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Abstract

With billions of current internet users interacting through social networks, the need
has arisen to analyze the structure of these networks. Many authors have proposed
random graph models for social networks in an attempt to understand and repro-
duce the dynamics that govern social network development.

This thesis proposes a random graph model that generates social networks using
a community-based approach, in which users’ affiliations to communities are ex-
plicitly modeled and then translated into a social network. Our approach explicitly
models the tendency of communities to overlap, and also proposes a method for
determining the probability of two users being connected based on their levels of
commitment to the communities they both belong to. Previous community-based
models do not incorporate community overlap, and assume mutual members of
any community are automatically connected.

We provide a method for fitting our model to real-world social networks and demon-
strate the effectiveness of our approach in reproducing real-world social network
characteristics by investigating its fit on two data sets of current online social net-
works. The results verify that our proposed model is promising: it is the first
community-based model that can accurately reproduce a variety of important so-
cial network characteristics, namely average separation, clustering, degree distri-
bution, transitivity and network densification, simultaneously.
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Uittreksel

Met biljoene huidige internet-gebruikers wat deesdae met behulp van aanlyn sosiale
netwerke kommunikeer, het die analise van hierdie netwerke in die navorsingsge-
meenskap toegeneem. Navorsers het al verskeie toevalsgrafiekmodelle vir sosiale
netwerke voorgestel in ’n poging om die dinamika van die ontwikkeling van dié
netwerke beter te verstaan en te dupliseer.

In hierdie tesis word ’n nuwe toevalsgrafiekmodel vir sosiale netwerke voorges-
tel wat ’n gemeenskapsgebaseerde benadering volg, deurdat gebruikers se verbin-
tenisse aan gemeenskappe eksplisiet gemodelleer word, en dié gemeenskapsmodel
dan in ’n sosiale netwerk omskep word. Ons metode modelleer uitdruklik die
geneigdheid van gemeenskappe om te oorvleuel, en verskaf ’n metode waardeur
die waarskynlikheid van vriendskap tussen twee gebruikers bepaal kan word, op
grond van hulle toewyding aan hulle wedersydse gemeenskappe. Vorige modelle
inkorporeer nie gemeenskapsoorvleueling nie, en aanvaar ook dat alle lede van
dieselfde gemeenskap vriende sal wees.

Ons verskaf ’n metode om ons model se parameters te pas op sosiale netwerk
datastelle en vertoon die vermoë van ons model om eienskappe van sosiale netwerke
te dupliseer. Die resultate van ons model lyk belowend: dit is die eerste gemeen-
skapsgebaseerde model wat gelyktydig ’n belangrike verskeidenheid van sosiale
netwerk eienskappe, naamlik gemiddelde skeidingsafstand, samedromming, graad-
verdeling, transitiwiteit en netwerksverdigting, akkuraat kan weerspieël.
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Chapter 1
Introduction

Online social networks are becoming increasingly popular, with the two biggest
networks, Facebook [1] and Twitter [2], having a combined user base of almost a
billion users.1 As of July 2010, 70% of all Internet users have joined an online social
network, making it the number one platform for creating and sharing content on
the Internet [5]. Following this surge in popularity of online social networks, re-
searchers have increased their focus on analyzing the structure of social networks.
One possible way to gain insight into the dynamics of social network formation
and evolution is to construct an accurate random graph model for modeling social
networks, that generate structurally similar networks using a probabilistic process.
Due to the privacy concerns that contribute to the scarcity of publicly available
real-world social network data sets, such a random graph model can also be very
valuable for generating artificial social network data sets.

1.1 Motivation

A social network is a structure made up of a set of entities, called nodes, which are
connected to each other through some kind of interaction. These nodes can refer
to individuals, groups, companies or even animals whereas the connections could
represent friendship, collaboration, trade or communication, to name but a few.
Social network analysis is used widely, with some application areas being prima-
tology [6], sociology [7; 8], epidemiology [9; 10], economics [11; 12; 13], geography
[14], information science [15; 16] and social psychology [17; 18].

1According to official press releases, Twitter had 200 million users (as of March 2011) [3] and
Facebook 750 million (as of July 2011) [4].

1
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CHAPTER 1. INTRODUCTION 2

In online social networks, the entities are typically individuals and the connections
between them represent some form of personal relationship. The importance of
understanding the structure and dynamics of these networks is immense. A recent
study showed that 71% of people report a positive impression of a brand when
interacting with it through their connections on a social network [5]. This is com-
pared to 18% of people who report a positive impression after watching a television
advertisement. The loyalty of people to others at a close social distance emphasizes
the importance of understanding the way communities form, evolve and overlap
in social networks. But it is not only in advertising that it pays to understand the
structure of the networks. More and more online social networks are incorporating
structural knowledge of the network into the design and functionality of the net-
work. A recent example is the Google Plus [19] network, which is designed around
social ‘circles’ or communities, requiring users to group their acquaintances into
circles when creating a connection with them in the network. This may be seen as
a direct effort to gain insight into the real-world communities that users are a part
of.

During the Social Network Analysis workshop at the 2009 Conference on Knowledge
Discovery and Data Mining, one of the biggest concerns expressed by the research
community was the lack of benchmark data sets for social network analysis. The
quality of existing data sets was also criticized due to incompleteness, sampling
bias and the lack of evolutionary data. Due to privacy concerns, industry is poorly
positioned to assist the research community in addressing these issues, and due to
the complex structure of social networks, there exists no unbiased sampling tech-
nique that can be used to obtain samples of open networks, such as Twitter.2 This
study was completed in the MIH Media Lab3, where we had access to two propri-
etary social network data sets to aid our research.

Random graph models offer a possible solution to the scarcity of data sets. A ran-
dom graph model, if accurate, can randomly generate a collection of data sets with
characteristics similar to those of current online social networks but without any
privacy constraints. The processes used by the model to generate the networks
would also provide valuable insight into the way real-world networks form. Many
authors have presented random graph models for social network generation. These
models have become increasingly accurate at modeling the various different char-
acteristics of social networks. Recently, focus has started to shift towards a new

2Objectively defining “unbiasedness” for a social network sample is already a complex problem.
Informally, an unbiased sample is defined as one that has the same “structure” as the original net-
work. However, this structure can be defined according to a wide range of characteristics. This is
further discussed in Section 2.2.7.

3MIH is short for Myriad International Holdings.
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CHAPTER 1. INTRODUCTION 3

family of models, aimed at not only modeling the users and their connections in
social networks, but also explicitly modeling the interactions between users and
communities. None of the existing models, however, provide a realistic, intuitive
way of modeling this behavior, making the naïve assumption that users will always
be friends if they are affiliated to the same community.

The goal of this study was to create a random graph model that more accurately
models this interaction between users and communities and to evaluate this model
using the real-world data at our disposal.

1.2 Problem statement

To generate random social networks, we need a random graph model that accu-
rately incorporates important characteristics of online social networks. The most
commonly studied random graph model is the Erdős-Rényi (ER) model [20] which
uses a fixed probability, p, of including any given connection in the network. The
assumption that all connections are equally likely is very unrealistic in the case
of social networks, however. In social networks, it has been found that the dis-
tribution of the degrees of nodes is highly skewed, with a small number of nodes
having an unusually high degree [21]. Nodes in social networks also tend to cluster
together: the amount of clustering in social networks is observed to be magnitudes
larger than that present in networks generated by the ER model [22]. Because of
these properties, and various others, traditional random graph models do not de-
scribe social networks accurately.

A large amount of work has been done to create a random graph model specifi-
cally for social networks. There are a number of desirable characteristics for such
a model. Apart from accurately reproducing key social network characteristics,
it is also desirable that a model be intuitive and mathematically tractable. In or-
der to generate large networks, the model should also have minimal algorithmic
complexity. Another important desideratum is the ability of the model to generate
evolving, or dynamic, networks as opposed to static snapshots of the networks.

Most existing social network models use what we call a bottom-up approach, di-
rectly adding nodes and connections between them to a network in such a way
that the network hopefully represent the structure of a social network. Although
some of these models accurately reproduce some of the desired characteristics of
social networks, we chose to use a top-down approach. With a top-down model, the
affiliations of users to communities are explicitly modeled in a community struc-
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CHAPTER 1. INTRODUCTION 4

ture which is then translated, or flattened, into a social network. The first advantage
of this approach is that it is very intuitive, corresponding directly to real-world
behavior where we meet our friends through the communities we belong to. A
more important advantage, perhaps, is the extra level of information generated
by the model. If a top-down model could generate accurate evolutionary social
network data sets, the information provided by the community structure could be
just as valuable; providing insight into how communities form, evolve and inter-
act. However, the current state of the art in top-down models do not accurately
model real-world networks. This is due to the deterministic flattening rule used to
translate the community structure into a social network. All of the current mod-
els assume that each community in the community structure will result in a clique
over its members in the final social network. In this study, we propose to study
a dynamic top-down model that uses a probabilistic flattening rule, allowing for
variable connection density within communities in the social network. We are not
aware of any other existing models using this approach.

1.3 Objectives

The following are the objectives of this study:

• Identifying a set of key characteristics that distinguish social networks from
random networks.

• Developing a top-down dynamic social network model that uses a probabilis-
tic flattening rule.

• Fitting our model on two current online social network evolutionary data sets,
and comparing its performance to that of existing models.

1.4 Data sets

In this study, we base our evaluation of our model, and the existing models we
compare to, on the full evolutionary patterns of the networks, not just character-
istics of the fully evolved networks. Very few studies to date have attempted to
analyze the evolution of social networks, with the focus usually on static charac-
teristics. Through our relationship with MIH we have obtained two data sets from
current online social networks, both of which include complete historical records
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CHAPTER 1. INTRODUCTION 5

for the evolution of the network4.

Our first temporal data set is from a proprietary corporate social network owned
by a multi-national holding company. It is a closed network in which employees
can connect with colleagues in other companies owned by the parent company.
Although the network is small (1265 nodes), it is a mature network, having being
adopted by most of the individual companies since its launch in 2008. We refer to
this network as the Corporate Network (CN).

The second network is a South African social network attracting young people
through a local presence in entertainment venues. The data set contains 13 295
nodes and 40 679 connections between them. We refer to this network as the Friend-
ship Network (FN).

1.5 Thesis outline

Chapter 2 introduces basic network methodology and key network characteris-
tics. A review of available literature analyzing these characteristics on social
networks is presented.

Chapter 3 reviews the development of random graph models of social networks.

Chapter 4 proposes our community-based simulation model and discusses its re-
lationships with existing models.

Chapter 5 describes a method for searching the parameter space of our model for
suitable parameters for modeling a given network.

Chapter 6 gives a more technical description of the proprietary data sets that are
used in the study. It presents the empirical results obtained from our simula-
tions and compares them to those of state-of-the-art models.

Chapter 7 summarizes our findings and describes possible extensions to this work.

4These historical records do not include information for users or connections that have been
removed from the network.
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Chapter 2
Social network terminology and
characteristics

This chapter introduces key graph theory concepts relevant to social network anal-
ysis. Section 2.1 gives an overview of important terminology that will be used
throughout this study. In Section 2.2, a review of a number of distinctive character-
istics of social networks is given.

2.1 Network terminology

Throughout this study, we will make extensive use of graph theory concepts. We
give a brief introduction to these concepts below.

2.1.1 Fundamental concepts

A graph or network G consists of a non-empty set V(G) of entities, called nodes,
and a set E(G) of connections between them, called edges. In the context of this
study, nodes will represent individuals or communities in a social network and
edges will represent social interaction between these individuals and/or commu-
nities. Graphically, nodes can be depicted as points in the plane and edges as lines
between these points. Each edge e = (u, v) consists of a pair of nodes, u and v,
and is said to be incident on u and v. In this study, we assume each edge in E(G) is
unique and that no edge (u, v) connects a node to itself, that is u 6= v. If the order
of the nodes in each edge e = (u, v) is relevant, then the edges are called directed
edges and e is said to be from u to v. A graph whose edges are directed is called a

6
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CHAPTER 2. SOCIAL NETWORK TERMINOLOGY AND CHARACTERISTICS 7

directed graph. If the order is not relevant, G is said to be an undirected graph. In an
undirected graph, the number of edges incident on a node u is called the degree ku

of node u. If the degree of u is zero, then u is called an isolated node. In a directed
graph, the number of edges to a node u is called its in-degree k�u and the number of
edges from node u is called its out-degree k+

u .

We use the convention that the graph G has nG nodes and mG edges, that is

|V(G)| = nG and |E(G)| = mG

Such a network is said to be of order nG and size mG. When the context makes it
clear which graph we are referring to, we usually omit these subscripts. A network
is called complete if it contains all possible edges over the node set. A complete
undirected network with n nodes has n(n�1)

2 edges, so that m is O(n2). If m is close
to this upper bound for a network G, then G is said to be a dense network. On the
other hand, if m is of the same order of magnitude as n, G is said to be a sparse
network.

A network H is called a subgraph of a network G if V(H) ⇢ V(G) and E(H) is a
subset of E(G), restricted to edges between nodes in V(H), i.e.

E(H) ⇢ {(u, v) 2 E(G) : u, v 2 V(H)} .

A path of length l from u to v in a graph is a sequence of l consecutive edges, (u, u1),
(u1, u2), · · · , (ul�1, v).1 If there is a path from u to v, v is said to be reachable from
u, or connected to u. For undirected graphs, reachability is an equivalence relation
over the set of nodes which partitions the nodes into equivalence classes called
connected components.

A graph B is called bipartite if its nodes can be partitioned into two disjoint subsets
A1 and A2 such that each edge connects a node in A1 to one in A2. In this study,
the set A1 will typically contain community nodes, and the set A2 will typically
contain user nodes.

In the rest of this study, we prefer to use the term connection instead of edge and
network instead of graph, since these directly correspond to the real-world entities
we are investigating.

1l may equal one, in which case the path consists of the sequence: {(u, v)}. There is also a path
of length zero from every node to itself.
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CHAPTER 2. SOCIAL NETWORK TERMINOLOGY AND CHARACTERISTICS 8

2.1.2 Cliques and quasi-cliques

In psychology, the term clique refers to an inclusive group of people. Such cliques
are often the primary source of social interaction for its members [23] and are, there-
fore, extensively studied in social psychology. In graph theory, a clique refers to a
complete subgraph. Such a fully connected network of order k is commonly re-
ferred to as a k-clique. Examples of k-cliques for various k are shown in Figure 2.1.
A clique is called a maximal clique if it does not form a subgraph of any other clique.

(a) k = 2 (b) k = 3 (c) k = 6

Figure 2.1: k-clique structures for various values of k

Cliques play an important role in social network analysis and many methods for ex-
tracting cliques from networks [24; 25] and building networks from cliques [26; 27]
have been proposed. Generally, finding the size of the largest clique in a network
is NP-complete [28].

An important objective of social network analysis is to infer information about real-
world communities (social circles, family, school, work colleagues, sport clubs, etc.)
through connections in a social network. Such real-world communities are often
present in social networks as cliques. In many cases though, some nodes within the
community will not be connected. This is the result of the inactivity of some people
on online social networks as well as human social behavior. As the size of a real-
world community increases, it becomes more likely that at least one pair of people
in the community will not befriend each other. For these reasons, we feel that
real-world communities are more accurately modeled in social networks as dense
subgraphs or quasi-cliques. This definition of a quasi-clique as a dense subgraph
has been used by various authors in the community detection literature [29; 30].
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CHAPTER 2. SOCIAL NETWORK TERMINOLOGY AND CHARACTERISTICS 9

2.1.3 k-stars and k-triangles

A network of order (k + 1) is called a k-star if it has size k and there is some node
i that is connected to all k other nodes. Figure 2.2 shows k-stars for three different
values of k.

(a) k = 2 (b) k = 3 (c) k = 5

Figure 2.2: k-stars for various values of k.

A 3-clique is commonly referred to as a triangle and a k-triangle is a set of k triangles
all sharing an edge. Figure 2.3 shows the structure of 1-, 3- and 5- triangles. The
simplest of these, the normal triangle (k = 1), is by far the most studied in social
network analysis. The 1-triangle plays an important role in social networks and is
seen by many as the building block of social networks [31].

2.2 Social network characteristics

There are a number of characteristics that clearly distinguish social networks from
random networks. 2 We discuss the most prominent characteristics below.

2One example of such a ‘random network’ is the ER model, discussed in Section 3.1.1.

(a) k = 1 (b) k = 3 (c) k = 5

Figure 2.3: k-triangles for various values of k
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CHAPTER 2. SOCIAL NETWORK TERMINOLOGY AND CHARACTERISTICS 10

2.2.1 Small world phenomenon

Small-world networks are networks with a small average separation, i.e. a small aver-
age distance between random pairs of nodes in the network. Kochen and Pool [32]
began investigating the small world problem in the early 1950s. Motivated by his
interaction with Kochen and Pool, social psychologist Stanley Milgram designed
an experiment to measure the average degree of separation between people in the
United States. He gave letters to random subjects who each were instructed to
pass the letter on to an acquaintance who they thought would be the most likely to
know the addressee. He found the average number of people required for the letter
to reach its destination to be only about six [18], which sparked the social phrase
“Six Degrees of Separation”.3

The small-world phenomenon is also observed in online social networks where a
relatively short path can be found between any pair of nodes, even in large net-
works. This has been confirmed by a number of independent studies [22; 34; 35],
including a recent study of the Microsoft Messenger Instant-Messaging System per-
formed by Leskovec and Horvitz [36], in which they found the average separation
to be 6.6 in a social network containing 180 million nodes. This is in contrast to
random networks, where the average path length is much longer.4

2.2.2 Shrinking diameter

The diameter D(G) of a network is the maximal shortest path length between two
nodes in the network. Because of the small average separation present in social
networks, the diameter is typically smaller than in a random network of the same
order and size.5

Barabási, Albert and Jeong [39] first observed through experimentation that in so-
cial networks, D(G) increases very slowly, typically as a logarithmic function of n.
This result was confirmed by Newman et al. using heuristic methods [40]. More
recently, Leskovec et al. [41] studied some major online social networks using a
more robust measure called the effective diameter, which is not easily influenced by
degenerate structures in the network, like chains of nodes. The effective diameter
is the minimum path length within which some quantile q of the pairs of nodes

3This phrase was further popularized by John Guare’s play of the same title [33].
4For a comprehensive analysis of average path lengths in random graphs, see the work of Fron-

czak et al. [37].
5For a detailed discussion and analytical analysis of the diameter of random networks, refer to

the work of Chung et al. [38].
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can reach each other.6 They were surprised to find the effective diameters of the
networks to slowly decrease with network size. They referred to this phenomenon
as the shrinking diameter.

