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Summary 

The western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thripidae: 

Thysanoptera), is one of the most economically important pests in greenhouses, with preference 

being exhibited towards feeding on flowers. WFT is a serious pest of greenhouse cultivation, 

because it damages plants directly by means of feeding and oviposition on foliage and flowers, 

and indirectly, by means of vectoring tospoviruses, such as impatiens necrotic spot virus and 

tomato spotted wilt virus. Approximately 7500 species of thrips have been identified to date, 

with 14 species being recognised as virus vectors, of which F. occidentalis is responsible for 

transmitting five species of tospoviruses. Chemical control has been the most frequently used 

method for the control of WFT in greenhouses. The high frequency of insecticide applications 

for WFT control, coupled with the short generation time of F. occidentalis, has led to an 

increasing incidence of insecticide resistance in WFT in recent years. An integrated pest 

management (IPM) programme offers a sustainable alternative control for WFT in undercover 

production. Biological control, especially the use of entomopathogenic nematodes (EPNs), has 

been identified as an environmentally friendly option. The use of other parasites and predators 

for biological control has shown only limited ability to reduce WFT populations, apparently 

because their movement is restricted when entering tight flower buds, meristem tissues, or 

narrow flower structures favoured by WFT, due to their large body size. 

This study investigated the potential use of indigenous EPNs for the control of WFT under 

laboratory and greenhouse conditions. To achieve the above, the development and survival rate 

of F. occidentalis on two host plants, as well as its biology, were studied under laboratory 

conditions to identify life stages targetable with EPNs. The efficacy of the local strains of EPNs 

to control the different life stages of WFT, and the optimum nematode concentrations required 

for the suppression of WFT under laboratory conditions, were investigated. Lastly, the potential 

of foliar and soil applications of different concentrations of locally isolated S. yirgalemense for 

controlling F. occidentalis in a commercial blueberry greenhouse was investigated. 

Laboratory studies were conducted to determine the life-history and host preference of 

adult WFT on chrysanthemum (Dendranthema grandiflora) leaflets and green bean pods 

(Phaseolus vulgaris). The identification of Frankliniella occidentalis was verified, using both 

morphological and molecular methods. Main morphological features included six to nine 

antennal segments, major setae on the head and pronotum dark, interocellar and postocular setae 

approximately the same length, the first vein of the anterior wing with a complete row of 

regularly spaced setae, and posteromarginal comb on  tergite VIII of the female well-developed 

and complete. Molecular identification was based on amplification of the mtCOI gene 
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sequences for the identification of four thrips species (F. occidentalis, Thysanoptera sp., 

Gynaikothrips ficorum and Pseudophilothrips ichini) collected from the study area. The F. 

occidentalis morphologically identified showed 100 % identity with sequences in the database 

from GenBank. One of the Thrips sp. could not be identified neither morphologically nor 

molecularly and could possibly be an unidentified species. Results from the life-history study 

showed that more first instar larva hatched on chrysanthemums, faster larval developmental 

rate and a higher survival rate on chrysanthemums indicating that chrysanthemum is a more 

attractive and more suitable host than green bean. 

Among the 12 EPN species tested against F. occidentalis in laboratory bioassays, 

virulence ranged from 11 % to 67 %. Generally, Heterorhabditis spp. were more virulent than  

the Steinernema spp. Heterorhabditis baujardi was found to be the most potent species, with a 

mortality of 67 %, although it was not significantly different from Steinernema yirgalemense 

(66 %). The study showed that the commercial nematode Steinernema feltiae did not perform 

better than the local EPN species. Bioassays to determine infectivity were performed using 

different life stages (larva, pupa and adult) of F. occidentalis exposed to infective juveniles (IJs) 

of S. yirgalemense, H. baujardi and Steinernema jeffreyense. The pupae of WFT were found to 

be more sensitive to nematode infection than either the larvae or the adults. The highest WFT 

mortality was recorded for the pupae (72 %) when applying 100 IJs/insect of H. baujardi, with 

the lowest being recorded when treated with S. jeffreyense (17 %). Steinernema yirgalemense 

and H. baujardi were tested at concentrations of 0, 10, 20, 40, 80, and 160 IJs/larva. Increasing 

EPN concentrations gave increased thrips mortality, with a probit analysis indicating S. 

yirgalemense to be 5.49 more potent than H. baujardi. Results from the temporal development 

study showed that both S. yirgalemense and H. baujardi were able to complete their life cycles 

in the host within 5 days, and were able to produce a new cohort of IJs. Relatively few IJs were 

found to penetrate the insect, due to the small size of the insect and the IJs recovered from the 

host were relative in number to the IJs penetrated. 

The field trial was initiated to determine the efficiency of different concentrations of S. 

yirgalemense in controlling F. occidentalis in a commercial blueberry greenhouse. A 

combination of foliar and soil applications of S. yirgalemense in two greenhouse trials, one at 

lower concentrations of 4.3, 8.6, and 17.2 IJs/cm2, and the other at higher concentrations of 25, 

50, and 100 IJs/cm2 were applied. The results in both trials indicated thrips mortality < 50 % at 

the highest concentration of 100 IJs/cm2, at mean substrate temperatures < 15 °C, which was 

below optimum for S. yirgalemense infection. Increase in nematode concentration resulted in a 

decline in the number of thrips captured. The experiment with higher concentrations showed 
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increased thrips mortality (53 %) in relation to the experiment with lower concentration (< 40 

%). Steinernema yirgalemense was persistent for 4 weeks, with low mortalities when 

mealworms were used to monitor infectivity.  

The correct identification of thrips is important for further studies investigating biological 

control thereof. Research into the use of EPNs for the biological control of insects should not 

be restricted to laboratory conditions, as these conditions do not truly represent field 

performance. Steinernema yirgalemense showed potential for use as a biocontrol option for 

WFT, giving low to moderate results in the field trial, under suboptimal temperatures, at a 

concentration of 100 IJs/cm2. The application of S. yirgalemense to control WFT requires 

further investigation under relatively warmer substrate temperatures in the Haygrove tunnels 

under blueberry production. Application of nematodes should target WFT populations on new 

growth after post-harvest pruning, when WFT causes significant economic damage. Weekly 

follow-up applications should be investigated as a future alternative. The feasibility of applying 

S. yirgalemense in conjunction with other biological agents and insecticide–pathogen 

synergistic interactions in IPM systems should also be investigated. 
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Opsomming 

Die westelike blomblaaspootjie (WBB), Frankliniella occidentalis (Pergande) 

(Thripidae: Thysanoptera), is een van die belangerikste ekonomiese peste in kweekhuise en 

toon ‘n voorliefde daarvoor om op blomme te voed. Die WBB is ‘n ernstige pes van plante in 

kweekhuise omdat dit plante direk beskadig deur voeding en die lê van eiers op blare en 

blomme, asook indirek deur die dra van tospovirusse soos “impatiens necrotic spot virus” en 

“tomato spotted wilt virus”. Ten minste 7500 spesies blaaspootjies is bekend, waarvan 14 geken 

is as draers. Frankliniella occidentalis is verantwoordelik vir die verspreiding van omtrent vyf 

tospovirus spesies. Chemiese beheer is die mees algemene metode wat toegepas word teen 

WBB in kweekhuise. Die hoë frekwensie waarteen insekdoders aangewend word vir die beheer 

van WBB, tesame met die kort generasietyd van die spesie, het gelei tot toenemende weerstand 

teen insekdoders in WBB in die afgelope paar jaar. ŉ Geïntegreerde pes beheer (GPB) program, 

bied ŉ volhoubare alternatief vir die beheer van WBB in onderdakproduksie. Biologiese beheer, 

veral die gebruik van entomopatogeniese nematodes (EPNs), is geïdentifiseer as ŉ 

omgewingsvriendelike beheer metode. Die gebruik van ander parasiete en predatore vir 

biologiese beheer het sover slegs beperkte sukses getoon, blykbaar omdat hul beweging beperk 

is wanneer hul stywe blomknoppe, meristeem weefsel of nou blomstrukture binnedring, as 

gevolg van hul liggaamsgrootte.  

Hierdie studie het die potensiaal ondersoek van die gebruik van inheemse EPNs vir die 

beheer van WBB in laboratorium en kweekhuis omstandighede. Om dit te bereik, was die 

ontwikkeling en oorlewingskoers van F. occidentalis op twee gasheer plante, sowel as sy 

biologie, bestudeer in laboratorium toestande, sodat lewensstadia wat vatbaar vir EPN infeksie 

is identifiseer kon word. Die vermoë van die plaaslike EPN spesies om die verskillende 

lewensfases van WBB te beheer, asook die optimale nematode konsentrasies vir die 

onderdrukking van WBB in laboratorium toestande, was ondersoek. In die laaste deel van die 

studie was die potensiaal van EPNs om F. occidentalis in ŉ kommersiële bloubessie kweekhuis 

te beheer, ondersoek deur plaaslike S. yirgalemense by verskillende konsentrasies aan te wend.  

Laboratorium studies om die lewensgeskiedenis en gasheer voorkeur van volwasse WBB 

te bepaal, was uitgevoer op krisant (Dendranthema grandiflora) blare en groenboontjies 

(Phaseolus vulgaris). Frankliniella occidentalis was geïdentifiseer en sy identiteit bevestig  

deur gebruik te maak van morfologiese en molekulêre metodes. Die hoof morfologiese 

kenmerke van F. occidentalis is ses tot nege antenna segmente, groot seta op die kop, donker 

pronotum, “interocellar” en post-okulêre seta omtrent dieselfde lengte, die eerste aar van die 
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voorste vlerk met eweredig gespasieërde en volledige seta, asook ŉ goed ontwikkelde en 

volledige “posteromarginal comb” op die “tergite VIII” van die wyfie. Resultate van die 

lewensgeskiedenis eksperiment het vinniger ontwikkeling, meer eiers en larwes, asook ŉ hoër 

oorlewingskoers getoon op krisante, wat beteken dat dit ŉ meer gepaste gasheer is as die 

groenboontjie. Molekulêre identifikasie was gebaseer op die mtCOI geen vir die identifikasie 

van vier spesies (F. occidentalis, Thysanoptera sp., Gynaikothrips ficorum en 

Pseudophilothrips ichini) wat versamel was in die studie area. Die F. occidentalis was 

morfologies geïdentifiseer was, het 100% identiteit getoon met die inligting in die databasis van 

GenBank. Een van die blaaspootjie spesies kon nie morfologies of molekulêr identifiseer word 

nie en kan moontlik ŉ onbeskryfde spesie wees.  

Die virulensie van die 12 EPN spesies wat getoets was teen F. occidentalis in 

laboratorium biotoetse het gewissel van 11 % tot 67 %. Oor die algemeen het die 

Heterorhabditis spesies hoër virulensie getoon as die Steinernema spesies. Heterorhabditis 

baujardi was die dodelikste spesies, met ŉ mortaliteit van 67 %, alhoewel dit nie ŉ beduidende 

verskil getoon het teenoor die dodelikheid Steinernema yirgalemense (66 %) nie. Die studie het 

getoon dat die kommersiële nematode Steinernema feltiae nie beter gevaar het as die plaaslike 

EPN spesies nie. Biotoetse om infeksie te bepaal was uitgevoer op verskillende lewensstadia 

(larwes, papies en volwassenes) van F. occidentalis met die EPNs S. yirgalemense, H. baujardi 

en Steinernema jeffreyense. Die papies van WBB was meer vatbaar vir nematode infeksie as 

die larwes of die volwassenes. Die hoogste WBB mortaliteit was aangeteken met die 

aanwending van 100 Ils/insek van H. baujardi op WBB papies (72 %). Die laagste mortaliteit 

was aangeteken toe papies behandel was met S. jeffreyense (17 %). Steinernema yirgalemense 

en H. baujardi was getoets by konsentrasies van 0, 10, 20, 40, 80, en 160 ILs/larwe. ŉ Toename 

in EPN konsentrasies het gelei tot ŉ toename in die mortaliteit van blaaspootjies, met ŉ pro-bit 

analise wat getoon het dat S. yirgalemense 5.49 keer meer dodelik is as H. baujardi. Resultate 

van die temporale ontwikkeling studie het getoon dat beide S. yirgalemense en H. baujardi in 

staat was om hul lewenssiklusse te voltooi in die gasheer binne 5 dae en ook ŉ nuwe groep ILs 

kon produseer. Relatief min ILs het die insek gepenetreer, as gevolg van die klein 

liggaamsgrootte van die insek en die ILs wat gevind was in die gasheer was relatief tot die 

aantal ILs wat die insek gepenetreer het.  

Die doel van die veldproef was om die effektiwiteit van verskillende konsentrasies van S. 

yirgalemense te toets vir die beheer van F. occidentalis in ŉ kommersiële bloubessie 

kweekhuis. ŉ Kombinasie van blaar- en grondaanwending van S. yirgalemense was toegepas 

in twee kweekhuis proewe, een by laer konsentrasies van 4.3, 8.6, en 17.2 ILs/cm2, en ŉ ander 
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by hoër konsentrasies van 25, 50, en 100 ILs/cm2. Albei proewe het mortaliteit van < 50 % 

getoon in blaaspootjies, met die hoogste konsentrasie van 100 ILs/cm2, by gemiddelde substraat 

temperature van < 15 °C, wat onder die optimale temperatuur was vir S. yirgalemense infeksie. 

Die toename in nematode konsentrasie het gelei tot ŉ afname in die aantal blaaspootjies wat 

gevang was. Die eksperiment met hoër konsentrasies het ŉ verhoogde mortaliteit getoon in 

blaaspootjies (53 %) in vergelyking met die eksperiment by laer konsentrasies (> 40%). 

Steinernema yirgalemense het aangehou vir 4 weke, met lae mortaliteit toe meelwurms gebruik 

was om infektiwiteit te monitor.  

Die identifikasie van blaaspootjies is belangerik vir verdere  navorsing oor hul biologiese 

beheer. Navorsing oor die gebruik van EPSs vir die biologiese beheer van insekte moet nie 

beperk word tot laboratoriumtoestande nie, omdat hierdie toestande nie werklik die prestasie 

van EPNs in die veld verteenwoordig nie. Steinernema yirgalemense het potensiaal getoon as 

ŉ biologiese beheer opsie vir WBB, met lae tot matige resultate in die veldproef, in suboptimale 

temperature, by ŉ konsentrasie van 100 ILs/cm2. Die aanwending van S. yirgalemense vir die 

beheer van WBB benodig verdere ondersoek, met relatief warmer substraat temperature in die 

Haygrove tonnels onder bloubessie produksie. Die aanwending van nematodes moet die piek 

in WBB populasies teiken gedurende die tydperk van nuwe groei, wanneer WBB aansienlike 

ekonomiese skade veroorsaak. Weeklikse opvolg aanwendings moet ondersoek word as ŉ 

toekomstige alternatief. Die moontlikheid van die aanwending van S. yirgalemense in 

samewerking met ander biologiese beheermiddels, asook insekdoder-patogeen sinergistiese 

interaksies in IPM sisteme, moet ondersoek word. 
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Chapter 1 

 

Control of western flower thrips, Frankliniella occidentalis, with special reference to 

entomopathogenic nematodes 

Abstract 

The western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), has become a global pest of economic importance worldwide, especially for 

greenhouse producers. WFT is extremely polyphagous, attacking a wide range of host plants in 

both the field and the greenhouse. Frankliniella occidentalis can be of great economic 

importance, causing yield reductions of more than 50 %, with the greatest amount of damage 

caused by its ability to transmit tospoviruses, such as the tomato spotted wilt virus (TSWV) and 

Impatiens necrotic spot virus (INSV). Due to their minute size, thrips are often overlooked and 

incorrectly identified, hence the need for positive identification for effective control. The 

overuse of insecticides for the control of WFT has led to the development of resistance to many 

insecticides. This is due to characteristics of pest, such as rapid developmental time, high 

fecundity and polyphagous nature, and the difficulties that have been experienced with spraying 

and also due to the cryptic and thigmotactic behaviour of WFT. The use of natural enemies, 

including predatory mites and predatory bugs, has proven to be ineffective, because of the 

cryptic habits of the thrips. Entomopathogenic nematodes (EPNs) have become an option for 

control, as they have the ability to seek out hosts in enclosed spaces. Steinernema feltiae is 

commercially applied for the control of WFT and other insect pests internationally, and it is 

more virulent against the soil-dwelling life stages of WFT. However, S. feltiae has not been 

isolated in South Africa and its use is prohibited. Therefore, the need to test locally adapted and 

more virulent EPN species is necessary. This review of F. occidentalis as a pest of undercover 

production and its management, focuses on biological control by means of EPNs.  

Keywords: Frankliniella occidentalis, entomopathogenic nematodes, greenhouse 
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1.1. INTRODUCTION 

The western flower thrips (WTF), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae) is the primary thrips species encountered in greenhouse production. The pest is 

extremely polyphagous, feeding on a wide variety of crops grown in both commercial and 

research greenhouses (Cloyd 2009). WFT causes direct plant damage and is a vector of 

tospoviruses, like tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) 

(Bennison et al. 2001). Beginning in the late 1970s, WFT began to spread widely from its native 

range in Western North America (Kirk & Terry 2003). The exact cause for its spread is still 

uncertain, but increased global trade in floricultural and horticultural products has been 

implicated. In the 1970’s and 1980’s a highly resistant strain originated from California, due to 

intensive insecticide use in greenhouse crops (Immaraju et al. 1992). WFT has now established 

throughout North America, many European countries, as well as on the Asian, South American, 

African and Australian continents (Kirk & Terry 2003).  

Chemical control has been the most frequently used method for the control of WFT in 

greenhouses. The high frequency of insecticide applications for WFT control, coupled with the 

short generation time of F. occidentalis, has led to an increasing incidence of insecticide 

resistance in WFT in recent years (Ebssa et al. 2001a). In addition, the cryptic habits of WFT 

(including their egg-laying in plant tissue, pupation in the soil and leaf litter, feeding on 

developing tissues in growth tips and inside flowers) which protect them from exposure to 

contact insecticides and their resistance to many insecticides have become critical limiting 

factors. Several pest strains of WFT have already developed resistance to most used insecticide 

classes (Ebssa et al. 2004; Gao et al. 2012). Biological control has become increasingly 

important for successful WFT management programmes. The use of other parasites and 

predators for biological control has shown limited ability to reduce WFT populations, related 

to their inability to enter tight flower buds, meristem tissues, or narrow flower structures, due 

to their large body size (Tourtois & Grieshop 2015).  

In the process of identifying alternative and biological control measures against WFT, a 

comprehensive review of current control measures was conducted. Emphasis was placed on the 

use of entomopathogenic nematodes (EPNs) and on their potential as an environment-friendly 

control measure against WFT in undercover crop production. 
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1.2. IDENTIFICATION 

Thrips are minute insects, which are generally overlooked and incorrectly identified 

(Allsopp 2016). However, positive identification is necessary for effective control. The main 

species in the order Thysanoptera and the family Thripidae, which are known to be of economic 

importance on greenhouse crops include western flower thrips, F. occidentalis; the eastern 

flower thrips, Frankliniella tritici Fitch; the onion thrips, Thrips tabaci Lindeman; the 

greenhouse thrips Heliothrips haemorrhoidalis Bouché; and the banded greenhouse thrips, 

Hercinothrips femoralis Reuter (Greer & Diver 2000). The WFT is, however, the most 

economically damaging.  

Morphological identification is limited to only adult thrips, as the immature stages have no 

specific characteristics for identification (Karnkowski & Trdan 2002). Just after hatching, both 

females and males have a pale colouration. After 48 h females develop one of three genetic 

colour forms, which include pale, dark or intermediate yellow (McDonald et al. 2002). The 

common one, which is the intermediate colour, is yellow with distinctive light brown markings 

medially, on each abdominal tergite (Cavalleri & Mound 2012). The male remains pale, has a 

narrow abdomen with a rounded end and is smaller than the female (Karnkowski & Trdan 

2002). The head and thorax are usually orange-yellow, with the abdomen being more rounded, 

and ending in a point. The antennae have eight segments, with the first segment being paler 

than the second one. The pronotum has two large setae on each posterior and anterior angle. 

The ocellar setae are situated between the anterior ocellus and each of the posterior ocelli. The 

main post-ocular setae are much larger and darker than the others are. They have two complete 

rows of 20-22 setae on the main vein of the fore wing, and 15-17 on the secondary vein (Mound 

& Kibby 1998). 

1.3. BIOLOGY AND ECOLOGY 

Life history is temperature and host-dependent, but it can be quite rapid, allowing multiple 

generations to occur in a single cropping season (Ishida et al. 2003).  Development occurs when 

the temperature exceeds a minimum threshold of 8-10 °C. At the most favourable temperatures 

of 25-30 °C, the egg to adult development time can be as brief as 9-13 days (Reitz 2009). The 

life cycle of F. occidentalis has six developmental stages: the egg, two feeding larval stages, 

two non-feeding pupal stages and the adult (Lewis 1973; Kanara & Acharya 2014). The female 

adults have a saw-like ovipositor (Reitz 2009) that enables them to lay eggs in parenchymatous 

tissues of their host plant, within 72 h after emergence (Ebssa et al. 2004). They can deposit the 

eggs into leaves, petioles, flower bracts and petals, and developing fruit. (Reitz 2009). 
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The duration of the egg stage is relatively long, with hatching occurring after 2-4 days at 

optimal temperatures. Kanara & Acharya (2014) found that the duration of first, second and 

total larval period varied from 1-2 days, 3-6 days and 4-8 days, respectively, and that the first 

instar is typically about half the duration of the second (Gaum et al. 1994; Reitz 2008). Thrips 

drop to the soil to pupate most of the time, but some remain on the host plants, especially if the 

hosts have complex floral architecture (Broadbent et al. 2003). The pre-pupa and pupa are both 

immobile stages and total pupal period can be 3-6 days (Kanara & Acharya 2014). Winged 

adults emerge from the pupal stage in 1-3 days (Fig. 1.1) (Reitz 2009) and shortly after 

emergence from the soil, the adult WFT feeds on leaves and flowers of the host plant (Ebssa et 

al. 2004). Adults and larvae aggregate in flowers or in other concealed areas on plants, such as 

the developing fruits, foliage and floral buds. This preference for residing in tightly enclosed 

and concealed spaces of plants is termed thigmotactic behaviour (Hansen et al. 2003). Under 

controlled laboratory conditions at 28 °C, the adult longevity is relatively long, about 26 days, 

and can be as long as five weeks, compared with the immature development time of about 12 

days (Zhi et al. 2005; Reitz 2008).  

  

Fig. 1.1. The life cycle of Frankliniella occidentalis, western flower thrips. Wing buds longer in pupa 
than in prepupa (circled). (Photo credits for egg; Elleunorah Allsopp). 

