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SUMMARY 

In order to test the effect of different plant growth-promoting strategies on Triticum 

aestivum L. (wheat), we investigated the ability of biochar and a grain-associated soil 

yeast, to improve the growth of this crop. Our first goal was to study the effect of biochar 

amendments to sandy soil on the growth and nutrition of wheat in the presence of 

mycorrhizal fungi. This was accomplished by amending soil with 0%, 1%, 2.5%, 5% and 

10% (w/w) biochar and cultivating wheat plants in these soil-biochar mixtures. After 

harvesting, plant growth and mycorrhizal colonization of roots were measured. In addition, 

we studied the nutritional physiology of these plants with regards to nitrogen (N), 

phosphorous (P) and potassium (K) concentrations, as well as the growth efficiencies and 

uptake rates of these nutrients. We found that wheat growth was improved by biochar 

amendments to soil, probably as a result of elevated K levels in the plant tissues supplied 

by the biochar amendments. 

The second goal of this study was to obtain a soil yeast from the rhizosphere of another 

monocot in the family Poaceae, i.e. Themeda triandra Forssk. (red grass), and then 

evaluate this isolate for its ability to improve wheat performance. Three different 

Cryptococcus species were isolated from the rhizosphere of wild grass, i.e. Cryptococcus 

zeae, Cryptococcus luteolus and Cryptococcus rajasthanensis. Since C. zeae was 

previously isolated from maize, an isolate representing this species was selected to be 

used in further experimentation. With the ultimate goal of testing the ability of this yeast to 

improve wheat growth, its effect on wheat germination was investigated and compared to 

that of two other soil yeasts, i.e. Cryptococcus podzolicus CAB 978 and Rhodotorula 

mucilaginosa CAB 826. These three yeasts were subsequently tested for their ability to 

improve wheat growth in pot cultures in a greenhouse. After one and two months of 

growth, the culturable yeasts present in the rhizosphere and bulk soil were enumerated. 

The effects of these yeasts were elucidated by measuring wheat growth in terms of dry 

weight, as well as root and shoot relative growth rates (RGR). Changes in wheat nutrition 

were evaluated by determining the concentrations, growth efficiencies and uptake rates for 

P, K, zinc (Zn) and iron (Fe). During this study, it was found that only C. zeae CAB 1119 

and C. podzolicus CAB 978 were able to enhance seed germination. Similarly, it was 

shown that C. zeae CAB 1119 was able to improve wheat growth during the first and 

second month of cultivation, whereas C. podzolicus CAB 978 only improved growth during 

the first month, and R. mucilaginosa CAB 826 had no effect on growth. This improved 
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growth could be attributed to C. zeae CAB 1119 improving the P, K, Zn and Fe growth 

efficiency of wheat, which positively influenced the root and shoot RGR, and subsequently 

wheat growth. 

Our final goal was to test whether C. zeae CAB 1119 could affect wheat growth and 

nutrition when cultivated in sandy soil, which contained natural microbial consortia and 

10% (w/w) biochar. Plants treated with viable or autoclaved cells of C. zeae CAB 1119, 

were subsequently cultivated in soil only or soil amended with biochar. After one month, 

plants were harvested and growth was measured with regards to dry weight, root RGR 

and shoot RGR. In addition, the concentrations of P, K, Zn and Fe were analyzed for these 

plants, where after the growth efficiencies and uptake rates were calculated for these four 

nutrients. Results indicated that plants growing in soil amended with biochar, and treated 

with viable C. zeae CAB 1119, showed the best growth. The increased root and shoot 

RGR witnessed in these plants was probably due to increased concentrations of P and K 

in the plants. This study opens new avenues of research with regards to the bio-fertilizers 

of wheat. 
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OPSOMMING 

Die uiteindelike doel van die studie was om die effek van verskillende plantgroei 

bevorderende metodes op die groei van Triticum aestivum L. (koring) te ondersoek. Dus 

het ons die vermoë van houtskool en ‘n graan-geassosieerde grondgis getoets om die 

groei van dié plant te bevorder. Die eerste doel van die studie was om die effek van 

houtskool toedienings tot sanderige grond te evalueer. Dit is bewerkstellig deur 0%, 1%, 

2.5%, 5% en 10% (w/w) van die houtskool by die sand toe te voeg en koring in die 

houtskool-sand mengsels te kweek. Na die verlangde groei tydperk is die koring geoes en 

die mikorrizale kolonisasie op en in die koring wortels bepaal. Gedurende hierdie studie is 

die effek van bogenoemde toedienings op die fisiologie van die plante ondersoek deur die 

konsentrasies, opname tempo’s, en groei ekonomie van die plante vir stikstof (N), fosfaat 

(P) en kalium (K) te bepaal. Ons het gevind dat die groei van koring deur die toediening 

van houtskool bevorder is en dit blyk dat dié effek weens die teenwoordigheid van hoë K 

vlakke in die plantweefsel is. 

Die tweede doel van ons studie was om ‘n gis vanuit die risosfeer van ‘n monokotiel wat 

aan die familie Poacea behoort, naamlik Themeda triandra Forssk. (rooigras) te isoleer. 

Die vermoë van die isolaat om die groei van koring te bevorder was daarna getoets. Drie 

verskillende Cryptococcus spesies was vanuit die risosfeer van rooigras geïsoleer, nl. 

Cryptococcus zeae, Cryptococcus luteolus en Cryptococcus rajasthanensis. Omdat C. 

zeae in ‘n vorige studie vanaf mielies geisoleer was, is ‘n isolaat van hierdie spesie gebruik 

in verdere eksperimente. Met die doel om te bepaal of dié gisspesie koringgroei kan 

bevorder, was die effek van C. zeae op die ontkieming van koring bestudeer en vergelyk 

met dié van twee ander grond giste, nl. Cryptococcus podzolicus CAB 978 en Rhodotorula 

mucilaginosa CAB 826. Hierdie drie giste is ook ondersoek om die groei van koring in ‘n 

glashuis te bevorder. Na een en twee maande se groei was die getalle van giste 

teenwoordig in die risosfeer en grond verder weg van die wortels bepaal. Die effek van dié 

giste op die groei van koring is bepaal in terme van droë gewig asook die relatiewe wortel 

en halm groei tempos. Veranderinge in die nutrient status van koring is ondersoek deur die 

konsentrasies, groei-ekonomie en tempo van opname vir P, K, sink (Zn) en yster (Fe) te 

bepaal. Ons het gedurende dié studie gevind dat C. zeae CAB 1119 en C. podzolicus CAB 

978 die ontkieming van koring kon verbeter. Ons het ook gevind dat C. zeae CAB 1119 die 

groei van koring gedurende die eerste en tweede maand van groei kon bevorder, terwyl C. 

podzolicus CAB 978 dit net gedurende die eerste maand kon vermag en R. mucilaginosa 
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CAB 826 geen effek gehad het nie. Die verbeterde groei kon aan C. zeae CAB 1119, wat 

die P, K, Zn en Fe groei effektiwiteit van die plante verbeter het, toegeskryf word. Die 

verbetering van groei effektiwiteit het ‘n positiewe invloed op die relatiewe groeisnelheid 

van die wortels en halms gehad, en dus op koringgroei. 

Die laaste doel van die studie was om te bepaal of C. zeae CAB 1119 die groei van koring 

kon bevorder wanneer die koring in sand wat natuurlike mikrobiese populasies bevat en 

met houtskool aangevul is, gekweek word. Plante is met lewensvatbare of nie-

lewensvatbare selle van C. zeae CAB 1119 behandel en gekweek in sanderige grond, 

en/of grond waarby 10% (w/w) houtskool toegevoeg is. Die plante is na een maand geoes 

en die groei bepaal in terme van droë massa en die relatiewe wortel en halm groei 

tempos. Die konsentrasies van P, K, Zn en Fe in die plante, asook die fisiologie van die 

plante, nl. groei ekonomie en tempo van opname, met betrekking tot P, K, Zn en Fe is  

bepaal, Ons het gevind dat plante wat in die houtskool-grond mengsel gekweek is en met 

lewensvatbare selle van C. zeae CAB 1119 behandel is die beste groei getoon het. Die 

verbeterde relatiewe groei tempos van die wortels en halms was mees waarskynlik die 

gevolg van verhoogde P en K konsentrasies in die plante. Hierdie studie toon nuwe 

resultate in verband met die gebruik van biologiese alternatiewes tot kunsmis. 
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MOTIVATION 

It has been known for some time now that plants benefit from associations with 

microorganisms found in the rhizosphere. These microorganisms include plant growth 

promoting rhizobacteria, mycorrhizal fungi and soils yeasts. Interestingly, the plant growth 

promoting abilities of rhizobacteria (El-Tarabily and Sivasithamparam 2006) and 

mycorrhizal fungi have been studied more comprehensively than that of soil yeasts. Some 

studies have demonstrated that soil yeasts can promote plant growth. For example, a 

Rhodotorula sp. was shown to improve Solanum lycopersicum L. (tomato) growth and 

yield (Abd El-Hafez and Shetata 2001). It was also demonstrated that a maize root 

endophyte, Williopsis saturnus, could improve growth of Zea mays L. (maize) (Nassar et 

al. 2005). 

Recently it was shown that the common soil yeast Cryptococcus laurentii increases root 

growth of a relatively minor crop of the Western Cape, i.e. Agathosma betulina (Berg.) 

Pillans, also known as buchu (Cloete et al. 2009).  It was also demonstrated that this yeast 

could alter the nutritional physiology of this sclerophyllous shrub (Cloete et al. 2010). 

Unlike buchu, Tritcum aestivum L. (wheat) is the second most produced crop in the world 

and an important food source (UN, 2010). In order to supply enough food to an 

evergrowing population crop yield must be increased. This can be accomplished by 

expanding agricultural land and increasing intensive farming. One of the strategies 

employed in intensive farming is the addition of inorganic fertilizers to soil (Foley et al. 

2011). However, this is a costly and sometimes ineffective practice (FAO, 2005). 

Therefore, any improvement of wheat growth by soil yeasts during the minimal application 

of fertilizer would be beneficial, not only to farmers, but also to the economy. 

Microorganisms are not the only strategy that can be incorporated to improve wheat 

growth under low nutrient conditions. It was demonstrated that biochar, the carbon (C) rich 

material produced through pyrolysis (Nguyen et al. 2008), can improve growth of plants 

(Chan et al. 2007), including wheat (Blackwell et al. 2007; Solaiman et al. 2010). 

With the above as background, the first objective of this study was to determine the effect 

of biochar amendments to soil on the growth and nutritional physiology of wheat in the 

presence of mycorrhizal fungi. The second objective was to isolate a potential plant growth 

promoting yeast from the rhizosphere of another monocot that belongs to the family 

Poaceae and to establish its effect on wheat germination, growth and nutrition. The final 
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objective was to evaluate the effect of this yeast isolate on wheat growth and nutrition 

when cultivated in soil that contained natural microbial consortia and was amended with 

biochar.   
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1. Triticum aestivum L. (Bread wheat) 

Triticum aestivum L., also known as bread wheat (winter or spring), is the most produced 

grain of all the wheat species and was first described by Carl Linnaeus in 1753 (Belay 

2006; Linnaeus 1753; Percival 1921). In 1895, the genus Triticum was placed in the family 

Poaceae (grass) and after several taxonomic reclassifications, Triticum aestivum L. was 

accepted as the proper name for bread wheat (Belay 2006). The general morphological 

characteristics (Figure 1) of T. aestivum are erect hollow culms (Belay 2006; Simpson 

2010; Van Delden et al. 2010) with five to six internodes (Tripathi et al. 2003).  The roots 

may be divided into two groups, where roots that originated from the embryo are known as 

the seminal roots (Nakamoto and Oyanagi 1996), while the adventitious roots are those 

that originate from the stem base after germination (Liu et al. 2009). Leaves have an open 

basal sheath and are linear, distichous and ligulate (Simpson 2010; Van Wyk and Van 

Oudsthoorn 2012). The blades are bifacial, glaucous and have parallel veins (Bennet et al. 

2012; Simpson 2010). Inflorescences of wheat are spikelets aggregated in spikes and 

bristle-like awns can be found on the apex of the glumes and lemmas (Simpson 2010; Van 

Wyk and Van Oudtshoorn 2012). Seeds are located in the spikelets and are ellipsoidal, 

broader at one end and have a central groove on one side (Belay 2006). Bread wheat is 

also classified commercially, by placing the varieties into distinct categories, based on for 

example, hardness of the grain, grain colour and whether it is cultivated during the spring 

or winter seasons (Belay 2006). 

Similar to all plants, T. aestivum has specific physical and chemical requirements in order 

to grow optimally. The optimum growth temperature of this crop is between 10 and 24 °C, 

while at least 200 mm of water is required for good development (Belay 2006).  Soil must 

be deep, properly aerated and drained, have a pH between 6.1 and 6.5, and must contain 

more than 0.5% organic matter to be suitable for the production of wheat.  
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Fig. 1. Line drawing of Triticum aestivum L. (wheat), showing the most important 

morphological characteristics of the plant (Adapted from Glimn-Lacy & Kaufman 2006; Van 

Wyk and Van Oudtshoorn 2012). 
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Bread wheat is one of the oldest and the second most produced cereal crop in the world 

(FAO 2010). It can adapt to grow under a wide range of climatic conditions, as well as in 

various soil types.  It is thus not surprising that it is cultivated in almost every country in the 

world with the major producers of wheat being Argentina, Australia, Canada, China, the 

European Union countries and the United States of America (Belay 2006). In the 

2009/2010 season approximately 678 million tons of wheat grain was harvested worldwide 

(IGC 2011). 

Wheat is normally grown for its grain, which is ground and used as flour in the baking 

industry (Belay 2006). However, the grain may be cooked and consumed as an alternative 

to other grain foods, such as pearl barley, whilst the straw and bran are used as feed for 

livestock, poultry and prawns. Wheat can also be used for the production of glues, alcohol, 

as well as gluten (Belay 2006). 

2. Food production 

It has been estimated that the world population total will reach 9 billion people by 2050 

(UN 2010). In order to supply enough food to this population, food production must 

increase by 70%. This amounts to an increase in cereal production from 2.1 billion to 3 

billion tons (UN 2010)..To increase crop production agricultural land must expand or 

cropping intensity must increase (Foley et al. 2011). Indications exist that expanding 

agricultural land will not result in a much greater crop production, since most soils that are 

best suited for agriculture is already used for this purpose (Ramankutty et al. 2002). The 

remainder of soils are covered by deserts, mountains, ecological reserves, cities and lands 

that are unsuitable for agriculture (Ellis et al. 2010; Foley et al. 2011). Therefore, recent 

expansions in agricultural land entailed the deforestation of mostly tropical areas (Foley et 

al. 2011; Gibbs et al. 2010). Deforestation, however, results in increased greenhouse 

gasses (Friedlingstein et al. 2010) and the loss of important ecological processes (Foley et 

al. 2007). 

Cropping intensity involves the utilization of irrigation, fertilizers and biocides to increase 

crop yields (Foley et al. 2011), all of which have a negative impact on the environment. For 

instance, irrigation depletes water resources (Gleick et al. 2009; Postel et al. 1996), while 

the excessive use of fertilizers result in the disruption of global nitrogen (N) and 

phosphorous (P) cycles (Smil 2000; Vitousek et al. 1997) and the eutrophication of water 

systems. In addition fertilizers are expensive and sometimes inefficient (FAO, 2005). It is 
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thus not surprising that there has been an increasing interest in alternative methods, e.g. 

biochar additions and plant growth promoting microorganisms, for increasing crop yield 

(Adesemoye et al. 2009). 

3. Biochar 

A promising low-cost alternative to fertilizers is the application of biochar to soil, which 

can improve soil quality and plant growth. Biochar, or Black Charcoal, is a carbon (C) rich 

material produced through the incomplete combustion of plant biomass (Nguyen et al. 

2008). There has been much interest in biochar since the discovery of Terra Preta de índio 

soils in the Brazilian Amazon. It is thought that the high fertility of these soils are due to 

high organic C present in the form of char, created through the ‘slash and burn’ practices 

of pre-Columbian indigenous people (Chan et al. 2007; Warnock et al. 2007). Biochar has 

also been discovered in coniferous forest soils and in prairie soils (Spokas et al. 2009), 

and has since been produced artificially through a process called pyrolysis. 

3.1. Biochar Production  

Pyrolysis is a thermo-chemical process in which plant material is heated in the absence 

of oxygen in order to yield solid (biochar), liquid (bio-oil) and/or gaseous (syngas) products 

(Gaunt and Lehmann 2008; Özcimen and Karaosmanoğlu 2004; Spokas et al. 2009). This 

yield differs with respect to the type of process, namely fast or slow pyrolysis (Mathews 

2008; Spokas et al. 2009). In fast pyrolysis, biomass is exposed to more than 500°C for a 

few seconds, resulting in the production of more bio-oil and syngas than biochar. 

Alternatively, the heat applied during slow pyrolysis volatizes mostly hydrogen (H), oxygen 

(O) and C present within the plant material, resulting in biochar that contains poly-aromatic 

hydrocarbons and functional groups (Mathews 2008; Warnock et al. 2007).   