2.2.3 Clustering coefficient

A common property of social networks is that highly connected clusters occur in
the networks. These clusters, also called quasi-cliques, consist of groups of densely
interconnected nodes. We refer to these highly connected clusters as communities,
and they often have real-world parallels in that many people from the same social
circle such as a family, school, company or sport club will befriend each other.

In 1998, Watts and Strogatz [22] introduced the clustering coefficient (CC) as a mea-
sure of the degree of clustering in a network. For a given node i, with degree ki > 1,
the CC is defined to be the ratio of the number of connections that exist between
node i’s neighbors and the total number of potential connections that could exist
between them; when ki  1, the CC of the node is defined to be zero. If Ei is the
number of connections that actually exist between the ki neighbors of node i, the
CC of the network is given by

CC(G) =
1

nG
Â

i:ki>1

2Ei
ki(ki � 1)

,

the average of all the nodes’ CCs. Note that we can view the CC as a function of
n when interested in the evolution of this measure as a network grows. Since the
CC is defined to be 0 for isolated nodes and nodes with only one connection, using
only the giant component7 for analysis will result in an over-estimation of the CC.

In social networks, the CC is usually several orders of magnitude greater than
in random networks, an observation first made by Watts and Strogatz [22]. Mis-
love et al. [43] recently estimated the CC on the major online social networks Flickr [44],
LiveJournal [45], Orkut [46] and YouTube [47]. They found Flickr to be the most
clustered network, with a CC of 0.31, which is 47200 times the expected CC of an
ER network of the same order and size. They found YouTube to be the least clus-
tered network, with a CC of 0.137, which is 36900 times the expected CC of an ER
network of the same order and size.

6In their studies, Leskovec et al. use q = 0.9.
7Most social networks have a connected component comprising a high proportion of the nodes,

known as the giant component [42].
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2.2.4 Transitivity

Transitivity reflects a propensity for the formation of triangles in social networks.
This is often quantified by the probability that a randomly chosen pair of neighbors
of a node are connected. This probability is determined by the number of 2-stars
and the number of triangles in the network [48]:

T =
3 x (number of triangles)

(number of 2-stars)
.

The factor of three is used for normalization, since there are three 2-stars in every
triangle. The value of T is thus an estimate of the probability of closure in a 2-star.
This probability is orders of magnitude greater in social networks than in random
networks and corresponds with the higher CC observed in social networks [48].

A more detailed measure of transitivity is the node triangle participation distribution
over y, that gives the proportion of nodes that form a part of y triangles. This
distribution is typically long-tailed for social networks.

2.2.5 Degree distribution

The degree distribution of a network is a distribution function P(k) that gives the
probability that a randomly selected node in the network has degree k. In a purely
random ER network, the degree distribution is binomial, so that the vast majority
of the nodes have degree close to the mean degree. In the limit of large n, the
binomial distribution can be approximated by the Poisson distribution. However,
empirical results [34] show that for social networks, the degree distribution has a
heavier tail which approximately follows a truncated power-law (PL) of the form8:

P(k) µ k�a for k > kmin.

Figure 2.4 shows the difference between the Poisson distribution and power-law
distribution.

2.2.6 Network densification

Twentieth century literature on the evolution of real-world social networks implic-
itly assumes that the number of connections scales roughly linearly with the num-

8We require kmin > 0, otherwise the distribution diverges [49]. When kmin = 1, the distribution is
referred to as a power law. In the context of social network analysis the term power-law distribution
is used more loosely, referring to distributions that have a power-law tail [49]. To preserve consis-
tency with existing literature, we will refer to distributions with power-law tails as power-law (PL)
distributions, even though they might technically be truncated power-law distributions.
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(a) Poisson distribution (b) Power law distribution

Figure 2.4: The degree distributions of two networks, one following a Poisson dis-
tribution and the other a power-law distribution. Even though both networks have
the same average degree, the maximum degree in the network with a power-law
degree distribution is three times higher.

ber of nodes and, therefore, the average degree is approximately constant. In 2000,
Dorogovtsev and Mendes [50] were the first to note that the number of connec-
tions in real-world networks increases at a faster rate than the number of nodes.
They incorporated this in their accelerated growth model (discussed in Section 3.1.4.2).
Leskovec et al. [41] recently confirmed this result by observing that on many ma-
jor online social networks, the number of connections grows superlinearly in the
number of nodes, i.e:

mG µ nr

G

for some densification exponent r > 1. This phenomenon is commonly referred to
as the densification power law (DPL) with exponent r.9

2.2.7 Problems with sampling from social networks

Due to the complex nature of social networks, no standard sampling technique
seems to simultaneously preserve all the properties described in the previous sec-
tions [51; 43]. The most used sampling technique, snowball sampling (also referred
to as ‘crawling’ a network), is often the only option for online social networks since
researchers are limited by the functionality provided by the programming inter-
faces of the social networks. Snowball sampling starts from a set of pre-selected
nodes and follows connections from these nodes, recursively adding all nodes and

9Note the ambiguity of the term ’power law’: here it does not refer to the power-law distribution.
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connections it encounters to the sampled network. Due to their highly connected
nature, dense communities are over-sampled, producing connected networks with
significantly higher CCs and shorter average path lengths than the original net-
works [51]. Also, this method is extremely likely to only sample from the giant
component of the network and gives no indication of how many other connected
components or isolated nodes there are in the network.

Leskovec et al. [52] presented a thorough analysis of the most used sampling tech-
niques and introduced a new method, called forest fire (FF) sampling, which is based
on their work in temporal network analysis (see Section 3.1.10). The FF sampling
method eliminates the bias towards higher degree nodes, but the authors note that
no sampling technique succeeds in preserving all of the desired properties of social
networks and the choice of algorithm should be made based upon which properties
are the most important to preserve.

These restrictions imposed by sampling from existing social networks emphasize
the importance of an accurate model for social networks, which can be used to
generate smaller data sets that exhibit social network characteristics without the
need to sample from large networks.
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Chapter 3
Existing models of social networks

In graph theory, a random graph is a graph that is generated through some proba-
bilistic process. The theory of random graphs was pioneered in the late 1950s by
Paul Erdős and Alfréd Rényi [20], when Erdős started applying probabilistic meth-
ods to graph theory problems. Despite the widespread use of their basic model in
a variety of other fields, it has been shown that it does not capture any of the im-
portant characteristics of social networks [34; 22]. Many different approaches have
been proposed to find a model that can accurately generate social networks. In this
chapter, we present the most important of these models. All of them aim at one or
more of the following:

• Capturing some or all of the key characteristics of social networks presented
in Section 2.2.

• Building the network in a realistic and intuitive way that corresponds to how
real-world networks form.

• Providing mathematical tractability as a base for analytical analysis of the
model.

• Minimizing algorithmic complexity, enabling the model to quickly generate
large networks as data sets.

All of the models presented in Section 3.1 use a bottom-up approach, adding nodes
and connections at the microscopic level in a certain way in order to mimic social net-
work structure on a macroscopic level. One important characteristic of this macro-
scopic structure is the potentially complex way in which communities evolve and
overlap.

15
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CHAPTER 3. EXISTING MODELS OF SOCIAL NETWORKS 16

Section 3.2 presents a promising new class of models that uses a top-down approach,
making use of a bipartite, or two-level, structure. These models first model the af-
filiations of users to communities in a bipartite network containing both user and
community nodes. This bipartite network is then transformed into a social network
containing just user nodes. This new approach is aimed at intuitively reproducing
real-world behavior where people interact through social circles. In the social sci-
ences, this behavior has been studied as far back as Breiger’s study in 1973 of the
the affiliation of people to groups [53]. The importance of community modeling
in social networks is becoming more and more evident, with most online networks
now trying to elicit and make use of some form of community information from
users. Perhaps the most prominent example is the recent launch of the Google Plus
network [19], where the entire user interface is based on the top-down approach,
requiring users to group their acquaintances into social ‘circles’ when creating a
connection with them in the network.

3.1 Bottom-up models

The vast majority of models in the literature use a bottom-up approach. These
models build networks from a microscopic perspective, focusing on how nodes and
connections should be formed in the network so that the global structure represents
that of a social network. This global structure is characterized by the measurements
presented in Section 2.2.

In this section, we present the development of the major bottom-up models, roughly
chronologically. The first of these models, the basic ER model, is presented in Sec-
tion 3.1.1. The WS model, the first model to produce networks exhibiting small-
world behavior, is presented in Section 3.1.2. In Section 3.1.3, we discuss one of the
most prominent models in the literature, the PA model. Not only was it the first
model to produce dynamic networks, but it was also the first to produce scale-free
networks. Many authors proposed variations of the PA model, and we discuss five
of these PA-based models in Section 3.1.4. An interesting generalization of the ER
model aimed at keeping the analytical simplicity of the model, but allowing the
formation of arbitrary degree distributions, is discussed in Section 3.1.5.

The prominent high level of transitivity present in social networks has led many
authors to propose models that generate networks using a process that explicitly
includes transitivity. We present two of these models, Ebel’s transitive model (Sec-
tion 3.1.6) and Newman’s transitive model (Section 3.1.7). Ebel’s model was also
one of the first to model not only the addition of nodes to the network, but also the
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removal of nodes, a direction of study that is still impaired by the lack of available
supporting data sets.

Another important family of models, exponential random graph models, is pre-
sented in Section 3.1.8. These models explicitly define a probability distribution
over all possible graphs, in order to assess how likely it is to observe a given graph.
The formulation of such a probability distribution is a delicate process since under-
fitting, over-fitting and computational complexity are factors to consider. We dis-
cuss various formulations of the probability distribution.

Lastly, in Sections 3.1.9 and 3.1.10, we include two models proposed by Leskovec et al.,
based on a recent study of current online social networks. These models were the
first models to exhibit shrinking diameters and network densification.

3.1.1 The Erdős-Rényi model

The most commonly studied random graph model is the ER model proposed by
the Hungarian mathematicians Erdős and Rényi [20] in 1959.1 This model is often
referred to as the G(n, p) model, where n is the number of nodes in the network
and p, the density parameter, is the probability of a connection between any pair
of nodes. Each node is thus connected to any of the other (n � 1) nodes in the
network with independent probability p. It follows that the degree of any node is
binomially distributed,

P(k) =

 
n - 1

k

!
pk(1� p)n�1�k , (3.1)

and that the expected clustering coefficient is p.

A variant of this model is the G(n, m) model, where n is the number of nodes in
the network, and m is the number of connections in the network. In this case,
the resulting network is sampled uniformly at random from the collection of all
networks with n nodes and m connections. The distribution of graphs under the
G(n, m) model is identical to that of the G(n, p) model, for p = m

(n
2)

, conditioned on
the number of edges in the graph being m.

To estimate the value of p for generating a network with a desired number of ver-
tices and connections, one can use maximum likelihood (ML) estimation. Since
connections in the network generated by the ER model appear independently with

1It is worth noting that Erdős and Rényi’s work long preceded social network analysis and al-
though their work is frequently cited in social network literature, their model was never intended to
preserve social network characteristics.
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probability p, the likelihood of a network with n nodes and m connections is

pm(1� p)n(n�1)/2�m ,

thus the ML estimate of p minimizes the negative log-likelihood

�m log p� [n(n� 1)/2�m] log(1� p).

Differentiating and setting to zero yields

[n(n� 1)/2�m]/(1� p) = m/p

so that
pn(n� 1)/2� pm = (1� p)mk

) p = 2m/n(n� 1). (3.2)

Thus, the maximum likelihood estimate of p is the ratio of the actual number of
connections in the network to the maximum possible number of connections.

3.1.1.1 Directed Erdős-Rényi model

Gui and Dutton [54] proposed an extension to the ER model that generates directed
networks, given a desired out-degree distribution D. To construct a random di-
rected network G with n nodes, each node v independently chooses its out-degree,
k+(v), according to D and then randomly chooses a subset of k+(v) nodes to as-
sign the outgoing connections to. The authors show that when the expected value
of D is finite, the distribution of the in-degrees approaches a Poisson distribution
as n! •.

3.1.2 The Watts and Strogatz model

The Watts and Strogatz (WS) model [22], published in 1998 and also known as the
Watts beta model, was the first model designed to generate networks which exhibit
small world properties, i.e. which have short average path lengths and high clus-
tering (discussed in Section 2.2.1). The model takes as input the number of nodes
n, the mean degree k  n � 1 (assumed to be an even integer) and a parameter
b (0  b  1). It constructs a network in the following way:

1. A network with a ring lattice is constructed. This is a network with n nodes
each connected to k neighbors, k

2 on each side.
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Figure 3.1: The initial configuration for the Watts and Strogatz model with n = 20
and k = 4 (left); the resulting network for some 0 < b < 1 (middle); and the
resulting network for b ⇡ 1 (right). Diagram reproduced from [22].

2. For every node ni, the connection between ni and every nj on the counter-
clockwise side of the lattice from ni is ‘rewired’ with probability b. Rewiring
is done by replacing the connection between ni and nj with a connection be-
tween ni and nl where l is chosen randomly from all values that avoid self-
loops and duplication of connections.

An initial configuration and two resulting networks are shown in Figure 3.1.

The WS model has two shortcomings, the first of which is the assumption that the
network contains a fixed number of nodes. In contrast, most real-world networks
form dynamically by the continuous addition of nodes to the network. The second
shortcoming is that all the nodes have approximately the same degree. For 0 <

b < 1, the degree distribution has a pronounced peak around the mean, similar to
the ER model, and in the limiting case of b ! 1 the degree distribution becomes a
Poisson distribution, meaning the generated networks are not scale-free [55].

3.1.2.1 Newmann and Watts’ improved model

In 1999, Newmann and Watts [56; 57] proposed a variant to the original WS model
which is easier to analyze since it does not lead to the formation of isolated clus-
ters as the original model sometimes does. In this model, connections are added
between random pairs of nodes, but no connections are removed from the original
lattice. Although their model offers analytical simplicity, it is still subject to the
same shortcomings as the original WS model.
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3.1.3 The preferential attachment model

In 1999, Barabási and Albert [34] addressed the two shortcomings of the WS model
by creating the first dynamic model for small-world, scale-free networks. They in-
corporated the principal of proportional selection, where some nodes are more likely
to form connections than others. Proportional selection of an object relative to a
characteristic c over a set V of objects means that the probability of object vi being
chosen is given by

P(vi) =
c(vi)

Âvj2V c(vj)

Proportional selection is often described by the catchphrase the rich get richer, a
concept first applied to the growth of networks by de Solla Price in 1976 [58].
In Barabási and Albert’s model, the nodes are chosen with proportional selection
relative to their degree. Thus, the probability that the new node is connected to
node i is

P(ki) =
ki

Ân
j=1 kj

, (3.3)

where ki is the degree of node i. This special case of proportional selection is com-
monly referred to as preferential attachment (PA), and we refer to Barabási and Al-
bert’s model as the PA model.

The algorithm used for generating an undirected network using the PA model with
parameter m0 is presented below:

1. A random initial network with n0 > max {m0, 2} nodes are created. There
are several ways to generate the initial network, and all of them lead to the
same asymptotic behavior [59].

2. New nodes are added to the network one at a time. When a new node is
inserted, it is assigned connections to m0 other nodes using preferential at-
tachment, disallowing self-loops and duplicate connections. This means that
new nodes prefer to form connections to highly connected nodes.

There are a couple of drawbacks to the PA model:

• The model provides little flexibility, with the only controllable characteris-
tic being the average degree. Experimental results indicate that the degree
distribution resulting from this model is a power-law with parameter a =
2.9 ± 0.1 [59]. Most real-world networks have degree distributions with heav-
ier tails, but this behavior can not be reproduced using the PA model.
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• Networks generated using the PA model have no nodes with degree k < m0,
and in particular no isolated nodes.

• The clustering coefficient decreases strongly as the network size increases,
which contradicts observations on real-world networks [60].

• Because of the lower bound on the minimum degree, the PA model is ex-
tremely unlikely to produce networks that contain long paths.

• In the PA model, there is a strong positive correlation between the age of a
node and the degree of the node. This kind of correlation is not observed in
real-world networks [61].

The next section presents variants of the original PA model that aim at eliminating
some of these drawbacks.

3.1.4 Variants of the PA model

3.1.4.1 Kumar’s copy model

Kumar et al. [62] proposed a directed model for modeling the structure of the
world-wide web that implicitly employs PA through a copying mechanism by which
new nodes that enter the network copy a subset of outgoing connections from exist-
ing nodes. When a node is added to the network, a prototype node (corresponding
to the close friend) is chosen at random. With probability (1 � p), the i-th con-
nection is taken to be the prototype’s i-th connection, otherwise a node is chosen
at random to connect to. Barabási and Albert noted that the copying mechanism
effectively amounts to using preferential attachment [42].

3.1.4.2 Directed models by Dorogovtsev, Mendes and Samukhin

Dogorovtsev, Mendes and Samukhin have proposed many variants of the PA model,
for generating scale-free directed networks, in an attempt to model the way sites
on the internet link to each other. In 2000, they introduced the concept of ini-
tial attractiveness [63] in a directed model that adds one node with m0 connec-
tions per timestep, directed at nodes chosen using proportional selection relative
to (Ai + k�i ), where Ai is the (randomly assigned) initial attractiveness of node i
and k�i is the in-degree of node i. They show that the in-degree of the generated
networks follow a power-law distribution with a = 2 + A

m0
where A is the sum over

the initial attractiveness of all nodes.
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The same authors further generalized the above model by creating a directed model [64]
that, in addition to the m0 connections assigned to a new node, also assigns two
other sets of connections in each timestep that do not depend on the initial attrac-
tiveness:

• mp nodes are chosen randomly and a single connection is made between each
of these nodes and a node chosen using proportional selection relative to in-
degree; and

• mr connections are made randomly, without any preference.