Sex determination in WFT is through haplodiploidy. The haploid males are produced from 

unfertilised eggs, whereas the diploid females are produced from fertilised eggs (i.e. by means 

of arrhenotoky). Although the sex ratios of adults from field samples are often biased towards 

one sex, mated females do not appear to allocate the sex of their progeny (Terry & Kelly 1993). 

All studies of reproduction in WFT have reported high fecundity rates for the females (Reitz 

2008) and the biases found in the adult sex ratios are likely because of the differences between 
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the sexes in their dispersal and distribution in response to host quality and longevity (Reitz 

2009). After an initial pre-oviposition period, a female can oviposit throughout her lifetime 

(Reitz 2008). With optimal temperatures and diets, the females can produce up to seven progeny 

per day, as well as having average total lifetime fecundities exceeding 200 per female. Their 

high level of fecundity leads to high intrinsic rates of population increase, so uncontrolled 

populations can multiply rapidly (Gerin et al. 1994; Hulshof et al. 2003; Reitz 2009). 

1.4. DISTRIBUTION OF WESTERN FLOWER THRIPS 

The increased global trade in floricultural and horticultural products contributes greatly to 

the spread of the F. occidentalis (Kirk & Terry 2003). They can also move long distances on 

wind currents, even though they are weak flyers, but are enabled by the fringed wings (Lewis 

1997). Their spread is further enhanced by polyphagy, and by the ability of small founder 

populations to succeed (Reitz 2009). According to Kirk & Terry (2003), WFT was first recorded 

in 1969 in Pennsylvania on chrysanthemums in a glasshouse, but it only became established in 

1976 and 1977. In South Africa, the WFT was first identified on chrysanthemums near 

Krugersdorp in 1987, and on roses and chrysanthemums in greenhouses near Cape Town in 

1988 (Giliomee 1989). In 1990 it was found in apple (Rosales: Rosaceae) orchards in Grabouw 

in the Western Cape Province (Badenhorst 1993). An insecticide-resistant strain, which was 

first recorded in New Zealand in 1992, is thought to be a new arrival, rather than a change in 

the existing ‘lupin strain’ (Brødsgaard 1994). It has established itself and spread rapidly 

worldwide (Kirk & Terry 2003). 

1.5. ECONOMIC IMPACT 

The polyphagous nature of WFT increases the number of crops on which it can be 

transported internationally and which enhances the chances of finding suitable hosts in new 

areas (Morse & Hoddle 2006). The species is known to feed on over 250 different crop plants, 

from more than 60 plant families in the USA (Robb 1989; Tommasini & Maini 1995; Lewis 

1997).  It is a significant pest of virtually all crops, including fruiting and leafy vegetables, 

ornamentals, trees and small fruits, and cotton (Lewis 1997). In addition, it occurs on many 

uncultivated plants (Chellemi et al. 1994; Paini et al. 2007). The high fecundity of females 

makes it possible for small founder populations to be established, and to grow rapidly. 

Consequently, some of these populations may readily adapt to new environments, and they may 

be relatively resistant to the detrimental effects of inbreeding. Also, because of their potentially 

long adult lifespan, rapid immature development rate, and haplodiploid sex determination, 

unmated founder females could produce male progeny initially, and survive long enough to 
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mate with the males, thus making introduced populations consisting of as few as one potentially 

viable (Immaraju et al. 1992; Reitz 2009).  

Frankliniella occidentalis damages plants directly by means of feeding and oviposition. 

Adult and larval feeding causes considerable aesthetic damage to ornamentals and fruit crops 

(Reitz 2009). Both adults and larvae show preference for feeding on the flowers, but also feeds 

on leaves and fruits (van Dijken et al. 1994; Reitz 2009). The damage varies, depending on 

crop and growth stage at the time of attack (Greer & Diver 2000). The WFT feed by means of 

piercing plant cells with their mouthparts and sucking out the contents (plant fluids, pollen, and 

nectar). They feed on the mesophyll and epidermal cells of leaf tissues, probing and feeding 

removes surface waxes, epidermal cells collapse and mesophyll cells are destroyed (Hunter et 

al. 1992). Tissues develop a silvery sheen and damaged areas coalesce and wrinkle to form 

silvered patches and flecking on the expanded leaves and petals (Fig. 1.2), resulting in deformed 

plant growth and flower deformation (Chisholm & Lewis 1984; van Dijken et al. 1994). The 

WFT also feeds on pollen, which can stimulate oviposition, reduce larval development time, 

and increase female fecundity (Riley et al. 2007). They spread the pollen during feeding, 

resulting in pollination and premature senescence of flowers (EPPO 2002). Due to their 

thigmotactic behaviour, feeding damage is often inflicted on developing tissue, which in 

flowers or fruits goes unnoticed until fruits mature (Steiner & Goodwin 2005; Reitz 2009). The 

damaged patches are also contaminated with tiny greenish-black faecal specks that are left by 

the thrips. They also damage the appearance of some ornamentals by means of spreading pollen 

over the flowers, as they feed on and break open the pollen sac, causing direct yield losses 

(EPPO 2002; Sanderson 2003).  

Stellenbosch University  https://scholar.sun.ac.za



 

7 
 

 

Fig. 1.2. A) Deformed plant growth damage caused by Frankliniella occidentalis (western flower thrips) 
on blueberries, B) Flower deformation shown by the scarring of chrysanthemums petals. 

Oviposition damage occurs when the females insert eggs under the plant epidermis with their 

saw-like ovipositors, with about a third of the egg protruding (Allsopp 2016). This causes a 

physiological wound response in some plants that produces the spotting on fruits, which can 

lead to the downgrading of fruit quality (Reitz 2009). The resultant spots are referred to as 

‘pansy spots’ in the case of most fruits, vegetables like tomato, beans, and peppers and as ‘halo 

spots’ in table grapes. Oviposition also causes pitting and dimpling damage in fruit, which 

happens when the injured tissue around the oviposition site does not develop as rapidly as does 

the healthy tissue, thus causing the pit, or dimple, which is sometimes surrounded by a pansy 

spot (Allsopp 2016). 

Frankliniella occidentalis also damages plants indirectly by means of transmitting 

tospoviruses, causing devastating losses in terms of yield and market value (Allen & Broadbent 

1986). Of the estimated 7500 thrips species known (Mound 2009), only ten species in the 

Thripidae family are confirmed vectors of plant viruses, with F. occidentalis included (Ullman 

et al. 1997). The WFT is known to vector five tospovirus species; the TSWV, tomato chlorotic 

spot virus (TCSV), INSV, groundnut ringspot virus (GRSV) and Chrysanthemum stem necrosis 

virus (CSNV) (Whitfield et al. 2005). The symptoms of TSWV vary according to host, cultivar, 

and stage of plant development (Murphy et al. 2014), and may include stunting of the plant, 

bronzing, distortion, mosaic mottling of leaves, and clearing of leaf veins and fruit (EPPO 
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2002). For INSV, symptoms and susceptibility also vary according to host, with the showing 

of ring spots and line patterns on the leaves, necrotic lesions, black streaking on the veins and 

stems, stunting, and death of growing points and crown. Eventually, the plants affected can die 

(Murphy et al. 2014). Over 1000 species of plants in 84 families are susceptible to TSWV, 

hence it has the broadest host range of any plant pathogen (Parrella et al. 2003). The WFT has 

an intimate, complex relationship with the viruses concerned. For a WFT to transmit TSWV, it 

must acquire the virus as a larva, primarily as a first instar (Ullman et al. 1997). The WFT may 

acquire TSWV as an adult, but such individuals do not become competent vectors. Second 

instars are physiologically capable of transmitting the virus, but, as they do not readily move 

from plant to plant, transmission is essentially restricted to fragile adults (Wijkamp et al. 1996).  

Not all crops that are damaged by WFT are reproductive hosts for this species. Those that 

only serve as adult feeding hosts, such as tomato, can still be adversely affected (Brodbeck et 

al. 2001). In many floral and horticultural crops, WFT populations are virtually guaranteed to 

exceed the low to non-existent damage thresholds (Robb & Parrella 1991). According to 

Goldbach & Peters (1994), TSWV alone is estimated to cause over $1billion worth of damage 

in the form of annual losses in the United States. Further complicating the management of WFT 

is the fact that their feeding damage can be confused with the damage caused by other pests or 

diseases. Such incorrect diagnoses may result from the small size and cryptic behaviour of the 

WFT, and by the damage not being immediately recognisable. Unfortunately, misdiagnoses 

often lead to inappropriate pesticide application (Steiner & Goodwin 2005; Reitz 2009).  

1.6. MANAGEMENT OF WESTERN FLOWER THRIPS 

1.6.1. Monitoring 

Scouting, or monitoring, is important to determine the level of WFT present in the 

greenhouse. In addition, scouting can detect seasonal trends in the WFT populations, and assess 

the effectiveness of the management strategies implemented (Cloyd 2010). Placing either blue 

or yellow sticky traps above the crop canopy traps adult WFT, hence monitoring population 

densities. Blue traps are more attractive to WFT than yellow traps (Murphy et al. 2014). De 

Villiers & Pringle (2007) and Allsopp (2010), in their research on table grapes in South Africa, 

showed that the blue sticky traps hung in the full sun outside the vine canopy were more 

effective for monitoring WFT in vineyards than traps in the shade or yellow traps in the sun. 

Blue sticky traps have also shown great efficacy for monitoring F. occidentalis in ornamentals, 

when traps were placed just above the crop canopy (Brødsgaard 1993). The efficacy of traps 

can also be enhanced by adding semiochemicals like a synthetic aggregation pheromone or 
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host-plant derived attractant (Broughton & Harrison 2012). Additional methods of monitoring 

include visual inspection by means of looking into open flowers (Cloyd 2009) and tapping them 

to determine whether thrips are present, which is done by simply tapping the flowers, or foliage, 

over a white sheet of paper (Driesche 2013). The assessment of the economic importance of 

WFT has advanced recently by way of developing a few economic damage thresholds for 

tomato, pepper, eggplant, cucumber, and strawberry. In crops with a high threat of virus 

transmission, such as tomato, WFT is not tolerated at all (Mouden et al. 2017). 

1.6.2. Cultural control 

Sanitation practices such as removing weeds, old plant material and growing medium debris, 

help to reduce the numbers of WFT. Certain weeds, particularly those in the Compositae and 

Solanaceae families, and those with yellow flowers, that tend to attract WFT adults, and  serve 

as reservoirs for the viruses transmitted by WFT adults, must be removed (Kahn et al. 2005; 

Cloyd 2009). Sanitation at the beginning and end of a cropping season is very effective, as it 

helps to delay infestation by thrips until another IPM initiative can be implemented (Murphy et 

al. 2014). Manipulation of cropping environment like temperature, day length, light intensity, 

humidity and crop maintenance could have a huge impact in optimising the effects of beneficial 

organisms (Jacobson 1997). Manipulation of the cropping environment by increasing relative 

humidity for four conservative nights on chrysanthemums resulted in good control of F. 

occidentalis with an entomopathogenic fungus (Helyer et al. 1992). 

1.6.3. Physical control 

Screening greenhouse openings such as vents and sidewalls helps to reduce the numbers of 

WFT entering greenhouses from outside and migrating to other greenhouses. The screen size 

that is appropriate for WFT is 192 µm (0.037 mm2) (Bethke et al. 1994; Cloyd 2009). WFT 

incidence was reduced by 20 % with the use of greenhouse window screens in tomato 

production (Mouden et al. 2017). Alternative management strategies may include overhead 

irrigation or misting, which has been proven to decrease the abundance of WFT populations, 

by creating an environment that is less favourable for development than it might otherwise have 

been (Lindquist et al. 1987).  

The use of ultraviolet (UV) absorbing plastic films, which influence WFT adult flight 

behaviour, by reducing the levels of UV light entering greenhouses, as well as the use of 

aluminised reflective fabrics, may inhibit or repel WFT adults from entering (McIntyre et al. 

1996). Control can also be achieved by means of leaving greenhouses fallow for several months, 

and by then heating them for four to five days at 30 oC, together with placing a weed barrier 
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underneath the benches, thus preventing the WFT from entering the soil to pupate (Cloyd 2009). 

The use of trap or lure crops, consisting of plants and/or flowers that attract the WFT away from 

the main crop, is another cultural strategy that has been successfully used in the past. Infected 

lure plants and/or flowers may be sprayed with an insecticide, or inoculated with biological 

control agents that feed on the nymphal and adult stages residing in the flowers or be totally 

removed from the greenhouse (Bennison et al. 2001). 

1.6.4. Chemical control 

According to Cloyd (2009), the principal management strategy that is commonly used in 

dealing with WFT in greenhouses is the use of insecticides. Chemicals can be integrated into 

an IPM system by using broad-spectrum chemicals, which have minimal effect on beneficial 

organisms (Jacobson 1997). Common broad-spectrum insecticides used for thrips include 

pyrethroids, neonicitinoids, organophosphates and carbamates, while narrow spectrum 

insecticides which are more selective to WFT include pyridalyl and lufenuron. (Mouden et al. 

2017). Spinosad is a natural substance produced by a soil bacterium (Saccharopolyspora 

spinose) which is used for WFT control, and is not harmful to the natural enemies of WFT 

(Cloyd 2009). The effect of feeding and oviposition of F. occidentalis has also been reduced 

by use of pyrethrins targeting both the adult and immature stages (Yang et al. 2012). Systemic 

insecticides applied to the growing medium through the irrigation system are more effective, 

less harmful to beneficial insects (Jacobson 1997) and they penetrate and reside in the leaf 

tissues, forming a reservoir of active ingredient, providing residual activity, even after the spray 

residues have dried (Cloyd & Sadof 2003). Systemic insecticides, however, do not move into 

the flower parts (petals and sepals) where WFT adults normally feed (Cloyd & Sadof 1998). 

Short persistent insecticides such as dichlorvos are successfully used to control F. occidentalis 

in cucumber and sweet peppers after planting before releasing biological agents (Jacobson 

1997). 

The key to successful WFT management with insecticides is to initiate applications when 

the populations are low, to avoid having to deal simultaneously with the different life stages 

over the course of the crop production cycle. When the WFT populations are already dense, 

more frequent chemical applications, at three to five day intervals, usually become necessary 

(Cloyd & Sadof 2003). Frequent chemical applications are required to target all stages of thrips. 

The above is especially important where overlapping generations prevail. Three to five 

applications made within a seven to ten-day period might be necessary to obtain sufficient 
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mortality when the WFT populations are dense, and in the presence of different life stages 

and/or overlapping generations (Seaton et al. 1997; Cloyd 2009).  

The heavy reliance on insecticides and frequent applications have led to WFT developing 

resistance to the active ingredients of most of the insecticide classes (MacDonald 1993; 

Jacobson 1997; Bielza et al. 2008; Gao et al. 2012; Mouden et al. 2017). The first instance in 

failing to manage WFT with insecticides was reported in 1961 when the chlorinated cyclodiene, 

toxaphene, was found to be ineffective in controlling WTF populations (Race 1961). The four 

main identified mechanisms of insect resistance include metabolic detoxification, reduced 

penetration of toxicants, alterations of target sites for toxicants and behavioural resistance (Gao 

et al. 2012).  Metabolic detoxification is attributed to the polyphagous nature of WFT that made 

them inherit a great abundance and diverse genes to detoxify the great variation of plant material 

(Sarmiento 2014). These detoxifying genes mostly code for enzymes and work by converting 

hydrophobic compounds into less biologically active ones. They belong to the following 

families Cytochrome P450 monooxygenases (P450s), esterases and glutathione-stransferases 

(GSTs) (Jensen 2000). In WFT, enhanced detoxification, mediated by cytochrome P-450 mono-

oxygenases, is the major mechanism imparting resistance to pyrethroids, organophosphates, 

and carbamates (Espinosa 2005). The penetration of the toxicant enhances other resistance 

mechanisms, which were observed in the resistance of F. occidentalis to the pyrethroid 

insecticide fenvalerate (Gao et al. 2012). Insensitivity to insecticides is another resistance 

mechanism, which is due to knock down or mutation of genes or due to change of the target 

site (Zhao et al. 1994). Reduced toxicant penetration of an insecticide through the insect cuticle 

or gut wall is not considered a powerful resistance mechanism, but can synergize the effect of 

other resistance mechanisms. For example, a reduced rate of entry of toxicants into the insect’s 

body may enable metabolic detoxification to occur without the enzyme systems of the insect 

being affected (Jensen 2000). The behavioural resistance system relies on selection of 

individuals that survive insecticide sprays due to cryptic and thigmotactic behaviour. 

Population studies on F. occidentalis have indicated that this affects their life cycle and thus 

their strength in being invasive (Hulshof et al. 2003). 

Another factor that plays a role in the development of resistance is the enclosed greenhouse 

environment, because it provides constant exposure to insecticides and limits the immigration 

of susceptible individuals (Reitz 2009).  Because of the multiple mechanisms that confer 

resistance in different populations, resistance could evolve faster and persist in populations for 

a longer period, over many generations, which would greatly affect the development and 

viability of insecticide rotation schemes and resistance management programmes (Jensen 
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2000). Measures to delay resistance, such as alternating or rotating insecticides from different 

mode of action groups, in combination with other compatible approaches to effect WFT control 

have been researched (Bielza et al. 2008).  

1.6.5. Biological control 

The biological control of WFT has been tested using natural enemies and includes two 

groups: macrobials, which include predators and parasitoids, and microbials, which are the 

EPNs (macrobial, artificially classified as a microbial) and entomopathogenic fungi (Mouden 

et al. 2017). Macrobials include predatory mites of the order Arachnida, family Phytoseiidae 

like Neoseiulus (Amblyseius) cucumeris (Oudemans), Iphiseius (Amblyseius) degenerans 

(Berlese), Amblyseius swirskii (Athias-Henriot), Stratiolaelaps scimitus (Womersley), and 

Geolaelaps (Hypoaspis) aculeifer (Canestrini), and the minute pirate bug, Orius insidiosus 

(Say) (Hemiptera: Anthocoridae). Other biological control agents include the 

entomopathogenic nematode, Steinernema feltiae Wouts, Mráček, Gerdin & Bedding, and the 

entomopathogenic fungus, Beauveria bassiana (Balsamo) (Hypocreales: Cordycipitaceae) 

(Murphy et al. 2014).  

Predatory mites regulate WFT populations by feeding on the first and/or second instar 

nymphs, with the exception of Stratiolaelaps miles (Berlese) and Hypoaspis aculeifer 

(Canestrini), which are predatory mites that reside either in the soil or in growing medium and 

feed on the pupal stage (Cloyd 2009). An adult female N. cucumeris can consume 1-10 young 

thrips per day, and has a 30-day lifespan (Greer & Diver 2000). Manners et al. (2013) states 

that the effectiveness of S. scimitus, G. aculeifer, and Dalotia coriaria (Kraatz) as biological 

control agents is somewhat unclear. On some occasions S. scimitus and G. aculeifer have been 

found not to produce noticeable control of WFT, even at high rates of release. However, on 

chrysanthemums, both S. scimitus and G. aculeifer reduced the number of adult WFT by about 

50% (Bennison et al. 2002; Messelink & Van Holstein-Saj 2008).  

On mini-roses, D. coriaria has been found to consume large numbers of thrips larvae and 

pupae, with the anecdotal evidence also indicating thrips reductions in commercial rose farms 

(Carney et al. 2002). The use of Black Pearl pepper (Capsicum annuum L.) as banker plants is 

being utilised in certain greenhouses where releases of the minute pirate bug are being 

implemented. Minute pirate bugs are predaceous anthocorid bugs that feed on the nymphal and 

adult stages of WFT, and consume pollen from the flowers as a supplemental food source 

(Cloyd 2009). Orius insidiosus is a very efficient predator, because it feeds on all stages of 

thrips, frequently inhabits the same sites as does thrips, can survive for some time in the absence 
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of prey, is easy to mass-produce (Silveira et al. 2004), and consumes 5-20 thrips per day (Greer 

& Diver 2000). Iphiseius degenerans works well in the case of crops with a pollen source (e.g. 

greenhouse peppers), with it being highly unlikely to be effective in the case of floricultural 

crops. Stratiolaelaps scimitus and G. aculeifer feed on thrips pupae, of which they can kill up 

to 30 %. They can be used in combination with other predators, as their impact alone is 

insignificant (Murphy et al. 2014). 

The entomopathogenic fungus, Beauveria bassiana, has been preferred as another 

ecologically and environment-friendly management approach. This approach has been 

successfully used to manage WFT populations on cut flowers such as roses and carnations, 

attaining mortalities of 82 %, where the relative humidity was higher and more conducive for 

the infection of WFT rather than on foliage, where the possibility of desiccation was greater 

(Murphy et al. 1998). Adult WFT seem to be more susceptible to B. bassiana than are the 

nymphs (Cloyd 2009; Messelink & Janssen, 2014), because the adults tend to be located in the 

flowers, where the relative humidity is higher, and conditions are favourable for infection 

(Cloyd 2009).  Moreover, the nymphs appear to have a thicker cuticle than do the adults 

(Vestergaard et al., 1995), which might delay the penetration of the fungus into the body cavity. 

The nymphs might also prevent penetration of the fungal spores through the cuticle by means 

of shedding their own exuvium during ecdysis (Shipp et al. 2003). Beauveria bassiana granules 

proved to colonise the soil and were virulent against the soil-dwelling stages of WFT in tomato 

and cucumber, with a reduction in population of between 75 % and 90 % (Lee et al. 2017). 

The key to implementing a successful biological control programme is to release the selected 

natural enemies early enough in the cropping cycle, or as soon as the thrips are detected on the 

sticky traps (Greer & Diver 2000). Releases must be initiated prior to the WFT entering the 

terminal or flower buds. The natural enemies cannot regulate an already established or existing 

high WFT population, because it takes time from the release before the natural enemies are able 

to reduce the WTF numbers to below damaging levels. Biological control tends to work best 

on such long-term crops as cut flowers or perennials, more so than it does on crops like bedding 

plants, which, typically, have short production cycles (from four to six weeks) (Jacobson 1997). 

Another factor to consider is that biological control agents might not provide sufficient control 

(based on the percentage of mortality) of the soil-dwelling life stages to make a significant 

impact on the WTF populations (Ebssa et al. 2001a; Cloyd 2009). Combined use of biological 

control with different arthropods, or with arthropods and entomopathogens, can be useful as an 

alternative treatment. The timing and compatibility of treatments should, however, be 

considered carefully (Mouden et al. 2017). 
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1.7. ENTOMOPATHOGENIC NEMATODES 

EPNs are roundworms, occurring naturally in the soil environment, and are obligate parasites 

of insects that locate their hosts via their carbon dioxide secretions, vibration, and other 

chemical cues (Kaya & Gaugler 1993). Species in two families (Heterorhabditidae and 

Steinernematidae) have been effectively used as biological agents in pest management 

programmes (Grewal et al. 1994). These parasites of insects kill their hosts with the aid of 

mutualistic bacteria carried in the nematode’s alimentary canal, with steinernematids carrying 

Xenorhabdus species, whereas heterorhabditids carry Photorhabdus species (Shapiro-Ilan et al. 

