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          ABSTRACT 

 

Unsaturated polyesters resins (UPRs) of maleic anhydride (MA), phthalic anhydride (PA) and 

propylene glycol (PG) were synthesized using the fusion polycondensation process for use in 

Multi-vesiculated Particles (MVPs). The UPRs were synthesized using different MA:PA mole 

ratios and process parameters, including heating rates, agitation speed, exotherm rate and 

maximum processing temperature. Design of Experiments (DoE) software (Design Expert 7) 

was employed to find the optimum experimental space, i.e. least amount of experiments, but 

covering all the factors. The variations in the formulation and process parameters had a 

significant effect on the molecular structure and physical properties of the UPRs. The 

molecular structure and physical properties of the UPRs was successfully determined using 

various techniques including viscometry, acid-base titration, Proton Nuclear Magnetic 

Resonance (
1
H NMR) spectroscopy, Size-Exclusion Chromatography (SEC), Fourier 

Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). 

Furthermore, the carboxyl and hydroxyl end-group concentrations of the UPRs were 

determined by derivatization of the groups with trichloroacetyl isocyanate (TAI) and analysis 

by 
1
H NMR. 

 

As a second part of the study, the effect of the above-mentioned monomer ratio and process 

factors of the UPRs, on the properties of the MVPs (produced from the UPRs), was 

investigated. Results showed that these factors had a significant effect on the particle size and 

degree of vesiculation of the MVPs. The degree of vesiculation of the MVPs was determined 

by Scanning Electron Microscopy (SEM). Attempts were also made to determine the relative 

hardness of the MVPs by AFM and microhardness testing to determine a relationship with 

UPRs properties (e.g. molecular weight, degree of unsaturation and chain branching). These 

techniques were however found to be unsuitable due to the physical nature of the MVPs. 

 

 

 

 

 

 

 

 

 



          OPSOMMING 

 

Onversadigde poliësters (OPs) van maleïensuuranhidried (MA), fataalsuuranhidried (PA) en 

propileen glikol (PD) is berei deur die fusie polikondensasie-proses vir gebruik in multi-

vesikulerende partikels (MVPs). Die OPs is berei deur gebruik te maak van verskillende 

MA:PA molverhoudings en reaksie faktore wat verhittingstempo‟s, roerspoed, eksoterm 

tempo en maksimum reaksie temperatuur, insluit. As gevolg van die groot hoeveelheid 

faktore is eksperimentontwerp sagteware (Design Expert 7) gebruik om die aantal 

eksperimente te verminder, maar ook waardevolle afleidings van die data te maak. Die 

verskille in die formulasie en reaksie faktore het „n merkwaardige effek op die molekulêre 

struktuur en fisiese eienskappe van die OPs gehad. Hierdie eienskappe is bepaal m.b.v. 

verskeie tegnieke, naamlik viskometrie, suur-basis titrasie, Proton Kern-Magnetiese 

Resonansie (
1
H KMR) spektroskopie, Grootte-Uitsluitings-Chromatografie (SEC), Fourier 

Transform Infrarooi (FTIR) spektroskopie en Differensiële Skandeerings Kalorimetrie (DSC). 

Die hidroksiel en karboksielgroep konsentrasies van die OPs is bepaal deur hul reaksie met 

trichloroasetiel-isosianaat (TAI) gevolg deur 
1
H KMR analise. 

 

In die tweede deel van hierdie studie is die invloed van bogenoemde faktore op die 

eienskappe van die MVPs ondersoek. Die resultate het getoon dat hierdie faktore „n 

merkwaardige effek op die partikel grootte en graad van “vesiculation” van die MVPs gehad 

het. Die graad van “vesiculation” van die MVPs is bepaal met behulp van Skandeer Elektron 

Mikroskopie (SEM). Pogings is ook gemaak om die relatiewe hardheid van die MVPs te 

bepaal deur middel van AFM en Mikro-hardheid toetsing. Dit is gedoen om die verhouding 

van die OPs eienskappe (molekulêre gewig, graad van onversadigheid en sy-kettings) vas te 

stel. Hierdie tegnieke is egter ongeskik bevind as gevolg van die inherente fisiese aard van die 

OPs. 
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         CHAPTER 1 

 

INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

 

Titanium dioxide (TiO2) is the primary opacifying pigment in the coatings industry. The 

cost of the TiO2 pigment have soared in the past few decades due to increased 

consumption in a variety of applications, therefore alternatives are attractive 
1
. It is 

known that opacity of a coating can be increased by incorporating microvoids or micro-

vesicles into a coating as they scatter light
1
. Micro-voids can be incorporated into a 

coating by introducing organic opacifying particles, such as the commercial products 

Multi-vesiculated particles® (MVPs) produced by Plascon and single-vesiculated 

particles like Ropaque Opaque Polymer® produced by Rohm & Haas. 

 

The present study focuses on MVPs which are dispersions of crosslinked 

(thermosetting) non-film forming particles in water. The particles are formed by the 

reaction of the unsaturated polyester resin (UPR) with reactive diluent styrene (STY) 

and diethylene triamine (DETA) in a continuous aqueous phase containing water, poly 

(vinyl alcohol) (PVOH) and hydroxyl ethyl cellulose (HEC), via suspension 

polymerization 
2
. These particles contain air voids which form by the reaction between 

the UPR and DETA 
2
. The voids/vesicles are filled with water in the wet-state. The 

water from the voids diffuses through the particle-wall upon drying, resulting in the air 

voids/vesicles. These vesicles have the ability to scatter light (and thus impart opacity 

and “hiding power” to a surface coating) due to the difference in the refractive index 

between the particle shell and the air voids 
1, 3

. 

 

MVPs are used in surface coating formulations as matting agents and can be used to 

partially replace the primary but expensive opacifying pigment, TiO2, depending on 

their particle size
1, 3

. Generally, two versions of MVPs are commercially available 

which have average particle sizes of 5µm (used in silk/satin finish paints) and 25µm 

(used in matt finish paints) 
1
. 

 

Numerous processing- and formulation factors affect the properties and performance of 

the MVPs. These include process parameters such as temperature, addition rate, mass 
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and heat transfer, agitation, stabilizer system, and reaction kinetics 
4-5

. The effect of the 

properties of the UPR is also a major factor affecting the properties of MVPs such as 

particle size and particle size distribution, viscosity, and degree of particle vesiculation 

4-5
. 

The UPR used in the synthesis of the MVPs is commercially produced by the 

polycondensation reaction between maleic anhydride (MA), phthalic anhydride (PA) 

and propylene glycol (PG) at 220°C. A reactive diluent (styrene) is added which reduce 

the viscosity of the resins to assist processing, and copolymerize with the resin in order 

to cure the material 
6
.  

 

1.2 Objectives 

 

Despite the commercial production of the particular UPR and the MVPs, little is 

understood about the effect of the UPR molecular structure on the properties of the 

MVPs (e.g. particle size or degree of vesiculation). It is known that the molecular 

structure and inherent properties of the UPRs (e.g. molecular weight and degree of 

chain branching) are greatly affected by the ratio of the monomers and process 

parameters such as reaction temperature, agitation speed and heating rate 
7-8

. The 

present study attempts to relate the UPR molecular structure with the MVP properties 

by synthesizing MVPs from UPRs with varying monomer ratios and process 

parameters. Due to the large number of factors affecting the properties of the UPRs, 

statistical Design of Experiments (DoE) is employed to reduce the number of 

experiments and isolate the most significant factors affecting the UPR and MVP 

properties. 

 

The major objectives of this study are as follows: 

1.2.1 Investigation of the effects of varying the MA:PA mole ratio and process 

parameters, e.g. heating rates, agitation speeds, etc. on the properties of the 

UPR, via DoE. 

1.2.2 Synthesis of MVPs using the different synthesized UPRs to investigate the 

effects of varying the PA: MA ratio and process parameters on the properties of 

the MVPs. 

1.2.3 Determination of the molecular composition/ structure of the UPR and relate to 

specific properties of MVPs. 
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         CHAPTER 2 

 

HISTORICAL AND THEORETICAL BACKGROUND 

 

2.1 Polycondensation: Polyesters 

 

2.1.1 Introduction 

 

Polyesters are a class of polymers that can be formulated to be hard or soft, brittle or 

flexible depending on the structure and can therefore be used in various applications. 

These applications include fibers ( e. g. polyethylene terephthalate (PET)) 
1-3

, coatings
4-

5
, plasticizers 

6
, adhesives 

5-6
, polyurethane based resins 

6
, films 

6
, laminates 

5
, industrial 

construction 
5
, insulation

5
, molding compounds 

5
, etc. Polyesters are used for these 

applications because of their low cost 
2-3, 5, 7

, ease of process 
7
, ease of combination with 

reinforcements 
2-3, 7

. In addition, these polymers cure rapidly without any volatile 

products 
2-3, 7-8

, have excellent dimensional stability 
7
, have high impact resistance 

5
, 

transparency 
5
 and good weathering resistance 

5
. 

 

Polyesters do however have disadvantages including poor adhesion, high cure shrinkage 

and inhibition of the curing reaction by air and certain fillers 
5
, as well as poor 

resistance to hydrolysis by water 
8
. 

 

History suggests that the first saturated polyesters were synthesized by Berzelius in 

1847 from tartaric acid and glycerine 
9-10

, Berthelot in 1853 from glycerol and 

camphoric acid 
11

, and Lorenzo in 1863 from ethylene glycol and succinic acid 
12

. UPRs 

were first prepared by Vorlander in 1894 who studied glycol maleates 
9
. 

 

In the 1920s, Wallace Carothers studied linear polyesters 
6, 8, 13

 among which were 

unsaturated derivatives from ethylene glycol and unsaturated carboxylic acids and 

anhydrides such as MA and fumaric acid. The resins synthesized by Carothers were 

either extremely viscous or solid 
14

. Carlton Ellis discovered that a diluent monomer 

such as styrene (STY) can be added to the UPR to produce a low viscosity mixture that 

will also copolymerize (under certain conditions) at rates much faster than that of the 

homopolymerization 
14

. In 1947, during the Second World War, styrenated polyesters 

were reinforced with glass fibers to yield high strength materials 
8, 14

.  
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The first major commercial polyesters were PET discovered by Whinfield and Dickson 

8, 15
 and polyadipates (for polyurethane resins) 

16
.  

 

Commercial polyester resins are classified as follows 
17

: 

 General-purpose orthophthalic resins – PA, MA and glycol resins. 

 Isophthalic resins – isophthalic acid (IPA), MA and glycol resins. 

 Dicyclopentadiene (DCPD)-capped resins. 

 

These polyesters are generally produced via four main processes: 

 Fusion process: In the fusion process, monomers are polymerized at very high 

temperatures. The main advantage is that the process is robust but the process is 

disadvantageous because great difficulties are experienced due to slow-down of 

polycondensation reaction in the final reaction phase due to increase in viscosity of 

reaction mixture 
18

. In addition, the use of esterification catalysts is not possible because 

the reaction is carried out at very high temperatures 
18

. Large excesses of acidic or 

alcoholic components are also not possible, since these components cannot be removed 

from the reaction mass in an economic manner 
18

. 

 

 Azeotropic solvent process: The azeotropic solvent process involves the addition 

of an aromatic hydrocarbon, e.g. xylene (concentration = 3 – 6 wt. %), to the reaction 

mixture during polymerization to increase the rate of water removal by increasing the 

vapor pressure of the volatile compounds 
18

. It also results in a decrease in the solubility 

of water in the system and a reduction of the overall viscosity to some extent 
18

. 

Aromatic hydrocarbons are water-insoluble, so that separation of the water phase from 

the organic phase occurs very rapidly and the organic phase can be recycled 

immediately to the reactor or to the distillation element above the reactor 
18

. The main 

advantages of the azeotropic solvent process include reducing the polyesterification 

time by 30-50 % and producing polyesters with improved color, and in some cases 

narrower molecular weight distribution 
18

. 

 

 Inert gas transport process: In the inert gas transport process, inert gas (usually 

nitrogen or carbon dioxide) is sparged through the reaction mass during the fusion 

process to aid water removal 
19-21

. Reduction in polyesterification is comparable to that 

of the azeotropic solvent process 
18

. The main disadvantage of the inert gas transport 

process is that other volatile components e.g. PA are also removed from the reaction 
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mass during this process 
18

. 

 

 Vacuum process: The vacuum process involves the dehydration of the reaction 

mass by reducing the interior pressure of the reactor 
18

. The main advantage of the 

vacuum process is the fact that water, the azeotropic component, and other volatile 

compounds are converted into the gas phase more readily 
18

. The vacuum process also 

results in an increase in the rate of acid-value reduction
18

. The rate at which the acid 

value decreases is proportional to the rate at which the reaction mass is dehydrated. The 

main disadvantage of vacuum polyesterification is the formation of additional molecular 

structures, which are not present when polyesterification is carried out at atmospheric 

pressure. 

 

2.1.2 Polycondensation 

 

Polyesters are condensation polymers with ester/ carboxylate repeating units in the main 

chain. Figure 2.1 shows the generalized reaction scheme of esterification, where N: is 

nucleophile eg. OR‟, where R‟ is an alkyl group. The rate of reaction is dependent on R, 

X and N and whether or not the reaction is catalyzed 
1, 22-25

. 

 

R X

O

+ N: R

X

N

O: O

R N
+ X:

 

Figure 2.1: Generalized reaction scheme of esterification (R = alkyl). 

 

Polyesters can be synthesized via a variety of pathways, these include: 

1. Self-condensation of ω-hydroxy acids 
8
 

R

O

OHOH

+ OH
R

OH

O
R

O
R O

R

O

O

O
R

 

Figure 2.2: Reaction scheme of polyesters via self-condensation of ω-hydroxy acids 

(R = alkyl). 
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2. Condensation of a diol with a dicarboxylic acid 
8
 

OH
R

OH
+ OH R1

OH

O

O

+
OH

R OH

OH

O
R

O

O

R1

O

O
R

O
OH

+ OH2

Figure 2.3: Reaction scheme of polyesters via condensation of diols with diacids (R, 

R1 = alkyl groups). 

 

3. Ester exchange 
8
 

R1

O R O
R1

O O

+

OH

R2 OH

OH

O R O

R2

O

OH

O O O

+ R1 OH

 

Figure 2.4: Reaction scheme of polyesters via ester exchange with a diol (R, R1, R2 

= alkyl groups). 

 

4. Ring opening of a lactone, e.g. of e-caprolactone with dihydroxy or 

trihydroxy initiators 
8
: 

O

O

R

O

R

O

 

Figure 2.5: Reaction scheme of polyesters via ring-opening of lactones (R = alkyl 

group). 

 

5. Alcoholysis of the acid chloride of a dicarboxylic acid with a polyhydroxy 

alcohol 
8
 

RCl

O

O

Cl

+
OH

R1
OH OH R O

R1
OH

OOO

 

Figure 2.6: Reaction scheme of polyesters via alcoholysis (R, R1 = alkyl groups). 
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UPRs, which are the focus of this study, are polymers obtained by the polycondensation 

reaction of a difunctional unsaturated acid or anhydride, e.g. MA and a difunctional 

saturated acid or anhydride, e.g. PA with a diol, e.g. propylene glycol (PG) 
14,26-28

 at 150 

- 280 °C, predominantly at atmospheric pressure due to the disadvantages of reduced 

pressure reactions (e.g. vacuum process) (see Section 2.1.1). Water is the main by-

product of the condensation reaction and is removed from the reaction to drive it to 

completion 
14, 26

. Figure 2.7 shows the formation of the UPR, poly (propylene fumarate 

phthalate). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Formation of the UPR, poly (propylene fumarate phthalate). 

 

As mentioned previously in Section 2.1.1, UPRs are usually diluted with a reactive 

diluent, e.g. styrene (STY) or methyl methacrylate (MMA) 
2, 18

. The STY or MMA 

reduces the viscosity of the resins to assist processing, and copolymerizes with the resin 

in order to cure the material 
17

.  

UPRs are produced by the formation of monoesters or ring-opening of the anhydrides in 

the first reaction step which reacts to form di-esters after the temperature is increased. 

These diesters react further through polycondensation to produce the final polyester and 

water as by-product. The reaction mechanisms throughout polyesterification depend on 

the reaction temperature, monomer ratio, catalyst system, and processing variables such 

as water removal and agitation 
27

. Detailed description of the reactions involved in the 

synthesis of UPRs, i.e. ring-opening or monoester formation, polyesterification and side 

reactions, are discussed in the Section 2.1.3. 