This model leads to a power-law in-degree distribution with parameter

a = 2 +
mp + mr + A

m0
.

Dorogovtsev and Mendes also observed that connections form at a rate superlin-
ear in the addition of new nodes in real-world networks. They tried to reproduce
this behavior through their accelerated growth model [65]: in addition to the m0 con-
nections assigned to a new node in the original PA model, this model also assigns
c0nt additional directed connections per timestep, from randomly selected nodes
to nodes chosen by proportional selection relative to initial attractiveness, where
t > 0. The authors show analytically that this model generates networks with
power-law in-degree distributions with parameter

a = 1 +
1

1 + t

2 (1, 2).

Dorogovtsev and Mendes [50] also introduced the concepts of developing and de-
caying networks. In their developing network model, a network is grown as in the PA
model but a fixed number of new directed connections are added at each timestep
between unconnected existing nodes i and j, selected using proportional selection
relative to the product of their degrees. In the decaying network model, a fixed num-
ber of random connections are removed from the network at each timestep.

The same authors also worked on a class of models that aim to eliminate the cor-
relation between the age of a node and its degree. In their gradual aging model [66],
older nodes lose their ability to attract new connections. In this model, the prob-
ability that a new node will connect to an existing node depends on the existing
node’s in-degree and its age, ai: proportional selection being based on k�i a�n

i is
used, where n is a model parameter.2

2ai = (t� ti) where ti denotes the timestep at which node i entered the network and t denotes
the current timestep.
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3.1.4.3 Non-linear preferential attachment model

In 2000, Krapivsky, Redner, and Leyvraz [67] proposed a generalization of the PA
model that aims at increasing the flexibility of the model in producing networks
with a variable power-law parameter, a 2 R. Instead of using PA, proportional
selection relative to some possibly non-linear function f (k) of the nodes’ degrees
is used. However, they found that f (k) needs to be asymptotically linear for the
network to remain scale-free, i.e. f (k) 2 Q(k). The authors show that the resulting
power-law degree distribution can be tuned to have any parameter 2 < a < • in
this case.

3.1.4.4 Fitness models

Bianconi and Barabási [68; 69] created a model which incorporates what they call
the competitive aspect of real-world networks, in which nodes compete for connec-
tions, sometimes at the expense of other nodes. At each timestep, a new node j
with fitness hj is added to the network. hj is fixed for node j and is chosen from a
distribution r(h). Each new node connects to m other nodes in the network, chosen
using proportional selection relative to kihi, the product of each nodes’ degree and
fitness.

The resulting networks have power-law degree distributions, with the power-law
parameter depending on the choice of r(h). For a uniform r(h), the degree distri-
bution is proportional to P(k) µ k�2.225

log(k) , a generalized power-law with an inverse
logarithmic correction. [42].

Ergün and Rogers [70] proposed a generalization of this model that associates with
each node i a pair (hi, xi), where hi is the random additive fitness of node i and xi is
the multiplicative fitness of node i. The additive fitness symbolizes that some nodes
may be more attractive to connect to than others and the multiplicative fitness is
used to create different categories of nodes which can form new connections at dif-
ferent rates. The network is grown as in the PA model, except that the proportional
selection is now relative to xi(ki� 1)+ hi. Experimental results by the authors show
that the resulting degree distribution still follows a power-law if the fitnesses are
drawn from a power-law distribution.

3.1.4.5 The Klemm and Eguíluz model

In 2001, Klemm and Eguíluz [61; 71] proposed an extension to the PA model fo-
cused on including longer paths between nodes, high clustering for large networks
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and a more flexible power-law degree distribution. It is a dynamic model, keep-
ing track of a subset of nodes called active nodes. Starting from a fully connected
network of n0 active nodes, it cycles through three steps to develop the network:

1. A new node u joins the network and for each active node v:

• With probability µ, node u is connected to v.
• With probability (1 � µ), node u is connected to a random node in the

network (active or non-active) using proportional selection relative to de-
gree.

2. The new node becomes active.

3. One of the active nodes is deactivated. The node to be deactivated is selected
using proportional selection relative to 1

a+ki
, where a > 0 is a constant bias.

It is shown in [61] that the resulting degree distribution is a power-law with pa-
rameter:

a = 2 +
a

n0
.

Note that in the case where µ = 0, this model reduces to the PA model.

3.1.4.6 Dangalchev’s two-level model

In 2004, Chavdar Dangalchev [72] proposed a model that extends the PA model
by taking into account not only the degree of a node, but also the degrees of all
of its neighbors. Their intuition is to base the proportional selection not only on
the number of neighbors a node has, but also on the popularity of its neighbors.
The probability pi of connecting to node i with j neighbors is then proportional to
ki + C Âj kj,where C 2 [0, 1] is a constant weight for the importance of the second-
level connections. If C = 0, then this model reduces to the PA model. Through
their experimental results, the authors found C = 0.5 to be a good choice.

3.1.5 Newman, Watts and Strogatz’ model

Newmann, Watts and Strogatz [21] noted that the most serious limitation of the
ER model is the Poisson degree distribution of the generated networks. In 2002,
they introduced a generalized version of the ER model that allows the formation of
arbitrary degree distributions, whilst keeping the simplicity of the original model.
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Their static model for undirected social networks takes as input the degree distri-
bution P(k) of the specific social network that is to be modeled. For each node, a
value, k, is drawn from the prescribed distribution and the degree of the node is
set to k by assigning k stubs to the node. Once the degree of every node in the net-
work is known, the connections are randomly generated by repeatedly choosing
two stubs from two different nodes and connecting them. If the number of stubs is
odd, then one random stub is removed.

The main drawback of this model is that there is no simple way to extend it to
the dynamic case. Also, the process may fail since unpaired stubs could remain.
This could result in the stubs having to be re-distributed a number of times. It
is also worth noting that the explicit inclusion of transitive behavior in this way
may not incorporate the community structure that we observe in real-world social
networks.

3.1.6 Ebel’s transitive model

Few models in the literature deal with the removal of nodes and connections. This
is mostly because of the lack of available data sets that include removed entities.
Ebel et al. [73; 74] proposed one of the first models that constantly remove nodes
from the generated network. Their model generates small-world, scale-free net-
works from the stationary state of a simple process. The model iteratively performs
two actions, starting with an initial network with n isolated nodes:

1. A random node is chosen from the network and two of the node’s neighbors
are randomly selected and connected to form a new triangle. If the node has
less than two neighbors, it is connected to a randomly chosen node in the
network.

2. With probability p (a model parameter), a randomly chosen node is removed
from the network. This node is then replaced by a new node with one random
connection.

If p > 0, each node in the graph has a finite expected lifetime.3 This leads to
a stationary state of the network approximating the behavior of real social net-
works: numerical simulations have shown that this method generates networks
with power-law degree distributions, short average path lengths and high clus-
tering. The authors note that, for large enough networks, the parameter a of the

3The node’s lifetimes are independent exponentially distributed variables with mean N
p .
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power-law degree distribution depends only on the model parameter p. Although
they do not give an analytical expression for a, they give some obtained values of
a for different p. In their experiments, they found small values of p ⌧ 1 to work
best in modeling real-world networks. The major drawback of this model is that its
stationary state outputs a single static social network. No evolutionary information
for the network is available.

3.1.7 Newman’s transitive model

Many models [71; 75; 76; 77; 78] have attempted to incorporate transitivity using
some form of triadic closure4 process, but because of the nature of the generation
processes used by the models, their properties could only be calculated using nu-
merical approaches. In 2009, Newman et al. [31] proposed a model that explicitly
incorporates clustering and transitivity and for which they analytically obtained
exact solutions for various properties of the resulting network.

The model takes as input the size of the network, n, together with n tuples, (si, ti),
where ti is the number of triangles in which node i participates and si is the number
of connections of node i which do not form part of any triangles. The degree of
node i is thus given by ki = si + 2ti, and the resulting degree distribution is given
by

P(k) =
# {i : k = si + 2ti}

n
.

To construct this network, ti triangle corners and si stubs are assigned to node i.
The connections are created by choosing pairs of stubs uniformly at random and
connecting them. After all the stubs have been paired, the triangle corners are
randomly grouped into trios of distinct nodes and joined to form triangles. Note
that in the process of generating single connections, some triangles may form by
chance, but these are allowed, since the authors found their effect on the overall
structure of the network for large n to be negligible [31]. The only constraints are
that the total number of stubs be even and the total number of triangle corners be
a multiple of three.

3.1.8 Exponential random graph models

Exponential random graph models (ERGMs), also known as p⇤ models, are widely
studied for use in modeling social networks [79; 80; 81; 82; 83; 84]. ERGMs are prob-

4Triadic closure is the process of connecting two nodes based on the knowledge that they have a
mutual neighbor.
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abilistic models that explicitly define a probability density function for networks.
The general form of such a density function for the class of ERGMs is given by

P(G = g) =
1
k

exp

(

Â
A2A

hAwA(g)

)
, (3.4)

where

• the summation is over a set A of configurations. A configuration is a subgraph
with a specific structure (e.g. stars, triangles);

• hA is a parameter for the configuration A;
• wA(G) is the network statistic corresponding to configuration A for the network

G (the number of occurrences of configuration A in G); and
• k is a normalizing constant.

The configurations with non-zero parameters in Equation (3.4) specify a set of con-
ditional independence assumptions about the occurrence of connections in the net-
work: these conditions specify when the occurrence of a connection e1 in the net-
work is conditionally independent of the occurrence of another connection e2 given
the state of the rest of the network. Let G0 be the result of adding e1 and e2 to the
rest of the given network. The occurrence of e1 and e2 are conditionally indepen-
dent given the rest of the network if G0 has no subgraph containing e1 and e2 that
matches a configuration. A number of different configuration sets have been used
with ERGMs [79]; we will present the two most studied ones below.

3.1.8.1 Markov random graphs

The Markov random graph model was proposed by Frank and Strauss [80] in 1986,
based on developments in spatial statistics [85]. It is built on the Markov indepen-
dence assumption, which assumes that the occurence of a connection between node
i and node j is dependent only on the other possible connections involving i and
j. That means the probability of occurrence of connection (i, j) is independent of
the probability of occurrence of any connection (k, l) for i 6= j 6= k 6= l. An ERGM
satisfying the Markov assumption must have the form:

P(G = g) =
1
k

exp

"
pmg +

n�1

Â
k=2

lkSk(g) + tT(g)

#
, (3.5)

where:

• p is the density parameter;
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Figure 3.2: A 6-star (left) and a 4-triangle (right).

• lk is the parameter associated with k-star effects;
• Sk(g) is the number of k-stars in g;
• t is the parameter associated with triangles; and
• T(g) is the number of triangles in g.

This is because the Markov independence assumption disallows exactly those con-
figurations containing a simple path5 of length three: for a path (u1, u2), (u2, u3),
(u3, u4), the edge (u3, u4) is not incident on u1 or u2, so its occurrence may not affect
the probability of occurrence of (u1, u2) .

To see why the inclusion of k-stars in (3.5) does not violate the Markov indepen-
dence assumption, refer to Figure 3.2: it is clear that this graph contains no simple
paths of length greater than 2. For higher-order stars (k > 3), lk is often assumed to
be 0 due to their relatively infrequent occurrence in real-world networks and in or-
der to limit the number of parameters that need to be estimated in order to achieve
a computationally feasible model for which parameters can be estimated [81]. An
alternative is to use a single parameter for all k-triangle configurations. This is
discussed in Section 3.1.8.2.

We see that the Markov independence assumption is violated if k-triangles for k > 1
are included in the configuration set since these graphs then contain simple paths
with length greater than two.6 When k = 1 (normal triangles), the Markov inde-
pendence assumption is not violated, so the triangle configuration is included in
the Markov random graph model. The parameter t allows the model to explicitly

5A simple path is a path with no repeated nodes.
6For example, the 4-triangle contains the simple path (i1, j1), (j1, i2), (i1, j2).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. EXISTING MODELS OF SOCIAL NETWORKS 29

include some transitivity effects, allowing for modeling of the transitive behavior
of social networks. When the star and triangle parameters are set to zero, so that
the density parameter p is the only non-zero effect in the model, all connections
form independently of each other with a constant probability, reducing the model
to the ER model [81].

Markov random graph models have been found to be unreliable in modeling so-
cial networks though, because the graph distributions obtained by estimating the
parameters of the model are often near degenerate [83; 81]. A graph distribution
is termed near degenerate if it implies only a small number of distinct graphs
with substantial non-zero probabilities. For certain parameter values, Markov ran-
dom graph distributions exhibit this property, with only nearly empty or complete
graphs likely under the distribution.

3.1.8.2 Curved exponential family models

Recently, Snijders et al. [83] proposed violating the Markov assumption by adding
higher-order k-triangle configurations to Markov random graphs. Violating the
Markov independence assumption has been found to be crucial for modeling desir-
able global properties of social networks [86]. They also proposed two model con-
straints for including higher-order stars and triangles, the alternating k-star and al-
ternating k-triangle constraints. By using the alternating k-stars constraint, the higher-
order star parameters are no longer forced to be zero, but instead are related by:

lk+1 =
�lk

q

, (3.6)

for some q > 1. The authors formulated these constraints after they observed that
higher-order star parameters often followed a pattern of decrease in magnitude,
while alternating in sign, for successfully fitted network data sets. The single pa-
rameter l2 then captures the role of all star configurations.

Analogous to alternating k-stars, the authors also proposed alternating k-triangles,
using the constraint of (3.6), but with lk the parameter for a k-triangle. This moves
beyond the Markov assumption in assessing the transitivity of a network. The
use of alternating k-triangles expresses not only that there are comparatively many
triangles in social networks, but also that there are not too many high-order k-
triangles. For this reason, the use of k-triangles can include transitivity in the net-
work, but also avoid the formation of overly dense, or even complete, networks.
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3.1.8.3 Estimation and simulation

Estimation of ERGM parameters has been the topic of much work [79; 81; 87; 88].
Standard maximum likelihood estimation is not tractable for real-world networks
of significant size. Currently, these problems are circumvented by the use of tech-
niques such as Markov chain Monte-Carlo (MCMC) [88] maximum likelihood esti-
mation and pseudo-likelihood estimation [79; 81].

Given the set of parameters, a network can be sampled from the distribution us-
ing Monte Carlo techniques. The procedures for sampling networks using expo-
nential random graph distributions are discussed by Strauss and Frank [80] and
Robins et al. [89]. In general, these methods start with an initial (randomly chosen)
adjacency matrix after which all the elements are repeatedly updated, in turn, un-
til the matrix converges. An entry in the matrix is updated by generating its new
value from the conditional distribution for that entry given all the other entries. The
two major drawbacks of ERGM models are the high computational complexity that
makes it infeasible for larger networks, and the fact that the generated networks are
static.

3.1.9 Kronecker graphs

In 2005, Leskovec et al. [90] introduced a model that uses the Kronecker multiplication
operation on the adjacency matrix of a network to grow the network. When a
matrix is Kronecker multiplied by itself, each entry in the matrix is replaced by a
scaled version of the original matrix:

A
0
= A⌦A =

2

66664

a1,1A a1,2A · · · a1,mA
a2,1A a2,2A · · · a2,mA

...
... . . . ...

an,1A an,2A · · · an,mA

3

77775
.

This model is based on the notion that power-law distributions are usually ob-
served in self-similar structures, i.e. structures that consist of miniature copies of
themselves [91]. In social networks, this means that communities are typically com-
posed of structurally similar sub-communities. The authors suggest that this com-
position takes the form of an onion-like core-periphery, consisting of similar layers
that increase in density as one moves towards the centre of the network.

The aim of this model is not to provide a realistic or intuitively natural way of
generating networks, but to provide a model that can be rigorously analyzed ana-
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lytically. The authors provide analytical proofs that their Kronecker model matches
most of the static and dynamic properties of social networks.

Using Kronecker multiplication on a network G with binary adjacency matrix A =
[ai,j], each non-zero entry of A is replaced by a copy of A and each zero entry is
replaced by a zero-matrix of the same dimension as A to form the network G0 with
adjacency matrix A

0 . Recursively applying the Kronecker multiplication to an ini-
tial network G1 with n1 nodes and e1 connections will, after t timesteps, yield the
network Gt with n2t

1 nodes and e2t

1 connections. The original model, using a bi-
nary adjacency matrix, is deterministic for any given initial graph G1. The authors
noted this and also proposed a stochastic variant that treats the entries in the ma-
trix as probabilities of the existence of connections. Although the fractal nature of
the model reproduces desirable social network characteristics, this model has some
intrinsic drawbacks:

• The number of nodes increases super-exponentially in the number of itera-
tions. Although the model is dynamic, this means that only snapshots of the
evolution are available, and the number of nodes and connections added be-
tween two snapshots increases drastically. This is not conducive to under-
standing the microscopic evolution of the network when nodes are added on
an individual basis.

• The authors note that there is no way to determine a suitable initial graph G1

other than a time-consuming brute-force search.

3.1.10 Forest fire model

As noted in Sections 2.2.2 and 2.2.6, Leskovec et al. [41] studied a collection of
large online social networks in 2007, and found that their diameters decreased and
their number of connections increased superlinearly in the number of nodes. They
proposed a set of models, aimed at reproducing these characteristics, starting with
their community guided attachment (CGA) model which they used to demonstrate
that densification can naturally arise in a hierarchical community structure.

