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Abstract 

 

Phytoplasma diseases have caused disastrous effects in vineyards around the world. 

Therefore, the recent discovery of phytoplasmas in South African vineyards could be highly 

detrimental to the local wine industry. Antimicrobial peptides (AMPs) are small molecules 

expressed by almost all organisms as part of their non-specific defence system. These 

peptides can offer protection against a wide variety of bacterial and fungal pathogens in 

plants. Due to the fact that phytoplasmas lack an outer membrane and cell wall, AMPs are 

considered to be perfect candidates to confer resistance to this phytopathogen. The current 

study intends to explore the in planta activity of AMPs against the grapevine pathogen aster 

yellows phytoplasma (AYp) through Agrobacterium-mediated transient expression. 

 

The AMPs, Vv-AMP1, D4E1 and Snakin1 (isolated from potato and grapevine) were 

selected to be tested for their in planta effect against AYp. Cauliflower mosaic virus 35S 

expression vectors containing four different AMP-encoding sequences were therefore 

constructed. As an alternative method to observe the effect Vv-AMP1 might have on AYp in 

planta, grafting of Vv-AMP1 transgenic Vitis vinifera cv „Sultana‟ plant material was used. 

To allow assumptions about AMP efficacy in this transient expression system, attempts were 

made to describe the spatial distribution and pathogen titre of AYp in V. vinifera cv 

„Chardonnay‟ material. Additionally, transmission experiments were carried out to infect 

Catharanthus roseus and Nicotiana benthamiana with AYp through the insect vector Mgenia 

fuscovaria. Material was screened for AYp infection by a nested-PCR procedure using 

universal primers described by Gundersen and Lee (1996). For quantification of AYp 

infection, a semi-quantitative real-time PCR (qPCR) protocol was optimized, using the 

SYBR Green-based system.  

 

In total, 86 V. vinifera cv „Chardonnay‟ plantlets were screened for AYp infection two-, 

three-, four-, seven- and eleven weeks after introduction into in vitro conditions. No AYp 

infection could however be detected and plantlets displayed a „recovery phenotype‟. To 

examine the distribution of AYp in canes of an infected V. vinifera cv „Chardonnay‟ plant, 

leaf and the corresponding node material from five canes were screened by a nested-PCR 

procedure. It can be concluded, that AYp was found predominantly in the nodes when 

compared to leaf material in the late season of the year. It is also highly unlikely for leaf 
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material to show phytoplasma infection, if in the corresponding node no AYp could be 

detected. As AYp-infected grapevine material could not be maintained in vitro, the effect of 

VvAMP-1 transgenic grapevine against AYp could not be tested. Infection of C. roseus and 

N. benthamiana plants with AYp was successfully achieved by insect vector transmission 

experiments. Transient expression assays were conducted on AYp-infected N. benthamiana 

material. Quantification of phytoplasma in this material showed a decrease of AYp in both 

the AMP treatment groups and the control groups.  

 

This study optimized a qPCR procedure to detect and quantify AYp in infected plant 

material. The Agrobacterium-mediated transient expression system used during this study 

was not reliable, as no significant effect of the AMPs on AYp titre could be observed. This 

study showed, that AYp cannot be established and maintained in in vitro cultured V. vinifera 

cv „Chardonnay‟ material, and tissue culture itself might therefore be a way to eradicate AYp 

in this cultivar. To our knowledge, this study is the first to report on the spatial distribution of 

AYp in canes of an infected V. vinifera cv „Chardonnay‟ vine. 
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Opsomming 

 

Fitoplasma-siektes veroorsaak ramspoedige gevolge in wingerde oor die hele wêreld. Dus 

kan die onlangse ontdekking van fitoplasmas in Suid-Afrikaanse wingerde baie nadelige 

gevolge vir die plaaslike wynbedryf beteken. Antimikrobiese peptiede (AMPe) is klein 

molekules wat in amper alle organismes as deel van hulle nie-spesifieke verdedigingsstelsel 

tot uitdruk kom. Hierdie peptiede kan beskerming bied teen ŉ wye verskeidenheid van 

bakteriële en swampatogene in plante. As gevolg van die feit dat fitoplasmas geen 

selmembraan of selwand het nie, word AMPe oorweeg as middel om weerstand te verleen 

teen hierdie fitopatogene. Die huidige studie beoog om die in planta aktiwiteit an AMPe teen 

die wingerd-patogeen aster vergeling fitoplasma (AYp) deur middel van Agrobacterium-

bemiddelde tydelike uitdrukkingsisteme, te ondersoek.  

 

Die AMPe, Vv-AMP1, D4E1 en Snakin1 (geïsoleer vanuit aartappel en wingerd) is gekies 

om getoets te word vir hul in planta effek teen AYp. Blomkoolmosaïek-virus 35S 

uitdrukkingsvektore met vier verskillende AMP-koderende volgordes is dus ontwikkel. As ŉ 

alternatiewe metode om die moontlike effek van Vv-AMP1 op AYp in planta te toets, is 

enting van die Vv-AMP1 transgeniese Vitis vinifera cv  „Sultana‟ plantmateriaal gedoen. Om 

hierdie AMPe se doeltreffenheid in hierdie tydelike uitdrukkingsvektore te toets, is pogings 

aangewend om die ruimtelike verspreiding en patogeenkonsentrasie van AYp in V. vinifera 

cv „Chardonnay‟ te beskryf. Verder  is transmissie-eksperimente uitgevoer om Catharanthus 

roseus en Nicotania benthamiana met AYp dmv die insekvektor, Mgenia fuscovaria, te 

infekteer. Plantmateriaal is getoets vir AYp in ŉ PCR met universele inleiers soos beskyf 

deur Grundersen en Lee (1996). Vir kwantifisering van die AYp infeksie, is „n semi-

kwantitatiewe qPCR protokol geoptimiseer, met behulp van die SYBR Groen-gebaseerde 

stelsel. In totaal is 86 Chardonnay plantjies getoets vir AYp infeksie – twee-, drie-, vier-, 

sewe- en elf weke na die blootstelling aan die in vitro kondisies. Geen AYp infeksie kon 

egter opgespoor word nie en die plante het „n “herstel-fenotipe” vertoon.  
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Om die verspreiding van AYp in die arms van ŉ geïnfekteerde Chardonnay plant te 

ondersoek, is blare en ooreenstemmende internode van vyf lote getoets met PCR. Daar kon 

afgelei word dat, laat in die seisoen, AYp hoofsaaklik in die internode gevind word. In slegs 

enkele gevalle is fitoplasma-infeksies in blaarmateriaal, waarvan die ooreenstemmende 

internode negatief getoets het, gevind. Aangesien die AYp-geïnfekteerde wingerdmateriaal 

nie in vitro gekweek kon word nie, kon die effek van VvAMP-1 transgeniese wingerd nie 

teen AYp getoets word nie. AYp infeksies van C. roseus en N. benthamiana plante deur 

transmissie eksperimente met ŉ insekvektor was suksesvol. Toetse met tydelike 

uitdrukkingsvektore is uitgevoer op die AYp-geïnfekteerde N. benthamiana materiaal. 

Kwantifisering van fitoplasma in hierdie materiaal het die afname van AYp in beide die AMP 

behandelingsgroep en die kontrole groep getoon.  

 

Hierdie studie het ŉ qPCR-toets geoptimiseer om geïnfekteerde plantmateriaal met AYp op te 

spoor en dit te kwantifiseer. Die Agrobacterium-bemiddelde tydelike uitdrukingsvektore wat 

in hierdie studie gebruik is, het geen beduidende effek van die AMPe op AYp konsentrasie 

getoon nie. Hierdie studie het bewys dat AYp nie instand gehou kan word deur in vitro 

kweking van Chardonnay materiaal nie, en dat weefselkultuur dus ŉ manier kan wees om 

AYp in hierdie kultivar te elimineer. Sover ons kennis strek, is hierdie studie die eerste om 

die ruimtelike verspreiding van AYp in arms van geïnfekteerde wingerdstokke, te rapporteer. 
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Introduction 

 

1.1 Background and motivation for this study 

The importance of grapevine as an agricultural commodity in SA cannot be over emphasized. 

More than 115 000 hectares of land in SA are planted to grapevine and the South African 

wine industry contributed 417.5 million gross litres of wine for sale to private and producer 

cellars in 2011, with an increase of 23.9% estimated for 2012 (http://www.sawis.co.za). 

Phytoplasma diseases are known to have caused disastrous effects in vineyards in European 

countries, resulting in significant reductions in fruit yield and wine quality (Lee et al., 2000). 

Therefore, the recent discovery of phytoplasma infections in SA could be highly problematic 

to the South African wine industry. It is therefore of high importance to find an approach to 

control this disease. A long term approach to control this pathogen through the development 

of resistance is desirable and should be investigated and implemented. The current study 

intends to explore an approach to induce resistance against the grapevine pathogen aster 

yellows phytoplasma (AYp), to control this devastating new disease. 

 

Scientists have started employing short peptides, known as antimicrobial peptides (AMPs), to 

combat plant pathogens. These small molecules of less than 50 amino acids in length are 

expressed by almost all organisms as part of their non-specific defence system (Montesinos, 

2007). Whilst the ultimate aim would be to express AMPs in grapevine, the development of 

transgenic grapevine is time-consuming and therefore the pre-screening of potential AMPs is 

necessary. In vitro pre-screening of AMP activity is valuable, but is impossible for 

phytoplasmas since these pathogens cannot be cultured in vitro. These limitations can be 

overcome by using transient expression systems to determine the in planta activity of AMPs 

against phytoplasma pathogens. 

 

In this study, a transient expression system described by Visser et al. (2012) was used to test 

the in planta activity of four AMPs against the grapevine pathogen AYp. This system can be 

used as an in planta pre-selection for AMP efficacy and can be performed in a relatively short 

time period, for a large number of AMPs. To allow assumptions about AMP efficacy in this 

transient expression system, attempts were made to describe the spatial distribution and 

pathogen titre of AYp in Vitis vinifera cv „Chardonnay‟ material.  

 

http://www.sawis.co.za/
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1.2 Project proposal 

This study aimed to test the in planta activity of AMPs against the grapevine pathogen AYp 

through a transient expression system.  

 

To achieve the proposed aim, it was necessary to reach the following objectives: 

 Test the expression of foreign genes in grapevine using Agrobacterium-mediated 

transient expression vectors containing the GUS control gene  

 Construct Agrobacterium-mediated transient expression vectors containing AMP 

genes and test for the expression of these genes  

 Identify and establish in vitro phytoplasma-infected plants  

 Conduct transmission experiments using the vector Mgenia fuscovaria on Nicotiana 

benthamiana and Catharanthus roseus 

 Infiltrate phytoplasma-infected plants with the AMP expression constructs 

 Graft phytoplasma-infected plants onto existing Vv-AMP1 transgenic plants 

 Test the effects of the AMPs by measuring microbial titres and disease development 

 Determine the distribution of AYp in the canes of an infected grapevine plant 

 

1.3 References 
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Chapter 2 

Literature review 

 

2.1  Introduction 

About 1 000 years ago the Chinese were great admirers of the obscure bacteria 

phytoplasma. They found the symptoms in peonies so attractive, that the Song Dynasty‟s 

imperial court was given a special annual tribute consisting of these infected flowers 

(Strauss, 2009). Most of the effects displayed by these microbes, are however far from 

pretty. In the European countries alone, phytoplasma infections have caused devastating 

yield losses in several fruit crops. During only one phytoplasma outbreak in apple trees in 

2001, Germany lost €25 million, while Italy made a loss of €100 million (Strauss, 2009). 

This bacterium is however not only causing effects in the European countries. In Africa 

and the Caribbean, infected palm trees are causing people to have insufficient 

nourishment and building materials (Maramorosch, 2011; Strauss, 2009). In grapevine, 

phytoplasmas are known to have caused disastrous effects in vineyards in European 

countries, resulting in significant reductions in fruit yield and wine quality (Lee et al., 

2000). In 2006, Botti and Bertaccini discovered the first ever mixed phytoplasma 

infection in South African vineyards. The South African wine industry contributed R2.6 

billion to the country‟s gross domestic product in 2008 and employs over 275 000 people 

(http://www.sawis.co.za). Due to the importance of the grapevine industry on the South 

African economy, it is crucial to combat all pathogens including the recently discovered 

phytoplasma. This chapter will give some background information on phytoplasmas and 

antimicrobial peptides, which are molecules used for inducing pathogen resistance in 

plants. 

 

2.2  Phytoplasmas   

2.2.1 The discovery of phytoplasmas 

In 1926, Kunkel described a disease that destroys crops, orchards and ornamental     

plants. For several reasons, scientists believed the disease was caused by a virus or 

viruses, as the pathogen could not be cultured in vitro, was transmitted by insects 

and displayed symptoms similar to a virus infection (Doi et al., 1967). For the next 

40 years scientists examined the disease but were unsuccessful in finding a virus. 

http://www.sawis.co.za/
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When Maramorosch (1958) injected insects with the antibiotic tetracycline and the 

infectious agent phytoplasma, the injected insects did not transmit aster yellows to 

the plants. Knowing that antibiotics had no effect on viruses, he concluded that the 

high temperatures in the greenhouse, rather than the drug prevented pathogen 

transmission. In 1967, Doi and colleagues discovered structures resembling those 

of mycoplasmas and termed the causal agent mycoplasma-like organisms (MLOs). 

Mycoplasmas are small groups of typically parasitic bacteria that lack cell walls 

and can cause diseases in plants, humans and animals. In 1994, this mycoplasma-

like organism was given the name phytoplasma by the Phytoplasma Working Team 

at the 10
th

 Congress of the International Organization of Mycoplasmology. 

 

2.2.2 Classification of phytoplasmas 

Phytoplasmas diverged from gram-positive ancestors and belong to the class 

Mollicutes. They are petite, cell wall-less pleiomorphic bacteria of approximately 

500nm in diameter (Lee et al., 1998). Even though phytoplasmas have a smaller 

genome compared to most bacteria, they manage a very complex life cycle that 

involves two noticeably different environments – plants and insects. Early 

diagnostic approaches distinguished phytoplasma infections from other grapevine 

diseases, by observing the main symptoms that phytoplasma diseases express in 

plants (Gasparich, 2009). As symptom expression is quite uniform among different 

phytoplasma species however, symptomatology cannot be used to distinguish one 

phytoplasma species from another. Focus has therefore shifted to a molecular 

approach of grouping this pathogen. Phytoplasmas are currently being classified 

and grouped into different subgroups according to the sequence of their 16S 

ribosomal RNA (rRNA) genes (Seemüller et al., 1998). The table shown below 

classifies phytoplasmas into „Candidatus Phytoplasma‟ species based on the 

nucleotide sequence of the 16S rRNA gene. Each 16S rRNA group represents at 

least one distinct „Candidatus Phytoplasma‟ species (Table 1). These main groups 

of phytoplasma species can further be classified into sub-groups, which share ≥97% 

similarity in their 16S rRNA sequences. Strains found in a specific group are 

known to have substantial genetic variations and occupy diverse ecological niches 

(Gundersen et al., 1996; Seemüller et al., 1994; Seemüller et al., 1998). 
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Table 1: 16S rRNA group-subgroup classification and „Candidatus Phytoplasma‟ species (Dr RE Davis, Unites States 

Department of Agriculture, Phytoplasma Resource Centre)  

Phytoplasma/disease 

common name 

16S rRNA  

group-

subgroup 

GenBank  

no. 

Named 'Candidatus  

Phytoplasma' species  

Informally proposed 

'Candidatus Phytoplasma' 

species 

Aster yellows (AY)  16SrI  M30790 'Candidatus Phytoplasma asteris'  

WB disease of lime 16SrII-B U15442 'Ca. Phytoplasma aurantifolia'  

Western X-disease 16SrIII-A  L04682  'Ca. Phytoplasma pruni' 

Palm lethal yellowing 16SrIV-A U18747   'Ca. Phytoplasma palmae' 

Elm yellows  16SrV-A AY197655 'Ca. Phytoplasma ulmi'  

Jujube WB  16SrV-B AB052876 'Ca. Phytoplasma ziziphi'  

Flavescence dor�e 16SrV-C AF176319   'Ca. Phytoplasma vitis' 

Clover proliferation 16SrVI-A AY390261 'Ca. Phytoplasma trifolii'  

Ash yellows  16SrVII-A AF092209 'Ca. Phytoplasma fraxini'  

Loofah WB 16SrVIII-A AF086621  'Ca. Phytoplasma luffae' 

Almond lethal disease 16SrIX-D AF515636 'Ca. Phytoplasma phoenicium'  

Apple proliferation  16SrX-A AJ542541 'Ca. Phytoplasma mali'  

Pear decline 16SrX-C AJ542543 'Ca. Phytoplasma pyri'  

Spartium WB  16SrX-D X92869 'Ca. Phytoplasma spartii'  

European stone fruit Y 16SrX-F  AJ542544 'Ca. Phytoplasma prunorum'  

Rice yellow dwarf 16SrXI-A AB052873 'Ca. Phytoplasma oryzae'  

Stolbur phytoplasma 16SrXII-A  AF248959  'Ca. Phytoplasma solani' 

Australian GY 16SrXII-B  Y10097 'Ca. Phytoplasma australiense'  

Hydrangea phyllody  16SrXII-D AB010425 'Ca. Phytoplasma japonicum'  

Strawberry yellows 16SrXII-E DQ086423 'Ca. Phytoplasma fragariae'  

Mexican periwinkle Vir 16SrXIII-A AF248960  No 'Candidatus' name proposed 

Bermuda grass WL 16SrXIV  AJ550984 'Ca. Phytoplasma cynodontis'  

Hibiscus WB 16SrXV  AF147708 'Ca. Phytoplasma brasiliense'  

Sugarcane yellow leaf 16SrXVI AY725228 'Ca. Phytoplasma graminis'  

Papaya bunchy top 16SrXVII AY725234 'Ca. Phytoplasma caricae'  

Potato purple top wilt 16SrXVIII DQ174122 'Ca. Phytoplasma americanum'  

Chestnut WB 16SrXIX AB054986 'Ca. Phytoplasma castaneae'  

Buckthorn WB 16SrXX X76431 'Ca. Phytoplasma rhamni'  

Pine shoot proliferation 16Sr XXI AJ632155 'Ca. Phytoplasma pini'  

Nigerian Awka disease 16Sr XXII-A Y14175  'Ca. Phytoplasma cocosnigeriae‟ 

Buckland Valley GY 16SrXXIII-A AY083605  No 'Candidatus' name proposed 

Sorghum bunchy shoot 16SrXXIV-A AF509322  No 'Candidatus' name proposed 

Weeping tea WB 16SrXXV-A  AF521672  No 'Candidatus' name proposed 

Sugarcane yellows 

phytoplasma D3T2 

16SrXXVII-A AJ539180  No 'Candidatus' name proposed  

Derbid phytoplasma 16SrXXVIII-A AY744945  No 'Candidatus' name proposed 

Cassia italica WB 16SrXXIX EF666051 'Ca. Phytoplasma omanense'  

Salt cedar WB 16SrXXX FJ432664 'Ca. Phytoplasma tamaricis'  

Parsley leaf of tomato "  EF199549 'Ca. Phytoplasma lycopersici'   

Tanzanian lethal disease " X80117  'Ca. Phytoplasma cocostanzaniae' 

Chinaberry yellows "  AF495882  No 'Candidatus' name proposed 

 Abbreviations are as follows: AY, aster yellows; WB, witches'-broom; Y, yellows; GY, grapevine yellows; Vir, 

virescence; WL, white leaf. 

