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“Therefore doth heaven divide 

The state of man in diverse functions, 

Setting endeavour in continual motion, 

To which is fixed as an aim or butt 

Obedience; for so work the honeybees, 

Creatures that by a rule in nature teach 

The act of order to a peopled kingdom.” 

- William Shakespeare (Henry V) 
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Abstract 

Gut microbial symbionts have recently been shown to play roles in ensuring overall host health, a 

hot topic in honey bee research.  Honey bees harbour a stable, core bacterial community in the gut, 

suggested to play a role in host health homeostasis, metabolic functioning, immune regulation, and 

food degradation.  This gut microbiota provides a unique opportunity to observe the effects of 

common stressors on honey bees.  Extrapolating the relationship of host-gut microbiota and 

immune system from higher hosts, we examined the effects of two common honey bee stressors; 

the indirect fungicide contamination and nutrient limitation.  Honey bee colonies were exposed to 

the fungicide chlorothalonil and limited to only a single pollen food source, respectively.  Effects 

of these treatments were observed through shifts in their gut microbiota using Automated 

Ribosomal Intergenic Spacer Analysis (ARISA).  The immune response of honey bees was 

examined through gene expression levels of three immune genes, namely; immune deficiency 

(imd), prophenoloxidase (proPO), and spaetzle.  The longevity of the honey bees was monitored 

through expression levels of vitellogenin (Vg).  Overall colony metadata was also taken to observe 

changes in colony productivity.  Both treatment groups were compared to an untouched, negative 

control group and a positive control group infected with Paenibacillus larvae.  Both the fungicide 

and nutrient limited treatments showed no significant effect on the hindgut microbial communities 

but showed significant effects on the midgut communities.  These treatments caused 

downregulation in the energy expensive Imd pathway, vital in the production of Anti-Microbial 

Peptides (AMPs), an invaluable defence against microbial pathogens.  The phenoloxidase pathway 

was upregulated, ensuring a higher activity of the encapsulation and melanisation process, perhaps 

to compensate for the observed reduction in activity in the other immune pathways.  Both 

treatments showed no significant effect on the gut-immune communicating Toll-like pathway. 

Honey bees within the nutrient limited group showed reduced colony productivity, probably as a 

result of delayed foraging, observed using Vg expression levels. Overall the treatments tested in 

this study significantly reduced the immune system of honey bees, opening the colonies up to 

potential secondary infections.  This study does not provide any reason to discontinue the current 

beekeeping practices tested here, but attention should be paid to prevent the possibility of infection 

of colonies under similar conditions as a result of reduced immune system.  
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Opsomming 
 

Inwendige mikrobiese simbionte speel ‘n belangrike rol om die algemene gesondheid van die 

gasheer te verseker en hierdie is tans ‘n belangrike onderwerp in heuningby-

navorsing.  Heuningbye huisves a stabiele en kern bakteriese gemeenskap in die 

ingewande.  Hierdie bakterieë speel moontlik ‘n rol in die gasheer se homeostase, metaboliese 

funksionering, immuunregulasie en voedselverwerking.  Hierdie inwendige mikrobiota voorsien a 

unieke geleentheid om die effek van algemene stresse op heuningbye waar te neem.  Om die 

verhouding tussen die gasheer en inwendige mikrobiota en die immuunsisteem van hoër gashere 

te ekstrapoleer, word daar gekyk na die effek van twee algemene heuningby-stressors: die indirekte 

kontaminasie van swamdoders en die beperking van nutriënte.  Heuningby-kolonies was 

blootgestel aan óf ‘n swamdoder óf ‘n enkele bron van stuifmeel as ‘n voedselbron.  Deur die 

gebruik van Outomatiese Ribosomale Intergeniese Afstand Analiese (ARISA), was die effek van 

die behandelings waargeneem deur die verskuiwing in die inwendige mikrobiota.  Die immuun-

reaksie van die heuningbye was waargeneem deur die vlakke van geenuitdrukkings van drie 

verskillende immuungene: Immuun tekort (Imd), profenoloksidase (proPO) en “Spaetzle” 

(Spz).  Die lewensverwagting van die heuningbye was gemonitor deur die uitdrukkingsvlak van 

“Vitellogenin” (Vg) te meet.  Oor die algemeen was die kolonie se metadata ook opgeneem om die 

verskil in kolonie-produktiwiteit waar te neem.  Albei behandelingsgroepe was vergelyk met ‘n 

onaangeraakte negatiewe kontrole groep, asook ‘n positiewe kontrole groep wat geïnfekteer was 

met Paenibacillus larvae. Albei die swamdoder en nutriënt-beperkte groepe het geen beduidende 

effek op die agsterste ingewande gehad nie, maar daar was wel ‘n beduidende effek op die 

middelste ingewande.  Hierdie behandelinge het ‘n afname in die energie-ryke Imd padweg 

veroorsaak. Hierdie padweg is noodsaaklik in die produksie van AMP’s, ‘n waardevolle 

verdedigingsmeganisme teen mikrobiese patogene.  Die fenoloksidase padweg het toegeneem wat 

die hoër aktiwiteit van inkapseling en melanisasie verseker.  Hierdie is moontlik om te kompenseer 

vir die afname in die Imd padweg.  Albei behandelings het geen beduidende effek op die “Toll-

like” padweg gehad nie. Hierdie padweg is die kommunikasie tussen die ingewande en die 

immuniteit.  Heuningbye in die nutriënt-beperkte groep het ‘n afname in kolonie-produktiwiteit 

getoon. Hierdie kan moontlik wees as gevolg van ‘n vertraagde soek vir kos, wat waargeneem is 

duer die Vg uitdrukkingsvlakke.  Oor die algemeen het die behandelings in hierdie studie die 

Stellenbosch University  https://scholar.sun.ac.za



vi 

 

immuunsisteem in heuningbye aansienlik laat val, wat die kolonie dan blootstel aan moontlike 

sekondêre infeksies.  Hierdie studie voorsien geen rede hoekom die huidige byeboerdery gebruike 

gestaak moet word nie, maar aandag moet gegee word aan die voorkoming van moontlike infeksie 

van kolonies onder soortgelyke kondisies as gevolg van die onderdrukte immuunsisteem. 
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Chapter 1: Literature review 

The rapidly increasing human population has placed large demands on the global agricultural 

sector to meet the growing food demands.   The United Nations (UN) projects the global human 

population to reach 9.1 billion by 2050, adding severe pressures on food production, resulting 

in increased net land devoted to food production to ensure food security.   Although the growth 

rate of the population is estimated to slow from 3.2 billion between 1970 and 2010, to 2.2 

billion between 2010 and 2050, the extent of a 2.2 billion population growth is still a worry 

with regard to the necessary food production on top of current saturated farming practices 

(Alexandratos and Bruinsma, 2012).   The annual production of major crops is estimated to 

reach 3 billion tonnes by 2050, up by 940 tonnes from the 2005 - 2007 estimates (FAO, 2012).   

Climate change, urbanisation, overcrowding, and pollination are all aspects needed to be 

considered to meet these food estimates.   Approximately 35% of agricultural crops and 75% 

of primary crop species require some form of pollination to produce a feasible yield (Bauer and 

Wing, 2010).   Therefore, ensuring reliable pollination is crucial to safeguard high crop yields 

and by extension, global food security.    

Pollination is the process by which pollen is transferred between plants, or parts of the same 

plant, for fertilisation of the host plant (Klein et al., 2007).   This process is not only essential 

for agricultural crop production, but also for securing diversity of natural flora as it has been 

linked to the diversification of many floral species, influencing micro- and macro-evolutionary 

patterns (Muli et al., 2014; van der Niet et al., 2014).   Pollination can be considered abiotic or 

biotic depending on the vector involved in the pollination process (Sargent and Ackerly, 2007).   

Abiotic pollination occurs via non-living vectors (e.g.  wind), while biotic pollination occurs 

through the direct or indirect aid of living vectors (e.g.  animals and insects).   Biotic pollination 

is more common and, therefore, these pollinators are crucial in ensuring that the nutritional 

needs of the growing human population are met (Stathers, 2014; LeBuhn et al., 2012).   Insect 

pollinators largely dominate the group of biotic pollination vectors and are known to increase 

the global food supply by 35%.   Yield from self-pollinated plants increase in both quality and 

quantity when insect vectors contribute to the pollination process (Klein et al., 2007, Bauer and 

Wing, 2010).   Apis mellifera, commonly known as the honey bee, but more correctly as the 

Western honey bee, is the most economically valuable and agriculturally dominant insect 

pollinator.   The value of the pollination service provided by this insect has been estimated to 
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be more than $200 billion per annum (Powell et al., 2014; Aizen and Harder, 2009; Muli et al., 

2014).   

1.1 The history of honey bees 

Honey bees do not only provide a valuable pollination service, but also produce hive products, 

such as honey and wax.   These hive products were a major driver for the successful expansion 

of the honey bees across the globe, as these products were sought after during human expansion.   

Honey was used for various reasons, apart from being a natural sweetener.  For example, it was 

used in early medicines and is still being used in some religious rituals (Weber, 2012).   Human 

expansion has led to honey bees inhabiting most corners of the globe and bees have now 

adapted to thrive in a wide range of environments (Crane, 1999; Ransome, 1937).   The 

relationship between honey bees and humans, stretches back thousands of years with early 

evidence of beekeeping appearing in an ancient Egyptian temple dating 2474 – 2444 BC 

(Kritsky, 2015).   Weber (2012), however, argues that natural honey bee hive harvesting 

occurred around 10 000 years ago as humans are shown to use large ladders to harvest from 

hard-to-reach honey bee colonies.   

Much of the ancestry of honey bees is still under debate, despite their importance to humans.   

Honey bees are known to have evolved from wasps (Michener, 1974).   Fossil records show 

that honey bees moved from solitary to a social living structure approximately 80 million years 

ago.   This transition hypothesis from solitary to social bees is evidenced by the development 

of corbiculae, or pollen storing baskets, on their hind legs used for transportation of pollen from 

the source back to the hive (Weber, 2012).   

The exact evolutionary origin of honey bees is unknown with three current and conflicting 

hypotheses, suggesting either Asia, Africa, or the Middle East as places of origin.   Single-

Nucleotide Polymorphism (SNP) analyses reveal Africa as the place of origin (Whitfield et al., 

2006), whereas analysis of morphological and genetic markers supports the out-of-Middle East 

expansion (Han et al., 2012).   Most recently, Wallberg et al. (2014) conducted a worldwide 

genomic survey of 14 Apis honey bee populations and revealed that an out-of-Asia expansion 

is the most likely parsimony.   They find no evidence supporting an out-of-Africa origin, and 

suggest that divergence from the numerous species of Asian honey bees occurred 

approximately 300 000 years ago.  This expansion resulted in three groups of Apis, namely; the 

African (group A), northern and western European (group M), and southern and eastern 
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European groups (group C).   Around 165 000 years ago, the southern and eastern European 

group diverged to form the Middle Eastern and western Asian Apis populations (group O).   

Within these four major Apis populations, divergence into the substantial number of 

subpopulations found today, occurred approximately 13 000 – 38 000 years ago.   Of the ten 

species belonging to the genus Apis, nine are restricted to Asia, which again, supports an out-

of-Asia expansion.   The only species not restricted to Asia, Apis mellifera, is native to Africa, 

Europe, and the Middle East, but has been introduced to most parts of the world 

anthropogenically (vanEngelsdorp and Meixner, 2010).  Although the origin of the genus Apis 

is not certain¸ what is certain, is the isolation of two Apis mellifera subspecies, Apis mellifera 

scutellata and Apis mellifera capensis to Africa (Hoy et al., 2003; Han et al., 2012). 

Honey bees and their subspecies are genetically diverse (Wallberg et al., 2014).   Humans are 

considered to have semi-domesticated honey bees to streamline hive harvesting processes, 

which was originally thought to reduce genetic variability (vanEngelsdorp and Meixner, 2010; 

Sheppard 1988).   However, Harpur et al. (2012) present a counter-argument, demonstrating 

that human-mediated movement of bee populations increases genetic diversity.   Wallberg et 

al.  (2014) measured the mutation rate of each honey bee group (groups A, C, M, and O) to 

gain insight into their genetic variation.   From the lowest to highest; group M (western and 

northern Europe), group C (eastern and southern Europe), group O (Middle-Eastern), and group 

A (African) had average θw values of 0.30%, 0.33%, 0.45%, and 0.79%, respectively, with the 

Watterson estimator (θw) describing the percentage of genetic diversity within populations.   

Harpur et al.  (2012) also suggest that the reduction in genetic variability in some of the honey 

bee species does not co-inside with domestication, but rather potential bottleneck events during 

the honey bee expansion across the globe.   Either way, the genetic diversity seen within honey 

bee genomes is not seen in many other individual domestication events, thereby ruling out 

domestication as a major driving force in honey bee genetics.   To understand honey bees, 

where they came from and where they are going, enormous research efforts are now focused 

on the honey bee genome. 

1.2 The honey bee genome 

The Honeybee Genome Sequencing Consortium published the full Apis mellifera genome in 

2006, which made the honey bee the second species, after humans to have its genome 

sequenced.   This has allowed for genomic insight into understanding the immune components 

of honey bees aiding in disease resistance and general health homeostasis (Evans et al., 2006).   
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Honey bees inhabit a plethora of environments and, therefore, show large phenotypic variation 

between species.   Apis cerana, the Asian honey bee, shows unique genetic traits in comparison 

to Apis mellifera.   These include a higher wing beat frequency, a less clumsy flight pattern, 

and a lower optimal temperature for foraging (Park et al., 2015) while the African honey bee, 

Apis mellifera scutellata, tends to show increased swarming, aggression, and higher resistance 

to certain hive pests (Wallberg et al., 2014).   This is surprising as these species, in evolutionary 

terms, diverged only recently.   Apis mellifera acts as the model organism, being the most vital 

for global crop production, therefore only its genome has been sequenced.   Insight into other 

Apis species is necessary to compare the genomic information within the Apis genera. 

It was originally reported that the honey bee genome consisted of only approximately 10 000 

genes, with fewer genes encoded for immunity than Drosophila, a surprising finding as Apis 

mellifera is considered a more complex organism.  As honey bees are social insects, their 

immune system is assumed to be more sophisticated (The Honey Bee Genome Sequencing 

Consortium, 2006).   This number was, however, found to be an under estimation, with the real 

value estimated in the 15 000’s (Elsik et al., 2014).   Although the genome is sequenced and 

completed, research efforts to characterise the honey bee genome are still ongoing.   Once this 

is completed, research should be focused on elucidating the workings of this genome as this 

knowledge will be key in understanding the genetics behind the behaviour and immunity of 

these social insects. 

1.3 The colony 

Honey bees are social insects as they create a colony of individuals, 4 000 – 60 000 + strong 

(Michener, 1974).   Each colony comprises of a single, egg-laying queen, a handful of drones, 

normally only present in the summer, and the rest of the colony is made up of worker bees 

(Gould and Gould, 1998).    

All three, the queen, the worker, and the drones, share similar anatomical structures.   The 

entire bee can be divided into the body and its appendages.   The body consists of three parts, 

easily observable by the naked eye; the head, thorax, and abdomen (Snodgrass, 1925).   Worker 

bees are the smallest of the three and perform almost all the tasks within a colony.   Drones are 

bulkier than the queen, and covered in a thick, black armour.   The queen is the largest 

individual within the colony, by almost 1.5 – fold.   The queen can survive up to five years, 

and only mates with drones once in her lifetime.   The only responsibility of the queen is to lay 
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eggs for the continuous survival of her colony.   Drones are the only male individuals within 

the colony and are few and far between.   Drones are rarely present other than the summer time 

and are thrown out of the colony once mating of the queen is complete.   The worker bees run 

the colony, with a hierarchical division of labour dependent on age (Seeley, et al., 1990).   

Newly emerged worker bees perform in-house tasks, such as cell cleaning, and comb 

maintenance and production.   After which young workers become nurse bees, which have the 

responsibility of caring for the young and the queen.   Only the nurse bees are responsible for 

feeding, which they do using beebread, a rich, fermented mixture of pollen, honey, nectar, and 

microorganisms (Vojvodic et al., 2013a) which is fed through a process called trophallaxis, a 

form of oral-to-oral exchange.   This forms part of their social behaviour and is involved in 

ensuring a good immune system throughout the colony (Cowan, 1890).   Young bees are bound 

to within the colony, whereas older worker bees become foragers.   Foragers leave the hive to 

collect pollen, nectar, and water.   Both pollen and nectar are collected from flowers.  Nectar 

is taken up through the mouth and stored in the first stomach, the crop.   Pollen is collected on 

the hairs along the bees’ abdomen, which the bees then remove and place into small pollen 

baskets, called corbiculae, situated at the posterior end of the hind legs (Ribbands, 1953).   

Upon return to the hive, pollen is mixed with nectar and various enzymes, including phytocides 

to prevent the pollen from germinating, to form beebread and placed into the hive comb cells 

for storage.   Nectar is also stored independently, along with enzymes such as invertase, in hive 

comb cells.  Invertase reduces osmotic pressure which slowly turns the nectar into honey 

(Gould and Gould, 1998; Seeley TD, 1995).   Water is collected by foragers as needed and is, 

therefore, not stored within the hive.  

Collectively, honey bee colonies are often referred to as a ‘super-organism’ (Wheeler, 1928; 

Page et al., 2016).  Honey bees within this ‘super-organism’ are shown to self-organism to 

perform various task-related jobs within the colony, mostly dependent on age.  Research 

suggests that in order for honey bees to self-organise, various higher cognitive systems are in 

place for colonies to monitor current in-house workings and adapt accordingly.  The 

complexity of honey bees extends past the hive entrance.  Honey bees show great complexity 

in selecting foraging sites, often examining profitability of a forage source and the energy 

required to acquire and return the source to the hive (Seeley et al., 1990).  Most of this intricate 

communication and evaluation of colony performance is done by worker bees, which make up 

the majority of the population within a colony. 
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1.4 The honey bee life cycle 

Worker bees begin their four-stage life cycle as an oblong egg deposited by the queen at the 

bottom of a comb cell within a brood frame of the colony (Cowan, 1890; Winston, 1987).   The 

egg remains uncared for and unfed, as the egg contains all the nutrients necessary for survival.   

After four days, a larva hatches from the egg and remains within the comb cell beginning the 

second stage of its life cycle.   The larva is then provided brood food, a glandular secretion 

from the glands upon the nurse bees’ head, for the next two days.   It is then weaned from this 

rich substrate onto a diet of beebread.   Growth of the larva occurs rapidly and by the tenth day 

has completed six moults (Winston, 1987).   The moults are rather aggressive, shedding most 

of its tracheal, oesophageal, and gut lining along with its entire skin.   On the tenth day, the 

larva is sealed within the comb cell by worker bees, using a convex comb cell cap made of wax.   

Once sealed, the larva spins a cocoon, culminates its last moult, and develops into a pupa, 

concluding its second life stage (Cowan, 1890; Winston, 1987).  On average, the 21st day marks 

the complete development of the egg to an adult and a worker bee emerges, with exact times 

being dependent on the subspecies of honey bee.   Worker bees then clean the cell for a new 

egg to be laid.   Prior to the queen laying her egg in a cell, she will inspect the cell to ensure 

that the cell is pristine.   This hygienic behaviour ensures a healthy brood, free of disease.   

(Gould and Gould, 1998).   Worker bees practice other hygienic behaviours, such as; applying 

the antimicrobial propolis, made up of a combination of plant resins, to the inside of the hive 

box to prevent external environmental contamination, and removing infected eggs, larvae, or 

dead adults to prevent the further spread of a disease.  Genetic lines of honey bees are often 

bred to ensure a prominent level of hygienic behaviour as to overcome pathogenic stress.  Adult 

worker bees are fed by nurse bees, via trophallaxis, only ever receiving food from individuals 

older than themselves (Free, 1977).  This social behaviour ensures a healthy colony by 

transferring natural, probiotic microorganisms throughout the hive, but does show 

disadvantages when presented with microbial pathogens. 