The forest fire (FF) model takes this a step further by incorporating both shrinking
diameters and densification into a directed model. The forest fire model is a combi-
nation of proportional selection, Kumar’s copy mechanism and their CGA model.
It uses two parameters, the forward burning probability (q), and the backward burning
ratio (r). When a new node v joins the network:

1. v chooses an ambassador node w uniformly at random. v is connected to w.
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2. v copies x out-links and y in-links from w. The values x and y are drawn from
geometric distributions with mean q/(1� q) and rq/(1� q) respectively.

3. Step 2 is repeated for each of the x + y new neighbors of v, allowing v to
recursively copy connections from its new neighbors, until the ’fire’ dies out.

An intrinsic problem with this process is that no isolated nodes are present in the re-
sulting network, since a node always connects to at least its ambassador. In fact, the
entire network consists of one giant connected component. The authors note that
this can be rectified by introducing another parameter which specifies the probabil-
ity that a node will be inserted without any connections. This modification allows
for multiple connected components, although these components can never merge,
an aspect that does not translate well to real-world behavior. To address this, the
authors proposed another modification to the algorithm, where a new node is al-
lowed to choose more than one ambassador, possibly from two different commu-
nities. This allows communities to overlap and speeds up the decrease in diameter.

3.2 Top-down models

In contrast to the bottom-up models presented in the previous section, top-down
models start by modeling the global community structure of the network and then
translate this structure into a social network by inferring microscopic interactions
between the nodes. All of the top-down models grow a bipartite network that rep-
resents affiliations of users to communities, information not present in bottom-up
models. This bipartite network is then converted or flattened into a social network
using some flattening rule that specifies the conditions under which connections in
the social network are created. An example of such a bipartite structure and the re-
sulting social network is shown in Figure 3.3. Note that all three models presented
in this section use the same flattening rule depicted in Figure 3.3: converting com-
munities into cliques over all their members.

It is important to realize that the communities we refer to here are the communi-
ties implicitly defined by the structure of the social network itself, typically cor-
responding to real-world communities such as families, schools, clubs and other
social circles.7 For an analysis of the evolution and structure of explicitly defined
communities in social networks, i.e. communities/groups that the user joins on
the network, refer to the work of Backstrom et al. [93].

7These communities are often identified as quasi-cliques in the social network. For an overview
of methods for community detection in social networks, refer to [92].
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Figure 3.3: An example of a bipartite community structure (above) and the result-
ing social network (below) formed using the deterministic flattening process used
by all the existing top-down models.

In 2006, Guillaume and Latapy [27] showed that most real-world social and bi-
ological networks can be modeled using bipartite networks. They proposed an
algorithm to create a bipartite network from a unipartite network by introducing
a new set of nodes referred to as the top nodes, with the original nodes of the net-
work referred to as the bottom nodes. Each top node represents a maximal clique
in the original network, and each bottom node is connected to all the top nodes
corresponding to cliques which the node is part of in the original network. They
showed that this decomposition of social networks typically results in power-law
degree distributions for the bottom nodes and Poisson or heavy-tailed distributions
for the top nodes. This result was further confirmed by Latapy et al. [94].

These insights into social network structure gave rise to the study of top-down
random graph models that can generate such bipartite networks, and convert them
into social networks. In this section, we present three existing top-down models
in chronological order. Two of these models, the model of Guillaume and Latapy
(Section 3.2.1) and the model of Lattanzi and Sivakumar (Section 3.2.3) are dynamic
models, adding new nodes and communities as the network evolves. Birmelé’s
model (Section 3.2.2) does not allow for dynamic network generation: the entire
bipartite structure must be built before it can be converted, as a whole, into a social
network.
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3.2.1 Guillaume and Latapy’s model

Guillaume and Latapy proposed a dynamic model [27] (which we refer to as the
GL model) for generating bipartite random graphs which takes as input two param-
eters, the mean µ of the Poisson degree distribution of the top nodes, and the overlap
ratio l. The parameter l is defined as

l = 1� n
Âi |ci|

,

where |ci| is the size of the i-th maximal clique in the real-world network that is
being modeled. Then, in each iteration, a new top node is added, its degree k is
sampled from the Poisson degree distribution and k connections are created in the
following way:

• with probability l, the connection is made to an existing bottom node using
proportional selection relative to degree;

• otherwise a new bottom node is added and connected to the new top node.

They argue that the evolution of a network using this model is similar to how bi-
partite networks form in social contexts. If a new group is created on Facebook,
then a set of already active users join the group, but the group may also be joined
by users who have never before participated in a group on Facebook and, as such,
did not form part of the network previously.

Although this simple model yields an intuitive way of building the network, it has
two notable shortcomings:

1. The way the communities form is not entirely consistent with real-world
behavior. In online social networks, communities typically comprise quasi-
cliques, i.e. groups of nodes which are highly connected, but not completely.
Guillaume and Latapy’s model generates networks using fully connected
communities, generally resulting in a higher level of clustering than desired.

2. As they note, their model fails to incorporate bipartite clustering, with commu-
nities showing very little neighborhood overlap. This is a major drawback,
since, in real-world networks, if two communities have one node in common,
they are likely to have more. In fact, real-world networks show a hierarchical
community structure, with a recent study on a mobile social network reveal-
ing up to six levels in the community hierarchy [95].
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3.2.2 Birmelé’s model

In 2009, Birmelé [96] proposed a static model that samples a bipartite network and
projects the network onto a unipartite counterpart. The bipartite network is sam-
pled in the following steps:

1. Create a top set of q nodes, denoted v1, . . . , vq and a bottom set of n nodes,
denoted by w1, . . . , wn.

2. For each top node vi a set of n + 1 random variables are sampled:

• n variables are drawn from the uniform distribution [0, 1] and are denoted
si1, . . . , sin

• A variable pi is drawn from the truncated power-law distribution over
the range [1, n]. pi represents the expected resulting degree of vi.

3. Given the set of random variables, node vi and node wj are connected if

sij <
pi
n

.

The degree of vi is thus binomially distributed with parameters n and pi.

Once the bipartite network is created, its unipartite projection is obtained by con-
verting each top node into a clique over the bottom nodes connected to it. The
authors proceed to show analytically that the degree distribution of the resulting
network follows a power-law. They also show analytically that the generated net-
works show transitive behavior and that, with high probability, the generated net-
works have a high clustering coefficient.

Apart from being a static model, this model has another inherent drawback in that
it does not model community overlap. If two bottom nodes vi and vj are connected
to the same top node wk, it does not increase the probability of them having more
mutual neighbors in the bipartite network, which is not consistent with real-world
behavior.

3.2.3 Lattanzi and Sivakumar’s model

In 2009, Lattanzi and Sivakumar proposed a model that builds the user-community
bipartite structure using a copy method similar to that of Kumar’s model (Section
3.1.4.1). This model takes as input three parameters, b,c1,c2 > 0 and during each
timestep:
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• With probability b, a new user node u is added and is assigned a prototype
user node u0 from the existing network, chosen with proportional selection
relative to degree. The node u then copies c1 connections from u0 , that is, u
joins c1 communities randomly chosen from the communities u0 belongs to.

• If no new user node is added, a new community node q is added using a simi-
lar process, copying c2 connections from a prototype community c0 .

Like the previous two models, the bipartite network is converted to a social net-
work using a simple flattening rule: each community node is translated to a com-
plete graph on the community members. The authors prove that the resulting social
networks have power-law degree distributions, obey the DPL, and their effective
diameters stabilize to a constant.

One issue with this model is that it assumes the network does not have any inac-
tive nodes. Each user node u is connected to at least c1 community nodes. In the
resulting social network, u will be connected to all other user nodes connected to
any of its c1 neighbors in the bipartite network. For u to be an isolated node in the
social network, all cu of these communities need to be empty, but this can not hap-
pen, since each community node is assigned c2 connections upon its entry to the
bipartite network. The social network can thus not contain any isolated nodes. In
fact, depending on the choices for c1 and c2, there could be a very high minimum
degree for the nodes in the social network. This would cause the tail of the degree
distribution to be shorter than desired, similar to what was observed with the PA
model in Section 3.1.3.

3.3 Conclusion

In Table 3.1, we present a summary of all of the models. It is worth noting that all
of the models, except the ER model, produce small-world networks.

In Section 3.1, we presented a set of bottom-up models, some of are accurate at
generating social networks, although they do not provide any information on how
communities form and evolve in real-world networks.

The recent shift in research focus towards top-down models, as well as the indus-
try’s adoption of community-based approaches for online social networks, sug-
gests that further understanding of the formation and structure of communities in
social networks is indeed valuable. Section 3.2 presented the state-of-the-art in top-
down models. However, all of these models have serious limitations. The model of
Birmelé (Section 3.2.2) does not allow for dynamic generation of networks, whereas
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the model of Lattanzi and Sivakumar (Section 3.2.3) imposes a restrictive lower
bound on the degree of nodes, failing to include any isolated nodes in the gener-
ated networks. The model of Guillaume and Latapy is not subject to these short-
comings, although it uses the same naïve flattening rule as the other two models,
assuming that all nodes in the same community will be connected. This is contrary
to real-world behavior as exhibited by the implementation of the online social net-
work Google Plus. In this social network, users define their own communities,
or ‘circles’, explicitly, since each user has his/her own perspective of an implicit
community. This view may often contain only a subset of the nodes that form the
actual implicit community structure in the social network. This motivates the use of
a more complex flattening rule, allowing for variable density of connections within
communities, whilst retaining the transitive behavior within and across communi-
ties. This is the aim of our model, which is presented in the next chapter.
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Chapter 4
The proposed model

The literature review in Chapter 3 shows that researchers have recently started
to focus more on top-down approaches, which build the social network using an
intermediate bipartite structure, representing affiliations between users and com-
munities. This is a very intuitive approach which translates directly to real-world
behavior where one makes friends through interactions in the communities one
belongs to. The existing top-down models have a major shortcoming though: the
conversion of the affiliation network into a social network is a deterministic process
that creates connections between all users that share a community. In this chapter,
we present what is, to the best of our knowledge, the first top-down model that
uses a probabilistic process to convert the affiliation network into a social network
by generating a probability of existence for each potential connection in the social
network. Preliminary results on an early version of this model was presented at
the Fourth ACM workshop on Social Network Mining and Analysis at the KDD con-
ference [97] in 2010 (proceedings in preparation). Section 4.1 gives a high-level
description of our model and explains the intuition behind it. Section 4.2 formu-
lates the building of the community structure, and Section 4.3 describes how social
networks can be constructed from this community structure. In Section 4.4, we
briefly relate our model to existing models.

4.1 Model Outline

A major shortcoming of the current dynamic top-down models, the GL model (Sec-
tion 3.2.1) and the LS Model (Section 3.2.3), is that they assume that all users in the
same community are friends. This is inconsistent with real-world scenarios where

39
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there are many social factors that may influence whether two people will befriend
each other within a community. This is evident from the fact that most state-of-
the-art community identification methods use quasi-cliques to model communi-
ties [92].

In this section, we outline the first dynamic top-down model we are aware of that
constructs a social network from communities consisting of quasi-cliques. Our
model is thus the first top-down model that uses a probabilistic process to build
the social network from the bipartite network, rather than the deterministic flatten-
ing process used in the models described in Section 3.2. An example illustrating
our approach is depicted in Figure 4.1, which can be compared to the correspond-
ing diagram for the deterministic flattening shown in Figure 3.3.

21

43

5

A

1 2 4 113

Communities

Users

CB

5 6 97 8

8

6

10
7

9

11

10

A

B

C

Figure 4.1: An example of a bipartite community structure (above) and a possible
sampled social network (below).

To accurately build a social network using a bipartite community structure, there
are two important social factors that should be examined and incorporated in the
model:

1. The dynamics governing the involvement of users in communities, a process
partially captured in the degree distributions of the users and communities
in the bipartite network.
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2. The factors that influence the probability of two people befriending each
other given their set of mutual communities.

For the former, we can refer to the work of Birmelé [96] and Guillaume and Lat-
apy [27] for an indication of the shape of these degree distributions in real-world
networks. Their results on fully connected communities, a well as our intuition on
social behavior, suggests that the degree distribution of the users in the bipartite
network is consistent with that of social networks, in which the degree distribution
follows a power-law. For the communities, the experimental results of Birmelé [96]
suggest that the degree distribution seems to vary based on the specific structure
of the network, with both Poisson distributions and heavy-tailed distributions ob-
served in the analyzed networks.

Taking this into consideration, it follows quite naturally that users could join com-
munities based on some form of proportional selection, which should yield the
desired power-law degree distribution for the user nodes. However, there are two
obstacles that need to be avoided:

• The observed ’rich-get-richer’ phenomenon that results from traditional degree-
based PA. This leads to a correlation between the age and the degree of a node,
which is not observed in real-world data sets (as discussed in Section 3.1.3).

• PA offers little flexibility in the degree distributions of the resulting networks.
This would definitely constrain the generality of the model.

To ensure that no correlation between the age and degree of a node will exist, we
note that this problem is inherent to PA since an increment in the degree of a node
u immediately increases the probability of u forming more connections. This can
be remedied by using proportional selection relative to some measure of ’popular-
ity’ of the node which is not correlated with its degree. We proposed to assign to
each user node a constant activity, sampled from an arbitrary activity distribution
D1 on the positive real values. The freedom to specify D1 also allows us a great
deal of flexibility in constructing the community structure, unlike the constrained
development of PA.

The first major divergence of our model from the GL and LS models is that com-
munities in the bipartite network are modeled as quasi-cliques rather than cliques.
Determining the probability of two users befriending each other in a community
is a complex task because real-world social behavior plays an important role and
is hard to quantify. Here, we take a first step in modeling this complex process by
observing that in real-world communities, the probability of two people meeting
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definitely depends on their level of involvement in the community. We incorporate
this into the model by associating a constant commitment value for each community
a user belongs to, drawn from an arbitrary commitment distribution D2 on the posi-
tive real values. The probability that two users are connected in the social network
will then be based on their commitments to all of their mutual communities.

We choose not to assume any specific shape for the degree distribution of the com-
munities, but rather use an intuitive construction process based on real-world be-
havior. We note that, in real life, a person usually joins communities that overlap
with at least one of his/her existing communities. This is both because of social
behavior and geographical restrictions. Thus, when choosing a new community
for a user to connect to, we only consider those communities that overlap with the
existing communities of the user. The decision is then made using proportional
selection based on the overlap sizes.

Since these connections are formed using only structural knowledge from the bi-
partite network, the development of the community structure is independent of
any social networks sampled from it. This allows us to use the model for data set
generation in two different ways:

1. If we are interested in the evolution of the social network, the network can be
built incrementally together with the community structure.

2. If we are interested in a static social network data set of order n, we can gen-
erate a community structure with n users and sample a social network from
it.

Since we use a probabilistic method to sample the social networks from the com-
munity structure, we can also generate multiple social networks from any proposed
community structure, unlike the other top-down models.

4.2 Community model construction

Our model constructs two networks, a community structure B and a social network
G. In this section, we present the algorithm for building B and, in the next section,
we describe how B is converted into a social network G.

Our model is initialized by inserting one community and one user node, and con-
necting them. We grow the community structure, represented as a bipartite net-
work, over a series of time steps as follows. During each time step:
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1. With probability b, a new community node ci, with no connections, is added
to B.

2. With probability g, a new user node uj is added to B. An activity value, aj, is
associated with this user node. Upon joining the network, the node is con-
nected to one community, chosen uniformly at random, and the connection
is assigned a commitment.

3. With probability d, an existing user node uj is connected to an existing com-
munity node ci, and the connection is assigned a commitment:

• The node, uj, is chosen using proportional selection relative to activity,
i.e. the probability of node j being chosen is equal to

pj =
aj

Ân
k=1 ak

. (4.1)

• The community ci is chosen using a two-step process: First, a community
c that uj is connected to is selected using proportional selection based on
the commitments of uj. Then, ci is selected from the set of communities
uj is not a member of, using proportional selection based on the overlap
between c and these communities.1 The overlap q(c, ck) is defined as the
number of mutual members of c and ck.2

Whenever a user node uj is connected to a community node ci, a weighted
connection is created in the bipartite network between uj and ci. The connec-
tion weight dji indicates the user’s commitment to the community.

The activity values aj are sampled from the activity distribution D1 and the com-
mitments dik are sampled from the commitment distribution D2. For the purposes
of this study, we decided to use power-law distributions with parameters a1 and
a2 respectively. Using a power-law for the activities is a natural choice, since one
basic measure of the activity of users on social networks, the users’ degrees, follows
a power-law. For the commitments, there is less evidence to go on, but our intu-
ition leads us to believe that, in real life, this distribution should be heavy-tailed
since it is common to fully commit to only a few communities, while having low
involvement in many other communities.

1If the node uj is already connected to all the communities in the network, we skip this step and
continue with the next iteration of the algorithm.

2In the special case where q(c, ck) = 0 for all k, i.e. no communities overlap with the communities
uj is a member of, we choose ci uniformly at random from the communities uj is not a member of.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. THE PROPOSED MODEL 44

4.3 Social network construction

To construct a social network from the obtained bipartite community structure, we
infer the probability of existence of all the connections in the social network. Two
users become friends if the connection between them is enabled by any mutual
community. Let Ci,j,k be the event that the connection between users i and j is
enabled by their mutual community k. We then define the probability of this event
occuring as:

P(Ci,j,k) = f (dik, djk) =
1
w

exp
✓
�1
dik

◆
· exp

✓
�1
djk

◆
. (4.2)

where w > 0 is a global constant scaling parameter that can be used to increase/decrease
the level of connectivity across all communities.

We explain the intuition behind this definition through a theoretical analogy, which
we refer to as a community grid.

4.3.1 The community grid

In Figure 4.2, we present a community grid which takes the form of a layered struc-
ture where each layer corresponds to a single community in the bipartite network.
Figure 4.2(a) shows the layout for a single community k in a social network with
n = 4 users, whereas Figure 4.2(b) represents a community grid for a bipartite net-
work with 4 users and 3 communities. The connection weights are given by the
commitments of the users to the communities, which is obtained from the bipartite
network. We set this value to zero if there is no connection between a user and the
community in the bipartite network.

