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Abstract

Rank 2 Drinfeld modular forms have been studied for more than 30 years, and
while it is known that a higher rank theory could be possible, higher rank
Drinfeld modular forms have only recently been defined. In 1988 Gekeler
published [Ge2] in which he studies the coefficients of rank 2 Drinfeld modular
forms. The goal of this thesis is to perform a similar study of the coefficients
of higher rank Drinfeld modular forms.

The main results are that the coefficients themselves are (weak) Drinfeld
modular forms, a product formula for the discriminant function, the ratio-
nality of certain naturally defined modular forms, and the computation of
some Hecke eigenforms and their eigenvalues.
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Opsomming

Drinfeld modulêre vorme van rang 2 word al vir meer as 30 jaar bestudeer
en alhoewel dit lankal bekend is dat daar Drinfeld modulêre vorme van hoër
rang moet bestaan, is die definisie eers onlangs vasgepen. In 1988 het Gekeler
die artikel [Ge2] gepubliseer waarin hy die koeffisiënte van Fourier reekse van
rang 2 Drinfeld modulêre vorme bestudeer. Die doel van hierdie proefskrif is
om dieselfde studie vir Drinfeld modulêre vorme van hoër rang uit te voer.

Die hoofresultate is dat die koeffisiënte self (swak) Drinfeld modulêre
vorme is, ‘n produk formule vir die diskriminant funksie, die feit dat sekere
natuurlik gedefiniëerde modulêre vorme rasionaal is, en die vasstelling van
Hecke eievorme en hul eiewaardes.
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Introduction

In 1974, Drinfeld’s paper [Dr] appeared introducing what is now called a
Drinfeld module. His motivation was their use in explicit class field theory in
the rank 1 case and some results in rank 2 that may fall under the Langlands
programme for function fields. Since then many results have appeared which
are strikingly similar to results known about elliptic curves. One such topic
is that of Drinfeld modular forms. The existence of such a theory may have
been implicit in [Dr], but the first to define them explicitly and study their
properties was Goss in his thesis, of which a version is published as [Go1].

Even though Goss’s definition is stated in arbitrary rank, a useful form
of this definition is only given in rank 2. Many people have developed the
theory of one-dimensional (rank 2) Drinfeld modular forms. However, it
has been difficult to get a handle on higher dimensional Drinfeld modular
forms. The point is that a modular form can be interpreted as a global
section of a sheaf on a moduli space and that it should extend to some
compactification. In the rank 2 case, the moduli space is an algebraic curve
which can essentially only be compactified in one way. A major breakthrough
to obtain a higher dimensional theory came when Pink (in [Pi]) constructed
a Satake-compactification of moduli varieties that behaves well under the
natural morphisms. This allowed him to define Drinfeld modular forms of
higher rank algebraically. Breuer and Pink then interpreted this algebraic
definition analytically to say what “holomorphic at infinity” should be in this
case.

Since a holomorphic function is uniquely determined on an admissible
open, we may identify a Drinfeld modular form with its Fourier expansion
at infinity and hence it makes sense to study its coefficients. Since these are
higher dimensional functions, the coefficients are no longer constant, but are
themselves functions of one fewer parameter. The main theme of this thesis
is to study these coefficients in a similar way to the way Gekeler studied the
coefficients in the one-dimensional case in [Ge2]. For example, the coeffi-
cients turn out to be (weak) modular forms themselves (Proposition 3.2.7);
however not satisfying the “holomorphic at the cusps” conditions.

vii
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INTRODUCTION viii

Here follows an outline of this work. In Chapter 1 we give a short overview
of the classical analogues (elliptic curves and elliptic modular forms) of the
objects we shall work with. Chapter 2 gives a basic introduction to Drinfeld
modules and a quick overview of their moduli space and its associated rigid
analytic structure.

Chapter 3 starts our discussion of Drinfeld modular forms. Here we give
the definitions of weak modular forms, modular forms, Fourier expansions at
infinity and calculate some of these expansions (though often only up to the
first term). At the end there is a discussion as to when such a modular form
should be considered a “rational Drinfeld modular form,” which might lead
to questions about the behaviour of modular forms under reduction modulo
ideals in A. Lastly, in Chapter 4 we define Hecke operators on the space of
modular forms of weight k for the full modular group and calculate some
eigenvectors and their eigenvalues, as well as proving that the Hecke algebra
is completely multiplicative.

Since this is a thesis I give an outline of what my own contributions
are and what I learned elsewhere. This is especially necessary in this case,
since the article [BP] is not yet available and some of their results have to
be reproduced in order to have a self-contained treatment. I also give such
indications in the text, but here everything is together.

In Chapter 2, almost everything has been known for many years. The only
results that do not appear in the literature are Lemma 2.6.15 and Proposition
2.6.16. Breuer and Pink suspected that every function on U must have a
Laurent series expansion, but the current statement and proof of Proposition
2.6.16 are novel — the same goes for Lemma 2.6.15 on which it relies.

The material in Chapter 3 builds on the work by Breuer and Pink [BP].
Since that work is not yet available, it was necessary to reproduce their
results here for the sake of completeness. Almost everything up to the end
of section 3.3, with some minor modifications, are due to [BP]. I made the
following modifications:

• In Definition 3.2.1 I changed their definition

uω̃(ω1) = eΛU (ω1)−1

to the way it appears in Definition 3.2.1. This is similar to the way the
parameter changed for rank 2 Drinfeld modular forms. The reason for
this change is that this allows us to study the rationality of Drinfeld
modular forms in Section 3.6.
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INTRODUCTION ix

• By including Lemma 3.2.2 and Corollary 3.2.3, I managed to refine
their argument in Proposition 3.2.4 to include the last line: “Moreover,
for every n ∈ N there exists r > 0 such that B(0, r)×Ωr−1

n ⊂ U .” This
allows us to apply Proposition 2.6.16.

• I learned the statement of Proposition 3.2.9 from [BP], but supplied
my own proof.

• The statements of Proposition 3.3.2 (a) and (c) were implicit in [BP],
but I made them explicit, added (b) and supplied the proof.

• Proposition 3.2.7 is completely new.

The examples from section 3.4 appear in [BP]. However, I also made
slight modifications to these examples, for example replacing the lattice Ar

by a more general lattice of the form Λ = A × Λ̃. This provides examples
of Drinfeld modular forms on components that do not correspond to free A-
modules. Another change was changing the definition of Eisenstein series for
Γ(N) (and by extension the coefficient forms) to its current form using cosets
in N−1Λ/Λ instead of cosets in Λ/NΛ. This makes the presentation more
natural and ensures that the consequent definitions of coefficient forms work
for arbitrary ideals, and not only principal ideals. The only really new idea
that was needed for this translation was the argument that N ⊆ (a1 +v1)−1A
during the proof of Proposition 3.4.2.

The computations of u-expansions of Drinfeld modular forms in Section
3.5 are mostly my own work. The expansion for Eisenstein series for GLr(A)
are very similar to the rank 2 expansions in the original work of Goss, and
use essentially the same techniques. The calculation of the expansion for
Eisenstein series for Γ(N) depends on what was obtained by Breuer and
Pink up to equation (3.4) (with some modifications due to a change in the
definition). However, the rest of the calculation in section 3.5 is new. The
product formula for the discriminant function is also new. This provides a
generalization of the formula by Gekeler in [Ge1], which is different from the
generalization by Hamahata in [Ha].

In 3.6, subsection 3.6.1 was known and appears in [Ge2], while everything
in 3.6.2 is new.

In Chapter 4, section 4.1 appears in [Sh] and section 4.2 is an (almost)
direct translation of [Sh] Chapter 3.2 from SLr(Z) to GLr(A). Section 4.3 is
new.
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Chapter 1

The classical case

In this chapter, we quickly review the basic definitions of elliptic modular
forms, in order to give some perspective for the analogous theory of Drinfeld
modular forms that we shall discuss later. We shall restrict ourselves to
discussing only elliptic modular forms. Even though our goal is to define
Drinfeld modular forms of higher rank, i.e. of more than one variable, the
results obtained are more closely related to those in the theory of elliptic
modular forms than in modular forms in more variables, like Hilbert or Siegel
modular forms. The reason for this is that the Drinfeld modular forms will
have expansions in one variable, similar to the elliptic modular forms case.

1.1 Modular forms

Let H = {z ∈ C | Im(z) > 0} be the upper half-plane. There is a natural
action of GL+

2 (R) on H given by(
a b
c d

)
· z =

az + b

cz + d
.

Now, for every n ∈ Z, define Γ(n) as the set of matrices with integer entries
that are congruent to the identity matrix modulo n. The group Γ(n) is
called a principal congruence subgroup of SL2(Z). Any group Γ satisfying
Γ(n) ⊆ Γ ⊆ SL2(Z) for some n ∈ N is called a congruence subgroup of
SL2(Z).

Definition 1.1.1. Let Γ be a congruence subgroup of SL2(Z) and k be an
integer. A weak modular form of weight k with respect to Γ is a function
f : H → C such that

(a) f is holomorphic on H;

1
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CHAPTER 1. THE CLASSICAL CASE 2

(b) for any γ ∈ Γ of the form

(
a b
c d

)
and any z ∈ H, we have f(γ(z)) =

(cz + d)kf(z).

We may rewrite (b) slightly by rephrasing it as invariance by a certain
action. So, for

γ =

(
a b
c d

)
∈ GL2(R),

define
f [γ]k(z) = (det γ)k−1(cz + d)−kf(γ(z)).

A simple computation shows that this indeed defines an action of GL2(R) on
the set of holomorphic functions f : H → C. Then (b) may be rephrased as

(b′) for any γ ∈ Γ we have f [γ]k = f as functions on H.

Note that the set of weak modular forms has the structure of a C-vector
space. In general it is infinite dimensional. We need another condition called
“holomorphic at infinity” to find a useful finite dimensional subspace.

By definition, a congruence subgroup Γ contains a principal congruence
subgroup Γ(n), and hence contains a translation element(

1 n
0 1

)
.

This might not be the smallest translation element, but its existence implies
the existence of a smallest one. Define h to be the smallest positive integer
such that (

1 h
0 1

)
∈ Γ.

If we let γ be the matrix above, then f [γ]k(z) = f(z + h). Hence, if f is a
weak modular form, then f is h-periodic. Now, any h-periodic function g on
H factors through qh : H → D′, z 7→ e2πz/h, where D′ = {z ∈ C | 0 < |z| < 1}
is the punctured unit disc (i.e. g = g̃ ◦ qh, where g̃ : D′ → C). Moreover,
if g is holomorphic on H, then g̃ is holomorphic on D′. If g̃ turns out to be
holomorphic on the whole unit disc, we say that g is holomorphic at infinity.
This is equivalent to saying that g has an expansion of the form

g(z) =
∑
n≥0

anq
n
h .

In order for the vector space of modular forms to be finite, we need the
condition holomorphic at infinity, but we shall also need this condition at
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CHAPTER 1. THE CLASSICAL CASE 3

other “limit points.” We define the set of cusps for Γ as the set of orbits of
P1(Q) under the action of SL2(Z) given by(

a b
c d

)
·
(m
n

)
=
am+ bn

cm+ dn
for

m

n
6= −d

c
,

γ
(−d
c

)
= ∞ and γ(∞) = a

c
(if c = 0, then γ(∞) = ∞). The set of cusps is

finite, since SL2(Z) acts transitively on P1(Q) and [SL2(Z) : Γ] is finite.

Definition 1.1.2. A weak modular form of weight k with respect to Γ is said
to be a modular form of weight k for Γ if also

(c) for every δ ∈ SL2(Z), the function f [δ]k is holomorphic at infinity.

Moreover, if the Fourier expansion of f [δ]k at infinity has 0 constant term
for every δ, then we call f a cusp form.

We shall denote the C-vector space of weight k modular forms for Γ by
Mk(Γ).

In practice it is not necessary to check (c) for all δ ∈ SL2(Z), but only for
a finite set of coset representatives of Γ\SL2(Z).

Example. The Eisenstein series of weight k ∈ Z is the function Gk : H → C
defined by

Gk(τ) :=
∑

(c,d)∈Z2r(0,0)

(cτ + d)−k.

It turns out that if k ≥ 4, then this sum is convergent and that if k is even,
then it is a non-zero modular form for SL2(Z). Moreover, each modular form
for SL2(Z) is a polynomial in G4 and G6.

The discriminant function

∆(τ) := (60G4(τ))3 − 27 (140G6(τ))2

turns out to be the non-zero cusp form of lowest possible weight.
The weight k (k ≥ 2, even) Eisenstein series for SL2(Z) has Fourier

expansion ([DS] §1.1)

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn,

where ζ is the Riemann zeta function, and σi(n) is the sum of the i-th powers
of the divisors of n.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. THE CLASSICAL CASE 4

The q-expansion of the discriminant function ∆ can be computed from a
product formula ([DS] following Proposition 1.2.5):

∆(τ) = (2π)12q
∞∏
n=1

(1− qn)24.

We shall prove a generalization of this formula in section 3.5.4.

1.2 Hecke operators

Hecke operators are linear operators between vector spacesMk(Γ1)→Mk(Γ2)
for congruence subgroups Γ1,Γ2. In the case when Γ1 = Γ2 we have an en-
domorphism of C-vector spaces, and there are many results on the structure
of such operators. For example, the Spectral Theorem tells us that there
exists a basis of cusp forms that form a system of simultaneous eigenforms
for a certain infinite set of Hecke operators. In this section we simply give
an indication of available results and omit details. For certain details, the
reader can refer to Chapter 4, where the function field analogue is treated in
more detail, and for other details we refer the reader to [DS] Chapter 5.

Let Γ1 and Γ2 be congruence subgroups, let α ∈ GL+
2 (Q), and consider

the double coset Γ1αΓ2. It can be written as the disjoint union of right cosets⋃
i Γ1βi. We then define the Hecke operator associated to the double coset

Γ1αΓ2 :Mk(Γ1)→Mk(Γ2) by

f [Γ1αΓ2]k =
∑
i

f [βi]k.

It is not hard to check that it is well-defined and that it sends modular forms
for Γ1 to modular forms for Γ2 and cusp forms for Γ1 to cusp forms for Γ2.

In the special case when Γ1 = Γ2 and α =

(
1 0
0 a

)
(a ∈ Z+), we denote

the operator Ta. It turns out that these operators are multiplicative in the
sense that if gcd(a, b) = 1, then Tab = TaTb.

It turns out that the eigenvectors for these operators (called eigenforms)
have Fourier expansions that are of arithmetic interest. For example, the
coefficients are multiplicative — i.e. if m, n and N (the level) are relatively
prime, then amn = aman.

Example. Each Eisenstein series Gk is an eigenform for each operator
Tn on the space of weight k modular forms for SL2(Z). The discriminant
function ∆ is also an eigenform, since the space of cusp forms that contains
it is one-dimensional.
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Chapter 2

Drinfeld modules

From now on we let A = OX (X r∞) be the coordinate ring of a smooth,
projective curve X over the finite field Fq, minus one point denoted by ∞.
The basic example is the polynomial ring Fq[t], where ∞ is the point for

which its associated absolute value is
∣∣∣f(t)
g(t)

∣∣∣ = qdeg g−deg f . In fact, we shall

often make the simplifying assumption that A = Fq[t]. A ring as described
above is called a Drinfeld ring .