2006). EPNs fit well into integrated pest management (IPM) programmes, because they are 

considered non-toxic to humans, and relatively specific to their target pest(s), while they can 

also be applied with standard pesticide equipment (Shapiro-Ilan et al. 2006).  

1.7.1. Life cycle 

Nematodes have a simple life cycle that includes egg stage, four juvenile stages, and adult 

stage (Ebssa et al. 2004). The only free-living stage, which is the fourth juvenile stage, is often 

called the dauer or the infective juvenile (IJ), living in the soil, whereas all other stages live in 

the body of an insect host (Stock 2015). The IJ penetrates the host insect through natural 

openings, like the spiracles, the mouth, or the anus, or, in some species, through the 

intersegmental membranes of the cuticle, whereupon it enters the haemocoel (Bedding & 

Molyneux 1982). The IJ releases cells of the symbiotic bacteria from its intestines into the 

haemocoel. The bacteria multiply in the insect haemolymph, causing the death of the infected 

host within 24-48 hours (Stock 2015). After the death of the host, the nematode continues to 

feed on the host tissue, maturing and reproducing. Depending on the available resources, one 

or more generations might occur within the host cadaver, with a large number of the IJs 

eventually being released into the environment to infect other hosts, where they continue their 

life cycle (Kaya & Gaugler 1993). 

1.7.2. Distribution 

EPNs are widespread in soils all over the world, except in the North and South Pole 

(Shelmith 2009). According to Abd-Elgawad (2017), studies have been published concerning 

EPN distribution in Africa, North and South America, Australia, Asia, and Europe. Europe is 

the most extensively studied continent for EPN occurrence. The first record of EPNs in South 

Africa was from the maize beetle, Heteronychus arator (Fabricius) (Heteronychus sanctae-

helenae Blanch), in Grahamstown, Eastern Cape Province (Harington 1953).  
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Eleven EPN species (consisting of four heterorhabditids and seven steinernematids) have 

been found in South Africa, of which seven are endemic (Malan & Ferreira 2017). Recent 

surveys recovered four isolates of Steinernema spp. and 31 isolates of Heterorhabditis spp. 

during studies on the biological control of the false codling moth (Malan et al. 2011; Steyn et 

al., 2017). The Steinernema spp. included Steinernema khoisanae Nguyen, Malan and Gozel, 

found in the Western Cape, and Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, 

Gaugler and Adams, found in Mpumalanga, in relation to which a first report was made in 

South Africa, and a third report was made for the African continent. Two new species were 

reported, namely Steinernema citrae Stokwe, Malan, Nguyen, Knoetze and Tiedt, found in the 

Western Cape, and Steinernema jeffreyense Malan, Nguyen, Knoetze and Tiedt, in the Eastern 

Cape. The Heterorhabditis species isolated were H. bacteriophora, found in the Eastern and 

Western Cape Provinces, KwaZulu-Natal, and Mpumalanga, and the most dominant species 

Heterorhabditis zealandica Poinar, in the Eastern, Northern and Western Cape, as well as in 

the North West and Mpumalanga provinces. Heterorhabditis noenieputensis Malan, Knoetze 

and Tiedt was found on a garden fig in the settlement Noenieput in the Northern Cape Province 

(Malan & Ferreira 2017). Within these EPN species, four symbiotic bacterial species have been 

described from South Africa (Malan & Ferreira 2017). 

1.7.3. Regulation and registration 

The amended Act 18 of 1989 (South African Agricultural Pests Act, No. 36 of 1947) states 

that the introduction of exotic animals, including non-endemic EPN species, is only allowed 

under permit, together with a full impact study. With only H. bacteriophora currently having a 

permit for importation for research purposes (Hatting et al. 2018), no other nematode is allowed 

to be imported into South Africa. No registration is required for EPNs in many countries, hence 

their introduction, release and commercialisation varies from country to country. The 

Organization for Economic Cooperation and Development (OECD) and the European 

Cooperation in Science and Technology (COST) concluded that EPNs should be treated as 

macro-organisms, due to them being multicellular and indigenous. Although local or 

indigenous EPN species should not be regulated, exotic EPNs should be (Ehlers & Hokkanen 

1996; Grewal et al. 1994).  

1.7.4. Biological control potential 

The fact that the soil environment is the natural habitat for EPNs offers great potential for 

successful biocontrol applications using these organisms (Klein 1990; Shapiro-Ilan et al. 2002). 

EPNs are characterised by their association with symbiotic bacteria to facilitate pathogenesis, 
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which enables them to rapidly kill their hosts, usually within a few days after infection (Kaya 

& Gaugler 1993). EPNs within the genera Heterorhabditis and Steinernema are the most 

extensively studied, and they are most often used in biological control (Kaya & Gaugler 1993; 

Zhang et al. 2008). EPNs are highly pathogenic, and are used as biological control agents of 

numerous insect pests. They have been commercialised for use in a range of environments, 

stretching from large-scale agriculture to individual home gardens on several continents (Lu et 

al. 2016).  

To achieve successful applications in the soil environment, a variety of abiotic and biotic 

factors must be considered (Kaya 1990). According to Lu et al. (2016), traits important for 

biological control can be grouped into three main categories: infectivity, persistence and storage 

stability (Burnell & Dowds 1996). Another important factor to consider is whether the 

nematode can be easily cultured in industrial fermenters (Bedding et al. 1993). Infectivity refers 

to the characteristics that are involved in finding, infecting, and killing a target host. For EPNs 

to be effective in terms of biological control, they must be able to find, and kill, the appropriate 

insect hosts. Thus, attempts to increase and to modify host-seeking behaviour have been 

popular. Host-seeking has been shown to be a highly heritable trait, which can be enhanced 

through selective breeding for such species as S. feltiae (Gaugler et al. 1989) and Steinernema 

carpocapsae (Weiser) Wouts, Mráček, Gerdin & Bedding (Gaugler et al. 1990, 1991). Research 

to enhance host-seeking traits has relied solely on selective breeding, with the genes that are 

implicated in the processes being unknown (Koppenhofer et al. 1997). 

Persistence refers to traits that increase survival rates after application in the field, such as 

tolerance of varying temperature, desiccation, and UV radiation. Desiccation tolerance is 

important for EPN persistence and production. EPN species that forage near the soil surface 

tend to have improved desiccation tolerance (Koppenhofer et al. 1997). Desiccation can induce 

EPN quiescence, which leads to the lengthening of the shelf life, which might contribute to their 

longevity in the soil (Koppenhofer et al. 1997). EPNs require adequate soil moisture for survival 

and movement, which may vary among nematode species and isolates and among different soil 

types. Low soil moisture levels can be lethal to EPNs with some developing survival strategies 

under water stress conditions, by reducing the body surface area exposed to the air and slowing 

their cell metabolism (anhydrobiosis), which can be reversed when the soil becomes wet again. 

High moisture levels might cause oxygen deprivation and restrict mobility of EPNs. Optimum 

moisture levels tend to vary by nematode species and soil type. (Koppenhöfer et al. 1997). The 

soil type affects nematode movement and survival rates (Kaya 1990). Generally, compared with 

lighter soils, soils with higher clay content tend to restrict nematode movement, and to have 
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potential for reduced aeration, which can result in reduced nematode survival and efficacy rates. 

However, exceptions to the trend have been observed (Shapiro-Ilan et al. 2006). The soil pH in 

most agroecosystems, having a range of 4-8, is not likely to affect EPNs significantly, but a pH 

of 10 or higher is likely to be detrimental (Kaya 1990). 

Optimum temperatures for infection and reproduction vary among nematode species and 

strains. (Kaya 1990; Grewal et al. 1994; Wright et al. 2005). Extreme temperatures of 0 and 40 
°C are lethal to EPNs and temperatures below 10-15 °C can restrict their mobility, while 

temperatures higher than 30-40 °C can inactivate them (Bedding et al. 1993; Grewal et al. 

1994). Some species and isolates are better adapted to heat. For example, Heterorhabditis 

indica Poinar, Karunakar & David, S. glaseri (Ssteiner) Wouts, Mráček, Gerdin & Bedding and 

S. riobrave Cabanillas, Poinar & Raulston are relatively heat-tolerant and they can maintain 

efficacy at temperatures of 29 °C and above, whereas others, like H. megidis Pionar, Jackson & 

Klein, S. feltiae, and Heterorhabditis marelatus Liu & Berry, are more cold-tolerant, 

maintaining efficacy at 15 °C and below (Shapiro-Ilan et al. 2006). As ultraviolet radiation is 

detrimental to nematodes, it is best to apply nematodes to the soil surface in the evening or early 

morning hours. Alternatively, efficacy levels can be improved, and exposure to ultraviolet 

radiation avoided, through subsurface application, although the advantages of such approaches 

have not been seen in all studies (Wilson & Gaugler 2004).  

The storage stability of EPNs involves traits that increase the shelf life necessary for the 

distribution of EPNs. Such stability is essential for EPN longevity in the soil, and for EPN 

commercial production and distribution. Artificial selection and hybridisation can enhance 

desiccation tolerance (Salame et al. 2010), but the removal of selection pressure ultimately 

results in the loss of the desired traits (Nimkingrat et al. 2013a, b).  

Improving the above-mentioned traits, as well as many others, has the potential, ultimately, 

to increase their field efficacy. Although EPNs have been used in biological control, 

improvement in their use is needed to realise their full potential for broader application in 

agriculture. No matter how well-suited an EPN is to a target pest, the application will fail if the 

agent is not delivered in a manner that enables access to, and infection of, the host. The effective 

and efficient delivery of EPNs can only be achieved with careful consideration of the available 

application technology, coupled with an understanding of the attributes and limitations of the 

biocontrol agent (Lu et al. 2016). 
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1.8. ENTOMOPATHGENIC NEMATODES TO CONTROL WESTERN FLOWER 

THRIPS 

1.8.1. Efficacy of EPN species 

EPN species vary in their virulence against different host insects (Mason & Wright 1997). 

Moreover, the efficacy of EPN species varies, among others, in terms of concentration, host 

density, and temperature (Zervos et al. 1991). Different strains of the same EPN species differ 

in their pathogenicity to different insect species (Ebssa et al. 2004). Ebssa et al. (2004) tested 

six strains of Heterorhabditis and 11 strains of Steinernema against different soil-dwelling 

stages of WFT at 200 IJs/cm2 and found that the EPN species varied greatly in terms of efficacy 

against WFT, with mortality ranging between 3 % and 60 %. Mean mortality values < 50 % 

were recorded for 67 % and 43 % of the tested Steinernema and Heterorhabditis species, 

respectively. The commercial product, Nemaplus®, of which the active ingredient is S. feltiae 

and the hybrid, H. bacteriophora strain PS8, were found to be among the least effective strains. 

Except for S. feltiae and S. carpocapsae strain A1 B5, WFT mortality with all tested EPN 

species was found to be significantly higher than control mortality, which varied from 3.3 % to 

12.5 %, while twenty-five percent of the tested species resulted in ≥ 50 % mortality. A strain of 

S. carpocapsae from Egypt caused significantly higher mortality in WFT than a strain of S. 

carpocapsae from Italy (Hay & Richardson 1995).  Heterorhabditis species are more effective 

against F. occidentalis than Steinernema species (Chyzik et al. 1996; Premachandra et al. 

2003). Ebssa et al. (2004) also proved that nematodes from the genus Heterorhabditis were 

more effective (76 %), whereas the genus Steinernema was less effective (37 %). Other 

laboratory trials that were conducted with 100 strains of S. feltiae against WFT soil stages 

yielded varying results between strains, with mortality ranging between 3.7 % and 72.6 %. 

Heterorhabditis and Steinernema spp. applied against the mixed life stages of WFT recorded 

mortality between 2.6 and 60 % at a concentration of 200 IJs/cm2, with the Heterorhabditis spp. 

being more virulent (Arthurs & Heinz 2006). Post application persistence of  H. bacteriophora 

strain HK3 and S. carpocapsae strain DD136, applied at 200 and 400 IJs/cm2 against late second 

instar larvae of F. occidentalis, resulted in H. bacteriophora giving higher thrips mortality of 

up to 76 % compared to 37.8 % for S. carpocapsae, even though both persisted for at least 6 

days (Belay et al. 2005). 

1.8.2. Susceptibility of life stages 

Previous studies have shown that the soil-dwelling pupal stage of WFT is highly susceptible 

to several EPNs, particularly S. feltiae (Chyzik et al. 1996; Ebssa et al. 2001a; Premachandra 
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et al. 2003; Pundt 2011). Results of research over the last two decades have also shown a certain 

biological potential of EPNs against foliar (above-ground) insect pests, but only under specific 

conditions (Arthurs et al. 2004). The relatively lower efficiency of EPNs against foliar pests is, 

above all, the consequence of the exposure of the nematodes to unsuitable (low) moisture levels 

(Lello et al. 1996), extreme temperatures (Grewal et al. 1994), or high ultraviolet radiation 

(Gaugler et al. 1992). The above-mentioned factors are important for the survival of nematodes 

(Gaugler 2002). They are the main reasons that nematodes are not so efficient against foliar 

pests, although previously conducted laboratory tests have shown higher efficiency levels 

(Berry & Lewis 1993). The pathogenicity of six species of EPNs in terms of controlling F. 

occidentalis was studied under laboratory conditions. The nematodes included in the 

experiment were H. bacteriophora ‘HK3’, H. bacteriophora ‘HB Brecan’, S. feltiae ‘Sylt’, S. 

feltiae ‘OBSIII’, S. feltiae ‘CR’, and S. carpocapsae (Weiser) ‘DD136’. All species were highly 

effective against soil stages of the pest, with the most effective being S. feltiae Sylt, S. 

carpocapsae ‘DD136’, and H. bacteriophora ‘HK3’. The nematode S. feltiae ‘OBSIII’ was the 

most virulent against the second instar larvae and prepupae in the soil, at average moisture 

levels, while the effectiveness of the agents was a good deal less in dry soil (Ebssa et al. 2001a).  

1.8.3. Effect of EPN concentration 

Ebssa et al. (2004) also noted that the effect of increasing EPN concentrations for the 

control of WFT depends on the type of EPN strain used. The WFT mortality caused by H. 

bacteriophora PAL H04 and Steinernema abbasi Elawad, Ahamad & Reid PAL S09 at 100 

IJs/cm2 was not significantly different from that caused in the water-treated control. For all 

strains, a concentration of 150 IJs/cm2 did not significantly increase WFT mortality compared 

to that obtained with a concentration of 100 IJs/cm2. Similarly, even though highest mortality 

was recorded at 1000 IJs/cm2, the values did not differ from the mortality obtained at 400 

IJs/cm2, except with H. bacteriophora PAL H04 and Steinernema bicornutum Tallosi, Peters 

& Ehlers. Conclusively, WFT mortality increased with increasing concentrations, although the 

degree of increment differed significantly among the species/strains involved. The three 

Heterorhabditis spp. (H. indica strains LN2, LN10 and H. bacteriophora) had significantly 

greater slopes than did the two Steinernema spp. (S. abbasi (PAL S09) and S. bicornutum), 

indicating that the former responded more strongly to the increase in concentration.  

The activity of different species of EPNs against the juveniles of F. occidentalis was 

studied under laboratory conditions, including in Slovenia (Perme 2005). This experiment 

included the nematodes H. bacteriophora, H. megidis, S. carpocapsae, and S. feltiae. Their 
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activity was studied at three different suspension concentrations (500, 1000, and 5000 IJs/ml). 

At the highest concentration, the most effective were H. bacteriophora (92 % mortality) and H. 

megidis (71 % mortality), whereas, at the lower concentration, S. carpocapsae (90 %) and S. 

feltiae (82 %) were most effective. The author confirmed that the activity of the nematodes 

depends more upon temperature than it does upon concentration, since all four species of 

nematodes were more effective at 25 °C than at lower temperatures. The species from the genus 

Steinernema showed high enough effectiveness at lower concentrations, making them suitable 

biological agents for controlling the larvae of F. occidentalis, also due to the comparatively 

lower cost of their use (Laznik & Trdan 2008). 

The efficiency of three EPN species (Steinernema riobravis Cabanillas, Poinar and 

Raulston, S. feltiae and H. bacteriophora) against the prepupae and pupae of WFT was studied 

in Israel (Chyzik et al. 1996). The highest mortality for thrips was shown by H. bacteriophora 

(36-49 %), whereas the two Steinernema species were less effective (± 10 %). At higher 

concentrations of the H. bacteriophora suspension (10 000 IJs/ml), the mortality of F. 

occidentalis was only slightly higher (42-73 %) than at a lower concentration (500 IJs/ml) 

where mortality was between 35 and 50 % (Chyzik et al. 1996).  

1.8.4. Abiotic conditions 

The use of EPNs (Rhabditida: Steinernematidae and Heterorhabditidae) for controlling 

thrips has gained importance in some European countries (Kaya et al. 2006). A study conducted 

by Kung et al. (1990) on the effects of soil temperature, moisture and relative humidity on EPN 

persistence, showed that S. carpocapsae was persistent at low temperatures of 5-25 °C, whereas 

they were only poorly persistent at a temperature of 35 °C. Steinernema glaseri, in contrast, as 

a tropical/ subtropical nematode, had high persistence at high temperatures (15-35 °C) and low 

persistence at the lowest temperature, 5 °C. Both S. carpocapsae and S. glaseri survived best at 

low soil moistures of 2 % and 4 %. The survival and pathogenicity of S. carpocapsae and S. 

glaseri decreased as the relative humidity decreased, with S. glaseri being more susceptible and 

persistent to low relative humidity in comparison to S. carpocapsae. 

The parasitic nematode Thripinema nicklewoodi Siddiqi (Tylenchida: Allantonematidae) 

was investigated against F. occidentalis infesting greenhouse floricultural crops. At constant 

temperatures, T. nicklewoodi infected WFT over the range of 1–30 °C, and at optimum 

temperature of approximately 20 °C, there was 80 % infection. Conclusions were drawn that 

daytime temperature fluctuations in greenhouses would permit the establishment of T. 

nicklewoodi (Arthurs et al. 2003). Ebssa et al. (2004) assessed S. bicornutum and H. indica 
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under different moisture conditions of between 67 % and 99 % RH against the soil-dwelling 

stages of WFT at concentrations of 100 and 400 IJs/cm2 and the results indicated that increasing 

moisture content improved efficacy of H. indica and S. bicornutum at both concentrations. 

1.8.5. Above- and below-ground application 

Studies from several field trials on the use of EPNs for the control of insects in above-

ground habitats showed lower efficacies. The main limiting factor is attributed to the rapid 

desiccation of the IJs (Lacey & Georgis 2012; Shapiro-Ilan et al. 2012), but, when wetting 

agents are used, the efficacy improved (Lacey & Georgis 2012). According to Buitenhuis & 

Shipp (2005), the efficacy of foliar applications under greenhouse conditions was low, even 

when twice the recommended label rates of S. feltiae were used (2 × 104 to 4 × 104 IJs/µl). 

Mortality of < 40 % was recorded in potted chrysanthemum (Dendranthema grandiflora) 

against WFT nymphal stages and adults. Weekly applications of EPNs under greenhouse 

conditions in a study done by Ebssa et al. (2006) recorded a low WFT mortality of 53 %. 

However, it is inconclusive whether such mortality was caused by the EPNs, or by the water 

used for spraying, which washed away the WFT from the plants causing them physical injury. 

Foliar applications of S. feltiae, with the aid of a wetting agent, have also been shown to control 

WFT adults and larvae successfully in chrysanthemum (Buitenhuis & Shipp 2005; Arthurs & 

Heinz 2006). The quantitative data, on the efficacy of foliar applications under greenhouse 

conditions, were found to be minimal, even with using rates that were twice the recommended 

label rate (20 000-40 000 IJs/ ml) on potted chrysanthemum (D. grandiflora). A low percentage 

of mortality (< 40 %) against the nymphal and adult stages of WFT was recorded in terms of 

the above (Buitenhuis & Shipp 2005). EPN application for the control of insects in soil surface 

habitats has proven to be a success, and because thrips spend one-third of their life as pupae in 

the soil, they are relatively susceptible (Mouden et al. 2017).  

1.8.6. Commercial application 

Commercial interest has been shown in EPNs, due to the advances that have been made in 

mass production and formulation, and because of the efficacy that EPNs have shown in 

controlling pests. Currently, EPNs are produced and marketed for commercial use for 

greenhouse production in European countries and in the USA. The common EPN species that 

has been commercialised is S. feltiae (Cloyd 2015). Steinernema feltiae has been evaluated both 

for soil applications targeting the pupal stages that are more susceptible to attack, and for foliar 

applications that target the nymphs and adults that are hidden in the cryptic habitats. 

Steinernema feltiae, sold under the trade name ENTONEM by Koppert, is recommended for 
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control of larvae of sciarid flies (Sciaridae), WFT and leafminers, to be applied at weekly 

intervals as a soil application at a concentration of 50 IJs/cm2 or as a leaf application at 25 

IJ/cm2. Another commercial product of S. feltiae is NemaTrident®F by Bionema, applied at 

weekly intervals as soil and foliar applications at a concentration of 125 IJs/cm2. Other trade 

names for the same product used against WFT are NemaShield®, Nemasys® and Scanmask® 

(Pundt 2011).  

As S. feltiae has not yet been isolated in South Africa, its importation and use is restricted, 

due to government regulations that are imposed on exotic organisms. The commercialisation of 

EPNs in South Africa is still under investigation, in terms of the mass rearing of the local EPN 

species, which are adapted to our environments, especially in the case of S. yirgalemense, which 

has been effective in controlling a number of insect pests.  

1.9. CONCLUSION 

The WFT is an important agricultural pest in undercover production of many fresh 

products. WFT severely damages ornamentals and vegetables, especially in greenhouses and 

shade houses, with preference exhibited to feeding on flowers. They cause direct plant damage 

through oviposition and feeding, and indirectly by means of transmitting tospoviruses, thus 

causing huge losses in terms of yields and/or market value. To improve management of WFT, 

it is important to identify thrips correctly. WFT has previously been easily confused with other 

species, due to their small size, and considering the > 7500 species of thrips that have been 

identified to date. Biological control has become increasingly important to render WFT 

management programmes successful, as chemical control is difficult, and several pest strains 

have developed resistance to many different insecticides. The efficacy of other parasites and 

predators for biological control is limited, because they are hindered in entering tight flower 

buds, meristematic tissues, or narrow flower structures. EPNs have become an option in the 

natural enemy pool of WFT, because they are able to actively seek out the insect host in cryptic 

habitats. Previous studies on the effects of EPNs on WFT have concentrated on the use of the 

commercial S. feltiae product ENTONEM  devised by Koppert, which has shown tremendous 

efficacy in European countries. However, S. feltiae has not been isolated in South Africa, hence 

its importation is prohibited. Moreover, it is adapted to cooler climates, making it unsuitable 

for use in local high temperature undercover conditions. If EPNs are to be used for WFT 

management in undercover crop production in South Africa, locally isolated EPNs that are well 

adapted to our environment must be evaluated for their efficacy against various life stages of 

WFT. 
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1.10. AIM OF THE STUDY 

The main aim of the current study was to investigate the potential use of indigenous EPNs 

for the control of WFT under laboratory and greenhouse conditions. The objectives of the study 

were the following: 

1. To study the development and survival rate of Frankliniella occidentalis on two host 

plants, as well as its biology under laboratory conditions, to identify life stages that 

could be targeted with EPNs. 

