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Abstract

Solar sailing has become a viable and practical option for current satellite missions. A spinning solar sail
has a number advantages above a 3-axis stabilised sail. A spinning sail is more resistant to disturbance
torques and the misalignment of the centre of mass and centre of pressure. The spinning sail generates a
constant centrifugal force, which reduces sail billowing and makes it possible to use wire booms. The new
tri-spin solar sail and tri-spin Gyro satellite configurations are proposed that combines the advantages of
the spinning and 3-axis stabilised sail designs. This study focuses on the deployment control of the sail
and the orientation control of the satellite.

Different deployment methods of a rotating structure are studied. The active deployment method makes
use of a separate module with an actuator on the rotating system to deploy the structure. The passive
deployment method, deploys the structure by using centrifugal force generated by continually spinning
the deployment mechanism. A pulse deployment controller and model estimation methods for the passive
deployment mechanism are proposed to improve the controllability of the passive deployment method.
The mathematical models of these methods are investigated in simulation. A deployment demonstrator
is built, which is able to perform either an active or a passive deployment. The theoretical simulation
results show promising correlations to the practical results from the deployment demonstrator. Further
experiments are conducted to investigate methods to increase the damping of a wire boom.

The orientation control includes the development of an accurate mathematical model of the satellite. This
model contains the rigid dynamics of the satellite and the non-rigid dynamics of the rotating wire booms.
The moment of inertia of the satellite is used as a cross-coupling parameter between the rigid satellite
dynamics and non-rigid wire dynamics. The dynamics of the wire booms are examined and the main
parameters to keep the wire booms stable are identified. Attitude manoeuvres for changing the orbit
altitude of a satellite in earth- and sun-centred orbits are implemented within an orbital simulation to
reveal the change in orbital elements caused by the solar thrust.

An attitude determination and control system (ADCS) is designed for the conceptual satellite. The state
determination and attitude controllers are designed to perform the needed manoeuvres for a satellite to
change its altitude by using solar pressure. The controller design includes a magnetic B-dot, a deployment
rate controller, solar tracking controller, aerodynamic controller and momentum dumping controller. The
performance of the ADCS design on a tri-spin solar sail satellite are investigated through an in depth
simulation, which includes: the dynamic models created for the rigid satellite, the non-rigid wire booms
and deployment methods. The simulations reveal that it is feasible to implement the ADCS system on the
novel tri-spin solar sail satellite.

The tri-spin solar sail satellite is able to perform faster attitude manoeuvres than a standard spinning solar
sail making it able to operate in a low earth orbit. This will enable the satellite to change its attitude to
produce the required solar thrust to change its orbit.
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Samevatting

Sonseilvaart is ‘n praktiese opsie vir huidige satellietsendings. 'n Roterende sonseil het 'n paar voordele bo
'n drie-as-gestabiliseerde seil. ‘'n Roterende seil bied meer weerstand teen steurdraaimomente, veral die
wat deur ‘'n wanbelyning van die massa- en druk-middelpunte veroorsaak word. Die rotasie veroorsaak ook
‘'n voortdurende sentrifugale krag wat die misvorming van die seil verminder en die gebruik van draad-
en-massastelsels moontlik maak. Die nuwe drie-deel roterende sonseilvaartsatelliet asook die drie-deel
satelliet met giroskoopbeheer in 'n lae aardwentelbaan is voorgestel wat die voordele van die roterende
en drie-as-gestabiliseerde seil ontwerpe kombineer. Hierdie studie fokus op die ontplooiing van die seil en
die oriéntasiebeheer van die satelliet.

Verskillende ontplooiingsmetodes van roterende strukture is ondersoek. Die aktiewe ontplooiingsmetode
maak gebruik van ’'n afsonderlike module met 'n aktueerder op die roterende stelsel om die struktuur te
ontplooi. Die passiewe ontplooiingsmetode ontplooi die struktuur deur gebruik te maak van die

’

sentrifugale krag wat deur die rotasie van die ontplooiingsmeganisme veroorsaak word. n
Puls-ontplooiingsbeheerder en afskattingsmetodes, vir die passiewe ontplooiingsmeganisme, word
voorgestel om die beheer te verbeter. Simulasies is gebruik om die wiskundige modelle vir die metodes te
ondersoek. 'n Ontplooiingsdemonstreerder is gebou wat 'n aktiewe of passiewe ontplooiing kan uitvoer.
Die resultate van die teoretiese simulasies stem ooreen met die praktiese resultate van die
ontplooiingsdemonstreerder. Verdere eksperimente is uitgevoer om metodes te ondersoek om die

demping van die ossilasies van draad-en-massa stelsels te verhoog.

Die oriéntasiebeheer sluit die ontwikkeling van 'n akkurate wiskundige model van die satelliet in. Hierdie
model sluit die rigiede dinamika van die satelliet en die nie-rigiede dinamika van die draad-en-massas in.
Die traagheidsmoment van die satelliet is gebruik as 'n koppelterm tussen die rigiede satellietdinamika
en die nie-rigiede draad-en-massa-dinamika. Die draad-en-massa-dinamika is ondersoek om die
beduidende parameters vir die stabiliteit van die draad-en-massa-stelsels te onttrek. Die oriéntasiestelle
om die wentelbaanhoogte van die satelliet te verander, is binne 'n wentelbaansimulasie geimplimenteer
om die effek van die sondruk op die wentelbaanveranderlikes waar te neem.

‘'n Oriéntasiebepaling en beheerstelsel is ontwerp vir die konseptuele satelliet. Die oriéntasie-afskatters
en oriéntasiebeheerders is ontwerp sodat die drie-deel-roterende satelliet die sondruk kan gebruik om

’

van wentelbaanhoogte te verander. Die beheerderontwerp sluit ’'n magnetiese B-dot, ’'n

’ ’ ’

ontplooiingsbeheerder, n sonvolgingsbeheerder, n aerodinamiesebeheerder en n
momentumontladingsbeheerder in. Die uitvoering van die oriéntasiebeheerstelsel vir 'n roterende
sonseilvaart word ondersoek vanuit 'n simulasieprogram wat die dinamiese modelle van die rigiede
satelliet, die nie-rigiede draad-en-massas en ontplooiingsmetodes insluit. Die simulasie toon dat dit

uitvoerbaar is om die oriéntasiebeheerstelsel te implementeer op die drie-deel-roterende sonseilvaartuig.

Hierdie nuwe konfigurasie kan vinniger oriéntasie veranderinge voltooi as 'n standaard roterende
satelliet en kan dus die oriéntasie betyds berreik om die regte sondruk te produseer sodat die satelliet se
wentelbaan kan verander.
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Chapter 1

Introduction and Problem Description

1.1 Background

Solar sailing has become a viable option for the passive propulsion of satellites. Additional linear
momentum is obtained when photons from a light source hits the solar sail surface. Recent successful
solar sailing missions have removed solar sails from the realm of science fiction and demonstrated that
they have real world applications. How solar sails are used will depend largely on the way the solar
thrust vector can be controlled and the manner in which this can be achieved will depend on the

characteristics of the sail structure.

Current trends indicate that there are two main types of solar sailing satellites: spinning and 3-axis
stabilised sails. A spinning solar sail has a number of advantages above 3-axis stabilised sails. Spinning
solar sails generate continual centrifugal force that keeps the sail stiff and maintains its shape without
additional rigid masts. The rotating sail is also more resistant to the disturbance torque from the
misalignment of the centre of mass and centre of pressure than 3-axis stabilised sails. Unfortunately, the
attitude manoeuvrability of the satellite is reduced due to an angular momentum bias. Attitude control of
a solar sail satellite is required to obtain the correct solar thrust vector for orbital manoeuvres and point
payloads to specific targets.

Stellenbosch University specialises in the attitude determination and control system (ADCS) of satellites,
and is involved in numerous future solar sailing missions. These solar sailing satellites are similar in the
manner in which the attitude is changed and the way the sail is deployed. Investigation of alternative
methods to control and deploy solar sails will contribute to the current understanding of solar sails.

Solar sailing is a tool that can be used for a variety of functions, whether the solar thrust is used on an
inter-planetary probe to travel deeper into the solar system or to deorbit a satellite that has achieved its

mission.

1.2 Problem Definition

The main aim of this thesis is to develop an attitude determination and control system for a spinning solar
sail satellite to generate and control a solar thrust vector to change its orbit altitude.

This problem is solved by:

¢ Identifying the current status of spinning solar sail designs, ADCS for solar sail satellites,

requirements to generate solar thrust and main design parameters.

¢ Defining a viable spinning solar sail configuration and develop the kinematic and dynamic equations

describing its attitude.

* Developing a dynamic model for the non-rigid element of a spinning solar sail and investigate the
effects of attitude manoeuvres.
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¢ Identifying the attitude manoeuvres required to change the orbit altitude of a solar sail satellite.

Identifying and test different deployment methods of wire booms.

¢ Discovering the attitude estimators and controllers necessary for deploying the sail and controlling

the solar thrust of a spinning solar sail satellite.

¢ Implementing a viable ADCS system on a spinning solar sail satellite within simulation.

The work presented is not based on a specific satellite mission. There are no constraints placed on the
ADCS system with regards to mass, volume or specific performance requirements. The main outcome is

to produce a rapid reactive control system for a solar sail satellite and to demonstrate its feasibility.

1.3 Thesis Layout

The layout of this thesis is as follows. Chapter 2 contains a broad literature study concerning the theory
behind solar sailing, the solar sail missions which have already flown, and missions that are close to being
launched. This chapter will conclude with a discussion comparing spinning and 3-axis stabilised sails and
different sail structures. Chapter 3 introduces the proposed solutions for the problem defined in §1.2 and
the dynamics of the proposal are analysed. The necessary theoretical background is supplied to design
and analyse a solar sail satellite. The new tri-spin solar sail satellite solution is introduced.

Chapter 4 presents a discussion on the development of methods to deploy the sail system and the
experiments conducted with a deployment demonstrator. Results of the investigation of the dynamics of a
rotating wire boom are presented. The chapter concludes by introducing methods of measuring missing
parameters required for the accurate simulation of the satellite dynamics. Chapter 5 deals with the ADCS
that includes the development of the attitude determination and control algorithms. Different control
modes require different estimators to provide different attitude information. Chapter 6 presents the
ADCS results when applied on a tri-spin, CubeSat sized, technology demonstrator in a low earth orbit.
The ADCS of different spinning solar sail configurations are investigated within simulation. The
simulation covers the initial release, deployment of the sail and the tracking of the sun. This thesis is

concluded in Chapter 7 with a summary of the results and recommendations for future work.

1.4 Novelty

The literature review in Chapter 2 will highlight that no solar sail configuration currently exists that can
perform rapid attitude manoeuvres. 3-Axis stabilised sails can perform fast manoeuvres, but are limited
in the size of sail due to the mechanical complexity. Large spinning sails are deployed easier, as seen by
IKAROS in §2.3.1, but is limited in attitude manoeuvrability and does not contain a stabilised platform for
payloads needing accurate pointing. The attitude performance on solar sails needs to be improved before
this passive propulsion method can be applied to more demanding satellite missions.

This thesis aims to demonstrate novelty by:

* Developing a new sailing satellite configuration that can combine the advantages of 3-axis stabilised
sails and spinning sails.

¢ Deriving the dynamic model of this new sailing satellite that includes the effects that rapid attitude
changes have on the non-rigid elements within the satellite.

» Investigating methods to deploy rotating wire booms.

¢ Developing and implementing an attitude estimation and control system for this new sailing
configuration.
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Chapter 2

Literature Study

2.1 Introduction

Solar sailing is not a new field. As many researchers have investigated and developed technologies for
solar sailing, it is worth investigating the knowledge currently available and assessing whether the
identified problem can be addressed. Previous and current solar sailing missions are discussed.
Literature that discusses spinning and 3-axis stabilised solar sails as well as the various attitude control
mechanisms which are currently available are compared. Different methods of deploying masts or booms
for the sail are also examined.

2.2 Sailing Satellites

A number of external forces in the space environment affect a satellite of which solar radiation pressure
force is one. A satellite in an orbit experiences disturbances when particles collide with the satellite body.
Sail satellites deploy large surfaces to increase their projected area and thus are influenced by more of
these particles. The resultant force is used as a controlled thrust to change the satellite’s orbit. Unlike
conventional systems where the satellite needs to contain its propellant, sail satellites make use of the

space environment to produce thrust.

2.2.1 Solar Thrust and Aerodynamic Drag

When photons from a light source hit a surface they are specularly reflected, diffusely reflected, or
absorbed. This interaction transfers linear momentum from the photons to the satellite surface, as shown
in Figure 2.1. The solar thrust obtained from the impinging photons is maximised by increasing the
reflectivity of the surface and controlling the incidence angle of the incoming photons[1]. The closer the
photon incidence angle is to the normal of the surface, the larger the generated thrust. The characteristic
acceleration (normally in mm/s? units) is a performance parameter which explains the ratio between the
satellite mass and the sail surface area and is defined as a. = 2(P- A)/M. The area of the sail is defined
as A, M is the mass of the entire satellite and P is the nominal solar-radiation pressure constant
(P = 4.563 x 10~SN/m? for a satellite 1AU from the sun)[8]. The mass of satellites and the complexity of
deploying a large structure have long hindered the success and feasibility of solar sailing missions. The
recent decrease in satellite sizes and the development of light materials have made it possible to increase
this characteristic acceleration of solar sails and make it a practical passive propulsion system.

When a solar sail is placed in a sun-centred orbit, the satellite can move towards or away from the sun.
Although the solar pressure is minuscule, it is ever-present. The magnitude of this pressure is reduced
the further the solar sail is away from the sun. The time scale that applies to satellites in inter-planetary
missions varies from months to years, the pressure produces a continual acceleration, which when
controlled correctly can result in the solar sail reaching a very high speed. Solar sails in an earth-centred
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Figure 2.1 - Solar thrust force generated by a non-ideal sail surface; image derived from [9]

orbit can produce solar thrust or aerodynamic drag. At higher altitudes however, the atmosphere
contains few particles and the solar thrust generated exceeds that of aerodynamic drag. The solar thrust
can be used to increase or decrease the orbit altitude of the satellite. Satellites in an earth-centred orbit
are required to complete attitude changes much faster to produce the required thrust vectors to change
their orbit than interplanetary sails.

An object placed within a freestream flow experiences aerodynamic drag. This is due to the relative
motion of a surface in the presence of gas particles. Like solar thrust, the aerodynamic thrust is created
by the linear momentum exchange between molecules in the atmosphere and the satellite surface. The
equivalent characteristic acceleration of a drag sail is defined as a. = % pCpv?A/M, with p the atmospheric
density, C'p the ballistic coefficient and v the speed of the satellite relative to the atmosphere. The density
of the atmosphere produces a force similar in size to that of solar thrust at about 580 km, see Figure 2.2. At
lower altitudes, the atmospheric drag increases exponentially and dominates other forces that the satellite
will experience. Methods to increase the aerodynamic cross-section of a satellite is a popular choice for
meeting the requirement to deorbit a non-functional satellite after 25 years[8]. Deploying a drag sail is

one approach for increasing a satellite’s cross-section area.

2.2.2 Sailing Satellite Types

Sail satellites are mainly distinguishable by the shape of the sail. The three main sail shapes are: Spinning
disc sail, square sail and heliogyro[1] (see Figure 2.3). Each of these types has its own advantages when it
comes to solar thrust, controllability or stability and deployment complexity. Some sail satellites combine
aspects of different sail types to create a hybrid solution.

Spinning disc sails present the simplest way of deploying a large surface. The satellite is in a constant slow
spin generating a centrifugal force pulling the sail on all sides and keeping it rigid. No extra deployables
are required to offer structural support to the sail surface. The larger the sail becomes at the same
spin rate, the stiffer the sail becomes. A spinning satellite contains a large angular momentum, which
makes the satellite less susceptible to external disturbance forces. Unfortunately, this also means that the

momentum vector needs to be slowly precessed to change the satellite’s attitude.

Square sails are popular and mostly pertain the deployment of at least four sail booms with the sail broken
into four triangular sections that span between these supports. The sail booms are only required to be a
simple straight section of material and can be folded or rolled when stowed. Many metallic solutions are
offered which can keep the sail sections stiff without any other internal force required. The satellite body
is not required to spin to generate centrifugal force to keep the sail stiff.
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Figure 2.2 - Comparison between the pressure experienced due to aerodynamic drag and solar thrust at different
orbit altitudes around the earth

(a) Spinning disc sail (b) Square sail (c) Heliogyro sail

Figure 2.3 - Different sailing satellite types taken from Wie[1]

Sail Shape Advantage Disadvantage
Spinning Disc Simple deployment Spinning satellite body
Immune to CoM to CoP offsets | Slow precession of angular momentum
Square Stabilised satellite body Require stiff sail booms
Succeptable to CoM to CoP offsets
Heliogyro Large control surfaces Reduced projected area

Table 2.1 - List of advantages and disadvantages of different sail shapes

Instead of deploying a single surface, as with the previous two types of sail, the heliogyro unfolds long
strips with a reflective surface. This greatly decreases the deploying complexity but decreases the area
with a similar length of deployable material. This results in the heliogyro blades having to be much longer
to generate similar characteristic accelerations. These blades are kept stable either by using centrifugal
force by constantly spinning or just deploying a single long blade and exploiting gravity gradient force to
keep it stiff when in an earth-centred orbit. The satellite gains passive attitude control when these blades
are able to rotate with different rotation configurations producing torques in different directions.

The main advantages and disadvantages are summarised in Table 2.1.
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2.3 Solar Sailing Missions

Solar sailing is an old concept, the building of solar sails has only recently become practical. In the past
the effect of solar radiation pressure was well known and was even used during the Mariner 10 mission[9].
The solar radiation pressure was used to create a windmill torque to maintain the angular rate around its

roll axis[1].

The IKAROS satellite from JAXA was the only successful mission dedicated to solar sailing in the past.
Other successful satellites deploying drag sails are the NanoSail-D2 from NASA and LightSail, but
numerous new sail satellites (solar sail and drag sail) are close to being completed and these will

probably be launched in the near future.

2.3.1 IKAROS

The Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS) satellite was built by Japan
Aerospace Exploration Agency (JAXA), and was the first successful solar sail launched into space[10].
This 200m? spinning solar sail was launched in May 2010 and performed a fly-by of Venus in December
2010[2; 11]. An artistic impression of IKAROS can be seen in Figure 2.4.

Figure 2.4 - Artistic impression of IKAROS[2]

The IKAROS was a spinning solar sail that made use of wire booms as masts to support the sail. The wire
booms had tip masses that experienced sufficient centrifugal force owing to the constant spin, which in
turn kept the wire boom stiff under operation. The entire spacecraft was 315 kg and required a very large
sail to produce the required solar thrust[12]. The sailcraft made use of large LCD panels for attitude
control to produce a centre of mass (CoM) to centre of pressure (CoP) offset, which created a controlled
torque. Each corner of the sail contained a liquid crystal display (LCD) panel. When the reflective
characteristics of the LCD panels were changed in the correct order relative to the current spin, a solar
torque was produced. Thrusters were used to control the spin of the satellite.

The deployment of the sail was one of the main challenges. Many test deployments were executed to
ensure that the deployment mechanism would be successful. These tests included a model launched by a

sounding rocket and an experiment on a high altitude balloon[13].

2.3.2 NanoSail-D2 and FeatherSail

The NanoSail-D (seen in Figure 2.5a) project was a 3U CubeSat-sized sail spacecraft. It deployed a 10m?
sail and made use of semi-rigid booms[14]. These semi-rigid booms are curved metallic strips that can
be rolled up and contained. When released, these strips straighten and produce an almost rigid boom on
which the sail is deployed (further discussed in §2.5).



Stellenbosch University https://scholar.sun.ac.za
CHAPTER 2. LITERATURE STUDY 7

(a) Artistic impression of NanoSail D[16] (b) FeatherSail Concept[17]

Figure 2.5 - Small solar sails from NASA

The satellite was equipped with a passive attitude control system which used permanent magnets to
stabilise the satellite system. Minimal telemetry information was sent to the ground. There was no
instrumentation to measure the attitude dynamics, which reduced the software and avionics
required[14].

The first NanoSail-D was launched on August 2008, but a launch vehicle failure resulted in the loss of both
the launch vehicle and the payloads. The second satellite attempt was launched on 19 November 2010
and ejected from the FASTSAT on 17 January 2011. The NanoSail-D2 had only enough power to run full
communications for three days[15]. National Aeronautics and Space Administration (NASA) made use of

visual evidence from earth to best determine the satellite’s telemetry[16].

The NanoSail-D2 project did not make use of solar thrust and rather utilised aerodynamic drag to deorbit.
This was the first successful in-orbit demonstration of a sail deployed by a CubeSat. The sail satellite had
an orbit lifetime of eight months and re-entered the earth’s atmosphere on 17 September 2011[15].

Building on the technological advancements of NanoSail-D, a further advanced concept known as
FeatherSail[17] is under investigation by NASA. FeatherSail, shown in Figure 2.5b, has a sail which is
broken into different sections, each with a mechanical actuator for changing the angle of these sail
panels. This will change the direction of the solar thrust generated by the specific sail panel as well as
the CoP of the entire sail surface. This control method increases the controllability of the solar sail
satellite and enables it to generate control torques in all directions using the solar radiation pressure.
This satellite is only at a concept level and no known mission is planned using the FeatherSail control
concept.

2.3.3 Surrey CubeSail and DeOrbitSail

The CubeSail from Surrey Space Centre, University of Surrey, involves a 3U CubeSat mission which will
deploy a 4m x 4m reflective sail[18]. An engineering model is shown in Figure 2.6a.

The deployment of the sail will commence similarly to that of NanoSail-D2. The sail will be deployed either
by using metallic booms or by deploying bi-stable carbon-reinforced booms[19]. A 2.2m x 2.2m proof of
concept solar sail prototype was developed, which demonstrated the successful deployment of a sail using
the deployment mechanism[21].

The biggest difference between the CubeSail and NanoSail-D2 lies in its attitude control system. The
CubeSail satellite will make use of an active ADCS[22; 19]. The satellite will initially make use of
magnetorquers to detumble after release. A momentum wheel is used to create an angular momentum
bias within the satellite to stabilise and reduce the effects of external disturbance forces. A 2-axis
translation stage is sandwiched between the sail module and the satellite bus. The satellite bus can move
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(a) Engineering model of Cubesail[19] (b) Artistic impression of Cubesail[20]

Figure 2.6 - Images of CubeSail

relative to the sail, which enables the system to move the CoP relative to the CoM to control the
disturbance torque that may occur or produce control torques. The main objective is to observe the effect
of solar thrust on a solar sail in an earth-centred orbit. The satellite will orientate itself with the sail
normal perpendicular to the orbit plane. This orientation will result in the least aerodynamic drag. The
mission is planned to occur in a sun-synchronous orbit. The choice of the orbit and the direction of the
solar thrust will produce a change in orbit inclination. A change of 2 — 3°/year is expected. After a clear
inclination change is witnessed, the satellite will reorientate to a maximum aerodynamic drag orientation
to reduce altitude and to finally deorbit. The launch date of this satellite mission is currently unknown.

The Surrey Space Centre was also involved with the DeOrbitSail project[23]. The DeOrbitSail project was
a Framework 7 program (FP7) of the European Union and includes a whole team of institutions and
private companies (including Stellenbosch University)[19]. The satellite is based on commercial
of-the-shelf (COTS) components and a 3U CubeSat form factor. The DeOrbitSail aims to deploy a 16 m?
square sail, and will be supported by carbon-fibre reinforced booms (discussed further in §2.5) developed
by the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). The main mission objective is to demonstrate
deorbiting with the use of aerodynamic drag. A momentum wheel will be used to keep the sail
perpendicular to the velocity vector in order to obtain maximum aerodynamic drag[22]. The mission is
currently active and the satellite was launched from a PSLV rocket on the 10th July 2015[24]. This
mission is currently busy with ADCS commissioning and the deployment of the sail will commence after
the satellite has been stabilised.

InflateSail is a third sail mission built by the Surrey Space Centre and will be launched along with the
QB50 CubeSat mission in early 2017. The satellite contains a circular sail that is attached to an inflatable
structure. The 3U CubeSat will deploy a 10m? sail surface[25; 26].

2.3.4 LunarFlashlight and NEA Scout

The NASA Jet Propulsion Laboratory (JPL) is working on two solar sailing missions[27]. The LunarFlaslight
mission aims to locate ice deposits in the Moon’s permanently shadowed craters[28; 29]. The satellite is
placed in a lunar orbit and utilises its solar sail to reflect sunlight into these craters and employs a 4-band
spectrometer to investigate whether water elements are present. The concept for the satellite is based
on a 6U Cubesat bus deploying a 60m? to 90 m? sail. The JPL is also working on the Near Earth Asteroid
(NEA) Scout mission which aims to target and rendezvous with an asteroid[30; 31]. Its major outcome
will be to use imagers on an inexpensive platform to typify a NEA. The distance of the target from earth is
restricted to less than 0.5 AU by its communication system. The sail and deployment mechanisms of both
satellites are based on the experience gained during the NanoSail-D mission.

The ADCS architecture that is presented includes different possible control modes facilitated by a cold gas
propulsion system, one large momentum wheel, three small steering reaction wheels, sun sensors, IMU
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and a star tracker{27]. The satellite will be spinning at a rate of 1 rev/hour to average the added momentum
from propulsion and external sources. The cold gas propulsion system is used for initial orbital manoeuvres
and for management of the momentum exchange devices. A large momentum wheel regulates the major
spin of the satellite and ensures a zero-momentum system by cancelling the angular momentum of the
spinning sail satellite. Small reaction wheels are used for fine attitude control of the satellite’s scientific

payload and antennas.

Beyond the technological complexity of deploying such a satellite in space, these satellites are based on the
Cubesat form factor, which does not contain volume for shielding of the electronics in the harsh radiation
environment of deep space. No Cubesat has experienced deep space radiation. Many of the Cubesat
electronic systems are to be tested on other deep space missions, for example INSPIRE, for which the
main computer is based on radiation tolerant LEON-3 architectures. Both sailing satellites are planned to
be launched with the initial launch of the SLS EM-1 rocket in December 2017[27].

Peo o

Iris X-Band Rad Tolerant CADH" EPS  BCT Nano Star Tracks

AustinSat Cold Gas Volu

(a) System overview of NEA Scout (b) System overview of Lunar Flashlight

Figure 2.7 - Images of the future JPL solar sail missions[27]

2.3.5 Cosmos-1 and LightSail-1

The Planetary Society built the Cosmos-1 solar sail satellite, seen in Figure 2.8a, in 2005. It was a 100kg
satellite with a solar sail surface made from individual blades. Each blade was 15m long, and the entire
sail had a surface area of 600 m?. It was launched from a Russian submarine and would have been the first
satellite dedicated for solar sailing. Unfortunately the mission was unsuccessful due to a rocket failure[3].

The LightSail-1, seen in Figure 2.8b, is the next solar sail satellite from The Planetary Society. It was
planned to be one of three in the complete LightSail project with the LightSail-1 demonstrating the
technology in earth-centred orbit[32]. It is a CubeSat based satellite bus similar to the NanoSail-D2[33].
The LightSail-1 has a 32m? mylar sail using semi-rigid deployed booms for supports. The initial attitude
control design is presented by Nehrenz[34] and illustrates the detumbling of the satellite with the use of
magnetorquers. It also contains a momentum wheel which provides gyroscopic stiffness and is used to
perform fast 90 ° manoeuvres for orbit raising.

The LightSail-1 mission was changed and obtained a launch opportunity on 20th May 2015[3; 35], but the
orbit was too low to demonstrate solar sailing. LightSail A was to demonstrate the deployment of the sail,

but the satellite experienced a software problem which caused the computer to suspend. After a reset,
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(a) Cosmosl1 (b) LightSail-1

Figure 2.8 - Artistic impressions of solar sails from the Planetary Society[3]

communication was established and the sail was successfully deployed so that the satellite re-entered the
atmosphere within seven days after almost a month in space. The photo of the successfully deployed sail
can be seen in Figure 2.9. LightSail B will now follow and will be launched by means of a SpaceX Falcon
Heavy rocket in 2016. The aim will be to demonstrate solar sailing from a higher altitude.

= . ‘ N N < -‘[.A oy ' — \‘-.‘-:
Figure 2.9 - Photo of the deployed sail of LightSail A[35]

2.3.6 Illinois CubeSail and UltraSail

The Illinois CubeSail[4] is planned to be the first demonstration mission of the larger UltraSail and is
very different to the other solar sailing satellites. UltraSail[36] is a conceptual satellite which deploys
four large individual reflective sheets. The Illinois CubeSail will demonstrate a single sheet on a smaller
scale. The satellite is a 3U CubeSat, which, when deployed, becomes two 1.5U CubeSat structures with
a 260m, 20m? reflective sheet in between the structures. Each tip satellite will be a fully functioning
satellite containing its own communication, power and ADCS subsystems. The attitude of the satellites is
magnetically controlled with torquer rods and feedback is generated by means of a magnetometer and sun
sensors. The film is kept stiff by means of gravity-gradient forces between the two satellites. The film is
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long and has many of the same dynamics that longer-tethered satellites will have. The planned launching
date of the Illinois CubeSail has not been made known.

| s

Figure 2.10 - Illinois CubeSail[4]

2.3.7 Sunjammer

The Sunjammer solar sail satellite was built for NASA by L'Garde. The aim of Sunjammer was to reach a
sub-L1 location and to measure the magnetic field for space weather monitoring applications. It comprised
a sailcraft and carrier section. The satellite was planned to be launched into a Geostationary Transfer Orbit
(GTO) and to use its own chemical propulsion from the carrier section to enter an earth escape orbit. After
reaching the correct escape trajectory the satellite would release the sailcraft from the propulsion system.
The sailcraft part of the satellite would then deploy its 1200 m? sail.

The sail, constructed from 5 pm Kapton film, used unstressed material, unlike other sail designs where the
sail is pulled straight to create as flat a surface as possible. The structure of the sail was created by long
booms which originally were inflated during deployment and contained external truss elements supplying
extra stiffness. The sail had four control vanes at the tips of the booms to generate control toques for
attitude control[37].

Unfortunately the Sunjammer mission was cancelled by NASA in October 2014[38]. Sunjammer would
have been the first dedicated large solar sail after IKAROS.

2.3.8 Gossamer

The DLR, along with ESA, is collaborating on a technology path to develop and refine solar sailing missions.
The plan is divided into three missions, with the first known as Gossamer-1[39; 40]. The aim of Gossamer-1
is to demonstrate the mechanisms used to deploy the sail masts and the sail. The 5m x 5m sail is deployed
while attached to the upper stage of the launcher used for the QB50 CubeSat project.

Gossamer-2 is planned to be a 20m x 20m, 57 kg sailing satellite which will be released in a LEO and will
only test the orbit and attitude control capability. The lifetime of a satellite in such a low orbit is about
four weeks. Gossamer-3 a 50m x 50 m solar sail is planned to be released in an earth-centred orbit. It will
make use of a sail with a characteristic acceleration exceeding 0.1 mm/s? to increase its orbit altitude to
finally reach escape velocity[8].

2.3.9 Summary

Johnson et al.[8] discuss the status of a number of current and past solar sailing missions. The authors
present a list of known past and future solar sailing missions. A summarised version of this list and other
sources have been combined to investigate the current solar sailing missions for comparing a few key

parameters, as seen in Table 2.2.
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The characteristic acceleration for the missions in the list and that of proposed future missions are

depicted in Figure 2.11. In Figure 2.11 currently and past active missions are depicted in green, failed or
cancelled missions are shown in red, missions currently under development in orange and future planned
missions in blue. Znamya-2 and Znamya-2.5 had almost no characteristic acceleration due to the large
mass of the attached spacecraft. They were both sail demonstrators that were attached to an unmanned
cargo spacecraft. It can be seen that the accelerations achieved by IKAROS and NanoSail-D were not
enough for proposed future missions, but the current sail missions promise great improvement. Figure
2.12a shows the differences in the fraction of the active missions, those which failed and those still in
development. Solar sails are difficult to build and operate, which is evident by the success ratio, but the
number of solar sails in development compared to past missions does show an increase in interest in
solar sailing technology. The majority of sailing satellites uses a square sail and are 3-axis stabilised (see
Figures 2.12b and 2.12c). Most of the solar sail missions use a CubeSat bus (see Figure 2.12d), which
confirms the fact that solar sailing is still a new technology, and the CubeSat platforms are widely used to
increase the technology readiness level (TRL) of certain key technologies. The rest of the solar sails are
either deployed while attached to the launch vehicle to demonstrate a deployment mechanism (described
as Demonstrations e.g. Znamya-2 and Gossamer-1) or use dedicated larger satellite busses (described as

Other e.g. IKAROS).
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Figure 2.11 - Characteristic acceleration of different solar sail satellites.

2.4 Solar Sail Attitude Control

Solar sails can be categorised either as spinning sails or as 3-axis stabilised sails. IKAROS was a spinning

sail and completed an interplanetary mission. NanoSail-D2 was a passively stabilised sail and completed an
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(a) Solar sail missions (b) Types of sails

Spin-stabilised
CubeSat

3-axis stabilised Demonstrations
(c) Attitude control requirement (d) Size of sail satellites

Figure 2.12 - Comparison of different parameters of past solar sails and solar sails in development

earth-orbiting mission. It is clear that the future satellite missions described in §2.3 are mostly planned to

be launched in an earth-centred orbit and are to be mainly 3-axis or momentum biased stabilised satellites.

The first part of the article written by Wie[l] introduces control theory for a spinning solar sail
configuration. One advantage of a spinning sail is the resistance to disturbance torques. The source of a
dominant disturbance torque is the Centre-of-Mass (CoM) to Centre-of-Pressure (CoP) offset, which is
averaged to zero when spinning the sail. Pointing a spinning sail introduces the effects of precession of
the spin axis and nutation around the spin axis. Spinning such a large inertia produces a large angular
momentum adding gyroscopic stiffness to the satellite. Gyroscopic stiffness increases the stability of the
satellite, but also makes pointing and steering of the sail harder. Actuation methods like thrusters, which
produce large impulses of torques, will be required to generate the control forces to precess the spin
vector. IKAROS achieved the required torques by using LCD panels instead of thrusters. Using solar
pressure to steer the spinning satellite takes much longer to complete an attitude manoeuvre than with
conventional methods.

Nutation and precession of the spin vector will induce oscillations in a non-rigid space structure[1].
Nakano et al.[42] and Funase et al.[43] reveal large oscillation angles due to precession and nutation and
that these angles will affect the stability of a flexible spinning satellite. Funase et al. present methods
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and controllers that remain able to perform manoeuvres while managing the oscillations.

A spinning sail has the added advantage of generating a centrifugal force which keeps the sail stiff and
reduces the effect of billowing[44], which entails deformation due to the constant solar pressure. This
constant spin is also the parameter that keeps the wire boom stiff. IKAROS deployed a sail of 200m?,
which is 20 times that of the sail deployed by NanoSail-D2. The only limiting factor for the sail area of a
spinning satellite is the initial storage of the sail. The larger the sail, the higher the centrifugal force and

the stiffer it becomes at similar angular rates.

As 3-axis stabilised satellites do not spin, they do not generate centrifugal forces. The mast structure of
the sail is required to be stiff, naturally countering the induced deformation due to attitude changes and
the pressure experienced by the sail. The CoM/CoP disturbance torque is prominent if the sail does not
rotate, therefore measures are required to manage this disturbance torque[1]. This disturbance torque
can be controlled by adjusting the CoM/CoP offset. Many passive control methods for stabilised satellites
that make use of such methods have been investigated[18; 45; 46; 47]. These methods are ideally suited
for longer missions such as interplanetary missions. Romagnoli and Oehlschlagel[48] have introduced a
high performance attitude control that makes use of ballast masses moving the CoM. The authors present a
simulation which reveals a 35 ° manoeuvre completed in 56.3 min with no external disturbance torques. The
same manoeuvre including disturbances takes 85 min to complete. Adeli et al.[47] produced similar results
with moving of the CoM on three different-sized solar sails. Diedrich[46] developed a highly detailed
dynamic model by means of Lagrangian mechanics for a stabilised satellite with a single ballast mass on
a control boom. These methods make use of separate masses that are used to move the CoM, but the
satellite bus can also be used. Steyn and Lappas[49] have introduced a translation stage for a CubeSat
sized satellite that can be used to move the satellite body relative to the sail. This is ideally suited to
removing the CoM/CoP offset that will generate a large disturbance torque.

The satellite body of a stabilised satellite has very low angular rates. This makes it possible to use internal
momentum exchange mechanisms like reaction wheels to change the attitude. Polites et al.[50] revealed
that reaction wheels and magnetorquer rods can be used to control a sailing satellite in a low earth orbit
(LEO), even in the presence of disturbance torques. This solution becomes viable when the right orbit is
chosen. Stabilised solar sails are popular for future missions, because conventional control methods can
still be used and new light materials will be available for constructing semi-rigid booms.

2.5 Sail Structure and Deployment

Many methods for deploying sails are available. IKAROS deployed wire booms and NanoSail-D2 deployed
semi-rigid booms. Other methods for deploying gossamer sail structures include inflatable structures[51]
and rigid trusses[52]. The deployed masts must supply the sail with the required structure in the midst of
external forces and during the attitude manoeuvres the satellite will perform.

The wire booms that IKAROS (see Figure 2.13a) deployed were 10m long, creating a 200 m? structure for
the sail. This structure would only be viable if IKAROS keeps spinning. The wire booms experience a
constant centrifugal force due to the satellite’s spin which results in the booms staying stiff. Wire boom
deployment has been used many times in the past and is almost always present when long low frequency
wire antennas[53] (see Figure 2.13b) are required. These wires, which are wound around a pulley, can
be deployed steadily by means of an attached motor. Passive wire boom deployment is used in the Yo-Yo
despin mechanism[54; 55; 56] to reduce a satellite’s angular rate rapidly in a single axis. It is not only
the wire booms that are kept stiff, but the sail as well. The spin increases the stiffness of the sail, thus
reducing bulging effects[44] due to solar and/or aerodynamic pressure. This is advantageous, but in order
for this to happen, the satellite must spin creating a large angular momentum bias.

Semi-rigid booms are very popular. NanoSail-D2 (see Figure 2.14a) and LightSail used semi-rigid booms
made from thin, bended metallic strips. Similar methods are to be used in the Surrey CubeSail (see Figure
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(a) FEM of IKAROS[12] (b) Satellite with wire antennas[53]

Figure 2.13 - Wire boom deployed structures

2.14b) and DeOrbitSail. The semi-rigid boom requires a metallic strip which has memory but which is
bendable. It has a curved cross-section that can be folded flat and rolled around a pulley. In its stowed
configuration, the booms are under stress and exert force on the pulley to deploy. Deploying is a matter
of releasing the internal force for the booms to return to their curved cross-section shape and straighten.
A structure made from semi-rigid booms will be very stiff in one axis but not the other. The strong axis is
normally placed to resist the out-plane movement of the sail and the sail is used to dampen the in-plane
movement that may occur. The DLR has developed carbon fibre semi-rigid booms[57] that are formed
by two omega-shaped halves (see Figure 2.14c). These booms are to be used in the DeOrbitSail project.
Such booms can be deployed due to internal strain when wound around a pulley, as explained above.