It has been demonstrated that biochar composition is also influenced by the feedstock 

type (Chan et al. 2007; Spokas et al. 2009). Research has shown that coniferous biochars 

generated at temperatures lower that 350°C can contain a larger amount of available 

nutrients and have a smaller adsorptive capacity for cations (Warnock et al. 2007). In 

contrast, adsorptive capacity can be increased by using plant species with larger diameter 

cells in their stem tissues as feedstock. It is thus imperative that the correct pyrolysis 

conditions, as well as feedstock, are chosen for the production of biochar in order to best 

suit the intended application. 
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3.2. Applications and benefits of biochar 

Biochar has many proposed applications and benefits. One of these is its ability to 

reduce greenhouse gasses, especially nitrous oxide (N2O) and methane (CH4), when 

added to soil (Gaunt and Lehmann 2008). Rondon et al. (2005) demonstrated that for 

soybean plots the production of N2O was reduced and CH4 production repressed when 20 

mg/ha biochar was added to acidic soils in the Eastern Columbian Plains. Similarly, a 10% 

(w/w) biochar amendment to Typic Hapludand soils, collected from a grassland in Japan, 

resulted in 85% reduction in N2O production (Yanai et al. 2007). The mechanism behind 

this reduction in greenhouse gasses is still relatively unknown (Spokas et al. 2009). 

Biochar can also be used to adsorb herbicides as well as chemicals from soil. For 

example, Yang and Sheng (2003) reported that biochar from burnt wheat and rice residues 

were 2500 times more effective in absorbing diuron herbicide than other soil organic 

carbons. Yet, perhaps the most researched benefit of biochar amendments to soil focuses 

on its ability to improve soil vitality, fertility and overall plant growth.   

3.3. Soil amendment with biochar 

It is well-known that biochar amendments to soil not only enhances the fertility and vitality 

of soil, but can also permanently sequester C (Chan et al. 2007; Mathews 2008) in a highly 

stable (recalcitrant) form due to the aromatic hydrocarbons in its structure (Mathews 2008; 

Warnock et al. 2007). It thus has the potential to exist in soil for thousands of years 

(Spokas et al. 2009), with approximately 5000 years as a common estimate (Warnock et 

al. 2007). Biochar has an impact on greenhouse gasses by removing atmospheric C. For 

example, plants fix atmospheric CO2 through photosynthesis and when plants are 

combusted, as result of forest fires, the remaining char ends up in the soil thus effectively 

removing CO2 from the atmosphere.  

As mentioned previously, C sequestration is not the only reason for amending soil with 

biochar. Several studies have shown that the addition of biochar to soil also improves soil 

fertility and thus plant growth (Kimetu et al. 2008; Spokas et al. 2009). It is important to 

note that biochar does not improve plant growth when used as a sole fertilizer. This was 

demonstrated by Chan et al. (2007) who showed that biochar additions to Alfisol did not 

increase radish yield. However, when the authors added N fertilizers and biochar, radish 

diameter increased by 266% for 100 t/ ha biochar additions (Chan et al. 2007).  
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The precise mechanism whereby biochar improves soil fertility and plant growth is still 

relatively unclear (Chan et al. 2007), but some studies have demonstrated that biochar can 

alter soil nutrient availability, by influencing the soil physico-chemical properties (DeLuca 

et al. 2006; Gundale and DeLuca 2006; Matsubara et al. 2002; Tryon 1948). These 

properties include reduction in tensile strength, increase in field capacity, increase in pH 

and exchangeable cations (Chan et al. 2007; Major et al. 2005), which may result in 

enhanced plant performance and elevated tissue nutrient concentrations (Warnock et al. 

2007). However, it is known that biochars produced from different feedstocks can have 

different, and sometimes detrimental, impacts on plant growth (Warnock et al. 2007). For 

instance, if the pH of the soil is neutral and that of the biochar amendment basic, the pH of 

the resulting soil may also be too high and the level of bio-available nutrients will be 

reduced (Havlin et al. 2005). Biochar can be successfully used in low input, as well as high 

input agriculture, but it must be used in conjunction with fertilizers. It is also important that 

its chemical composition, as well as impact on soil microorganisms, is tested before 

adding it to soil. Interestingly, biochar is not the only promising alternative to fertilizers. 

Recent studies have focused on the enhancement of plant growth by symbiotic soil 

microorganisms, particularly rhizobacteria, arbuscular mycorrhizal fungi and soil yeasts 

(El-Tarabily and Sivasithamparam 2006; Gollner et al. 2005; Cloete et al. 2009; Cloete et 

al. 2010).  

4. Soil microorganisms as plant growth promoters 

The effects of rhizobacteria on plant growth are well-known and have been extensively 

studied. They can either affect plant growth directly, through N fixation and production of 

plant growth regulators, or indirectly by producing metabolites such as siderophores and 

antibiotics that may inhibit the activity of plant pathogens (El-Tarabily and 

Sivasithamparam 2006). Similarly, much information is available on the effects of 

mycorrhizal fungi on plant growth (Boby et al. 2008; Gollner et al., 2005; Mohammad et al. 

2004), yet little is known about the effect of biochar on the interactions between these 

fungi and their host plants.  

4.1. Arbuscular mycorrhizal (AM) fungi   

Arbuscular mycorrhizal (AM) fungi are a small group of common soil-borne zygomycetic 

fungi (Schalamuk et al. 2006; Vierheilig et al. 1998) that form symbiotic associations with 

the roots of approximately 80 to 85% of all terrestrial plant species (Abdel-Fattah 2001; 
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Schalamuk et al. 2006). During these symbioses, the growth of the host plant is enhanced 

through increased uptake of mineral nutrients e.g. P and N (George et al. 1995; Gollner et 

al. 2005; Vierheilig et al. 1998), and in return, the mycobiont receives photosynthetic C 

from the plant (Cavagnaro et al. 2003; Gollner et al. 2005; Vierheilig et al. 1998). There are 

two main morphological types of AM fungi, namely the Arum- and Paris-type, which are 

distinguished by the presence or absence of intercellular hyphae in colonized roots (Smith 

and Smith 1997).  

It is well-known that mycorrhizal plants grow better in infertile soils compared to non-

mycorrhizal plants. This is ascribed to the ability of the extra-radical hyphae of AM fungi to 

acquire nutrients, especially P, from beyond the root depletion zone (Boby et al. 2007; 

Boby et al. 2008).  It is important to note that the amount of P transported to the plant 

varies between AM fungi species and thus result in different effects on plant growth 

(Ravnskov and Jakobsen 1995; Vierheilig and Ocampo 1991b).  Nutrient acquisition is not 

the only benefit of mycorrhizal associations. It has been demonstrated that AM fungi may 

improve the resistance of the host plant to pathogens, as well as its tolerance to drought, 

salinity and transplant shock (Boby et al. 2008). The level of plant response to AM fungi 

colonization depends on the AM species and the degree of infection.  

The main factors that influence the degree of root colonization by AM fungi include plant 

age, climate, P level and finally infectivity of mycorrhizal propagules (spores, colonised 

root fragments and hyphae). Plant age is an important factor as root colonization is 

dependent on root growth rates, as well as the initial infection rate and growth rate of the 

mycobiont in the roots. These three factors are also influenced by the climate (Hetrick and 

Bloom 1983). This was demonstrated by Daniels-Hetrick et al. (1984), who showed that 

winter wheat was less colonized by mycorrhizal fungi when plants were cultivated at 10°C 

in comparison to those that were grown at warmer temperatures. Similarly, Mohammad et 

al. (1998) showed that an increase in soil temperature resulted in increased root 

colonization of winter wheat by AM fungi. It is well-known that the extent to which plants 

are colonized is immensely affected by the concentration of soluble P in the soil. 

Numerous studies have demonstrated that when the soluble P level increases, the 

mycorrhizal colonization declines remarkably and vice versa (Baon et al. 1992; Boby et al. 

2008; Kahiluoto et al. 2000; Khan 1975; Mohammad et al. 2004; Thomson et al. 1991).  

Finally, colonization by AM fungi is affected by the concentration of the propagules in the 

soil. The failure of AM fungi to form mycorrhizal associations with wheat plants was shown 

Stellenbosch University  http://scholar.sun.ac.za



 

9 
 

to result from low inoculum concentrations (Daniels-Hetrick et al. 1984; Vierheilig and 

Ocampo 1991a). Furthermore, Schalamuk et al. (2006) showed that tilling decreased AM 

spore density in agricultural soil, resulting in reduced crop colonization. 

Recently, it has been shown that the addition of biochar to soil can affect the symbiosis 

between mycorrhizal fungi and plants. In most cases biochar additions resulted in an 

increased colonization, but in a few studies biochar was found to have a negative impact 

on mycorrhizal colonization (Warnock et al. 2007). This negative effect seems to be largely 

due to changes in nutrient levels. Gaur and Adholeya (2002) demonstrated that biochar 

limited the amount of P uptake by plants, while Wallstedt et al. (2002) established that both 

N and organic C decreased after biochar was added to soil. These negative effects can be 

prominent if the C/N ratio is high and a portion of biochar is decomposable. This will lead 

to N-immobilization that will ultimately have a negative impact on plant growth (Warnock et 

al. 2007). The mechanism whereby biochar influences mycorrhizal fungi, however, is still 

unclear, but Warnock et al. (2007) proposed four possible mechanisms. 

4.1.1. Possible mechanisms whereby biochar may affect mycorrhizal fungi 

The first and according to Warnock et al. (2007) the most likely mechanism of influence, 

is that biochar may alter nutrient availability and/or the soil physico-chemical parameters, 

ultimately impacting mycorrhizal colonization. As mentioned previously, biochar modifies 

important physico-chemical properties of soil that might result in a nutrient shift. This could 

affect mycorrhizal fungi either positively or negatively, as a change in the nutrient balance 

can alter the activity of mycorrhizal fungi (Miller et al. 2002).  

Secondly, biochar additions may result in changes that might be beneficial or detrimental 

to mycorrhization helper bacteria (MHB) and phosphate solubilising bacteria (PSB). 

Mycorrhization helper bacteria produce extracellular flavonoids and furans that facilitate 

growth of mycorrhizal fungi, while PSB, such as Pseudomonas aeruginosa, can solubilise 

plant nutrients, especially phosphate. Biochar itself, or the nutrient that it has absorbed, 

might serve as a nutrient source for these bacteria. This nutrient source can result in 

increased proliferation of these bacteria, which would increase the growth and P uptake of 

mycorrhizal fungi (Warnock et al. 2007). 

 The third mechanism proposed by Warnock et al. (2007) is that biochar may change the 

signalling between the host plant and mycorrhizal fungi that may lead to altered root 
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colonization. Angelini et al. (2003) demonstrated that pH influences certain groups of 

microorganisms as either a stimulant or inhibitor. However, biochar amendment to soil can 

alter the pH, which may stimulate or inhibit microorganisms. If biochar with superior 

absorptive capacity is used, it may absorb the signalling compounds and cause a 

signalling interference. These absorbed signalling molecules might not have an immediate 

impact, but may be desorbed later and will be able to stimulate mycorrhizal colonization 

even further. This can negatively affect colonization, for if the signalling molecules are 

absorbed it will result in decreased signalling molecules reaching the mycorrhizal fungi 

(Warnock et al. 2007).  

Finally, biochar might serve as a refuge for MHB and mycorrhizal fungi from predators. If 

hyphae and bacteria colonize biochar, they may be protected from soil predators, 

especially larger organisms such as mites and protists. For example, if a biochar with a 

small pore size (> 16 μm) is used and average bacteria (1 – 4 μm) and fungi (2 – 64 μm) 

colonize these particles, protists (8 – 100 μm) and micro-arthropods (100 μm – 2 mm) may 

not fit into some of the pores, thus protecting the bacteria and mycorrhizal fungi from 

predation (Warnock et al. 2007). 

4.1.2. AM fungi and wheat 

Interestingly, despite wheat being one of the most important crops in the world, relatively 

few studies have focused on the effect of AM root colonization on wheat performance. This 

is mainly due to the view that AM fungi are incapable of extensively colonizing this plant’s 

finely branched root system and dense root hairs. The majority of researchers have found 

that only 10 to 30% of the total root length is colonized by AM fungi (Daniels-Hetrick et al. 

1984; Mader et al. 2000; Trent et al. 1989; Vierheilig and Ocampo 1991a). In contrast, a 

few others have showed that up to 80% of the total root length of wheat can be colonized 

when plants are grown under controlled conditions or in field trials (Dekkers and Van der 

Werff 2001; Khan 1975). Recently, it was demonstrated that this mycorrhizal colonization 

and growth of wheat can be enhanced by biochar amendments to soil during pot trials 

(Solaiman et al. 2010b) and field trials (Blackwell et al. 2007; Solaiman et al. 2010a). It 

must be noted however, that wheat can form symbioses with many species of AM fungi, 

but often no improvement is seen in its growth (Jensen and Jakobsen 1980; Ryan et al. 

2002; Vierheilig and Ocampo 1991b). It has been suggested that plant growth might be 

reduced by these mycobionts due to C drain, especially during the early development of 

wheat (Graham and Abbott 2000).  Even though no positive, and sometimes a negative, 
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growth response was observed for wheat, the level of P acquisition was still increased by 

fungal colonization (Graham and Abbott 2000; Zhu et al. 2001). These findings were 

supported by numerous studies that revealed that mycorrhizal wheat plants absorbed 

more 32P than non-mycorrhizal plants even though no positive growth response could be 

observed (Hetrick et al. 1996; Ravnskov and Jakobsen 1995; Schweiger and Jakobsen 

1999). However, wheat has shown positive responses when it was cultivated in soil 

containing a moderate P level (Al-Karaki and Al-Omoush 2002; Thompson 1987; Yao et al. 

2001).  

Although the positive impact on wheat performance could not always be demonstrated, it 

is evident that AM fungi play an important role in the ecosystem. Nevertheless, they are 

not the only fungi known to form associations with plants. Recently, studies have 

demonstrated the ability of soil yeasts such as Candida, Rhodotorula, Sporobolomyces, 

Trichosporon, Williopsis and Yarrowia to also promote plant growth (El-Tarabily and 

Sivasithamparan 2006; Medina et al. 2004; Nassar et al. 2005).  

4.2. Soil yeasts 

Soil yeasts are unicellular fungi that not only occur in many different soil types (Botha 

2006; El-Tarabily and Sivasithamparam 2006), but are also present in the rhizosphere of 

plants. It is well-known that plants exude a variety of compounds from their roots. 

Carbohydrates within these exudates serve as the main C source in the rhizosphere. This 

can sustain growth of diverse microbial populations, including yeasts belonging to the 

genera Cryptococcus, Debaryomyces, Lipomyces and Schizoblastosporion (Botha 2006; 

Cloete et al. 2009; El-Tarabily and Sivasithamparam 2006). As the distance from the root 

surface increases, the abundance and diversity of yeasts decreases. This is ascribed to 

the slow diffusion rate of root exudates and the rapid decomposition of nutrients by the soil 

microbial community (Sauer et al. 2006).  

It has been demonstrated that some soil yeast species can promote plant growth, but the 

mechanisms whereby these yeast genera promote growth differ. Yarrowia lipolytica, for 

example, increases the bio-available P by solubilising rock phosphate, while Williopsis 

saturnus produces indole-3-acetic acid (IAA) and indole-3-pyruvic acid (IPYA) that serve 

as precursors during auxin production (El-Tarabily and Sivasithamparam 2006). Other 

genera produce plant growth regulators such as IAA, gibberellins and polyamines, whilst 

others can alter the nutritional physiology of plants. Recently, it was demonstrated that a 
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polyamine producing strain of Cryptococcus laurentii was able to promote the growth of 

the sclerophyllous shrub Agathosma betulina (Berg.) Pillans (buchu) (Cloete et al. 2009). It 

was also demonstrated that this yeast altered the nutritional physiology of buchu thereby 

increasing the P and iron (Fe) content in the plants (Cloete et al. 2010). It is important to 

integrate the growth and nutritional physiology in plants when investigating the effect of 

yeasts on plant growth, since growth and more importantly yield are directly linked to 

nutrient content, uptake and use efficiency. Yet, very little is known about the impact of soil 

yeasts on plant nutrition.  

Despite the importance of wheat, up to date only one study demonstrated the ability of a 

soil yeast, i.e. Sporobolomyces roseus, to improve the growth of this plant (Perondi et al. 

1996). It is therefore imperative to investigate the effect of other soil yeasts on wheat 

growth and nutritional physiology in order to try to increase productivity without the use of 

fertilizers.  

5. Conclusion 

Fertilizers have played an important role in the cultivation of wheat. However, the 

increasing cost and ineffectiveness of fertilizers have resulted in the evaluation of 

alternative methods for improving crop yield. These alternatives include addition of biochar 

to soil and exploring the potential of symbiotic relationships between plants and 

microorganisms. A few studies have demonstrated the ability of biochar to improve wheat 

growth, but little is known about the effect of emending soil with biochar on wheat nutrition 

in the presence of mycorrhizal fungi. 