2. To determine the efficacy of the local species of EPNs to control the different life stages 

of WFT, and the optimum nematode concentrations required for the suppression of 

WFT under laboratory conditions. 

3. To determine the effect of different concentrations of locally isolated Steinernema 

yirgalemense on the efficacy against F. occidentalis in a commercial blueberry 

greenhouse. 

 

The chapters of this study have been written as separate publishable papers, and, for this 

reason, some repetition, in the different chapters, has been unavoidable. The chapters are 

written according to the format of the journal African Entomology. 
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Chapter 2 

Identification and life history of western flower thrips, Frankliniella 

occidentalis (Thysanoptera: Thripidae), on two different plant hosts 

Abstract 

The western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thripidae: 

Thysanoptera), is one of the most economically important pests in greenhouses. However, their 

identification is usually difficult, with them being easily confused with other thrips species. The 

identity of F. occidentalis was verified, using both morphological and molecular methods. Main 

morphological key characteristics were observed in the thrips population and they fitted well 

with the descriptions given for F. occidentalis. Molecular identification was based on 

amplification of the mtCOI gene sequences for the identification of five thrips species (F. 

occidentalis, Thysanoptera sp., Gynaikothrips ficorum and Pseudophilothrips ichini) collected 

from the study area. The F. occidentalis, morphologically identified, showed 100 % identity 

with sequences for F. occidentalis in the database of GenBank. One of the Thrips sp. which 

could not be identified morphologically or molecularly could possibly be an unidentified 

species. Accurate identification of WFT is important for further studies in biological control of 

the pest.  The life history and success rate of WFT on chrysanthemum (Dendranthema 

grandiflora) leaflets and green bean pods (Phaseolus vulgaris) were studied in the laboratory. 

Results from the life-history characteristics showed that more first instar larva hatched on 

chrysanthemums and faster larval developmental rate and a higher survival rate on 

chrysanthemums indicated that chrysanthemum is a more attractive and more suitable host than 

green bean. 

Key words: Frankliniella occidentalis, morphological, molecular, life history, survival rate, 

host plant, developmental stages. 
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2.1. INTRODUCTION 

The western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is an invasive pest that is of great economic importance worldwide (Siguna 2007). 

Its significance is attributed to its wide range of host plants, its high reproductive potential, and 

its invasiveness (Reitz 2009). WFT is known to attack more than 240 plant species that belong 

to 62 different plant families (Lim et al. 2001). WFT is also a serious pest of greenhouse 

cultivation, because it damages plants directly by means of feeding and oviposition on foliage 

and flowers, and indirectly, by means of vectoring tospoviruses (Cloyd et al. 2001).  

Frankliniella occidentalis transmits about five species of tospoviruses, mainly the impatiens 

necrotic spot virus (INSV) and tomato spotted wilt virus (TSWV) (Riley et al. 2011). 

The life cycle of F. occidentalis includes the egg , which is partly inserted in the plant tissue, 

two actively feeding larval instars, two pupal stages (pre-pupa and pupa), which are non-

feeding, and the adult stage (Lee et al. 2017). Development, which is dependent on the 

temperature and host, can be quite rapid, resulting in multiple generations in a single cropping 

season (Reitz 2009). Within the most favourable temperature range of 25-30 °C, the cycle from 

egg to adult can be as short as 9-13 days (Gaum et al. 1994; Katayama 1997; Reitz 2009). 

At least 7500 species of thrips exist in the world (Mound 2009). The diagnostic characters 

separating Thripidae species are subtle and difficult to appreciate. The small size of F. 

occidentalis contributes to it being easily confused with other species.  Even when keys are 

available, they are difficult to use and morphological identification of species remains 

problematic, if not impossible, for non-specialists. Consequently, misidentification of thrips 

may result in serious economic losses. To manage WFT effectively, it is important to identify 

them to species level. Morphological characteristics such as the number, size and location of 

the major setae on the head and prothorax, setae on the forewing and coloration are among 

those used for identification (Funderburk et al. 2007). Their minute size, cryptic behaviour, 

sexual dimorphism, high degree of similarity in various developmental stages, and 

polymorphism (in colour, wing development, body size) make morphological identification 

difficult (Tyagi et al. 2017). Molecular identification has become an important tool to support 

and verify morphological identification, facilitating differentiation of morphologically similar 

insect species. Molecular markers are available and are able to resolve the species complex in 

many insects (Suganthy et al. 2016). In the case of insect identification, including identification 

of the thrips species, the nucleotide sequencing of mitochondrial cytochrome oxidase gene 

subunit I (mtCOI) is used (Glover et al. 2010). 
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An integrated pest management (IPM) programme offers a sustainable alternative for the 

control of WFT in greenhouses, and the use of entomopathogenic nematodes (EPNs) for 

biological control has been identified as an environmentally friendly option. Laboratory 

bioassay tests need to be done to test the best performing EPN species. The laboratory bioassays 

require a constant, reliable source of thrips, making laboratory rearing of thrips essential. A 

major factor, other than environmental conditions and contamination, that has been reported to 

limit the success in rearing thrips, like F. occidentalis, is that they tend to cannibalise one 

another (Loomans & Murai 1997). Previously used methods of rearing, which required the 

employment of specialised equipment, were prone to mite infestations (De Graaf & Wood 

2009). The use of whole plants is usually used for maintaining stock cultures of thrips, but 

monitoring life history components in such a rearing system proves to be difficult (Brodbeck et 

al. 2002). Numerous studies have investigated the life-history components of F. occidentalis 

on different host plants, including chrysanthemums (Robb & Parrella 1991) and French beans 

Phaseolus vulgaris L. (Gerin et al. 1994). Zhang et al. (2007) investigated the preference of F. 

occidentalis for five vegetables, including cabbage (Brassica oleracea L.), cucumber (Cucumis 

sativus L.), capsicum (Capsicum annuum L.), kidney bean (P. vulgaris), and tomato 

(Lycopersicon esculentum M.). Chaisuekul and Riley (2005) also reported that host plants 

significantly affect F. occidentalis oviposition preference.  

Identification and culturing of WFT is difficult and often inaccurate. To evaluate the 

efficacy of EPNs against WFT, both in laboratory bioasssays and in the field, accurate 

identification of the thrips is necessary. Before recommendations regarding thrips control are 

given to producers, it is also important to first identify the thrips species present on the crop. 

The aim of the current study was, therefore, to use both morphological and molecular 

techniques to ensure that F. occidentalis can be identified accurately. In addition, the 

development, number of eggs hatched and survival rate of F. occidentalis on leaflets of 

Dendranthema grandiflora Ramat (Asteraceae) and pods of P. vulgaris L. (Fabaceae) were 

compared under laboratory conditions. 

2.2. MATERIALS AND METHODS  

2.2.1. Morphological identification  

Proper morphological identification requires the use of such laboratory facilities as good 

microscopes and good quality specimens (Vierbergen et al. 2012). In the current study, good-

quality slides were prepared for the observation of the morphological features of thrips. The 

thrips specimens were mounted on microscope slides using the modified method used by Moritz 
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(2001). Adults were soaked in a NaOH (10 %) solution overnight, at room temperature to 

remove pesticide residues from plant parts. Specimens were transferred to acetic acid to 

neutralise the alkali, and then transferred to oil of clove to complete clearing for about 60 min. 

The specimens were then dehydrated by transferring to xylol. To make microscope mounts, 

specimens were mounted in Canada balsam on microscope slides, turning insects onto their 

ventral side, with their appendages arranged in an extended position, using fine forceps, before 

sealing with a coverslip. The slides were placed on a slide holder that was positioned 

horizontally in an oven at 45 °C until the Canada balsam had dried out. The adult thrips 

specimens were observed with a compound microscope (ZEISS Axio Scope.A1). Images were 

captured under a light microscope equipped with a camera and a differential interference 

contrast (DIC), and connected to a computer with ZEN 2.3 Lite software, to ascertain the key 

characteristics. Morphological identification was based on external anatomy, using the 

identification keys provided by Moritz  (1994), Karnkowski & Trdan (2002), Reed et al. (2006), 

Wang et al. (2010), Cavalleri & Mound (2012), and Tyagi & Kumar (2015). 

2.2.2. Molecular identification  

Specimens from different locations (Table 2.1), which had first been morphologically 

identified, were used for molecular identification. DNA was extracted from the adult thrips, 

using a column-based QIAamp® DNA Micro extraction kit method. Whole thrips specimens 

were ground in a lysis buffer in a micro tube, using a micro pestle, with the homogenate lysing 

overnight at 56 °C in ATL lysis buffer (QIAGEN), with proteinase K. A Nanodrop ND-1000 

Spectrophotometer was used to estimate the DNA concentration.  
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Table 2. 1. Morphological identification of thrips species collected at two locations in the Western Cape 
Province, South Africa. 

Sample 

# 

Location GIS 

coordinates 

Crop Sample 

ID 

Species 

1 

 

Simonsvlei 

Estate 

33°49'41''S 

18°33'6.48''E 

Blueberries WFTS1 F. occidentalis 

2 

 

Simonsvlei 

Estate 

33°49'41''S 

18°33'6.48''E 

Blueberries TRS1 Thysanoptera sp. 

3 

 

Oak Valley 34°9'22.68''S 

19°3'21.15''E 

Chrysanthemums WFTS2 F. occidentalis 

4 

 

Oak Valley 34°9'22.68''S 

19°3'21.15''E 

Chrysanthemums T1 Gynaikothrips ficorum 

5 

 

Oak Valley 34°9'22.68''S 

19°3'21.15''E 

Chrysanthemums T2 Pseudophilothrips sp. 

 

The PCR was done with the primers mtD7. 2F, 5' ATTAGGAGCHCCHGAYATAGCATT 

3' and mtD 9.2 R, 5' CAGGCAAGATTAAAATATAAACTTCTG 3' that target the 5' region 

of mtCOI gene (Brunner et al. 2002; Suganthy et al. 2016). The 25 µl PCR reaction mixture 

contained 12 µl KAPA master mix, 2.0 µl of each primer (forward and reverse), 4.0 µl DNA 

water, and 5.0 µl DNA. The PCR cycle on the Eppendorf was 94 °C for 30 sec for denaturing, 

1 cycle; 53 °C for 45 sec, and 72 °C for 1 min for annealing, amplification was at 35 cycles, and 

at 72 °C for 20 min for extension. The PCR products were visualised by agarose gel 

electrophoresis containing 1.2 % agar, with ethidium bromide (10 µg/ml), with 5 µl of the PCR 

product, positive and negative control, and ladder at 1000 bp for 30 min. The PCR product was 

sequenced either at the DNA Sequencing Facility at Stellenbosch University or at Inqaba 

Biotech. 

The forward and reversed generated sequences were aligned and edited using CLC Main 

Workbench (ver. 8.0.1). Edited sequences were submitted for homology using BLAST (US 

National Library of Medicine, National Center for Biotechnology Information [s.d.]), so as to 

verify the morphological identification of the thrips species. Sequences of closely related 

species were retrieved from GenBank, and aligned using CLC. The phylogenetic relationship 

of South African species was analysed with the type specimens obtained from GenBank (Table 

2.2). 
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Table 2.2. Thrips species downloaded in GenBank for nucleotide analysis. 

Sample # Thrips species GenBank Acc. No. 

1 Frankliniella occidentalis EU004554 

2 Frankliniella occidentalis EU004556 

3 Frankliniella occidentalis KJ576881 

4 Frankliniella occidentalis KY688343 

5 Frankliniella occidentalis KY775404 

6 Frankliniella occidentalis MF993429 

7 Pseudophilothrips ichini GU942815 

8 Pseudophilothrips ichini GU942818 

9 Gynaikothrips ficorum JN181197 

10 Gynaikothrips ficorum JN181198 

11 Thrips sp. KM537823 

12 Thysanoptera sp. KM536079 

13 

14 

Aeolothrips sp.* 

Scirtothrips dorsalis 

KP845633 

KF778773 

*outgroup 

2.3. Laboratory bioassay 

2.3.1. Source of thrips 

The laboratory population of F. occidentalis was initiated from adults obtained from 

chrysanthemums grown undercover on Oak Valley farm in Elgin (34°9'22.68''S 19°3'21.15''E) 

and from blueberries on Simonsvlei Estate near Paarl (33°49'41''S 18°33'6.48''E), in the 

Western Cape Province, South Africa (Fig. 2.1). The collecting of adult thrips was done by 

means of taking flower and leaf samples, which were then shaken into a clean white container 

to dislodge the thrips. The culture was maintained in a plastic container (20 × 20 × 30 cm3), 

with a screened hole in the lid for ventilation, and lined with moist tissue paper at the bottom 

to prevent plant desiccation. The plastic container was kept under growth chamber conditions 

(25 ± 2 °C, 60-70 % (RH). The thrips were fed on chrysanthemum flowers, which were changed 

weekly so as to maintain high fecundity. The rearing was continued until the emergence of the 

adults, which were used for further investigations. 
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Fig. 2.1. Localities where thrips species were collected in the Western Cape Province, South 
Africa. 

2.3.2. Source of plants  

Two host plants, D. grandiflora (chrysanthemum) leaflets and P. vulgaris (green bean) pods, 

were used for comparing life history stages in this study, using modified protocols employed 

by Kanara & Acharya (2014) and Reiter et al. (2015), respectively. Chrysanthemums were 

obtained from a commercial farm, whereas the green beans were bought in supermarkets. To 

remove the insecticide residues, all the bean pods and chrysanthemum leaves were soaked in 

an abluent solution of 0.5 % sodium allylsulfonate for 1 to 2 h, thoroughly washed with water, 

and air-dried (Shan et al. 2012).  

2.4. Development and survival on two host plants 

Five adult female and two male WFT were enclosed on a chrysanthemum leaf or bean pod in a 

plastic vial (5 × 4 cm), screened on top and maintained in an incubator (25 ± 2 °C, 60-70 % RH) 

for 4-5 days oviposition period. After this time, the adults were removed and the new cohorts 

of larvae, emerging from host plant material, were transferred to new green bean pods or 

chrysanthemum leaves in new vials with the above-mentioned specifications. After 2-3 weeks 

in an incubator, emerged new adults were counted as a new generation. 

2.4.1. Egg stage 

Five adult female and two male WFT from the new generation were enclosed in a plastic 

vial (5 × 4 cm), screened on top, containing a chrysanthemum leaflet or green bean pod for 
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oviposition. The ten vials that were used for each treatment were kept in a plastic container (20 

× 20 × 30 cm3), maintained under climate chamber conditions (25 ± 2 °C, 60-70 % RH). After 

24 h each leaflet or bean pod was transferred individually into another vial above a piece of 

folded tissue paper for the eggs to hatch. The duration of the egg stage was recorded from the 

time when the eggs were laid to when the larvae emerged and the number of larvae that 

emerged, were recorded. 

2.4.2. Larval stage 

To study larval instars and their duration, newly emerged larvae were transferred to a vial 

containing a chrysanthemum leaflet or bean pod, using a camel hair brush. The leaflets and 

pods were changed daily to keep the diet fresh. Individual larvae were examined under a ZEISS 

stereo Discovery V8 microscope, fitted with Axiocam ERc 5s, every day until they died or 

matured. The morphology of the first instar larva was differentiated from that of the second 

instar larva by means of the individual’s size, and the exuviae of the first instar. The number of 

instars, instar duration, and total larval duration were recorded. 

2.4.3. Pupal stage 

To facilitate pupation, a piece of tissue paper was kept at the bottom of the vial. The pupae, 

when formed, were collected and kept individually in vials until adult emergence. The prepupal 

and pupal periods and pupal numbers were recorded. The prepupa was distinguished by its short 

wing sheaths and erect antennae, whereas the pupa had long wing sheaths reaching almost the 

end of the abdomen, with its antennae bent backwards along the head. 

2.4.4. Adult stage 

After counting the winged adults that emerged from the pupae, both the females and males 

were transferred into separate vials on the same day to study their longevity. The sexes of the 

adults were identified on the basis of their body colour, size and abdominal tip. The males were 

smaller in size, and pale in colour, with rounded abdominal tip, whereas the females were darker 

in colour, with pointed abdominal tip and the ovipositor visible. Fresh leaflets or pods were 

placed in each vial for food every 24 h, until the adults died.  

2.4.5. Statistical analysis 

Analysis of variance (ANOVA) was used to test for significant differences (p < 0.05) in the 

development periods, in the longevity of the females and males, and in the fecundity of F. 

occidentalis on different host plants. Statistical analyses were conducted using STATISTICA 
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13.2 software (StatSoft Inc. 2016). Homogeneity of variance tests were performed using 

Levene’s test (Levene 1960) and the Games-Howell test (Games & Howell 1976), used for 

unequal variances caused by unequal group sizes.  

2.5. RESULTS 

2.5.1. Morphological identification  

Five specimens exhibiting characteristic features of F. occidentalis, were observed from 

each location. The adults are yellow, with distinctive light brown markings medially on each 

abdominal tergite, with the head greater in width than length (Fig. 2.2). The F. occidentalis 

male has a narrow, rounded-end abdomen, while the female has a pointed abdomen (Fig. 2.3) 

with the ovipositor clearly visible. Antennae have eight segments; I yellow; II yellowish-brown; 

III-V yellow with brown distal end; VI-VIII brown (Fig 2.4), with a smooth antennal pedicel 

(Fig 2.6), and spines arising from the second antennal segment that are relatively light (Fig 2.5). 

Antennal segment VIII is twice the length of VII (Fig. 2.3). The pronotum has five pairs of 

major setae (Fig. 2.7); anteromarginal setae slightly shorter than anteroangulars, one pair of 

minor setae present medially between posteromarginal submedian setae. The metanotum has 

two pairs of setae at the anterior margin, campaniform sensilla present (Fig. 2.7). Three pairs 

of ocellar setae are present on the head, pair III longer than the distance between the external 

margins of hind ocelli, arising on anterior margins of the ocellar triangle; postocular setae pair 

I present, pair IV longer than the distance between hind ocelli. A pair of ocular setae separated 

by at least one-and-a-half times the diameter of a single ocellus, are present (Fig. 2.8). Four 

small setae arise on the anterior margin of the prothorax, between the major anteromarginal 

setae. The first vein of the anterior wing has a complete row of 14-21 (most often 16-17) 

regularly spaced setae (Fig. 2.9). Setae A on Tergite IX slightly shorter than B and C (Fig. 2.10). 

Posteromarginal comb on tergite VIII of female well-developed, complete, with about 10-14 

long teeth on broad base (Fig. 2.11). 
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Fig. 2.2. Female Frankliniella occidentalis with distinctive light brown markings medially on 
each abdominal tergite and head greater in width than length (100 × magnification). 

 

  

Fig. 2.3. A: Male Frankliniella occidentalis with narrow, rounded-end abdomen, and B: female 
Frankliniella occidentalis with pointed abdomen (200 × magnification). 

 

Fig. 2.4. Antennae of Frankliniella occidentalis with eight segments (200 × magnification). 
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Fig. 2.5. Antennal segments III and IV of Frankliniella occidentalis, with sense cones (400 × 
magnification). 

 

Fig. 2.6. Pedicel of antennal segment III of Frankliniella occidentalis simple (400 × 
magnification). 

 

Fig. 2.7. Adult Frankliniella occidentalis head and pronotum, showing two pairs of large setae 
on the front and back of pronotum (circled). A: pronotal anteroangular setae, B: pronotal 
anteromarginal setae (200 × magnification). 
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Fig. 2.8. Adult Frankliniella occidentalis, showing a large pair of setae (circled) between ocelli 
(indicated by arrows), relatively broad. A: interocellar setae/ocella setae, B: major postocular 
setae (400 × magnification). 

 

Fig. 2.9. Adult Frankliniella occidentalis, showing forewing’s first vein, with complete row 
of setae (200 × magnification). 
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Fig. 2.10. Tergite IX, setae A of Frankliniella occidentalis, slightly shorter than B and C (400 
× magnification). 

 

Fig. 2.11. Complete comb on abdominal tergite VIII (circled) of Frankliniella occidentalis 
(400 × magnification). 

 

2.5.2. Molecular identification 

The homology search was performed in BLAST (www.ncbi.nlm.nih.gov). The length of the 

sequence of the amplicons varied from 379-610 bp. The WFTS1 F. occidentalis population 

(Table 2.1) showed maximum identity of 100 % with GenBank accession numbers KJ576881, 

HQ214660, and GU148036 (Table 2.2), while the WFTS2 F. occidentalis population (Table 

2.1) showed 100 % identify with sequences with accession numbers MF993429, KY775404, 

and KC008075 (Table 2.2). The sequence of the T1 Gynaikothrips ficorum population showed 

identity of 100 % with KC513156 and JN181198. T2 Pseudophilothrips sp. showed 90 % 

identity with GU942818 and GU942817. TRS1 Thysanoptera sp. showed 84 % identity with 

KM536079, and 82 % with KP845633.  
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Individuals of the same order, family and species formed distinct clusters (Fig 2.12). The 

cluster distinctively showed that the sequences are from the Thysanoptera, with 99 % bootstrap 

value. The main cluster branched into a cluster showing three families: Thripidae (EU004554, 

EU004556, KJ576881, KY688343, KY775404, MF993429, KM536079, KF778773, WFTS1, 

and WFTS2) with an 85 % bootstrap value; Phlaeothripidae (GU942815, GU942818, 

JN181197, JN181198, T1, and T2) with a bootstrap value of 100 % and Aeolothripidae with 

bootstrap of 79 %. The latter two families, which showed a very close relationship, clustered 

together with KP845633 in Aeolothripidae. All species of Aeolothripidae formed a 

monophyletic group. The further branching showed that the WFTS2 F. occidentalis from the 

study formed one cluster with the reference sequences EU004556, KY688343, KY775404, and 

MF993429, strongly supported by the bootstrap value of 100 %. The other F. occidentalis 

(WFTS1) from Simonsvlei formed a cluster with EU004554 and KJ576881, with a bootstrap 

value of 98 %. The Gynaikothrips ficorum sequence generated in the study showed a bootstrap 

value of 97 % with the reference sequence JN181198. Pseudophilothrips ichini showed a 

bootstrap value of 98 % with the reference sequences GU942815 and GU942818. The clade 

with Thrips sp. TRS1 indicated a bootstrap value of 79 % with reference sequence KM536079.  
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Fig. 2.12. Maximum parsimony analysis of Frankliniella occidentalis, Gynaikothrips ficorum, 
Pseudophilothrips ichini, and a Thrips sp. collected from blueberries and chrysanthemums, 
with 13 reference sequences obtained from GenBank. Aeolothrips sp. was used as the outgroup. 
Numbers at nodes represent the percentage bootstrap values and the samples of this study are 
shown in bold font. 