Worker bees can survive between two weeks and several months, depending on the subspecies 

and the amount of labour necessary for colony survival.   Increased amounts of labour during 

the summer months results in a much shorter lifespan, with the opposite occurring during the 

winter months (Cowan, 1890).  This allows honey bees to have flexible foraging patterns across 

various seasons, however, independent of season, honey bees will die within 18 days, after 

transformation from a nurse bee to forager (Münch and Amdam, 2010). 
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1.5 Phylogenetic classification 

Honey bees fall under the order Hymenoptera, a large grouping of over 100 000 insect species, 

including ants, wasps, and sawflies.   Insects within this order exhibit haplodiploid sex 

determination, meaning female offspring are generated via fertilised, diploid eggs, and males 

from unfertilised, haploid eggs (Park et al., 2015).   Sex determination in the Hymenoptera 

order is complex, as arrhenotoky and thelytoky are apparent.  Almost all genera that fall under 

the Hymenoptera order can reproduce offspring via arrhenotoky, a form of asexual 

reproduction of haploid offspring.  In honey bees, arrhenotoky only occurs when the colony 

has lost its queen.  Some of the worker bees will perform arrhenotoky as a temporary solution 

until a newly bred queen begins to lay eggs.  Offspring produced through arrhenotoky are 

haploid and are, therefore, male.  Apis mellifera capensis, indigenous to the southern tip of 

Africa, is unique in its genus as it has the ability to perform thelytokous parthenogenesis 

(Allsopp et al., 2010).  During queen loss, a few A.  m.  capensis workers will produce 

unfertilised, male offspring via arrhenotoky (Goudie and Oldroyd, 2014), but most will produce 

fertilised offspring through thelytoky, generating female worker bees (Remnant et al., 2016; 

Chapman et al., 2015).  This distinct trait was thought to be because of a 9 bp deletion of the 

thelytoky associated element 1 (tae1) (Jarosch et al., 2011), but Chapman et al.  (2015) argues 

against this.  They performed back crosses using A.  m.  capensis and A.  m.  scutellata colonies 

to generate honey bees with the 9 bp deletion.  Thelytoky was only observed in three out of the 

total fourteen colonies, providing evidence that thelytoky in A.  m.  capensis is still not 

completely understood. 

Genetics might not be the only aspect involved in sex determination of honey bees.   The alpha-

proteobacterium, Wolbachia pipientis, is a common microbial symbiont of over 40 different 

Hymenoptera species, infecting up to five Apis species.   This bacterium colonises within the 

host reproductive tissues from which it is known to be involved in various reproductive 

abnormalities found within this order.   These abnormalities improve mother-daughter 

inheritance and include; male killing, altering gender ratios, and feminization (Pattabhiramaiah 

et al., 2011a; Jeyaprakash et al., 2003; Yañez et al., 2016).   

Wolbachia might also explain the phenomenon of thelytoky in its infected host.   Wolbachia is 

usually vertically transmitted through cytoplasmic inheritance and, therefore, this bacterium 

favours female sex determination as males are considered a genetic dead-end (Pattabhiramaiah 

et al., 2011a; Pattabhiramaiah et al., 2011b).  Hoy et al. (2003) investigated the potential role 
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of Wolbachia in the unique phenomena of thelytoky in A.  m.  capensis.   Seeing as A.  m.  

capensis can interbreed with A.  m.  scutellata, and therefore have similar genomes, they 

explored the presence of Wolbachia within these two species.   The same Wolbachia strain was 

observed in both A.  m.  capensis and A.  m.  scutellata, and as A.  m.  scutellata species do not 

undergo thelytoky, they suggested that that particular strain of Wolbachia might not play a role 

in thelytoky observed in A.  m.  capensis.   They do, however, suggest that perhaps A.  m.  

capensis could be infected with multiple strains of Wolbachia, a phenomenon found to be quite 

common in arthropods, with other, unknown strains involved in thelytoky uniquely observed 

in A.  m.  capensis bees.   Although the possibility of it not being under control of Wolbachia 

exists, with future research being applied to unravelling this mysterious phenomenon.  

1.6 Microbial symbionts 

Honey bees are largely under the control of their microbial symbionts, even though the exact 

strains are only just beginning to be investigated.   Through observation of current research 

trends, extensive research efforts have been focused on first determining the microbial 

communities associated with honey bees, and secondly determining their functionality.   Some 

roles of these microbial symbionts on and in honey bees remain unknown but are hypothesised 

by examining the relationship between these microorganisms and other commonly related 

insect hosts and extrapolating that to honey bees.   The increased interest in honey bees and 

their microbial symbionts was stimulated by the recent reports of declines observed in honey 

bee populations (Crotti et al., 2012; Yañez et al., 2016; Engel et al., 2016). 

Populations of Apis mellifera have become managed and semi-domesticated to optimise and 

control the pollination service provided by them.   In the past decade, the public has been made 

aware of devastating losses of these populations in certain regions across the globe.   Although 

cycles of decline and re-establishment in honey bee populations have been reported before, the 

severe declines that have been reported recently have drawn much attention (vanEngelsdorp et 

al., 2009; Neumann and Carreck, 2010).   The influence of such pollinator population declines 

on the supply of global food and nutrition has been proven difficult to estimate, but is likely to 

have substantial impact, mainly on developing countries where food security is already 

vulnerable (Eilers et al., 2011).   With the latest cycle of honey bee population declines, the 

term “Colony Collapse Disorder (CCD)” was coined (vanEngelsdorp et al., 2009).   Although 

originally used to describe a certain set of symptoms, the term is now loosely applied which 

has led to the confusion of researchers, beekeepers, and the public.  vanEngelsdorp et al.  (2009) 
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performed a descriptive study on CCD and examined colonies with indicators of CCD and 

compared these to healthy, control colonies.   They were unable to assign any of the single 

factors tested to the cause of CCD as no factors were positive in “sick” colonies and negative 

in the control colonies.   Researchers have now moved away from the term “Colony Collapse 

Disorder” as there seems to be much confusion as to what is in fact CCD, and what isn’t (Milius, 

2018).   Colony losses continue to be reported in a few regions across the globe, which has 

spiked research interests.  The phenomenon of large-scale colony losses is exceedingly 

complex, with a multitude of factors, namely; poor nutrition, mite pests, microsporidian and 

brood pathogens, management schemes, chemical toxification by pesticides and other 

agricultural applicants, habitat degradation, and low genetic diversity, all suggested to be 

contributing factors (Pettis et al., 2012; Engel et al., 2016; Powell et al., 2014; Tozkar et al., 

2015). 

To monitor semi-domesticated and managed Apis mellifera populations across the globe, the 

Food and Agriculture Organisation of the United States (FAO) began collecting data in 1961 

and now includes continuous data collection from over 100 countries.   This is, therefore, the 

largest global dataset on honey bee populations and has allowed for the investigation into recent 

reports of honey bee population declines.   Through analyses of this data, Aizen and Harder 

(2009) revealed that the global managed honey bee population has not decreased nor declined 

but has essentially increased by approximately 45%.   Colony losses are mainly documented as 

isolated areas, and do not represent the global honey bee population.  This, however, should 

not be taken as reassurance that honey bee populations are not under stress.   Although honey 

bee populations have increased there is a large variability within this data, with some regions 

experiencing a 400-fold decrease and others the same in increased population numbers (Moritz 

and Erler, 2016).  Aizen and Harder (2009) went on to discuss the global demand on insect 

pollinators, which will need to increase by 300% to meet the requirements of the global 

agricultural sector.   This has placed large pressures on honey bee populations that need to start 

growing quickly to meet the 300% requirement.  To reach this goal, intensive research has been 

stimulated on the overall health of the honey bee.  It is thought that if we can understand how 

honey bees work and how the react to certain parameters, it would provide valuable knowledge 

in growing the honey bee population.  A large section of this research focuses on the 

microorganisms associated with the honey bee and the interaction these microorganisms have 

on host health and homeostasis (Anderson et al., 2013; Naug, 2009; LeBuhn et al., 2012; Bauer 

and Wing, 2010; Eilers et al., 2011). 
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Much of the research prior to 2013 examined single microbial contaminants and their roles on 

the health of honey bees (McFrederick et al., 2012).  The first investigations into the 

microorganisms associated with honey bees focused on microbial pathogens.  A common trend 

across global research.  Both fungal and bacterial pathogens were investigated and only the 

major pathogens will be discussed here; which includes; the bacteria, Paenibacillus larvae and 

Melissococcus plutonis, fungi, Ascosphaera apis and various Aspergillus species, and the 

microsporidian pathogens, Nosema ceranae and Nosema apis. 

1.7 Honey bee pathogens 

Paenibacillus larvae is a gram positive, anaerobic, endospore forming bacterium responsible 

for American Foulbrood (AFB), a highly contagious honey bee disease (Rieg et al., 2010; 

Alippi et al., 2014).   This bacterium can infect colonies to the extent of colony death, making 

it one of the most destructive microbial pathogens to honey bees (Alippi et al., 2002; Morrissey 

et al., 2015).   Paenibacillus larvae produces highly resistance spores that can survive under 

adverse conditions for 35 years, making this bacterium incredibly difficult to eradicate.   

Contaminated worker bees spread the spores throughout the colony, a drawback of the honey 

bees’ social behaviour.   Nurse bees then feed the brood with contaminated food, allowing the 

bacterium to infect larvae, with only one day old larvae being susceptible (Smet et al., 2014; 

Morrissey et al., 2015).   Only ten viable bacterium spores are needed for infection of the larvae, 

and sporulation occurs once the spores reach the larval lumen of its midgut after being 

consumed by the larvae (Qin et al., 2006; Forsgren et al., 2010; Smet et al., 2014; Genersch et 

al., 2005).   After sporulation within the larval gut, the bacterium fissures into the hemocoel, 

the body cavity, of the larva via phagocytosis (Forsgren et al., 2010: Genersch, 2010).   The 

infection process begins, decomposing the infected larvae, leaving a darkened slop.   This then 

dries, allowing the, now 2.5 billion P.  larvae cells to spread within the original colony and 

neighbouring colonies (Smet et al., 2014).   Common treatment of this disease used by 

beekeepers is fire, burning the entire colony along with all contaminated wood and tools.   This 

leads to loss of colonies and hive equipment and results in financial stress for beekeepers and 

the agricultural sector.   Therefore, preventative measures include the application of the in-hive 

antibiotic, oxytetracycline, a broad-spectrum antibiotic used on both humans and animals.   

Oxytetracycline prevents the binding of aminoacyl-tRNA to the (A) site of the ribosomal 

acceptor (Chopra and Roberts, 2001).   Alippi (2014) showed antibiotic resistance strains of P.  

larvae prevalent in commercial honeys, compromising the effective prevention of AFB through 
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the use oxytetracycline.   Spivak and Reuter (2001) found that genetic lines of honey bees bred 

for hygienic behaviour showed resistance to AFB.   They showed that only 39% of the 

hygienically bred colonies showing clinical symptoms of AFB, with a total of 71% of colonies 

self-recovering, without any treatment, in contrast to the 100% infection rate of the non-

hygienically bred lines, with only one colony showing self-recovery.   Therefore, it is apparent, 

that breeding hygienic lines of honey bee colonies is a good preventative measure to control 

the spread of AFB.  American Foulbrood is a well-documented disease and is often used as a 

reference in honey bee health studies. 

European Foulbrood (EFB) is caused by the non-sporulating, gram positive bacterium, 

Melissococcus plutonius (Forsgren, 2010; Forsgren et al., 2013).   Ingestion of 100 bacterial 

cells by a single larva is enough to cause infection, with four- to five-day old larvae being the 

most susceptible (Govan et al., 1998).   European Foulbrood is considered less destructive than 

AFB, as it is considered a seasonal disease and mainly stress-related, and its mode of infection 

remains unclear (Arai et al., 2012).   Bailey (1983) suggested that competition for nutrient 

sources between the larva and its infected bacteria caused the death of the larval host.   McKee 

et al. (2004), however, tested this hypothesis using in vitro studies and found that larval death 

rate continued even when supplemented with a substantial diet, thereby removing competition.   

Other hypotheses suggest that the mechanism of infection could be related to the immune 

response of honey bees by lowering the immune system of larvae, allowing for easier secondary 

infections.   Common secondary infections observed in EFB infected colonies include; 

Enterococcus faecalis, Paenibacillus alvei, and Achromobacter euridice, all exhibiting their 

own patterns of infection (Forsgren, 2010).   Like AFB, oxytetracycline is a commonly applied 

chemical control for EFB, but ensuring the use of honey bee germ lines with elevated levels of 

hygienic behaviour, is recommended instead. 

One of the major fungal diseases that occurs most frequently in the honey bees is Chalkbrood 

disease, caused by the fungus Ascophaera apis (Flores et al., 2004; Aronstein and Murray, 

2010; Invernizzi et al., 2010; Palacio et al., 2010).   Chalkbrood is not as destructive as the 

bacterial diseases mentioned above and is also considered a stress-related disease.  The mode 

of action of A.  apis is selective towards the brood, like AFB and EFB, and does not often result 

in total colony death.   The honey bee colony is affected, however, as a reduction in numbers 

of a generation causes a decrease in productivity, an unwanted trait for commercial beekeepers 

(Aronstein and Murray, 2010).   Ascophaera apis spores are consumed by the larvae via 
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contaminated food and enter the gut.   Once in the gut, the fungal spores germinate, and the 

pathogenic strategy of invasive mycosis begins.   The infected larvae become entirely mycosed, 

gaining the appearance of ‘mummified’ larvae (Garrido-Bailón et al., 2013).   Honey bees have 

a natural defence against A.  apis, including an antifungal exoskeleton, and if the pathogen 

breaches this primary defence, an immune response is triggered in the midgut of the honey bee.   

However, Ascophaera apis, in high enough doses, can survive these defences and cause 

infection.   There is currently no chemical control available to prevent Chalkbrood disease, but 

resistant bred germ lines of honey bees and improved sanitary honey beekeeping practices are 

efficient in controlling this disease (Aronstein and Murray, 2010; Bąk et al., 2010). 

Another fungal disease associated with honey bees is Stonebrood disease, caused by any of the 

three Aspergillus species, Aspergillus flavus, Aspergillus fumigatus, and Aspergillus niger.   

The severity of Stonebrood in colonies across the globe is unknown, as the diseased individuals 

within the colony are rapidly discarded, leaving the disease undetected by beekeepers.   

Aspergillus is a ubiquitous environmental fungus and is detected in both diseased and non-

diseased hives, and the reason for the opportunistic fungus to switch to pathogenic mode 

remains unknown (Foley et al., 2013).   The mode of action of these fungi are not well 

documented, but are known to target the brood, but more specifically the larvae.   Treatment 

for Aspergillus infection is extremely tricky in honey bees, as the disease often goes undetected 

for prolonged periods of time.   Foley et al. (2012) tested whether nutrient limitation played a 

role in infection rates and found that by ensuring colonies were fed polyfloral or dandelion food 

stores, they were able to fight off the Aspergillus infection. 

Nosema apis and Nosema ceranae are microsporidian pathogens that threaten the health of 

honey bees by inducing the disease, Nosemosis, normally apparent when colonies are under 

stress (Tozkar et al., 2015).   Infection by these pathogenic vectors can lead to entire collapse 

of the colony.   Nosema falls within the class Microsporidia, a group of obligate intracellular 

parasites that transfer DNA to their host via their flagella (Higes et al., 2006; Araneda et al., 

2015).   Nosemosis is an infection in the adult bees’ ventricular cells, resulting in a drastic 

reduction in the overall health of the honey bee host (Paxton, 2010).   The lowering of the 

immune system and reduction in general health homeostasis causes a decrease in colony 

productivity and leaves the colony at a substantial risk for secondary infections (Botías et al., 

2013).   The current strategy to control Nosemosis is using fumagillin, the only chemical control 

available for the treatment of Nosemosis.   Holt and Grozinger (2016) stressed that it is vital 
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that beekeepers are provided with more practical technologies but breeding resistant honey bee 

germ lines might be the most effective, long-term control strategy as the current technologies 

stand.  Nosemosis is another disease often used as a reference system for honey bee health 

studies. 

The pathogens mentioned above have been studied as single microorganisms, overlooking the 

rest of the associated microbiota.   Researchers now suggest that a single pathogen cannot be 

responsible for the recent colony declines observed in some areas, and a multitude of factors 

may be responsible.  These factors include; mite pests, pesticide and insecticide pollutants, 

habitat loss, microsporidian pathogens, microbial agents, stress, nutritional stress (Powell et 

al., 2014; Naug, 2009; Genersch, 2010; Mao et al., 2012).   

1.8 Positive microbial symbionts 

Symbiosis is common in most eukaryotes, with the microbial symbionts and host working 

together to maintain important host functions (Vásquez et al., 2012).   The degree and role of 

symbiosis in insects varies depending on the host involved (Anderson, et al., 2011).   Some of 

these microbial symbionts play pathogenic roles, as discussed previously, but the beneficial 

symbionts are gaining much attention.   These beneficial symbionts are grouped as either 

obligate or facultative, depending on the interaction (Yañez et al., 2016).   Interactions that are 

crucial to the survival of the host are considered obligate, with additional beneficial symbiosis 

being facultative.   Much of the information available is focused on the bacterial symbionts, 

with the fungal constituents often overlooked. 

Honey bees are known to have symbiotic relationships with various bacterial taxa, including; 

α-, β- and γ-proteobacteria, Actinobacteria, and Bacteroidetes (Crotti et al., 2013).   Many of 

these bacteria have been identified as non-pathogenic, but their entire symbiotic roles have not 

yet been identified (Evans and Armstrong, 2006).  Potential roles have been hypothesised to 

include; food degradation, vitamin synthesis, host physiology, disease protection, immune 

system homeostasis, behaviour, and pH maintenance (Crotti et al., 2013; Evans and Armstrong, 

2006). 

The honey bee and its hive represent a unique situation consisting of numerous micro-niche 

environments.   Within each micro-niche various microorganisms are selected for, with the 

environment acting as a selective pressure.   These micro-environments are generated by the 
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internal hive conditions, different developmental stages of the honey bee, or the internal organs 

of the honey bee itself (Anderson et al., 2013).  Although these micro-niches have been studied, 

the amount of research on the honey bee gut far outweighs that of any other micro-niche. 

1.9. The honey bee gut and its microbiota 

The digestive system of the honey bee makes up most of the size of the bee and is located 

within the abdomen.  The digestive systems can be divided into two major sections, namely; 

the first section being the crop, also known as the honey stomach, and thereafter the gut, which 

can be divided into two subsections.  The first subsection after the crop is called the midgut and 

is the large intestine of the honey bee, and the second is the hindgut, which is the small intestine, 

and is closest to the rectum.   

The crop is a sac-like stomach that acts as a temporary nectar store for foraging bees.   Microbial 

inhabitants in the crop are few, due to the constant emptying of the crop when the foraging bee 

deposits its nectar for storage within the hive (Crotti et al., 2013).   Bacteria likely to colonise 

the crop include Lactobacillus kunkeei and Parasaccharibacter apium, a species only described 

in 2014 (Corby-Harris et al., 2014a).   Lactobacillus kunkeei has been isolated from honey, 

beebread, the honey stomach, as well as external hive environments such as vineyards (Djukic 

et al., 2016; Bisson et al., 2016).   Interestingly, L.  kunkeei is not present, or sometimes present 

at very low cell counts, in the honey bee gut.   Therefore, it is possible that the gut may be 

inoculated with L.  kunkeei, but it is unable to colonise further down the digestive system due 

to the unfavourable environmental conditions (Asama et al., 2015).  The source of 

microorganisms found within the digestive system is hypothesised to be from environmental 

inoculation.  Foraging honey bees return to the hive from foraging and bring along a plethora 

of environmental microorganisms with them.  The social behaviour of bees, such as oral-to-

oral trophallactic feeding, allows for these microorganisms to spread throughout the hive and 

its inhabitants, eventually moving down to the honey bees’ guts.  This hypothesis is supported 

by the evidence that L.  kunkeei is found within the crop and all micro-niches that store 

environmental products.  This hypothesis is also supported by P.  apium.  This bacterium was 

first described as Alpha 2.2, a bacterium commonly associated with larvae, in-hive food storage 

areas, and the crop, but unlike L.  kunkeei, it has the ability to colonise within the gut of honey 

bees.  Other beneficial bacteria include the closely related bacteria from the family 

Acetobacteraceae; which are known to provide their insect hosts with a nutritional advantage, 

especially insects surviving on a limited, but sugar-rich environment.   They also provide their 
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hosts with moderation of host immune system and improvement of tissue development (Corby-

Harris et al., 2014a).   These bacteria represent the best studied, beneficial microorganisms 

associated with the crop of the honey bee, with more research being necessary to begin 

characterising the full crop microbiota.   