Let F be the fraction field of A, let F∞ be the completion of F with
respect to the valuation associated to the point ∞, let π be a uniformizing
parameter in F∞, let A∞ = Fqdeg∞ [[π]] be the ring of elements in F∞ that are
regular at ∞, and let C∞ be the completion of an algebraic closure of F∞.
By Krasner’s Lemma, C∞ remains algebraically closed. When speaking of
an absolute value on C∞, we shall always mean the unique extension of the
absolute value on A associated to ∞, and we shall denote the valuation by
v(z). When a ∈ A, we shall often write deg a in stead of v(a). One should
think of A,F, F∞ and C∞ as analogues of Z,Q,R and C, respectively. One of
the reasons for this construction is that now one is able to develop a function
theory and a geometric theory over C∞.

Later on we shall also need the rings Â = lim←−(A/aA), the profinite com-

pletion of A, and Af
F = Â⊗A F , the ring of finite adeles of A.

In this chapter, and later, we shall encounter many sums or products over
expressions involving the non-zero elements of a set. We shall denote a sum
or product over the non-zero elements of a set S by∑′

x∈S

f(x) or
∏′

x∈S

f(x).

5
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CHAPTER 2. DRINFELD MODULES 6

2.1 Analysis on C∞
Since the absolute value on C∞ is non-archimedean, an infinite sum

∑
n≥0 an,

where an ∈ C∞ for n ≥ 1, converges if and only if limn→∞ an → 0. Hence
one may determine for which X a power series

∑
n≥0 anX

n converges.

Proposition 2.1.1. Let f(X) =
∑

n≥0 anX
n ∈ C∞[[X]] be a power series

in X with coefficients in C∞. Then f defines a function on the open ball
|X| < R(f) (taking values in C∞), where R(f) = lim infn→∞ |an|−1/n is the
radius of convergence.

Proof. Whenever |X| < R(f), we have limn→∞ |anXn| = 0, and thus the
series converges to a value in C∞.

Proposition 2.1.2. For any r < R(f), the function f has only finitely many
zeros in the closed disc |X| ≤ r.

Proof. [Go4] Proposition 2.11.

Definition 2.1.3. The function f(X) =
∑

n≥0 anX
n is entire if R(f) =∞,

or equivalently, if the series converges for all X ∈ C∞.

Proposition 2.1.4. (a) Every non-constant entire function f(X) has a
zero.

(b) Every non-constant entire function f(X) is surjective.

Proof. (a) is a direct consequence of the study of Newton polygons preceding
Proposition 2.13 in [Go4], while (b) is simply (a) applied to f(X)− c for an
arbitrary c ∈ C∞.

In the following theorem we encounter an infinite product of linear terms.
Under the conditions of the theorem it will define a function. We should
mention explicitly that the function we are defining is the uniform limit of
the polynomials defined by taking only finitely many factors at a time.

Theorem 2.1.5 (Weierstrass Factorization Theorem). Suppose that f(X)
is an entire function with non-zero roots (λ1, λ2, . . . ) listed with multiplicity.
Also suppose that f(X) has 0 as a root with multiplicity m (possibly 0). Then,
for some constant c ∈ C∞ we have

lim
n→∞

|λn| = 0 and f(X) = cXm
∏
i≥1

(
1− X

λi

)
.

Conversely, given c ∈ C∞, m ∈ Z≥0 and a sequence (λ1, λ2, . . . ) for which
limn→∞ |λn| = 0, the above product defines an entire function.
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CHAPTER 2. DRINFELD MODULES 7

Proof. If we let g(X) = Xm
∏

i≥1

(
1− X

λi

)
, then (f/g)(X) is an entire func-

tion with no zeros, and hence, by Proposition 2.1.4 (a), constant.
Conversely, let N ∈ R, and suppose that there are k of the λi which are

less than nor equal to N/ |λ1|. Then∣∣∣∣∣
2k∏
i=1

λi

∣∣∣∣∣ =

∣∣∣∣∣
k∏
i=1

(λiλ2k+1−i)

∣∣∣∣∣ ≥
k∏
i=1

N

|λ1| |λk+1|
≥ Nk.

This implies that coefficient c2k in the product expansion satisfies c
1/2k
2k ≤ 1/

√
N .

Since N was chosen arbitrarily, this means that the resulting function is en-
tire.

2.2 Exponential functions

Let L be an Fq-linear subspace of C∞ (not necessarily finite dimensional).
We define the exponential function associated to L by

eL(X) = X
∏′

λ∈L

(
1− X

λ

)
.

By Theorem 2.1.5, the product only converges to an entire function if any ball
of finite radius contains only finitely many elements of L. If L satisfies this
property, we call L strongly discrete. It turns out that eL(X) is an Fq-linear
function in the sense of the following proposition.

Proposition 2.2.1. Let L be a strongly discrete Fq-subspace of C∞. Then
the function eL(X) is Fq-linear, i.e. satisfies the following properties:

(a) eL(cX) = ceL(X) for all X ∈ C∞ and all c ∈ Fq;

(b) eL(X + Y ) = eL(X) + eL(Y ) for all X, Y ∈ C∞.

Proof. (a) If c = 0, it is clear, since both sides are 0. Otherwise the zero
set of eL(X) is L, while the zero set of eL(cX) is {c−1λ |λ ∈ L} = L,
since L is an Fq vector space. The equality follows by comparing the
coefficients of X.

(b) Firstly, suppose that L is finite, and hence that eL(X) is a polynomial
in X. For some Y ∈ C∞, consider the polynomial h(X) = eL(X+Y )−
eL(X)− eL(Y ). Its degree is clearly less than that of eL(X). However,
every X = z ∈ L is a root of h. Indeed, if z ∈ L, then eL(z) = 0 and the
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roots of eL(z+Y ) (as a polynomial in Y ) is the set {λ−z |λ ∈ L} = L.
This means that h has more roots than its degree, hence is identically
0 as a function.

Now, viewing Y as a variable, the polynomial eL(X + Y ) − eL(X) −
eL(Y ) ∈ C∞[X][Y ] is 0 for every Y ∈ C∞. Since C∞ is an infinite field,
this means that it is the zero polynomial.

The results follows by writing L =
⋃
Li as a union of finite Fq-subspaces

of C∞ and noting that eL(X) = lim
i→∞

eLi(X).

In fact, all separable entire Fq-linear functions are constant multiples of
exponential functions.

Proposition 2.2.2. Let f(X) be an entire function for which f ′(X), the
formal derivative of f , has no common zeros with f(X). Also suppose that
f(X) is Fq-linear. Then its set of zeros, form a sub-Fq-vector space of C∞.

Proof. Note that if z1 and z2 are zeros of f , then f(cz1) = cf(z1) = 0 and
f(z1 + z2) = f(z1) + f(z2) = 0 as well. By the asumption on f ′, the roots
are all simple.

By Proposition 2.2.1 we now know that eL(X) is Fq-linear, and thus that
its power series expansion in X has non-zero coefficients only for those powers
of X whose exponent is a power of q. We write

eL(X) =
∑
n≥0

en(L)Xqn(2.1)

making explicit the dependence of the coefficients on the set L. Furthermore,
we know that f is entire, and hence that it is surjective.

Proposition 2.2.3. The function eL : C∞ → C∞ induces an isomorphism
of additive groups L\C∞

∼−−→ C∞.

Proof. We already know that it is a well-defined group homomorphism and
that it is surjective. Since the kernel of eL is L, the map is an isomorphism.

Lemma 2.2.4. Let L be a strongly discrete Fq-subspace of C∞ and z ∈ C∞.
We have the estimate

|eL(z)| ≥ min{|z − λ| : λ ∈ L}.
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Proof. By replacing z by a suitable z + h (h ∈ L), we may assume that
|z| = min{z − λ : λ ∈ L}. We have

|eL(z)| = |z|
∏′

λ∈L

∣∣∣1− z

λ

∣∣∣
= |z|

∏′

λ∈L

∣∣∣∣λ− zλ
∣∣∣∣ .

Now we split up the product into those factors where |z| < |λ| (in which case∣∣1− z
λ

∣∣ = 1), where |z| > |λ| (in which case
∣∣1− z

λ

∣∣ =
∣∣ z
λ

∣∣ > 1) and where
|z| = |λ|. In the latter case, our choice of z implies |z − λ| ≥ |z| = |λ|, and
we conclude that |eΛ(z)| ≥ |z|.

Proposition 2.2.5. (a) Let L be a strongly discrete Fq-linear subspace of
C∞, and c ∈ C∞. Then

ecL(cX) = ceL(X).

(b) Suppose that L and M are strongly discrete Fq-linear subspaces of C∞
such that L ⊂M . Then eL(M) is a strongly discrete Fq-linear subspace
of C∞ and

eM(X) = eeL(M)(eL(X)) as power series in X.

Proof. For (a) note that ecL(cX) = cX
∏′

λ∈L

(
1− cX

cλ

)
= ceL(X).

For (b), let S be a set of coset representatives for M/L such that each
representative has minimum absolute value in the coset (this is possible since
M is strongly discrete), and let r > 0. Pick s ∈ S such that |eL(s)| < r. By
Lemma 2.2.4, this means that min{|s− λ| : λ ∈ L} ≤ |eL(s)| < r. The ball
around 0 with radius r has only finitely many elements, and hence s must
be in a coset to which one of these elements belong. Thus, there are only
finitely many choices of s for which |eL(s)| < r. This means that eL(M) is
strongly discrete.

The function eM(X) has simple zeros at exactly the elements of M . The
function eeL(M)(eL(X)) has zeros exactly when eL(X) ∈ eL(M), which hap-
pens exactly when X ∈ M . Thus, the functions on the left and right hand
sides have the same zero sets. The equality follows from the fact that the
derivative of both sides is equal to 1.
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Like in the classical case there is also an inverse to the exponential func-
tion — the logarithmic function associated to L. We define it as the power
series inverse of eL(X), i.e. as the unique power series logL(X) such that
eL(logL(X)) = logL(eL(X)) = X. The coefficients of logL(X) may be com-
puted by calculating these compositions of power series and comparing coef-
ficients. It turns out that logL(X) also has non-zero coefficients if and only
if the corresponding power of X is a power of q. So, we let

logL(X) =
∑
n≥0

βnX
qn .(2.2)

This function is not entire, but it has a positive radius of convergence.
In Lemma 3.4.13 we shall give another interpretation of these coefficients

as certain modular forms.

2.3 Drinfeld modules

To define Drinfeld modules, we shall pay special attention to those expo-
nential functions associated to sets with even more structure — that of A-
submodules of C∞. In our analogy, this corresponds to Z-submodules of C
or lattices, which are important in the theory of elliptic curves and elliptic
modular forms.

Definition 2.3.1. A lattice Λ of rank r is a projective A-submodule of C∞
of rank r which is strongly discrete in C∞.

The last property is necessary, since this ensures that the associated ex-
ponential function is defined. Also note that since the modules we are con-
sidering are submodules of the field C∞, projective is the same as finitely
generated.

Proposition 2.3.2. A projective module Λ ⊂ C∞ of rank r is a lattice if
and only if F∞Λ is an F∞-vector space of dimension r.1

Proof. [Go4] Propositions 4.6.2 and 4.6.3.

Theorem 2.3.3. Let Λ be a lattice of rank r, and a ∈ A. Then

eΛ(aX) = ϕΛ
a (eΛ(X)),(2.3)

1Note the difference between Λ ⊗A F∞, an abstract r dimensional vector space, and
F∞Λ, an F∞-sub-vector space of C∞ which may have dimension less than r.
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where ϕΛ
a (X) is the polynomial of degree |a|r = qr deg a given by

aX
∏′

λ∈ 1
a

Λ/Λ

(
1− X

eΛ(λ)

)
.(2.4)

Proof. By Proposition 2.2.5 with M = 1
a
Λ and L = Λ we get eΛ(aX) =

ae 1
a

Λ(X) = ϕΛ
a (eΛ(X)).

It is worth noting that the degree of the polynomial ϕΛ
a is |a|r = qr deg a.

From equation (2.3) we deduce that ϕΛ
a (ϕΛ

b (X)) = ϕΛ
ab(X) = ϕΛ

b (ϕΛ
a (X)).

So, in fact, the map a → ϕΛ
a defines a ring homomorphism ϕΛ : A →

EndFq(Ga(C∞)), where the latter is the ring of Fq-linear group endomor-
phisms of C∞.

Given any such ring homomorphism, the map A × C∞ → C∞, (a, z) 7→
ϕa(z) defines an A-module structure on C∞, which is quite different from the
usual structure. This is the Drinfeld module structure.

Definition 2.3.4. Let k be a field for which there exists a morphism ι :
A → k. A Drinfeld A-module over k is a ring homomorphism ϕ : A →
EndFq(Ga(k)) such that its derivative dϕ = ι, and ϕ 6= ι.

Proposition 2.3.5. (a) Let ϕ be a Drinfeld A-module over a field k. There
exists an integer r such that for every a ∈ A, ϕa(X) is a polynomial of
degree qr deg(a). This integer is called the rank of ϕ.

(b) If Λ is a lattice of rank r, then ϕΛ is a Drinfeld module of rank r.

Proof. The proof of (a) can be found in [Go4] Proposition 4.5.3., while for
(b) simply note that for any non-zero a ∈ A, the index [Λ : aΛ] = qr deg a and
hence, by equation (2.4) the polynomial ϕΛ

a has degree qr deg a.

For a lattice Λ this means that ϕΛ is a Drinfeld module. We call it the
Drinfeld module associated to Λ. It turns out that every Drinfeld module
over C∞ is a Drinfeld module associated to some lattice (Theorem 2.4.4).

Example. As a special example of a Drinfeld module we mention the
Carlitz module. Assume that A = Fq[t]. Then the Carlitz module is the
unique Drinfeld module ϕ for which ϕt(X) = tX+Xq. By the Uniformization
Theorem for Drinfeld modules (Theorem 2.4.4) there exists a lattice L of rank
1 such that ϕL = ϕ. Define π̄ ∈ C∞ such that L = π̄A. We call π̄ the Carlitz
period . It is a number which is transcendental over F (just like π ∈ R is
transcendental over Q) and various formulas can be given for it, e.g.

π̄ = ζ
∏
i≥1

(
1− tq

j − t
tqj+1 − t

)
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where ζ is a (q− 1)st root of −1, which is defined up to a multiple of Fq (see
[Go4] §3.2., where it is denoted by ξ).

2.4 Morphisms of Drinfeld modules

Definition 2.4.1. If Λ1 and Λ2 are two lattices of the same rank, we define a
morphism of lattices c : Λ1 → Λ2 as an element c ∈ C∞ such that cΛ1 ⊆ Λ2.
We shall not consider any morphisms between lattices of different rank.

Proposition 2.4.2. Let c : Λ1 → Λ2 be a morphism of lattices. Then

Pc(X) = cX
∏′

λ∈c−1Λ2/Λ1

(
1− X

eΛ1(λ)

)
(2.5)

is an Fq-linear polynomial for which Pc(ϕ
Λ1
a (X)) = ϕΛ2

a (Pc(X)) for all a ∈ A.

Proof. Note that c−1Λ2/Λ1 is an Fq-vector space, which is finite, since Λ1 and
Λ2 have the same rank. Hence equation (2.5) defines an Fq-linear polynomial.

Now note that Pc(eΛ1(X)) is an entire function with simple zeros at the
points of c−1Λ2 and with derivative c. Thus Pc(eΛ1(X)) = cec−1Λ2

(X) =
eΛ2(cX) by Proposition 2.2.5 (a).

Replacing X by aX this becomes

Pc(ϕ
Λ1
a (eΛ1(X))) = Pc(eΛ1(aX)) = eΛ2(aX) = ϕΛ2

a (eΛ2(cX)) = ϕΛ2
a (Pc(eΛ1(X))),

the last following from the final equation in the previous paragraph. Since
eΛ1 is surjective, it follows that Pc(ϕ

Λ1
a (X)) = ϕΛ2

a (Pc(X)).