Each sphere in the community grid represents a light bulb which glows if the two
nodes connected to it befriend each other in that community. Ci,j,k is then the event
that the light bulb in community k, connected to users i and j, are glowing. Because
we are modeling undirected networks, none of the communities in the commu-
nity grid in Figure 4.2 contain connections in the lower triangle. There are also no
connections along the diagonal because a user can not befriend itself.

A light bulb will glow under the following conditions:

• The bulb itself is not defective. This occurs with probability P(Bulb k working) =
1
w where w is a constant.

• Both of the bulb’s connections (wires) are conducting electricity. The proba-
bility that a wire connecting user i and a sphere in community k will conduct
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Figure 4.2: A community grid, illustrating how the communities and commitments
are used to determine the probabilities of connections in the social network. See
Section 4.3 for a full discussion.

electricity is given by:3

P( Wire ik conducting) =

(
exp

⇣
�1
dik

⌘
if user i is connected to community k,

0 otherwise.
(4.3)

Since dik 2 (0, •), the unbounded commitment value is thus transformed into a
probability in the interval (0, 1). This transformation is monotonically increasing,
so that high commitment values correspond to likely connections through the com-
munity.

The bulb will only glow if both conditions hold, so the probability that the bulb

3Note that in the limiting case lim
dik!0 exp

⇣
�1
dik

⌘
= 0, which makes the zero probability a natural

choice when a user is not connected to a community.
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connecting users i and j in community k will glow is given by:

P(Ci,j,k) = P(Bulb k working) · P( Wire ik conducting) · P( Wire jk conducting)

=
1
w

exp
✓
�1
dik

◆
· exp

✓
�1
djk

◆
,

if dik, djk > 0, which is Equation (4.2). At any stage in the construction of the bipar-
tite network, there will be a connection between users i and j in the social network
if any of the bulbs connecting them in the community grid are glowing. We refer to
all the bulbs connecting users i and j in the community grid as column(i, j). Four
of these columns are depicted in Figure 4.2 by vertical dashed lines.

As discussed in Section 4.1, our model allows for both the static and dynamic con-
struction of social networks from the bipartite community structure. We present
both cases below.

4.3.2 Generating social networks

A very desirable property of a social network model is to have the ability to con-
struct networks dynamically. Using our model, a social network G can be con-
structed dynamically from a bipartite structure B, as follows:

• Whenever a new user node uj is added to B, it is copied into G as an isolated
node.

• Whenever a new commitment between a user uj and a community ck is added
to B, the commitment is also added to the community grid. If this causes a
bulb to switch on in any column(i, j) for i 2 (1, n) 6= j, then a connection is
added between users i and j in the social network.

Since users can only befriend each other once in a social network (assuming the
removal of connections are not allowed), we are only interested in the first time a
bulb in a particular column switches on. This bulb will keep glowing, and render
the state of all the other bulbs in that column irrelevant.

This means that whenever a new commitment is inserted into B between uj and ci,
connections are inserted in the social network between uj and all other members
of ci with probabilities calculated using (4.2). Thus, whenever user node uj is con-
nected to a community node ci in B, uj is connected in G to each member uk of ci to
which uj is not already connected to in G, with probability f (dji, dki).

We define Di,j as the event that two users ui and uj are connected in the social
network after all the communities and commitments have already been added to
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the bipartite network. To calculate P(Di,j) we note that two users will be connected
in the social network if the connection between them is enabled by any of their
mutual communities, so

P(Di,j) = P

 
r_

k=1
Ci,j,k

!

=
r

Â
k=1

P

 
Ci,j,k

k�1̂

l=1
Ci,j,l

!

=
r

Â
k=1

"
P(Ci,j,k) ·

k�1

’
l=1

P(Ci,j,l)

#
(by independence of Ci,j,l)

=
r

Â
k=1

"
f (dik, djk) ·

k�1

’
l=1

(1� f (dik, djk))

#
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where the initial disjunction and final sum are over the r mutual communities of
users i and j. Due to the probabilistic nature of this sampling process, it can be re-
peated many times to yield a set of distinct, yet structurally similar social networks.

4.4 Relationships to other models

From (4.4) it follows that the probabilistic flattening rule in our proposed model
simplifies to the deterministic version used in the GL and LS models when f (dik, djk) =
1. This corresponds to the limiting case of our model where w = 1 and dik, djk ! •,
i.e. all user nodes have an infinitely strong commitment to all of their communities.
If, in this case, we define w > 1, each community will flatten into an ER network
with p = 1/w. Note that this does not mean the resulting social network will be
an ER network since the communities will overlap, resulting in some connections
being more likely to occur than others.

The only case in which our model will reduce to the ER model is when the bipartite
structure is complete, b = 0, and all commitments are equal. That is, all user nodes
are connected to the single community in the network with equal commitment d.
In this case, the model will produce social networks equivalent to ER networks
with parameter p = 1

w exp
��2

d

�
, where c is the number of community nodes in the

bipartite network.

A more thorough experimental comparison of our model to the PA model and the
GL model is presented in Chapter 6.
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4.5 Conclusion

In this chapter, we proposed the first top-down model that uses quasi-cliques to
build communities in the social network. Top-down models build the social net-
work using an intermediate bipartite structure representing the affiliations of users
to communities. In building the bipartite structure, our model uses proportional
selection relative to the activity of the user nodes in the network when choosing a
user node to join a community. Our model explicitly models community overlap
through bipartite clustering by choosing the community a user connects to from the
set of communities that overlap with an existing community of the user, using pro-
portional selection relative to overlap size. We proposed a probabilistic flattening
process for converting the community structure into a social network by generat-
ing a probability of existence for each possible connection in the network. These
probabilities are based on the commitments of the two users to their mutual com-
munities and only allows connections between users that have at least one mutual
community. We explained the sampling of both dynamic and static social networks
from this structure. Finally, we showed that for certain limiting cases, our model
reduces to the simpler top-down models as well as the ER model.
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Chapter 5
Fitting the Model

Fitting a model to a specific real-world network refers to the process used for as-
signing values to the parameters of the model, usually with the aim of minimiz-
ing the structural differences between the original real-world network and the net-
work(s) generated by the model. The importance of fitting a social network model
to real-world networks is two-fold: first, to evaluate the ability of the model to
reproduce social network characteristics; and second, for practical use, such as pre-
diction of the future growth of the network. In Section 5.1 we give an overview of
the fitting methods used by existing random graph models. In many cases, fitting
the model involves searching a parameter space. Searching this parameter space
exhaustively is usually not computationally tractable. In Section 5.2 we give a gen-
eral introduction to metaheuristics used for guiding the search of this parameter
space. In particular, Section 5.2.1 and Section 5.2.2 present overviews of two meta-
heuristics, gradient-descent and simulated annealing. We implemented a modifi-
cation of simulated annealing for fitting our model and we discuss our adaptations
to the original algorithm in Section 5.3. An evaluation of these adaptations is pre-
sented in Section 5.4. Section 5.5 presents a comparison of our technique to existing
stochastic approximation techniques.1

1During the early development of the model, when the parameter selection technique described
in this chapter was developed, we were not aware of stochastic approximation techniques which
might be applicable to the characteristics of the optimization problem encountered. Although the
optimization technique presented in this chapter was derived without prior knowledge of stochastic
approximation techniques, we discovered at the eleventh hour that the resulting approach is similar
to some of these techniques. The motivation and development of our approach are presented here
for completeness, since our source code and all experiments in this study make use of our proposed
technique.

49
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5.1 Background

There are many different ways to fit a model to a network. The simpler single-
parameter models, like the ER and PA models (Sections 3.1.1 and 3.1.3) use sim-
ple statistics from the real-world network to determine values for the model pa-
rameters. For example, if we assume that we require the model to produce net-
works that closely match the order and size of the original network, then the choice
for the parameter of the ER model might be the maximum likelihood estimate
p = 2m/n(n � 1) where n is the number of nodes in the network and m is the
number of connections (see equation (3.2)). For the PA model it would be usual to
choose m0 = 2m/n, since this would yield a network with exactly n nodes and m
connections.

Some other models use more advanced statistical descriptions of the original net-
work to choose the model parameters. An example of such a model is the model of
Newmann, Watts and Strogatz (Section 3.1.5) which uses the degree distribution of
the original network as a parameter. The model of Guillaume and Latapy (Section
3.2.1) uses values obtained from the maximal clique decomposition of the original
network to calculate the parameters.

Advanced network statistics are also used for maximum likelihood estimation for
ERGM models. This often leads to problems, due to the computational infeasiblility
of calculating these statistics in larger networks and the near-degeneracy of the
distributions (see Section 3.1.8.1).

It would be convenient to be able to estimate parameters for our model using statis-
tics of the original network. However, there is no clear direct relationship between
parameter values in our model and the resulting network characteristics. We are
thus forced to use a different approach. A common method used in cases where
there is little knowledge of how to calculate parameters based on network statistics,
is to determine good parameters by evaluating different parameter combinations,
i.e. searching the parameter space. This method can be used if there is some way
of evaluating the quality of networks generated with a specific parameter set. Typ-
ically, such an evaluation considers a combination of characteristics of the original
and generated networks, and combines them into a goodness-of-fit metric.

An intrinsic issue with most parameter estimation techniques is that they are trained
on a single snapshot of the real-world network, implicitly assuming that all net-
works with the same characteristics at a given point followed the same evolu-
tionary pattern to that point. In general, this assumption is not reasonable. Since
searching the parameter space does not directly use any of the statistics of the orig-
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inal network to calculate parameters for the model, but only to evaluate the model,
it is more suitable for fitting dynamic networks. This is because it is easier to evalu-
ate the similarity between two evolving networks than to summarize the complex
evolutionary patterns of a network in a real-valued model parameter.

The most naïve approach to searching the parameter space is evaluating all possi-
ble parameter combinations. The processing required for this grows exponentially
with the number of parameters, so for models with many and/or real-valued pa-
rameters, this method is generally not computationally feasible. In the next section,
we present some heuristics that can speed up such a search process.

5.2 Algorithms for multi-dimensional optimization

Metaheuristics are a set of heuristics that attempt to minimize some objective func-
tion E(s) (also known as an energy function) by starting with some initial candidate
solution vector s and then iteratively trying to improve on the candidate solution
in order to find a solution with low value. Metaheuristics are typically applied to
problems where there is little or no guidance as to how to find an optimal solution,
but there is a way to evaluate E(s), the quality of any solution s. Many metaheuris-
tics do this by implementing some form of stochastic optimization [98].2

One of the most basic metaheuristics is known as hill-climbing. The hill-climbing
algorithm starts with a random solution s for a discrete objective function. Then,
a small modification to one of the components of s is made, and the new version
is evaluated. If the new version is better, it is kept, otherwise it is discarded. This
process is repeated as long as is feasible.

5.2.1 Gradient-descent algorithm

The choice of which algorithm to use often depends on the knowledge one has of
the objective function’s behavior in the search space. When the objective function
is known to have a certain shape, that extra information can be utilized by the algo-
rithm. When optimizing a differentiable objective function, one can often improve
the hill-climbing algorithm by making use of gradient information. One such tech-
nique is called the gradient-descent algorithm.

2Stochastic optimization techniques employ some degree of randomness, attempting to optimize
complicated functions.
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The gradient-descent algorithm minimizes a differentiable function E(s). The value
of E at s need not be computed; instead the gradient of E must be computed at s.
During each iteration the gradientrE(s) is determined and the candidate solution
point is shifted by an amount proportional to the negative of the gradient, i.e.

s
0
= s + k ·rE(s)

for some constant k > 0.3 This means that unlike the hill-climbing algorithm, all
of the components of s may change during each iteration. Because the change is
made in the direction of steepest descent, and bigger changes are applied when the
gradient is steep, the algorithm usually approaches the minimum much faster than
the hill-climbing algorithm.

5.2.2 Simulated annealing

Both the hill-climbing and gradient-descent algorithms are designed to find the
minimum of E(s) within the basin of attraction4 in which s lies. This means that
when multiple local minima are present, the search process must be repeated from
a set of starting points with elements in all the basins of attraction to ensure that
the global optimum is found. Since the locations of these basins are unknown, in
practice the process is repeated from a number of randomly chosen starting points.
This process, referred to as performing random restarts, will be computationally ex-
pensive if one wishes to perform enough restarts to guard against the possibility
that the objective function contains many local optima.

Simulated annealing (SA) is another metaheuristic commonly used for avoiding lo-
cal optima. It is based on a method used in metallurgy, where the heating and
controlled cooling of a material can increase the size of its crystals to make it less
brittle. Each point s in the search space is analogous to a state of the physical sys-
tem. The goal is to find a state s that minimizes the energy function E(s). The orig-
inal simulated annealing algorithm, formulated by Kirkpatrick [99], is presented in
Algorithm 5.1. 5

3Note that the value of k may change over time, typically decreasing with the number of itera-
tions.

4A basin of attraction is a concept from the theory of dynamic systems: in our context, it refers to
a set of points from where the same local minimum will be reached by continually moving downhill.

5Technically, the original formulation does not allow for storing good solutions encountered
along the search path, because this breaks the analogy with the physical process where the mate-
rial can not be restored to a previously encountered state. However, this is a standard optimization,
so we include it in the algorithm.
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Algorithm 5.1 Simulated annealing

s randomState() . Starting state is chosen at random
sbest  s . Store initial best solution

T  T0 . Initial temperature
k 0
while k < kmax do . While there’s time left

s0  neighbor(s) . Pick a candidate neighbor
if E(s0) < E(sbest) then . If the neighbor’s energy is the lowest so far

sbest  s’ . Store new best solution
end if

T  Temp(k/kmax) . Determine the current temperature
DE E(s)� E(s0) . Compute energy difference
if P(DE, T) > random() then . Are we moving to the neighbor?

s s’ . Move to the neighbor
end if
k k+1

end while

return sbest . Return the best solution found

During each iteration, the algorithm considers a neighbor s0 of the current state s,
and moves to the state s0 with a probability that depends on the change in energy
between the states, DE = E(s)� E(s0), as well as the current temperature, Tk.

The acceptance probability function P(DE, Tk) is used to determine the probability
that the algorithm will move from state s to state s0 during iteration k. An essen-
tial requirement for the function P is that it must be non-zero when E(s) > E(s0),
i.e. it must allow the system to move to a worse state with non-zero probability.
This enables the algorithm to avoid local optima in the search space. In the orig-
inal formulation of the algorithm, Kirkpatrick et al. [100] defined the acceptance
probability function as:

P(DE, Tk) =

(
1 if E(s0) < E(s)

exp (DE) /Tk if E(s0) � E(s)

Thus, the algorithm always moves to the new state s0 if it has lower energy, but if
s0 has higher energy a probabilistic choice is made based on the energy difference
and the temperature.

The effectiveness of the algorithm depends heavily on the manner in which the
temperature is changed over time. The changing temperature is simulated using a
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variable
Tk = Temp(k/kmax) ,

that is high for small values of k and then gradually decreases according to some
annealing schedule, as k increases.6

The result of using the annealing schedule is that, initially, the system moves almost
randomly in the search space, trying to find a broad region of low energy and then,
as Tk decreases, it becomes increasingly focused on moving to states with lower
energy. In the final stages, the algorithm almost behaves like the hill-climbing al-
gorithm, where it almost certainly chooses to move to states with lower energy in
an effort to find the optimum within the local region.

5.3 Searching for parameters for our model

As mentioned in Section 5.1, in order to perform a search for optimal parameters,
one needs a way of evaluating the quality of the networks generated by a specific
set of parameters. In Chapter 2 we listed a number of key network characteristics
which can be used to compare a generated network G to a real-world network
H. We combine these characteristics into an energy function which attempts to
quantify the difference in structure between G and H. This energy function can
then be used to evaluate the parameters from which G was generated. Since we are
interested in the evolution of the network G, we refer to the snapshot of network G
that contains i nodes as Gi. The evolution of the network is then given by the series
of snapshots {G0, G1, . . . , Gi, . . . , Gn}.

5.3.1 Energy function

In order to make our comparison of the networks as complete as possible, we base
our energy function on a combination of temporal and static characteristics. For
each characteristic C we define C(G) to be the characteristic value in network G and
D [C(G), C(H)] to be the difference between G and H with respect to characteristic
C. The energy function EH(G) of the network G relative to a network H is then a
weighted sum over these differences for various characteristics,

EH(G) = Â
C 2 Characteristics

wC · D [C(G), C(H)] , (5.1)

6The most popular choice for the annealing schedule is: Tk+1 = aTk, where a is a constant,
typically in the range 0.8 < a < 0.95 [101]. This corresponds to the temperature function Temp(x) =
T0a

xkmax .
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where wC is the weight assigned to characteristic C.7. The weights allow our model
to concentrate more on some characteristics than others. Our goal is then to find a
parameter set yielding a low energy.

We chose the following set of characteristics to use in (5.1):

1. The evolution of the clustering coefficient over the interval i 2 [0, n]. This is a
bounded function: CC(Gi) 2 [0, 1].

2. The evolution of the power-law parameter of the degree distribution over the
interval i 2 [0, n]. This function typically lies within the bounds: PL(Gi) 2
[1, 3].

3. The average degree of the nodes of Gn. This value is bounded: deg(Gn) 2
[0, N � 1].

4. The densification power law exponent calculated over the interval i 2 [0, n].
This is a bounded value: DPL({G0, . . . , Gn}) 2 [0, 2]. Together with the aver-
age degree, this summarizes the connection growth pattern.

5. The proportion of nodes that are isolated in the full network. This value is
bounded: iso(N) 2 [0, 1].

For the static, scalar-valued characteristics (proportion of isolated nodes, average
degree, DPL exponent), we define D [C(G), C(H)] as the relative deviation of C(G)
from the characteristic C(H) of the original network:8

D [C(G), C(H)] =
|C(G)� C(H)|

C(H)
.