Conditions within the midgut do not allow for colonisation of high numbers of microorganisms, 

and those erratically found here are labelled as transient.   Due to the presence of digestive 

enzymes and the constant shedding of the internal midgut layer, this environment does not 

favour bacterial attachment or survival (Kwong and Moran, 2016b).   The midgut microbiota, 

largely made up of transient survivors of rare bacterial strains, shows large seasonal and 

regional shifts (Ludvigsen et al., 2015).  The midgut microbiota relies heavily on environmental 

inoculation, presenting a unique opportunity to monitor the immediate effects of environmental 

changes and treatments. 

Studies focused on the hindgut far outweigh that of any other honey bee or hive associated 

niche, which could be because of the known mammalian importance of gut bacteria and host 

health.   The hindgut of the honey bee boasts 108 – 109 bacterial cells per gram (Mattila et al., 

2012) and can be divided into two sections, namely; the ileum and rectum (Powell et al., 2014).   

A study performed by Powell et al.  (2014) found a core bacterial community residing within 

the hindgut, consistent with results from a number of studies (Engel et al., 2012, Horton et al., 

2015, Kapheim et al., 2015, Kwong and Moran, 2016a,b, Corby-Harris et al., 2014b).   The 

core bacterial community in the hind gut is made up of eight bacterial groups of which five are 

dominant, including the three gram-positive species clusters referred to as Lactobacillus Firm 

4 and Firm 5, and Bifidobacterium asteroides, and the two gram-negative species Snodgrassella 

alvi and Gilliamella apicola.   The other four, less dominant core bacteria include 

Parasaccharibacter apium, a bacterial species related to Gluconobacter, Frischella perrara, 

and Bartonella apis.   All worker bees share this common gut bacterial composition within a 

few days of emergence from the hive.   This core bacterial community is common across most 

Apis species.  The five most dominant bacterial species found within the Apis genus spreads 

further to the bumble bee genus, Bombus, with the remainder of the bacterial community made 

up of unshared bacterial species.  Interestingly, the core bacterial community associated with 

bumble bees is shown to change more drastically with age, stress, and environmental landscape, 

suggesting that bumble bees are more susceptible to environmental change than honey bees 

(Raymann and Moran, 2018; Kwong and Moran, 2016b).  The fungal constituents associated 
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with the hindgut of honey bees is severely lacking.  Research available on the fungal gut 

communities of honey bees are inconsistent, showing varying results.  Altogether, the honey 

bee gut is shown to be colonised by five fungal phyla, largely dominated by Ascomycota and 

Basidiomycota, with Zygomycota, and Chytridiomycota making up the remainder.  It must be 

noted that a low number of sequences remained unidentified (Yun, et al., 2018). 

The roles that all of these microorganisms play remain to be elucidated, but one can argue that 

a synergistic relationship between microbe and host exists, as these microorganisms are 

consistently selected for by the gut environment.   The same argument has been made with the 

bumble bee, Bombus, and the fruit fly Drosophila (Kwong and Moran, 2016a; Ryu et al., 2008).   

Studies on single microbial symbionts associated with honey bees has proven to be 

exceptionally important to both the scientific community, however, studies are now focused on 

systems-based approaches.   Anderson et al.  (2011) were the first to discuss the drive to study 

microorganisms associated with honey bees in a systems-based approach instead of single 

microorganism studies, a promising route dependent on next-generation sequencing.   They 

went on to examine the issues of single microorganism studies and the bias when assigning 

roles to these microorganisms, without the potential interaction from the entire microbiota. 

In 2013, Anderson et al.  determined the bacterial communities associated with various sites 

within the honey bee and its hive, using a systems-based approach.   They found that the 

bacteria commonly associated within the crop similar to that of beebread and pollen, suggesting 

environmental inoculation of microorganisms found within the hive, supported by single 

microorganism studies discussed above.   These results also support a core bacterial community 

residing in the gut, consistently finding 7-12 bacterial groups within the mid- and hind-gut, 

with most occurring in the hindgut, again, supporting the results of single microorganism 

studies discussed above.   Vojvodic et al.  (2013) performed a similar study following a 

systems-based approach, examining the bacterial communities associated with honey bee 

larvae guts, using only culture-dependent methods.   Honey bee larvae, prior to their last instar, 

the period before its last moult, had very few bacterial symbionts, however, after their last 

instar, larval gut bacterial community resembled that of an adult bee.   That is unexpected as 

larvae and adults survive off vastly different diets, suggesting that diet plays very small role in 

inoculating honey bees with their gut symbionts, an opposing argument to environmental 

inoculation of the crop.   Although these studies make significant strides in the determination 
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of the bacterial constituents of the microbial communities associated with honey bees, these 

results were found through culture-dependent methods which represents understandable bias.   

Numerous culture independent systems-based approach studies have since been reported, all 

with comparable results from both culture-independent and dependent methods.   Most of these 

studies conclude and support the eight core gut bacterial community.   Similar to the unexpected 

results found by Vojvodic et al.  (2013), Kapheim et al.  (2015) found no significant difference 

between the gut bacteria associated with nurse and forager bees.   This is unexpected as these 

two castes of bees live largely dissimilar lives, with the younger nurse bees being hive bound 

and the older foragers entering the external hive environment.   The similarity between these 

two stages of the honey bee could be as a result of their social behaviour, suggesting that oral-

to-oral trophallaxis allows for the homogenisation of bacterial inoculation of foragers.  This 

would then argue that the sociality of honey bees plays a larger role in hindgut bacterial 

inoculation and selection than diet, age, and environmental change.  Interestingly, the same 

hypothesis cannot be applied to honey bee queens.   The bacterial communities associated with 

the gut of honey bee queens shows large variation depending on age and environment (Powell 

et al. 2018; Anderson et al., 2018).  The gut bacteria of young queens are largely dominated by 

enteric bacteria, with older queens dominated largely by α-proteobacteria (Tarpy et al., 2015).   

The reason for this observed difference is hypothesised to be because of the difference in diet, 

as queens, or those individuals destined to become queens, are fed a royal jelly rich diet, taping 

off as the queen’s life is extended.   This only begins to shed light on the difficulties within 

honey bee microbiota studies, as a single hypothesis can be applied to certain individuals within 

the colony but are rejected when applied to others.   The complexity of the relationships and 

workings within a single colony, and between many colonies needs to always be considered 

when hypotheses are drawn. 

Although relatively new to the field of honey bee research, systems-based approach studies 

have long been used to study microbial communities associated with various host species, with 

the human microbiota contributing the most to this body of research.   The development of the 

Human Microbiome Project has been a major driving force in using systems-based approaches 

to understand the microbial communities associated with its human host.   The human 

microbiota is a crucial commensal, playing vital roles in immune response, disease modulation, 

metabolic functioning, host-drug interactions (Grice and Segre, 2012).   It is hypothesised that 

the ability for this microbiota to fulfil these roles is because of strong evolutionary forces 
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towards the establishment of this microbiota as host symbionts (Gill et al., 2006; Clemente et 

al., 2012). 

Research into the microorganisms associated within and on human hosts is abundant, with vast 

amounts of research focused on the human gut, mirroring that of honey bee research.   Earlier 

studies perpetuated the idea that the stomach contained only transient microorganisms due to 

the unfavourable conditions of the stomach, because of stomach acid, pancreatic acid, and bile, 

a similar belief of microorganisms found within the crop of honey bees (Houtman, 2015; 

O’Hara and Shanahan, 2006).   This idea was widely accepted, but was revised in the 1960’s.   

In 1965 Rene Dubos stated that microorganisms inhabit and colonise within the stomach and 

gut and should not be considered transient (Belkaid and Hand, 2014).   Together, these 

colonised microorganisms represent an intricate microflora which form a complex, highly-

interactive ecosystem and consider the gut, “home” (Houtman, 2015). 

More than 1000 species are thought to make up the human gut microbiota, with most of these 

species belonging to only a handful of bacterial phyla, namely; Bacteroides, Firmicutes, 

Fusobacteria, Cyanobacteria, Proteobacteria, Verrucomicrobia, and Actinobacteria (Sekirov et 

al., 2010; Thakur et al., 2014), together representing a core bacterial community.   The plethora 

of microorganisms that make up the human gut microbiota have been implicated in the 

regulation of host health (Jones et al., 2017).   Dysregulation of this crucial commensal has 

been shown to result in multiple negative health repercussions, including many physiological 

and psychological diseases and disorders.   The mechanisms of action of the human gut 

microbiota on the host will not be discussed here, but readers are guided to Sekirov et al.  (2010) 

for a well-documented review.   The importance of the gut microbiota on its human host, 

although well documented, is far from complete.   The existence of a core bacterial community 

in the gut of humans is now also being found within honey bees, although the exact constituents 

differ (Powell et al., 2014; Corby-Harris et al., 2014b; Kapheim et al., 2015; Rangberg et al., 

2012).   The intricate relationship between humans and their gut microbiota could potentially 

be extrapolated to honey bees, suggesting an essential relationship between honey bee health 

and their gut microbiota. Honey bees also provide a unique opportunity to study the relationship 

between the gut microbiota and host health in humans, as the gut microbiota within honey bees 

is simpler to that in humans (Ludvigsen, 2013) 

Most research on fungi is focused on fungal pathogens that lead to disease, with very little 

focused on fungal symbionts.  Filamentous fungi are known to contaminate the hive 
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environment, but only limited research is available on these fungi within honey bees.  

Moubasher et al.  (2017) were able to isolate 38 fungal species from 28 honey bee gut samples.  

From highest to lowest frequency, Aspergillus, Cladosporium, Penicillium, Chaetomium, 

Scopulariopsis, Cochliobolus, and Mucor were all isolated from honey bee guts using culture-

dependent methods.  The most frequently isolated fungi from the study is similar to results 

discovered by Gilliam and Prest (1974).  However, the honey bee gut does not provide an 

adequate environment for filamentous fungal growth, a64%s the most frequently isolated 

filamentous fungi Aspergillus, Cladosporium, and Penicillium are well known environmental, 

air-borne, sporulating fungi (Shams-Ghahfarokhi et al., 2014; Guinea et al., 2006; Shelton et 

al., 2002).   These isolated fungi could perhaps be inactive spores and would, therefore, not 

contribute to the microbial communities within the honey bee gut.  The environment within the 

honey bee gut, however, poses a favourable environment for yeast growth.  Moubasher et al.  

(2017) isolated Lachancea thermotolerans, Pichia kudriazevii, Saccharyomyces cerevisiae and 

other related species, Wickerhamomyces subpelliculosus, and Hanseniaspora opuntiae from 16 

honey bee gut samples, listed in highest to lowest frequency order.  As research on the fungi 

associated with honey bee guts is still in its infancy, it is unknown whether a core fungal 

community, assumingly made up of majority yeasts, exists.   

Pathogenic fungi associated with honey bees have been documented, but very little research 

has been focused on deciphering potential fungal symbionts and their roles in honey bee fitness 

(Yun et al., 2018).  It is, however, suggested that fungi are limited to play only complementary 

roles in regulating honey bee health, and bacteria remain the drivers in this symbiotic 

relationship (Gonzalez, 2014).  Nonetheless, understanding the importance of fungi associated 

with the honey bee gut is vital, and providing additional information to an area that is lacking 

is advantageous.   

Although archaea and eukaryotes have been sequenced from the honey bee gut, sequenced data 

return an average of 64% and 9.4% in homology to online databases for archaea and eukaryotes, 

respectively.  This prevents the positive identification of these microorganisms associated with 

honey bees, as a result of poor global sequence databases, limiting the progression of research 

in this area. Nonetheless, the consistence of these microbial symbionts and the pervasiveness 

of this core microbiota during honey bee development suggests that these microbes play a role 

in host health (Horton et al., 2015).   
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The health of honey bees is hypothesised to be under some control of their gut microbiota, 

although few studies show definitive results to support this, with most support extrapolated 

from other relationships (e.g.  human and Drosophila) (Crotti et al., 2013).   To understand the 

potential effects of gut bacteria on host health, the immune system of the host needs to be 

understood. 

1.10 The honey bee immune system 

Honey bees have many lines of defences which add to their overall protection against pathogens 

and disease.   These defences lie at both colony and individual levels.   The social behaviour of 

honey bees provides the colony with a strong defence against infection and disease, acting as a 

‘social immunity’ (DeGrandi-Hoffman and Chen, 2015).   Possibly the most important colony 

defence is the hygienic behaviour observed between nest mates.   Honey bees perform mutual 

grooming to ensure removal of microbial pathogens and parasites from their exoskeleton.   

Infected eggs, larvae, and pupae are removed from the colony as soon as pathogenic detection 

occurs, a form of undertaking, and infected adults remove themselves from the colony to perish 

(Spivak, 1996).   Honey bees are also known to produce a ‘social fever’, a phenomenon by 

which the colony temperature is increased to eradicated thermo-sensitive microbial pathogens, 

such as Ascophaera apis (DeGrandi-Hoffmann and Chen, 2015).   This hygienic behaviour 

serves as a colony defence against disease, however, this social behaviour has its downfalls.   

Constant mutual grooming and oral feeding can rapidly spread microbial pathogens between 

all individuals within the colony (Wilson-Rich et al., 2008; Bull et al., 2012).   It is here that 

individual defences are crucial.   

The first major line of individual defence, the exoskeletal cuticle, acts as a physical barrier and 

prevents pathogens from entering the honey bee.   A second barrier, the gut lining, prevents 

attachment and adsorption of gut pathogens, thereby preventing disease.   Similar to humans, 

honey bees have a very successful innate immune system, but they lack an adaptive immune 

system.  The innate immune system similarities between these two hosts has driven research 

into honey bee research, potentially acting as a stand-along innate immune system model for 

understanding human health. The similarities are shared on both the broad spectrum, for 

example major immune responses, such as phagocytosis, encapsulation, and the production of 

AMPs, as well as a detailed spectrum, such as orthologous molecule and gene structures (Evans 

et al., 2006).   
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The innate immune system in honey bees acts as a second line of individual defence and can 

be divided into two subsystems, namely; the cellular and humoral innate immune systems 

(Hoffmann, 2003). 

The cellular immune response system is mostly responsible for nodulation, phagocytosis, and 

encapsulation, which is often accompanied by melanisation, a process not assigned solely to 

either the cellular or humoral systems (Antúnez et al., 2009; Hoffmann, 2003; DeGrandi-

Hoffmann and Chen, 2015).   The cellular immune system is a constitutive active system, 

although only operating at maximum capacity once a pathogen has been detected.   This 

immune response is rapid but pays the price in efficacy (Laughton and Siva-Jothy, 2010).  A 

honey bees’ cellular response to an invading pathogen(s) are different depending on the size 

and number of pathogen cells, which is recognised by haemocytes.  A small single particle will 

be removed through phagocytosis, whereas a larger, potentially multicellular, pathogenic 

particle will be removed through encapsulation.  If large numbers of small particles or cells are 

recognised, the cellular response would be nodulation (Negri et al., 2016; Amdam et al., 2004).   

Many studies have found that a honey bees cellular response shares an inverse relationship with 

age, a view that was not easily accepted.  It was originally thought that honey bees that would 

forage external from the hive would be at higher risk of infection and would, therefore, have a 

better adapted cellular immune response system.  Bull et al. (2012) suggests a reason for these 

opposing results; as both cellular immune response and foraging are both energetically 

expensive, energy is diverted away from the immune system and towards foraging.  This 

hypothesis is now widely accepted.   

Humoral immune responses include the generation of Anti-Microbial Peptides (AMPs) and 

other complementary peptides which are secreted by the fat body into the haemolymph 

(Hoffmann, 2003; Antúnez et al., 2009).   It is an inducible system and is only activated once 

a pathogen is detected.   This presents a lag in the immune response, but it is highly effective.   

Together, the cellular and humoral response systems create a sophisticated arsenal of defences, 

making up an extremely efficient innate immune system (Hultmark, 2003). 

The most fascinating aspect of the innate immune system is its ability to recognise pathogenic 

cells, commensals, and host tissue cells, and differentiate between them.   A method mirrored 

from that of the human immune system, the honey bee immune system differentiates cells by 

recognition of Microbe-Associated Molecular Patterns (MAMPs).   Imbedded in the cell wall 

of all microorganisms lie highly conserved structural motifs.   An example of such a structure 
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motif is peptidoglycan.  Each microorganism contains unique deviations and thereby each 

microorganism has its own MAMP, which are crucial for host-cell recognition.   Microbe-

Associated Molecular Patterns are recognised by the host through various Pattern Recognition 

Receptors (PRRs) (DeGrandi-Hoffmann and Chen, 2015; O’Hara and Shanahan, 2006).  

Mammals and honey bees only have four different PRRs, compared to the seven of the 

mosquitoes and the 13 of Drosophila, namely; PeptidoGlycan Recognition Protein (PGRP) – 

S1, PGRP – S2, PGRP – S3, and PGRP – LC (Myllymäki et al., 2014).   Not much is known 

about these PRRs in honey bees, but PGRP – S1 and PGRP – LC are shown to be upregulated 

during pathogenic challenge, and are, therefore, suggested to be involved in immune response 

to pathogenic infection (Evans et al., 2006). 

The recognition of Pathogen-Associated Molecular Patterns (PAMPs) by PRRs results in a 

cascade of signalling triggers, activating the immune system.   Several signalling pathways are 

activated during PAMP recognition, with the major pathways in honey bees including the Toll 

pathway, RNAinterface (RNAi), Immune deficiency (Imd) pathway, Janus kinase/Signal 

Transducer and Activator of Transcription (Jak/STAT) pathway, Autophagy, Endocytosis, and 

Eicosanoid.  These immune response pathways are activated by fungi, bacteria, and/or viruses 

(See Table 1), but viral activation will not be discussed here (Brutscher et al., 2015).  The two 

most critical pathways of the innate immune system are the Toll and Imd pathways, both 

inducing expression of a battery of antimicrobial peptides (AMPs) (Tanji et al., 2007). 

The Toll pathway is activated by the recognition of pathogenic MAMPs by the host PRRs.   

Activation of the pathway results in the cleavage of pro-Spaetzle into mature Spaetzle, a 

cytokine-like molecule, by the serine protease cascade.   Mature Spaetzle then binds to the Toll 

receptor, an extracellular, membrane-bound receptor.   Toll dimerization by recruited proteins 

occurs and the conformed complex triggers the degradation of the Nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) inhibitor (IκB), Cactus.   Lacking the inhibitor, 

Cactus, transcription factors Dorsal-1 and Dorsal-2 are translocated into the nucleus where 

transcription of AMPs, such as defensin, hymenopteacin, and abaecin, are produced to combat 

the pathogenic attack (Brutscher et al., 2015; Evans et al., 2006).   A common mode of action 

of AMPs is permeation of the pathogen cell walls, resulting in pathogen cell death (Diamond 

et al., 2009).   The Toll pathway ensures that an immune response is induced when a pathogenic 

microorganism, mainly fungi and gram-positive bacteria, is recognised.  The efficacy of the 

Toll pathway is limited as it is only responsible for a limited number of AMP transcription, 
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whereas the Imd pathway controls the bulk of AMP transcription (Myllymäki et al., 2014).  

This pathway is of particular interest to researchers as it is almost identical to the Toll-like 

pathway found in humans, with only a major difference lying within its activation. In humans, 

the Toll is directly induced by the recognition of PRRs, whereas in honey bees the recognition 

of Toll is done via the ligand, Spaetzle (Leulier and Lamaire, 2008) 

Table 1: Immune response pathways in the innate immune system of honey bees (Apis mellifera). 
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The Immune Deficiency (Imd) pathway is one of two immune pathways that are responsible 

for gut microbe-host homeostasis.  This pathway also makes use of the NF-κB pathway, making 

these two pathways work synergistically to activate the innate immune system of honey bees.   

The Imd pathway ensures an immune response in the presence of mainly pathogenic gram-

negative bacteria (Tanji et al., 2007).   The diaminopimelic acid-containing peptidoglycan of 

the gram-negative pathogenic bacteria activates the Imd pathway by binding to the principal 

PRR for the Imd pathway, PGRP-LC.  This PRR is also triggered by gram-postive bacteria, but 

it limited to Bacillus.  The Imd pathway is also able to recognise the difference between 

commensals and pathogens, as pathogens multiply exponentially faster than commensals, 

thereby, releasing more diaminopimelic acid-containing peptidoglycan (Myllymäki et al., 

2014).   Once bound, activation of the Imd gene occurs, various signalling molecules are 

engaged, such as Dredd, a caspase-8 homolog.  Imd is cleaved resulting in Tab2/Tak1 

recruitment, triggering IκB kinase (IKK) to phosphorylate the Relish, containing Cactus, 

complex.  (Evans et al., 2006).  The Relish complex is activated during phosphorylation 
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allowing for the transcriptional regulation of AMPs.   This innate immune response is effective 

at preventing pathogenic attack and the onset of disease (Brutscher et al., 2015). 

