the Fourier transform of the data 

3) Type 2 – Applies a phase randomising procedure to amplitude adjusted 

Gaussian noise. The procedure for generating type 2 surrogates can be seen as a 

combination of generating type 0 and type 1 surrogates: 

i. A normally distributed data set z is generated from the original data set 

s , and reordered so that z  has the same rank distribution as s . 

ii. A type 1 surrogate set iz  is generated from z  by randomising the phases 

of the Fourier transform of z . 

iii. Finally, the original data s  is reordered to create a surrogate set is which 

has the same rank distribution as iz  . 

These type 2 surrogates are also referred to as amplitude adjusted Fourier transformed 

(AAFT) surrogates. 
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The original data are now compared to the different surrogate data sets to if it is typical 

under the hypothesis. The surrogates generated by the algorithm 0, 1, or 2 uses a linear 

model. Each of these surrogate tests addresses a hypothesis that the data are either 

linear, or some (linear or monotonic nonlinear) transformation of a linear process. 

 

2.6.2 The Test Statistic 
To compare the original data to its surrogate data, a appropriate test statistic must be 

selected. Such a statistic should measure a non-trivial invariant of a dynamical system 

that is independent of the way surrogates are generated. Theiler and Prichard (1996) 

suggested that there are two, fundamentally different types of test statistics: pivotal and 

non-pivotal. A statistic (T ) is considered pivotal if the probability distribution of T  

( ,T Fp ) is the same for all processes ( F ) consistent with the hypothesis (ψ ). The 

probability distribution ( ,T Fp ) is therefore invariant for all F Fψ∈ . One should also 

make the distinction between a simple hypothesis and a composite hypothesis. If the set 

of processes consistent with the hypothesis ( Fψ ) is singleton, the hypothesis is simple. 

Otherwise, the hypothesis is composite and the problem is twofold: generating 

surrogates consistent with a particular process ( F ), as well as estimating F Fψ∈ .  

Theiler and Prichard (1996) argues that F has to be specified when the hypothesis is 

composite, unless the test statistic (T ) is pivotal – in which case the distribution of T is 

the same for all F Fψ∈ .  They suggest that a constrained realization scheme should be 

employed when non-pivotal statistics are to be applied to composite hypotheses. This 

implies one must ensure that the surrogates are realizations of a system consistent with 

the hypothesis that gives identical estimates of the parameters of that system when 

compared to the estimates of those parameters obtained from the original data, instead 

of generating surrogates that are typical realizations of the model. So if F̂ Fψ∈ is the 

process estimated from the data ( s ) and is  is a surrogate data set generated from 

iF Fψ∈ , then the process ( îF Fψ∈ ) estimated from the surrogate data set ( is ) must be 

the same as F̂ . 
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For example, let ψ be the hypothesis that the original data ( s ) is generated by linearly 

filtered i.i.d.10 noise. Non-constrained surrogate data ( 'is ) can be generated from a 

Monte Carlo simulation based on the best linear model estimated from s . The non-

constrained surrogate data ( 'is ) can be constrained by shuffling the phases of the 

Fourier transform. This will produce a set of random data ( "is ) with the same power 

spectra and autocorrelation as the original data ( s ). Autocorrelation, nonlinear 

prediction error or rank distribution statistics would all be non-pivotal test statistics, as 

the distributions of these statistics would all depend on the form of the noise source and 

type of the linear filter. However, the correlation dimension (as well as other measures 

derived from dynamical system theory that are invariant under diffeomorphisms) would 

be pivotal statistics. The probability distributions of these quantities would be the same 

for all processes, despite the source of noise or the estimated model.  

The use of the correlation dimension ( cd ) as pivotal statistic of choice, has gained a 

great deal of favour over the years. One of the reasons being that there exists a very 

powerful and reliable method of estimating cd (as described in the previous sections); 

which gives a quick, effective and informative method for classifying time series data 

(Small & Judd, 1998).  

The power of correlation dimension ( cd ) as a test statistic can be illustrated with an 

example. Consider the two data sets in Figure 2.15. It is impossible to tell with 

certainty whether they exhibit nonlinear deterministic behaviour and if both are simply 

stochastic.  Fifteen surrogate data sets (between 15 and 30 sets are needed for statistical 

significance) are created from each of the two data sets. To compare the surrogate and 

actual data sets with each other, both are embedded into a higher dimensional space 

than was calculated from the original time series data. The assumption is that a lower 

dimensional attractor from a deterministic system will occupy a subspace of the higher 

dimensional space and should not extent into new coordinates. Usually an embedding 

dimension of 10 is enough to ensure that the attractor has fully unfolded. The original 

data ( s ) is then compared with the surrogate data sets ( is ) by calculating the correlation 

dimension ( cd ) from these reconstructions.  
                                                 
10 Independently and identically distributed  



STATE SPACE ANALYSIS OF TIME SERIES 2–39

 

 

Figure 2.15: Two data sets that need to be classified. 

 

 

From Figure 2.16 it can be seen that there is a distinct separation between the cluster of 

surrogates and the curve of the original data. The type 2 hypothesis can therefore be 

rejected with confidence, which indicates that there is a strong possibility for 

determinism in the data. The next graph, Figure 2.17, shows quite the opposite. The 

curve of the original data is part of the cluster of surrogate data. It is therefore clear that 

this data came from a linear stochastic process 
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Figure 2.16: Correlation dimension plot of surrogates and original data for               

data set A. 

. 

 

 

 

 

 

 

 

 

Figure 2.17: Correlation dimension plot of surrogates and original data for data set B. 
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Dataset A comes from a nonlinear deterministic system, namely the Lorenz system 

(Lorenz, 1963). The dataset B was generated by Equation (2.28), which generated 

linear stochastic data. The results from these two examples show that surrogate data 

analysis, with correlation dimension as test statistic, is a powerful data classification 

technique. 

A more detailed discussion on surrogate data analysis can be found in the articles by 

Schreiber & Schmitz (2000) and Kaplan (1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 DETECTING DYNAMIC CHANGE 
 

  

 

A problem frequently encountered when analyzing chemical process systems, is 

appropriate characterization of changes in the system dynamics. Since the discovery of 

time delay embedding for state space reconstruction, a considerable amount of work has 

been devoted to the development of techniques to extract information in observed time 

series data through analysis of the geometrical structure of the attractor underlying the 

time series. Underlying nearly all of these techniques (of which some are discussed in 

CHAPTER 2) is the assumption that the dynamical process under question is 

stationary. This means that the dynamical process, and therefore the geometrical 

attractor, has not changed on long time scales – i.e. time scales in the order of the length 

of the data set. If the geometrical shape of the attractor does change during this time, 

denoting a nonstationary system, there are two possible reasons: 

1) There may be significant behaviour on time scales longer than may be reliably 

resolved with the given data; meaning that the given data set (time series) is too 

short to capture the total dynamic behaviour of the process. 

2) Process parameters, presumed to be fixed, have changed during the observation 

period.  

In short, this implies that if there are deterministic rules governing the dynamics, these 

rules must not change during the time covered by the given time series data.  

The first instance of nonstationarity can be illustrated using the Lorenz system (Lorenz, 

1963) as an example. This three-dimensional system is well known for its nonlinear 

chaotic behaviour, and is described by the following coupled differential equations: 

                                                        10dX Y X
dt

= −  

   80dY X Y ZX
dt

= − −  
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3

dZ XY Z
dt

= −                                                (3.1)  

 

Initially, the equations are solved by varying the time (t ) from zero to 1.7; generating 

5000 uniformly sampled data points. The resulting attractor, when plotting the variables 

X,Y and Z against each other, is shown in Figure 3.1. 

Figure 3.1: Lorenz attractor for 0 :1.7=t  

 

A totally different attractor unfolds from the system when the number of time steps is 

increased to 20t =  (Figure 3.2). The resulting attractor is much fuller and display 

more dimensional detail.   
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Figure 3.2: Lorenz attractor for 0 : 20=t   

 

 

It is obvious that trying to model the system using the first, shorter time series will be 

disastrous. The time series is clearly nonstationary, since it is not sufficiently long1 to 

trace out a good approximation of the invariant measures.  

The second instance of nonstationarity is more complicated. Changes in the process 

dynamics can be as result of either a slow drift in the system’s parameters during the 

measurement period, or a near instantaneous change under the influence of the 

environment. Sometimes it is possible to handle a simple change of parameters once it 

is noticed. If the calibration of the measurement apparatus drifts, one can try to rescale 

the data continuously in order to keep the mean and variance constant. This is 

potentially dangerous, unless one is sure that it is the measurement scale, and not the 

process dynamics, that is drifting. In some cases where a strictly periodic modulation of 

                                                 
1 Long in this context does not necessarily mean the number of data points, but rather the time-evolution. 
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a parameter is established, it can be treated as a dynamic variable rather than a 

parameter and does not necessarily destroy stationarity (Kantz & Schreiber, 1997).  

More formally, a time series is called stationary if all transition probabilities from one 

state of the system to another are independent of time within the observation period, i.e. 

when calculated from the data. Detecting nonstationarity can be viewed as determining 

whether the dynamics underlying the system is autonomous or not. In the framework of 

deterministic systems, autonomous dynamical systems can be represented as being 

generated by time independent flow: 

 
1 ( )n nx F x+ =  (3.2) 

Here x is a set of dynamic variables, and the reconstruction of a time series generated 

by such a system is sufficient to uniquely determine the flow that generated it. A 

nonautonomous dynamical system, however, is generated by time dependent flow: 

 
1 ( , )n nx F x t+ =  (3.3) 

In this case the reconstruction of a time series is insufficient to determine the flow that 

generated it, and therefore the time series is considered nonstationary.  For a closed, 

deterministic description of the system it is necessary to add time as a reconstruction 

variable. The problem is that such a reconstruction (with time as a variable) provides 

little useful information. With only one point in the phase space for each time, there is 

little predictive power for the outcome of a repeated experiment. That is unless the 

resultant time series is identical. For a variable to provide more useful information, its 

dynamics should be recurrent in the phase space. 