Alternatively they may be connected to an electric motor, or be inflated.

(a) NanoSail-D2 boom[14] (b) CubeSail boom[18] (c) DLR carbon fibre boom[57]

Figure 2.14 - Examples of semi-rigid booms used for solar sails

Extensive research has been conducted regarding methods for inflating large structures without the need
for large gas reservoirs. Maessen et al.[51] have developed a compact inflatable system for a CubeSat.
It deploys a pyramid structure (see Figure 2.15a) which increases the aerodynamic cross section of the
satellite and only uses this drag to reduce the orbit altitude. It makes use a very small nitrogen gas
canister to inflate the drag structure. A similar design can be used to deploy rigid beams for solar sails.
Brown[52] describes a method of deploying rigid truss structures (see Figure 2.15b). The truss structure
is collapsed and rolled up to form a coil. When the stowed truss elements are deployed, they fold open
and the individual elements are locked into place. The author claims that these structures can be used for
deployable masts for solar sails between 100 m and 1000 m long. Unfortunately, it seems that the structure
only becomes effective when the cross-section diameter of the truss is large (larger than 1m), thus it is

not suitable for nano-satellites.
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(a) Inflatable pyramid[51] (b) Deployable truss structure[52]

Figure 2.15 - Other examples of deployable structures

2.6 Future Solar Sail Applications

Solar sail satellites have the capability to deploy large structures in space and control their attitude to
point the solar thrust in a certain direction. Such capabilities are useful in many other applications that
require a structure to be deployed.

2.6.1 James Webb Space Telescope

The James Webb Space Telescope (JWST) contains deployable solar sailing structures[5; 58] although not
purely being a sail mission. The space telescope is being built to replace the Hubble Space Telescope
and the Spitzer Space telescope. The main characteristic of the satellite is a 6.5 m diameter primary gold
mirror that is five times larger than that of the Hubble Space Telescope (see Figure 2.16a). The telescope
will use this mirror for high-resolution infra-red observations of points of interest. As the satellite needs
to be kept cold to ensure that accurate readings are taken, multiple 12.2m x 18 m-sized membranes will
be deployed to create a sun shield to block the heat from the sun (see Figure 2.16b). As in many solar
sailing satellites, the five membranes are made of a thin polyimide film coated with aluminium on the one
side and silicon on the other. The space telescope also contains a steering trim flap to be used as a control
vane to stabilise the satellite during operation. The satellite is currently being developed and is planned
to be launched in 2018.

(@) Artistic impression of the JWST (b) Deployed sun shield of the JWST

Figure 2.16 - The James Webb Space Telescope[5]
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2.6.2 Space-based Solar Power

Space-based solar power[59] (SBSB) entails generating electric power while orbiting around the earth and
then transmitting this power to ground receivers. The power is generated by large solar panels and power
transmission to earth is accomplished by lasers or by microwaves. IKAROS contained flat solar panels on
the surface of its solar sail. The same panels can cover the entire sail surface creating a large deployable

solar panel able to generate large amounts of electric power.

2.6.3 Deployable Antennas

Most solar sails require a structure or mast for the sail to maintain its shape. Such mast structures can
be used to create large deployable antennas[60]. Deployable wire antennas are common, but to increase
the antenna gain, other complex structures are required. The final form of a deployable antenna is vital
and determines the performance of the communication that can be achieved. In the past, NASA
performed successful deployment of a large 14 m antenna in 1996 in the Spartan 207 Inflatable Antenna
Experiment[61] (see Figure 2.17a). The antenna was attached to the satellite by means of three 28 m
beams. The beams and the circular antenna were inflatable structures. The Galileo space probe which
investigated Jupiter and its moons also had a deployable dish antenna which, unfortunately, was not
successfully deployed[62] (see Figure 2.17b).

(a) Spartan 207 Inflatable Antenna Experiment[61] (b) Deployable antenna on
Galileo[62]

Figure 2.17 - Deployable antennas

2.7 Conclusion

Current knowledge of solar sailing has been investigated. The number of sailing missions planned for
the near future will greatly improve the TRL of sailing missions. It is clear that there are numerous
methods for designing a sail satellite and that CubeSats provide a popular way in which to demonstrate
these new methods and technologies. CubeSats are still mainly launched in LEO and current planned
sailing test missions are still optimised to work in that environment. Most current active research is
conducted on 3-axis stabilised satellites with square sails using masts from semi-rigid boom assemblies,
even though spinning satellites offer better disturbance rejection and offer the use of wire booms to
provide sail structure. Wire booms are easily deployed and are stored compactly when wound around
a pulley. The main advantage of stabilised sails is that they are easier to control and point by using
conventional control methods like reaction wheels. Deploying large space structures are not advantageous
to sailing satellites only, but can be applied to a number of advanced concepts for future space systems.
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It is clear from this investigation that no satellite configuration currently exist that can manoeuvre a large
deployed surface effectively. 3-axis stabilised satellites require complex structural assemblies when the
deployed structure becomes large, while large spinning satellites cannot point a payload to a specific
point, or easily track an attitude reference. Solar sails in an earth-centred orbit is required to complete
attitude manoeuvres in a fraction of an orbit. The chapters that follow will present alternative spinning
sail concepts that combine the advantages of current stabilised and spinning sailing satellite types.
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Chapter 3

Spinning Solar Sail Design and Analysis

3.1 Introduction

A spinning solar sail satellite in an earth-centred orbit should be able to change the altitude of its orbit as
needed. The satellite should also increase its altitude to place itself in a sun-centred orbit for an
interplanetary mission or decrease its altitude to deorbit in the earth’s atmosphere after its primary

mission is completed. This chapter introduces a conceptual satellite that fulfils this requirement.

The conceptual spinning solar sail satellite design is based on the past and present sail satellites
introduced in the literature overview (see Chapter 2). Recent trends show technology demonstrators for
solar sail satellites that are implemented on earth-orbiting CubeSat satellites. The conceptual satellite
design will be applied on a CubeSat and design parameters are extracted from NanoSail-D2, Surrey
CubeSail, LightSail-1, Illinois CubeSail and other CubeSat sized sailing missions. The development and
simulation of the attitude control system requires a dynamic model of the satellite. The Newton-Euler
dynamic equations and the Lagrangian mechanics methods are implemented to extract the dynamic
equations. This chapter concludes by investigating the effect of the solar thrust on the orbital elements of
a solar sail satellite and the influence of the attitude control on the effectiveness of the solar thrust.

3.2 Conceptual Satellite

The conceptual satellite has to be able to generate controlled solar thrust. The energy within an orbit will
change if the solar thrust has a component in the velocity vector of the satellite. Wertz and Larson[63]
state that the energy within an orbit is directly proportional to the area of the elliptic orbit. The orbit
trajectory will change and progress more towards a parabolic escape trajectory as the orbit energy
increases. Similarly, a decrease in orbital energy will shrink the elliptic orbit until the satellite reaches
the earth’s atmosphere. The total solar thrust and its component in the velocity vector is dependent on
the angle of the sail relative to the sun. This relative angle is controlled by the satellite performing
attitude manoeuvres(§3.5).

Current solar sail attitude control mechanisms focus mainly on stabilising and slow attitude manoeuvres.
These attitude performances are not acceptable when the solar sail satellite contains an experimental
payload that requires accurate pointing and tracking. Payloads like imagers, spectrometers and narrow-
beam antennas all require precise orientation changes. The orbit period of a satellite in a low earth orbit
(LEO) is between 85min and 130min[63]. The attitude changes, which manipulate the solar thrust or
pointing a payload, should be completed in a fraction of this orbit period. These requirements prevent the
conceptual satellite from using passive attitude systems described in [45; 46] which have longer settling
times for orientation manoeuvres. Conventional attitude actuators, like reaction wheels, will produce a
faster change in attitude.

The conceptual satellite design is based on a CubeSat technology demonstrator mission, therefore the

20
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satellite sail payload, actuators and sensors are required to fit within a CubeSat body to test the complete

spinning solar sail system.

3.2.1 Satellite Configuration

A number of different configurations for a spinning solar satellite will be investigated. All spinning

satellites have angular momentum, which influences the attitude control performance.

3.2.1.1 Standard Spinning Solar Sail Satellite

IKAROS was a rotating solar sail satellite (see Figure 3.1a) and proved that it is possible to build a solar
sail satellite[41]. Rotating the sail produces constant centrifugal force, which makes the deployment of
the sail more predictable. The centrifugal force will stretch and pull on all the mass elements of the
satellite. In the case of the sail membrane it increases the stiffness of the sail material, making it more
resistant to other forces which will perturb the form of the sail. Spinning the sail is also ideal to counter
the centre-of-mass (CoM) to centre-of-pressure (CoP) offset disturbance torque, which exist in all satellites
producing a thrust force. Satellites using conventional thrusters to change their orbit also induce a spin
before performing controlled thrusts to minimise the disturbance in attitude.

A rotating sail produces a large angular momentum which makes it more resilient to disturbance forces
that might disturb its current attitude. This also prevents the ease with which the satellite can point in a
particular direction. The rotating satellite body makes it impractical to use momentum exchange devices.
External torques are required to steadily precess the angular momentum vector to the required direction.
IKAROS controlled the reflectivity of the sail surface to produce a force to slowly turn the spinning solar
sail satellite. These controlled torques can also be generated by chemical propulsion. In the recent past,
electrical propulsion has also been more widely proposed for attitude control and can also be used to
change the attitude of the spinning sail satellite[9].

Spinning the satellite remains one of the safest modes in which to operate a solar sail satellite. It creates
a predictable deployment environment, keeps the deployable structure stiff and has a large angular

momentum preventing the change of attitude due to external sources.

(a) Standard Spinning Solar Sail Satellite (b) Slow Spinning Solar Sail Satellite

Figure 3.1 - Current Spinning Solar Sail Configurations

3.2.1.2 Slow Spinning Solar Sail Satellite

The proposed Lunar Flashlight and the NEA Scout sail satellites make use of semi-rigid masts to supply
support for their 80m? sail[27]. As the sail is already quite stiff, a much slower angular rate of 1rev/hr
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of the satellite can be used. The continual spin is used to average the disturbance torque of the CoM
to CoP of the solar thrust. This slow spin generates a small amount of angular momentum which can be
absorbed by an internal momentum wheel (see Figure 3.1b). Such a momentum wheel negates the angular
momentum of the rotating satellite and maintains the required spin rate. A second set of smaller steering

reaction wheels are used to perform the required attitude manoeuvres.

The slow spinning of a solar sail is the simplest method to reduce the disturbance torque from solar
thrust, but requires a sail which does not need the centrifugal force of a spin to maintain its structure.
Maintaining a low angular momentum by using an internal momentum wheel retains the manoeuvrability
of the satellite.

3.2.1.3 Tri-Spin Solar Sail Satellite

A new spinning solar sail configuration that is under investigation combines the scalability of a spinning
solar sail satellite with the controllability of a 3-axis stabilised sailing satellite. The conceptual satellite
is made out of a spinning sail. The spinning sail generates a centrifugal force that keeps the sail stiff
and reduces CoM to CoP offset torques. A second part of the satellite is despun from the rotating sail.
The despun satellite bus provides a stable platform for the payload, sensors and actuators. The resulting
satellite can be seen as a stabilised satellite with a large external momentum wheel providing momentum
bias. To make the satellite more manoeuvrable, this bias must be reduced. A similar system is created by
the MicroMAS satellite[64], a dual-spin CubeSat with a payload rotating relative to the satellite body. It
uses an internal momentum wheel to reduce the angular momentum bias created by the spinning payload.
In this case, the payload’s angular momentum contribution is small and it is practical to make use of
an internal momentum wheel. A more scalable solution is created by adding a third part, which rotates
relative to the satellite bus and in the same axis as the sail, but in the opposite direction. The angular
rate of the momentum counter system (MCS) is reduced by increasing the moment of inertia through
deploying a second set of wire booms. The resulting satellite can be seen as two dual-spin satellites fixed

to one another (see Figure 3.2a).

The tri-spin solar sail satellite configuration brings together the advantages of spinning and stabilised
solar sail designs. The satellite consists out of three parts rotating relative one another. The MCS and sail
rotates relative to the central satellite hub at a rate to create a low resulting angular momentum bias.

(a) Tri-Spin Solar Sail Satellite (b) Gyro Tri-Spin Solar Sail Satellite

Figure 3.2 - New Tri-Spin Solar Sail Configurations
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3.2.1.4 Tri-Spin Solar Sail Satellite with Gyro Control

Control moment gyroscopes (CMG) normally consist of a rotating rotor. A torque is generated when
changing the direction of the spin axis by placing the spinning rotor on motorized gimbals. This can create
large torques with little actuator power.

Mounting each of the rotating structures of the tri-spin satellite on a 2 Degree-of-Freedom (DOF) gimbal
creates two CMGs. A gimbal control moment gyroscope (CMG) is a momentum wheel mounted on a 2-axis
gimbal (see Figure 3.2b). The momentum wheel produces constant angular momentum. The direction of
the angular momentum vector is determined by the gimbal angles. Changing the direction of the angular
momentum vector produces a torque on the satellite body. The main advantage of CMGs is the torque
amplification where small changes in gimbal angles can produce large control torques, but the gimbal
mechanism greatly increases the mechanical complexity of the actuator.

The CMG controlled tri-spin has an attitude actuator which scales with the moment of inertia and speed
of the rotating structures, but does add mechanical complexity to the overall satellite design.

3.2.2 Satellite Structure

The conceptual satellite structure is based on other sailing CubeSat missions. The CubeSat sail satellites,
seen in §2.3 mostly make use of a 3U CubeSat structure. These satellites are normally sectioned in the

satellite bus (1U), the sail deployment mechanism (1U) and the sail storage volume (1U).

The proposed spinning sail technology demonstrator satellite deploys wire booms as masts and will
require a much simpler and smaller deployment mechanism for its sail than the CubeSat missions
mentioned in §2.3. The satellite bus of the conceptual satellite is 1.6U. Deployable solar panels cover the
sail volume similarly to the case of the NanoSail-D2, Surrey CubeSail and LightSail-1, with 1.2U of the
CubeSat structure dedicated to the storage of the sail and the deployment mechanism of the sail. The
rest of the available volume within the 3U satellite will be used by the deployment mechanism of the MCS

in the case of the tri-spin satellite configuration.

Figure 3.3a depicts the proposed undeployed system, with the satellite bus in blue, the sail deployment
mechanism in red, and the MCS deployment mechanism in green. Deployable panels that will form the
solar panels and sensors for the satellite bus cover the storage area of the sail. Figure 3.3b shows the
layout after the deployment of the solar panels.

3.2.3 Reference Frame

Three main reference frames are used to describe the position and the attitude of a satellite. The inertial
reference frame, 7 : {X7,¥y7,2z}, is fixed to the centre of the earth (a geocentric system) with one axis in
the same direction as the spin vector of the earth (see Figure 3.4a). The other axis is in the direction of
the Vernal equinox (°) and the last is perpendicular to the other to create a valid right-handed frame[65,
p. 22-23][66]. When the satellite is no longer in an earth-centred orbit and orbits around the sun, the
heliocentric-ecliptic inertial reference frame[66, p. 156-158] is preferred.

The second reference frame is the orbit-fixed frame, O : {Xp,¥0,2Z0}. It is defined with the origin on the
satellite orbit and with one axis in same direction as the velocity vector of the satellite. The second axis
is nadir pointing and the last is perpendicular to the other to complete the right-handed reference frame
(refer to Figure 3.4b).

The last reference frame, a rotating reference frame, has the same origin as the orbit-referenced frame.
The origin of the body-fixed frame is the CoM of the satellite. The axes of the body-fixed frame, B :
{X5,¥8,Zr}, are chosen in the directions of the satellite’s principal axes. Figure 3.3b shows the definition
of these axes. Two other auxiliary frames will be used. They are the sail-fixed frame, S : {Xs,ys,zs}, and
the counter-fixed frame, C : {X¢,¥c,Zc}. These frames are defined as the body-fixed frame with a relative
angular rate around the yp axis. The conversion between these frames is described further in §3.3.1.
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yB
(a) Before deployment (b) After solar panel, sail and MCS deployment (sail and
MCS not to scale)

Figure 3.3 - Body-fixed frame definition

5’0 X0
(a) Inertial reference frame (b) Orbit fixed frame

Figure 3.4 - Reference frame definition

The method used to distinguish between the different frames will be applied with the help of a superscript
after the variable. Thus rZ is a vector r written in terms of inertial frame. If there is no superscript it is
to be assumed that the vector is written in body-fixed frame. Relative motion is indicated by means of a
subscript; for example, wp, o is the angular velocity of the body-fixed frame relative to the orbit frame.

3.2.4 Actuators

The conceptual satellite requires actuators to produce control torques to change its attitude. The
technology demonstrator can use a number of different actuators available for CubeSats. Conventional
actuators to change the attitude of the satellite includes: magnetorquer rods, reaction wheels, electric
propulsion and chemical propulsion. Reaction wheels and magnetorquer rods are widely used in CubeSat
applications[67] and a number of missions investigating the use of electric and chemical propulsion for
attitude control on CubeSats have been undertaken.

Three magnetorquers can be used for detumbling, initial control and momentum dumping of momentum
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exchange devices and are effective in LEO. The further the satellite is from earth, the less effective the
magnetorquers become. Magnetic control is also widely used along with spinning satellites to slowly
precess the angular momentum vector. The magnetorquer rod produces a magnetic moment that reacts
with the geomagnetic field of the earth to produce an external control torque. The ESL has developed its
own CubeSat magnetorquer rod (see Figure 3.5a), which is 60mm long and has a diameter of 10 mm. It
produces a magnetic moment of 0.2 A -m? at 5V with a 50% PWM duty cycle.

Electric thrusters make use of the fact that an ionized material (mostly xenon) is accelerated by supplying
a controlled electrical charge and is released from the satellite. The release of these ions produces a
thrust force on the satellite body. Micro Pulsed Plasma Thrusters (PPT) offer a low mass and power
solution suited to solar sailing attitude control[9]. While some electrical propulsion units are available for
CubeSats, there are not many for ADCS applications[68][69]. The introduction of these kinds of thrusters
for attitude control should become more popular in the future.

When deployed, the sail and the MCS increase the inertia around the yp-axis. The maximum rate at
which the sail can be rotated is determined by the torque and angular momentum specifications of the
reaction wheels, if they are used. Reaction wheels for CubeSats with angular momentum ratings of up
to 40 mN - m - s have been constructed (see Figure 3.5b) in the Electronic System Laboratory (ESL). These
wheels were originally designed to be used in the DeOrbitSail and CubeSail missions (§2.3.3).

The sail and the MCS are seen as external momentum wheels in the case of the tri-spin satellite. Wheels
normally use brushless DC motors. These motors must be able to produce the required torque to control
the large inertia of the sail and MCS. Angular rate feedback will be required from the motor to be able to
control the load accurately. The decision on the specific motor is dependent on the inertia load, which is
dependent on the size of the sail. The EC Flat motor range from Maxon motors contains brushless motors
with Hall sensors. This range contains motors that are only 10 mm thick with diameters ranging from
20mm to 45 mm and with maximum torque outputs between 3.17mN - m and 25.8 mN - m. These motors are

ideal for the volume constraints of CubeSat applications.

(a) Magnetorquer rod (b) Reaction wheel

(c) CubeSense (d) CubeStar

Figure 3.5 - Actuators and sensors developed in the ESL
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3.2.5 Sensors

Sensors are required to determine the attitude of the sail relative to its surroundings. The conceptual
satellite can determine its attitude with the use of an external 3-axis magnetometer, rate sensors, fine sun
sensor, nadir sensor, coarse sun sensors or a star tracker.

The external magnetometer measures the local geomagnetic field. With an internal geomagnetic model,
like an International Geomagnetic Reference Field model (IGRF), the magnetometer can provide attitude
information of the satellite. Although not as accurate as other sensors, the magnetometer can supply a
good measurement throughout the satellite’s orbit and attitude while the satellite is orbiting in LEO. This
makes it ideal for use during a satellite’s detumbling phase. The magnetic field measurement becomes
less useful when the satellite moves further away from the earth.

The inertial angular rate of a satellite is measured by a rate sensor. A Microelectromechanical systems
(MEMS) rate sensor is a compact and low power IC that is effective in measuring the angular rate while
the satellite is in a substantial spin. MEMS rate sensors possess noise figures that do not make their use
plausible when the satellite is in a stabilised mode, they are normally used to verify that estimators using
other sensors have converged or are giving valid estimates. Fibre optic gyroscopes (FOG) are normally
larger and require more power than MEMS rate sensors, but provide much better measurements. When
combined with an accurate sensor to determine the bias of the sensor, the output can be integrated to
provide the attitude. FOGs are normally used in satellites performing fast attitude manoeuvres. Due to
the large form factor and power requirements of FOGs, they are rarely used in CubeSat satellites and a
MEMS rate sensor is a more popular choice.

Due to the fact that most of a solar sail’s operation is based on the relative position of the sun, a fine sun
sensor is the most important sensor for a solar sail satellite. Accurate knowledge of the sun is essential
to produce the required solar thrust. The ESL has developed a sensor board known as CubeSense (see
Figure 3.5c) and discussed in [22; 70; 71]. It is a fine sun sensor (1o noise = 0.4° at boresight) and nadir
sensor (1o noise = 0.2° at boresight). These sensors are developed from CMOS cameras with a fish-eye
lens, which has a 190° field of view (FOV). The accuracy and noise of the sensor is defined relative to the
boresight of the camera lens. The accuracy decreases with the increase of the distance of the sun centroid
or earth nadir vector direction from the boresight of the sensor.

Figure 3.6 shows two possible placement configurations for a fine sun sensor. The dotted lines indicate
the boresight of the sensor. Two sensors will be required to prevent the scenario where the sensors are
covered by a shadow from the satellite bus. The first option would be to mount two sun sensors at the base
of the deployed solar panels (Figure 3.6a). The fine sun sensors would be deployed with the panels so that
the bore sight points in the yz direction. This will maximise the accuracy of the sun vector, but will require
a deployment mechanism for each camera. The second configuration (Figure 3.6b) will exchange accuracy
in the y5 direction for simplicity. Here the sensors are fixed to the Xz and —xp sides of the satellite. This
will require the sensor to have a FOV of at least 180° to be able to detect the sun in the yg-direction, but
will result in a less accurate sun measurement than the first option.

A star tracker takes images of the stars in its view and compares it with a celestial map. If the stars in
the image can be identified in the star catalogue, a modelled inertial vector to the stars can be obtained.
A transformation is then constructed from the modelled vector to the measured vector by the star camera
to obtain the satellite’s current attitude. Star trackers can produce a very accurate attitude, even if the
satellite is in eclipse or not orbiting the earth. Star trackers are present in most high-attitude performance
satellites. The ESL has developed its own star tracker[72] for CubeSat applications (see Figure 3.5d).

3.2.6 Sail Parameters

Good approximations of other design parameters for the CubeSat technology demonstrator can be
extracted by analysing the IKAROS, NanoSail-D2, and Surrey Cubesail missions in greater detail.
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(a) Option A (b) Option B

Figure 3.6 - Configurations for mounting the fine sun sensor

Surrey’s CubeSail has a sail area of 25 m? and NanoSail-D2 has a sail area of 10m?. The wire boom lengths
required for a sail of 25m? is approximately 3.6 m each. A 25m? sail will fit within the 1.2U dedicated for
the stowed sail and wire booms longer than 3.6 m have been deployed by past satellites[73].

IKAROS is the only spinning solar sail reference. The minimum force for the wire booms to stay stiff can
be extracted from IKAROS. The centrifugal force generated by IKAROS is used as a requirement instead
of conducting a complete FEM analysis. The mass of a single tip mass was 0.5kg and the end nominal
angular rate was 1rpm[10; 12]. The diameter of the sail was 20m. The centrifugal force generated was

F,. = mrw?

= 0.0548 N.

(3.2.1)

If the tip mass of the conceptual satellite is 10 g and wire booms of length 3.6 m are used, the angular rate
to generate the same centrifugal force as IKAROS would be:
F
N gt
= 1.2338rad/s (3.2.2)
= 11.782rpm

~ 12rpm.

The sail used for solar sailing is aluminised Mylar material which is as light and thin as possible, while still
offering good tensile strength. IKAROS had a large sail made from two polyimide materials of thickness
7.5pm[12]. The 200m? sail had a mass of 1.849kg and resulted in a mass density of 9.245g/m?. The sail
of NanoSail-D2 was of 2um thick CP1 material which is a clear polyimide covered with a very thin layer
of aluminium[14]. Steyn and Lappas[49] presented a mass budget for a 25 m? solar sail in a 3U CubeSat
structure. The mass of the 25 m? sail was defined to be 0.12kg with a mass density of 4.8 g/m?.

3.3 Satellite Attitude Dynamics

Attitude dynamics are required to simulate the reaction of the satellite to applied control torques. The
degrees of freedom of the satellite are defined in §3.3.1 where the measure to describe the attitude of the
satellite in its orbit is supplied. Sailing satellites have large deployable structures with non-rigid/semi-
rigid elements. Attitude changes by the satellite will induce offsets of these elements, which will result in
oscillations which will affect the rotational dynamics of the satellite. The standard Newton-Euler equations
are extended for the standard spinning and tri-spin, deployable satellite cases (see §3.3.3). The moment
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of inertia of the satellite will be used as a cross-coupling parameter which will link the satellite attitude
dynamics to the non-rigid dynamics discussed further in §3.4.

3.3.1 Rigid Body Kinematics

The body-fixed frame is described relative to the orbit frame. The minimum number of variables needed to
describe this relative orientation is three Euler angles[9; 65]. The Euler angles method has a singularity
and thus quaternions will mainly be used in the mathematical model. Euler angle results are better
interpreted than quaternions. Both methods are required to describe the system. A direction cosine

z0

Figure 3.7 - Euler 2-1-3 rotation order

matrix (DCM) for converting a vector from the orbit frame to the body-fixed frame is described by means
of Euler angles in the Euler 2-1-3 order. The order of the Euler rotations are described by Figure 3.7 and
the matrix is

ai,1 a2 ai3

[Ag] = |a21 a22 a23
@31 Q32 a33
_ (3.3.1)
CyYCOo+ SypSpSo  SvC¢o —CySO+ SPpSeCh
= | =SYCO+ CypSpSO CyYCo  SpSO+ CSeCo |,
CpSo -5 CoCo
with C' = cosine function, and S = sine function and
¢ = —arcsin (as,2) ,
as,1
0 = arctan4 : d
arctan <a373> , an (3.3.2)
1 = arctan 4 <a12> .
a2 .2

The same DCM can be constructed by means of quaternions. The quaternion method describes the
orientation with four values, {qi,¢2,¢3,qs4}. It makes use of a single rotation around a unit vector that is
not necessarily a vector on a principle axis. The quaternion method does not have singularities. It is used
in the dynamic equations and during integration. The DCM matrix in the form of quaternions is

G-G-G+a  2(qg2 + q3q4) 2 (q1q3 — q244)
B
[AD] = | 2(q1ge — 3qu) —@}+@E - +4} 2(q2q3 + 1qa) | - (3.3.3)
2(q1q3 + q2q4) 2(q2q3 — q1q4) - -3+ a3+ 4

This equality (refer to Equations 3.3.1 and 3.3.3) will be used to convert quaternions to/from Euler angles.
It is important, when using quaternions, that the quaternion set always fulfils the following constraint:

G+a+ata=1 (3.3.4)
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The angular rate wg,o of the body-fixed frame relative to the orbit frame, also known as the satellite’s
body rates, is written in Euler 2-1-3 and quaternion rates as:

G
Whe qa q3 —q2 —q1 p
2
Wp/0= |wy| =2|-¢z @ @ —¢ i
3
Whz q2 —q1 44 —qs3 p (3.3.5)
4 .3.

costpcosl —siny 0] [
= |cosfsinyy cosyp 0| |6

—sinf 0 1 |¥
or can be arranged differently to become
G 0 Wy,  —Wpy W | |@1
] 1 | —wp, 0 -
Q2| _ L |-w Wor oy | a2 | (3.3.6)
qs 2| wyy —wee 0 wez | |43
qél_ —Whr —Why —Whz 0 i 44
and N )
10) cospsec sinysec 0| |wpe
6| =| —siny costp 0| |wpy| - (3.3.7)
1&_ cosytand sinytant 1| |wp.

3.3.2 Inertial Angular Rates

The angular rate of the satellite relative to the inertial frame is needed. The angular rate of the orbit fixed
frame relative to the inertial frame is defined in orbit frame unit vectors as,

WG, = ~woYo, (3.3.8)

with w, the orbit angular rate, which is only a function of the orbit period when assuming the orbit is
circular. This vector is rewritten in body-fixed frame unit vectors by multiplying the vector with the DCM
defined in Equation 3.3.1 as seen in

wg/l = [Ag] wg/z

—01,2Wo (3.3.9)
= | —a22Wo | -

—a2,3 Wo

The total angular rate of the satellite bus relative to the inertial frame is the summation of the angular
rate of the satellite relative to the orbit frame and the rate of the orbit frame relative to the inertial frame,
described by

Wp/z = WR/0 + W,z

Wiz Whz —a1,2Wo (3.3.10)

Wiy Why + —a22Wo |

Wiz Whz —a2,3 Wo

and the total angular rate of the sail relative to the inertial frame if the sail rotates relative to the satellite
bus similarly is:

Ws/z = Ws/g+ Wp/o + Wo/1- (3.3.11)
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3.3.3 Newton-Euler Equations

Satellite rotational dynamics are normally described by the standard Newton-Euler equations. The
standard Newton-Euler equations assume a constant moment of inertia, but this assumption is no longer
valid when there are deployable and non-rigid structures. It is necessary to extend these equations to
apply to the varying moment of inertia and to the sail and MCS, which contain a relative rate to the
satellite body in the case of the tri-spin satellite. The extended equations initially are derived for the
tri-spin solar sail configuration and then simplified for the other spinning sail configurations. We assume,
as in the derivation in [65], that the change in angular momentum will occur only because of external
torques. Thus JH

v N, (3.3.12)
with H the angular momentum of the entire satellite system and N the external torques. The external
torques are the summation of the controlled magnetic torque (N,,), controlled thrust torques (IN;) and

disturbance torques (N;). The angular momentum components of the satellite system are:
H=ILwg/;r +Iiws/;z +1I.we/r+h, (3.3.13)

with I,wpg,7 the momentum of the satellite body, I;ws,z the momentum of the sail system, I.w¢ /7 the
momentum of the counter system, and h the momentum from internal momentum exchange devices. Two
relative angular rates are defined. The first is the rate between the satellite hub and the sail, ws,5, and
the other is between the satellite body and the MCS, w¢,5. Thus the angular momentum becomes:

H=T,wg/;z +Liws/;z +I.we/z +h (3.3.14)
=T+ I+ IC)wB/I + Is(.US/B + Icwc/g + h.

Substituting the equation above in Equation 3.3.12 and performing the derivative produces the generic

spinning sail Newton-Euler equation,

an
dt
= + I, + L)dg/z + (I + L)wgr + Liwss + Liws/s + Lewe/s + Lee s+ h (3.3.15)

+wgyr X (I +Is + L)wp/r + Liws/s + Lewe s + h).

In the tri-spin solar sail satellite, the sail and the counter system are connected with a motor shaft and
can thus only have a relative angular velocity in the y5 direction (ws,z = [0 7 O]T and we/g = [0 9 O]T).
Internal reaction wheels are used to create control torques perpendicular to the sail normal
(hy = [hw 0 th]T). These simplifications are applied to Equation 3.3.15, and the angular accelerations
for each body axis of the tri-spin satellite is:

Ipawiz = Ny — Ipgwiz — Wiy Wiz (Izz - I’yy) — hae — hwzwiy + Wiz (Isyywsy - Icyywcy)v
-1

Iyywiy = Ny - jyywiy — WigWiz (Izz zz) - Isyyﬁs - Isyyh.s + I.cyyﬁc + Icyyﬁc — hyawiz + My wi, and

Izzwiz = Nz - Izzwiz - wizwiy(—[yy Izz) - hwz + hwzwiy - Wix(lsyywsy - Icyywcy)y

(3.3.16)
with the inertia terms defined as
I=I,+1I,+1,
I.. O 0 Tyos 0 0 Torn 0 0 Iopn 0 0 (3.3.17)
0 I, O0|=1]0 Ipy O |+ 0 Iy, 0|+ 0 Iy 0],
0 0 Izz 0 0 Ibzz 0 0 Iszz 0 0 ICZZ

assuming that the body axis is chosen so that the cross-product moment of inertia terms are negligible.



Stellenbosch University https://scholar.sun.ac.za
CHAPTER 3. SPINNING SOLAR SAIL DESIGN AND ANALYSIS 31

The gyro tri-spin satellite does not make use of internal momentum exchange devices (h = 0) to generate
control torques and rather uses changes in ws,5 and we,z. Equation 3.3.15 is reduced to
N= (L +1I, + L)dgz + (I, + L)wp/z + Lws/s + Lds/s + Tewe s + Ledoess

(3.3.18)
+wgyz X (I + I + L) wp/r + Liws/s + Leweys).

The slow spinning solar sail satellite has no MCS (I. = 0) and no relative angular rate between the sail and
the satellite body (ws,s = 0). It also makes use of a single momentum wheel (h,, = [0 A, O]T) to counter
the momentum of the rotating satellite, and steering reaction wheels (h,,) to perform angular manoeuvres.

Equation 3.3.15 is simplified to
N = (Ib + Is)d)B/I + is('UB/I + hm + hw + Wpg/z X ((Ib + Is)wB/I +hy, + hw) (3.3.19)

The standard spinning satellite is similar to the slow spinning solar sail satellite, but also has no internal
momentum exchange devices and makes use of external control torques to change its attitude (h = 0).
Equation 3.3.19 is further reduced to

N = (Ib + Is)wB/I + iswlg/z + Wwp/z X (Ib + Is)wB/I- (3.3.20)

The equations above are similar to the standard Newton-Euler equations, but with added variables for
the changes in inertia. The inertia of the system will change when the sail is deployed and when the
wires/semi-rigid booms move relative to the body frame. The Newton-Euler equations describe how the
change in inertia will affect the satellite attitude. Equations that describe how the wires are influenced by
a change in satellite attitude are needed, but this is not easy to do with normal Newtonian mechanics.

3.3.4 Satellite Moment of Inertia

The moment of inertia of the satellite system is important. The sail system and MCS rotate continually
and a change in inertia will cause a change in angular momentum, which will affect the whole satellite
system (refer to Figure 3.8a). The change in inertia of the sail and the MCS is either due to deployment
or to the non-rigid dynamics discussed further in §3.4. Defining the inertia, we assume that the body axes
are defined on the principal axes of the satellite system, thus the cross product moment of inertia terms

are negligible.

The inertia before sail and MCS deployment will remain static until the deployment has begun. The launch
inertia will be a simple 3U CubeSat structure in the case of the technology demonstrator. The static inertia
is the sum of the satellite bus, the MCS deployment mechanism, the sail deployment mechanism, the stored
MCS wire booms and the stored sail with wire booms. The first stage deployment of the solar panels will
only change the inertia of the satellite bus. The total satellite inertia is defined by

I= Ib + (I]V[CS,mech + I]VICS,booms) + (Isail,mech + Isail + Isail,booms)
— T+ 1. +1,.

(3.3.21)

The second stage deployment will result in the deployment of the sail structure as well as the MCS. This
will greatly increase the inertia around the main spin axis, yz. It is important to identify the change in
inertia due to the degrees of freedom of the wire booms (see Figure 3.8b), which are defined and discussed
further in §3.4. The vector to the i*® tip mass is

rfm‘/s = [(r + €5 cos as; €OS Bs;) co8Vsi — Ls SIn (ug; COS P SIN V55| X5
+lssinfs; ¥s (3.3.22)
+[ls sin ag; cos Bsi cosYsi + (1 + €5 €OS g €08 By ) sin ;] Zs,

with ay; and j3,; the degrees of freedom of the i** wire boom, and ~,; the angle offset to the attachment
point of the i wire boom. The radial distance from the spin axis to the bending point of the wire boom is
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described by r and length of the sail’s wire boom by /. This position vector is in the sail reference frame.
The inertia of the satellite is defined by the principal axes of the body axis.

A DCM is used to transform the vector to the i'" tip mass to the body fixed frame. This transformation
matrix (A‘g and A%) is defined as an Euler 3-1-2 set with the A angle around the zgz-axis, ¢ angle around
the Xx’-axis and, lastly, the 7 angle around the ys-axis or yc-axis. The transformation matrix from the body

frame to the rotating sail frame is defined as

CnsCAs—SnsSesSAs  CnsSAs+SnsSesCAs  —SnsCeg
Ag = _SA.Ce, CAsCles Ses . (3.3.23)

SNsCAs+CnsSesSAs  SnsSAs—CnyCA Ses  Cn,yCey
The tip mass position is converted to the body frame unit vectors by

sti/s = TstizXB + TstiyYB + T'stizZB

s1-1 s (3.3.24)
= [AB] Tsti/s:
The inertia of the tip masses and massless wires, at the CoM of the rotating sail system, is
4 mstdii 0 0
Isail,booms = Z 0 mstdfﬂ- 0 5 (3325)
=tloo 0  mud

with dy; = /12, + 72, dyi = /T8, + 73, and d; = /12, 472, The mass of the sail tip mass is
designated by mg;. The movement of the sail will follow the movement of the wire booms. The inertia of a
fully deployed sail around the ys axis is simplified to[74]

1
Isail,ys = gmsailA7 (3326)

(b) Wire dynamics parameters

Xs

Wsy MNs —
> X33

(c) Sail-to-Body frame angle

Figure 3.8 - Variable definitions for satellite inertia
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with mg,;; the mass of the sail, and A the area of the sail. The movement of the wire booms will force
the rectangular sail into strange shapes that are hard to model. The inertia of the sail therefore is rather
modelled by adding extra mass to the tip masses of the wire booms. The mass to be added to the tip mass
is derived from the maximum inertia seen in Equation 3.3.26. The result is that the deployed sail is seen
as four tip masses. When the sail is fully deployed the following equation is valid,

1
Laitys = gmsailA = 4dmg L2, (3.3.27)

with mgs the mass to be added to the wire boom, and L the maximum length of the wire boom. The sail is
modelled as four tip masses having equal inertia when fully deployed. Assuming the sail is square-shaped
the area can be written to be A = 2L?, which results in ﬁmsaiz = Mmygs. This is a crude assumption, but will
have worse dynamics when compared to a complex semi-rigid sail surface. This assumption results in

4 | (ms + mSS)dii 0 0
Isail + Isail,booms = Z 0 (mst + mSS)dzi 0 y (3328)
=1 0 0 (Mt + mgs)d2,;

the inertia at the CoM of the rotating system. The translation between the origin of the sail frame and the
body frame is still required to obtain the final inertia equations.