Definition 2.4.3. Let ϕ and ψ be two Drinfeld modules of the same rank. A
morphism f : ϕ → ψ is a polynomial p(X) such that p(ϕa(X)) = ψa(p(X))
for all a ∈ A.

Theorem 2.4.4 (Uniformization Theorem for Drinfeld modules). The asso-
ciation Λ 7→ ϕΛ, (c : Λ1 → Λ2) 7→ (Pc : ϕΛ1 → ϕΛ2) defines an equivalence
between the category of A-lattices of rank r in C∞ and the category of Drinfeld
A-modules of rank r over C∞.

Proof. [Go4] Theorem 4.6.9.

We say that two lattices Λ1 and Λ2 are similar or homothetic if cΛ1 = Λ2

for some c ∈ C∞. This defines an equivalence relation on the set of lattices.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. DRINFELD MODULES 13

It is easy to see that in this case the associated morphism Pc is linear. Any
linear polynomial aX has an inverse (under composition) X

a
. This means

that c induces an isomorphism of Drinfeld modules. On the other hand, if
P : ϕΛ1 → ϕΛ2 is an isomorphism, then it must be linear, since no other
polynomial has an inverse. Then this morphism could only come from a
c ∈ C∞ for which cΛ1 = Λ2. Let us finish this section by comparing the
coefficients of isomorphic Drinfeld modules.

Proposition 2.4.5. Let c : ϕ→ ψ be an isomorphism of Drinfeld modules,
where c(X) = cX. Let a ∈ A. If ϕa(X) = aX + g1X

q + · · · + gnX
qn and

ψa(X) = aX +h1X
q + · · ·+hnX

qn, then hi = c1−qigi for every i = 1, . . . , n.

Proof. By definition of a morphism of Drinfeld modules, we have cϕa(X) =
ψa(cX), and by comparing the coefficients of Xqi we obtain cgi = cq

i
hi,

yielding the result.

2.5 Goss polynomials

Later we shall study many expressions of the form

Sk,Λ(z) :=
∑
λ∈Λ

(z + λ)−k.

It turns out that for any k ≥ 1, Sk,Λ is a polynomial in S1,Λ, so in some
respects, it will be sufficient to study S1,Λ. We also give the following lemma
for later use.

Lemma 2.5.1. In the notation above, we have S1,Λ(X) =
1

eΛ(X)
.

Proof. Note that the derivative of eΛ(X) is 1. Therefore taking the logarith-
mic derivative on both sides of

eΛ(X) = X
∏′

λ∈Λ

(
1− X

λ

)
yields the result.

Proposition 2.5.2. Let Λ ⊂ C∞ be a strongly discrete Fq-linear set. There
exist polynomials Pk,Λ such that Sk,Λ = Pk,Λ(S1,Λ). These polynomials also
have the following properties:

(a) Pk,Λ(X) = X (Pk−1,Λ(X) + e1(Λ)Pk−q,Λ(X) + e2(Λ)Pk−q2,Λ(X) + · · · ),
where we make the convention that Pk,Λ(X) = 0 if k < 0;
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(b) Pk,Λ is monic of degree k;

(c) Pk,Λ(0) = 0 and X2 | Pk,Λ(X) if k ≥ 2;

(d) Ppk,Λ(X) = Pk,Λ(X)p;

(e) if k ≤ q, then Pk,Λ(X) = Xk;

(f) for k = qj − 1 we have the formula Pqj−1(X) =
∑

0≤i<j

βiX
qj−qi, where

the βi are the coefficients of the logarithm function from equation (2.2);

(g) The indices of the non-zero coefficients of Pk,Λ are all congruent to k
modulo q − 1;

(h) The coefficients of Pk,Λ(X) lie in the ring Fq[e1(Λ), . . . , em(Λ)],2 where
m is chosen such that qm ≤ k < qm+1;

(i) X2P ′k,Λ(X) = kPk+1,Λ(X).

Proof. The proofs of (a)–(f) and (i) appear in [Ge3] and is reproduced almost
exactly since we believe that it is not readily available.

The statement is clearly true for k = 1, with P1,Λ(X) = X for any Λ.
The rest of the proof relies on the Newton relations for a polynomial which
we state here without proof.

Lemma 2.5.3 (Newton relations). Let f(X) =
n∏
i=1

(X − ρi) =
n∑
i=0

aiX
i be a

polynomial, and for k ≥ 0 define Sk :=
∑n

i=0 ρ
n
k . Then

k−1∑
i=0

aiSk−i + kak = 0 for n ≥ k; and

n∑
i=0

aiSk−i = 0 for n ≤ k.

First make the assumption that Λ is finite, and that dimFq Λ = m. Then
eΛ is a polynomial of degree qm and simple roots at elements of Λ. Let f be
the polynomial

f(X) :=
eΛ (X−1 − z)Xqm

eΛ(z)
.

2Recall our notation in equation (2.1) that eL(X) =
∑
n≥0 en(L)Xqn .

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. DRINFELD MODULES 15

We have

eΛ

(
X−1 − z

)
= eΛ(X−1)− eΛ(z) =

m∑
i=0

en(Λ)
(
X−q

n − zqn
)
,

and conclude that f(X) is a polynomial of degree qm with roots
{

1
z−λ

∣∣λ ∈ Λ
}

and expansion

f(X) = Xqm −
m∑
i=0

ei(Λ)

eΛ(z)
Xqm−qi .

The Newton relations now give

Sk,Λ =
∑

1≤qi≤k−1

Sk−qi,Λ = S1,Λ (Sk−1,Λ + e1(Λ)Sk−q,Λ + e2(Λ)Sk−q2,Λ + · · · ) .

This defines a recurrence from which we may calculate Sk,Λ in terms of S1,Λ.
By definition, this will give us exactly the Goss polynomials. Note that they
are uniquely determined since, by Proposition 2.1.4 (b) and Lemma 2.5.1,
S1,Λ takes infinitely many values.

In fact this recurrence gives us exactly (a), which implies (b), (c), (d) and
(e), while (g) also follows by a simple induction. To prove (f) we show that
the two polynomials Q(X) =

∑
0≤i<j βi(Λ)Xqi and R(X) = XqjPqj−1,Λ(X−1)

are the same. Since Q(X) is the truncation of logΛ(X), we have Q(eΛ(X)) =
X +O(Xqj). We also have

R(eΛ(X)) = eΛ(X)q
j

Pqj−1

(
eΛ(X)−1

)
= eΛ(X)q

j

Sqj−1,Λ,

where the second term is X1−qi +
∑′

λ∈Λ
(X − λ)1−qi and the first is Xqi +

O(Xq+1). Noting that (X − λ) is an invertible function in C∞[[X]], we con-
clude that also R(eΛ(X)) = X + O(Xqj). Since Q and R have degree less
than qj and are equal modulo Xqj , this implies that Q = R.

The proof of (i) is also by induction, noting that it is true for k = 1, and
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that if it is true for j < k, then

X2P ′k,Λ(X) = XPk,Λ(X) +X

 ∑
1≤qi≤k−1

ei(Λ)X2P ′k−qi,Λ(X)


= X

Pk,Λ(X) +
∑

1≤qi≤k−1

ei(Λ)(k − qi)Pk+1−qi,Λ(X)


= X

kPk,Λ(X) +
∑

q≤qi≤k−1

ei(Λ)kPk+1−qi,Λ(X)


= kPk+1,Λ(X).

Now, let Λ be general. Set Λr = Λ ∩ B(0, r). Then Sk,Λ = limr→∞ Sk,Λr
and eΛ(X) = limr→∞ eΛr(X) locally uniformly. We define the polynomials
Pk,Λ(X) := limr→∞ Pk,Λr(X), where we take the limit coefficientwise. We
have

Pk,Λ(S1,Λ) = lim
r→∞

Pk,Λr(z)(S1,Λr) = lim
r→∞

Sk,Λr = Sk,Λ.

The properties for Pk,Λ follow immediately from the finite case.
Lastly, note that (h) also follows from the recursion formula (a), which

we now know to be valid for arbitrary lattices.

The polynomials Pk,Λ are called the Goss polynomials after David Goss
who first introduced them in [Go3] §6(c).

2.6 The Drinfeld Period Domain Ωr

2.6.1 Rigid Analytic Spaces

Before defining Ωr, we make a quick digression to define rigid analytic va-
rieties and some related objects. This is an overview, merely stating the
definitions and most important results. For a more detailed introduction,
the reader may consult [Bo] or [FvdP].

Definition 2.6.1. The ring of strictly convergent power series in n variables
over C∞ is the ring C∞〈x1, . . . , xn〉 defined as{ ∑

i1,...,in≥0

ai1,...,inx
i1
1 · · · xinn ∈ C∞[[x1, . . . , xn]]

∣∣∣∣∣ lim
i1+···+in→∞

ai1,...,in = 0

}
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consisting of all power series that converge on the closed unit ball B̄(0, 1) =
{(z1, . . . , zn) ∈ Cn

∞ | max |zi| ≤ 1}.

Definition 2.6.2. A Tate algebra is a quotient of a ring of strictly convergent
power series by a finitely generated ideal. It turns out ([Bo] §1.2 Corollary
10) that every Tate algebra is also a finite extension of a strictly convergent
power series ring.

Remark. In fact, strictly convergent power series rings are Noetherian.
Thus the condition that the ideal be finitely generated is superfluous.

There is a bijection between the unit ball from Definition 2.6.1 and the set
of maximal ideals of C∞〈x1, . . . , xn〉 which allows a correspondence similar
to that in algebraic geometry. Hence, for any Tate algebra A, we denote the
set of its maximal ideals by Spm(A). We also consider A to be its ring of
functions. Such a space is called an affinoid space.

This space will be endowed with a sheaf with respect to a Grothendieck
topology. To describe the sheaf we first say what an admissible open subset
is.

Definition 2.6.3. Let X = Spm(A) be an affinoid space. A subset U ⊂ X is
said to be an affinoid subset if there exists a morphism ϕ : Spm(B)→ U for
some affinoid algebra B such that for every morphism ψ : Spm(C)→ U (with
C an affinoid algebra), there exists a unique morphism of affinoid algebras
ρ : B → C such that ψ = ϕ ◦ Spm(ρ).

A consequence of the definition ([Bo] §1.6 Lemma 10) is that ϕ defines
an isomorphism Spm(A)

∼−−→ U . As special kinds of affinoid subdomains
we mention Weierstraß domains and Laurent domains. They will make an
appearance in the next section when defining the Drinfeld period domain.

Definition 2.6.4. Let X = Spm(A) be an affinoid space and let f1, . . . , fr ∈
A, and g1, . . . , gs ∈ A be functions. A Weierstraß domain is a subset of X of
the form

X(f1, . . . , fr) = {x ∈ X : |fi(x)| ≤ 1}

and a Laurent domain is a subset of X of the form

X(f1, . . . , fr, g
−1
1 , . . . , g−1

s ) = {x ∈ X : |fi(x)| ≤ 1, |gj(x)| ≥ 1}.

By taking affinoid sets and affinoid subsets to be admissible opens, we
obtain a Grothendieck topology. For completeness we include a definition of
a Grothendieck topology that is suitable for us.
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Definition 2.6.5. Let X be a set. A Grothendieck topology on X consists
of

• a set S ⊂ P(X) of subsets of X, called admissible open subsets; and

• a family (CovU) for admissible opens U , where each CovU is a set of
admissible coverings of U whose elements are sets {Ui}i∈I of admissible
opens for which U =

⋃
i∈I Ui;

with the properties

(a) if U, V ∈ S, then U ∩ V ∈ S;

(b) for each U ∈ S, {U} ∈ CovU ;

(c) if {Ui}i∈I ∈ CovU and for each i ∈ I, {Vij}j∈Ji ∈ CovUi, then
{Vij}i∈I,j∈Ui ∈ CovU ; and

(d) if U, V ∈ S and V ⊂ U and {Ui}i∈I ∈ CovU , then {Ui ∩ V }i∈I ∈
CovU ∩ V .

The Grothendieck topology just defined is called the weak Grothendieck
topology . However, it does not behave well under morphisms, so we need
to extend it (by adding more admissible opens) to the strong Grothendieck
topology . The following definition gives the admissible opens and admissible
coverings in this case:

Definition 2.6.6. Let X be an affinoid space. We define the strong Grothendieck
topology on X as follows:

• The admissible open sets are the sets U ⊂ X for which there exists
a covering (not necessarily finite) U =

⋃
i∈I Ui by affinoid subdomains

Ui ⊂ X with the property that for any morphism ϕ : Z → X of affi-
noid spaces with ϕ(Z) ⊂ U , the covering (ϕ−1(Ui))i∈I of Z admits a
refinement which is a finite covering of Z by affinoid subspaces.

• The admissible coverings of an admissible open set V are the coverings
V =

⋃
j∈J Vj of V by admissible opens Vj with the property that for any

morphism ϕ : Z → X of affinoid spaces with ϕ(Z) ⊂ V , the covering
(ϕ−1(Vj))j∈J of X admits a refinement which is a finite covering of Z
by affinoid subspaces.
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Definition 2.6.7. A G-ringed space is a set X endowed with a Grothendieck
topology T and a sheaf OX of rings with respect to this Grothendieck topology.
A locally G-ringed space is a G-ringed space for which the stalks OX,x are all
local rings.

A morphism of ringed spaces (ϕ, ϕ#) is a function ϕ : X → Y which
is continuous3 with respect to the respective Grothendieck topologies and a
morphism of sheaves ϕ# : OY → ϕ∗ (OX). A morphism of locally ringed
spaces must moreover induce local homomorphisms on the stalks.

A rigid analytic space is locally ringed space (X,T,OX) that admits an
admissible covering X =

⋃
Ui by affinoid sets with the Grothendieck topology

from Definition 2.6.6.

We now present an example which will be relevant later on. Let 0 < r < 1.
For any k define the annulus Bk := C∞〈X, rkX−1〉 ∼= {z ∈ C∞ :

∣∣rk∣∣ ≤
|z| ≤ 1}. It is an affinoid subspace of P1(C∞). The punctured unit disc
B′ = {z ∈ C∞ | 0 < |z| ≤ 1} is the union

⋃
k≥1Bk. It is an admissible open

subset of P1(C∞) and the covering by annuli is an admissible covering.
The functions that are holomorphic onBk are the Laurent series

∑
n∈Z anX

n

where limn→∞ |an| = 0 and limn→−∞ r
kn |an| = 0. Thus, the functions holo-

morphic on B′ must be the Laurent series{∑
n∈Z

anX
n

∣∣∣∣∣ lim
n→∞

|an| = 0, ∀R > 0 lim
n→−∞

Rn |an| = 0

}
.(2.6)

Proposition 2.6.8. Let f : B′ → C∞ be a bounded holomorphic function on
the punctured unit disc. Then it extends to a holomorphic function on the
unit disc {z ∈ C∞ : |z| ≤ 1}.

Proof. This is a special case of [FvdP] Proposition 2.7.13.

Lastly we consider quotients of rigid spaces. Suppose that a group Γ acts
on a rigid space X. (By this we mean that for any γ ∈ Γ, the map x 7→ γx
is a morphism of rigid spaces.) Suppose further that the action of Γ on X
is discontinuous . By this we mean that there exists an admissible covering
X =

⋃
i∈I Ui of X such that for every Ui, the set {γ ∈ Γ | γ(Ui) ∩ Ui 6= ∅} is

finite.