Equation (3.3) can also be rewritten in the form: 

 1 ( , )n n nx G x y+ = ,              1 ( , )n ny H y t+ =  (3.4) 

Here x carries information about the internal dynamics of the system, and y  is the 

external driving force seeing as its dynamics is independent of x . If y  is 

nonstationary, the entire process is nonstationary, and vice versa. Examples where y  is 

stationary include cases where y  is periodic, or is itself generated by another ergodic 

flow. One should keep in mind that ergodic systems are stationary, and that stationary 

systems are autonomous. Also, note that stationarity is a statistical concept, while 
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autonomy is a term that refers to the generating algorithm of the process (Manuca & 

Savit, 1996).  

 

3.1 Measures for detecting nonstationarity 
After explaining the stationarity problem in the former part of the chapter, the problem 

at hand is to come up with solutions on how to, for a given time series, detect 

nonstationarity. What makes this analysis so complicated is that stationarity is a 

property which can never be positively established, and because stationarity 

requirements differ depending on the application, the task is even more complex.  

When testing for stationarity, the first solution one thinks of is to calculate a number of 

simple statistics, e.g. the mean and variance, from different parts of the time series and 

use a standard statistical hypothesis test based on their presumed equality. Conventional 

statistical process control (SPC) techniques, such as the standard Shewhart control 

charts, cumulative sum (CUSUM) control charts and various moving average (MA) 

control charts, are widely used to monitor the output of industrial processes (Basseville 

& Nikiforov, 1993). The main problem underlying these techniques is that they are 

designed to operate on constant mean processes, i.e. processes that are considered to be 

stationary within the linear framework (Nembhard and Kao, 2002). In the context of 

detecting dynamical nonstationarity, it is important to note that the notion of weak 

stationarity, found in the literature on linear time series analysis, is not considered. 

Weak stationarity only requires statistical quantities up to the second order (such as the 

standard deviation and mean) to stay constant, which in a nonlinear setting, is certainly 

inadequate (Kantz & Schreiber, 1997).  

Unlike the detection of changes in nonlinear dynamical systems, change detection for 

linear systems has been studied extensively. The most complete reference is probably 

the work done by Basseville and Nikiforov (1993). Their work covers various change 

detection algorithms. This includes elementary control charts (e.g. Shewhart, 

geometrical moving average, finite moving average, etc.), filtered derivative algorithms, 

CUSUM algorithms, Bayes-type algorithms and generalized likelihood ratio (GLR) 

algorithms, to name a few. To apply these techniques to nonlinear systems, the data 

have to be linearized using nonlinear filtering methods. These linearization techniques 
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are not always applicable and often complicates the change detection exercise 

significantly (Azimi-Sadjadi & Krishnaprasad, 2002) 

There are several reasons why these linear approaches are poor. Firstly, the statistics 

used is arbitrary and not related to any geometrical properties of the attractor, which is 

the interesting element when analyzing dynamical time series data. Such arbitrary 

choices are not particularly informative, unless the particular statistic estimates a 

parameter considered physically or dynamically important, and their power against 

various sorts of nonstationarity may vary greatly.  

Secondly, by simply applying such statistics, the significance of differences may be 

greatly overestimated.  This is because observed dynamical time series data are far from 

uncorrelated, while the simple, classical estimations of confidence rely heavily on the 

concept of independent observations. If one would measure the empirical means for 

different parts of a chaotic data set and do a classical t - test (Vining, 1998) for their 

equality, the null hypothesis of stationarity will quite often be falsely rejected – even 

when the data come from noise free stationary experiments or well-known systems such 

as the Lorenz attractor. Such methods do not reliably diagnose the intuitive concept of 

dynamical stationarity that one would typically imagine (Kennel, 1996).   

Once a suitable statistic has been identified, it must be implemented in a way as to 

determine the “exact” time at which the process parameters changed. This will enable 

one to divide the data into different segments, each with similar dynamical behaviour 

(signal segmentation), resulting in better modelling and ultimately better control of the 

process. Rapid detection of parameter changes will also allow online2 change detection, 

which is important for effective monitoring and control of chemical processes. 

A number of statistical tests for nonstationarity in time series data have been proposed 

in the literature. Most of the tests are based on the following idea:  

1) The time series under investigation is divided into a number of segments. 

2) A certain parameter or statistic is calculated for each segment of the time series. 

                                                 
2 Continuous monitoring of data from a process. 
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3)  The statistic(s) from each segment are compared and if the observed variations 

are found to be significant, the time series is regarded as nonstationary. 

In such an approach, the choice of statistic is very important. As stated earlier, linear 

statistics are not very useful. It is vital to use a statistic that characterizes the 

geometrical structure of the attractor.  

In this work, emphasis is placed on the application of techniques (algorithms, statistics). 

Only techniques and/or statistics that have been shown to be reliable, and which is 

accessible (e.g. open source code) or can easily be implemented are considered. The 

following methods fall into this description and will be used to detect nonstationarity: 

1) Evaluating the performance of process models 

2) The method of nonlinear cross predictions 

3) Analytical techniques with correlation dimension as test statistic 

The first method uses model deterioration as an “informal” way to determine whether a 

time series is nonstationary. The second method is a more specialised change detection 

technique, whereas the correlation dimension statistic is even more precise and flexible, 

and will be the main focus when evaluating these techniques. 

 

3.1.1 Model-Based Change Detection 
Model-based detection of changing process parameters is probably one of the more 

basic methods of determining nonstationarity. In this approach a model is fitted to a 

segment of the time series data. The model is then used to predict other parts of the 

observed time series, while its performance is monitored. A good model should produce 

acceptable small prediction errors when applied to other process data with similar 

dynamic behaviour. However, if the prediction errors for the other segments of the time 

series differ significantly from the first segment, the data can be considered 

nonstationary.  
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When attempting to model process data, there only exists methods to optimally exploit 

either the linear correlations or nonlinear determinism. Hence, the decision is whether 

to model the process as linear stochastic or nonlinear deterministic (Kantz & Schreiber, 

1997). The most prominent linear stochastic modelling techniques include: 

autoregressive (AR) models, moving average (MA) models and Markov models, as 

well as the use of nonlinear filters (Kantz & Schreiber, 1997; Gershenfeld, N.A. & 

Weigend, A.S., 1993). In this work, all models to be considered are of the following 

form, 

 ( )t tF ε= +Y X t , (3.5) 

where X is the input variables and Y is the output variables of the system., and ε is 

random variables which is independent of X and Y . 

As stated earlier, the focus of this work is on process systems that have deterministic 

dynamics, or are at least mixed systems with a dominant deterministic part. When 

modelling nonlinear deterministic data, the observed time series is first embedded to 

form a d -dimensional reconstructed attractor. These reconstructed vectors are then 

used as inputs to the model building algorithms. Since time series data are discretely 

sampled over time, a deterministic model is always a map. In a time delay 

reconstruction it reads 

 1 2 ( 1)( , , ,..., )
en n n l n l n d ls F s s s s+ − − − −=  (3.6) 

where ( )F ⋅  is the function that needs to be determined in order to predict a future 

value 1ns + . In the above equation d  is the embedding dimension and l  the time delay. 

Several nonlinear empirical model classes have been proposed to approximate F , 

including local linear model fitting, polynomial regression, radial basis function (RBF) 

neural networks, multiple-layer perceptron (MLP) neural networks, etc. (Kantz & 

Schreiber, 1997).  

In this work, multiple-layer perceptron (MLP) neural networks are used for modelling 

purposes. It has been shown that they can successfully simulate or predict 

multidimensional chaotic data (De Oliveira et al., 2000).  The reason for their success is 



DETECTING DYNAMIC CHANGE 3-9

that MLP neural networks are strong functional approximations3, which is consistent 

with the class of dynamical systems under discussion. MPL neural network modelling 

is relatively easy to use and is well supported by a number of large commercial software 

packages such as MATLAB. 

 

Multiple-Layer Perceptron (MLP) Neural Networks:   

Artificial neural networks, of which MLP neural networks is a special case, are 

computer algorithms which simulate, in a very simplified form, the ability of brain 

neurons to process information.  A neural network is composed of interconnected units, 

organised in layers, which serve as model neurons. Each node in the network acts as a 

numerical processor with a specific activation (transfer) function. The role of the brain 

synapse4 is modelled by a modifiable weight ( k
ijw ) which is associated with each 

connection between neurons in adjacent layers (Figure 3.3). In each neuron all the input 

weight signals are summed up, and either an excitatory or an inhibitory signal sent to 

the next layer of neurons. The decision of which signal is sent depends on whether or 

not the result of the sum has reached a certain threshold value, according to the specific 

activation function chosen. The transfer function is usually a smoothed step function: 

 1
(1 )b ce

φ
−

=
+ X

 (3.7) 

The whole network thus becomes a problem of solving the function, 

 
( )1

( )
1 exp(

k
i

i i i

aF X
c=

=
+ −

∑
b X ,

 (3.8) 

where the parameters ia , ib  and ic  have to be determined by a fit.  

Topologically, a MLP neural network (Figure 3.3) consists of an input layer, one or 

more hidden layers and an output layer. The number of nodes in the input layer is equal 

to the dimension of the input space (X), or in this case the dimension of the embedding. 
                                                 
3 In strong functional approximations the optimal approximation error grows more slowly with dimension than for 

weak functional, e.g. linear and polynomial, approximations 
4 The synapse is the structure in the brain which is responsible for storing information 
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The number of nodes in the output layer is equal to the dimension of the output space 

(Y), i.e. the number of variables that needs to be predicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Architectural graph of a multiple-layer perceptron neural network with two 

hidden layers. 

 

 

Two kinds of signals (Figure 3.4) are identified in a MPL neural network: 

• Functional signals – propagate forward through the network. At each neuron 

through which a functional signal passes, the signal is calculated as a function of 

the inputs and associated weights applied to that neuron.   

• Error signals – propagates backward through the network. Their computation 

by every neuron involves an error-dependent function in one form or another. 
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Figure 3.4: Illustration of the directions of two basic signal flows in a multiple-layer 

perceptron: forward propagation of function signals and back propagation of error 

signals.  