Referring to Equation 3.3.16, the change in inertia is also required. The terms in Equation 3.3.21 which
are time varying are the change in the MCS booms, and the change in the sail and booms. The time
varying variables, which contribute to the changing terms, are the length of the wire and the degrees of
freedom of the wire booms, I,(d;, a;, Bi, Bi. 0, 0).

The moment of inertia and change in moment of inertia will be substituted in the Newton-Euler equations
of Equation 3.3.16. The inertia serves as the connection between the normal satellite dynamics and the
wire dynamics (see Figure 3.9). The Newton-Euler equations provide angular acceleration of the satellite
system due to the effects of external and control torques. Such angular acceleration produces oscillations
of the non-rigid elements and these oscillations change the position of the mass elements relative the
satellite bus. This will change the moment of inertia of the satellite system and therefore reacts differently

to input torques.

Non-Rigid Angular
Dynamics Acceleration Control
Forces
Newton-Euler
Equations
External
Tip Mass Satellite Forces
Position Inertia

Figure 3.9 - Cross-coupling dynamics of non-rigid satellite

3.3.5 Disturbance Torques

The space environment is harsh. There are many forces that act on a satellite. These disturbances will
perturb a satellite’s attitude. Solar sail satellites experience the same disturbances as other conventional
satellites, though some of these forces are more dominant due to the large size of the deployed sail.
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Solar sails deploy large surfaces to increase the projected area for the solar radiation pressure. Similar to
any other thruster, a CoM to CoP offset will result in disturbance torque, which will disrupt the satellite’s
attitude. The solar model by Wie[9] is depicted in Figure 2.1 and shows two major components of solar
thrust. The primary component is the component perpendicular to the sail surface and the secondary
component is tangential to the sail surface (see Figure 3.10). The magnitudes of these components are
determined by the relative angle of the sail surface, the incoming photons and the optical characteristics
of the sail.

N, Ny

dy

dn
Fy

Figure 3.10 - Disturbance torques created by solar thrust CoP to CoM offsets

The solar trust force is
F,=F,n+ Fit (3.3.29)

with n the unit vector normal to the sail surface and t the unit vector in the transverse direction. The
magnitude of the perpendicular component is

F, = PA(1 + ps)cos®¢ (3.3.30)

and the tangential component is
F, = PA(1— ps)cos&sing, (3.3.31)

with p, the specular reflection parameter, P the solar radiation pressure, A the effective projected area and
¢ the relative angle between the incoming photons and the sail surface normal. The perpendicular force
creates a torque when the sail is not ideal or is unsymmetrical. The effect of this torque is greatly reduced
when the sail rotates. This results in the CoP rotating around the CoM and the resultant torques average
over a full rotation. The direction of the tangential force is dependent on the angle at which the photons
hit the sail surface. This disturbance persists even when the sail rotates, but the effect of the disturbance
is greatly reduced when the satellite has a non-zero angular momentum, increased specular reflection
characteristics of the sail (ps), or a small incidence angle (¢ ~ 0°). The total solar thrust disturbance
torque experienced by the sailing satellite is:

Nyq =rcom—cop X Fs. (3.3.32)

At lower orbit altitudes around the earth, particles present in the atmosphere hit and interact with the
sail, resulting in a pressure force similar to that of solar radiation pressure. This drag force can be
approximated by the following [49][75]

(Y
F, = paHVreleA (‘_’rel : ﬁ) |:O-t‘_’rel + (Un <|Vb|> + (2 —0Onp — Ut) Vel * ﬁ) ﬁ:| (3.3.33)
rel

with p, the local atmospheric density, A the area of the sail and v,..; the relative velocity of the satellite to
the atmosphere. This velocity vector is reduced to be the negative of the satellite’s linear velocity within
its orbit (refer to [49][76] for a result without this simplification). The unit vector of this velocity is v,;.
The tangential and normal accommodation coefficients are described by ¢; and o,, respectively and the
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molecular escape velocity by v,. The unit vector perpendicular to the sail surface is depicted by n. A CoM
to CoP offset in the resultant pressure force will result in a torque. This torque is described by

Nua =rcom—cor X Fq. (3.3.34)

Variations in the earth’s gravitational field and non-symmetrical mass distribution of the satellite create
a gravity gradient torque on the satellite’s body. This torque greatly reduces at higher orbit altitudes.
This disturbance can become large with the sizeable moment of inertia terms of a fully deployed sailing
satellite. The gravity gradient disturbance torque around the earth is defined as [9][63][70]:

3ugE

Ngd = ||R||3 (ue X Iue)
g [z~ I) Azs (3.3.35)
= ﬁ (Izz - Izz) A13A33 ’
(Iyy - Imm) A13A23

with u, = A5 [00 17, ug = 3.986 x 10°km?3/s? the earth’s standard gravitational parameter and R the
position vector of the satellite around the earth.

Magnetic disturbance torques are created by the satellite having a residual magnetic moment during
normal operation. This magnetic bias is due to currents that flow in the satellite’s electronics, solar panels
and structure. Normally, this effect is reduced by reducing the path of electrical currents to ground. In
the case of a large sail, charge can build up from particles in the space environment. This charge may
result in electric currents and create a magnetic bias, which can react with the earth’s magnetic field to
create a disturbance torque. Although this disturbance torque is not really modelled, such an effect must
be considered when designing the sail surface and may negatively impact the attitude performance.

The disturbances defined above are the dominant disturbances which will influence a sailing satellite’s
attitude. The space environment contains many other unknown sources of disturbance which can not be
modelled accurately, and the satellite must be able to absorb these disturbances to maintain its attitude.

3.4 Wire Boom Dynamics

The aim of the investigation into the wire boom dynamics is to obtain a model which provides insights on
the dominant parameters affecting the non-rigid dynamics. The resultant model will be used to determine
the effects of angular accelerations of the satellite body when performing attitude manoeuvres on the
offset angles of the wire booms. The dynamic model is to be used to ensure the wire booms stay in a stable
state and the offset angles are within an allowable margin.

The non-rigid dynamics of a rotating wire have been extensively analysed[73; 77; 78; 79; 80]. The dynamic
models extend from simple analyses to models which include elasticity theory and finite element methods.
A model of a spin-stabilised satellite with multiple wire booms with tip masses was introduced by Longman
and Fedor[73]. It is a simple model including two degrees of freedom, an in-plane and out-plane angle, for
each wire boom. The dynamic equations for the wire booms and the spinning satellite were constructed
by using Lagrangian mechanics.

Lips and Modi[77] constructed a general formulation of the dynamics of a spinning satellite with flexible
appendages. Their model is extensive and includes the elasticity of the wire boom elements. The resultant

dynamic equations are large and coupled.

The dynamics of the wires are extracted by using a similar approach to that of Longman and Fedor[73]
by means of Lagrangian mechanics. Lagrangian mechanics require the kinetic energy of the system[81],
whereas the Newton-Euler equations require the angular momentum. The wire dynamics are required to
determine the kind of behaviour to be expected when an attitude change is in progress. It should supply
insight into the control restrictions of the non-rigid body. The process to develop a dynamic model by
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means of Lagrangian mechanics consists of a couple of definite steps (summarised in Figure 3.11). Firstly,
the degrees of freedom of the system and subsystems must be defined. These definitions are used to
construct the equation for the total kinetic energy of the system. The equation for the potential energy
is then constructed by identifying the sources of conservative forces. Non-conservative forces and their
effects on the system are also identified. The kinetic and potential energy equations are used to construct
the Lagrangian equation. A variable vector consisting of the variables describing the degrees of freedom
is then defined, and time and partial derivatives of the Lagrangian equation relative to the elements of the
variable vector are calculated. These derivatives and the non-conservative forces are substituted in the
Euler-Lagrange equation to produce the dynamic equations of the system. This process will be repeated
to create three models, each with different degrees of freedom (DOF). Basic examples of the application
of Lagrangian mechanics are shown in Appendix A.

Degrees of Non-Conservative
Q—» 9 Kinetic Energy Potential Energy
Freedom Forces
Euler-Lagrange Lagrangian
R Derivatives Variable Vector .
Equation Equation

Figure 3.11 - Steps to develop dynamic models by means of Lagrangian mechanics

The deformation of the wire booms will have a direct effect on the surface of the sail. The sail is not only
deformed due to the attitude changes of the satellite. It will experience constant solar pressure, which
will result in the deformation of the sail. The amount of sail billowing will influence the efficiency of the
sail (see §3.4.5).

3.4.1 1-DOF Wire Boom Dynamics

The method for deriving the dynamic equations for wire boom dynamics with Lagrangian mechanics as
described in Figure 3.11 is shown on a simplified 1-DOF rotating wire boom. The four wire booms used to
model the sail, as described in Figure 3.8b, are each defined with a single out-plane DOF and we assume
r ~ 0 when compared with the length of the wire boom(¢). The out-plane angle is the angle perpendicular
to the sail surface , which is at large risk of colliding with other deployable structures. This angle also has
the largest effect on the moment of inertia of the deployable structure.

The position vector of the first tip mass of the sail within the rotating sail frame (see Figure 3.12) is

S = Lcos B Xs + £sin B ¥s. (3.4.1)
S’SA

/

A

Figure 3.12 - Example of 1 DOF boom dynamics of first sail wire boom

Xs
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The position vector to the first tip mass within the body frame is obtained by applying the DCM from the
sail frame to the body frame. The [Ag} matrix contains all the relative angles between the sail frame and
the body frame and includes the 1, angle, which is dependent on the rotation speed of the driving motor.
The position of the tip mass within the body frame, assuming that the sail only rotates around the yz-axis,
is:

£ cos Bs1
[Ag] {sin Bs1

0

-s

w

2
I

(3.4.2)
£ cos Bs1 cosns

= £sin g1

—{ cos Bs1 sinn;

Lagrangian mechanics is an energy based method and the kinetic energy of the rotating tip mass is
required. The tip mass is defined only with a single DOF and the single rotation of the sail frame, thus
only the out-plane and the sail angles have time derivatives. However, when investigating deployment
dynamics, the length of the wire (¢) will also have a time derivative. The velocity of the wire boom within
the body frame is
drg;
dt

—Bs1€sin By cos s — sl cos By sin s (3.4.3)
= Bl cos Bst

Bs1lsin By sinn, — 14 cos Ba1 cos s

Vs1/B =

The wire boom experiences the angular rate of the driving motor as well as the angular rate of the satellite
body. Thus the angular rate of the satellite body relative to the inertial frame is written as

Wiz
Wpz = |wiy| - (3.4.4)

Wiz
The inertial velocity of the first tip mass is then determined by [74, p. 384]

Vs1/7 = Vs1/B T W/ X I'st

-/ (wiz sin Bg1 + le COS 1) Sin g1 + 75 €08 Bs1 Sin 75 + wyy €os Bs1 sin ns> (3.4.5)
= £ cos Bs1 (le + Wi, COSNs + Wiy SiN 773) o

Y4 (wiz sin Bs1 — 1) €0s Bs1 COS N — Wiy €OS Bs1 €OSNs + Bs1 8in B, sin 175)

The inertial velocity calculation is repeated for all the wire booms in the rotating sail and the MCS frames.
The kinetic energy of the entire system is then calculated by

T=T,+ T, +T,, (3.4.6)

with T; the energy of the satellite body, T the energy of the sail and 7. the energy of the MCS. The energy
of the sail can be broken into two elements: the spinning deployment mechanism and the sail with the
wire booms (explained in §3.3.4). The same can be done to the MCS. The kinetic energy[74, p. 461] of the
satellite hub is,

1
Tb = 51;,”(,03/1”2, (347)
and the energy of the sail,
1 1 1
Ts = §Isail,mech||w8/I + wS/BH2 + 5 (mts + ms) Z ||Vtsi/I||2a (348)

i=1
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with the first term the energy of the deployment mechanism and the second the sum of all the tip masses

in the sail system. Similarly, the MCS’s kinetic energy is written as:

4
1 1
T = Tuosmeenl|ws/z + weysl)* + 5 M ; [Veei/zl1?, (3.4.9)
For this simplified derivation, the moment of inertia of the deployment mechanisms of the sail and the
MCS will be assumed to be much smaller than the moment of inertia of all the tip masses. The resulting
kinetic energy is simplified to

4 4
1 1 1
T = §Ib||w3/z|\2 + = (mys +my) E [vsi/zll* + 5 Mie E |[Vei/zl|? (3.4.10)

2 ; ,
=1 =1

The force vector is constructed by identifying the virtual work done by non-conservative forces and
moments[46]. The non-conservative forces acting on the satellite can mainly be characterised as
disturbance torques and controlled torques. Further damping forces are added to the wire boom angles
to eliminate possible numeric integration errors and to model the internal damping due to the continual
bending of the wire and the damping supplied by the large sail structure. Internal damping occurs in all
solids and is due to the thermal equilibrium disturbed by bending a solid[82]. The bending will mainly
occur at the attachment point of the wire boom to the deployment mechanism. This damping is little, but
will have an effect with high frequency oscillations. The sail is a large stiff sheet and will add a lot of
damping to the movement of the sail wire booms[43]. The sail from IKAROS was found to show much
higher bending stiffness than originally modelled when the normally spin-stabilised sail stopped
spinning[83].

The virtual work, W, is

4 4
W =Npowg/z + Nydwg/z + Nydwg,z — Z bs, Bsi0Bsi — Z bs. BeidBeis (3.4.11)

=1 i=1

with N,, the external magnetic torque, IN; the external thruster torque and N, the external disturbance
torques which the satellite experiences. The general force vector is constructed from

1)
P,.= 1, (3.4.12)
op
with p the variable vector.

Assuming that the presence of potential energy (V') can be ignored, the Lagrangian equation becomes the
sum of the elements in the system containing kinetic energy;,

L=T-V
(3.4.13)
= Tb + ,Ts + Tc-
The Lagrangian equation is substituted into the Euler-Lagrangian equation[81], which is:
d (0L oL
— (=) - = =P, =0, 3.4.14
at (api) o G414
with the variable vector, o
- - le
P1
D2 ’
p=|:|= Baa| | (3.4.15)
Bcl
b7 .
| P8 | ’
_654_
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and thus from Equation 3.4.12,

- - _76[35531_

Plnc .

P2nc ) .

P.=|: |= ~bgsPaa| (3.4.16)
_bﬁcﬂcl

P?n(’ .

P8nc ) .

B _*bﬁcﬁcél_

which does not include w;,, w;y, or w;,. The rigid dynamics are described by the Newton-Euler equations
in §3.3. The Euler-Lagrange should produce equations for the accelerations of the § wire boom angles.
Integrating these accelerations produce the needed variables to determine the derivative of the moment

of inertia (1).

The resultant dynamic equation for the first wire boom of the sail is

le =

bgs .
. .2 . 2 .
— o Bs1 t WizWiy COSTs — Wiy Sinns — 175 sin Bs1 cos Bs1 + wy, sin Bs1 cos Bs1
2 (my +ms)

2 . . . 2 2 . 2 .
— Wy, SIN Bs1€08 Bs1 — 21)5Wi O™ Bs1 COS T — QWirwiy cos” Bs1 cos ns + 21)swj. cos” Bgy sin s (3.4.17)
2 . . . 2 . 2
+ 2wiyw;, cos” Be1 sinns — 2nswiy sin Be1 cos Bs1 + wiy, sin B cos Bg1 cos” 17,
2 . 2 . . . . .
— wi, sin Bs1 cos Bs1 cos” s — 2wizw;, Sin Bs1 €os Bs1 SiN Mg COS Mg — Wig SIN Mg — Wj5 COSNs.

The resulting equation consists of a number of terms, with the first being the damping term. The most
2

of these terms contain the product of two angular rates (for example w;, wi;zw;y and 7‘]3) and indicate the
centrifugal force acting on the tip mass. The 7); parameter should be dominant assuming that the rotation
rate of the sail is much higher than the satellite body rates. The last two terms are the disturbance terms
and are the main cause for out-plane angle offsets. The disturbances are caused by an angular acceleration

of the satellite body perpendicular to the main spin axis (w;, and w;).

The method for determining the dynamic equations for a rotating wire boom has been demonstrated on
a simple case of a wire boom with only one DOF. This method can now be extended to supply equations
for more complex scenarios where the wire booms have multiple DOF (§3.4.2) or to a wire boom with
multiple nodes (§3.4.3). Similar method can also be applied to produce basic models for semi-rigid booms
(like those in [14; 18; 57]) by including an additional spring constant along with the damping ratio to

non-conservative forces.

3.4.2 2-DOF Wire Boom Dynamics

The dynamic model developed by Longman and Fedor[73] has wire boom elements with two DOF. The wire
is seen as a rigid massless beam with no elastic deformation. It connects to the satellite body by means
of a hinge joint with two degrees of freedom. The first is an in-plane deflection angle « and the second is
an out-plane angle (3, seen in Figure 3.8b. The Lagrangian mechanics process, introduced in the previous
section, is applied on the scenario defined by Longman and Fedor[73]. The position of the first tip mass
within the sail frame becomes:

rfl = (r + £cos as cos Bs1)Xs + £sin fs1¥s + £sin agy cos Bs1Zs. (3.4.18)

The position vector is dependent on the in-plane («s1) and out-plane (551) angles. The position of the tip
mass within the body frame, assuming that the sail only rotates around the yz-axis, is:

r 4+ £ cos ag1 cos B1
rg; = [Ag] £sin Bg1

{sin acgy cos fg1 (3.4.19)

7 CcoS N + £ oS (ug1 €OS Bs1 COSNs + £ 8in gy €OS Bs1 Sin 0
= £ sin ,851

£sin agy cos Bg1 cosns — sinng (1 + £ cos asy cos Ps1)
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The velocity of the tip mass within the rotating sail frame is

drsl
dt

G510 cos agy €os Bs1 sinns — 1) sinns — g1 sin agy cos Bs1 coS N

Vs1/B =

— leﬁ €OS (ug1 Sin Bg1 cosns — Nl COS (g1 COS Bs1 Sin 1
+ nsf sin gy cos B cOSNs — leé sin g1 sin Bg1 sin 7
(3.4.20)
= Bs1l cos Byt

(514 cOS (ug1 €OS Bs1 COS Mg — T COSTs — Nl COS (g1 COS Bg1 COS N

+ g1 sin agq cos Bg1 sinns + Bs1 cos agq sin Bg1 sin g

— Bs1lsin o sin Bg1 cosns — 04 sin agq cos Ber sings |

The wire boom experiences the angular rate of the driving motor as well as the angular rate of the satellite
body. The inertial velocity of the first tip mass of the solar sail is determined by applying Equation 3.4.5:

Vs1/T = Vs1/B8 T Wp/T X Is1- (3.4.21)

The kinetic energy of the entire system is calculated, as in the previous section, by:
T=T,+Ts+ 1T, (3.4.22)

with T, the energy of the satellite body, T the energy of the sail and 7. the energy of the MCS. The total
kinetic energy is used to create the Lagrangian, L =T — V.

The force vector is extended to include the damping of the in-plane angle. The virtual work, 6, is
4 . 4 .
oW = NméwB/I + Nd5wB/Z - Z (basdsi(sasi + bﬁsﬂsicsﬂsi) - Z (bacdciaaci + bﬂcﬁcidﬂci) . (3.4.23)
=1 1=

The Lagrangian is substituted into the Euler-Lagrangian equation[81], which is:

d (0L OC
= T Pu.=0, 4.24
dt (810'1-) Ips 0 (3.4.24)

with the variable vector extended to include the out-plane parameters,

o]
Bs1
o
D2 s
p=|:|= faa| (3.4.25)
(o7}
Pl Ba
| P16 |
(6771
| Bea |
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The general force becomes twice as large as the previous simplified case, Equation 3.4.12,

__basdsl_
7bﬁsle
[ Plnc | .
P2nc —basO.ZS4
P=| o |= |00 (3.4.26)
’ _bacdcl
P15nc *bBchl
_P16nc_ .
_bacdc4
__bﬁCBC4_

which does not include w;,, w;y or w;.. The rigid dynamics are described by the Newton-Euler equations in
§3.3. The Euler-Lagrange should produce equations for the accelerations of the o and 3 wire boom angles.
Integrating these accelerations produce the needed variables to determine the derivative of the moment

of inertia (i).

This simplification of the variable vector greatly simplifies the Euler-Lagrange equations. Only the terms
containing variables regarding the deformation of the wire boom are addressed. Even with this
simplification, the resultant equations are large and highly coupled. There are many terms and it is hard
to identify which terms have less of an effect on the satellite system and can be ignored. Most of the
terms consists of a product between two angular rates such as w;,w;, (two components of the satellite’s
angular rate) or ¢ ;w;, (the product of a wire boom rate multiplied with a satellite body rate).

3.4.3 Multi-node Wire Boom Dynamics

The article by Huang et al.[84] presents the derivation of the dynamics of a coupled pendulum model
of a Heliogyro membrane. Lagrangian mechanics were used to develop the dynamic equations for the
non-linear out-of-plane, in-plane and twisting dynamics of a single rotating blade. This model made use
of multiple nodes along the length of the blade, resulting in gradual bending behaviour. A comparable
method is used to extend the dynamic equations from §3.4.1 for a rotating wire boom. The equations
will be derived only for the out-plane dynamics to simplify the derivation, but can be changed to produce
equations for the in-plane dynamics, or both.

ysA

My,

> Xs

Figure 3.13 - Definition of multiple nodes along the length of the wire boom

The equations derived in the previous sections are extended to include multiple nodes (see Figure 3.13)
along the length of the wire boom. The definition of the position vector to the n'" node of the 15 wire boom
of the sail with 1-DOF develops into
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n
rg1/s = Tsl-1 T Ts12+Ts1- 3+ +Ts1n

n
= E rsi—j
Jj=1
n

4 P N
N Z (cos B2,%s + sin Bglyg) ,
Jj=1

(3.4.27)

where n is the number of nodes from the attachment point to the target node. It is assumed that each
section is the same length. In the case of the last node where the tip mass is situated n = N, where N is
the total number of nodes of the wire boom.

The derivative of the position vector to the tip mass within the body frame is

g =N - sin Bil COS 7)s — cos Bil sin n
v B = ~ Z L cos 32, + s 0 . (3.4.28)
=1 sin 37, sinn; — cos 32, cos s

The velocity of each node within the sail reference frame is translated to the inertial frame as was done
in Equation 3.4.5. The wire boom no longer consists of only one vector contributing to its position. Each
section will contribute to the total dynamics and thus also contains kinetic energy. The kinetic energy of

the 15t wire boom of the solar sail is

1 1 1
Tsl = imw (Vil/l- 'V;l/l-) + imw (Vfl/I * V31/1'> + tct + 5 (m’LU + mt) (v]s‘\i/l- 'Vﬁ/l')

1 (3.4.29)

N
j j 1 N N
=g D (Vi Vi) +gme (Viz vi)
j=1

with m,, the mass of the wire section between each node and m; the mass of the tip mass. The total kinetic
energy is substituted in the Lagrange equation

4
L=Ty+> (Ta+T.) (3.4.30)

i=1
for a satellite with four wire booms for the sail and four wire booms for the counter momentum system.
The dynamics variable vector p defined in Equation 3.4.25 is extended to include an angle variable for
each node and for each DOF (in this case /ag'i).

The multi-node equations are investigated in simulation. A 3.6 m wire boom which rotates at an angular
rate of 0.2rev/s and experiences a disturbance when the satellite performs an attitude manoeuvre. This
angular acceleration of satellite creates an offset angle in the wire boom. The dynamic response of a
2-node (Figure 3.14b) and 3-node (Figure 3.14c) wire boom with 1-DOF at each section are compared to
the equations for a wire boom with 2-DOF and the simplified equations with only 1 node (Figure 3.14a)
and 1-DOF. In all the results, the first angle, that is the angle at the attachment point of the wire boom
at the satellite, is the largest. The other angles present in the 2-node and 3-node examples are much
smaller. The 3-node example is repeated at a lower spin rate of 0.1rev/s (see Figure 3.14d). The amplitude
of the offset angle increased and the frequency of the oscillation decreased when the spinning of the wire
boom is slower. This indicates, as it should, that the centrifugal force that keeps the wire boom stiff is
reduced. This is also clear when comparing the relative size of the node angles. In Figure 3.14c the ratio
between the first angle and the others, max(f2)/ max(3;) and max(/3s)/ max(/3;), are much less than in
Figure 3.14d. This suggests that the wire boom has a more curved shape when the centrifugal force is
lower. When the internal force is high, the wire boom dynamics will lean more towards the single node
model where (> = (33 ~ 0°. The out-plane displacement of the tip mass of all the models presented in §3.4
are seen in Figure 3.15. The results show similar responses from all the models, though some differences
are visible during the decay of the oscillations. At higher wire boom angular rates, the centrifugal force is
high and the wire boom reacts more like a stiff straight beam with a single joint at the attachment point
to the satellite.
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Figure 3.14 - Comparison of different wire boom models

3.4.4 Wire Dynamics Analysis

A specific scenario is analysed to extract an understanding of the non-rigid dynamics of a wire boom
and the parameters that influence its behaviour. The dynamic equations for the 15 2-DOF wire boom
(see §3.4.2) spinning at a constant rotation speed of wy, = 7, and experiencing an angular rate (w;,) and
angular acceleration (wp,) of the satellite body in the zz-direction are

2d81/8.81 sin ﬂsl 2ﬁ'slwsy sin ﬁsl

(g1 = wizz Sin aigq COS (rgp — w?z sin ns cosns + — + 2[8s1w;z COS (g1 SIN 7
cos fBs1 cos Bs1

2
Twy, Sin (g1

£ cos Bs1

Wiy COS (igq SIN Bg1 8iN 7 Wi, Sin aigy Sin Bg1 COS 7 basCis1 rw?, sin g cos? 7

2

— 2Bs1w; Sin agy COS N5 — 2%‘22 Sin g1 COS (g1 cos? Ns + 2wi2z COS” (ug1 SIN Mg COS Mg —

(3.4.31)
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for the out-plane angle. The simplification of the wire boom system has reduced the dynamic equations,
but remains complex and emphasises the complexity of the rotating system.

The simulation contains a deployed wire boom that rotates relative to a satellite body. The wire boom
is 3.6m long and the tip mass is 20g. The dynamics of the boom are investigated when the satellite
experiences an attitude change of 90° at ¢ = 50, perpendicular to the rotation of the wire boom, and then
returns to 0° at 500s. This attitude manoeuvre is implemented by the control law:

wpz = K (_debz + Kp(l[}ref - ¢)) (3.4.33)

with the gains Ky and K,,. The gains are defined to produce a critically damped step response. The overall
controller gain is set at K = 1. The reference is ¢,.y = 90° at t = 50s and ¥,y = 0° at t = 500s.

The effects of the damping ratio, assuming that the damping ratios for in-plane and out-plane angle are
the same, are investigated when the wire boom’s angular rate is kept constant at 0.2rev/s (see Figure
3.16). The simulation is repeated with an increasing damping ratio. The legend of Figure 3.16 indicates

the damping ratio of the corresponding simulation.

An out-plane offset is produced due to the attitude changes (see Figure 3.16c¢). Figure 3.16a shows that

even if the attitude change is perpendicular to the wire boom angular rate, an in-plane offset is also
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Figure 3.16 - Results of simulation with different damping ratios

produced. This indicates that the oscillations in the out-plane and in-plane angles are coupled. The
induced oscillation frequency of the out-plane angle is much higher than the in-plane angle oscillation (see
Figure 3.16b and Figure 3.16d). The damping ratio has little effect on the maximum peak of the offset
angles and mostly affects the time it takes for the oscillations to die out. The damping ratio only reduces

the amplitude of the frequency response and not the frequency itself.

The simulation is repeated using the same dynamic equations but keeping the damping ratios constant at
b = bg = 0.0125 and changing the angular rate, w,,, of the wire boom. Figure 3.17 shows the dynamics of

the wire boom with the legend indicating the angular rate (rev/s).

Figures 3.17a and 3.17c reveal that the amplitude of the offset angle is inversely proportional to the
angular rate of the wire boom. The frequency of the out-plane angle is equal to the angular rate of the
wire boom (see Figure 3.17d). A higher frequency oscillation has a higher wire boom angular rate and the
damping takes more effect. Figure 3.17c shows a larger offset increase after the second attitude change.
The amplitude of the oscillation of the wire boom at 0.5rev/s is higher than at 0.3rev/s. It is clear that
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Figure 3.17 - Results of simulation with different wire boom angular rates

the amplitude of the oscillation is also dependent on the angle of the wire boom relative to the attitude
change, defined by 7ns;. The wire boom experiences the maximum disturbance from the attitude change if

the angular rate vector and the tip mass position vector are perpendicular (refer to Appendix A.3).

Figure 3.18 contains two three-dimensional graphs. The three-dimensional graphs provide a method for
investigating the relative effects the different relevant parameters have on the dynamics of the wire boom.
Both graphs have the angular rate of the sail on the z-axis and extract the maximum out-plane angle on
the z-axis during a simulation of the duration shown in Figures 3.16 and 3.17. Figure 3.18a contains the
damping ratio on the y-axis and clearly shows that the change in spin rate of the sail has a much larger
effect than the damping ratio. The surface contains ripples which become distinct at higher angular rates.
This is the effect of the relative s angle between the angular rate vector of the satellite body and the

position vector to the tip mass.

A third parameter is investigated by changing the overall controller gain factor, K (see Equation 3.4.33).
The increase in overall gain, will increase the peak angular acceleration and rates of the satellite body
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when performing the attitude manoeuvre. Figure 3.18b shows the effect of the overall gain and the angular
rate on the offset angle of the wire boom. The offset angle increases as the controller gain increases. The
angular rate of the sail has a stronger effect on the offset angle than the intensity of the controller. The
synchronisation of the angular manoeuvre and the sail angular rate is seen in the ripples in the out-plane

maximum.

The simulations show that the oscillations of the out-plane and in-plane angles are coupled, and the
duration of these oscillations are dependent on the damping ratio of the wire boom. The angular rate of
the wire boom influences the frequency of the oscillations and the maximum angular offset. The damping
ratio has little effect on the maximum angular offset. The maximum angular offset increases as the
angular acceleration increases and becomes apparent when implementing a faster control system. The
effects of angular rate disturbances, such as nutation, have also been investigated in Appendix A.3 and
reveal that the frequency response is dependent on the angular rate of the wire boom. The angular rate
of the wire boom has the strongest effect on the angle offset. The offset will be small if the angular rate is

chosen correctly.

3.4.5 Sail Deformation

Constant solar pressure exerted on the sail will deform the structure of the sail and will cause it to billow.
The billowing of the sail will cause a decrease in average solar thrust. It is vital, not only for a stable
system, but also for an effective system, to minimise the billowing. The resultant deformation of structures
is normally analysed by means of the finite element method (FEM). McInnes[44, p. 90-92] investigated the
sail shape resulting from solar pressure on a disc-shaped sail. Equations were developed to determine the
amount of billowing present in such a simple spinning solar sail analytically. The billowing shape of a
rotating rectangular sail with additional wire booms are more complex than the simple disc-shaped sail.
The tension within the rectangular sail is not uniform. The tension in the sail will be higher closer to the
wire booms and much lower in the areas between the wire booms. The locations and manner in which the
sail is fixed to the wire booms will also influence the shape. Reducing the rectangular sail to a basic disc
sail will still highlight the parameters that will have the greatest influence on the final billowing shape.

The disc-shaped sail is modelled as a rotating disc-shaped membrane with a ring applying a radial tension
to the membrane (see Figure 3.19 for parameter definitions). This simplification reduces the problem to
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Figure 3.18 - 3-D analysis of wire dynamics
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the radial direction. The rectangular sail is reduced as a circular problem. The centrifugal forces of the
four tip masses are divided and seen as a continual force exerted all along the circumference of the disc.
This force is

4F,

2R

2
2mswsy

)

Ty =
(3.4.34)
™
with F, the centrifugal force of one tip mass, m, the tip mass of the sail, w,, the angular rate, and R
the outer radius of the disc. The vertical displacement, w, of the solar film which experiences the solar
radiation pressure P, is obtained from [44, p. 90-92] and is
d?w n T dw n dl'dw
dr?2 v dr  dr dr

with T the tension. This is derived from the standard equation describing the shape of a drum surface.

(3.4.35)

This tension is a function of r, the distance from the spin vector, and is the sum of the applied tension and
the centrifugal tension that is experienced. The function for the tension at any r can be determined by
taking the equilibrium of forces and results in

R awgyR?’ 7\3
T(r) = Ty~ + —2 (1—(R) > (3.4.36)

with ¢ the mass per unit area of the disc. Substituting Equation 3.4.36 into Equation 3.4.35 and integrating
the result produces the vertical displacement of the sail film,

P ow?, R? r\3
wr) = 5 In {1 + (1 - (E) )} (3.4.37)
sy

The amount of sail billowing at different angular rates is investigated using the equation above. The result

is shown in Figure 3.20a, and the parameters for the analysis is shown in Table 3.1. The legend indicates
the angular rate (rev/s) of the corresponding resultant sail form.

R 3.6m

To 2mN/s

o 0.006 kg /m?
My 20g

P | 4.563uN/m?

Table 3.1 - Sail billowing simulation parameters

Figure 3.20a reveals that the billowing due to solar radiation pressure is little. The maximum billowing
distance is extremely small relative to the radius of the sail. It is clear that this distance also decreases
exponentially with an increase in the angular rate of the sail. The centrifugal force created by the constant

spin keeps the sail stiff and greatly reduces the amount of billowing.

Figure 3.19 - Sail billowing definitions
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The satellite will experience aerodynamic drag in a LEO. This drag is a constant pressure similar to the
solar radiation pressure that, in lower orbits, will be much larger than the solar pressure. The same
equation is used to investigate the amount of billowing as the pressure increases. Figure 3.20b shows that
the pressure has a large linear relation with the maximum billowing distance of the sail. The larger the
pressure, the larger the billowing distance. The billowing distance is inversely proportional to the square

of the angular rate of the sail and decreases exponentially with an increase in the angular rate of the sail.

The billowing results of the sail are similar to those of the wire boom. The solar radiation pressure has
little effect on a rotating sail that can fit within a CubeSat. The sail billowing equations for solar sailing
can also be used to investigate the effects of the aerodynamic drag. The angular rate of the sail is the

dominant parameter. The billowing distance is negligible at high angular rates.

3.5 Orbital Analysis

The solar sail will affect the satellite’s orbit. This effect is dependent on the angle at which the solar rays
make contact with the solar sail. An analysis of the orbital effects due to the solar thrust is required to

determine the attitude manoeuvres required by the solar sail to produce maximum orbit changing thrust.

3.5.1 Two-body Problem

The movement of a satellite in an orbit is governed by the two-body equation[63] of motion, which can be
extended to include an external solar thrust force and an aerodynamic drag force by

v Fg+F,
||z|[? m

(3.5.1)

r+ )
with r the position vector from the centre of the earth to the satellite, x is the gravitational constant of the
orbited body (around the earth pp ~ 3.986 x 10°km?/s? and around the sun pg ~ 1.327 x 10'* km?3/s?), F,
the solar thrust force, F, the aerodynamic drag force and m the mass of the satellite. The majority of the
solar force is perpendicular to the solar sail. The aerodynamic drag is always in the opposite direction to
the velocity vector. The energy of an orbit will change only in the presence of external forces. External
forces can change the shape of the satellite’s orbit without changing the energy of the orbit. The specific
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energy of the orbit of a satellite in an elliptical orbit is calculated by

e=_H (3.5.2)

—50
with a the semi-major axis distance of the current orbit. The total external force in the orbital frame is
defined as F = F;Xo + Foyyo + Fo.Zo. F,y is in the direction of the orbit angular rate vector and will
change the inclination of the orbit. F,, is nadir pointing and will effect the eccentricity. F,, is in the
velocity vector of the satellite for a circular orbit. This force produces a Av acceleration that will change
the energy of the orbit. The change in orbital energy will change the elliptical orbit to approach a parabolic
escape trajectory or a deorbit trajectory[63].

3.5.2 Ideal Flat Sail Model

Complex solar pressure models are available, with many of them include effects of sail wrinkling, sail
billowing and additional reflective properties. A simple solar thrust model is used to compare different
manoeuvre sets. Similarly to that of Rios-Reyes[85], it is assumed that the solar radiation pressure is
perfectly reflected (ps = 1). Thus the thrust force is only present in the yz or —yp directions and no
transverse force is present (F; = 0 and F,, >= 0). Refer to Equations 3.3.31 and 3.3.30.

The sun is seen as a point source for solar pressure an infinite distance away, thus the sun vector is always
in the same direction in the inertial reference frame. The solar radiation pressure is dependent on the
amount of momentum transferred to the sail. This amount is dependent on the angle at which the photons
hit the solar sail. The solar thrust ratio is calculated by:

t'r'atio =Tsun" f'scn'l,N = 00557 (353)

with r,,, the unit vector of the solar rays, I,y the unit vector normal to the solar sail surface and « is
the relative angle between the two vectors. The scalar ¢,,+;, describes the fraction of the maximum photon
momentum pressure resulting in a solar thrust, and the direction of this thrust. A negative t,,:;, will result
in a thrust force in the opposite direction of the sail normal. The total thrust force is dependent on the
amount of these photons that the sail can capture. The effective projected area to the sun is:

As = Asailﬁ‘sun : f'sail,N|~ (3.5.4)

The solar thrust force is calculated from

Fs = tratioAsPsolar(l + ps)f‘sail,N

= tratioAsailPsolar(l + ps)lfsun : f'sail,N‘fsail,N7

(3.5.5)

with A,,; the area of the solar sail and P,,,- the maximum solar radiation pressure, which is
4.563 x 107% N/m? for a satellite 1AU from the sun.

The aerodynamic force is dependent on the projected cross-section area of the sail, the velocity, the drag
coefficient and the current atmospheric density[63, p. 145]. The area of the sail perpendicular to the
velocity vector is,

A, = Asail(fsail,]\f '\7). (3.5.6)
Thus the atmospheric drag force is
1 9
F, = —ipCDAav v
1 (3.5.7)
= _ipCDAsail(f'sail,N "_’>U2‘_’a

with p the atmospheric density, C'p the ballistic coefficient, v the unit vector of the satellite’s velocity and
v the magnitude of this velocity.
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3.5.3 Orbital Control Modes

Solar sails are used as a propulsion system to change the satellite’s orbit. From an earth-centred orbit the
sailcraft can either decrease its orbit altitude to deorbit or increase its altitude to acquire escape velocity.
A solar sail satellite in a sun-centred orbit can generate a thrust force to oppose its velocity direction to
move closer to the sun or spiral out to reach Mars. The attitude of the solar sail must change continually

to produce the required solar thrust force.