 

OH

OH

CH3

+

O

O

O +
O O

O 150 - 280 deg.C

CH3

OH

O

O

O O

CH3

O

COOHO

+ OH2

Propylene Glycol
Phthalic Anhydride

Maleic Anhydride

poly (propylene fumarate phthalate)
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2.1.3 Reactions 

 

2.1.3.1 Ring-opening (monoester formation) 

 

Monoesters are formed by the reaction between the anhydride (A) and the glycol (G) to 

form acid and alcohol end groups (COOH and OH) and an ester bridge with no water 

formation 
27-28

. Figure 2.8 shows the monoester formation during polyesterification. 

O O
O

+ OH

R

OH

OH

O

O

O R

OH

 

Figure 2.8: Reaction scheme of monoester formation (R = alkyl group). 

 

The monoester formation reaction normally occurs in the temperature range of             

60 – 130 °C. The kinetics of this reaction suggests that it is a second order reaction and 

irreversible. The formation of monoesters depends on the reactivities of the glycols 

towards the anhydrides, for example, ethylene glycol (EG) and PG are assumed to have 

the same reactivity towards ring-opening, but anhydrides have different reactivities. The 

rates at which MA react with EG and PG during ring-opening are equal, but different 

for when they react with PA 
29

. In most cases, monoester formation is followed by the 

main polyesterifcation reaction between the formed esters and acids and alcohols, with 

the elimination of water as by-product 
18

.  

 

2.1.3.2 Polyesterification 

 

The esterification reaction proceeds by reaction of a hydroxyl end-group of one 

molecule with a carboxylic acid end group to form an ester and water 
29

. Figure 2.9 

illustrates the polyesterification which occurs in the temperature range of 160 to 220 

°C
28

. A high degree of polyesterification is obtained upon efficient removal of water. 

The removal of water is, however, hampered due to an increase of its solubility in 

organic substances with increasing temperature 
18, 28

.  

 

 

 

 

Figure 2.9: Reaction scheme of polyesterification (R = alkyl group). 

O

O R

OH

O

OH

n + (n - 1) H2O

O

O R

OHO

OH

n
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A number of side-reactions take place during the polyesterification stage. These 

reactions are discussed in Section 2.1.3.3. 

 

2.1.3.3 Side reactions 

 

2.1.3.3.1 Isomerization 

 

Side reactions in the later stages of the polyesterification reaction prevent high degrees 

of polymerization 
30

. These side reactions are related to a cis-trans isomerization 
30

. 

Figure 2.10 illustrates the cis-trans isomerization reaction which involves the rapid 

isomerization of maleate (cis) to fumarate (trans) (from the MA component) at a 

reaction temperature of approximately 200 °C
17, 31

. 

O

OH O

OH

HH

OH

O

O

OH

H

H

Cis Trans  

Figure 2.10: Reaction scheme of cis-trans isomerization (maleate to fumarate). 

 

The kinetics suggest that the isomerization reaction is acid catalyzed and obeys a 

second-order rate law with respect to the acid. The activation energy of isomerization is 

63.2 kJ/mol 
32

.  

 

Furthermore, it is known that more than 90 % of the cis maleate (highly strained 

structure) isomerizes to the trans-fumarate isomer (less strained, lower energy level)
7, 14

. 

The fumarate isomer is also much more (about 20 times) reactive to the crosslinking 

reaction with styrene than the maleate isomer 
7, 14, 36-38

. The increased reactivity of the 

fumarate isomer is due to lesser “crowding” of chains in the trans-configuration 
17

, 

which leads to products with improved mechanical 
33-34

, (improved tensile strength 
35

 

greater hardness, high moduli or stiffness, lower elongation) 
36

 and thermal 
33-34

 

properties (higher heat distortion temperature, reduced gel and propagation time and 

higher exotherms) 
36

 and better chemical resistance 
35

.  
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Table 2.1 shows the effect of the glycol type on the percentage isomerization of the 

maleate groups UPRs. It can be seen from Table 2.1 that the structure of the glycol 

starting material has a marked influence on the maleate-fumarate isomerization 
30, 34

, i.e. 

the reaction is favored by secondary glycols e.g. PG 
14

. Primary glycols such as EG are 

less favorable 
14

. It has been shown experimentally that isomerization decreased by 

around 10-15 % when replacing ethylene glycol (EG) with 1,3-propylene glycol 
37

, due 

to the steric hindrance between hydroxyl groups, the glycol chain-length and the 

“intramolecular spatial interaction between ester groups” which are closely arranged 
38

.  

 

Isomerization is also affected by reaction temperature and time, i.e. greater 

isomerization is favored by high temperatures and long reaction times 
14, 34

. Other 

factors influencing isomerization include the nature of the starting materials 
39

, the 

concentration of catalyst (e.g. piperidine and morpholine) 
33, 40-41

 and stereochemical 

agents 
33

. The addition of aromatic acids (e.g. phthalic acid) also has a favorable effect 

on the degree of isomerization
33-34

. 

 

Table 2.1: Isomerization vs glycol type
#
 
32

. 

Glycol Type Isomerization, % 

1,2-propylene Secondary 96 

Ethylene Primary 64 

Diethylene Primary 53 

1,6-Hexamethylene Primary 36 

#
 Reaction Temperature constant = 180 ˚C 

 

Table 2.2 shows the effect of reaction temperature on the percentage of isomerization of 

the maleate groups of UPRs. It can be seen from Table 2.2 that the percentage of 

isomerization increases with an increase in the reaction temperature as in the case of 

poly (propylene glycol maleate) at temperatures ranging from 105-180 ˚C 
32

. 

 

Table 2.2: Isomerization vs reaction temperature 
32

. 

Reaction temperature (˚C) Isomerization to fumerate (%) 

105 34 

125 56 

140 75 

180 96 
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2.1.3.3.2 Double bond saturation (Ordelt reaction) 

 

The Ordelt reaction is the main side reaction in the polyesterification reaction. The 

Ordelt reaction involves the double bonds of the maleate or fumarate component 

becoming saturated by the addition of hydroxyl groups via electrophilic addition 

(hydroxyl-alkoxy addition) 
42-45

 from the glycol. The kinetics of this electrophilic 

addition were studied by Fradet and Marechal (1982) 
46

. It was shown that the reaction 

is acid catalyzed and follows a first order rate law with respect to the acid and the 

alcohol 
46

. 

 

The saturation reaction occurs during the isomerization of maleate to fumarate 
28

 and 

may reach 10-20 % 
29, 34

. Paci et. al. studied this saturation reaction of UPRs from 

diethylene glycol (DEG), PG, MA and PA 
47

. The saturation reaction effectively leads 

to branched structures (side chains) and deviation from the stoichiometry of the 

reactants and is known to affect the mechanical properties of the final cured polyester 

resin 
28, 34

. The side chains may consist of one diol molecule or more than one diol 

molecule or long ester chains 
28

. Theoretically the chain end number is 2 for linear 

chains, although in practice it is 2 plus the sum of chain ends due to short and long 

chain branches 
28

. 

 

The probability of monoester saturation by diol is greater than saturation by monoester. 

The greater probability of saturation by diol is due to the fact that hydroxyl group of the 

diol monomers is more reactive than that of the monoester 
28

. It has been shown that a 

polyesterification system only shows Ordelt saturation when the diol consists of more 

than two carbons 
48

. Figures 2.11 and 2.12 show the Ordelt saturation reactions via 

monoester and diol (short chain branches), and monoester and monoester (long chain 

branches), respectively. 

 

OH

O

O

O
R

OH + R

OH OH

OH

O O
R

OH

O

O
R

OH

Figure 2.11: Reaction scheme of the Ordelt saturation of monoester by diol (short 

chain branches) 
28

 (R = alkyl group). 
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OH

O

O

O

R

OH

+ OH

O

O

O

R

OH

OOH

O O

R

O

OH

O

O

O

R

OH

 

Figure 2.12: Reaction scheme of the Ordelt saturation of monoester by monoester 

(long chain branches) 
28

 (R = alkyl group). 

 

2.1.3.3.3 Transesterification 

 

Transesterification occurs when the polyester chains undergo alcoholysis or acidolysis 

by the hydroxyl or carboxyl groups of the diols and acids or the oligomers at high 

temperature. Transesterification results in a statistical distribution of repeating units and 

functional end-groups 
28

. Figure 2.13 illustrates the transesterification side reaction 

during polyesterification. 
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O

OH O

O R

O H

+
O

OH

O

O R

O H

OH

O

O

O R

O H

+
OH

O

O

O R

O H

O R

O

OH

O

O

O

OH

+ OH O

O

O

O
O

O
H

or

m

n

p
q

r s

 

Figure 2.13: Reaction scheme of transesterification side reaction during 

polyesterification (R = alkyl group). 

 

2.1.3.3.4 α-Diol dehydration 

 

Higher molar mass diols may be formed during α-diol dehydration such as DEG and 

dipropylene glycol from 1,2-ethanediol and 1,2-propanediol 
49

. The α-diol dehydration 

reaction also results in low boiling point compounds such as THF 
50

. The structure of 

the diol is effectively modified and the reactant ratio of diol to acid changes, although 

the linear structure is maintained 
28

. 

 

2.1.3.3.5 Formation of cyclic structures 

 

The formation of cyclic structures during polyesterification is heavily affected by the 

flexibility of the main chains. These structures can be formed in two major ways: 

The structures can be formed at the beginning of the polycondensation reaction when 

the functional end-groups of the same chain react (ring closure)
51

. 

The carboxylic end-group can react with the ester component of the same chain (back-

biting)
51

. 
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2.1.4 Curing of unsaturated polyester-styrene solution 

 

The crosslinking reaction of UPRs with STY has been extensively studied. Crosslinking 

takes place between the double bond of the unsaturated acid component (maleate or 

fumarate) in the polyester chains and the double bond of STY (reactive diluent) through 

a free-radical reaction 
2, 8-9, 14, 36, 52-55

.  

 

Molecularly, the UPR-STY solution may be described as “coiled polyester chains in 

styrene solution”. The copolymerization reaction commences by the decomposition of 

the initiator molecules to produce free radicals in the system. The UPR molecules are 

linked to the styrene molecules by the free radicals to create long chain molecules, 

which forms spherical-type structures as a result of the intra-molecular cross-linking 

between the maleate / fumarate groups of the pendant polyester chains 
52

. 

 

The crosslinking reaction normally takes place at room temperature 
7, 54

 with a 

combination of catalyst/initiator usually methyl-ethyl ketone peroxide (MEKP) and 

accelerator, usually cobalt napthenate (4 % solution in styrene) 
7
. During the accelerated 

crosslinking reaction, vinylene, STY-STY and polyester-vinylene-polyester-vinylene 

bonds can be formed 
52

. Linear polystyrene chains form at the unsaturation site of the 

polyester chain, which extends to the unsaturation site of another polyester chain, 

essentially crosslinking the polyester chains 
56

. The length of the polystyrene chains has 

been estimated to be 2 – 3 monomer units long 
57-58

 and the styrene to double bond ratio 

in general purpose resins are 2:3 
14

.  

 

The degree of crosslinking or crosslink density (controlled by the concentration of 

unsaturated acid –or glycol) 
5, 36

 and the length of these polystyrene chains (can be 

controlled by the type and concentration of the monomer, initiators, and catalyst) 
5
 

affect the properties of the cured resin
59

.  

Table 2.3 illustrates the calculation of the level of unsaturation in UPRs 
36

. It is 

generally accepted that higher levels of unsaturation results in a faster crosslinking 

reaction, although a decrease in the unsaturation level leads to increase in the impact 

resistance 
36

. 
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Table 2.3: Level of unsaturation of a UPR. 

Reactant mol Mass (kg) 

IPA 3.0 0.498 

MA 2.0 0.196 

PG 5.5 0.418 

Less water -8.0 -0.144 

Yield 2.5 0.968 

Unsaturation = 2.0 / 0.968 = 2.07 mol/kg 

 

UPRs can be crosslinked with styrene via suspension polymerizations resulting in a 

dispersion of micro-particles or beads in water 
60-61

. Depending on the production 

process, these particles may contain single or multiple air voids or vesicles, which are 

used as organic opacifying particles 
62

. These particles can be used as a partial 

replacement for pigments, extenders and additives in surface coatings 
62

. Suspension 

polymerization theory and the production of the vesiculated micro-particles are 

discussed in Section 2.2.  

 

 

2.2 Suspension polymerization 

 

2.2.1 Introduction 

 

Suspension polymerization, also called pearl or bead polymerization 
63

, refers to a 

system in which droplets of monomer (s) are suspended in a medium (usually water) by 

means of controlled agitation and a suspension stabilizer (suspending agent or 

protective colloid or dispersant) 
63

. These materials are usually water-soluble polymers, 

e.g. PVOH 
66-68

 or cellulose derivatives 
63-64

 and inorganic salts e.g. Talc.  

 

Suspension polymerization can be considered a bulk polymerization in small monomer 

droplets, typically 10-1000 µm in diameter 
63, 65

. Monomer-soluble initiators are used 
63, 

65-66
 and the reaction is carried out above room temperature but below the boiling point 

of the water phase 
65-66

. Under these conditions, the monomer droplets are converted to 

polymer particles 
66

. Suspension polymerization obeys the kinetics of solution 

polymerization if the particles are not too small and polymerization is initiated in the 

monomer phase 
63, 67

.  The kinetics becomes more like that of emulsion polymerization 
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if the particles become too small in size, so that polymerization is only initiated by a 

few free radicals in the particles 
63

. 

The size of the suspension particles, typically 50-200 µm in diameter, depends on the 

monomer type, suspending agent, and agitation in the reactor 
65

. Micro-suspension 

processes can yield particles in a range of 20-30 µm 
65

. 

 

The applications of products made by suspension polymerization includes, 

chromatographic separation media 
68

, ion-exchange resins 
65, 68

 supports for enzyme 

immobilization 
68

 and poly(vinyl chloride) (PVC) and poly (vinylidene chloride-co-

vinyl chloride) for molding applications 
65

. 

 

2.2.2 History 

 

Hofman and Delbruck developed the first suspension polymerization in 1909 
69-71

. In 

1931, Bauer and Lauth performed the first suspension polymerization which led to the 

formation of beads from acrylic monomers 
72

. Hohenstein and Mark, Trommsdorff and 

coworkers discussed the basic aspects of suspension polymerization in early papers 
73

. 

The first commercial resin obtained by suspension polymerization was poly (vinyl 

chloroacetate) 
74

.  

 

The major challenge experienced by Voss et. al. was coalescence of the droplets which 

led to large polymeric masses 
76

. Cooling of these polymeric masses to remove the heat 

of polymerization was difficult. Water-soluble polymers were used to overcome this 

problem 
75

. Other dispersants e.g. talc, barium sulfate, magnesium hydroxide and other 

materials were discovered in later years 
76

. 

 

2.2.3 Process of suspension polymerization 

 

2.2.3.1 General 

 

Suspension polymerization involves the mixing of two immiscible phases by 

mechanical agitation. Droplets are formed and their size is determined by the balance 

between breakup and coalescence between the droplets 
68, 77

. Suspension droplets are 

not thermodynamically stable, as these droplets do not remain dispersed for long time 

periods like in emulsion systems 
65

. Suspension droplets (50 – 200 µm) tend to coalesce 
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rapidly when agitation of the monomer phase is discontinued 
65

. The process of 

coalescence is controlled by the balance of agitation and stabilizer system 
65

. The size of 

the droplets are affected to a large degree by the properties of the continuous (water) 

and dispersed (oil/ monomer) phases 
68, 78

 like interfacial tension 
68, 78-79

, density 
78

 and 

viscosity 
78-79

, type and concentration of stabilizer 
68, 77-79

, monomer-phase hold-up 
68, 77

, 

impeller type and agitation speed 
68, 77-79

, apparatus design 
66

 and the polymerization 

kinetics 
68

.  

 

Arshady and Ledwith 
80

, Hopff et. al. 
81

, Kavarov and Babanov 
82

, Mersmann and 

Grossman 
83

, and Sculles 
84

 reported the relationship between particle size and the 

factors mentioned in the following equation: 

sms

dv

CvND

vRD
kd          (2.1) 

Where d = average particle size, k = parameters such as apparatus design, type of stirrer, 

self stabilization, etc., Dv = diameter of vessel, Ds = diameter of stirrer; R = volume 

ratio of the droplet phase to suspension medium; N = stirring speed (or power of 

mixing); vd = viscosity of the droplet phase; vm = viscosity of the suspension medium; ε 

= interfacial tension between the two immiscible phases; and Cs = stabilizer 

concentration.  