 The Table lists only phytoplasmas that have been formally named as 'Candidatus Phytoplasma' species. 
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2.2.3 Plant hosts 

To date, phytoplasmas have been found to infect several dicotyledonous-, 

cultivated- and wild plant species worldwide (Hollingsworth et al., 2008). Apple, 

celery, china asters, grapevine, carrots, lettuce, periwinkle, potato and redcurrant 

are just some examples of plant hosts that phytoplasmas are known to infect (Kuske 

and Kirckpatrick, 1992; Schneider et al., 1993; Tanne and Orenstein, 1997; 

Orenstein et al., 1999; Lee et al., 1993; Seemüller et al., 1994; Přibylová et al., 

2011). Different phytoplasma species have been shown to infect Vitis vinifera 

including flavescence dorée (FD), bois noir (BN), Australian grapevine yellows 

phytoplasma (AGYp) and aster yellows phytoplasma (AYp). In South Africa, the 

phytoplasma strain causing yellows disease in infected vines was found to be AYp 

(Engelbrecht et al., 2010). AYp is known to infect over 300 plant species from 48 

different plant families around the world (Stansbury et al., 2001). To date, AYp 

infections have been observed in vineyards in the Waboomsrivier area near 

Rawsonville and in the Olifants River area in the Vredendal district of SA.   

  

      2.2.4 Dual life cycle  

Phytoplasmas can replicate in two distinctively different hosts - plants and insects 

(Figure 1). In plants they reside in the cytoplasm of sieve cells of the phloem, and 

in their insect vectors they are found in various organs inside and outside of the 

cells (Doi et al., 1967).   

 

 

 

 

 

 

 

 

 

 

Figure 1: The dual life cycle of phytoplasmas (Christensen et al., 2005). 

During the latent period, the insect vector acquires the pathogen from the plant 

host. It then takes ~ 3 weeks till the phytoplasma titres reach the infectious level. 
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During the inoculation feeding, the infectious insect introduces the phytoplasma 

into a healthy plant. This process can take between 7 and 80 days (Murral et al., 

1996). Phytoplasmas are transferred with saliva into the punctured sieve element of 

the plant. From here the pathogen then spreads systematically throughout the plant, 

using the continuous sieve tube system. As phytoplasmas replicate in both plants 

and insects and cannot be cultured in vitro, they are very challenging pathogens to 

study. 

 

      2.2.5 Insect vector 

Insect vectors for phytoplasma transmission include the leafhopper and plant 

hopper families. In 2011, Krüger and colleagues discovered that the vector for AYp 

transmission in grapevine in SA was the insect Mgenia fuscovaria. Studies have 

shown that phytoplasma strains in insect vectors and plants vary greatly. The plant 

host range depends less on the phytoplasma strain, and more on the natural insect 

vector species that are capable of transmitting the phytoplasma, and by the feeding 

behaviour of the insect vectors (McCoy et al., 1989; Kunkel, 1926; Grylls, 1979). 

Phytoplasmas can have a low insect vector specificity or high insect vector 

specificity, meaning that they can be transmitted by one or more insect vectors at a 

given time (Christensen et al., 2005).  It is also known that insect vectors can 

transmit more than one type of phytoplasma and that plants can be infected by two 

or more distinct phytoplasmas at the same time. The geographic distribution of 

various insect vectors and preferred plant hosts of each vector, are the two major 

factors that determine whether a specific plant will be infected by one, or by 

multiple phytoplasmas (Lee et al., 1998). 

 

      2.2.6 Symptoms 

Grapevine plants show basically the same type of symptoms, regardless of the 

infecting phytoplasma species (Belli et al., 2010). Some cultivars of grapevine may 

be more or less tolerant and may therefore show milder symptoms or no symptoms 

at all. The grapevine cultivar „Chardonnay‟ is highly susceptible to several different 

phytoplasma infections, and is thus very useful in the successful identification of 

affected plants in the vineyard (Gibb et al., 1999; Orenstein et al., 2001). In 

grapevine, symptoms of phytoplasma infections can be observed in the leaves, 

canes and bunches (Figure 2).  
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Figure 2: Phytoplasma-associated symptoms in grapevine. (A) A grapevine branch displaying yellowing of the 

leaves. At the end of the branch, bunch abortion of growth tip can also be observed (Photo taken by J Joubert from 

VinPro, South Africa). (B) Grapevine showing aborted fruits as well as yellowing and necrosis in leaf veins (Photo 

taken by Dr RE Davis of the Molecular Plant Pathology Laboratory, Unites States Department of Agriculture).  

In early spring, vines may show irregular sprouting and then at the onset of 

summer, leaves start to roll downwards and become yellow in white-berried 

cultivars, and purple-reddish in red-berried cultivars (Belli et al., 2010; Gibb et al., 

1999; Mitrev et al., 2007; Orenstein et al., 2001; Stansbury et al., 2001; Strauss, 

2009). The berries then start to wither and the bunches dry up, while the canes 

develop irregularly or not at all (Belli et al., 2010; Radonjić et al., 2009; Magarey 

and Wachtel, 1982). Symptoms of phytoplasma infections can be limited to a sector 

or a branch, whereas the remaining plant looks normal. Phytoplasmas also promote 

vegetative growth and dwarfism, but hinder reproductive activities in the infected 

plant (Strauss, 2009). „Witches broom‟ and phyllody is another symptom seen in 

phytoplasma-infected sink tissues (Bertaccini, 2007; Hogenhout and Loria, 2008). 

Two or more phytoplasma species can infect the same vine simultaneously. These 

mixed infections do however not show differences in symptomatology to a single 

infection, which makes visual evaluation most difficult. The exact interaction of the 

pathogen with the host plant is still unknown, but the symptoms suggest that 

phytoplasmas interfere with fundamental cellular and developmental pathways in 

plants (Hogenhout et al., 2008). 

 

      2.2.7 Interaction of phytoplasmas with their hosts 

Phytoplasma infections impact the plant negatively; however it may or may not 

affect the fitness and survival of the insect vector (Hogenhout et al., 2008). Some 

A B 
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of the morphological changes seen in infected plants attract insect vectors, and 

certain insects live longer and have more progeny on AYp-infected plants 

(Hogenhout et al., 2008). This suggests that the pathogen doesn‟t only interfere 

with the plant‟s fundamental pathways, but also down-regulates the plant‟s defence 

against leafhoppers (Sugio et al., 2011). According to recent studies, phytoplasmas 

induce phenotypic changes in plants through the production of effector proteins 

(Bai et al., 2009). To-date, 56 secreted AY-witches‟ broom proteins, also called 

SAPs, have been identified that are candidate effector proteins. These proteins are 

secreted into the plants cytoplasm by the Sec-dependent protein translocation 

pathway, similar to Gram-positive bacteria. Once the proteins have been discharged 

into the phloem they target other plant cells by symplastic transport (MacLean et 

al., 2011). In 2008, Hogenhout and her colleagues discovered SAP11, a protein 

secreted by AY-witches‟ broom, which accumulated in the plant cell nuclei and 

alters plant cell gene activity. More recently, SAP11 has also been shown to 

destabilize class II CINCINNATA- related TCP transcription factors, resulting in the 

crinkled leaf and witches‟ broom phenotype (Sugio et al., 2011). Another effector 

protein discovered in onion yellows phytoplasma, namely TENGU, induces 

symptoms of witches‟ broom and dwarfism in plants, and is also thought to 

interfere with the plants auxin-related pathways, thereby affecting plant 

development (Hoshi et al., 2009). MacLean and co-workers (2011) discovered 

SAP45, which has been found to interfere with floral development, another 

symptom of AY-witches‟ broom. It is clear that phytoplasmas secrete effector 

proteins that function inside the hosts cells. The extent to which phytoplasmas rely 

on these proteins to influence their diverse plant and insect hosts still remains 

unclear. However, from research done, scientists have discovered new hope for 

unravelling the pathogenicity mechanism of phytoplasmas. 

 

      2.2.8 Detection methods  

The importance of being able to reliably distinguish phytoplasmas from similar 

grapevine diseases, and for discriminating different phytoplasmas from one-

another, has attracted the attention of researchers worldwide. This activity has led 

to the development of a series of detection techniques, which have evolved from 

biological diagnostic approaches to molecular protocols (Belli et al., 2010).  
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2.2.8.1 Past – Biological diagnostic approaches 

Based on phytoplasma symptoms, one can generally distinguish 

phytoplasma infections from other grapevine disorders, for example leafroll 

disease (Belli et al., 2010). Symptom expression is however quite uniform 

amongst phytoplasma species and can thus not be used to reliably 

distinguish one phytoplasma species from another. Indexing techniques 

were therefore applied on the hybrid Baco 22A, but did not help much as the 

symptomatic response induced by different phytoplasmas in Baco 22A is 

similar (Belli et al., 2010). Successful transmission to Baco 22A was used to 

distinguish between FD and BN, but as this type of test is laborious, slow 

and time-consuming it was dismissed as soon as serological and molecular 

assays became available, 

2.2.8.2 Present – Serological and Molecular assays 

From 1982 onwards, monoclonal antibodies and polyclonal antisera were 

produced for the detection of FD phytoplasma (Caudwell et al., 1982; 

Schwarz et al., 1989). These antisera were also used for observing 

phytoplasmas by immunosorbent electron microscopy (ISEM) and 

fluorescent light microscopy (Lherminier et al., 1989). Successful 

differentiation between FD and phytoplasmas of the same taxonomic group 

(16SrV) using monoclonal antibodies was reported by Seddas and co-

workers (1993, 1995, 1996). Once the first DNA probe was synthesized on 

phytoplasma genome sequences, recombinant DNA-based techniques were 

rapidly developed (Kirkpatrick et al., 1987). These techniques were 

affordable for the detection in herbaceous hosts, but were found to be 

inaccurate in woody plants (including grapevine), mainly because of the low 

concentration of the pathogen and erratic distribution in this host (Belli et 

al., 2010). The availability of the 16S rRNA gene sequences of AYp, FD 

and BN allowed for the development of universal PCR assays for the 

detection of all known phytoplasmas (Lim and Sears, 1989; Davis et al., 

1993; Daire et al., 1993; Deng and Hiruki, 1991; Lee et al., 2004). These 

assays were further developed for the reliable identification of grapevine 

phytoplasma sub-groups, based on restriction fragment length 

polymorphism and highly sensitive nested-PCRs (Lee et al., 1994; Bianco et 

al., 1996). For faster and even more specific detection of grapevine 
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phytoplasmas, real-time RT-PCRs, nanobiotransducers, multiplex nested-

PCRs, ligase detection reactions and DNA microarrays were successfully 

developed (Angelini et al., 2007; Firrao et al., 2005; Clair et al., 2003; 

Christensen et al., 2004; Frosini et al., 2002) and are currently being used by 

the industry to accurately detect phytoplasma species.  

 

2.2.9 Seasonal and spatial distribution 

Detecting phytoplasmas goes hand-in-hand with the distribution of the pathogen 

throughout a host plant. Seasonal distribution plays a big role in detecting 

phytoplasmas. Terlizzi and Credi (2007) reported that the proportion of BN 

presence was highest in summer throughout five different cultivars of grapevine, 

located in Italy. In winter, the number of infected grapevines clearly decreased. 

This seasonal distribution was also described in grapevine infected with AGYp, 

where detection was most reliable during summer and decreased in autumn 

(Constable et al., 2003). These results suggest that phytoplasmas are unevenly 

distributed, seldom spreading systemically through grapevines and rarely infecting 

them persistently from year to year (Terlizzi and Credi, 2007; Constable et al., 

2003; Gibb et al., 1999; Hollingsworth et al., 2008; Seemüller et al., 1994). In 

Catharanthus roseus (C. roseus) plants, the colonization pattern and distribution of 

two „Candidatus P. asteris‟ subspecies, namely severe AYp and dwarf AYp, were 

generally similar over a 10 week period (Kuske and Kirkpatrick, 1992). 

Phytoplasmas are also known to accumulate disproportionately in Euphorbia 

pulcherrima source leaves, and to a lesser extent in the petioles of source leaves, 

whereas the accumulation of phytoplasmas is lowest in sink organs (Christensen et 

al., 2004).  The infection level of phytoplasmas also differs greatly between host 

plants. Stolbur phytoplasma showed significant differences in the level of 

phytoplasma infection between V. vinifera cvs „Cabernet Sauvignon‟ and 

„Sauvignon blanc‟ (Orenstein et al., 2001). Christensen et al. (2004) reported that 

phytoplasma titres observed in C. roseus are significantly higher to pathogen titres 

seen in E. pulcherrima. Despite the long history of research on AYp, no data are 

available on the spatial pattern of AYp-infected plants and the change in pattern 

over time as disease incidence increases. 
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2.2.10 Control strategies 

According to Carstens (2008), no control strategy exists to cure a plant infected 

with phytoplasmas. The Department of Agriculture, Forestry and Fisheries in the 

Republic of South Africa has thus set aside multiple practices to aid in the 

prevention of further spread of „Ca. P. asteris‟. These include weed control and 

intercropping, chemical control, vineyard sanitation, propagation of material and 

the marking of infected grapevine in all vineyards. Techniques that are currently 

being investigated to aid in the control of phytoplasmas are described below. 

2.2.10.1 Auxin-induced recovery 

In 1968, Davies and his colleagues showed that tetracycline has a 

bacteriostatic effect on phytoplasmas. Unfortunately, once the treated plants 

were transferred to antibiotic-free medium, phytoplasma symptoms 

reappeared. Other substances have been shown to alter phytoplasma 

ultrastructure. These include β-amino-butyric acid (BABA), polyamines, 

putrescine, spermidine and spermine (Musetti et al., 1999). Ćurković Perica 

(2008) discovered that phytoplasma-infected shoots recover better on 

medium containing auxins, rather than benzyl-aminopurine. This technique 

is however dependent on the phytoplasma species. For example, „Ca. P. 

asteris‟ and „Ca. P. pruni‟ were susceptible to the supplementation of 

endogenous auxins, whereas „Ca. P. ulmi‟ and „Ca. P. solani‟ were not. 

Phytoplasma-infected C. roseus shoots treated with indole-3-butyric acid 

(IBA) and indole-3-acetic acid (IAA) led to the remission of symptoms in in 

vitro grown plants, but did not lead to the elimination of „Candidatus P. 

asteris‟ (Ćurković Perica et al., 2007; Ćurković Perica, 2008). „Candidatus 

P. ulmi‟ infected C. roseus plants were always symptomatic when grown on 

medium containing 6-benzylaminopurine (BA) compared to infected shoots 

grown on IBA, which showed recovery (Leljak-Levanić et al., 2010). 

Despite the recovery of symptoms, these shoots were still found to be 

infected by the pathogen through the amplification of its 16S rDNA. These 

results show that the recovery as a remission of symptoms may or may not 

involve elimination of the pathogen from the host plant.  

2.2.10.2 Natural recovery  

The natural remission of symptoms has been observed in several grapevine 

cultivars worldwide. Recovery was first observed in France and Italy in FD 
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infected vines, followed by recovery of BN in grapevine (Caudwell, 1961; 

Belli et al., 1978; Osler et al., 1993). This phenomenon has recently been 

described in apples infected with apple proliferation phytoplasma and 

apricots infected with European stone fruit yellows (Musetti et al., 2004). In 

naturally recovered vines, remission of symptoms is often accompanied by 

the disappearance of the infection (Osler et al., 2006; Zorloni et al., 2008).  

Osler and colleagues (1999) suggested that systemic acquired resistance 

(SAR) might be involved in apple and pear recovery. Recently, an increase 

of reactive oxygen species (ROS) has been detected in grapevine displaying 

FD recovery (Musetti et al., 2007). So far, the information available is still 

insufficient for a clear explanation of recovery, although it seems reasonable 

that interactions between the pathogen, the host and the environment may 

play a key role, as well as the involvement of grapevine bacterial or fungal 

endophytes (Belli et al., 2010; Musetti et al., 2007; Bulgari et al., 2009; 

Martini et al., 2009).  