3.5.3.1 Earth-centred Orbits

Wie[1] defined maximum thrust and minimum thrust manoeuvres for a sailcraft in an elliptic orbit around
the earth. The maximum thrust can be generated when the sailcraft is sun pointing and keeping the
sail surface perfectly perpendicular to the incoming solar rays. The minimum thrust is generated when
the sail-normal is orthogonal to the solar rays. A third orientation is keeping the sail-normal parallel
with the satellite’s velocity vector. This orientation results in the perpendicular solar thrust being either
in the direction or in the opposite direction of the velocity vector. This orientation also maximises the
aerodynamic cross-section.

The proposed attitude manoeuvres are investigated next. A simulation applying the equations developed

in §3.5.1 and §3.5.2 places a 3kg solar sail satellite with a 25m?

sail in a sun-synchronous orbit. The
effects of the solar thrust on its orbit is investigated. This simulation shows the scenario for a satellite
reducing its current altitude. It visualises the satellite in its orbit and reveals the current orbital elements
(altitude, eccentricity, inclination, right ascension of the ascending node). The aim of this simulation is not
to accurately determine the change in the orbit, as other orbital propagation methods, aerodynamic and
solar models that exist can be used to produce a more accurate result. This simulation is used to identify

the relative effects on the orbital elements when using different control modes.

Figure 3.21a and Figure 3.21b show the different simulated approaches. The satellite’s velocity vector is

N
N
R
N
\
v
\
\
\
v
'
'
J
1
1
I
1
P
’
’
/
,
.

(a) Sun-following control mode (b) Orbit-following control mode

Figure 3.21 - Manoeuvre set for a satellite reducing its altitude
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Figure 3.22 - Orbital elements of sun-following control mode

designated by a black arrow and the direction to the solar thrust is indicated by an orange arrow. The
sun-following control mode (see Figure 3.21a) will extract maximum solar thrust, and the orbit-following
control mode (see Figure 3.21b) will only extract the component that is in the opposite direction to the
velocity vector. Both modes require the satellite to be in a minimum solar thrust orientation when the sun
would produce a positive solar thrust. Only the scenario for reducing the orbit altitude is investigated, but
the same control modes can be used to increase the altitude. To increase the orbit altitude, the minimum
solar thrust orientation should be active when a solar thrust, in the opposite direction to the velocity

vector, is generated.

The two main components of the solar thrust that are of importance are the total solar thrust and the thrust
component in the opposite direction to the velocity vector. A force that opposes the velocity vector of the
satellite reduces the orbit altitude. The residual components of the generated solar thrust will change the
eccentricity and inclination of the orbit. The simulation results of both control modes for 1000 hours are

seen in Figure 3.22 and Figure 3.23.

Figures 3.22 and 3.23 show that the solar thrust changes the satellite’s orbit. The altitude and eccentricity
contain frequency behaviour coupled to the orbit period. Figure 3.22a reveals that the sun-following
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Figure 3.23 - Orbital elements of orbit-following control mode

control mode produces a lower perigee than the orbit-following control mode (in Figure 3.23a) at the end
of the same simulation time. This is because the orbit becomes more elliptical due to the increase in
eccentricity. The sun-following mode lowers the perigee, but increases the apogee of the satellite’s orbit.
The orbit-following not only lowers the perigee, but also the apogee. For earth orbits, the aerodynamic
drag increases exponentially as the altitude decreases. However, the orbit-following mode not only lowers
the perigee, but also the apogee of the satellite’s orbit. The sun-following mode will be able to produce the
larger aerodynamic drag faster, because it increases the eccentricity and reaches a lower perigee faster
with higher atmospheric density. Figures 3.22c¢ and 3.23c show the inclination of the different methods.
The sun-following method changes the inclination more than the orbit-following mode. The inclination and
right ascension of the ascending node (RAAN) are dependent on the angular rate vector of the satellite’s
orbit. Thus a change in inclination will also indicate a change in RAAN, as seen in Figures 3.22d and
3.23d. The orbit energy of the sun-following, orbit following and a satellite maintaining its starting orbit
are calculated from Equation 3.5.2 and shown in Figure 3.24a. The sun-following method reduces the
orbit energy more effectively than the orbit-following method during the same period.

Overall, the sun-following method perturbs the orbit more than the orbit-following method. When the
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Figure 3.24 - Satellite in earth centred orbit

satellite is performing solar tracking, the satellite will be able to extract maximum solar energy if the
orientation of the solar panels are chosen correctly. The sun incidence angle on the body-fixed, deployed
solar panels will change during the orbit when in the orbit-following control mode. The differences

between the two control modes are summarised in Table 3.2.

The simulation was extended to produce a three-dimensional visualisation of the satellite in its orbit (see
Figure 3.24b). The visualisation shows the trace of the orbit, the orbit axes and the satellite’s body axes.

Sun-following Orbit-following

Perigee is lowered faster Perigee is lowered slower

Lowers perigee Lowers perigee and apogee

Changes eccentricity faster Changes eccentricity slower

Larger effect on inclination Smaller effect on inclination

Is not in maximum aerodynamic drag | Is in maximum aerodynamic drag
orientation orientation

Maximum solar energy on body-fixed, | Changing sun angle on body-fixed,
deployed solar panels deployed solar panels

Table 3.2 - Differences between sun-following and orbit-following control modes

3.5.3.2 Sun-centred Orbits

Solar sails are ideally suited for long-term inter-planetary missions. Missions which involve a number of
different targets are ideal for solar sails that do not have to increase the contained propellant for longer
missions. All inter-planetary missions start with the escape from the earth’s sphere of gravitational
influence. Once out of the earth’s gravity, the sailcraft is in a sun-centred orbit. The satellite then
continues to change its orbit to finally rendezvous with the target planet or orbiting body. The satellite
must change its relative orbit velocity to the target to be captured by the target planet’s sphere of

gravitational influence.

The optimal relative sun angle for changing the satellite’s orbit was determined by Wie[1, p. 750-751] as
35.26°. This angle is determined by maximising the force component, which is perpendicular to the unit
vector from the sun to the surface of the sail (F, S, see Figure 2.1). A satellite can increase its orbit
altitude by maintaining the optimal sun angle to produce a solar thrust that increases its linear velocity
around the sun. The solar radiation pressure stays constant for a body maintaining an orbit altitude of 1AU
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around the sun, but a solar sail in a sun-centred orbit is not bound to this constraint. The solar radiation
pressure at a distance rqyrent from the centre of the sun is derived from the area of a sphere

P(Tcurrent) =P [carth s (3.5.8)
V' Tcurrent

where P; is the solar radiation pressure at 1AU, 7eqrtn is the radius of the earth’s orbit or the value of 1AU.

This results in an increase in solar radiation pressure when the satellite gets closer to the sun, with the
inverse true when moving further away. A simulation containing the sun with all the inner-planets was
created to investigate the motion of a solar sail in a sun-centred orbit.

0

______________ . -15 -1 -05 O 0.5 1 1.5

(a) Vector definition of solar sail in sun-centred orbit (b) Top view of solar sails in sun-centred orbit

Figure 3.25 - Solar sail orbiting around the sun

Two high performance solar sails (characteristic acceleration = 0.14mm/s?> were simulated for 2 years
(730 days) in a sun-centred orbit. Each escaped from an earth-centred orbit. The first satellite kept its sail
& = 35.26° (see definition in Figure 3.25a) to produce a force component opposing its current velocity and
the second kept it at £ = —35.26° to generate a component to increase the orbit energy of the satellite.
The resulting orbits and distances from the sun is shown Figure 3.25b. The green satellite spiralled closer
towards the sun and the blue satellite increased its orbit altitude. Figure 3.26 shows a number of scenarios
of a solar sail at different angles relative to the incoming photons. Figure 3.26a shows that the altitude
change is much more effective when the sail is pointing at 35.26° to the solar rays than simply pointing
straight towards the sun. Pointing straight to the sun does extract the most solar thrust, but does not
have a large component in the satellite’s existing velocity vector. The pointing accuracy of the satellite is
investigated in Figures 3.26b and 3.26¢. The results show that a pointing error of 5 — 10° will not affect the
final orbit altitude that much. This pointing performance requirement can easily be achieved by a large
spinning solar sail. Figure 3.26d shows that the satellite moving away from the sun is beyond halfway
to Mars after two years. Mars is 1.5AU away from the origin of the sun. The satellite reducing its orbit
energy has lowered its orbit altitude and is almost at rendezvous distance with Venus.

3.6 Conclusion

A number of concepts for a spinning solar sail satellite that can perform the required manoeuvres to
change its orbit altitude has been introduced in this chapter. Two new solar sail concepts were introduced
that combines the advantages of spinning and 3-axis stabilised solar sail satellite. The required subsystems
to implement such a solar sail in a CubeSat-sized technology demonstrator were discussed. The attitude
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Figure 3.26 - Orbital elements of orbit-following control mode

dynamics for the new tri-spin conceptual satellite and the other spinning sail concepts were introduced.
A method for adding the non-rigid dynamics by means of the satellite moment of inertia was defined. The
dynamics of the non-rigid dynamics due to the attitude dynamics were identified. The simplified model
of the non-rigid dynamics was used to analyse the wire dynamics. Numerous parameters that affect the
outcome of the wire booms were identified. The analysis concluded that the angular rate of the sail
has the dominant effect on the wire boom dynamics. A simulation program was created to investigate the
manoeuvres for changing the altitude of an orbit, whereupon the sun-following and orbit-following attitude
manoeuvre sets were investigated for a satellite in an earth-centred orbit. A solar sail was placed in a sun-
centred orbit and the performance investigated with different pointing angles relative to the incoming
photons. The required attitude manoeuvres for an earth-orbiting satellite and a sun-orbiting satellite were
identified. The conceptual satellite will deploy its sail and wire booms from a spinning platform. The
deployment will have an effect on the attitude of the satellite. Methods for deploying a spinning sail are

investigated in Chapter 4.
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Chapter 4

Deployment Design and Implementation

4.1 Introduction

The spinning solar sail satellite spins continually. The centrifugal force from this spin can keep wire
booms stiff and rigid. Wire booms are advantageous due to the simplicity of their construction, storage
and deployment when compared to semi-rigid booms. The rotating wire booms and sail are deployed by
deployment mechanisms. In the case of the tri-spin satellite, the rotating mechanism is attached to a motor
within the satellite body. In a standard spinning solar sail, this mechanism is attached to the satellite body:.
The deployment mechanism needs to be compact and deploy the wire booms reliably.

The IKAROS satellite (see §2.3.1) is the only rotating solar sail satellite that has deployed its sail
successfully. The method for deploying the sail entailed two phases[12]. The first was the deployment
and release of the wire booms. The 10m wire booms were released when the satellite had an angular rate
of 20rpm. The angular rate reduced as the length of the wire booms increased. After the wire booms
were deployed completely, the sail clips were released. These clips prevented the deployment of the sail
along with the wire booms. Sakamoto et al.[86] discusses the manner in which the sail was attached and
folded in its stowed configuration to unfurl successfully. Many of these methods can be applied to deploy
other spinning solar sails.

First-stage deployment (quasi static)

- C—gf S : -
» - / - h

I Guide |

Figure 4.1 - IKAROS deployment procedure[6]

This chapter introduces an active and a passive deployment method. The dynamics of each method are
investigated to identify the deployment influence on the rest of the satellite and the deployment controllers
that are needed. A mechanism that is designed and built to perform active or passive deployment in an
earth environment is discussed and the practical results are compared to the theoretical models. Further
experiments to investigate the wire boom dynamics are also presented.

57
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4.2 Active Deployment Mechanism

In the case of the tri-spin solar sail satellite the sail and deployment mechanism rotate relative to the
satellite bus. An electric motor attached to a pulley can slowly deploy the sail and wire booms and with
attached sensors can produce feedback on the state of the deployed system. These electronics need to be
placed on the rotating deployment mechanism. The satellite bus contains the power source and onboard
computer. Signal and power lines are required from the satellite bus to the rotating system.

Slip rings can produce the connections required by the deployment system. This solution will supply the
system with the necessary control and feedback that may be required when deploying a large structure.
Slip rings are rated according to a maximum revolution rate and/or by the total number of revolutions.
Such an assembly was created for MicroMAS[64], a 3U dual-spinning CubeSat satellite containing a
rotating spectrometer as the main payload (see Figure 4.2). The driving interface is constructed by an
Aeroflex brushless DC motor with corresponding motor controller plus angular feedback and a 12-wire
slip ring to transfer power and data between the bus and the payload.

(a) Complete assembly of MicroMAS (b) MicroMAS internal workings

Figure 4.2 - Dual-spinning MicroMAS CubeSat[7]

Another option is using a wireless and independent module placed on the deployment mechanism. A
module containing its own battery power source and processing abilities can be created that is only active
during the deployment process. This solution provides full control of the deployment without introducing
complex and expensive mechanical connections. A release pin that, when in place, isolates the battery
from the deployment electronics can be included. The restriction of this solution is that the deployment
must be completed within the period of time that the wireless system has battery power. A comparison
between the use of slip rings and wireless modules is summarised in Table 4.1.

Slip rings Wireless module

Limits angular rate No angular rate limit

Increases mechanical complexity No effect on mechanical design
Module always active - gets power | Module active for short period -
from satellite bus limited battery power

Table 4.1 - Comparison between slip rings and wireless modules for active deployment
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4.2.1 Active Deployment Modelling

The length of the wire booms will increase steadily during active deployment. The length of the wire will
lead to an increase in the moment of inertia of the spinning load. The angular momentum of the satellite
must stay constant and thus the driving motor’s speed decreases when the moment of inertia increases. If
the rotation rate of the driving motor is kept constant, the angular momentum of the spinning sail or MCS
will increase and thus will induce an angular rate on the central satellite body. The angular momentum of
the sail structure will be

Hs = LsyyWs

9 4.2.1)
= (IsyyO +4dmg (r+£) ) Ws,

with I,y,0 the inertia of the deployment mechanism, m, the tip mass of the wire boom, r the radius of
the deployment mechanism, and ¢ the length of the wire boom. The driving motor speed dynamics is
determined by:

Tayy@s = Nop — Ny — Lyyws, (4.2.2)

with IV, the torque produced by the motor, and N, the unmodelled friction present in the motor. Equations
4.2.1 and 4.2.2 describe the effect of the deployment on the speed of the motor and on the rest of the
satellite system. These equations are used to investigate the effects of an active deployment through
simulation. The simulation scenario will begin with the deployment mechanism, at an initial speed of
wsp = 3rev/s. The wire boom will deploy at a rate of 1cm/s. As soon as the speed drops below 0.2rev/s,
a speed controller is activated to keep the motor rate constant. The maximum length of the wire boom is
3.6 m with tip masses of 20 g attached, and the initial inertia is I,,,0 = 0.001 67 kg - m?. The driving motor’s
maximum torque is limited to 25 mN - m and a bearing friction of 1 mN - m is assumed.

Figure 4.3 reveals the results of a simulation of an active deployment mechanism. The inertia increases
exponentially and the speed initially naturally decreases. The driving motor controller is activated when
the speed drops below 0.2rev/s mark and maintains this reference speed. The required torque never
saturates. The required torque increases linearly during the deployment. When the deployment is
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Figure 4.3 - Active deployment simulation
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completed, the required torque reduces greatly and stabilises at the small bearing friction torque level.
When the speed is kept constant and the inertia increases, the load angular momentum increases
exponentially. To conserve the total angular momentum the rest of the satellite body must counter this
load angular momentum increase.

4.2.2 Active Deployment Demonstrator

The active deployment demonstrator was built to perform a deployment by means of a wireless module.
The aim of the demonstrator was to identify the components that are required to perform the deployment.
The demonstrator is not suitable for a flight model and the components that are used for the demonstration

are not recommended for the final design.

The deployment can only be performed without a slip ring unit if a wireless link is available. The EZ430-
RF2500T from Texas Instruments was used. The small PCB (outer dimensions 20 mm x 30 mm) contains a
programmable micro controller, wireless transceiver and antenna. The circuit requires 24 mW when the
wireless link is active and 2.6 mW when no wireless communication is required. Many other low-power,
system-on-chip (SOC) solutions exist that can be investigated for further development. The EFR4D Draco
from Energy Micro is a SOC with the microcontroller and transceiver in one integrated circuit (IC).

A stepper motor with a reduction gearbox is connected to the pulley, and is driven by stepper motor driver
electronics. The driver electronics and stepper motor are not optimised for the demonstrator. Feedback of
the rotation angle of the pulley is generated by means of a magnetic rotary encoder. The microcontroller
interprets the pulley rotation to wire boom length. A lithium battery is added to supply the needed power
to the remote circuit.

The wire booms are wound around a pulley with a diameter of 70 mm. All four wires are wound around the
same pulley, but each goes individually through a follower. The follower keeps the wires apart and forces
the booms to leave the deployment mechanism at each corner. Circular beads and fishing lead sinkers are

used as tip masses.

The entire mechanism is attached to a driving brushed DC motor. The driving motor contains a tachometer,
which returns the current angular speed. Electronics to drive the motor and to perform speed control are
added. The completed demonstrator can be seen in Figure 4.4.

(a) Side view of demonstrator (b) Electronics on demonstrator

Figure 4.4 - Active deployment demonstrator
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4.3 Passive Deployment Mechanism

The sail and the wire booms spin continuously. The spinning produces an outwards force that is dependent
on the angular speed, the mass of the rotating element and the distance this mass element is from the spin

axis. This force can be used to deploy the system.

A deployment mechanism similar to a Yo-Yo despin mechanism is required. A Yo-Yo despin mechanism was
used to reduce the angular rate in one axis by deploying wire booms[55; 56]. The wire booms increase
the satellite’s moment of inertia, thus the angular rate decreases. The wire booms are released when the

satellite has reached its desired spin rate.

A centrifugal method was used by the DICE-1 and DICE-2 spinning CubeSats[87; 88; 89] to deploy wire
booms. These satellites use multiple sets of sensors to observe the ionosphere. One set of these sensors
consists of two electric field probes, each attached to a 5m wire boom. These wire booms were deployed
by using the centrifugal force of the spinning satellite to pull the wire booms off the spool, but had a
brake system consisting of a piezoelectric motor (see Figure 4.5a) to prevent the wire boom deployment
to exceed 1cm/s. This requires accurate knowledge of the current angular speed of the spool, which was
done by means of optical encoders. Although not purely passive, the main force deploying the wire booms
is the centrifugal force. The final DICE deployment mechanism (Figure 4.5b) fitted within a CubeSat
structure and had a total height of 1.25cm. The method for controlling the deployment by using the brake
is discussed in [88]. As the entire satellite is spinning, there is no rotating interface between the satellite
bus and deployment mechanism, as is the case in the tri-spin satellite.

(@) Piezoelectric Squiggle deployment (b) Deployment mechnanism[89]
braking motor[90; 87]

Figure 4.5 - Wire boom deployment mechanism for DICE

The aim of the passive deployment mechanism is to have no electronics on the rotating system. This will
reduce the amount of control that is possible, but will make it immune to electronic single-point failures,
as in the case of a separate control module. As with the active deployment mechanism, all the wire booms
are wound around the same pulley. This pulley is not connected to a stepper motor, but rather to a free
rotating axle. The free rotating pulley is rotated by a torque created by the tension in the rotating wire
booms. The rotation dynamics of the pulley can be changed by the friction and damping of the free axle
and the tension of the wire booms.

The only feedback signal available is the speed of the motor fixed to the satellite body. This makes it
important to understand the dynamics of deployment. An accurate deployment model will make it possible
to estimate the current state of the deployment mechanism by the speed output of the motor.
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4.3.1 Passive Deployment Modelling

The deployment mechanism dynamics is dependent on the torque input of the driving motor and the
centrifugal force experienced by each mass. The centrifugal force of each mass is:

F.=my(r +0)w?, (4.3.1)

with mg the mass of the tip mass, r the radius of the deployment mechanism, ¢ the length of the wire and
ws the current speed of the motor. If the motor speed is kept constant, the centrifugal force will continue
to increase as the length of the wire increases. Each tip mass contributes its centrifugal force to a torque
experienced by the pulley with the wound wire. This centrifugal torque is:

N. =4F.r,

(4.3.2)
= 4m5rp(r + E)w;

with 7, the radius of the pulley. The kinetic friction on the pulley’s axle is Ny = u; N, with p; the kinetic
coefficient of friction and the damping torque on the axle is Ny. If the angular acceleration of the pulley is
defined as ), then the dynamic equation is:

LyyA = Ne.— Ny — Ny

) ) (4.3.3)
= dmgrp(r + Ow; — Ny — by,

with I, the moment of inertia of the pulley around the axle and b, the damping coefficient on the axle
rotation. Assuming that ¢/ = r,\, we can rewrite the equation to define the acceleration of the wire length,

Toww j gy (r+ 0)w? — N 7b£ (4.3.4)

™ stp s f >\7°p . .o,

The dynamic equation above, combined with Equation 4.2.1 and Equation 4.2.2, reveals the deployment
dynamics of the passive deployment mechanism. Equation 4.3.4 is only active when the centrifugal torque
exceeds the static friction (N = psV,,) of the axle. This can create a dead band where the speed of the
deployment mechanism can increase without initiating the deployment of the wires. If this dead band
is chosen to be above any rate the satellite will experience naturally, the deployment initialisation will
only occur when the driving motor’s speed is controlled above the dead band. A simulation (results seen
in Figure 4.6) similar to that in 8§4.2.1 was conducted to reveal the natural dynamics of the centrifugal
deployment. The simulation investigated two scenarios. The first scenario had an initial motor speed of
3rev/s, the same as the active deployment case, and the second scenario had an initial rate of 2.5rev/s.
No limit is placed on the available motor torque.

Firstly, it is important to look at the time scale. The passive deployment was completed within a number
of seconds, whereas the active deployment took several minutes. The effect of the deployment speed can
be seen in the required motor torque when the speed controller is activated, as seen in Figure 4.6b. Even
though the final angular momentum (see Figure 4.6d) of the passive deployed system is similar to the
active deployed system, the rate at which it changes is what indicates the torque generated by the
driving motor. If the motor is not able to produce such large torques, the rotation speed of the load will
continue to fall below the 0.2rev/s nominal speed. It is clear that when designing the passive deployment
mechanism, techniques to limit the speed at which the wires are deployed must be implemented. The
speed of deployment is directly related to the starting rotation speed of the deployment, thus the system
must deploy close to the equilibrium of the dead band created by the static friction to reduce the

deployment speed and the required motor torque.

4.3.2 Passive Deployment Demonstrator

The passive deployment mechanism requires a free-rotating axle. This axle is situated within the
deployment mechanism and the pulley is connected to this axle. A method for adding friction to this axle
is required.
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Figure 4.6 - Passive deployment simulation

The passive deployment demonstrator is seen as an alternative to the active demonstrator. As many of
the components of the active demonstrator are used to build the passive demonstrator (see illustration
in Figure 4.7a). The stepper motor is removed and replaced with a floating axle. The floating axle (see
section view in Figure 4.7b) is created by using two bearings. The top bearing is an angular contact
bearing and the lower is a normal radial bearing. The axle has a ridge that presses downwards on the
angular contact bearing. A brake system similar to that of a bicycle brake is created to add extra friction
to the axle. The brake system consists of a brake material that is pressed against the axle by means of
a back plate. Springs are added between the brake material and the back plate to ensure that the brake
material always makes contact with the axle. The distance of the back plate and the axle can be changed
by the means of two nuts. When the nuts are tightened, the back plate moves closer to the axle and
the springs are compressed, thus pressing the brake material harder against the axle and increasing the

friction.

Axle

Angular-contact bearing
Brake material

W\Radial bearing

Back plate

N/

A \W Pulle
= !
(a) Deployment demonstrator (b) Section view of free-rotating axle

Figure 4.7 - Mechanical design of deployment mechanism

Numerous improvements can be made to the deployment mechanism. These include making the
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mechanism more compact by using a different braking system and adding damping to the rotation of the
axle. The brake system will provide passive control of the speed at which the wire booms will start to
deploy. The speed at which these wires deploy is not dependent on the friction. The dynamic equations
reveal that the deployment speed of the wire booms increases if the angular speed of the motor is kept
constant. The damping coefficient of the angular rate of the pulley can control the speed at which the
pulley will deploy. Rotary dampers are commercially available. These rotary dampers make use of a
spinning disc in a lubricant (see Figure 4.8a). A specific lubricant that is rated for the space environment
is available. Patents that suggest that dry rotary dampers are also available have been published, but
none could be found commercially. If a custom rotary damper is connected to the pulley axle, the speed
at which the wires are deployed can be passively controlled and restricted. Standard lubricated rotary
dampers (see Figure 4.8b) are commercially available, but further investigation and testing on these
components are required before they can be considered for use in future deployment mechanisms.

Damping Orifice

Outer Body

(a) Internal workings of a rotary damper[91] (b) Rotary damper examples[92]

Figure 4.8 - Rotary dampers

4.3.3 Passive Deployment Control

It was seen in the simulation of the natural dynamics (see §4.3.1) of a passive deployment system that
deployment must take place close to the dead band created by the static friction system. Unfortunately,
the angular rate at which deployment will take place is hard to determine. A control method that will be
able to deploy the wire booms without knowledge of the friction in the system is therefore needed.

A simple state machine of a pulse deployment method that would be able to control the deployment of
the passive deployment mechanism is shown in Figure 4.9. The deployment procedure will be made up
of three main states: speed control, torque pulse and free-running no control. The speed feedback from
the driving motor is used to control the speed to a reference speed. The static friction will prevent the
deployment of the wires until a specific release speed is reached. The exact release rate is not known. The
pulse state inputs a short pulse of torque on the motor to create a jerk on the wires; to try to overcome the
static friction in the system. If the friction is overcome and the current rotation speed is high enough the
deployment will continue and the length of the wires will increase. After the pulse, the motor will enter
a state of no control torque. With no torque added to the motor it will only be the internal motor friction
and the increase in the moment of inertia of the load that will reduce the speed. When a large decrease
in rotation speed is witnessed, the wires will be deploying. If the wires have not deployed, the angular
reference is increased slightly and the motor returns to the speed controller. This cycle will continue until
a large decrease in speed is observed.

When it is confirmed that wires are deploying, the motor continues to run free and the rotation speed
continues to reduce as the moment of inertia increases, thus roughly controlling the speed at which the
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length of the wires increase. This will continue until the minimum speed is achieved. When this limit is
reached, a speed controller will be activated which adds torque to the motor to keep the motor at the
nominal speed. This is very similar to what is proposed for the active deployment mechanism (see §4.2.1).

Q—» Speed Control

Torque Pulse

No Control

Increase
large speed \_no
| speed
decrease?
reference
yes
 E——
No Control Speed Control O
i Minimum
no nominal yes .
spee
speed? P
reference

Figure 4.9 - Pulse Deployment Method

The large negative spike observed in the pulse controller only supplies an indication of whether the wire
booms have been deployed. Information regarding the state or current length of the wire booms is
unknown and methods to determine whether the sail or MCS have fully deployed are still needed.

A method by which to determine the state of the wire boom system, would be to estimate the current
moment of inertia of the load connected to the motor. Recursive Least Squares (RLS) estimation can be
used to determine the load if the input and output of the motor is known. A brushless DC motor with
a load is a simple first-order system[93]. The friction in the system is seen as noise, thus reducing the
required coefficients to the noise, inertia and change in inertia coefficients only. The method for deriving
the equations and the steps is derived from Astrom and Wittenmark[94] and Franklin et al.[95]. Referring
back to Equation 4.2.2, the dynamic equation can be linearised and rewritten to a continuous transfer
function as

ws(s) 1
Nin(s) - Isystrjsyy
KO
Ts+1’

(4.3.5)
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with K, = 1/I,,, and 7 = I,,,/I,,. The transfer function can be converted, using the ZOH method, to the
discrete Z-plane[96] to become

N " —a (4.3.6)

with b = K,(1 — e_%) and ¢ = e~ = and T, the sampling period. The Least Squares parameter and
regression vectors are extracted from the difference equation and extended to include a noise parameter.
This noise parameter is added to model the noise from the measured motor speed and other unmodelled
noise sources like friction in the motor which is not within the basic first-order linear model in Equation

4.3.5. The motor plant is a first-order model and thus only requires one noise parameter.

ws(k) =bNp(k—1) + aws(k — 1) + ce(k — 1)

= O(k)®(k)

b(k) (4.3.7)
= |al) | [Ntk =1) wn(k=1) k-1,

c(k)

with © the parameter vector and ® the regressor vector. The error signal is defined as ¢(k) = y(k) — O (k —
1)®(k) with y(k) the current measured output. The RLS algorithm makes use of the new information
known at time step k and the parameter vector of £k — 1, to estimate the parameter vector of k. The
RLS algorithm can be extended for time-varying systems by making use of an exponential forget factor,
0 < A < 1, which indicates the amount of previous information used to update the parameter vector. The
RLS algorithm updates the parameter vector at every time step, by completing the steps below:

1. Populate the regressor vector, ®(k), refer to Equation 4.3.7.

2. Update error feedback gain, K(k), by

-1

K(k) =P(k—1)®(k) (A + &7 (k)P(k — 1)®(k)) . (4.3.8)

3. Update the estimated parameter vector, ©(k), by

Ok) = Ok — 1) + K(k) (y(k:) —®(k)O(k — 1)) . (4.3.9)

4. Update covariance matrix, P(k), by
P(k) = (I- K(k)®" (k)) P(k —1)/A. (4.3.10)
The initial value of this matrix is a large positive definite matrix, by
P(0) = odsxs, (4.3.11)

with o >> 1 and 1343 a 3 x 3 unit matrix.

The estimated parameter vector contains the discrete transfer coefficients, a and b, and the noise or
unmodelled coefficient ¢. The discrete transfer coefficients are converted back to the moment of inertia
and the change of moment of inertia by I,, = 1/K, and I,,, = 7/K, with

®, and

_ b
T 1—e T/

T =
Ina

(4.3.12)
K,

This results in an algorithm that continually updates the current load’s moment of inertia attached to the
motor. This estimation method is only effective if the plant is continually excited. Unfortunately a pulse,
from the pulse deployment controller, is not a signal that will persistently excite a plant of any order.
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During the deployment, when the control effort is very small, the output will change due to the change in
the plant’s moment of inertia. The RLS algorithm will struggle to obtain an estimate if the input signal is
very small. After the angular rate has dropped below the nominal rotation speed, the speed controller will
be mostly active, continually maintaining the angular rate of the load. This would lead one to believe that
the plant will experience a constantly changing input or output and thus will reveal the internal workings
of the first-order model. A small pulse train signal can be added to the input signal to ensure that the
plant is persistently excited all the time. The main disadvantage of the RLS method is that it is based
on a linear model while the plant is non-linear. This might result in inaccurate estimates of the model
parameters. Astrom and Wittenmark[94] indicate that the RLS can be adjusted to apply to certain non-
linear models with the essential factor that it must be written as a regression model. Unfortunately, the
deployment model contains dead bands and saturation non-linearities that are hard to write as a regression
model. Still, the RLS algorithm should be able to determine whether the system is fully deployed or if the
deployment process must be repeated.

A second method for estimating the current deployment status is to make use of an Extended Kalman
Filter (EKF). The EKF contains non-linear dynamics whereas the RLS makes use of a linearised model.
The process of developing a EKF is very similar to that of a normal Kalman filter. The normal linear
Kalman filter propagates the model with a linear state variable model. The EKF uses non-linear equations.
Lewis[97] discusses the methods to develop and to implement the EKF. The estimated state vector for the
deployment EKF is

")

Rp1/k = (4.3.13)

~ s &

which contains w, the driving motor angular rate, { the rate of the wire length and ¢ the current wire
length. The non-linear state vector equation is

ws fws (X, Nm)
x=|0|=| fix) = f(x, Ny,) (4.3.14)
l /

and contains the equations which describe the propagation of the states. The first equation, f,, (x, N,,), is
the motor dynamic equation and f;(x) is the deployment equation. The dynamic equation describing the
motor (taken from Equation 4.2.2) is

Isyyws - NnL - Isyyws - Nf

Wy =7— — —— — —— (4.3.15)

with all the variables time dependent, except Ny which is seen as constant internal motor friction. The
inertia of the motor load is a function of the wire boom length. The dynamic equation describing the
acceleration of the wire length (derived firstly in Equation 4.3.4) is

I by

PG — sy (r + Ow? — Npp — —4
p oo
. dmgr? N, by .
/= P(r _i_g)wg _ TplNpy  Ox / (4.3.16)
Ipyy pyy Ipyy
= fe(x)

which is dependent on all the variables in the state vector. The dynamic equations above require constants,
like the inertia of the pulley and the motor friction, which will influence the performance of the estimator.

The EKF linearises the non-linear equations at each time step and current work point. The equations are
linearised by performing a first-order Taylor expansion at the current estimated state values. This results
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in a linear model that is used to populate the state model matrix

of
p, _ 200

aX x:ﬁk+1/k

Ofws  Ofws  Ofus

dw, By o7 (4.3.17)

— | 2fe  Ofe  Ofe

Owsg or ol
0 0 1

with Fj the linearised dynamic equations and f(x) the non-linear equations. The result of the partial
derivatives of the dynamic equations are seen in Appendix B. The angular rate of the motor is the only

measurement available.

ek = Yk — Hpr1Xp 11/, (4.3.18)
with
Hei=[1 0 0], (4.3.19)

and y;, is the measured angular rate of the motor. The steps to be taken at each time step are described in
detail in §5.2.3. The EKF should produce better estimates than the RLS estimation method as long as the
non-linear model is accurate. EKF has the risk of diverging if the model differs too much from reality.

A simulation of the deployment was constructed. The pulse deployment controller described above and
both estimation methods were simulated (see Figure 4.10). The results are shown in Figure 4.11. The
simulation contained four modules. The one block contains the non-linear equations describing the
deployable system. The control loop is closed with the implementation of the pulse deployment controller.
The output of the dynamic model with noise and the control input generated from the controller are sent
to the RLS and EKF implementations. The constants within the EKF are chosen to differ from the
constants used in the plant model. @The aim of the simulation was to assess the theoretical
implementation of the deployment controller and estimation methods.
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Figure 4.10 - Simulation environment for deployment

In Figure 4.11c, one can see that the pulse deployment controller was activated at about 1.5rev/s. The
rotation speed of the load increases at every iteration of the pulse controller. The control pulses are
clearly visible in Figure 4.11d. To achieve the critical speed where the centrifugal force pulling the tip
masses exceeded the static friction within the deployment mechanism required 13 iterations of the pulse
controller. This was followed by the sharp decrease in rotation speed that can be seen in the sharp negative
spike in the angular acceleration. This negative spike (see Figure 4.11e) indicates that deployment is
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Figure 4.11 - Passive deployment control and estimation simulation

occurring. The speed controller was activated when the speed dropped below 0.2rev/s. The required
torque, which the motor can produce, did not reach saturation point. The speed dropped below 0.2rev/s
to a minimum 0.15rev/s for a brief period. In the simulation, the pulse controller successfully deployed the
wire booms from the passive deployment mechanism.

The two estimation mechanisms were implemented in parallel with the pulse controller. The model in the
EKF made use of different constants to the dynamic model. The EKF estimates the length of the wire and
not directly the moment of inertia of the load. In Figure 4.11b one can see that the EKF produces a good
estimate of the length of the wire. Due to the differences in models in the EKF and the simulated plant,
the estimated length does not follow the progression of the real length exactly. The estimated length error
at the end of deployment is small. The estimated moment of inertia from the EKF and RLS are seen in
Figure 4.11a. Due to differences in the tip mass values, the estimated inertia by the EKF is not accurate.
Fortunately this value can be measured accurately beforehand. The RLS makes use of a linear model and
gives a bad estimation during the deployment, where the model is mostly non-linear. The RLS does supply
a good approximation of the final moment of inertia, when deployment is completed.

The simulation revealed that the pulse controller would be able to perform a passive deployment. It will
slowly increase the rotation speed until the deployment mechanism reaches the critical speed at which
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deployment will start. The EKF will produce a good estimate of the length of the wire during deployment,
but will produce an estimated moment of inertia error due to differences in the EKF model and reality. The
RLS is inaccurate during deployment, but supplies an accurate estimate of the moment of inertia when

the deployment is completed.

4.4 Deployment Experiment

The mechanism for the deployment of the wire booms of the sail and the MCS was built. An experiment
was designed to demonstrate the deployment of the wire booms on earth. The effects of earth’s gravity
and air resistance will have an influence on the results.

4.4.1 Required Outcomes

The aim of the deployment experiments is not to perform a complete deployment of the wire booms. The
main aim of the deployment demonstration is to conduct and identify control mechanisms that will improve
the controllability of the deployment process. The deployment of all four wire booms from a single pulley is
investigated during the active deployment experiment. The effects of the earth’s gravity and air resistance
will be observed. The observations and results of the active deployment will produce restrictions on the
minimum angular rate and the maximum wire boom length of the passive deployment experiment. The
control mechanisms and state machine for passive deployment described above are to be implemented
and the robustness of these methods investigated. The results of both experiments are compared with the
theoretical simulations in §4.2.1 and §4.3.3.

4.4.2 Experimental Setup

A deployment demonstrator that is able to perform either an active or a passive deployment was built (see
§4.2.2 and §4.3.2). The experimental setup makes use of the active and passive deployment demonstrator.
The initial experiment will be done on the active demonstrator. 2.5 m wire booms will be wound around the
pulley. The driving motor of the active experiment is connected to driver electronics, which is controlled
by a microcontroller that is connected through a UART/USB converter to a computer. A secondary serial
port of the computer is connected to a secondary microcontroller that contains the wireless transceiver to
communicate with the wireless module on the rotating deployment mechanism. The driving motor will be
controlled until a specific rotation speed is achieved where a deploy command will be sent to the wireless
module. This will initiate the wire boom deployment. Feedback of the rotation angle of the pulley is
transmitted wirelessly to the computer and logged. The speed of the motor is also sent to the computer
and logged.

The length of the wire booms and the minimum speed for the passive deployment experiment will be
determined by the results of the active deployment experiment. The same driver electronics will be used.
The wireless module and stepper motor are removed from the deployment mechanism. The battery pack
of the wireless module’s is kept on the rotating system to avoid the need to redesign the speed controller
for the driving motor. A video camera is placed in the experiment environment to retrieve feedback on the
speed of deployment.