The Imd immune pathway is also responsible for the induction of the Jun N-terminal Kinase 

(JNK) pathway.  Once Tab2/Tak1 are recruited within the Imd pathway, this complex activates 

the JNK pathway.  In mammalian innate immune systems, IκB acts as its own inhibitor, taking 

responsibility for its own negative feedback loop.  However, IκB forms part of the Relish 

compound in honey bees, therefore, not allowing IκB to act as an inhibitor.  The JNK pathway 

could fill the need by providing the Imd pathway with a positive and/or negative feedback loop 

for the production of AMPs (Evans et al., 2006; Myllymäki et al., 2014). 

The Toll and Imd pathways activate the humoral innate immune system, the side of the immune 

system that is well documented, in comparison to the cellular innate immune system.   A 

cellular immune response involves nodule formation via the eicosanoid innate immune 

pathway.  This response also uses PRRs to recognise pathogenic MAMPs and relays signals 

through the response cascade.  Once a pathogenic MAMP is detected phospholipase 2 (PLA2) 

is activated that in turn hydrolyses arachidonic acid (AA).  The remainder of the cascade is 

unknown, but eicosanoids are produced at the end of this cascade.  These molecules are 

essential for nodulation, and play important roles in phagocytosis and melanisation, a process 

by which prophenoloxidase is released.  Endocytosis also forms part of the cellular response of 

the innate immune system, but the exact mechanisms are still under study.  More research is 

required to fully characterise the cellular response of the innate immune system.    

Much of the current understanding of the microorganism-host-immune relationship has been 

extrapolated to honey bees by looking at other microorganism-host interactions, like that of the 

far related human, and the closer related fruit fly, Drosophila melanogaster.   It is suggested 

that the increase in research in the immune systems of insects is because insects lack an adaptive 

immune system, presenting a unique model to study and begin to understand the innate immune 

system independently. 

With an understanding of the delicate workings of the innate immune system, it can be seen 

that honey bees use large amounts of energy distinguishing beneficial microorganisms from the 

pathogenic.  This suggests that honey bees require these beneficial microorganisms within their 

gut, otherwise there would be no return on energy investment.  Although their roles are still 

being elucidated, suggestions include reproduction, immune homeostasis, speciation, defence, 
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physiology, nutrition, and evolution (Crotti et al., 2012; Wu and Wu, 2012).   Much of the 

available research suggests a strong relationship between the core gut microbial community 

and overall health of the honey bee, based on microbial symbiont-host relationship 

extrapolation from similar hosts.  Although to our knowledge no research has been able to 

provide proof of this complex relationship, leaving the relationship between this crucial 

microbial commensal and host health poorly understood (Kwong et al., 2017). 

1.11 Honey bee stressors 

Honey bees provide a unique situation for studying the effects of stressors, even though their 

immune system is not fully understood.  Apart from molecular techniques, honey bees also 

show phenotypic and behavioural signs when a colony is under stress, allowing for more in 

depth understanding when monitoring treatment stressors.  This allows us to examine how 

honey bees react to certain stressors using a number of techniques.  Studies on the stressors of 

honey bees has boomed in recent years due to regional population declines, as discussed 

previously.  Several reasons are suggested to be responsible for a slow increasing population 

growth, and area-specific declines, namely; poor nutrition, mite pests, microsporidian and 

brood pathogens, management schemes, chemical toxification by pesticides and other 

agricultural applicants, and habitat degradation (Engel et al., 2016; Powell et al., 2014; Tozkar 

et al., 2015). 

1.11.1 Nutrient limitation  

Poor nutrition and meagre management schemes occasionally go hand in hand.  Many 

agricultural crops require honey bee pollination to produce superior quality and quantity yields.  

With the growing demand for food stocks, agricultural crop production has intensified, 

resulting in the land transformation with farmland making up more than 50% of the available 

land on earth (Edwards et al.  ̧2014).  With farmer profit margins shrinking, monocultured crop 

production is often favoured.  Monocultural crop production involves a single crop, often the 

most valuable crop for the specific environmental conditions of that region, offering the most 

profitable and stable yield.  This presents severe risks, such as the reduction of natural 

biodiversity, soil quality degradation, and an increased risk of disease (Lin, 2011).   Despite 

these risks, monoculture has become popular, with farmers substituting soil quality degradation 

with artificial fertilisers and pesticide control (Nel, 2005).  Research efforts are being directed 

to providing knowledge on these negative effects of monocultural crop production on the 
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environment, as well as trying to provide farmers with alternative farming practices that are 

still lucrative.  In Europe alone, large amounts of funding are being directed to Agri-

Environment Schemes to promote health farming practices while conserving the environment 

(Batáry et al., 2015). 

Monoculture also poses a risk to honey bee health and their overall population.  Many 

agricultural crops require honey bee pollination to deliver high quality and quantity yield.  

Therefore, honey bees are often required to live off monocultured crops, providing honey bees 

with only a single food source.    

The nutritional needs of honey bees are met entirely by pollen and nectar collected from the 

surrounding environment.  Pollen provides honey bees with a source of protein, vitamins, and 

lipids, whereas honey, made from the collected nectar, provides a source of carbohydrates 

(DeGrandi-Hoffman and Chen, 2015; Vaudo et al., 2015).  These two sources make up the 

entirety of the honey bee diet and need to meet all essential nutrient requirements (Di Pasquale 

et al., 2013; Toth et al., 2005; Brodschneider and Crailsheim, 2010).   

The nutritional needs of honey bees differ according to age and hive labour responsibilities.  

Foraging bees require little protein and rely almost solely on honey for the energy necessary 

for foraging flights.  Nurse bees require more protein as they are responsible for the production 

of royal jelly to rear brood.  Brood rearing is an energy expensive task, ignoring the energy 

necessary to produce an environment required for brood rearing, a honey bee larva consumes 

an average of 60 mg of carbohydrates throughout this developmental stage; which far 

outweighs that of an average of 25 mg for an adult worker bee for the same duration of time 

needed to rear a larva.  Adult honey bees require approximately 22 mg of pollen for the same 

time length of larval development, whereas a larva consumes an average of 32 mg of pollen 

(Brodschneider and Crailsheim, 2010).  However, these values can differ and is dependent on 

the caloric properties of the food stores.  For example, Babendreier et al.  (2004) stated that to 

rear a larva on, specifically, maize pollen it took 86 mg of maize pollen.  Rearing brood relies 

heavily on the colony’s food sources and is often the first to show signs of quantity and quality 

food limitations.   

Brood rearing is flexible across seasons and is highly reliant on food availability (Chaand et 

al., 2017).  The queen will continue to lay eggs until all the food stores and bodily fat stores 

are depleted.  At this point the queen will refrain from laying eggs, as most bees prefer to rear 
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no brood as opposed to malnourished young, and the hive will go into a hibernation-like state, 

often not recovering.   Occasionally, the queen continues to lay eggs past this point, after which 

honey bees will perform cannibalism of the young to meet the nutritional requirements for 

survival (Nicolson, 2011; Archer et al., 2014).  Quantity of nutritional income clearly has a 

major effect on colony development, but research has recently been directed into nutritional 

quality as a significant driver of colony health (DeGrandi-Hoffman and Chen, 2015).   

As landscapes develop from natural systems to intensified agricultural production, often 

resulting in increased monoculture, limited floral resources hinder honey bee colony 

development and provide little support for honey bee health.  Floral resources are restricted to 

the duration of the single crop pollination window and although honey bees are exposed to 

copious quantities of floral resources, diversity in pollen and nectar presents potential nutrient 

deficiencies (Foley et al., 2012).   

The nutritive value of pollen should not be determined by the total protein concentration, but 

rather through the presence of amino acids.  Honey bees require ten essential amino acids via 

the intake of food as honey bees are unable to synthesise these themselves; these include lysine, 

threonine, arginine, isoleucine, methionine, valine, phenylalanine, tryptophan, and leucine 

(Keller et al., 2005).  Honey bees are entirely responsible for foraging foods that meet their 

requirements, which becomes complex when they are subjected to diverse floral resources.  It 

is obvious to state that increased availability of multiple floral resources will have a positive 

influence on the population growth of honey bees, as it would with any host species.  

Understanding the influence of limited nutrient resources on a host is undeniably multifaceted.  

Paoli et al.  (2014), using the geometric framework model of nutrition from Simpson and 

Raubenheimer (1993), investigated the nutritional balance honey bees face.  Young bees 

require an Intake Target (IT) ratio of 1:50 (protein: carbohydrate), suggesting an actual ratio of 

1:115 (essential amino acid: carbohydrate).  Foraging bees required 60% more carbohydrate 

than younger bees, on top of the reduced need for essential amino acids.  Interestingly, when 

foragers were fed an amino-acid rich diet they experienced a 6.5 – fold increased death rate, in 

comparison to a carbohydrate-limited fed control.  Through investigation, young bees were 

seen to overeat carbohydrate-rich food to obtain sufficient essential amino acids and foragers, 

protein.  The effects of such feeding promote little downfall as young bees expend no energy 

to retrieve food sources but becomes an issue with foraging bees.  As young bees are bound to 

the hive, they rely on food stores, gathered by foragers, for their required nutrients.   
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Forager bees hold an important responsibility in gathering sufficient food sources for the 

various dietary requirements of each individual within the colony (Schmickl and Crialsheim, 

2004).  Productivity, as a result of sufficient food sources within the colony, are essential not 

only for honey bee health and growth, but for beekeepers.  In South Africa, data from 1988 – 

2001 shows a steady average of 30 kg honey yield per hive (The South African Beekeeping 

Industry, 2008.).  Honey harvested from their colonies provides beekeepers with their 

livelihood, promoting the relationship between bee keepers and agricultural farmers in need of 

honey bee pollination.   

1.11.2 Agricultural chemical exposure 

As we demand more from honey bees, with regard to higher productivity in the form of 

pollination, honey production, or both, the health of honey bees is now needing to be closely 

monitored.  Keeping in mind the importance of the gut microbiota and host health, 

antimicrobial treatments might provide valuable insight into whether the treatment of honey 

bees as it currently stands is sustainable.  Agricultural chemicals, such as antibiotics, 

fungicides, and pesticides have been brought under the spot light, with the pesticide group 

neonicotinoids taking centre stage.  Neonicotinoids are a class of commonly applied systemic 

insecticides used for pest control on numerous agricultural crops, pets, forestry, livestock, and 

for household usage (Cimino et al., 2017).  These insecticides, first discovered in the late 1980’s 

was one of the fastest growing group of application chemicals, until recent studies showed their 

detrimental effects on the environment and nontarget organisms.  Seven insecticides make up 

the neonicotinoid class, largely dominated by the insecticide imidacloprid, with an estimated 

annual world production of 20 000 tonnes (Simon-Delso et al., 2015).  The mode of action of 

neonicotinoids is purely neurotoxic, resulting in the disruption of the organisms’ nervous 

system (Sánchez-Bayo, 2011).  As the mode of action is broad, non-target organisms are also 

under threat.  More recently, the effects of neonicotinoids are under scrutiny. 

In 2013 the European Union placed a two-year partial ban period, only effective for the most 

honey bee attractive crops, on the use of neonicotinoids, needing the time to access the potential 

effects of these neurotoxicants on honey bees and other closely related bee species (Fairbrother 

et al., 2014).  Woodcock et al. (2017) found that with clothianidin seed treatment, worker bee 

numbers declined by 24% in comparison to the control group.  However, these treatments 

occurred across three countries within Europe and these results were only detected in the 

Hungary group.  No trends were observed across all countries making it impossible to draw 
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clear-cut conclusions.  Interestingly, the study occurred during the European neonicotinoid 

application ban, but prominent levels of residual neonicotinoids were detected in hives not 

treated with neonicotinoids, suggesting a longer half-life of the insecticide than previously 

thought.  Kessler et al.  (2015) states, however, that effects on honey bees only occur where 

insecticide treatments are higher than that of levels found within pollen and nectar in the 

environment, but the effect of bio-accumulation remains an issue.  They went on to find that 

honey bees, in fact, prefer pollen and nectar contaminated with these insecticides, allowing for 

the residual levels within colonies to increase over time at a higher pace than natural residuals.  

Research available on the effects on honey bees is limited, with many contradictory 

conclusions, but it is thought to affect the honey bee neural system, especially interfering with 

homing after foraging (Woodcock et al., 2017).  The European Food Safety Authority 

performed a risk assessment on the use of neonicotinoid insecticides and found several high-

risk factors to wild and domesticated honey bees, bumble bees, and solitary bees.  An additional 

risk to neonicotinoid lies within its systemic nature.  It’s increased solubility in water allows 

for neonicotinoids to travel beyond its application area (Simon-Delso et al., 2015).  In early 

2018 the European Union imposed a total ban on the use and application of neonicotinoids, 

except for enclosed greenhouses, expected to be in effect towards the end of 2018 (The 

Guardian, 2018).  The quick rise and fall of this insecticide spurred interest into other 

agricultural chemicals and the effects of these on honey bees and other bee species. 

The fungicide of particular interest in this research is chlorothalonil.  Chlorothalonil is a broad 

spectrum anti-fungal first registered in the United States in 1966.  In recent years it has found 

application on a variety of food crops; including peaches, peanuts, celery, beans, tomatoes, 

onions, and many others, adding up to a total of 65 food crop applications (van Scoy and 

Tjeerdema, unknown; Kelly, 2012; Battaglin et al., 2008).  The mode of action of chlorothalonil 

involves the transformation of glutathione, resulting in a degradation of vital enzymes involved 

in metabolism (Yang et al., 2011).  The effects of chlorothalonil on non-target organisms is 

considered low risk, with the exception of aquatic organisms, probably as a result of its low 

solubility in water (Leitão et al., 2014). Honey bees are not known to be directly affected by 

this fungicide, but long-term effects have not been monitored, probably as a result of the 

complexity of the honey bee and its hive.   
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1.12 Honey bee health under everyday stressors 

The potential effects of chlorothalonil on the gut microbiota of honey bees is not well 

documented and poses a potential flaw in risk assessments used to determine the safety of 

application of all agricultural chemicals.  As the gut microbiota of honey bees is shown to play 

a role in overall honey bee health, the effect of a fungicide on this important commensal 

community might provide essential knowledge for further risk assessments. 

This study aimed to examine the relationship between the gut microbial communities and 

immune system of honey bees.  It was also determined whether monitoring this relationship 

could provide information into the stress honey bees face as a result of increased productivity 

pressures.  A total of two stressors were tested, along with both positive and negative controls.   

Two every day stressors, namely nutrient limitation and the fungicidal treatment, were selected 

for due to the limited knowledge available on how these stressors may affect honey bees.  These 

stressors were also selected for as they are relevant to South Africa and could provide us with 

information on the effects of common honey beekeeping practices in South Africa. The effects 

of these daily stressors on honey bees were monitored and the gut microbial communities and 

immune gene expression of the honey bees were monitored.  The two stressors included an 

agricultural relevant fungicide and nutrient limitation as a result of forced monoculture 

pollination.  All results were compared to both an untreated negative control and a well-studied 

positive control in the form of bacterial challenge by the bacterium Paenibacillus larvae. 

To accomplish these aims, Automated Ribosomal Intergenic Spacer Analysis (ARISA) was 

used to monitor shifts in the honey bee gut microbiota while using Real-Time Polymerase 

Chain Reaction (RT-PCR) to observe changes in the honey bee immune system.  Phenotypic 

colony metadata was also recorded to examine the overall colony reaction to the stressors.  

Combining these methods, the relationship between the gut microbiota and overall health can 

be closely inspected.    
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Chapter 2: Honey bee colony metadata 

2.1 Introduction 

Honey bee colony strength and productivity is often measured for agricultural pollination 

demands but could potentially provide researchers with insightful indications of colony health.  

Various aspects of a honey bee colony can be measured to monitor overall colony strength and 

productivity, including; frames/number of adult bees, frames/cells of stored honey and pollen, 

and frames/cells of brood.  Although all of these aspects work hand-in-hand and can provide 

seemingly redundant information, measuring all allows for a more contingent and more 

accurate indication of overall colony status and health.  As honey bee colonies are busy 

environments filled with up to 60 000 honey bees, some measurements are limited to 

estimations (Delaplane et al., 2013).   

Colonies with high levels of stored food indicate high productivity through the increased 

availability of food.  Colonies that show elevated levels in productivity are assumed to be 

healthy, as struggling colonies will allocate less energy into foraging, therefore, reducing the 

number of forgers needed to collect food.  Khoury et al. (2013) designed biological models to 

predict the interchanging relationship between the mortality rate of foragers and available food.  

Although they described the model as only a simple framework on which more complex 

models can be developed, the model did indicate important signs of colony health.  An entirely 

balanced colony shows equally elevated levels of forager mortality and food availability.  The 

stability of a colony is challenged when forager mortality rates increase, and the food 

availability decreases.  If a threshold level is reached, the colony will collapse, resulting in 

abandoned or collapsed colonies with hive boxes that still contain low amounts of stored food.   

The methodology of measuring stored pollen, honey, and brood frames is relatively constant 

and can be represented in cm2 or number of cells, however, the importance in reducing 

observational bias is outlined in Delaplane et al.  (2013).  Monitoring the amount of stored food 

is important to observe the amount of energy available for foraging.  The amount of food stored 

within a colony can also be related to the amount of brood within a colony, as food levels within 

a colony determine the amount of brood that can be reared.  A colony with a high number of 

workers shows high productivity, as brood productivity is optimised.   
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The most accurate way of calculating the number of worker bees within a colony is, however, 

labour intensive and extremely invasive.  Frames, still saturated with workers, are weighed, 

and then the bees are removed, and the frames are weighed again.  With a standard weight for 

a worker, the number of workers within a colony can be calculated (Burgett and Burikam, 

1985; Bhusal et al., 2011).  This presents problems as honey bee colonies are at risk of 

swarming, a process by which honey bees relocate to another location.   

A standard holding capacity figure per frame was generated as an alternate, less invasive way 

in calculating the number of bees per colony.  This figure assumes that each frame is filled to 

capacity on both sides, using standard deep comb frames.  This method reduces the risk of 

swarming but can provide erroneous estimates as bees on the outer wooden frames are not 

taken into account, and bees vary in size depending on the subspecies or gender (Delaplane et 

al., 2013). 

Presenting colony strength in the form of frames is an additional option to monitoring colony 

strength, e.g.  frames of honey.  This method is less time consuming, the least invasive, and 

robust enough to overcome capacity/cell estimate errors.  Although this method makes it harder 

to compare data with other studies, this method was chosen as the experimental colonies in this 

study required continuous monitoring.   

2.2 Materials and methods 

2.2.1 Experimental hive set up and treatments 

Honey bee colonies used for this experiment were used for this research only and not used for 

commercial beekeeping purposes.  Eighty empty, standard Langstroth hive boxes were placed 

in July 2016 at Drie Koppen Farm (Stellenbosch, South Africa) to catch wild swarms of honey 

bees.  The experimental landscape falls within the fynbos biome.  The fynbos biome, native to 

South Africa is mostly made up of Proteaceae, Restionaceae, and Ericaceae, and stretches 

across the south and south-western parts of the Western Cape, South Africa.  This includes a 

high diversity of fynbos flora, making it the most species dense biome of all temperate and 

tropical regions (Richards, 1993).  The specific fynbos environment used for this study is made 

up pristine mountain fynbos, dominated by Protea repens, a rewarding environment for honey 

bee colonies within the months of April to October.  Honey bee colonies trapped here are 
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considered to be from the wild honey bee population resident in the Helderberg mountains, and 

all colonies may be assumed to originate from a single population. 

In March 2017 twenty-four colonies were chosen based on similar weight to standardise colony 

strength, outlined in the standard methods for honey bee research (Delaplane et al., 2013), with 

all colonies of approximately the same age.  All other colonies were removed from the farm.  