Like AM fungi, soil yeasts have been shown to improve plant growth. Yet, very little is 

known about the way in which these microorganisms affect the growth and nutritional 

physiology of wheat. It is therefore important that these interactions are studied before 

biochar and/or soil yeasts can be used to reduce the quantities of inorganic fertilizers 

used. 

6. Research Objectives 

With the previous literature in mind, this first aim of the study was to establish the effect 

of different biochar concentration amendments to sandy soil on mycorrhizal colonization 

and growth of wheat, with regards to plant biomass and nutrient levels. The second aim 

was to determine whether a yeast species isolated from the rhizosphere of another 
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monocot belonging to Poaceae, could affect the germination, growth and nutritional 

physiology of wheat. Lastly, we sought to evaluate whether this yeast could improve wheat 

growth and nutrition in sandy soil, containing natural microbial consortia, which was 

amended with biochar.     
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1. Introduction 

Triticum aestivum L. (wheat) is one of the oldest and the second most produced cereal in 

the world (FAO 2010) and can adapt to grow in a wide range of climatic conditions, as well as 

various soil types. It is thus not surprising that it is cultivated in almost every country, including 

South Africa (Belay 2006). However, it is known that present production of this cereal is too 

low to meet the needs of the world’s population in the near future (FAO 2010, UN 2010).  

Therefore, to supply enough food to 9 billion people by 2050, food production must increase 

by 70% (UN 2010). This amounts to an increase in cereal production from 2.1 billion to 3 

billion tons.   Expansion of agricultural land, however, will contribute little to increasing crop 

production, since all over the globe soils best suited for agriculture are already in use. It thus 

seems likely that most of the increase in food production will be due to increased cropping 

intensity. One strategy employed in increasing yield is the application of fertilizers to soils, 

especially underperforming soils (Foley et al. 2011). Fertilizers, however, are expensive, 

sometimes inefficient and have a negative impact on the environment, thus necessitating the 

need for alternative methods to improve crop growth and yield (Adesemoye et al. 2009).  

One such an alternative is the emendation of soil with biochar (Chan et al 2007). Biochar is 

a carbon rich material that is produced through slow pyrolysis of plant biomass (Lehmann et 

al. 2003; Chan et al. 2007; Chan et al. 2008; Glaser 2007; Nguyen et al. 2008; Mathews 

2008). Due to its highly porous nature, biochar may enhance nutrient and water retention, as 

well as serve as a microbial habitat (van Zwieten et al. 2010a; Joseph et al. 2010; Kookana et 

al. 2011), impacting on microbial N2-fixation (Mathews 2008) and mycorrhizal root 

colonization (Spokas et al. 2009).  

Arbuscular mycorrhizal fungi (AM fungi) is a small group of soil-borne zygomycetes 

(Vierheilig et al. 1998; Schalamuk et al. 2006) that form symbiotic associations with the roots 

of up to 85% of all terrestrial plant species (Abdel-Fattah 2001; Schalamuk et al. 2006). It is 

well-known that during these symbioses the fungus may increase uptake of nutrients such as 

phosphorus (P), nitrogen (N), and potassium (K) by its host plant. In turn, the plant provides 

the fungus with photosynthetic carbon (Jakobsen 1995; Gollner et al. 2005). Interestingly, it 

was demonstrated that addition of biochar to soil can affect these symbioses. 
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A few studies have demonstrated that application of biochar to soil had a positive effect on 

mycorrhizal colonization of wheat in both pot trials (Solaiman et al. 2010b), as well as field 

trials (Blackwell et al. 2007; Blackwell et al. 2010; Solaiman et al. 2010a). In most of these 

cases however, it was found that although biochar increased the mycorrhizal colonization, no 

positive effect was seen on wheat growth (Blackwell et al. 2007; Solaiman et al. 2010b). Yet, 

data on the physiology of wheat in the presence of biochar is inconclusive, since in most of 

these studies only one or two factors were tested, e.g. N uptake (Van Zwieten et al. 2010a; 

Van Zwieten et al. 2010b), N uptake and N content (Prendergast-Miller et al. 2011), or P and 

N uptake (Blackwell et al. 2010). However, to fully understand the effect of biochar on wheat 

growth it is important to assess the nutritional physiology of all three major macro-elements in 

plants, i.e. N, P and K. These nutrients are pivotal elements in plant nutrition and any 

deficiencies thereof may have detrimental effects on growth, as well as yield (Bolland 2001; 

Edwards 2001; Mason 2001). 

Since biochar is known for its nutrient retention (Mathews 2008; Warnock et al. 2007), and 

known to affect on mycorrhizal colonization under different nutrient conditions  (Warnock et al. 

2007), it is hypothesized that increased biochar amendments to low nutrient soil may lead to 

an increased effect on mycorrhizal colonization and the nutritional physiology of N, P and K in 

wheat. With the above as background we aimed to study the effect of different concentrations 

of biochar in sandy low nutrient soil on the growth, mycorrhizal colonization and nutritional 

physiology of N, P and K in T. aestivum. 

2. Materials and methods 
2.1. Biochar and soil analyses 

The biochar used in this study was produced from pinewood sawmill waste using slow 

pyrolysis at approximately 450°C (Allbrick, Thembalethu, South Africa). Before chemical 

analyses, the biochar was crushed and milled to an average particle size of 2 mm. Excess 

moisture was removed by drying in an oven at 40°C for 12 h and the biochar was then ball-

milled to less than 1 mm diameter particle size. Carbon and N present in the biochar was 

determined by using the dry combustion method (EuroVector CNH Analyzer). The pH of the 

biochar was measured in a 1:20 biochar: water ratio, as well as in 1 M KCl as described by 

White (1997). The cation exchange capacity (CEC) and the plant-available nutrients of the 
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biochar were determined according to the methods described by Rhoades (1982), and 

Soltanpour and Workman (1979), respectively. These methods were selected due to the 

alkaline nature of the biochar. Proximate analysis of the biochar to determine the ash, fixed C 

and volatile content was performed using thermogravimetric analysis (Perkin Elmer Pyris TGA 

7). The sample was heated from 25°C to 600°C at 10°C/min and then from 600°C to 900°C at 

20°C/min under nitrogen gas (N2). After 7 minutes, oxygen at a 15 ml/min flow rate was 

introduced for the combustion stage. All of these analyses were performed in duplicate. The 

sandy soil used in this study was collected from an unused field (33° 53’ 43.08’’ S, 18° 43’ 

24.24’’ E) near Brackenfell in Cape Town (Western Cape, South Africa). This soil was 

classified (World Reference Base) as a Haplic Stagnosol (Albic), and only the thick E horizon 

was sampled at a depth of 10 – 100 cm. The sampled soil was texturally classified as pure 

sand (98% sand) with a medium grade. The C and N content, pH, as well as CEC, of the soil 

were analyzed according to the methods described by Vreulink et al. (2007). In addition, the 

plant-available nutrients in the soil were determined by the AB-DPTA method of Soltanpour 

and Workman (1979). 

2.2. Pot preparation and wheat cultivation 

To establish which biochar application rate had the best effect on both mycorrhizal 

colonization and plant growth, the soil and biochar were mixed to create a series of soil 

mixtures containing 0% (control), 1%, 2.5%, 5% and 10% (w/w) biochar. The pH of these 

mixtures was measured in a 1:20 biochar: water, as well as 1M KCl ratio (White, 1997). Of 

these mixtures 800 g was added to pre-cleaned 13 cm diameter plastic pots (12 pots per 

concentration) and each pot was subsequently saturated to field capacity with modified Long 

Ashton nutrient solution (Cloete et al. 2009). Wheat seeds (cultivar SST 047) (n = 30) were 

surface sterilized by submerging them in 70% ethanol for one minute, followed by 40 seconds 

in 1% (v/v) sodium hypochlorite solution. The seeds were then rinsed in sterile distilled water, 

planted on quarter strength MS agar (Slater et al. 2008) and allowed to germinate for two 

days at room temperature, in the dark.  After germination, seedlings were planted in the pots 

and arranged in a well ventilated greenhouse with a 12 h photoperiod of 1000-1100 μmol m2/s 

photosynthetic photon flux density. The average day/night temperatures and relative humidity 

were 23/15°C and 50/80%, respectively. To simulate low nutrient conditions, plants received 

only sterile distilled water during the two month growth period.  
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2.3. Harvesting, colonization by mycorrhizal fungi and nutrient analyses 

To determine the colonization of wheat roots by mycorrhizal fungi, the wheat plants were 

harvested and the roots were washed in sterile physiological saline solution (PSS). A sub-

sample of the harvested roots was taken from each plant and the wet weight of these sub-

samples was determined. Mycorrhizal fungi present on and in the roots were visualized by 

staining the sub-samples with chlorozol black E (CBE) according to the method of Brundrett 

(1994), immediately after harvesting. The roots were then cut into 1 cm pieces and arranged 

on a microscope slide in a such a manner that the mycorrhizal colonization could be 

determined using the grid-line intersect method (Brundrett 1994). The fresh weight of the 

remainder of the plants was recorded and the plant material was then dried in an oven for one 

week at 80°C. 

The effect of biochar and mycorrhizal fungi on the growth and physiology of wheat were 

determined by recording the dry weight of the wheat plants. The dried material was 

subsequently analyzed for its N, P and K content, according to methods described by Vreulink 

et al. (2007). The values obtained, together with the dry weights, were used to calculate the 

nutrient uptake rate and growth efficiency according to the formulae proposed by Mortimer et 

al. (2005). 

2.4. Statistical analyses 

Significant differences were analysed by using ANOVA and differences between treatment 

means were separated using a post hoc Fishers least significant difference (LSD) test, using 

the program Statistica version 10 (Statsoft, Tulsa, OK, USA). In addition, correlation matrixes 

were created using the same program. 

3. Results 
3.1. Biochar and soil analyses 

The chemical properties of both the biochar and the sandy nature reserve soil were 

determined before it was used in the experimentation. The most important results are 

provided in Table 1. The sandy soil was acidic (pH 5.14), deficient in K (critical value is 180 

mg kg-1) and P (critical value is 15 mg kg-1), exceptionally low in C and N, and had a low 
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CEC (Table 1). The biochar was alkaline (pH 9.36) and possessed a relatively high CEC. 

Proximate analysis of the biochar revealed that it contained 2.7% ash, 78.8 % fixed C and 

18.5% volatile matter. When the pH of the different biochar mixtures were measured in water 

it was found that the pH increased from 5.45 (0% biochar amendment) to 7.58 (10% biochar 

amendment) and in 1M KCl it increased from 4.46 (0% biochar amendment) to 6.62 (10% 

biochar amendment). 

Table 1. Chemical properties of pinewood sawmill waste biochar and the soil collected from a nature 

reserve in the Cape Flats region. All analyses were preformed according to Vreulink et al., (2007).  

Analysis type Value for biochar Value for sand 

pH (H2O) 9.36   5.14 

pH (1M KCl) 8.63 4.30 

Plant available P (mg/kg) 45.94 3.93 

Plant available K (mg/kg) 878.30 10.88 

Cation exchange capacity (cmolc /kg) 118.30    1.96  

Total C (%) 76.99   0.16 

Total N (%) 0.50 0.03 

C:N ratio 154:1 5:1 

 

3.2. Colonization by mycorrhizal fungi and wheat growth 

 Mycorrhizal colonization of T. aestivum roots was determined by dividing the mycorrhizal 

counts by the total intersections studied and the obtained value was expressed as the 

percentage colonization (Fig. 1). It was found that wheat roots were more colonized by 

mycorrhizal fungi when the plants were cultivated in soil amended with biochar compared to 

those cultivated in soil without biochar (p < 0.05).  
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Fig. 1 Comparison of mycorrhizal colonization (%) of wheat roots, P concentration in plants (mmol/g) 

and P uptake rate (mmol P/g root/day) by wheat when grown in soil amended with different biochar 

concentrations [0%, 1%, 2.5%, 5% and 10% (w/w) biochar] under greenhouse conditions. Bars 

represent the mean obtained for six replicates, while the standard error values are displayed on top of 

each bar. Different letters indicate significant differences among biochar treatments, separated by a 

Fishers LSD test (p < 0.05) (Letters a & b indicate differences in mycorrhizal colonization; c & d 

indicate differences in P concentration; e & f indicate differences in P uptake rate). 

 Wheat growth was determined by measuring total plant dry weight and it was found that a 

10% (w/w) biochar amendment resulted in an increased dry weight (p = 0.000; Fig. 2). 
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Fig. 2. Total dry weight of wheat plants grown in soil amended with different biochar concentrations 

(w/w) under greenhouse conditions. Each bar represents the mean obtained for six replicates and the 

standard error values are displayed on top of each bar. Different letters indicate significant differences 

among biochar treatments, separated by a Fishers LSD test (p < 0.05). 

3.3. Nutrient effects 

When P concentration and uptake rate in wheat were compared to the mycorrhizal 

colonization (Fig. 1), it was found that both P concentration and uptake rate increased as the 

colonization increased, but no significant difference was found.  In addition, the P 

concentration and uptake rate of P was lower for plants cultivated in soil amended with 10% 

(w/w) biochar compared to those cultivated in soil amended with 5% (w/w) biochar (p = 

0.000). Comparison of N uptake rate and N growth efficiency revealed that N uptake was 

lower in the presence of biochar amendments (p = 0.000), while N was utilized more 

efficiently during growth (Fig. 3).  
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Fig. 3. Comparison of N uptake rate (mmol N/g root/day) and N growth efficiency (g/mmol N/day) for 

wheat plants cultivated in soil amended with different biochar concentrations (w/w) under greenhouse 

conditions. Bars represent the mean obtained for six replicates and the standard error values are 

displayed on top of each bar. Different letters indicate significant differences among biochar 

treatments, separated by a Fishers LSD test (p < 0.05) (Letters a & b indicate differences in N uptake 

rate; c, d, e, f & g indicate differences in N growth efficiency). 

In contrast to data obtained for N, there was no difference in the uptake rate of K for the 

different treatments. Yet, this uptake rate seemed to be negatively correlated to the use 

efficiency of K during growth (Fig. 4; r = - 0.731, p < 0.050). The concentrations of K in wheat 

corresponded to the high uptake rate of K, while K was utilized less efficiently during growth. 
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Fig. 4 Comparison of K uptake rate (mmol K/g root/day), K growth efficiency (g/mmol K/day) and K 

concentration in the total plant (mmol/g) for wheat plants cultivated in soil amended with different 

biochar concentrations (w/w) under greenhouse conditions. Each bar represents the mean obtained 

for six replicates, while the standard error values are displayed on top of each bar. Different letters 

indicate significant differences among biochar treatments, separated by a Fishers LSD test (p < 0.05) 

(Letters a indicates differences in K uptake rate; b, c & d indicate differences in K growth efficiency; e 

& f indicate differences in K concentration). 

4. Discussion 

The integration of growth and nutritional physiology in plants are important, since growth and 

yield are directly linked to nutrient content, nutrient uptake and nutrient use efficiency. Yet, 

knowledge on the effect of biochar on these processes in wheat, especially in the presence of 

mycorrhizal fungi, is limited. We therefore sought to evaluate the effect of different biochar 

amendment concentrations on wheat growth in the presence of mycorrhizal fungi, with 

regards to N, P and K.  
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4.1. Colonization by AM fungi, wheat growth and nutrient effects 

After wheat plants were cultivated in soil amended with different biochar concentrations, it 

was found that these additions had a positive effect on mycorrhizal colonization (Fig. 1). This 

agreed with results of some previous studies that demonstrated that biochar application 

positively affected mycorrhizal colonization (Blackwell et al. 2007; Blackwell et al. 2010; 

Solaiman et al. 2010a). Although the mechanism by which biochar improves colonization is 

still unclear, it is generally accepted that biochar can alter the soil physico-chemical 

parameters and/or nutrient availability (Warnock et al. 2007). In this regard, it has been 

suggested that biochar may decrease bio-available nutrients in soil (Gaur and Adholeya 

2000), which may force plants to rely more on nutrient acquisition by mycorrhizal fungi, and 

thereby resulting in greater root colonization.  

It was found that the total dry weight of wheat was increased at a 10% (w/w) biochar 

amendment (Fig. 2). This indicates that biochar might have had a positive effect on wheat 

growth, possibly by altering the physiology of the plants. Addition of the alkaline biochar to the 

acidic soil resulted in an increased pH from 5.45 to 7.58 in water. The increased pH most 

likely resulted in more bio-available P (Bolland 2001). It is apparent, however, that at 10% 

(w/w) biochar amendment, there was a decrease in the uptake rate of P and mycorrhizal 

colonization. This can be ascribed to the pH rising above 7 in the 10% biochar amendment 

(pH 7.58), since P is less available in basic soils (Havlin et al. 2005).  