2.2.10.3 Hot water treatment 

Another control strategy to cure dormant woody plant material from 

phytoplasmas is the use of heat or hot water treatment. Tassart-Subirats et 

al. (2003) used hot water treatment to eliminate FD from grapevine sections. 

As hot water treatment may interfere with the vitality of woody propagated 

material, it must be carefully applied under the correct temperature/time 

regimes and with the proper equipment (Mannini, 2007).  

2.2.10.4 Abiotic stresses 

Recovery of phytoplasma infections can also be promoted by exposing the 

grapevine to abiotic stress, such as uprooting followed by immediate 

transplanting, partial uprooting or pulling and pruning and pollarding (Osler 

et al., 1993; Romanazzi and Murolo, 2008; Borgo and Angelini, 2002). 

Partial uprooting has been effective in inducing recovery in almost all 

grapevine cvs „Chardonnay‟, „Verdicchio‟ and „Sangiovese‟ grafted onto 

Kober 5BB (Romanazzi and Murolo, 2008). After the first year of recovery 

from BN obtained by partial uprooting, V. vinifera cv „Primitivo‟ had a 

similar trend in photosynthesis and respiration compared to healthy plants 

(Murolo et al., 2009).  
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2.2.10.5 Expression of antimicrobial peptides in transgenic plants 

In recent years, genetic modification has become an option for inducing 

disease resistance in plants. Du and his colleagues (2005) reported an 

increase in plant resistance against witches‟ broom disease in greenhouse 

transgenic Paulownia plants, expressing the antimicrobial peptide Shiva-1. 

Transgenic tobacco plants expressing a scFv antibody specific for the 

immunodominant membrane protein of Stolbur phytoplasma showed no 

significant resistance when the phytoplasma was transmitted to the plants by 

grafting or by its vector (Le Gall et al., 1998; Malembic-Maher et al., 2005). 

For engineering genetic resistance to phytoplasmas in grapevine, it could be 

more beneficial to engineer resistance in rootstocks, rather than individual 

grapevine cultivars. As phytoplasmas are known to move to the roots during 

winter, confronting them at this time with resistant rootstock could greatly 

decrease the chance of recurrence in the following year (Constable et al., 

2003). As the knowledge on plant genes inducing phytoplasma resistance is 

still very scarce, opportunities to select resistant varieties by traditional or 

molecular assisted breeding is limited (Belli et al., 2010). Keeping the 

public‟s acceptance and environmental safety issues of genetically modified 

plants in mind, transgenic strategies for creating resistance of grapevine 

towards pathogens, remains challenging. Open and proactive dialogues 

between the scientific community and the public should be greatly 

encouraged, as they shed light on the benefits and practical usefulness of 

this technology. 

 

2.3 Antimicrobial peptides 

Grapevines are exposed to many plant pathogens and the resulting diseases may cause 

major economic losses. Chemical pesticides are being used to combat this global 

problem. However, pesticide usage has proven to be harmful to the environment and 

consumers health, and an overuse may lead to pathogen resistance (Keymanesh and 

Sotani, 2009). Scientists have therefore started looking at elements that present 

sustainable resistance to a broad range of pests and pathogens and that are safe for the 

host organism with no side effect on the environment.  
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2.3.1 General Information 

Antimicrobial peptides (AMPs) form part of the innate, non-specific immune 

system shared by plants, humans and animals and are safe for the host organism 

with no side effects on the environment (Brown and Hancock, 2006). Rydlo et al., 

(2006) reported that organisms produce AMPs in response to microbial infection, 

or they produce the peptides constitutively and store them in large quantities for 

later use. Antimicrobial peptides are made up of 12-50 amino acid residues and 

have shown to be effective against Gram-negative and Gram-positive bacteria, 

fungi, viruses and eukaryotic parasites (Wang et al., 2006). Generally these 

peptides are cationic, rich in cysteine and amphipatic, giving them a great affinity 

for the pathogens membrane. Antimicrobial peptides are grouped into two groups 

based on their electrostatic charge. The positively charged peptides are divided into 

β-sheets, α-helices, extended helices and loop structures (Powers and Hancock, 

2003). The second electrostatic group, namely the non-cationic peptides, are 

grouped into anionic and aromatic peptides and are very scarce. According to 

Keymanesh and Soltani (2009), some AMPs are produced solely by bacteria and 

are termed non-ribosomally synthesized peptides, whilst the ribosomally 

synthesized peptides are made by all organisms. Most peptides are not used in their 

native form to confer resistance to pathogens due to factors influencing the AMP 

activity, such as an increase in potency of anti-pathogen activity, reduction of their 

haemolytic effect or inhibition by host proteases. Scientists are therefore using 

analogue peptides or derivatives of the original AMPs (Lee et al., 2002). Synthetic 

peptides are obtained by solid-phase methods and procedures using combinatorial 

chemistry (Andreu et al., 1983; Monroc et al., 2006). D4E1, a synthetic analogue 

of the cecropin family is more stable and potent than its native counterpart, and 

shows minimal cytotoxic activities against mammalian cells. This synthetic peptide 

demonstrates inhibition of spore germination of various fungal pathogens and also 

affects bacterial pathogens (Jacobi et al., 2000; Rajaekaran et al., 2009). 

 

2.3.2 Plant AMPs 

Plants have two broad mechanisms of pathogen resistance. Firstly, they may use the 

structures and compounds synthesized throughout their development to confer 

resistance against pathogens (constitutive resistant factors), or they make use of the 

induction mechanism which is activated after contact with the pathogen (induced 
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resistant factors) (Castro and Fontes, 2005). Both of these mechanisms involve the 

expression of peptides which present direct antimicrobial activity. Plant AMPs are 

grouped into different families based on their sequence similarity and activity 

towards certain pathogens. These families include the cyclotides, thionins (now 

named defensins), snakins, 2S albumins, hevein-type proteins and lipid transfer 

proteins, among many others (Peligrini et al., 2011). The first plant defensin 

isolated from Vitis vinifera is Vv-AMP1 and was characterized by de Beer and 

Vivier (2008). Vv-AMP1 shows a strict tissue-specific and developmentally 

regulated expression pattern and is strongly antifungal. In 2008, de Beer and Vivier 

proved that Vv-AMP1 showed a very high level of activity against the pathogens 

Fusarium oxysporum and Verticillium dahlia in grapevine.  

 

2.3.3 Mechanisms of cell death induced by AMPs 

During pathogen infection, the pathogen will utilize substances from the plant host 

to facilitate its movement through the physical barriers presented by the plant 

(Castro and Fontes, 2005). The pathogen will also obtain nutrients from the plant 

for its own survival, while secreting multiple substances into the host which 

degrade the cell wall, interrupt metabolic functions or pathways, promote 

imbalance in the plants hormonal system and block the water translocation 

mechanism throughout the vascular system (Castro and Fontes, 2005).   

Once the plant has come into contact with the pathogen, a series of peptides are 

expressed with some of them showing antimicrobial properties. The cationic 

peptides are attracted electrostatically to negatively charged molecules found in the 

pathogen membrane, but they may also interact with membrane lipids by specific 

receptors at the surface (Sitaram and Nagaraj, 1999). Generally, once the peptide 

threshold concentration is reached, AMPs accumulate on the membrane surface to 

direct inner components for cell lyses through pore formation. Three processes of 

pore formation have been summarized by Pelegrini and colleagues (2011). The 

barrel-stave mechanism consists of peptide aggregates forming a barrel-ring around 

an aqueous pore (Figure 3A). Once the peptides have bound to the membrane 

phospholipids and the threshold concentration has been reached, they start forming 

a barrel-ring to open a pore. The core of the barrel is made up of the hydrophilic 

portions, whereas the hydrophobic portion interacts with the membrane 

phospholipids. The second process of pore formation, namely the toroidal pore, is 
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very similar to the barrel-stave mechanism. The shape of the pore is similar; 

however the pore is composed of overlapping peptides and membrane lipids. The 

last mode of pore formation is the carpet mechanism (Figure 3B) (Pelegrini et al., 

2011). Initially the peptides bind to the pathogen membrane electrostatically giving 

the appearance of a carpet on the bacterial membrane surface. This causes 

phospholipid displacement that alters the membrane fluidity and reduces barrier 

properties of the membrane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The processes of pore formations by AMPs.  A: The barrel-steve mechanism. B: The 

carpet mechanism (Pelegrini et al., 2011) 

 

Once bound to the pathogen‟s membrane, AMPs can activate several pathways that 

will lead to cell death (Figure 4). Some peptides, as mentioned before will form 

pores. Ions and energy gradients dissipate through these pores and cause cell lysis 

within minutes (Figure 4A) (Bowman et al., 2003). On the other hand, some 

peptides do not disrupt the pathogen membrane. Instead, bacteria exposed to these 

peptides show a decrease in protein synthesis, indicating that the peptide crosses 

the cell membrane to interact with intracellular targets and inhibit nucleic acid or 

protein synthesis, leading to cell death. (Figure 4B). 
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Figure 4: Modes for antimicrobial peptide activity. (Gallo and Huttner, 1998) 

 

2.3.4 Exploiting AMPs in plant disease control 

The potential of AMPs as protecting agents against plant pathogens has increased 

substantially over the last few years, in an effort to minimize pesticide toxicity and 

other harmful environmental impacts caused by pesticides. Most AMPs show 

antifungal, antibacterial or antiviral activity, and some are effective even against 

eukaryotic parasites (Keymanesh and Soltani, 2009).   

2.3.4.1 Transgenic plants expressing AMPs 

Numerous examples exist for the successful application of AMPs in 

transgenic plants to induce pathogen resistance. Alan and Earle (2002) 

reported that the synthetic peptide MSI-99 was the best candidate for the 

generation of transgenic tomato lines with enhanced resistance to bacterial 

and fungal disease. Transgenic tobacco plants expressing a magainin 

analogue is another example displaying both bacterial and fungal resistance 

(de Gray et al., 2001). Transgenic grapevine expressing MSI-99 showed 

increased resistance to powdery mildew and crown gall development (Vidal 

et al., 2006). This study was recently extended to include the expression of 

the AMPs Cecropin B, Shiva-1 and EsF-12 in transgenic grapevine, 

showing different levels of resistance against Agrobacterium tumefaciens, 

Agrobacterium vitis and Botrytis cinerea (Rosenfield et al., 2010). Great 

success has been shown in transgenic tobacco plants where the synthetic 

peptide CEMA conferred resistance against the highly virulent fungus 

Fusarium solani (Yevtushenko et al., 2005). The peptide Shiva-1 has been 
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expressed in transgenic Paulownia and resulted in an improved resistance to 

witches‟ broom disease (Du et al., 2005). Overexpression of Snakin1 (SN1) 

in transgenic potatoes showed significant protection against Rhizoctiona 

solani and Erwinia carotovora (Almasia et al., 2008). In 2001, a US patent 

by Smith and colleagues (patent number 7119262) describes the in planta 

activity of certain peptide classes against phytoplasmas in transgenic 

poinsettia. The effect of different AMPs against other members of the class 

Mollicutes, illustrates the potential use of AMPs to be active against 

phytoplasmas (Béven et al., 2003; Borth et al., 2001; Béven and 

Wroblewski, 1997).  

2.3.4.2 Transient expression of AMPs 

The generation of transgenic crops is however a very expensive technique 

and it can take months or several years to establish before AMP efficacy 

screening can be performed. To overcome this problem, the pre-screening of 

possible AMP candidates by means of expression vectors used to transform 

plant cells, which allow for the transient expression of foreign genes can be 

used. Transient expression systems have the advantage that they are much 

faster, more flexible and can be applied to fully differentiated plant tissue 

(Fischer et al., 1999; Voinnet et al., 2003). SN1 isolated from potato tubers 

showed activity against bacterial and fungal pathogens (Seguro et al., 1998). 

In 2008, Kovalskaya and Hammond demonstrated that the production of 

functionally active SN1 proteins is suitable for antimicrobial activity in in 

vitro assays, using a prokaryotic expression system. Santos-Rosa et al. 

(2008) implemented a transient expression system to examine the function 

of stilbenes in a grapevine leaf environment against the fungus, Plasmopara 

viticola through over-expression of stilbene synthase. The defence role of 

glyoxal oxidase from Vitis pseudoreticulata against the grapevine pathogen 

P. viticola was also investigated in a recent study (Guan et al., 2010). This 

was achieved by applying Agrobacterium-mediated transient expression of 

VpGLOX in susceptible plants. The synthetic peptide D4E1 was recently 

shown to induce resistance against the grapevine pathogens A. vitis and X. 

ampelinus through transient expression (Visser et al., 2012). These results 

illustrate the value of transient expression systems as a pre-screening 
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method of AMP activity in planta in economically important crops like 

grapevine. 

2.3.5 Factors influencing AMP expression 

Several intrinsic and extrinsic parameters have been reported to affect the threshold 

peptide concentration. The concentration of the AMP, the time of exposure and the 

bacterial density may affect the in vitro and in vivo action of the peptide (Fassi 

Fehri et al., 2007). pH, salt concentration and the cationic nature of the medium 

may also have an effect on the activity of plant-derived peptides (Osborn et al., 

1995). The phospholipid membrane composition, membrane fluidity and head 

group size form part of the extrinsic factors (Yeamn and Yount, 2003). Maisnier-

Patin et al. (1996) reported that different AMPs each work best at an optimal 

temperature. All of these factors need to be taken into consideration when working 

with AMPs, as they may lead to differences observed in peptide efficacy.   

 

2.4 Conclusion 

Antimicrobial peptides are active against a broad range of bacterial and fungal pathogens, 

and have also shown to be active against grapevine pathogens (Rosenfield et al., 2010). 

As phytoplasmas lack a cell wall, AMPs are perfect candidates for resistance against this 

phytopathogen. Santos-Rosa et al. (2008) reported on the use of a transient expression 

system as a reliable and time-effective method for the expression of foreign genes in 

agricultural crops, including grapevine. The transient expression system described by 

Visser and co-workers (2012), will be used during the current study to induce resistance 

against the grapevine pathogen, aster yellows phytoplasma. A previously established 

qPCR procedure will be used to facilitate the quantification of AYp titres in planta 

(Angelini et al., 2007; Visser et al., 2012). As only preventative measures are currently 

available for the control of phytoplasma diseases, these applications can play an 

important role in the development of plant resistance to this pathogen. Despite the long 

history of research on AYp, no data are available on the spatial pattern of AYp-infected 

plants. The current study observes the spatial distribution of AYp along canes of an 

infected Vitis vinifera cv „Chardonnay‟ plant. 
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Chapter 3 

Establishing aster yellows phytoplasma-infected plant material 

 

3.1 Introduction 

The aim of this study is to induce resistance to aster yellows phytoplasma (AYp)             

infected plant material through the transient expression of antimicrobial peptides 

(AMPs). The establishment of AYp-infected plant material will be described during this 

chapter.   

 

Aster yellows phytoplasma is phloem-limited and infects several dicotyledonous -, 

cultivated - and wild plant species worldwide (Hollingsworth et al., 2008). The pathogen 

is known to infect multiple hosts including; apple, celery, china asters, grapevine, carrots, 

lettuce, periwinkle, potato, redcurrant and many more (Kuske and Kirckpatrick, 1992; 

Schneider et al., 1993; Tanne and Orenstein, 1997;  Orenstein et al., 1999; Lee et al., 

1993; Seemüller et al., 1994; Přibylová et al., 2011).  

 

Symptom expression is quite uniform amongst phytoplasma species and can thus not be 

used to reliably distinguish one phytoplasma species from another (Belli et al., 2010; 

Radonjić et al., 2009). Aster yellows phytoplasma-infected grapevine displays several 

symptoms. Dwarfism, necrosis of young shoots, shortening of internodes and clustering 

of branches has been observed (Kozina et al., 2011; Nejat et al., 2010; Strauss, 2009). 

Vines may display a lack of lignification and canes may seem droopy. Towards the end 

of the season, phytoplasma-infected leaves tend to roll downwards and canes mature 

irregularly or not at all (Belli et al., 2010; Radonjić et al., 2009). Infected vines decline 

and die eventually (Carstens, 2008). 

 

Phytoplasmas are transmitted by several phloem-feeding insect vectors belonging to the 

Cicadellidae (leafhoppers), Fulgomorpha (planthoppers) and Psyllidae (psyllids) families 

(Weintraub and Beanland, 2006). With phytoplasma strains, host ranges in insect vectors 

and plants vary greatly. The plant host ranges that can be infected by phytoplasmas 

depends less on the phytoplasma strain, and more on the natural insect vector species that 

are capable of transmitting the disease (McCoy et al., 1989; Kunkel, 1926; Grylls, 1979). 

It is also known that insect vectors can transmit more than one type of phytoplasma and 
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that plants can be infected by two or more distinct phytoplasmas at a given time. In the 

Western Cape of South Africa, AYp was detected in grapevine in 2010 in the vineyards 

of the Olifants River Valley (Engelbrecht et al., 2010). The insect vector for AYp in 

grapevine in South Africa is the leafhopper Mgenia fuscovaria, belonging to the 

Cicadellidae family (Krüger et al., 2011).  

 

Phytoplasma-infected material can be maintained in vitro under controlled conditions. 