The twenty-four colonies were randomly divided into four groups, each group of six colonies 

separated by more than 1 km to prevent admixing between groups.  Each colony was given a 

honey super with empty frames, as well as a plastic inner feeder within the super.  Colonies 

were given queen excluders to prevent the queen from accessing the honey super.  These 

colonies remained undisturbed until October 2017 when they were carefully inspected a week 

before treatment began to ensure that the colonies were healthy, strong, and visually lacking 

disease.  Molecular screening for the diseases showed to be problematic in pilot studies as the 

common honey bee microbial pathogens are spore-forming, and therefore showed disease-

related false-positives.  Honey bee colonies potentially diseased with non-visual infections 

would have represented as outliers, as the number of colonies per treatment group were high 

enough to show high levels of standard deviation and error. 

Treatment of the groups began in mid-October with three of the four treatment groups receiving 

different treatments, with the fourth group acting as a control.  All twenty-four hives received 

250 mL sterile 50% sugar water to homogenise across all treatments.  All treatments started on 

the same day and were administered weekly for six weeks and ceased ten days before sampling.   

The treatments were as follows:  

1. Group Fungicide 

The six colonies were treated weekly with 5% chlorothalonil dissolved in the 250 mL 

of sterile 50% sugar water.  The fungicide dosage was based on 10 ppb dosage 

previously used by Feazel-Orr et al., (2016). 

 

2. Group Disease 

A single frame was supplemented into each of the six colonies on the first day of 

treatment.  The supplemented frames originated from a colony confirmed to be heavily 

infected with Paenibacillus larvae, the causative effect of American Foulbrood Disease. 
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3. Group Nutrient Deficiency 

The six colonies within this group were tested for the effects of nutrient deficiency.  A 

pollen excluder was fitted to the entrance of each of the colonies to prevent foraging 

bees from being able to bring pollen into the colony but allow for access to the 

experimental landscape.  All frames with pollen storage were removed from the 

colonies.  The colonies were supplemented with irradiated pollen frames from 

monoculture-based colonies.  These frames contained pollen from a single monoculture 

crop, canola.  The colony, therefore, had no access to additional pollen stores, but the 

pollen within the supplemented frames.  Pollen traps allow honey bees to return honey 

and nectar from the foraging landscape, so this food source remained unrestrained.  

 

4. Group Control 

This group received no treatment, apart from the sugar water supplementation, and 

acted as the control group.   

2.2.2 Data capturing 

Observation data of the honey bee colonies was collected at three time-points.  These 

timepoints occurred after the twenty-four hives were selected in March 2017, one week before 

treatments began in October 2017, and after treatments had concluded in January 2018.  Data 

was collected in October after a full winter forage season to allow for the colonies to collect a 

full range of pollen resources from the winter blooming fynbos in the experimental 

environment.  The observation data included the number of frames of honey, pollen, brood, 

and bees.  All subjective mode observations were taken following the Standard Methods for 

Estimating Strength Parameters for Apis mellifera colonies (Delaplane et al., 2013).   

2.2.3 Data analyses 

Data was analysed using ANOVA for repeated measures and Ad-hoc data analyses were 

performed using Tukey’s HSD and Dunnett tests.   

2.3 Results and discussion 

The experimental landscape used in this study was a Proteaceae-dominated fynbos area, known 

for winter bloom (Coetzee, 1989).  In is important to note here, the experimental landscape 

represented a tough foraging season due to the drought conditions.  Controls within the study 
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were used to remove as many environmental variables as possible.  All experimental colonies 

showed an increase in productivity at the October time-point, as was expected as the Proteaceae 

had just completed blooming.  The increased influx of nectar would result in amplified honey 

bee foraging and productivity.  This is supported by Shahi et al. (2011) who found that the 

availability of surrounding flora played a direct role in colony development and productivity. 

No significant differences in the number of frames of adult honey bees across all treatments at 

each time-point were observed (Figure 2.3.1).  This suggests that the number of worker honey 

bees remained constant under all stressors.  However, the disease group showed a slightly 

higher number of frames of bees during the October time-point, although not significant.  As 

the October time-point occurred before treatments had begun, the experimental setup showed 

a slight preference towards the six colonies designated within the disease group.  It is 

hypothesised that because the six colonies that made up the disease group were at a higher 

elevation than the other groups, it could have resulted in increased water availability due to 

dew and fog, therefore, increased floral bloom.  Another hypothesis might be that flower size 

Figure 2.3.1: The average number of frames of adult bees across all treatments at three time points .  The 

data was collected on the same day; data points are separated only to ease interpretation.  The March time-

point was taken when experimental colonies were set up .  The data recorded in October was just prior to the 

start of the treatments and the January time-point was taken once treatments had concluded.   
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is directly proportionate to the amount of available nectar produced.  As the experimental 

landscape was natural, the distribution of flower size across that landscape was not uniform, 

therefore the distribution of pollination resources across all experiment sites were not equal 

(Zhao et al., 2015).  Protea repens, is common in the experimental landscape, and is known to 

dominate altitudes of about 600 m above sea-level and higher (Coetzee, 1989).  This suggests 

a more favourable microclimate for the colonies within the disease experimental group.    

The amount of stored honey within the colonies was also represented in the average number of 

frames.  No significant differences between the amount of stored honey in the colonies across 

all treatments were observed at any of the three timepoints (Figure 2.3.2).  As honey serves as 

the main energy source for foraging honey bees, honey stores are vital in ensuring continuous 

foraging.  Drawing conclusions from the variation in stored honey levels within a colony is 

exceptionally difficult as many variables need to be considered.  An increase in foraging honey 

bees can result in honey store depletion, but an increase in honey stores can be because of a 

lack of foraging honey bees, or an overactive foraging honey bee colony (Paoli et al., 2014).  

Therefore, deductions from stored honey observations only will be discussed in accordance 

with gene expression in Chapter 4, The immune response of honey bees.   

Figure 2.3.2: The average number of frames of stored honey across all treatments at three time points .  The 

data was collected on the same day; data points are separated only to ease interpretation.   The March time-

point was taken when experimental colonies were set up .  The data recorded in October was just prior to the 

start of the treatments and the January time-point was taken once treatments had concluded.   
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Stored pollen is easier to draw conclusions from as foraging bees consume very low amounts 

of pollen, as honey provides the necessary energy for foraging flights (Camazine, 1992).  Brood 

and non-foraging nurse bees rely on pollen as a source of amino acids and other vital proteins 

(Paoli, 2014).  There exists a close correlation between the amount of stored pollen and the 

level of brood productivity.  Honey bees will correlate the rate of pollen foraging to the rate of 

brood productivity, with an addition of 1 kg leeway in case of a sudden reduction of floral 

resources (Weidenmüller and Tautz, 2002).  The influx of pollen entering the hive because of 

increased foraging results in large pollen storage, but if brood productivity is high stored pollen 

will be used faster in comparison to colonies with low brood productivity.  Therefore, the 

significance of the number of frames of stored pollen will be discussed along with brood 

productivity.   

The amount of brood within a colony determines the amount of pollen foraging that is required.  

As honey bees that rear young are not the same that forage, the mechanism in managing the 

amount of pollen in relation to brood is an interesting one.  The exact mechanism is unknown, 

but it is suggested to be direct, indirect, or a combination of the two (Free, 1967).  Foragers 

could monitor the amount of brood and the amount of food stores directly, as after foraging 

worker bees enter deep within the colony to the storage cells to place their newly foraged 

Figure 2.3.3: The average number of frames of stored pollen across all treatments at three time points .  The 

data was collected on the same day; data points are separated only to ease interpretation  The March time-

point was taken when experimental colonies were set up.  The data recorded in October was just prior to the 

start of the treatments and the January time-point was taken once treatments had concluded.   

Stellenbosch University  https://scholar.sun.ac.za



53 

 

pollen.  This allows them a direct opportunity to observe the colonies food position.  It is also 

hypothesised that foragers receive indirect messages about the need for pollen within the 

colony via oral trophallaxis with nurse bees.  As nurse bees’ rear young, they can inform 

foragers about need for pollen foraging.  This communication is thought to occur by the nurse 

bees feeding more proteinase-based (pollen) food to foragers via trophallaxis, inhibiting pollen 

foraging, or a carbohydrate-based (honey) food triggering an increase pollen foraging (Seeley, 

1994, Weidermüller and Tautz, 2002; Camazine et al., 1998; Fewell and Winston, 1992). 

During high forage seasons, dependent on the pollination seasons of the surrounding flora, the 

amount of stored pollen has shown to have a positive correlation with brood quality and 

quantity, as well as overall colony strength.  However, as surrounding floral resources diminish, 

the amount of stored pollen within the colony is reduced as brood production is higher than 

pollen input (Jevtić et al., 2009; Free, 1967).  The nutrient deficient experimental group was 

the only group to show a significant reduction in stored pollen and brood productivity, p = 

0.000 and p = 0.001, respectively (Figure 2.3.3 and Figure 2.3.4).  The lack of quality in the 

nutrient deficient group could have resulted in the reduction in brood quantity.  Honey bees are 

known to slow brood production as emphasis is placed on raising well-nourished bees in 

smaller quantities, as opposed to raising poor performing honey bees in the high numbers 

Figure 2.3.4: The average number of frames of brood across all treatment s at three time points.  The data 

was collected on the same day; data points are separated only to ease interpretation  The March time-point 

was taken when experimental colonies were set up .  The data recorded in October was just prior to the start 

of the treatments and the January time-point was taken once treatments had concluded.   
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(Chaand et al., 2017).  However, an experimental flaw limits the ability to draw a definite 

deduction from this data.  A reduction in pollen quantity was expected, as the amount of stored 

pollen was unable to increase due to the fixed pollen traps.  Although foraging continued, no 

pollen was able to enter the colony and as the colonies pollen stores dwindled, brood 

productivity decreased to meet with the level of food availability.  Honey bees then lowered 

the level of colony productivity to meet with depleted pollen stores.  Future studies should 

continuously replenish the mono-floral pollen stores to ensure that the observed results in this 

study were as a result of nutrient limitation and not food limitation. 

This short-coming in this study provided a unique opportunity to monitor the other 

experimental stressors with a known positive and negative baseline.  In this case, the positive 

being the untreated experimental group, and the negative being the nutrient deficient group 

with its depleted pollen resources.  The fungicide and disease experimental groups fell between 

both the negative (control) and positive (nutrient deficient) groups.  Although not significant, 

the fungicide and disease experimental groups showed some effects on the productivity of 

brood and pollen foraging.  These single stressors alone were unable to significantly affect the 

overall colony productivity but could provide an opportunity for secondary stressors to take 

hold.   

Additional observations showed that a single colony within the nutrient deficient group rejected 

all pollen that was provided, leaving a small pile of the provided pollen outside of the colony.  

It is unknown as to why honey bees would reject pollen but is thought that the colony had no 

desire in consuming low-quality diet and were making space for the higher quality pollen from 

the environment, even though they were unable to bring it into the hive.  This colony was 

removed from the study because of the pollen removal. 

The colonies remaining in the fungicide treatment group showed no significant difference in 

frames of brood or pollen, in comparison to the control group (Figure 2.3.3 and Figure 2.3.4).  

DeGrandi-Hoffman et al.  (2008) conducted a study, examining the pollen consumption rate of 

various diets and found that an increase in diet quality induced a higher pollen consumption 

rate, but more importantly, an increase in brood productivity.  As the remaining three 

experimental groups shared a diet, a similar brood productivity rate was expected after 

treatment.  However, no significant differences were observed after the commencement of the 

treatments, which suggests that colony strength was not affected by any of the treatments.  This 
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was especially interesting for the disease treatment group.  Colonies within this group showed 

severe infection, with two of the colonies completely collapsing before data could be collected.   

2.4 Conclusion 

Colony strength provides insightful information into the productivity and health of honey bees.  

Many parameters can be measured to determine this, although most rely on observation.  

Limitations in the methodology of measurements make data difficult to compare with 

published work but can allow for comparison of colonies within a study.  Colony productivity 

was not affected by any of the treatments, bar the nutrient deficient group.  This was expected 

as these colonies were nutrient limited in both quality and quantity.  As the food availability 

decreased, so did brood production, a common phenomenon in honey bees.  However, as three 

colonies collapsed because of American Foulbrood Disease and the productivity of those hives 

were not significantly different from the control groups, colony productivity parameters alone 

might not be a reliable indicator of overall colony health.   

 

Overall, the nutrient deficient treatment negatively affected colony strength and productivity.  

The disease treatment group showed a negative trend in both frames of brood, pollen, and bees, 

although not significant.  The fungicide treatment group showed no effect on colony strength 

and productivity.  Collating these differences and trends to changes in the gut microbiota and 

immune system of honey bees might provide additional information in understanding the 

effects of these stressors on the overall health of honey bees. 
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Chapter 3: Microbial communities associated with the honey bee 

gut 

3.1 Introduction 

Recent literature suggests that the honey bee gut microbiota is involved in maintaining host 

health.  The microbial communities associated with the gut of honey bees play various roles 

such as nutrient degradation for consumption, and many others, but most importantly, it assists 

honey bees in their defence against invading pathogens (McFrederick et al., 2014; Tarpy et al., 

2015; Raymann and Moran, 2018).  With the close-knit relationship between the gut microbiota 

and vertebrate host health in mind (Sekirov et al., 2010), the gut microbiota of honey bees is 

an intriguing starting point for studying overall honey bee health (Engel et al., 2016; Martinson 

et al., 2012; Raymann and Moran, 2018; Jones et al., 2018).   

The honey bee digestive system is composed of three major parts; namely, the crop, the midgut, 

and the hindgut.  The environment in these three compartments each provides a selective 

pressure for microbial colonisation.  The crop acts mainly as a temporary holding place for 

nectar collected during foraging or gained through oral-to-oral trophallaxis with nestmates.  

The proventriculus is a one-way valve connecting the crop to the midgut.  This valve allows 

for the containment of digestion that begins in the midgut, restricting digestion to the midgut 

and hindgut, and not the crop.  The midgut is a fluctuating, acidic environment, whereas the 

hindgut presents a more stable, nutrient-rich setting (Snodgrass, 1910; Santos and Serrão, 2006; 

Carreck et al., 2013). 

The crop is suggested to harbour mainly transient microorganisms, largely resulting from 

environmental inoculation.  The low abundance of microorganisms that exist within the crop 

have a common functionality, processing and breaking down foraged nectar to available sugars 

(Lee et al., 2014).  As the crop is continuously emptied of nectar upon return to the hive, and 

refilled during flower pollination, the environment does not pose as a suitable site to observe 

potential effects of any experimental treatments.  Thus, the crop will not be addressed in this 

study.  The hindgut, however, has been shown to boast an abundance of microorganisms, 

presenting a stable ‘core’ microbial community (Kwong and Moran, 2016).  Between these two 

environments is the midgut, which acts as a rigid microbial filter between the environment and 

the core microbial community of the hindgut.  The midgut harbours 1 – 4% of the total gut 
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microbiota, with the hindgut representing the major area of colonisation, comprising 90% of 

the total gut microbiota, in terms of microbial numbers (Ludvigsen et al., 2015).  The hindgut 

and midgut will be jointly referred to as the gut, unless specified as hindgut or midgut. 

Research on the gut microbiota is mainly focused on the bacterial colonisers with archaea and 

eukaryotes largely unexplored.  Archaea and eukaryotes isolated from honey bee guts were 

found to have a low homology to sequence databases, limiting the progression of the 

understanding of these microorganisms within the honey bee gut (Lee et al., 2014).   

Extrapolating the well-studied relationship between the human host and their gut microbiota 

might help in understanding this relationship in honey bees.  Shifts in the gut microbiota is 

often a sign of poor health, and in humans, has been linked to the development of various 

diseases and disorders (Sekirov et al., 2010; Dash et al., 2015; Dinan and Cryan, 2012).  Diet 

is considered to be the largest driver in observed shifts in the gut microbiota of most vertebrates 

and invertebrates (Bertino-Grimaldi et al., 2013; Schloissnig et al., 2013); however, this is not 

observed in honey bees, as honey bees have an exceptionally stable gut microbiota across large 

variations (Martinson et al., 2012; Powell et al., 2014; Engel et al., 2012).  A small observed 

shift in the microbial communities of honey bees could carry significantly more weight, in 

terms of potential implication in poor health, in comparison to more complex hosts.  Correlating 

these shifts to the direct effects on honey bee health is conceding difficult as there lacks a 

significant amount of research on the understanding of the gut-microbiota-brain 

communication axis in honey bees.  Jones et al. (2018) went as far to identify potentially 

important bacterial taxa as candidates for further research into understanding this axis, but more 

research is necessary in potentially identifying additional key-drivers behind this 

communicative axis. 

The recommended method to monitor microbial communities involves observing changes in 

microbial diversity.  Population diversity can be presented in both alpha- and beta-diversity.  

Alpha-diversity measures the diversity of every single site individually, whereas beta-diversity 

measures the diversity of each grouped site.  Beta-diversity is represented through diversity 

indices, such as the Shannon, Simpson, and inverse Simpson indices.  The abundance of 

Operational Taxonomic Units (OTUs) is a raw observation of the number of estimated species 

within the site.  Although the outputs of these indices are different, the interpretation of the 

output data is similar.  The Shannon index measures community diversity, weighted on the 

species richness, taking rare species into account.  The Simpsons index also measures 
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community diversity, but is weighted more on species evenness, effected strongly by the 

occurrence of species dominance (Bibi and Ali, 2013).  Alpha-diversity is generally represented 

graphically from a Bray-Curtis (dis)similarity matrix.  In the case of a dissimilarity matrix, like 

used in this study, each sampled site is compared to every other site.  Each data point is 

distributed across a plot, with the distance between each plot representing how similar the 

microbial communities of these sites are. 

Using both alpha- and beta-diversity methods, we examine the effects of three treatments on 

the overall microbial composition of the honey bee gut, both hind- and mid-gut separately.  

Uniform honey bee colonies were exposed to two experimental treatments; namely, the 

fungicide chlorothalonil and nutrient limitation in the form of providing only a single pollen 

source for consumption.  The two experimental treatments were then compared to a nontreated 

negative control, and a bacterial disease challenge using Paenibacillus larvae, the causative 

agent of American Foulbrood.   

3.2 Materials and methods 

3.2.1 Experimental hive set up and treatment 

The experimental set and treatments were that same as those in Chapter 2 

3.2.2 Sampling and processing 

Three frames of emerging brood were removed from three different colonies from another 

apiary in the vicinity of Stellenbosch, and the frames placed together in a singly emergence box 

in an incubator at 35 °C, to ensure admixture of the workers.  Newly emerged bees (< 24 hours 

old) were paint-marked (Posca™) and 200 bees were added to each of the 24 experimental 

colonies on the same day, November 5th and 6th 2017.  After ten days, the colonies were sampled 

for the marked worker bees, November 15th and 16th 2017.  Five marked bees were removed 

from a hive using sterile forceps and placed in a sterile 50 mL centrifuge tube which was then 

placed directly onto ice to ensure ice anesthetization of the honey bees.  Three samples, each 

consisting of five bees each, were taken per hive.  All samples were returned to the laboratory 

and stored at -20 °C.   The bees were dissected within 48 hours of sampling to ensure that 

decomposition of the gut did not occur.   After removal from the freezer, the bees were surface 

sterilised in 70% EtOH for 5 minutes and rinsed in sterile 0.9% saline.   The bees were dissected 

individually following the standards for honey bee research (Carreck et al., 2013), pooling five 
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guts from every hive to generate one of three representative samples.   Each bee was dissected 

under sterile conditions, using sterile tools and solutions throughout the dissection process.   

The wings and legs were removed from the bee using cuticle scissors and the bee was then 

pinned ventral side down onto a dissection table using a pin.   The bee was then submerged in 

0.9% saline solution to prevent drying out of the abdominal tissue.   Dissection started, using 

entomology scissors (Aust Ento), from the right side of the abdomen, between the tergites and 

sternites, starting between the A6 and A7 and ended at the A2.   The A2 was thereafter cut 

across to meet the left side of the abdomen and then cut downwards towards the left side A7 of 

the abdomen.   The dorsal diaphragm was pulled downwards and pinned down to reveal the gut 

tissues.  The gut tissue was removed starting from the proventricular and ending at the rectum.   

For reference to anatomical diagrams see Figure 3.2.2.1.   The dissected gut samples were then 

split into mid- and hind-gut samples.  The midgut began at the proventriculus and ended at the 

start of the ileum, and hindgut samples started at the ileum and ended at the rectum.  Special 

caution was taken to not destroy the crop during dissection, nor collect the sting sack along 

with the hindgut.  A total of six representative samples, each containing 5 pooled midguts and 

5 pooled hindguts, were compiled from each hive in lysis tubes containing sterile 0.7 mL 2 mm 

glass beads (Lasec, South Africa).  Samples were stored at -20 °C overnight. 