For the clustering coefficient and power-law parameter we use a temporal measure
of difference:

D [C(G), C(H)] =
1
n

n

Â
i=1

|C(Gi)� C(Hi)|
C(Hi)

. (5.2)

Note that this process requires the generation of a full network, which could be
computationally expensive. The computation required for the generation of a net-
work is also a random quantity. An important factor in this process is the choice

7When it is clear from the context which network H the network G is being compared to, we omit
the subscript and refer to the energy function as E(G)

8Note that D [C(G), C(H)] (also used by Toivonen et al. [102]) is not symmetric over the domain
of the parameters since, for small values of the denominator, overestimates can attain much higher
values than under-estimates, which can attain a maximum value of 1. Experimentally, we found this
asymmetry to benefit our search process since overestimates of three of the characteristics (clustering
coefficient, average degree and DPL) correspond directly to denser networks, which take longer to
process.
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of weights in (5.1). Different values for the weights could bias the search process
to concentrate more on certain characteristics of the generated networks. We used
an ad-hoc method for choosing the weights, aimed at avoiding unwanted bias to-
wards certain characteristics, and found the following relationship to work well:

wCC ⇡ 1.25wPL ⇡ 2wDPL ⇡ 2wdeg ⇡ 5wiso

We now discuss our search strategy for attempting to minimize the objective func-
tion.

5.3.2 Overview of our stochastic optimization metaheuristic

In Section 5.2, we discussed the gradient-descent and simulated annealing algo-
rithms. If the energy function contains few local optima and its gradient can be
computed efficiently, then the simple gradient-descent algorithm, combined with
random restarts, should suffice to find a solution close to the global optimum. In
our case though, the objective function may contain a high number of local optima.
Using the gradient-descent algorithm would require estimating the gradient at ev-
ery timestep,9 and many random restarts would likely be required to obtain a good
solution. For these reasons the gradient-descent algorithm is not a computation-
ally feasible option in our case. Simulated annealing is much more efficient when
dealing with local optima; the annealing schedule allows the search to move across
local regions to identify those that contain the lowest energy and then focus on
these. This capability of the simulated annealing algorithm to avoid local optima,
without requiring random restarts, led us to choose it as a base algorithm for our
search process.

As noted before, the accuracy of the gradient-descent algorithm in minimizing an
objective function within a basin of attraction that contains the solution stems from
the fact that it repeatedly moves in the direction of steepest descent. It could be
rewarding to combine such a local optimization technique with the simulated an-
nealing process. The problem here is that there is no way for us to exactly calculate
the gradient of the energy function. However, we can still incorporate approxi-
mate gradient information: we do this by approximating the partial derivative in
each direction and choosing which dimension to move in based on proportional
selection relative to these partial derivatives. We estimate the partial derivative in
a dimension by evaluating two different solution points varying in that dimension

9Since we can not compute the exact gradient, this process will only approximate gradient de-
scent.
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and performing linear interpolation. We store these estimated partial derivatives
for each parameter as we move through the search space and update them period-
ically.

What further complicates our problem is that the computational cost of evaluating
the energy function is not constant, but depends on the parameters used by the
model. Some parameter choices can result in very dense networks, which can take
a long time to generate. This led us to introduce a method of lazy evaluation, which
we call early rejection. The aim here is to estimate the energy at a given point early
on in the generation of the network and to terminate the energy calculation and
network generation if the energy estimate is too low.

We now provide more details of our adaptations to the simulated annealing algo-
rithm and we present our final search algorithm in Algorithm 5.2.

Algorithm 5.2 Our modified simulated annealing

s getStartState() . Starting state is chosen
sbest  s . Store initial best solution

k 0
while k < kmax do . While there’s time left

p getDimension() . Preferentially choose the parameter to change
s0, s00  neighbors(s, p, T) . Get candidate neighbors w.r.t dimension p

updateGradient(Ê(s0)� Ê(s00), p) . Store the new slope for p

if E(s0) < E(sbest) then . If s0 has the lowest energy so far
sbest  s’ . Store new best solution

end if
if E(s00) < E(sbest) then . If s00 has the lowest energy so far

sbest  s” . Store new best solution
end if

T  Temp(k/kmax)
if P(

��Ê(s0)� Ê(s00)
�� , T)) > random() then . We are moving downhill

s argmin{Ê(s0), Ê(s00)}
else . We are moving uphill

s argmax{Ê(s0), Ê(s00)}
end if
k k+1

end while

return sbest . Return the best solution found
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5.3.3 Approximate gradient-based decisions

We noted that, even though we can not calculate the gradient of the energy function
directly, we can approximate it to some degree. Incorporating this information
into our search algorithm could improve the performance of the algorithm, since
repeatedly choosing a direction to move in using proportional selection based on
exact partial derivatives would cause updates in the same expected direction as
gradient-descent.

To achieve this, we choose two candidate neighbors, s0 and s00, instead of just the
one in the original simulated annealing formulation. The two neighbors differ from
the current state in the same dimension, that is, one parameter of the current solu-
tion s is incremented by wT to form the neighbor s0 whereas the same parameter
is decreased by wT to form s00. The difference in energies, scaled by the step size,
E(s0)�E(s00)

2wT
, then represents the approximate partial derivative in the dimension cor-

responding to the parameter that was changed. By storing these approximated
partial derivatives, we can choose the parameter to alter at each timestep using
proportional selection based on partial derivative estimates. Note that only one
parameter’s partial derivative estimate is updated each timestep. An alternative is
to update all the partial derivatives in every timestep, but this is computationally
too expensive. Especially in the case where the partial derivatives in one or two
directions greatly exceed the others, the extra computation required to recalculate
all the partial derivatives is not justified by the performance increase.

Another subtle difference from the original algorithm is that we do not allow the
algorithm to remain at a state for longer than one time step. The algorithm moves
to the state with higher energy with probability:

P(DE, T) =
1

1 + exp
⇣
|DE|

T

⌘ ,

otherwise it moves to the state with lower energy.10 Assuming the current solu-
tion’s energy lies between those of the candidate neighbours, this rule boils down
to proportional selection based on the probability that the original one-sided deci-
sion process of simulated annealing would have chosen the point.

10Since both |DE| and T are positive, the probability of accepting a worse state is between 0 and
1/2. The bigger the energy difference, the smaller the probability of accepting a state with higher
energy will be.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. FITTING THE MODEL 59

5.3.4 Early rejection

It is often clearly visible early on in a simulation that the current set of parameters
yield a bad fit for the network. In such a case, it is a waste of time to complete
the simulation and calculate the exact energy at that state. The speed of the search
process can be greatly increased by estimating the energy of a state s early on in the
simulation process, with the use of a proxy energy function Ê(s), and terminating
the simulation if the estimated energy is too far above the energy of the best state
we have encountered so far. We refer to this process as early rejection. In order to
be able to move to a state even if it has been rejected early, we instead base the
probability of moving to the neighboring states on estimated, rather than actual,
energies. Our simulated annealing algorithm thus searches the parameter space
to optimize the proxy energy function, but along the trajectory, we calculate the
actual energy function at promising locations: the proxy energy function decides
which states might be candidate best states and, for these states, the simulation is
completed and an exact energy value is calculated.

We decided to base the proxy energy function Ê(s) on a static snapshot of the graph
after the first n0 nodes joined. There are two reasons why we chose to use a static
snapshot rather than using a dynamic approach:

1. Network data at the birth of the network are usually noisy and the evolution
in the initial stages is highly dependent on the methods of deployment used.
Only after a while does the network ’stabilize’, or lose influence from external
factors. This discrete point in the network’s evolution is often easily identi-
fiable in the network data. By choosing n0 past this stabilization point11, we
can get a better estimate of the energy by looking at this static snapshot of the
network than by incorporating the noisy data from the birth of the network.12

2. Calculating the estimated energy on a static snapshot is much faster than cal-
culating it for every graph up to that point. Since this operation is performed
during every single iteration of the algorithm, this greatly reduces the com-
putational requirements of the algorithm.

Since many simulations will possibly be rejected and E(s) will not be calculated for
11For the Corporate Network (CN) and Friendship Network (FN) we use n0 = n/3 and n0 = n/6

respectively.
12Note that the noisy data are included in the temporal calculations but the effect of the inclusion

thereof is minimal for a full network.
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(a) Average degree (b) Clustering coefficient

Figure 5.1: Contour plots over the g, b parameter space. The other parameters were
fixed at: a1 = 2.5, a2 = 2.5, w = 0.15, n = 1200.

these states, we need to adapt the definition of the energy function to:

E0(s) =

(
• if Ê(s) > Ê(sbest)⇥ (1 + d)

E(s) otherwise

where d > 0 sets the threshold for the early rejection.13

5.3.5 Contour-based initialization

Through experimentation we found that areas associated with high energy often
result in highly connected networks which take a very long time to process. In an
effort to avoid these areas of high energy (the average degree of these networks
greatly exceeds the desired degree), we considered choosing the initial parameters
in such a way that the average degree and clustering coefficient of generated net-
works are close to their target values.

In order to choose such parameters for any desired average degree, we performed
a set of simulations over the g and b parameters of our model, whilst keeping the
other parameters fixed. We used the characteristics of the resulting networks to
construct a contour plot of the average degree as well as the clustering coefficient.
These contour plots are shown in Figure 5.1. Given a network G that we want to
model, we then choose the initial parameters in the following way:

1. Calculate the average degree dG and clustering coefficient CCG of the original
network G at n = 1, 200 nodes.

13Experimentally, we found d = 0.4 to be a good threshold.
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2. From the contour plot of the average degree, extract the contour of (g, b)
pairs that provides the closest match to dG.

3. Using these (g, b) pairs and the contour plot for the clustering coefficient,
determine which pair provides the closest match for CCG.

4. Set the other parameters to their default values: a1 = 2.5, a2 = 2.5, w = 0.15,
n = 1200.

5.4 Evaluation of our method

In the previous section we discussed our search algorithm based on the simulated
annealing algorithm, but with three adaptations: contour-based initialization, early
rejection and gradient-based decision making. We now give a experimental analy-
sis of these adaptations. All experiments were performed on a Unix server with an
Intel Xeon® 2.50GHz CPU and 8Gb of RAM.

5.4.1 Initialization
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Figure 5.2: Cumulative plots of the best energy found and the running time of 80
simulations using a random initialization procedure and 80 simulations using our
contour-based initialization procedure. We terminate each curve at the maximum
data point in that series.

To evaluate our initialization method, we fitted our model to the Friendship Net-
work (see Section 1.4) through two sets of 80 simulations, each consisting of a single
run of our adapted simulated annealing algorithm, with 20 iterations (kmax = 20).
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For the first set, we used a random initialization process and for the other 80, we
used contour-based initialization. All simulations made use of both early rejection
and gradient-based decisions. We recorded the running time of each simulation
as well as the minimum energy obtained from the simulated annealing process.
These results are summarized in Figure 5.2. As we set out to do, our initialization
process reduced the average runtime of the simulated annealing process, yielding
an average runtime of 66 minutes compared to the 93 minutes average runtime
obtained with random initialization. The runtime of the longest simulation was
also decreased by 29.7% to 304 minutes. However, random initialization achieved
a somewhat better average minimum energy and an overall best energy of 1.52
which is much lower than the 3.9 obtained with the contour-based initialization.
In fact, the random initialization procedure yielded 22 solutions with energy lower
than 3.9.
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Figure 5.3: Results of 80 simulations using a random initialization procedure and
80 simulations using our contour-based initialization procedure.

An important difference between the two sets of simulations is the variance in the
runtimes and energies. Our proposed initialization method reduces the amount of
fluctuation in the runtimes, with a standard deviation of 53 minutes compared to
the 70 minute standard deviation of the random initialization procedure. The same
occurs with the minimum energies, however, with our initialization technique re-
ducing the standard deviation from 3.95 to 2.0. These results are summarized in
Figure 5.3 which clearly show that our initialization process reduces the random-
ness of the search. Although this is beneficial in terms of resources, it seems our
proposal bounds the search space and limits exploration of some low-energy re-
gions, which impedes the algorithm’s ability to find an optimal solution. For all
further simulations, throughout this study, we used random initialization, rather
than our proposal, in the simulations.
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5.4.2 Early rejection

To test whether our early rejection method reduces the amount of time required to
find a good solution, we allowed two different versions of our adapted simulated
annealing algorithm to complete as many simulations as possible in 40 hours. The
one version used simulated annealing without early rejection and in the other we
introduced early rejection. The objective was to measure how much accuracy we
lose and how much time we gain with the use of early rejection. The results are
shown in Table 5.1.

No early rejection Early rejection
Simulations completed 16 34
Average lowest energy 5.04 5.86
Standard deviation of lowest energy 3.44 2.89

Table 5.1: The results from two 40-hour simulations, one without early rejection
and the other with.

As expected, simulated annealing without early rejection yielded a better mini-
mum energy on average. This is caused by the fact that every single solution
point is considered as a candidate best solution and the trajectory of the search
is guided by the actual energy function, whereas with early rejection, some so-
lution points are thrown away without being fully analyzed and the trajectory is
guided by the proxy energy function. The time gained by using early rejection is
substantial though. On average, the simulations without early rejection took more
than twice as long to complete, resulting in only 16 simulations completing within
the time frame of the experiment, compared to the 34 simulations completed in the
same time frame when using early rejection.

To determine the loss in accuracy incurred by using early rejection, we took the
first 16 simulations in each set and estimated the probability that a simulation us-
ing early rejection would yield an inferior result to one not using early rejection.
We did this by considering all 162 pairs of simulations from different sets and cal-
culating the proportion of pairs in which the simulation without early rejection was
better than the simulation with early rejection. Using this estimator, we found the
probability that using early rejection would yield inferior results to be p = 0.68.

Although this probability is well above the desired 50%, it must be kept in mind
that the simulations using early rejection required less than half the running time.
This means that it is possible to complete two simulations when using early rejec-
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tion for every one simulation not using early rejection. This led us to re-perform
the previous experiment, but this time allowing two simulations using early rejec-
tion for every simulation not using early rejection. We then keep only the best one
of the two simulations that used early rejection and compare this set of 16 simu-
lations to the original set of 16 simulations not using early rejection. In this case,
we found the probability that early rejection would yield an inferior result to be
p = 0.39, and the average lowest energy to be 3.4 with a standard deviation of 1.6.
Thus, it is a better option to complete more simulations using early rejection than
to increase the running time of every simulation by fully evaluating every single
solution point. For all the simulations in this study, we used early rejection.

5.4.3 Approximate gradient-based decisions

Lastly, we analyzed the effectiveness of the gradient-based method we use when
deciding in which dimension to move in the search space. To see whether this im-
proves the quality of the search results, we completed two sets of 50 simulations,
with each simulation consisting of a single run of the adapted simulated annealing
using early rejection, with kmax = 20. For the first set, the decision of which di-
mension to move in was made at random. For the second set, we used our method
of choosing preferentially based on the estimated partial derivative in each dimen-
sion. In Figure 5.4 we show a cumulative plot of the lowest energies obtained in
the simulations.
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Figure 5.4: A cumulative plot of the number of solutions found with energy below
certain thresholds using simulated annealing with approximate gradient-based de-
cisions and simulated annealing with random decisions. The curves are terminated
at the maximum data point in that series.
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Figure 5.4 supports our belief that choosing the dimension based on approximate
gradient information yields better results than choosing randomly. Our proposed
decision making method improved the average energy obtained by 22%. To further
quantify this improvement, we estimate the probability that approximate gradient-
based decisions would benefit a simulation. We do this by constructing a binary
square matrix A with entry Aij = 1 if the i-th simulation using gradient-based de-
cisions found a better solution than the j-th simulation using random decisions.
Using this estimator, we found that with probability p = 0.59 gradient-based deci-
sion making would improve the solution.

As expected, the gradient-based decision process reduced the running time, with
the average running time for one simulation with random decision making 44% (37
minutes) longer than with gradient-based decisions. We believe this is due to the
fact that gradient-based decisions cause the search process to leave high-energy re-
gions more quickly and this reduces the running time since moving through high-
energy regions, where the parameters causes the model to generate very dense
networks, is very computationally expensive. Note that, with simulated annealing,
the algorithm is expected to be more likely to go downhill, even with random de-
cision making. The improvement obtained using this process is a result of the fact
that the algorithm now chooses the ‘steepest’ slope to go down on.

Since gradient-based decisions making improves both the solutions found and the
running time of the algorithm, we use gradient-based decision making in all simu-
lations throughout this study.

5.5 Relationships to existing stochastic approximation
techniques

Stochastic approximation methods are algorithms that attempt to optimize objec-
tive functions which can not be evaluated directly, but only estimated via noisy
observations [103]. Since these methods do not use any direct gradient informa-
tion, they are also said to perform gradient-free stochastic optimization. The classi-
cal method for gradient-free stochastic optimization is the Kiefer-Wolfowitz finite-
difference stochastic approximation (FDSA) [104]. The FDSA method effectively
performs a stochastic version of gradient-descent, where the gradient is directly
approximated by estimating partial derivatives in each dimension.14 The partial
derivative in each dimension is estimated by linear interpolation between observa-

14This is the standard approach for approximating gradient vectors.
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tions at two perturbed points15, thus requiring 2d noisy evaluations of the objective
function, if the search space is d-dimensional. An alternative is to use one-sided
perturbation, which uses the current solution as the one observation in the linear
interpolation, and reduces the number of required noisy evaluations to (d + 1).

The simultaneous perturbation stochastic approximation (SPSA) method aims at
keeping the same general behavior, but reducing the number of observations. The
SPSA method makes observations at only two symmetrically perturbed points -
the perturbation obtained by perturbing each dimension by a random amount -
and estimating the partial derivative in dimension i by attributing the difference in
the observations entirely to the change in the i-th component between the two per-
turbed points. This reduces the number of objective function evaluations, relative
to classical FDSA, by a factor d. Surprisingly, in practice, SPSA and FDSA achieve
comparable performance for a given number of iterations, and as such, SPSA is
generally preferred over FDSA for computational reasons [104].