When N uptake rate and use efficiency were compared for the biochar concentrations it was 

found that at higher amendment concentrations the N uptake rate decreased (Fig. 3). This 

decrease may be ascribed to immobilization of N by the biochar used in our study (Table 1), 

since such reactions are typical for high C: N ratio biochars (Warnock et al. 2007). As plant 

available N increases, the N use efficiency decreases and N uptake rate increases (IFA 

2007). In addition, we found that there was an inverse relationship between the N uptake rate 

and N use efficiency (Fig. 3). This ability to utilize N more efficiently is desirable; since it 

means that less fertilizer would be needed, thus reducing farming cost. 

It was found that there was no difference in the uptake rate of K when wheat was cultivated 

in soil or in soil amended with biochar (Fig. 4). In addition, plants cultivated in soil amended 

with biochar utilized K less efficiently during growth. The high potassium concentration in 

Stellenbosch University  http://scholar.sun.ac.za



 

33 
 

plants cultivated in soil amended with biochar, was most likely due to the high concentration 

of plant available K present in the biochar (Table 1). As mentioned previously, K plays various 

roles in plants, one of which is the maintenance of turgor (Mengel and Arneke 1982). Some 

studies have demonstrated that K facilitates leaf expansion, and higher levels of K in plants 

resulted in increased photosynthesis (Pervez et al. 2006). This increased leaf expansion was 

most likely the main driver for increased growth. 

5. Conclusion 

In this study we found that the biochar amendments seemed to improve wheat growth and 

increase mycorrhizal colonization of roots. However, it seems that the improved growth was 

not solely due to increased mycorrhizal colonization and uptake of P, but rather due to 

elevated concentrations of K in the plants. It is tempting to speculate that K was obtained from 

the biochar and that high levels of this nutrient in the plants may have facilitated shoot growth. 

It thus seems feasible to incorporate this biochar into soil management practices in order to 

improve wheat growth and potentially yield when cultivated in low nutrient soils. It is likely that 

the effect of biochar may differ for different wheat cultivars and therefore future studies must 

elucidate the effect of biochar on different wheat cultivars. In addition, future studies must 

focus on the amount of fertilizer and biochar needed in order to produce the maximum wheat 

yield, without negatively affecting the plant’s physiology.  
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1. Introduction 

Triticum aestivum L. (wheat) is one of the oldest and the second most produced cereal crop 

in the world (FAO 2010). At present, wheat production is too low to meet food demands of the 

world’s population in the future (FAO 2010; UN 2010). To supply enough food to 9 billion 

people by 2050, food production must increase by 70% (UN, 2010). With current agricultural 

practices, however, this increase cannot be met. Therefore, agricultural land must expand or 

crop intensity must be increased. Indications exist that expansion of agricultural land will have 

little contribution to yield increases (Foley et al. 2011) and thus cropping intensity, such as 

fertilizer application, must increase. Yet, fertilizers have a negative impact on the 

environment, such as the eutrophication of water bodies and over-all pollution (Matson et al. 

1997; Vorosmarty et al. 2000). These factors together with the increasing cost of fertilizers 

resulted in the evaluation of alternative methods to improve crop yield (Adesemoye et al. 

2009). These methods include biochar amendments to soil (Warnock et al. 2007) and the use 

of plant growth promoting microorganisms, e.g. mycorrhizal fungi (Gollner et al. 2005) and soil 

yeasts. In Chapter 2, it was demonstrated that biochar application to sandy soil positively 

affected wheat growth and mycorrhizal colonization.  

Mycorrhizal fungi are not the only soil microorganisms known to form associations with 

plants and promote plant growth. Numerous studies have demonstrated the ability of various 

soil yeast species to promote growth of crop plants (Chapter 2). In one of these studies, it was 

demonstrated that the germination of cabbage seeds were stimulated by Torulopsis, now 

known as Candida (Bab’eva and Belyanin 1966). Another study found that a species of 

Rhodotorula improved tomato (Solanum lycopersicum L.) growth and yield (Abd El-Hafez and 

Shehata 2001). In addition, two studies conducted on maize (Zea mays L.) demonstrated that 

soil yeasts, i.e. Candida glabrata, Candida maltosa, Candida slooffii, Rhodotorula rubra and 

Trichosporon cutaneum, (El-Mehalawy et al. 2004), as well as the maize root endophyte 

Williopsis saturnus (Nassar et al. 2005), improved growth of this crop. Despite the importance 

of wheat, only one study has been conducted to investigate the ability of yeasts to improve 

the growth of this crop (Perondi et al. 1996). It was found that Sporobolomyces roseus 

improved wheat growth by 16-30%.  
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All of the above-mentioned studies lack experimentation to determine the effect of yeasts on 

the nutritional physiology of plants. As mentioned in Chapter 2, it is important to incorporate 

nutritional physiology in plant growth promoting studies. The importance of nutritional 

physiology was demonstrated in a study by Cloete et al. (2010). They showed that an isolate 

of the soil yeast Cryptococcus laurentii, originating from the rhizosphere of a wild stand of 

Agathosma betulina (Berg.) Pillans (buchu) in pristine Fynbos, was not only able to improve 

growth of this plant, but it also altered its nutritional physiology.  

With the above as background, the first aim of this study was to isolate a potential plant 

growth promoting yeast from the rhizosphere of another monocot belonging to the same 

family as wheat, growing in a pristine grassland. Secondly, the ability of one of the isolated 

yeasts, i.e. a strain of Cryptococcus zeae, to improve wheat germination was tested and 

compared to germination results of two other soil yeasts, Cryptococcus podzolicus and 

Rhodotorula mucilaginosa. Lastly, the effect of these three yeasts on the growth and 

nutritional physiology of wheat was determined and compared.  

2. Materials and Methods 
2.1.  Isolation of yeasts 

Four grass plants belonging to the family Poaceae, i.e. Themeda triandra Forssk. (red 

grass) were collected from a pristine grassland next to the N4 highway near Malelane, 

Mpumulanga, South Africa, by uprooting each plant and transporting it to the laboratory, while 

keeping it at ca. 15°C. The roots were subsequently placed in tubes containing sterile 

physiological saline solution (PSS) and vortexed for 10 min to dislodge any yeast cells. The 

resulting suspensions were used to create dilution plates using thymine-mineral-vitamin 

(TMV) agar (Cornelissen et al. 2003). After five days of incubation at 26°C, 31 yeast colonies 

were randomly selected from the TMV plates using a modification of the Harrison’s disc 

method (Harrigan and McCance 1967). The yeast isolates were purified and tested for the 

inability to ferment glucose, the ability to produce starch and assimilate inositol, according to 

the methods described by Kurtzman & Fell (2000). Isolates that showed these typical 

cryptococcal characteristics were then identified using molecular methods. This was 

accomplished by extracting the genomic DNA and amplifying the D1/D2 region of the 

ribosomal RNA (rRNA) gene, according to the methods described by Vreulink et al. (2010). 

Stellenbosch University  http://scholar.sun.ac.za



 

42 
 

Sequences were obtained using an ABI Prism (model 3100) genetic sequencer (Applied 

Biosystems, Johannesburg, South Africa). The sequences were compared to known 

sequences on GenBank using BLAST (http://www.ncbi.nlm.nih.gov/blast). 

2.2. Effect on germination 

Of the eight isolates that were obtained from red grass, the majority was found to be C. 

zeae. Therefore, isolate C. zeae CAB 1119 together with C. podzolicus CAB 978, isolated 

from Fynbos soil, and R. mucilaginosa CAB 826, isolated from pristine Fynbos soil at 

Tygerberg Nature Reserve, Cape Town, South Africa (Vreulink et al., 2010), were tested for 

their ability to improve T. aestivum L. (wheat) germination. This was accomplished by 

cultivating each of the three yeasts in 100 ml conical flasks containing 25 ml yeast malt 

extract (YM) broth on a rotary shaker (100 rpm) at 26°C for two days. The cells were 

harvested by centrifugation (38000 xg; 5 min) and washed twice with sterile PSS. A 

haemacytometer (Superior, Germany) was then used to determine the concentration of cells 

in the final suspensions, of which the volume was adjusted with sterile PSS to give a final 

concentration of log 9 yeast cells/ml.  

A dilution series was subsequently prepared from the three yeast suspensions, resulting in 

concentrations ranging from log 6 to log 9 yeast cells/ml. Four controls were included in this 

experiment, namely seeds coated with autoclaved suspensions of the three yeasts and seeds 

that received no yeast inoculum. Wheat (cultivar SST 047) seeds were surface sterilized by 

submerging them in 70% ethanol for 1 min, followed by 40 s in 1% (v/v) sodium hypochlorite 

solution, and then rinsed in sterile distilled water. Yeast coated seeds were prepared by 

dipping surface sterilized wheat seeds (n = 175) into the seven (four control and three yeast 

inoculums) different inoculums (25 seeds per inoculum, representing five repetitions of five 

seeds each). The seeds were then removed from the inoculums and allowed to dry in sterile 

Petri-dishes for 20 min at 22°C. After drying, the seeds were planted in Petri-dishes (five 

seeds per Petri-dish) containing quarter-strength Murashige and Skoog (MS) agar (Slater et 

al. 2008) and allowed to germinate at room temperature in the dark for two days. Each day, 

the seedlings were inspected for contamination by filamentous fungi and since no statistical 

difference could be obtained when the percentage germination was analyzed, the number of 

roots produced was used instead. 
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2.3. Pot preparation and wheat growth 

Wheat growth in sand was studied under hygienic1 conditions using pot cultures arranged in 

a well-ventilated greenhouse with a 12 h photoperiod of 1000–1100 µmol m2/s photosynthetic 

photon flux density. The average day/night temperatures and relative humidity were 23/15 °C 

and 50/80%, respectively. Silica sand (grain diameter ranging from 250 to 355 μm) was 

obtained from Consol Glass, Western Cape, South Africa. The sand, as well as plastic pots 

(13 cm in diameter), tubes, rubber stoppers and drainage chips, were acid washed with 0.1 M 

HCl, rinsed three times with distilled water and dried. The bottom of the pots (n = 144) were 

then covered with drainage chips and they were filled with 800 g of the silica sand. Pots were 

individually sealed in plastic bags and gamma radiated [minimum absorbed dose, 25 kGy 

(1kGy = 0.1Mrad) per kilogram].  

From the germination data (Figs. 1 and 2) it was determined that the best inoculation 

concentration for C. zeae CAB 1119  and C. podzolicus CAB 978 were log 9 cells/ml and log 

8 cells/ml for R. mucilaginosa CAB 826. To obtain these desired concentrations, the three 

yeasts were cultivated, harvested and the volume of the suspensions was adjusted as 

described in section 2.2. The controls that were included in this experiment consisted of 

autoclaved cell suspensions of the three yeasts. Wheat (cultivar SST 047) seeds (n = 1080, 

180 seeds per suspension) were surface sterilized as described in section 2.2, and 180 of 

these seeds was dipped in either autoclaved or viable suspensions of C. zeae, C. podzolicus 

and R. mucilaginosa. The seeds were allowed to dry in sterile Petri dishes for 20 min at 22°C 

where after they were planted on quarter-strength MS agar plates and allowed to germinate 

for two days at room temperature in the dark.  

Two-day-old wheat seedlings of similar size were planted in the gamma-radiated pots (24 

pots per treatment, where those intended for 1 month or 2 months of cultivation contained 

four seedlings or two seedlings per pot, respectively. Plants were watered up to field capacity 

with sterile quarter-strength Long Ashton nutrient solution (Cloete et al. 2009).  
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To prevent the contamination of pots by airborne microorganisms, hygienic1 conditions were 

created. Plants was then cultivated for one and two months, whilst receiving nutrients and 

sterile distilled water weekly. 

2.4. Harvesting and nutrient analyses 
2.4.1. Harvesting 

A half of the plants (n = 72) were harvested after one month of growth and the other half 

after two months of growth. The plastic beads were removed from the top of the pots using a 

sterile spatula. Plants were then gently uprooted from the pots and their roots were washed in 

test tubes containing sterile PSS. A sub-sample of the bulk soil was placed in a sterile Petri-

dish and stored at 15°C, for three hours for later analysis of the yeast numbers present in bulk 

soil. Plants were subsequently dried at 80°C for a week and the dry weights were recorded. 

2.4.2. Yeast enumeration and identification 

In order to enumerate the yeasts present in the rhizosphere, a dilution series using TMV 

plates were prepared of the PSS root washings. For the bulk soil, 1 g of the soil sub-sample 

was added to PSS test tubes and a dilution series using TMV plates were prepared. After one 

week of incubation at 26°C, the colonies on the plates were counted and the number of 

yeasts present in the rhizosphere and bulk soil was determined. Since it was apparent that 

more than one colony type was present on the plates, yeast-like colonies were randomly 

selected from plates, prepared from both the one month and two-month-old plants, by using 

the modified Harrison’s disc method (Harrigan and McCance 1967).  

After the colonies were purified, they were grouped into two groups, namely red-pigmented 

colonies and non-pigmented colonies, whilst ensuring that those arising from the one month 

and two-month-old plants were kept separately. For each of the four groups 30 colonies were 

randomly picked as representatives and these 120 isolates were classified by subjecting them 

to restriction fragment length polymorphism (RFLP) analysis. This was accomplished 

_________________________________ 
1 With hygienic conditions it is implied the conditions created to minimize the exposure of pots to airborne 

microorganisms, by covering sterilized pots with sterile plastic beads and using a plastic tube covered with a 

rubber stopper to supply the plants with sterile nutrients and distilled water. 
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by amplifying the internal transcribed spacer (ITS) region of the ribosomal gene cluster, using 

colony PCR and the universal primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 

(5’-TCCTCCGCTTATTGATATGC-3’) (White et al. 1990). The cultures were cultivated 

overnight in YM broth on a tissue culture roll drum (10 rpm) at 26°C. The 50 μl PCR mixture 

contained 25 µl of master mix (2x) (Fermentas International Inc., Burlington, Ontario, 

Canada), 2 µl of each primer (10 µmol/L) (Inqaba biotech Industries, Pretoria, South Africa) 

and 2 µl of the culture. Amplification was performed in a Perkin-Elmer 2400 thermal cycler at 

an initial denaturation of 95°C for 3 min, 36 cycles consisting of denaturation at 95°C for 45 s, 

annealing at 52°C for 45 s and extension at 72°C for 1 min, as well as a final extension at 

72°C for 7 min.   

To obtain RFLP profiles of the representing isolates, the amplified ITS region was digested 

with the restriction endonucleases Hin61, Hinf1 and Mbo11 according to the manufacturer’s 

specifications (Fermentas). The resulting fragments were separated on a 2% (w/v) agarose 

gel containing ethidium bromide and photographed (Gene Flash, Syngene Bio Imaging, 

Cambridge, UK). Banding patterns, as well as sizes of the fragments were compared to a 

100-bp DNA Ladder (GeneRuler, Fermentas). 

Yeast isolates, representative of each RFLP profile, were identified by analysing the D1/ D2 

region of the rRNA gene. The isolates were cultivated overnight in YM broth as described 

earlier and the D1/D2 region was amplified using colony PCR and the forward primer F63 (5’-

GCATATACAATAAGCGGAGGAAAAG-3’), and the reverse primer LR3 (5’-

GGTCCGTGTTTCAAGACGG-3’) (Fell et al. 2000). The 50 µl PCR reaction was set up as 

described above and amplification was performed in a Perkin-Elmer 2400 thermal cycler. The 

amplification parameters were an initial denaturation at 95°C for 3 min, 35 cycles consisting of 

denaturation at 95°C for 45 s, annealing at 58°C for 45 s and extension at 72°C for 1 min. A 

final extension at 95°C for 4 min was also included. The nucleotide sequences for the D1/D2 

region were obtained using an ABI Prism (model 3100) genetic sequencer (Applied 

Biosystems). The sequences were aligned with those of C. zeae CAB 1119, C. podzolicus 

CAB978 and R. mucilaginosa CAB 826 with DNAMAN for Windows, version 4.13 (Lynnon 

Corp., Quebec, Canada). To identify the unknown yeast isolates, sequences were compared 

to known sequences on GenBank using the program BLAST 

(http://www.ncbi.nlm.nih.gov/blast). The results were used to determine the relative quantities 
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of yeast species among the non-pigmented and red-pigmented yeast for both the one-month 

and two-month-old plants.   

2.4.3. Nutrient analyses 

After the dry weight of the wheat plants were recorded, the phosphorous (P), potassium (K), 

iron (Fe) and zinc (Zn) content of the plants were measured according to the methods 

described by Vreulink et al. (2007). The root relative growth rate (RGR), shoot RGR, uptake 

rates of P, K, Zn and Fe, as well as nutrient use efficiency of P, K, Zn and Fe, were calculated 

for three growth periods. These three periods were the first 30 days of growth, the second 30 

days of growth and the total growth period (60 days). All of the above were calculated 

according to the formulae proposed by Mortimer et al. (2005). 

2.5. Statistical analyses 

Significant differences in dry weights, relative growth rates, nutrient concentrations, uptake 

rates and growth efficiency were analysed by using ANOVA and differences between 

treatment means were separated using a post hoc Fishers least significant difference (LSD) 

test, using the program Statistica version 10 (Statsoft, Tulsa, OK, USA). Additionally, 

correlation matrixes comparing the nutrient concentrations, uptake rates and growth efficiency 

for P, K, Zn and Fe were constructed. 