 

 

The standard way to determine the model parameters, in other words the optimised 

weights ( k
ijw ), is by training the neural network. The network is trained by feeding it 

with known time series data and minimising the prediction error with the error 

backpropagation algorithm. Supervised feedforward MLP neural networks learn from 

examples of actual data. The weights of the neuron connections are determined by 

presenting the network with an adequate (depending on the process system) set of actual 

input-output values, called the training data set. The output values from the network is 

compared with actual “unseen”5 data from the same system by means of some error or 

cost function. In this work, the sum square error of the model output, defined by 

                                                 
5 Data that were not part of the data set used to train the network. Comparing the network output with “seen” data 

would yield illusory low error results 
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2, ,

1

1 n

Z t
t

E r
nθ θ

=
= ∑

’
 (3.9) 

is used; where θ  denotes the particular model parameters and [ ]Z = X Y  the 

input/output space of the particular data set. The symbol ,tr θ  
is the prediction error 

when the output from the neural net model, ,ˆty θ , is compared with the actual observed 

values from the system data, ty . It is calculated as follow: 

 
, ,ˆt t tr y yθ θ= −  (3.10) 

The error is minimised by adjusting the weights according to the backpropagation 

algorithm, which corresponds to the gradient decent procedure with the inclusion of an 

inertial term to accelerate the convergence (see De Oliveira et al., 2000). The 

Levenberg-Marquart algorithm (Levenberg, 1944; Marquart, 1963) is used in this work, 

as it converges faster than most other training algorithms (Barnard & Aldrich, 2000). 

The number of model parameters in a model structure is known as the model order 

( Md ). For a MLP network the model order depends on the dimension of the input (d ) 

and output ( p ) spaces, and also the number hidden nodes (S ): 

 ( )Md S d p= +  (3.11) 

To determine the number of hidden nodes (S ) in a nonlinear model, an approach, 

which starts with a subclass of model structures and then optimises the model order 

against Rissanen’s minimum description length (MDL) calculated for each model 

structure, is used (Judd & Mees, 1995). This technique encodes the model parameters 

and model error as a bit stream of information. Under the assumption that a more 

complex model and a larger modelling error will need more bits to encode, the model 

structure with the lowest description length (MDL) will be the optimal one. The 

advantage of this approach is that it presents a formalised structure to determine the 

model order; in contrast with other methods were “overfitting”6 usually occurs. The 

minimum description length (MDL) can be approximated by the simpler Schwartz 

Information Criterion (SIC), 
                                                 
6 Implementing a model of too high an order which may fit the training data well, but generalise poor as result of the 

noise component in the data. 
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where the summation spans the set of mean square error of each component of the multi 

dimensional time series. Solving for Equations (3.11) and (3.12) yields the model order 

( Md ) and the number of hidden nodes ( S ) in the network. 

 

Testing for nonstationarity by validating the model: 

Model validation is a crucial step in any model building procedure, as it ensures the 

reliable application of the model on new observations from the same data set or process. 

In this approach, model validation is used to test for nonstationarity. For a time series 

(i.e. process) to be stationary, the estimated model, trained on data from a specific 

segment of the recorded time series, should be able to do a faithful simulation 

(prediction) of observations from any other segment of the time series (Figure 3.5). In 

other words, the prediction error of the model should statistically be the same for all 

segments of the time series. The fitness of the model can be tested with the 2R -statistic, 

 
2

2
2

ˆ( )1
( 1) y

y yR
n σ

−
= −

−
∑ , (3.13) 

where y is the actual observations, ŷ is the model simulated (predicted) values, σ is 

the standard deviation of y  and n  is the length of the predicted data set.  

Another way of testing the model fitness is to plot the actual observations ( y ) and the 

predicted values ( ŷ ) on the same graph, and visually inspect the result. Model 

validation is usually based on a one-step7 prediction, but additional insight into the 

model fitness can be gained by doing the more rigorous free-run8 prediction (Small and 

Judd, 1998). 

                                                 
7 The model is only expected to predict one time step into the future. 
8 In contrast with one-step prediction, the model is expected to predict multiple time steps into the future, which is 

more challenging. 
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Figure 3.5: Illustration of the model-based approach to detect nonstationarity 

 

 

3.1.2 Probing Nonstationarity Using Nonlinear Cross Prediction 
A more formal test for stationarity is proposed by Schreiber (1997). The test checks for 

the compatibility of nonlinear approximations to the dynamics made in different 

segments of the time series. The segments are compared directly and not by way of 

statistical parameters. He claims that this approach provides detailed information about 

episodes with similar dynamics during the measurement period and allows for a 

detailed analysis of physically relevant changes in the dynamics. 

The approach is based on the similarity between parts of the time series themselves, 

rather than the similarity of parameters derived from the time series. The similarity is 
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quantified by evaluating the nonlinear cross-prediction error9 of different segments of 

the time series. Schreiber (1997) claims that the concept is particularly useful in cases 

were nonstationarity causes the shape of the dynamic attractor to change, while most 

dynamical invariants only shows slight change. 

Say one has a time series  { ; 1,... }ns n N=  which is split into contiguous segments of 

length r  and with the i-th segment being ( 1) 1{ ,..., }r
i i r irS s s− += . Traditionally, a 

statistic iγ  is now calculated for each segment and compared with each other, or 

alternatively with γ calculated from the full sequence, to see if there is any significant 

change in the value to suggest nonstationarity. Schreiber (1997), however, follows a 

different approach and use statistics defined on pairs of segments, 

 ( , )r r
ij i jS Sγ γ= . (3.14) 

By using the statistic, ijγ , on pairs of segments, the number of parameters calculated for 

a fixed number of segments increase from  N r  to ( )2N r . It can be argued that a lot 

of redundant information is gained for the purpose of statistical testing, since ijγ  for 

different segment pairs ( ,i j ) are not expected to be independent. Schreiber (1997), 

however, have shown that this will allow the detection of different and more hidden 

kinds of nonstationarities. It will reveal a more detailed picture about the nature of the 

changes and, in particular, will enable one to locate segments of a nonstationary time 

series which are similar enough and which can be analysed together. The test exploits 

the information contained in the relative statistics, ( , )i jS Sγ , in addition to the 

information contained in the diagonal terms, ( , )i iS Sγ . The diagonal entries are 

expected to be systematically smaller. They represent in-sample errors since the training 

and test sets are the same. 

In principle, the statistic ( , )i jS Sγ  can be any quantity which is sensitive to the 

dynamical differences in iS and jS respectively. It is important to use a statistic that is 

                                                 
9 The nonlinear cross prediction error quantifies the predictability of one segment using another segment as database. 
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robust, not too sensitive to the noise level in the data and from which stable estimates 

can be obtained on rather short segments ,i jS S . A statistic that meets these criteria is 

the error of the nonlinear prediction algorithm. Usually stable results can be obtained 

from a few hundred points. The main advantage of this statistic, however, is its ability 

to calculate cross-correlations. In this case the statistic is known as the nonlinear cross-

prediction error, ijγ . 

Let  { }, 1,n XX x n N≡ =  and { }, 1,n YY y n N≡ =  be two time series, or segments of a 

time series. If d is specified as the embedding dimension, the embedding vectors, 

{ }, ,..., ( 1)n Xx n d N= −  and { }, ,..., ( 1)n Yy n d N= − , can be formed from the 

respective time series. The idea is to, for each ny , predict one step into the future, i.e. 

1ny + , but by using X as a database. A locally constant approximation to the dynamics 

relating nx and 1nx +  yields the estimate 

 
'
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εε
+ +

∈

= ∑ . (3.15) 

Here { }' '( ) :X
n n n nU y x x yε ε= − <  is an ε -sized neighbourhood of ny , formed 

within the set X . The term ( )X
nU yε  denotes the number of elements in that 

neighbourhood. For isolated points with empty neighbourhoods the sample mean of the 

segment X is used as an estimate for 1ˆ X
ny + . The root mean squared prediction error, 

( , )X Yγ  of the sequence Y , given X , is defined by 

 ( )
1 2

1 1
1( , )

YN
X
n n

n dY

X Y y y
N d

γ
−

+ +
=

= −
− ∑ . (3.16) 

 

Test methodology: 

It is expected that for a stationary time series ( , )r r
i jS Sγ  would be independent of i and 

j , unless the coherent time of the process is longer than the length of the segments( r ). 

So if there is variability in the time series on scales that is longer than r , which can be 
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caused by either slow parameter drift or changing parameters, the diagonal terms for the 

nonlinear cross-prediction error ( , )r r
i iS Sγ  will be typically smaller than those with 

i j≠ . The results are viewed as a mutual error prediction map in the form of a 3-D 

surface plot, Figure 3.6, or a 2-D colour coded surface, Figure 3.7.  

 

 

 

Figure 3.6: Example of a typical 3-D surface plot for mutual cross-prediction errors.  

 

 

Figure 3.7: Example of a typical 2-D colour-coded mutual prediction map 
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The change in height (Figure 3.6), or change in colour (Figure 3.7), suggests that there 

is an explicit change in the prediction errors round about segment 10. Segments 1 to 10 

are useless for predictions in segments 20 to 30, and vice versa. This indicates a change 

in process parameters at the time corresponding with segment 10. An element of 

confusion when interpreting the results is the possible asymmetry of ijγ . In general 

( , ) ( , )X Y Y Xγ γ≠ . If the attractor of Y is embedded within the attractor of X , data 

points in Y can be predicted with confidence using X as a database. However, Y does 

not contain enough information to predict all data points in X . This asymmetry, 

although sometimes confusing, can provide valuable insights into different kinds of 

nonstationarity. To simplify matters, it is possible to use a symmetrized statistic such as 

ij jiγ γ+ , but then this advantage is lost. 