The evolutionary history was inferred according to the maximum parsimony method, using 

the sequences generated from the study, and the reference sequences. The most parsimonious 

tree length was 404. The consistency index is (0.701087), with the retention index being 

(0.858974), and the composite index 0.625095 (0.602216) for all sites, including parsimony-

informative ones (in parentheses). The percentage of replicate trees in which the associated taxa 

cluster together in the bootstrap test (1000 replicates) are shown next to the relevant branches 

(Felsenstein 1985). The MP tree was obtained using the subtree-pruning-regrafting (SPR) 

algorithm (Nei & Kumar 2000). The analysis involved 19 nucleotide sequences, with there 

being 402 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 

(Kumar et al. 2016). Aeolothrips sp. downloaded from GenBank was used as an outgroup. 

2.5.3. Development and survival on two host plants 

Analysis of the data showed a significant difference (p = 0.84288) between the number of 

individuals of each developmental stage obtained on the chrysanthemum leaflets and on the 
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green bean pods. The number of first instar larvae hatching on the chrysanthemum leaves was 

31.2 ± 3.59, whereas it was 21.0 ± 3.59 on the green bean pods. The number of second instar 

larvae was 28.3 ± 3.44 and 18.5 ± 3.44 for chrysanthemum leaves and green bean pods, 

respectively. The chrysanthemums produced a higher number of pupae compared to the green 

bean pods, with the number of pre-pupae being 24.2 ± 3.03 and the number of pupae being 22.4 

± 3.09 for the chrysanthemum leaves. In contrast, the number of pre-pupae was 13.8 ± 3.03, 

with the number of pupae being 11.5 ± 3.09 for the green bean pods. The number of adults also 

differed significantly on the two host plants, with a total of 19.8 ± 3.00 adults emerging from 

chrysanthemums and 8.7 ± 3.00 emerging from green bean pods (Fig. 2.13).  
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Fig. 2.13. Number of individuals of different developmental stages of Frankliniella 
occidentalis when reared on chrysanthemum leaves and green bean pods (one-way ANOVA: F 
(4, 72) = 0.35049; p = 0.84288). The different letters above the error bars denote significant 
differences between treatments (p < 0.05). 

 

The percentage survival from egg to adult was also significantly different (p = 0.00319) 

between the two host plants. The percentage survival on chrysanthemums was 60.7 ± 4.49 and 

39.3 ± 4.49 on the green bean pods (Fig. 2.14). 
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Fig. 2.14. Percentage survival rate (95 % confidence interval) from egg to adult of Frankliniella 
occidentalis when reared on chrysanthemum leaves and green bean pods (one-way ANOVA: F 
(1, 18) = 11.562, p = 0.00319). The different letters above the error bars denote significant 
differences between treatments (p < 0.05). 

Female F. occidentalis was more abundant on both hosts, compared to the number of 

males. A significant difference in the number (p = 0.01243) of females on the two host plants 

was detected, but there was no significant difference in the number (p = 0.70242) of males 

between the hosts. More adult females were present on the chrysanthemum leaves (15.9 ± 2.70) 

than on the green bean pods (5.3 ± 2.70). The number of adult males was also higher on the 

chrysanthemum leaves (3.9 ± 0.911) than on the green bean pods (3.4 ± 0.911) (Fig. 2.15). 
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Fig. 2.15. Total number of adult females of Frankliniella occidentalis produced when reared 
on chrysanthemum leaves and green bean pods (one-way ANOVA: F (1, 18) = 7.7135, p = 
0.01243; male: F (1, 18) = 0.1570, p = 0.70242). The different letters above the error bars denote 
significant differences between treatments (p < 0.05). 

The duration of incubation and larval stages did not differ significantly (p = 0.81936) 

between the two host plants (Fig. 2.16). The incubation period of F. occidentalis eggs varied 

between the chrysanthemum leaves (5.2 ± 0.35 days) and the green bean pods (5.5 ± 0.35 days). 

On chrysanthemum leaves the duration of the first instar was shorter (1.7 ± 0.28 days) than on 

the green bean pods (1.9 ± 0.28 days). The second instar lasted 5.0 ± 0.23 days on the 

chrysanthemum leaves, and 4.8 ± 0.23 days on the green bean pods. However, the total duration 

of the larval period (6.7 ± 0.40 days) was similar on the chrysanthemum leaves and on the green 

bean pods (Fig. 2.16).  
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Fig. 2.16. Duration of larval period of Frankliniella occidentalis, when reared on 
chrysanthemum leaves and green bean pods (one-way ANOVA: F (3, 54) = 0.30818, p = 
0.81936). The different letters above the error bars denote significant differences between 
treatments (p < 0.05). 

The incubation period of F. occidentalis in the current study, which was derived from the 

number of larvae to emerge from the eggs, varied from 5.2 to 5.5 days at 25 °C. The larval 

stages in WFT consist of the first instar, which lasts between 1.7 and 1.9 days, and of the second 

instar, which lasts 4.8 to 5 days, with the total larval stage lasting for 6.7 days. Duration of the 

pre-pupal stage varied from 2 to 2.3 days, that of the pupa from 2.2 to 2.7 days, and that of the 

total pupal stage from 4.2 to 5 days. No significant difference (p = 0.37366) was found in the 

pupal development time on the two host plants, for both the pre-pupa and the pupa, but 

significant differences in the total pupal stage. (Fig. 2.17). 
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Fig. 2.17. Duration of pupal period of Frankliniella occidentalis, when reared on 
chrysanthemum leaves and green bean pods (one-way ANOVA: F (2, 36) = 1.0118, p = 0.37366). 
The different letters above the error bars denote significant differences between treatments (p 
< 0.05). 

The longevity of the female and male on chrysanthemum leaflets and green bean pods varied 

from 27.2 to 29.1 days and from 18.6 to 18.8 days, respectively. Longevity of both the male 

and the female did not differ significantly between the different host plants. In the case of the 

green bean pods, the longevity for the female was 29.1 ± 0.725 days, which is 1.9 days longer 

than it was on chrysanthemum (27.2 ± 0.725 days). Male longevity on green bean pods was 

18.6 ± 0.587 days and 18.8 ± 0.587 days on chrysanthemums (Fig. 2.18). 
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Fig. 2.18. The longevity of the adult female and male of Frankliniella occidentalis, when reared 
on chrysanthemum leaves and green bean pods (one-way ANOVA: female: F (1, 18) = 3.4381, p 
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< 0.08017; male: F (1, 18) = 0.05806, p = 0.81231). The different letters above the error bars 
denote significant differences between treatments (p < 0.05). 

2.6. DISCUSSION  

The identification of WFT is a challenge, and because of its small size and morphological 

similarity to several other thrips species, it is often incorrectly identified. As WFT is the most 

economically damaging thrips species in the Thripidae family, proper identification and 

differentiation from other species is important for effective control. The adult female has three 

colour ‘morphs’: dark-brown, light brown and intermediate (Cluever et al. 2015), with the 

colour of the thrips depending on the temperature at which it pupates (Cavalleri & Mound 

2012). The most common WFT colour morph is the intermediate, which is yellow, with 

distinctive light-brown markings arranged medially on each abdominal tergite (Cavalleri & 

Mound 2012). Based on their morphology, using the relevant keys, adult thrips were collected 

from chrysanthemums and blueberries grown under cover on commercial farms in the Western 

Cape. They were identified as F. occidentalis, with the intermediate colour (light brown) being 

the dominant one. Although some of the morphology is generally uniform for the order 

Thysanoptera, the major morphometric key characters for F. occidentalis were confirmed.  

Brunner et al. (2002), Brunner & Frey (2010) and Suganthy et al. (2016) demonstrated the 

application of the mtCOI gene for the differentiation of thrips species to be a success. The 

amplicon of F. occidentalis in the current study was less than 400 bp, with the reduced amplicon 

size being due to differences in the primer binding region, which agrees with the results that 

were obtained by Suganthy et al. (2016), in terms of which they discerned under 500 bp. The 

diverse nature of the population is relatively evident in phylogenetic analysis, in terms of which 

the grouping of thrips into one main cluster was observed. Morphological identification was 

verified, using molecular identification, with the following species being identified during the 

study: F. occidentalis, G. ficorum, P. inchini, and an unknown thrips species. The clustering 

distinctively showed that the sequences were from the Order Thysanoptera. The main cluster 

branched into clades showing three families: Thripidae, Phlaethripidae, and Aeolothripidae. All 

species of the Aeolothripidae family formed a monophyletic group. The Thrips sp. clustered 

with another Thrips sp. from GenBank with an identity of 84 %, suggesting that the former 

might be an unknown species. The species F. occidentalis were all in one cluster, with 100 % 

identity. Their reference sequences from GenBank were originally from China, Australia, 

Mexico, and Kenya, with one having previously being found in South Africa. The above 

indicates that the species present in South Africa might have been introduced from the above-

mentioned countries by way of global trade. Frankliniella occidentalis WFTS1 branched 
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separately, together with closely related species from China and Kenya. The two species of F. 

occidentalis collected from the two localities, from a distance of about 150 km apart, showed 

no variation, which meant that they were from the same population. Brunner & Frey (2010) 

found that F. occidentalis populations showed no isolation by distance pattern, with their 

variation being due to their habitat. From the limited number of F. occidentalis that were 

analysed from the two localities, no clear indication could be given of the different populations 

of F. occidentalis from the two localities.  

The development of F. occidentalis is host dependent (Reitz 2009). Different plant species 

vary in terms of their suitability as hosts for F. occidentalis (Brown et al. 2002; Zhang et al., 

2007). Frankliniella occidentalis was able to complete its life cycle on both the 

chrysanthemums and the green beans, but the two host plants significantly affected the 

oviposition of WFT. More first instar larva hatched on the chrysanthemum leaves than on bean 

pods, possibly because the chrysanthemum leaves were more attractive to ovipositing females, 

and the survival rate to the adult stage was also higher on chrysanthemum leaves. All 

developmental stages periods were not significantly different from each other except for the 

total pupal stage. The incubation period and larval period developed most rapidly on 

chrysanthemum leaves than on green beans, but the pupal stages period was shorter in green 

beans than in chrysanthemums. The differences in the prepupal and pupal periods were not 

significant but significant in the total pupal period. Because the pupal stage is a non-feeding 

stage, it could not have had preference in feeding on the different hosts. The faster larval 

developmental rates, larger number of eggs and larvae and higher survival rate indicate that 

chrysanthemum leaves was a more suitable host than bean pods. The faster the developmental 

rates and the higher the fecundity of insects on a host plant, the more suited the host plant is to 

the insects (Van Lenteren & Noldus 1990). Egg hatching is affected by the quality of the food 

and by the varying morphology of the plant (Zhang et al. 2007). Numerous studies suggest that 

plant defences, both morphological and chemical, are responsible for host selection by 

herbivorous insects, like thrips (Brown & Simmonds 2006). A study of the comparison between 

P. vulgaris pods and leaves showed the superiority of the pods to the leaves for WFT (Zhi et 

al. 2010). Shan et al. (2012) compared the development of three bean host species, Canavalia 

gladiata (Jacq.) (sword bean), Lablab purpureus (L.) (lablab), and P. vulgaris (French bean), 

with the number of eggs hatched being 543, 296 and 85, respectively, when forty female WFT 

were introduced. WFT prefers feeding on flowers of plants, as it prefers enclosed spaces. 

However, flowers cannot be kept fresh for long periods of time, which limits the rearing of this 

thrips on flowers. Microclimatic conditions are also important for successful rearing of thrips, 
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especially temperature and relative humidity and these vary according to species and growth 

stage. Having adequate light and ventilation is key to egg hatching (Loomans & Murai 1997). 

When rearing WFT in culture for experimental purposes, it is important to ensure sufficient 

light and ventilation. Diapause is linked with photoperiod in thrips, but research on F. 

occidentalis shows that this species undergoes no reproductive diapause (Brødsgaard 1994; 

Ishida et al. 2003). In Frankliniella intosa (Trybom), reproductive diapause of adult females 

reared under long photoperiod began to oviposit within three days after emergence, but they 

did not oviposit for more than 20 days under short photoperiod (Murai 1988), and this shows 

how short photoperiod can induce diapause. 

Significant differences were found in the survival rates from egg to adult between the two 

host plants in the study, with a higher survival rate on chrysanthemum than on green beans. 

Shan et al. (2012), in their study, found no significant difference in the survival rates of the first 

to second instar, the egg period, and the second instar period between the three hosts and the 

survival rates of WFT on L. purpureus (60.6 %), and on P. vulgaris (44.2 %). MacDonald 

(2003) found that, of the 40 larvae isolated, only 17 reached adulthood in a bean pod culture. 

The rates of survival, reproduction and development of herbivorous insects like thrips are linked 

to the nitrogen levels in plants (Strong et al. 1984) and, within a plant, the levels of proteins 

and carbohydrates may vary, which could influence the preferred feeding sites of thrips (Ullman 

et al. 1992). The results from the current study showed that the female F. occidentalis were 

more abundant on both hosts, compared to the males. Baez et al. (2011) also found a high 

female-biased ratio of F. occidentalis in peppers. On chrysanthemums, adult male longevity 

was longer than it was on the green bean pods, with female longevity being shorter on 

chrysanthemums, compared to on green beans and attributed to the food quality and 

morphology of the two hosts. Longevity is usually longer in natural environments compared to 

the artificial environments, because of factors like temperature, space stress, and the lack of 

suitable humidity (Grundy et al. 2000). 

In the current study, F. occidentalis was successfully identified using both morphological 

and molecular methods. Since morphological identification is time-consuming and difficult for 

some species, and given that taxonomic expertise is getting scarce and not always readily 

available, it is a valuable alternative to use molecular identification, which, in the current study, 

was used to verify all other species found in the study locations. PCR was successfully used to 

identify WFT accurately and verify the morphological identification. Although quicker and 

accurate, the expense is significant and sometimes a unique mtCOI will not supply ample 

resolution. The use of a combination of PCR and morphological characteristics seems to be a 
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better option, especially using morphological keys for day-to-day identification, but also regular 

use of molecular identification as a kind of quality control. Frankliniella occidentalis showed 

preference for chrysanthemum leaves compared to green bean pods, although the precise 

morphological and chemical characteristics of the hosts that influence the host selection 

behaviour of the thrips were not determined. When rearing WFT for laboratory bio-assays it is 

important to use the most suitable host plant that is practical to obtain as many insects as 

possible and to ensure sufficient light and ventilation, which is key for egg hatching. From these 

results and literature it is evident that WFT can be expected to increase more rapidly on more 

suitable host plants and that WFT can develop to epidemic levels faster on more suitable hosts 

than on less suitable ones.  
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Chapter 3 

Efficacy of entomopathogenic nematodes for control of western flower 

thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) under 

laboratory conditions 

Abstract 

Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is an important field and greenhouse pest of many crops worldwide. To control F. 

occidentalis is extremely challenging, because of its cryptic behaviour, short life cycle and 

resistance to many insecticides. The use of entomopathogenic nematodes (EPNs) (Rhabditida: 

Steinernematidae and Heterorhabdidae) for controlling thrips has gained importance in some 

European countries, and, hence, has attracted interest in South Africa. The objective of the study 

was to screen different South African isolates of EPNs against different life stages of WFT. A 

total of 11 EPN species reported from South Africa, and the exotic Steinernema feltiae, were 

tested for pathogenicity against WFT under laboratory conditions. Virulence against F. 

occidentalis in laboratory bioassays ranged from 11 % to 67 %. Generally, however, 

Heterorhabditis spp. were more virulent than the Steinernema spp.  Heterorhabditis baujardi 

was found to be the most potent species, resulting in mortality of 67 %, although it was not 

significantly different from Steinernema yirgalemense (66 % mortality). Bioassays for 

determining infection were performed using different life stages (larva, pupa and adult) of F. 

occidentalis with S. yirgalemense, H. baujardi and Steinernema jeffreyense. The pupae of 

western flower thrips (WFT) were found to be more sensitive to nematode infection than were 

either the larvae or the adults. The highest mortality against WFT was recorded for the pupae 

(72 %) when applying 100 IJs/insect of H. baujardi, and the lowest was recorded for treatment 

with S. jeffreyense (17 %). Steinernema yirgalemense and H. baujardi were tested at 

concentrations of 0, 10, 20, 40, 80, and 160 IJs/larva. Increasing EPN concentrations gave 

increased thrips mortality, with a probit analysis indicating S. yirgalemense to be 5.49 more 

potent than H. baujardi. Results from the temporal development study showed that both S. 

yirgalemense and H. baujardi were able to complete their life cycles in the host within five 

days, and to produce a new cohort of IJ. The study showed that S. feltiae did not perform well 

compared to the local EPNs under optimum laboratory conditions, and that locally isolated S. 

yirgalemense, H. baujardi and H. bacteriophora have outstanding potential for the control of 
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F. occidentalis, in terms of targeting the soil-dwelling stages, as they gave the best control, and 

could be tested further under field conditions. 

Keywords: Entomopathogenic nematodes (EPNs), virulence, life stages, temporal 

development, bioassays. 

3.1. INTRODUCTION 

The western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is native to the west coast of California, United States of America and was first 

recorded in South Africa on chrysanthemums (Asterales: Asteracece) near Krugersdorp in 1987 

(Giliomee 1989). According to Kirk & Terry (2003), since the late 1970s, the WFT has spread 

from its original distribution range to become a major worldwide crop pest, with its spread 

being attributable to the movement of horticultural material like cuttings, seedlings and potted 

plants. 

Frankliniella occidentalis severely damages ornamentals and vegetables directly, through 

feeding and ovipositioning, and indirectly by transmitting virus diseases (e.g. tomato spotted 

wilt virus), thus causing extensive losses in the form of reduced yield and/or market value (Duan 

et al. 2013). The high impact of WFT is due to its extreme polyphagy, rapid developmental 

cycle (which ranges from 14-21 days, depending on temperature), high reproductive rate, small 

size, and cryptic habits, occurring especially in growing tips and flower buds (Manners et al. 

2013). 

The WFT is an extremely challenging pest to control, because it develops resistance to 

insecticides rapidly (Lewis 1997), hence biological control has become increasingly important 

for successful WFT management programmes. Entomopathogenic nematodes (EPNs) 

(Rhabditida: Steinernematidae and Heterorhabdidae) have become an option for biocontrol. 

EPNs from the Heterorhabdidae and Steinernematidae families, which are widely distributed in 

soils throughout the world, are one of the best non-chemical alternatives for insect pest control 

(Campos-Herrera & Guierrez 2008; Hominick 2002; Kaya et al. 2006).  

The use of EPNs for controlling thrips has gained importance in some European countries 

(Kaya et al. 2006). Research into EPNs to control pests in South Africa has been done on other 

insects, but not yet on WFT. The efficacy of EPN species varies according to different host 

insects, abiotic and biotic factors. Previous studies have shown a high susceptibility of the soil-

dwelling stages of WFT to EPNs (Ebssa et al. 2001), and, recently, the efficacy of the nematode 

Steinernema feltiae Wouts, Mráček, Gerdin & Bedding, has been intensively studied against 

the above-ground stages of thrips (Laznik & Trdan 2008). Other EPN species that have been 
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tested include Steinernema carpocapsae (Weiser) Wouts, Mráček, Gerdin & Bedding, 

Steinernema glaseri Wouts, Mráček, Gerdin & Bedding, and Heterorhabditis bacteriophora 

Poinar. Steinernema feltiae has shown outstanding efficacy in the control of WFT in most 

European countries, hence its commercialisation for WFT control. Limitations do, however, 

exist in the use of the nematode, as, of almost all African countries, it has only been isolated in 

Algeria (Tarasco et al. 2009), leading to it being proscribed from importation into South Africa. 

Steinernema feltiae also has other biological limitations in terms of higher temperatures 

(Jagdale et al. 2004) experienced in undercover production in warmer climates, since it is a 

cool-temperature-active nematode. This limitation may also apply to other EPNs considered as 

potential biocontrol agents. 

The use of South African isolated EPN species adapted to the local environment was 

hypothesised as a potential option for enhanced control of WFT. The objective of the current 

study was to screen available isolates of EPNs for efficacy against the different life stages of 

WFT, to determine the optimum concentration for the best performing EPNs in the laboratory 

and to determine whether they can complete their life cycles in WFT. 

 

3.2 . MATERIALS AND METHODS 
3.2.1 Source of thrips 

Frankliniella occidentalis was obtained from blueberries and chrysanthemums cultivated on 

commercial farms in the Western Cape Province, South Africa. Collecting adult thrips from the 

localities was done by means of sampling flowers and leaves, which were shaken into a clean, 

white container, to dislodge the thrips. The thrips were then taken to the laboratory for 

morphological identification to confirm species identity, and for a laboratory culture. 

3.2.2 Thrips culture 

To ensure a constant, reliable supply of thrips for experiments, a laboratory culture was 

established on a diet of insecticide-free chrysanthemum (Dendranthema grandiflora) flowers 

obtained from a commercial farm. The thrips were kept in a plastic container (20 × 20 × 30 

cm3), with a screened hole on top, and maintained in a controlled environmental chamber 

(25 ± 2 °C, 60-70 % RH). To prevent desiccation, the flowers were kept in a petri dish, together 

with a layer of moist tissue paper. The thrips were provided with fresh flowers weekly, and the 

old flowers removed to maintain conditions conducive for high fecundity. To obtain the desired 

life stages of F. occidentalis for the different experiments, petri dishes (11 cm in diameter, and 

3 cm in height) were used for breeding the thrips. Fresh green leaves of chrysanthemum plants 
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were placed in the petri dish and 20 to 30 adult females of F. occidentalis were extracted from 

the stock culture, and transferred to each of the petri dishes for egg laying. The petri dishes 

were lined with moistened filter paper to keep the leaves fresh. After 24 h, the adult females 

were removed to a new petri dish to obtain more eggs. The eggs from the petri dishes were kept 

in an incubator at the above-mentioned climatic conditions, for development until the thrips 

reached the desired life stage for experiments. 