4.4.3 Results

The active deployment experiment was conducted using three different tip masses (8¢g, 3g, and 1g). The
mass of the wire is negligible relative to the tip mass. The practical results of an active deployment with
tip masses of 1g are seen in Figure 4.12. The results correspond to the theoretical model in §4.2.1. Like
the model, Figure 4.12a shows a large decrease in rotational speed when the deployment started. The
decrease was more than what was expected at the current wire boom length. The internal friction of
the driving motor, but more significantly the aerodynamic drag of the rotating system, contributed to the
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Figure 4.12 - Practical results from active deployment mechanism

additional speed loss. The magnetic encoder measured the absolute angle and transmitted the information,
which is seen in Figure 4.12b, over the wireless module to the terminal. This absolute angle information
was used to determine the total rotation angle of the pulley. The current length of the wire booms, seen in
Figure 4.12c, was determined from the total pulley rotation angle and the known radius of the pulley.

The active deployment was successful. The wire booms stayed straight during the slow increase in length.
The tip masses had an offset angle due to the gravity of earth. At a speed lower than 2rev/s, this angle
became significant and collision with the floor surface was a possibility. The effect of the air resistance
became clear when the wire boom length exceeded 1 m. The air resistance resulted in the driving motor
struggling to maintain the angular rate of the rotating system. This was accompanied with a whistling
sound of the wire boom moving through the air. The mass of the tip mass had very little effect. The 8¢g
and the 1g tip mass wire booms showed very similar results. This revealed that the aerodynamic drag of
the wire boom had a much larger effect than the wire boom’s moment of inertia. The longest length of the
wire booms was 1.32m, at which point the gravity-offset angle became too large and the wires had to be
pulled back. During some of the iterations of the experiment, communications were lost to the wireless
module. Software watchdog timers and communication time-outs were implemented to counteract these
errors. This revealed a problem in the separate wireless module implementation. If communication is lost
to the wireless module there is no control of the deployed system.

The active deployment experiment revealed restrictions on the rotation speed and the maximum wire
boom length to the passive experiment. The 1g tip masses were used for the experiment. A minimum
speed of 2.5rev/s and a maximum wire length of 1m restrictions were placed on the passive deployment
experiment. The passive experiment was repeated with different dead band settings created by the static
friction. Photos of the passive deployment can be seen in Figure 4.14 and the practical results of the motor
and controller are seen in Figure 4.13. The practical results show the current state of the deployment
controller. State 1 is the initial pre-deployment rotation speed controller, State 3 is the pulse and no-
control state and State 4 is the post-deployment angular rate controller, which is only activated when the
speed drops below 2.5rev/s.
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Figure 4.13 - Practical results from passive deployment mechanism

The passive experiment was successful. Numerous successful deployments of 1m wire booms were
executed with varying friction settings. In the scenario shown in Figure 4.13 the pulse deployment
controller was activated at 3rev/s and deployment took place at 4.5rev/s. The deployment commenced on
the seventh iteration of the pulse deployment controller. As seen in the simulation (see Figure 4.11), the
speed fell sharply during initial stages of deployment. This is especially seen in the angular acceleration
in Figure 4.13b with the large negative spike at just after 20s. The speed controller was activated after
passing 2.5rev/s. The rotation speed briefly fell to 2rev/s, but the speed controller took over and
increased the speed to the nominal 2.5rev/s. The duration of deployment for the scenario in Figure 4.13
was 8s and the photos in Figure 4.14, from the video, of a deployment at a lower static friction level
revealed a scenario where the deployment took 12s to complete.

4.5 Wire Dynamics Experiment

The tip mass continually experiences a centrifugal force due to the angular rate of the deployment
mechanism. Oscillations will occur when an out-plane angle of the tip mass is present. A basic model for
this dynamics was developed in §3.4. It was seen that the oscillations are dependent on the damping ratio
of the out-plane angle and the angular rate of the system. It is hard to determine the damping
analytically, therefore it is worth investigating whether the damping ratio can be experimentally
determined. These experiments should be conducted within vacuum to measure the damping ratio
expected within space. The accuracy of the dynamic models can be improved with measured damping
ratio values.

A secondary experiment with the active deployment demonstrator was implemented. This experiment is
mounted on a structure that can be tilted at an angle. The wire booms are deployed a short distance and
the angular rate is kept constant. A camera is placed in-line with the rotating wire booms. The deployment
demonstrator is tilted at a fixed angle. The structure is released and returned to its nominal position. This

aims to emulate an attitude manoeuvre. This fast change will induce an out-plane angle offset and will
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result in an oscillation. The footage from the camera can be used to determine the behaviour of the
oscillation. The tip masses are painted white with a black backdrop to make them more visible.

The experiment as described above was performed. A single tip mass was extracted from the camera
frames, where the tip mass is in-line with the camera. A video camera normally has a frame rate of
50 — 60 frames/s , but will not show the tip mass during each revolution of the wire booms. An available
video camera had a special mode to take a short video clip at a frame rate of 120 frames/s. This produced a
satisfactory frame at each revolution. Each frame was converted to a monochrome image and the threshold
was chosen to make the tip mass clearly visible. The collection of frames was projected on a single image.
The result of this operation is seen in Figure 4.15. It clearly shows the oscillation of the out-plane angle.
The whole oscillation could not be captured because the length of the video clip at the higher frame rate is
limited. This experiment revealed that the out-plane oscillations do exist when an attitude change occurs.
The damping ratio of the oscillation could not be determined because the video clip was not long enough
to observe the whole event. The fast-moving masses in the presence of air will add extra damping that will

not exist in space.

An alternative experiment to the tilt test was to investigate the wire boom dynamics with a pendulum
and earth’s gravity (see Figure 4.16). Gravity will be used to model the centrifugal force of a spinning
wire boom. Simply releasing the pendulum from a certain angle and investigating the duration of the
oscillation the damping ratio can be deduced. This experiment should ideally be conducted in a vacuum
as the pendulum will experience added damping due to air resistance. The effect of higher angular rates
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Figure 4.15 - Tilt test on active deployment

can be achieved by adjusting the mass attached to the pendulum. A larger tip mass will produce a greater
tension in the wire boom which is present at greater angular rates in the actual application.

Similar experiments were conducted by Huang et al.[84] for determining the transfer function of the
dynamics of a heliogyro blade and Morbhat[88] for determining the damping ratio of a wire boom.

The experiment provides a possibility to investigate additional methods to increase the damping of the
wire boom. At low centrifugal forces, the wire should tend to bend steadily all along the length of the wire.
At higher speeds and wire tensions, the wire should only bend at its point of attachment to the pulley.
The internal material damping only occurs at that single point. If the bending can be forced to be more
gradual, more damping of the wire oscillations can be achieved. This effect can be forced by adding thin
metallic panels or a spring around the wire (see Figure 4.17a). The team from DICE proposed a damping
washer at this point to increase the damping of the oscillations[87; 88]. Pendulum tests within normal
atmospheric conditions can be done to investigate the effect of different damping enhancing mechanisms.

(a) Centrifugal scenario (b) Gravity
scenario

Figure 4.16 - Comparison between centrifugal and gravity wire dynamics
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4.5.1 Theoretical Outcome

The dynamic modelling of a pendulum is performed as an introductory problem in many textbooks[81;
74]. The dynamic model of the pendulum problem seen in Figure 4.16b is very simple using Lagrangian
mechanics (refer to Appendix A.1 for more information on applying the Lagrangian mechanics technique).

The kinetic energy of the system is the rotation of the pendulum,
L o0
T= §m£ B, (4.5.1)

and the potential energy is
V =mgl(1 — cos ), (4.5.2)

with g = 9.81m/s? the gravitational constant. The system will lose energy due to the damping in the wire
which is modelled as —bs B The equations above are substituted in the Lagrangian function (see Equation
3.4.13) and the Euler-Lagrange equation (see Equation 3.4.24) and produces the dynamic equation for the
pendulum angle

ml%f + mglsin f = —bgf. (4.5.3)

Releasing the tip mass from an initial angle offset, 5y, an oscillation will be induced and the decay of the
amplitude would be due to the damping in the system. The theoretical equations were investigated and

the results for a scenario with m =10g, £ = 0.5m, bg = 0.001 and 5y = 5° are shown in Figure 4.17b.
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Figure 4.17 - Extended wire dynamics experiment

The ratio of two successive peaks of the induced oscillation is used to calculate the damping ratio, bg, of
the wire. Similar results from a practical experiment can be used to measure the damping ratio of a wire
boom. Morbhat[88] discusses the method for determining the damping ratio from the offset distance of
the pendulum in greater detail.

4.5.2 Atmospheric Experiment

A pendulum experiment was constructed to investigate whether damping enhancing mechanisms can be
added to the attachment point of the wire boom to reduce the duration of the wire boom oscillations.
Grover et al.[87] presented a damping washer at the attachment point to introduce extra damping. A
basic pendulum was created with a 30 cm long wire attached to a 10g mass. The nominal position of the
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mass is defined where there is no offset angle relative to the gravity force acting on the mass. A camera
was placed at a fixed location to observe the movement of the mass when released at a known distance

from its nominal position.

This experiment was repeated a number of times to investigate the repeatability of the results and the
effect of adding damping enhancing mechanisms. Two damping enhancing mechanisms were investigated.
The first was the addition of insulation around the wire. The insulation that was investigated was in the
form of a thin tube of Kynar material. The second was the addition of a round spring that surrounded the
wire at the attachment point. Both the enhancers were limited to 15 mm in length.

The results of the experiment are shown in Figure 4.18. The horizontal pixel distance of the tip mass
relative to its nominal position was extracted from the camera footage. A data point was extracted at the
maximum positive horizontal distance from the nominal position at certain number of pendulum periods
following release. This resulted in the relative comparison of energy release after each period of the
pendulum movement. Figure 4.18a shows these points as a combined image and Figure 4.18b presents
the distance of the experiments conducted. The experiment was conducted once for the case without any
damping enhancer and twice for the insulation and spring cases respectively.

As one would expect, the results show that the damping enhancers were effective and did increase the
damping of the out-plane distance of the wire boom. The added insulation only increased the damping
slightly when compared to the standard case. The thickness of the insulation can be increased, which
should increase the effectiveness of this method. The spring did seem to be much more effective than the
insulation. It is clear that this simple and basic experiment can be used to investigate the relative
effectiveness of different damping enhancers and wires that are to be used in the final deployment

mechanism.
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Figure 4.18 - Atmospheric pendulum experiment

4.5.3 Vacuum Experiment

The results obtained in the atmospheric pendulum experiment cannot be used to determine the damping
ratio of the wire boom system due to the influence of atmospheric drag. Similar tests need to be completed
in a vacuum to experimentally derive the damping ratio for a particular wire boom. This experiment will
have to be operated remotely within the vacuum chamber.
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The entire pendulum experiment has to be placed in a vacuum chamber, therefore the vacuum chamber
will need to be large enough to contain the entire experiment. The pendulum mass can be released from
its offset position after the chamber reaches an acceptable vacuum level. The pendulum experiment must
consist of a pendulum system with a remote release system for the tip mass and a fixed camera to inspect
the tip mass after release. Adding a small light to the tip mass or some other form of lighting within
the chamber to make the tip mass clear is suggested. A mechanical lever or electromagnet can be used
to release the tip mass remotely, but with the requirement that the same initial conditions are ensured
with each experiment reload. A diagram depicting such a conceptual experimental setup is shown in
Figure 4.19. Similar experiments were conducted by Morbhat[88] and Huang et al.[84] with success. This
experiment must be repeated for the specific deployment mechanism, damping enhancer, wire and tip
mass to be used in the final wire boom system.

Camera

Release Mechanism

Pendulum

Stand

Figure 4.19 - Proposed experimental setup for vacuum pendulum damping measurement

4.6 Conclusion

A deployment mechanism for a spinning sail CubeSat was investigated and active and passive
deployment strategies have been proposed. The active mechanism has an actuator for slowly releasing
the wire booms. The passive deployment makes use of the centrifugal force of the spinning system to pull
out the wire booms. A deployment demonstrator that could perform both types of deployment methods
was built. A pulse deployment controller and model estimation methods to determine the progress of
deployment were introduced for the passive deployment case. The outcome of the active and passive
deployment methods were investigated theoretically by means of simulation. The deployment mechanism
was used to investigate the deployment methods. The practical results show good correspondence with
the theoretical models. It is clear from the tests that the practical deployment of the spinning structures
is feasible. Although the active deployment mechanism produced a more controlled deployed system, it is
suggested that the deployment strategy should include either an active and passive method or multiple
active methods to reduce the risk of deployment failure.

Further experiments with regard to the wire dynamics were performed. These experiments confirmed that
tilting or speed changes induce offset angles in the wire boom. A few damping enhancers were identified
for the wire boom oscillations, and were tested with a pendulum to confirm their relative effectiveness.
A similar vacuum pendulum test would be able to produce parameters to increase the accuracy of wire
dynamic models.
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Chapter 5

ADCS Design

5.1 Introduction

The solar sail satellite is dependent on an accurate attitude determination and control system (ADCS) to
perform optimally. The ADCS is responsible for carrying out the required attitude manoeuvres to gain
and direct the thrust from the sun. Attitude control and knowledge is also required to point payloads at a
target, absorb disturbance torques present in the space environment and maintain a nominal orientation
that ensures sufficient power generation of the solar panels.

The basic components of an ADCS are illustrated in Figure 5.1. The satellite’s current mode of operation
will require a particular attitude mode, which will determine the required attitude outcome, whether to
maintain a stable spin around a single axis or point a payload to a target. A specific attitude mode will
require a suitable attitude control loop implementation. The attitude control loop starts with the control
generator, which produces particular attitude or angular rate references. An attitude controller makes use
of the knowledge of the satellite’s current orientation to determine the required control signals to achieve
the reference. The control signals from the attitude controller are converted to a physical torque that acts
on the satellite body by means of an actuator, for example a reaction wheel.

A state estimator or state observer estimates the current attitude of the satellite. The state estimator uses
measurements from sensors and mathematical models to estimate the current orientation of the satellite.
These sensors measure the vector direction from the satellite to particular external bodies, like the sun,
earth or stars. These vector measurements are compared to modelled vectors mostly determined by the
satellite’s current position in its orbit and time.

Each attitude control mode uses different combinations of these components to be able to achieve the
current attitude requirement. This chapter introduces a number of these components required for the
design of an ADCS of a spinning solar sail. Various state observers are presented to estimate the current
attitude and angular rate of the satellite from on-board sensors. The Rate Kalman filter, TRIAD algorithm,
Full State Extended Kalman Filter (EKF) and Gyro-based EKF are introduced and supply estimator
options for all possible satellite modes. Safe-mode attitude controllers, which aim to get the satellite in a
controlled and known attitude are presented. The deployment of the sail and other deployables create
disturbances that influence the satellite’s operations, therefore controllers that absorb these
disturbances are suggested. Accurate attitude pointing controllers for tracking the sun or pointing a
payload are discussed. Chemical/electric thrusters, reaction wheels or control moment gyro (CMG)
actuator implementations of the tri-spin satellite can generate the required torques. All the controllers
and estimators are aimed at the tri-spin solar sail configuration presented in §3.2.1.3, but can be applied
to other spinning and stabilised solar sailing satellites.

78
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Figure 5.1 - Generic attitude determination and control system

5.2 Attitude Determination

The attitude is determined by applying a mathematical model and measurements from the attitude sensors.
Different control modes require different estimators. The satellite needs the body rates of the satellite
during the detumbling, safe-mode and deployment phases. A magnetic rate Kalman filter (RKF) is robust
in the sense that it determines the body rates of the satellite independent of the current orientation and
position of the satellite in its orbit. The TRIAD algorithm is an analytical method to calculate the attitude of
the satellite from two independent measured vectors. An extended Kalman filter (EKF) uses a combination
of sensors like the fine sun sensor and nadir sensor to determine the current attitude of the satellite. In
applications where the satellite is not in an earth-centred orbit, a star-tracker is a necessity. Angular body
rate sensors and a star tracker can create an accurate and fast attitude estimation method. This attitude

information is required to perform precise pointing of the sailing satellite.

Many of the estimators presented here were introduced by Steyn[98] and further described by Auret[70].
Only the information necessary to implement the filters is presented. The steps and definitions below are
required to implement the filters in simulation and flight software. The model-based estimators (RKF, EKF
and Gyro-based EKF) will require a few iterations of these steps before accurate estimates of the states
will be available. Refer to the sources mentioned above for more detail regarding the inner workings and
derivation of the filters.

5.2.1 Rate Kalman Filter

The satellite requires knowledge of its current body rates for control during the detumbling, safe-mode
and deployment phases. Although rate sensors are available, normal MEMS sensors do not supply the rate
information accurately enough. IMU systems that contain fibre optic gyroscopes (FOG) are available and
these can determine angular rates very accurately, but are either very expensive or consume a lot of power.
A rate Kalman filter using a magnetometer is a less expensive method of providing the rate information
of a satellite in an earth-centred orbit. The magnetometer provides measurements of the body-referenced
B-field, B,, = [B, By BZ]T. The estimator uses the change in the B-field vector to determine the current

rotation rates of the satellite.

The RKF performs matrix operations on 3 x 3 element matrices. It is a linear Kalman filter using
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simplified dynamic equations. Figure 5.2 shows the algorithm to implement the magnetic rate Kalman
filter. Each step requires at least one matrix operation. The algorithm can be broken down in time update
and measurement update sections. The time update occurs every sampling period, 7 and consists of:

1. The state vector for the RKF is the orbit referenced body rate vector, X(k) = Wp/0. The dynamic
equation for the inertial referenced body rates, see Equation 3.3.16, is linearised by assuming that
the orbital rate and gyroscopic coupling is in the same order of magnitude as the disturbance torques.
The discrete model is propagated using numeric integration

)ACk+1/k :)A(k/k+05].-‘ (311k —Uk_l), (521)

) T
with T' = T,1-! and the control input, u; = [Nm(k) - hw(k)} .

2. The perturbation covariance matrix is defined as P, = F {xk . xf} The values within the covariance
matrix are an indication of the uncertainty in the estimated state vector. The matrix is updated every
sampling period by

Prii =P +Q, (5.2.2)

with Q the covariance matrix of the system noise.
When a valid measurement is available the following steps are also completed every sampling period:
3. The Hj output matrix is populated by a vector measurement, v = [v, Uy vz]T, which is the body-

referenced magnetic field measurement from a magnetometer, and results in

1 vy(k—=1Ts —vy(k—1)T,
Hy1 = |—v.(k— 1T, 1 va(k — )T, (5.2.3)
vk = DT, —vp(k—1)T, 1

The observer feedback gain is calculated from:
-1
K1 = PryyeH ) [He1Prga o Hen + R (5.2.4)
with R the covariance matrix of the magnetometer measurement noise.

4. The error between the measured output, yx+1, and the output of the model is multiplied by the
feedback gain to update the state feedback.

Xpt1/k41 = K1/ + Kirt (Yrg1 — Her1Xp41/5) (5.2.5)
5. The perturbation covariance matrix is updated,

Piii/pr1 = sx3 — Kiy1Hi 1] Py, (5.2.6)

with 15,3 a 3-dimensional unity/identity matrix.

The solar sail satellite contains numerous deployable structures which greatly change the inertia tensor
matrix, I. The satellite model is dependent on this matrix and inaccuracies will result in a propagation
of the state vector (see Step 1 in Figure 5.2) which can deviate from reality. An imprecise model will
result in an estimator that converges slowly when measurement updates are available or diverges quickly
without measurement updates when the state is only propagated from the true state value. These effects
are minimised by updating the inertia matrix with theoretical values after each deployment phase.

The accuracy of the filter is dependent on the quality of the measurements. The magnetometer
measurement noise is typically significant and influences the estimated rates. The RKF can be extended
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Figure 5.2 - RKF algorithm iteration

to make use of the sun vector made available through the CubeSense sensor (see §3.2.5). The
measurements from CubeSense have less noise than a magnetometer. The sun vector measurements are
only available during the sunlit part of the satellite’s orbit. The fine sun and nadir sensor can provide
vectors during periods where the sun or earth is in their respective FOV. A RKF that is based on sun
measurements will be a good option for a satellite not orbiting around the earth where eclipse periods
will prevent measurements. However, due to the almost fixed inertial direction to the sun, the angular

rate in the sun vector direction is not observable.

5.2.2 TRIAD Algorithm

The TRIAD algorithm is an analytical method to determine a satellite’s attitude[99]. The TRIAD requires
two different vectors and does not require a model of the satellite’s dynamics. This makes it ideal for

confirming the convergence and working of other satellite model-based attitude determination methods.

The TRIAD method is used to construct a DCM describing the body-fixed frame relative to the orbit-fixed
frame (Ag) or inertially-fixed frame for non-earth orbiting satellites (Ag ). Two vectors in the body-frame
are measured by sensors (rll3 and r? ). An equivalent orbit-frame modelled vector of each of the body-frame
vectors is calculated (1{9 and r?). A mutual transit reference coordinate (TRC) frame is constructed from
these vectors.

The first base unit vector of the TRC, known as the anchor vector, is defined as simply one of the body-
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frame vectors and their corresponding orbit-frame vector:

=B B
X7 =r7 ,and
T 1
o o (5.2.7)
XT = rl .
The second axis is defined as perpendicular to the two reference vectors:
_ rp xrf rg and
Hrl
o 1)
~o _ Iy Xry
YT =

<
4=

(5.2.8)

e x r&|
The last axis of the TRC is perpendicular to the x7- and y-axes:
=B _ 2B . B
Z7 = X7 X y7+ , and
IR (5.2.9)
ZT = XT X yT
The DCM from the orbit-frame to the body frame is constructed by
B B AT

=AB(A9)7! (5.2.10)

=[x 98 |52 A

The satellite’s quaternion attitude representation can be determined by applying Equation 3.3.3. The
CubeSense sensor (see Figure 3.5¢ and [71]) measures the sun vector and the earth nadir vector, which is
ideal for use along with the TRIAD method. The orbit-referenced models for the sun vector and the earth
nadir vector are easy to calculate and are accurate.

This is a pure mathematical method and no knowledge is transferred between iterations. No information
regarding the satellite’s attitude dynamics (moment of inertia, control torques, internal momentum, etc.)
is required. The drawback is that it contains no low-pass filtering and thus the noise of the sensors that
are used is directly applied to the attitude estimate. Errors in the modelling of the orbit-frame vectors are
also directly present in the estimated attitude. The TRIAD method is an ideal estimation method to use
when little information of the satellite’s current deployed state is known. It can be used to perform basic
attitude operations, but is not ideal for accurate pointing due to the lack of low-pass sensor noise filtering.
It can confirm the convergence of the generally more accurate EKF.

The basic TRIAD as shown above can be improved slightly by using the Optimized TRIAD[100], or
extended by the QUEST (QUaternion ESTimator) algorithm[101; 102], if more than two measured vectors
are available. The Optimized TRIAD simply repeats the steps above, but uses a different anchor vector
(defined in Equation 5.2.7). The final DCM is the average of the two previously obtained DCMs, each
weighted by the known covariance of the anchor measurement. The QUEST algorithm obtains the final
estimated DCM by minimising a cost function.

5.2.3 Full-State Extended Kalman Filter

The extended Kalman filter (EKF) uses the available sensors to determine the attitude of the satellite
relative to the orbit-fixed reference frame and will supply estimates of the inertially referenced body rates
and attitude quaternions. The current attitude of the satellite is required to point the satellite towards a
reference attitude. The main difference between the EKF and the RKF is that the EKF contains the known
non-linear dynamics. The inclusion of the non-linear model should increase the accuracy and bandwidth
of the filter. The algorithm executes operations on matrices with 7 x 7 elements, and the computational
complexity is much higher than for the RKF.

The algorithm for implementing the EKF is shown in Figure 5.3. As with the RKF, the algorithm can be
parsed into the time update and measurement update phases. The time update will occur every sample
period, T and will execute the following steps:
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1. The non-linear vector function, f (xk k> k) is the dynamic and kinematic equations seen in Equation
3.3.5 and Equation 3.3.16 for the derivative of the elements of the state vector:

x(k) = [@F (k) qT(k)}T (5.2.11)

Propagation of the non-linear model is performed using numeric integration.

t=(k+1)Ts
Rpt1/k = Xp/k +/ £ (Xp k. k) -dt (5.2.12)
t=kTs

2. The perturbation covariance matrix, Py, is dependent on the state perturbation vector, 6x;, and is
defined as Py, £ E {0x;, - 6x] }. The propagation of the covariance matrix is updated as,

Priisk = Prr1/wPri®iiy ) + Q, (5.2.13)

where @/, is the discrete perturbation state matrix, and Q is the covariance matrix of the system
noise. The discrete perturbation state matrix is approximated as,

(Pk+1/]q = 17><7 + F ()A(k+1/k;, k) Ts + 05 ((F ()A(k+1/k, k) TS)Q B (5214)

with F (kk+1/k}7 k‘) 4 of

X

as defined in Appendix B.

X=Xk 4+1/k

The time update steps are followed by the measurement update steps below when a valid measurement
becomes available.

3. The estimator feedback gain, K1, is calculated by,

-1
Kiy1 =Pr o H [Hepi Py Hepn + R (5.2.15)
with Hy, the perturbation state output matrix, and R the measurement noise covariance matrix.
The output matrix is Hy | = % R as defined in Appendix B.
X=Xk+1/k

4. The innovation vector, ey;;, is the difference between the current sensor measurement vector,
Vmeas,k+1, and the body-modelled estimate vector, Vioqyr+1/x- The body-modelled estimate vector is
determined by transforming the modelled orbit-referenced measurement vector, viyogel,x+1 to body
coordinates. This transformation is done by populating the DCM, AZ, with the estimated
quaternion vector, q = [§1 G2 s cj4]T. The innovation is calculated by

€k+1 = Vmeas,k+1 — ‘A’body,k+1/k
(5.2.16)

B /A
= Vmeas,k+1 — Ao (qk+1/k) Vmodel,k41-

5. The perturbation error is updated by the product between the estimator feedback gain and the
innovation,
5)A(k+1 = Kk+1ek+1. (5217)

6. The state vector is updated by adding the perturbation state vector to the propagated state vector,
Xpt1/k+1 = Xpt1/k T 0Xpop1- (5.2.18)

The estimated quaternion vector within the state vector is then normalised,

Al 1/k+1

Uit 1/k41 = (5.2.19)

W1k ||

7. Update the perturbation covariance matrix,

T
Priijirr = [Lrxr — Kot Hip1 1] Prgaye [Lrxr — Kot Hipyee1] + KeptRK . (5.2.20)
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Figure 5.3 - EKF Algorithm

The EKF employs the fine sun sensor, the nadir sensor and magnetometer to supply the measured vector.
Steps 3-7 are repeated for each sensor that has a valid measurement. The measurement is repeated with
the sensor with the highest noise figure used first and the sensor with the lowest used last. A sensor
with a high noise figure has a larger covariance and will produce an estimate with a large covariance
(greater uncertainty). Thus by using the sensor with the lowest noise figure in the final iteration of the
measurement update we can ensure that the resultant estimate with the smallest covariance is produced
and therefore the best chance of being correct.

The EKF combines all the sensor measurements to obtain a single attitude estimate. The accuracy of
the filter depends on the quality of the measurements. The noise of the CubeSense sensor presented in
§3.2.5 is low and a vector direction error of well below 1° should be obtainable. This performance will
only be available in the sunlit part of the satellite’s orbit. The CubeSense sun and nadir sensor will not
be available in eclipse and the estimated attitude accuracy will fall greatly during this fraction of the orbit
(except if a star tracker is available, see §5.2.4). During this period, the magnetometer will be used, but
will not provide the same attitude accuracy that the other sensors can provide. However, the requirement
for attitude manoeuvres should be minimal during the period in eclipse.

The bandwidth (rate of convergence) of the filter depends on the accuracy of the theoretical model and
the sensor measurement noise. If the theoretical model is a true reflection of the real system or the
measurement noise is low, the states can converge quickly for a high bandwidth estimator and supply
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accurate estimates to the control algorithm. A low bandwidth estimator will supply imprecise estimates,
which will have dramatic effects when the controller controls a system quickly to a reference. The filter
will start to diverge and become unstable if the mathematical model within the EKF is inaccurate and
when the satellite performs a fast attitude manoeuvre. The TRIAD algorithm is a method that makes use
of two vectors to obtain an instant, non-filtered attitude of the satellite. This method is not dependent on a
dynamic model. The TRIAD method can be used to determine an accurate dynamic model during satellite
operations. For example, the principal moment of inertia terms of the satellite can be determined if the
satellite performs successive attitude rotations around each principal body axis. For a specific body axis,
the input signal is retrieved from the reaction wheels and the attitude output from the TRIAD method. The
attitude response around this axis has a direct correlation with the moment of inertia around that axis.

The processing required during an iteration of the EKF is significant. Numerous operations on 7 x 7
matrices occur during each time step. The amount of floating-point computations will influence the power
consumption of the OBC. The EKF must only be used when the satellite is rotating at low angular rates to
have an acceptable convergence rate. The OBC must also have the capability of performing floating-point
calculations on such matrices. In addition, the EKF should be able to produce accurate attitude and rate

estimates, despite all these negative factors.

5.2.4 Gyro-Based and Star Tracker Estimation

Generally, an ADCS system is built on multiple absolute attitude reference sensors or at least an accurate
absolute attitude reference sensor and an inertial sensor[103]. A satellite in a sun-centred orbit only has
the sun and the stars as absolute references. In a few cases, radio frequency beacons from earth have
been used to obtain another crude vector. This has the consequence that a star tracker based estimation

method is required.

A star tracker is the best sensor when high pointing accuracy of the satellite is required. The star tracker
matches the stars that are currently in its FOV with those in its celestial map. Star trackers provide the
ADCS with measured body-referenced vectors to identified stars along with its corresponding inertial
referenced modelled vectors from its celestial map. A valid set of body-referenced star tracker

measurements are:
B

— |8 B B B
Vmeas — |:Vstar1 Vstar2  Vstar3 - VstarNi| ’ (5'2‘21)
for N amount of recognisable stars in its FOV. The corresponding inertial modelled vectors are
T | T z 7 z
Vmodel = |:Vstar1 Vstar2  Vstar3 - VstarN } : (5.2.22)

The only reason why a star tracker would not be able to produce an attitude estimate would be that there
are no recognisable stars in its FOV. This may occur when bright light sources like the sun, the moon,
the earth, or reflections of these sources by the satellite itself are present in its FOV. This possibility
is generally solved by simply having two star trackers pointing 90° relative to one another. An attitude
estimation from these star tracker measurements can be obtained by using the EKF presented in §5.2.3
after applying A? to the modelled vectors. This DCM defines the orbit frame relative to the inertial frame.
The standard full-state EKF can also be rewritten to estimate the satellite’s attitude relative to the inertial
frame, therefore the modelled vector is not required to be transformed to another reference frame. The

second option is preferred for satellites in a sun-centred orbit.

Another scenario when the star tracker will produce inaccurate measurements is when the satellite has
large angular rates. Instead of a star making a dot on the image plane of the star tracker, the light
from the potential star. In this instance it is smeared to produce a line on the image plane. This is due
to the movement of the sensor during its exposure period. Star trackers thus produce very accurate
measurements when the satellite has low angular rates. The rates from a rate sensor can be integrated to
produce a relative attitude measurement, but this requires an absolute initial attitude measurement and
low rate offsets to prevent attitude error build-up over time. Rate sensor measurements normally have
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high frequency noise, which can be reduced when a low pass filter is applied. However, rate sensors also
have a low frequency bias drift that changes mainly due to temperature. It is this low frequency bias that
prevents rate sensor measurements from simply being integrated to obtain the satellite’s attitude.

A relatively widely used method is to use absolute attitude sensor measurements to calibrate the rate
sensor[102]. One such a method is an extended EKF described in [104] that uses sun sensor, nadir and
star measurements to estimate the bias of the rate sensors continually. For a satellite orbiting around
the sun, the attitude is defined relative to the inertial frame. Thus the kinematic model of the satellite
becomes:

1
q=50 (wp/7) a, (5.2.23)

with Q (ws/z) defined as Equation 3.3.6 but with inertial-referenced rates (wpg,7) instead of
orbit-referenced rates (wp,0). The gyro rate sensor model from [104] is

Wp/7 = Wmeas — b — My, (5.2.24)

with wneas the 3-axis rate sensor vector measurement, b the bias vector and n; zero mean noise vector of
the rate sensor measurement. The change in bias vector is defined as:

b=1,, (5.2.25)

with n, the zero mean Gaussian rate sensor drift noise vector. Another version of the gyro model
introduced in [102] includes states for the bias, scale factors and mounting misalignment. The model in
Equations 5.2.24 and 5.2.25 is sufficient for most applications. For detailed information regarding the
derivation of the filter, refer to [104] and follow a similar process to that of the EKF. Figure 5.3 shows the
algorithm for the Gyro-based EKF. The algorithm can be broken into the time update and the
measurement update. The time update occurs at the rate at which attitude estimates are required and
must be equal or slower than the maximum update rate of the rate sensor. The time update entails:

1. The state vector of the Gyro-based EKF is defined as
A . T
(k) = (@) @) k) BT (5.2.26)

with only the vector part of the quaternion set, ¢ = [§1 2 s (j4]T part of state vector. The fourth
quaternion value is determined from the quaternion equation in Equation 3.3.4. The propagation of
the quaternion vector within the state vector is performed by integrating the body rates measured
by the rate sensors. The estimated angular rate is obtained from the measurement of the rate sensor
by applying Equation 5.2.24, which results in:

d)B/I,kH/k = Wmeas,k+1 — Bk- (5.2.27)

The attitude quaternion is propagated from the discrete kinematic equation [63, p. 565]
R 1 1. /1 R N
Qk+1/k = | CO0S 51—‘36 I+ ESIH 51156 Q <w8/17k+1/k) X Q. (5228)

with ¢ = ||Wg/z,k+1/x|| and T, the sampling period of the rate sensor measurement.

2. The perturbation covariance matrix, Py, is dependent on the state perturbation vector, 6x;, and is
defined as P, £ E {5xk . 5x£}. The propagation of the covariance matrix is performed in the same

way as that of the EKF. Refer to Appendix B for the definition of F (%515, k) = 4

= 5 required

X:f(k+1/k

to obtain the discrete perturbation state matrix ®;. ;.

If no star tracker or fine sun sensor measurements are available, then q11/x+1 = Qpt1/% and Py g /41 =
Pj11/x and the estimator waits for the following rate sensor measurement. If star tracker or fine sun
sensor measurements are available, then the following steps are executed:
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3. The estimator feedback gain, K1, is calculated similarly to that in the standard EKF (Equation

5.2.15). The output matrix is H;; = 28 defined in Appendix B.

TOx | .
X=Xk+1/k

4. The innovation, ejy;, is the difference between the measured star vector, Vmeasir+1, and the
body-modelled estimate, Vodyk+1 Jk- The body modelled estimate is determined by transforming the
inertial-referenced measurement, vpege,k4+1 Obtained by the celestial map or sun model to body
coordinates. This transformation is done by populating the DCM, A%, with the estimated quaternion

A ~ ~ ~ ~ 1T . . .

vector, @ = [§1 G2 43 G4 .- The innovation is calculated by

€L+1 = Vmeas,k+1 — ‘A/body,k+1/kt
(5.2.29)

B A~
= Vmeas,k+1 — A7 (qk+1/k) Vmodel,k+1-

5. The perturbation error is updated by the product between the estimator feedback gain and the
innovation,

0xp1+1 = Kit1€p41

(5.2.30)
= |64 642 Sd5 Ab|.
6. The estimated quaternion is updated through a quaternion multiplication
Urt1/k+1 = [561 0g2  0qs 5@4 ® At1/k5 (5.2.31)
with
8s = /1 — (663 + 03 + 042). (5.2.32)
The bias of the rate sensor is updated by:
bii1 = bi + Ab. (5.2.33)

7. The update of the perturbation covariance matrix is similar to that of the EKF, except for the
dimensions of the resultant matrix,

T
Piii/it1 = [Loxe — K1 i1 /pp1] Prsaye [Loxe — Ko Hyr/e41] + Kt RKL . (5.2.34)

The measurement update steps are repeated for fine sun sensor vector and each of the star tracker vector
pairs. The resultant Gyro-based EKF can produce attitude estimates when the satellite is performing fast
angular manoeuvres by integrating the calibrated rate sensor measurements. When valid measurements
are available from the star tracker or fine sun sensor, the Gyro-based EKF will update its current attitude
estimate and update the current bias values to calibrate the rate sensor measurements.

One main advantage of the Gyro-based EKF is that it is not dependent on the satellite model. The full-state
EKF is dependent on the moment of inertia of the satellite, the modelled torque of the actuators, and the
momentum within the system. The fact that the Gyro-based EKF does not require these parameters to
produce a fast and accurate estimate makes it ideal for solar sails where the moment of inertia might
change and disturbance torques are not known.

A solar sail satellite can use all the estimators to complete its mission. Each of these estimators is required
for a particular period of a solar sail’s mission. The rate Kalman filter is a linear attitude estimator
that can determine a satellite’s angular rates using a magnetometer when orbiting around the earth or
with measured sun vectors when orbiting around the sun. The TRIAD method is an analytical method to
determine the current attitude without the need of an accurate model of the satellite’s dynamics. The full-
state EKF combines a number of sensors to calculate the satellite’s attitude and angular rates. It is ideal for
accurate pointing of the satellite when orbiting around the earth. When the solar sail is orbiting around
the sun, it is more dependent on its fine sun sensor, star tracker and gyroscopes to obtain its attitude.
A Gyro-based EKF can be implemented to calibrate the satellite’s gyroscopes and thereby increase the
attitude accuracy when performing fast manoeuvres.
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5.3 Attitude Control

The two major limiting factors regarding the speed at which a solar sail satellite can change its attitude is
the structural dynamics of the sail and the torque capabilities of its attitude actuators. Angular
accelerations of the satellite body will result in oscillations in the sail surface or support structures, as
seen in §3.4. These oscillations of the non-rigid elements change the mass distribution of the satellite and
therefore its moment of inertia. The change in moment of inertia will change the rotational dynamics of
the satellite.

An attitude control system for a solar sail should firstly be able to absorb disturbance torques in its
environment. The attitude control should perform highly damped attitude manoeuvres. Highly damped
manoeuvres reduce the duration of angular acceleration and therefore reduce the size of oscillations that
occur. Methods for reducing the oscillations should be utilised by adding suitable components to damp
the oscillations or make the structure stiffer (see Figure 4.17a). The tri-spin solar sail satellite will have
multiple control modes. Many of these controllers are shared between all solar sailing satellites.