 

3.1.3 Exploiting the Correlation Dimension as a Test for 

Nonstationarity 
The change detection technique preferred by the author, involves the correlation 

dimension ( cd ) as test statistic. The reason for this is because the correlation dimension 

( cd ) is a quantity that suffers considerably from nonstationarities in the data (Kantz & 

Schreiber, 1997).  The theory behind correlation dimension ( cd ), as well as its merit as 

a test statistic, were thoroughly discussed in Section 2.5.3. This section only revisits 

some of the main issues concerning correlation dimension ( cd ) calculations, and 

explain the approach to detect dynamic change in time series data.  

Remember that for a process to be stationary there must be no significant changes in the 

geometrical shape of the attractor. Judd’s (1992) correlation dimension algorithm 

produces a curve that provides information about the attractor dimension (i.e. 

geometrical shape) on different length scales. It therefore characterizes the topology of 

the attractor, which allows the detection of geometrical changes in the attractor, and 

therefore dynamical changes in the process. This is in sharp contrast with the 

Grassberger-Procaccia algorithm (Grassberger & Procaccia, 1983) which only gives a 

binary result. Many researchers (such as Hively et al., 1999) have attempted to use this 

binary result to detect dynamical change, without much success, and therefore 
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discredited correlation dimension as a useful statistic. In this work, it will be shown that 

the 0( )cd ε -curves calculated through Judd’s algorithm is especially useful for the 

detection of dynamical change.  

 

Test Methodology: 

There are a number of ways to use the 0( )cd ε -curves to detect nonstationarities in a 

time series. A fairly obvious method is to calculate the 0( )cd ε -curves for two halves of 

the time series. If the 0( )cd ε -curves differ from each other, with respect to either the 

region they occupy on the 0( )cd ε -ε  chart or their shape, the process that generated the 

time series can be regarded as nonstationary (Figure 3.8).  

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Illustration 0( )cd ε -curves from two halves of a time series. 
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While the above approach assesses stationarity, it does not give an indication of the 

time at which the process parameter(s) changed, or whether there is a continuous slow 

parameter drift in the process. An improvement on this approach is to divide the time 

series into a number of segments and calculate a 0( )cd ε -curve for each segment 

(Figure 3.9). An increase in the amount of segments the time series is divided into, 

increases the ability to identify the time at which the parameter change took place. 

There is a catch though. As the number of segments increase, the amount of data points 

in each segment decrease, and is there a growing danger that the individual segments 

are too short to capture the total dynamic behaviour of the process (1st case of 

nonstationarity). Furthermore, Judd’s algorithm needs at least 1000 points to make a 

reliable estimation for 0( )cd ε . So apart from keeping a segment long enough to still be 

considered stationary, it seems that the ultimate lower limit of a segment’s size is 1000 

points (This limit will be stretched somewhat in one of the case studies).  

 

 

 

 

 

 

 

 

 

Figure 3.9: Illustration of 0( )cd ε -curves for segments of a time series. From the figure 

it is clear that there was a change in process parameters between segment 2 and 

segment 3. This is suggested by the shift of the curves, as indicated by the green arrows.  
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A further improvement on the previous approach is to calculate the 0( )cd ε -curves for a 

fixed size moving window (Figure 3.10). The moving window approach is useful for 

shorter data sets, which cannot create enough independent segments to make reliable 

conclusions. Even when used on longer datasets it should improve on the sensitivity10 

of the segmentation approach, as it allows for a larger number of realizations within the 

same timeframe.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Illustration of the moving window approach. This approach is ideal for 

online monitoring of changing parameters. 

 

The moving window approach can be particularly useful in the online monitoring of 

chemical processes. Here the 0( )cd ε -curves are calculated continuously as new data 

from the process become available. Say for example that a process is being monitored 

where 100 new data points become available every minute, and it has been determined 
                                                 
10 Sensitivity in this context means the time it takes to detect a change in parameters.  
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that a window size of 2000 data points will meet the requirements. It is then possible to 

calculate a new 0( )cd ε -curve every minute, using the 100 new data points together 

with the last 1900 data points from the previous window. In this manner dynamic 

changes in chemical processes can be monitored continuously online. 

 

3.2 Change Detection Methodology 
The change detection algorithms are evaluated by applying them to three case studies. 

The case studies were selected not only to reflect a broad range of dynamical systems, 

but also out of practical considerations. Each case study is approached as if the 

underlying dynamic behaviour of the system is unknown – which will be the case in 

most real world applications (Figure 3.11): 

1) Time series data from the process is first classified through surrogate data 

analysis. This to acquire more information on the dynamical behaviour of the 

system. Knowing whether the system under investigation is nonlinear 

deterministic or stochastic will indicate whether more advanced change 

detection techniques are needed (as discussed in this work), or if traditional SPC 

methods will be sufficient. 

2) If the system prove to be nonlinear deterministic, the optimal embedding 

parameters (time delay and dimension) for the data set are determined and the 

state space reconstruction done. 

3) The change detection techniques are applied to the data to determine whether 

(and when) dynamic changes occurred in the process.  

The change detection techniques will be evaluated on their ability to detect intrinsic 

changes in the dynamics of the processes, as well as the time necessary to detect these 

changes.  
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Figure 3.11: A flow diagram of the approach to detect parameter change. 
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4 CASE STUDIES 
 

 

Evaluating change detection techniques using actual process data is not ideal.  The 

major problem is that one usually do not know beforehand whether the time series data 

are stationary or not (This is the reason for developing nonstationarity tests!). Reliable 

conclusions about the performance of these techniques cannot be made if the behaviour 

of the data is unknown. It is for this reason that two of the case studies are based on 

simulated data with manually induced parameter changes. Nevertheless, because the 

whole point of this research is to improve the control of real-life chemical processes, it 

is important to include a case study based on observations from an actual process. The 

third case study is based on actual data from a metal leaching plant.  

 

4.1 Autocatalytic Reactor 
The first case study is a classic chemical engineering problem. The system is consists of 

two parallel, isothermal autocatalytic reactions taking place in a continuous stirred tank 

reactor (CSTR) (Lee & Chang, 1996). 

 

 

 

 

 

 

Figure 4.1: Schematic illustration of the autocatalytic reactor. 

A 

B 

D 

A 

B 

D 

C 



CASE STUDIES 4-2

The kinetics of the system proceeds according to the following steps: 

             2 3A B B+ →   (4.1) 

             B C→   (4.2) 

            2 3D B B+ →   (4.3) 

 

The kinetics is governed by the following rate equations: 

           2
1A A Bk C Cγ− =   (4.4) 

           2C Bk Cγ− =   (4.5) 

           2
3D D Bk C Cγ− =   (4.6) 

 

When the reaction is carried out in a CSTR, the system can be described by three 

ordinary differential equations: 

           21
1 1 1 31dx x D x x

dτ
= − − ⋅ ⋅   (4.7) 

          22
2 2 2 31dx x D x x

dτ
= − − ⋅ ⋅   (4.8) 

         2 23
3 3 1 1 1 3 2 2 2 31 (1 )dx D x D x x D x x

d
γ γ

τ
= − + ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (4.9) 

 

The parameters in differential equations are explained by the following relationships: 
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where ix  is the dimensionless concentration of AC , DC  and BC ;  iD  the Damkohler 

numbers for the species A , D and B ; iγ  the ratios of the species in the feed; and τ  the 

dimensionless time. 

With the parameters 1 18000D = , 2 400D = , 3 80D = , 1 1.5γ =  and 2 4.2γ = , the 

continuous autonomous system represented by Equations (4.9) – (4.11) exhibits chaotic 

behaviour (Lee & Chang, 1996). The system is solved by generating 10000  

observations using the ODE45 subroutine in MATLAB. The time is varied from 0  to 

50  using a sampling rate of 0.005 . At 50τ = , a parameter change is induced 

whereby the parameters 1γ , 2γ  slowly change (at a constant rate) from 1 1.5γ = , 

2 4.2γ =  to 1 1.55γ = , 2 4.25γ =  over the next 10000  observations. At the point 

where 100τ = , the two parameters are kept fixed at 1 1.55γ =  and 2 4.25γ =  for the 

next 10000  observations, until 150τ = . The result is a time series consisting of three 

regions: 

1) Observations 1 10000→  – A stationary part were all the system parameters are 

kept constant. 
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2) Observations 10001 20000→  – A nonstationary part with a slow, but 

constant, parameter drift. 
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3) Observations 20001 30000→  – Parameters stabilize at their new values to 

form a second stationary part. 
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What in fact happened to the process, from a real-life perspective, is that the feed 

concentrations 0AC  and 0DC , after being constant for a period of time, gradually 

increased over time and stabilized at a new higher value; thus creating a nonstationary 

time series. All the calculations in this case study are based on the 1x  observations 

(shown in Figure 4.2), as it is assumed that only the 1x - variable could be measured. 

 

 

Figure 4.2(a): All 30 000 data points from the nonstationary time series generated by 

the autocatalytic reaction. 
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Figure 4.2(b): Data points 9500 to 10500 from the nonstationary time series generated 

by the autocatalytic reaction. 

 

It is impossible to detect the hidden nonstationarities in time series (shown in Figure 

4.2(b)) visually. From Figure 4.2(a) it can be seen that the mean and standard deviation 

of the data remain virtually unchanged during the parameter changes. Traditional SPC 

methods will be unable to detect these changes. More advanced techniques, which can 

characterise the dynamic behaviour of the system, is needed. 

 

4.1.1 State Space Reconstruction of the Autocatalytic System 
The first step in state space reconstruction is to calculate the embedding parameters, i.e. 

the time delay (or time lag) and the embedding dimension. Either the autocorrelation 

function, or the average mutual information (AMI) criterion can be used to determine 

the time delay. The average mutual information statistic gives the following result 

(Figure 4.3): 

 

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

x 10
4

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time index

X1

Parameter change 



CASE STUDIES 4-6

 

Figure 4.3: The average mutual information, as function of the time delay, for the 

autocatalytic reaction. 

 

The most suitable time delay is where the first minimum value of the average mutual 

information statistic occurs (Fraser & Swinney, 1986) – in this case 17 time steps.  

Calculating the time delay with the autocorrelation function gives Figure 4.4 as result. 