 

The agitation speed is the most convenient way to control the particle size among the 

parameters in Equation 2.1 
66

. Generally, the size of suspension polymerized particles 

ranges between 10 µm and 5 mm, although much smaller particles, which are 

unintended, are also present. Suspension based particles are known to display broad or 

bimodal particle size distributions 
68

. 

 

2.2.3.2 Droplet formation 

 

The formation and the maintenance of individual monomer droplets in the continuous 

phase throughout the polymerization process is the most important feature in suspension 

polymerization 
85

. The dispersion of the monomer droplets is usually achieved by 

mechanical agitation 
85

. The main problems in suspension polymerization are reduction 

of droplet coalescence and the formation of suspension droplets of equal sizes 
65

. 
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In order to form droplets, the monomer must be water-insoluble 
65

. Typically these 

monomers have a lower surface tension than water 
65

. Dispersion of these monomers in 

the continuous phase without surfactants or stabilizers results in an unstable dispersion 

as a result of the break-up-coalesce process of the monomer droplets 
65

. The monomer-

water system separates into the individual phases once agitation is discontinued 
65

. 

The coalescence of monomer droplets or agglomeration of particles varies during the 

reaction 
65

. The dispersion of monomer droplets is stable in the initial stages of 

polymerization 
65

. At conversion levels of about 20 %, agglomeration of the particles 

can occur if they collide, as the surfaces of the droplets (which contain polymer and 

monomer) become “tacky”/ sticky 
65

. The droplets become tacky due to the fact that the 

monomer is soluble in the polymer or the polymer is swollen by the monomer (e.g. PVC 

in vinyl chloride) 
65

. As polymerization continues, the particles become less “tacky”, 

resulting in reduced particle agglomeration 
65

. 

 

2.2.3.3 Droplet/ particle stabilization 

 

Reduction of the surface tension of the droplets and minimization of the force at which 

the droplets collide can prevent the large coagulation during the “tacky” stage 
64, 85

. The 

addition a small of amount droplet stabilizer and choosing the correct apparatus design 

85
, may prevent the coagulation. The droplet stabilizer is usually a water-insoluble 

inorganic salt (e.g. talc, bentonite, calcium sulfate, etc.) or an organic polymer (e.g. 

poly(vinyl pyrolidone) 
64, 85

, PVOH 
63-64, 85

, salts of acrylic acid polymers 
64

, cellulose 

ethers 
63-64

 and natural gums 
64

. The inorganic salt reduces coagulation of the droplets 

by forming a thin layer around the droplets 
85

. The organic polymer must be insoluble in 

the monomer phase and have low solubility in the water phase 
85

. Organic polymers can 

be removed more easily from the polymer bead particles, and are therefore preferred to 

inorganic salts 
85

. 

 

2.2.3.4 Particle size 

 

The process of coalescence – breakup/ dispersion in the droplets dictates the final 

particle size 
65, 68, 77-78

. The breakage of the droplets occurs as a result of the high-shear 

stresses at the impeller blades or pressure fluctuations and turbulence at the surface of 

the droplets 
78

. The “turbulent flow field” dictates the coalescence process 
78

. The 
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coalescence process is assumed to be negligible in dilute dispersions with very high 

stabilizer concentrations 
86-87

. 

 

Figure 2.14 shows the breakage and coalescence mechanisms involved in suspension 

polymerization 
88

. It can be seen from Figure 2.14(a) when drop breakage occurs as a 

result of “viscous shear forces”, the droplet becomes elongated to a threadlike form 
89

. 

The deformed droplet subsequently splits into two drops of equal size and small 

droplets due to the breakage of the fluid thread between the two fluid lumps 
78

. 

 

Figure 2.14(b) shows that erosive breakage of the droplets can also occur due to 

pressure and relative velocity fluctuations 
78

.  

 

Coalescence of droplets can occur by two different mechanisms 
78

. Coalescence can 

occur by collision of two droplets with the continuous phase being trapped initially 

between the drops. Figure 2.14(c) shows that the continuous phase is eventually drained 

from between the droplets by the attractive forces, resulting in complete drop 

coalescence 
86, 90

. 

 

Figure 2.14(d) shows that immediate coalescence can also occur when the turbulent 

energy of the collision between droplets is greater than that of the surface energy of the 

droplets 
91

. 
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Figure 2.14: Illustrative scheme of breakage and coalescence mechanisms involved 

in suspension polymerization 
88

. 

 

2.2.3.5 Particle morphology 

 

Suspension polymer particles or beads or pearls, may be hard or soft in nature. The 

relative hardness of the beads depend on the monomer composition and whether 

miscible diluents are present 
64

. The morphology of suspension polymerized particles is 

largely affected by the coalescence and dispersion of droplets before and during 

polymerization, the change in specific gravity between the monomer and the polymer 

phases, and the solubility of the monomer in the polymer 
65

. 

 

Suspension polymer particles have smooth surfaces and relatively uniform texture (non-

porous) when the polymer is soluble or swellable in its monomer (e.g. poly (styrene) 

dissolve in its own monomer and smooth and translucent beads are produced) 
64, 66

. On 

the other hand, porous beads with a rough surface are expected when the polymer is 

insoluble or not swellable in its monomer (e.g. PVC is insoluble in vinyl chloride) 
64, 66

. 

 

Suspension polymerized particles, or, “beads” can be made porous by the addition of 

inert diluents or porogens, to the monomer phase during polymerization. The porogen 
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diluents are generally alkanes, aromatics (e.g. toluene), alcohols and carboxylic acids 
64

. 

The porogen is extracted at the end of polymerization 
64, 77

. The size of the pores 

depends on the mutual solubility of monomer and diluents, chemical structure of the 

diluents, chemical nature of the monomer phase, type of stabilizer, and the 

concentration of the crosslinking monomer 
64

.  

 

Particles may also collapse inward (e.g. PVC particles 
67

) and can be attributed to “the 

change in the specific gravity between the monomer and the polymer” 
65

. If the density 

of the polymer is higher than that of the monomer and the shape of the particle is not 

maintained by crosslinking, then less volume must be occupied by the final polymer 

particle relative to the original monomer droplet 
65

. The collapse of the particle inwards 

relieves the strain induced by the difference in specific gravity between the polymer and 

monomer, when the surface area of the particle is fixed upon surface skin formation 
65

.  

 

2.2.4 Control of particle size in suspension polymerization 

 

2.2.4.1 Stabilizer 

 

The type and concentration of the stabilizer plays a vital role in the particle formation 

stage of suspension polymerization 
68, 78, 92

. The stabilizer must prevent aggregation or 

coagulation of the droplet-particle by maintaining complete coverage of the droplet-

particle surface by physical adsorption and/or adsorption by anchoring 
69, 84, 96

. 

 

As mentioned previously, the stabilizers used in suspension polymerization are usually 

either water-soluble polymeric materials or inorganic materials 
68

. Water-soluble 

stabilizers aids droplet break-up by dropping the interfacial tension 
64, 68

. One of the 

most commonly used water-soluble stabilizers is partially hydrolyzed poly (vinyl 

acetate) (PVA) or PVOH. The best grade of PVOH for use as a suspension stabilizer is 

one with a high degree of hydrolysis (80-90 %) and molecular weight in excess of 

70000 g/mol 
93

. The mentioned PVOH grade provides a thicker and stronger layer 

around the monomer droplet/particle and the tendency to be desorbed is less 
68

. The 

polymer particles coalesce and agglomerate forming lumps when PVOH grades with a 

lower degree of hydrolysis (less than 80 %) or lower molecular weight is used 
68

. On the 

other hand, unstable dispersions are obtained when a PVOH grade with a very high 

degree of hydrolysis (>90 %) is used 
68

. The ability of PVOH to stabilize suspensions is 
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also influenced by the stereochemistry, degree of branching and distribution of acetate 

and hydroxyl groups 
94

. Generally an increase in the concentration of the stabilizer, 

results in a more stable dispersion due to steric 
64, 68

 and Marangoni effects 
68

. An 

increase in the PVOH concentration also leads to smaller average droplet/ particle size 

with a narrow distribution 
68

. 

 

2.2.4.2 Agitation 

 

Droplets are formed when two immiscible phases are mixed 
68

. The size of the droplets 

is affected by the agitation speed 
68, 77

. The role of agitation is to balance coalescence/ 

dispersion of the droplets/particles, suspension of the droplets/ particles and the effects 

of heat transfer
65

. The rate at which droplets are broken-up is enhanced by an increase in 

the agitation speed, and therefore the formation of smaller droplets is therefore 

favored
68, 95

. However, there is a U-shaped relationship between the average droplet size 

and agitation speed as the droplet size may increase at very high agitation speeds due to 

an increase in the rate at which the droplets coalesce 
68

. The increased droplet 

coalescence can be explained by the large surface area of these droplets and the reduced 

effectiveness of the stabilizer molecules at the interface 
68

 at high agitation speeds. 

 

2.2.4.3 Monomer hold-up 

 

The kinetics of the reaction are affected by the solubility of the monomer in the water 

phase. When the monomer is insoluble in water (e.g. styrene) the kinetics of suspension 

polymerization is similar to that of bulk polymerization. In cases where the monomer is 

moderately to highly soluble in water, the kinetics deviate from that of bulk 

polymerization as some monomer molecules reside in the water phase, which means 

that monomer transfers from the water phase to replace monomer in the polymerizing 

droplets 
68

. 

 

2.2.4.4 Temperature 

 

Monomer and oil phase properties are affected by the variation in reaction 

temperature
68

. It is known that the rate of polymerization can be increased by two-to-

three fold by increasing the reaction temperature by 10 °C 
96

. 
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PVOH shows a decrease in its ability to stabilize droplets with increasing temperature
97

. 

An increase in the agitation speed, monomer hold-up and temperature leads to an 

increase in the ratio of final particle/droplet size D32,s/ D32,d 
95

. On the other hand, an 

increase in the stabilizer and initiator concentrations leads to a decrease in the final 

particle/ drop size ratio 
95

. 

 

2.2.5 Bead-suspension polymerization kinetics 

 

Suspension polymerizations are considered bulk polymerizations in the monomer 

droplets when the “initiators and chain transfer agents are soluble only in the monomer 

phase”. The particle size and type of stabilizer used in the suspension polymerization of 

beads do not greatly influence the rate of the bead-polymerization. The following 

reactions occur in the monomer phase: 

 

Initiation    2RI dk
     (2.2) 

 

     MRMR ik
   (2.3) 

 

Propagation    1n
pk

n MMM    (2.4) 

 

Chain transfer (to monomer)  MPMM n
m,trk

n    (2.5) 

 

Termination  

(Coupling)    nm
tck

nm PMM    (2.6) 

(Disproportionation)                     nm
tdk

PP    (2.7) 

 

Where I is the initiator, R* is the radical generated by dissociation of the initiator (with 

rate constant kd), M is the monomer concentration, Mn* is growing polymer chain 

having n repeat units, Pn is the polymer with n repeat units. The rate constants kd, ki, kp, 

ktr,m, ktc, and ktd refer to the rate equations for Eqs. 1-6 
65

. 
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2.3 Suspension polymerization – Vesiculated particles 

 

2.3.1 Introduction 

 

Titanium dioxide (TiO2) is the primary opacifying pigment in the coatings industry 
92

. 

The amount of opacity it imparts to a coating depends on its crystal and particle size, 

relative refractive index, and the degree of which it is dispersed in the dry film 
92

. The 

cost of the TiO2 pigment have soared in the past few decades due to increased 

consumption in a variety of applications (e.g. paints), therefore alternatives are 

attractive 
92

. The opacity of a coating can also be increased by incorporating microvoids 

into a coating as they also scatter light. Willkie produced a microvoid coating in 1923 

98
. As in the case of TiO2, the size, concentration, etc. of microvoids determines its 

light-scattering efficiency. Furthermore, combinations of microvoids and the TiO2 are 

effective in achieving and/ or increasing opacity of a coating 
62

. Microvoids increase 

opacity due to the air contained in the matrix which increases the refractive index 

difference between the pigment and the matrix 
92

. 

 

The major developments in the field of air-void technology include the Spindrift process 

which is used by Dulux Australia to commercially produce multi-vesiculated particles 

(MVPs) and single vesiculated particles (Ropaque opaque polymer) which are 

manufactured by Rohm & Haas Company. The processes involved in the production of 

these particles are discussed in Section 2.3.2. 

 

2.3.2 Single vesicle particles 

 

Single-void polymer micro-particles were successfully developed by the Rohm & Haas 

Company in the early 1980s. These micro-particles, commercially known as Ropaque 

opaque polymer, are produced via emulsion polymerization where water is encapsulated 

in the core of the polystyrene particles. Figure 2.15 shows the Ropaque particle with a 

polymer shell and the air void or vesicle. When these particles are dried, the water in the 

core irreversibly evaporates and is replaced with air. The resultant opaque particles have 

the ability to scatter light, which is due to the refractive index difference between the 

polymer shell and the air filled void. Table 2.4 shows the typical properties of 

Ropaque
61

. 
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Figure 2.15: Schematic diagram of the Ropaque opaque polymer particle
61

. 

 

Table 2.4: Typical properties of Ropaque 
61

. 

Property Value 

Solids content (%) 37 - 38 

Dry relative density 0.741 

Wet relative density 1.038 

Average particle size (µm) 0.4 

Viscosity (cPs) 100 

 

2.3.3 Multi-vesiculated particles (MVPs) 

 

In 1976, Kershaw filed a patent describing the process of producing vesiculated 

polymer beads with an average particle size of 10 µm 
99

. The vesicles or small air 

pockets/ bubbles encapsulated in the beads were approximately 0.7 µm in diameter 

which displaced 50 % of the total bead volume. A double emulsion technique, water-in-

oil-in-water emulsion, was used to prepare the beads. Water was dispersed in a mixture 

of UPR and STY, and this dispersion was added to an aqueous solution of polymeric 

stabilizers, eventually forming the water-in-oil-in water emulsion. The organic phase 

droplets were cured using a redox-free radical system to form the crosslinked polymer 

particles or beads. Interfacial tensions, phase volumes and agitation were optimized to 

control the bead and vesicle sizes 
99

. 
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Kershaw then used an aqueous TiO2 dispersion in the first stage of the process 
101

. In 

this way, the TiO2 pigment is introduced into the beads, which resulted in an increased 

scattering efficiency of this pigment. The beads can also be incorporated into emulsion 

paints without sacrificing the integrity of the paint film due to the presence of air. These 

pigmented vesiculated beads, marketed under the tradename Spindrift 
92, 100

, contain 

TiO2 pigment and vesicles (filled with water) encapsulated in crosslinked UPR-STY 

matrix. Figures 2.16.1 and 2.16.2 show the scanning electron micrographs of Spindrift 

pigmented vesiculated particles and the microvoids or vesicles (indicated by the holes or 

indentations), respectively 
100

. As with Ropaque opaque polymer, when the paint film is 

dried, water in the vesicles evaporates by diffusion through the matrix wall, due to the 

difference in the vapor pressure between that inside the vesicle and the surface of the 

paint film. When the difference in vapor pressure diminishes, the process is 

discontinued 
92

. During this process, micro-void cells are formed which can be 

monitored by an increase in the opacity of the paint film. Furthermore, no water diffuses 

back into the vesicles of the beads when water is applied to the paint film 
92

. 

 

 

Figure 2.16.1: Scanning electron 

micrograph of Spindrift particles 
100

. 

 

 

Figure 2.16.2: Scanning electron 

micrograph of a cross-section of a 

Spindrift particle 
100

. 



Chapter 2: Historical and theoretical background  

4 

The vesicles of the beads contain a high partial pressure of water, although it has become 

common practice to assume that the vesicles are filled with air when the paint is dry. 

Approximately 50 % of the dry bead volume is occupied by air 
92

. An increase in the 

volume of the voids can increase light-scattering power, but leads to a decrease in the 

mechanical strength of the beads 
92

. 

 

The average particle size of beads can be controlled and two versions are commercially 

available based on the size distributions, namely beads with average particle size of 5 μm 

(suitable for paints with silk/ satin finish) and 25 μm (suitable for paints with matt finish)
92

. 

 

In 2006, Engelbrecht et. al. filed a patent for the production of MVPs via a single-

emulsification process in the presence of a hydrophobic monomer, for the beneficial 

replacement of TiO2, extenders and additives 
101

. Vesiculated beads or MVPs are currently 

being manufactured and used in coatings by Plascon South Africa.  