Figure 3.2.2.1: External (A) and internal (B) anatomy of the worker bee of Apis mellifera (Taken from 

Carreck et al.  (2013)). 

A B 
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3.2.3 DNA extraction 

Gut samples were thawed and homogenised for 60 s at maximum speed using the Omni Bead 

Ruptor.   DNA extraction was performed within 48 hours of sampling.   Total genomic DNA 

was extracted using NucleoSpin® Tissue kit for DNA, RNA, and protein purification 

(Macherey-Nagel, Germany) following the manufacturers protocol for extraction from tissue.   

The presence of DNA was confirmed through visualisation on a 1% (w/v) agarose gel stained 

with Ethidium Bromide under ultraviolet light.   DNA was stored at -20 °C until further 

processing.   

3.2.4 Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

All samples were subjected to gene amplification of both the bacterial and fungal hypervariable 

lengths of the ITS region.   The chosen primer sets were f-5’-

GTCGTAACAAGGTAGCCGTA-3’ and r-5’-GCCAAGGCATCCACC-3’ for bacterial 

(Jones et al., 2007) and f-5’- GGAAGTAAAAGTCTAACAAGG-3’ and r-5’-

TCCTCCGCTTATTGATATGC -3’ for fungal (Martin and Rygiewicz, 2005), with the 

forward primer in both pairs being fluorescently labelled.   The reaction mixture, total volume 

of 10 µL, consisted of 5 µL KAPA2G Robust HotStart ReadyMix (KAPA Biosystems, South 

Africa), 2.6 µL ddH2O, 0.2 µL of each of the primer, and 2 µL purified genomic DNA.   The 

reactions were subjected to genetic amplification using GeneAmp® PCR System 9700 

(Applied Biosystems, United States of America).   The reaction conditions for bacterial 

community analysis were as follows; initial denaturation step at 95 °C for 5 minutes, followed 

by 33 cycles of denaturation at 95 °C (45 s), annealing at 56 °C (50 s), elongation at 72 °C (70 

s), a final elongation step at 72 °C for 7 minutes, with a final hold step at 4 °C.   The reaction 

conditions for the fungal community analysis were as follows; initial denaturation step at 94° 

C for 5 minutes, followed by 36 cycles of denaturation at 94 °C (30 s), annealing at 54 °C (45 

s), elongation at 72 °C (50 s), a final elongation step at 72 °C for 7 minutes, with a final hold 

step at 4 °C.  The amplified DNA was confirmed through visualisation of a 1% (w/v) agarose 

gel stained with Ethidium Bromide under ultraviolet light.   DNA from each sample was 

amplified in triplicate to overcome polymerase chain reaction bias and to increase the 

likelihood that low frequency species were detected.   The three reactions were pooled, and the 

PCR products were subjected to capillary analysis at the Central Analytical Facility on an 

automated Genetic Analyser ABI 3010XI, using the Lizz1200 as a size standard for all samples. 
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3.2.5 Data analyses 

The output was in the form of electropherograms dependent on the fluorescent intensities of 

various fragment lengths.   The electropherograms were analysed using GeneMapper® Version 

5.0 Software (Applied Biosystems, United States of America).  Electropherograms were 

checked for quality of output and size standard.   All statistical analyses were performed using 

R (https://www.r-project.org) (Available online), using CRAN packages; vegan, fossil, and 

ecodist (Oksanen et al., 2017).  Background fluorescence was first removed from each sample 

using a 0.5% of the total sample fluorescent as threshold.  Within each data set, samples with 

fluorescence below 10% of total fluorescence of all samples were removed to prevent data 

distortion.  Samples were then normalised to the lowest sample total fluorescence to allow for 

sample comparison.  The shifts in the microbial community across hind- and mid-guts, as well 

as between treatments, were investigated by calculating both the alpha- and beta-diversity of 

each sample.  Alpha-diversity, the diversity of the tested population within sites, included 

relative abundance in the form of Operational Taxonomic Units (OTUs), and both the Shannon 

and Inverse Simpson index, tabularly represented.  Statistical differences between alpha-

diversity was calculated using one-way ANOVA and Dunnet’s ad-hoc test (STATISTICA 

13.3).  Beta-diversity, the diversity of the tested population between sites, involved a 

dissimilarity matrix using Bray-Curtis to generate non-Metric Dissimilarity Scaling (nMDS) 

plots and hierarchical clustering, graphically represented.  Statistical differences of gut 

microbiota between each treatment and the control group were calculated using both 

Permanova and Anosim.  Across all statistical tests, a confidence level of 95% was used in the 

determination of significance. 

3.3 Results and discussion 

Honey bees boast a core bacterial community in their gut, which include the mid- and hind-gut 

sections as a whole (Kwong and Moran, 2016).  The core bacterial community can be observed 

as the few shared bacterial Operational Taxonomic Units (OTUs) observed in this study (Figure 

3.3.1).  However, the overall bacterial communities harboured in each of these sites are shown 

to be significantly different (p = 0.001, R = 0.403), represented using beta-diversity (Figure 

3.3.2).  Dissimilar bacterial communities within the mid and hindguts of honey bees are 

supported by literature, as these sites promote different environmental conditions and harbour 

specific bacterial symbionts to provide each site with different functions (Anderson et al., 2011; 

Anderson et al., 2013; Kwong and Moran, 2016; Jones et al., 2018).  
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According to the alpha-diversity indices, the bacterial communities associated with the hindgut 

showed a significantly higher level of bacterial diversity, demonstrated by the higher 

abundance of Operational Taxonomic Units (OTUs) (p = 0.004), diversity indices, richness, 

and evenness (Table 3.3.1) in comparison to midgut.  These results were expected as, of the 

two, the hindgut promotes a more rich, stable environment for microbial colonisation (Kapheim 

et al., 2015; Vojvodic et al., 2013).  

Addressing the hindgut individually, the bacterial communities within this site were compared, 

grouping samples per treatment group to examine the effect of each treatment.  There was no 

significant difference in the bacterial communities associated with the control and fungicide 

treatment groups (p = 0.331, R = 0.011) (Figure 3.3.3) with both showing a large number of 

shared OTUs (Figure 3.3.4).  There was also no significant difference in the alpha-diversity 

between the control and fungicide treatment groups (Table 3.3.1).  Collectively, these results  

are not supported by the limited research available on the effects of chlorothalonil on the 

microbial communities associated with honey bees.  Chlorothalonil, the fungicide used in this 

study, boasts multi-site contact activity and has a mode of enzyme inhibition through the 

depletion of glutathione (Elskus, 2012).  The effect of chlorothalonil on honey bees is not well 

documented, and global research has focused more on insecticides, especially neonicotinoids.  

Excluding chemical treatments directly applied to honey bees to rid them of diseases or hive 

pests, fungicides remain the highest hive contaminant, with chlorothalonil at the top of the list 

(Johnson et al., 2010).  Pesticides, fungicides, and other agricultural chemicals alone, and in 

Figure 3.3.1: Venn diagram displaying the number of bacterial Operational Taxonomic Units (OTUs) unique to the hindgut 

(brown) and midgut (orange) of Apis mellifera, as well as shared OTUs across both sampled areas. 
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combination, may alter the structure and function of the microorganisms associated with honey 

bees (Alaux et al., 2010).  Kukumanu et al., (2016) discovered a decrease in the relative 

abundance of Lactobacillaceae and an increase in Caulobacteraceae and Enterobacteriaceae 

because of a similar concentration and time period of chlorothalonil treatment.  In this study, 

however, no significant differences in the bacterial communities of the hindgut were observed 

because of the chlorothalonil treatment, although bacterial function might have been altered.   

 

Table 3.3.1: Alpha-diversity of the bacterial communities associated with the hindguts and midguts of Apis mellifera 

capensis across all experimental treatments.  Significant difference is indicated in bold with (*). 

Bacterial Diversity 

Total gut 

 Hindgut Midgut 

Number of OTUs 19.537±1.286* 16.796±0.489* 

Shannon Index 2.395±0.182* 2.120±0.038* 

Inverse Simpson Index 8.103±0.829* 5.980±0267* 

Hindgut 

Treatment Control Fungicide Nutrient Deficiency Disease 

Number of OTUs 18.833±0.711 19.200±0.835 16.889±0.949 23.000±2.926 

Shannon Index 2.399±0.055 2.415±0.056 2.308±0.081 2.430±0.125 

Inverse Simpson Index 8.192±0.521 8.505±0.551 7.435±0.562 7.967±0.948 

Midgut 

Number of OTUs 18.556±0.764 15.533±0.899* 14.556±1.365* 17.417±0.743 

Shannon Index 2.232±0.069 2.039±0.054 1.946±0.085* 2.184±0.082 

Inverse Simpson Index 6.660±0.543 5.379±0.292 5.082±0.449 6.386±0.662 

Figure 3.3.2: Beta-diversity of the bacterial communities associated with the hindgut (in brown) and the 

midgut (in orange) of Apis mellifera capensis across all treatments (not indicated). 
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A significant difference between the beta-diversity of the bacterial communities of the hindgut 

were observed for both the nutrient deficient and disease treatment groups, in comparison to 

the control group (p = 0.047, R = 0.172 and p = 0.005, R = 0.206, respectively) (Figure 3.3.3).  

Erban et al.  (2017) found some effects of Paenibacillus larvae on the microbiome of honey 

bees, while monitoring non-core bacteria associated with honey bees to discover potential 

synergistic or antagonistic relationships.  It is, however, important to note the erratic behaviour 

of the clustering observed in the beta-diversity analyses.  The distribution of the bacterial 

communities of the hindgut of the treatment samples was erratic and showed poor clustering.  

The isolation of four disease group samples (Figure 3.3.3) could potentially display the varied 

progression of American Foulbrood Disease at early stage development.  Although honey bees 

within a colony are considered microbially homologous due to their hygienic behaviour, oral-

to-oral or proctodaeal trophallaxis (Powell et al., 2014; Corby-Harris et al., 2014), each honey 

bees’ reaction to a disease might be unique.  Therefore, varied immune responses in honey bees 

could show various levels of infection, resulting in the groups disjointed clustering.  However, 

Figure 3.3.4 shows a considerable number of bacterial OTUs within the hindgut unique to the 

disease treatment group.   This supports the significant difference observed in the beta-diversity 

Figure 3.3.3: Beta-diversity of the bacterial communities associated with the hindgut of Apis mellifera 

capensis across three treatments and control. 
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of the control and treatment groups, and the erratic clustering should not be disregarded.  Future 

research is necessary here to divulge these results further.   

The isolation of a single nutrient deficient sample shows a potential sampling error.  Marked 

honey bees were colour-coded within each treatment group to visually display if admixing 

between treatment groups had occurred.  Two hives within the nutrient deficient group were 

removed from the study due to failed pollen traps, but remained on-site, potential admixing 

within this group could have occurred.   

Although differences in the beta-diversity of the bacterial communities associated with the 

hindgut were observed, no differences were observed for the alpha-diversity for any treatment, 

in comparison to the control group (Table 3.3.1).  This could be as a result of the observed 

erratic clustering of the disease and fungicide treatment groups in the beta-diversity distribution 

plots.  As beta-diversity relies on rare species, this could have created the significant difference 

which is not observed in the dominance and biodiversity dominated alpha-diversity.  Therefore, 

Figure 3.3.4: Venn diagram displaying the number of bacterial Operational Taxonomic Units (OTUs) of the 

hindgut of Apis mellifera capensis unique to each treatment group (Control – Red; Nutrient deficient – 

Orange; Disease – Blue; Fungicide – Green), as well as shared OTUs between treatment groups. 
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the bacterial communities of the disease treatment group showed to have rare bacteria, not 

shared with the control treatment group, and the nutrient deficient group showed a lower 

tendency of sharing the basic rare bacteria shared between all the treatment groups.  

As the experimental colonies all shared the same location, and were of the same age, the shifts 

in the beta-diversity of bacterial community is likely as a result of the treatment.  However, 

through gene expression analysis of the gene vitellogenin (see Chapter 4), discussion on how 

the treatments affected the division of labour might explain the observed difference in the beta-

diversity of the gut microbiota.   

Additionally, the microbial community technique used in this study, Automated Ribosomal 

Intergenic Spacer Analysis (ARISA), is a rapid, cost-effective tool used for microbial 

community analysis, although its resolution is not as high as that of metagenomic sequencing.  

This could have resulted in an oversight of differences between the bacterial communities.  

Using 16S rRNA to identify bacteria is limited due to the limited taxonomic resolution within 

bacterial kingdom (Garrity, 2016; Jones and Sneath, 1970), possibly suggesting that with a 

higher resolution sequencing technology, differences in bacterial communities of the treatment 

groups and control could be uncovered.  Engel et al. (2012) discuss the functional diversity of 

the core gut bacterial community and find that bacteria characterised in the same species show 

high functional diversity, suggesting that gut microbiota diversity lies at a strain level, a 

hypothesis motivated by Raymann and Moran (2018).  This suggests that strain-level resolution 

might be necessary for observing functionally relevant shifts in the gut microbial community 

of honey bees.  Unfortunately, technology available at the time of study is unable to sequence 

with the level of resolution necessary for observing strain level differentiation.  Prior 

knowledge of this, motivated the use of ARISA, instead of amplicon or next-generation 

sequencing, as the additional cost of such technique would provide us with similar outcomes.   

The bacterial community within the midgut of honey bees is suggested to be more malleable 

and influenced by the environment (Kwong and Moran, 2016).  However, the only significant 

difference in the beta-diversity of the bacterial communities associated with the midgut of 

honey bees was observed between the fungicide treatment (p = 0.047, R = 0.086) and the 

control group, with the nutrient deficient and disease treatments grouping together with the 

control group (p = 0.194 and p = 0.385, respectively) (Figure 3.3.5).  As all the experimental 

colonies were exposed to the same surrounding landscape, significant differences in the 
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bacterial communities of the midgut were not expected.  As discussed above, chlorothalonil is 

suggested to affect the honey bee microbiome.  In this research no effects on the hindgut were 

observed, but effects were seen in the midgut bacterial community.  Figure 3.3.6 shows the 

slight increase in unique bacteria associated with the midgut of honey bees in the fungicide 

treatment group, shared with no other treatment group.  The impressionable, filter-like 

properties of the midgut could make the midgut an exceptionally unique early indicator of 

honey gee but health.  Chlorothalonil shows to interfere with the bacterial community of the 

midgut, suggesting that effects on the hindgut might be imminent, but are not yet detectable. 

The treatments showed limited effects on the beta-diversity of the bacterial communities of the 

midgut and only few significant effects were observed in the alpha-diversity.  The fungicide 

and nutrient deficient treatment groups had a significantly lower abundance of bacterial OTUs 

in the midgut in comparison to the control group (p = 0.034 and p = 0.014, respectively).  There 

was no significant shift in the structure of the bacteria associated with the midgut of the 

fungicide treatment group, suggesting that although a reduction in OTUs was observed the 

bacterial community remained even, signifying no dominance of few bacteria.  This is not the  

Figure 3.3.5: Beta-diversity of the bacterial communities associated with the midgut of Apis mellifera 

capensis across three treatments and control. 
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effect of the nutrient deficient treatment groups, where a shift in the bacterial structure within 

the midgut was observed. The nutrient deficient treatment group also showed a significant 

decrease in the diversity, with regard to the Shannon index (p = 0.030).  Thus, indicating a 

significant decrease in richness and evenness, and a dominance of a few bacterial species.  No 

other significant differences were observed (Table 3.3.1).  The effects of nutrient limitation, in 

this instance, the monocultural crop canola, on the gut bacteria associated with honey bees is 

not known, but effects on other aspects of honey bees are starting to be elucidated.   

Overall, wild honey bee populations are observed to decline in areas with large monocultural 

practices, suggesting that such floral landscape is less favourable to honey bees (Nicholls and 

Altieri, 2012).  This suggests that monocultural landscapes are not ideal for honey bee survival 

and its effects on honey bee health need to be determined.  

Interestingly, no significant differences in the alpha-diversity were observed in the disease 

treatment group (p = 0.706) in comparison to the control group (Table 3.3.1).  The bacterial 

Table 3.3.2: Alpha-diversity of the fungal communities associated with the hindguts and midguts of Apis mellifera capensis 

across all experimental treatments.  Significant difference is indicated in bold with (*).   

Figure 3.3.6: Venn diagram displaying the number of bacterial Operational Taxonomic Units (OTUs) of the 

midgut of Apis mellifera capensis unique to each treatment group (Control – Red; Nutrient deficient – 

Orange; Disease – Blue; Fungicide – Green), as well as shared OTUs between treatment groups. 
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community in the hindgut of the honey bees in the disease group showed a large group of 

unique bacterial OTUs (Figure 3.3.4), which was not the case in the midgut (Figure 3.3.6).  

Paenibacillus larvae is known to infect the hindgut of honey bees, and although the midgut 

does not allow for colonisation of this bacteria, it allows it to pass through the digestive tract to 

Fungal Alpha-Diversity 

Total gut 

 Hindgut Midgut 

Number of OTUs 5.588±0.401 6.614±0.442 

Shannon Index 0.740±0.076 0.907±0.083 

Inverse Simpson Index 1.876±0.134 2.197±0.219 

Hindgut 

Treatment Control Fungicide 
Nutrient 

Deficiency 
Disease 

Number of OTUs 5.000±0.388 4.538±0.852 5.333±0.726 8.444±1.271* 

Shannon Index 0.489±0.075 0.578±0.169 0.662±0.134 1.436±0.109* 

Inverse Simpson Index 1.351±0.082 1.689±0.274 1.612±0.183 3.248±0.232* 

Midgut 

Number of OTUs 8.222±0.664 5.917±0.908 5.333±0.913* 5.900±0.547 

Shannon Index 1.224±0.132 0.654±0.187* 0.735±0.201 1.085±0.066 

Inverse Simpson Index 2.938±0.463 1.922±0.549 1.952±0.440 2.341±0.139 

Figure 3.3.7: Beta-diversity of the fungal communities associated with the hindgut (in brown) and the midgut 

(in orange) of the Apis mellifera capensis across all treatments (not indicated). 
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the hindgut.  Although P.  larvae mode of action is focussed on brood, this might only be due 

to a lack of immune response within brood.  Adult honey bees can be colonised with P.  larvae 

but are able to keep the causative infection at bay, a suggestion motivated by the increase 

number of pathogenic spores needed to induce the infection (Masry et al., 2014; Erban et al., 

2017). 

The bacterial communities associated with the honey bee gut are well-documented, although 

not entirely understood.  The fungal communities remain largely unexplored, overlooking a 

potential opportunity to monitor the effects of treatments on honey bees.  In this study, there 

was a significant difference between the beta-diversity of fungal communities associated with 

the hind- and mid-guts of honey bees (p = 0.006, R = 0.071) (Figure 3.3.7), although no 

significant differences in the alpha-diversity were observed (Table 3.3.2).  This describes 

unique, fungal communities associated with both gut sites, that are stable and even.  This was 

expected as the fungi associated with the hind- and mid-guts perform isolated digestive tasks 

(Kwong and Moran, 2016).  Some fungal species are shown to overlap between the two gut 

sites, but each site shares a relatively equal proportion of unique fungi (Figure 3.3.8). 

The beta-diversity of the fungal communities associated with the hindguts of honey bees 

showed significant differences across all three treatments; fungicide (p = 0.018, R = 0.111), 

nutrient deficiency (p = 0.001, R = 0.137), and disease (p = 0.001, R = 0.745) in comparison to 

the control (Figure 3.3.9).  The same was observed for the fungal communities associated with 

the midgut of honey bees; fungicide (p = 0.003, R = 0.274), nutrient deficiency (p = 0.022, R 

= 0.214), and disease (p = 0.005, R = 0.354) in comparison to the control (Figure 3.3.10).   