Closer inspection of the graph suggests 15 time steps as the embedding delay – the first 

value where the autocorrelation function is zero. The values for both the average mutual 

information and autocorrelation function are very close. This is not always the case. In 

principle, the AMI statistic gives better results than the autocorrelation function. The 

reason being that the autocorrelation function is a linear statistic, while the AMI statistic 

takes the aspect of chaotic behaviour into consideration (as discussed in Chapter 2). 

The autocorrelation function is also known to sometimes overestimate the time delay, in 

which case it is better to use the mutual information statistic (Barnard & Aldrich, 2000). 
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Figure 4.4: Autocorrelation function as statistic to determine time delay for the 

autocatalytic reaction. 

The embedding dimension is determined by the FNN (False Nearest Neighbours) 

algorithm, using 17 time steps as the embedding delay. Figure 4.5 shows that the 

fraction of false nearest neighbours is almost zero at an embedding dimension of 3. 

Figure 4.5: Fraction of FNN as function of embedding dimension for the autocatalytic 

reaction. 
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The system’s attractor can now be reconstructed using a time delay of 17 and an 

embedding dimension of 3. The reconstructed attractor is shown in Figure 4.6. 

Figure 4.6: Reconstructed attractor for the autocatalytic reaction system 

 

 

4.1.2 Surrogate Data Analysis for the Autocatalytic System 
When investigating any system, it is important to know whether it exhibits deterministic 

behaviour, or linear stochastic behaviour. This classification will provide valuable 

insight into the dynamics of the autocatalytic process, and will confirm whether more 

advanced change detection techniques need to be used. Fifteen (15) type 2 surrogate 

data sets are generated using the Amplitude Adjusted Fourier Transform (AAFT) 

algorithm. These surrogates are compared with the actual data using Judd’s correlation 

dimension ( cd ) estimate as statistic. The data sets (both the actual data and its 

surrogates) are embedded into 10 dimensions to ensure that the attractor from the actual 

data set has completely unfolded. 
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Figure 4.7: Correlation dimension curves for surrogates and actual data for 

autocatalytic reaction.  

 

There is a definite separation between the surrogate data sets and the actual data 

(Figure 4.7). This, as well as the low dimensionality of the cd - curve from the actual 

data, suggests that the system is nonlinear and governed by highly deterministic rules. 

The outcome is as expected, since the data were simulated from three nonlinear 

differential equations governing the dynamics of the system – resulting in a low (three) 

dimensional attractor.  

 

4.1.3 Modelling the Autocatalytic System 
Knowing that the system under investigation is most likely nonlinear deterministic, the 

use of MLP-neural networks will probably serve best in modelling the data. The idea is 

to see how nonstationarities in the data influence the possibility of modelling the 
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system. A deterioration in the performance of the model will serve as a test for detecting 

nonstationarities in the data. 

To start with, a model is fitted to the first 5000 data points of the time series. The 

Levenberg-Marquardt algorithm is applied to estimate the model parameters. The 

algorithm is instructed to search for an optimum model that has between 2 and 20 

hidden nodes. It is important not to “overfit” the model, as it may lead to the problems 

described in Section 3.1.1. The algorithm attempts to minimise the Schwartz 

Information Criterion (SIC) for the model. As soon as there are 3 consecutive model 

estimates, for which the SIC does not improve on the current global minimum, the 

parameter estimation ends. The number of hidden nodes that corresponds to this 

minimum SIC, is the amount used in the MPL network. Figure 4.8 illustrates how the 

number of hidden nodes was optimised. In this particular instance, 17 nodes is the 

optimum. 

Figure 4.8: History of the moving global minimum of the Schwartz Information 

Criterion versus the number of hidden nodes for the autocatalytic system. 

The model, estimated from the first 5000 data points of the time series, is now used to 

predict “unseen” data from the rest of the time series, while its performance is 

evaluated. The free-run prediction is used to validate the model, as it is a more rigorous 

test of the validity of the model than the one-step prediction. Since the simulated data 

are noise free, the one-step validation will give very low prediction errors ( 2 1R ≈ ) in 
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particular, and more insight will be gained by analysing the free-run predictions. This 

was verified by fitting the model to any part of the time series, even after the parameters 

had changed, and it still gave a 2R value of essentially one. 

The stationarity of the process is assessed by performing a series of free-run predictions 

on the different dynamic regions of the time series: 

1) Data points 5000-5200 – part of the first dynamical stationary segment of the 

data. 

2) Data points 15000-15200 – part of the segment where slow parameter drift 

occured. 

3) Data points 25000-25200 – part of the segment where the process parameters 

had stabilized again. 

Although the model still performs reasonably well in all three instances, it is evident (by 

examining Figures 4.9 to 4.14), that the performance of the model deteriorates when 

trying to predict data outside its dynamic range. The model gives an excellent 

prediction of “unseen” data within the same dynamic range (Figure 4.9). It predicts the 

200 data points without a problem, and this is verified by the low residuals1 (Figure 

4.10). Predictions outside the model’s dynamic range become increasingly more 

difficult. The model cannot predict the data with the slow parameter drift as well as 

before (Figure 4.11) and the residuals are almost 10 times larger than on data with the 

same dynamic behaviour (Figure 4.12). The free-run prediction almost breaks down 

when predicting data from the segment with the new process parameters. It is only 

capable of predicting about 30 data points into the future (Figure 4.13) and the 

residuals are again almost 10 times larger than in the previous segment (Figure 4.14). 

This deteriorating performance of the initial model indicates that there might have been 

some changes in the process parameters, had it been unknown beforehand.  Although 

this is not a refined method for detecting nonstationarity, it can serve as an indication of 

changing parameters. 

                                                 
1 The residual is the difference between the actual and predicted value. 
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Figure 4.9: Free-run prediction of data points 5000-5200. 

 

Figure 4.10: Plot of predicted values versus actual values (5000-5200), and the 

residuals. 
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Figure 4.11: Free-run prediction of data points 15000-15200. 

 

 Figure 4.12: Plot of predicted values versus actual values (15000-15200), and the 

residuals. 
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Figure 4.13: Free-run prediction of data points 25000-25200. 

 

Figure 4.14: Plot of predicted values versus actual values (25000-25200), and the 

residuals. 
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4.1.4 Detecting Dynamic Change in the Autocatalytic Reactor using 

Nonlinear Cross Prediction – Schreiber’s Approach 
 

In Schreiber’s (1997) approach the nonlinear cross-prediction error between different 

segments of the time series is calculated and viewed in the form of a mutual map. The 

time series is divided into 30 segments, each containing 1000 data points. The mutual 

cross-prediction errors between these segments are calculated using the previously 

determined embedding parameters of 17l = and 3d = . The results can be viewed in 

the form of a 3-D surface plot (Figure 4.15) and a 2-D colour-coded surface (Figure 

4.16). The plots of the mutual prediction errors indicate that there is a change in process 

parameters round about segment 15-17, which corresponds to data points 15000-17000. 

Segments 17-30 are useless for predicting segments 1-17, which suggests that the 

process dynamics from these two parts are not the same.  

Something interesting is revealed by a closer inspection of the mutual prediction maps. 

While segments 17-30 cannot predict segments 1-17 with great success, segments 1-17 

are still very useful for predicting segments 17-30. This may seem contradictory, as one 

usually expects that a change in parameters would result in an equally bad result both 

ways. In the previous chapter it was stated that, while the prediction error is mostly 

symmetric, in general ( , ) ( , )X Y Y Xγ γ≠ .  The asymmetric result point towards the 

possibility that the attractor for the data points 17000-30000 (more or less the time 

where the process parameters stabilized at their new values) is somehow embedded 

within the attractor for the data points 1-15000 (more or less the time of the original 

fixed process parameters).  This is confirmed by plotting the two parts of the 

reconstructed attractor on the same axis (Figure 4.17).  
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Figure 4.15: 3-D surface plot of mutual cross-prediction errors for the autocatalytic 

reaction. 

 

 

 

Figure 4.16: 2-D colour-coded mutual prediction map for autocatalytic reaction. 
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Figure 4.17: Attractors form by the two different parameters sets are embedded into 

each other. 

 

This explains why the neural net model was able to predict data points in the latter part 

of the time series sequence (data points 20000-30000) reasonably accurately. The 

situation underlines the inherent problems when using models to detect dynamic 

change. Has the parameter change been the other way around, the model performance 

would have deteriorated much quicker. The manner in which the time series sequence is 

structured now, however, favours the model fitness, which is why the model-based 

technique did not detect nonstationarity with as much confidence. 
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4.1.5 Using the Correlation Dimension to Detect Dynamic Change in 

the Autocatalytic Reactor 

The correlation dimension ( cd ) is a statistic that characterizes the topology of an 

attractor. When process parameters change, the geometrical shape of the system 

attractor also changes. This makes the correlation dimension ( cd ) potentially an “ideal” 

statistic for detecting nonstationarity. Especially when using Judd’s algorithm, as it 

provides details about the geometry of the attractor on different length scales.  

The same embedding parameters ( 3d =  and 17l = ) are used to reconstruct the 

attractor from which the 0( )cd ε - curves will be calculated. The first step in detecting 

nonstationarity is to calculate the 0( )cd ε - curves for the first and second halve of the 

time series. If the 0( )cd ε -curves differ from each other, with respect to either the 

region they occupy on the 0( )cd ε -ε  chart and/or their shape, the process is presumed 

nonstationary. The 0( )cd ε -curves for the two halves of the time series is shown in 

Figure 4.18. 

Figure 4.18: 0( )cd ε -curves from the two halves of the autocatalytic time series. 
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The dissimilarity of the 0( )cd ε -curves in Figure 4.18 confirms nonstationarity. 

Although it has now been determined that the time series is nonstationary, the extent of 

the parameter change is still unknown. Dividing the data set into smaller segments (6 

segments with 5000 points each) proves to be more useful (Figure 4.19). 

Figure 4.19: 0( )cd ε -curves from six segments, each containing 5000 data points, of 

the autocatalytic time series. 