3. Results 
3.1. Isolation of yeasts from wild grass 

The fermentation, starch production and inositol assimilation test indicated that eight of the 

31 isolates obtained from the dilution series prepared from the grass samples belonged to the 

genus Cryptococcus. The blast search of the obtained sequences revealed that four of these 

isolates were Cryptococcus zeae (isolates 6-9D), three were Cryptococcus. cf. luteolus 

(isolates 2-4D) and one was Cryptococcus rajasthanensis (isolate 5D). It was decided to use 

C. zeae CAB 1119 (isolate 6D) in further experimentation. 
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3.2. Effect on germination 

The three yeasts C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826 

were tested for their ability to inhibit growth of filamentous fungi during seed germination. It 

was found that concentrations of log 9 cells/ml for C. zeae and log 7-9 cells/ml for both C. 

podzolicus and R. mucilaginosa, fully inhibited the growth of contaminating filamentous fungi 

(Fig. 1).  

The average number of roots per seedling, on MS agar after two days at 22°C, was 

measured as an indication of germination (Fig. 2). It is apparent that a concentration of log 9 

cells/ml for C. zeae and C. podzolicus had a superior effect on the germination of the 

seedlings. Rhodotorula mucilaginosa, however, had no effect on the number of roots 

produced per seedling. Seedlings had more roots when they were coated with autoclaved 

yeast suspensions compared to the control containing no yeast (Fig. 2). 

 

Fig. 1. A comparison of the percentage contamination of seedlings with filamentous fungi. Seeds were 

coated either with no yeast, autoclaved (control) yeast suspensions or viable cells of C. zeae CAB 

1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826 at concentrations ranging from log 6 

cells/ml to log 9 cells/ml. Bars represent the mean values obtained for five replicates. 
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Fig. 2. Comparison of the average number of roots produced per seedling during germination in the 

presence of C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826. Four controls 

were included, i.e. autoclaved cells of the three yeasts and one treatment containing no yeast. Bars 

represent the mean values obtained for five replicates and standard error values are displayed on top 

of the bars. 

3.3. Wheat growth 

Analyses of the dry weight of wheat plants showed that one and two-month-old plants that 

were coated with viable cells of C. zeae displayed superior growth compared to those coated 

with autoclaved cells of C. zeae (Fig. 3). Plants coated with viable C. podzolicus cells showed 

greater growth only during the first month, compared to plants coated with autoclaved cells of 

this yeast. Growth was not increased by coating seeds with viable cells of R. mucilaginosa 

(Fig. 3). 
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Fig. 3. Total dry weight (g) of wheat plants coated with autoclaved or viable cells of C. zeae CAB 

1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826. Plants were cultivated for one or two 

months under hygienic conditions in a greenhouse. Each bar represents the mean obtained for 12 

replicates, while the standard error values are displayed on top of each bar. Different letters indicate 

significant differences among yeast treatments, separated by a Fishers LSD test (p < 0.05) (Letters a 

& b indicate differences in plant dry weight for the first month of growth; c & d indicate differences in 

plant dry weight for the second month of growth). 

When the relative growth rates (RGR) of the roots were calculated, it was found that the root 

RGR decreased during the second month of growth (Fig. 4B). Yet, during the total growth 

period, the root RGR increased (Fig. 4C). It is evident that plants coated with viable C. zeae 

cells had a greater root RGR during both the first month and the total growth period (Fig. 4A & 

C). 

Similar to the root RGR results, plants coated with viable C. zeae cells had a greater shoot 

RGR than other plants during the initial 30 days and the total growth period (Fig. 5A & C). 

During the second month (Fig. 5B), the shoot RGRs decreased, while it increased during the 

total growth period. 
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Fig. 4. Relative growth rate (RGR) of roots for the three different growth periods i.e. the first 30 days (A), the second month (second 30 

days, B) and the total growth period (60 days, C). Seeds were coated with autoclaved or viable cells of C. zeae CAB 1119, C. podzolicus 

CAB 978 and R. mucilaginosa CAB 826. Plants were cultivated under hygienic conditions in a greenhouse. Each bar represents the mean 

obtained for 12 replicates and the standard error values are depicted on top of the bars. Different letters indicate significant differences 

among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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Fig. 5. Shoot relative growth rate (RGR) of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 30 days 

(B) and the total growth period (60 days, C). Plants were cultivated under hygienic conditions in a greenhouse. Seeds were coated with 

autoclaved or viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826. Each bar indicates the mean 

obtained for 12 replicates and the standard error values are displayed on top of the bars. Different letters indicate significant differences 

among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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3.4. Yeast enumeration and identification 

When culturable microorganisms, forming yeast-like colonies, in the rhizosphere were 

enumerated, it was found that plants of which the seeds were coated with autoclaved and 

viable cells of C. zeae and viable cells of C. podzolicus had more non-pigmented 

microorganisms in their rhizosphere than red-pigmented microorganisms (Fig 6). In contrast, 

plants of which the seeds were coated with viable cells of R. mucilaginosa had more red-

pigmented microorganisms in their rhizosphere than non-pigmented microorganisms (Fig. 6). 

There were more non-pigmented microorganisms present in the rhizosphere of two-month-old 

plants compared to one-month-old plants, coated with autoclaved cells of C. podzolicus. Red-

pigmented microorganisms present in the rhizosphere of all plants decreased from one month 

to two months.  

 
Fig. 6. Microorganisms forming non-pigmented and red-pigmented yeast-like colonies [log colony 

forming units (CFU)/ g root] present in the rhizosphere of one month and two-month-old wheat plants 

coated with autoclaved or viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. 

mucilaginosa CAB 826. Plants were cultivated under hygienic conditions in a greenhouse. Each bar 

represents the mean obtained for 12 replicates, while the standard error values are displayed on top of 

the bars. 
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The number of microorganisms, forming yeast-like colonies was lower in the bulk soil (Fig. 

7) than in the rhizosphere (Fig. 6). In addition, the dominance of non-pigmented 

microorganisms in the rhizosphere of plants inoculated with viable C. zeae and C. podzolicus, 

and the dominance of red-pigmented microorganisms in the rhizosphere of plants inoculated 

with R. mucilaginosa, was not as obvious in the bulk soil (Fig. 7). The number of culturable 

non-pigmented microorganisms was only dominant for one-month-old plants inoculated with 

viable C. zeae cells and two-month-old plants that were treated with autoclaved and viable 

cells of R. mucilaginosa (Fig. 7). Pigmented microorganisms were only dominant in the bulk 

soil of one-month-old plants treated with autoclaved cells of C. zeae (Fig. 7).The numbers of 

non-pigmented microorganisms in the bulk soil of plants inoculated with viable cells of C. 

zeae and C. podzolicus decreased from one month to two months (Fig. 7). In addition, non-

pigmented microbial numbers increased in the bulk soil of plants coated with autoclaved R. 

mucilaginosa cells. 

 
Fig. 7. Microorganisms forming non-pigmented and red-pigmented yeast-like colonies in the bulk soil 

[log colony forming units (CFU)/g sand] of wheat pot cultures cultivated for one and two months under 

hygienic conditions, in a greenhouse. Seeds were coated with autoclaved or viable cells of C. zeae 

CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826. Each bar represents the mean 

obtained from 12 replicates and the standard error values are depicted on top of the bars. 
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It seems that other microorganisms, forming yeast-like colonies, might have been present in 

addition to the yeast inoculums in the pot cultures, seeing that hygienic conditions were 

provided during cultivation. RFLP analyses and molecular identification were therefore used 

to obtain an indication of the yeast diversity in the rhizosphere (Table 1) and bulk soil (data 

not shown). We found that the percentage of C. zeae cells decreased from one month to two 

months for all treatments, except for plants inoculated with viable R. mucilaginosa cells (Table 

1). The abundance of R. mucilaginosa also decreased from one month to two months for all 

yeast treatments, except for plants inoculated with viable C. podzolicus cells. In the 

rhizosphere of plants coated with viable yeasts it was found that even though there were a 

number of different yeast species present, the dominant yeast species was that used to coat 

seeds before germination (Table 1). During the second month of cultivation an increase was 

noticed in the numbers of non-pigmented bacteria present in the rhizosphere, forming 

colonies similar to that of cryptococci.  
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Table 1. Percentage of different yeasts relative to the total number of yeast-like colonies randomly selected from the enumeration plates 

used to calculate yeast numbers in the rhizosphere of wheat. Plants were cultivated for one and two months under hygienic conditions in a 

greenhouse. Seeds were coated with autoclaved or viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 

826. 

Yeast 
treatment 

1 Month  2 Months* 

CZ CF CP PG CA RM  CZ CF CP PG RM 
Autoclaved 

C. zeae 48% 8% NP NP 16% 28%  
 NP NP NP NP 7% 

Viable 

C. zeae 84% NP NP NP NP 16%  
 58% NP NP NP 4% 

Autoclaved 

C. podzolicus 16% NP NP 5% NP 79%  
 10% 10% NP 22% 37% 

Viable 

C. podzolicus 22% NP 65% 11% NP 2%  
 NP NP 71% 7% 8% 

Autoclaved 

R. mucilaginosa 18% NP NP 18% NP 64%  
 26% NP NP NP 30% 

Viable 

R. mucilaginosa 3% NP NP NP NP 97%  
 16% NP NP NP 76% 

*Some non-pigmented colonies were identified as bacteria (93% for Autoclaved C. zeae; 38% for Viable C. zeae, 21% for Autoclaved C. podzolicus, 14% for Viable C. podzolicus, 44% for 
Autoclaved R. mucilaginosa and 8% for Viable R. mucilaginosa). 

 Non-pigmented yeast,  Red pigmented yeast 

CZ – C. zeae, CF – C. flavescens, CP – C. podzolicus, PG – P. guillermondii, CA – C. albidus, RM – R. mucilaginosa and NP – Not present.
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3.5. Nutrient analyses 
When one-month-old wheat plants were subjected to three different yeast treatments, the P 

concentrations in the plants did not differ, except for plants treated with viable C. podzolicus 

cells, which had a lower P concentration than the rest (Fig. 8). It was found that two-month-

old wheat plants had lower concentrations of P in their tissues than one-month-old plants. 

 

 
Fig. 8. A comparison of the P concentration in one and two-month-old wheat plants. Seeds of the 

plants were coated with autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and 

R. mucilaginosa CAB 826 before cultivation in a greenhouse. Bars represent the means obtained for 

12 replicates, while the standard error values are shown on top of the bars. Different letters indicate 

significant differences among yeast treatments, separated by a Fishers LSD test (p < 0.05) (Letters a, 

b & c indicate differences in P concentration in plants for the first month of growth; d & e indicate 

differences in P concentration in plants for the second month of growth). 
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Fig. 9. Comparison of the P growth efficiency of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 30 

days (B) and the total growth period (60 days, C). Seeds were coated with autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus 

CAB 978 and R. mucilaginosa CAB 826. Seedlings were cultivated under hygienic conditions in a greenhouse. Each bar represents the 

mean obtained for 12 replicates, whilst standard error values are shown on top of the bars. Different letters indicate significant differences 

among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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Fig. 10. A comparison of the P uptake rate of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 30 

days (B) and the total growth period (60 days, C). Seeds were coated with autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus 

CAB 978 and R. mucilaginosa CAB 826. Seedlings were cultivated under hygienic conditions in a greenhouse. Bars represent the mean 

obtained for 12 replicates, whilst standard error values are displayed on top of the bars. Different letters indicate significant differences 

among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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It was also found that plants inoculated with viable C. zeae cells utilized P most efficiently 

during the first 30 days of growth, whilst those treated with C. podzolicus cells utilised P least 

efficient (Fig. 9A). All plants utilized P less efficiently during the second month of growth 

compared to the first 30 days of growth (Fig. 9A & B). During the total growth period, plants 

treated with viable yeast cells did not utilize P more efficiently than those treated with 

autoclaved cells (Fig. 9C).      

In contrast to P growth efficiency, the P uptake rate for plants inoculated with viable C. zeae 

cells was lower (p = 0.018) than that for plants treated with autoclaved C. zeae cells during 

the first 30 days of growth (Fig. 10A). During all three growth periods (first 30 days, second 30 

days, and the whole growth period)  plants that were treated with viable R. mucilaginosa cells 

displayed the greatest uptake rate compared to those treated with viable cells of C. zeae (p = 

0.000, p = 0.040, p = 0.040, respectively) and C. podzolicus (p = 0.000, p = 0.035, p = 0.035, 

respectively). The uptake rate was lower for plants cultivated during the second month and 

even lower during the total growth period (Fig. 10B & C). Correlation matrices revealed that 

there was a negative correlation between the P uptake rate and growth efficiency for all three 

growth periods, i.e. first 30 days, second 30 days, and the whole growth period (r = -0.334, r = 

-0.508, r = -0.483 respectively; p < 0.050). In addition, for all three growth periods (first 30 

days, second 30 days, and the whole growth period), P concentration was positively 

correlated to P uptake rate (r = 0.691, r = 0.374, r = 0.374 respectively; p < 0.050) and P 

growth efficiency (r = 0.272, r = 0.323, r = 0.320 respectively; p < 0.050). It was also found 

that that the root and shoot RGR correlated positively with P growth efficiency (r = 0.757, r = 

0.770 respectively; p < 0.050). 

It can be seen in Fig. 11 that inoculation with viable cells of C. zeae, C. podzolicus and R. 

mucilaginosa resulted in increased K concentration in one-month-old plants, compared to 

plants treated with autoclaved cells (p = 0.013, p = 0.022, p = 0.010, respectively). The K 

concentration in two-month-old plants inoculated with viable R. mucilaginosa was greater than 

that of plants treated with autoclaved cells of R. mucilaginosa (p = 0.003). Similar to P 

concentration, the K concentration of two-month-old plants inoculated with viable C. zeae and 

C. podzolicus cells were lower than that of one-month-old plants (Fig. 11). 
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Fig. 11. Comparison of the K concentration in wheat plants, which were coated with autoclaved and 

viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826. Seedlings 

were cultivated under hygienic conditions for one and/or two months in a greenhouse. Each bar 

represents the mean obtained for 12 replicates and the standard error values are depicted on top of 

each bar. Different letters indicate significant differences among yeast treatments, separated by a 

Fishers LSD test (p < 0.05) (Letters a, b, c & d indicate differences in K concentration in plants for the 

first month of growth; e & f indicate differences in K concentration in plants for the second month of 

growth). 

From Fig. 12A it is apparent that wheat plants inoculated with viable C. zeae and C. 

podzolicus cells utilized K more efficiently compared to those treated with autoclaved C. zeae 

(p = 0.000) and C. podzolicus (p = 0.003) cells, respectively during the first 30 days of growth. 

All plants utilized K less efficiently during the second month of growth, whilst during the total 

growth period, those inoculated with viable C. zeae and R. mucilaginosa cells utilized K most 

efficiently compared to those treated with viable C. podzolicus cells (p = 0.000, p = 0.020 

respectively, Fig. 12B & C). A positive correlation was observed between shoot RGR and K 

growth efficiency for plants inoculated with viable cells of C. zeae  and C. podzolicus during 

the first month of growth, (r = 0.878; p < 0.050). Similarly, a correlation was observed 

between shoot RGR and K growth efficiency, calculated over the total growing period,  for 

plants inoculated with viable C. zeae cells (r = 0.875; p < 0.050). 
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Fig. 12. A presentation of K growth efficiency of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 

month (B) and the total growth period (60 days, C). Autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. 

mucilaginosa CAB 826 were used to coat seeds. Seedlings were cultivated in a greenhouse under hygienic conditions. Each bar 

represents the mean obtained for 12 replicates, whilst standard error values are depicted on top of the bars. Different letters indicate 

significant differences among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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Fig. 13. Comparison of the K uptake rate of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 30 days 

(B) and the total growth period (60 days, C). Autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa 

CAB 826 were used to coat seeds. Seedlings were cultivated under hygienic conditions in a greenhouse. Bars represent the mean 

obtained for 12 replicates and standard error values are depicted on top of the bars. Different letters indicate significant differences among 

yeast treatments, separated by a Fishers LSD test (p < 0.05).  
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Fig. 14. Comparison of the Zn concentration in one and two-month-old wheat plants. Seeds of the 

plants were coated with autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and 

R. mucilaginosa CAB 826 before cultivation in a greenhouse. Bars represent the mean obtained for 12 

replicates, while the standard error values are shown on top of the bars. Different letters indicate 

significant differences among yeast treatments, separated by a Fishers LSD test (p < 0.05) (Letters a 

& b indicate differences in Zn concentration in plants for the first month of growth; c indicates 

differences in Zn concentration in plants for the second month of growth). 