3.2.3 Nematode cultures 

All EPN species were sourced from the Department of Conservation Ecology and 

Entomology, Nematology Laboratory collection held at Stellenbosch University (Malan et al. 

2006, 2011; Abate et al. 2018), comprising nematodes collected during previous surveys, 

except S. feltiae which had originally been obtained from e-nema, Schwentinental, Germany. 

(Table 3.1). Infective juveniles (IJs) of the selected species were cultured in vivo at room 

temperature, using the last instar of the greater wax moth larvae, Galleria mellonella (L.) 

(Lepidoptera: Pyralidae) (Griffin et al. 2005). The rearing and harvesting procedures for the 

infective juveniles (IJs) were conducted according to the methods employed by Kaya & Stock 

(1997). The IJs from white traps, which were harvested within the first week of emergence, 

were stored horizontally in 500-ml vented culture flasks, containing approximately 150 ml 

distilled water at 14 °C. The nematodes were used within a month after harvesting. To aid in 

aeration and nematode survival during storage, the culture flasks were shaken weekly. The 

nematode concentrations used for different experiments were calculated using the equation 

developed by Navon & Ascher (2000). 
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Table 3.1. Locally isolated Steinernema and Heterorhabditis species (except for S. feltiae), isolate number, habitat, origin, Genbank accession number 
and size. 

Species  Isolate Morphological/ 
molecular group 

Habitat Origin 

(town/ 

province) 

Genbank 

accession 

number 

Length of IJs: 
mean and range 
µm 

S. jeffreyense⃰⃰ J194 bicornutum Guava tree Jeffrey’s Bay, Eastern Cape KC897093 924 (784-1043) 

S. feltiae e-nema feltiae n/a Germany - 876 (766-928) 

S. khoisanae⃰ SF87 glaseri Apple orchard Villiersdorp, Western Cape DQ314287 1062 (994-1159) 

S. yirgalemense 157-C bicornutum Citrus orchard Friedenheim, Mpumalanga EU625295 635 (548-693) 

S. litchii* WS9 glaseri Litchi orchard Mbombela, Mpumalanga KP325086 1054 (953-1146)  

S. sacchari⃰ SB10 cameroonense Sugarcane KwaZulu-Natal KC633095 680 (630-722) 

S. innovationi⃰ SGI-60 glaseri Grain field Free State KJ578793 1053 (1000-1103) 

H. zealandica SF41 megidis Natural  Brenton-on-Sea, Western Cape EU699436 685 (570-740) 

H. bacteriophora SF351 bacteriophora Grapevine Wellington, Western Cape - 588 (512-671) 

H. noenieputensis⃰ SF699 indica Fig tree Noenieput, Northern Cape JN620538 528 (484-563) 

H. baujardi MT19 indica Natural 
vegetation 

KwaZulu-Natal MF535520 551 (497-595) 

H. indica SGS indica Grapevine Bonnievale, Western Cape GQ377411 528 (497-573) 

 ⃰ Type specimen from South Africa

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

73 
 

3.2.4 Screening EPN species for pathogenicity against WFT 

A total of 11 EPN species, all reported from South Africa, of which five were indigenous and 

one, S. feltiae, was imported, were tested for pathogenicity against second instar larvae of F. 

occidentalis (Table 3.1). Ten second instar thrips larvae were released onto cell culture dishes 

with a diameter of 35 × 10 mm, lined with filter paper. All the EPN strains were applied at a 

concentration of 1000 IJs / 100 µl, (100 IJs per insect) following the introduction of the WFT. 

The dishes were sealed with PARAFILM® and placed in a plastic container lined with wet 

paper towels to create 100 % humidity. They were kept in a controlled environment chamber 

at 25 ± 2 °C. After 24 h and 48 h the thrips were checked for mortality, which was determined 

by cadaver colour change, and by means of dissecting the dead larvae to determine whether 

death had occurred due to nematode infection. The control treatment was treated with distilled 

water only. Each experiment was replicated five times (n = 50 insects) and repeated on a 

different test date, using a fresh batch of nematodes. 

3.2.5 EPN efficacy against different life stages 

Ten thrips each of three developmental stage (larvae, pupae, adult females or males) were 

released into separate cell culture dishes with a diameter of 35 × 10 mm, and lined with filter 

paper. H. baujardi, S. yirgalemense or S. jeffreyense were then applied at a concentration of 

1000 IJs / 100 µl into each dish. Thereafter, the dish was sealed with Parafilm®, and placed in 

a plastic container lined with wet paper towels to maintain 100 % humidity. The container was 

kept in a controlled environment chamber at 25 ± 2 °C. After 24 h and 48 h the thrips were 

checked for mortality and dissected to detect the presence of nematodes. Each experiment was 

replicated five times (n = 50 insects), and repeated on a different test date, using a fresh batch 

of nematodes. 

3.2.6 Optimal nematode concentration 

Ten second instar WFT larvae were released onto cell culture dishes with a diameter of 35 

× 10 mm, and which were lined with filter paper. The two most effective EPN species, S. 

yirgalemense and H. baujardi, were inoculated in concentrations of 0, 10, 20, 40, 80, and 160 

IJs/larva. Each dish was then sealed with Parafilm® and placed in a plastic container lined with 

wet paper towels to maintain 100 % humidity. The container was kept in a controlled 

environment chamber at 25 ± 2 °C. After 48 h, the thrips were checked for mortality and 

dissected to detect the presence of nematodes. The experiment was repeated for each nematode 
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species on a different test date, using a fresh batch of nematodes replicated five times (n = 50 

insects). 

3.2.7 Temporal development  

Second instar larvae of F. occidentalis were inoculated with S. yirgalemense, and H. 

baujardi to determine the temporal growth of the EPNs inside the larvae. Ten larvae were 

transferred to small culture dishes with a diameter of 35 × 10 mm, which were lined with filter 

paper, with five culture dishes being used per treatment. A total of 4000 IJs of EPN species / 

100 µl of distilled water were inoculated in each culture dish, which was sealed with Parafilm®. 

The culture dishes were then placed in plastic containers lined with moist tissue paper to create 

100 % humidity. They were then transferred to the growth chamber at 25 ± 2 °C. After 24 h, 

the dead larvae were removed and rinsed with distilled water to remove the surface nematodes. 

The procedure was repeated for each EPN species. After each 24 h period, a random petri dish 

was removed, with the contents being observed under a light stereo microscope. On dissection, 

each nematode’s development was noted. Individual thrips were assessed for colour change, 

infection and stage of nematode development. After observation, when IJs had started 

emerging from the larvae, the experiment was terminated.  

3.2.8 Statistical analysis 

Statistical analyses were conducted using STATISTICA 13.2 software (StatSoft Inc. 2016) 

for EPN screening and efficacy against different life stages. In the absence of significant 

differences between the test dates and treatments, the data were pooled and analysed using 

ANOVA, and a post-hoc comparison of means was undertaken, using Bonferroni’s method. A 

bootstrap multi-comparison was performed (Efron & Tibshirani 1993), in case the residuals 

were not normally distributed. The data were expressed as weighted means ± standard error for 

EPN screening and efficacy against different life stage trials, and as least square means ± 

standard error for the optimum concentration trials. A probit analysis was performed using Polo 

PC (LeOra Software 1987) to determine the lethal dosages (LD50 and LD90) (Finney 1971).  

3.3 RESULTS 

3.3.1 Screening EPN species for pathogenicity against WFT 

Great variation was found in the thrips mortality between the different EPN species, ranging 

from 11 to 67 % (Fig. 3.1). A significant difference (F (12, 104) = 99.03, p < 0.001) was found 

among the treatments with respect to  mortality levels after 48 h. Heterorhabditis baujardi 
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caused the highest level of mortality against second instar WFT larvae (67.0 % ± 3.55 %), 

followed by S. yirgalemense (66.0 % ± 3.55 %), and then by H. bacteriophora (60.0 % ± 3.55 

%). However, mortality did not differ significantly between these three species (p < 0.05). In 

addition, no significant difference in mortality (p < 0.05) was found between S. feltiae, S. 

sacchari, S. litchii, S. khoisanae, S. innovationi, and S. jeffreyense. The lowest mortality was 

obtained with S. jeffreyense (11.0 % ± 3.55 %). 

 

Fig. 3.1. Mean percentage mortality (95 % confidence level) for second instar Frankliniella 
occidentalis larvae treated with different species of entomopathogenic nematodes at a 
concentration of 100 IJs/insect (one-way ANOVA; F (12, 104) = 99.03, p < 0.001). An asterisk 
( ⃰) denotes South African EPN species. The different letters above the error bars denote 
significant differences between treatments (p < 0.05). 

 

3.3.2 EPN efficacy against different life stages of WFT 

The results of the two-way ANOVA (treatments and life stages) on the mortality through 

infection showed no significant differences (F (4, 81) = 3.4929, p = 0.01106) between the 
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different treatments (S. yirgalemense, H. baujardi and S. jeffreyense) at the different 

developmental stages: larva, pupa and adult (Fig. 3.2). The pupal stage showed higher 

susceptibility to EPNs than the larval and adult stages. Heterorhabditis baujardi had the highest 

efficacy against the pupal stage (72.0 % ± 4.04 %) of WFT, followed by S. yirgalemense (65.0 

% ± 4.04 %), but not significantly p < 0.05 from each other and, lastly, S. jeffreyense (49.0 % 

± 4.04 %). Heterorhabditis baujardi was also most effective against the larval stage (66.0 % ± 

4.04 %), compared with S. yirgalemense (43.00 % ± 4.04 %) and S. jeffreyense (20.0 % ± 4.04 

%). Efficacy of H. baujardi against the pupal and larval stages did not differ significantly (p < 

0.05). 
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Fig. 3.2. Mean percentage mortality (95 % confidence intervals) 48 h after treatment of three 
different life stages (second instar larva, pupa and adult) of Frankliniella occidentalis with 
Steinernema yirgalemense, Heterorhabditis baujardi and Steinernema jeffreyense at a 
concentration of 100 IJs/insect (two-way ANOVA; F (4, 81) = 3.4929, p = 0.01106). The different 
letters above the error bars denote significant differences between treatments (p < 0.05). 

3.3.3. Optimal nematode concentration 

For both S. yirgalemense and H. baujardi an increase in mortality was observed with 

increasing concentrations of nematodes (Fig. 3.3). However, the response of the two species 

differed significantly (F (5, 48) = 1.7971, p < 0.001), although mortality for the control treatments 

(0 IJs/larva) did not differ significantly (p < 0.05).  The highest mean percentage mortality was 
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achieved at the highest concentration of 160 IJs/larva with 70.0 % ± 4.80 % for S. yirgalemense 

and 52.0 % ± 4.80 % for H. baujardi. For both S. yirgalemense and H. baujardi, mortality at 

80 and 160 IJs/larva did not differ significantly. 
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Fig. 3.3.  Mean percentage mortality (95 % confidence interval) after treatment of second instar 
larvae of Frankliniella occidentalis with two nematode species, Steinernema yirgalemense and 
Heterorhabditis baujardi, at different concentrations (0, 10, 20, 40, 80, and 160 IJs/larva) for 
48 h (one-way ANOVA: (F (5, 48) = 1.7971, p < 0.001). The different letters above the error bars 
denote significant differences between treatments (p < 0.05). 

The probit analysis showed that the lethal dosage for S. yirgalemense and H. baujardi 

differed. The probit regression line for S. yirgalemense was 𝑦𝑦 = 0.833 𝑥𝑥 + 3.56 and for H. 

baujardi it was 𝑦𝑦 = 0.833 𝑥𝑥 + 2.99 (Fig. 3.4). Steinernema yirgalemense was more potent 

than was H. baujardi with a potency of 5.49, which implies that the former was almost five 

times more potent than the latter. The LD50 and LD90 were determined for S. yirgalemense and 

H. baujardi, with the LD50 for S. yirgalemense being the lowest at 45.24 IJs/larva (90 % fiducial 

limits: 23.60-80.52) and the LD90 being 1349.6 IJs/larva (90 % fiducial limits: 447.38-

20884.00). The LD50 for H. baujardi was 258.62 IJs/larva (90 % fiducial limits: 118.77-

2469.20), with the LD90 being 8920.40 IJs/larva (90 % fiducial limits: 1340.10-0.2 E +08). 
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Fig. 3.4. Probit mortality of second instar Frankliniella occidentalis larvae 48 hrs after 
exposure to Steinernema yirgalemense and Heterorhabditis baujardi at different 
concentrations (0, 10, 20, 40, 80, and 160 IJs/larva). 

3.3.4. Temporal development 

Temporal development of EPNs and visual changes in F. occidentalis were observed for 

five days after inoculation with either S. yirgalemense or H. baujardi. Food from the cadaver 

became exhausted within this period because the host is so small. Both nematodes were able 

to complete their life cycle in the host larvae within five days (Table 3.2). The mean number 

of IJs that penetrated the host was 2 to 2.2 and 1 to 1.9 IJs/insect for H. baujardi and S. 

yirgalemense, respectively, while the mean number of IJs recovered from the host larvae was 

17.1 for S. yirgalemense and 19.6 for H. baujardi (Table 3.3). After 4 and 5 days, respectively, 

IJs of both S. yirgalemense and H. baujardi started to emerge from the cadavers (Fig. 3.5 B). 

Once the nematodes had infected the WFT larva, colour changes were observed from the 

second day onwards, being reddish for H. baujardi (Fig. 3.5 A) and yellowish to brownish for 

S. yirgalemense.  
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Table 3.2. Temporal development of Steinernema yirgalemense and Heterorhabditis baujardi 
in second instar larvae of Frankliniella occidentalis after inoculation with 100 infective 
juveniles (IJs) per larva. 

EPN species Days EPN growth stage Observation 

S. yirgalemense 1 Immature/recovered IJs   

  2 First generation females and 

males 

Yellowish to brown 

colour, slimy 

  3 IJs   

  4 IJs   

H. baujardi 1 Immature/recovered IJs   

  2 Immature/recovered IJs   

  3 Adult hermaphrodites with 

eggs 

Reddish colour 

  4 Adult hermaphrodites with 

eggs 

  

  5 IJs   

  

Table 3.3. Average penetration rate and production of infective juveniles in second instar 
larvae of Frankliniella occidentalis for Steinernema yirgalemense and Heterorhabditis 
baujardi. 

EPN species # of IJs penetrated Recovered IJs 

S. yirgalemense 1.9 17.1 

H. baujardi 2.2 19.6 
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Fig. 3.5.  (A) Second instar larva of Frankliniella occidentalis infected with IJs of 
Heterorhabditis baujardi. (B) IJs of Steinernema yirgalemense emerging from an 
infected larva. 

3.4 DISCUSSION 

For EPNs to complete their life cycle in an insect host, they must invade and kill the host 

and be able to develop into adults and produce IJs which will emerge from the cadaver in search 

of a new host (Bastidas et al. 2014).  Laboratory pre-screening of local (five Heterorhabditis 

and seven Steinernema) EPNs and one exotic EPN, at a concentration of 100 IJs/insect against 

second instar larva of F. occidentalis showed varying mortality between 11 and 67 %. The 

variation is attributed to a combination of factors that include host size and host defence 

mechanism, as well as nematode size and foraging behaviour. Heterorhabditis baujardi 

outperformed the others, although it did not differ significantly from S. yirgalemense. This 
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difference was attributed to nematode body size, as H. baujardi (± 551 µm) is smaller than S. 

yirgalemense (± 635 µm). The lowest mortality was recorded with S. litchii, S. khoisanae, S. 

innovationi, and S. jeffreyense, which all belong to the Khoisanae-group with IJ > 1 mm. Since 

the second instar larvae of F. occidentalis are approximately 1.49 mm to 1.79 mm in body 

length, the poor infectivity of these EPNs was not unexpected. Research with Bradysia 

impatiens, another important undercover pest insect, also demonstrated that the size of the 

nematode relative to the size of the insect to be controlled has a large impact on pathogenicity 

(Katumanyane et al. 2018a, b, c). In the current study Heterorhabditis (57 % mortality) 

outperformed Steinernema (32 % mortality). This suggested that second instar WFT was more 

susceptible to Heterorhabditis spp. than to Steinernema spp., as observed by Bedding et al. 

(1993) and Griffin et al. (2005). The lowest mortality of thrips occurred with S. jeffreyense in 

all the developmental stages because of its big size. In addition to the effect of nematode size, 

this can also be attributed to the fact that Heterorhabditis species possess a dorsal tooth that 

enables them to penetrate directly through the cuticle of the host insect, while Steinernema 

species lack the dorsal tooth and can only penetrate via the host’s natural openings, e.g. anus.  

Our results are consistent with the finding of Ebssa et al. (2004), who screened six strains of 

Heterorhabditis and 11 strains of Steinernema against WFT and recorded mortality ranging 

from 3-60 %, and with Belay et al. (2005) who also concluded that Heterorhabditis spp. were 

more effective (76 %) against WFT than  Steinernema spp. (37 %). 

A significant difference in WFT mortality was found between the best performing 

nematodes and S. feltiae, which is an exotic, commercially produced nematode used mostly to 

control F. occidentalis overseas. Steinernema feltiae has dominated in terms of the biological 

control of insect pests in Europe and the results obtained by Laznik & Trdan (2008) showed 

very high mortality (82 %) for S. feltiae at the lowest concentration of 500 IJs/ml, which was 

five times higher than the concentration that was used in the current study.  However, it has 

biological limitations in terms of tolerance of high temperatures, since it is a low-temperature-

active nematode, which might influence infectivity in field environments encountered in 

undercover production. The same limitation might apply to other nematodes that have 

previously been used for the control of WFT, hence, the conclusion by Kashkouli et al. (2014) 

that EPN origin can greatly influence the nematode pathogenicity against insect pests. This 

confirms why it is important to screen local EPNs adapted to local conditions for use against 

pests. 
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Two of the most virulent (S. yirgalemense and H. baujardi) and one of the least virulent (S. 

jeffreyense) EPN species from the pre-screening were tested further for their virulence against 

the different developmental stages of F. occidentalis. The finding show that pupae of WFT 

were more sensitive to infection by all three above-mentiond EPN species than adults and 

larvae. The above result differs with the findings of  LeBeck et al. (1993) that EPNs are most 

efficient against all the pre-imaginal stages of insects, as they can enter the latter’s bodies with 

relative ease. This could be explained by the low mobility of the pupal stages, which facilitates 

the attachment of nematodes to them (Koppenhofer et al. 2003). An experiment on banded 

greenhouse thrips conducted by Trdan et al. (2007) showed that the soil-dwelling life stages 

were more sensitive to EPNs than the adults. Kashkouli et al. (2014) observed higher 

susceptibility of the pre-pupae and pupae of Thrips tabaci to EPNs, compared to the 

susceptibility of the second instar larvae. The larval stages of WFT, which are very active and 

mobile, show evasive behaviour towards the nematodes (Buitenhuis & Shipp 2005; Kashkouli 

et al. 2017). Contradicting the current results were those obtained  by Lim et al. (2001), who 

found low parasitism rates of WFT by the entomoparasitic nematode Thripinema nicklewoodi 

Siddiqi (Tylenchida: Allantonematidae) on the older life stages (i.e. pupae and adults).  

Heterorhabditis baujardi showed the highest infectivity against the larval and pupal stage of 

WFT in comparison with S. yirgalemense, which can be ascribed to other reasons than only 

size difference. The WFT  adults showed low parasitism for all the EPN species and this was 

attributed to the hardening of the cuticle as thrips age and the fact that they are very active, 

which makes penetration difficult.  

Thrips mortality increased with increased EPN concentration from 10 IJs/larva to 160 

IJs/larva for both S. yirgalemense and H. baujardi. This also held true with studies on EPN 

concentration by Chyzik et al. (1996), Ebssa et al. (2004) and Kashkouli et al. (2014) against 

WFT, with different EPN species. A positive relationship is evident between the concentration 

of the EPN species, S. yirgalemense and H. baujardi, and the percentage mortality of F. 

occidentalis. However, the level of increase was significantly different between the two 

species, as indicated by the significantly different slopes of the linear regression coefficients. 

The probit regression line for S. yirgalemense was greater than was that for H. baujardi, which 

contradicts the conclusions drawn by Ebssa et al. (2004) that three Heterorhabditis spp. had 

significantly greater slopes than did two Steinernema spp., meaning that Heterorhabditis 

responded better to the increase in concentrations than did Steinernema. The calculated LD50 

and LD90 for S. yirgalemense showed that it was more potent than H. baujardi, with a potency 
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of 5.49. The above implies that S. yirgalemense was relatively pathogenic against the second 

instar larva, as fewer IJs per larva were required in comparison to the number that were required 

with H. baujardi. Surprisingly, the performance of H. baujardi, in terms of pathogenicity to F. 

occidentalis, did not correspond to the screening results obtained, but the differences were not 

significant even in the screening tests and is ascribed to batch effects. The LD50 and LD90 of S. 

yirgalemense in the current study for the control of F. occidentalis was higher than those for 

other insects, such as for the vine mealybug, Planococcus ficus (Signoret), which had an LD50 

of 36 and LD90 of 555 IJs/insect, according to Le Vieux & Malan (2013). The above means 

that F. occidentalis is not as susceptible to S. yirgalemense as are other insects, thus indicating 

that they require higher concentrations of the nematode to effect control.  

Heterorhabditis baujardi showed greater penetration ability than S. yirgalemense in the 

temporal development study. This corresponds with the screening results (Chapter 2), which 

showed the superiority of H. baujardi to S. yirgalemense. Relatively few IJs were found to 

penetrate the insect, due to the small size (approximately 1 mm) of the insect and the number 

of IJs recovered from the host were relative to the number of IJs that penetrated. This concurs 

with observations by Bastidas et al. (2014).  

The production of IJs is dependent on nematode and host species, and usually in big hosts 

there can be many IJs produced regardless the size of the nematode. Steinernema yirgalemense 

can produce about 75 IJs in a single cadaver of the vine mealybug, Planococcus ficus (Signoret) 

(Le Vieux & Malan 2013). Lim et al. (2001) found that the maximum number of T. nicklewoodi 

that entered one host of WFT, when exposed for a day, was five nematodes. On the second day 

after infection in the temporal development study, the second instar WFT larva infected with 

H. baujardi turned reddish, whereas those infected by S. yirgalemense became yellowish to 

brown in colour, and were slimy when dissected. In addition, on the second day, S. 

yirgalemense were fully developed, having both males, but mostly females, in their population. 

Hence, they had a relatively short life cycle, with IJs emerging on the fourth day. 