Apple proliferation phytoplasma - (APp) and European stone fruit yellows phytoplasma 

(ESFYp) infected shoot tip cultures have been maintained in vitro since 1985 and 1991 

(Jarausch et al., 1996; Jarausch et al., 1994). Bois noir (BN) phytoplasma was maintained 

in micro-propagated grapevine plants cultivated in Murashige and Skoog (MS) medium 

(Gribaudo et al., 2007). In paulownia plants, a five time increase of phytoplasma 

concentration was detected in tissue culture material (Wang et al., 1994). On the other 

hand, mulberry plants severely infected with mulberry dwarf phytoplasma were found to 

be disease free after being micro-propagated in MS medium containing no 

phytohormones (Dai et al., 1997). The same phenomenon was seen in phytoplasma-

infected almond varieties, sugarcane and C. roseus (Chalak et al., 2005; Parmessur et al., 

2002; Möllers and Sarkar, 1989). Therefore, tissue culture techniques can be used for 

maintaining a pathogen, but also for eliminating phytoplasma from a plant. During the 

current study, AYp-infected Vitis vinifera (V. vinifera) cv „Chardonnay‟ plants will be 

micro-propagated and used for the transient expression of the AMPs. The cultivar 

Chardonnay was chosen due to the fact that it is the most susceptible grapevine cultivar 

to phytoplasma infections and due to its importance in the South African wine industry 

(Gibb et al., 1999; Orenstein et al., 2001; Jeff Joubert, VinPro).  

 

Phytoplasma can be transmitted through vegetative propagation and natural transmission 

by the insect vector, but there are several other ways to confer and maintain 

phytoplasmas in plant material. Phytoplasmas can also be transmitted through dodder 

transmissions, grafting and transmission experiments using the respective insect vector. 

Dodder transmissions of AYp by Cuscuta campestris to C. roseus were successful, and 

symptoms could be seen after four month (Přibylová et al., 2011). During a different 

study, successful dodder transmission was also seen in C. roseus, using the infected 

medical plant Rehmannia glutinosa and the redcurrant plant Rubus rubrum (Přibylová 

and Ŝpak, 2013). Using in vitro grafting as a pathogen-inoculation method has been 
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successfully described by several scientists. Apple proliferation phytoplasma-infected 

Malus pumila MM106 cultures were grafted onto healthy plants, and a successful graft 

transmission was seen in 90-94% of plants after three months of graft contact (Jarausch et 

al., 1999). Catharanthus roseus plants infected with phytoplasma successfully 

transmitted the disease to healthy C. roseus plants through grafting (Kamińska and Śliwa, 

2005; Nejat et al., 2010). Transmission of bois noir and flavescence dorée from infected 

C. roseus to grapevine through grafting is efficient and is far easier than dodder 

transmission (Tanne and Orenstein, 1997). Using the insect vector in transmission 

experiments has also proven to be a successful technique in inoculating a plant with 

phytoplasma. Transmission experiments using the insect vector for FD showed that the 

insect vector is capable of transmitting FD from clematis to grapevine (Filippin et al., 

2009). Watercress yellows phytoplasma was successfully transmitted to watercress, 

plantain and lettuce through vector transmission (Borth et al., 2006). Successful 

transmission experiments using the insect vector M. fuscovaria have been described on 

grapevine for AYp (Krüger et al., 2011). During the current study, transmission of AYp 

from infected to healthy grapevine was performed using the insect vector M. fuscovaria. 

Once infected, these plants were to be used to test the effect of AMPs on AYp. 

 

Catharanthus roseus is a very well-known plant and is common in tropical and sub-

tropical regions worldwide. It is also a very valuable experimental host (Nejat et al., 

2010). Kamińska and Ŝliwa (2005) used this decorative plant to maintain phytoplasma 

cultures during their study. This plant is susceptible to AYp infection and the 

phytoplasma is known to accumulate in high concentration throughout the plant (Berges 

et al., 2000). C. roseus can also be grown throughout the whole year and thus offers the 

possibility of all year round testing and experimentation. Therefore, during the current 

study C. roseus plants were to be infected with AYp through natural transmission of the 

disease and used as an alternate host to maintain AYp in a controlled greenhouse 

environment.  
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3.2 Materials and methods 

      3.2.1 Vitis vinifera plant material 

In order to establish AYp-infected V. vinifera cv „Chardonnay‟ plants in vitro, plant 

material was collected from a farm near Vredendal in the Western Cape, South 

Africa, throughout January 2011 till April 2012. Leaf material was screened for 

AYp infection through the nested-PCR described in Section 3.2.4 before being 

placed in vitro. Infected plants were cut into 3-5cm pieces containing one node 

each. These cuttings were then sterilized by shaking them in 70% Ethanol for 2 

min, followed by a washing step using sterile water for 2min. They were then 

shaken for 12min in 2% Bleach and rinsed in sterile water (four times for 2min). 

The sterilized cuttings were then cultured in tissue culture flasks (Lasec, South 

Africa) containing agar-solidified Murashige and Skoog (MS) media (0.5X MS 

Macro, 0.5X MS Micro, 0.5X B5 Vitamins, 0.5X Fe/EDTA, 0.75% Sucrose and 6g 

Phytagel
TM

 filled to 1L with distilled water) Tissue culture flasks were kept in a 

growth chamber with a 16h light and 8h dark photoperiod, at 23°C and 19°C 

respectively (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Tissue culture V. vinifera cv „Chardonnay‟ plants cultured in MS media. Plantlets were kept at a 

16h light and 8h dark photoperiod at 23°C and 19°C. 

 

After two-, three-, four-, seven-, and eleven weeks, phloem scrapings and leaf 

material was collected from in vitro material using a scalpel blade (Figure 6). 
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Figure 6: Phloem scrapings and leaf material collected from in vitro V. vinifera cv „Chardonnay‟ 

plants. Phloem scrapings were taken using a scalpel blade. 

This material was ground up to a fine powder in liquid nitrogen using a mortar and 

pestle. DNA was extracted according to the manufacturers‟ protocol using the 

NucleoSpin
®
 Plant II kit (Macherey-Nagel) and stored at -20°C until used for 

screening by the nested-PCR, described in Section 3.2.4. 

 

  3.2.2 Nicotiana benthamiana plant material 

To establish AYp-infected N. benthamiana as an alternative host, transmission 

experiments were carried out on six plants using the insect vector Mgenia 

fuscovaria in March 2012. Due to quarantine regulations, the vector was not 

allowed to be brought to Stellenbosch and all transmission experiments were 

conducted in a field laboratory in Vredendal, in collaboration with Professor 

Krüger (University of Pretoria). M. fuscovaria was collected in a severely AYp-

infected vineyard in Vredendal, using an insect net and an insect cage for transport. 

Field-collected insects were used due to the difficulties experienced in establishing 

cultures (Krüger et al., 2011). Insects were not tested for infection prior to 

transmission, and thus five randomly collected insects were placed on one plant. 

These plants were then kept in a cage for 2 days before being sprayed with the 

insecticide Confidor, and were then placed under controlled greenhouse conditions 

for further analysis (Figure 7). 

 

 

 

 

 

Phloem scrapings 

Leaf material 
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Figure 7: A) Insect vector M. fuscovaria. B) N. benthamiana containing five insects kept in a cage for two 

days. C) N. benthamiana plant 4 weeks after the transmission experiment. 

 

Healthy N. benthamiana plants were grown in a greenhouse under controlled 

conditions. 

 3.2.3. Catharanthus roseus plant material  

In January 2011 and 2012, C. roseus plants were placed into a severely AYp-

infected vineyard in Vredendal where the insect vector for AYp, M. fuscovaria, 

was found. Once plants displayed symptoms of phytoplasma (~ one year) they were 

sprayed with the insecticide Confidor and infection was confirmed by nested-PCR 

(Section 3.2.4). The infected plants were then transferred to greenhouse conditions 

to maintain AYp-infected plant material. Healthy C. roseus material was placed in 

vitro using the technique described in Section 3.2.1. 

 

     3.2.4. Diagnostic nested-PCR used to detect AYp 

All plant material was screened for AYp infection using a nested-PCR procedure. 

Universal diagnostic primers R16mF2 (CATGCAAGTCGAACGGA) and R16mR1 

(TGACGGGCGGTGTGTACAAACCCCG) (Gundersen and Lee, 1996) were used 

in the first PCR reaction. The reaction mix contained 1X KapaTaq buffer A, 1X 

Cresol, 0.2mM dNTPs, 0.2µM of each primer and 0.05U/µl KapaTaq DNA 

polymerase. A final reaction volume of 20µl was used, of which 1µl was the 

template DNA (DNA concentrations ranged from 10ng/µl - 40ng/µl). The PCR 

conditions were as follows: 2min at 94°C, 35 cycles of 30sec at 94°C, 45sec at 

A C B 
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55°C and 1min at 72°C. This was then followed by a final elongation step of 5min 

at 72°C. The PCR products were then diluted 30 times and used in the nested-PCR 

reaction with the primers R16vdal-F (GGAAACTACTGCTAAGACTGGATA) 

(modified R16F2N primer) and R16R2 (TGACGGGCGGTGTGTACAAACCCC 

G) (Gundersen and Lee,  1996). The reaction mix was the same as for the first PCR 

and the PCR conditions were as follows: 2min at 94°C, 35 cycles of 30sec at 94°C, 

45sec at 62°C and 1min at 72°C, followed by a final elongation step of 5min at 

72°C. PCR products were run on a 1% agarose gel for 30min at 120V. The first 

PCR reaction produced a 1.432kb amplicon and a 1.247kb amplicon was expected 

after the nested-PCR reaction when AYp was present. 

 

3.3  Results 

  3.3.1 Establishment of AYp-infected V. vinifera material 

All grapevine canes collected from the farm in Vredendal were screened for AYp 

infection before being placed in vitro and the expected amplicon sizes were 

detected on a 1% agarose gel after the diagnostic nested-PCR. Three-hundred-and-

ninety V. vinifera cv „Chardonnay‟ plants were put in vitro. Three-hundred-and-

four of these plants developed endophytic fungi contamination before leaf material 

could develop and therefore could not be screened for AYp infection. The 

contamination rate was higher in plants collected in January 2012 compared to 

plants collected in April 2012, starting at 59% contamination rate and ending at 

100% (Figure 8).  In January, 61 AYp-infected Chardonnay plants were placed in 

vitro. A total of 25 plantlets remained after 2 months and could be screened for 

AYp infection. During February, a total of 188 V. vinifera cv „Chardonnay‟ plants 

were placed in vitro. On the 8
th

 of February, 56 plants were collected and after two 

months, 35 of these plants were disposed of due to contamination. One-hundred-

and-thirty-two plants were collected on the 23
rd

 of February of which 40 remained 

and could be tested for AYp infection. In March, 78 plants were put in vitro and all 

of these were taken out after four weeks due to fungal contamination. Lastly, 63 

AYp-infected Chardonnay plants were placed in vitro in April. All 63 plants 

developed fungal contamination after two weeks and were disposed of.  
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Figure 8: Contamination rate seen in Chardonnay plants once placed in vitro, collected from the vineyard 

during five different time intervals. Plants collected in January showed a 59% contamination rate after 2 

months. This contamination rate increased to 63% and 70% when plants were collected in February. From 

March onwards, all plants placed in vitro developed 100% contamination after 2 weeks. 

 

In total, 86 in vitro plantlets remained contamination free throughout all five time 

intervals (Jan-Apr) after 2 months and could be screened for AYp infection. All in 

vitro plantlets displayed no AYp symptoms once placed into the incubator after 2 

months. After screening the respective phloem and leaf material from each plantlet 

(86 X 2 = 172) by the nested-PCR, the expected amplicon of 1.247kb could not be 

detected, indicating that AYp was not present (Figure 9). Healthy plant material 

collected from Vredendal was also screened prior to being placed in vitro.  

                          1      2      3      4      5      6     7      8      9     10    11    12 

 

 

 

 

 

Figure 9: Agarose gel-electrophoresis of nested-PCR products. Lane 1: 1kb Molecular marker. 

Lane 2: Positive control. Leaf material collected from a V. vinifera cane before being placed in 

vitro. Lane 3, 5, 7, 9: Phloem scrapings from in vitro material. Lane 4, 6, 8, 10: Leaf material 

from in vitro material. Lane 11: Healthy V. vinifera leaf material. Lane 12: No-template control 

1 kb 

1.5 kb 
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  3.3.2 Establishment of AYp-infected N. benthamiana material 

After four weeks of being kept in a controlled greenhouse environment, leaf 

material was collected from all six N. benthamiana plants out of the insect vector 

transmission experiment, and ground to a fine powder in liquid nitrogen using a 

mortar and pestle. DNA was then extracted according to the manufacturers‟ 

protocol using the NucleoSpin
®
 Plant II kit (Macherey-Nagel) and stored at -20°C 

until needed. Samples were then screened for AYp infection using the nested-PCR 

procedure described in Section 3.2.4. Three out of the six samples displayed the 

expected amplicon size of 1.247kb after being run on a 1% agarose gel (Figure 10, 

lane 5, 7 and 8). Sequencing was also performed on these three samples to confirm 

infection by AYp. BLAST results confirmed a 97% maximum identity with the 

AYp strain: SA-Vdal 16S rRNA gene (GO365729.1). The remaining three plants 

(Figure 10: lanes 4, 6 and 9) did not display the expected amplicon size of 1.247kb 

after being run on a 1% agarose gel, and were thus not successfully infected by the 

insect vector M. fuscovaria. AYp-infected N. benthamiana plants did not display 

specific symptoms when compared to the healthy plants.  

 

          1kb      1       2       3        4        5        6        7        8       9         +       -    NTC  NTC  1kb 

 

 

 

 

 

 

Figure 10: Agarose gel electrophoresis of nested-PCR products. Lane 0 and last lane: 1kb 

Molecular marker. Lane 1-3: Healthy N. benthamiana. Lane 4, 6 and 9: Healthy N. benthamiana 

after transmission experiment. Lane 5, 7 and 8: AYp -infected N. benthamiana after transmission 

experiment. +: Positive control. -: Negative control. NTC: no-template control after the first PCR 

and nested-PCR. 

 

  3.3.3 Establishment of AYp-infected C. roseus material 

In January 2011 twenty C. roseus plants were placed into a severely AYp-infected   

vineyard in Vredendal. In March 2012 two of these plants showed symptoms of 

phytoplasma infection. Compared to healthy plants, AYp-infected C. roseus plants 

1 kb 

1.5 kb 
1 kb 

1.5 kb 
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displayed yellowing of the leaves, flower abortion, shortened internodes and the 

leaves were curling downwards (Figure 11).  

 

 

 

 

 

 

 

 

Figure 11: A) Aster yellows phytoplasma-infected C. roseus plant infected through natural 

transmission by the insect vector M. fuscovaria. B) Healthy C. roseus plant grown in the 

greenhouse.  

 

Leaf material was collected from these two plants and AYp infection was 

confirmed by the nested-PCR and sequencing of amplicons. BLAST results of the 

sequenced amplicons showed a maximum identity of 95% with the AYp strain SA-

Vdal 16S rRNA gene (GO365729.1), but showed a higher maximum identity 

(98%) against periwinkle phyllody phytoplasma genes for 16S rRNA 

(AB646267.1) As this study focused on AYp specifically, the two sequences were 

blasted against one another and displayed a 100% maximum identity, indicating 

that the two strains belong to the same subgroup of phytoplasmas, namely „Ca. P. 

asteris‟. In January 2012 fifty more C. roseus plants were placed into the AY-

infected vineyard in Vredendal. Unfortunately the plants all died due to unforeseen 

weather conditions and thus no testing could be done on these plants. Healthy C. 

roseus material was successfully grown in vitro. 

 

3.4  Discussion 

The establishment of AYp-infected N. benthamina plants through transmission 

experiments using the insect vector M. fuscovaria was successful and these infected 

plants can now be used to test the efficacy of antimicrobial peptides through transient 

expression. AYp-infected C. roseus was also successfully established by natural infection 

through the insect vector M. fuscovaria and will be used as an alternate host, as 

A B 
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phytoplasmas are known to accumulate in high concentrations throughout the plant 

(Berges et al., 2000; Christensen et al., 2004).  

 

None of the AYp-infected V. vinifera material placed in vitro showed detectable infection 

by the nested-PCR after two-, three-, four-, seven- and eleven weeks, and also displayed 

no phytoplasma symptoms once micro-propagated. It is known that phytoplasma species 

are randomly distributed throughout an infected plant (Hollingsworth et al., 2008). Due 

to this uneven distribution, it might be that cuttings taken from the AYp-infected 

Chardonnay vine and placed in vitro had lowered or no phytoplasma present at all. As no 

data are available for the distribution of AYp in grapevine, this uncertainty led to the 

observation of AYp distribution along five canes of an infected V. vinifera cv 

„Chardonnay‟ vine, discussed in Chapter 4.  

 

Recovery from phytoplasma infection through micro-propagation has also been observed 

in V. vinifera cv „Chardonnay‟ and „Barbera‟ infected with FD grown in MS medium 

(Gribaudo et al., 2007).  Stem cultures of mulberry dwarfism-infected mulberry plants, 

grown in MS media containing no hormones, showed no phytoplasma infection after 

three years of continuous testing on stem and leaf material (Dai et al., 1997). The 

recovery of phytoplasma-infected plant material placed in vitro has also been seen in 

sugarcane material infected with sugarcane yellows phytoplasma and Lebanese almond 

varieties infected with „Candidatus P. phoenicium‟ (Parmessur et al., 2002; Chalak et al., 

2005). Factors involved in the phytoplasma recovery of naturally-, vineyard- or orchard-

grown plants are not completely understood (Ćurković Perica, 2008). Attempts have been 

made to understand natural-recovery of phytoplasma-infected plants. Musetti and 

colleagues (2004, 2005, 2007) suggested that the H2O2 accumulation is higher in 

phytoplasma-recovered grapevine, apple and apricot when compared to infected or 

healthy plant material. This accumulation of H2O2 reduces pathogen multiplication and 

disease symptom expression in infected material (Musetti et al., 2007). Agronomical 

stresses were also shown to induce recovery of „Ca. P. solani‟-infected grapevine 

(Romanazzi and Murolo, 2008). In in vitro grown cultures, phytoplasma remission was 

induced in C. roseus plants by adding the auxins indole-3-butyric-acid (IBA) and indole-

3-acetic-acid (IAA) to the MS medium (Ćurković Perica, 2008). During the current study 

however, no exogenously supplemented auxins were added to the MS medium.  
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On the other hand, studies have also shown an increase in phytoplasma infection in 

micro-propagated grapevine material (Petrovic et al., 2000). Shekari et al. (2011) had 

great success in preserving lime witches‟ broom phytoplasma in key lime by tissue 

culture using agar-solidified Murashige and Tucker medium. Apple proliferation 

phytoplasma-infected material has also been successfully maintained in vitro since 1985 

(Jarausch et al., 1996).  