During the first 30 days, plants inoculated with viable R. mucilaginosa cells had the highest 

K uptake rate compared to other plants treated with autoclaved or viable yeast cells (p = 

0.010, Fig. 13A). The K uptake rate of plants inoculated with viable C. zeae and C. podzolicus 

cells remained similar to that of plants treated with autoclaved cells of these two yeasts. All 

plants had a lower K uptake rate during the second month of growth (Fig. 13B). Over the total 

growth period, the uptake rate of K was higher for plants treated with viable R. mucilaginosa 

cells compared to that of plants inoculated with viable C. zeae (p = 0.032) and C. podzolicus 

(p = 0.031) cells (Fig. 13C). During all three growth periods (first 30 days, second 30 days, 

and the whole growth period) a negative correlation was detected between K uptake rate and 

growth efficiency (r = -0.635; r = -0.603; r = -0.598 respectively, p < 0.050). Similar to P, a 

positive correlation occurred between K concentration and K growth efficiency for all three 
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growth periods, i.e. first 30 days, second 30 days, and the whole growth period (r = 0.505, r = 

0.295, r = 0.0486 respectively; p < 0.050). 

Similar to P concentration, the Zn concentration did not differ between one-month-old plants, 

except for those treated with viable C. podzolicus cells, which had lower Zn levels in their 

tissues compared to those treated with autoclaved C. podzolicus cells (p = 0.000; Fig. 14). 

The Zn concentration of two-month-old plants was lower than that of one-month-old plants, 

except for those inoculated with viable C. podzolicus cells and those treated with autoclaved 

R. mucilaginosa cells (Fig. 14).  

Wheat plants that were inoculated with viable C. zeae cells utilized Zn more efficiently during 

the first month of growth, compared to plants treated with autoclaved or viable yeast cells (p = 

0.000, Fig. 15A). Plants inoculated with viable C. podzolicus cells utilized Zn less efficiently 

than those treated with autoclaved C. podzolicus cells during the same growth period (p = 

0.000). Similar to data for P and K, plants utilized Zn less efficiently during the second month 

of growth (Fig. 15B). The treatment that resulted in the most efficient utilization of Zn over the 

total growth period was coating the seeds with autoclaved cells of R. mucilaginosa (p = 0.014, 

Fig. 15C). The root and shoot RGR was found to positively correlate to the Zn growth 

efficiency (r = 0.741, r = 0.810 respectively; p < 0.050) during the first 30 days of growth and 

the total growth period. 
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Fig. 15. A comparison of the Zn growth efficiency of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 

30 days (B) and the total growth period (60 days, C). Seeds were coated with autoclaved and viable cells of C. zeae CAB 1119, C. 

podzolicus CAB 978 and R. mucilaginosa CAB 826. Seedlings were cultivated under hygienic conditions in a greenhouse. Each bar 

represents the mean obtained for 12 replicates and standard error values are shown on top of the bars. Different letters indicate significant 

differences among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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From Fig. 16A it is evident that, during the first 30 days, plants inoculated with viable R. 

mucilaginosa cells had a greater uptake rate of Zn compared to those treated with viable C. 

zeae and C. podzolicus cells (p = 0.000, p = 0.014, respectively). During this same period 

plants inoculated with viable C. podzolicus demonstrated the lowest uptake rate of Zn (Fig. 

16A). Similar to the uptake rates of P and K, the uptake rate of Zn calculated over the total 

growth period was notably lower than the uptake rate for this nutrient calculated over the 

shorter growth periods. Not surprisingly, there was a negative correlation between the uptake 

rate and growth efficiency of Zn for all three growth periods, i.e. first 30 days, second 30 days, 

and whole growth period (r = -0.266; r = -0.525; r = -0.402 respectively, P < 0.005) for all 

three growth periods. Similar to P, for all the growth periods (first 30 days, second 30 days, 

and whole growth period) the Zn content was found to be positively correlated to the Zn 

growth efficiency (r = 0.528, r = 0.317, r = 0.872 respectively; p < 0.050) and Zn uptake rate (r 

= 0.556, r = 0.348, r = 0.348 respectively; p < 0.050). 
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Fig. 16. Comparison of the Zn uptake rate of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 30 

days (B) and the total growth period (60 days, C). Seeds were coated with autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus 

CAB 978 and R. mucilaginosa CAB 826. Seedlings were cultivated in a greenhouse under hygienic conditions. Each bar represents the 

mean obtained for 12 replicates, whilst standard error values are depicted on top of the bars. Different letters indicate significant differences 

among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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Analysis of Fe levels within the wheat plants revealed that all of the plants had similar 

concentrations of Fe in their tissue, and these concentrations decreased from one month to 

two months (Fig. 17).  

 
Fig. 17. Comparison of the Fe concentration in wheat plants, which were treated with autoclaved and 

viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. mucilaginosa CAB 826. Seedlings 

were cultivated under hygienic conditions for one and two months in a greenhouse. Values represent 

the means of 12 replicates and the standard error values are depicted on top of each bar. Different 

letters indicate significant differences among yeast treatments, separated by a Fishers LSD test (p < 

0.05) (The letters a indicates differences in Fe concentration in plants for the first month of growth; b 

indicates differences in Fe concentration in plants for the second month of growth). 

During the first 30 days of growth, plants inoculated with viable C. podzolicus and R. 

mucilaginosa cells utilized Fe less efficiently than those treated with autoclaved cells of C. 

podzolicus (p = 0.018) and R. mucilaginosa (p = 0.025), respectively (Fig. 18A). Similar to 

data for the other three nutrients, Fe was used less efficiently during the second month of 

growth (Fig. 18B). Over the total growth period, plants inoculated with viable C. zeae cells 

utilized Fe more efficiently than those treated with viable cells of C. podzolicus (p = 0.000) 

and R. mucilaginosa (p = 0.000, Fig. 18C). For all treatments the shoot and root RGR 
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positively correlated with the Fe growth efficiency (r = 0.878, r = 0.794 respectively; p < 

0.050). 

Plants inoculated with viable C. zeae and C. podzolicus cells demonstrated a lower Fe 

uptake rate than plants subjected to the other treatments during the first 30 days of growth 

(Fig. 19A). However, the Fe uptake rate calculated over the second month of growth, as well 

as over the whole of the growth period, revealed no differences between the plants that 

received the different treatments (Fig. 19B & C). Similar to the data obtained for P, K and Zn, 

a negative correlation was observed between Fe growth efficiency and Fe uptake rate for the 

first and second month of growth, as well over the total growth period (r = -0.449; r = -0.781; r 

= -0.591 respectively, p < 0.050). Unlike the other nutrients, the Fe concentration only 

correlated with Fe uptake rate (r = 0.571; p < 0.050) and Fe growth efficiency (r = 0.347; p < 

0.050) for the first 30 days of growth.  
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Fig. 18. A presentation of Fe growth efficiency of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 

month (B) and the total growth period (60 days, C). Seeds were coated with autoclaved and viable cells of C. zeae CAB 1119, C. 

podzolicus CAB 978 and R. mucilaginosa CAB 826. Seedlings were cultivated in a greenhouse under hygienic conditions. Bars represent 

the mean obtained for 12 replicates, whilst standard error values are shown on top of the bars. Different letters indicate significant 

differences among yeast treatments, separated by a Fishers LSD test (p < 0.05). 
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Fig. 19. Comparison of the Fe uptake rate of wheat plants for the three different growth periods i.e. the first 30 days (A), the second 30 

days (B) and the total growth period (60 days, C). Autoclaved and viable cells of C. zeae CAB 1119, C. podzolicus CAB 978 and R. 

mucilaginosa CAB 826 were used to coat seeds. Seedlings were cultivated under hygienic conditions in a greenhouse. Bars represent the 

means obtained for 12 replicates and standard error values are depicted on top of the bars. Different letters indicate significant differences 

among yeast treatments, separated by a Fishers LSD test (p < 0.05).  

A 

B 

C 

Autoclaved C. zeae 

Viable C. zeae 

Autoclaved C. podzolicus 

Viable C. podzolicus 
Autoclaved R. mucilaginosa 

Viable R. mucilaginosa 

a 
a a 

a 

b b 

ab ab 
ab 

a 

b 
ab 

ab ab ab ab a 
b 

Stellenbosch University  http://scholar.sun.ac.za



 

72 
 

4. Discussion 

Several studies have evaluated soil microorganisms as plant growth promoters. However, 

very little is known about the ability of soil yeasts to promote wheat growth and to affect wheat 

nutrition. Since red grass and wheat are both monocots that belong to the same family 

(Poaceae) (Hoisington et al. 1999) and a plant growth promoting strain of C. laurentii was 

isolated from the rhizosphere of buchu growing in the wild (Cloete et al. 2009), we aimed to 

isolate potential plant growth promoting cryptococci from the rhizosphere of red grass growing 

in a pristine area. Furthermore, we sought to evaluate a representative Cryptococcus isolate 

for its ability to improve wheat germination by comparing its performance to that of two other 

soil yeasts. In addition, we studied the effect of the three soil yeasts on growth and 

physiological nutrition of wheat during the first two months of growth in a greenhouse. 

4.1. Isolation of yeasts from wild grass 
 

Cryptococci have previously been isolated from many different grasses (Botha, 2006; 

Fonseca & Inácio, 2006; Marquez et al., 2007). We were able to isolate three different 

Cryptococcus species from the rhizosphere of red grass, namely C. zeae, C. luteolus and C. 

rajasthanensis. Up to date C. zeae has not been extensively isolated from the environment. 

The first authors to report of this yeast were Molnár and Prillinger in 2006. They isolated C. 

zeae from the gut of corn pests, healthy corn stems and leaves. It was found that the closest 

relative of this yeast is Cryptococcus luteolus, a yeast that has been isolated from cacti (Rosa 

et al. 1995) and the phylloplane of Hawaiian plants (Marchant & Towers 1987). The second 

isolation of C. zeae was conducted by Čadež et al (2010). Only one strain of C. zeae was 

isolated, namely ZIM 607 from grape berries. The taxonomic determinative D1/D2 region of 

the rRNA gene of the four C. zeae isolates that were obtained from the rhizosphere of wild 

grass during our study shared a 99% homology with C. zeae ZIM 607. Due to the association 

of C. zeae with crop plants such as maize, we decided to use one of our isolates representing 

this species, i.e. C. zeae CAB 1119, in further experimentation.  
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4.2. Effect on germination 
 

Seeds were coated with different concentrations of C. zeae CAB 1119, C. podzolicus CAB 

978 and R. mucilaginosa CAB 826 and allowed to germinate. Concentrations of log 9 cells/ml 

for C. zeae and log 7-9 cells/ml for C. podzolicus and R. mucilaginosa effectively inhibited the 

growth of filamentous fungi (Fig. 1). It is well-known that soil yeasts can inhibit the growth of 

filamentous fungi and yeast species belonging to genera such as Saccharomyces, 

Sporobolomyces, Rhodotorula and Cryptococcus have been employed in the bio-control of 

plant pathogenic fungi (El-Terabily 2004). 

 

In our study, we found that the number of roots per seedling was increased by coating the 

seeds with viable suspensions of C. zeae and C. podzolicus (Fig. 2). This is not surprising, 

since several studies have demonstrated that yeasts capable of inhibiting fungal pathogens 

also affect the germination of seedlings. For example, El-Mehalawy (2004) demonstrated that 

in the presence of the fungal pathogen, Fusarium oxysporum, the yeasts Saccharomyces 

unispora and Candida steatolytica were able to increase the germination of kidney bean. 

Similarly, it was found that S. cerevisiae, used as a bio-control agent against Fusarium, was 

able to increase the germination of sugar beet seeds (Shalaby and El-Nady, 2008).  

 

Autoclaved suspensions of all three yeasts evaluated in our study, i.e. C. zeae CAB 1119, 

C. podzolicus CAB 978 and R. mucilaginosa CAB 826, also increased the number of roots per 

seedling (Fig. 2). Thus, it is likely that the yeasts might have produced a metabolic factor that 

influenced germination of the wheat seeds. This factor might be related to two diterpenoids, 

i.e. fusicoccin and cotylenin A, respectively produced by the fungi belonging to the genera 

Fusicoccum and Cladosporium. Cotylenin A has been implicated in the improvement of seed 

germination (Yamamoto-Yamaguchi et al. 2001) and its structure resembles that of 

fusicoccin. It has been shown that fusicoccin is a plant growth regulator and an important 

property of this metabolite is its ability to induce and speed up seed germination (Muromtsev 

et al. 1989; Muromtsev et al. 1994). The structure of fusicoccin resembles that of the well-

known phytohormone gibberellin (Muromtsev et al. 1994). It has been demonstrated that the 

soil yeasts Candida valida, Rhodotorula glutinis and Trichosporon asahii were able to produce 

gibberellic acid, a simple gibberellin (El-Tarabily 2004). Since it was demonstrated that these 
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phylogenetically diverse soil yeasts might be able to produce gibberellic acid, it seems likely 

that the three yeasts used in our study may also be able to produce similar compounds, 

influencing seed germination in the process. 

 

4.3. Wheat growth, yeast numbers and nutrient effects 

When the dry weight of wheat plants was analyzed, we found that when seeds were coated 

with viable C. zeae cells, plants demonstrated superior growth during the first and second 

month of cultivation (Fig. 3). Plants coated with viable C. podzolicus cells only demonstrated 

increased growth during the first month of cultivation, whilst R. mucilaginosa had no effect on 

wheat growth (Fig. 3). The increased growth witnessed for C. zeae inoculated plants can be 

explained by the superior root and shoot RGR of these plants, when calculated over the entire 

growth period, but especially during the first 30 days of growth (Fig. 4A & C and Fig. 5A & C).  

The increased plant growth observed during this study agrees with what has been found in 

other studies, demonstrating the ability of different yeast species to promote the growth of 

various plants (Amprayn et al. 2011; Medina et al. 2004; Mucciarelli et al. 2003; Nassar et al. 

2005). To the best of our knowledge, there are only two previous studies on members of the 

genus Cryptococcus and their ability to promote plant growth. They demonstrated that C. 

laurentii CAB578 could improve the growth of buchu and colonize its rhizosphere (Cloete et 

al. 2009; Cloete et al. 2010).  

When pigmented and non-pigmented yeasts present in the rhizosphere of wheat plants were 

enumerated, non-pigmented yeasts were found to be predominant on the roots of plants 

treated with autoclaved and viable cells of C. zeae and C. podzolicus. Red-pigmented yeasts 

tended to be more dominant in the rhizosphere of plants treated with autoclaved and viable R. 

mucilaginosa cells (Table 1, Fig. 6). In contrast to the dominance in the rhizosphere of yeasts 

with the same pigmentation than those used to treat the plants, the numbers of pigmented 

and non-pigmented yeasts in the bulk soil were mostly similar. The only exceptions were the 

dominance of non-pigmented yeasts in the bulk soil of one-month-old plants treated with 

viable C. zeae cells, and two-month-old plants treated with autoclaved and viable cells of R. 

mucilaginosa. Red-pigmented yeasts in the bulk soil were only dominant in one-month-old 

plants treated with autoclaved cells of C. zeae (Fig. 7). In general, yeast numbers were higher 

Stellenbosch University  http://scholar.sun.ac.za



 

75 
 

(Fig. 6 and Fig. 7) in the rhizosphere than in the bulk soil. This is not surprising, since it is 

well-known that yeast abundance decreases as the distance from the roots increases (Botha 

2006; Cloete et al. 2009). Yeast diversity in the bulk soil may also differ to that found in the 

rhizosphere, since it has been shown that the rhizosphere can select for specific microbial 

populations (Botha 2006). Therefore, it was decided to focus on the effect of rhizosphere 

yeasts on wheat growth.  

As mentioned previously, there was more than one yeast morphotype in the rhizosphere. 

The RFLP profiles showed that the dominant yeast isolated from one month and two-month-

old plants treated with viable C. zeae cells was indeed C. zeae (Table 1). For one month and 

two-month-old plants coated with viable cells of C. podzolicus, the dominant yeast was C. 

podzolicus. Similarly, R. mucilaginosa was dominant for one month and two-month-old plants 

coated with viable cells of R. mucilaginosa (Table. 1). It is therefore possible that the 

differences seen in plant dry weight, RGRs and plant nutrition was mostly due to the effect of 

the yeasts used to treat the seeds before germination. It is tempting to speculate that the 

decreased abundance of C. zeae and R. mucilaginosa in the rhizosphere of two-month-old 

plants, compared to one-month-old plants, may be explained by decreased metabolic activity 

that culminated in decreased root RGR (Fig. 4).  