Heterorhabditis baujardi developed into hermaphrodites with eggs on the third day, and IJs 

started emerging on the fifth day. The number of eggs laid by the female nematode depends on 

the size of the host, and on the presence of other nematodes competing in the same host (Lim 

et al. 2001), which was the main reason for the relatively few IJs recovered, in terms of the 

observations made. Lim et al. (2001) found a maximum of eleven ovoid-shaped first generation 

nematodes in a female WFT, and six in a male WFT. The nematodes emerging from the egg 

developed into IJs due to the lack of food supply in the host. The late second nematode larval 
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phase is known to stop feeding, and to incorporate the bacteria into the bacterial chamber or 

vesicle, then transforming into pre-infective and infective larvae, retaining the cuticle of the 

second larval phase as a sheath (Gaugler 2002). In this study some insects were observed to 

contain nematodes that only developed to a certain stage, and disappeared without finishing 

their cycle. The cycle finished within five days for both EPNs, as the IJs were observed leaving 

the cadaver in search of another host. The current results show that the nematodes were able to 

complete their short life cycle in F. occidentalis, reproducing a single sexual generation. The 

ability of S. yirgalemense and H. baujardi to complete their life cycles in second instar WFT 

holds out a promise of persistence for use as biocontrol agents, although the new cohort of IJs 

was not recovered from some WFT larvae due to the lack of sufficient food in the small hosts.In 

conclusion, the results from the current study showed that some local EPNs have outstanding 

potential for biological control of WFT, particularly in its soil-dwelling pupal stages. Under 

optimum conditions, mortalities > 60 % of WFT pupae were recorded with locally isolated S. 

yirgalemense, H. baujardi and H. bacteriophora. Some success was also achieved against 

second instar WFT larvae.  

This is a breakthrough for the use of EPNs in biocontrol, since this is the first study of its 

kind in terms of EPN control against F. occidentalis in South Africa. The fact that S. 

yirgalemense not only showed potential in terms of virulence against WFT, but also against a 

number of other insect pests, including codling moth, mealybugs, fruit flies, and the sugar cane 

stalk borer (De Waal et al. 2010; Malan et al. 2011; Ferreira & Malan 2014; Malan & Hatting 

2015; Odendaal et al. 2016a,b) is very important for potential commercialisation. Steinernema 

yirgalemense was also shown to very effective against Bemesia impatiens (Katumanyane et 

al., 2018b, c) which occurs alongside thrips as important pests in undercover crop production. 

The potential of S. yirgalemense as a biocontrol agent is further supported by the fact that it 

has already been successfully cultured in vitro (Ferreira et al. 2015) and its use is not restricted, 

while importation of exotic EPN species into South Africa is prohibited. Laboratory conditions 

are not necessarily representative of the field performance of nematodes and future emphasis 

should be on conducting studies under field conditions, possibly combined with the use of other 

biological agents and insecticide–pathogen synergistic interactions in IPM systems.  
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Chapter 4 

Greenhouse application of Steinernema yirgalemense to control 

Frankliniella occidentalis (Thysanoptera: Thripidae) in blueberry 

production 

Abstract 

The need for biological control of western flower thrips (WFT), Frankliniella occidentalis 

(Pergande) (Thysanoptera: Thripidae), is on the rise for blueberry production in South Africa 

because of the rapid growth of the industry. WFT is regarded as one of the economically 

important and prevalent insect pests in undercover production. Resistance to spinosad, the most 

commonly used insecticide for WFT control in South Africa, has already been reported for 

WFT. Most biological control agents do not achieve effective control of WFT, because of the 

cryptic habits of WFT. The endemic entomopathogenic nematode, Steinernema yirgalemense, 

was found to be pathogenic against WFT in the laboratory. The effect of different 

concentrations of S. yirgalemense in controlling F. occidentalis on commercial blueberries 

grown in Haygrove tunnels was investigated, targeting all stages of WFT. Two trials, one with 

lower concentrations of 4.3, 8.6 and 17.2 IJs/cm2 and the other with higher concentrations of 

25, 50 and 100 IJs/cm2, were conducted. WFT only reached < 50 % mortality with the highest 

concentration of 100 IJs/cm2. This is ascribed to suboptimal temperatures during the trial period 

which restricted S. yirgalemense establishment and sustainability. Steinernema yirgalemense 

was, however, still persistent at mean substrate temperatures < 15 °C. The application of S. 

yirgalemense to the soil/growth substrate of blueberries in Haygrove tunnels when warmer 

temperatures prevail, should be investigated further. Further studies should target WFT on the 

new growth, just after pruning, when populations peak and cause significant economic damage. 

Weekly follow-up applications to increase efficacy of EPNs should also be investigated. 

Keywords: Greenhouse, western flower thrips, Steinernema yirgalemense, blueberry, 

Frankliniella occidentalis 
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4.1. INTRODUCTION 

Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is one of the most important thrips species encountered in greenhouse production, 

as it feeds on a wide range of crops and ornamentals, reducing crop value, and transmitting 

viral diseases such as tomato spotted wilt virus (Moritz et al. 2004). WFT is regarded as a 

serious pest that is capable of extensive economic damage worldwide (Siguna 2007). The 

control of WFT is challenging, because of its cryptic behaviour, rapid reproductive rate, and 

potential to develop resistance to insecticides (Gouli et al. 2008). The use of insecticides for 

controlling F. occidentalis is unsustainable, because of the high costs involved and because 

heavy reliance on them has led to development of resistance (Cloyd 2015). 

The use of several biological control agents, which are on the market for use against all 

stages of WFT in greenhouses, has been accepted as a management strategy worldwide, mainly 

as an alternative to prevent insecticide resistance of the insect. Biological control agents, 

including predatory mites and bugs are released inundatively against F. occidentalis 

(Brødsgaard 2004; Shipp & Ramakers 2004), while the entomopathogenic fungus, Beauveria 

bassiana (Balsamo) (Hypocreales: Cordycipitaceae), has also been used as a biological control 

agent (Murphy et al. 2014). However, WFT’s cryptic habits reduces the efficacy of the 

biocontrol agents, as these are unable to invade tightly enclosed areas, like apical meristems 

and flower buds, preferred by WFT (Premachandra et al. 2003; Berndt et al. 2004).  

Entomopathogenic nematodes (EPNs) are lethal pathogens of insects that occur naturally in the 

soil (Griffin et al. 2005; Wright et al. 2005), where they are able to locate their host via their 

carbon dioxide secretions, vibrations, and other chemical cues (Kaya & Gaugler 1993). EPNs 

of the genera Steinernema and Heterorhabditis, in the families Steinernematidae and 

Heterorhabditidae (order Rhabditida), respectively, are among the alternative biocontrol 

strategies that can be implemented in an integrated pest management (IPM) programme 

(Grewal et al. 1994). Their use against many pests, including WFT, has been intensively 

investigated in other parts of the world.  

The combination of EPNs and other control agents has proved to be synergistic, yielding 

higher mortality than the use of a single agent (Lacey & Georgis 2012). Studies on the use of 

EPNs for the biological control of F. occidentalis for undercover production are on the rise 

worldwide. The commercial nematode Steinernema feltiae Wouts, Mráček, Gerdin & Bedding, 

is used internationally against WFT and other insect pests. Previous studies have shown a high 
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susceptibility of the soil-dwelling stages of WFT to EPNs (Ebssa et al. 2006; Buitenhuis & 

Shipp 2005).  Steinernema feltiae has been studied against the prepupae and pupae of F. 

occidentalis, in petri dishes, with up to 70 % mortality being recorded on potted 

chrysanthemums (Dendranthema grandiflora) at 10 000 IJs/ml. However, foliar applications 

showed minimal efficacy, even at twice the recommended rates (20 000 to 40 000 IJs/ml). The 

same experiment in field conditions showed minimal mortality but still better control of the 

pupal stages (Buitenhuis & Shipp 2005). 

The South African blueberry industry is growing rapidly, due to high demand from the 

United Kingdom (UK) and the European Union (EU) for blueberries (Vaccinium corymbosum, 

Ericaceae) and sudden domestic interest. The area planted to blueberry, which was estimated 

to 1300 hectares in 2016/17, is projected to grow to about 2000 hectares by 2020, with the 

Western Cape Province leading with 60 % of the production (Sikuka 2017). The production of 

blueberries in Haygrove tunnels is gaining popularity, because of the higher yields and the 

improved marketability of fruit. WFT cause economic damage to blueberries when they lay 

eggs and feed on the ovaries, resulting in scarring that renders berries unmarketable (Arévalo 

et al. 2009). Growers in the Western Cape report that WFT can cause severe damage to the 

buds and new growth after pruning (D. Ngadze, Berryworld SA, pers. communication). As the 

blueberry industry in South Africa expands, the thrips problem is most likely to increase too. 

Commercial farmers of blueberry crops are already experiencing the persisting WFT problem, 

despite the use of chemical control, combined with biological control agents like predatory 

mites and predatory bugs (Orius spp). Food safety certification required for export restricts the 

use of chemical control by producers close to and during harvesting, therefore they have to rely 

on biological control. WFT is economically harmful in blueberry production in South Africa 

during the blooming period, which occurs during the winter months (May and June), and during 

the flush in the summer months (between December and February) after plants have been 

pruned during November/December (D. Ngadze, Berryworld SA, personal communication). 

Both these periods can be the targeted for the release of biological agents.  

The efficacy of EPNs depends on the selection of the most virulent nematode for the target 

host (Gaugler & Georgis 1991). In laboratory screenings (Chapter 3), the local nematode 

Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, Gaugler & Adams showed great 

potential for the control of the soil-dwelling pupal stages of WFT (65 % mortality) and also for 

control of second instar larvae (43 % mortality) at 100 IJs/insect, therefore it was selected for 
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further testing in field trials. Steinernema yirgalemense has not only shown potential for WFT 

control in South Africa, but also for the control of other insect pests, like codling moth (De 

Waal et al. 2011; Odendaal et al. 2016a,b), mealybugs (Le Vieux & Malan 2015; Platt et al. 

2017), fruit flies (James et al. 2018), the banded fruit weevil (Dlamini et al. 2018) and Bradysia 

spp. (Katumanyane et al. 2018). Research on in vitro culturing of EPNs for commercialisation 

is ongoing (Ferreira et al. 2016).  

The objective of the study was to determine the effect of different concentrations of S. 

yirgalemense for biocontrol of F. occidentalis in a commercial blueberry greenhouse. 

Additionally, the persistence of the IJs in the growth medium was tested. 

4.2. MATERIALS AND METHODS 

4.2.1. Trial site 

Blueberry plants, grown under a 200-micron poly-plastic cover in Haygrove tunnels in 

Klapmuts (33°49’41”S 18°33’6.48”E), Western Cape Province, were used in this trial. Plants 

were naturally infested with F. occidentalis that were assumed to have migrated from adjacent 

fields that previously housed infested plants. The thrips species was confirmed to be F. 

occidentalis by means of morphological and molecular characterisation. 

Two-and-a-half-month-old blueberry plants (var. Dazzle), originally imported from the 

Mountain Blue orchards in Australia, were grown in pots (30- cm-diam.), with the potting 

medium consisting of pit coconut husk, imported from Holland. In the Western Cape the peak 

flowering period for this blueberry variety is during May/June and the main harvesting period 

is during August.  

The experiments were conducted during peak flowering season (May-June 2018). The trial 

with low nematode concentrations was carried out between 16 May and 13 June 2018 and the 

trial with high nematode concentrations from 30 May to 27 June 2018. The last pesticide 

treatment (active ingredient spinosad) was applied a month before the beginning of the first 

trial. The commercial predatory mite Amblydromalus limonicus (Acari: Phytoseiidae), sold as 

LIMONICA® by Koppert, was applied a week and three weeks after the start of the first and 

second trials, respectively.  
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4.2.2. Source of nematodes 

In vitro cultured S. yirgalemense, according to the procedure adopted by Ferreira et al. 

(2016), were used in this study. The equation developed by Navon & Ascher (2000) was used 

to calculate the nematode concentrations used in the various experiments. 

4.2.3. Monitoring of environmental parameters 

Climatic conditions, i.e. ambient temperature, growth substrate temperature and relative 

humidity (RH), were monitored using ColdChain Thermodynamics I-buttons. The weekly 

cycle showed an average of the environmental parameters for each week, with daily maximum 

and minimum values.  

4.2.4. High and low EPN concentration applications 

Steinernema yirgalemense was applied to a natural infestation of F. occidentalis at low IJ 

concentrations of 0, 4.3, 8.6, and 17.2 IJs/cm2 on 16 May 2018, and at higher concentrations of 

0, 25, 50, and 100 IJs/cm2 on 30 May 2018. The higher concentrations were targeted at control 

of WFT larvae, based on recommendations of 50 IJs/cm2 for soil applications and  25 IJs/cm2 

for leaf applications of S. feltiae in the commercial product ENTONEM by Koppert, for the 

control of the larvae of sciarid flies (Sciaridae), WFT and leaf miners, .  

Both experiments were arranged in a complete randomised design, using eight pots for each 

treatment (n = 32 pots), with one buffer row and four buffer plants between treatment pots (Fig. 

4.1). The pots were irrigated before treatment to ensure 100 % saturation of the growth medium 

at the time of application. To reduce EPN sensitivity to desiccation and UV radiation, an 

adjuvant was used, WETCIT (Borax and orange oil), was added to all nematode suspensions 

at the rate of 0.5 ml/L. WETCIT is registered for use in undercover blueberry production in 

South Africa. Treatments were applied using a 2-L handheld sprayer. Each plant received 600 

ml of nematode suspension and the control treatment received water with the adjuvant only. 

Each plant was first sprayed from above, from a distance of approximately 30 cm, to ensure 

good coverage of the foliage and flowers, with limited run-off. The rest of the nematode 

suspension was drenched evenly over the growth medium surface. Growth medium moisture 

level was kept at a constant 100 % by means of daily drip irrigation. 
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Fig.4.1. Experimental layout in a completely randomised design, under Haygrove tunnels in 
blueberry production, with eight pots for each treatment, the buffer row, and the plants. 

After treatment application, HORIVER blue sticky cards (25 cm) (Koppert) were placed 

in each of the pots, at about 5 cm from the surface of the substrate, to attract and trap any 

emerging adult thrips. The blue sticky cards are the most widely used method for monitoring 

thrips (Trdan & Jenser 2003). Each of the experimental pots was isolated, using white thrips-

proof fabric that was tightly wrapped around the base of the pot and secured with packaging 

tape (Fig. 4.2), and tied onto a 1-m stick at the top with a plastic string. Double-sided tape was 

used to seal the sides of the cylindrical enclosures. These enclosures prevented the adult thrips 

from escaping, while leaving them enough space in which to move around freely. 

After the plants had been left undisturbed for 7 days, the number of adult F. occidentalis on 

each sticky card was counted, under a Zeiss stereo Discovery V8 Microscope fitted with 

Axiocam ERc 5s. Data was recorded weekly over a 4-week period and a fresh sticky trap was 

inserted each week when removing a trap to count WFT. 
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Fig. 4.2. Treatment pot enclosed with thrips-proof fabric and a blue sticky trap attached to trap 
emerging adult Frankliniella occidentalis. 

4.2.5. Persistence of EPNs 

EPN persistence was evaluated concurrently with the nematode concentration experiments. 

Last-instar mealworm larvae, Tenebrio molitor (Linnaeus) (Coleoptera: Tenebrionidae) were 

used to assess nematode persistence. Five perforated 0.2-ml Eppendorf tubes were tied together 

with cotton thread, with a single larva placed in each tube (Fig. 4.3). A set of five tubes was 

buried randomly in the substrate of each pot, with the thread extending above the soil. The 

tubes were retrieved after 7 days and a fresh set of tubes with mealworm larvae was buried in 

the same pot. Mortality was recorded, and the dead mealworms were dissected to confirm 

infection, whereas the live individuals were rinsed in running water through a sieve and placed 

on moist filter paper in a Petri dish. The dish was sealed with Parafilm® and left to incubate for 

another week at 25 °C. After the time period had elapsed, the larvae were dissected to confirm 

mortality by nematode infection.  
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Fig. 4.3. Treatment pot isolated with thrips-proof fabric mounted on a 1-m stick showing 
Eppendorf tubes tied together with cotton thread for persistence testing (circled). 

4.2.6 Statistical analysis 

All statistical analyses were performed using STATISTICA 13.2 software (StatSoft Inc. 

2008). The data were analysed using analysis of variance (ANOVA), with post hoc comparison 

of means using Bonferroni’s method, or a bootstrap multi comparison, if the residuals were not 

evenly distributed (Efron & Tibshirani 1993). Significant differences were determined on a 95 

% probability level. Mean percentages were given along with the standard error of means.  

4.3. RESULTS 

4.3.1. Low nematode concentrations 

4.3.1.1 Environmental conditions 

The mean ambient temperature for the four-week evaluation period (16 May to 13 June 

2018) was 16 °C, which ranged between a minimum of 4 °C and a maximum of 32 °C (data not 

shown). The IJs can only survive for 24 hours on the foliage, and the mean ambient temperature 

on the day of nematode application was 21 °C, with a minimum of 17 °C, which is well below 

the optimum temp of 25 °C for S. yirgalemense. Infection of leaf-dwelling WFT stages was 

therefore not expected to contribute much to reducing WFT numbers, indicating that only the 

substrate temperature would have played a significant role in the trapping of adult thrips on the 

blue sticky traps. As the plants were drip irrigated, the humidity of the substrate was always 
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close to 100 %. The average temperature of the growth substrate ranged between a minimum 

of 8 °C and a maximum of 39 °C, with the mean average for the duration of the experiment 

being 17 °C, which is still below the optimum temperature of 25 °C for S. yirgalemense (Fig. 

4.4).  

 

Fig. 4.4. Growth substrate temperature (minimum, maximum, average) in potted blueberries 
in Haygrove tunnels from 16 May 2018 until 16 June 2018. 

 

4.3.1.2 Efficacy of low concentration applications 

A two-way ANOVA of the effect of time and the concentrations of S. yirgalemense on the 

numbers of F. occidentalis recovered from sticky traps over four weeks showed no significant 

interaction between the treatments and the weeks (F (9.84) = 0.40080, p = 0.931) (Fig. 4.5). Over 

the four weeks no treatment produced significantly fewer thrips than the untreated control. In 

week 2, the lowest concentration (4.3 IJs/cm2) had the highest number (9.13 ± 1.54) of adult 

WFT recovered, which did not differ significantly (p = 0.931) from the control treatment (8.38 

± 1.54). The number of thrips recovered for the highest concentration in the fourth week was 

more than that recovered in the previous weeks (7.63 ± 1.29). 
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Fig. 4.5. Mean number of adult Frankliniella occidentalis recovered from eight blue sticky 
traps per treatment per week after field treatment of blueberry plants with different 
concentrations of Steinernema yirgalemense (4.3, 8.6, 17.2 IJs/cm2 and control treated with 
water only. (Two-way ANOVA: F (9.84) = 0.40080, p = 0.931). The different letters above the 
error bars denote significant differences between treatments (p < 0.05). 

A one-way ANOVA analysis showed that the cumulative number of adult thrips on the blue 

sticky traps over four weeks decreased significantly with increasing EPN concentrations (F (3, 

28) = 5.2634, p < 0.001) (Fig. 4.6). Cumulative results show that there were significantly fewer 

thrips that emerged in the 8.6 and 17.2 IJs/ cm2 treatments than in the lowest concentration and 

the untreated control. The highest concentration had the lowest mean number of WFT 

recovered (5.69 ± 0.826). The lowest concentration (4.3 IJ/cm2) differed significantly (p = 

0.0053) from the two higher nematode concentrations applied, which did not differ 

significantly from each other.  
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Fig. 4.6. Cumulative mean number of adult Frankliniella occidentalis (95 % confidence 
intervals) recovered from eight blue sticky traps per treatment over four weeks, after 
application of Steinernema yirgalemense at four different concentrations (4.3, 8.6, 17.2 IJ/cm2 
and control treated with water only (one-way ANOVA: F (3, 28) = 5.2634, p < 0.001). The 
different letters above the error bars denote significant differences between treatments (p < 
0.05). 

4.3.1.3 EPN persistence 

Analysis using a two-way ANOVA showed no significant difference (F (9, 84) = 0.41526, p 

= 0.92366) between the main effects of the IJ concentrations over the course of 4 weeks (Fig. 

4.7). No significant differences were observed between any treatments in any of the weeks. 

During the first week, the highest nematode concentration resulted in the highest mealworm 

mortality (42.5 % ± 5.94 %), which declined over the 4-week duration. The lowest 

concentration had the lowest mealworm mortality (25.0 % ± 5.94 %) after the first week, with 

a decline over the following 3 weeks. The cumulative percentage mortality (Fig. 4.8) showed 

a significant differences (F (3, 28) = 12.755, p < 0.001) in persistence, expressed in terms of 

mealworm mortality, between the control treatment and the three nematode concentrations over 

the 4 weeks. The highest nematode concentration resulted in the highest mean mortality over 

4 weeks (27.4 % ± 2.99 %). 
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Fig. 4.7. Percentage mortality (95 % confidence interval) of Tenebrio molitor larvae buried in 
soil after exposure to Steinernema yirgalemense at different concentrations (4.3, 8.6, and 17.2 
IJs/cm2) over a period of 4 weeks (two-way ANOVA: F (9, 84) = 0.41526, p = 0.92366). The 
different letters above the error bars denote significant differences between treatments (p < 
0.05). 
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Fig. 4.8. Cumulative percentage mortality (95 % confidence interval) over four weeks of 
Tenebrio molitor larvae buried in soil after exposure to Steinernema yirgalemense at different 
concentrations (4.3, 8.6, and 17.2 IJs/cm2) (one-way ANOVA: F (3, 28) = 12.755, p < 0.001). 
The different letters above the error bars denote significant differences between treatments (p 
< 0.05). 
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4.3.2 High nematode concentrations 

4.3.2.1 Environmental conditions 

The mean ambient temperature for the 4-week evaluation period (30 May to 27 June 2018) 

was 14 °C, which ranged between a minimum of 4 °C and a maximum of 35 °C (data not shown). 

The IJs can only survive for 24 hours on the foliage, and the mean ambient temperature on the 

day of nematode application was 14°C, with a minimum of 11 °C, which is considerably below 

the optimum temp of 25 °C for S. yirgalemense. The mean average temperature of the growth 

substrate during the trial period was 16 °C and ranged between 15 °C and 20 °C, with a minimum 

and maximum temperature of 8 °C and 31 °C, respectively (Fig. 4.9).  

 

Fig. 4.9. Growth substrate temperature (minimum, maximum, average) in potted blueberries 
in Haygrove tunnels for a period of 4 weeks. 