 

The process steps for the manufacture of the MVPs are as follows: 

 Pigment particles are in a UPR-STY solution at high speed, 

 The UPR-STY mixture (with dispersed pigment) is dissolved in a suitable monomer 

(e.g. STY) in the presence of a water-soluble base, e.g. diethylene triamine (DETA), 

 The UPR-STY-DETA mixture is then added to a mixture of water, stabilizer, e.g. 

PVOH and thickener, e.g. hydroxyl ethyl cellulose (HEC), forming a stable emulsion 

of oil droplets in water, 

 A hydrophobic monomer, e.g. laurel methacrylate (LMA) is added to the emulsion, 

after which UPR is polymerized with the co-polymerizable monomer (e.g. STY), 

producing a dispersion of opaque cross-linked vesiculated particles in water. 

 

The proposed mechanisms for the vesicle formation and the crosslink-reaction between the 

UPR and STY are as follows: 
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2.3.3.1 Vesicle formation 

 

The addition of the polyamine, DETA, to the mixture of UPR, STY and LMA, results in 

the neutralization of the main and side-chain carboxylic groups of the polyester chains 

(Equation 2.8). 

 

R-COOH + R‟-NH2 → R-COO
-
 + R‟-NH3

+      
(2.8) 

 

The neutralization reaction in Equation 2.8 causes the negatively charged carboxylic 

groups of multiple polyester chains to orientate themselves toward the positively charged 

amine groups of DETA, forming stable macro-molecular structures, also referred to as 

micelles. Figure 2.17 shows that the formed micelles possess hydrophilic character due to 

the neutralized groups in the centre, i.e. when the organic phase is added to the aqueous 

phase (comprising of water, HEC, PVOH and a small amount of DETA), the organic phase 

becomes “soluble” in the aqueous phase. Water molecules from the aqueous phase can 

migrate or diffuse to the centre of the micelles, resulting in the aqueous voids or entrapped 

water molecules in the organic phase droplets. 

H3N
+

NH2

+

NH3

+

COO-
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Figure 2.17: Micelle formation by interaction between carboxyl groups of UPR and 

ammonium groups of DETA 
102

. 
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Gous 
102

 showed that the amount of DETA plays an important role, as an increased amount 

of amine added to the organic phase results in an increased amount of neutralized groups, 

which in turn may lead to increase in the amount of water molecules attracted to the 

organic phase droplets. The small amount of DETA added to the aqueous phase prevents 

the system from experiencing pH-shock when the organic phase is added. 

 

The steric stabilizer PVOH in the aqueous phase also plays an important role in the 

formation of vesicles of the MVPs. The PVOH chains orientate themselves so that the 

hydrophilic acetate groups are orientated toward the aqueous phase and hydrophobic 

groups are orientated toward the surface of the organic phase droplets, to ensure that no 

water molecules leave the micelles. 

 

2.3.3.2 Curing reaction of UPR and STY. 

 

Polymerization is initiated by the reaction of the organic peroxide cumene hydroperoxide 

(CHP) with ferrous sulphate (FeSO4.7H2O). The peroxide molecules react with the ferrous 

ions via single-electron transfer, leading to the splitting of the peroxide molecules into a 

stable anion and a reactive free radical 
103

. The initiation reaction believed to take place is 

illustrated by Equation 2.9. 

 

ROOH + Fe
2+

 → RO· + OH
-
 + Fe

3+
       (2.9) 

 

The free radicals formed by the reaction in Equation 2.9 initiate the crosslinking reaction 

between the fumarate (and maleate) double bonds of the UPR chains and STY, leading to 

the MVPs. Figure 2.18 shows the reaction between the UPR chains and styrene 
78

. 
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Figure 2.18: Crosslink-reaction of unsaturated polyester (UPR) and styrene (STY)
78

. 

 

Numerous factors influence the properties of the MVPs which include process factors such 

as temperature, addition rate, mass and heat transfer, agitation, stabilizer system, properties 

of the UPR and reaction kinetics 
102, 104

. One of the main objectives of this study is to 

determine the effect of the polyester chemistry on the properties of the MVPs. Due to the 

large number of factors that affect the properties of the UPR (and ultimately the properties 

of MVPs), statistical design of experiments was used to minimize the amount of 

experiments and draw meaningful conclusions from the results. Statistical design of 

experiments (DoE) is discussed in Section 3. 
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2.4 Design of Experiments (DoE) 

 

2.4.1 Introduction 

 

Statistical design was led by work of Sir Roland A. Fisher in the agricultural industry in the 

1920s and the early 1930s. Fisher introduced several experimental design principles which 

include factorial design and analysis of variance (ANOVA) concepts
107-109

. 

 

Statistical design, first applied in industry in the 1930s, was promoted by Box and Wilson 

(1951) with the development of the response surface methodology (RSM) 
105

. RSM can be 

defined as a group of mathematical and statistical techniques used to model and analyze 

results/data in which the response/property of interest is affected by numerous factors and 

the aim is to obtain an optimum response 
106

. RSM and other designs spread throughout 

several industries over the next 30 years. 

 

Statistical design for quality improvement began in the 1970s. The use of experimental 

design was expanded by Genichi Taguchi and others 
107-109

. Today, statistical design is 

applied in many areas including industries such as the chemical, automotive and electronics 

industry and the service sector of business and financial services 
106

. 

 

Statistical design of experiments refers to the process of planning a series of experiments so 

that appropriate data can be analyzed by statistical methods, to draw meaningful 

conclusions from the data 
106, 110

. Statistical and experimental design is applied in product 

and process development to improve process yields, and minimize variability, development 

time and overall cost 
106, 110

. 

 

Two approaches (apart from statistical design) exist when conducting an experiment: 

 Best-guess approach: The best-guess approach involves the selection and testing of 

an arbitrary combination of factors. The best-guess approach often works well when 

the experimenters have advanced technical or theoretical knowledge as well as 

considerable practical experience. The best guess approach does not always produce 
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the desired results and there is no guarantee that when an acceptable result is found, it 

is the best solution 
106

. 

 One-factor-at-a-time approach: In the one-factor-at-a-time approach, a starting point 

(or a baseline of set levels) is selected for each factor, whereby each factor is varied 

successively while the other factors are held constant. The disadvantage of the one-

factor-at-a-time approach is that no interaction effects are considered. An interaction 

is when one factor fails to reproduce an effect on the response at different levels of 

another factor 
106

. 

 

These approaches are always less efficient than statistical design methods. The most 

common statistical design is the factorial statistical design in which all combinations of 

levels of factors are varied together, instead of one at a time 
106

. Other statistical designs 

include factorial screening designs, response surface methods, mixture designs (the factors 

are the ingredients of a product (e.g. paint formulation) and the levels of the 

factors/ingredients are dependent on each other, i.e. the levels of ingredients add up to 100 

percent) 
106

 and combinations thereof.  

 

A screening design, which is used in the present study, is a fraction of a full design and is 

often employed first when a process or product is affected by a large number of factors, to 

determine the major factors that affect a particular response, the range of the factors and the 

curvature of the response. The major advantages of screening designs are the fact that a 

minimal number of experiments are required, and that information obtained can be used in 

subsequent designs to optimize or fine-tune a process or product. 
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         CHAPTER 3 

 

EXPERIMENTAL 

 

3.1 Introduction 

 

In this chapter the experimental methods used to synthesize and characterize a series of 

UPRs (poly (propylene fumarate phthalate)), which vary in terms of molecular structure, 

are described. UPRs with different molecular structures were obtained by polymerizing PG 

with varying MA:PA mole ratios and different processing parameters (e.g. heating rates, 

stirring rates and maximum temperatures). The resultant polymers were added to a mixture 

of STY and a polymerization inhibitor, tertiary butyl catechol (TBC). 

 

The resultant UPR-STY mixtures were then used in the synthesis of MVPs by suspension 

polymerization, to determine the effect of the UPR molecular structure on the properties 

(e.g. particle size and degree of vesiculation) of the MVPs.  

 

Due to the large number of factors that affect the molecular structure and properties of the 

UPR, DoE software (Design Expert 7) was employed. The Design Expert software was 

used to find the optimum experimental space, i.e. least amount of experiments, but 

covering all the factors. The software allows the results to be analyzed in a statistical 

manner, i.e. the percentage contribution of each factor can be determined and their 

interaction with other factors. 

 

The properties of the UPRs including molecular weight and molecular weight distribution, 

molecular structure (end-group concentration, % chain branching) and glass-transition 

temperature (Tg) was determined by SEC, NMR and DSC respectively. 

SEM was used to directly visualize the MVPs morphology, while SEM with microtoming 

was used to determine the degree of vesiculation of the MVPs. Laser diffraction was used 

to determine the particle size– and distributions of the MVPs. In the following sections the 
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formulations, experimental procedures and characterization of the UPRs and MVPs are 

described. 

 

3.2 Materials 

 

The UPRs were synthesized using maleic anhydride (MA), phthalic anhydride (PA), 

propylene glycol (PG), styrene (STY) and tertiary butyl catechol (TBC). The MVPs raw 

materials included the UPRs obtained from DoE series, STY, lauryl methacrylate (LMA), 

diethylene triamine (DETA), poly (vinyl alcohol) (PVOH) (10.7% solution in water), 

hydroxy ethyl cellulose (HEC) (2.5% solution in water), distilled water (DI), cumene 

hydroperoxide (CHP), ferrous sulphate (FeSO4.7H2O), anionic surfactant (sulfosuccinate 

based on a fatty alcohol ether, disodium salt), ammonia (12.5% solution in water), 

hydrophobically modified anionic thickener (50% solution in water), biocide based on 2-

bromo-2-nitropropandiol and zinc oxide (ZnO) dispersion. All the above mentioned raw 

materials were used as received from Plascon SA. 

 

Trichloroacetyl isocyanate (Aldrich 96%) and deuterated chloroform (CIL 99.8%) were 

used as received. 

 

3.3 UPR Synthesis 

 

PG, MA and PA are charged into a 1L reactor under continuous agitation. The mixture is 

heated from room temperature to 120 °C (heating rate 1), when the exotherm sets in. 

(nitrogen is blown into the reactor before heating starts for approximately 15 minutes to 

displace any oxygen, and then the N2 is blown throughout the whole process). A “slow” 

heating rate involves increasing the temperature of the heating mantle in increments of     

10 °C from room temperature to 120 °C, after which heating is discontinued when the 

exotherm sets in. A “fast” heating rate involves setting the heating mantle at 120 °C from 

room temperature. The maximum exotherm temperature is generally between                   

160 °C – 175 °C depending on heating rate 1.  
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The reactor is allowed to cool back to 160 °C for a slow exotherm rate, whilst a fast 

exotherm rate involves heating the reactor to the maximum reaction temperature as soon as 

the maximum exotherm temperature is reached.  

 

After the exotherm, the mixture is heated to the maximum reaction temperature, heating 

rate 2. Fast heating rate 2 means heating immediately after the maximum exotherm 

temperature is reached, whilst a slow heating rate 2 means setting the heating mantle in 

increments of 10 °C from the exotherm to the maximum reaction temperature. 

 

The distillation column temperature is approximately 100 °C while water and a small 

amount of glycol are continuously removed from the reaction by distillation. As soon as the 

column temperature subsides to below 60 °C (no water is condensed), vacuum is applied 

(average of 3 times for 1 minute) using a Vacuubrand MZ 2C diaphragm vacuum pump at 

9.0 mbar together with a 1L glass solvent vapor trap, to remove residual water and un-

reacted monomers from the system, effectively lowering the acid-value and increasing the 

viscosity of the polyester until the specifications are reached.  

 

The mixture is allowed to cool to approximately 160 °C, at which it is slowly discharged 

into a mixture of STY and TBC, maintaining the polyester/styrene mixture at 

approximately 60 °C. Once the discharge is complete, the mixture is allowed to cool to 

room temperature. A typical unsaturated polyester resin formulation is tabulated in Table 

3.1. 

 

Table 3.1: Standard UPR formulation. 

Reagents Weight (%) 

PG 30.74 

MA 26.19 

PA 13.18 

STY 27.25 

Additional STY 2.62 

TBC 2.00×10
-3
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3.4 Design of Experiments (DoE) 

A Combined response surface and mixture design was chosen to determine the effects of 

the formulation and processing factors on the properties of the resins. The Design Expert 7 

software determined that 27 runs (which include multiple replicate runs) were sufficient to 

evaluate the effects of the tested factors. The following factors were varied: 

 

Formulation factors 

 MA:PA mole ratio 

 

Process factors 

 Heating rates 

 Exotherm time/ rate 

 Maximum temperature 

 Agitation speed. 

 

Table 3.2 illustrates the experimental design space used to synthesize the resins. Each 

factor was varied over three levels (lower, intermediate and high level) 

 

Table 3.2: Formulation and process factors for UPR synthesis. 

Factor Lower level 

(-1) 

Intermediate 

(0) 

High level 

(+1) 

% Phthalic anhydride 9.24 13.18 17.12 

% Maleic anhydride 22.25 26.19 30.13 

Average heating rate 1 (±18 °C to 120 °C) (°C/min) 3.20 6.20 5.90 

Exotherm rate (120 °C to max. exotherm temp) slow - fast 

Average heating rate 2 (±160 °C to max.) (°C/min) 1.00 1.20 1.30 

Maximum temperature (°C) 240 250 260 

Agitation speed (rpm) 300 400 500 

Notes: %Propylene glycol is kept constant at 30.74%. 

  All process parameters are affected by the formulation. 

  Exotherm rate depends heavily on heating rate 1. 
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The resultant UPR samples were used in the synthesis of Multi-vesiculated particles 

(MVPs) via suspension polymerization to determine the effect of UPR structure and 

properties on those of the MVPs. 

 

3.5 MVP synthesis 

The unsaturated polyester resin – styrene (UPR-STY) mixture is mixed with STY, followed 

by LMA and DETA. The LMA acts as a hydrophobic monomer and DETA is added to 

neutralize the main and side-chain carboxylic groups of the UPR and to increase the 

solubility of water of the mixture 
1-2

. The UPR-STY-LMA-DETA mixture ( hereafter the 

organic phase) is added to an aqueous phase made up of DI water, PVOH and HEC 

solutions and DETA over ± 10 minutes at room temperature (±23 °C) and whilst stirring at 

330 rpm in a 2L round-bottom metal reactor suspended in a temperature-controlled water-

bath (Dispersion stage). The PVOH acts as a polymeric stabilizer to ensure a stable oil-in-

water emulsion and the HEC is added to increase the viscosity of the aqueous phase and 

prevent settling of the oil droplets 
1-2

. 

 

The dispersion stage is followed by the “Emulsification stage” (± 20 minutes) where the 

organic phase droplets undergo the break-up-coalescence process to form stable droplet 

sizes and aqueous voids are formed in the droplets. 

 

The crosslinking reaction of the UPR and STY is initiated by the addition of free-radical 

initiator CHP and catalyzed with FeSO4.7H2O. After the initiation stage, the stirring is 

discontinued for 30 minutes.  

 

After the crosslinking reaction, the system is stirred again and heated up to 50 °C in the 

water-bath. After 60 minutes at 50 °C, the system is heated to 60 °C and kept at that 

temperature for 3 hours. The suspension is left to cool to room temperature over-night after 

which it is post treated with the surfactant, ammonia, anionic thickener, biocide and ZnO 

dispersion. Table 3.3 shows a typical MVPs formulation and the relative weight 

percentages of the reagents. 
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Table 3.3: Standard MVPs formulation. 

Reagents Weight (%) 

UPR – STY mixture 15.07 

STY 5.79 

LMA 0.64 

DETA 0.21 

Water 51.26 

PVOH solution (10.7%) 13.08 

HEC solution (2.5%) 10.30 

DETA 0.06 

Water 0.21 

FeSO4.7H2O 0.01 

CHP 0.12 

Anionic surfactant 0.99 

Water 0.19 

25 % Ammonia solution 0.19 

Water 0.19 

Anionic thickener 0.19 

Biocide 0.24 

ZnO dispersion 0.38 

 

 

3.6 Analytical techniques and measurements 

Various analytical techniques and measurements were used to characterize both the UPRs 

(no styrene) and MVPs. All analytical methods and the purpose of using them are listed in 

sections 3.6.1 – 3.6.11. 