Note that both of these methods are, like gradient-descent, designed for local opti-
mization. One way to try to find a global optimum, is to introduce random noise
into the objective function evaluations, in order to reduce the accuracy of the es-
timated gradient [105]. As an alternative, both these methods could potentially
be combined with simulated annealing, as we did with our approximate gradient-
based decision approach. Our gradient estimation technique functions like FDSA,
in which each partial derivative is calculated through a separate perturbation. In
our method, however, only one partial derivative is updated per iteration, assum-
ing that the previous estimates for the other partial derivatives are still satisfac-
tory.16 Also, we do not cycle through the dimensions when performing derivative
updates, but rather update the derivative of the dimension chosen using propor-
tional selection relative to the estimated partial derivatives.

An interesting consideration is whether our simulated annealing process would
have benefited from simultaneous perturbation, like in the SPSA algorithm. Since
the performance of SPSA is comparable to that of FDSA with regards to finding
local optima, one would expect simultaneous perturbation to benefit our algorithm
when the temperature is low and the algorithm is focused on local optimization.
However, it is not clear how simultaneous perturbation will affect the simulated
annealing algorithm’s ability to move across local regions to avoid local minima.
Since the SPSA (and FDSA) methods always try to find the best direction to move

15Two points at an identical offset from the current state, but in opposite directions.
16This assumption is not always valid: in particular, there is a risk of ignoring dimensions which

happen to have a particularly small estimated partial derivative even when subsequent movement
in the search space has made the actual partial derivative in this dimension quite large.
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in, the difference in objective value between candidate solutions chosen along the
approximate gradient will be large, and this might reduce the randomness of the
simulated annealing algorithm, i.e. substantially reduce the probability of moving
uphill at each iteration of simulated annealing.

As the relationship between our method and stochastic approximation only came
to light at a very late stage in our study, it is not further examined in this work, but
it certainly merits future investigation.

5.6 Conclusion

In this chapter, we reviewed the way parameters are usually fitted for social net-
work models. We gave a general introduction to metaheuristics in Section 5.2 and
presented the gradient-descent and simulated annealing algorithms in detail in Sec-
tions 5.2.1 and 5.2.2. In Section 5.3, we proposed a search algorithm, which can be
seen as a hybrid of simulated annealing and gradient-descent using a proxy energy
function. An evaluation of our proposed adaptations to simulated annealing was
presented in Section 5.4. In Section 5.5, we related our model to existing stochastic
approximation techniques.
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Chapter 6
Results and discussion

In the previous two chapters, we proposed a random graph model and a method
for fitting the model to real-world networks. In this chapter, we proceed to inves-
tigate the quality of this model’s fit on two proprietary online social networks for
which we could obtain complete historical records.1 We compare the model’s per-
formance with two existing random graph models for social networks, focusing on
a range of temporal and static characteristics.

Section 6.1 explains our evaluation methodology and motivates our choice of exist-
ing models for comparison purposes. In Section 6.2, we analyze the data sets and
explain the methods we use to obtain optimal parameters for each of the models in
fitting these data sets. We then proceed to analyze the relative quality of the various
models’ fits to the data sets with regards to average separation (Section 6.3), clus-
tering coefficient (Section 6.4), transitivity (Section 6.5), degree distribution (Sec-
tion 6.6), network densification (Section 6.7) and shrinking diameter (Section 6.8).

6.1 Method of evaluation

We use two real-world data sets to evaluate our model. To evaluate the perfor-
mance of our model in generating networks structurally similar to real-world net-
works, we compare our model to two existing models. We chose the PA model
(Section 3.1.3) as a benchmark because of its prominence in the literature. To in-
vestigate the relative performance our model provides over the existing top-down

1These records do not include nodes or connections that were removed from the network. Since
this data is not usually available, we do not try to incorporate the removal of nodes/connections in
our model.
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models, we also chose the GL model (Section 3.2.1) to compare to. In the class
of top-down models, the GL model and the model of Lattanzi and Sivakumar are
the current state of the art, with the GL model being the only existing model that
can produce networks which include isolated nodes. The model of Lattanzi and
Sivakumar implies a restrictive lower bound on the degree, which was a deciding
factor for us in choosing the GL model since both real-world networks contain a
significant number of isolated nodes and nodes with lower degree. Another criti-
cal factor for us is the generation of complete temporal data in both the PA and GL
models, which allows for a more rigorous analysis than with other state-of-the-art
bottom-up models, such as Kronecker graphs (Section 3.1.9), where the number of
nodes increases exponentially in the number of iterations. We base the comparison
with the PA and GL models on the characteristics presented in Section 2.2.

In fitting the models to the networks, our main requirement was that the models
should produce networks with the same number of nodes and approximately the
same number of connections as in the real-world networks.

To obtain estimates for power-law parameters, we used the method and imple-
mentation of Clauset et al. [106] which uses maximum-likelihood fitting methods
in combination with Kolmogorov-Smirnov goodness-of-fit tests.

Since all random graph models use a probabilistic process in generating networks,
no two networks generated with the same model will be identical. Although the
generated networks are unique, they show similar structural properties if evalu-
ated based on the characteristics described in Chapter 2. In Table 6.4, at the end of
the chapter, we present the mean value for all the characteristics of the networks
generated by the various models, together with approximate 95% confidence in-
tervals2, calculated over 100 identical simulations for each model. The size of the
confidence intervals indicate that the margin of error is negligible for the conclu-
sions made in this chapter. As such, many of the charts presented in this chapter
are based on a single run of every model, and we omit error bars for the purpose of
visual clarity. In these cases, the networks we chose to represent each model were
chosen in such a way that their characteristics closely resemble the mean values.

All experiments were performed on a Unix server with an Intel Xeon® 2.50GHz
CPU and 8Gb of RAM.

2The confidence intervals are calculated using Student’s t-distribution, which assumes that the
samples are normally distributed.
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6.2 Model parameters

Table 6.1 is an extract from Table 6.4, showing a summary of the characteristics
of the real-world social networks employed in this study. Our first data set, the
Corporate Network (CN), is from a proprietary corporate social network owned by
a multi-national holding company. It is a closed network in which employees can
connect with colleagues in other companies owned by the umbrella company. Our
second network, the Friendship Network (FN), is a South African social network
attracting young people through a local presence in entertainment venues.

N M a(N) CC(N) AS(N) ED(N) D(N) DPL
CN 1265 4753 1.63 0.29 2.94 3.62 7 1.71
FN 13295 40679 1.87 0.021 4.11 4.89 11 1.36

Table 6.1: Information about the networks, showing the total number of nodes (N)
and connections (M), with the estimated power-law parameter of the degree distri-
bution (a), the clustering coefficient (CC), average separation (AS), effective diam-
eter (ED), network diameter (D), and densification power law (DPL) exponent.

Although both networks strongly exhibit all the properties of social networks dis-
cussed in Section 2.2, they are structurally very different. The separate companies
in the CN form dense communities, whereas the FN shows a much lower degree
of clustering: the CC of the CN is 14 times that of the FN. Despite this, the average
degree of nodes in the FN is only 20% less than those in the CN. Modeling both
of these networks accurately poses an interesting challenge, since it requires the
model to show a great deal of flexibility.

In the PA model, there is only one parameter, m0: the number of connections a
node creates upon its entry. We use maximum-likelihood to fit the PA model to
these two networks, choosing m0 as half the desired average degree k. Because
m0 must be an integer, we generate networks using m0 = dk/2e. This causes the
resulting networks to have at least the number of connections the original network
has.

For the GL model, we initially used the method from the original paper, described
in Section 3.2.1, to obtain parameters for the model. Initial experiments showed
that these parameter values for the GL model are far from the optimal values for
fitting the two real-world data sets.3 This is due to the failure of the GL model

3Based on a comparison of average degree, CC and power-law exponent of the degree distribu-
tion.
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to incorporate bipartite clustering, noted by the authors in the original paper. This
means that the parameter estimation technique does not account for the amount of
overlap between the cliques. Note that what Guillaume and Latapy call the overlap
parameter, l, is merely a measure of the average number of cliques a node belongs
to and is not a measure of the overlap between these cliques. Thus, l measures the
average degree in their bipartite graph, not bipartite clustering.

Since there is a significant amount of neighborhood overlap between the cliques in
the original networks, and this is not reflected in the parameters of the GL model,
the cliques in the GL-generated network are more disjoint, rarely having more than
one node in common. This means that the cliques a node belongs to are more dis-
joint, which results in a larger number of dense communities in the social network
and a bigger set of neighbors for each node. Consequently, this yields much denser
networks with higher CC and average degree than the original network.

In order to find parameters for the GL model that fit the real-world data sets bet-
ter, we divided the real valued domains of the parameters l 2 [0, 1] and µ 2 [2, 5]
into 50 discrete values,4 and performed a grid search for the optimal parameters. In
evaluating the quality of the fit, our main criteria were producing the same number
of connections as the data set, and reducing the CC of the network.5 These were
natural choices, since the failure of the GL model to reflect bipartite clustering re-
sults directly in an over-estimation of the average degree and CC. We found that
for both networks, we obtain a better fit if both l and µ are smaller than the values
estimated using the technique from the original paper. We present the original pa-
rameters, µ and l, together with the parameters obtained through the grid search,
µ

0 and l

0 in Table 6.2. Note that, although the maximal clique-decomposition re-
quired to calculate µ and l is computationally expensive, our grid-search takes
even longer, and as such, provides no improvements in terms of computational re-
quirements. We refer to the model using parameters l

0 and µ

0 as the GLG model.6

µ l µ

0
l

0

CN 3.89 0.89 2.50 0.80
FN 2.09 0.83 1.93 0.79

Table 6.2: The two sets of parameters for the GL model as obtained by the maximal
clique decomposition and grid search respectively.

4Technically, µ 2 (0, •) but the interval µ 2 [2, 5] contains both sparser and denser networks
than the real-world networks, and as such we did not consider values of µ outside this interval.

5This corresponds to minimizing the energy function (5.1) with wCC = 2wdeg and
wPL, wDPL, wiso = 0.

6GLG is short for GL with grid-based initialization.
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For detailed results of the simulations using the different parameter sets, refer to
Table 6.4. The GL and GLG models generate networks with very high cluster-
ing compared to the real-world networks, but, in both cases, the GL model pro-
duced networks with higher average degree and CC than the GLG model. To fur-
ther understand why the GLG model outperforms the GL model, we performed
a maximal clique-decomposition on the original networks and the GL-generated
networks and plotted the maximal clique size distribution in Figure 6.1. It is clear
that the average clique size in the real-world networks is much smaller than in the
generated networks. In the case of the CN, the GLG model’s maximal clique size
distribution is much closer to the real-world network’s, with a lower average clique
size than the GL model. In the case of the FN, the maximal clique size distributions
of both models have much longer tails than the real-world network, although the
GLG’s is slightly shorter. This could explain the lower degree of connectivity and
clustering observed in the GLG-generated networks. We will use the GLG model
for the rest of this study, since it models the real-world networks more accurately.

(a) Corporate Network (b) Friendship Network

Figure 6.1: The maximal clique size distributions of the real-world networks to-
gether with the GL- and GLG-generated networks.

For our model, we used our modified simulated annealing method described in
Chapter 5 to find suitable parameters for generating networks that are similar to
the data sets. The resulting parameters are presented in Table 6.3.
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b g a1 a2 w
CN 0.13 0.83 1.74 1.85 1.45
FN 0.03 0.43 2.32 1.9 10.8

Table 6.3: Our model’s parameter estimates for the CN and the FN. We sample the
user activities and the commitments from power-law distributions with parameters
a1 and a2 respectively.

6.3 Average separation

Recall from Section 2.2.1 that the average separation is defined as the mean short-
est path length between a randomly chosen pair of distinct nodes in the network.
In social network literature, the path length between pairs of nodes which are not
connected is defined as zero, which causes this measure to be easily influenced by
isolated nodes.7 To make the measure more robust, we calculated the average sepa-
ration only over the giant components of the networks. Figure 6.2 plots the average
separation of the nodes in the two real-world networks and the average separation
of the nodes in the generated networks. The sizes of the giant components of all
the networks are also indicated in Figure 6.2.

The PA model produced a much higher average separation in both cases. With the
PA model, all of the nodes are always part of the giant component since a node
is always inserted with connections to already existing nodes. This results in an
increase in size of the giant component, which, combined with the low clustering
in the network (discussed in Section 6.4) causes the nodes to be more separated on
average.

The GLG model produced lower average separations than the real-world networks.
The fact that the GLG model is constructed from fully connected communities
makes it intuitive that the giant component should contain a high number of nodes.
The random way in which these fully connected communities overlap also causes
the average distance between the nodes to be lower. This is because the loss in
overlap structure creates short paths between most communities since users are
more likely to form ‘bridges’ between communities. This was observed in both
networks.

Our model matched the average separation in both networks well, with devia-
tions of 2% and 11% respectively, although the PA model provided a slightly better
match to the FN network (7% deviation). The sizes of the giant components of the

7If the path length between unconnected nodes was defined as •, networks with more than one
component would not have a finite average path length.
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networks generated with our model also matched the sizes of the giant components
in the real-world networks closely.
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Figure 6.2: The average separation in the real-world and generated networks, to-
gether with the proportion of nodes that form part of the giant component (GC).

In examining the small-world effect, it is important to not only look at the aver-
age separation, a measure that doesn’t incorparate variance, but to also compare
the distribution of the path lengths. A histogram of the path lengths is plotted in
Figure 6.3. Note that this plot is a non-cumulative version of the hop-plot used by,
amongst others, Leskovec et al. [90]. We prefer this vizualization to the hop-plot,
since this emphasizes the number of longer paths present in the network and also
clearly shows the diameter.

Both the PA and GLG models tend to overproduce shorter paths, although the GLG
model clearly outperforms the PA model. Interestingly, despite the fact that the PA
model produces networks with the highest average separation, we note that the
PA model is extremely unlikely to produce networks with very long paths, since
each node is connected to at least m0 other nodes. This causes medium length
paths to exist between most pairs of nodes with high probability, which causes the
path-length distribution to not be sufficiently right-skewed (refer to Figure 6.3).
Our model matches the networks noticeably better than the other two models, but
slightly overproduces longer paths.

To further understand the why we observe these different path length distribu-
tions for the different models, we performed a maximal clique decomposition, and
plotted the maximal clique size distribution in Figure 6.4. This figure suggests
that the PA model fails to include shorter paths because of its inability to construct
larger cliques. The GLG model, on the other hand, tends to construct many larger
cliques, which explains the short average path lengths observed. Our model lies
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(a) Corporate Network (b) Friendship Network

Figure 6.3: Pairwise distance histograms of the real-world and generated networks.

between these two extremes, and matches the real-world distributions better, al-
though our model still overproduces larger cliques which explains why, in both
cases, our model’s average separation was lower than desired.

(a) Corporate Network (b) Friendship Network

Figure 6.4: The maximal clique size distributions of the real-world and generated
networks. The tail for the GLG model’s distribution is not fully shown. The largest
maximal cliques obtained with the GLG model was 15 and 22 for the CN and the
FN respectively.

6.4 Clustering coefficient

Figure 6.5 shows the evolution of the CCs of the two networks and the fitted mod-
els. The CN shows an initial increase in clustering and starts to stabilize for n > 400.
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For the FN, the increasing trend still seems to be continuing. Our model is the only
model to capture this initial growth period of the networks in which the clustering
increases with network size.

(a) Corporate Network (b) Friendship Network

Figure 6.5: Evolution of the CCs of the real-world and generated networks. Note
that due to the high CC of the GLG compared to the low CC of the FN, we are
forced to use a logarithmic y-axis on the right.

The PA model yields a CC with an almost exponential decrease, a trend that is
clearly not observed in the true data. For the highly clustered CN, the final CC
yielded by the PA model is about ten times lower than desired. This is due to the
fact that the average degree in the PA model is constant during the development of
the network, which restricts the formation of triangles. This is further discussed in
Section 6.5.

The GLG model, on the other hand, generates a more clustered network with a CC
double that of the CN. Our model fits the CC well throughout the evolution of the
network.8

The FN shows an extremely low degree of clustering compared to the CN, although
its CC is still about 60 times that of a purely random Erdős-Rényi graph. Once
again, the PA model shows an exponential decrease with a final CC that is a fraction
of the real network’s. On average, the GLG model exceeds the real network’s CC
by a factor of 20. Our model matches the evolution of the CC more accurately, with
about double the amount of clustering than present in the real network.

The results of the GLG model on the FN exhibit the incapability of top-down mod-
els using the deterministic flattening rule to generate social networks with low CCs

8Apart from the initial noisy phase (n < 340), our model is consistently within 20% of the true
value.
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and high average degree. The reduced flexibility imposed by the deterministic flat-
tening rule seems to be a serious limitation. In the case of the FN, which shows a
CC one fourteenth that of the CN, the GLG model’s CC only decreased by a fac-
tor of 0.25. This demonstrates that the existing top-down models are more suited
to modeling highly clustered networks. Our model, on the other hand, composes
the network of quasi-cliques which allows the model to produce communities with
lower density. Our model showed much greater flexibility, with the CC in the case
of the FN being a factor 8 smaller than in the case of the CN. This being said, our
model still produces networks which are too clustered, although the fact that the
CC is the same order of magnitude as the real-world networks’ suggests that our
probabilistic flattening rule is a step in the right direction.

6.5 Transitivity

Transitivity refers to the tendency of triangles to form in a network. The most pop-
ular measure of transitivity is, indeed, the clustering coefficient analyzed in the
previous section, but in this section, we do a more in-depth analysis of the degree
of triangle participation in the network. A popular visualization, recently used
by Leskovec et al. [41], is the node triangle participation graph, discussed in Sec-
tion 2.2.4. We present the node triangle participation graphs for the two networks
in Figure 6.6.