 

It is still unclear why some cultivars infected with phytoplasma can be maintained in in 

vitro conditions while others recover from phytoplasma infection. The current study 

however shows that AYp cannot be maintained in in vitro cultured Chardonnay material, 

and tissue culture itself might therefore be considered a way to eradicate AYp in this 

cultivar.  
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Chapter 4 

Spatial distribution of AYp in Vitis vinifera cv „Chardonnay‟ 

 

4.1  Introduction 

As no aster yellows phytoplasma (AYp) infected Vitis vinifera cv „Chardonnay‟ material 

could be established and maintained in vitro (Chapter 3), the question arose whether plant 

material might have been taken from a part of the cane where phytoplasma titre was very 

low or totally absent. Therefore, the spatial distribution of AYp along five canes of an 

infected V. vinifera cv „Chardonnay‟ plant was investigated and will be discussed in this 

chapter. 

 

In general it is believed that phytoplasma species are unevenly distributed throughout 

their plant hosts (Gundersen and Lee, 1996; Osler et al., 1995; Seemüller et al., 1984). 

Bois noir (BN) phytoplasma is unevenly distributed in the grapevine cultivars 

„Ancellotta‟, „Lambrusco Salamino‟, „Sangiovese‟ and „Trebbiano Romagnolo‟, and 

rarely infects the grapevine persistently from year to year (Terlizzi and Credi, 2007). 

Australian grapevine yellows phytoplasma (AGYp) shows an uneven distribution of 

pathogen titre throughout V. vinifera cv „Chardonnay‟ plants, and detectable levels of 

AGYp fluctuated from season to season (Constable et al., 2003). During a study on 

stolbur phytoplasma (Stolp)–infected V. vinifera cv „Cabernet Sauvignon‟ and 

„Sauvignon blanc‟ plants, the phytoplasma levels were found to be significantly different 

between the two cultivars and within different growing regions, having higher levels of 

infection in the warmer sub-regions (Orenstein et al., 2001). Seemüller and colleagues 

(1984) reported that phytoplasma populations peak during summer and start decreasing 

from autumn onwards, making accurate detection of this pathogen challenging during the 

late season. In poinsettia and Catharanthus roseus plants, large differences in 

phytoplasma infection levels were seen between the two plant species, with C. roseus 

having a much higher pathogen titre compared to infected poinsettia (Christensen et al., 

2004). To our knowledge, no research has been done on the spatial distribution of AYp in 

V. vinifera cv „Chardonnay‟ material. The geographical and field level distribution of 

AYp in wheat, oat and barley production fields showed no apparent spatial pattern 

between or within three years (Hollingsworth et al., 2008). Lettuce plants naturally 

infected with AYp were found to be clustered in commercial and experimental fields, and 
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the degree of aggregation of disease incidence showed an increase over time within 

twelve fields (Madden et al., 1995). In C. roseus plants, the colonization pattern and 

distribution of two „Candidatus P. asteris‟ subspecies - severe AYp and dwarf AYp - 

were generally similar over a 10 week period (Kuske and Kirkpatrick, 1992). It is also 

known that AYp titres in C. roseus and clover phyllody titres in strawberry are lowest in 

the roots and highest in symptomatic pedicels, followed by sepals, petals and leaves 

(Kuske and Kirkpatrick, 1992; Clark et al., 1983).  

 

Multiple studies have used quantitative real-time PCR (qPCR) for the accurate 

quantification of plant pathogens. qPCR is based on the same principle as conventional 

PCR, but differs in that it can quantify the amount of DNA in a reaction after each PCR 

cycle, thus enabling the monitoring of increasing PCR product in real-time. During qPCR 

a fluorescent signal is measured which gives an indication of the amount of amplicon. 

The fluorescent-based system used during the current study made use of the fluorescent 

molecule SYBR Green. During the qPCR, SYBR Green binds to the double stranded 

products at the end of each elongation step. As the amount of product amplifies, the 

amount of bound SYBR Green in the reaction increases, resulting in an increase in the 

total fluorescent signal detected. During the first few qPCR cycles, the amount of 

fluorescence in the reaction resulting from the template is shielded by the amount of 

background fluorescence. The threshold cycle (Ct) is defined as the number of cycles 

required for the fluorescent signal to rise above this background fluorescence (Wilhelm et 

al., 2001). The more initial template there is in the reaction the smaller the Ct value will 

be, and based on this principle the concentration of the pathogen can be deducted 

(Gibson et al., 1996). Although detection of phytoplasma is challenging due to 

fluctuating seasonal pathogen titre and the irregular distribution in infected vines, several 

studies have reported on the successful quantification of phytoplasmas. Phytoplasma 

titres have been measured in C. roseus and Euphorbia pulcherrima plants using qPCR 

(Christensen et al., 2004). The relative quantification of chrysanthemum yellows 

phytoplasma in its plant host and insect vector was performed using qPCR and was 

expressed as genome units of phytoplasma DNA per nanogram of host DNA (Marzachi 

and Bosco, 2005). Based on this system, quantification of „Candidatus Phytoplasma 

prunorum‟ in its natural plant host was also successful (Martini et al., 2007). During the 

current study, qPCR was used to measure the AYp titres in five canes of an infected V. 
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vinifera cv „Chardonnay‟ plant, and will be expressed in genome units of phytoplasma 

DNA per nanogram of host DNA. 

 

4.2  Materials and methods 

 4.2.1 Plant material 

Five canes from a previously tested AYp-infected V. vinifera cv „Chardonnay‟ 

plant were collected in a vineyard in Vredendal (South Africa) in the late season 

(April) of 2012. Phloem scrapings together with leaf material were sampled using a 

scalpel blade and tweezers, and stored at -80°C until needed (Figure 12). 

 

 

 

 

 

    Figure 12: Leaf material and respective phloem scrapings taken from all five canes and stored at -80°C. 

 

 4.2.2 Diagnostic PCR 

Phloem scrapings of each node together with the respective leaf were removed 

from storage and ground up separately in liquid nitrogen using a mortar and pestle. 

DNA extractions were done according to the manufacturers‟ protocol using the 

NucleoSpin
®
 Plant II kit (Macherey-Nagel) and samples were marked clearly 

before being stored at -20°C. These samples were then screened for AYp infection 

using the nested-PCR procedure described in Section 3.2.4 of Chapter 3. 

To show that DNA quality was optimal for the detection of AYp by the nested-

PCR, an internal control using the 18S rDNA of V. vinifera was used. Primers and 

their sequences used for the internal control can be seen in Table 2 (Section 4.2.3). 

The reaction mix contained 1X KapaTaq buffer A, 1X Cresol, 0.2mM dNTPs, 

0.2µM of each primer and 0.05U/µl KapaTaq DNA polymerase. A final reaction 

volume of 20µl was used, of which 1µl was template DNA. The PCR conditions 

were as follows: 2min at 94°C, 30 cycles of 20sec at 94°C, 20sec at 60°C and 30sec 

at 72°C. This was then followed by a final elongation step of 10min at 72°C. PCR 

products were run on a 1% agarose gel for 30min at 120V and an amplicon of 

184bp was expected. 

Leaf material 

Phloem scraping 
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4.2.3 Quantitative analysis  

Once the presence of AYp was confirmed in phloem scrapings and leaf material as 

described in Section 4.2.2, the phytoplasma titre was determined in these samples 

by quantitative real-time PCR. Concentrations of all DNA extracts were measured 

using the Nanodrop
®

 ND-1000 spectrophotometer and all samples were diluted in 

MilliQ water to a final concentration of 20ng/µl. A Rotor-Gene Q (Qiagen) thermal 

cycler was used to perform all qPCRs and the Rotor-Gene Q Series Software 1.7 

was used for run setup and analysis. Primers were designed by Visser (2011) and 

were constructed based on primers described by Hollingsworth et al. (2008) and 

Angelini et al. (2007). Primer sequences can be seen in Table 2 below.  

 

    Table 2: Primers used for the detection of the 18S rDNA of V. vinifera plants and for the quantitative   

    real-time PCR analysis to determine AYp titre. 

Primer name Organism Sequence Tm (°C) 

18S rDNA-f Vitis species 18S rDNA  CTTCGGGATCGGAGTAATGA 

 

60 

18S rDNA-r Vitis species 18S rDNA  TGGTTGAGACTAGGACGGTA 

 

60 

AY_F Phytoplasma AAACCTCACCAGGTCTTG  51.9 

AY_R Phytoplasma AAGTCCCCACCATTACGT  53.4 

 

To determine the efficiency of the qPCR, a standard curve was set up. Total DNA 

extractions following the manufacturers‟ protocol using the NucleoSpin
®
 Plant II 

kit (Macherey-Nagel) were performed on leaf material from an infected AYp V. 

vinifera cv „Chardonnay‟ plant in October 2011. This DNA was screened by the 

nested-PCR and the product was run on a 1% agarose gel and visualized under UV 

light. The amplified 1.247kb AYp fragment was cloned into the pGem
®
-T Easy 

plasmid (Promega) and termed pAY61. For the construction of the standard curve, 

a 7-fold dilution series (1ng to 1fg) was established by diluting pAY61 in 20ng/µl 

of total DNA from a healthy V. vinifera cv „Chardonnay‟ plant. One fg of pAY61 

contains 228 molecules of plasmid each containing a single copy of the AYp 16S 

rDNA gene. This was calculated by determining the molecular weight in Daltons of 

the double stranded DNA (www.changbioscience.com/genetics/mw). As the AY 

16S rDNA gene is present in two copies in phytoplasma genomes, one fg of pAY61 

corresponds to 114 AYp genome units (GU). All reactions were performed in 

triplicate for each pAY61 concentration. Threshold levels, threshold cycles and 
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standard curves were automatically calculated by the Rotor-Gene Q Series 

Software 1.7. Absolute quantification of AYp DNA in infected phloem and leaf 

material was achieved by comparison with dilution series of the pAY61 plasmid. 

For each quantitative run, the reaction volume was 20µl and contained 1X SYBR 

Buffer, 0.1µM of each primer and 20ng/µl of sample DNA. Cycling conditions 

were as follows: 3min at 95°C followed by 45 cycles at 95°C for 5sec and 62°C for 

20sec. For each qPCR run, phloem scrapings together with the corresponding leaf 

material were run in triplicate, together with at least one standard dilution. DNA 

from a healthy host plant (at 20ng/µl) was used as a negative control, and a PCR 

mix with water instead of DNA was used as a no-template control. After each run, 

melting curve analysis were performed to determine the specificity of the amplified 

products.  

 

4.3  Results  

4.3.1 Spatial distribution of AYp 

In total, 249 phloem and leaf samples from five canes of an AYp-infected V. 

vinifera cv „Chardonnay‟ vine were collected. DNA was extracted and screened for 

the presence of AYp by the nested-PCR procedure. Table 3 below shows the 

number of leaf and node samples collected and also gives an indication of how 

many node samples had no leaf material available, compared to node samples with 

corresponding leaf material. 

 

Table 3: Number of leaf and node samples collected from all five canes from one AYp-infected V. vinifera     

cv „Chardonnay‟ plant. 

 

 

 

 

Out of 134 nodes screened, 82 (61%) were found to be AYp-infected, whereas only 

38 out of the 115 (33%) leaf samples screened, showed presence of AYp. Twenty-

seven samples (12%) showed an infection in the node and corresponding leaf 

material. In most cases however, we did not detect AYp in the leaf if the node DNA 

displayed an amplicon after the nested-PCR. It was less likely to detect AYp in the 

Total samples available = 249 

Leaf material Node material Node with 

corresponding leaf 

Node with no leaf 

material 

115/249 (46%) 134/249 (54%) 223/249 (90%) 26/249 (10%) 
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leaf if the corresponding node was not AYp-infected, and was only seen in 18 out 

of the 249 samples (circled in blue in Figure 13). This data is summarized in   Table 

4. 

 

                Table 4: AYp infection detected in leaf and node material in five canes from one AYp-infected V. vinifera cv 

 „Chardonnay‟ plant.  

Leaf 

material 

Node 

material 

Node and 

corresponding 

leaf infected 

Node infected and 

corresponding leaf 

healthy 

Node healthy and 

corresponding leaf 

infected 

Node and 

corresponding 

leaf healthy 

38/115 

(33%) 

82/134 

(61%) 

27/223  

(12%) 

148/223  

(66%) 

18/223  

(8%) 

30/223  

(13.5%) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Spatial distribution of AYp in five canes (A-E) of the same V. vinifera cv „Chardonnay‟   plant 

from Vredendal, South Africa. Node and leaf samples were tested on each cane for the presence of AYp. 

Samples labelled (A, B, B1, D, D1, D2, E, E1, E2) were run on a PCR as an internal control for the 18S 

rDNA of V. vinifera.  

As the canes were collected during the late season (April) the leaf material 

available on the five canes was in a suboptimal condition for DNA extractions. 

Once DNA was extracted and concentrations were analysed by the Nanodrop
®
 ND-

A 

B 

B1 

D 
D1 

D2 

E 
E1 

E2 
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1000 spectrophotometer, the 260/280 and 260/230 ratios were lower than the 

optimal values of 1.8 and 2.0-2.2. This may indicate that contaminants such as 

proteins, phenols, salts and EDTA were present, that absorb strongly at or near 

280nm. An internal control using the 18S rDNA of V. vinifera was therefore used 

to ensure the nested-PCR was functional and not giving negative results due to 

suboptimal DNA quality. All 18 samples (circled in blue, Figure 13) in which the 

node was negative and the leaf positive for AYp infection were analysed as 

described in Section 4.2.2 and displayed the 184bp amplicon after being run on a 

1% agarose gel (Figure 14). 

 

 1kb    AN    AL  BN    BL   BN
1  BL

1  DN    DL   DN
1  DL

1  DN
2   DL

2  EN    EL  EN
1    EL

1   EN
2  EL

2   +   NTC 

 

 

 

 

 

 

Figure 14: Agarose gel electrophoresis of V. vinifera 18S rDNA PCR products. Lane 0: 1kb molecular 

marker. Lane 1-18: 18 samples of V. vinifera cv „Chardonnay‟ material circled in blue from Figure 13. The 

subscripts L and N stand for leaf and node material. + : Positive control. NTC: no-template control. 

The DNA extracted was not „pure‟ DNA as the ratio of absorbance at 260nm and 

280nm was lower than the optimal value. However, the 18S rDNA was amplified 

in all 18 V. vinifera samples, indicating that the DNA quality was suitable enough 

for the accurate detection of AYp by the nested-PCR procedure. 

 

4.3.2 Quantitative analysis of AYp 

A standard curve was constructed by plotting the mean CT value of each standard 

dilution versus the logarithm of its concentration. When the CT values were plotted 

against their relative concentrations the efficiency of the standard was 1.00. The 

slope (M value) was -3.327, and the regression correlation efficient (R
2
) was 

0.99687 (Figures 15 and 16). Therefore, the reactions proved to be sufficient for the 

100 bp 

200 bp 
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accurate quantification of AYp. The mean threshold cycles for the standard curve 

dilution series can be seen in Table 5 below. 

 

 

 

 

 

 

 

 

  Figure 15:  Amplification profile of the dilution series.     1ng     0.1ng      0.01ng     1X10-3ng     1X10-4ng   

     1X10-5ng     1X10-6ng 

 

 

 

 

 

 

 

 Figure 16: The standard curve resulting from the CT values of each triplicate plotted against the 

concentrations of each sample. 

 
Table 5: Mean threshold cycles (CT) of standard pAY61 seen in all seven dilutions run in triplicate. The 

genome unit (GU) for each dilution are also shown together with the CT standard deviation calculated for 

each sample run in triplicate. 

 Standard dilutions CT value Std dev 

pAY61 

1ng = 114X106  GU 

9.66 

±0.07 9.56 

9.68 

0.1ng = 114X105  GU 

12.50 

±0.53 13.48 

13.33 

0.01ng = 114X104  GU 

16.92 

±0.41 16.85 

16.19 

1X10-3ng = 114X103 GU 

20.51 

±0.47 19.78 

19.56 

1X10-4ng  = 11 400 GU 
22.78 

±0.02 
22.75 
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22.79 

1X10-5ng = 1 140 GU 

25.99 

±0.24 26.44 

26.35 

1X10-6ng (1fg) = 114 GU 

30.18 

±0.43 29.75 

30.60 

 

Absolute quantification of node and leaf DNA was achieved by comparison of 

infected samples with the pAY61 dilution series. Figures 17 and 18 below show the 

differences seen in the amplification profiles and melt curves of samples collected 

from the same vine during the summer season in 2011, compared to the samples 

analysed for quantification of AYp titre collected in April 2012. The amplification 

profile showed a clear distinction between the cycles at which the fluorescence of 

the standard control and the positive control rose above the background 

fluorescence, compared to samples analysed for the quantification of AYp titre. A 

unique melting peak at 85°C was observed after real-time PCR with DNA from 

plasmid and infected node and leaf material. In Figure 17 it is evident that the 

standard control (    pAY61) is amplified first and thus has the highest melt curve 

peak (Figure 18) and a CT value of 8.23. The sample collected in October 2011 (   ) 

displays a slightly lowered melt curve peak and a CT value of 32.04. Samples 

collected from the same grapevine in April 2012 (      ) had such minute 

concentrations of AYp, that no CT values could be determined and accurate 

quantification on this material could thus not be done. The Rotor-Gene Q Series 

Software 1.7 was used to analyse all data represented above. As no CT values could 

be determined for the samples collected in April, significant differences could not 

be determined when compared to the standard dilutions. 