 

3.6.1 Size-Exclusion Chromatography 

Size-Exclusion Chromatography (SEC) was used to determine the molecular weight and 

molecular weight distributions of the UPRs. The UPR was dried at ambient temperature 

and dissolved in HPLC-grade THF (1 mg/mL) for 24 h before being filtered through a     
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0.45 µm nylon filter. The SEC system used for the analyses consisted of a Waters 717 auto-

sampler, Waters 600E system controller (run by Breeze software), Waters 610 fluid unit 

and a Waters 410 differential refractometer at 35 °C. THF (HPLC-grade) spurged with IR-

grade helium was used as an eluent at a flow rate of 1 mL/min. Two PLgel 5-µm mixed-C 

columns and a pre-column PLgel 5-µm guard were used. The system was calibrated with 

narrow polystyrene standards ranging from 800 to 2 × 10
6
 g. mol

-1
. All SEC results are 

given relative to polystyrene standards. 

 

3.6.2 Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry was used to determine the glass-transition temperatures 

(Tg) of the UPRs. A Perkin Elmer Pyris 1 DSC was used and the sample (±12 mg) was 

heated under a nitrogen atmosphere (gas flow = 20 mL/min) from -50 °C to 50 °C at a 

heating rate of 20 °C/min. 

 

3.6.3 Nuclear Magnetic Resonance (NMR) spectroscopy 

Proton Nuclear Magnetic Resonance Spectroscopy (
1
H NMR) was used to resolve the 

molecular structure of the UPRs. Dried UPR was dissolved in deuterated chloroform (with 

TMS as reference) (300 mg/mL) for 24h. The 
1
H NMR analyses were performed on Varian 

VXR 300MHz Spectrometers (300 and 400 MHz). 

 

3.6.4 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) was used to determine the particle size and 

morphologies of the MVPs. A Leo® 1430VP Scanning electron microscope was used to 

obtain images of the MVPs at 7kV at a working distance of ±10 mm, using secondary 

electron imaging. 

The samples were prepared by drying the MVPs at ambient temperature, placing the dried 

powder on SEM sample stubs and gold-plating the stubs.  
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3.6.5 Microtoming 

Microtoming in conjunction with SEM was done to determine the internal morphology 

(degree of vesiculation) of the MVPs. Dried MVPs were mixed with a crosslinkable resin 

and dried in an oven at 50 °C for 24h. Thin layers (±0.1 µm thickness) of the cured resin-

MVPs were sliced off or microtomed using a diamond blade, until the sliced/ cut MVPs 

were exposed at the resin surface. These microtomed resins were placed on stubs and the 

internal structure of the MVPs viewed via SEM. 

 

3.6.6 Laser Diffraction (LD) 

Laser Diffraction (LD) was used to determine the particle size and distribution of the 

MVPs. A Sympatec SUCELL HELOS/BF-OM laser diffraction sensor was used for the 

particle size and distribution analysis. The HELOS is equipped with a high precision 

optical bench, 31 channel multi-element detector and auto-alignment unit (auto-focus), on 

board data acquisition electronics, automatic laser beam diameter adaptation, 5 mW HeNe-

laser with fibre optic light transmission and a high speed fibre optic data communication 

interface. 

 

The method requires that a small amount of sample material is added in a well chosen 

liquid into the basin of the SUCELL. The resulting suspension or emulsion is homogenised 

by a speed-controllable, double-stirrer and dispersed by ultrasonication. It is transported 

through a cuvette with the help of a peristaltic pump. The suspension is examined by the 

HELOS laser beam. The SUCELL is a universal wet dispersion system which can detect 

particle sizes from 0.1 μm to 875 μm, representing ranges R1 up to R5 of the HELOS 

system. The R3 lens was used as it can detect particle sizes in the range of 0.5 to 175 µm. 

All operations are controlled and monitored by the WINDOX software via an RS485 

interface.  

 

3.6.7 Acid-value 

The main chain and unreacted carboxylic acid concentration (acid-value) of the UPR-STY 

mixtures was determined visually by acid-base titration using a 4.95 N potassium 
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hydroxide (KOH) in a methanol solution and phenolphthalein as indicator. The acid-value 

(mg KOH per gram UPR) was calculated using the following equation: 

 

100

S
W

NV
valueAcid

STYUPR
STYUPR

KOH       (3.1) 

Where: 

VKOH  : Volume (mL) of KOH solution used in titration 

N  : Normality of KOH solution 

WUPR-STY : Weight (g) of UPR-STY mixture sample 

SUPR-STY : Solids content of UPR-STY mixture 

 

3.6.8 Solids content 

The solids content of the UPR-STY mixture was determined by drying ~ 1 g of the mixture 

at 105 °C in an oven for 2 h. The solids content of the MVPs dispersion was determined by 

drying ~ 1.5 g of the dispersion at 180 °C in a Mettler Toledo HR73 Halogen Moisture 

Analyzer for 11 min 40 sec. The solids content of both the UPR-STY mixture and the MVP 

dispersion was calculated using the following equation: 

 

1

21

w

ww
Content Solids         (3.2) 

 

where w1 and w2 are the sample weight before and after drying respectively. 

 

3.6.9 Viscosity 

Viscosity: The viscosities of the UPR-STY mixtures and MVP dispersions were 

determined at ambient temperature using a Brookfield DV-II+ Pro Viscometer with a 

LVDV-II+ Pro using spindles #3 and #4, at 50 and 30rpm respectively. 
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3.6.10 Contrast ratio (opacity) 

The contrast ratio or opacity of material is a measure of the dry hiding power (or ability to 

completely cover/ obliterate a substrate) it possesses. The contrast ratio of a paint/ coating 

is usually determined by the reflectance ratio of a dried film applied to a black substrate 

relative to a white substrate: 

surface  whiteofindex   reflective

surfaceblack  ofindex   reflective
Opacity       (3.3) 

 

Where opacity = 1, constitutes complete hiding/ obliteration of the substrate by the test 

material. 

 

Test samples were prepared by drawing a thin film (200 µm) of the MVP dispersion, using 

an automatic film applicator, onto an opacity chart consisting of black and white colored 

surface. The thin film is left to dry in an oven at 50 °C for 15 minutes. 

A reflectometer (at a 45° angle) was used to determine the reflective indices of the black 

and white colored surfaces, whereafter Equation 3.3 was used to determine the contrast 

ratio or opacity imparted by the MVPs. 

 

3.6.11 Hardness of MVPs 

The hardness of the MVPs was determined using two techniques, namely: 

 Microhardness: The UHL VMH-002 microhardness tester was used to determine the 

hardness of MVPs at 25 °C, with indentation load of 0.01 N, indentation speed of       

25 μm/s and dwell time of 15 seconds. 

 

The samples were prepared by sprinkling oven-dried MVPs onto a disk-shaped mold of 

semi-crosslinked alkyd resin, after which the resin was allowed to cure completely in 

an oven at 50 °C for 24h. The test was performed on the cured alkyd resin with dried 

MVPs exposed at the surface, to ensure that the indenter is in direct contact with the 

MVPs and to ensure that the MVPs remain stationary when they are indented. The 

microhardness of the MVPs would be equal to the sum of the hardness values of the 

MVPs embedded in the resin, minus the hardness value of the resin itself. 
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 Atomic Force Microscopy (AFM): The Veeco Multimode AFM in contact mode was 

the second technique used to determine the hardness of the MVPs. 

 

The test samples were prepared by sprinkling oven-dried MVPs on a thin layer semi-

dry PVOH on a glass plate, after which the PVOH was allowed to dry completely. The 

MVPs were sprinkled onto the PVOH to ensure that the MVPs are directly exposed to 

the cantilever tip of the AFM, and to ensure that the MVPs remain stationary when the 

cantilever moves across them. 
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         CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Design of Experiments (DoE) analysis 

 

4.1.1 Introduction 

 

A series of UPRs with varying chemical composition were synthesized by varying the 

process parameters as well as the MA:PA mole ratio. Due to the large number of 

variables that affect the polymer structure, statistical design of experiments (DoE) was 

used to minimize the number of experiments, but still allow for meaningful conclusions 

to be drawn from the data. Design Expert 7 software was used to generate a combined 

response surface and mixture design which is sufficient to determine the effects of the 

MA:PA mole ratio and processing factors on the properties of the UPRs. A total of 27 

UPRs were synthesized to evaluate the effects of the factors. These UPRs (in styrene) 

were subsequently used to synthesize MVPs to indirectly determine the effect of the 

MA:PA mole ratio and processing factors in the synthesis of the UPRs on the particle 

size and particle size distribution on the MVPs. 

 

4.1.2 Results and discussion – UPRs 

 

The effects of the following parameters were considered in the DoE:  

A: %PA, 

B: %MA, 

C: Heating rate 1 (°C/min), 

D: Maximum process temperature (°C), 

E: Heating rate 2 (°C/min), 

F: Agitation speed (rpm), 

G: Exotherm rate (°C/min). 
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These parameters were evaluated to determine the effect on the Brookfield viscosity, 

acid-value, number and weight average molecular weights (Mn and Mw) and 

polydispersity index (PDI) of the UPRs. These properties were investigated as it is 

known that the viscosity of UPRs, which is a function of the polymer molecular weight 

and PDI (degree of polymerization, DPn) and degree of chain branching, affects the 

droplet/particle formation during the suspension polymerization (Section 2.2.3) of the 

MVPs. The acid-value is also of great importance due to the interaction between the 

carboxylic groups of the UPRs with the base, DETA, resulting in the water-filled vesicles 

of the MVPs during the suspension polymerization (see Section 2.3.3.1).  

 

Table 4.1 shows the experimental design space and summarizes the results/ properties of 

the 27 UPRs. These results were entered into the Design Expert 7 program to determine 

the significance of the parameters on the specific properties of the UPRs, via analysis of 

variance (ANOVA). 

 

A factor (or interaction between factors) with a p-value (Prob > F) less than 0.05, 

indicates that the factor is significant at a 95 % and higher confidence level. Futhermore, 

the lower the p-value the more significant the particular factor is. Factors or interactions 

with p-values more than 0.05 indicate that the model terms are significant at much lower 

confidence levels. 
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Table 4.1: Experimental design space for UPR synthesis. 

RUN PA 

(%) 

MA 

(%) 

Heating 

rate 1 

Heating 

rate 2 

Exotherm 

rate 

Maximum 

temperature 

(°C) 

Agitation 

speed 

(rpm) 

Brookfield 

viscosity 

(cPs) 

Acid-value 

(mgKOH/g) 

Mn 

(Dalton) 

Mw 

(Dalton) 

PDI 

1 9.24 30.13 -1 -1 fast 260 300 1612 40.37 1172 4751 4.05 

2 13.18 26.19 1 1 slow 240 300 1370 38.16 1407 3153 2.24 

3 13.18 26.19 0 0 fast 250 400 1735 25.31 1329 6247 4.70 

4 17.12 22.25 1 1 slow 260 300 2000 32.91 1025 3046 2.97 

5 13.18 26.19 1 1 fast 251 500 3311 25.94 1596 17068 10.69 

6 17.12 22.25 -1 1 slow 240 500 1509 28.15 1351 4979 3.68 

7 13.18 26.19 1 -1 fast 260 300 2199 27.59 1319 7661 5.81 

8 11.21 28.16 -0.7 -1 slow 257 475 1507 27.56 1309 6431 4.91 

9 13.18 26.19 -1 1 slow 260 500 830.2 28.65 1270 3716 2.92 

10 17.12 22.25 1 -1 slow 260 500 1430 20.13 1547 5552 3.59 

11 13.18 26.19 0 0 fast 250 400 1728 23.44 1230 4956 4.03 

12 9.24 30.13 -1 1 slow 260 500 1452 29.08 1102 3849 3.49 

13 17.12 22.25 -1 -1 slow 260 300 746.2 32.07 1055 3079 2.92 

14 17.12 22.25 1 -1 fast 240 300 1111 32.46 1015 2896 2.85 

15 13.18 26.19 -1 1 fast 247 300 1564 35.18 1253 4715 3.76 
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RUN PA 

(%) 

MA 

(%) 

Heating 

rate 1 

Heating 

rate 2 

Exotherm 

rate 

Maximum 

temperature 

(°C) 

Agitation 

speed 

(rpm) 

Brookfield 

viscosity 

(cPs) 

Acid-value 

(mgKOH/g) 

Mn 

(Dalton) 

Mw 

(Dalton) 

PDI 

16 17.12 22.25 -1 1 slow 240 500 1668 24.31 1141 4156 3.64 

17 9.24 30.13 -1 -1 slow 240 300 1207 33.07 1093 3476 3.18 

18 13.18 26.19 0 0 slow 250 400 1365 27.43 1423 3682 2.59 

19 13.18 26.190 0 0 slow 250 400 1658 30.17 1149 4026 3.50 

20 13.18 26.19 -1 -1 fast 240 500 1651 24.09 1101 4279 3.89 

21 17.12 22.25 -1 1 fast 260 500 1821 19.28 1232 5497 4.46 

22 9.24 30.13 1 -1 fast 240 500 2318 29.16 1158 4489 3.88 

23 9.24 30.13 1 -1 slow 260 300 5075 31.99 1146 4482 3.91 

24 9.24 30.13 0.04 -0.2 fast 249 384 1879 39.1 1388 5384 3.88 

25 17.12 22.25 -1 1 fast 260 500 1908 23.47 1210 4970 4.11 

26 17.12 22.25 1 -1 fast 240 300 1207 28.92 1246 3288 2.64 

27 9.24 30.13 1 1 fast 240 300 1411 47.64 992 2659 2.68 
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4.1.2.1 Brookfield viscosity 

 

Table 4.1 shows the Brookfield viscosity data determined for the UPR-STY mixtures. 

The results show that the values ranged from ± 700 cPs to ± 5000 cPs (mean = 1732.46 

cPs ± 332.49). Table 4.2 shows the significant factors (and interaction between factors) 

affecting the Brookfield viscosity of the UPR-STY mixtures. 

 

Table 4.2: Significant factors affecting the Brookfield viscosity of UPR-STY 

mixtures. 

Factor Significance (p-value: Prob > F) 

AB 0.0029 

AE 0.0295 

BC < 0.0001 

BD 0.0007 

BE 0.0058 

BG 0.0062 

ABD 0.0322 

ABG 0.0023 

 

Table 4.2 shows that the most significant factors and interactions that affect the 

Brookfield viscosity of the UPR-STY mixtures are AB which is the MA:PA mole ratio, 

BC and BD, i.e. interactions between %MA and heating rate 1; and maximum process 

temperature. 

 

Figure 4.1 shows a two component mix graph where the effect of varying the MA:PA 

mole ratio on the Brookfield viscosity of the UPRs or UPR-STY mixtures at fixed 

process parameters is presented. In other words, all other parameters are at their 

intermediate levels values given in Table 3.2. Figure 4.1 clearly shows that an increase in 

the %MA leads to an increased viscosity of the UPR-STY mixtures. The increased 

viscosity of the UPR-STY mixtures can be explained by the fact that the maleic groups in 

the UPR chains undergo a side reaction with PG (Ordelt reaction) leading to chain 
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branches, which influence the viscosity. An increase in the degree of unsaturation 

(maleic groups) in the UPR chains leads to an increase in the probability of the Ordelt 

reaction which in turn leads an increase in the degree of branching, leading to an increase 

in the viscosity of the UPR-STY mixtures. However, the DB-values of the UPRs are also 

a function of the degree of polymerization (DPn), i.e. number-average and weight-

average molecular weights (Mn and Mw) and the polydispersity index (PDI). The 

relationships between the viscosity and molecular weight and molecular weight 

distribution of the UPRs are discussed in sections 4.1.2.3 and 4.1.2.4. 
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Figure 4.1: Two component mix graph for the formulation factors affecting the 

viscosity of the UPR-STY mixtures. 
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Figure 4.2 shows a “contour mix-process” graph where the interaction effect of %MA 

and heating rate 1 (BC) on the Brookfield viscosity of the UPR-STY mixtures, is 

presented.  

It should be noted that a contour mix-process graph illustrates the effect of varying the 

MA:PA mole ratio together with a single process parameter (e.g. heating rate 1), on the 

properties of the UPRs and UPR-STY mixtures. All other parameters are kept constant at 

the default values given by the Intermediate level (0) in Table 3.2 with a “slow” 

exotherm rate (unless stated otherwise). An interaction between factors increases the 

value of a particular property following the color spectrum from blue to red, i.e. a blue 

region in the contour plot represents a low value of a particular property, whereas a red 

region represents a high value of that particular property. The values of a given property 

are displayed on the contours. 