(a) Corporate Network (b) Friendship Network

Figure 6.6: Node triangle participation plots for the real-world and generated net-
works. Since we use a log-scale, T0 can not be included in the graph, so these values
are shown in the legend. Note that these plots are based on the static, fully evolved
networks.
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The PA model failed to produce the long tail observed in the real-world networks,
with almost no nodes participating in more than 10 triangles and a large percentage
of nodes not participating in any triangles. This very small number of triangles
explains the low CC observed in Section 6.4. Whenever a new node is inserted,
it connects to m0 other nodes, resulting in a constant average degree. This causes
the transitivity in the network to decrease as the network grows. This is due to
the fact that a triangle can only form if a new node chooses two already connected
nodes to connect to. The probability of this happening decreases as the network
size increases, since nodes are more likely to connect to older nodes (due to the
age-degree correlation), regardless of the social distance between these older nodes.
Furthermore, since the probability of a node being part of a triangle decreases as
nodes are added to the network, the probability of a node forming part of multiple
triangles decays exponentially.

The GLG model exhibited opposite behavior, failing to include enough nodes that
have low triangle-involvement. This directly correlates with the observed high CC
in Section 6.4. This is very intuitive, since a node’s participation in a community of
size k under this model means that it will be part of a k-clique in the resulting social
network, guaranteeing that it will be part of at least (k�1

2 ) triangles in that single
community. The result is that there is a direct correlation between the average de-
gree and the transitivity in the resulting social network, which explains the limited
flexibility of the model.

Our model provided the most accurate match to the real-world networks in both
cases, with a slightly lower level of transitivity than the CN and a slightly higher
level of transitivity than the FN. It is evident that our model breaks the correlation
between degree and transitivity which the GLG model is subject to. Our model also
closely matches the number of nodes not involved in any triangles, with deviations
of 2% and 11% from the true values of the CN and FN respectively. This is a major
improvement over the GLG, which deviates by more than 50% from the true value
in both cases.

6.6 Degree distribution

Figure 6.7 shows the degree distributions of the fully evolved real-world and gen-
erated networks. Recall from Section 2.2.5 that a truncated power-law distribution
takes the form

P(k) µ k�a for k > kmin .
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A log-log plot of such a distribution should thus be roughly linear with slope �a.
All three models produce power-law degree distributions. However, the minimum
degree m0 of the PA model is very high compared to the real-world networks and
the maximum degree is very low, i.e. the distribution has a much shorter tail than
that of the real-world networks. This can be observed by the steeper downward
trend for the PA model than for the real-world networks.9

Our model yields a close match for both networks, with the GLG model also pro-
viding a better fit than the PA model, but with more deviation from the real-world
networks than our model. From Figure 6.7, it can be seen that the GLG model over-
produces nodes with degree in the range d < 10 and underproduces nodes with
degree in the range d > 10. This can be viewed as a consequence of the correla-
tion of nodes’ degrees within local communities. For the GL model to produce a
node with higher degree, this node has to be a part of a larger community which,
when translated into a clique, will result into higher degrees for all other nodes in
that community. This causes an increase in average degree, and since we only con-
sidered graphs with an accurate average degree, the chosen graph can not include
such a large number of nodes with high degree.

Once again, this proves the value of our quasi-clique approach. Within local com-
munities, some nodes are able to obtain high degrees, based on their high com-
mitments to those communities, and this has no direct influence on the degrees of
other nodes in those communities.

Since we are interested in the development of the network, we also want to examine
the evolution of the power-law parameter, a, as the network develops. We used the
method of Clauset et al. [106] to analyze the degree distributions. This method
estimates the truncation threshold, kmin, using a maximum-likelihood estimator
bkmin. For both the real-world networks, their method yields bkmin = 1. Since the
value of a, estimated from a network, depends heavily on the value of kmin used
in the calculation, we decided to perform an initial experiment in which we use
the same value of kmin = 1 for all the generated and real-world networks. The
evolution of a is presented in Figure 6.8.

In both real-world networks, a decreases before stabilizing, although in the CN,
a shows a slight increase towards the end. Thus, both networks start out with a
degree distribution with a shorter tail, and this tail gradually grows before a sta-
bilizes. None of the models replicate this behavior. Our model also shows a slight
initial decrease in a, although this decrease is not as noticeable as in the real-world

9A known issue with the PA model is that it can only produce networks for which the degree
distribution has a power-law parameter close to 3 [59].
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(a) Corporate Network

(b) Friendship Network

Figure 6.7: Log-log plots of the degree distribution of the real-world and generated
networks. The plots are based on the static, fully evolved networks.

(a) Corporate Network (b) Friendship Network

Figure 6.8: Evolution of the power-law parameters of the real-world networks com-
pared to those of the three models, using the fixed value kmin = 1 to estimate the
power-law exponent for each network.

networks. The GLG model does not show this trend, yielding a power-law pa-
rameter which increases somewhat, although the model’s final degree distribution
closely matches that of the FN network. Our model deviates from the evolution of
the power-law parameter of the CN for n < 600, and thereafter provides the best
fit to the data.
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It is important to note that bkmin = 1 is not the optimal estimate for all of the models.
In Figure 6.9, we plot the evolution of the power-law coefficient using the estimated
value, bkmin for each model.10 Our model is the only model for which bkmin = 1, as in
the real-world networks. This means that both the PA and the GLG models deviate
from power-law behavior for the lower degrees, as was seen in the static snapshot
in Figure 6.7. With the optimal estimates of bkmin, both the PA and GLG models fit
power-law distributions with shorter tails than the real-world networks.

k

k

k

k

(a) Corporate Network

k

k

k

k

(b) Friendship Network

Figure 6.9: Evolution of the power-law parameters of the real-world and generated
networks.

6.7 Network densification

In Section 2.2.6, we discussed the DPL exponent, a measure based on the observa-
tion that the number of connections in a social network typically scale superlinearly
in the number of nodes, i.e. for some 1 < r  2, we have mt µ nr

t . In Figure 6.10,
we plot the number of connections against the number of nodes in the real-world
networks and the fitted models. For each network, we also indicate the network’s
densification exponent, r, which we estimate using a least-squares fit.11 In the CN,
we see strong superlinear growth for n < 800, after which the curve suddenly
flattens. This could be due to external factors (e.g. marketing) and it causes the es-
timate of r to be higher than we expect. Although much lower, our model provides

10Since the value of bkmin changes as the network evolves, we choose the median value as our
estimate. In all cases, the median occurred with high frequency.

11We use linear regression to fit a straight line to the log-log plot of the data. Since mt = knr

t =)
log mt = log k + r log nt, r can be estimated by calculating the slope of the line.
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the strongest superlinear growth of the three models, with the PA model yielding
linear growth by its design.

The DPL exponent of the FN is r = 1.36. The GLG model shows an almost linear
trend on the FN, so that our model is the only one to replicate noticeable densifica-
tion in this case, although at a slower rate than the real-world network. This could
be explained by the observation made in Section 6.6 that our model is the only
model that does not underproduce nodes with degree in the range d 2 [10, 100].
As the network grows, the average degree in the network needs to rise, and if the
model underproduces nodes with degree in this range, the average degree will in-
crease at a slower rate.

(a) Corporate Network

(b) Friendship Network

Figure 6.10: Log-log plots of the number of connections vs the number of nodes, to-
gether with the densification exponent for the real-world and generated networks.

6.8 Shrinking diameter

Section 6.3 discussed the average separation of the real-world and generated net-
works. Recently, Leskovec et al. [41] also analyzed the change in network diameter
over time and found that a number of current real-world networks show a de-
creasing trend in effective diameter (see Section 2.2.2). We show the evolution of
the diameters and effective diameters of the real-world and generated networks in
Figure 6.11.

The diameters of the two real-world networks behave differently, the CN showing
an increase over time and the FN a decrease. However, with the effective diameter,
the trend is similar for both networks: they show an early decrease in effective
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Figure 6.11: The full diameters and effective diameters of the real-world and gen-
erated networks. The exact values of the diameter and effective diameter for each
network is shown in Table 6.4.
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diameter, and then seem to stabilize for n > 600 in the CN and for n > 8000 in the
FN. All three models provide a reasonably good match for the effective diameter
of the CN but in the case of the FN both our model and the GLG model produce
a lower effective diameter than the real-world network. The decreasing effective
diameter of the FN for 700 < n < 3000 is not observed in any of the models, with
all three models showing a more stable initial effective diameter.

Interestingly, the PA model shows very few fluctuations in diameter with a slight
increasing trend. Bollobás and Riordan [107] showed analytically that in the case
of the PA model, the diameter increases almost logarithmically:

D(n) ⇡ log n/ log log n.

There is also little difference between the actual and the effective diameter of the
PA model. This is a consequence of the high minimum degree. Every node can be
reached through at least m0 different neighbors, making it highly unlikely that a
degenerate configuration (like a chain of nodes) will cause the diameter to greatly
exceed the effective diameter. However, it is clear that both real-world networks
are subject to such fluctuations in the diameter, and our model and the GLG model
better incorporate this behavior.

6.9 Conclusion

In this chapter we compared our model to two existing random graph models by
analyzing the capability of the models to duplicate various characteristics of two
real-world social network data sets. In Section 6.3 we found that our model is the
only one to accurately match the larger separation and longer path lengths present
in the real-world networks. In Sections 6.4 and 6.5 we saw that our model im-
proves on the GLG model by relaxing the dependency between average degree and
clustering, enabling the generation of networks with high average degree and low
levels of clustering and transitivity. A detailed static and temporal analysis of the
degree distribution of the models was given in Section 6.6, finding that our model
provides a natural match to the degree distributions of the real-world networks. In
Section 6.7 we considered network densification and found that our model better
replicates the superlinear growth in connections that is observed in the real-world
networks. Section 6.8 showed that the initial decreasing trend in effective diameter
of both real-world networks is not observed in any of the models.

One has to keep in mind that our model is more complex than the other two mod-
els and takes five parameters compared to the two parameters of the GLG model
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and the single parameter of the PA model. Because of this, one would expect our
model to provide a better fit to the real-world networks. Throughout this analysis,
it has been evident that the two real-world networks show very different structural
properties, and we are convinced that the amount of flexibility required to model
both of these networks accurately justifies the use of an expanded parameter set.
This is evident by the fact that the PA model can only produce networks with very
similar, short-tailed degree distributions, and the GLG model can only produce
highly clustered, highly transitive networks. By introducing a few extra parame-
ters, we are able to overcome both these restrictions by increasing the flexibility of
the model, specifically with regard to the connection density within communities.
Regretfully, the exact extent of the required flexibility of such a model is still not
clear to us, since we only had access to two complete data sets.

CN PA GL GLG Our Model
N 1265 1265 1265 1265 1265
M 4753 5040 9099± 670 4826± 322 4516± 811

CC(N) 0.29 0.03± 0.005 0.78± 0.02 0.58± 0.033 0.27± 0.025
a(N) 1.63 2.92± 0.045 1.53± 0.02 1.75± 0.034 1.63± 0.07

AS(N) 2.94 3.27± 0.043 2.33± 0.05 2.83± 0.09 2.88± 0.12
ED(N) 3.62 3.73± 0.03 2.75± 0.03 3.26± 0.2 3.47± 0.25
D(N) 7 5.02± 0.28 5.02± 0.6 6.73± 1.43 7.5± 1.44
DPL 1.71 1.0 1.12± 0.04 1.12± 0.055 1.25± 0.15

(a) Corporate Network

FN PA GL GLG Our Model
N 13295 13295 13295 13295 13295
M 38112 39873 46559 37895 36845

CC(N) 0.021 0.004 0.47 0.39 0.034
a(N) 1.87 2.92 1.85 1.96 1.75

AS(N) 4.11 4.38 3.04 3.36 3.68
ED(N) 4.89 4.85 3.56 3.90 4.44
D(N) 11 7 8 9 12
DPL 1.36 1.0 1.048 1.04 1.21

(b) Friendship Network

Table 6.4: A detailed comparison of the real-world and generated networks, based
on the total number of nodes (N) and connections (M), with the power-law pa-
rameter (a), clustering coefficient (CC), average separation (AS), effective diameter
(ED), network diameter (D), and DPL exponent (DPL). For the CN, we show 95%
confidence intervals for the characteristics calculated over 100 identical simulations
for each model. Since the scale of these intervals are insignificant in terms of the
conclusions made, and the variance observed in the FN is smaller than the CN,
these are omitted for the FN.
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Chapter 7
Conclusion

In this study, we presented a dynamic top-down model that uses a probabilistic
process to convert the bipartite network into a social network. This is the first such
top-down model, with the other models all using a deterministic flattening rule.
We compared our model to two existing models and found that the probabilistic
flattening rule of our model provides more flexibility and was more accurate at
modeling two real-world data sets. We present a summary of the results in Sec-
tion 7.1. In Section 7.2 we summarize the contributions made through the course
of the study and in Section 7.3 we discuss possible extensions of this work.

7.1 Summary of investigation and results

Recently, a new family of random graph models for social networks, called top-
down models, have become popular. All of the existing top-down models, how-
ever, show limited flexibility and assume that each community will result in a
clique over its members in the social network. We investigated a probabilistic flat-
tening rule, allowing for variable connection density within communities in the
social network. In order to do so, we introduced a commitment value for each user-
community pair. When determining the probability of two users connecting, these
commitment values for mutual communities are used. Our model also explicitly
incorporates bipartite clustering, or the tendency of communities to overlap, by
choosing users’ new communities from the set of communities that overlap with
their existing communities. No existing models include bipartite clustering to this
extent.

An important aspect of a social network model is its effectiveness in reproduc-
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ing real-world characteristics. To fit our model to real-world networks we used a
stochastic optimization metaheuristic that can be seen as a hybrid of simulated an-
nealing and gradient-descent using approximate partial derivatives. We compared
our model’s performance with both the bottom-up PA model of Barabási and Al-
bert [34] and the top-down GL model of Guillaume and Latapy [27].

Our experimental results suggest that the PA model is unable to produce realis-
tically high levels of clustering and transitivity. Furthermore, because of its high
minimum degree and low flexibility, the PA model can only produce networks with
very similar degree distributions and proved to be unable to model our real-world
networks.

We found that the GL model’s failure to include bipartite clustering results in a
much lower average separation and diameter in the generated networks than in the
real-world networks. The random overlap structure between communities causes
nodes to be more likely to form bridges between communities, and this, combined
with the number of large cliques present, shortens the paths between distant nodes.
We observed that the GL model’s deterministic flattening rule can only generate
highly clustered and highly transitive networks, with shorter effective and actual
diameters than the real networks.

Our model’s inclusion of bipartite clustering allows for the creation of longer paths
and larger diameters. Our model is the only model able to generate networks with
low average separation and networks with high average separation. Through our
model’s ability to include sparser communities in the network, it showed major
improvements over the GL model, accurately modeling the clustering and transi-
tivity of both the real-world networks, even though the clustering in the one real-
world network was orders of magnitudes higher than in the other. The introduction
of commitment values between users and communities in our model allow some
nodes in a community to have high degrees based on their high commitments to
the community, without directly influencing the degree of any other nodes in the
community. This allows for more accurate reproduction of real-world degree dis-
tributions.

Although our model is more complex than the existing top-down models, we be-
lieve that this additional complexity is justified by our results: it is the first top-
down model that can accurately reproduce a variety of important social network
characteristics, namely average separation, clustering, degree distribution, transi-
tivity and network densification, simultaneously.
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7.2 Contributions

In pursuing the objectives of this study, the following contributions have been
made:

• We proposed a probabilistic flattening rule that makes use of users’ commit-
ments to mutual communities to determine the probability that they will be
connected. This flattening rule is the first non-deterministic flattening rule that
we are aware of for top-down models.

• In order to formulate the probabilistic flattening rule of our model, we in-
troduced the first use of a weighted bipartite network to model affiliations
between users and communities. We refer to the weights of the connections
between users and communities as commitments. Each user is assigned a com-
mitment value for every community it belongs to and these values allow for
variation of the degree of community members.

• We introduced a method for building a bipartite community structure in such
a way that bipartite clustering is modeled: users choose new communities to
connect to from communities that overlap with their existing communities.

• We presented an analysis of two temporal data sets of current online social
networks, comparing our model to two existing social network models.

7.3 Future work

In our model, each user is assigned an activity value and for each community they
are a part of, they are assigned a commitment value. All these activity and com-
mitment values are constant for the duration of the network generation. This is not
true to real-world behavior where people change their behavior over time, going
through periods of higher and lower activity on social networks. This behavior
could be incorporated in the model by treating activity and commitments as values
that change over time.

Our flattening rule, based on a combination of the two users’ commitments to their
mutual communities is the first probabilistic flattening rule, and although this flat-
tening rule experimentally improved upon the deterministic flattening rule used
by existing models, many different forms of this function could be examined.

During the generation of a social network using our model, no nodes or connec-
tions are ever removed from the network. In real-world networks, both nodes and
connections can be removed. Due to the unavailability of data for removed entities,
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we did not attempt to include this in the model. Should such data become avail-
able, removal of nodes and/or connections could be incorporated in the model.

The method we use for parameter estimation uses an energy function (defined in
equation 5.2) that is not symmetric around the target value. Using this energy
function, overestimates are able to achieve higher energies than underestimates.
Experimentally, this energy function worked better than some symmetrical ver-
sions we tried, since overestimates usually correspond to denser networks, which
take longer to process. Further investigation could be done in order to find a sym-
metrical form of energy function which still avoids denser regions in the search
space.

Our stochastic optimization metaheuristic shows very strong similarities to meth-
ods from the field of stochastic approximation, in particular the FDSA and SPSA
methods. A better theoretical understanding of our approach and a more thorough
comparison of our approach to these models, could help identify an alternative
method for parameter estimation, which could reduce the computational require-
ments for selecting parameters or even increase the accuracy of the model when
fitted to real-world social networks.

As noted, the experimental success of our model is qualified by the fact that we
only had two real-world data sets to evaluate it on. The model could also be tested
more extensively on other data sets, should they become available.

To date, top-down models have only been able to model highly clustered networks.
Our model enables networks with lower levels of clustering to also be modeled
using top-down models. However, as observed on the FN, our model could still
do better at generating unclustered networks with high degrees. Any future work
on the model should aim towards this property, which will further broaden the
general applicability of the model.
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