Proposition 2.6.9. Let X be a rigid space, and let Γ be a group which
acts discontinuously on X. Then there exists a morphism of rigid spaces
p : X → Y with the universal property:

3A morphism of sets with Grothendieck topologies is continuous if the inverse image of
an admissible open set is admissible, and if the inverse image of an admissible covering is
an admissible covering.
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• p is Γ-invariant.

• Let U ⊂ X be an admissible Γ-invariant set, and let q : U → Z be a
Γ-invariant morphism. Then p(U) ⊂ Y is admissible and there is a
unique morphism r : p(U)→ Z such that q = r ◦ p : U → p(U)→ Z.

We call Y the quotient space of X by Γ and denote it by Γ\X.

The admissible open sets of Γ\X are the sets of the form p−1(U) where U
is an admissible subset of X and the admissible coverings are the coverings
p−1(U) =

⋃
i p
−1(Ui) where

⋃
i Ui is an admissible covering of U . We may

also describe the structure sheaf by OΓ\X(U) := OX(p−1U)Γ, the subring of
Γ-invariant elements of OX(p−1U).

More details about quotient spaces as well as an example can be found
in [FvdP] Chapter 6.4.

2.6.2 The Drinfeld Period Domain Ωr

Eventually, we shall define modular forms as holomorphic functions on the
Drinfeld period domain Ωr satisfying a modular functional equation. One of
the goals of this section is to define the rigid analytic structure on Ωr. Then
we can say what it means for a function to be holomorphic on Ωr. The rigid
structure on Ωr was given in Drinfeld’s original paper [Dr] (Propositions 6.1
and 6.2), but is also explicitly mentioned in [SS]. We follow the approach
from the latter quite closely.

Definition 2.6.10. The Drinfeld period domain Ωr is the complement in
Pr−1(C∞) of the union of all F∞-rational hyperplanes.

This space turns out to be an admissible open subset of Pr−1(C∞). To
prove this, we define neighbourhoods of each hyperplane, the complements
of which are affinoid subsets. Unless stated otherwise, in this section we shall
choose elements ω ∈ Pr−1(C∞) to be unimodular. This means that we pick
ω = (ω1 : ω2 : · · · : ωr) in such a way that max1≤i≤r{|ωi|} = 1.

Let H ⊂ Pr−1(C∞) be an F∞-hyperplane. It is defined by a linear form
`H(ω) = h1ω1 + · · · + hrωr which we may choose such that H = {ω ∈
Pr−1(C∞) | `H(ω) = 0} and hi ∈ A∞ for every i = 1, . . . , r, but at least
one hi /∈ πA∞. Such a form is defined up to multiplication by a unit in
A∞. In particular, |`H(ω)| is well-defined for any ω ∈ P. We now define
neighbourhoods of such a hyperplane.

Definition 2.6.11. Let ε ∈ Q+ and let H be an F∞-hyperplane. The set
H(ε) = {ω ∈ Pr−1(C∞) : |`H(ω)| ≤ ε}, is called an ε-neighbourhood of the
hyperplane H.
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Theorem 2.6.12. Each set

Ωn := Ω(|π|n) := Pr−1(C∞) r
⋃
H

H(|π|n)

(where H ranges over all F∞-hyperplanes) is an affinoid subspace of Ωr.
Moreover, the set {Ωn | n ∈ N} forms an admissible covering of Ωr.

The key to this theorem is that each Ωn is defined by only finitely may hy-
perplanes. Since the hyperplanes are defined by linear forms with coefficients
in A∞, we may define congruences between them. We say that H1 ≡ H2

(mod πn) if we can choose `H1 and `H2 such that `H1 ≡ `H2 (mod πn), where
this congruence is coefficientwise. Let also Hn denote the set of equivalence
classes of hyperplanes modulo πn and let H = lim←−Hn. We also endow H
with the profinite topology in this construction. In particular, it is compact.

Lemma 2.6.13. Two hyperplanes H1 and H2 are congruent `H1 ≡ `H2

(mod πn) if and only if H1(|πn|) = H2(|πn|).

Proof. If `H1 ≡ `H2 (mod πn), then for any ω we have |`H1(ω)− `H2(ω)| ≤
|πn|, since ω is chosen to be unimodular. Then ω ∈ H1(|πn|) if and only if
ω ∈ H2(|πn|).

Conversely, suppose that H1(|πn|) = H2(|πn|). For a given unimodular
ω, whether `Hj(ω) ≤ |π|n (j = 1, 2) depends only on (ω1, . . . , ωr) modulo πn.
Indeed, assume that ω ≡ ω̄ (mod πn) in the sense that ωi − ω̄i ∈ πnAr∞ for
i = 1, . . . , r. Since the linear forms `Hj have coefficients in A∞, this implies
that `Hj(ω)− `Hj(ω̄) ∈ πnA∞ as well.

Thus for j = 1, 2, the linear forms `Hj associated to Hj induce linear
functions ¯̀

Hj : (A/πnA)r → (A/πnA) which are easily seen to be surjective.
Now, if H1(|πn|) = H2(|πn|), then these maps have the same kernel, implying
that they differ by a scalar which is invertible in A∞, i.e. there exists an
α ∈ (A∞/π

nA∞)× such that ¯̀
H1 = α ¯̀

H2 or equivalently we may choose `H2

so that `H1 ≡ `H2 (mod πn).

Since there are only finitely many elements in A∞/π
nA∞, there are only

finitely many equivalence classes of hyperplanes modulo πn. Hence Ωn is the
Laurent domain Pr−1(C∞)

(
(π−n`−1

H )H∈Hn
)
.

Proof of Theorem 2.6.12. Note that Ωn is an affinoid subspace, since it is a
Laurent domain. It is also a finite intersection of sets of the form Pr−1(C∞)r
H(|π|n), where H is a hyperplane. But such a set is isomorphic to an open
polydisc in the affine space Pr−1(C∞) rH. It is also known that such poly-
discs form an admissible covering of the affine space. Therefore if f : Y →
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Pr−1(C∞) is a rigid analytic morphism such that f(Y ) ⊂ Pr−1(C∞)rH, then
there is an n(H) ∈ N such that f(Y ) ⊂ Pr−1(C∞) rH

(∣∣πn(H)
∣∣).

Now let f : Y → Pr−1(C∞) be a morphism such that f(Y ) ⊂ Ωr. Then,
in fact, f(Y ) ⊂ Pr−1(C∞) r

⋃
H∈HH

(∣∣πn(H)
∣∣). However, by Lemma 2.6.13

the sets {H ′ ∈ H |H ′ ⊂ H(|πn|)} are open in the topology on H. Since
H is compact, there are finitely many hyperplanes H1, . . . , Hr and positive
integers n1, . . . , nr such that⋃

H∈H

H ⊂ H1(|πn1|) ∪ · · · ∪Hr(|πnr |).

Setting n := maxnr we see that⋃
H∈H

H ⊂
⋃

H∈Hn

H(|πn|) ⊂ H1(|πn1 |) ∪ · · · ∪Hr(|πnr |)

and ultimately f(Y ) ⊂ Ωn. Therefore the Ωn form an admissible covering of
Ωr.

In [Dr], Drinfeld also gives a finer admissible covering by using the Bruhat-
Tits building for GLr. We omit its discussion since we do not use it except
to mention its use in Lemma 3.1.6.

Since the sets Ωn are affinoid, there exist Tate algebras An such that
Spm(An) ∼= Ωn. We refrain from writing them down explicitly. The holo-
morphic functions on Ωn are exactly the elements of An. The functions that
are holomorphic on Ωr are the functions that are holomorphic on each Ωn —
hence the intersection of all the An. Alternatively, one may use the following
equivalent definition:

Definition 2.6.14. A function f : Ωn → C∞ is holomorphic on Ωn if it
is the uniform limit of rational functions on Ωn with no poles in Ωn. A
function f : Ωr → C∞ is holomorphic on Ωr if its restriction to each Ωn is
holomorphic on Ωn.

Later on we shall need the fact that holomorphic functions on a certain
open set have a power series expansion. This is a natural place to prove this.

Lemma 2.6.15. Let B′(R) = {z ∈ Spm(C∞) | 0 < |z| ≤ R} be the punctured
disc of radius R, and Ωn be the affinoid subspace of Ωr as before. Then a
function holomorphic on the product B′(R)×Ωn has a Laurent series expan-
sion of the form ∑

n∈Z

fnX
n,

where each fn is a uniquely determined holomorphic function on Ωn.
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Proof. This follows from the characterization of products of affinoid domains
(Spm(A)×Spm(C)Spm(B) = Spm(A⊗̂CB), the completed tensor product) and
an argument similar to that leading up to equation (2.6). The fn are uniquely
determined, since otherwise there is a non-zero expansion corresponding to
the zero function. This would mean that evaluating the functions fn for some
ω̃ ∈ Ωn, there results a non-zero Laurent series with coefficients in C∞ which
is zero for all X ∈ B′(0, R). This clearly cannot be.

Remark. The radius R in the proof plays some role as to what “size” the
functions fn can have, but we shall not need this.

Proposition 2.6.16. Let U be a neighbourhood of {0} ×Ωr−1 ⊂ C∞ ×Ωr−1

of the form
⋃
n≥1B(0, rn) × Ωr−1

n , where for each n, B(0, rn) is the disc of
radius rn centred at 0. Also let U ′ = U ∩ (C∞ r {0})× Ωr−1.

Then any function holomorphic on U ′ has a Laurent expansion of the
form ∑

k∈Z

fkX
k,

where each fn is a uniquely determined holomorphic function on Ωr.

Remark. Again, the rn have an effect on what “size” the functions fk may
have on each Ωn, but we are not concerned with this here.

Proof. By an extension of the argument in Lemma 2.6.15 showing that any
punctured disc is an admissible open, any set of the form B′(0, R) × Ωn

is an admissible open (since Ωn is an affinoid domain). Then, since the
intersections B′(0, Rn)×Ωn ∩B′(0, Rm)×Ωm are admissible open sets, U ′ is
the rigid space given by the admissible covering U ′ =

⋃
n≥1 B

′(0, rn)× Ωn.
Therefore the functions on U ′ are exactly those with Laurent series ex-

pansions
∑

k∈Z fkX
k, where for every n ≥ 1, fn is holomorphic on Ωn. This is

the same as saying that each fk is holomorphic on Ωr. The fact that they are
uniquely determined follows from Lemma 2.6.15 and the sheaf property.

We defined Ωr by giving conditions on unimodular coordinates. However,
in Chapter 3, we shall make the convention that the last coordinate ωr = 1.
If we define |ω| := max{|ωi| : 1 ≤ i ≤ r}, then the unimodular representative
and the representative where ωr = 1 differ by some factor with absolute value
|ω|. Note that |ω| ≥ |ωr| = 1. Also define

|ω|i := inf{|`H(ω)| : H ⊂ Pr−1(C∞) an F∞-rational hyperplane}.(2.7)
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(The hyperplanes are still assumed to have unimodular coefficients.) In fact,
this is a minimum, since any ω ∈ Ωr is in some Ωn and on Ωn there are only
finitely many hyperplanes that define different functions |`H(ω)|. This serves
as an analogue of the imaginary part of z ∈ H in the classical case. We may
now rewrite

Ωn = {ω ∈ Ωr : |ω|i ≥ |π|
n |ω|}.

2.7 Moduli of Drinfeld modules

It is known that rank 2 modular forms can be interpreted as the sections of a
certain sheaf on the algebraic curve whose points correspond to isomorphism
classes of Drinfeld modules. Such a curve is called a moduli curve. This is
analogous to the classical case. The same thing can be done for Drinfeld
modules of arbitrary rank, but in this case the resulting moduli variety has
dimension greater than 1. Here we give a quick overview of the moduli space
in general so that later we may relate analytic Drinfeld modular forms and
algebraic Drinfeld modular forms. A more complete overview can be found
in [Pi] §1, and even more details can be found in [DeHu].

Let S be a scheme over F . Then a Drinfeld module over S of rank r is a
pair (E,ϕ), where E is a line bundle over S and ϕ a ring homomorphism

ϕ : A→ End(E), a 7→ ϕa =
∑
i≥0

ϕa,iτ
i

(where τ represents the Frobenius endomorphism and ϕa,i ∈ Γ(S,E1−qi))
such that the derivative dϕ : a 7→ ϕa,0 is the structure homomorphism and
in the fibre over any s ∈ S, the sum becomes a (twisted) polynomial in τ of
degree r deg a.

Next, for an ideal N ⊂ A, a level N structure is an isomorphism of group
schemes over S

λ : (N−1/A)r
∼−−→ ϕ[N ] ∼=

⋂
a∈N

ker(ϕa),

where ϕ[N ] is the group scheme of N -torsion points of ϕ (i.e. the elements
x ∈ E for which ϕa(x) = 0 for every a ∈ N).

Drinfeld [Dr] showed that the fine moduli space of rank r Drinfeld modules
with level N structure exists, and that it is an r − 1 dimensional irreducible
smooth affine variety of finite type over F . We shall denote this variety by
M r

K(N), where we define K(N) := ker(GLr(Â)→ GLr(A/N)).
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There is an isomorphism of rigid analytic spaces

M r
K(N)(C∞)

∼−−→ GLr(F )\
(

Ωr ×GLr(Af
F )/K(N)

)
.

This isomorphism suggests that one may define the moduli space for open
compact subgroups K ⊂ GLr(Af

F ). However, the quotient only has nice
properties when K is also fine, i.e. if there exists a prime ideal p such
that the image of K in GLr(A/p) is nilpotent. (In fact, this can be done
independently of this isomorphism.)

Proposition 2.7.1. The components of M r
K correspond to the double cosets

GLr(F )\GLr(Af
F )/K. Let G be a set of double coset representatives for it

and set Γg := gKg−1 ∩ GLr(F ) for each g ∈ S. Then, moreover, there is a
rigid analytic isomorphism

M r
K

∼−−→
∐
g∈S

Γg\Ωr.

Proof. [Hu] Proposition 2.1.3.

Since M r
K(N) is a fine moduli space, there exists a universal Drinfeld

module over M r
K(N) whose fiber at each point is the Drinfeld module and

level structure that corresponds to that point.

2.8 The Pink-Satake compactification

Pink’s observation was that since all isomorphism classes of rank r Drin-
feld modules appear as points on the affine moduli space, the points on the
boundary of a compactification must necessarily have a different rank. Thus,
he introduced the concept of a generalized Drinfeld module over a scheme
([Pi] Definition 3.1). This essentially differs from the normal definition only
in that the rank may vary across the scheme. For the more subtle differences
we encourage the reader to read [Pi].

Definition 2.8.1. A generalized Drinfeld A-module over S is a pair (E,ϕ)
consisting of a line bundle E over S and a ring homomorphism

ϕ : A→ End(E), a 7→ ϕa =
∑

ϕa,iτ
i

with ϕa,i ∈ Γ(S,E1−qi) satisfying the conditions:

(a) The derivative dϕ : a 7→ ϕa,0 is the structure homomorphism A →
Γ(S,OS).
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(b) In the fiber over any point s ∈ S, the map ϕ defines a Drinfeld module
of some rank rs ≥ 1.

It turns out that the following definitions ([Pi] Definitions 3.9 and 4.1) de-
fine a compactification which behaves well under various natural morphisms
and allows one to define Drinfeld modular forms.

Definition 2.8.2. A generalized Drinfeld A-module (E,ϕ) over S is called
weakly separating if for any Drinfeld module (E ′, ϕ′) over any field L con-
taining F , at most finitely many fibers of (E,ϕ) over L-valued points of S
are isomorphic to (E ′, ϕ′).