 

The similarity of the first two 0( )cd ε -curves (segments containing data points 1-5000 

and 5000-10000) point towards the fact that no, or very slight, parameter change took 

place. The part of the time series containing the first 10000 data points is thus 

considered stationary. The parameter change is revealed by the 0( )cd ε -curve from the 

third segment (10000-15000). The fact that this 0( )cd ε -curve, as well as the curve from 

segment four (15000-20000), moves out of the “stationary” region, indicates a change 

in process parameters. The curves from the last two segments (20000-25000 and 25000-

30000) are again very similar and suggest that the drifting parameters have stabilized at 

new values. 
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When analysing this particular graph (Figure 4.19) it is clear that nonstationarity can 

only be reliably detected after observing 15000 data points from the process; although 

the parameter drift started just after the 10000th point. This can be improved by 

increasing the number of segments, and thus pinpointing the time at which the 

parameter change took place with greater accuracy. The only problem with this advance 

is that Judd’s algorithm is very “data hungry” and gets less accurate with a decreasing 

number of data points. Furthermore, by decreasing the number of data points in a 

segment, one risks working with a data set that is nonstationary as a result of too few 

data points.  

One way to avoid this problem is to use a moving window. Figure 4.20 illustrates this 

approach using a fixed-size moving window of 6000 data points, which moves forward 

by 2000 data points with each step. 

 

 

 

 

 

 

 

 

Figure 4.20: Calculating 0( )cd ε -curves from a moving window for the autocatalytic 

reaction time series. 

In this plot the blue curves represents the part of the time series were the process 

parameters are constant, the red curves where the parameters are in the process of 

changing, and the green curves the part where the parameters stay fixed at their new 

value. No parameter change can be detected from the first four moving window 
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segments (up to data point 12000). The fifth moving window segment (8000-14000) 

shows the first signs of a possible parameter change. The moving window approach is 

an improvement on the previous 6-segment approach in that only 14000 data points are 

necessary to detect the parameter drift, compared to 15000. The fourth moving window 

segment (6000-12000) is not capable of picking up the change, as 4000 of the 6000 data 

points are still part of the stationary part of the time series and only slight parameter 

change takes place in the next 2000 points. 

The moving window approach can be especially useful for online monitoring of 

changes in process parameters, but also where the available amount of data is limited.  

 

4.1.6 The Effect of Noise in the Autocatalytic Process Data 
One might argue that data measured from real-life processes are not, as is the case for 

the previous simulated data, noise free. To test the effectiveness of the change detection 

techniques on noisy data, Gaussian measurement noise was added to the autocatalytic 

process data used in the previous case study. The noise level was set to 10% of the 

standard deviation of the data. The effect of adding measurement noise to the data is 

evident from Figure 4.21. 

 

 

 

 

 

 

 

Figure 4.21: Data points 9750 to 10250 from the nonstationary time series generated 

by the autocatalytic reaction – noisy data. 
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As in the case for the noise free data, the optimal embedding parameters are determined 

by the AMI and FNN statistics. An embedding delay of 15l =  (Figure 4.22) and an 

embedding dimension of 6d =  (Figure 4.23) are chosen. While the embedding delay 

for the noisy data is close to that of the noise free data (15 time steps vs. 17 time steps), 

the embedding dimension for the noisy data are considerably higher compared to that of 

the noise free data (6 dimensions vs. 3 dimensions). This demonstrates that noise 

increases the dimensionality of the data. The resulting reconstructed attractor is shown 

in Figure 4.24. The presence of noise in the reconstructed attractor is clearly visible; as 

well as the dissimilarity in shape when compared to that of the noise free data. 

 

 

 

 

 

 

 

 

 

Figure 4.22: The average mutual information, as function of the time delay, for the 

autocatalytic reaction – noisy data. 
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Figure 4.23: Fraction of FNN as function of embedding dimension for the autocatalytic 

reaction – noisy data. 

 

 

 

 

 

 

 

 

Figure 4.24: Reconstructed attractor for the autocatalytic reaction system, projected 

onto the first three principal components – noisy data. 
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Surrogate analysis of the noisy data also suggests that the process which generated the 

data could be nonlinear deterministic. The noise had no effect on the analysis, apart 

from slightly increasing the 0( )cd ε -values for the actual data.  

 

 

 

 

 

 

 

 

 

Figure 4.25: Correlation dimension curves for surrogates and actual data for 

autocatalytic reaction – noisy data.  

 

The same approach, used for the noise free data, is used to detect dynamic changes in 

the noisy data. The model parameters are estimated from the first 5000 data points of 

the noisy time series, and then used to predict unseen data from the rest of the time 

series. Figure 2.26 shows a free-run prediction of the model on the first stationary part 

of the time series. The performance of the model deteriorates when predicting data from 

the last part of the time series, which suggest that there was a change in the process 

parameters (Figure 2.27). This is consistent with the results obtained from the noise 

free data. 
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Figure 4.26: Free run prediction on the first part of the time series where the process 

parameters were unchanged – noisy data    

 

 

 

 

 

 

 

 

 

Figure 4.27: Free run prediction on the last part of the time series where the process 

parameters had already changed – noisy data.   
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The method of nonlinear cross predictions (Schreiber, 1997) gives essentially the same 

results (a parameter change roundabout data point 15000) on the noisy data, as it did on 

the noise free data (Figure 4.28 and Figure 4.29). The only real difference is the 

magnitude of the prediction errors. As one would expect, the prediction errors are larger 

for the noisy data than for the noise free data. 

Figure 4.28: 3-D surface plot of mutual cross-prediction errors for the autocatalytic 

reaction – noisy data. 

Figure 4.29: 2-D colour-coded mutual prediction map for autocatalytic reaction – 

noisy data. 
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An assessment of the correlation dimension statistics from the noisy data gives similar 

change detection results to that obtained from the noise free data. The moving window 

approach (Figure 4.30) confirms a parameter change from the 5th moving window 

segment (data points 8000-14000) onwards.  

Figure 4.30: Calculating 0( )cd ε -curves from a moving window for the autocatalytic 

reaction time series – noisy data. 

 

The amount of measurement noise added to the data in this case study, did not have a 

significant impact on the ability to reliably detect changes. 
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4.2 The Baker’s Map 
Although this system does not represent a chemical process, it is a well-known chaotic 

system and is a popular choice for benchmarking stationarity tests (Schreiber, 1997; Yu 

et al., 1998; Yu et al., 1999). This is the main motivation for using the baker’s map as a 

case study, as it will give a good idea of how the change detection techniques discussed 

in this work perform in comparison to other proposed methods. 

A generalization of the baker’s map is given by the equations, 
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The system is a two dimensional piecewise linear mapping defined for [ ]0,1nv ∈ , α  

and ] [0,1β ∈ . A nonstationary time series is created by varying β slowly with time, 

 
n
N

β = , 

while the parameter α  is kept fixed at 0.4α = . Forty thousand data points are 

measured ( 40000N = ) by recording w u v= + . The running mean is subtracted from 

this value ( nw ), and the time series is normalized to unit running variance. The 

resulting time series becomes: 

 

( )2

n k
n

k
k

w w
x

w w

−
=

−
 (4.15) 

Here k⋅ represents the average over the indices ' ( ),..., ( )n n k n k= − + , with 50k =  

in this instance. Since most of the observables in this sequence remain unchanged, the 

nonstationarity is very hard to detect. The running mean and variance are constant up to 

finite sample fluctuations, and autocorrelations show only very small variation 

(Screiber, 1997). When inspecting the entire time series visually (Figure 4.31(a)), one 

would only suspect that the process parameters have changed after observing at least 
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25000 data points (indicated by an increase in the variance of the observations). Since 

the system is subjected to a slow parameter drift, chances of observing parameter 

changes when viewing only a small number of data points are even more remote 

(Figure 2.31(b)). 

 Figure 4.31(a): Time series data for the nonstationary baker’s map – all 40000 data 

points 

 

 

 

 

 

 

 

Figure 4.31(b): Time series data for the nonstationary baker’s map – data points 24500 

to 25500. 
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4.2.1 State Space Reconstruction of the Baker’s Map 
Researchers that used the baker’s map for benchmarking their stationarity tests, 

reconstructed the attractor by embedding the time series into two dimensions ( 2d = ) 

using a time delay of one ( 1l = ).  To be consistent and ensure comparable results, the 

same embedding parameters are used in this case study. The reconstructed attractor is 

shown in Figure 4.32. 

Figure 4.32: Reconstructed attractor for the baker’s map. 

 

4.2.2 Surrogate Data Analysis for the Baker’s Map 
To determine if the baker’s map exhibit nonlinear deterministic behaviour, 15 type 2 

surrogate data sets are generated, again using the AAFT algorithm. The 0( )cd ε -curves 

from the actual data and surrogate data (embedded in 10 dimensions) are compared in 

Figure 4.33. The result from the surrogate data analysis cannot confirm nonlinear 

determinism with confidence. While the 0( )cd ε -curve for the actual data is lower 

dimensional and separated from the surrogates for 0log 1.6ε < − , the opposite is true 

for the larger length scales. This inconclusive result is most probably due to instabilities 

in the correlation dimension algorithm.  
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Figure 4.33: 0( )cd ε -curves for surrogate and actual data when embedding into 10 

dimensions.  

 

 

4.2.3 Modelling the Baker’s Map 
Modelling the baker’s map proved to be more challenging than that of the autocatalytic 

system. In the case of the autocatalytic system, a one-step prediction 2R -value of 

essentially one were obtained on “unseen” data, but the best model for the baker’s map 

could only achieve a 2R -value of 0.912. The optimal model, as determined by the SIC, 

has 11 hidden nodes (Figure 4.34). 
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Figure 4.34: History of the moving global minimum of the Schwartz Information 

Criterion versus the number of hidden nodes for the baker’s map. 

 

Since the estimated model does not provide a very good fit to the data, the one step 

prediction, rather than the free-run prediction, will be used to validate the model. It will 

be useless to compare free-run predictions for detecting nonstationarity, as even the 

training (“seen”) data gave bad free-run results (Figure 4.35).  