Figure 3.3.8: Venn diagram displaying the number of fungal Operational Taxonomic Units (OTUs) unique to the hindgut 

(brown) and midgut (orange) of Apis mellifera capensis, as well as shared OTUs across both sampled areas. 
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The fungal communities of the hindguts and midguts of honey bees in the disease treatment 

group seem to cluster away from the other two treatment groups.  Through Dunnett square 

analysis, the R value tends towards 1, indicating that the effector tested might not be the reason 

behind the differentiation observed.  This supports the argument used for the differences 

observed in the bacterial communities of the guts of the same treatment group.  Variation in the 

development of the disease in the colonies could result in different degrees of effect on the gut 

microbiota.  As with the bacterial communities, the fungal communities associated with the 

hindgut shows an increased number of unique fungal OTUs, not shared with any of the other 

treatment groups (Figure 3.3.11).   The fungal alpha-diversity of the hindgut of the honey bees 

in the disease treatment group is significantly different in diversity, richness, and evenness in 

comparison to the control group (Table 3.3.2.).  As the disease treatment involved a bacterial 

challenge, and with no observed reaction of the bacterial constituents within the hindgut, 

significant effects on the fungal communities was not expected.  As diseases are introduced 

into honey bee colonies, the division of labour might not mirror that of a healthy colony.  An 

extreme stressor, such as the bacterial challenge used in this research, can induce early foraging 

Figure 3.3.9: Beta-diversity of the fungal communities associated with the hindgut of Apis mellifera capensis 

across three treatments and control 
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(Chang et al., 2015).  Therefore, although bees of the same age were sampled, which were 

nurse bees, within the disease colonies these nurse bees could have already developed into 

foraging bees.  Foraging bees and nurse bees are known to share similar gut bacterial 

communities but have shown to show different fungal gut communities, with an increase in 

fungal OTUs (Yun et al., 2018), a phenomenon observed in this study.  

The nutrient deficient and fungicide treatment groups tend to group together, although still 

isolated from the control group.  As the environmental landscape was unchanged across all 

treatment groups, it is assumed that environmental inoculation remained consistent across all 

treatments.  Therefore, the applied treatments would be the remaining variable responsible for 

the effects observed.   

A significant shift in the fungicide treatment group was expected, as the fungi would be in 

direct contact with chlorothalonil.  As discussed above, chlorothalonil is broad spectrum 

fungicide used in the agricultural sector to prevent the development of fungal disease on 

vegetative crops (Shin et al., 2003).  The effect of chlorothalonil on the fungal community 

Figure 3.3.10: Beta-diversity of the fungal communities associated with the midgut of Apis mellifera capensis 

across three treatments and control.  
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associated with the guts of honey bees are difficult to determine as a ‘core’ fungal community 

is unknown.  Chlorothalonil prevents the germination of fungal spore germination by inhibiting 

various thiol enzymes (O’Malley, 2010; Tillman et al., 1973), therefore, the filamentous fungi 

within the honey bee gut, assumed to be spores, would be unable to germinate even if the 

environmental conditions within the gut allowed for it.   

In terms of yeast within the honey bee gut, some Saccharomyces species show resistance 

towards the fungicide (Shin et al., 2003).  Despite the potential for yeast to become resistant to 

this fungicide, there seems to be some effect on the overall fungal community within the honey 

bee gut.  However, no significant differences were observed in the alpha-diversity in the 

hindguts of the honey bees within the fungicide treatment groups, suggesting a stable fungal 

community, although different to the other control groups.  The only significant difference in 

the alpha-diversity of the fungal communities is within the midgut.  A significant decrease in 

the Shannon index is observed, indicating a slight dominant effect by a few fungi, suggesting 

a negative effect of the chlorothalonil on the fungal communities of the midgut.    

Figure 3.3.11: Venn diagram displaying the number of fungal Operational Taxonomic Units (OTUs) of the 

hindgut of Apis mellifera capensis unique to each treatment group (Control – Red; Nutrient deficient – 

Orange; Disease – Blue; Fungicide – Green), as well as shared OTUs between treatment groups.  
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The nutrient deficient treatment shows a significant effect on the beta-diversity of the fungal 

communities associated with both the hind- and mid-guts of honey bees (Figure 3.3.9 and 

2.3.10).  A significant decrease in the abundance of fungal OTUs were also observed in the 

midguts of honey bees under this treatment (Table 3.3.2), but the midgut under this treatment 

harboured unique fungal OTUs (Figure 3.3.12).  Interestingly, the fungal community of the 

external environment is largely responsible for the fungal community associated with honey 

bees (Yun et al., 2018), but seeing as the external landscape in this study remained the same, 

no differences were expected.  However, as the nutrient deficient group were exposed to 

irradiated food stores, their in-hive inoculation would be significantly reduced, perhaps 

resulting in a reduction in transient fungal species commonly found within the midgut.   

  

Figure 3.3.12: Venn diagram displaying the number of fungal Operational Taxonomic Units (OTUs) of the 

midgut of Apis mellifera capensis unique to each treatment group (Control – Red; Nutrient deficient – 

Orange; Disease – Blue; Fungicide – Green), as well as shared OTUs between treatment groups. 
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3.4 Conclusion 

The effects of the experimental treatments were not prominent.  The fungicide and nutrient 

deficient treatment group showed small effects on the gut of honey bees, although not 

prominent to suspect serious dysbiosis of the gut microbiota.  The disease treatment showed 

the most effect on the microbial community, largely limited to the midgut.  These results 

promote a stable ‘core’ gut microbiota hypothesis for honey bees.  This gut microbiota is 

known to play a role in ensuring host health, metabolic functioning, immune regulation, and 

food degradation.  As the positive control, the disease treatment group, used in this study is 

known to cause serious ill-health to honey bees, often leading to major colony loss, a greater 

effect was expected.  Extrapolating the relationship between human health and their gut 

microbiota might not be as simple as once thought.  Unlike with humans, honey bees show no, 

or limited, shift in their gut microbiota even during high stress treatments.  In order to 

understand the effects of certain experimental treatments, additional monitoring is necessary. 

With the data obtained in this study, it suggests that researchers may not be able to rely solely 

on the gut microbiota as an indicator of overall health. 
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Chapter 4: The immune response of honey bees 

4.1 Introduction 

The immune system of honey bees is simpler to that of humans, as honey bees lack the adaptive 

immune pathway, therefore, relying on their innate immune system.  The innate immune system 

of honey bees includes both the cellular and humoral sub-systems (Hoffmann, 2003; Antúnez 

et al., 2009).  The innate immune system as a whole is very similar to the innate immune system 

of humans, providing researchers the opportunity to study the effects of various treatments on 

the innate immune system alone (Evans et al., 2006). 

In most animals, an energy trade-off between fertility and longevity exists.  However, the same 

is not observed in social insects (Salmela and Sundström, 2017).  Honey bee queens are both 

fertile and have an approximately 10-fold increased lifespan, in comparison to worker bees 

within a colony (Corona et al., 2007).  This unusual phenomenon has elevated research into 

vitellogenin (Vg), a yolk protein precursor (du Rand et al., 2015; Amdam et al., 2004).  

Vitellogenin also provides antioxidant abilities in the form of zinc- and iron-binding 

capabilities, contributing to increased longevity through the reduction of free radicals (Amdam 

and Omholt, 2002; Salmela and Sundström, 2017).  Further, Vg has been shown to be at the 

centre of task division of honey bees, more specifically in the commencement of foraging 

(Nelson et al., 2007).  

Of particular interest to this study, vitellogenin, along with the juvenile hormone (JH), provides 

an intricate double repressor network involved in social organisation and behavioural 

coordination of honey bees (Guidugli et al., 2005; Nelson et al., 2007).  In young honey bees 

Vg levels are high which suppresses JH, limiting the social behaviour of young honey bees to 

in-hive tasks.  However, when Vg decreases JH is no longer suppressed, resulting in in-hive 

honey bees switching to foraging behaviour, a solely out-hive task.  Once honey bees switch to 

foraging behaviour their lifespan is reduced to an average of five and maximum of 18 days, 

while honey bees that remain in-hive show limited signs of senescence (Bull et al., 2012) 

Münch and Amdam, 2010).  Foraging bees undergo elevated levels of stress, including 

predation and adverse environmental condition, so a sudden increase in mortality is 

understandable, especially in comparison to the cushioned environment of nurse bees (Bull et 

al., 2012; Münch and Amdam, 2010).  Additionally, the increase in oxidative stress from the 
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foraging environment is not as well managed, as a decrease in Vg proteins prevents the adequate 

removal of free radicals (Amdam and Omholt, 2002). 

The switch observed whereby nurse bees become forager bees is thought to triggered by 

numerous factors.  These factors are divided into two groups; namely, in- and out-colony 

factors.  Out-colony factors include the state of the foraging environment.  Reduced food 

availability in the foraging environment will delay the switch from nurse to forager bees, as 

little foraging is possible, and vice versa (Shahi et al., 2011).  In-colony factors include brood 

production, colony production, and colony health.  Strong colonies will have elevated colony 

and brood production as there is a surplus of nurse bees.  As the tasks within the colony are 

taken care of, additional nurse bees will switch to out-hive tasks to increase food stores within 

the colony, also to improve food security for the growing colony population.  Weak colonies 

as a result of decreased food stores will slow the population rate, reducing the number of forager 

bees, resulting in fewer nurse bees switching to foragers.  However, colonies with reduced 

health because of pathogenic infection, will experience an increase in the switch from nurse to 

forager bees.  In the case of infection by Paenibacillus larvae, forager bees experience low 

energy levels and impaired coordination which delays forager return flights, therefore, 

additional foragers are necessary to meet the basic requirements of the colony (Abou-Shaara, 

2014).  The exact evolutionary biological mechanisms behind how colony conditions induce 

the changes in Vg, or vice versa, are not yet understood, but female worker fertility is thought 

to be involved.  Measuring longevity, by observing levels of Vg, in honey bees provides 

researchers with invaluable information on the overall condition of the honey bee and colony.  

However, to study the response or condition of the immune system, additional direct 

observations are necessary. 

One of the most important parts of the immune system involves the encapsulation process, 

often coupled with the melanisation, during infection by various infectious particles or agents 

(Chan et al., 2009).  The phenoloxidase (PO) cascade is exceptionally sensitive and limited 

activation by Pathogenic Associated Molecular Patterns (PAMPs) is necessary.  Upon 

activation, prophenoloxidase (proPO) is cleaved to form PO and the melanisation process 

begins.  Phenols are then oxidised to form quinones by PO which in turn polymerise to produce 

melanin.  During this process the intermediates as well as the end-product, melanin, are highly 

toxic to microbial cells (Mak and Saunders, 2006; Söderhall et al., 2013).  The responsibility 

of the PO cascade is crucial in defending honey bees against pathogen build up and prevents 
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overriding infection.  Monitoring the melanisation process provides insight into the response 

to microbial attack and general wounding, as the melanisation process is also involved in the 

production of honey bees’ exoskeleton (Soares et al., 2013; Chan et al., 2013).  

Two pathways of increased interest for this study involve the similar microbiota-gut-brain axis 

pathways in that of humans.  These pathways monitor the microbiota in the gut of the host and 

relay messages to the host brain.  Upon infection, an immune response is activated to regain 

microbial homeostasis.  As described above, the Toll and Imd pathway in honey bees are similar 

to those in humans and have provided researchers with incredible information regarding the 

immune response of honey bees to various treatments.  Like the PO activation pathway, the 

Toll and Imd pathways are also induced by PAMPs.  In the Toll pathway spaetzle molecules 

are the first line activators between PAMPs and the Toll pathway.  A substantial amount of 

research has been focused on the expression of spaetzle as it allows for the observation of the 

induction of the immune system because of pathogenic microorganisms (De Gregorio et al., 

2002; Evans et al., 2006).  The Imd pathway boasts a higher efficacy in comparison to the Toll 

pathway, inducing an arsenal of antimicrobial peptides to combat infection.  The Imd pathway 

is first activated by PGRP-LC which then in turn activates imd (Evans et al., 2006), the gene 

used to monitor the Imd pathway in this study. 30 

The activation of these immune pathways in honey bees can provide an invaluable link in 

studying the direct immune response as a result of shifts in the gut microbiota.  Along with 

observing the longevity of the honey bee, in the form of Vg expression, we are able to see the 

overall health of the honey bee and its colony, allowing the opportunity to monitor the effects 

of the desired treatments used in this study. 

4.2 Materials and methods 

4.2.1 Experimental hive set up and treatment 

Refer to Chapter 2, Experimental hive set up and treatments 

4.2.2 Sampling and processing 

See Chapter 2, Sampling and processing for pre-sampling procedure.  A total of two RNA 

samples per hive were collected.  Three marked bees were collected per sample using sterile 

forceps for each RNA sample, added in sterile 50 mL centrifuge tube (Citotest, China), and set 

directly on ice to induce ice anesthetization.  Upon return to the laboratory all appendages were 
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removed from the bee, leaving only the head, thorax, and abdomen.  Samples were transferred 

to a sterile 2 mL lysis tube containing 0.7 mL 2 mm glass beads (Lasec, South Africa) along 

with 5 x total volume RNAlater™ and placed at room temperature for 12 hours.  Thereafter, 

RNA isolation was performed. 

4.2.3 RNA isolation 

Lysis tubes containing the samples were homogenised for 30 s at maximum speed using Omni 

Bead Ruptor 12 Homogeniser (USA Scientific, United States of America).  RNA isolation was 

performed using NucleoSpin Total RNA Isolation kit, following the manufacturers protocol for 

isolation from tissue.  Alterations to the protocol include addition of the lysis solution and β-

mercaptoethanol to the lysis tubes in which the samples were homogenised.  500 μL was then 

transferred to the column and the manufacturers procedure was followed.  Elution was 

performed twice by re-adding the flow through to the column.  ssRNA concentration was then 

measured using Qubit fluorometric quantitation (ThermoFischer, United States of America).  

All samples were normalised to 50 ng/μL. 

4.2.4 Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) 

Reverse transcription of the RNA was performed using SuperScript™ VILO™ cDNA 

synthesis kit following the manufacturers protocol.  50 ng was added to each reaction.  

Reactions were placed in a thermocycler under the following conditions, 10 min at 25 °C, 60 

min at 42 °C, followed by 5 min at 85 °C.  sscDNA was quantified using Qubit fluorometric 

quantitation.  cDNA was normalised to 50 ng/μL. 

4.2.5 Real-Time Polymerase Chain Reaction (Real Time-PCR) 

A total of six genes were amplified, four target genes, namely; spaetzle (spz), vitellogenin (Vg), 

immune deficiency (imd), prophenoloxidase (proPO), and two housekeeping genes, namely; 

actin (act) and Ribosomal Protein S5 (RPS5).  All six primer pairs can be found in Table 

4.2.5.1. All amplification reactions were performed using FastStart Essential DNA Green 

Master qPCR kit following the manufacturers protocol.  All reactions and conditions were 

optimised to ensure good amplification, the optimised reactions and conditions can be found in 

Table 4.2.5.2.   
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Table 4.2.5.1: List of qPCR primer pairs used for monitoring immune system response in honey bees ( Apis 

mellifera).  References are indicated using superscript numerals, 1Scharlaken et al., 2008; 2Evans et al., 

2006; 3Hu et al., 2017; 4Di Pasquale et al., 2013;  

Gene Forward primer (5’ – 3’) Reverse primer (5’ – 3’) 

Actin (act)1 TGCCAACACTGTCCTTTCTG AGAATTGACCCACCAATCCA 

Ribosomal Protein 

Subunit 5 (RPS5)2 
AATTATTTGGTCGCTGGAATTG TAACGTCCAGCAGAATGTGGTA 

Spaetzle (spz)3 TGCACAAATTGTTTTTCCTGA GTCGTCCATGAAATCGATCC 

Vitellogenin (Vg)4 TTGACCAAGACAAGCGGAACT AAGGTTCGAATTAACGATGAA 

Immune deficiency 

(imd)3 
TGTTAACGACCGATGCAAAA CATCGCTCTTTTCGCATGTT 

prophenoloxidase 

(proPO)3 
AGATGGCATGCATTTGTTGA TTGCGTTGTTGATTGGTTGT 

 

 

Table 4.2.5.2: Optimised qPCR reaction and conditions for each target gene primer pair (differences between 

amplification reactions and conditions are highlighted bold).  

 Amplification conditions 

A
m

p
li

fi
ca

ti
o
n
 r

ea
ct

io
n
 

 

95 °C for 5 min; 40 cycles of 

94 °C (1 min), 56 °C (1 min), 

72 °C (1.2 min), followed by 

72 °C for 5 min, and then a 

melt curve. 

95 °C for 5 min; 40 cycles of 

94 °C (1 min), 60 °C (1 min), 

72 °C (1.2 min), followed by 

72 °C for 5 min, and then a 

melt curve. 

10 μL FastStart Essential 

DNA Green Master (2X 

conc.), 1 μL of each 

primer, 7 μL PCR-grade 

H20, 1 μL 50 ng ssDNA 

template. 

RPS5 Vg, imd, spz 

10 μL FastStart Essential 

DNA Green Master (2X 

conc.), 1 μL of each 

primer, 6.5 μL PCR-

grade H20, 0.5 μL 50% 

glycerol, 1 μL 50 ng 

ssDNA template. 

 act, proPO 
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Standard curves of each primer pair were performed using the optimised reactions and 

conditions, using cDNA template from a 5 point, 2X dilution series to determine the 

amplification efficiency of each reaction.  Each reaction within the standard curve were done 

in triplicate and all samples were done in duplicate.  Each reaction was performed with a 

negative control.  All amplification reactions were run on an Applied Biosystems 

StepOnePlus™ Real-Time PCR system (Thermo Fisher, United States of America) and a single 

acquisition was recorded at the end of the elongation step of each cycle.  Acquisition was also 

recorded during the melt curve, as recommended by the manufacturer.  

4.2.6 Gene expression analyses 

Cycle threshold (CT) values were recorded for every sample, in duplicate.  CT means were 

calculated for each sample, using a threshold standard deviation of 0.05, for all six primer pairs.  

Gene amplification efficiencies were calculated from the standard curves, using the Applied 

Biosystems StepOnePlus software (Available online; 

http://www6.appliedbiosystems.com/support/software/7500/).  Gene expression for all four 

target genes were calculated using the Plaffl method to take amplification efficiencies into 

consideration (Pfaffl, 2001). 

4.3 Results and discussion 

Four target genes were used to monitor the immune response of honey bees, each representing 

its own immune pathway.  Three of the four genes, namely; immune deficiency (imd), spaetzle 

(spz), and prophenoloxidase (proPO) are involved in the microbiota-gut-brain axis.  Therefore, 

relaying the changes in expression of these genes to the changes in the microbiota discussed in 

Chapter 3 is vital in understanding the effect of a treatment on overall honey bee health.  

Extrapolating research from the human gut-brain axis (Clapp et al., 2017), the microbiota-gut-

brain axis is largely reliant on the hindgut and, therefore, the midgut will be ignored in this 

chapter.  The fourth gene, vitellogenin (Vg) will be discussed independently of Chapter 3 but 

will rely on the colony metadata discussed in Chapter 2.  Attention should also be drawn to the 

weather conditions in Cape Town, South Africa at the time of this study.  Cape Town was amid 

a severe drought that started in 2015 (Bohatch, 2017).  By December 2017, the time of 

sampling, very little vegetation was available as the experimental site consisted entirely of 

natural vegetation relying on seasonal rainfall, leading to a very tough foraging season.  The 

lack of adequate amounts of forage must have had large effects on the experimental colonies, 
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but as the control group was placed in the same environment, the effects of the drought on the 

data were removed as best as possible.  Although it cannot be said that the effects on the results 

were negligible.  

 

Honey bees were artificially emerged, marked, and added to the experimental colonies.  This 

ensured that all sampled bees were of the same age, ten days old.  Under control conditions, 

ten-day old honey bees would be house bees, undertaking solely in-hive tasks.  House bees 

have prominent levels of vitellogenin within their haemolymph which drastically reduces at the 

onset of foraging (Corona et al., 2007).  The disease and fungicide treatment groups showed a 

significant increase in expression of Vg, in comparison to the control.  This suggests that the 

switch from house to forager bees was delayed, an unexpected finding.  Whereas the nutrient 

deficient treatment group had significant down regulation of Vg, suggesting that the onset of 

foraging was induced earlier than the control group (Table 4.3.1). 