The impact of the yeasts, used in the inoculums, on wheat metabolism was studied by 

testing the response of plant nutritional physiology to coating the seeds with viable cells of C. 

zeae, C. podzolicus or R. mucilaginosa. The P concentration in wheat plants were not 

affected by coating the seeds with viable C. zeae and R. mucilaginosa cells. Plants that were 

inoculated with viable C. podzolicus cells however, had a lowered P concentration during the 

first month of growth (Fig. 8). Since there was a positive correlation between the P 

concentration and the P growth efficiency, it seems that the lowered P concentration can be 

ascribed to the lowered P growth efficiency (Fig. 9A) of plants inoculated with viable cells of 

C. podzolicus. During the same growth period, plants inoculated with viable C. zeae cells 

utilized P more efficiently than plants subjected to the other treatments (Fig. 11A). This 

efficient use of P by these plants most likely contributed to the increased wheat growth, since 

it was found that there was a positive correlation between the root and shoot RGR and P 

growth efficiency. This phenomenon is known to occur in plants colonized by mycorrhizal 

fungi. For example, Monzón and Azcón (2001) demonstrated that the P use efficiency and 

Stellenbosch University  http://scholar.sun.ac.za



 

76 
 

growth of alder trees belonging to the species Alnus cordata, Alnus incana and A. glutinosa 

were improved by the mycorrhizal fungi Glomus mosseae and Glomus intraradices. It was 

shown that P use efficiency could be improved by these mycobionts via the solubilisation of 

soil P or by increasing the sorption area of the roots (Shenoy and Kalagudi 2005). It is well-

known that many microorganisms can solubilise P by either producing organic acids (Pradhan 

and Sukla 2005) or phosphatases. It was demonstrated that cryptococci can produce these 

extracellular enzymes (Greenwood and Lewis 1976; Garcìa-Martos et al. 2001), which can 

catalyse the hydrolysis of organic phosphates to inorganic phosphates (Mubyana et al. 2002), 

rendering them available to plants (Miyasaka and Habte 2001). A recent study conducted by 

Cloete et al. (2010) demonstrated that the soil yeast C. laurentii CAB 578 increased P 

concentration in buchu roots. It is therefore likely that C. zeae could produce either organic 

acids or phosphatases thereby increasing the P uptake and P concentration of wheat.  

When comparing plants treated with autoclaved cells of the three yeasts to those inoculated 

with viable cells, it was found that viable C. zeae and C. podzolicus increased the K 

concentration in plants only during the first month of growth, while R. mucilaginosa increased 

the K concentration in plants during both months of growth (Fig. 11). It seems likely that the 

increased K concentration in plants treated with viable C. zeae and C. podzolicus cells was 

due to the efficient use of K during the first 30 days of growth (Fig. 12A).The elevated K 

concentration in the one and two-month-old plants inoculated with viable cells of R. 

mucilaginosa can be ascribed to the higher K uptake rate of these plants during the first 30 

days and over the total growth period (Fig. 13A & C). It seems that under the experimental 

conditions of this study the increased K concentration had no effect on wheat growth, since 

the growth of plants treated with viable R. mucilaginosa cells did not increase (Fig. 3). In 

addition, the K concentration of two-month-old plants inoculated with viable C. zeae cells did 

not increase, but growth of both one and two months old plants, inoculated with this yeast, did 

increase. This increased growth may be attributed to the plants utilizing K more efficiently 

during growth, due to the shoot RGR and the K growth efficiency correlating positively for 

plants treated with C. zeae and C. podzolicus during the first month of growth and plants 

treated with C. zeae during the total growth period. Unlike P and N, K does not form part of 

structural components, but is rather shunted through the plant to maintain important 

processes such as photosynthesis, transportation of sugars and maintenance of turgor 

(Edwards, 2001). Therefore, an efficient use of K by plants will be beneficial. 
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 When the data for Zn nutrition was analyzed, it was found that during the first 30 days of 

growth, plants inoculated with viable cells of C. zeae utilized Zn more efficiently (Fig. 15A) 

and had a lower Zn uptake rate in comparison to those treated with autoclaved C. zeae cells 

(Fig. 16A). In contrast, plants inoculated with viable R. mucilaginosa cells had an increased 

Zn uptake rate, but the Zn growth efficiency remained similar to that of plants treated with 

autoclaved cells of R. mucilaginosa (Fig. 15A). Similar results were obtained when Zn growth 

efficiency, were calculated for C. zeae treated plants over the total growth period. However, 

plants treated with viable cells of R. mucilaginosa utilized Zn less efficiently in comparison to 

those coated with autoclaved cells of this yeast (Fig. 15C). Yet, there was a positive 

correlation between the root and shoot RGR and the Zn growth efficiency during the first 30 

days of growth and the total growth period. Therefore, the efficient use of Zn by plants 

inoculated with viable C. zeae cells during the first 30 days of growth, as well as during the 

total growth period, positively affected the root and shoot RGR and thus wheat growth. Plants 

inoculated with viable R. mucilaginosa cells however, used Zn less efficiently during the total 

growth period, which may have negatively affected the root and shoot RGR and wheat 

growth. This is in contrast to results obtained by Baon (1996), who demonstrated that 

mycorrhizal fungi decreased the Zn use efficiency in Coffea arabica L. (coffee). It has been 

shown, however, that mycorrhizal fungi can increase the Zn uptake rate of plants, by 

increasing the absorptive surfaces of the roots (Manjunath and Habte 1988).  

During the first 30 days of growth, plants that were inoculated with viable cells of C. zeae 

and C. podzolicus had a lower Fe uptake rate compared to plants treated with autoclaved 

yeast cells (Fig. 19A), even though the Fe concentration was similar for all plants (Fig. 17). 

Similar to data obtained for P and K, the Fe concentration in the tissues of two-month-old 

plants was lower than that of one-month-old plants (Fig. 17). This lower concentration of Fe is 

likely due to a lower Fe uptake rate calculated for the total growth period (Fig. 19C). The most 

efficient utilization of Fe during this period occurred in plants inoculated with viable C. zeae 

cells; while plants coated with viable R. mucilaginosa cells utilized Fe less efficiently in 

comparison to those treated with autoclaved R. mucilaginosa cells (Fig. 18C). Since there 

was a positive correlation between the Fe growth efficiency and the root and shoot RGR, it 

seems that wheat growth was positively affected by C. zeae, probably as a result of its ability 

to induce efficient Fe utilization, resulting in improved plant growth (Fig. 3). In contrast, R. 

mucilaginosa could have had a negative effect on Fe utilization and hence shoot and root 
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RGR, which may explain why this yeast did not improve wheat growth. Little is known about 

the mechanisms involved in the improvement of Fe utilization by yeasts. Mycorrhizal fungi can 

solubilise insoluble Fe by the production of siderophores (Haselwandter, 1995). However, 

there are indications that cryptococci may not able produce siderophores, such as in the case 

of C. neoformans (Howard, 1999).  Yet, it has been demonstrated that the soil yeast C. 

laurentii was able to increase the Fe concentration in A. betulina plants, when colonizing the 

rhizosphere of this sclerophyllous shrub (Cloete et al. 2010).  These authors speculated that 

this unicellular fungus might have increased the Fe concentration in these plants by 

polyphosphates binding to the Fe cation, which is then transported to the host, or by the 

bioaccumulation of this cation by this yeast. 

 

From the above it seems likely that the increased wheat growth observed in our study was 

due to C. zeae CAB 1119, improving the efficiency of the plant to utilize P, K, Zn and Fe. This 

finding may contribute to meeting the global demand for wheat in the near future, since it has 

been envisaged that improvement of nutrient use efficiency and other soil management 

practices will increase crop yield drastically across the globe (Foley et al. 2011). 

 

5. Conclusion 

We have demonstrated that soil yeasts isolated from the rhizosphere of wild grasses can be 

used to inoculate wheat, influence nutrition and improve plant growth. We have also found 

that there are differences between soil yeasts regarding their ability to influence the 

germination and growth of wheat seedlings. These differences between soil yeasts to 

influence wheat growth most likely stem from different physiological responses in wheat 

induced by different yeast species.  

The isolate of C. zeae, isolated from red grass, seemed superior in its ability to improve 

wheat performance compared to the strains representing other soil yeasts, i.e. C. podzolicus 

and R. mucilaginosa. It seemed that C. zeae could improve wheat growth by affecting the 

growth efficiency and subsequently the relative growth rates of the plants   More isolates 

representing this yeast should therefore be screened in future for their ability to enhance 

wheat performance. Future studies should also include the testing of carbon (C) and nitrogen 

(N) concentrations in plants cultivated in the presence of these yeasts, since the data 
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obtained can be used to determine the carbon cost of the yeasts. In addition, the effect of C. 

zeae on grain yield should be investigated. However, it is important to first evaluate the 

growth promoting qualities of C. zeae in the presence of natural soil microbial consortia. Thus, 

the ability of C. zeae to improve wheat growth should be conducted with wheat planted in 

unsterilized soil. The ability of C. zeae to enhance wheat growth in the presence of natural 

soil microbial consortia will be reported on in the next chapter.  
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1. Introduction 

As mentioned in previous chapters, Triticum aestivum L. (wheat) is an important food source 

in the world (FAO 2010). However, the production of this crop needs to be increased to 

eleviate the global food shortages invisaged in the near future (UN 2010). A manner in which 

this could be accomplished is to increase cropping intensity by using inorganic fertilizers 

(Foley et al. 2011). Unfortunately, fertilizers are costly and have a negative impact on the 

environment. It is therefore not surprising that there has been increasing interest in alternative 

plant growth promoters, such as biochar and soil microorganisms (Adesemoye et al. 2009).  

We found that amendments of biochar to sandy soil improved mycorrhizal colonization, as 

well as wheat growth (Chapter 2). These findings supported the results of others who also 

reported the ability of biochar to improve wheat growth and affect mycorrhizal colonization 

(Blackwell et al. 2010; Solaiman et al. 2010). However, mycorrhizae are not the only fungi 

known to have a positive effect on plant growth. It was demonstrated that soil yeasts, such as 

those belonging to the genera Cryptococcus, Yarrowia and Williopsis, are able to improve 

plant growth (Cloete et al. 2009; Nassar et al. 2005; Medina et al. 2004). Similarly, we 

showed that the soil yeasts Cryptococcus podzolicus and Cryptococcus zeae could improve 

wheat growth under hygienic conditions in acid washed sand (Chapter 3). Yet, the impact of 

biochar on the ability of soil yeasts to improve wheat growth in natural soil is still unknown.  

Therefore, the first aim of this study was to test the hypothesis that C. zeae could improve 

wheat growth and nutrition in a sandy low nutrient soil containing natural microbial consortia. 

The second aim was to study the effect of a biochar amendment on the ability of C. zeae to 

improve wheat growth, as well as nutrition, in this sandy soil. 

2. Materials and methods 
2.1. Yeast inoculum and seed preparation 

Cryptococcus zeae CAB 1119 was used in this experiment which aimed to ascertain the 

effect of C. zeae on wheat growth in the presence of other soil microorganisms and biochar. 

The yeast inoculum was prepared by cultivating the yeast in yeast-malt (YM) broth on a rotary 

shaker (100 revolutions per minute) for 48 hours at 26°C. The cells were harvested by 

centrifugation (38 000 xg; 5 min) and washed twice with sterile physiological saline solution 
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(PSS). A haemacytometer (Superior, Germany) was then used to determine the concentration 

of cells in the final suspension. Since it was demonstrated that wheat germination was 

superior when treated with viable C. zeae cells at a concentration of log 9 yeast cells/ml 

(Chapter 3), the volume was adjusted with sterile PSS to obtain this concentration of cells.  

Wheat (cultivar SST 047) seeds were surface sterilized in 70% ethanol for 1 min, followed by 

submersion in 1% (v/v) sodium hypochlorite solution for 40 seconds. The seeds were then 

rinsed in sterile distilled water and coated with the yeast. This was accomplished by 

submerging 240 seeds in 5 ml of the yeast suspension. The seed coating of the control plants 

was prepared by submerging 240 seeds in a 5 ml suspension of autoclaved cells. Seeds were 

removed from the suspensions and allowed to dry at 22°C for 15 min. After drying, the seeds 

were planted on sterile Murashige and Skoog (MS) agar plates (Slater et al. 2008) and 

allowed to germinate for two days at 22°C in the dark.  

2.2. Pot preparation and wheat growth 

The sandy low nutrient soil was collected from an unused field near Brackenfell in Cape 

Town, South Africa (Chapter 2). Pre-cleaned 13 cm diameter plastic pots (n = 24) were filled 

with 800 g of this soil. Since results in Chapter 2 indicated that wheat growth was superior at 

10% (w/w) biochar amendment, 800 g of a mixed substrate consisting of the soil and 10% 

(w/w) biochar (Allbrick, Thembalethu; Chapter 2) was transferred to each of a series of 24 

plastic pots. All pots were watered up to field capacity with quarter strength Long Ashton 

nutrient solution (Cloete et al. 2009). 

Two day old seedlings of similar size were planted in the pots (four seedlings per pot), 

resulting in 24 pots (12 containing soil only, 12 containing soil with 10% biochar added) 

planted with seedlings inoculated with viable yeast cells, and 24 pots (12 containing soil only, 

12 containing soil with 10% biochar added) planted with seedlings treated with autoclaved 

yeast cells. The plants were allowed to grow for one month in a well-ventilated greenhouse 

with a 12 h photoperiod of 1000–1100 µmol m2/s photosynthetic photon flux density. The 

average day/night temperatures and relative humidity were 23/15 °C and 50/80%, 

respectively. Low nutrient conditions were simulated, by supplying plants only with sterile 

distilled water twice weekly. 
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2.3. Harvesting and nutrient analyses 

After one month, the wheat plants were harvested and their roots washed in sterile PSS. 

These plants were then dried in an oven at 80°C for one week, where-after the dry weight of 

the roots and shoots were recorded. Dry mass of the plants were analysed for phosphorous 

(P), potassium (K), zinc (Zn) and iron (Fe) concentration, according to the methods described 

by Vreulink et al. (2007). The obtained data was used to calculate different physiological 

parameters, i.e. root relative growth rate, shoot relative growth rate, nutrient use efficiency 

and nutrient uptake rate according to the formulae proposed by Mortimer et al. (2005). 

2.4. Statistical analyses 

Significant differences between treatment means were analyzed using ANOVA and 

separated using a post hoc Fishers least significant difference (LSD) test, using the program 

Statistica version 10 (Statsoft, Tulsa, OK, USA). In addition, correlation matrixes comparing 

the nutrient concentrations, uptake rates and use efficiency for P, K, Zn and Fe were 

constructed using the same software program.   

3. Results 
3.1. Wheat growth 

Wheat growth was increased by both the biochar amendment and the treatment with viable 

yeast cells (Fig.1). Compared to the other treatments, plants inoculated with viable C. zeae 

cells and cultivated in 10% (w/w) biochar amended soil, showed the best growth. 

When cultivated in soil alone, root relative growth rate (RGR) was higher for plants 

inoculated with viable yeast cells compared to plants treated with non-viable cells (p = 0.000; 

Fig.1). The root RGR of plants cultivated in soil amended with 10% (w/w) biochar was higher 

than the root RGR of plants cultivated in soil alone and treated with viable yeast (p = 0.006). 

Similar to the results obtained for plant growth, plants that were treated with viable C. zeae 

cells and cultivated in 10% (w/w) biochar amended soil, showed the highest root RGR. In 

addition, these plants also demonstrated a higher shoot RGR, whilst the shoot RGR of the 

other treatments remained similar (p > 0.050; Fig. 1).  
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Fig. 1. Comparison between the the total dry weight, root relative growth rate (RGR) and shoot RGR 

of wheat plants cultivated in soil and soil amended with 10% (w/w) biochar. Seeds were treated with 

autoclaved cells (non-viable yeast) or viable cells (log 9 cells/ml) of Cryptococcus zeae CAB 1119 

before germination, and cultivated under greenhouse conditions for 1 month. Each bar represents the 

mean obtained for 12 replicates, while the standard error values are indicated on the top of the bar. 

Different letters indicate significant differences among yeast and biochar treatments, separated by a 

Fishers LSD test (p < 0.05) (Letters a, b & c indicate differences in total dry weight; d, e, f & g indicate 

differences in root RGR; h & i indicate differences in shoot RGR). 

3.2. Nutrient analyses 

Analyses of P concentration in the wheat plants showed that plants cultivated in 10% (w/w) 

biochar-amended soil had higher concentrations of P in their tissue than plants cultivated in 

soil alone (Fig. 2). Plants utilized P more efficiently during growth when the seeds were 

treated with viable yeasts and cultivated in both in soil alone (p = 0.000) and in the biochar 

soil mixture (p = 0.000). In addition, plants treated with viable yeast and cultivated in the 

biochar soil mixture had a greater P growth efficiency than those cultivated in soil alone (p = 

0.000). The P uptake rate was lower in plants cultivated in the biochar-amended soil than in 

plants growing in soil alone (Fig. 2).  

a 
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Fig. 2. Comparison of P concentration, P growth efficiency and P uptake rate of wheat plants, treated 

with autoclaved (non-viable yeast) or viable yeast (log 9 cells/ml), after cultivation in either soil or soil 

amended with 10% (w/w) biochar, under greenhouse conditions for 1 month. Each bar represents the 

mean obtained for 12 replicates, while the standard error values are indicated on the top of the bar. 

Different letters indicate significant differences among yeast and biochar treatments, separated by a 

Fishers LSD test (p < 0.05) (Letters a & b indicate differences in P concentration; c, d, e & f indicate 

differences in P growth efficiency; g & h indicate differences in P uptake rate). 