After release of a satellite from its launcher, it is in an unknown attitude state. A simple magnetic controller
is suggested for reducing the release body rates when orbiting around the earth. The deployment of the
sail and the MCS will result in disturbance torques on the satellite body, but deployment controllers will
tightly control the angular rates of the satellite to reduce sail disturbances. The solar sail is required
to change its orientation to an attitude reference. When the satellite orbits around the earth it needs
to alternate between a sun-following, sun-avoidance and an eclipse control phase, to change the altitude
of its orbit (refer to §3.5.3.1). The order of the altitude changing control phases determines an increase
or decrease in altitude. The satellite’s attitude control requirement for maximum altitude change when
orbiting around the sun is described in §3.5.3.2. Beyond obtaining the correct attitude to generate solar
thrust, the satellite also has to point its payload in any required direction. These attitude manoeuvres are
performed by using conventional momentum exchange devices, external torques from chemical/electrical
thrusters or the CMG configuration mentioned in §3.2.1.4.

The proposed attitude control scheme offers a number of safe-mode and angular momentum
management controllers. A safe-mode is necessary, which controls a spinning satellite and points the spin
axis in a specific direction, if necessary. This safe-mode is suitable for a wide variety of different solar sail
configurations. These controllers are used to ensure the basic operations of the satellite, basic solar
thrust control and solar tracking for maximum energy generation. Momentum management is continually
required to maintain nominal momentum on wheel-based actuators. An aerodynamic drag controller is
introduced for applications when the satellite reaches a low altitude, this ensures an attitude with
maximum aerodynamic cross-section for fast deorbiting.

Figure 5.4 shows a collection of the presented attitude controllers for a satellite that uses its solar sail to
reduce its orbit altitude and finally deorbits. First, the satellite is released or is in an unknown attitude
state. A detumbling controller stabilises the satellite and it enters a known attitude state. The sail
deployment is initialised and the deployment controller aggressively controls the angular rate of the
satellite to absorb disturbances during deployment. After successfully deploying the sail, the satellite
continues to alter between sun following, sun avoidance and maintaining zero body rates during eclipse.
The order of the sun-following and sun-avoidance controllers is chosen to produce a solar thrust which
reduces the satellite’s orbit altitude. The momentum within the actuators is continually upheld to a
minimum by external torques. After the altitude is reduced to the point where the aerodynamic drag
force is larger than the solar thrust (see Figure 2.2), the satellite enters an attitude control mode to
maximise this drag force. The maximum aerodynamic cross-section is maintained until the satellite
deorbits.
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Figure 5.4 - Example of control modes for deorbiting of solar sail

5.3.1 Magnetic Detumbling

The satellite will have a random starting body rate vector when released from the launch vehicle. The aim
of the detumbling controller is to reduce the angular rates to enter a stable low-spin rate at which point
commissioning and sail deployment can commence. When the satellite is released in an earth-centred
orbit, the detumbling can be done by means of magnetic B-dot and Y-spin controllers[105]. In cases where
the satellite is not able to use magnetic control, refer to §5.3.4.1. The detumbling controllers require
the body-measured geomagnetic B-field, B,, = [B, B, BZ]T, obtained from a magnetometer. The B-dot
controller will reduce the angular rates present in the x5 and zg axes. The control law for the desired

magnetic moment of the yg magnetorquer is
M, = — K48, (5.3.1)

with, B
B = arctan ————— (5.3.2)

and K, the feedback gain. The Y-spin controller will manage the spin rate around the yz axis. The
controller requires the current satellite rate around this axis. The RKF, discussed in §5.2.1, or a rate
sensor is used to supply w,, the estimated or measured body rate around the yz axis. The Xz and zp
magnetorquers generate the required magnetic moments determined by,

M, = K, (Wpy — wy) sgn (B,) for |B,| > |B,
M, = K, (&py — wy) sgn (B,) for |B,| > | B,

, or
(5.3.3)

with w, the reference Y-spin angular rate, and K, the feedback gain. The resultant magnetic moment
generated from the magnetorquer rods, My = [M, M, MZ]T, reacts with B;, the true B-field of the
earth, to create a magnetic torque vector, N,,,,

N,, = My x By, (5.3.4)

The magnetic control period typically is T = 1s. The magnetorquer rods will be active for a maximum
of 80% of the control period. The magnetometer measurements will be taken when the magnetorquers
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are inactive to ensure that undisturbed measurements of the earth’s geomagnetic field are available.
There is no analytical method to determine the values of the feedback gains K; and K. The gains are
iteratively designed through simulation tests, optimising the rate settling time and the total on-time of the
magnetorquer rods. The effectiveness of the magnetic control is dependent on the maximum magnetic
torque that can be generated by the magnetorquer rods. The geomagnetic field strength varies a lot with
the orbit inclination. The magnetic field is the strongest at the poles and the weakest around the equator.
The parameters that influence the feedback gains are the satellite moment of inertia terms, the orbit of
the satellite and the magnetic moment capabilities of the magnetorquers.

5.3.2 Sail Deployment

As seen in Chapter 4, the deployment of the sail corresponds with changes in angular momentum. The
increase in moment of inertia of the load will result in the decrease of the rotation speed of the sail or
MCS. The non-rigid elements require a nominal rotation speed to maintain the centrifugal force to keep its
form. As described in Chapter 4, a speed controller is activated to prevent this rotation speed falling below
this nominal speed. The speed controller will apply a torque, which will increase the angular momentum
of the rotating sail. This increase in angular momentum of the load will result in angular acceleration of
the satellite body. A counter torque is required to absorb this effect and maintain low angular rates of the
satellite body.

In the ideal case, the speed controller of the rotating load will only add angular momentum in the yz-axis
direction, but due to possible misalignment of actuators and the non-rigid elements of the load, torques in
the other axes are also possible. A simple linear angular rate feedback controller will maintain low angular
rates of the satellite body during deployment of the sail and the Momentum Counter System (MCS). The
required torques in the xz- and zg-axis directions can be generated by reaction wheels and the torque in
the yp-axis direction by the MCS. Reaction wheels have a rapid response, fine control resolution and high
torque capability when compared to the magnetorquers that are available. The control law for the torque

requirement is,

Nwm = Kdmdjbx
Nuy = Kayion (5.3.5)
N’wz = Kdzd)bm

with Ky = K4, Kay KdZ]T the feedback gain, and wg/o = [Wpe Wiy o&bz}T the estimated body rates. These
estimated body rates can be extracted from the RKF or rate sensors. The control torques will be generated
by changing the speed of the reaction wheels or the MCS to create a change in angular momentum that
will cause an angular acceleration of the satellite system, see Equation 3.3.16. The torques in the xz and
zp axes are generated by the reaction wheels and the control torque in the yz axis is generated by the
MCS in the tri-spin satellite case. It will be advantageous for this deployment controller to be operated
at a higher bandwidth to more effectively maintain and control the high frequency disturbances resulting

from the deployment.

The deployment will occur when the satellite has low angular momentum, this will reduce the gyroscopic
disturbance during deployment. The sail system increases its rotation speed until reaching its deployment
speed. The acceleration of the sail system is countered by increasing the rotation speed of the MCS
to prevent the spin-up of the satellite body. The deployment commences by either initiating the active

deployment module or activating the pulse deployment controller (§4).

The design of the feedback vector, K, assumes a linear state space model. The reaction wheels are the
input signal to the system. The sail deployment will occur when the satellite has very low angular rates.
The equations describing the attitude dynamics of the satellite (see Equation 3.3.16) are simplified by
ignoring the change in inertia terms and assuming the body rates are almost zero. The resulting equations
are converted to the discrete plane with a zero-order hold by defining the sample period as Ts. The discrete
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state space model is X(k + 1) = ®%X(k) + I'u(k). The state vector becomes X(k) ~ [z Wby &.)", assuming
that the difference between the body rate relative to inertial-frame and the rate relative to the orbit-frame
is very small. All the states are estimated by the RKF and results in the output measurement matrix, H, to
be a 3 x 3 unit vector. The exact feedback gains are calculated either by the Linear Quadratic Regulator
(LQR)[106] or normal pole placement methods[95]. Further details regarding the controller design are
presented in Appendix B.

When a standard spinning satellite deploys its sail, it also experiences disturbance torques. A similar
process can be used but with the use of external torques from chemical/electrical propulsion systems to
maintain its main spin-rate and to reduce the nutation (refer to §5.3.4.1).

5.3.3 3-Axis Stabilised Satellite Control

The attitude control of a satellite is done with estimated quaternion feedback from the EKF or TRIAD,
refer to §5.2. The attitude controllers are all defined in terms of quaternions. Quaternion feedback was
shown in [65] to produce better non-linear control compared to Euler angle feedback. Accurate pointing

of the satellite is required to point the sail to generate a certain thrust or the payload at a target.

5.3.3.1 Quaternion Feedback

The basic Newton-Euler equations, see §3.3.3, describing the angular dynamics of a rigid satellite
containing internal momentum exchange devices as input, is

Idys)r = —wpz x (Iwpg/z +h) — h. (5.3.6)
A new control input u is defined as
u=-wpgz x (Iwg/r +h) —h, (5.3.7)
which results in a linearised dynamic equation
Iwg/z =u. (5.3.8)

A quaternion feedback controller[107] is a proportional and derivative control law which determines the

control input, u, to point the satellite in a certain direction.

The quaternion controllers are dependent on a quaternion error vector. The quaternion error is the
required rotation from the current known orientation (q) to the desired reference orientation (q,). While
Euler parameters can be subtracted to produce the required attitude manoeuvre, the quaternion error

(qe) rather is a matrix multiplication defined as:

Gel dra qr3 —qr2 qr1 _le

qe = Ge2 _ —qr3 qra qr1 qr2 *({2 . (539)
Ge3 qr2 —dr1 qra qr3 —qs3
ea —¢r1 —Gr2  Or3 Qral| | Q4

The error quaternion vector along with the angular rate of the satellite is used within the quaternion
feedback controller[107]. The proportional and derivative control law for the required input signal is:

u= Kda)g/o +K,qe, (5.3.10)

with g. = [ge1 ¢e2 ge3]” the vector part of the quaternion error and @3 /o the estimated body rates. Ky
and K, are feedback gain vectors defined as dI and kI respectively. These variables are defined as

d = 2(w, and

(5.3.11)
k= 2w2,
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with ¢ the damping ratio, and w,, the natural frequency. Using the equation for 2% settling time

t for0 < (<08, (5.3.12)

g
the step response is designed from time specifications. An under-damped controller (0 < ¢ < 1) induces
larger oscillations in the offset angles of the wire booms than an over-damped controller (¢ > 1). The
angular rate in an under-damped controller changes direction to reach the reference. Oscillations in the
wire boom offset angles are induced by a change in angular rate. This promotes an over-damped controller
that steadily increases and decreases the angular rate only once to reach the reference. A higher damping
ratio will result in a slower rise time and thus also a slower step response. A critically damped response,
¢ =1, results in the best middle ground between overshoot and rise time[93].

Equation 5.3.7 is rearranged to reveal the reference for the momentum exchange device, h. The input
reference for the attitude actuator is:

h:—wB/Ix (Iw5/1+h) — u. (5.3.13)

5.3.3.2 Solar Tracking

Maximum solar thrust is generated when the solar sail normal points and tracks the sun vector. The
minimum solar thrust is generated when maintaining an orientation with the minimum projected area to
the sun. The reference attitude relative to the orbit frame is defined by the quaternion vector, q,. The
quaternion construction requires a rotation vector and an angle. The target is the sun vector. The yz
axis is either pointing towards the sun or orthogonal to the sun. The quaternion error, q., is calculated
directly by determining the quaternion rotation from the yz to the required attitude relative to the sun.
The quaternion rotation for the yz axis to point towards the sun is calculated from

e = egyn X e, and (5.3.14)
& = arccos (m> , (5.3.15)
||€sun|| - ||ew]

with equn =[Sz Sy SZ}T the sun vector, e, = [0 1 O}T the control vector in this case. The Euler vector

(e =le; ey e;]T) is then calculated to be

-S.

e= 0 and (5.3.16)
Sz

® = arccos (Sy) , (5.3.17)

assuming the sun and control vectors are unit vectors. The error quaternion is determined by

q{il H H Sln (¢/2)
Qe2 = sin (9/2),
H H (5.3.18)

Qe3 = Wsm(@ﬂ) and

Gesa = cos (9/2).

The sun-avoidance control makes use of the same calculations except for the rotation angle. The only
requirement then is that no sunlight falls on the sail, thus the sail normal needs to perpendicular to the
incoming sun vector. Instead of using Equation 5.3.15, the sun-avoidance uses:

® = arccos <m) — E, (5.3.19)
||esun|| - [leul] 2

thus enforcing the sail normal to be orthogonal to the sun vector.
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Figure 5.5 - The quaternion definition for tracking the sun vector

Using simple quaternion feedback for tracking the sun gives a good result, but the controller does not
anticipate the rotation rate of the target quaternion. Including extra information of the angular rate of
the sun vector enables better tracking of the vector. The derivative of the target quaternion has a linear
relation to body rates. If the current attitude (q) is known then the target quaternion (q,.) set relative to
the orbit frame can be determined. The reference body rate (w.,) is calculated by substituting Equation
5.3.18 into Equation 5.3.9 to obtain the reference quaternion and then using Equation 3.3.5:

QTI
Wrg qra  4r3 —Q4r2  —Qr4 q
2
Wr = |wry| =2 |qra &3 —G2 —ara qr - (5.3.20)
-3
Wrz dra  4r3  —Qqr2 —qr4 '
dra

This should be small, as the sun is inertially fixed relative to the orbit plane and the orbit frame rotates
at the orbital rate, w,, relative to the inertial frame. These required rates are included in the quaternion

feedback controller to produce the tracking controller:
u= Kd(‘bB/O — (U.,-) +que~ (5.3.21)

In certain cases the satellite is given a required orbit referenced solar force vector (F;). When the satellite
isnot in eclipse, a particular sun angle relative to the orbit frame can be determined to create the reference
solar force vector.

5.3.3.3 Conventional RW Control

Reaction wheels are internal momentum exchange devices that normally consist of a BLDC motor with a
rotating disc. The angular momentum of the reaction wheel is dependent on the moment of inertia of the
disc and its rotation rate. The change in rotation speed determines the torque capability of the reaction
wheel. Reaction wheels are used for accurate control of a satellite’s orientation.

Reaction wheels are normally arranged in configurations of three, one in each unit vector direction of
the body-fixed frame. Other designs exist of four reaction wheels mounted in a pyramid or tetrahedral

configuration that introduces redundancy if one reaction wheel fails.

In the case of the tri-spin satellite, only two internal reaction wheels are required (one in Xp-axis and the
other in zp-axis). Control torques in the yz direction can be generated by changing the rotation rate of
the MCS.

The internal angular momentum of the two reaction wheels are:

R Trotorwawz

h,=]0|= 0 ) (5.3.22)

Nz Trotorwawz
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Figure 5.6 — Reaction wheel attitude control diagram

with Ioor the moment of inertia of the rotating disc and w,,, and w,,, the corresponding speed of the
reaction wheels. The angular momentum of the MCS in the yz direction likewise is defined as h., =

Teyywey.

Equation 5.3.13 defines the required h and correlates to:

8

=
|

> o o
<

hww
= | ey (5.3.23)
hwz

5.3.3.4 CMG Controlled Tri-spin

In the CMG controlled tri-spin solar sail configuration (see §3.2.1.4), the rotating sail and the MCS are
each mounted on a 2-DOF gimbal. This creates two double-gimbal control moment gyros (DGCMGs).
This results in an attitude control input, which scales with the moment of inertia and angular rate of the
rotating structures. The angular momentum of the rotating sail relative to the body frame is described by

hs = Ist/B
= Hys
0 (5.3.24)
= A% | H,
0

The DCM between the rotating sail frame and body frame is defined in Equation 3.3.23. The control inputs
for the DGCMG are )\, €, and 7, resulting in Equation 5.3.24 to be rewritten to

—H, cosegsin A,

h, = | H,cosescos s | . (5.3.25)
—Hsineg
The angular momentum of the MCS is defined so that h, = —H_.y¢ so that if all the gimbal angles are

zero and H, ~ H., then the total internal momentum would be h = h,; + h. =~ 0. The angular momentum
vector, h, is dependent on the angular momentum of the sail system, the momentum counter system and
the gimbal angles of each system. This is represented by

h=A(9) (5.3.26)
where § designates the input vector of the DGCMG system. The torque of the DGCMG is then

h=A(8)4. (5.3.27)
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The inverse of Equation 5.3.27 is used to determine the required DGCMG inputs to generate the required
control torque. The total angular momentum of the DGCMG is

h=h,+h,

—H, cosegsin Ag H_cose.sin A, (5.3.28)
= | Hycosegcos g | + | —H.cose.cos .

—H,sineg —H_ sine,

with h =~ 0 when all the gimbal angles are zero. A scissored double-gimbal configuration is created when
the gimbal angles of the sail system and the MCS are equal and opposite (¢ = €. = ¢; and A = A, = ).
This greatly simplifies the steering calculations. This results in the angular momentum vector becoming

—(Hs + H.)cosesin A
h=| (H,— H.)cosecos\ | . (5.3.29)
(Hs + H.)sine

The derivative of the angular momentum vector then is

—(H, + H,)cosesin A + é(H, + H,.)sinesin A — A\(H, + H..) cos € cos A
h= (HS — Hc) cosecos A — é(Hs — H.)sinecos A — ).\(HS — H_.)cosesin A (5.3.30)
(Hs + H,)sine + é(H, + H,) cose

The torque requirement of the rotating systems (H, and H.) can either be created solely by the MCS, thus
keeping the angular rate of the sail constant (H, = 0), or can be shared equally between the rotating sail
and the MCS (H = H, = —H,). The Jacobian of the DGCMG torque matrix equation assuming that H,=0
is .
—cosesin\  (Hg+ H.)sinesin A\  —(Hs+ H.)cosecos\| | H,
h= |—cosecosA —(H,— H,)sinecosA\ —(H,— H,)cosesin\ é |- (5.3.31)
sin e (Hs+ H.)cose 0 A

The Jacobian of the DGCMG torque matrix equation assuming that H=H,=—H,is

0 (H, 4+ H.)sinesin\  —(H, + H,)cosecos \| [H
h=|-2cosecosA —(H,— H,)sinecosA —(Hs— H,)cosesinA| | ¢ | . (5.3.32)
0 (Hs + H.)cose 0 A

This method is preferred for it splits the torque requirement between two actuators. Thus the input signals
are calculated through
H
é| =A"'h (5.3.33)
A
The size of the control angles (A and ¢) changes the relative distances between the non-rigid components.
This creates the risk of collision when these angles becomes large. The CMG controlled tri-spin still gives
an advanced method for scaling the actuator along with the size of the sail and the MCS.

5.3.4 Safe-Mode and Momentum Management Controllers

Referring to §3.2.1.1 the standard spinning solar sail is characterised by the sail attached to the satellite
body. The sail constantly rotates along with the satellite body. Spinning the entire satellite is a good
safe-mode and is highly suggested in all sailing missions. In this state the sail of a solar sail is kept
stiff, the CoM-to-CoP disturbance torques are averaged over a full rotation and is more robust to external
disturbances due to angular momentum bias. The tri-spin solar sail configuration can operate easily as a
standard spinning solar sail. A standard spinning satellite is achieved by inducing a spin of the satellite
body while restricting the relative rate between the sail, MCS and the satellite body. Two control modes
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Figure 5.7 - Control moment gyro attitude control diagram

are needed to control a rotating satellite and sail system. Torques are generated to maintain the angular
momentum of the satellite and to point the sail in the desired direction.

Angular momentum builds up in satellites containing actuators such as reaction wheels and CMGs due
to external disturbances. External torques are generated from chemical thrusters or magnetorquers to
maintain the amount of angular momentum within the momentum exchange devices. Momentum build-up
can result in the satellite having larger gyroscopic disturbance torques when performing manoeuvres and
the actuators saturating and not being able to produce the required torque. A variation of the momentum
management controller can be used to maintain a maximum drag attitude when the solar sail satellite is

used as a drag sail at low orbiting altitudes.

5.3.4.1 Spin and Nutation Control

A standard spinning satellite requires constant management of the satellite’s spin rate. The sail spin rate
must be maintained at its reference rate. The reference rate is determined to produce sufficient centrifugal
force to keep the sail surface stiff and rigid. While controlling the main spin, the satellite must reduce and
control any nutation rates that might be present in the other axes, see Figure 5.8. The nutation angle, 6, is
the angle between the angular momentum vector of the satellite and the main spin axis vector. Keeping the
change in angular rate, or angular accelerations, to a minimum will greatly reduce the possible oscillations
that might occur, as seen in §3.4. IKAROS used chemical thrusters to control its main spin to a reference
spin rate of 1rpm[10; 12].

Figure 5.8 - Standard spinning solar sail satellite definition

The spin control dynamics of a standard spinning solar sail rotating around its yg-axis is greatly simplified
when assuming that the angular rates around X5 and zp are negligible and that w,, ~ wg,,7 and using
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chemical thrusters as in the case of IKAROS:
LyyWhy = Nyy (5.3.34)

which result in a first-order integrator dynamic model. A proportional controller can be implemented to
determine the required input torque, N,,, to maintain a certain wrer = wyp,. This controller simply is

Nuy = Kpy (wret — @py) , (5.3.35)

with K, the feedback gain and @y, the current known angular rate around the ys that is determined
through an estimator or rate sensor.

Nutation of the spin vector occurs due to disturbance torques and the product of inertia terms of the
satellite. This effect can greatly disrupt the attitude of the satellite when not actively controlled. There
are methods to passively damp the nutation motion within a satellite. These methods normally consist
of mechanisms to dissipate energy within the satellite. This is done through friction created by a sliding
mass inside a tube or a damping liquid in a tank. Active nutation damping controllers simply apply control
torques to suppress the nutation angular rates perpendicular to the main spin axis. This is done by
generating torques by:
Nug = Kpalpy
(5.3.36)
Ny. = Ky,
with the angular rates w;, and @y, either obtained by means of an estimator or measured by rate sensors.
The control torque N, = [Ny, Ny, Nuz]T can be generated either by means of chemical/electrical

thrusters or when the satellite is orbiting in LEO generated by magnetorquers.

In the case of magnetic control, a cross-product controller[105] can be implemented to damp the nutation
oscillations and maintain the required spin rate. A magnetic controller to damp the nutation oscillations

in the X5 and zp axes and control the spin rate around the yj is:

ana)b:r
e = Khy (Wref - U:)by) » (5.3.37)
K’nzwbz
and B
e X
My =~ (5.3.38)
Bl

with K,, and K}, the feedback gain, B,, the local measured magnetic field and M7 the magnetic moment
required.

5.3.4.2 Spin Pointing Control

The body of a standard spinning solar sail satellite rotates along with the sail. The satellite needs to
produce external forces to slowly precess the angular momentum in the required direction. A number of
spinning satellite attitude controllers for pointing a particular facet to the sun to obtain maximum solar
power[105] is available. This control mode is ideal for use as a safe mode of operation. The precession
vector for constantly pointing the yz-face to the sun, as seen in [105], is:

Qprecess =k (eu X er) , (5.3.39)

with the control input vector e, = y5 in this case, and e, = egyn = [S; S, SZ]T the measured sun unit
vector in the body reference frame. The controller gain £ is defined to contain a constant proportional
gain K, and a varying gain dependent on the current angle between the ys and the current sun vector.
The gain k becomes

k= Kp |BS|

) (5.3.40)
= K, arctan <m+z> .

Sy
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The required control torque to achieve this precession is then calculated as
Nu = Qprecess x H (5341)

with H the angular momentum vector of the rotating satellite. In the case of the satellite rotating around
the yp-axis the required input torque is rewritten as

N, =K, |Bs|[H|]| | 0 [. (5.3.42)
-5,

This control torque can easily be generated by either chemical/electric thrusters or by magnetorquers. In
the case of magnetorquers the required magnetic dipole is determined by:

B,, x N,
Mpr= ——n-—
B

(5.3.43)
For a sun-centred orbit (discussed in §3.5.3.2 and refer to Figure 3.26) it was concluded that the optimal
angle relative to the sun at which a solar sail will obtain the maximum lift or drag is {p; = +35.26°. The
precession vector in Equation 5.3.39 can be rewritten to obtain any relative angle &, to the sun to produce
the required solar thrust when orbiting around the sun. The orbit frame for a satellite orbiting around
the sun is defined with zZ» pointing to the sun, y» in the orbit anti-normal direction and X» is defined
to complete a valid right-hand reference frame. In the standard solar tracking case above, the reference
vector was simply the sun vector, e, = egy, and is equivalent to setting £ = 0°. For the simplified case
of an optimal increase in orbit altitude, a time varying solar force is required to track a body-referenced
pointing vector. This vector is constructed as:

e, = —sin&piXo + c0s EopiZo
— sin Sopt (5.3.44)
B
e A‘O O s
cos &opt

with Ag obtained by attitude estimators. Replacing the resultant vector components of Equation 5.3.39
with that of Equation 5.3.44, the spinning solar sail will maintain the optimal angle for increasing its orbit
altitude. Figure 5.9 shows the difference in solar thrust direction when applying the different reference
vectors. A similar approach can be used to point the angular momentum vector of the spinning satellite
when aiming a payload in a required direction.

5.3.4.3 Momentum Dumping

The pointing and tracking of the satellite is mainly done by reaction wheels. Compared to magnetorquers,
reaction wheels are more accurate and agile in controlling the attitude. A disadvantage when using wheels
is the build-up of wheel momentum due to external disturbance torques. The angular momentum of the
wheels can be dumped by applying a controlled external torque typically generated by magnetorquers in
low earth orbit. Magnetic momentum dumping of reaction wheels is discussed in [65; 105]. The controller
in §5.3.4.4 is a special case of the momentum-dumping controller. The control law for the momentum

dumping of the wheels is:
(hw - h'r‘) X B]W

|[Basl|

with h, the angular momentum reference vector and h,, the measured angular momentum vector for

My = K,, (5.3.45)

all wheels. The yp component of the h,, vector is the difference between the MCS and sail angular

momentum, A,y = Leyywsy — LeyyWey.
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Figure 5.9 - Solar thrust direction of pure solar tracking and relative pointing controller

5.3.4.4 Aerodynamic Drag

The solar sail can be used as an atmospheric drag enhancer. The atmospheric drag increases exponentially
as the altitude decreases, and is proportional to the projected area of the satellite. The maximum drag
force is generated when the sail normal is pointing towards the velocity vector of the satellite. This
orientation is defined by a constant yaw angle, ¢ = —90°, and is written as q, = [0 0 — 0.7071 0.7071]T.
This Euler angle will ensure that ygz = X». This orientation can be maintained using the pointing controller
in §5.3.3.1.

The satellite will remain in this orientation throughout its orbit. A bias angular momentum in the yo
direction adds gyroscopic stiffness and will reduce drift from this nominal attitude. This is the same
method (see Figure 5.10) as that which is to be used in the DeOrbitSail project[22]. A bias angular
momentum is created by adding an offset speed to the Xz reaction wheel, which is now aligned to the
yo-axis direction. A magnetic cross product controller is used to create this angular momentum offset by
slowly increasing the Xz wheel angular momentum. The magnetic controller for a similar implementation
is discussed by Steyn[105] and defined as:

Kh (huu - h'r)
e= K@y , (5.3.46)
Knd)bz
and B
e X by
Mr = ——, (5.3.47)
Bl

with h, the reference angular momentum bias of the x5 reaction wheel. There is no analytical method
for designing the feedback gains, Kj and K,, and likewise for the detumbling controller which is tuned
during simulation. The instantaneous angular momentum of the wheel, h,,,, is determined by measuring
the speed of the reaction wheel. The effectiveness of this passive stabilisation method is dependent on the
disturbance torques that the satellite will experience and the reference angular momentum of the wheel.
The CubeSat wheel used has a maximum angular momentum of 40mN-m-s (see §3.2.4). The largest
disturbance torque is normally the CoM/CoP offset of the aerodynamic drag. This effect is greatly reduced
due to the constant spin of the sail, as in the case of the solar thrust. The remaining disturbance torque
influence is reduced by the gyroscopic stiffness limiting the amount of control necessary to maintain the
attitude for maximum aerodynamic drag.
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Figure 5.10 - The gyroscopic stiffness with satellite in a maximum aerodynamic drag attitude

5.4 Conclusion

A number of observers have been presented to determine the satellite’s current attitude. By combining
the rate Kalman filter and the TRIAD algorithm the satellite is enabled to obtain initial rate and attitude
knowledge respectively. More accurate attitude knowledge is obtained by combining sensor
measurements within an EKF. The EKF can even produce accurate estimates when the satellite is in a
sun-centred orbit by using sun sensor and star tracker measurements. When the payload demands highly
accurate and fast attitude manoeuvres the Gyro-based EKF can be used to estimate the attitude and rate
sensor offsets. The estimated rate sensor offsets enable the propagation of the attitude, when no absolute

attitude sensor measurements are available, by integration of the offset-corrected rates.

A number of attitude controllers are presented to stabilise the satellite from an unknown state and then
to deploy its sail. Pointing of the sail is required to fulfil the payload’s requirements and to obtain the
required solar thrust vector. The required control torques can be generated by conventional reaction
wheels or by the DGCMG system of the CMG controlled tri-spin configuration. Safe-mode controllers can
be used to control a tri-spin solar sail as if it is a standard spinning solar sail satellite. This reduces the

risk of implementing the tri-spin configuration.

It is necessary to implement an ADCS on a technology demonstrator solar sail mission. The ADCS of a
spinning solar sail can make use of a subset of the controllers and estimators presented. The size of the
satellite, its orbit, the mission requirements and the choice of controllers and estimators will influence the
ADCS hardware to be used. The performance of the solar sail ADCS is investigated in the next chapter
with the use of simulation tests.
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Chapter 6

Attitude Simulation

6.1 Introduction

The literature study in §2 revealed that a number of CubeSat sized solar sails are due for launch in the
near future. CubeSats are widely used as a technology demonstrator. In such missions, the new concept
or technology payload is integrated on a CubeSat platform and is assessed in space before attempting it
on the main large satellite mission. The tri-spin solar sail concept will also be tested on a CubeSat sized
satellite orbiting around the earth. The satellite is equipped with the necessary actuators and sensors and
its performance is assessed within simulation.

A simulation program is used to demonstrate the attitude control performance of the satellite in its orbit.
All the dynamic modelling and control algorithms created and introduced in the previous chapters are
combined into a single attitude simulation program. The simulation program is used to investigate the
entire scenario from satellite release to normal operation. This highlights the transitional effects when
changing the ADCS control modes. Additional simulations are conducted to investigate the unique control

modes for the standard spinning solar sail satellite and the gyro tri-spin satellite.

The attitude simulation implements the rigid dynamics of the satellite (see §3.3.3) and the 2-DOF non-rigid
dynamics of the wire booms (see §3.4). An orbital propagator is used to determine the satellite’s current
position and to model the sensor measurements. The estimator designs (see §5.2) use these measurements
to estimate the current orientation of the satellite. These estimates are applied in different controllers (see
§5.3). The satellite’s attitude is changed when applying these control torques. The solar thrust direction
is dependent on the orientation of the sail relative to the orbit (see §3.5).

6.2 Simulation Design Setup

The dynamics of the solar sail satellite can be broken into three categories, namely: the attitude dynamics,
the non-rigid wire dynamics and the orbital dynamics due to the solar pressure. Each category’s dynamics
is dominant at different frequencies. The attitude of the satellite has dynamic responses in the order of
seconds. The wire dynamics are much faster and the orbital dynamics takes much longer. It would be
ideal to simulate all three parts at the same time as they influence one another. Unfortunately, it becomes
impractical and the completion of such a simulation will require much processing time. The simulation
process therefore is rather broken into two sections. The orbital simulation in §3.5.3 illustrates how the
satellite’s orbit will change due to solar radiation pressure over a long period. The attitude simulation will
model the wire dynamics, the attitude dynamics and the amount of solar radiation pressure generated in
a much shorter period. The solar thrust has little effect on the orbital parameters over five to six orbits.
The simulation is constructed to illustrate a 3U tri-spin CubeSat with a 25 m? spinning solar sail in LEO.
The satellite will perform manoeuvres to change its orbit altitude.

101
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6.2.1 Attitude Simulation Design

The attitude simulation is conducted in MATLAB Simulink (see Figure 6.1).
simulation blocks, with each block consisting of a S-function. A S-function is a C program with MATLAB
interface functions, which is compiled in Matlab and constructs a Simulink block with inputs and outputs.
Breaking the simulation into different blocks has the advantage of modularity. Blocks can be reused in

It consists of different

other configurations to simulate different satellite missions. Blocks written as S-functions are not only
processed faster in Simulink, but the code is easier to convert to embedded processors which are
normally programmed in the C programming language. The building blocks of the attitude simulation are
discussed further.
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Figure 6.1 - The block diagram of the ADCS simulation

The ADCS Models block is seen in Figure 6.2a. It is responsible for propagating the orbit and the orbit-
referenced and sensor modelled vectors. The satellite’s orbit is simulated using a Simplified General
Perturbation No. 4 (SGP4) model. The orbital elements are initiated using the North American Aerospace
Defense Command (NORAD) two-line elements format. The SGP4 requires the initial orbit elements and

the current time to obtain the corresponding orbit information required by the rest of the ADCS system.

The sensor measurements that the satellite are expected to measure are modelled in the ADCS Models
block. The geomagnetic field vector is modelled using a 10™-order International Geomagnetic Reference
Field (IGRF) model. This produces the orbit-referenced vector of the geomagnetic field at the satellite’s
current location.  The magnetometer measurements are created by applying the true attitude
transformation matrix (Ag) of the satellite relative to its orbit coordinates and adding measurement
noise to the modelled geomagnetic field vector. Similar methods are followed using a sun model to

determine the fine sun sensor measurements and the satellite’s current attitude relative to the earth to
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(a) ADCS models block diagram (b) Satellite dynamics model block diagram

Figure 6.2 - Simulation model blocks

model the horizon sensor. Rate sensor measurements are modelled from the true inertial-referenced
body rates (wp,7) adding high-frequency noise and low-frequency bias drift. The star tracker was not
modelled. The FOV of the sensor is taken into account in the case of the fine sun and nadir sensor. This
block also determines the quaternion references for sun tracking.

The dynamic equations of the satellite, the wire booms and the models of the actuators are contained
within the SatelliteModel block shown in Figure 6.2b. The extended Newton-Euler equations derived in
§3.3.3 are implemented to simulate the attitude dynamics of the satellite. The dynamic equations of the
wire booms were calculated using the Symbolic Toolbox from Matlab (refer to Appendix A). An internal
Matlab function was used to convert these symbolic equations to C, which were then implemented as an
S-function. The moment of inertia term is used as a cross-coupling term, as illustrated in Figure 3.9.
The dynamic model is adjusted to perform an active deployment with both the sail and MCS wire booms
deploying at a rate of 1cm/s. The damping ratio of the wire boom is derived from experiments in [88].
The damping ratio of the sail is chosen to be larger than a wire boom to include the effects from the sail
material. The satellite model is subjected to disturbance torques, with the largest of these disturbances
being the gravity gradient torque. The gravity gradient torque is defined by [63] and used in a similar
simulation program by [70]. The large ratios in the moment of inertia terms of the deployed solar sail
satellite will result in large gravity gradient torques.

The Satellite EKF block is as presented in Figure 6.3a. The block contains the RKF, TRIAD and full-state
EKF algorithms derived in §5.2 and was originally developed and used in [98] and [70]. The gyro-based
EKF was not implemented. The block contains an extra input to switch between the different estimators
available. The available estimator options are listed in Table 6.1. The moment of inertia terms within
these filters can differ from the terms used in the satellite dynamics. The theoretical moment of inertia
within the estimators are updated after each deployment phase (refer to §5.2.1) and is extracted from the
moment of inertia calculations presented in Appendix C.

The Control block, seen in Figure 6.3b, consists of two modules. The one module is used to implement the
magnetic control and contains the algorithms for the B-dot, Y-spin controller and Cross-product controller.
Most of the block is standard and similar to that used by [98] and [108]. The other module is used to
control the reaction wheels. Extra inputs are also available as reference signals for the current active
control mode in each module.

Two auxiliary blocks were created, StateMachine and Control Generator. The StateMachine block sets the
application modes of the different blocks. It makes use of the simulation time to schedule the activation
of the different control methods, estimator modes and the deployment phases. The Control Generator
outputs two sets of quaternion and angular rate references. The first set simply outputs a number of
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Select | Estimation Mode Sensors Used Estimated Info
0 None None None
1 Magnetic RKF Magnetometer X5, Y5, Zi angular rate
2 Sun RKF Coarse Sun Sensor, Fine | x3,¥3,Zg angular rate
Sun Sensor
3 Magnetic RKF & Magnetometer, Coarse | Roll, Pitch and Yaw
CSS TRIAD Sun Sensor angles, X5, Y5, Z3
angular rate
4 Magnetic RKF & Magnetometer, Coarse | Roll, Pitch and Yaw
FSS+Nad TRIAD Sun Sensor, Fine Sun | angles, X5, Y5, Z8
Sensor, Nadir Sensor angular rate
5 Full-state EKF Magnetometer, Coarse | Roll, Pitch and Yaw
Sun Sensor, Fine Sun | angles, XB,YB,ZB
Sensor, Nadir Sensor angular rate
Table 6.1 - Estimator options
Select MT Select
Orbit N,.
B-Model 4 RW Select
S-Model ) B-Model N
—_— | Wp/0
H-Model — S-Model h,
G-Model Wg/7 q
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(a) ADCS estimator block diagram (b) ADCS controller block diagram

Figure 6.3 - ADCS estimator and control block diagrams

standard attitude steps that change at specific predetermined times. The second set is the quaternion
reference and the angular rate reference to track the sun.

6.2.2 Orbital Simulation Design

The effects of the solar radiation pressure on the orbital elements were investigated in §3.5 . The orbit
simulation program made use of a theoretically ideal ADCS system to examine the maximum and minimum
solar thrust and the effects of this thrust on the orbital elements. This information was illustrated in a
three-dimensional interface. The aim of the orbital analysis in the attitude simulation is to determine
the amount of solar thrust the sail produces with a more realistic ADCS system. The true attitude and
orbital information are retrieved from the ADCS Models and SatelliteModel blocks. Equation 3.5.5 is
used to calculate the generated solar thrust force. This information is implemented in a three-dimensional

representation of the satellite in its orbit similar to §3.5.
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Select | Control Mode Actuators Used Required Info
0 None None None
1 B-dot Magnetorquers None
2 B-dot & Y-Spin Magnetorquers y5 angular rate
3 Safe-Mode Magnetorquers X5,V5,Zs angular rate,
egsun Mmeasured sun vector
4 Deployment Reaction Wheels X5,¥Y8,Zs angular rate
5 Quaternion Feedback Reaction Wheels Roll, Pitch and Yaw
angles, XB, Y5, Z3
angular rate
6 Quaternion Feedback & | Magnetorquers, Roll, Pitch and
X-Product Reaction Wheels YawControl = Generator
angles, XB, VB, ZB
angular rate

Table 6.2 - ADCS controller options

6.3 CubeSat Solar Sail ADCS Application

The ADCS controllers and estimators were implemented on a conceptual tri-spin solar sail satellite
configuration as described in §3.2.1.3. The mission objective of the conceptual satellite to demonstrate
the tri-spin configuration on a CubeSat platform. The technology demonstrator must be able to increase

and decrease its orbit altitude by generating solar thrust in the required direction.