Definition 2.8.3. For any fine open compact subgroup K ⊂ GLr(Â), an
open embedding M r

K ↪→ M̄ r
K with the properties

(a) M̄ r
K is a normal integral proper variety over F , and

(b) the universal family (E,ϕ) on M r
K extends to a weakly separating gen-

eralized Drinfeld module (Ē, ϕ̄) over M r
K,

is called a Satake-Pink compactification of M r
K. We shall call (Ē, ϕ̄) the

universal family on M̄ r
K.

Theorem 2.8.4. For every fine K ⊂ GLr(Af
F ), the variety M r

K has a Satake-
Pink compactification. Moreover, this compactification and the extension of
the universal family are unique up to unique isomorphism.

Proof. [Pi] Theorem 4.2.
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Chapter 3

Drinfeld modular forms

We now arrive at the main objects of this thesis, Drinfeld modular forms.
We start by defining an action of GLr(F∞) on Ωr and an induced action on
the set of holomorphic functions Ωr → C∞. This allows us to define weak
modular forms as those functions that satisfy a certain automorphic func-
tional equation. Like in the case of elliptic modular forms it is necessary to
define holomorphy at the cusps and for this we introduce Fourier expansions
at infinity. Then we introduce the main examples of Drinfeld modular forms
and ultimately study their Fourier expansions at infinity. At the end we
give a product formula for the Drinfeld discriminant function and study the
rationality of some forms.

For the rest of this thesis we adopt the following notation: if X is some
rank r object, we shall write X̃ for the rank r − 1 object obtained by “for-
getting the first entry.”

3.1 Group Actions

From now on we shall always represent an element ω ∈ Ωr as a row matrix
ω = (ω1, ω̃) = (ω1, . . . , ωr) and make the convention that ωr = 1. We would
like to define an action of GLr(F∞) on Ωr, by ω ·γ−1, where the latter should
be viewed as matrix multiplication.1 To do this properly we need to make
the last entry of γω equal to 1. So let the last entry of ω ·γ−1 be j(γ, ω), and
define γω := j(γ, ω)−1ω · γ−1. Note that j(γ, ω) will necessarily be non-zero,
because the ωi are F∞-linearly independent.

1The reason we choose this action instead of left multiplication, is that Ωr can be
identified with the set of linear functions F r → C∞ which are injective when tensored
with F∞. The action described is the one induced from the natural action of GLr(A) on
the set of linear functions F r → C∞.

27
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It will be useful to compare the sizes of ω and γω. The following lemma
relates the size (absolute value of the maximum element) as well as the
“imaginary absolute value” |·|i defined in equation (2.7).

Lemma 3.1.1. There exist constants c1, c2, c3 depending only on γ such that

(a) |ω|i ≤ |j(γ, ω)| ≤ c1 |ω|;

(b) 1 ≤ |γω| ≤ c2
|ω|
|ω|i

; and

(c) c3
|ω|i
|ω|
≤ |γω|i ≤ 1.

Proof. Since γ is fixed, there exists c ∈ R such that all the entries of γ−1

have absolute value less than c.
(a) Every term in j(γ, ω) has absolute value at most c |ω|, implying

|j(ω, γ)| ≤ c |ω|. Moreover, j(γ, ω) is an A-linear combination of the ωi,
and hence also an F∞-linear combination. It might not be unimodular, but
making it unimodular will only decrease it. Therefore |j(γ, ω)| ≥ |ω|i, which
is the smallest any F∞-linear combination can be.

(b) Clearly |γω| ≥ 1, since γω is normalized so that its r-th entry is 1,
hence the maximum of its entries is at least 1. We have |ωγ−1| ≤ c |ω| (here
ωγ−1 is the matrix product) and hence |γω| = |j(γ, ω)|−1 |ωγ−1| ≤ c |ω| / |ω|i,
using (a).

(c) Since ωr is a unimodular F∞ hyperplane, and we always normalize so
that ωr = 1, the upper bound is immediate. The lower bound is trickier. We
may express a linear form ` as a column matrix (`1, . . . , `r)

T , when the value
of |`(ω)| is simply the absolute value of the element ω` ∈ C∞. The action of
γ on Ωr affects this as follows: `(γω) = j(γ, ω)−1ωγ−1`.

Note that j(γ, ω) is independent of `, thus we may focus on minimizing
ωγ−1`. We interpret γ−1` as a linear form. Clearly ` is F∞-linear if and
only if γ−1` is. However, it might not be unimodular. Denote its entry with
maximum absolute (choose one if there are more than one) value by m(γ, `).
Then `γ := m(γ, `)−1γ−1` is a unimodular linear form.

Now

|`(γω)| = |j(γ, ω)|−1 |m(γ, `)|−1 |ω · `γ| ≥

≥ |ω|i
c |ω|

|m(γ, `)|−1 ,
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so we only need an upper bound for |m(γ, `)|. But the largest entry of ` has
absolute value 1, while the entries of γ−1 all have entries at most c. Hence
|m(γ, `)| ≤ c. In summary

|`(γω)| ≥ |ω|i
c2 |ω|

.

Since ` was arbitrary, this holds for all F∞-linear forms, and hence

|γω|i ≥
|ω|i
c2 |ω|

.

Definition 3.1.2. The weight k, type m factor of automorphy is the function
αk,m : GLr(F∞)× Ωr → C∞ defined by αk,m(γ, ω) = (det γ)−mj(γ, ω)−k.

Lemma 3.1.3. The factor of automorphy αk,m satisfies the following prop-
erties:

(a) αk1,m1(γ, ω)αk2,m2(γ, ω) = αk1+k2,m1+m2(γ, ω);

(b) αk,m(γ1γ2, ω) = αk,m(γ1, γ2ω)αk,m(γ2, ω).

Proof. (a) is trivial from the definition of α and for (b), the right hand side
is

j(γ1, γ2ω)−k(det γ1)−mj(γ2, ω)−k(det γ2)−m = (det γ1γ1)−m (j(γ1, γ2ω)j(γ2, ω))−k ,

so it follows from the fact that j(γ1, γ2ω) is the right-most entry of
(
j(γ2, ω)−1(ωγ−1

2 )
)
γ−1

1 ,
so j(γ1, γ2ω)j(γ2, ω) is the right-most entry of ωγ−1

2 γ−1
1 .

The factor of automorphy can be used to define an operator on the set
of holomorphic functions f : Ωr → C∞. This operator will then be used to
define which functions are modular.

Definition 3.1.4. For any γ ∈ GLr(F∞), define the operator [γ]k,m as the
operator that assigns to the function f : Ωr → C∞, the function f [γ]k,m(ω) :=
αk,m(γ, ω)f(γω).

Lemma 3.1.5. (a) If f : Ωr → C∞ is holomorphic on Ωr, then so is
f [γ]k,m.

(b) We have the equality f [γ1γ2]k,m(ω) = (f [γ1]k,m) [γ2]k,m(ω), and hence
the operators [γ]k,m define a right action of GLr(F∞) on the set of
holomorphic functions on C∞.
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Proof. (a) This follows immediately from the fact that γ : Ωr → Ωr is an
isomorphism of rigid analytic spaces.

(b)

f [γ1]k,m[γ2]k,m(ω) = (f [γ1]k,m)(γ2ω)αk,m(γ2, ω)

= f(γ1γ2ω)αk,m(γ1, γ2ω)αk,m(γ2, ω)

= f(γ1γ2ω)αk,m(γ1γ2, ω) = f [γ1γ2]k,m(ω)

We say that two subgroups G1, G2 of some group G are commensurable
if G1 ∩ G2 has finite index in both G1 and G2. It can be verified that
commensurability is an equivalence relation. Then Γ ⊂ GLr(F ) is said to
be an arithmetic subgroup of GLr(F ) if it is a subgroup of GLr(F ) which
is commensurable with GLr(A). Let us fix Γ as an arithmetic subgroup of
GLr(F ).

Lemma 3.1.6. The space Ωr has an admissible covering by admissible open
sets (Ui) such that the sets {γ ∈ Γ | γUi ∩Ui 6= ∅} are finite for each i, i.e. Γ
acts discontinuously on Ωr.

Proof. A covering satisfying these conditions is given in [Dr] Proposition
6.2. A discussion of this Lemma (where the term discrete action instead of
discontinuous is used) is contained in [Dr] §6 (B), which comes shortly after
the stated Proposition.

Remark. The reason the proof of Lemma 3.1.6 is omitted is that it
requires an interpretation of Ωr through the Bruhat-Tits building. Though
this is important in the theory of Drinfeld modular forms in rank 2, and is
worth pursuing in higher rank, it is not needed for the rest of this work.

Definition 3.1.7. A holomorphic function f : Ωr → C∞ is called a weak
modular form of weight k and type m for Γ if f [γ]k,m(ω) = f(ω) for all
γ ∈ Γ.

Remark. Note that if γ is a scalar matrix cI (c ∈ F×q ), then f [γ](ω) is
c−k+rmf(ω). Hence a weak modular form can be non-zero only if k ≡ rm
modulo the size of {cI | c ∈ Fq} ∩ Γ. In particular, if Γ = GLr(A), then a
weak modular form can be non-zero only if k ≡ rm (mod q − 1).
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3.2 Fourier expansion at the cusps

In general, the space of weak modular forms of weight k will be infinite
dimensional. However, if we impose a condition that such a function must
stay bounded when extended to a certain compactification of Ωr, then the
space will become finite dimensional. This boundedness condition is easier
to explain when studying a Fourier expansion of such a function at a “cusp”
of Ωr.

Let U be the algebraic subgroup of GLr(F ) consisting of matrices of the
form 

1 0 · · · 0
v2
... idr−1

vr


where we take the identity matrix and allow further non-zero entries only
in the first column. We may consider the first column as an (r − 1)-tuple
(v2, . . . , vr). It is a simple exercise to check that this association defines an
isomorphism ι : GU

∼−−→ F r−1.
Define ΓU := Γ∩U . We compute the action of some element ι−1(v2, . . . , vr) ∈

ΓU on ω = (ω1, ω̃) as (ω1 − (v2ω2 + · · ·+ vrωr), ω̃). Let ΛU = ι(ΓU) ⊂ F r−1,
viewed as a group of column vectors.

It is clearly Fq-linear and since Γ is commensurable with GLr(A), also
ι(ΓU) is commensurable with Ar−1 and hence ω̃ΛU ⊂ C∞ is strongly dis-
crete in C∞. By Proposition 2.2.3 the exponential function eω̃ΛU defines an
isomorphism ω̃ΛU\C∞

∼−−→ C∞.
Note that if γ ∈ ΓU , then j(γ, ω) = ωr = 1 = det γ, and hence that

any weak modular form for Γ is invariant under ΓU . Any weak modular
form for Γ thus descends to a function on the quotient space ΓU\Ωr. By
Proposition 2.6.9, the existence of this quotient space is guaranteed if ΓU
acts discontinuously on Ωr, which follows from Lemma 3.1.6.

The quotient morphism is essentially the restriction of the map E : C∞×
Ωr−1 → C∞ × Ωr−1 defined by (ω1, ω̃) 7→ (eω̃ΛU (ω1), ω̃) to the subset Ωr ⊂
C∞ × Ωr−1, since it defines an isomorphism between ΓU\Ωr and its image.
This is an isomorphism as groups and as rigid analytic spaces. Thus any
ΓU invariant function f factorizes through eω̃ΛU and hence any ΓU invariant
function holomorphic on Ωr is a function of the variables eω̃ΛU (ω1), ω2, . . . ,
ωr−1:

f(ω) = f̄(eω̃ΛU (ω1), ω̃).

However, we would like a function to remain bounded as ω1 → ∞, so
the multiplicative inverse of eω̃ΛU (ω1) would be a better choice. Since ω1 /∈
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ω̃ΛU ⊗A F∞, the function eω̃ΛU (ω1) is never zero, and it would make sense to
do this. However, it will be of benefit later on if we use a constant multiple
of the inverse, instead of the inverse itself.

Definition 3.2.1. Let the parameter at the cusp ∞ for Γ be the function

uω̃(ω1) := eπ̄ω̃ΛU (π̄ω1)−1 = π̄−1eω̃ΛU (ω1)−1,

where π̄ is the Carlitz period. Note that it is a function of both ω1 and ω̃ and
that it depends on Γ.

Remark. With this normalization we can define rationality of modular
forms when A = Fq[t] in a simple way. Böckle pointed out that for other A,
we shall need a different normalization.

Lemma 3.2.2. Let Λ ⊂ F r be a projective A-module. For any n, there exists
a constant c depending only on n such that for any ω ∈ Ωn, there are at most
c elements λ ∈ ωΛ such that |λ| < |ω|.

(In fact, we may choose c = qnr.)

Proof. Any λ is of the form a1ω1+· · ·+arωr, and we must have |λ| ≥ |π|−n |ω|
by definition of Ωn. In particular, for any λ, we have |πnλ| ≥ |ω|, hence for
every class in (A/πn)r, there can be at most one representative λ satisfying
|λ| < |ω|. Hence, the number of λ such that |λ| < |ω| is bounded by some
constant depending only on n.

Corollary 3.2.3. For every n, there exists a constant Rn depending only
on n such that for any ω ∈ Ωn and any z such that |z| ≤ |ω| we have
|eωΛ(z)| < Rn.

Proof. Note that eωΛ(z) = z
∏

λ∈ωΛ

(
1− z

λ

)
and this product can be split up

into three factors: where |λ| < |z|, where |λ| = |z| and where |λ| > |z|. Those
factors where |z| < |λ| have absolute value 1 and the factors where |z| = |λ|
have absolute value less than or equal to 1. Hence

|eωΛ(z)| ≤ |z|
∏
|λ|<|z|

∣∣∣z
λ

∣∣∣ .
Since ω ∈ Ωn, we have |λ| ≥ |π|n · |ω|, so each factor satisfies

∣∣ z
λ

∣∣ ≤
|π|−n. By Lemma 3.2.2 the number of such λ’s is bounded by some constant
depending on n, yielding the result.
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Proposition 3.2.4 ([BP]). The map

ΓU\Ωr → C∞ × Ωr−1

[(ω1, ω̃)] 7→ (uω̃(ω1), ω̃)

defines a rigid analytic isomorphism of ΓU\Ωr onto a subset of C∞ × Ωr−1

of the form
U ′ = U r ({0} × Ωr−1)

where U is an open neighbourhood of ({0} × Ωr−1).
Moreover, for every n ∈ N there exists rn > 0 such that B(0, rn)×Ωr−1

n ⊂
U .

Proof. This map is exactly the isomorphism E described above followed by
the map z 7→ (π̄z)−1 on the first coordinate eω̃ΛU (ω1), which is itself an
isomorphism, since it is never 0. It remains to show that the image is of the
required form.

Since eω̃ΛU defines an isomorphism ΓU\C∞
∼−−→ C∞, the required image

consists of elements of the form

(eπ̄ω̃ΛU (π̄z)−1, ω̃) ∈ C∞ × Ωr−1

such that z /∈ ω̃ΛU⊗AF∞. Hence, it is enough to show that for fixed n and all
ω̃ ∈ Ωr−1

n , the quantity eω̃ΛU (z) is bounded from above for z ∈ ω̃ΛU ⊗A F∞.
Since F∞ = Fq((π)) is a discrete valuation ring, any z ∈ F∞ can be

written in the form a + z0, where a ∈ A and |z0| < 1. Thus, if we denote
|ω̃| := max{|ω2| , . . . , |ωr|}, then F∞ω̃ΛU ⊂ ω̃ΛU + B(0, |ω̃|), and we may
write ω1 = ω0 + λ, where λ ∈ ω̃ΛU and |ω0| < |ω̃|. Then by Corollary 3.2.3,
the result follows.