 

 

 

 

 

 

Figure 4.35: Free-run prediction of model training data for baker’s map. 
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Figure 4.36: One step prediction for data points 7700 to 7750 to illustrate the model 

fitness. 

The 2R validation results, as calculated from different segments of the time series, are 

given in Table 4.1. Figure 4.36 shows the one step prediction model fit for the segment 

5000-10000. 

 

 Table 4.1. 2R - statistic results for one-step prediction of different segments from the 
baker’s map time series. 

Data Segment R2-statistic Data Segment R2-statistic 

5000-10000 0.857 25000-30000 0.68 

10000-15000 0.792 30000-35000 0.73 

15000-20000 0.675 35000-40000 0.761 

20000-25000 0.622 
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It is hard to make meaningful conclusions, with respect to detecting parameter change, 

when validating the model on consecutive segments of the time series. At first, it seems 

as if the model gets worse when predicting observations further away from the training 

data set. This is evident when comparing the decreasing 2R -values for segments 5000-

10000 to 20000-25000. For segments 25000-30000 to 35000-40000 the 2R -values 

increase again, which could lead one to believe that the parameters must be returning to 

their previous states. This is not the case.  

The fact that the 2R -values from different segments of the time series is not statistically 

the same, suggests that the process generating the data might be nonstationary. 

Although this approach at least suggests that there might be parameter change, it gives 

no real indication of the extent of the nonstationarity. 

 

 

4.2.4 Detecting Dynamic Change in the Baker’s Map Using 

Nonlinear Cross Prediction 
For this approach, the baker’s map time series is divided into 40 segments of 1000 data 

points each, and embedded into two dimensions with a time delay of one. The mutual 

nonlinear cross predictions between the segments are again illustrated by means of a 3-

D surface plot (Figure 4.37) and a 2-D colour-coded surface (Figure 4.38). 

Both figures indicate that predictability degrades rapidly with the temporal distance of 

the segments.  Nonstationarity can only be confirmed with confidence after taking into 

account at least 15 to 20 segments. In other words, about 15000 to 20000 data points 

must be observed before a change in the process parameters can be detected. The fairly 

constant rate (evident when analysing Figure 4.37) at which the predictability degrades 

indicates that the change in dynamics may be as result of a slow parameter drift, rather 

than to an instantaneous parameter change. 
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Figure 4.37: 3-D surface plot of mutual cross-prediction errors for the baker’s map 

 

 

 

Figure 4.38: 2-D colour-coded mutual prediction map for the baker’s map 
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4.2.5 Using the Correlation Dimension to Detect Dynamic Change in 

the Baker’s Map 
 

Using the same embedding parameters than before ( 2d = and 1l = ), a 0( )cd ε -curve 

for each of the two halves of the baker’s map time series is calculated as a starting 

point. The dissimilarity of the two curves (Figure 4.39) indicates that there must be 

differences in the geometrical structure of the attractors reconstructed from the two 

halves of the time series – suggesting nonstationarity in the data. 

 Figure 4.39: 0( )cd ε -curves from the two halves of the baker’s map time series. 

 

To get a better idea of when the parameter change took place, and the extent of the 

change, the time series is divided into 8 segments containing 5000 data points each. The 

0( )cd ε -curves calculated from these segments are given in Figure 4.40. Dissimilarity 

in the curves calculated from the consecutive segments of the data again confirms that 

the process parameters have not stayed constant throughout the observation period. No 

two curves look similar, which implies that there is a continuous parameter drift 
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throughout the observation period. Using this particular segmentation, it is not possible 

to identify any stationary part in the time series. 

 

Figure 4.40: 0( )cd ε -curves calculated from eight consecutive segments, each 

containing 5000 data points, of the baker’s map time series 

 

 

It would be interesting to see how quickly nonstationary can be confirmed. In other 

words, how many data points are necessary before a change in the parameters can be 

detected with confidence? The moving window approach is better suited for such an 

analysis. Using a window size of 5000 data points with a step size of 1000 data points 

generates Figure 4.41.  A comparison of the first two curves from the moving window 

segments already suggests that nonstationarity may be present. Comparing curves from 

consecutive moving window segments confirms the suspicion of nonstationarity in the 

data. Only about 7000-8000 observations are necessary to reliably detect 

nonstationarity, using correlation dimension as test statistic, in the moving window 

approach. 
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Figure 4.41: Calculating 0( )cd ε -curves from a 5000 point moving window for the 

baker’s map. 

 

Figure 4.42: Calculating 0( )cd ε -curves from a 2000 point moving window for the 

baker’s map. 
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The size of the moving window can even be reduced to 2000 data points, to reduce the 

number of data points needed to detect the parameter change (Figure 4.42). One should 

just remember that decreasing the window size, increases the risk of working with 

segments that are nonstationary as result of too few data points. In this instance, only 

4000 data points is necessary to reliably detect nonstationarity. This is an improvement 

on Schreiber’s mutual nonlinear cross prediction method where at least 15000 

observations are needed.  

 

It also outperforms the technique used by Yu et al. (1998 & 1999) where 5000 to 10000 

observations are needed to reliably detect such hidden nonstationarity. They make use 

of space time-index plots to probe dynamical nonstationarities in the data. They believe 

that in a space time-index plot, the density distributions as a function of normalized 

time-index are V-shaped when the data are nonstationarity. 
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4.3 Real Data from a Metal Leaching Plant 
The problem with using actual plant data to evaluate dynamical change detection 

techniques, is to obtain time series data that are believed (or known) to be 

nonstationary. One way to do this is by visual inspection, although it can sometimes be 

misleading.  In this case study, data from a metal leaching plant will be used (Figure 

4.43). The data set consists of 1747 observations, where the concentration of the 

valuable metal is the measured variable. The time interval between successive 

observations is one day. Although the time span of the data set under consideration may 

seem long (about 5 years), a dynamic change in this process can typically be as result of 

a change in the composition of the ore. Such a change may take years to manifest. So 

even if the change detection techniques are only able to detect changes in the process 

after say a few years, it is still fast compared to the dynamics of the overall process. 

Figure 4.43: Data from a metal leaching plant. 

 

Visual inspection of the data plot suggests that there might be a change in the process 

parameters roundabout observation 800. The data prior to this point look more or less 

stationary, but the dynamic behaviour of the process from that point onwards seems to 

have changed. To remove the obvious linear nonstationarity (changing mean) from the 

data, a 10-point moving average is subtracted from the observations. The resulting time 
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series is shown in Figure 4.44. The potential nonstationarity in the data is now less 

obvious.  

 

Figure 4.44: Linearly adjusted data from the metal leaching plant 

 

The fact that the data set is very short might prove to be problematic. When evaluating 

measures for detecting nonstationarity, large data sets are preferred.  Results become 

increasingly more unreliable with shorter data sets. 

 

4.3.1 State Space Reconstruction of Metal Leaching Data 
Being a real-life process, one must assume that there is some degree of measurement 

noise present in the data. State space reconstruction by means of singular spectral 

analysis (SSA) is more robust against noisy data when compared to traditional 

embedding methods. One of the reasons is that the PCA step of SSA filters out some of 

the unwanted noise, which normally results in a “cleaner” reconstructed attractor 

(Kugiumtzis & Christopherson, 1997). It is for this reason that SSA will be used to 

reconstruct the attractor. 
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The plot of the autocorrelation function suggests an initial embedding dimension of 5 

(Figure 4.45). The eigenvalues of the covariance matrix are given in Figure 4.46. Each 

of the eigenvalues explains a certain variance in the data.  When the initial embedding 

dimension for a given data set is large (e.g. > 10), the embedding dimension can be 

reduced by selecting only the most prominent eigenvalues, i.e. the eigenvalues that 

explain most of the variance. The embedding dimension is then reduced to the number 

of eigenvalues chosen and PCA is used to reduce correlations between the reconstructed 

vectors.  

 

 Figure 4.45: Autocorrelation function of the metal leaching data 

 

It is important however to make sure that at least 95% (rule of thumb) of the variance in 

the data can still be explained by the retained eigenvalues. In this case, there is no need 

to reduce the dimension as the initial embedding dimension is already at a low value of 

5. The reconstructed attractor (Figure 4.47) does not seem to have any geometrical 

structure, as is expected from a deterministic system. This does not automatically mean 

that the data are stochastic. Remember that the attractor can only be viewed in three 

dimensions (two dimensions actually, as it is viewed on a flat surface), although the 

actual reconstructed attractor is 5-dimensional. In three dimensions, the attractor is 
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projected onto its three principal axes as determined by the three largest eigenvalues. 

The first three principal components explain only about 91.6 % of the variance in the 

data. It is therefore still possible that the attractor has some geometrical structure in five 

dimensions. The best way to see if the data exhibit some deterministic behaviour is by 

doing surrogate data analysis. 

 

 

 

 

 

 

Figure 4.46: Eigenvalues of the covariance matrix of the metal leaching data. 

 

 

 

 

 

 

 

 

Figure 4.47: Reconstructed attractor for the metal leaching data, projected onto the 

first three principal components. The variance explained by each principal component 

is given in brackets. 
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4.3.2 Surrogate Data Analysis of the Metal Leaching Data. 
The AAFT algorithm is used to generate 15 type 2 surrogate data sets, which is then 

compared to the actual data set using the correlation dimension as test static (Figure 

4.48). 

Figure 4.48: Correlation dimension curves of surrogate and actual metal leaching data 

 

There is a definite separation between the curve of the actual data and that of the 

surrogate data sets. This suggests that the data could be deterministic, although the 

range of 0( )cd ε -values of the curve from the actual data is larger than the embedding 

dimension of the data (> 5). If there is any determinism in the data, it is of a higher 

order. Noise in the data increases the dimensionality of an attractor, which can be the 

case here. The process data therefore lies in a grey area: not entirely deterministic, but 

also not entirely stochastic.  

It is also important to note that Judd’s algorithm for calculating the correlation 

dimension gets increasingly inaccurate for 0( )cd ε -values above ±4 as result of a built 

in bias (Judd, 1992). When used as a pivotal statistic to compare data sets (as is done 
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with the surrogate data analysis) it can still be used with great success, since one is only 

interested in the relative differences.  