6.3.1 Satellite Orbit and Initial Conditions

To effectively demonstrate solar sailing, the satellite’s orbit had to be selected for the aerodynamic drag
force and the gravity gradient disturbance torque (due to the large moment of inertia terms) to be low.
The solar thrust force is higher than the aerodynamic drag force when the satellite’s orbit is above 600 km
(refer to Figure 2.2). The majority of CubeSats are still deployed in LEO, where space radiation is lower
and where magnetic control is viable. The orbit parameters that fulfil these requirements are listed in
Table 6.3.

Parameter Value
Semi-major axis a | 7169.65km
Eccentricity e 0.001
Inclination ¢ 98.24°
Period P 6041.7s

Table 6.3 - Initial orbital elements for the technology demonstrator satellite

The simulation scenario will start when the satellite is released from the launcher, with initial angular
rates of wgp = [1.4 —5 — 1.4)" °/s. The satellite starts in its undeployed state and with no internal

angular momentum.

6.3.2 Satellite Body

As indicated by the literature study in §2.3, most current CubeSat solar sailing satellites have a 3U CubeSat
structure. The satellite body is broken into functional sections: satellite bus, sail deployment mechanism,
sail storage area and MCS deployment mechanism. A fully functional CubeSat satellite bus will fit within
1.5U, as shown in NanoSail-D2, LightSail and DeOrbitSail. The sail storage for all these satellites were
about 1U, with LigthSail being able to fit a 34 m? sail in this volume. The DICE satellite mission showed a
wire boom deployment mechanism with a thickness less than 2 cm and similar sized mechanisms to deploy
wire booms for the sail and MCS are feasible. The size budget for each section is listed in Table 6.4.
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Section Length(cm)
Satellite Bus 16
Sail Mechanism 2
Sail Storage 10
MCS Mechanism 2
Total 30

Table 6.4 - Size budget for the proposed solar sail satellite

All the previous CubeSat satellites had deployable solar panels. In all these cases the solar panels were
used to cover the solar sail storage volume in the undeployed state of the panels. The prospective mass
of the main components of such a satellite is summarised in Table 6.5. The total theoretical mass is above
3kg, but still lower than the 3U CubeSat LightSail at 5kg. This leaves a large contingency for inaccuracies
in the initial mass projection and other unlisted components.

Part Mass(kg)
Satellite Bus 2

Sail Mechanism 0.3
Sail Wire Booms 0.04
Sail 0.12
MCS Mechanism 0.2
MCS Wire Booms 0.1
Solar Panels 0.48
Total 3.24

Table 6.5 — Mass budget of the proposed solar sail satellite

The resulting moment of inertia is determined through theoretical calculations (see Appendix C) and the
calculations of a simplified CAD model. The CAD model values are used in the simulations. The moment
of inertia values for the different stages of the satellite are listed in Table 6.6. The difference between the
theoretically calculated moment of inertia values and the CAD-calculated values is attributed to different
assumptions of the centre of mass. The satellite body along with the corresponding body axis definition is
similar to that defined in Figure 3.3.

State Inertia Tensor
0.02742 —1.73 x 107° 0
Undeployed —1.73 x 107 0.00666 0.802 x 1076
0 0.802 x 1076 0.02742
0.0289 —1.73x107° 0
Solar Panels Deployed —1.73x 107 0.01783 0.802 x 1076
0 0.802 x 1076 0.0289
0.74 0 0
Completely Deployed 0 138 0
0 0 0.74

Table 6.6 - Moment of inertia tensors of different deployed stages of the technology demonstrator

6.3.3 ADCS Modes

The ADCS for the solar sail CubeSat can be broken into different modes to fulfil the mission objectives.
The CubeSat will be released from the launcher containing random initial angular rates. These angular
rates are magnetically damped and reduced until the satellite has small angular momentum. The sail
and MCS are then deployed simultaneously. The satellite is then set to a state of either increasing or
reducing its orbit altitude where it will alternate between the sun-following, sun-avoidance and eclipse
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controllers. The sun-following and sun avoidance controllers are described in §3.5.3.1 and §5.3.3.2. In
eclipse, the angular rates of the satellite are reduced and the angular momentum in the wheel actuators
is decreased by generating external magnetic torques. The transition from sun-following to sun-avoidance
to reduce the orbital energy is determined by when a component of the solar thrust opposes the velocity
direction. In cases where there is no such component, the sun-avoidance controller is activated. When the
satellite reaches eclipse, it goes into the eclipse control mode where the angular rates are reduced while
the angular momentum in the reaction wheels are dumped. The ADCS modes are shown in Figure 6.4.

: ) Launcher RKF B-dot & Y-spin
Release Activated Controller

EKF Sail and MCS
Activated Deployed
Sun-following Sun-avoidance
Controller Controller
Eclipse

Figure 6.4 - ADCS operations

6.3.4 ADCS Hardware

The technology demonstrator requires the following ADCS components to accomplish its mission: ADCS
processor unit, magnetometer, coarse sun sensors, fine sun sensor, horizon sensor, rate sensors,
magnetorquers and two reaction wheels. Further actuators include the two motors required to drive the
rotating sail and MCS. The sensor accuracies are shown in Table 6.7 and are derived from CubeSat
components that are commercially available (as seen in §3.2.4 and §3.2.5).

Sensor Accuracy(10)
Magnetometer 12nT
Coarse sun sensors 10°

Fine sun sensor 0.4°
Nadir sensor 0.2°
MEMS Rate sensor 0.2°/s

Table 6.7 — Sensor measurement noise (accuracy)

The coarse sun sensors are placed to ensure they will always give a valid measurement when the satellite
is not in eclipse. The fine sun sensor is placed so that a valid measurement is available in the satellite’s
yp-axis direction and the nadir sensor in the zp-axis direction. The model of fine sun sensor and nadir
sensor is based on the CubeSense sensor module with both sensors containing a 180° FOV.

The magnetic actuators consist of magnetorquer rods and a magnetorquer coil each able to generate a
0.2A -m? magnetic dipole. These magnetorquers are used to generate external torques to damp
oscillations and manage the angular momentum within the reaction wheels. The reaction wheels are
based on the wheel used within DeOrbitSail, which is able to produce a torque up to 3.8 mN - m and has an
angular momentum capacity of 40mN-m-s at its maximum speed. The sail payload and MCS are
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attached to BLDC motors mounted to the satellite body. As indicated in §3.2.4, the EC Flat motor range
from Maxon motors is ideally suited for this application. The maximum torque capability of the motor
chosen for the simulation is set to 25 mN - m.

6.3.5 Simulation Results

The results of the detailed attitude simulation are shown in Figures 6.5 to 6.23. The shaded areas indicate
when the satellite was in the eclipse part of its orbit. The results are discussed in the following sections.
The sections involve the overview of the simulation, the non-rigid dynamics, the accuracy of the estimators,
the performance of the controllers and the generated solar thrust.

The simulation of the tri-spin satellite was conducted for 500 min, or about 5 orbits. The simulation started
with the satellite released with initial angular rates. The satellite uses the magnetic RKF to determine
the angular rates (Omin < ¢ < 16min) until a magnetic controller was activated to reduce the angular
rates (16 min < ¢t < 66 min). When the angular momentum of the satellite was low enough, the deployment
process began and the sail and MCS were deployed (66 min < ¢t < 200min). The magnetic RKF along
with the TRIAD algorithm supplies attitude knowledge during the detumbling and deployment phases
(16min < ¢t < 180min). After the structures were deployed successfully, a full-state EKF estimator was
activated (180 min < ¢ < 500 min). Full attitude knowledge from the EKF along with the reaction wheels are
used to alternate between sun-following, sun-avoidance and the eclipse controllers (200 min < ¢ < 500 min).
The simulation was repeated for a satellite first increasing, then decreasing its orbit energy.

6.3.5.1 Attitude Simulation

Figures 6.5 and 6.6 show the true Euler angles (2-1-3 sequence, refer to Figure 3.7) and body rates of the
satellite (axis definition in Figure 3.3). Figure 6.5 reveals that the satellite was not 3-axis stable throughout
the simulation. The Euler angles changed at a high frequency during the initial release and detumbling
phase. During the tracking period the (200min < ¢ < 500min) the satellite obtained a similar attitude
during each orbit indicating the tracking of the sun. Investigating the body rates of the satellite in Figure
6.6, it is clear that the rates were controlled and remained low after the initial detumbling phase. The time
instances when visible angular rate changes are seen, indicate the start of the different control stages.
The largest angular rate change relates to the deployment of the solar sail and MCS. These changes in
angular rates occurred mostly during the sunlit part of the satellite’s orbit.

Figure 6.7a indicates the deployment stages. The first-stage deployment of the solar panels occurred at
t = 25 min and corresponded with a small change in the moment of inertia. At ¢ = 80min the MCS and
the sail were deployed and this resulted in a large increase in the moment of inertia. The I,, moment
of inertia was larger than I, and I,, after deployment, and became the dominant axis. The moment of
inertia stayed mostly constant for the remainder of the simulation except for small changes caused by the
non-rigid dynamics during the attitude manoeuvres.

6.3.5.2 Non-rigid Dynamics

The non-rigid dynamics of the wire booms were integrated within the attitude dynamics of the satellite.
The non-rigid dynamics were activated after the deployment phase, which concluded at ¢ = 200 min to
avoid singularities in the non-rigid model while the wire booms are still short. Figures 6.8a and 6.8b show
the angles o, and s of each of the wire booms of the sail. All the wire booms in the sail system show
similar responses. Figure 6.8a reveals an in-plane angle offset at ¢ = 200 min which corresponds with the
activation of the wire boom dynamics. After this transient, two major events are witnessed during every
orbit, these are caused by a change in angular rate (see Figure 6.6). The out-plane angle, see Figure 6.8b,
shows similar responses. The initial targeting of the sun corresponds with the large spikes in the angular
rate, the in-plane and the out-plane angles (see ¢t = 217 min, ¢ = 307 min and ¢ = 405 min). The second event
in each orbit is caused by the transition from the sun-following to the sun-avoidance controller. These
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transitions relate to angular rate changes, which induce offset angles. Similar results are visible in the

offset angles of the MCS, as seen in Figures 6.9a and 6.9b.

The angle offsets were small throughout the simulation and had a small effect on the rest of the satellite.
Small changes in the moment of inertia are visible in Figure 6.7a at the periods when the largest of
these offsets occur. The change in moment of inertia (see Figure 6.7b) highlights these small changes

and, referring back to Equation 3.3.15, causes disturbance torques on the satellite body. The change in
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Figure 6.7 — Moment of inertia and time derivative of moment of inertia

moment of inertia of the sail (in Figures 6.8c and 6.8d) represents a larger source than the moment of
inertia of the MCS (in Figures 6.9c and 6.9d).

It was shown in §3.4.4 that the size of the angle offset is a function of the centrifugal force and therefore
a function of the speed and tip mass of the rotating wire boom. High centrifugal force results in small
angular offsets. The lower rotation rate and longer wire boom length of the sail structure results in the
angle offsets being much larger.
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Figure 6.8 - Rotating sail non-rigid dynamics parameters
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6.3.5.3 Estimators

The simulation investigated three estimators. The magnetic RKF and TRIAD algorithm were active from
initial release until ¢ = 200 min when the full-state EKF was activated. The remainder of the attitude
simulation used the EKF. Figures 6.10 to 6.13 contain the outputs of all the estimators. The estimator
results show three lines. The first is the true angle or rate (blue line), the second is the estimated value
(green line) and the last is the absolute value of the error between the estimation and reality (red line).

The magnetic RKF, see Figure 6.10, had a large estimated error at the initial release rates. The error
decreased and was below 0.1°/s between ¢ = 20 min and ¢ = 75 min for wy,. The other two axes had higher
error rates with a maximum error of 0.5°/s during this time. The filter responded to the disturbances
from the deployment at ¢ = 75min and ¢ = 85 min. The estimates unfortunately were slow to converge,
especially at ¢ = 85 min, and therefore influence the performance of the deployment controller. This error
comes from the fact that the model within the RKF is inaccurate due to the moment of inertia terms that
change during the deployment. Still, this angular rate was much smaller relative to the spinning sail and
MCS, and the risk of collisions of the wire booms remains low.
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The TRIAD algorithm (see Figure 6.11) was activated along with the RKF. It used the magnetic field
vector along with the sun vector to obtain the satellite’s attitude. The sun vector was obtained from the
fine sensor, when available, otherwise the coarse sun sensors were used. During eclipse, no estimate
was available. The resultant estimate was good and was available immediately (due to the deterministic
nature of the TRIAD algorithm), when the sun became visible. This is highly advantageous in deployable
systems where the dynamic model is not accurate. Figure 6.11d shows the determined attitude errors.
Clearly the TRIAD algorithm implemented no low pass filtering on the sensor measurement noise. It will
be advantageous to either apply a low-pass filter to the output of the TRIAD algorithm or to the input
sensor signals to reduce the high-frequency component of the measurement noise. However, the attitude
errors were below 3 ° for the majority of the sunlit part of the orbit, even during the deployment phases.

The full-state EKF estimates of the attitude and angular rates of the satellite are seen in Figures 6.12 and
6.13. The EKF had an estimated error below 2° throughout the solar tracking phase (see Figure 6.12d).
It is also clear from this error that the EKF has filtering characteristics as these errors are of much lower
frequency, compared to the case of the TRIAD algorithm. Some phase error is visible through the large
Euler errors that occurred when 6 and v reached +180°. Larger attitude errors occurred mainly when
performing manoeuvres to enter a tracking mode after eclipse or the transition from the sun-avoidance
to the sun-following controller. The larger errors reveal the difference between the model within the EKF
and reality. The EKF lost accuracy in eclipse, but due to the lack of manoeuvres during these periods the
error remained low. In eclipse, the horizon and fine sun sensor measurements were no longer valid and
the filter only made use of the magnetometer to determine the attitude. Large attitude changes should be
performed in the sunlit part of the orbit or an extra sensor like a star camera should be added to control the
attitude in eclipse. The error in the body rate estimates was below 0.1°/s, except during eclipse periods
and shortly after the large attitude changes when the error was larger, at 0.3°/s. The rate error when
performing manoeuvres also indicated a small phase error, however, this error remained low.
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Figure 6.11 - Results from TRIAD algorithm
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Figure 6.13 - EKF estimated body rates
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6.3.5.4 Detumbling

The detumbling controller took about 10 min to reduce the satellite’s initial rates, in all axes to below 1°/s
(see Figure 6.10). The performance will depend on the initial angular rates and the magnitude of the
magnetic field in the orbit. Initially, a large error in the w;, rate estimation visible. The B-dot controller
performed well and reduced the wy,, and wy,, rates below 0.2 ° /s within 50 min. The Y-spin controller reduced
wpy to below 0.1°/s within 25 min. The angular rate decrease was due to the magnetic moment applied to
the magnetorquer rods (see Figure 6.14a), which generated a magnetic control torque. (see Figure 6.14Db).
The magnetorquers had a total on-time of 1492s during detumbling and the input signal saturated only
during the initial 15min. The magnetic torque generated was high with a maximum torque of just above
6 uN - m due to the polar orbit of the satellite. Lower inclination orbits require larger magnetic moments
to generate torques of similar magnitude.
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Figure 6.14 - Magnetorquer performance during detumbling

6.3.5.5 Deployment

The deployment of the sail and MCS produced disturbances. Figures 6.15a and 6.15b contain the rotation
speed of the sail system and MCS. At ¢ = 75 min (see Figure 6.15b), the rotation speed of the MCS increased
to counteract the increase in sail speed. When the sail reached a rotational speed of 3rev/s the deployment
of the MCS and the sail started. The speed of the sail and the MCS system fell quickly due to the increase
in moment of inertia. A speed controller was activated when the sail reached its nominal speed of 0.2rev/s.
This speed controller increased the angular momentum of the spinning sail system. The rotational speed
controller behaviour is described in §4.2.1. The change in angular momentum induced an angular rate in
the satellite body (Figure 6.10), which was then countered by the increase in speed of the MCS. Figure
6.10 reveals a large estimation error when this happens. The Kalman filter uses an inaccurate model
during deployment, because of the increase in moment of inertia. Rate sensors can supply the angular
rate of the satellite without requiring the moment of inertia of the satellite. The deployment controller will
be greatly improved when using rate sensors as a result of increasing the controller’s bandwidth. This will
ensure that the angular rate induced by the deployment is identified accurately, even during deployment,
and absorbed quickly.
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Figure 6.15 - Angular rate of deployables

6.3.5.6 Solar tracking

Figures 6.16 to 6.18 represent the results from the sun-following and sun-avoidance controllers in different
scenarios. The sun-following controller was activated at ¢ = 200 min. The first scenario (see Figure 6.16) is
when the sun-avoidance controller was activated first, thereafter the sun-following controller. Performing
the sun-avoidance before the sun-following controller generated solar thrust, which increases the orbit
energy. The initial manoeuvre to avoid any sunlight on the sail surface took 3min, see Figures 6.16a
and 6.16b. This corresponds with the ge1, ge2, ges initially increasing and then reducing to almost zero
(see Figure 6.16b) each time the satellite comes out of eclipse. The size of the sun vector in the yz-axis
direction is an indication of the fraction of the total sunlight on the solar sail. When the quaternion error
is small, the amount of sunlight in the yg-axis direction is almost zero.

SunVec
Quaternion error
o

200 250 300 350 400 450 500 200 250 300 350 400 450 500
Time(min) Time(min)
(a) Body referenced sun vector (b) Quaternion error vector

Figure 6.16 - Solar tracking parameters for increasing orbit altitude

At about t = 240 min the sun-following controller was activated. This can be seen in the increase in
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quaternion errors (see Figure 6.16b) when the control quaternions change to maintain the sail normal
facing the sun. The amount of sunlight in the yg-axis direction increased. The sun-following is successful
with more than 97% of the sunlight in the yz-axis direction. The satellite only maintained low angular rates
during eclipse. As soon as the satellite came out of eclipse at ¢ = 308 min, the sun-avoidance controller
was activated. This response out of eclipse was less accurate and one can see greater overshoot in the
transient when compared to the controller transition in the sunlit part of the orbit. This was due to larger
EKF estimation error as the satellite came out of eclipse. The attitude errors are significant and generate
large control signals based on incorrect information.

The tracking controller with results presented in Figure 6.16 was supplied with the sun direction
reference quaternion and an angular rate reference as calculated from Equation 5.3.20. The simulation
was repeated, but for this case only the quaternion reference was supplied with a zero rate reference.
The results of this controller are shown in Figure 6.17. It is clear from Figure 6.17b, that the quaternion
error components were much larger than in the previous case. This can also be seen in the sun-following
part of Figure 6.17a where the sun vectors components in the xz- and zp-axis directions are not
maintained close to zero. This means less of the sunlight falls on the sail. However, about 93% of the

sunlight was still aligned to the yz-axis.

SunVec
Quaternion error
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Time(min) Time(min)
(a) Body referenced sun vector (b) Quaternion error vector

Figure 6.17 - Solar tracking parameters for increasing orbit altitude using step references

By simply switching the order of the sun-avoidance and sun-following controller, solar thrust was
generated, which reduces the orbit energy. The result of applying the controller to reduce the orbit

energy is seen in Figure 6.18. The responses were similar to those shown in Figure 6.16.

The tracking controllers made use of reaction wheels to obtain the required attitude. The torque within
the xz- and zp-axis directions was generated by conventional reaction wheels and the torque in the
yg-axis direction was generated by the MCS. The angular momentum of the conventional reaction wheels
for the increase in orbit energy case is seen in Figure 6.19. The initial acquisition and the transition from
the sun-avoidance to the sun-following controllers corresponded with large changes in the angular
momentum. Figure 6.19a shows the angular momentum of the wheels during eclipse without the
momentum management activated. Clearly, the changes in the wheel angular momentum after each orbit
became larger and more pronounced. The simulation was repeated without the gravity gradient
disturbance torque (see Figure 6.19c). The angular momentum followed similar responses every orbit,
which indicates that the gravity gradient torque greatly influenced the satellite. The size of the gravity
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(a) Body referenced sun vector

Figure 6.18 - Solar tracking parameters for decreasing orbit altitude

Time(min)

(b) Quaternion error vector

gradient torque (see Figure 6.19d) was considerable. This large disturbance torque was determined by

the moment of inertia around the yp-axis, which is so much larger than the other axes. Most solar sails

orbiting in LEO will have to manage this gravity gradient torque disturbance as it increases significantly

the lower the orbit altitude becomes. The magnetic momentum management, as mentioned in §5.3.4.3, is

implemented during eclipse. The internal momentum with momentum management is presented in

Figure 6.19b. The internal momentum showed a similar response after each orbit. During eclipse the

wheel momentum was dumped, which effectively cancelled the momentum build-up caused by the large

gravity-gradient torque.
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Figure 6.19 - Reaction wheel performance during solar tracking mode
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6.3.6 Orbital Simulation

Information that affects the solar thrust is extracted from the simulation and supplied to a 3D
representation (see Figure 6.20). This visualiser gives insight into the working of the manoeuvres.

Figure 6.20 - 3D Orbital simulation

Figures 6.22 and 6.23 contain the results concerning the effectiveness of the generated solar thrust, while
§3.5.2 defined the t,,t;, variable and provides an indication of the amount of the total available solar
pressure experienced on the sail surface. Figures 6.21a and 6.22a reveal the t,,¢;, during the simulation.
During the sun-following periods, the maximum solar thrust is experienced in the —yz-axis direction. This
is indicated by the t,,:;, being equal to —1. This thrust force is converted to orbit unit vectors to reveal the
orbital effects, see Figures 6.21b and 6.22b. The y»-axis component changes the inclination and the zo-
axis component will change the eccentricity of the orbit. The X»-axis component will change the energy of
the orbit. This change in energy is what causes the satellite to deorbit or reach an escape trajectory. It can
be seen in Figure 6.21b that the force in the X»-axis direction remains positive, while it remains negative in
Figure 6.22b. This indicates that the transitions between the sun-following and sun-avoidance controllers
are correct and that the sun-following controller is only active when the correct thrust component can be

generated.

Figure 6.23 shows the sum of the Av accelerations due to the solar thrust force when assuming the
satellite has a mass of 4kg. The simulation for increasing its orbit energy only experienced positive Av
accelerations (see Figure 6.23a), and for the deorbiting satellite case (see Figure 6.23b) the satellite
mainly experienced negative Av accelerations. The resulting acceleration is small, but requires no extra
propulsion and is present in each orbit. The deorbiting satellite generates about Av = —0.06 m/s in each
orbit and orbits the earth 14.8 times each day. This corresponds to Av = —0.88m/s each day, which is
significant and will have a noticeable effect on the satellite’s orbit after a few days.
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Figure 6.22 - Solar thrust for decreasing orbit altitude

6.4 Standard Spinning ADCS Application

The simulation environment used in §6.3 was applied to a spinning solar sail. An 25m? sail was attached
to a spinning satellite body, similar to that presented in §6.3. In this simulation, the sail did not have a
relative angular rate to the satellite body (refer to §3.2.1.1). The controllers mentioned in §5.3.4.1 and
§5.3.4.2 were applied in this scenario. The controllers were to make use of external torques to control the
satellite’s rates and track the vector to the sun when the satellite was not in eclipse. The performance of
the tracking controllers were investigated to determine whether a standard spinning solar sail could be
used to generate the required solar thrust to change its orbit altitude.

6.4.1 Simulation Parameters

The simulation for a standard spinning solar satellite was based on a 3U CubeSat containing a 25 m? sail.
The simulation started with the sail in its deployed state and with a starting rate of
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Figure 6.23 - Momentum through solar thrust
wp/o = 0 0.1 O}T rev/s. The nutation and spin controllers were permanently activated. When the

satellite was in the sunlit part of its orbit, it also activated the precession controller to point the spin
vector towards the sun.

The simulation was initially run to make use of ideal control torques relative to the body frame of the
satellite that are saturated at a magnitude of 25uN-m. This limit was set to be equivalent to the torque
that a 1 A-m? magnetorquer can generate assuming a minimum magnetic field of 25uT. Such a torque
can be generated by chemical/electrical thrusters or even the solar thrust itself when the CoP/CoM is
controlled (see §2.4 for a description of such methods). The simulation was then repeated with the control
torques generated by magnetorquers. The magnetic field does not have a constant magnitude throughout
a satellite’s orbit and a magnetic torque can only be generated perpendicular to the local magnetic field.
This will greatly reduce the performance of the controller. The satellite system has a larger angular
momentum bias than the tri-spin satellite, and thus require much stronger magnetorquers as discussed in
§6.3.4. The magnetic moment per body axis is limited to 1 A - m?. Such magnetorquers are commercially
available. The simulation was run for 1000 min with the attitude controller operating at 1 Hz.

6.4.2 Simulation Results

The simulation results are shown in Figures 6.24 and 6.25. The body rates when an ideal torque is applied
are shown in Figure 6.24a. The angular rates of the satellite remained constant, with a small nutation
visible in the Xz and ziz axes. These rates are greatly reduced when only the spin and nutation controller
is active in the eclipse part of the orbit. The control torques seen in Figure 6.24b illustrate an increase
in control torque in the sunlit part of the orbit when the precession controller is also active. The sun
vector measured in the satellite’s body frame is seen in Figure 6.24c. Initially only a small part of the sun
vector was seen in the yg-axis direction. The yp-axis is perpendicular to the sail surface and the amount
of sunlight in this axis is a measure of the amount of solar thrust generated. The amount of sunlight on
the sail increases the longer the controller is active.

The results when the spinning satellite used magnetorquers to generate the control torques is shown in
Figure 6.25. It is clear from the body rates seen in Figure 6.25a that the nutation was larger than in the
previous case. The control torque shows (see Figure 6.25b) the varying magnetic field that prevented the
generation of an ideal torque. However, the sun vector within the yz-axis direction continued to increase,

while the components in the other axes continued to reduce (see Figure 6.25c).
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Figure 6.24 - Solar tracking with ideal torques generated

The results reveal that a standard spinning solar sail can track the sun vector to obtain solar thrust. It
is clear though, that attitude manoeuvres with settling times in the order of that of the tri-spin satellite
are not possible. The main spin in the yz-axis direction can be reduced to effectively reduce the angular
momentum and thus make the satellite more manoeuvrable. Decreasing the spin will also result in a lower
centrifugal force that keeps the sail and wire booms stiff. Larger torques can be generated to increase
the precession rate but will require large actuators to damp the gyroscopic disturbance torques. Spinning
solar sails are ideal for sun-centred orbits where a fixed angle relative to the sun must be obtained to
get the most effective thrust to change its orbit. Only a small precession of the spin vector is required to
maintain this relative attitude while remaining robust to sources of disturbance torques. Payloads such
as imagers, which require high pointing accuracy and a stable platform to operate effectively, will not be
able to function on a standard spinning solar sail, as the satellite body continually rotates.
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Figure 6.25 - Solar tracking with torques generated by magnetorquers

6.5 CMG Controlled Tri-spin ADCS Application

In §6.3, the standard tri-spin solar sail configuration on a CubeSat sized satellite was implemented. As
mentioned in §3.2.1.4 and §5.3.3.4, an advanced actuator can be created by placing the two rotating
structures on 2-axis gimbals. The performance of such a system was investigated within a simulation.

6.5.1 Simulation Parameters

The simulation for a CMG controlled tri-spin solar sail was based on the same parameters defined in §6.3.
The reaction wheel model within the simulation environment was replaced with a DGCMG model. The
CMG controlled tri-spin satellite was implemented as a 3U CubeSat technology demonstrator. The satellite
started in its deployed state and with all control angles (¢ and \) at zero. A number of attitude manoeuvres
relative to the orbit-frame were implemented. The same attitude manoeuvres were executed with the
satellite mentioned in §6.3 and a version of the CMG solar sail satellite containing control inaccuracies.
In the application with inaccuracies, the angular momentum of the sail and the MCS were assumed not
to cancel precisely (Hys # H.), a gimbal control error was induced (¢; # €.) and the satellite was to start
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with a non-zero gimbal angle (¢g # 0°). The CMG controller was assumed to have knowledge of the initial
conditions of the gimbal angles, but was not aware of the angular momentum or control angle errors. The

CMG controller had a control period of 1s.

6.5.2 Simulation Results

The simulation results are shown in Figures 6.26 and 6.27. The Euler angle step responses for the three
control cases are shown in Figure 6.26. Figure 6.26a shows the step response when applying the required
torque with conventional reaction wheels and the MCS, as was done in §6.3. All the references were
reached with a critically damped quaternion feedback controller. The same responses as for the CMG
control case are shown in Figure 6.26b. Almost no discrepancy can be seen in the step responses when
compared to the reaction wheel control case. The inaccuracies applied to the CMG control did affect the
output (see Figure 6.26¢). The transients between the steps were larger, but the satellite still reached the
references. It is also visible (especially after the last step) that the satellite was struggling to maintain the

required attitude reference.
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Figure 6.26 - Step response for standard wheel and CMG control
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The control inputs for the step responses of the different scenarios are shown in Figure 6.27. The required
torque, in the case of the standard reaction wheels, is shown in Figure 6.27a, which shows the torque
pulses during each step. The CMG control signals are shown in Figures 6.27b and 6.27c. It is clear that
the inaccuracies in the CMG control increased the control signals required, as evident in the step response.
The attitude references are relative to the orbit frame. The angular momentum of the rotating sail and
MCS was not equal (H; # H.) and the satellite had an angular momentum bias. This angular momentum
needed to be continually precessed to maintain the required attitude relative to the orbit frame. Such

precession induces a gyroscopic disturbance torque, which has to be absorbed by the actuator.

For the simulation case with control inaccuracies, the CMG gimbal angles did not return to zero. These
gimbal angles should be managed and actively controlled back to zero after a manoeuvre had completed
(similar to momentum management case in §6.3.5.6). The CMG control could generate the required

torques with small changes in gimbal control angles.
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Figure 6.27 - Control inputs for reaction wheel and CMG control

The full-state EKF requires the current known angular momentum of the satellite to propagate the model
successfully. The error in the angular momentum becomes large when an unknown angle error exist
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within the CMG. The effect of this error can be reduced by making use of estimation methods that do not
require the angular momentum. The gyro-based EKF and the TRIAD algorithm are able to still estimate

the attitude accurately in the presence of an unknown angular momentum bias.

6.6 Conclusion

This chapter has presented the attitude simulation of a solar sail satellite. Dynamic equations and control
methods that were derived and designed in earlier chapters were used to produce a simulation
environment in which the feasibility of the ADCS of different spinning solar sail configurations could be
assessed. The simulation program was developed in Matlab Simulink and different components of the

simulation program were discussed.

The attitude simulation for a tri-spin satellite was completed. The simulation was able to illustrate the
performance of all the ADCS control modes required for a tri-spin satellite to detumble after release,
deploy its sail and MCS and generate solar thrust to either increase or decrease its orbit energy. The
simulation introduced estimators that are viable for such a technology demonstrator mission. The results
of the simulation reveal that the system can be improved by using rate sensors during deployment. The
addition of angular rate sensors would provide accurate information during deployment and will increase
the performance of the rate controller. Combinations of solar tracking controllers to increase and reduce
the orbit energy were presented to generate the correct thrust to change the orbit altitude. A gravity
gradient disturbance torque was present due to the large moment of inertia of the sail. Methods to
manage the angular momentum build-up due to this effect would be a necessity for solar sails orbiting
around earth.

A standard spinning solar sail and the CMG controlled tri-spin solar sail configuration were also simulated.
The standard spinning satellite was able to maintain a controlled spin while slowly precessing towards the
sun. The control torques to achieve this result can be generated by magnetorquers or other actuators like
thrusters and solar torques methods described in §2.4. The standard spinning solar sail cannot complete
the tracking manoeuvres quickly enough to able to generate the solar thrust required to change the orbit
energy within a LEO. Standard spinning solar sails are perfectly suited for maintaining a required angle

relative to the sun in a sun-centred orbit.

The CMG controlled tri-spin satellite was able to produce similar torque to a satellite containing reaction
wheels. Comparable step responses could be achieved with small changes in gimbal angles. The simulation
also highlighted the effect of gyroscopic disturbance torques in the presence of angular momentum bias
that may exist. It would be important for the angular momentum of a tri-spin satellite system to be tightly
controlled to prevent significant control errors.
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Chapter 7

Conclusion

This thesis has introduced a spinning solar sail satellite configuration that is able to rapidly change the
solar thrust vector direction during orbit manoeuvres, for example to increase and decrease the orbit
altitude in a low earth orbit. The new spinning solar sail design presented in the thesis succeeded in
combining the advantages of a spinning sail with the manoeuvrability of a zero-biased 3-axis stabilised
satellite. A 3-axis stabilised satellites can make use of conventional actuators to perform agile attitude
manoeuvres and in the case of solar sailing to obtain the required solar thrust vector direction. The main
advantages of a spinning sail are:

¢ It is more resistant to disturbance torques from misalignment of CoM and CoP, than non-rotating
sails, and

¢ It produces a constant centrifugal force, which reduces sail billowing and makes it possible to use
wire booms that are simple to deploy as supporting structures.

With the new tri-spin solar sail satellite, the satellite body is despun from the rotating sail. This results
in a stabilised platform where conventional actuators can be used. The spinning sail becomes effectively
a large momentum wheel. The system has a large angular momentum bias and large control torques
are required to change the attitude. An additional rotating mechanism is therefore proposed to zero the
angular momentum bias, resulting in a more manoeuvrable solar sailing satellite.

The novel contributions in this study are:
¢ Conceptualisation of a tri-spin and CMG controlled tri-spin satellite
* Application of the tri-spin and CMG controlled tri-spin satellite concepts to solar sailing satellites

¢ The derivation of simplified dynamic equations for investigating the angular accelerations of the
offset angles of rotating wire booms

¢ The use of the moment of inertia and its time derivative as a coupling term between the non-rigid

and rigid satellite elements influencing the attitude dynamics

* The design and development of a deployment controller for a friction or passive deployment
mechanism to deploy wire booms

¢ The development of model estimation methods to determine the current wire boom lengths of the
sail during deployment

¢ Developing attitude and rate estimators and controllers for a tri-spin satellite
* Deriving the steering laws for the CMG controlled tri-spin satellite

¢ Implementing and simulation testing of the attitude estimators and controllers on a tri-spin and CMG
controlled tri-spin solar sail satellite to generate a solar thrust to change its orbit altitude

131
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7.1 Satellite Model Evaluation

The tri-spin satellite contains overall dynamics similar to that of conventional spinning satellites. The
standard Newton-Euler equations were rewritten to include, not only the three rotating parts of the
satellite, but also the change in inertia that will occur when deploying and rotating the non-rigid
elements. The moment of inertia of the sail and the MCS were used as cross-coupling elements to couple
the normal rigid dynamics with the non-rigid dynamics of the wire booms. These dynamic equations were
reduced to also describe the dynamics of other spinning solar sail configurations.

The effect of attitude changes on rotating wire booms was analysed by making use of Lagrangian
mechanics. A dynamic model that was developed described the accelerations of the wire boom offset
angles when performing attitude manoeuvres. Analysis of the resultant wire boom dynamics revealed
that the angular rate of the wire booms is the dominant parameter. Choosing the nominal angular rate
correctly will decrease the influence that the oscillations of the wire booms will have on the rest of the

satellite system.

The thrust generated from a solar sail has a significant effect on a satellite’s orbit when in earth-centred
or sun-centred orbit. Two manoeuvre-sets were identified that will produce altitude changes for a satellite
orbiting around the earth. A simulation was used to compare the performance of these sets, and the
influence of each set on the satellite’s orbital parameters.

7.2 Deployment Evaluation

Two wire boom deployment methods for a spinning solar sail were investigated. Active deployment makes
use of a separate module on the deployment mechanism, which contains an actuator that rotates the
pulley, and slowly increases the length of the wire booms. The passive deployment method makes use of
the centrifugal force generated by the rotating system, to deploy the wire booms. A static friction method
was presented to add a controlled deadband to the deployment mechanism. Methods to control and to
estimate the progress of the wire boom deployment were investigated.

A deployment demonstrator was built to practically implement the active and passive deployment of four
wire booms in the presence of earth’s gravity and aerodynamic drag. The practical results correlated well

with the theoretical models of the deployment methods.

A pendulum experiment was conducted to investigate the effect of damping enhancers to the duration of
wire boom oscillations. Damping enhancers at the attachment point of the wire boom, such as springs,
greatly reduced the energy of the oscillations. A pendulum experiment within a vacuum can be used to
determine the damping ratio of a wire boom system. Measuring the damping ratio of the wire boom greatly
increases the accuracy of the wire boom dynamic model.

7.3 ADCS Evaluation

Different attitude estimators and controllers for a spinning solar sail were introduced. The estimators
that are discussed include a rate Kalman filter, TRIAD algorithm, full-state EKF and gyro based EKF. The
controllers include precession and nutation controllers for a standard spinning solar sail to maintain its
spin rate and track the sun vector. The sun-following and sun-avoidance tracking controllers can be used
by the tri-spin and tri-spin CMG satellite to obtain the required solar thrust to increase or decrease the

energy of an orbit.

A full attitude determination and control simulation for a technology demonstrator solar sail CubeSat was
developed. The simulated scenario illustrates a tri-spin solar sail satellite from the instant it is released
from the launcher to normal maximum/minimum solar thrust operation. A number of different attitude
determination estimators were implemented. The magnetic rate Kalman filter estimator and the TRIAD
algorithm were used during detumbling and deployment of the sail and MCS. During the solar tracking
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phase, an extended Kalman filter was used to accurately estimate the current attitude and rate of the
satellite. A B-dot magnetic detumbling controller was used to initially spin stabilise the satellite, and a
deployment controller was activated to absorb the disturbance torques during the deployment phase. The
sun-following and sun-avoiding controllers were used to obtain the maximum and minimum solar thrust
force on the solar sail to either increase or decrease the satellite’s orbit altitude.

The ADCS simulation results demonstrate that a practical ADCS can control a tri-spin solar sail satellite to
perform manoeuvres to generate the required solar thrust. The results did reveal the need for improved

rate determination methods by means of rate sensors during the deployment phase.