Proposition 3.2.5 ([BP]). Any ΓU invariant function f holomorphic on Ωr

can be written in the form

f(ω) =
∑
n∈Z

fn(ω̃)uω̃(ω1)n

where each fn is a function holomorphic on Ωr−1. Moreover, each fn is
uniquely determined.

Proof. This now follows by simply putting together Proposition 3.2.4 and
Proposition 2.6.16.
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Remark. Like in the classical case, the u-expansion does not define a
series that converges everywhere. However, Proposition 3.2.5 implies that it
does converge for ω in a set of the form

⋃
n≥1 B(0, rn)×Ωr−1

n as required by
Proposition 2.6.16.

Let Γ̃ be the subgroup of Γ consisting of matrices γ with first row (1, 0, . . . , 0)
and first column (1, 0, . . . , 0)T . By abuse of notation we shall also denote by
Γ̃ the group of (r − 1) × (r − 1) matrices obtained by deleting the first row
and first column. In the following propositions we shall need to compute the
parameter uω̃(ω1) after some γ ∈ GLr(A) has been applied to ω. Therefore
we write γ̃ω for the last r − 1 entries of γω and π1(γω) for its first entry.

Lemma 3.2.6. Let γ ∈ GLr(A) have first row (1, 0, . . . , 0) and first column
(1, 0, . . . , 0)T as described above. There exists a constant k depending only
on γ such that if ω ∈ B(0, rn)×Ωr−1

n , then γω ∈ B(0, rn |j(γ, ω)|−1)×Ωr−1
2n+k.

Proof. We have ω ∈ Ωn if and only if |ω|i ≥ |π|
n |ω|. If this is the case, then

by Lemma 3.1.1 we have

|γω|i
|γω|

≥ c3 |ω|2i
c2 |ω|2

≥ |π|2n+k

for some constant k depending only on γ. Hence γω ∈ Ω2n+k. Performing
this in rank r − 1, implies that if ω̃ ∈ Ωr−1

n , then γ̃ω ∈ Ωr−1
2n+k.

Assume that ω ∈ B(0, rn) × Ωr−1
n . Then |uω̃(ω1)| < rn, implying that

|uγ̃ω(π1(γω))| = |j(γ, ω)−1uω̃(ω1)| < rn |j(γ, ω)|−1.

Proposition 3.2.7. Let f be a weak modular form of weight k and type m
for Γ and let it have the expansion given in Proposition 3.2.5. Then for every
n ∈ Z, the function fn : Ωr−1 → C∞ is a weak modular form of weight k− n
and type m for Γ̃.

Proof. Note that since f is a weak modular form for Γ, it automatically
satisfies the modularity condition for all γ̃ ∈ Γ̃. Let h ∈ ΓU . If we write

h =

(
1 0
v id

)
and γ =

(
1 0
0 γ̃

)
,

where γ̃ and id are (r − 1)× (r − 1) matrices, and v is a (r − 1)× 1 matrix,
then

hγ =

(
1 0
v γ̃

)
.
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Therefore uγ̃ω(π1(γω)) and uω̃(ω1) are related by

uγ̃ω(π1(γω)) = uj(γ̃,ω̃)−1ω̃(j(γ̃, ω̃)−1ω1) = j(γ̃, ω̃)uω̃(ω1).

Now we may calculate∑
n∈Z

fn(ω̃)uω̃(ω1)n = f(ω) = f [γ]k,m(ω)

= j(γ, ω)−k(det γ)−mf(γω)

= j(γ, ω)−k(det γ)−m
∑
n∈Z

fn(γ̃ω)uγ̃ω(π1(γω))n

=
∑
n∈Z

j(γ, ω)−k(det γ)−mfn(γ̃ω)j(γ, ω)nuω̃(ω1)n.

Suppose that the left-hand side converges on the neighbourhood
⋃
n≥1 B(0, rn)×

Ωr−1
n . (By Proposition 3.2.5 it does converge on some neighbourhood of this

form.) Then, by Lemma 3.2.6, the right-hand side converges on
⋃
n≥1 B(0, rnj(γ, ω)−1)×

Ωr−1
2n+k. Therefore this equality takes place on a neighbourhood of this form.

By the uniqueness of the fn we have the equality fn(ω̃) = fn(γ̃ω)j(γ̃, ω̃)n−k(det γ̃)−m

for all γ̃ ∈ Γ̃, i.e. that fn is a weak modular form of weight k − n and type
m for Γ̃.

Definition 3.2.8. Let f be a ΓU invariant function with the Laurent ex-
pansion from Proposition 3.2.5. The order at infinity of f is ordΓU (f) =
inf{n ∈ Z | fn(ω̃) 6= 0 for some ω̃}. We say that f is meromorphic at infin-
ity w.r.t. Γ if ordΓU (f) 6= −∞ and that f is holomorphic at infinity w.r.t.
Γ if ordΓU (f) ≥ 0.

This definition may be stated in a number of slightly different ways. The
ones we shall consider involve growth conditions of f as |ω|i tends to infinity.
Let us say that f remains bounded along “vertical lines” if for any fixed ω̃
there exist N,R > 0 such that |ω|i > R ⇒ |f(ω)| < N . If for any N > 0
there exists an R > 0 with this property, we say that f tends to 0 along
vertical lines. Analogously, we say that f remains bounded (resp. tends to
0) along “vertical strips” if for any z̃ ∈ Ωr−1 there exists a neighbourhood
U 3 z̃ in Ωr−1 and N,R > 0 such that |ω|i > R, ω̃ ∈ U ⇒ |f(ω)| < N (resp.
if for all N > 0 there exists R > 0 with this property).

Proposition 3.2.9 ([BP]). Let f be a weak modular form for Γ. The fol-
lowing conditions are equivalent:

(a) f is holomorphic at infinity;
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(b) f remains bounded in every vertical line;

(c) f remains bounded in every vertical strip.

Moreover ordΓU (f) ≥ 1 if and only if f tends to 0 in every vertical line
(equivalently every vertical strip).

Proof. From the proof of Proposition 3.2.4, for every ω̃ ∈ Ωr−1, there is a
neighbourhood Ṽ ⊂ Ωr−1 of ω̃ and an affinoid open V ⊂ C∞ × Ṽ for which
there is an isomorphism ΓU\V

∼−−→ B′(0, R(ω̃)) × Ṽ , where B′(z, r) denotes
the punctured disc with centre z and radius r, and R(ω̃) = π̄−1ρ(ω̃)−1 is a
locally constant function.

A ΓU invariant holomorphic function f : Ωr → C∞ induces a function
F : B′(0, R(ω̃)) × Ṽ → C∞. Fixing ω̃ for the moment, we see that the
expansion of f in terms of uω̃(ω1) is exactly the Laurent expansion of F at 0.
Hence f is meromorphic at infinity if and only if, for every ω̃, F has a pole
at 0, and f is holomorphic at infinity if and only if, for every ω̃, F extends
to a function on B(0, R(ω̃)). By Proposition 2.6.8, F extends to a function
on B(0, R(ω̃)) if and only if is bounded on B(0, R(ω̃)).

(a)⇒(c): Now, if f is holomorphic at infinity, then for every ω̃, F (u, ω̃)
is bounded for u in some neighbourhood of 0. However, this is the same as f
being bounded, for every fixed ω̃, on the “vertical line” where ω̃ is fixed and
|ω|i →∞.

Actually, by the proof of Proposition 3.2.4, if f is holomorphic at infinity,
then every ω̃ has a neighbourhood W̃ on which ρ is constant, and hence F is
bounded on B′(0, R(ω̃)) × W̃ . So f is not only bounded in “vertical lines”,
but also in “vertical strips”.

(c)⇒(b) is obvious.
(b)⇒(a): If f is bounded on every such line, then for every ω̃, F is

bounded on W r {0} × {ω̃} for some neighbourhood W of 0. Then by
Proposition 2.6.8 F extends to a holomorphic function on W × {ω̃}. This
means that F has a power series expansion with no negative terms of uω̃(ω1),
implying that f is holomorphic at infinity.

There are other cusps than the one at infinity and modular forms need to
exhibit boundedness at each cusp. Rather than define expansions at every
cusp, we study the expansions at infinity of the functions f [δ]k,m for various
δ ∈ GLr(F ).

Define P to be the parabolic subgroup of GLr(F ) consisting of matrices
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of the form 
∗ 0 · · · 0
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 .

Proposition 3.2.10 ([BP]). Let f : Ωr → C∞ be a ΓU invariant func-
tion and let δ ∈ P (F ). Then f [δ]k,m is a function invariant under Γδ,U :=
(δ−1Γδ) ∩ U(F ). Moreover

ordΓδ,U (f [δ]k,m) = ordΓU (f).

In particular f [δ]k,m is meromorphic (resp. holomorphic) at infinity w.r.t. Γ
if and only if f is meromorphic (resp. holomorphic) at infinity w.r.t. Γ.

Proof. Let us assume first that δ is of the form(
1 0
β id

)
.

Then Γδ,U = ΓU and δω = (ω1 − ω̃β, ω̃) and det δ = 1 = j(δ, ω). The u
parameter for f [δ]k,m may now be written in terms of the parameter for f as
follows:

uω̃(ω1 − ω̃β) = (eπ̄ω̃Λ̃(π̄ω1)− eπ̄ω̃Λ̃(π̄ω̃β))−1

= uω̃(ω1) (1− uω̃(ω1)eπ̄ω̃Λ̃(π̄ω̃β))−1 .

Then the expansion for f [δ]k,m is

f [δ]k,m(ω) =
∑
n∈Z

fn(ω̃)uω̃(ω1 − ω̃β)n

=
∑
n∈Z

fn(ω̃)uω̃(ω1)n (1− uω̃(ω1)eπ̄ω̃Λ̃(π̄ω̃β))−n ,

proving the statement for δ of this form.

Now suppose that δ is of the form(
α 0

0 δ̃

)
,

where α ∈ F× and δ̃ ∈ GLr−1(F ). If we let Λ̃δ := ι(Γδ,U) = δ̃−1ΛUα, then

det δ = α det δ̃ and j(δ, ω) = j(δ̃, ω̃), implying that δω = j(δ̃, ω̃)−1
(
α−1ω1, ω̃δ̃

−1
)

.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. DRINFELD MODULAR FORMS 38

Hence the expansion of f [δ]k,m must be in terms of uδ,ω̃(ω1) := eπ̄ω̃Λ̃δ
(π̄α−1ω1)−1 =

eπ̄ω̃δ̃−1ΛUα
(π̄ω1)−1. We have

u ω̃δ̃−1

j(δ̃,ω̃)

(
α−1ω1

j(δ̃, ω̃)

)
= e

π̄ ω̃δ̃
−1

j(δ̃,ω̃)
ΛU

(
π̄
α−1ω1

j(δ̃, ω̃)

)−1

= α · j(δ̃, ω̃) · eπ̄ω̃δ̃−1ΛUα
(π̄ω1)−1

= α · j(δ̃, ω̃) · uδ,ω̃(ω1).

and it follows that the expansion of f [δ]k,m is

j(δ̃, ω̃)−k(det δ̃)−mf(δω)

= j(δ̃, ω̃)−k det(δ̃)−mf

(
ω1α

−1

j(δ̃, ω̃)
,
ω̃δ̃−1

j(δ̃, ω̃)

)

= j(δ̃, ω̃)−k det(δ̃)−m
∑
n∈Z

fn

(
ω̃δ̃−1

j(δ̃, ω̃)

)
u ω̃δ̃−1

j(δ̃,ω̃)

(
α−1ω1

j(δ̃, ω̃)

)n
= j(δ̃, ω̃)−k det (̃δ)−m

∑
n∈Z

fn

(
ω̃δ̃−1

j(δ̃, ω̃)

)
αn · j(δ̃, ω̃)n · uδ,ω̃(ω1)n.

The statement for δ of this form follows from this equality.

Finally, by writing an arbitrary δ ∈ P (F ) as a product of matrices of the
two forms above, the statement follows in full generality.

Proposition 3.2.11 ([BP]). Let Γ1 < Γ be arithmetic subgroups of GLr(F )
and set Γ1,U := ΓU ∩ Γ1. Let f : Ωr → C∞ be a ΓU invariant function. Then

ordΓ1,U
(f) = [ΓU : Γ1,U ]ordΓU (f).

In particular f is meromorphic (resp. holomorphic) at infinity w.r.t. Γ if
and only if f is meromorphic (resp. holomorphic) at infinity w.r.t. Γ1.

Proof. Note that Λ1,U = ι(Γ1,U) is a subgroup of ΛU = ι(ΓU) of index [ΛU :
Λ1,U ] = [ΓU : Γ1,U ]. Also note that both Λ1,U and ΛU are Fp-linear subsets of
F r−1, and hence that for any ω̃ the sets ω̃ΛU and ω̃Λ1,U are Fp-linear subsets
of C∞. Let the index be pd, and let Φω̃ be the polynomial from Proposition
2.2.5 for which eπ̄ω̃ΛU = Φω̃ ◦ eπ̄ω̃Λ1,U

. We know that Φω̃ is Fp-linear, and

Φω̃(z) = eeπ̄ω̃Λ1,U
(π̄ω̃ΛU )(z) =:

d∑
i=0

Φω̃,iz
pi ,
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and that the polynomial depends on ω̃. By the choice of d we have Φω̃,d 6= 0.
We may now compute

uω̃(ω1) = eπ̄ω̃ΛU (π̄ω1)−1 =
(
Φω̃(eπ̄ω̃Λ1,U

(π̄ω1))
)−1

=

(
Φω̃

(
1

u1,ω̃(ω1)

))−1

=

(
d∑
i=0

Φω̃,iu1,ω̃(ω1)−p
i

)−1

=
u1,ω̃(ω1)p

d

Φω̃,d

(
1 +

d−1∑
i=0

Φω̃,i

Φω̃,d

u1,ω̃(ω1)p
d−pi
)−1

.

We may expand the last factor as a geometric series, which contains only
positive powers of u1,ω̃. So ordΓU (f) = n if and only if the expansion of f
in terms of uω̃ starts with fn(ω̃)uω̃(ω1)n if and only if the expansion of f

in terms of u1,ω̃ starts with fn(ω̃)
u1,ω̃(ω1)np

d

Φnω̃,d
if and only if ordΓ1,U(f) = npd,

proving the proposition.

3.3 Modular forms

3.3.1 Analytic modular forms

Definition 3.3.1. A function f : Ωr → C∞ is a modular form of weight k
and type m for Γ if f is a weak modular form of weight k and type m for Γ
and f [δ]k,m is holomorphic at infinity for all δ ∈ GLr(F ). It is said to be a
cusp form (resp. double cusp form) if furthermore ordΓU (f [δ]k,m) ≥ 1 (resp.
≥ 2) for all δ ∈ GLr(F ).

Proposition 3.3.2. Let D = {δi}i be a set of representatives for the double
coset Γ\GLr(F )/P (F ) and let f be a weak modular form for Γ.

(a) If f [δ]k is holomorphic at infinity for each δ ∈ D, then f is a modular
form.

(b) Let h(A) be the class number of A. If Γ = GLr(A), then D has h(A)
elements.

(c) In general, D is a finite set.

Thus, the condition of holomorphy at infinity only needs to be checked for
finitely many δ ∈ GLr(F ). In particular, if A = Fq[t] and Γ = GLr(A), then
f is a modular form if and only if it is holomorphic at infinity.
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Proof. (a) follows from the Γ-invariance of f and Proposition 3.2.10.
For (b) recall that the quotient of algebraic groups GLr/P is isomorphic

to projective space Pr−1. Therefore GLr(F )/P (F ) ∼= Pr−1(F ). We now show
that the map GLr(A)\Pr−1(F ) to the class group Cl(A) of A defined by
[x1 : · · · : xr] 7→ [

∑r
i=1 xiA] is a bijection.