 

4.3.3 Modelling the Metal Leaching Data 
Before even attempting to model the data, one can already identify two issues that will 

complicate matters. One is the weak determinism in the data and the other is the lack of 

a long enough data set (only 1747 observations in the time series). The lack of data will 

have a severe impact on the ability of the model-based detection technique to give 

meaningful results 

The time series is divided into four segments, each containing about 450 data points. A 

model is fitted to the first 450 data points of the time series. The model is then validated 

using data (“unseen”) from the other three segments. It should be clear that this 

approach is fundamentally limited, as there are only three segments from which results 

can be obtained. One can also not afford splitting up the data set into more segments, as 

450 data points are already pushing the limit of getting statistically credible results. 

A MLP neural network model with 2 hidden nodes, as determined by the SIC (Figure 

4.49), is used. According to the SIC an increase in the number of hidden nodes will not 

improve the model much. This is evident from the horizontal line in Figure 4.49. 

 

 

 

 

 

 

Figure 4.49: SIC for modelling the metal leaching data. 
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Figure 4.50: Predicted and observed values for on-step prediction of metal leaching 

data. 

 

The one step prediction model fit is shown in Figure 4.50 for a few of the data points. 

The 2R  values for the one-step prediction for each of the three segments are given in 

Table 4.2. From these results, it seems as if the process was stationary in the first three 

segments, i.e. up to the first 1350 data points. After this point the 2R statistic is much 

lower than for the previous segments. This is stretching it a bit, but from these results 

one must assume that the process parameters changed around the 1350th data point. 

 

Table 4.2: 2R  values for one-step prediction of metal leaching data. 

Segments R2-statistic 
2 450 – 900  0.465 
3 900 – 1350 0.426 
4 1350 – 1747  0.250 
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4.3.4 Detecting Dynamic Change in the Metal Leaching Data Using 

Nonlinear Cross Prediction 

 
The lack of a long enough time series prevents one from using this approach to its full 

potential. To do nonlinear cross predictions, segments containing at least a few hundred 

data points are needed (Schreiber, 1996). The length of this data set clearly rule out the 

use of mutual prediction maps, as used in the previous two case studies. The best one 

can do is to divide the time series into four segments containing 435 data points each, 

and then inspect the results from the cross prediction errors manually.   

 

Table 4.3: Cross prediction errors from the four segments of the metal leaching data. 

 

 

 

 

 

 

The results from the nonlinear cross predictions are inconclusive. There are no 

consistency in the results from a change detection perspective. The only noticeable 

correlation in the results is that segment 2 has the lowest prediction error when using 

segments 1,2,3 and 4 respectively as data base, where segment 4 has the highest error. 

This, however, does not reveal anything about the nonstationarity of the data set. 

 

DATA BASE SEGMENTS 

 

1 2 3 4 

1 0.8286 0.8376 0.8412 0.8583 

2 0.8185 0.7946 0.8057 0.7868 

3 0.875 0.8473 0.8205 0.8471 

PR
ED

IC
TED

 SEG
M

EN
TS 4 0.8834 0.8652 0.8764 0.8661 
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4.3.5  Using the Correlation Dimension to Detect Dynamic Change in 

Metal Leaching Data 
This approach, which is based on comparing correlation dimension curves calculated 

from different parts of the time series, is even more challenging than the previous two 

methods (modelling and cross predictions) because of the limited amount of data. 

Already aware of the fact that Judd’s implementation for calculating the correlation 

dimension needs at least 1000 points per segment to be reasonably reliable, having only 

1700 observations available seems to eliminate this approach. The data can, however, 

be manipulated to overcome this 1000 point lower limit. 

 The first step in detecting nonstationarity using the cd approach is to, as in the previous 

case studies, compare 0( )cd ε -curves calculated from the two halves of the time series. 

To stick to the suggested lower limit of 1000 points, two overlapping segments are 

used: 1-1000 and 700-1700 (Figure 4.51). Although they contain some mutual 

information, most of the data from the segments are still data from the two halves, 1-

850 and 850-1700. 

Figure 4.51: 0( )cd ε -curves for the two halves of the metal leaching data. 
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There is a definite dissimilarity between the curves from the two halves, which suggests 

that the data from the process is nonstationary. To obtain an estimate for the time at 

which the change took place, the moving window approach is applied. A window size 

of 800 data points is used, while moving the window forward every 100 data points 

(Figure 4.52). In doing this, using the suggested minimum of 1000 data points is 

rejected. The downside is that the results could be less reliable. 

 

Figure 4.52: 0( )cd ε -curves from moving window of size 800 for metal leaching data. 

 

When examining Figure 4.52 it can be seen that the 0( )cd ε -curves from the moving 

window segments 1-800 to 400-1200 are more or less similar. The dissimilarity of 

segment 500-1300, compared to the previous curves, suggests that the process 

parameters have changed. From segment 600-1400 onwards the 0( )cd ε -curves are 

similar once again. The conclusion one can make from the above results is that the 
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process parameters remained constant up to about data point 1200, after which the 

process parameters changed to a new value from data point 1300 onwards. This 

correlates with the results from the model-based detection, which indicated a parameter 

change at around data point 1350. 



5 CONCLUSIONS 
 

 

Techniques for reconstructing the state space of a system, from one-dimensional time 

series data, were successfully applied to three case studies. These include the average 

mutual information (AMI) statistic and autocorrelation function for determining the 

embedding delay; the false nearest neighbours (FNN) algorithm for estimating the 

embedding dimension; as well as singular spectrum analysis (SSA) whereby the 

embedding parameters are determined implicitly.  

System classification by means of surrogate data analysis proved to be very useful for 

determining whether a process exhibits nonlinear deterministic or stochastic behaviour. 

In two of the case studies (the autocatalytic reaction and the baker’s map) data were 

simulated from sets of nonlinear equations which are governed by strong deterministic 

rules. In both instances the systems were correctly classified as being nonlinear 

deterministic. Surrogate analysis of the data from the metal leaching plant suggested 

that only weak determinism was present. This was supported by the average results 

obtained when attempting to model the data.  

Tests confirmed suspicions that model performance suffers when process data are 

nonstationary. If the process parameters stay relatively constant, the model predictions 

are quite good. The model performance, however, deteriorates when doing predictions 

in regions where there are dynamic changes.  This model deterioration can serve as an 

indication for nonstationarity. An exception to the rule is when the attractor formed by 

the new set of process parameters, is embedded within the original attractor from which 

the model was estimated. The case study on the autocatalytic reaction highlighted this. 

Although the model fitness did decline somewhat, it could still give a good estimation 

to the new process dynamics. 

A more formal way to detect and analyse nonstationarity in time series data is with 

nonlinear cross predictions. A plot of the mutual prediction errors is visually very 

informative and can give great insight into possible dynamical changes in the process. 
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This approach successfully detected “hidden” nonstationarities in the autocatalytic 

reaction and the baker’s map from time series data. No conclusive results, however, 

were obtained from the metal leaching plant data. The limited amount of data available 

for the analysis is most likely the main reason for the inconclusive results. 

An assessment of the correlation dimension statistics, calculated from different 

segments of the time series, proved to be the most accurate method of detecting 

dynamic changes. Apart from positively identifying nonstationary in each of the case 

studies, it was also able to detect the parameter changes sooner than any other method 

tested. The correlation dimension approach is the best choice for online monitoring of 

changes in process dynamics, especially when used in a moving window framework.  

The presence of measurement noise in the simulated data did not have a significant 

impact on the ability of the techniques to detect dynamic changes. This was verified by 

adding 10% measurement noise to data from the autocatalytic reaction. 

The change detection approaches, as discussed in this work, are mainly limited to 

detecting changes in processes that have nonlinear dynamics with a dominant 

deterministic component. The amount of process data available for analysis is also a 

limiting factor, since the correlation dimension algorithm, and especially the nonlinear 

cross-prediction approach, are very data hungry. At least 2000 (or more) observations 

are needed for reliable detection of dynamic changes in a process. 
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APPENDIX 
 

A. State Space Reconstruction Using Time Delay Embedding - A 

numerical Example 
The time delay embedding method, whereby the internal dynamics of a system are 

reconstructed, can easily be explained with a numerical example. Suppose one has 300 

observations from a process in the form of a time series (Table A.1 and Figure A.1).  

 

 
 

 

 
 
 
 
 
 
 
 
 
                                                        

                                                           

Using the average mutual information (AMI) and false nearest neighbours (FNN) 

algorithms to determine the embedding parameters, one would find that a time delay (l) 

of 2 and an embedding dimension (d) of 3 will give an optimal embedding. Substituting 

these parameters into Equation 2.8, 

                                               ( 1)( , ,..., )
en n l n d ls s s+ + −=ny ,                                       (2.8) 

yields the following reconstructed variables: 

 2 4( , , )n n ns s s+ +=ny . (A.1)

sn 
8.5 

9.0 

10.0 

11.3 

13.0 

14.9 

17.1 

19.1 

20.7 

21.5 

… 

Table A.1: Time series data 

Figure A.1: Plot of time series data 



APPENDIX                                                                                                              B 

-40
-20

0
20

40

-40

-20

0

20

40
-40

-20

0

20

40

The numerical equivalent is given in Table A.2.  An inspection of these numerical 

values, in addition to Equation A.1, should clarify time delay embedding. 

Table A.2: Numerical values for the reconstructed variables 

sn sn+2 sn+4 
8.5 10.0 13.0 
9.0 11.3 14.9 
10.0 13.0 17.1 
11.3 14.9 19.1 
13.0 17.1 20.7 
14.9 19.1 21.5 
17.1 20.7 21.1 
19.1 21.5 19.6 
20.7 21.1 17.2 
21.5 19.6 14.5 
… … … 

 

The three-dimensional reconstructed attractor for the system can be seen in Figure A.2.  

 

 

 

 

 
 

 
 
 

Figure A.2: Reconstructed attractor for the numerical example 
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sn+2 
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