  

 

 

 

 

 

 

Figure 17: Amplification curve of AYp-infected V. vinifera plant material collected from the same vine in 

different seasons.      pAY61.    V. vinifera collected in October 2011.                AYp-infected V. vinifera 

collected in April 2012.      Healthy V. vinifera.       No-template control 
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Figure 18: Melt curve of AYp-infected V. vinifera plant material collected from the same vine in different 

seasons.      pAY61.      V. vinifera collected in October 2011.                  AYp-infected V. vinifera collected 

in April 2012.      Healthy V. vinifera.       No-template control 

 

 

4.4  Discussion  

As we were unable to establish and maintain AYp in vitro in grapevine material, we 

examined the distribution of AYp in five canes of an infected V. vinifera cv 

„Chardonnay‟ plant. To our knowledge, this is the first study to report on the spatial 

distribution of AYp in grapevine material. As can be seen in Table 3 (Section 4.3.1), 10% 

of the nodes tested had no corresponding leaf material, probably as a result of the uneven 

bud development in phytoplasma-infected vines (Constable et al., 2003). After leaf and 

the corresponding node material from five canes were screened by a nested-PCR, it can 

be concluded that AYp is found predominantly in the nodes (66%) when compared to 

leaf material in the late season of the year. It is also evident that there is a very slight 

chance of leaf material showing infection if in the corresponding node no AYp could be 

detected. From Figure 13 (Section 4.3.1) it is also evident that AYp infection was mostly 

detected in the upper part of the canes compared to the lower sections. These results 

coincide with findings in periwinkle plants where AY strains were consistently detected 

in the expanding shoots of infected plants (Kuske and Kirkpatrick, 1992). In strawberries, 

clover phyllody phytoplasma (CPp) titre was also highest in the pedicels followed by the 

sepals, petals and then the leaves (Clark et al., 1983). As a norm, material for micro-

propagation and accurate detection of phytoplasmas, should be collected from 

symptomatic expanding shoots during the growing season (summer). 

 

A qPCR using the SYBR
®
 Green I chemistry was optimized during the current study to 

detect and quantify the AYp titre in V. vinifera cv „Chardonnay‟ material. Absolute 

quantification of AYp DNA was achieved by comparing it with a standard curve of 

dilutions of a plasmid containing a single copy of the AYp 16S rDNA gene. Samples 
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collected during the late season that were found to be infected by AYp by the nested-

PCR were quantified by the qPCR. CT values of these samples could not be determined 

and quantification of AYp titre could therefore not be calculated. It is known that qPCR 

is highly sensitive to DNA quality and that contaminants such as proteins, 

phenol/chloroform, salts and EDTA can interfere with amplification and fluorescent 

detection. Demeke and Jenkins (2010) reported that these PCR inhibitors are a major 

obstacle for efficient amplification in qPCR. As the DNA collected during the late season 

showed suboptimal 260/280 ratios when analysed using the Nanodrop
®
 ND-1000 

spectrophotometer, it might be possible that quantification on this material was not 

reliable due to the presence of PCR inhibitors. This could also explain why no CT values 

could be determined after absolute quantification on this material. It is therefore of high 

importance to have pure DNA for the accurate quantification of pathogens by the 

quantitative real-time PCR. 

 

We were able to observe the spatial distribution of AYp in five canes of an infected V. 

vinifera cv „Chardonnay‟ vine through screening leaf and node material by a nested-PCR 

procedure using universal 16S rDNA primers.  Despite the long history of research on 

AYp, little quantitative information on its epidemiology is known (Madden et al., 1995). 

During the current study, an assay for quantifying AYp has been optimized and it would 

be of interest to compare the AYp titre throughout a whole vine, taking different seasons 

into consideration and also different cultivars of grapevine. Such studies could help in 

understanding plant-phytoplasma relationships better, help in determining efficient 

sampling procedures to accurately detect AYp and could help to describe the 

multiplication and movement of phytoplasmas in their plant hosts.  
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Chapter 5 

Antimicrobial peptides and their in planta activity against AYp 

 

5.1 Introduction 

When a plant comes into contact with a pathogen, it may express a series of peptides, 

some of which may show antimicrobial activity (Rosenfield et al., 2010). Antimicrobial 

peptides (AMPs) form part of the plants non-specific defence system and in the case of 

bacterial pathogens, interact with lipid molecules on the bacterial cell surface causing the 

membrane to collapse (Yeaman and Yount, 2003; Sitaram and Nagaraj, 1999).  Once 

bound to the bacterial membrane, the peptide activates one of several pathways that will 

cause cell death to the pathogen (Figure 19).  

 

 

 

 

 

 

 

 

 

Figure 19: Modes for antimicrobial peptide activity (Gallo and Huttner, 1998). A: AMPs may form 

pores through which ions leak out, causing the energy gradients to dissipate and leading to cell lysis 

(Bowman et al., 2003).  B: AMPs bind to intracellular targets within the bacterial cell which causes a 

decrease in protein synthesis, leading to cell death (Park et al., 1998).  

 

Plants are incapable of producing linear amphipathic AMPs. Therefore, synthetic linear 

AMPs have been produced that are more stable and potent than their native counterparts, 

without the concomitant toxicity to host cells (Rajasekaran et al., 2001).  

 

As phytoplasmas lack a cell wall, AMPs are considered to be perfect candidates to confer 

resistance to this phytopathogen. Multiple studies have been done to confer pathogen 

resistance in transgenic plants overexpressing AMPs. Great success has been seen in 
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transgenic tobacco plants, where the synthetic peptide CEMA conferred resistance 

against the highly virulent fungus Fusarium solani (Yevtushenko et al., 2005). The 

peptide Shiva-1 has been expressed in transgenic Paulownia which resulted in an 

improved resistance to witches‟ broom phytoplasma (Du et al., 2005). In 2001, a US 

patent (patent number 7119262) by Smith and colleagues described the in planta activity 

of certain peptide classes against phytoplasma in transgenic poinsettia. The generation of 

transgenic crops is however a very time consuming and expensive technique. Santos-

Rosa et al. (2008) reported the use of a transient expression system as a reliable and time-

effective method for the expression of foreign genes in agricultural crops, including 

grapevine.  

 

The first AMP used during this study will be a Vitis vinifera antimicrobial peptide, 

namely Vv-AMP1. Vv-AMP1 was isolated from V. vinifera berries and is a heat stable 

peptide encoding 77 amino acids (de Beer and Vivier, 2008). In V. vinifera, Vv-AMP1 

showed significant activity against the wilting disease-causing pathogens Fusarium 

oxysporum and Verticillium dahlia, decreasing fungal growth by 50% (de Beer and 

Vivier, 2008). Transgenic Vv-AMP1 V. vinifera plants infected with Botrytis cinerea 

showed enhanced resistance towards the disease, which confirms that the peptide is both 

present and active in transgenic plants, and that overexpression of AMPs in transgenic 

lines may lead to a phenotype with enhanced resistance (Tredoux, 2011). The exact target 

range of Vv-AMP1 is still unknown, but this peptide does form part of the subgroup B1 

of plant defensins, which show activity against both bacterial and fungal pathogens (de 

Beer and Vivier, 2008). Inducing resistance through grafting has been proven in several 

studies (Guan et al., 2012; Jenns and Kuć, 1979; Tam and Mitter, 2010). To observe the 

effect which Vv-AMP1 might have on AYp in planta, grafting of Vv-AMP1 transgenic 

V. vinifera cv „Sultana‟ and AYp-infected V. vinifera cv „Chardonnay‟ plants will be 

tested during the current study.  

 

The second AMP used during this study will be Snakin1 (SN1), an AMP comprising of 

63 amino acids that was initially isolated from potato tubers, and that shares motif 

similarities with disintegrin hemotoxic venoms from various snakes (Segura et al., 1998). 

SN1 has been shown to confer resistance against the fungus Rhizoctonia solani and the 

bacterium Erwinia carotovora by overexpression of the peptide in transgenic potatoes 

(Almasia et al., 2008). Overexpression of SN1 in transgenic wheat plants also lead to an 
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enhanced resistance against Blumeria graminis f.s.p. tritici (Faccio et al., 2011). 

Kovalskaya and Hammond (2008) reported that functionally active SN1 peptides are 

suitable for antimicrobial in vitro assays, using Escherichia coli expression systems. 

During these assays, SN1 was shown to have activity against the bacterial pathogen 

Clavibacter michiganensis subsp. sepedonicus, as well as the fungal pathogens 

Clostridium coccoides and B. cinerea. Due to SN1‟s broad range of activity against 

fungal and bacterial pathogens, the peptide will be used during this study to test its effect 

against the grapevine pathogen AYp through transient expression. For that, a grapevine 

SN1 homologue was identified in silico using the BLASTn search tool 

(www.ncbi.nlm.nih.gov). The identified sequence was then amplified by PCR, cloned 

and sequenced. To our knowledge, this is the first study to report on the isolation of SN1 

from grapevine material. 

 

The final AMP used during this study will be the synthetic peptide D4E1. During 

transient expression assays to determine the in planta effect of D4E1, a clear reduction in 

pathogen titre could be seen towards the pathogens Xylophilus ampelinus and 

Agrobacterium vitis in grapevine (Visser et al., 2012). De Lucca and colleagues (1998) 

showed that D4E1 inhibits the growth of the mycotoxin-producing fungi Aspergillus and 

Fusarium. Transgenic tobacco plants expressing D4E1 demonstrated increased resistance 

to Aspergillus flavus, V. dahlia and Colletotrichum destructivum (Cary et al., 2000). In 

transgenic poplar, D4E1, showed significant reduction in disease symptoms caused by 

the bacterial pathogens Agrobacterium tumefaciens and Xanthomonas populi (Mentag et 

al., 2003).  

 

The current study focuses on boosting the plant‟s defence mechanism against AYp by 

overexpressing the AMPs Vv_AMP1, SN1 from potato and grapevine and D4E1 through 

an Agrobacterium-mediated transient expression system.  

 

5.2 Materials and Methods 

5.2.1 Candidate antimicrobial peptides 

The cloned genes of the AMPs D4E1 and Vv-AMP1 were both available during the 

current study and have previously been described by Visser (2011). All AMPs 

used, were brought under control of an enhanced Cauliflower mosaic virus (CaMV) 

http://www.ncbi.nlm.nih.gov/
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35S and termination signal in binary vectors, described below. The procedure for 

obtaining the genomic sequences of the peptides Snakin1 from potato and V. 

vinifera cv „Chardonnay‟ material is described below. 

 

5.2.2 Isolation of Snakin1 

5.2.2.1 Snakin1 isolation from potato tubers 

Potato tubers were ground to a fine powder in liquid nitrogen using a mortar 

and pestle, and total DNA was extracted according to the manufacturer‟s 

protocol using the NucleoSpin
®
 Plant II kit (Macherey-Nagel). DNA was 

then stored at -20°C until needed for further screening. Primers were 

designed for the amplification of SN1-Potato using CLC Main Workbench 

6, and can be seen in Table 6 below. The sequence information of SN1-

Potato was available on the National Center for Biotechnology 

Information‟s website (www.ncbi.nlm.nih.gov).  

   Table 6: Primers used to amplify Snakin1 from potato. Restriction enzyme recognition sequences 

      (underlined) and translation enhancer sequence (bold) are indicated. 

Primer name Sequence Size 

SN1_Pot_s AGAGCTCATCGATTAGGAGATATAACAATGAAG 

TTATTTCTATTAAC 

47bp 

SN1_Pot_as ATTTTTGGATCCTTAAGGGCATTTAGACT 29bp 

 

Designed primers included restriction enzyme recognition sequences for 

cloning purposes, and the forward primer SN1_Pot_s included a 

translational enhancer sequence (Lütcke et al., 1987). The PCR reaction mix 

contained 1X KapaTaq buffer A, 1X Cresol, 0.1mM dNTPs, 0.6µM of each 

primer, and 0.04U/µl KapaTaq DNA polymerase. The final volume was 

25µl, of which 1µl was total DNA extracted from the potato tubers. PCR 

conditions were as follows: 2min at 94°C, 35 cycles of 20sec at 94°C, 30sec 

at 60°C and 45sec at 72°C, followed by a final elongation step of 10min at 

72°C. PCR products were run on a 1% agarose gel for 30min at 120V, and a 

770bp amplicon was visible. Using in silico analysis, the consensus 

sequence (EF206290) confirmed that a 770bp fragment containing the entire 

open reading frame was expected, including an intron sequence of around 

http://www.ncbi.nlm.nih.gov/
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500bp (Almasia et al., 2008). Sequencing was performed to verify that SN1 

was amplified.  

5.2.2.2 Snakin1 isolation from Chardonnay 

Healthy V. vinifera cv „Chardonnay‟ leaf material was collected from a farm 

near Vredendal, South Africa. The material was ground to a fine powder in 

liquid nitrogen using a mortar and pestle and total DNA was extracted 

according to the manufacturer‟s protocol using the NucleoSpin
®
 Plant II kit 

(Macherey-Nagel). DNA was stored at -20°C until used for further 

screening. The sequence for SN1 from V. vinifera was obtained by 

executing a homology search using available SN1 from potato in the 

BLASTn function on the National Center for Biotechnology Information‟s 

website (www.ncbi.nlm.nih.gov) against the grapevine genome and 

available EST databases. Using the identified SN1 homologous sequence 

from grapevine, primers were designed using CLC Main Workbench 6 

(Table 7) and the sequence was amplified by PCR, as described below. 

 

Table 7: Primers used to amplify Snakin1 from V. vinifera cv „Chardonnay‟. Restriction enzyme 

recognition sequences (underlined) and translational enhancer sequence (bold) are identified. 

Primer name Sequence Size 

SN1_Ch_s AGAGCTCATCGATTAGGAGATATAACAATGAAG 

CCCCTCTTGGCAAC 

47bp 

SN1_Ch_as AGGATCCTTAAGGGCACTTGGGTTGG 26bp 

   

The PCR reaction mix contained 1X KapaTaq buffer A, 1X Cresol, 0.1mM 

dNTPs, 0.6µM of each primer, and 0.04U/µl KapaTaq DNA polymerase. 

The final volume was 25µl, of which 1µl was total DNA extracted from the 

Chardonnay leaf material. PCR conditions were as follows: 2min at 94°C, 

35 cycles of 20sec at 94°C, 30sec at 60°C and 45sec at 72°C, followed by a 

final elongation step of 10min at 72°C. PCR products were run on a 1% 

agarose gel for 30min at 120V. Using in silico analysis, a 310bp amplicon 

excluding an intron was expected.  

 

 

 

http://www.ncbi.nlm.nih.gov/
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5.2.3 AMP expression vector constructs  

For the transient expression experiments, all AMP sequences were brought under 

control of a CaMV 35S promoter and terminator signal and subsequently 

transferred at T-DNA between the right and left border sequences in the available 

binary vectors pBIN61S (Silhavy et al., 2002) or pCB301 (Xiang et al., 1999). As 

indicated above, all primers used were designed to contain the restriction enzyme 

recognition sequences required for the cloning of the fragments into the respective 

vectors.  All expression constructs were electroporated into A. tumefaciens as 

described in Section 5.2.4. The control vector 35S:GUSi (Vaucheret, 1994) was 

provided by Pere Mestre (Laboratoire de Ge‟ne‟tique et Ame‟lioration de la Vigne, 

France) and was used to test and optimize foreign gene expression in grapevine and 

Catharanthus roseus leaf tissue. 

5.2.3.1 Vv-AMP1 and D4E1 expression vectors 

Vv-AMP1 and D4E1 expression vectors were constructed during a previous 

study by Visser (2011). Briefly, D4E1 and Vv-AMP1 PCR fragments were 

cloned into pGem
®

-T Easy (Promega). They were then excised and cloned 

into the BamHI and SacI sites of the binary vector pBin61S resulting in the 

vectors pBin61S-D4E1 and pBin61S-Vv-AMP1 (Visser, 2011). Table 8 

displays the primers used with their respective restriction enzyme sites. 

Table 8: List of primers used during Vv-AMP1 and D4E1 expression vector construction. The 

restriction enzyme recognition sites (underlined) and translational enhancer sequences (bold) are      

indicated. 

Primer name Sequence 

SacI_35S_D4E1_s AGAGCTCATCGATTAGGAGATATAACAATGTTT

AAGTTGAGA 

BamHI_35S_D4E1_as AGGATCCTTACAACTTAATCTTAGCTCTCA 

SacI_35S_VvAMP1_s AGAGCTCATCGATTAGGAGATATAACAATGAG

GACCTGTGAGAGT 

BamHI_35S_VvAMP1_as AGGATCCTTAACAATGCTTAGTGCAGAAG 

 

5.2.3.2 SN1-Chardonnay and SN1-Potato expression constructs 

SN1 was amplified from V. vinifera cv „Chardonnay‟ and potato DNA, 

using the primers described in Sections 5.2.2.1 and 5.2.2.2. The PCR 

fragments were then cloned into the pGem
®
-T Easy cloning vector. The 
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AMP sequence was confirmed by sequencing. From here the PCR fragments 

were excised using the restriction enzymes Ecl136II (Fermentas) and 

BamHI (Fermentas) and were cloned into the same sites of the 

p442_pe35Stu_pA cloning vector (Hasan, 2004) between the enhanced 

CaMV 35S promoter and termination signal, resulting in 

p442_pe35Stu_pA_SN1-Chardonnay and p442_pe35Stu_pA_SN1-Potato. 