First we check that the map is well-defined. Firstly two different repre-
sentatives in Pr−1(F ) differ by a factor of some a ∈ F . Therefore the ideals∑r

i=1 xiA differ by a factor a ∈ F , and thus lie in the same ideal class. Now
suppose that γ ∈ GLr(A) and that γ[x1 : · · · : xr] = [y1 : · · · : yr]. Since
γ ∈ GLr(A), each yj ∈

∑r
i=1 xiA, and that each xj ∈

∑r
i=1 yiA. This implies

that the ideals
∑r

i=1 xiA and
∑r

i=1 yiA are the same.
The map is clearly surjective, so it remains to check injectivity. Suppose

that [x1 : · · · : xr] and [y1 : · · · : yr] satisfy
∑r

i=1 xiA =
∑r

i=1 yiA (if these
ideals differ by a constant factor, we may renormalize one of the elements to
make the ideals equal). Denote these ideals by M . Consider the maps

px : Ar →M, (a1, . . . , ar) 7→
∑r

i=1 aixi; and

py : Ar →M, (a1, . . . , ar) 7→
∑r

i=1 aiyi.

Both are surjective and fit into short exact sequences

0→ ker px → Ar →M → 0,(3.1)

(and similar for y). Since GLr(A) consists of exactly the automorphisms of
Ar, the problem becomes that of lifting the identity on M to an automor-
phism of Ar in the following diagram:

0 → ker px → Ar → M → 0
| |

0 → ker py → Ar → M → 0.

Since M is projective (as an A-module), and the identity map idM : M →M
is surjective, there is a map s : M → Ar such that px ◦ s = idM . This means
that the short exact sequence (3.1) splits. Therefore ker px ∼= Ar/M , and
similarly ker py ∼= Ar/M . Thus we may choose an isomorphism ker px

∼−−→
ker py. Writing Ar = ker px ⊕M (resp. Ar = ker py ⊕M) in the following
diagram:

ker px → ker px ⊕M ← M
↓ ↓

ker py → ker py ⊕M ← M,

means that there is a unique morphism ker px⊕M → ker py⊕M making the
whole diagram commute. But by the Five Lemma, if the two morphisms on
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the side are isomorphisms, then the arrow in the middle is an isomorphism
as well.

This gives us the automorphism of Ar we were after and proves injectivity.

Now for a congruence subgroup Γ of a general stabilizer (not necessarily
GLr(A)), the group Γ∩GLr(A) is of finite index in GLr(A). But D can have
at most as many elements as this index, proving (c).

As in the classical case, the modular forms of a given weight and a given
type form a C∞-vector space. Furthermore, by Lemma 3.1.3 (a) the product
of a modular form of weight k1 and type m1 with a modular form of weight
k2 and type m2 gives a modular form of weight k1 + k2 and type m1 + m2.
The weight and type define a double grading on this ring.

Definition 3.3.3. Denote by Mk,m(Γ) the space of modular forms of weight
k and type m for Γ. We shall omit m if the type is 0. Also denote by M(Γ)
the doubly graded ring of modular forms for Γ.

Remark. Since m occurs only in the power of the determinant of some
γ ∈ Γ, it only depends on the order of det Γ ⊆ F∗q. In particular, it makes
sense to consider spaces Mk,m(Γ) for all k ∈ Z, and m ∈ Z/(q − 1)Z.

3.3.2 Algebraic modular forms

Let K ⊂ GLr(Â) be a fine open compact subset and denote by LK the
dual of the relative Lie algebra of Ē → M̄ r

K . (Recall that E → M r
K is the

universal Drinfeld module and that Ē is its extension to M̄ r
K , which is unique

by Theorem 2.8.4.) It is an invertible sheaf, so we may speak of LkK .

Definition 3.3.4. ([Pi] Definition 5.4) For any integer k we define the space
of algebraic modular forms of weight k as

Malg
k (K) = H0

(
M̄ r

K ,LkK(N)

)K
where K(N) ⊂ K is fine.

(This is the subring of K-invariant elements under the GLr(Â) action de-
scribed in [Pi].) In [Pi] it is shown that this definition does not depend on
the choice of N .

The ring of algebraic modular forms is the graded ring

Malg(K) =
⊕
k≥0

Mk(K).
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Also denote by Walg
k (K) = H0(M r

K ,LkK(N))
K the space of algebraic weak

modular forms of weight k and byWk(Γ) the space of analytic weak modular
forms of weight k for Γ.

Theorem 3.3.5 ([BP]). Let S be a set of representatives for the double coset
GLr(F )\GLr(Af

F )/K, and for each g ∈ S set Γg = gKg−1 ∩ GLr(F ). Then
there are isomorphisms of C∞-vector spaces:

C∞ ⊗F Walg
k (K)

∼−−→
⊕
g∈S

Wk(Γg).

C∞ ⊗F Malg
k (K)

∼−−→
⊕
g∈S

Mk(Γg).

3.4 Examples of modular forms

From now on we fix a projective A-submodule Λ ⊂ F r and denote by GLA(Λ)
its stabilizer in GLr(F ). We also impose the condition on Λ that Λ = A× Λ̃,
i.e. that the first coordinate can be separated from the others. We shall view
elements of Λ ⊂ F r as column vectors, and hence ωΛ can be interpreted as
a lattice in C∞.

3.4.1 Eisenstein series

Perhaps the simplest example of a modular form is the Eisenstein series. We
shall provide two examples — Eisenstein series for the full modular group
GLA(Λ) and Eisenstein series for congruence subgroups Γ(N).

Eisenstein series for GLA(Λ)

Let k be a positive integer and define

Ek(ω) :=
∑′

λ∈ωΛ

λ−k.

For any N > 0, there are only finitely many elements of Λ in any ball of
radius N . Therefore this infinite sum converges for any ω ∈ Ωr. Moreover,
on any Ωn, this convergence is uniform, implying that Ek is holomorphic on
Ωr.
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The elements γ ∈ GLA(Λ) have the property that lattices ωγ−1Λ = ωΛ.
This means that γωΛ = j(γ, ω)−1ωΛ and ultimately that

Ek[γ]k,0(ω) = j(γ, ω)−k
∑

λ∈j(γ,ω)−1ωΛ

λ−k = Ek(ω),

proving that Ek is a weak modular form of weight k and type 0 for GLA(Λ).
We shall see in section 3.5.1 that the u-expansion has no terms with a negative
exponent of u, which means that it is a modular form.

Eisenstein series for Γ(N)

Definition 3.4.1. Let N ⊂ A be an ideal. The group Γ(N) ⊂ GLA(Λ)
defined by

Γ(N) = ker (GLA(Λ)→ GLA(Λ/NΛ))

is called a principal congruence subgroup of GLA(Λ).

We may adapt the definition of the previous Eisenstein series in order
to obtain modular forms for more general arithmetic groups. Let N ⊂ A
be a non-zero ideal, and let [v] ∈ N−1Λ/Λ be a non-zero residue class with
v = (v1, . . . , vr) ∈ N−1Λ/Λ a representative for it (i.e. [v] = v + Λ). Define

Ek
[v](ω) :=

∑
λ∈ω·[v]

λ−k =
∑

(a1,...,ar)∈Λ

((v1 + a1)ω1 + · · ·+ (vr + ar))
−k.

By our assumption that Λ = A×Λ̃, there is an isomorphism ι1 : N−1Λ/Λ
∼−−→

(N−1/A)×(N−1Λ̃/Λ̃). For [z] ∈ (N−1/A), set |[z]| := |N |·min{|z0| : z0 ∈ [z]}.

Proposition 3.4.2 ([BP]). Let ω ∈ Ωr, let [v] ∈ N−1Λ/Λ be a non-zero
residue class and let v ∈ [v] be a representative, as before.

(a) E1
[v](ω) = eωΛ(ωv)−1.

(b) Ek
[v][γ]k(ω) = Ek

[γ−1v](ω) for all γ ∈ GLA(Λ). In particular, Ek
[v] is a

weak modular form for Γ(N).

(c) ordΓ(N)U (E1
[v]) = (|[v1]| · qdegN)r−1.

(d) Each Ek
[v] is holomorphic at infinity.

(e) Ek
[v] is a modular form of weight k for Γ(N).
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Proof. The statement in (a) is Lemma 2.5.1 with z = ωv and lattice ωΛ. For
(b) we calculate that for any γ ∈ GLA(Λ),

Ek
[v][γ]k(ω) = j(γ, ω)−k

∑
(a1,...,ar)∈N−1Λ
a≡v (mod Λ)

(
ωγ−1 · a

)−k
=

∑
(a1,...,ar)∈N−1Λ
a≡v (mod Λ)

(ωγ−1 · a)−k

=
∑

(a1,...,ar)∈γ−1N−1Λ
a≡γ−1v (mod Λ)

(ω · a)−k

= Ek
γ−1[v](ω).

In order to prove (c) we need, to some extent, to calculate the u expansion
of Ek

[v](ω). We have

Ek
[v](ω) =

∑
(a1,...,ar)∈Λ

(ω · (a+ v))−k

= π̄k
∑
a1∈A

∑
(a2,...,ar)∈Λ̃

(π̄(a1 + v1)ω1 + π̄ω̃ṽ + π̄ω̃ã)−k

= π̄k
∑
a1∈A

(
Pk,π̄ω̃Λ̃ (π̄(a1 + v1)ω1 + π̄ω̃ṽ + π̄ω̃ã)−1)

= π̄k
∑
a1∈A

Pk,π̄ω̃Λ̃

(
(eπ̄ω̃Λ̃(π̄(a1 + v1)ω1) + eπ̄ω̃Λ̃(π̄ω̃ṽ))−1

)
(3.2)

Let us write Ẽ1
[ṽ](ω̃) := eω̃Λ̃(ω̃ṽ)−1 for the rank r − 1 Eisenstein series. Then

eπ̄ω̃Λ̃(π̄ω̃ṽ)−1 = π̄−1Ẽ1
[ṽ](ω̃).

Let n ∈ N . Then for some ideal M ⊂ A we have nA = MN and
N−1 = 1

n
M . Since a1 + v1 ∈ N−1 ⊂ F , it is of the form m/n where m ∈ M

and n ∈ N . Suppose that a1 + v1 6= 0. Then, since M ⊂ mA, we have
(a1 + v1)−1A = n

m
A = 1

m
nA = 1

m
MN ⊃ N . Hence (a1 + v1)−1Λ̃ ⊃ N Λ̃

and hence by Proposition 2.2.5 (b), eπ̄ω̃(a1+v1)−1Λ̃(x) = Φa1+v1,ω̃(eπ̄ω̃NΛ̃(x))

for some polynomial Φa1+v1,ω̃.2 Note that this stays true if we make the
convention that Φ0 = 0. Let us mention at this point that if a1 + v1 6= 0
then Φa1+v1,ω̃ has degree |(a1 + v1)−1/N |r−1

and linear coefficient 1 and that

2Actually, by Proposition 2.2.5, this polynomial is the exponential function associated
to the finite Fq-linear set eπ̄ω̃NΛ̃(π̄ω̃(a1 + v1)−1Λ̃).
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its leading coefficient is a function which is nowhere zero on Ωr−1. Now

eπ̄ω̃Λ̃(π̄(a1 + v1)ω1) = (a1 + v1)eπ̄ω̃(a1+v1)−1Λ̃(π̄ω1)

= (a1 + v1)Φa1+v1,ω̃(eπ̄ω̃NΛ̃(π̄ω1))

= (a1 + v1)Φa1+v1,ω̃(u−1).(3.3)

For simplicity, denote Pk,π̄ω̃Λ̃ by Pk and Φa1+v1,ω̃ by Φa1+v1 and even Φ
when a1 + v1 is understood. Together equations (3.2) and (3.3) yield

Ek
[v](ω) = π̄k

∑
a1∈A

Pk

((
(a1 + v1)Φa1+v1(u−1) + Ẽ1

[ṽ](ω̃)−1
)−1
)
.(3.4)

If v1 ∈ A, then there is a term where a1 + v1 = 0, which must be the term

π̄kPk

(
Ẽ1

[ṽ]

)
= Ẽk

[ṽ](ω̃). It is not divisible by u and we shall shortly see that all

the other terms are divisible by u. Hence in this case ordΓ(N)U

(
E1

[v](ω)
)

= 0.

If v1 /∈ A, then a generic term is of the form π̄kPk((cdu
−d + · · · + c0)−1)

where the argument is a polynomial of degree d = |(a1 + v1)−1/N |r−1
in u−1

with coefficients being functions on Ωr−1. The argument in this function can
be rewritten as ud(cd + · · ·+ c0u

d)−1 where (cd + · · ·+ c0u
d) is invertible since

cd is a function which is nowhere zero on Ωr−1. Such a term thus has u-order

|(a1 + v1)−1/N |r−1
. Hence ordΓ(N)

(
E1

[v](ω)
)

= min
a1∈A

{∣∣(a1 + v1)−1/N
∣∣r−1

}
≥

0 so that E1
[v](ω) is holomorphic at infinity.

Noting that the Goss polynomial Pk(X) is divisible by X (Proposition

2.5.2 (c)), equation (3.4) immediately implies that for any k we have ordΓ(N)U

(
Ek

[v](ω)
)
≥

ordΓ(N)U

(
E1

[v](ω)
)

, implying (d).

To show (e), it remains to show that Ek
[v][δ]k is holomorphic at infinity

for every δ ∈ GLr(F ). This will follow from the fact that Ek
[v][δ]k is a linear

combination of Eisenstein series of higher level, for each of which (c) is true.
Note that if c ∈ F×, then Ek

[v][c · id]k = ckEk
[v], so we assume from now

on that δ−1 has entries in A. Then δ−1Λ ⊆ Λ, but is of finite index, since
δ ∈ GLr(F ) is an automorphism of F r. Therefore there exists a principal
ideal mA ⊂ A which annihilates the finite A-module Λ/δ−1Λ and hence
(mA)r ⊆ δ−1Λ ⊆ Λ.

Since Λ contains finitely many cosets modulo mΛ, the set δ−1Λ also con-
tains only finitely many cosets, and δ−1(Λ + v) also contains finitely many
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cosets modulo mΛ. Let u1, . . . , un be representatives for these cosets. Then

Ek
[v][δ]k(ω) =

∑
a∈Λ

(
ω · δ−1(a+ v)

)−k
=

n∑
i=1

∑
a∈mΛ

(ω · (a+ ui))
−k

=
n∑
i=1

∑
a∈Λ

(ω · (ma+ ui))
−k

=
n∑
i=1

∑
a∈Λ

m−k
(
ω ·
(
a+

ui
m

))−k
=

n∑
i=1

m−kEk

[uim ](ω).

In this case each Ek is an Eisenstein series for Γ(mN−1), hence is holomor-
phic at infinity, implying that Ek

[v][δ]k(ω) is holomorphic at infinity. This

completes the proof of (e).

3.4.2 Coefficient forms

Let ϕ := ϕωΛ be the Drinfeld module associated to ωΛ. Then, for a ∈ A, we
have the equality

ϕa(X) =

r deg a∑
i=0

gi(a, ω)Xqi ,(3.5)

where g0(a, ω) = a and for all ω ∈ Ωr we have gr deg a(a, ω) 6= 0. When
A = Fq[t] and a = t we shall suppress mention of a and write simply gi(ω).
Later we shall need the convention that g0(a, ω) = a even when deg a = 0.