A standard spinning satellite that was simulated demonstrated solar tracking utilising external control
torques. These external torques are generated either by thrusters, by mechanism that changes the CoP
to CoM offset, or with magnetorquers when the satellite is in a low earth orbit. The spinning satellite can
successfully track the sun vector for maximum solar thrust. As expected, the simulation indicated that a
spinning LEO satellite will not be able to complete attitude changes fast enough to perform the required
manoeuvres to change its orbit altitude. A spinning solar sail is ideal when orbiting around the sun where
a constant offset angle relative to the sail surface can obtain the maximum change in orbit altitude.

The CMG controlled tri-spin satellite configuration was investigated while performing certain attitude
changes relative to the orbit frame. The simulations demonstrated that the CMG controlled tri-spin
satellite can perform the required attitude manoeuvres by adjusting its gimbal angles and the rotation
speed of the sail and MCS. It also revealed the importance of continually observing and maintaining a low
angular bias. Failing to do so will result in large control signals to maintain its attitude. This is also true

when there is an angular momentum bias in the standard tri-spin solar sail.

7.4 Further Recommendations

This study revealed a number of areas where further research could improve and enhance the spinning
solar sail configuration. A detailed FEM analysis on a tri-spin solar sail satellite will supply a more accurate
method for exposing any potential hidden influences to the satellite’s attitude performance during fast
rotational manoeuvres. The accuracy of the simple model presented in §3.4 can be determined when
comparing it to the more detailed results of a FEM analysis. Other modelling methods, such as elasticity
theory and simple beam theory, can also be implemented to determine the dynamics of the non-rigid
elements.

The accuracy of the dynamical model is dependent on the accuracy of the physical parameters. These
include parameters like mass, damping ratio and elasticity constants. Measuring some of these parameters
is simple, but others require more practical tests, like the experiment proposed in §4.5. The proposed
experiment in vacuum can also confirm the feasibility of mechanisms to increase the damping of the wire
boom. Examples of such mechanisms are the addition of springs or metallic plates at the bending point of
the wire boom.

The deployment mechanism presented in Chapter 4 was an initial design. A second revision of the
deployment mechanism can easily shrink to a volume and mass below that of conventional semi-rigid
boom deployment mechanisms. Two dedicated mechanisms, one for the active and the other for the
passive deployment mechanism, can be created to obtain the smallest form-factor solution with the active
deployment mechanism including custom electronics and the passive mechanism containing a radial
damper and friction system. A hybrid solution is also possible, with this hybrid solution consisting of an
active actuator with low internal friction connected to the pulley. This offers a possibility to either deploy
the system actively, or drive the rotating mechanism past the internal friction of the actuator to perform a
passive deployment. This concept can be extended further to use the attached motor to magnetically
brake the pulley, similar to a mechanical damping mechanism, by applying a short circuit to the motor
terminals. The proposed model estimation methods that indicate the current deployed state of the sail
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also need to be verified in practical deployment tests. Practical experiments on a frictionless 3-axis table
demonstrating the control of the satellite body during the deployment of the MCS and sail may indicate
of how to further refine the deployment methods proposed in this thesis.

The ADCS system presented in §6.3, investigated the ADCS for a specific satellite layout with some design
choices regarding the length of the wire booms for the MCS. The analysis in §3.4.4 need to be extended
to investigate different layout and design choices. Additionally, a more comprehensive sensitivity analysis
(similar to that done briefly in §6.3.5.6 and §6.5.2) on the effects of the tri-spin satellite containing a small
angular bias can be further explored. This will occur when the angular momentum of the MCS and sail
does not cancel out perfectly. The ADCS of the tri-spin satellite will also be improved if a Kalman filter was

extended to determine the angular bias while performing a certain set of attitude manoeuvres.

The novel tri-spin solar sail design presented and analysed in this thesis is proposed as a feasible option
for future solar sailing missions. It will be able to use conventional 3-axis stabilised control methods to
perform fast attitude manoeuvres, for example, when utilising solar thrust to change a LEO satellite’s orbit
altitude. The deployment and control methods developed in this study are not limited to spinning solar
sails, but are also applicable to other non-rigid deployable spinning structures, for example wire boom
antenna systems, deployable parabolic antennas and large solar panels.
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Appendix A

Dynamic Equations for Wire Booms

A.1 Lagrangian Mechanics Examples

Lagrangian mechanics, similar to Newtonian mechanics, is a method to determine the dynamic equations
of a system. The main advantage is that Lagrangian mechanics can use generalized coordinates which may,
if chosen correctly, greatly simplify the process of obtaining the equations for describing the dynamics of
a system.

The basic operation to use Lagrangian mechanics to derive the dynamic equations are:
1. Define the Degrees-of-Freedom (DOF) of system
2. Write the position vector of the Centre-of-Mass (CoM) of each segment in inertial frame
3. Determine velocity of CoM
4. Calculate kinetic energy of entire system
5. Determine the potential energy in the system
6. Calculate Lagrange equation
7. Identify sources of Non-Conservative forces
8. Perform derivation of appropriate variable
9. Substitute terms within Euler-Lagrange equation

10. Simplify dynamic equations

Lagrangian mechanics are ideal when there multiple segments linked to each other[81]. This makes the
Lagrangian method ideal for any pendulum type problem. This method of deriving dynamic equations are
applied on a number of classical dynamic pendulum problems.

A.1.1 Basic Pendulum

A pendulum with a mass m and a length / is released in the presence of gravity from an angle offset
from its nominal orientation (refer to Figure A.1).

The location of the pendulum tip mass is:

T {sin 8
y| = 0 . (A.1.1)
z —flcosf
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Figure A.1 - Definition of basic pendulum

Taking the derivative of the position vector results in the velocity of the tip mass, assuming that the offset

angle is the only variable that is time-variant:
T 0B cos 3
gl = 0o |- (A.1.2)
z 65 sin 3
The kinetic energy of the rotating pendulum is
T = }m(:b2+g)2+z'2)
2

%m (6262 cos? B + 0%3% sin? B) (A.1.3)
1

m£282

2

The same result can be achieved by calculating the moment of inertia of the tip mass around the origin
(I = mf?) and taking the rotational energy, T = %m€2 52. The potential energy of the tip mass is

V = —mglcos (A.1.4)

The Lagrange equation is the difference between the kinetic energy and the potential energy.

L=T-V
1 . (A.1.5)
= §m€252 + mgl cos 8
The Euler-Lagrange equation applied on the 3 angle is as follows:
d (0L oL
(=)= =0, (A.1.6)
dt \ op ap
with each term
oL .
—— = —mglsin B (A.1.7)

B
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and oc
= =m*p (A.1.8)
B
and 4 /o0
— [ =) = me23 Al
u (8 5) mej (A1.9)

This results, when substituting back into the Euler-Lagrange equation, in

0 =ml%3+ mgl sin B

. --__gsinﬁ
S B= 7

(A.1.10)

This conforms with the standard pendulum equation available in literature. The equation is placed within

a basic simulation. The simulation is conducted with £ = 1m, m = 10g, 4(0) = 0°/s and $(0) = 0°. The
result is shown in Figure A.2.
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Figure A.2 - Simulation results from basic pendulum

A.1.2 Rotating Basic Pendulum

A basic pendulum as seen in §A.1.1 is defined with a further angular rate (2 around the z-axis (see Figure
A.3). This angular rate results in an offset angle, n = ¢, relative to the X-axis. This addition can be
described by a DCM transformation matrix,

cosn —sinn 0
A= |sinnp cosn O (A.1.11)
0 0 1

and the inertial vector can be obtained by applying:
ri=A-r,, (A.1.12)

where r, is the position vector within the rotating frame as defined in §A.1.1. The resulting inertial position
vector becomes:

x £sin B cosn
ri= |y| = [£sinBsiny (A.1.13)
z —flcosf
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Figure A.3 - Definition of rotating pendulum

The time derivative of the position vector is

03 cos B cosn — £82sin Bsinn

T
¥ = || = |¢BcosBsinn + (Qsin B cosn (A.1.14)
z (Bsinf
The kinetic energy then becomes
1 .
T = me? (52 + 02 sin? 5) (A.1.15)
while the potential energy remains the same. This results in the Lagrange equation to be
1 .
L= §m€2 (ﬁz + 02 sin? 5) + mgl cos (. (A.1.16)
The main terms of the Euler-Lagrange equation are then calculated to be:
a£ 22 - .
a—ﬁzmﬁ Q) sin S cos B — mglsin 3 (A.1.17)
and oc
= =me*f (A.1.18)
op
and 4 /or
— (=) =me?s (A.1.19)
dt \ o

When applying the Euler-Lagrange equation this results in
0 = ml%B — ml?Q? sin B cos 8

gsin g
¢

From this equation one can derive that the angular rate of the pendulum, (2, works in the opposite direction

(A.1.20)

S B = %Q2 sin(2p) —

than gravity. If a non-zero § angle exist then the faster the pendulum rotates the larger this angle will
become until it reaches 90°. A simulation illustrating the behaviour of the rotating pendulum is shown
in Figure A.4. This simulation is conducted with the following parameters: ¢ = 1m, m = 10g, 0 = 1rps,

B(0) =0°/s and §(0) = 15°. Figure A.4a shows the § angle and Figure A.4b shows the position of the mass
within the rotating frame (before the rotation matrix).
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Figure A.4 - Simulation results from basic pendulum

A.1.3 Basic Double Pendulum

Figure A.5 - Definition of basic double pendulum

Assume the standard double pendulum problem, see Figure A.5. One pendulum of mass m; and length /¢,
is attached to the origin. This pendulum has an offset angle 8, with regards to the gravity vector. Another
pendulum with mass ms and length /5 is attached at the end of the first pendulum. The second pendulum
has an offset angle of 5, with regards to the gravity vector. The position vector of the first mass is

fl sin 61

ri = 0 (A.1.21)
—{7 cos 1
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and the position vector to the second mass is
81 sin 61 + 62 sin BQ
Tio = 0 . (A.1.22)
—{1 cos B1 — {5 cos Bo
The derivative of each of these vectors are
5161 cos 31
I = 0 (A.1.23)
4By sin By

and . .
011 cos B1 + €232 cos Ba
Ijo = 0 (A.1.24)

0151 sin By + Lo 32 sin Ba
The kinetic energy of the entire system is the sum of the kinetic energy of the first pendulum and the

second pendulum. This results in

1 . . . 1 . . .
T=om (47 + 97+ 47) + 32 (43 + 93 + 23)
1 1 (A.1.25)
= imlffﬁf +5me {@8% + 0535 + 2010531 B3 cos (B1 — ﬂ2)}
The potential energy of the total pendulum system is

V = —maog (gl cos By + o COS,BQ) —m1g€1 cos 1 (A.1.26)

The resultant Lagrange equation is then

1 ) 1 ) ) ..
£ = 3milB} + 3m, [efﬂf 232 1 2010251 Bo cos (Br — 52)]

(A.1.27)
-+ mag (¢1 cos By + o cos f2) + m1gly cos By
The main terms of the Euler-Lagrange equation when applied to 5; are calculated to be:
oL . . L
P —mygly sin B — magly sin B1 — malila 12 sin(B1 — P2) (A.1.28)
1
and oc
% = m1€%51 + m2£%51 + mgflegf.gg COS(ﬂl — ,62) (A.1.29)
1
and
d [ oL - S ) o
df — | = nglggﬂQ sm(ﬂl — 62) — mgglggﬂlﬂg SlH(Bl — ﬂg) + (mﬂl + mgﬁl) ﬁl
t \ 95 (A.1.30)

+ malilafa cos(B1 — B2)

Substituting these equations within the Euler-Lagrange equation and simplifying results in the dynamic
equation for the 8; angle

—mala 3§ sin(By — Ba) — malaf cos(By — Ba)  gsin By

(A.1.31)
(m1 +m2)51 2

B =

Repeating this process in Equations A.1.28 to A.1.30 but instead applied on S5 and also substituting the
results into the Euler-Lagrange equation the resultant dynamic equation becomes
_ 0f2sin(By — Ba) — gsin Bo — €151 cos(Br — Bo)

= A

Solving these two equations above simultaneously the final dynamic equations for the two pendulum angles

Ba (A.1.32)

can be obtained. These equations are

cos(fB1 — P2) (m29 sin B + moly 37 sin(By — 52))

3 = —— mala 3 sin(By — B2) — migsin B — magsin By
= £y (mq 4+ mg — mg cos? (B — B2)) (A.1.33)
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and
sin(81 — fB2) (mlfﬁ.% + maly B3 + malaE cos(By — ﬁ2))
Gy = + cos(B1 — ﬁ23 (myigsin B1 + magsin B1) — mygsin By — magsin By
502 (2m1 + mg — ma cos(26; — 232))
The equations above are placed within a simulation and the following parameters and initial conditions
applied: ¢, = 5 = 1m, m; = 10g, ma = 20g, $1(0) = B2(0) = 0°/s, 41(0) = 5° and B5(0) = —50°. The 3,
and f; angles are shown in Figure A.6a and the position of the m; and ms is shown in Figure A.6b.

(A.1.34)

Angle (deg)

Time (s) X (m)
(a) Angles of double pendulum (b) Position of m; and mao

Figure A.6 - Simulation results from double pendulum

The double pendulum is very dependent on initial conditions and may show chaotic motion (as seen in
Figure A.6). Chaotic motion is categorised as motion which is highly unpredictable without knowledge of
its initial state. This occurs even if the system is deterministic (contains no random values). This kind of
behaviour is known as deterministic chaos or simple chaos.

A.2 Symbolic Mathematics for Lagrangian Mechanics

The Lagrangian mechanics method contains many derivatives and simultaneous equation solving. These
derivatives and equations can become very complex to do by hand. A symbolic maths package can be used
to calculate the dynamic equations through Lagrangian mechanics. Many software packages are available
that can be used like Matlab’s Symbolic Toolbox, Maple, Mathematica, Sage, SymPy, ect. These packages
are very good with partial derivatives but unfortunately many variables are time dependent. One can
make use of product derivative rule to make use of partial derivatives to perform time derivatives. The
code section in Listing A.1 details a piece of Matlab code which performs the following operation:

o df(xéf/,z)

A.2.1
 Of(ey.2) | Of(y.z) L Of(z.y,2) *-2.1)
= + y + z ]

ox Jy 0z

with z(t),y(t), and z(t).

Listing A.1 - Time derivatives in symbolic software package

% declare symbols
syms x xdot y ydot z zdot
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% define function f in terms of symbols x, y and z

% time derivative of f
F = xdotxdiff(f,x) + ydotxdiff(f,y) + zdotxdiff(f,z);

-

The code section in Listing A.1 is an example of using a symbolic software package to solve the dynamic
equations using Lagrangian mechanics.
Listing A.2 - Solving Lagrangian mechanics in a symbolic software package

( N
close all;

clear all;
clc;

%% STARTUP

% define symbols

disp(’'Startup...’)

syms mc wb_i0 wb_il wb_i2 wb_idot® wb_idotl wb_idot2
syms alpci alpdotci alpddotci betci betcdoti betcddoti
syms r lc lcdot gam bac bbc

syms ql g2 g3 g4 gldot g2dot qg3dot g4dot

syms Mx My Mz I0 I1 I2 Oc Ocdot

syms etaC

disp(’'Startup...COMPLETE")

%% KINETIC ENERGY

% equation for kinetic energy within system
disp(’Kinetic energy...’)

T = 0.5xmcx(V(1)"2+V(2)"(2)+V(3)"2);

T = simple(expand(T))

disp(’Kinetic energy...COMPLETE")

%% LAGRANGE EQUATION

disp('Lagrange equation...’)

% Lagrange equation for alpha

Talpdot = diff(T,alpdotci);

Talpdotdot = diff(Talpdot,alpci)=*alpdotci+diff(Talpdot,alpdotci)=*alpddotci...
+diff(Talpdot,betci)*betcdoti+diff(Talpdot,betcdoti)*betcddoti...

+diff(Talpdot,etaC)*0c+diff(Talpdot,0c)*0cdot;
Talp = diff(T,alpci);
EQALP
EQALP

Talpdotdot-Talp+bac*alpdotci;
simple(expand (EQALP))

% Lagrange equation for beta

Thetdot = diff(T,betcdoti);

Thetdotdot = diff(Tbetdot,alpci)*alpdotci+diff(Tbetdot,alpdotci)=*alpddotci...
+diff(Thetdot,betci)*betcdoti+diff(Tbetdot,betcdoti)=*betcddoti. ..

+diff(Tbetdot,etaC)*0c+diff (Tbetdot,0c)=*0cdot;

+diff(Talpdot,wb_i0)*wb_idotO+diff(Talpdot,wb_il)=*wb_idotl+diff(Talpdot,wb_i2)x*wb_idot2...

+diff (Tbetdot,wb_i0)*wb_idot0+diff(Tbetdot,wb_il)*wb_idotl+diff(Tbetdot,wb_i2)x*wb_idot2...
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Tbet = diff(T,betci);

EQBET = Tbetdotdot-Thet+bbc*betcdoti;
EQBET simple(expand (EQBET))
disp(’Lagrange equation...COMPLETE")

%% LINEAR SOLVING
disp(’'Linear solving...’)

S = solve(EQALP,alpddotci);
ALPDDOT = simple(expand(S));
ccode (ALPDDOT)

S = solve(EQBET, betcddoti);
BETDDOT = simple(expand(S));
ccode (BETDDOT)

disp(’Linear solving...COMPLETE")

Making use of a software package will reduce the number of errors during the derivation of the model.

A.3 Frequency Analysis on Wire Dynamics

The simplified wire dynamics (see §3.4.4) are used to analyse the dynamics of the tip mass when certain
oscillations are present in the system. Two input signals are investigated. The first is an angular rate
signal on the satellite body. The second is a disturbance angular rate on the wire boom. The effect of the
frequency of these signals on the wire boom’s out-plane angle will be investigated.

In the first case a sine 1°/s oscillation is added to w;, and the frequency of this disturbance is kept constant
for ¢t = 1000s. The fact that any signal can be represented by a sum of sine waves makes this analysis using
sine disturbances very appropriate. The maximum out-plane angle during this period is stored. This
simulation is repeated with a different frequency of the disturbance and angular rate of the sail. Figure
A.7 shows the result of the maximum out-plane angle as the disturbance frequency and sail angular rate
change.

Figure A.7 shows the result. The contour map in Figure A.7a shows a linear relation with a gradient of two
between the resonant frequency, the frequency of the disturbance and the angular rate of the sail. Areas
which do not lie on this line are much lower. These frequencies of resonance is a sign of constructive
interference between the angular rate and the disturbance frequency. It highlights a scenario where the
peak of the disturbance occurs twice in one revolution of the sail. This scenario is depicted in Figure A.8.

The angle offset is dependent on the angle between position vector to the tip mass (r;;) and the angular
rate vector of the disturbance (w;,). The effect of the disturbance is at its greatest if the position vector is
perpendicular with the disturbance vector, r;; - w;,z7z = 0, and the least when r;; X w;.zz = 0. When the
frequency of the disturbance is twice that of the angular rate of the sail the scenario occurs when that
there are two time periods in a sail rotation where the maximum disturbance has the maximum effect on
the wire boom.

A similar frequency analysis is done in Figure A.9. In the second case the disturbance is placed on ws, and
is done in the simulation by keeping 7, = 0°. Figure A.9b reveals results very similar to Figure 3.17. The
three dimensional graph reveal that the resonant frequency is the same as the frequency of the rotating
sail. A sail rotating at 0.1rev/s is very sensitive for disturbances on the wire booms of 0.1Hz and more
resistant to higher and lower frequency disturbances. The contour map of the result (see Figure A.9a)
clearly affirm the linear relation between the resonance frequency, the disturbance frequency and the
angular rate of the sail.




Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. DYNAMIC EQUATIONS FOR WIRE BOOMS 144
N
<
o
o 9
2f P 1 .
o S 7
o s
o 6
= 1.5F ¢ 1 2
z ) & 5
3 2
5 . g4
g @ L3
E 3
3 f ® 1 o 2
' 1
]
©
0.5- 0. -
®
02 04 06 08 1 12 14 16 18 2
w,, angular rate (rev/s) w, frequency (Hz) uw, angular rate (rev/s)
(a) Contour of the maximum angle offset with body (b) 3D graph of the maximum angle offset with body
angular rate angular rate

Figure A.7 - Maximum angle offset with varying body jitter frequency and angular rate

r1 - wizZz >0 ry1 - wizz =0 ry - wizz <0 ry - wizz =0
wiz = 0.1sin (27 ft;) = —0.1 wiz = 0.1sin (27 fto) = 0.1 wiz = 0.1sin (27 ft3) = —0.1 w;, = 0.1sin (27 ft3) = 0.1

Figure A.8 - The scenario of constructive interference between disturbance and angular rate

This analysis reveals that the wire booms’ response to disturbances are very dependent on the angular
rate of the sail. It made use of the fact that any wave can be constructed out of sine waves to investigate
the frequency response of the wire boom system. This result can be used to determine the structure’s
response to higher frequency disturbances like nutation.
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Appendix B

Estimator and Controller Equations

Extra estimator and controller maths. Partial derivatives of extended Kalman filter.

B.1 Deployment Extended Kalman Filter

The partial derivatives of the dynamic equations are required to populate the state vector matrix Fy

described in

of
p, _ )
ox X=Rpi1/k
Ofws  Ofws  Ofws
O 90 a0 (B.1.1)
— | 8fc Ofe Ofe
Ows of ol
0 0 1

The inertia variables present in the motor equation are related to the length and change in length of the

wire booms:

Isyy = Lsyyo +4ms (r + E)Q

. . (B.1.2)
Ioyy = 8mgl(r+1¢)
The partial derivatives of the motor dynamic equation is required
0fo, 1
ON,, Iy,
-1 ; -1 -1
9 fuw. - N 8ISyy w7t Osyy ~ w.l aIsyy _N 8Isyy
Bl e MY LR T o
. (B.1.3)
)
ol Y
8fws _ _Isyy
Owg Lsyy
for the motor equation. The required partial derivatives of the inertia and the change in inertia is
gy, B 8ms (r+£)
= 2
ot (IsyyO +4mg (r + E)Q)
015y, , (B.1.4)
.U
o — "
oI,
Y = 8my (r + )
ol
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The partial derivatives of the wire boom dynamic equation is
Ofe

an,, ~°
% _ 477187"12,“}2
or Ipyy ° (B.1.5)
Ofe _ _ 0 o
ol Ipyy
Ofy _ 8msr12)
Ows — Ipyy o+

B.2 Full-State Extended Kalman Filter

The extended Kalman filter, which estimates the current attitude and angular rates of the satellite,
requires a state perturbation matrix (F) and perturbation state output matrix (H). The definitions of
these matrices are found in [98; 70]. The state perturbation matrix consists of partial derivatives of the
non-linear equations which describes the kinematics and rigid dynamics of the satellite. The state vector

is

T
x(k) = [@Fz(k) a"(h)] - (B.2.1)
The continuous functions which describes the change in the state variables are
£,
f= , (B.2.2)
fq

with f,, the Newton-Euler equations (see Equation 3.3.16) describing the change in angular rates and f,
the kinematic equations describing the relation between the angular rates and quaternions (see Equation
3.3.5 and Equation 3.3.10). The state perturbation matrix is defined as

Owiz Ow;y Owi oq1 g2 dq3 9qa

of, of, of, of, of, of, of
Owir  Owiy  Owiz oq1 dq2  0q3  Oqa

F= (B.2.3)

%%%%%3&%]

The current estimate of the state vector is substituted in the the state perturbation vector, F (fckH k> k;)
For a more detailed version of this definition refer to [70]. The innovation error (e) is determined by
the difference between the body referenced measured vector (vy,eqs,%) and the modelled orbit referenced
vector (Vo) transformed by the estimated DCM ([AZ] (q)),

€Lk = Vineas,k — [Ag] (él) Vorb,k

= [Osxs h; hy h3 h4} 0xy + my, (B.2.4)
= H;0x + my,
with 5 [Ag] (61)
h; = Wvorb,k andi=1,---,4. (B.2.5)

More detail regarding these definitions are founded in [98; 70].

B.3 Gyro Based Extended Kalman Filter

The Gyro based EKF has a similar approach than the full-state EKF to obtain the state perturbation matrix
(F) and perturbation state output matrix (H). The definitions of these matrices are found within [104].
The state vector is .

x(k) = [a" (k) BT(R)] (B.3.1)

with q the estimated attitude quaternion and b the estimated rate sensor bias vector. The continuous

function that describes the change in quaternion states is

f, = a(t) = 50 {wso()} al) (B.3.2)
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with

w/z(t) = u(t) —b(t) — (1) (B.3.3)
where u(t) is the rate sensor raw measurement, 1n,(¢) is zero mean Gaussian measurement noise. The
change in bias vector is described by

f, = B(t) = (1), (B.3.4)

with n,(¢) the Gaussian rate sensor drift noise vector for the rate random walk model. Using the
perturbation model as defined in [104] the perturbation state model becomes:

Ax = FAx + Gw (B.3.5)
with
F — (.UB/OX —0.5'13><3
03x3 O3x3 ’
G = 1lgxs,
w = {—0.5-111 112] , and (B.3.6)
0 Why —Whz
Wp/oX = | —Whe 0 Whz
Wha —wby 0

The measurement error vector is defined as

€ = Vpeas X [A?)} (él) Vmodel

= Vmeas X ‘A/body (B.3.7)
= H (Vpeas) 6q + m
and results in
f]l?y + {}l%z _ﬁbw@by _{)bxﬁbz
H (Vmeas) = 2 | —Opalpy 07, + 02, —0pyDpe (B.3.8)
—OpaOhz  —Obylpz Dy + Op,

For greater detail on the derivation of these matrices refer to [104].

B.4 Sail deployment rate controller
The design of the deployment controller must take the following into account:

* The estimator must have a higher bandwidth than the controller. Control algorithms dependent on
estimated variables which have not converged yet might cause unwanted responses and even prevent

the estimated values to converge at all.

¢ Any sudden changes in angular rates will induce angle offsets of the wire booms. A slower controller
will produce smaller offsets which will have less influence on the rest of the satellite system. This
also emphasises the need of the controller to be over-damped to limit the direction of the change in
angular rate.

¢ Control signal restrictions. The reaction wheels have a maximum torque and angular momentum and
the torquer rods have a maximum magnetic moment.

Ignoring the change in inertia and assuming small angular rates the Newton-Euler dynamic equations
becomes:

x(t) = Fx(t) + Gu(t)
00 0 —1/I,, 0 0 N
=10 0 0Ofx(t)+ 0 -1/I,, 0 Py
0 0 0 0 0 -1/, |hw-

(B.4.1)
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This continuous state variable model is converted to the discrete Z-plane by means of a ZOH and assuming
the sample period is 7. The result is

x(k+1) = ®&x(k) + Tu(k)
=lo 1 o|x(k)+| 0o -1/I,, 0 Doy
00 1 0 0 —1/L.| |hws

All the states are available and results in the output measurement matrix, H, to be a 3 x 3 unit vector. The
feedback gains are determined by minimising the cost function

—_

N
=3 Z xTQix + uTQQu} , (B.4.3)
k=0

with Q; and Q- diagonal weighting matrices. Q; is the cost matrix for the states and Q- is the matrix for
the input signal. The diagonal values of the these two matrices determine the performance and control
requirements. The dlqr function within Matlab calculates the steady-state optimal gain matrix K by
performing eigenvector decomposition on the Hamiltonian seen in [95]. The weighting matrices are
populated by using a similar method that is described in [46]. The state weighting matrix contains values
containing the control accuracy of each state. If the rates are required to be controlled within 0.1°/s then
the weighting term is defined as ¢ = 0.1°/s. The state weighting matrix is then populated as

1
0 0
#2,
Q=10 é 0 (B.4.4)
0 0 L
2.

Similarly the input weighting matrix Q- is defined by the maximum control the actuator can produce.
In this case it will be the maximum torque of the reaction wheel which is defined as u;,,, and thus the
weighting matrix becomes:

T S 0 0
Q=p| O P — (N (B.4.5)
xTo,max
0 0 1

%3.man
with p a further tuning value. The elements within the matrix are set and only p is undetermined. This
tuning value controls the performance of the controller. Increasing this value will make the control energy
more valuable and the performance will decrease. Decreasing this value will increase the control energy
available and thus increase the overall performance of the controller.

The controller gains can also be determined by making use of conventional pole placement methods. The
feedback gains, by means of pole placement are done by solving:

|213x3 — (@ — TK)| = a.(2), (B.4.6)

a.(z) the polynomial containing the desired closed-loop poles. The poles must be placed to ensure an
over-damped system and must be slower than the estimator. The Matlab function acker or place can be
used to compute K.
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Appendix C

Simulation of Technology Demonstrator

C.1 Wire Boom Design

The tables below contain the design parameters for designing the wire booms of the sail and the MCS.

These tables of calculations were originally constructed within a spreadsheet.

IKAROS Sail Wire Boom
Parameter Value | Unit Parameter Value | Unit
Diameter of sail 20 m Side length 5 m
Length of wire boom | 10 m Length of wire boom | 3.536 | m
Rotation rate 1 rpm Rotation rate 11.892 | rpm
Tip mass 0.5 kg Tip mass 0.01 kg
Inertia of tip masses | 200 kg - m? Inertia of tip masses | 0.5 kg - m?
Centrifugal force 0.0548 | N Centrifugal force 0.0548 | N
Angular momentum | 20.944 | N-m"s Angular momentum | 0.6227 | N-m-s

Sail Equivalent Wire Boom
Parameter Value | Unit
Side length 5 m
Sail Area 25 m2
Density of sail 0.0048 | kg/m?
Mass of sail! 0.12 ke
Inertia of sail 0.5 kg - m?
Length of wire boom 3.536 m
Sail tip mass 0.01 kg
Rotation rate 1.245 | rad/s
Angular momentum of sail | 0.6227 | N-m-s

Momentum Counter System

Parameter Value | Unit
Length of wire boom | 1.5 m
Angular rate 52.854 | rpm
Tip mass 0.025 | kg
Centrifugal force 1.149 N
Inertia of tip masses | 0.225 | kg-m?
Angular momentum? | 1.245 | N-m-s

1Steyn and Lappas[49]
2Angular momentum required is sum of sail wire boom tip mass and modelled sail
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C.2 Detailed Moment of Inertia

The tables below contain the detailed theoretical moment of inertia calculations of the components of the
satellite structure. These tables of calculations were originally constructed within a spreadsheet.

Satellite Bus
Parameter | Value | Unit
Side length | 0.1 m
Length 0.16 m
Total mass | 2 kg
IXX 0.006 | kg-m?
Iyy 0.0033 kg : m2
IZZ 0.006 kg . Hl2

Satellite Deployment Mechanism MCS Deployment Mechanism
Parameter | Value Unit Parameter | Value Unit
Side length | 0.1 m Side length | 0.1 m
Height 0.02 m Height 0.02 m
Total mass | 0.3 kg Total mass | 0.2 kg

Ax 0 m Ax 0 m

Ay —0.19 m Ay 0.09 m

Az 0 m Az 0 m

I, 0.00026 | kg-m? I, 0.000173 | kg-m?
1, 0.0005 | kg-m? 1, 0.000333 | kg-m?
I, 0.00026 | kg-m? I, 0.000967 | kg-m?
Ixx 0.0111 | kg-m? Ixx 0.00179 | kg-m?
Iyy 0.0005 | kg-m? Iyy 0.000333 | kg-m?
Iz 0.0111 | kg-m? Iz 0.00179 | kg-m?

Solar Sail (Undeployed) Sail Wire Boom (Undeployed)
Parameter Value Unit Parameter | Value Unit
Side length 0.1 m Side length | 0.1 m
Module length | 0.1 m Radius 0.0707 | m
Total mass 0.12 kg Total mass | 0.01 kg
Az 0 m Az 0 m
Ay -0.13 m Ay —0.19 m
Az 0 m Az 0 m
I, 0.0002 kg - m? I, 0.00011 | kg-m?
I, 0.0002 kg - m? 1, 0.00022 | kg-m?
I, 0.0002 | kg-m? 1, 0.00011 | kg-m?
Ixx 0.00223 | kg-m? Ixx 0.00170 | kg-m?
Iyy 0.0002 | kg-m? Iyy 0.00022 | kg-m?
Iz 0.00223 | kg-m? Iz 0.00170 | kg-m?
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Solar Sail (Deployed)
Parameter | Value | Unit
Side length | 5 m
Total mass | 0.12 kg
Ax 0 m
Ay —0.19 | m
Az 0 m
I, 0.25 kg - m?
I, 0.5 kg - m?
I, 0.25 kg - m?
IXX 0.254 kg ' m2
Iyy 0.5 kg : m2
IZZ 0.254 kg : m2

MCS (Undeployed)
Parameter | Value Unit
Tip mass 0.025 kg
Radius body | 0.0707 m
Total mass 0.1 kg
Ax 0 m
Ay 0.09 m
Az 0 m
I, 0.00025 | kg-m?
1, 0.0005 | kg-m?
I, 0.00025 | kg-m?
Ixx 0.00133 | kg-m?
Iyy 0.0005 kg . m2
Iy 0.00133 | kg-m?

X-Direction Solar Panel (Undeployed) X-Direction Solar Panel (Deployed)
Parameter | Value Unit Parameter | Value Unit
Length 0.18 m Length 0.18 m
Width 0.1 m Width 0.1 m
Mass of 1U | 0.06 kg Mass of 1U | 0.06 kg
Total mass | 0.12 kg Total mass | 0.12 kg
Az 0.05 m Ax 0.19 m
Ay -0.13 m Ay 0.08 m
Az 0 m Az 0 m
I, 0.000424 | kg-m? I, 0.0001 kg - m?
1, 0.0001 kg - m? I, 0.000424 | kg-m?
I, 0.000324 | kg-m? I, 0.000324 | kg-m?
Ixx 0.00245 | kg-m? Ixx 0.000868 | kg-m?
Iyy 0.0004 kg - m? Iyy 0.00476 | kg-m?
Iz 0.00265 kg - m? 177 0.00542 kg - m?
Total Inertia when Undeployed

Ixx | 0.0343 | kg-m?

Iyy | 0.00661 | kg-m?

I;7 |0.0343 | kg-m?

Total Inertia when Panels Deployed

IXX 0.0367 kg . m2

Iyy | 0.0242 kg - m?

IZZ 0.0367 kg . m2

Total Inertia when Fully Deployed

Ixx | 0.718 kg - m?

Iyy 1.382 kg : m2

Iz7 | 0.718 kg - m?

Sail Wire Boom (Deployed)
Parameter | Value | Unit
Side length | 3.53 m
Total mass | 0.01 kg
Ax 0 m
Ay —-0.19 | m
Az 0 m
I, 0.275 | kg-m?
I, 0.55 kg - m?
I, 0.275 | kg-m?
IXX 0.277 kg : m2
Iyy 0.55 kg . l’Il2
IZZ 0.277 kg . m2

MCS (Deployed)
Parameter Value | Unit
Tip mass 0.025 | kg
Length of wire | 1.5 m
Radius of body | 0.0707 | m
Total mass 0.1 kg
Az 0 m
Ay 0.09 m
Az 0 m
I, 0.1234 | kg-m?
I, 0.308 | kg-m?
I, 0.247 | kg-m?
Ixx 0.155 kg - m?
Iyy 0.308 kg . Hl2
IZZ 0.155 kg : mQ
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C.3 Controller Gain Design Values
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The controller gains are designed according to the methods described in §5.3 and Appendix B. The

detumbling, deployment and pointing controllers require controller gains.

C.3.1 B-dot and Y-spin Controller

The feedback gain for the B-dot, K4, and the Y-spin controller, K, was designed iteratively by investigating

the simulation results. The gains were defined as

K;=0.2

(C.3.1)
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and
K, =0.1. (C.3.2)

C.3.2 Sail Deployment

The sail deployment controller requires two sets of the feedback vector, K,;. The LQR method for designing
the gains is presented in Appendix B.4. The state weighting matrix, Q;, is populated with a maximum
angular rate error of 0.1°/s for wy; and wy,. The deployment disturbance will mainly be around the y5 and
the control should be stronger. Thus the maximum angular rate error is defined to be 0.05°/s for wy,. Thus
the Q; weighting matrix becomes

100 0 0
Q=0 400 0 |. (C.3.3)
0 0 100

The input torque restrictions are used to populate the control weighting matrix, Q-. This matrix becomes

2.268 x 10° 0 0
Qx=p 0 0.1 x 10° 0 . (C.3.4)
0 0 2.268 x 10°

The theoretical moment of inertia values are retrieved from CAD models of the conceptual satellite. The
moment of inertia terms when only the solar panels are deployed are

Lizps 0.0289
Iyyes | = [0.01783 (C.3.5)
0.0289

ZZFS

and when the MCS and sail are also deployed

Loa 0.74
Iy | = |1.385] . (C.3.6)
L. 0.74

A simplified simulation is used the determine the p factor for each controller. Matlab’s dlgr function is
used to determine the feedback gain for a specific p value. The simulation uses the feedback gain on
two separate theoretical models, which comprise out of the Newton-Euler equations with the gyroscopic
coupling terms. The one model is constructed from the moment of inertia before deployment and the
second is from the moment of inertia after deployment. The models have an initial angular rate around the
yi axis of 2°/s. The p value is determined by investigating firstly the time required to reduce the angular
rates, then the amount of control energy required and lastly the robustness of the response when using
the same feedback gains on a model with higher moment of inertia terms. The resultant feedback gain

vector is
0.02

K, = [0.1375 (C.3.7)
0.02

for the controller (p = 1). This controller reduced the initial rates within 1min.

C.3.3 Solar Tracking

The solar tracking controller uses quaternion feedback. Wie et al.[107] described a method for designing
the feedback gain vectors K, and K,. To prevent exciting large oscillation during large attitude changes
the controller is critically damped, thus ¢ = 1. The settling time of the manoeuvre is required to be a
fraction of the orbit period. The settling time specifications for the xz and zz axes are t59, = 5min and
for yp is to, = 2.bmin. The settling time for yz can be lower for the maximum torque rating for the
MCS is higher. The controller values are rather conservative than overly aggressive to reduce the induced
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oscillations. The bandwidth of the controller for the X5 and zp is w, = 0.0133rad/s, and thus d = 0.0266
and k = 3.5378 x 10~%. Multiplying these values with the inertia around that axis produces the feedback
gain values. Similarly the bandwidth of the controller around the yz is w, = 0.0267rad/s and result in
dyres = 0.0533 and kj;cs = 0.0014. The fully deployed inertia is

. 0.74
Iy | = [1.385 (C.3.8)
I.. 0.74

and when multiplied with d and & result in the feedback gains

0.0197
K, = |0.0738 (C.3.9)
0.0197
and
2.618 x 1074
K, = 0.00194 (C.3.10)

2.618 x 1074
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