From both constructs, the AMP-containing 35S expression cassette was 

cloned into the binary vector pCB301 using the restriction enzymes SacI 

(Fermentas) and PstI (Fermentas), resulting in pCB_SN1-Chardonnay and 

pCB_SN1-Potato. 

 

5.2.4 Transformation of Agrobacterium cells 

Electrocompetent A. tumefaciens cells (strain C58C1), containing the helper 

plasmid pCH32 (Santos-Rosa et al., 2008), were prepared during a previous study 

according to a protocol by Annamalai and Rao (2006). The already available and 

newly cloned expression constructs from Sections 5.2.3.1 and 5.2.3.2 were 

electroporated into A. tumefaciens using electroporator (Biorad) settings of 25µF, 

100Ω, 1.5kV and 25W. 

 

5.2.5 Agro-infiltration of plants 

Recombinant A. tumefaciens cells containing the respective AMP or GUSi (β-

glucuronidase gene) expression constructs were grown on selective Luria Bertani 

(LB) agar media (50mg/l kanamycin/ 5mg/l tetracyclin) at 28°C for two days. Cells 

were then transferred into liquid LB containing selective antibiotics and shaken 

overnight at 28°C. These cultures were then pelleted by centrifugation at room 

temperature for 5min at 6000rpm. Once the supernatant was completely removed, 

pellets were re-suspended in 40ml re-suspension buffer (10mM MgCl2, 10mM 

MES and 0.1mM acetosyringone) and incubated at room temperature for 2-3 hours. 

5.2.5.1 Agro-infiltration of 35:GUSi 

Infiltration of healthy V. vinifera and C. roseus material with the GUSi 

expression construct was conducted by vacuum-infiltration. Using a scalpel 

blade, several small cuts were made on the leaves of in vitro cultured V. 

vinifera cvs „Chardonnay‟ and „Chenin blanc‟ plantlets, and in vitro cultured 

C. roseus plantlets. Whole plantlets were then placed into an ultrasonic 



75 
 

chamber (Labotec, SA) for two seconds and were then fully immersed in a 

cell suspension of Agrobacterium, which had an OD600 of 0.05. The cell 

suspension containing the plantlets was placed into the vacuum chamber and 

three different vacuum procedures were applied twice (30kPa, 50kPa and 

90kPa) for 15min, 10min and 2 minutes respectively, to achieve infiltration. 

The vacuum was quickly released between the two steps. V. vinifera 

material underwent two successive vacuums (50kPa) of 10min each. The 

vacuum was again quickly released between the two steps. The plantlets 

were then rinsed in distilled water and transferred into a tissue culture flask 

containing perlite, and watered with distilled water. After six days of being 

in controlled incubator conditions (16h light and 8h dark photoperiod at 

23°C and 19°C) the GUS assay was conducted on the infiltrated leaves 

(Section 5.2.6).  

5.2.5.2 Agro-infiltration of the AMPs 

Agrobacterium-mediated vacuum infiltration with the AMP expression 

constructs were not carried out in grapevine material as no AYp-infected V. 

vinifera cv „Chardonnay‟ material could be established and maintained in 

vitro (Chapter 3). From the three Nicotiana benthamiana (N. benthamiana) 

plants that were successfully infected with AYp (Chapter 3, Section 3.3.2) 

one infected plant was agro-infiltrated with the AMP expression vectors 

using a method described by Visser (2011). This plant was chosen on the 

basis of showing the highest phytoplasma titre after quantitative analysis. A 

5ml syringe with a needle was used to aspirate the Agrobacterium 

suspension containing the AMP expression vectors (OD600 of 0.5). The 

needle was then removed and the syringe pressed against the lower surface 

of the leaf on one side of the main vein. The suspension was slowly injected 

into the leaves by applying a constant, low pressure. As a control, 

Agrobacterium cells containing an empty binary vector lacking the AMP 

genes was used on each leaf, on the opposite side of the main vein (Figure 

20).  
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Figure 20: Agro-infiltration on N. benthamiana using an AMP expression vector and a 

control. The AMP expression vector was infiltrated on one side of the main vein and the 

control vector on the opposite side. 

 

5.2.6 GUS assay 

Agro-infiltrated leaf material of V. vinifera cvs „Chardonnay‟ and „Chenin blanc‟ 

plants together with C. roseus plants were detached from the plantlets 6 dpi (days 

post infiltration) and placed into a 50ml centrifuge tube (Corning
®

 Incorporated, 

NY). 6ml of GUS substrate buffer (50 mM NaH2PO4, 0.5 mM K-Ferrocyamid, 0.5 

mM K-Ferricyamid, 0.1% Triton X100, 100 mM Na2EDTA, pH 7) with freshly 

added X-Gluc (12.5µl/100ml of buffer) was then added to the tubes containing the 

plant material. The centrifuge tubes were placed into the vacuum chamber and 

vacuum was applied twice at 90kPa for 2 minutes to achieve infiltration. The 

vacuum was quickly released between the two steps. The tubes were then closed 

and incubated overnight at 37°C. Leaves were decoloured by rinsing in 96% 

ethanol for an extended period of time, replacing the ethanol regularly. Areas of 

GUS expression were visually assessed after two days as blue areas on the leaves. 

 

5.2.7 Screening the in planta activity of AMPs against AYp in N. benthamiana  

Multiple leaves on the AYp-infected N. benthamiana plant were infiltrated with the         

Vv-AMP1, D4E1, SN1-Chardonnay and SN1-Potato expression constructs.    

Infiltrated areas were cut out of the leaf (approximately 2cm in diameter) 6dpi and 

DNA was extracted according to the manufacturers‟ protocol using the 

NucleoSpin
®
 Plant II kit (Macherey-Nagel) and stored at  -20°C. The concentration 

of the DNA was determined by means of the Nanodrop
®

 ND-1000 

spectrophotometer. Phytoplasma titres were determined using the qPCR protocol 

AMP 
CON-
TROL 



77 
 

described in Chapter 4 and were compared between AMP-treated and untreated 

control plants. All samples were run in triplicate. 

 

5.2.8 Peptide expression 

In order to determine if the peptide is expressed in the agro-infiltrated leaf tissue, 

protein extractions were performed on N. benthamiana plants infiltrated with 

pBin61S_Vv-AMP1, pCB_SN1-Chardonnay and pCB_SN1-Potato. Plants 

infiltrated with pBin61S served as a negative control. Western blot analysis was 

used to visualize the expressed peptide. The primary antibody against Vv-AMP1 

detection was raised in mice and provided by Abre de Beer (IWBT, Stellenbosch 

University). Detection of Vv-AMP1 was achieved with an anti-mouse IgG alkaline 

phosphatase (AP) secondary antibody raised in goats (Sigma-Aldrich
®
, SA). The 

expected size of the Vv-AMP1 peptide was ~ 5.5 kDa. Six primary antibodies 

against SN1 detection were commercially designed (Abmart, China) in mice, using 

the Abmart monoclonal seal library design kit. Briefly, the provided SN1-

Chardonnay amino acid sequence was evaluated for potential antigenic regions. 

These different regions were identified (Table 9) and short peptide sequences were 

synthesised and used to immunization of BALB/C mice. After quality control, six 

antibodies based on three potential antigenic regions were provided. All six 

antibodies were tested in Western blot experiments. Detection of SN1 was achieved 

with the same anti-mouse IgG AP secondary antibody raised in goats, used for the 

detection of Vv-AMP1 (Sigma-Aldrich
®

, SA). The expected size of the SN1 

peptide was ~10kDa. 

 

 Table 9: The original SN1-Chardonnay amino acid sequence sent to Abmart for antibody production. 

 The potential antigenic regions used by Abmart (China) to design six primary antibodies for the 

 detection of Snakin 1 are listed below. 

Original SN1-Chardonnay amino acid sequence 

MKDRCLKYCGICCEECKCVPSGTYGNKHECPCYKDKKNSKGQPKCP 

Potential antigenic regions Antibodies designed per potential 

antigenic region 

PSGTYGNKHE 1 

KDKKNSKGQP 4 

EECKCVPSGT 1 
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No antibody was available for the detection of the D4E1 peptide, therefore no 

expression tests were performed. 

5.2.8.1. Protein extractions 

Six days post-infiltration (dpi), 300mg of infiltrated leaf material was cut 

out using a scalpel blade. This material was ground in 750µl pre-heated 

(95°C) Berger buffer (750mM Tris-HCL (pH 8.8), 4% SDS, 4% 2-

Mercaptoethanol, 40% Saccharose - adapted from Berger et al., 1989) using 

a mortar and pestle. 500µl of cold Berger buffer was then added to the plant 

material and transferred to a 2ml reaction tube. All tubes were incubated at 

95°C for 10min after which they were centrifuged for 10min at 12 110g. 

The supernatant was then transferred to a clean 1.5ml reaction tube and 

stored at -20°C until needed. 

5.2.8.2 Western blot 

The proteins were separated on a 15% (w/v) Tris-tricine gel (Schägger and 

von Jagow, 1987) together with a low molecular marker (Thermo Scientific, 

SA, Cat. # 26628). After this the gel was stained using Coomassie Blue 

R250 dye and de-stained for 48h in 30% methanol and 5% acetic acid, to 

observe protein separation. As protein concentrations were unknown, 15µl 

of each protein extract was loaded. A nitrocellulose membrane was then 

soaked in methanol for 1 minute before the gel was electroblotted to the 

membrane by soaking the membrane and gel in blotting buffer (25mM Tris, 

192 mM Glycin, 20% Methanol, pH 8.3) for 1 hour at 100V. After this, the 

membrane was left in 5% skim milk overnight to block unspecific bindings. 

The membrane was then incubated in PBS (8g NaCL, 0.2g KCL, 1.44g 

Na2HPO4, 0.24g KH2PO4, made up to 1L, pH 7.4) for 15min and washed in 

PBS-T (0.05% Tween, 1X PBS) (3 times for 5min each). The membrane 

was incubated overnight in a 1:500 dilution of primary Vv-AMP1 antibody 

and 1:200 dilution of primary SN1 antibodies prepared in PBS-T. The 

following day the membrane was washed for 5min in PBS-T, which was 

repeated three times. Detection of Vv-AMP1 and SN1 was achieved by 

incubating the membrane for 1 hour in a 1:10000 dilution of anti-mouse IgG 

AP antibody prepared in PBS-T. The membrane was washed in PBS-T for 

5min and this washing step was repeated three times. An alkaline phosphate 

(AP) staining solution (20ml AP buffer, 132µl NBT, 66µl BCIP) was added 
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and after the wanted fragment was seen, the reaction was stopped by 

washing the membrane in distilled water. 

 

5.2.9 The effect of Vv-AMP1 on AYp through in vitro grafting 

One Vv-AMP1 transgenic V. vinifera cv „Sultana‟ plant was obtained from the       

IWBT in April 2011 and kept under controlled greenhouse conditions. The 

expression of the transgene was confirmed by Northern blot analysis performed by 

Martha Tredoux at the IWBT (2011). The plant was propagated in vitro following 

the procedure described in Chapter 3 (Section 3.2.1) and used in grafting 

experiments using AYp-infected V. vinifera cv „Chardonnay‟ material. While 

working under the microscope, a scalpel blade and tweezers were used to cut the 

apex of the rootstock plant into a longitudinal cleft of 5-10mm. The basal part of a 

scion of similar size was cut into a wedge and fixed into the recipient plantlet cleft 

(Figure 21).  

 

          

   

 

 

 

 

 

Figure 21: Grafting procedure under the microscope using a scalpel blade and tweezers. 

 

5.3 Results 

5.3.1 Snakin1 isolation from potato and grapevine 

The 770bp fragment amplified from potato material was consistent with the in 

silico analysis including an intron of approximately 500bp. Sequencing results 

confirmed a 97% maximum identity for the Solanum tuberosum Snakin-1 (SN1) 

gene (EF206290). The homologous SN1 sequence from grapevine material was 

identified, by executing a search using available SN1 from potato in the BLASTn 

function on the National Center for Biotechnology Information‟s website 

(www.ncbi.nlm.nih.gov) against the grapevine genome and available EST 

Basal plant 

Rootstock plant 

Scion 

http://www.ncbi.nlm.nih.gov/
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databases. The amplified SN1 from V. vinifera cv „Chardonnay‟ material was 

approximately 310bp in size, which was consistent with the in silico analysis. 

Therefore, the wanted SN1 fragments from potato and grapevine were successfully 

amplified and could be used to construct expression vectors for transient expression 

assays. 

 

5.3.2 Construction of AMP expression vectors 

35S expression vectors containing the foreign genes were constructed in order to 

conduct AMP in planta activity screening. The constructs included vectors for the 

expression of SN1-Chardonnay and SN1-Potato. Sequencing results confirmed the 

integrity of the inserted foreign genes. The Vv-AMP1, D4E1 and 35S:GUSi vectors 

were previously designed by Visser (2011). Figure 22 below depicts the 35S:SN1 

expression vectors constructed during the current study. 

 

  oriV                   nptlll          trfA             RB   MCS                LB 

 

 

 

 

 

      RB         CaMV 35S                Snakin1                   35S Term        MCS           LB 

 

Figure 22: The binary vector pCB301. oriV: origin of replication. nptIII: neomycin phosphotranferase gene.  

trfA: part of the origin of replication. RB: right border. MCS: multiple cloning site. LB: left border. CaMV 35S: 

35S promoter from cauliflower mosaic virus. Snakin1: Snakin1-Chardonnay or Snakin1-Potato. 35S Term: 35S 

termination signal. The AMP-containing 35S expression cassette (outlined in red) was cloned into the pCB301 

binary vector using the restriction enzymes SacI and PstI (indicated in the MCS of pCB301). 

 

5.3.3 GUS expression in V. vinifera and C. roseus 

To evaluate foreign gene expression in leaf tissues and to optimize the transient 

expression procedure, both grapevine and C. roseus plants were subjected to a GUS 

expression assay after infiltration with the marker gene 35S:GUSi. An empty 

pBin61S vector was used as the negative control. Foreign gene expression in N. 

benthamiana leaf material was evaluated during a previous study (Visser, 2011) 

and was thus not repeated during the current study. As a result of GUS expression, 

blue coloration could be seen in the infiltrated leaves (Figure 23 and 24) 

SacI PstI 

pCB301 
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Figure 23: GUS expression observed in V. vinifera cvs „Chardonnay‟ and „Chenin blanc‟ leaf material. A: V. 

vinifera cv „Chenin blanc‟ leaves infiltrated with 35:GUSi 6dpi (top) and the negative control (bottom). B: V. 

vinifera cv „Chardonnay‟ leaf material leaves infiltrated with 35:GUSi 6dpi (top) and the negative control 

(bottom).  

 

 An estimated GUS expression of 60-70% was seen in infiltrated V. vinifera cv 

„Chenin blanc‟ leaves, whereas the percentage of GUS expression in V. vinifera cv 

„Chardonnay‟ material was estimated to be 40-50%. In both grapevine cultivars, 

GUS expression was most prominent around cut sites, but also visible throughout 

the whole leaf. This was similar to previous observations by Visser (2011). In C. 

roseus infiltrated tissue, only small spots of GUS staining were detected around the 

cutting sites in spite of three different vacuum procedures used (Figure 24). GUS 

staining was barely visible in leaves placed under vacuum at 90kPa for 2min 

(Figure 24C), whereas leaves placed under vacuum at 30kPa for 15min showed 

similar GUS expression to leaves placed under vacuum at 50kPa for 10min 

(Figures 24A and 24B). Light blue coloration between cutting sites are most 

probably due to diffusion of the GUS staining solution and do not represent zones 

of real transient expression. Leaves of the negative control plants showed no blue 

areas of GUS expression (Figure 24D). 

 

 

 

 

A B 
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  Figure 24: GUS expression observed in C. roseus leaf material. A: C. roseus leaves infiltrated 

  with 35:GUSi 6dpi at 30kPa for 15min. B: C. roseus leaves infiltrated with 35:GUSi 6dpi at 

  50kPa for 10min. C: C. roseus leaves infiltrated with 35:GUSi 6dpi at 90kPa for 2min. D: 

  Negative control  

   

5.3.4 In planta activity of AMPs against AYp 

 A 35S transient expression system was used to express the AMPs D4E1, Vv-

AMP1, SN1-Chardonnay and SN1-Potato in AYp-infected N. benthamiana plants. 

After extraction of DNA from agro-infiltrated areas, the AYp titre was determined 

by qPCR (as described in Chapter 4) to examine the inhibitory effect of the AMPs 

on this pathogen. The in planta effect of AMPs was not screened against AYp 

infection in V. vinifera cv „Chardonnay‟ material as no infected material could be 

established and maintained in vitro (as described in chapter 3). Real-time PCR 

protocols were optimised for the detection and quantification of AYp using a 

SYBR Green-based system (Chapter 4, Section 4.2.3). Up to nine leaves per AMP 

treatment were tested for AYp titre and compared to the control infiltrations on the 

same leaf (Table 10). 

 

 

 

 

 

 

C 

A B 

D 
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Table 10: Antimicrobial peptides used for the transient expression in an AYp-infected N. benthamiana plant. 

AY titres were detected and analysed by quantitative PCR. 

AMP used for transient expression Nr of leaves infiltrated 

SN1-Chardonnay 9 

SN1-Potato 5 

D4E1 8 

Vv_AMP1 5 

 

 

pAY61 was used as the standard control and N. benthamiana leaf material collected 

before infiltration served as a positive control. Table 11 below lists the CT values 

obtained from the amplification run by means of the Rotor Gene Software Series 

1.7, for each sample infiltrated with the respective AMP and the control. The nine 

leaves treated with SN1-Chardonnay did not show a significant reduction in AYp 

titre when compared to the control samples (p-value = 0.25). Five leaves infiltrated 

with SN1-Potato and Vv-AMP1 also showed no significant reduction in AYp titre 

when compared to the control groups (p-value = 0.48 and p-value = 0.29 

respectively). The remaining eight leaves infiltrated with D4E1 and the control 

construct showed similar results, with a p-value of 0.40. 