Similar to the results obtained for P concentration of the wheat plants, the K concentration 

was found to be higher in plants cultivated in the biochar-amended soil than in plants 

cultivated in soil alone (Fig. 3). In the latter case, the viable yeast treatment had no effect on 

the K concentration in the plants compared to plants treated with non-viable yeast cells (p > 

0.050). In addition, these plants treated with viable yeast and growing in soil alone, utilised K 

less efficiently (p = 0.001) and had a lower uptake rate (p = 0.021) than plants treated with 

non-viable yeast cells and growing in the soil alone. In the presence of biochar plants treated 

with viable yeast showed a higher K concentration than plants treated with non-viable yeast 

cells (p = 0.000). Similarly, these plants growing in the presence of biochar and treated with 

viable yeast utilized K more efficiently than those growing in the presence of biochar and 

treated with non-viable cells (p = 0.000), whereas the K uptake rate remained similar (p > 

0.050).  
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Fig. 3. Comparison between the K concentration, K growth efficiency and K uptake rate of wheat 

plants cultivated in soil and soil amended with 10% (w/w) biochar. Wheat seeds were treated with 

autoclaved (non-viable yeast) or viable C. zeae cells (log 9 cells/ml) before planting. Each bar 

represents the mean obtained for 12 replicates, while the standard error values are indicated on the 

top of the bar. Different letters indicate significant differences among yeast and biochar treatments, 

separated by a Fishers LSD test (p < 0.05) (Letters a, b & c indicate differences in K concentration; d, 

e, f & g indicate differences in K growth efficiency; h, i & j indicate differences in K uptake rate). 

In contrast to the results obtained for the P and K concentration of the wheat plants, the Zn 

concentration was less in plants cultivated in the biochar-amended soil than in plants 

cultivated in soil alone (Fig. 4). In the latter case, Zn concentration, Zn use efficiency and Zn 

uptake rate was higher for plants treated with non-viable yeast than those treated with viable 

yeast (p = 0.000, p = 0.000, p = 0.000 respectively). However, there was no difference in Zn 

concentration, growth efficiency and uptake rate of plants growing in biochar-amended soil 

concentration and treated with viable yeast and plants cultivated in the same soil and treated 

with non-viable yeast cells (p > 0.050). 
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Fig. 4. Comparison between the Zn concentration, Zn growth efficiency and Zn uptake rate of wheat 

plants, treated before germination with autoclaved (non-viable yeast) or viable C. zeae cells (log 9 

cells/ml). Seedlings were cultivated in soil either with or without 10% (w/w) biochar amendments for 1 

month under greenhouse conditions. Each bar represents the mean obtained for 12 replicates, while 

the standard error values are indicated on the top of the bar. Different letters indicate significant 

differences among yeast and biochar treatments, separated by a Fishers LSD test (p < 0.05) (Letters 

a, b & c indicate differences in Zn concentration; d, e & f indicate differences in Zn growth efficiency; g, 

h & i indicate differences in Zn uptake rate). 

Plants cultivated in biochar-amended soil had a lower Fe concentration compared to those 

cultivated in soil alone (Fig. 5). Plants growing in soil alone and treated with viable yeast cells 

showed a higher Fe concentration (p = 0.000), Fe growth efficiency (p = 0.000) and Fe uptake 

rate (p = 0.000) than plants growing in soil and treated with non-viable cells. Plants cultivated 

in biochar-amended soil and treated with viable yeast showed a lower Fe concentration (p = 

0.042) and growth efficiency (p = 0.000), whilst the Fe uptake rate remained similar (p > 

0.050) to that of plants treated with non-viable yeast and growing in the presence of biochar. 
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Fig. 5. Comparison between the Fe concentration, Fe growth efficiency, Fe uptake rate of wheat 

plants. Seeds were treated with autoclaved (non-viable) or viable C. zeae cells (log 9 cells/ml) and 

seedlings were cultivated in soil and 10% (w/w) biochar amended soil for 1 month under greenhouse 

conditions. Each bar represents the mean obtained for 12 replicates, while the standard error values 

are indicated on the top of the bar. Different letters indicate significant differences among yeast and 

biochar treatments, separated by a Fishers LSD test (p < 0.05) (Letters a, b, c & d indicate differences 

in Fe concentration; e, f, g & h indicate differences in Fe growth efficiency; i, j & k indicate differences 

in Fe uptake rate). 

4. Discussion 

Since knowledge on the effect of biochar and soil yeasts on wheat growth and nutritional 

physiology is limited, it is important to evaluate these before incorporation in soil management 

practices. Therefore, we firstly sought to test whether C. zeae can improve wheat growth and 

nutrition in sandy soil containing natural microbial consortia. Secondly, we wanted to study 

the effect of a biochar amendment on the ability of C. zeae to improve wheat growth and 

nutrition in this sandy soil. 
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4.1. Wheat growth and nutrient effects 

Similar to the results presented in Chapters 2 and 3, we found that both seed treatment with 

viable C. zeae and biochar emendation of the sandy soil, positively affected wheat growth 

(Fig. 1). Interestingly, the best growth was observed in plants of which the seeds were treated 

with the viable yeast and that were growing in biochar-amended soil. Thus, the yeast was 

able to stimulate plant growth beyond the enhancing effect of the biochar amendment in the 

presence of natural soil microbial consortia. Root RGR was enhanced by treating plants with 

viable cells when cultivated in soil alone. Amending the soil with biochar also increased root 

RGR, whilst treating plants with viable cells and cultivated in biochar had the greatest root 

RGR. Thus, it seems that both yeast treatment and biochar resulted in plants investing more 

in root growth, than plants growing in soil alone. Plants treated with C. zeae while growing in 

biochar-amended soil also had a greater shoot RGR, thus investing more in shoot growth 

than other plants.  

Nutrient concentration analyses revealed that the P concentration of wheat plants cultivated 

in 10% (w/w) biochar was more than the P concentration of wheat plants growing in soil alone 

(Fig. 2). The biochar, containing ca. 46 mg/kg bio-available P (Chapter 2; Table 1), could 

have acted as a P fertilizer increasing the P concentration of the plants. Yet, it was 

demonstrated in Chapter 2 that 10% (w/w) biochar increased the soil pH to 7.58. At this soil 

pH, P becomes less available in soil (Havlin et al. 2005). This should result in a decreased P 

uptake rate, which was witnessed in this study for plants cultivated in soil amended with 10% 

(w/w) biochar when compared to those cultivated in soil alone (Fig. 2). This decrease as a 

result of biochar emendation was not as pronounced for plants treated with viable C. zeae 

cells compared to the plants treated with non-viable yeast cells. Even though the P uptake 

rate of plants growing in biochar-amended soil was lower in comparison to that of plants 

cultivated in soil alone, it seems that the yeast enhanced the bio-availability of P despite the 

increased soil pH. It is well-known that many microorganisms can solubilise P by either 

producing organic acids (Pradhan and Sukla 2005) or phosphatases. It has been 

demonstrated that cryptococci can produce these extracellular enzymes (Greenwood and 

Lewis 1976; Garcìa-Martos et al. 2001), which can catalyse the hydrolysis of organic 

phosphates to inorganic phosphates (Mubyana et al. 2002), rendering them plant available 

(Miyasaka and Habte 2001). A recent study conducted by Cloete et al. (2010) demonstrated 
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that the soil yeast C. laurentii CAB 578 increased P concentration in the roots of the 

sclerophyllous shrub Agathosma betulina (Berg.) Pillans (buchu). It is therefore likely that C. 

zeae could produce either organic acids or phosphatases thereby increasing the P uptake 

and P concentration of wheat, in the presence of biochar. Plants that were treated with viable 

C. zeae cells utilized P more efficiently during growth compared to plants treated with non-

viable yeast cells, regardless of whether they were planted in soil alone or biochar-amended 

soil (Fig. 2). This is in agreement with the results obtained in Chapter 3, where it was found 

that wheat plants treated with viable C. zeae cells utilized P more efficiently than those 

treated with autoclaved cells. This phenomenon is similar to that reported for mycorrhizal 

fungi, which was found to improve plant P use efficiency by solubilising soil P or by increasing 

the sorption area of the roots (Shenoy and Kalagudi 2005). 

We previously reported that the biochar used in this study contains high levels of plant 

available K (ca. 878mg/kg K; Chapter 2, Table 1), which may increase the K levels in wheat 

plants growing in soil amended with this biochar. These results were confirmed in the present 

study when we found that wheat plants cultivated in 10% (w/w) biochar amended soil had a 

higher K concentration than wheat plants cultivated in soil alone (Fig. 3).  When cultivated in 

soil amended with 10% (w/w) biochar, the K concentration and the K growth efficiency of 

plants treated with viable yeast cells were higher, compared to plants treated with non-viable 

yeast. The presence of viable C. zeae therefore seemed to render K more available to the 

plant. The mechanism how this enhanced bio-availability as a result of the yeast occurs is still 

unknown, however, it has been demonstrated that some bacteria are able to solubilise K by 

the production of organic acids (Friedrich et al. 1991). It was demonstrated that another 

member of the genus Cryptococcus, i.e. C. laurentii, is able to produce organic acids such as 

citric acid, lactic acid succinic acid, formic acid and acetic acid (Freitas et al. 1999). It thus 

seems possible that C. zeae could solubilise K via acidification of its microenvironment, but 

this must still be confirmed in future research. 

In contrast to plants growing in the presence of biochar, plants cultivated in soil alone and 

treated with viable yeast had a lower K concentration than plants treated with non-viable 

yeast and growing in soil alone (Fig. 3). This is also in contrast to results obtained in Chapter 

3, since it was found that K concentration was higher in plants treated with viable C. zeae 

cells compared to those treated with autoclaved C. zeae cells. Since the soil is deficient in K 
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(ca. 11 mg/kg K, Chapter 2, Table 1) it is likely that the yeasts and the plants competed for K. 

This probably resulted in K being utilized less efficiently with a lower K uptake rate for plants 

growing in soil alone and treated with viable yeasts, than for plants growing in soil alone and 

treated with non-viable yeast. 

It seems likely that the emendation of soil with biochar rendered soil Zn less available to the 

wheat plants (Fig. 4). It is likely that Zn was less available in soil amended with 10% (w/w) 

biochar, since we found that biochar emendation of this soil increases soil pH (Chapter 2), 

which may result in decreased bio-availability of soil Zn (Clark and Zeto 1996). Wheat plants 

treated with non-viable yeast cells and cultivated in soil alone, showed the greatest Zn 

concentration, use efficiency and uptake rate, while plants cultivated in soil amended with 

10% (w/w) biochar and treated with viable yeast cells had the lowest uptake rate. Yet, the Zn 

concentration and use efficiency of these plants did not differ from plants growing in biochar 

emended soil that was treated with non-viable yeast (Fig. 4). In contrast, plants cultivated 

under hygienic conditions that were treated with viable C. zeae cells utilized Zn more 

efficiently during growth compared to those treated with autoclaved C. zeae cells. Therefore, 

it seems possible that the yeasts and other soil microbiota competed with the wheat plants for 

Zn, since Zn is an important micronutrient for yeast (Stehlik-Tomas et al. 2004). 

Similar to the results obtained with Zn levels, it seemed that biochar also rendered soil Fe 

levels less bio-available (Fig.5). Since it is known that Fe is less bio-available in alkaline and 

sandy soils (Fageria 2001), the low Fe concentration of plants growing in 10% (w/w) biochar 

may be due to increased soil pH (Chapter 2). There are indications that under the low Fe 

conditions induced by the biochar the yeast competed with the plants for this nutrient resulting 

in low Fe concentrations in the plant (Fig. 5). However, when the plants were growing in soil 

alone the presence of viable C. zeae resulted in increased Fe concentration, growth efficiency 

and uptake rate compared to plants treated with non-viable yeasts. Similarly, it was found that 

plants treated with viable C. zeae cells utilized Fe more efficiently than those treated with 

autoclaved C. zeae cells (Chapter 3). Similar results were obtained by Cloete et al. (2010), 

who found that root colonization by the soil yeast, C. laurentii, increased the Fe concentration 

of buchu. The authors stated that this might be accomplished by Fe binding to 

polyphosphates, which may be accumulated by the yeast or by the bioaccumulation of Fe by 

the unicellular fungus.  
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Since this study was conducted with soil containing natural soil microbiota, it is not 

surprising that differences in the nutritional physiology was observed between plants treated 

with viable C. zeae whilst cultivated under hygienic conditions (Chapter 3), and those treated 

with viable C. zeae cells whilst cultivated in soil (this study). It is known that microorganisms 

compete with each other, as well as with plants, for nutrients in the rhizosphere (Botha, 2006), 

thus altering the nutrition of the plants. 

5. Conclusion   

In this study, we found that biochar amendments to sandy soil, together with plants treated 

with C. zeae resulted in increased wheat growth. This increased growth may be attributed to 

the increased root and shoot RGR witnessed for these plants. Elevated K levels in the plant 

tissue, most likely originating from the biochar, seemed to be the main driver for the increase 

in shoot RGR, which is supported by the results obtained in Chapter 2. In addition, the 

efficient utilization of P during growth by plants treated with viable C. zeae cells could possibly 

have influenced wheat growth in a similar manner as mycorrhizal fungi. This improved growth 

efficiency is desirable, since plant growth and potentially yield can be increased, while the 

impact of agriculture on the environment is decreased. 

Future research should focus on also including carbon, magnesium, manganese and boron 

in plant analyses in order to determine the effect of biochar and C. zeae on carbon cost and 

also the nutrition of wheat with regards to micronutrients. Furthermore, the impact of biochar 

on the growth and ability of C. zeae to colonize the rhizosphere should be investigated in pot 

and field trials. 
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1. General conclusions and future research 

It is well-known that the world-population is increasing, with a projected population total 

reaching 9 billion people by 2050 (UN, 2010). To supply enough food to the population, 

food production must increase. Therefore, agricultural land must expand or cropping 

intensity increased (Foley et al. 2011). One strategy employed in increasing cropping 

intensity is the application of fertilizers, especially to underperforming soils. However, this 

is a costly and sometimes inefficient practice (Adesemoye et al. 2009).   

There has thus been increasing interest in alternative methods to improve crop growth. 

These methods include the emendation of soil with biochar and utilizing soil 

microorganisms, such as mycorrhizal fungi and yeasts, to improve plant growth. Even 

though several studies could improve crop growth by using biochar applications (Kimetu et 

al. 2008; Mathews 2008; Spokas et al. 2009) or inoculating plants with soil yeasts (Abd El-

Hafez and Shehata 2001; El-Mehalawy et al. 2004; Nassar et al. 2005), few studies have 

focused on the promotion of wheat growth, despite its importance as a food source.  

Results obtained in the present study demonstrated that biochar amendments to sandy 

soil had a positive effect on wheat growth under low nutrient conditions. This concurred 

with other studies conducted with wheat and biochar (Solaiman et al. 2010). We found that 

the improved wheat growth was most likely due to the increased potassium (K) 

concentrations in the tissue of the plants. The increased concentrations might have 

facilitated shoot growth, since K has been implicated in the expansion of leaf area (Pervez 

et al. 2006).  

During this study, we found that soil yeasts differed in their ability to improve wheat 

germination and growth. The isolate of Cryptococcus zeae, obtained from the rhizosphere 

of another monocot belonging to the same family, seemed superior with regards to 

improving wheat germination and growth, when compared to other soils yeasts, i.e. 

Cryptococcus podzolicus and Rhodotorula mucilaginosa. It seems likely that C. zeae 

improved wheat growth by altering the nutritional physiology of the plants, since it was 

found that plants treated with this yeast utilized P, K, Zn and Fe more efficiently during 

growth. This is supported by the findings of similar studies, where it was demonstrated that 

the soil yeast Cryptococcus laurentii could not only improve the growth, but also alter the 

nutritional physiology of Agathosma betulina (Berg.) Pillans (Cloete et al. 2009; Cloete et 

al. 2010).  
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We also found that C. zeae could improve wheat growth when cultivated in sandy soil, 

containing natural occurring microbiota, which was amended with biochar. It seems that 

this yeast and the biochar amendment had a synergistic effect on the growth of wheat. 

This increased wheat growth might be attributed to the increased root and shoot RGR 

witnessed for these plants. It seemed that the elevated K levels within the plant tissues, 

most likely originated from the biochar, and the efficient utilization of P during growth was 

possibly the main factors influencing the root and shoot RGR. This is in accordance with 

the previous results, where it was found that biochar influenced the K concentrations, 

whilst C. zeae increased the P growth efficiency. The ability of C. zeae to improve wheat 

growth by improving plant growth efficiency of plants does have potential to improve crop 

yield, while reducing the environmental impact of agriculture. 

Future research should include field studies employing both biochar and C. zeae to 

improve wheat growth. In addition, the impact of biochar on the growth and ability of C. 

zeae to colonize the rhizosphere should be investigated. During these field studies yield, 

as well as grain quality, should also be monitored. In addition, the effect of C. zeae and 

biochar on carbon cost should be investigated. Furthermore, it should be determined 

which fertilizer concentration and biochar amendment concentration would result in the 

best wheat growth in the presence of C. zeae, without negatively affecting plant nutrition.  
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