 

Figure 4.2 shows that an increase in the %MA and heating rate 1 leads to an increase in 

the Brookfield viscosity of the UPR-STY mixtures. It can also be seen that a slow 

heating rate 1 together with low percentages of MA leads to very low Brookfield 

viscosities of the UPR-STY mixtures. Heating rate 1 influences the melting and ring-

opening of MA (by reaction with PG), i.e. a fast heating rate 1 (20 – 120 °C) allows for 

improved ring-opening of MA. Thus, a higher percentage MA is incorporated in the UPR 

chains, leading to an improved probability of Ordelt branching and an increase in the 

viscosities of the UPR-STY mixtures.  
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Figure 4.2: Contour mix-process graph of the interaction effect (BC) of heating rate 

1 and %MA in MA:PA mole ratio on the Brookfield viscosity of UPR-STY 

mixtures. 

 

Figure 4.3 shows a contour mix-process graph where the interaction effect of %MA and 

maximum temperature (BD) on the Brookfield viscosity of the UPR-STY mixture is 

presented. Figure 4.3 shows that an increase in the %MA and maximum reaction 

temperature leads to an increase in the viscosity of the UPR-STY mixtures. A high 

concentration of MA together with a high maximum temperature leads to an increased 

probability of the Ordelt side reaction, leading to an increased degree of branching and 

increased viscosity of the UPR-STY mixtures.  
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Figure 4.3: Contour mix-process graph of the interaction effect (BD) maximum 

temperature and %MA in MA:PA mole ratio on the Brookfield viscosity of UPR-

STY mixtures. 

 

Figure 4.4 shows a pertubation graph where the individual effects of the process 

parameters on the Brookfield viscosity of the UPR-STY mixtures (at a fixed UPR 

formulation) is presented. 

 

It should be noted that a pertubation graph compares the effect of the process factors (at 

fixed MA:PA mole ratio) at a particular point in the design space. All the pertubation 

results are for the main effects only and do not consider any interaction effects. For 

example, the effect of the combination of maximum temperature and agitation speed on 

the Brookfield viscosity of the UPR-STY mixtures. These results represent the effect of 

varying each parameter on a one-factor-at-a-time basis, e.g. C = heating rate 1 will be 
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varied from minimum to maximum level whilst the other parameters are kept constant. 

The default values of the parameters used to construct the pertubation graph are given by 

the Intermediate level (0) in Table 3.2 with a “slow” exotherm rate. A steep gradient of 

the line indicates that the particular property is sensitive to this factor. A relatively flat 

line indicates that the factor has very little influence on the particular property. The x-

axis of the Pertubation graph is labeled “process parameter” in coded units and not the 

actual units of the parameters to account for the fact that multiple parameters are 

analyzed simultaneously.  

 

Figure 4.4 illustrates that an increase in heating rates 1 and 2 as well as the agitation 

speed leads to an increase in the Brookfield viscosity of the UPR-STY mixtures. 

 

It can also be seen that the maximum reaction temperature appears to have no significant 

effect on the Brookfield viscosity (indicated by the relatively flat line), although its 

interaction with other factors is significant, i.e. only a high maximum process 

temperature and high %MA in the MA:PA mole ratio, significantly affect the Brookfield 

viscosity of the UPR-STY mixtures (see Figure 4.3). 
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Figure 4.4: Pertubation graph for the process factors affecting viscosity of the UPR-

STY mixtures (fixed MA:PA ratio at 26.19: 13.18). 
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4.1.2.2 Acid-value 

 

As previously mentioned in Section 3.6.7, the acid-value or concentration of the carboxyl 

end-groups of the UPRs was determined by an acid-base titration method. The titration 

method is effective in determining the carboxyl end-group concentration of the UPRs in 

the DoE space, but does not allow the determination of the hydroxyl end-groups. Section 

4.6 describes the determination of both end-groups of selected experimental runs by 

isocyanate derivatization coupled with 
1
H NMR.  

 

Table 4.1 shows that the acid-values determined for the UPRs by acid-base titration, 

ranged from 19 – 47 mgKOH/g resin (mean = 29.84 mgKOH/g resin ± 3.44). Table 4.3 

shows the factors (and interaction between factors) affecting the acid-value of the UPRs. 

 

Table 4.3: Significant factors affecting the acid-value of UPRs. 

Factors Significance (p-value: Prob > F) 

AB 0.0002 

AF 0.0028 

AG 0.0388 

BE 0.0329 

BF 0.0023 

 

Table 4.3 suggests that the most significant factors affecting the acid-value of UPRs, are 

the MA:PA mole ratio and interactions AF and BF between %MA, %PA and agitation 

speed. 

 

Figure 4.5 shows a two component mix graph where the interaction effect of the MA:PA 

mole ratio on the acid-value of the UPRs is presented. It can be seen from Figure 4.5 that 

a decrease in the %MA (or increase in %PA) leads to a lower acid-value of the UPRs. 

The two anhydrides, MA and PA, have different reactivities towards PG, i.e. MA has a 

higher reactivity towards PG compared to PA. Thus, a UPR formulation with a high 

concentration of MA relative to PA, results in an increased concentration of carboxyl 
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end-groups relative to hydroxyl end-groups as more MA reacts with PG. A UPR 

formulation with a high concentration of PA relative to MA results in a higher 

concentration of hydroxyl end-groups (or lower concentration of carboxyl groups/ acid-

value) due to a decreased reactivity of PA towards PG (see Section 2.3.1.1).  
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Figure 4.5: Two component mix graph for the formulation factors affecting the 

acid-value of UPRs. 

 

Figures 4.6 and 4.7 show the contour mix-process graphs where the interaction effects of 

% PA and % MA with the agitation speed on the acid-value of the UPRs are presented. 

It can be seen in Figures 4.6 and 4.7 that an increase in the %PA and agitation speed 

leads to a decrease in the acid-value of the UPRs. The agitation speed greatly affects the 

reaction rate of PA and MA with PG, i.e. a high agitation speed with a high concentration 

of PA in the UPR formulation leads to an improved reaction between PA and PG, which 
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effectively leads to a higher concentration of hydroxyl end-groups or lower concentration 

of carboxyl end-groups (acid-value). On the other hand, a high %MA and high agitation 

speed, may lead to a higher concentration of carboxyl end-groups due to the improved 

reaction between MA and PG compared to PA and PG. 
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Figure 4.6: Contour mix-process graph of the interaction effect (AF) of %PA in 

MA:PA mole ratio and agitation speed on the acid-value of UPRs. 
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Figure 4.7: Contour mix-process graph of the interaction effect (BF) of %MA and 

agitation speed on acid-value of UPRs. 

 

4.1.2.3 Number and weight-average molecular weights (Mn and Mw) 

 

Statistical analysis of the Mn values of the UPRs, revealed that the MA:PA mole ratio 

and process parameters do not affect the Mn value significantly, as all the parameters or 

interaction between parameters have p-values greater than 0.05, which is important as it 

implies that the DPn of the UPRs are relatively similar. 

 

Table 4.1 shows the Mw values of the UPRs determined by SEC. The results show that 

the values ranged from 2659 Dalton to 17068 Dalton (mean = 4725.94 Dalton ± 

2446.39). Table 4.4 shows the factors (and interaction between factors) affecting the Mw-

value of the UPRs. 
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Table 4.4: Significant factors affecting the Mw-value of UPRs. 

Factors Significance (p-value: Prob > F) 

AB 0.0013 

AD 0.0009 

AE 0.0039 

AF 0.0011 

AG 0.0006 

BD 0.042 

BG 0.0434 

ABD 0.0006 

ABE 0.0015 

ABF 0.0025 

ABG 0.0012 

ACD 0.0020 

ACE 0.0008 

 

Table 4.4 shows that the most significant factors affecting Mw-value of the UPRs are the 

MA:PA mole ratio (AB), and interactions AG, AD and ABD, i.e. interactions between 

%PA and exotherm rate, %PA and maximum process temperature and the interaction 

between the MA:PA mole ratio and maximum process temperature.  

 

Figures 4.8 and 4.9 shows the two component mix and contour mix-process graphs where 

the effect of the MA:PA mole ratio and its interaction with the maximum process 

temperature on the Mw-value of UPRs, is presented. Figure 4.8 shows that a decrease in 

the %PA (or increase in %MA) leads to an increase in the Mw-value of the UPRs. Figure 

4.9, on the other hand, shows that an increase in the maximum process temperature (at 

MA:PA mole ratio of 26.19 : 13.18) leads to increase in the Mw-value of the UPRs. 

 

The Mw-value of polymers is sensitive not only to the number of molecules (as with Mn-

value), but also to the size or weight of the molecules. Thus the Mw-value is sensitive to 
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the degree of polymerization and branching extent, i.e. a branched molecule has a greater 

size or weight compared to a linear molecule of the same length.  

 

Due to the fact that the DPn of the UPRs is fairly similar, the Mw-value, as with the 

Brookfield viscosity of the UPRs is greatly affected by the degree of chain branching 

which is affected by the MA:PA mole ratio (AB) and its interaction with maximum 

reaction temperature (ABD). A high concentration of MA relative to PA or high MA 

concentrations with high maximum reaction temperatures lead to an increase in the 

degree of chain branching, and hence a higher Mw-value (and Brookfield viscosity) of a 

given UPR.  
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Figure 4.8: Two component mix graph for the formulation factors affecting the Mw-

value of UPRs. 
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Figure 4.9: Contour mix-process graph of the interaction effects AD and ABD, i.e. 

interactions between % PA, MA:PA mole ratio and maximum temperature on Mw-

value of UPRs. 

 

The effect of the interaction AG between % PA and the exotherm rate cannot be shown 

graphically in a contour mix-process graph as the exotherm rate was not varied at 

multiple levels, i.e. the UPRs were only synthesized with a “slow”- and “fast” exotherm 

rate. However, the interaction effect between the % PA and exotherm rate is important, 

as a slow exotherm rate would improve the reaction between PA and PG, effectively 

increasing the incorporation of PA in the UPR chains. The increased incorporation of PA 

would indirectly influence the MA incorporation into the UPR chains, which influences 

chain-branching and therefore the Mw-value of the UPRs. 
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4.1.2.4 Polydispersity index (PDI) 

 

Table 4.1 shows the PDI values of the UPRs determined by SEC. The results show that 

the values ranged from 2.21 to 10.69 (mean = 3.79 ± 1.43). Table 4.5 shows the factors 

(and interaction between factors) affecting the PDI values of the UPRs.  

 

Table 4.5: Significant factors affecting the PDI-value of UPRs. 

Factors Significance (p-value: Prob > F) 

AB 0.0035 

AC 0.0445 

AD 0.0033 

AE 0.0096 

AF 0.0043 

AG 0.0013 

ABD 0.0017 

ABE 0.0041 

ABF 0.0092 

ABG 0.0034 

ACD 0.0036 

ACE 0.0024 

 

It can be seen from Table 4.5 that the PDI-value of the UPRs is significantly affected by 

the MA:PA mole ratio (AB), and the interactions AG and ABD, i.e. interactions between 

%PA and exotherm rate and MA:PA mole ratio and maximum temperature. 

 

Figures 4.10 and 4.11 show the two component mix and contour mix-process graphs 

where the effect of the MA:PA mole ratio (and its interaction with the maximum process 

temperature) on the PDI-value of UPRs, is presented. Figure 4.10 shows that a decrease 

in the %PA (or increase in %MA) leads to an increase in the PDI-value of the UPRs. 

Figure 4.11, on the other hand, shows that an increase in the maximum process 
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temperature (at MA:PA mole ratio of 26.19 : 13.18) leads to increase in the PDI-value of 

the UPRs.  

 

The PDI-value of polymers is the ratio of Mw- and Mn-values, and is therefore a measure 

of the degree of polymerization (DPn) and degree of branching of the UPR chains. The 

ANOVA evaluation of the Mn-values revealed that the DPn of the UPRs is relatively 

similar, which means that the PDI value of the UPRs is significantly affected by the Mw 

contribution. Thus, the PDI value (as with the Mw value) is significantly affected the 

MA:PA mole ratio, interactions between %PA and exotherm rate; and MA:PA mole ratio 

and the maximum reaction temperature.  
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Figure 4.10: Two component mix graph for the formulation factors affecting the 

PDI-value of UPRs. 
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Figure 4.11: Contour mix-process graph of the interaction effect ABD, interaction 

between MA:PA ratio and the maximum temperature on PDI-value of UPRs. 

 

 

4.1.2.5 Preliminary conclusion: UPRs 

 

The MA:PA mole ratio and its interaction with the maximum process temperature 

were found to be the most significant factors affecting the degrees of unsaturation 

and chain branching, which in turn affects the viscosity, acid-value, Mw- and PDI-

value of the UPRs.  
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4.1.3 Results and discussion – MVPs 

 

Following the synthesis of the MVPs with the UPR-STY mixtures, the particle size and 

particle size distribution of the MVPs were determined using the Sympatec SUCELL 

HELOS/BF-OM laser diffraction sensor. The SUCELL machine determines the particle 

size of the MVPs by calculating the Sauter mean diameter (SMD) and the De Brouckere 

mean diameter (VMD) values, which are independent of the number of particles. The 

SMD (Equation 4.1) and VMD (Equation 4.2) values are calculated based on the surface 

area and mass or volume of the particles, respectively 
1
: 

2

3

222

333

d

d
57.2

)321(

)321(
2,3D:SMD      (4.1) 
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)321(
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where d = diameter. 

 

The SMD and VMD-values of the 27 MVPs runs are given in Table 4.6. These results 

were also entered into the Design Expert 7 program (as with the data of the UPRs) to 

determine the significance of the polyester synthesis parameters (and resulting 

properties) on the particle sizes of the MVPs, via ANOVA. 

 

It is known that a small particle has a greater surface area per unit volume compared to a 

larger particle. Thus, due to the fact that the SMD-value is calculated based on the 

surface area of the particles, relatively smaller diameter particles will contribute more 

toward this value.  

 

The VMD-value, on the other hand, is calculated based on the volume or mass of the 

particles, which means that relatively large diameter particles will contribute more 

toward this value. Thus, the VMD-value will always be greater than the SMD-value for a 

given group of particles.  
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Table 4.6: Particle size results of MVPs. 

RUN SMD (µm) VMD (µm) 

1 21.03 67.43 

2 23.23 48.32 

3 30.15 79.13 

4 29.93 57.97 

5 20.03 50.57 

6 40.33 61.15 

7 25.03 69.45 

8 21.14 65.49 

9 28.47 57.06 

10 28.62 79.00 

11 20.17 55.13 

12 15.87 56.35 

13 17.84 41.47 

14 17.75 40.17 

15 26.64 71.76 

16 29.35 70.49 

17 31.61 98.36 

18 18.94 67.06 

19 22.10 63.00 

20 25.28 68.25 

21 26.89 84.01 

22 34.07 117.44 

23 21.09 67.70 

24 29.92 78.91 

25 33.58 71.06 

26 12.72 30.31 

27 22.28 64.59 
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4.1.3.1 SMD-values 

 

Table 4.6 shows that the SMD-values of the MVPs ranged from 12.72 – 40.33 μm (mean 

= 24.97 μm ± 4.67). Table 4.7 shows the significant factors (and interaction between 

factors) affecting the SMD-value of the MVPs. 

 

Table 4.7: Significant factors affecting SMD-value of the MVPs. 

Factors Significance (p-value: Prob > F) 

AE 0.0198 

BD 0.0467 

BE 0.0414 

 

Table 4.7 shows that the interactions AE, BD and BE i.e., interactions between %PA and 

Heating rate 2, %MA and maximum process temperature, and %MA and exotherm rate 

are the significant terms affecting the SMD-value of the MVPs. 

 

Figures 4.12 and 4.13 show the two component mix and contour mix-process graphs 

where the effects of the MA:PA mole ratio and the interaction between %MA and 

maximum process temperature of the UPRs, on the SMD-value of the MVPs are 

presented. It can be seen from Figure 4.12 that an increase in the %PA of the UPRs leads 

to an increase in the SMD-value of the MVPs. Figure 4.13 shows that an increase in the 

%PA and decrease in the maximum process temperature of the UPRs lead to an increase 

in the SMD-value of the MVPs. 
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Figure 4.12: Two component mix graph for the formulation factors of the UPRs 

affecting SMD-value of the MVPs. 
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Figure 4.13: Contour mix-process graph of the interaction effect BD, i.e. interaction 

between %MA and the maximum temperature of the UPRs on SMD-value of 

MVPs. 