As DNA extracted from both the control – and AMP-infiltrated areas showed a 

decrease in phytoplasma titre with no significant difference (p-value > 0.05), we 

were unable to reliably determine if the transient expression of AMPs induces 

resistance to AYp infection. 
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Table 11: CT values obtained from qPCR profiles of N. benthamiana plants infected with AYp that were treated 

with Vv-AMP1, D4E1, SN1-Chardonnay and SN1-Potato and the untreated control plants. The statistical 

differences between the two treatment groups are shown by the p-value. CT values obtained from AMP 

infiltrated leaf areas are represented as the GOI. 

Samples GOI Control p-value 

SN1-Chardonnay 1 40.55 39.84 

0.25 

SN1-Chardonnay 2 39.98 41.37 

SN1-Chardonnay 3 41.33 41.50 

SN1-Chardonnay 4 40.39 39.70 

SN1-Chardonnay 5 40.36 42.10 

SN1-Chardonnay 6 39.76 38.57 

SN1-Chardonnay 7 41.76 41.34 

SN1-Chardonnay 8 42.89 41.35 

SN1-Chardonnay 9 39.99 38.67 

   

0.48 

SN1-Potato 1 42.78 42.65 

SN1-Potato 2 41.99 41.96 

SN1-Potato 3 42.10 42.21 

SN1-Potato 4 43.26 42.34 

SN1-Potato 5 40.91 38.71 

    

Vv-AMP1 1 42.71 42.12 

0.29 

Vv-AMP1 2 42.95 41.66 

Vv-AMP1 3 41.35 41.69 

Vv-AMP1 4 37.97 38.76 

Vv-AMP1 5 40.06 40.89 

    

D4E1 1 39.68 39.99 

0.40 

D4E1 2 39.16 39.58 

D4E1 3 39.60 41.00 

D4E1 4 41.99 40.02 

D4E1 5 40.97 39.66 

D4E1 6 41.13 43.62 

D4E1 7 43.71 42.98 

D4E1 8 41.05 42.57 

 

5.3.5 Peptide expression 

Crude protein extractions of leaf material infiltrated with pBin61S_Vv-AMP1, 

pCB_SN1_Chardonnay, pCB_SN1_Potato and pBin61S were separated on a SDS-

PAGE and stained overnight with Coomassie Blue R250 (Figure 25). After de-

staining for two days, protein separation was visible on the gel. In Figure 25 below, 

no protein separation can be seen below the 25kDa size marker (Lane 1). This gives 
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an indication that smaller sized proteins may have been lost during the crude 

protein extraction performed on infiltrated leaf material. Furthermore, gel 

conditions might not have been optimal for the separation of smaller sized proteins. 

 

        1          2           3         4          5         6           7          8           9         10      

 

 

 

 

 

 

 

 

 

Figure 25: SDS-PAGE stained with Coomassie blue. Lanes 1+10: Low weight molecular marker. Lanes 2-4: 

N. benthamiana leaf material infiltrated with Vv-AMP1. Lanes 5+6: N. benthamiana leaf material infiltrated 

with SN1-Chardonnay. Lanes 7+8: N. benthamiana leaf material infiltrated with SN1-Potato. Lane 9: N. 

benthamiana leaf material infiltrated with the control construct pBin61S. 

 

Western blot analysis was performed using the same protein extractions to test for 

the expression of Vv-AMP1, SN1-Chardonnay and SN1-Potato at 6dpi. The vector 

pBin61S served as the negative control (Figure 26). As no antibody was available 

for D4E1, no blots could be performed to test its expression in N. benthamiana leaf 

material. 
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Figure 26: Western blot results for Vv-AMP1, SN1-Chardonnay and SN1-Potato expression in N. benthamiana 

plants. (A) M: Low weight molecular marker. Lane 1: Vv-AMP1 expression in infiltrated N. benthamiana leaves. 

Lane 2: Control infiltration using pBin61S. (B) M: Low weight molecular marker. Lane 1: SN1-Chardonnay 

expression in infiltrated N. benthamiana leaves. Lane 2: SN1-Potato expression in infiltrated N.  benthamiana leaves. 

Lane 3: Control infiltration using pBin61S. The four antibodies designed to recognize the antigen region 

KDKKNSKGQP, displayed these results. (C): M: Low weight molecular marker. Lane 1: SN1-Chardonnay 

expression in infiltrated N. benthamiana leaves. Lane 2: SN1-Potato expression in infiltrated N.  benthamiana leaves. 

Lane 3: Control infiltration using pBin61S. The two antibodies designed to recognize the antigen regions 

PSGTYGNKHE and EECKCVPSGT, displayed these results. 

 

Expression of Vv-AMP1 (~5.5kDa) can be seen in Figure 26A (circled in red). The 

expected size of SN1 is ~10kDa. The four SN1 antibodies designed for the 

potential antigen region KDKKNSKGQP all bound to a fragment bigger than 

40kDa. As these results were the same amongst the four antibodies, only one image 

is shown (Figure 26B). This was seen in N. benthamiana material infiltrated with 

SN1-Chardonnay and SN1-Potato and in the control infiltrations. Therefore, no 

significant difference could be observed between the AMP treated plant material 

compared to the control infiltrated material. The two SN1 antibodies designed to 

recognize the potential antigen regions PSGTYGNKHE and EECKCVPSGT, 

displayed similar patterns of antibody binding and failed in detecting peptide 

expression in infiltrated N. benthamiana material. These results can be seen in 

Figure 26C (Only one image is shown for both antibodies as the results were the 

same).  
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5.3.6 The effect of Vv-AMP1 on AYp through in vitro grafting 

Compatibility to graft V. vinifera cvs „Chardonnay‟, „Sultana‟ and „Chenin blanc‟ 

has been tested and the procedure has been optimized (Figure 27, the graft site is 

circled in blue).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Chenin blanc and Chardonnay shoots grafted onto sterile Vv-AMP1 transgenic Sultana. A: 

Healthy Chenin blanc grafted onto Vv-AMP1 transgenic Sultana. B:  Healthy Chardonnay grafted onto 

Vv-AMP1 transgenic Sultana 

 

After 4 weeks of being kept in controlled incubator conditions, grafts were tested 

by trying to pull the two canes apart at the graft site. V. vinifera cvs „Chenin blanc‟ 

and „Chardonnay‟ scions were strongly attached to the transgenic rootstock and 

produced new buds after 4 weeks of incubation. Fifty V. vinifera cv „Sultana‟ X 

„Chenin blanc‟ plants were grafted with a success rate of 22% (11 out of 50 

successful grafts). Fifty-one V. vinifera cv „Sultana‟ X „Chardonnay‟ plants were 

grafted with a success rate of 25.5% (13 out of 51 successful grafts). As no AYp-

infected V. vinifera cv „Chardonnay‟ material could be established and maintained 

in vitro, we were unable to test if grafted Vv-AMP1 transgenic rootstock material 

could have an effect on AYp-infected scion material. 
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5.4 Discussion 

The current chapter determined the in planta efficacy of four AMPs against the grapevine 

pathogen AYp using an Agrobacterium-mediated transient expression system. For this 

purpose, four 35S vectors expressing Vv-AMP1, D4E1, SN1-Chardonnay and SN1-

Potato, respectively, were successfully constructed and confirmed by sequencing.  

 

To confirm the expression of Vv-AMP1 and SN1 in the transient expression system, 

western blots were performed on crude protein extracts from agro-infiltrated N. 

benthamiana leaves. As no antibody was available for the detection of D4E1, no 

expression confirmation was done in the current study. Western blot analysis carried out 

showed faint expression of Vv-AMP1 in N. benthamiana material. De Beer (2008) was 

unable to detect Vv-AMP1 expression in Vv-AMP1 transgenic N. benthamiana, even 

after enriching for cationic peptides from crude leaf extracts. N. benthamiana plants are 

known to express a peptide highly homologous to Vv-AMP1, resulting in the down-

regulation of both these peptides. This may result in the Vv-AMP1 concentration being 

too low for optimal Western blot detection. Another model plant should therefore be 

considered for future studies to determine the expression of Vv-AMP1. Moreover, 

peptide expression could potentially be boosted by adding a plant viral suppressor of 

RNA silencing in future agroinfiltration experiments (Stephan et al., 2011). Because of 

high costs for antibody production, only antibodies raised against SN1-Chardonnay were 

produced by a commercial company. The six antibodies which were designed based on 

three potential antigenic regions (Table 9) did not detect SN1-Chardonnay or SN1-Potato 

in infiltrated N. benthamiana material. The antibody based on the selected potential 

antigenic sequence KDKKNSKGQP, detected protein products larger than 40kDa in 

SN1-Chardonnay and SN1-Potato agro-infiltrated leaf tissues. These results were, 

however, also observed in the control infiltrations and were thus not of significance. The 

low concentration of the extracted proteins may have caused the expressed SN1-

Chardonnay concentration to be too low for Western blot detection. Even if the 

expression of SN1-Chardonnay, SN1-Potato, VvAMP1 and D4E1 was not conclusively 

confirmed, all AMP containing expression constructs were still tested in the transient 

expression assay for their efficiency against AYp. 
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To test the efficacy of the AMPs, the efficiency of the transient expression system was 

determined in V. vinifera and C. roseus plants using the 35S:GUSi construct. GUS 

expression was observed in both V. vinifera cvs „Chenin blanc‟ and „Chardonnay‟ leaf 

material. The results for GUS expression in grapevine material obtained during this 

study, were similar to previous observations by Santos-Rosa et al. (2008) and Visser 

(2011) using the same 35S expression vector. GUS expression in N. benthamiana leaf 

material is known to show more prominent expression throughout the agro-infiltrated leaf 

areas, when compared to GUS expression in grapevine material (Visser, 2011). As C. 

roseus is known to maintain phytoplasma infections under in vitro conditions (Ćurkovic-

Perica and Ježić, 2010; Ćurkovic Perica and Ŝeruga Musić, 2005) this plant host was 

tested for its suitability in the Agrobacterium-mediated transient expression system. This 

was done by using the GUS-marker gene. In infiltrated C. roseus leaf material, GUS 

expression was limited to tissue directly at the cutting sites, even after increasing the 

vacuum to 30min at 30kPa. Therefore, the applied infiltration procedure on C. roseus 

material was not optimal for the transient expression of AMPs. The leaf morphology of 

C. roseus might also not be favourable for infiltration of Agrobacterium. Additionally, 

efficiency of transient expression in specific plant species is largely dependent on 

virulence factors carried by the respective A. tumefaciens strain (Santos-Rosa et al., 

2008). Therefore, future studies should test different Agrobacterium strains for their 

efficiency in transient gene expression of C. roseus leaf material.  

 

This study aimed to test the effect of selected AMPs against AYp-infected in vitro 

grapevine plantlets, by using a transient expression system. It was earlier shown that 

transient gene expression was more consistent using in vitro-grown plants compared to 

greenhouse-grown plants (Santos-Rosa et al., 2008). Nevertheless, AYp-infected V, 

vinifera cv „Chardonnay‟ material could not be established and maintained in vitro during 

this study (discussed in Chapter 3). Therefore, the alternative AYp host plant species N. 

benthamiana was used to test the effect of AMPs against AYp.  

The in planta activity of Vv-AMP1, SN1-Chardonnay, SN1-Potato and D4E1 against 

AYp was tested in infected N. benthamiana material. A qPCR procedure was used to 

determine the difference in phytoplasma titres between two treatment groups, one 

expressing an AMP by a 35S expression vector, and the other infiltrated with an empty 

35S expression vector.  The result of the transient expression assay showed a decrease in 

phytoplasma titre in all AMP treatment groups. As the control infiltrations showed a 
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similar decrease of AYp titre in infiltrated material, no significant AYp titre reduction 

could be seen when compared to AMP infiltrated material. Initially the reduction in 

phytoplasma titre throughout the plant was believed to have resulted from stress caused 

by agro-infiltration. Recent studies have however shown that Agrobacterium sp. infection 

of plants, leads to an increase of indole-3-acetic acid (IAA) concentration in plant 

material (Bulgari et al., 2012). This exogenous application of IAA on phytoplasma-

infected periwinkle plants induced symptom remission, or completely eliminated the 

pathogen from the plant (Ćurković Perica, 2008). Due to the presence of A. tumefaciens, 

IAA concentrations might have increased in the AYp-infected host plant during the 

current study, leading to a decrease of phytoplasma titre throughout this plant. This may 

explain why a decrease in AYp titre was detected in both the AMP treatment groups and 

the control groups. Therefore, the transient expression method used during this study is 

not reliable, as no significant differences could be observed in AYp titre between AMP 

infiltrated material and material infiltrated with the control construct.  

 

Lastly, this chapter focused on grafting AYp-infected V. vinifera cv „Chardonnay‟ 

material onto Vv-AMP1 transgenic plant material, to observe the effect Vv-AMP1 may 

have on AYp. Potentially, Vv-AMP1 produced by the transgenic rootstock moves across 

the graft junction and could be able to confer resistance in the AYp-infected scions. 

Inducing resistance through grafting has been proven in several studies (Guan et al., 

2012; Jenns and Kuć, 1979; Tam and Mitter, 2010). As we were unable to establish and 

maintain AYp-infected grapevine material in vitro, this method of induction could not be 

tested. Once AYp-infected grapevine material can be maintained in vitro, future research 

should focus on the effect that Vv-AMP1 transgenic grapevine may have on AYp 

through in vitro grafting.   
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Chapter 6 

General conclusion 

 

 

In this study we validated the use of transient expression systems which express antimicrobial 

peptides (AMPs), to study the in planta effect of these peptides against the grapevine 

pathogen aster yellows phytoplasma (AYp). We focused on four AMPs: Vv-AMP1, D4E1, 

SN1 isolated from potato and SN1 isolated from grapevine. The Agrobacterium-mediated 

expression system used during the current study, was successfully used for the in planta 

expression of D4E1 against Agrobacterium vitis and Xylophilus ampelinus, resulting in a 

reduction of both bacterial titres (Visser et al., 2012). 

 

In the present work, no AYp-infected Vitis vinifera cv „Chardonnay‟ material could be 

established by micro-propagation, starting from AYp-infected vineyard-growing plants as 

source material. Difficulties to establish and maintain phytoplasma infections in micro-

propagated material has been observed in V. vinifera infected with flavescence dorée, in 

mulberry plants infected with mulberry dwarfism phytoplasma, in sugarcane infected with 

sugarcane yellows phytoplasma and in Lebanese almonds infected with „Candidatus P. 

phoenicium‟ (Gribaudo et al., 2007; Caudwell, 1961; Dai et al., 1997; Parmessur et al., 2002; 

Chalak et al., 2005). It is however no problem to maintain phytoplasmas through micro-

propagation in paulownia, key lime and apple plants, and success has also been observed in 

V. vinifera infected with bois noir (Gribaudo et al., 2007; Shekari et al., 2011; Jarausch et al., 

1996; Wang et al., 1994). Factors involved in the natural recovery of phytoplasma-infected 

plants are not fully understood yet, although it seems reasonable that the interactions between 

the pathogen, the host and the environment may play a key role, as well as the involvement of 

grapevine bacterial or fungal endophytes (Musetti et al., 2007; Bulgari et al., 2009). As no 

AYp-infected V. vinifera cv „Chardonnay‟ material could be established and maintained in 

vitro, the question arose whether plant material might have been taken from a part of the cane 

where phytoplasma titre was very low or totally absent. Therefore, the spatial distribution of 

AYp in five canes of an infected V. vinifera cv „Chardonnay‟ plant was investigated. Aster 

yellows phytoplasma was found predominantly in the nodes when compared to leaf material 

collected in the late season. Lastly, AYp infection was mostly detected in the upper, 

expanding parts of the cane when compared to lower sections. Further analysis on a bigger 

cohort of plants is needed to fully understand the spatial distribution of AYp throughout 
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grapevine, taking different seasons and cultivars into consideration. Transmission 

experiments using the insect vector Mgenia fuscovaria were successful in establishing AYp-

infected Nicotiana benthamiana and Catharanthus roseus plants. A quantitative real-time 

PCR assay, using SYBR-Green
®

 I chemistry, was optimized during the current study for the 

quantification of AYp. When the in planta effects of the four AMPs were screened by the 

qPCR, a significant reduction of AYp titre was observed when compared to the positive 

control. This reduction in pathogen titre was also observed in the control treatment group. 

Therefore, no significant AYp titre differences could be seen in the AMP treatment group 

when compared to the control treatments. It is known that bacterial endophytes have an 

influence on the natural recovery of phytoplasma-infected plant hosts. A recent study has 

shown that infection by Agrobacterium sp. can increase the indole-3-acetic acid (IAA) 

concentration in AYp-infected plant material (Bulgari et al., 2012). This increase in IAA is 

known to decrease the phytoplasma concentration in plants and possibly explains why a 

decrease in AYp titre for both treatment groups was observed. These results show that the 

Agrobacterium-mediated transient expression assay used during the current study, was 

possibly the wrong choice for the in planta screening of AMPs against the grapevine 

pathogen AYp. 

 

Phytoplasmas lack an outer membrane and cell wall, making this pathogen an ideal target for 

AMPs. Developing alternate transient expression systems to reliably determine the effect of 

AMPs on AYp is therefore of great importance in future studies. The use of transient 

expression systems has the potential to play an important role in future disease resistant 

studies and in the improvement of grapevine, which is an economically important crop 

worldwide. To our knowledge, this study is the first to report on the distribution of AYp in 

infected grapevine material and serves as a pilot study for future research. Such studies could 

help in understanding plant-phytoplasma relationships better and help in determining efficient 

sampling procedures for accurate diagnostics. 
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