4.3.2.2 Efficacy of high concentration applications 

Analysis of the results using a two-way ANOVA on the main effect of time and 

concentration of S. yirgalemense on the number of F. occidentalis on blue sticky traps, over a 

period of 4 weeks, showed no significant interaction between the treatments and the weeks 

after treatment (F (9, 84) = 0.73922, p = 0.672) (Fig. 4.10). Lower number of thrips were observed 

in the untreated control in all four weeks. The fewest thrips were observed in the first week 

with the application of the highest nematode concentration (100 IJs/cm2) (2.25 ± 0.535), but 

the number did not differ significantly (p < 0.05) from the intermediate nematode concentration 
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(50 IJs/cm2) (3.13 ± 0.535). However, the number differed significantly (p < 0.05) compared 

to the lowest nematode treatment (25 IJs/cm2) (4.125 ± 0.535) and the control (5.125 ± 0.535). 

For the second week, only the control differed significantly from the highest nematode 

concentration applied. However, in the third and fourth weeks all nematode treatments differed 

significantly from the control, with the least number of thrips being found on the sticky traps 

for the highest concentration.  
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Fig. 4.10. Mean number of adult Frankliniella occidentalis recovered from eight blue sticky 
traps per treatment per week after field treatment of blueberry plants with different 
concentrations of Steinernema yirgalemense (25, 50, 100 IJs/cm2 and control treated with water 
only). Two-way ANOVA: F (9, 84) = 0.73922, p = 0.672. The different letters above the error 
bars denote significant differences between treatments (p < 0.05). 

A one-way ANOVA showed that the cumulative number of adult thrips recovered on blue 

sticky traps over four weeks increased significantly with decreasing EPN concentration (F (3, 

28) = 12.990, p < 0.001) (Fig. 4.11). Cumulative results show that there were significantly fewer 

thrips that emerged in all treatment concentrations, as compared to the untreated control. The 

highest number of thrips was recovered from the control treatment (5.84 ± 0.378), and 

significant differences (p < 0.001) were found between the control and the other nematode 

treatments. No significant difference (p < 0.001) was found between the lowest concentration 

(3.94 ± 0.378) and the intermediate nematode concentration (3.25 ± 0.378). The intermediate 

nematode concentration was also not significantly different (p < 0.001) from the highest 
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concentration (2.72 ± 0.378). The highest concentration treatment had the least number of thrips 

recovered, only 2.72 ± 0.378.  
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Fig. 4.11. Cumulative mean number of adult Frankliniella occidentalis (95 % confidence 
intervals) recovered from eight blue sticky traps per treatment over four weeks, after 
application of Steinernema yirgalemense at four different concentrations (25, 50, 100 IJs/cm2 
and control treated with water only (one-way ANOVA: (F (3, 28) = 12.990, p < 0.001). The 
different letters above the error bars denote significant differences between treatments (p < 
0.05). 

4.3.2.3 EPN persistence 

There were no significant interactions (F (9, 84) = 0.55028, p = 0.83348) between the test 

period, the weeks, and the treatments of the trial (Fig. 4.12). In all the weeks no significant 

differences were observed between all concentration treatments. From the first to the second 

week, EPN persistence (expressed in terms of mealworm mortality) declined for all treatments. 

However, week 3 showed an increase, with no significant difference (p < 0.05) between the 

concentrations of nematodes applied. The cumulative percentage mortality was significantly 

different (F (3, 28) = 12.616, p < 0.001) in persistence, expressed in terms of mealworm mortality, 

between the control and the three nematode concentrations over the 4 weeks. (Fig. 4.13). The 

intermediate concentration had the highest mortality of mealworms (44.37 % ± 4.77 %), 

followed by the highest concentration (42.50 % ± 4.77 %), and the lowest concentration (38.13 
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% ± 4.77 %) with the least. The highest nematode concentration showed a slight decline in 

mortality when compared with the intermediate nematode. 
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Fig. 4.12. Percentage mortality (95 % confidence interval) of Tenebrio molitor larvae buried 
in soil after exposure to Steinernema yirgalemense at different concentrations (25, 50, and 100 
IJs/cm2) over a period of 4 weeks (two-way ANOVA: F (9, 84) = 0.55028, p = 0.83348). The 
different letters above the error bars denote significant differences between treatments (p < 
0.05). 
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Fig. 4.13. Cumulative percentage mortality (95 % confidence interval) over four weeks of 

Tenebrio molitor larvae buried in soil after exposure to Steinernema yirgalemense at different 

concentrations (25, 50, and 100 IJs/cm2) (one-way ANOVA: F (3, 28) = 12.616, p < 0.001). The 
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different letters above the error bars denote significant differences between treatments (p < 

0.05). 

 

4.4 DISCUSSION 

The blueberry industry in South Africa is experiencing a period of robust growth. 

Production mostly takes place in Haygrove tunnels, because growers are able to manipulate the 

environmental conditions to optimize yields. The short life cycle, as well as overlapping 

generations during the blueberry flowering cycle, make F. occidentalis a key pest that can reach 

damaging levels in a very short period (Arévalo et al. 2009). Blueberry blooming period lasts 

for approximately 25 days, from the beginning of flower opening to petal drop and attacts more 

thrips, because of the white colour of the flowers (Arévalo et al. 2009). An IPM system seems 

to be a viable solution for the control of WFT. The field trial was done during the flowering 

period when economic damage of thrips was observed and when chemical control cannot be 

applied due to the presence of pollinators and to avoid exceeding minimum chemical residues 

on the edible crop.   

In this study both foliar and soil applications of EPNs were applied simultaneously to 

target WFT larvae, adults and pupae. Foliar applications of S. feltiae, together with a wetting 

agent, have previously been shown to control WFT adults and larvae successfully in 

chrysanthemum (Buitenhuis & Shipp 2005). Another reason for including foliar applications 

is that while pupation mostly occurs in the soil, some thrips pupate on the host plants, especially 

in complex floral architecture (Broadbent et al. 2003) and soil applications therefore target only 

a portion of the WFT population.  

The relatively poor efficacy of S. yirgalemense observed in this study is ascribed to the 

low substrate temperatures (15 °C to 20 °C) prevailing during the study period. These 

suboptimal temperatures might have affected establishment and sustainability of S. 

yirgalemense negatively, although the data suggest that S. yirgalemense was still able to infect 

and reproduce, resulting in trap catches of WFT of up to 50 % less than the untreated control. 

Several studies having already demonstrated the influence of temperature and RH on the 

infectivity of EPNs. Kaya (1990) emphasised that soil temperature has a major impact on 

nematode behaviour and temperature tolerance for infection and reproduction, and variation 

might exist among different EPN species and strains (Wright et al. 2005). Under the 

temperature conditions prevailing in this study, the control treatments for both experiments 
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captured a relatively high number of thrips. The temperature range was below optimum for 

nematode infection and reproduction. Extreme temperatures of 0 °C and 40 °C are lethal to 

EPNs, with temperatures below 10 °C to 15 °C restricting their mobility, while temperatures 

higher than 30 °C to 40 °C can inactivate them (Bedding et al. 1993; Grewal et al. 1994). In 

studies conducted by Odendaal et al. (2016b) and Platt (2017), S. yirgalemense were found not 

to be active at temperatures < 14 °C, resulting to generally low mortality for codling moth and 

mealybugs.  

Previous laboratory experiments (Chapter 3) showed that S. yirgalemense was able to 

cause mortality of 66 % of WFT pupae at a constant temperature of 25 °C. Arthurs et al. (2003), 

in their study of the parasitic nematode, Thripinema nicklewoodi Siddiqi (Tylenchida: 

Allantonematidae), against WFT, suggested that under fluctuating temperatures, in comparison 

to a constant temperature of 20 °C, discontinuous exposure of the nematodes to lower 

temperatures (10 °C) and higher temperatures (35 °C) still allowed for development and 

reproduction. Such development and reproduction occurred when the nematodes were allowed 

periodic 10-hour daily exposure to a suitable temperature range from 20 °C to 30 °C. A study 

undertaken by Kung et al. (1990), on the effects of soil temperature, moisture and RH on EPN 

persistence, showed that Steinernema carpocapsae Poinar, a temperate nematode, was 

persistent at low temperatures from 5 °C to 25 °C, whereas only poor persistence was observable 

at a temperature of 35 °C. In contrast, the subtropical origin of Steinernema glaseri enabled it 

to perform optimally at high temperatures (15−35 °C), with it having poor persistence at 5 °C.  

WFT also reproduces rapidly at higher temperatures, as compared to the rate at which they 

reproduce at low temperatures (McDonald et al. 1998), with higher infestations at temperatures 

above 30 °C being more likely than at lower temperatures (Arthurs et al. 2003). Some days 

during the trial experienced relatively high temperatures, and although such temperatures were 

prevalent for only a few hours, they could still have enhanced the rapid reproduction of WFT. 

Both S. yirgalemense and the WFT were present in the same ecological niche for a short time, 

but because of the rapid reproduction rate of WFT at higher temperatures, EPN efficacy was 

reduced. The rapid rate of development at higher temperatures could be an escape mechanism 

for WFT against EPNs. 

The increased EPN concentrations resulted in lower numbers of adult WFT captured on 

sticky traps. With due consideration to the possibility that the number of insects on the traps 

might not have accurately reflected the actual WFT population level, it can be concluded that 
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the best results were obtained with an EPN concentration of 100 IJs/cm2. This concurs with 

Ebssa et al. (2006), who found that the WFT mortality caused by H. bacteriophora and 

Steinernema abbasi Elawad, Ahamad & Reid at 100 IJs/cm2 was not significantly different 

from the mortality in the water-treated control, and that the highest mortality was recorded at 

1000 IJs/cm2.  

The reduction in WFT numbers at the low EPN concentrations did not differ significantly 

from the reduction obtained with high concentrations, which could be attributed to the fact that 

the mean temperatures recorded during the first trial were higher than were the mean 

temperatures recorded during the second trial. Another possible reason for the lack of variation 

was that A. limonicus was released in the tunnel a week before the start of the first experiment 

with low EPN concentrations. This might have contributed to supressing the thrips populations, 

overlapping the start of the experiment. Koppert-Biological Systems (2013) recommends that 

A. limonicus be released at 2-weekly intervals, implying that their persistence beyond 2 weeks 

is limited. The second experiment, implemented 3 weeks after the release of A. limonicus, 

would not have been much affected by their release, and the reduction in WFT numbers could 

be attributed to the introduction of S. yirgalemense.  

Persistence trials indicate that EPNs persisted and were able to infect the mealworms for 

at least 4 weeks post application. Generally, the mortality of the mealworms in both the 

experiments was very low, leading to the conclusion that the low substrate temperatures limited 

the ability of S. yirgalemense to infect the mealworms, which is a good host for EPNs. De Waal 

et al. (2011) recorded low levels of mortality (< 3 %) for the local EPN isolates, including S. 

yirgalemense, against codling moth, Cydia pomonella, in winter temperatures between 12 °C 

and 17 °C. Le Vieux and Malan (2015) showed a 6-month laboratory persistence for S. 

yirgalemense against the codling moth larva of > 80 %, which was not significantly different 

for all the months concerned, showing the potential of this species to persist.  

In conclusion, although the level of WFT suppression by S. yirgalemense in both field trials 

was low, particularly compared to the levels of mortality achieved in laboratory trials, the 

results indicate the potential for the biological control of F. occidentalis using S. yirgalemense.   

The results also suggest that applying the EPNs when greenhouse temperatures are higher will 

allow for optimum nematode infection and better WFT suppression. The application of S. 

yirgalemense as soil and foliar treatments for WFT control on the new growth of blueberries 

(after post-harvest pruning), therefore, warrant further investigation. Persistence studies should 
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also preferably be conducted in separate pots, because as putting mealworms in the pots where 

WFT control is evaluated, might diverge the EPN’s focus from the WFT. The frequency of 

follow-up EPN applications for optimum control should also be investigated. 
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Chapter 5 

5.1 CONCLUSION 

Frankliniella occidentalis, western flower thrips (WFT), is considered to be a major pest 

in undercover crop production worldwide (Cloyd 2009). The South African blueberry industry 

is growing rapidly and production in Haygrove tunnels is gaining popularity, because of the 

relatively higher yields and improved marketability of fruit. Since the introduction of F. 

occidentalis into South Africa the 1980s, the pest has spread rapidly to become one of the most 

prevalent insect pests in blueberry production. The efforts to control WFT so far have mainly 

been through the use of insecticides, but this is complicated by the fact that WFT has developed 

resistance to most insecticide classes.  Chemical control is also restricted for use on food crops, 

especially during harvesting, due to food safety concerns, leaving farmers with biological 

control as the best alternative option. Biological control agents that are commonly used in 

blueberry production are predatory mites and predatory bugs (Orius spp.). Their efficacy is 

limited by the cryptic behaviour of the WFT, as their relatively large size makes it difficult for 

them to penetrate the enclosed spaces like flower buds favoured by WFT. Entomopathogenic 

nematodes (EPNs), however, are able to enter these spaces in search of insect host and therefore 

insect pest control using EPNs is starting to gain popularity in South Africa. Steinernema feltiae 

is a common EPN species that has been commercially used in the USA and in European 

countries against F. occidentalis with great success. However, as S. feltiae has not been isolated 

in South Africa, its importation and use is prohibited in the country. This sparked interest in 

the use of locally isolated EPN species, which may work best in local environments. The 

efficiency of locally isolated EPN species against different insect pests, and their mass 

culturing for commercialisation are still being explored.  

Successful implementation of an IPM programme requires accurate identification of 

pests. WFT are often confused with other species, as approximately 7500 species of thrips are 

known to exist (Mound 2009). Morphological identification is difficult, due to the small, fragile 

nature of the pest. It requires well-prepared microscope slides to be viewed under a high-quality 

compound microscope and considerable expertise is required to identify key morphological 

features for species identification. During the current study, the focus was on identifying F. 

occidentalis, using both morphological and molecular techniques. Key morphological 

characteristics were observed fitted well with the descriptions given for F. occidentalis, and 

with the three colour morphs of F. occidentalis, the intermediate brown colour was found to be 
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the dominant colour morph in the locations sampled. Given that taxonomic expertise is getting 

scarce and not always readily available, it is a valuable alternative to use molecular 

identification. The analysis of molecular data of DNA sequences has been suggested as a 

complementary approach to the classical methods to identify insects. Molecular identification 

fundamentally requires the identification of suitable molecular markers, as they tend to vary in 

respect of the precise identification of specific insects. PCR using the mtCOI gene for 

differentiation of thrips species was used for morphological identification. The length of the 

amplicon, depends on the choice of primers used, and for our sequences was < 400 bp. The use 

of molecular identification in the study represented an alternative to morphological 

identification, which proved to be difficult, not only for F. occidentalis, but also the other thrips 

species that were found sporadically in the study areas. The F. occidentalis populations 

collected were compared to other populations in the GenBank database and showed 100 % 

identity. Little variation was found between the populations collected from the two locations 

of the study. Molecular identification is often quicker, but the costs can be prohibitive. The use 

of a combination of PCR and morphological characteristics seems to be a better option, 

especially using morphological keys for day-to-day identification, augmented by regular 

molecular identification as a kind of quality control. 

Biological experiments require a constant and reliable culture of test organisms, and 

establishing and maintaining such a culture often is laborious and time-consuming. It is 

especially difficult for small insects like thrips, and previous studies have attributed failures in 

the rearing of thrips to factors like high vulnerability to contamination, environmental 

conditions, host quality, and crowding (Loomans & Murai 1997). Green beans are a commonly 

used host plant for culturing thrips, while chrysanthemums are known to be very attractive to 

WFT. Chrysanthemum leaflets and green bean pods were selected as host plants to study the 

life-history of WFT, as this would provide insight into which life stages are suitable to target 

with EPNs. The fact that more first instar larva hatched on chrysanthemums, faster larval 

developmental rate and a higher survival rate on chrysanthemums indicate that chrysanthemum 

is a more attractive and more suitable host than green bean. The preference for chrysanthemums 

over green beans was attributed to the morphological and chemical traits associated with the 

host, which were not evaluated in the study. Generally, there was reduced number of eggs that 

hatched for both host plants, because artificially grown thrips tend to be more sensitive than 

are those in natural environments, especially when the daylight occurring in natural 

environments is compared, with the artificial lights provided in rearing cages. Microclimate 
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conditions are important for successful rearing of thrips, especially adequate daylight, 

temperature and ventilation have been recognised as key factors affecting egg hatching as they 

are linked to diapause in thrips. When rearing WFT for laboratory bio-assays it is important to 

use the most suitable host plant that is practical to obtain as many insects as possible and to 

ensure sufficient light and ventilation, which is key for egg hatching. Usually, flowers are the 

best parts of the plant for F. occidentalis feeding and oviposition (Lewis 1973), although their 

limitation is that they cannot be kept for long.  

Laboratory pre-screening results for 11 local EPN species and one exotic S. feltiae 

revealed highly variable mortality, ranging between 11 % and 67 %, against second instar 

larvae of F. occidentalis. This variation is attributed to a combination of factors related to host 

size and defence mechanism and also the nematode size and foraging behaviour. EPN size in 

relation to host size is fundamental in determining the susceptibility of insects to infection by 

EPN species, and is therefore a key factor to determine the choice of an EPN species against a 

particular micro-insect pest. This study concluded that the relatively small nematodes, H. 

baujardi and S. yirgalemense in particular, were able to infect the WFT, with no infection 

occurring with nematodes > 1mm. The foraging behaviour of the EPNs also play a role in 

pathogenicity of the nematode against a particular host. WFT was observed to be more 

susceptible to the Heterorhabditis spp. than Steinernema spp., which besides the difference in 

size, was also attributed to the fact that Heterorhabditis possess a dorsal tooth that enables them 

to penetrate the host insect directly through the cuticle of the host, whereas Steinernema spp. 

lack the dorsal tooth and can only penetrate through natural openings, e.g. the anus. 

Steinernema feltiae did not perform well in comparison with the local EPN isolates in the 

laboratory. The fact that it was outperformed by the local S. yirgalemense may be because the 

latter is slightly smaller and thus better able to infect and multiply in the second instar WFT 

larvae.   

The results of the bioassays also confirmed results of other researchers (Chyzik et al. 

1996; Ebssa et al. 2001; Premachandra et al. 2003; Pundt 2011), that the pupae of WFT are 

more susceptible to nematode infection than the adults and larvae. This is attributed to the low 

mobility of the pupal stages, which facilitates the attachment of nematodes to them 

(Koppenhöfer et al. 2003). The low level of parasitism shown by the adults for all the EPN 

species is attributed to the hardening of the cuticle as thrips age, and to the fact that they are 

very active, thus making penetration difficult. Thrips mortality increased with increased 

concentration from 10 IJs/larva to 160 IJs/larva for both S. yirgalemense and H. baujardi. The 
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LD50 and LD90 shows that S. yirgalemense was five times more potent than was H. baujardi. 

Generally, F. occidentalis seems to require more S. yirgalemense IJs for optimum control, 

under the same conditions, in comparison to the findings of other studies on other insect pests 

like mealybugs, fungus gnats and banded fruit weevil. 

 For EPNs to complete their life cycle in an insect host, they must invade and kill the host 

and be able to develop into adults and produce IJs which will emerge from the cadaver in search 

of a new host (Bastidas et al. 2014). The temporal development studies showed that S. 

yirgalemense and H. baujardi were able to complete one life cycle in F. occidentalis, meaning 

that the nematodes developed into hermaphrodites in the case of H. baujardi, and males and 

female in the case of S. yirgalemense, and their eggs developed into infective juveniles (IJs). 

Relatively few IJs penetrated each of the host insects, because of their small size and the EPN 

life cycle was short, taking approximately five days to produce a new cohort of nematodes. The 

IJs recovered from the host were relative in number to the number of IJs that had penetrated 

the host. The number of eggs laid by the female depends on the size of the host as well. The 

nematodes emerging from the egg developed into IJs, due to the lack of food supply in the host. 

The late second larval phase is known to stop feeding, and to incorporate the bacteria into the 

bacterial chamber or vesicle, then transforming into pre-infective and infective larvae, retaining 

the cuticular of the second larval phase as a sheath. It was also observed that in some insects 

the IJs were able to infect host insects but the nematodes only developed to a certain stage, and 

disappeared without finishing their cycle. The phenomenon is ascribed to a lack of food in the 

micro-insect. The small size of WFT can be a limiting factor in the potential of EPNs to 

multiply in a production environment and this indicates that follow-up applications of EPNs 

may be required to achieve effective biocontrol of WFT.  

EPN performance under optimum laboratory conditions is not necessarily representative 

of the performance under field conditions, as was evident in the field trials conducted with 

different concentrations of S. yirgalemense. The field trial was aimed at targeting all 

developmental stages of WFT, therefore foliar and soil applications were made simultaneously 

during the flowering period of blueberries in May/June. The level of WFT suppression 

achieved with all the concentrations of S. yirgalemense was less than what was achieved in the 

laboratory screening studies. Concentrations below 100 IJs/cm2, in combination with low 

substrate temperatures of < 15 °C, proved to limit the efficacy of S. yirgalemense. Previous 

studies have demonstrated that temperature greatly influences the infectivity, development, 

reproduction, and survival of EPNs (Kaya (1990). Studies by Odendaal et al. (2016) and Platt 
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(2017), showed that S. yirgalemense is inactive at temperatures < 14 °C. The low-to-moderate 

suppression of F. occidentalis in the field trial does, however, indicate that the EPNs were still 

able to survive the daily fluctuations in temperature. This was also corroborated by the 

persistence trials which showed that S. yirgalemense was able to persist in the substrate for four 

weeks, despite the sub-optimal temperatures. Persistence studies should preferably be 

conducted in separate studies, because putting mealworms in the pots where WFT control is 

evaluated, might reduce the effect of the EPNs on WFT, thererby underestimating the efficacy 

of the EPNs. For successful biocontrol using EPNs it is necessary to know the temperature 

tolerance of the particular EPN species, and to apply the EPNs when the micro-climate is most 

suitable to ensure optimum results. The components of an IPM system states that any method 

used might not significantly reduce the pest population, but combining the different methods 

should give adequate reduction to prevent economic losses. 

The bioassays and field experiments furthered understanding of the potential of EPNs for 

use as biocontrol agents against F. occidentalis under local conditions. The current study 

established the basis for further applied studies to search for environmentally compatible 

strategies that allow for the enhancement of S. yirgalemense as a biocontrol agent for F. 

occidentalis. Future field trials should focus on EPN applications to target WFT on the new 

growth flush after post-harvest pruning, usually between December and February, when WFT 

populations peak and temperatures in the tunnels are closer to the optimum for S. yirgalemense. 

The feasibility of applying S. yirgalemense in conjunction with other biological agents, and the 

insecticide–pathogen synergistic interactions in IPM systems, should be investigated. Further 

work is also required on the application of EPNs in various formulations with conventional 

spray equipment. Succsessful mass rearing of S. yirgalemense has been achieved and paves the 

way for commercialisation. The demonstrated potential of S. yirgalemense as a biocontrol 

agent for F. occidentalis should not preclude the continued testing of additional locally isolated 

EPN species for pathogenicity against F. occidentalis. 
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