 

The droplet or particle size during the suspension polymerization of MVPs is determined 

by the droplet break-up – coalescence equilibrium which is affected by the viscosity and 

surface tension of the oil droplet dispersed phase. In the suspension polymerization of 

MVPs, the dispersed phase comprises the UPR-STY mixture, LMA and DETA. The 

viscosity and surface tension of the dispersed phase is determined by the inherent 

viscosity of the UPR-STY mixture and the neutralization reaction between the carboxyl 

end-groups of the UPRs and DETA, i.e. a high viscosity mixture is achieved when UPRs 

with a high concentration of carboxyl end-groups are neutralized by the ammonium 

groups of the DETA. Thus a high SMD-value (high surface area particles with small 

diameter) will be the result of a UPR-STY mixture with a low viscosity and low acid-
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value, which can be achieved with a high %PA (or low %MA) in the MA:PA mole ratio, 

and low maximum reaction temperature, which has been shown in the Section 4.1.2.  

 

4.1.3.2 VMD-values 

 

Table 4.6 also shows that the VMD-values of the MVPs ranged from 30.31 – 117.44 μm 

(mean = 64.599 μm ± 11.12). Table 4.8 shows the factors (and interaction between 

factors) affecting the VMD-value of the MVPs. 

 

Table 4.8: Significant factors affecting VMD-value of the MVPs. 

Factors Significance (p-value: Prob > F) 

AB 0.005 

AF 0.0466 

BD 0.0071 

BE 0.0035 

 

Table 4.8 shows that the most significant factors affecting the VMD-values of the MVPs 

are the MA:PA mole ratio (AB), and the interactions BE and BD, i.e. interactions 

between %MA and heating rate 2 and interaction between %MA and maximum process 

temperature. 

 

Figures 4.14 and 4.15 show the two component mix and contour mix-process graphs 

where the effects of the MA:PA mole ratio and the interaction between the %MA and 

maximum process temperature of the UPRs are presented. It can be seen from these 

figures that an increase in %MA and decrease in the maximum reaction temperature of 

the UPRs leads to a high VMD-value of the MVPs. 

 

A high VMD-value will be the result of a UPR-STY mixture with a high viscosity and/ 

or high acid-value, which can be achieved by a high % MA with a low maximum 

reaction temperature and agitation speed. Thus, the MA:PA mole ratio and interaction 
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between % MA and maximum reaction temperature of the UPRs are highly significant 

factors affecting the VMD-value of the resultant MVPs. 
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Figure 4.14: Two component mix graph for the formulation factors of the UPRs 

affecting VMD-value of the MVPs. 
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Figure 4.15: Contour mix-process graph of the interaction effect BD, i.e. interaction 

between %MA and the maximum temperature of the UPRs on VMD-value of 

MVPs. 

 

Figure 4.16 shows a contour mix-process graph where the interaction effect of %MA and 

heating rate 2 is presented. It can be seen from Figure 4.16 that an increase in the %MA 

and decrease in the heating rate 2 of the UPRs lead to an increase in the VMD-value of 

the MVPs. The slow heating rate 2 leads to improved reaction of the MA with PG, which 

increases the degree of chain branching and viscosity of the UPRs (and UPR-STY 

mixtures), and subsequently high VMD-values of the MVPs. 
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Figure 4.16: Contour mix-process graph of the interaction effect BE, i.e. interaction 

between %MA and the heating rate 2 of the UPRs on VMD-value of MVPs. 

 

4.1.3.3 Preliminary conclusion: MVPs 

 

The significant factors affecting the particle sizes (SMD and VMD-values) of the MVPs 

include the MA:PA mole ratio and its interaction with the maximum process temperature. 

The particle size of suspension-based polymers is controlled by the droplet/particle 

coalescence-break-up equilibrium during the polymerization. The coalescence-break-up 

equilibrium is determined by the viscosity and surface tension of the oil droplets, which 

are affected by the MA:PA mole ratio and maximum process temperature. 
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4.2 Detailed analysis of selected DoE runs 

 

Detailed analysis of experimental runs 6 and 26 (UPRs and resulting MVPs) was 

performed. These polymers were selected since the particle sizes of MVPs of these runs 

are vastly different, although they have been synthesized from UPRs according to the 

same formulation, but slightly different process parameters, i.e. heating rates 1 and 2, 

exotherm rate and agitation speed. Table 4.9 shows the MA:PA mole ratio and process 

parameters used in the synthesis of the UPRs of runs 6 and 26. Tables 4.10 and 4.11 

show the properties of the two UPRs and the corresponding MVPs, respectively. 

 

Table 4.9: Formulation and process parameters of DoE runs 6 and 26. 

RUN PA 

(%) 

MA 

(%) 

Actual 

heating 

rate 1 

(˚C/min) 

Exotherm 

rate 

Maximum 

exotherm 

temperature 

(°C) 

Actual 

heating 

rate 2 

(˚C/min) 

Maximum 

temperature 

(°C) 

Agitation 

speed 

(rpm) 

6 17.12 22.25 4.0 slow 147.4 1.1 240 500 

26 17.12 22.25 6.0 fast 174.0 0.8 240 300 

 

Table 4.10: Properties of UPRs of DoE runs 6 and 26. 

RUN Viscosity 

(cPs) 

Acid-value 

(mgKOH/g) 

Mn 

(Dalton) 

Mw 

(Dalton) 

PDI Tg 

(°C) 

Degree of 

branching
#
 

6 1509 28.15 1351 4979 3.68 -5.59 0.47 

26 1207 28.92 1246 3288 2.64 -6.50 0.47 

#
Degree of chain branching was determined by 

1
H NMR (Section 4.5). 

 

Table 4.11: Properties of MVPs with UPRs of DoE runs 6 and 26. 

RUN SMD (µm) VMD (µm) 

6 40.33 61.15 

26 12.72 30.31 

 

Table 4.10 shows that RUN 6 has a greater viscosity and molecular weight and molecular 

weight distribution compared to RUN 26. RUN 6 was processed with a higher agitation 
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speed and heating rate 2 which leads to an increase in the overall reaction rate, and 

therefore an increase in the viscosity, molecular weight and molecular weight 

distributions. 

 

It can also be seen from Table 4.10 that a higher Tg-value is obtained for RUN 6, which 

is possibly due to the increase in the concentration of bulky PA groups incorporated in 

the chains due to a (1) slower exotherm rate and (2) faster agitation speed, which lead to 

improved reaction between PA and PG, compared to RUN 26. The improved PA 

incorporation results in reduced main-chain motion and hence a higher Tg-value of the 

UPR compared to RUN 26. 

 

Table 4.10 also shows that the UPRs of runs 6 and 26 have very similar acid-values and 

degree of chain branching, which means that the carboxylic acid distribution of the 

polyester chains is similar (see Section 4.5). Consequently, when DETA is added to the 

UPRs (during the synthesis of the corresponding MVPs) they will have similar 

concentrations of neutralized carboxylic groups and therefore similar micelle 

concentrations in the organic phase (see Section 2.3.3.1), which in turn leads to similar 

concentrations of the aqueous voids (and degrees of vesiculation) in the organic phase 

droplets in the dispersion stage (see Section 3.5).  

 

Figures 4.17(b) and 4.18(b) show the SEM images of the microtomed MVPs of runs 6 

and 26, respectively, illustrating the degree of vesiculation of the MVPs. The MVPs of 

runs 6 and 26 have similar degrees of vesiculation due the fact that the UPRs have 

similar acid-values and degrees of chain branching as they were synthesized at the same 

maximum temperature (maximum process temperature and its interaction with MA:PA 

mole ratio determine the degree of chain branching and acid-value) (see Section 4.1.2). 

 



Chapter 4: Results and discussion   

 82 

  

Figure 4.17: SEM images of (a) MVPs of RUN 6 at 100× magnification and (b) 

microtomed MVPs of RUN 6 at 1790 × magnification. 

 

  

Figure 4.18: SEM images of (a) MVPs of RUN 26 at 100× magnification and (b) 

microtomed MVPs of RUN 26 at 735 × magnification. 

 

 

 

a) b) 

a) b) 
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Table 4.11 also indicates that the high molecular weight/ viscosity of the UPR of RUN 6 

results in larger particle sizes (SMD and VMD-values) of the MVPs compared to RUN 

26. The SEM images in Figures 4.17(a) and 4.18(a) confirm the larger particle size of the 

MVPs of RUN 6. 

 

Figure 4.19 shows the bimodal particle surface area distributions (“Density” 

distributions) and cumulative distributions of the particle sizes of the MVPs of runs 6 and 

26 determined by light scattering. It can be seen from Figure 4.20 that the MVPs of RUN 

6 have a greater percentage of larger particles, indicated by a greater intensity of the 

larger particle size region of the distribution. The SEM images in figures 4.17 and 4.18 

also indicate the bimodal nature of the particle size distributions of runs 6 and 26. 

 

The MVPs of RUN 6 have larger particle sizes due to the high viscosity of the polyester/ 

organic phase (during the suspension polymerization of the MVPs) which reduces the 

droplet break-up, resulting in larger dispersed droplets in the aqueous phase, and 

ultimately larger MVPs. 

 

The effect of processing the UPRs at different maximum process temperatures on the 

properties of the UPRs and MVPs is investigated in Section 4.3. 
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Figure 4.19: Surface area and cumulative distributions of the particle sizes of MVPs of DoE run 6 (red) and DoE run 26 (blue). 
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4.3 Effect of UPR maximum processing temperature on properties of the UPR 

and the resultant MVPs. 

 

Fairly anomalous results were obtained with regards to the particle size values (SMD and 

VMD) of the MVPs in Section 4.1.3. ANOVA evaluation of particle sizes of these MVPs 

revealed that a high SMD-value can be achieved with a low UPR maximum reaction 

temperature, whilst a high VMD-value can be achieved with a high UPR maximum 

temperature. To investigate the individual effect of the UPR maximum temperature on 

the particle size (and other properties) of the MVPs, a series of UPRs and MVPs were 

synthesized with a variation in the maximum reaction temperature while the other 

parameters are kept constant. 

 

The UPR series were synthesized according to the standard formulation (See Table 3.1) 

and experimental procedure (i.e. standard heating rates, agitation, and exotherm time/ 

temperature) (see Section 3.3) but with different maximum temperatures, i.e. 220, 230, 

240, 250, and 260 °C. These UPRs were also analyzed for viscosity, acid-value, 

molecular weights (Mn, Mw), PDI and Tg-values. The five resultant UPR-STY mixtures 

were used to synthesize MVPs to determine the effect of the maximum process 

temperature of the UPRs on the particle sizes of the MVPs. The properties of the five 

UPR-STY mixtures are given in Table 4.12. 

 

Table 4.12: Effect of UPR maximum processing temperature on properties of the 

UPRs of runs 29 – 33. 

RUN Maximum 

temperature 

(°C) 

Viscosity 

(cPs) 

Acid-value 

(mgKOH/g) 

Mn 

(Dalton) 

Mw 

(Dalton) 

PDI Tg 

(°C) 

Degree of 

branching* 

29 220 791.8 65.09 746 1556 2.08 -8.77 0.323 

30 230 566.3 57.83 821 1783 2.17 -6.00 0.299 

31 240 777.4 50.84 992 2406 2.43 0.01 0.387 

32 250 861.4 41.82 1081 3328 3.08 4.56 0.407 

33 260 1346 39.96 1273 6950 5.46 6.96 0.413 

*Degree of chain branching (DB) of the UPRs was determined by 
1
H NMR (see Section 4.5). 
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Table 4.12 shows that an increase in the polyester maximum process temperature results 

in an increase in the viscosity, Mn-, Mw-, PDI-, Tg-values, degree of chain branching and 

a decrease in the acid-value of the UPR-STY mixtures.  

 

The increase in the viscosity can be attributed to an increase in molecular weight, PDI 

value and the degree of chain branching of the UPR chains (see Section 4.5). Figure 4.20 

shows the molecular weight distributions of the five UPRs obtained by SEC. 
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Figure 4.20: SEC chromatograms of UPRs prepared at different maximum 

processing temperatures. 

 

The decrease in the acid-value of the UPRs can be explained by the fact that the 

carboxylic acid concentration decreases as the polyesterification reaction progresses. 

However, the degree of chain-branching increases as the polyesterification reaction 

progresses at a higher process temperature, which means that the carboxylic acid 

concentration per chain increases. In other words, the concentration of carboxylic acid 
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groups of the individual chains increases due to the acid end groups of the branches/side 

chains. The schematic diagram in Figure 4.21 illustrates this phenomenon. 

 

HOOC

COOH

COOH

COOH
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Figure 4.21: Schematic diagram of the effect of chain branching on the acid-value of 

the UPRs. 

 

The increase in the Tg values of the UPRs may be attributed to the increased molecular 

weight, degree of chain-branching as well as the increased incorporation of the bulky 

phthalate groups in the chains at higher temperatures. These factors decrease the main-

chain mobility of the UPRs, which leads to an increase the Tg value. Figure 4.22 shows 

the DSC thermograms with the Tg values of the UPRs. 
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Figure 4.22: DSC curves of the UPRs prepared at different maximum processing 

temperatures. 

 

Table 4.13: Effect of UPR maximum processing temperature of runs 29 – 33 on 

properties of the MVPs. 

RUN SMD (µm) VMD (µm) Contrast ratio 

29 11.76 53.24 0.17 

30 8.47 41.64 0.30 

31 13.93 47.35 0.24 

32 28.87 56.28 0.57 

33 37.58 93.65 0.61 

 

It is known that an increase in the maximum processing temperature of the polyester 

leads to an increase in the percentage chain branching of the polyester. An increase in the 

chain branching leads to an increase in the concentration of carboxylic groups per chain 
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and therefore an increase in the concentration of neutralized carboxylic groups per main 

chain with the addition of DETA to the polyester mixture (see Section 2.3.3.1). The 

increased concentration of neutralized groups leads to an increase in the concentration of 

micelles in the organic phase, which in turn leads to an increase in the concentration of 

the aqueous voids in the organic phase droplets, and eventually an increase in the 

concentration of vesicles or degree of vesiculation of the dried MVPs. In other words, the 

concentration of vesicles or degree of vesiculation increases as the polyester chain 

branching increases, which in turn increases as the polyester maximum processing 

temperature increases. Figure 4.23 shows the SEM micrographs of microtomed MVPs of 

experimental runs 29 and 33, indicating the difference in the degree of vesiculation of the 

runs. 

 

Figure 4.23(a) clearly shows that the MVPs of RUN 29 have a lower degree of 

vesiculation compared to those of RUN 33 in Figure 4.23(b). RUN 29 has a low degree 

of vesiculation due to the lower degree of chain-branching of the polyester chains, 

resulting in a low concentration of neutralized carboxylic groups (micelles). On the other 

hand, the MVPs of RUN 33 has a higher degree of vesiculation due to a high percentage 

of chain-branching, as a result of a high polyester processing temperature. 

 

 

Figure 4.23: SEM micrograph of microtomed MVPs of a) RUN 29 at 622× 

magnification and (b) RUN 33 at 913× magnification. 

a) b) 
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Table 4.13 indicates that RUN 33 has a higher contrast ratio/ opacity value (at the same 

film wet-film thickness) than RUN 29. The opacity of RUN 33 is higher due to the higher 

degree of vesiculation and light scattering ability of the MVPs (see Section 2.3.1). 

 

Table 4.13 also shows that the UPR maximum temperature indirectly affects the particle 

size of MVPs. As previously concluded from Section 4.1.3, a low maximum reaction 

temperature with a high %PA or a high maximum temperature with a high %MA of the 

UPRs, can lead to a large particle size (SMD or VMD-values) under certain 

circumstances. Table 4.13, however, shows that an increase in the UPR maximum 

temperature leads to an overall increase in the particle size (SMD and VMD values) of 

MVPs at a MA:PA mole ratio = 26.19:13.18. 

 

Figure 4.24 illustrates the bimodal particle surface area distributions of MVP runs 29 and 

33. It can be seen from Figure 4.24 that the MVPs of RUN 33 have a greater percentage 

of larger particles compared to smaller particles, indicated by a greater intensity of the 

larger particle size region of the distribution. 