 

Honey bees under bacterial challenge, more specifically, Paenibacillus larvae, have shown to 

increase the number of foraging bees as foragers are less effective at returning enough food for 

the colony.  This is said to be because P.  larvae results in low energy levels and un-

coordination in foragers (Abou-Shaara, 2014).  Additionally, Lourenço et al. (2012) found that 

honey bees infected by bacteria in general show a significant drop in stored Vg, therefore, 

Target gene Fungicide
Nutrient 

deficiency
Disease

Immune deficiency -6.461029 -7.952738 -8.463007

Spaetzle 0.285905 -0.73794 7.134658

Vitellogenin 1.115813 -1.143151 2.055428

ProPhenoloxidase 0.61879 6.54839 0.711195

Treatment

Table 4.3.1: Up- or down-regulation of the four experimental genes; namely, immune deficiency, spaetzle, 

vitellogenin, and prophenoloxidase across all treatments.  Values are expressed in fold increase (positive) or 

decrease (-) in comparison to the control group (value of 0).  Expression values were standardised to two 

housekeeping genes; namely, actin and RPS5, normalised to the control treatment group and overall 

expression was calculculated using the Pflaffl method.  Values indicated in bold are considered significa nt 

(higher or lower than 2X expression compared to control group).  Cells are conditioned with green 

representing the highest values and red the lowest for ease of interpretation.  
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inducing the onset of foraging.  However, results found in this study oppose these findings.  As 

this study determined the active expression of Vg and not stored Vg, perhaps the reduction in 

stored Vg observed by Lourenço et al. (2012) could be as a result of the reduction of free 

radicals and not the bacterial challenge.  In addition, the severity of the American Foulbrood 

should be taken into consideration.  All the colonies infected with P.  larvae showed advanced 

American Foulbrood disease at the end of the study, with several collapsing before sampling 

occurred.  This could have added additional pressure on general housekeeping tasks, including 

dead larvae and bee removal, general hygienic cleaning, and pathogen removal, tasks all 

undertaken by nurse bees.  The colony could have expended more energy on general 

housekeeping tasks instead of foraging, therefore, the switch from nurse to forager bees would 

be reduced.  

 

DeGrandi-Hoffman et al. (2008) showed that honey bees consumed lower amounts of pollen 

when contaminated with fungicide.  Although fungicide treatment in this study was not 

supplied via contaminated pollen, but in an additional sugar water source, the reason for the 

decrease in foraging behaviour remains unknown.  There was also no significant increase or 

decrease in the metadata discussed in Chapter 2, suggesting that the treatment had a trivial 

effect on the colony strength.  The increased vitellogenin levels in the fungicide treatment group 

suggests some delayed foraging and a corresponding increase in in-hive activities, which 

suggests some negative impact caused by the fungicide application, even though this was not 

detected in the metadata analysis. 

 

In contrast, the nutrient deficient treatment group showed a significant decrease in Vg 

expression.  This suggests that the ten-day old sampled bees had already experienced an onset 

of foraging, and were no longer nurse bees, but in fact foragers.  This was also observed during 

sampling, as marked bees were visibly returning from foraging.  Di Pasquale et al. (2013) 

showed that improved pollen quality induced foraging behaviour, but the experimental colonies 

within this treatment group were unable to bring returned pollen into the colony.  Also, all 

experimental colonies were exposed to the same foraging landscape, therefore, this hypothesis 

does not explain the early onset of foraging.  Although McLellan (1974) states that pollen traps 

do not have any significant effect on honey bee colonies, that is argued with these findings.  

The honey bee colonies within this treatment group showed to expend additional energy to 

improve foraging, to try to rectify the diminishing food stores.  This is understandable as in 

Chapter 2 it is found that these colonies had a significant reduction in pollen stores and because 
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of that, brood.  These colonies were, therefore, experiencing a nett loss in energy, as the energy 

expended on foraging was in vain.  It is uncertain whether the lack of diverse, polyfloral pollen 

was the main driver behind the early onset of foraging, as the inability to return pollen to the 

hive could have been the reason.  Studying the effect of limited pollen source on honey bees in 

a natural-like environment is an extremely challenging task, but more effort should be made in 

this regard. 

 

Prophenoloxidase (proPO) is involved in the phagocytosis and melanisation process, a 

significant proportion of the cellular immune system of honey bees (Kleino, 2010).  Across all 

treatments, the only significant result was the 6-fold upregulation of proPO in the nutrient 

deficient treatment group.  The fungicide and disease treatment groups showed no significant 

difference in the expression of proPO, thus phenoloxidase pathway remained the same as the 

control group.  

 

The lack of significant effect of the fungicide treatment on the expression of proPO is 

supported by studies performed on various other agricultural chemicals (Zhu et al., 2017), but 

also opposing to findings from others (Reeves, 2014).  The inconsistency of conclusions from 

similar findings suggest that the experimental model used to test the effects of agricultural 

chemicals on the phenoloxidase immune pathway might be flawed.  The need for standardised 

testing is apparent.  

 

Studies on Drosophila have shown that larvae exposed to limited food resources have a reduced 

ability to withstand infection throughout their lives, even after the re-establishment of food 

resources (Hoang, 2002).  As the activation of any immune pathway is an energy expensive 

task (Nish and Medzhitov, 2011), it is logical that bees with limited food availability would 

refrain from activating an immune pathway unnecessarily, but this was not observed here.  The 

PO pathway results in the activation and release of a battery of antimicrobial peptides, which 

are fast-acting, with some being active against a wide range of microbial agents, making this 

immune pathway extremely efficient (Tesovnik et al., 2017).  With the limited energy available 

for the immune system of honey bees within the nutrient deficient group, the upregulation of 

proPO, and therefore the melanisation process, is interesting.  Perhaps the other immune 

pathways are less energy efficient, therefore, the proPO is upregulated to provide immunity to 

honey bees during a time necessary for energy conservation.  In support of this hypothesis, 

Bull et al. (2012) found that worker bees show upregulation of phenoloxidase activity when 
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foraging, compared to house bees.  Additionally, Wilson-Rich et al. (2008) hypothesise that 

parts of the honey bee immune system are maintained as they age, but some parts are 

downregulated to save energy.  These views stand concurrent to the findings in this study.  

During poor foraging seasons, honey bees are frugal with their available energy, suggesting 

that the energy toll of immune pathway activation is reliant on food resources, and both 

individual and colony strength.  In contrast, Alaux et al. (2010) found no significant effect of 

malnutrition or pollen quality of the melanisation process.  However, they precluded that 

polyfloral diets have been shown to enhance other parts of the honey bee immune system, 

increased GOX activity for example.  Futher study is necessary to unravel whether the 

increased expression of proPO and the melanisation is a result of the treatment alone, the onset 

of foraging, or a combination of both. 

 

The honey bees under the nutrient deficient treatment showed an upregulation of phenoloxidase 

activity, but a largely significant downregulation of the Imd pathway.  In fact, across all 

treatments, significant downregulation of the Imd pathway was observed.  The Imd pathway 

seems to be the most critical pathway of the honey bee immune system, however, this immunity 

comes at a large energy cost.  

 

Significant downregulation of imd was observed in the nutrient limited treatment group.  As 

this group had limited food stores and were unable to replenish food stores with fresh pollen, 

the result of downregulation of the Imd pathway is reasonable.  Alaux et al. (2010) found that 

the immunocompetence was upregulated, although not significant, after rich-protein pollen 

feeding.  However, this only occurred when feeding concluded pathogen challenge.  This 

suggests that an inferior diet can reduce immune response, making the colony susceptible to 

pathogenic attack, whereas superior diets improve immune response.  

 

The disease treatment showed the highest effect on the Imd pathway of honey bees, with an 

eight-fold decrease.  The Imd pathway is mostly induced by gram-negative bacteria.  As 

Paenibacillus larvae is a gram-positive bacterium, the effect observed was unexpected.  Upon 

further research, it is found that gram-negative bacteria with diaminopimelic acid-type 

peptidoglycan cell wall structures, characteristics held by P.  larvae are able in induce an 

immune response, although smaller in magnitude when compared to gram-negative immune 

induction (Evans et al., 2006).  
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A significant 6-fold decrease in expression of the gene imd was observed for the fungicide 

treatment group.  Hu et al. (2017) found opposing regulation status of genes within the Imd 

pathway of honey bees, after a fungal infection.  The gene Relish was upregulated, whereas 

two others, Tab and Tak1 were downregulated.  As discussed above, the upregulation of Relish 

could be as a result of the Toll pathway and not the Imd pathway.  

 

The Imd pathway works closely with the Toll-like pathway and can often induce the expression 

of various Anti-Microbial Peptides (AMPs) within the others pathway.  For example, Alaux et 

al. (2010) found that the AMP abaecin was significantly upregulated in Drosophila under 

various stress-inducing treatments, but the Toll pathway, which is responsible for the induction 

of Defensin 1 was not upregulated.  They suggest that the upregulated Imd pathway might be 

able to induce the production of abaecin by the production of the molecule Relish, bypassing 

the Imd pathway as a whole.  Overall, the Imd pathway was severely down regulated across all 

treatments.  This pathway works similar to that of the Toll pathway, but the delivery and effect 

of each pathway is different.  The Imd pathway comes with a higher energy cost, provides a 

delayed response, but it is longer lasting and more powerful.  The Toll pathway is less energy 

dependent, provides a rapid response, but can only be sustained for a short period of time.  With 

the interconnectedness of these two pathways, it is often assumed that the effects of a tested 

variable will show similar results on both pathways, but this was not the case here.  The Imd 

pathway is solely responsible for the production of AMPs, but the Toll pathway plays a role in 

both immunity and development, suggesting that the Toll pathway might be more important to 

regulate as opposed to the Imd pathway. 

 

Spaetzle (spz) induces the Toll pathway in the presence of both bacterial and fungal pathogens.  

The Toll pathway is similar to that in humans, whereby it is responsible for the immune 

response induced by invading pathogens that attempt to colonise the epithelial layer of the gut 

wall (Hug et al., 2018).  The Toll pathway provides a unique opportunity to observe the effects 

of the gut microbiota on the overall health of the honey bee.  

 

The fungicide treatment group showed no significant effect on the expression of spz, suggesting 

that the fungicide had little to no effect on the Toll pathway of the immune system.  According 

to Hu et al. (2017) other agricultural chemicals, pesticides more specifically, caused significant 

upregulation of the Toll pathway by view from the increased expression of spz.  Although 

fungicidal treatments are inherently different to that of pesticidal treatment, similar effects were 
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expected.  The beta-diversity of the bacterial communities in the hindgut of the honey bees 

within this treatment group were not significantly different to that of the control group, but the 

fungal communities were.  As the Toll pathway is induced by both fungal and bacterial 

pathogens, the change in the fungal community within the hindgut would have thought to have 

induced an immune response.  However, as previously discussed in Chapter 3, the significant 

differences in the alpha-diversity of the gut microbial communities should be used as the main 

indicator.  The inverse Shannon index of the fungal communities were not significantly 

different, therefore, this fungal community remained balanced after treatment.  The high 

frequency of functional redundancy within the gut microbiota (Engel et al., 2012) might 

provide a reasonable hypothesis for the lack of gut-microbiota and immune reaction.  

 

Interestingly, nutrient deficiency showed no significant effect on the expression of spz, 

therefore, the Toll pathway remained the same as in the control group, although there was a 

slight downregulating trend.  Alaux et al. (2010) show that improved diet and pollen feeding 

induces upregulation of the Toll pathway, supporting results from Tritschler et al. (2017).  

These findings suggest that the decrease expression of spz falls in line with these findings.  As 

the pollen supplied to the nutrient deficient group contained all the necessary amino acids for 

honey bee growth and reproduction, understanding the effects of pollen lacking a single or 

multiple of these amino acids would provide invaluable information in this regard.   

 

A seven-fold upregulation of the spz gene was observed in honey bees from the disease 

treatment group.  Studies on the effect of Paenibacillus larvae on the immune system show 

large-scale upregulation (Chan et al., 2009).  Iketani and Morishima (1993), through studies 

on silkworms, suggest that the induction of the immune system might not be entirely as a result 

of the bacteria directly, as the P.  larvae needs to be slightly digested in order to trigger the 

PAMPs of the Toll-pathway.  This is seen in Chapter 3 where the bacterial challenge caused a 

disruption in the gut microbiota of the honey bees, more extensively in the midgut 

communities, an area which holds the function of metabolic degradation.  This disruption of 

the gut microbiota could allow for the colonisation and attachment of non-‘core’ gut 

microorganisms, thereby inducing an immune response.  This is interesting, as the mode of 

action of P.  larvae is directed mainly at young larvae (Masry et al., 2014) and not the ten-days 

old worker bees tested in this study.  As P.  larvae is one of the most devastating diseases to 

honey bee, globally, it is astounding that with the large amount of research available, a lot 

remains unknown.  
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4.4 Conclusion 

The immune response of honey bees to test treatments is a valuable way in monitoring the 

stress that these treatments place honey bees under.  Three everyday treatments were selected 

to determine whether these unassuming stressors were detrimental to honey bee health.  Under 

all treatment conditions, honey bees were seen to switch off the Immune Deficiency (Imd) 

pathway, a strong, long-lasting pathway that induces a battery of Anti-Microbial Peptides 

(AMPs).  This was unexpected, as this pathway is crucial to honey bee health, but it comes at 

a large energy cost.  It is suggested that honey bees under stress conditions downregulated the 

Imd pathway allowing for the diversion of that conserved energy elsewhere, for example nest 

hygiene and diseased larval removal.  However, under the nutrient deficient treatment, honey 

bees seemed to have directed some of the conserved energy into the phenoloxidase pathway, a 

cellular immune response largely responsible for encapsulation and melanisation.  The disease 

and fungicide treatment did not up-regulate this pathway.  The disease treatment group showed 

to have the only significant effect on the Toll pathway out of all the treatment groups.  This 

suggests that Paenibacillus larvae has a significant effect on gut homeostasis, an interesting 

finding.  Arguably the most interesting finding were on the gene vitellogenin (Vg).  Foraging 

was delayed under both fungicide and disease treatments but induced early under the nutrient 

deficient treatment. 

 

Overall, the nutrient deficient treatment showed the highest effect on the immune system of 

honey bees, but the addition of pollen traps could have resulted in an exaggerated immune 

response.  The fungicide treatment showed the lowest effect on the immune system of all the 

experimental treatments used in this study.  The disease treatment, used as a positive control in 

this study, affected the immune response, as expected.  However, the effect on the bacterial 

challenge was similar to that observed under the fungicide and nutrient deficient treatments.  

Therefore, the everyday stressors that were tested in this study induce an adequate immune 

response, similar to that of the response of the devastating American Foulbrood disease.  
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Chapter 5: Conclusion 

Apis mellifera is one of the most important, valuable, and ubiquitous insect pollinators, which 

has resulted in its establishment across the globe (Rader et al., 2016; Crane, 1999; Powell et 

al., 2014; Aizen and Harder, 2009; Muli et al., 2014).  A. mellifera provide an invaluable 

pollination service to both natural and agricultural vegetation, playing a role in global food 

security (Alexandratos and Bruinsma, 2012).  Reports of declining honey bee populations in 

some parts of the world have spurred research interest in the overall health of honey bees, 

promoting better beekeeping practices (Crotti et al., 2012; Yañez et al., 2016; Engel et al., 

2016; Rieg et al., 2010; Alippi et al., 2014; Tozkar et al., 2015; Foley et al., 2013).  Examining 

the intricate relationship between host health and gut microbiota (Sekirov et al., 2010) could 

provide insight into the effects of common beekeeping practices on the overall health of honey 

bees. 

 

Research into the exposure to pesticides, such as neonicotinoids, microbial pathogens, and 

invasive hive pests is abundant (Cimino et al., 2017; Pattabhiramaiah et al., 2011), but little 

focus has been applied to other common beekeeping conditions.  This research aimed to 

examine two common occurrences in beekeeping practices; the exposure of honey bees to a 

common agricultural fungicide, chlorothalonil, and nutrient limitation as a result of forced 

monocultural crop pollination.  Both a negative and positive, in the form of the well-studied 

bacterial challenge of Paenibacillus larvae, controls were used to gauge the effects of the 

experimental treatments. 

 

The indirect exposure of agricultural chemicals on honey bees and their colonies is of great 

concern, as researchers try to delve into the possible reasons for the population declines.  

Chlorothalonil is a broad-spectrum fungicide applied to agricultural crops to prevent common 

crop-spoiling fungi (Kelly, 2012; Battaglin et al., 2008).  Many of these agricultural crops are 

pollinated by honey bees, resulting in their indirect exposure.  With the increase in 

understanding the importance of the gut microbiota on the health of honey bees (Crotti et al., 

2013), research into the possible effects of the exposure to fungicide on the gut microbiota is 

essential.   

 

Interestingly, chlorothalonil showed to have little significant effect on the microbial 

communities associated with honey bees.  Although significant effects were observed on the 
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midguts, no effects were observed on the hindguts.  As the microbial communities of the 

midgut are not stable and are largely made up of transient microorganisms (Kwong and Moran, 

2016; Ludvigsen et al., 2015), effects on the midgut does not provide sufficient evidence to 

suggest that the chlorothalonil has a significant effect on the gut microbial community.  The 

fungicide treatment also showed to have no significant effect on overall colony strength, as the 

number of bees, stored food, and brood did not differ to that of the control group.  This 

treatment also showed to have the least effect on the immune system of honey bees, compared 

to the nutrient deficient and bacterial challenge group.  The Toll-like pathway and 

Phenoloxidase (PO) pathway remained unaffected.  Chlorothalonil showed to affect the 

immune system of honey bees by downregulating the Immune deficient (Imd) pathway, a 

pathway important for the production of AntiMicrobial Peptides (AMPs) (Evans et al., 2006; 

Myllymäki et al., 2014).  This suggests that although chlorothalonil alone shows no visual 

effect, it could reduce the honey bees defence against invading pathogens.  As honey bees are 

exposed to numerous environmental microorganisms that could be pathogenic to honey bees 

with a reduced immune system.  

 

Future studies are recommended to examine the possible relationship between chlorothalonil 

and the reduction of immune defence against pathogens, perhaps introducing a dual-treatment.  

As the only effects on the microbial communities were only observed on the midguts, 

additional research should be applied for a prolonged period of time, perhaps at a lower 

concentration, to observe the long-term effects.  After prolonged exposure to chlorothalonil 

and the possibility of its accumulation, the effects could be extended from the midgut to the 

hindgut.  If this were to hold true, observing the effects on the microbial community on the 

midguts could provide an early detection method for observing the effects of this common 

honey bee stressor.  

 

Beekeepers should be made aware of the increase in possibility of infection due to the reduced 

immune system of honey bees as a result of chlorothalonil exposure.  The results from this 

study suggest that chlorothalonil does not affect the overall health of honey bees enough to 

prevent the application of chlorothalonil on pollination crops.  It is recommended that 

beekeepers keep a closer eye on honey bee colonies in chlorothalonil applied areas as these 

colonies might need treatment or intervention at early signs of infection.  
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Recently, nutrition has become a focus for research as a topic for potential misuse of honey 

bees as the increase in monoculture-based agricultural processes have become popular 

(DeGrandi-Hoffman and Chen, 2015).  Diet plays an important role in ensuring not only the 

individual health of honey bees, but the health of the colony, most importantly in ensuring a 

continuous supply of worker bees in the form of brood production (Chaand et al., 2017).  

 

Nutrient limitation practiced in this study was in the form of supplying honey bees with only 

Canola as a food source. This stressor also seemed to have little significant effect on the 

microbial communities associated with the hindguts of honey bees but did show to affect the 

midgut communities.  This stressor had a significant effect on honey bee colony strength as 

both the number of frames of stored pollen and brood were reduced.  As food stores were 

provided at the beginning of the experimental timeline, honey bees were unable to replenish 

these stores as a result of pollen excluders, therefore, explaining the reduction in colony 

strength.  The honey bees within this treatment group showed to have significantly impaired 

immune systems.  The Imd pathway was seen to be downregulated, with the PO pathway 

upregulated.  This is suggested to conserve energy, as the hugely effective Imd pathway comes 

at a high energy cost, where the less effective PO pathway does not.  Most interestingly, the 

worker bees were shown to delay foraging, perhaps due to realignment of worker bees to colony 

hygiene, as seem by the downregulated vitellogenin (Vg). 

 

Nutrient limitation does not seem to effect honey bees to the extent where rapid reconstruction 

of farming practices needs to occur immediately.  The results from these studies, however, 

show that honey bees provided with a monofloral diet have a reduced immune system.  

Therefore, the defence that honey bees have against secondary infections is largely impaired.  

From a beekeeping perspective, honey bees on monofloral food sources have reduced 

productivity as worker bees show delayed foraging.  Therefore, this needs to be considered 

when pollination of agricultural crops is necessary. 

 

Overall, the two stressors tested in this study, namely; the fungicide chlorothalonil and 

monofloral nutrient limitation do not provide evidence to severely effect the health of honey 

bees.  Beekeepers are recommended to provide additional attention to honey bees under these 

conditions as it is not yet known what these effects would be when in combination with other, 

common stressors.  
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