 

The larger particle size of the MVPs of RUN 33 can be explained by the high viscosity of 

the UPR processed at a higher maximum temperature. The UPR of RUN 33 has a higher 

viscosity than RUN 29 due to increased DPn and DB-values at the high maximum 

process temperature. The higher viscosity of the UPR reduces the droplet break-up and 

increases the probability of droplet coalescence, resulting in larger dispersed droplets in 

the aqueous phase, and ultimately larger MVPs. 
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Figure 4.24: Surface area and cumulative distributions of the particle sizes of MVPs of runs 29 (red) and 33 (blue). 
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4.4 Determination of hardness of MVPs 

 

Attempts were made to determine the hardness/ stiffness of the MVPs to quantitatively 

determine the effect of the crosslink density, degree of vesiculation, and particle size on 

the hardness of the MVPs to confirm the following postulates: 

 The crosslink density of the MVPs is determined by the reaction between the MA 

of the UPR and STY, i.e. a high MA:PA mole ratio in the UPR leads to a high 

crosslink density, which in turn results in harder MVPs. The impact resistance of 

the MVPs is however compromised. 

 The degree of vesiculation (size and concentration of vesicles) of the MVPs is 

determined by the interaction between the COOH-groups of the UPR and DETA 

during the synthesis of the MVPs. Thus a high concentration of COOH-groups 

leads to a high degree of vesiculation due to increased interaction with the DETA. 

The degree of vesiculation would affect the hardness and impact resistance of the 

MVPs, e.g. highly porous MVPs will have lower impact resistance compared to 

those with low porosity. 

 MVPs with different particle sizes will have different hardness values. 

 

The microhardness tester and Atomic Force Microscopy (AFM) in contact mode were 

used to determine the hardness of the MVPs.  

 

As previously mentioned in Section 3.6.11, the microhardness testing of the dried MVPs 

involved indenting the individual MVPs with the micro-indenter. The MVPs were 

sprinkled onto the surface of a liquid alkyd resin before it was allowed to cure 

completely. The resin was cured to keep the MVPs stationary during testing. The 

sprinkling of the MVPs onto the resin surface meant that not all the MVPs were at the 

same depth at the resin surface. Thus, when the micro-indenter was applied to the MVPs, 

erratic results were obtained. In other words, erratic microhardness values were obtained 

as the surfaces of the MVP-resin disks were not homogeneous. 
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AFM was found to be effective to determine the hardness of the MVPs smaller than 1 

micron, although the mean particle size of the MVPs is approximately 25μm. In other 

words, AFM is not a suitable technique to determine the hardness of MVPs due to their 

relatively large particle size. AFM was however performed on the sub-micron sized 

MVPs of runs 29 (low degree of vesiculation) and 33 (high degree of vesiculation) to 

determine the effect of degree of vesiculation on the hardness of the MVPs. For example, 

Figures 4.26 and 4.27 show the AFM software-generated 3D-images and “Force-

Distance” curves of sections of individual MVPs of runs 29 and 33, respectively. The 

force-distance curves approaches from -1μm towards 20nm on the z-axis as the cantilever 

tip moves towards the MVPs. Adhesion between the cantilever tip and the MVP is 

indicated by the sharp dip in the retracting curve. The cantilever is thereafter deflected 

from the MVP, where the angle of the deflection slope indicates the hardness of the 

MVP. 

 

It can be seen from Figures 4.25(b) and 4.26(b) that the deflection angle (of the slope) of 

the approaching curve of the MVP from RUN 29 (45.94°) is greater than that of RUN 33 

(33.89°), indicating that the MVP from RUN 29 is relatively harder than that of RUN 33. 

The MVP of RUN 29 is possibly harder due to the lower degree of vesiculation of the 

MVPs. 

  

Figure 4.25: AFM 3D image (a) and force-distance curve (b) of a sub-micron MVP 

of RUN 29. 

approaching 

retracting 
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Figure 4.26: AFM 3D-image (a) and force-distance curve (b) of a sub-micron MVP 

of RUN 33. 

 

 

4.5 Chain-branching 

 

As mentioned in Section 4.1, the Ordelt reaction is the main side reaction in the 

polyesterification reaction. The Ordelt reaction involves the double bonds of the maleate 

or fumarate component becoming saturated and leading to branched structures or side 

chains. The degree of branching can be determined by size-exclusion chromatography 

using the PDI as a measure of the branching extent, whereby the greater the PDI, the 

greater the branching extent 
2
. Zetterlund et. al. 

3
, on the other hand, studied the Ordelt 

reaction by 
1
H NMR by using the work of Paci et. al. 

4
 and Judas et. al. 

5
 together with 

the NMR spectra of polyesters with only PG and PA (Figure 4.27) as well as polyesters 

with only PG and MA (Figures 4.28). It was concluded that the shoulder of the resonance 

peak at 5.2 ppm in Figure 4.28 was related to the Ordelt reaction, as no shoulder was 

observed for the resonance peak in the spectrum of PA in Figure 4.27. 

 

.
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Figure 4.27: 
1
H NMR spectrum of 

polyester with phthalic anhydride 
3
. 

 

 

Figure 4.28: 
1
H NMR spectrum of 

polyester with maleic anhydride 
3
. 

Holter et. al. 
6
 derived an equation to determine the degree of branching based ratio of the 

1
H NMR signal intensities of branched (due to the Ordelt reaction) units and the linear 

units of the unsaturated polyester chains. The ratio is as follows: 

 

LD2

D2
 (DB) Branching of Degree        (4.3) 

Where  

D = NMR intensity of a branched unit in the polyester chains 

L = NMR intensity of a linear unit in the polyester chains 

 

The DB values were determined by using the 
1
H NMR intensities of the shoulder of the 

methine peak at 5.2 – 5.4 ppm as D and the methine peak at 5.1 – 5.2 ppm as L in 

Equation 4.3 (e.g. 
1
H NMR spectrum of the UPR of RUN 29 in Figure 4.29). Table 4.14 

shows the DB- and PDI-values obtained from 
1
H NMR and SEC of runs 29 to 33, 

respectively. 
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Figure 4.29: 
1
H NMR spectrum of UPR of RUN 29. 

 

Table 4.14: DB results of UPRs of runs 29 and 33 via 
1
H NMR and SEC. 

RUN 
1
H NMR SEC 

Intensity of 

methine unit 

(g) 

Intensity of 

branched unit 

(e) 

DB PDI 

DoE 6 11.877 5.160 0.465 3.68 

DoE 26 11.779 5.188 0.468 2.64 

29 2.040 0.486 0.323 2.08 

30 1.488 0.318 0.299 2.17 

31 2.779 0.877 0.387 2.43 

32 2.976 1.022 0.407 3.08 

33 0.577 0.203 0.413 5.46 

 

L 
D 
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Table 4.14 clearly shows that the DB values of the UPRs of DoE runs 6 and 26 are very 

similar, because they were synthesized at the same maximum temperature (240 °C). 

However, the DB values of the UPRs from runs 29 – 33 increase from run 29 (0.323) to 

33 (0.413) due to the increased probability of the Ordelt reaction (chain-branching) at 

higher maximum processing temperatures of the UPRs.  

 

The DB results of runs 29 to 33 are in good agreement with the PDI values obtained from 

SEC. The PDI- and DB-values were not in good agreement for runs 6 and 26, because 

these UPRs were synthesized according to different process protocols, i.e. different 

exotherm rates, agitation speeds and heating rates 1 which affect the molecular weights 

(and therefore PDI-values) of the UPRs. These parameters (unlike the maximum process 

temperature) do not significantly affect the degree of branching of the UPRs. 

 

 

4.6 End-group analysis by isocyanate derivatization and 
1
H NMR 

 

Historically, numerous methods have been employed to analyze the end-groups of 

polyesters, including classical titration methods 
7-8

, Fourier Transform Infra-red 

spectroscopy (FTIR) 
9-10

, Matrix-Assisted-Laser-Desorption-Ionization-Mass-

Spectrometry (MALDI) 
11

 and High Performance Liquid Chromatography (HPLC) 
12

.  

 

NMR spectroscopy is an attractive method for the quantitative and qualitative 

determination of end-groups of polyesters, providing these resonances can be resolved 

from those attributed to the backbone signals 
13-14

. 
13

C NMR spectroscopy have been 

used to determine the end-groups of PET 
13, 15

, but the technique is complex and does not 

have general applicability. Derivatization of the polyester chains with various chemical 

compounds followed by 
19

F NMR 
16

 and 
31

P NMR 
17

 has also been used, but these 

methods require complex experimental protocols.  

 

The method used to determine the end-groups of the UPRs synthesized in this study is an 

efficient and quantitative method developed by Donovan and Moad 
18

. The method 
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entails the characterization of the COOH and OH end-groups by 
1
H NMR after 

derivatization of these groups by trichloroacetyl isocyanate (TAI). The TAI-derivatized 

end-groups have imidic NH resonances in a clear region of the 
1
H NMR spectrum, i.e. 

the COOH-groups have resonances at 10–11.5 ppm for C(O)–O–C(O)–NH–C(O)CCl3 

groups, and the OH-groups at 8–9 ppm for O–C(O)–NH–C(O)CCl3 groups. The reaction 

schemes involved are given in Figures 4.30 and 4.31. 

R OH +
C

O

N

O

CCl3

R

O

O

N
H

CCl3O

 

Figure 4.30: Derivatization of OH-groups of UPRs with TAI. 

 

R

O

OH

+ C

O

N

CCl3

O

CH3

O

O

O

N
H

O CCl3 

Figure 4.31: Derivatization of COOH-groups of UPRs with TAI. 

 

The derivatization reaction is performed by dissolving a sample of the polyester (300 mg) 

in deuterated chloroform CDCl3 (2 mL) in a NMR tube, after which an excess of 

trichloroacetyl isocyanate (TAI) (0.5 mL) is added and the 
1
H NMR spectrum is recorded 

for 32 scans. The derivatization reaction is instantaneous and any excess TAI, being 

aprotic, causes no additional resonance signals in the spectra. Figure 4.32 shows the 

FTIR spectrum which confirms the derivatization reaction of the UPR of RUN 29 with 

TAI. 
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Figure 4.32: FTIR spectrum of the UPRs of RUN 29 (black) and RUN 29 

derivatized with TAI (red). 

 

Figure 4.32 clearly shows that the UPR chains of RUN 29 were derivatized by TAI due 

to the presence of N-H stretch vibrational frequencies at 3500-3100 cm
-1

 and the absence 

of O-H vibrational frequency at 3500cm
-1

 which is present in the spectrum of the un-

derivatized sample. 

 

Figure 4.33 shows the 
1
H NMR spectrum of TAI-derivatized UPR of RUN 29. It can be 

seen from Figure 4.33 that the TAI-derivatized OH-groups at 9.0 ppm -and COOH-

groups at 11 ppm are in a clear region of the NMR spectrum. Integration of these 

resonance signals corresponding to the OH- and COOH end-groups relative to the linear 

units (e.g. fumarate unit signal at 6.8 – 7.0 ppm) provides the relative percentages of the 

COOH -and OH-groups. Table 4.15 shows the relative percentages of the OH- and 

COOH-groups of runs 29 to 33. 
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Figure 4.33: 
1
H NMR spectrum of UPR of RUN 29 derivatized by TAI. 

 

Table 4.15: Relative OH- and COOH-group percentages of UPRs of runs 29 to 33. 

RUN Integrated -

COOH peak 

Integrated 

–OH peak 

Fumarate %COOH %OH 

29 0.90 2.30 11.70 7.69 19.66 

30 0.00 1.10 36.90 0.00 2.98 

31 0.90 2.90 18.90 4.76 15.34 

32 1.00 4.50 32.20 3.11 13.98 

33 1.20 3.80 26.00 4.62 14.62 

 

Table 4.15 shows that the OH- and COOH-group concentrations of the UPRs decrease as 

the maximum processing temperature increases. In other words, a higher conversion is 

achieved at higher processing temperatures. The latter is supported by the acid-value 

results in Section 4.3.2. 

COOH 

OH 
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Table 4.15 also indicates that the UPRs have higher concentrations of OH-groups 

compared to COOH-groups, because they were synthesized with excess PG. In other 

words, the probability of an OH-terminated polyester chain is higher than COOH-

terminated chain. It should be noted that the derivatization technique was not successful 

for all UPR samples, e.g. the %COOH of RUN 30 could not be determined, as the 

COOH-peak had an integration-value of zero in multiple 
1
H NMR spectrums. 
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         CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

The first objective of the study was to investigate the effects of varying MA:PA mole 

ratio and process parameters, e.g. heating rates, agitation speed, etc. on the properties of 

the UPRs, via Design of Experiments (DoE). 

 

Statistical analysis of the DoE results revealed that the process and formulation 

parameters/factors (as well as interactions between the factors) had significant effects on 

the basic properties (e.g. viscosity, acid-value) of the UPRs. In particular, the MA:PA 

mole ratio and its interaction with the maximum process temperature significantly affect 

most of the UPR properties as these factors control the degree of chain branching, 

concentration of carboxyl groups and viscosity. 

 

The second objective was to determine the molecular composition/ structure of the UPRs 

and relate to specific properties of MVPs. 

 

The molecular weights (Mn and Mw values) and molecular weight distribution (PDI) of 

the UPRs were successfully determined by SEC; glass-transition temperature (Tg) by 

DSC; degree of chain branching by 
1
H NMR; and the percentage carboxyl- and hydroxyl 

end-groups via isocyanate derivatization coupled with 
1
H NMR. 

 

The particle sizes (SMD and VMD-values) of the MVPs were found to be significantly 

affected by viscosity, molecular weights and molecular weight distribution of the UPRs. 

The properties mentioned are affected by the MA:PA mole ratio and its interaction with 

the maximum process temperature, due to the fact that the particle size of suspension-

based polymers is controlled by the droplet/particle coalescence-break-up equilibrium 

during the polymerization. The coalescence-break-up equilibrium is determined by the 
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viscosity and surface tension of the oil droplets, which are affected by the MA:PA mole 

ratio and maximum process temperature.  

 

It was found that UPRs synthesized with a low %MA and low maximum reaction 

temperature can result in MVPs with a high SMD-value, and those synthesized with a 

high %MA and high maximum reaction temperature can result in MVPs with a high 

VMD-value.  

 

To determine the effect of maximum reaction temperature (at fixed MA:PA mole ratio) 

on the properties of the UPRs and MVPs, a detailed evaluation was conducted. The 

evaluation revealed that an increase in the magnitude of the maximum process 

temperature results in an increase in the viscosity, molecular weight (Mn and Mw values) 

and molecular weight distribution (PDI), Tg value and degree of chain branching; and a 

decrease in the acid-value of the UPRs.  

 

The evaluation also revealed that an increase in the maximum process temperature (at 

fixed MA:PA mole ratio) of the UPRs resulted in larger MVPs in terms of their SMD and 

VMD-values. Furthermore, it was found that the degree of vesiculation (or opacity) of 

the MVPs is dependent on the MA:PA mole ratio and maximum reaction temperature in 

the UPR synthesis. These parameters control the distribution of the carboxylic groups 

(and degree of branching) of the UPR chains, and therefore their interaction with DETA, 

and the formation of the MVP vesicles. 

 

In addition, an attempt was made to determine the hardness of the MVPs using the 

microhardness tester and AFM. The relative hardness of the MVPs were determined to 

establish a relationship between the properties of the hardness and the crosslink density, 

particle size and degree of vesiculation of the MVPs.  

 

Unfortunately, the microhardness testing was found to be unsuccessful due to the fact 

that not all the MVPs were homogeneously distributed at the surface of the cured resin, 

which led to erratic results during testing.  
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AFM was only found to be effective to determine the hardness of MVPs smaller than 

1μm, which means that the hardness of MVPs with an average particle size e.g. 25μm 

could not be determined. 

 

 

5.2 Recommendations for future work 

 

As mentioned in Section 4.1, the screening design involved a minimum of experimental 

points to determine the main effects affecting the properties of the UPRs and MVPs. 

Future work may include augmenting the design, i.e. broadening the experimental space 

by adding additional experiments to the existing data to be able to optimize the synthesis 

and properties of the UPRs and MVPs. 

 

As mentioned in Section 4.5, the end-group analysis via isocyanate derivatization 

coupled with 
1
H NMR was not successful for all samples. Future work may include 

investigating alternative techniques e.g. 
19

F NMR and 
31

P NMR to quantitatively 

determine the hydroxyl -and carboxyl end-groups of the UPRs. 

 

Great difficulty was experienced in determining the physical properties (e.g. hardness) of 

the MVPs. AFM and microhardness testing were unsuccessful, but other mechanical tests 

may be attempted in the future to determine the physical properties of MVPs. 

 

 

 

 

 

 

 

 

 

 