Proposition 3.4.3 ([BP]). Let N ⊂ A be an ideal, let a ∈ N and let [v] ∈
N−1Λ/Λ be a non-zero residue class. Then

(a) ϕa(E
1
[v](ω)−1) = 0; and

(b) ϕa(X) = aX
∏′

[v]∈a−1Λ/Λ

(1−XE1
[v]).
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Proof. We have

ϕa(E
1
[v](ω)−1) = ϕa(eωΛ(ω · v)) by Lemma 2.5.1

= eωΛ(aω · v) by Proposition 2.2.5

proving (a), since av ∈ aN−1Λ ⊃ Λ and (b) follows from this case since both
polynomials have the same roots, degree and coefficient of X.

The coefficients vary with ω and thus define functions on Ωr. The func-
tions gi(a, ω) are called coefficient forms . From Proposition 3.4.3, they are
polynomials in the weight 1 Eisenstein series E1

[v](ω). Since these are modular

forms for Γ(a), each gi(a, ω) is also a modular form for Γ(N).
Proposition 3.4.3 allows us to generalize the definition of coefficient forms

to all ideals N ⊂ A. Set

ϕN(X) = X
∏′

[v]∈N−1Λ/Λ

(1− E1
[v](ω)X).

The roots of this polynomial are

{0} ∪
{
E1

[v](ω)−1
∣∣ 0 6= [v] ∈ N−1Λ/Λ

}
= {eωAr(ωv) | v ∈ [v] ∈ N−1Λ/Λ}

which forms an Fq-linear set, which means that the polynomial itself is Fq-
linear, since it is the exponential function of its zero set. We define the
normalized coefficient forms with respect to N as the coefficients of the poly-
nomial

ϕN(X) =

r degN∑
i=0

gi(N,ω)Xqi .

Note that the usual coefficient forms can be related to normalized coefficient
forms by the formula gi(a, ω) = agi(aA, ω). In particular we deduce that
g0(N,ω) = 1 for every N .

Proposition 3.4.4 ([BP]). For every ideal N ⊂ A and every i = 1, . . . , r degN ,
the function gi(N,ω) defines a modular form of weight qi − 1 and type 0 for
GLA(Λ).

Proof. Since gi is a homogeneous polynomial of weight qi− 1 in the modular
forms E1

[v](ω), it too is a modular form of weight qi − 1 for Γ(N). However,

by Proposition 3.4.2 (b), any element of GLA(Λ) permutes the forms E1
[v],

showing that gi is a modular form for GLA(Λ).

Of special interest to us will be the discriminant function.
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Definition 3.4.5. We call the coefficient form gr deg a(a, ω) of highest weight
the Drinfeld discriminant function for a and denote it by ∆(a, ω). Again, if
A = Fq[t], we denote ∆(ω) := ∆(t, ω) = gr(ω). In that case we call it simply
the rank r Drinfeld discriminant function. To avoid confusion, in this work
we never write ∆(N,ω) for the normalized coefficient form of highest weight.
Instead we shall use the usual notation gr degN(N,ω) in that case.

We shall see that ∆(ω) is the type 0 modular form of lowest weight which
is a cusp form for GLr(Fq[t]).

3.4.3 Relations between modular forms

The main goal of this section is to obtain some relations between the Eisen-
stein series for GLA(Λ) and the coefficient forms. In doing so we reach a
secondary goal by mentioning other examples of modular forms for GLA(Λ),
namely the coefficients of the exponential function. This is also a convenient
place for the definition of some quantities that are of arithmetic interest.

(The contents of this section is essentially in [Ge3], though in the form of
relations between coefficients where Λ is a fixed lattice.)

Definition 3.4.6. For every integer n > 0 we define:

(a) [n] := tq
n − t ∈ Fq[t];

(b) Dn := [n][n− 1]q · · · [1]q
n−1

;

(c) Ln := [n][n− 1] · · · [1].

For each ω ∈ Ωr, there is the exponential function eωΛ(X) =
∑

i≥0 ei(ωΛ)Xqi

from Section 2.2. As ω varies, the coefficients ei(ω) := ei(ωΛ) vary, and it
turns out that for each i, the function ei(ω) is a modular form of weight qi−1
and type 0 for GLr(A). It should not be hard to show this directly, but we
shall proceed to prove this by obtaining some relations between (ei(ω))0≤i≤k
and (gi(a, ω))0≤i≤k.

Proposition 3.4.7. Let A be a Drinfeld ring and let Λ ⊂ C∞ be an A-lattice.
Let a ∈ Ar Fq and

eΛ(X) =
∑
n≥0

enX
qn and ϕΛ

a (X) =

r deg a∑
n=0

gnX
qn .

Then (
aq

k − a
)
ek =

r deg a∑
i=1

gie
qi

k−i.
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Proof. The relation follows by comparing coefficients ofXqk in equation (2.3):
eΛ(aX) = ϕΛ

a (eΛ(X)) .

Corollary 3.4.8. (a) For every i ≥ 0, we have ei(ω) ∈ F [g1(a, ω), . . . , gr deg a(a, ω)].

(b) If A = Fq[t], then for every i ≥ 0, we have Diei(ω) ∈ A[g1(ω), . . . , gr(ω)].

Proof. Both (a) and (b) follow from simple inductions. We outline the in-
duction for (b). We have

e1(ω) = [1]−1g1(ω)

so that D1e1(ω) = g1(ω). Taking a = t in equation 3.4.7 we get that(
tq
k − t

)
ek(ω) =

r deg a∑
i=1

gi(ω)ek−i(ω)q
i

.

Noting that Di = [i]Dq
i−1, we see that if Diei(ω) ∈ A [g1(ω), . . . , gr(ω)], then

Di+1ei(ω)q ∈ A [g1(ω), . . . , gr(ω)] and by inductionDi+jei(ω)q
j ∈ A [g1(ω), . . . , gr(ω)].

Now note that equation 3.4.7 can be rewritten as

Dkek(ω) = Dq
k−1

r∑
i=1

gi(ω)ek−i(ω)q
i

and (b) easily follows.

Corollary 3.4.9. The functions en(ω) are modular forms of weight qn − 1
and type 0 for GLA(Λ).

The functions ei(ω) and gi(a, ω) occur as the coefficients of important
power series. It turns out that the Eisenstein series also occur as coefficients
of such a series.

Lemma 3.4.10. The power series expansion for the function X
eωΛ(X)

is

X

eωΛ(X)
= 1−

∑
k≥1

Ek(ω)Xk.

Proof.

X

eωΛ(X)
=

∑
λ∈ωΛ

X

X − λ
= 1−

∑′

λ∈ωΛ

X
λ

1− X
λ

= 1−
∑′

λ∈ωΛ

∑
k≥1

(
X

λ

)k
= 1−

∑
k≥1

(∑′

λ∈ωΛ

λ−k

)
Xk

= 1−
∑
k≥1

Ek(ω)Xk.
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We can use this to prove that there are also relations between the coeffi-
cient forms and the Eisenstein series.

Proposition 3.4.11. Let A be a Drinfeld ring and let a ∈ A. Then(
a− aqk

)
Eqk−1(ω) =

k−1∑
i=0

Eqi−1(ω)gk−i(a, ω)q
i

.

It will be of benefit for us to break the proof into two lemmas, together
implying Proposition 3.4.11. Let βn(ω) be the coefficient of Xqn in the ex-
pansion of the logarithm function for the lattice ωΛ.

Lemma 3.4.12. The following relations exist between βk(ω), the coefficient
forms and the functions en(ω):

(a) βk +
∑k

i=1 βk−i(ω)q
i
ei(ω) = 0;

(b) aβk(ω) =
∑k

i=0 βi(ω)gi−k(a, ω)q
i
.

Proof. By comparing coefficients of Xqk in the equality X = eΛ(logΛ(X)),
we get (a). Similarly, we use the equalities (true for arbitrary Λ)

a logΛ(X) = logΛ ◦eΛ(a logΛ(X)) = logΛ(Φa(eΛ(logΛ(X)))) = logΛ(Φa(X)),

when (b) follows by comparing coefficients of Xqk .

Lemma 3.4.13. For k ≥ 1, we have βk(ω) = −Eqk−1(ω).

Proof. By definition of Ek(ω) we have Epk(ω) = Ek(ω)p for every k, and
hence that Eqk−qi(ω) = Eqk−i−1(ω)q

i
. Again we compare the coefficient Xqk

of power series

X = eωΛ(X) · X

eωΛ(X)
=

(∑
i≥0

ei(ω)Xqi

)(
1−

∑
j≥0

Ej(ω)

)
,

yielding

ek(ω)−
k−1∑
i=0

Eqk−qi(ω)ei(ω) = 0.

When k = 1 this yields Eq−1(ω) = e1(ω) = −β1(ω) (by Lemma 3.4.12 (a)).
Assuming that βi(ω) = −Eqi−1(ω) for i = 1, . . . , k − 1, we get

Eqk−1(ω) = ek(ω)−
k−1∑
i=1

Eqk−qiei(ω) = ek(ω) +
k∑
i=1

βq
i

k−iei(ω) = −βk,

again making use of Lemma 3.4.12 (a).
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Corollary 3.4.14. (a) For every k ≥ 0, we have Eqk−1(ω) ∈ F [g1(a, ω), . . . , gr deg a(a, ω)].

(b) If A = Fq[t], then for every k ≥ 0, we have LkE
qk−1(ω) ∈ A[g1(ω), . . . , gr(ω)].

The proof is almost identical to that of Corollary 3.4.8 and is omitted.

Example. Suppose that r ≥ 2 and A = Fq[t]. Then we have

• [1]e1(ω) = g1(ω);

• [2]e2(ω) = g1(ω)e1(ω)q + g2 = [1]−qgq+1
1 + g2;

• −[1]Eq−1(ω) = −g1(ω) ⇒ [1]Eq−1(ω) = g1(ω) and hence Eq−1(ω) =
e1(ω);

• −[2]Eq2−1(ω) = −g2(ω) + Eq−1(ω)g1(ω) ⇒ g2(ω) = [1]qEq−1(ω)q+1 +
[2]Eq2−1(ω), generalizing this formula, which was known for r = 2, to
all r ≥ 2.

We have seen that many of the modular forms can be written as polyno-
mials in the coefficient forms. By the following theorem appearing in [BP],
we see that this is true more generally when A = Fq[t].

Theorem 3.4.15 ([BP]). Let A = Fq[t].

(a) The graded ring of modular forms of type 0 for GLr(A) is

M(GLr(A)) = C∞[g1(ω), . . . , gr(ω)].

Moreover, the coefficient forms g1(ω), . . . , gr(ω) are algebraically inde-
pendent.

(b) The graded ring of modular forms for Γ(t) is generated by the weight
one Eisenstein series for Γ(t).

Proof. This follows from Theorem 3.3.5 and [Pi] Theorem 8.2.

3.5 Computation of certain u-expansions

The computations will be significantly simplified by using u := uω̃(ω1) through-
out. In these computations and in what follows we shall often come across
expressions of the form ϕa(u

−1), where ϕ is a Drinfeld module and u is the
parameter at infinity. In order to handle such expressions we make the fol-
lowing definition which resembles the one in Gekeler [Ge2].
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Definition 3.5.1. Let Λ be a lattice of rank d and ϕ be the associated Drinfeld
module. We define

fΛ
a (X) := Xqd deg a

ϕa(X
−1),

the reciprocal polynomial of ϕ(X).

In most cases the lattice will be the lattice π̄ω̃ΛU that defines the pa-
rameter uπ̄ω̃(π̄ω1) at infinity. In this case we shall write simply fa(u). Our
computations will only involve modular forms for GLr(A) or for principal
congruence subgroups Γ(N). In those cases, ΛU = Λ̃ and ΛU = N Λ̃, respec-
tively. Hence, from now on, we use the expression in terms of Λ̃ instead. For
the following computations we write

ϕπ̄ω̃ΛU
a (X) = aX+π̄1−qg̃1(a, ω̃)Xq+· · ·+π̄1−q(r−1) deg a

g̃(r−1) deg a(a, ω̃)Xq(r−1) deg a

,

where the g̃i are rank r − 1 coefficient forms.

Lemma 3.5.2. The polynomial fa(u) is invertible in C∞[ω2, . . . , ωr][[u]], i.e.
1

fa(u)
=
∑

n≥0 cn(ω̃)un for some functions ci : Ωr−1 → C∞ holomorphic on

Ωr−1.

Proof. Recall that the leading coefficient π̄1−q(r−1) deg a
g(r−1) deg a(a, ω̃) of ϕπ̄ω̃ΛU

a (X)

is nowhere zero on Ωr−1. We may then calculate fa(u) = π̄1−q(r−1) deg a
g(r−1) deg a(a, ω̃)+

· · · + auq
(r−1) deg a−1, where the constant term π̄1−q(r−1) deg a

g(r−1) deg a(a, ω̃) has
no zeros on Ωr−1. Therefore fa(u)−1 has a geometric series expansion of the
form

π̄1−q(r−1) deg a

g(r−1) deg a(a, ω̃)−1+
∑
n≥1

(
−
fa(u)− π̄1−q(r−1) deg a

g(r−1) deg a(a, ω̃)

g(r−1) deg a(a, ω̃)

)n

.

The numerator consists only of functions that are holomorphic on Ωr−1, while
the inverse of the denominator is also holomorphic, since g(r−1) deg a(a, ω̃) has
no zeroes on Ωr−1.

We shall often encounter expressions of the form uq
(r−1) deg a

fa(u)
. Lemma 3.5.2

shows that this is a power series in u starting with π̄1−q(r−1) deg a
g(r−1) deg a(a, ω̃)−1uq

(r−1) deg a
.

We shall denote this expression by ua. In particular,

Φπ̄ω̃ΛU
a (eπ̄ω̃ΛU (π̄ω1))−1 = ua.
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3.5.1 The u-expansion of Eisenstein series for GLr(A)

We now calculate the u-expansion of the Eisenstein series. This serves two
goals. Firstly, it will prove that the Eisenstein series are indeed modular
forms, and secondly it will give us a concrete example of a u-expansion of a
modular form.

Recall our convention that we denote rank r − 1 objects with tildes. So,
by Ẽk(ω̃) we mean the rank r − 1 Eisenstein series evaluated at ω̃. For this
section we also assume that Λ = A× Λ̃. The transformation of the sum to a
sum involving the lattice π̄Λ̃ may seem strange, but it is necessary to arrive
at an expression involving the parameter uω̃(ω1).

Ek(ω) =
∑′

λ∈ω̃Λ̃

λ−k +
∑′

a∈A

∑
λ∈ω̃Λ̃

(aω1 + λ)−k


= Ẽk(ω̃) + π̄k

∑′

a∈A

∑
λ∈ω̃Λ̃

(π̄aω1 + π̄λ)−k


= Ẽk(ω̃) + π̄k

∑′

a∈A

 ∑
λ∈π̄ω̃Λ̃

(π̄aω1 + λ)−k


= Ẽk(ω̃) + π̄k

∑′

a∈A

Pk,π̄ω̃Λ̃

 ∑
λ∈π̄ω̃Λ̃

(π̄aω1 + λ)−1


= Ẽk(ω̃) + π̄k

∑
a∈A+

∑
ζ∈F×q

Pk,π̄ω̃Λ̃

(
eπ̄Λ̃(ζπ̄aω1)−1

)
= Ẽk(ω̃) + π̄k

∑
a∈A+

∑
ζ∈F×q

Pk,π̄ω̃Λ̃

(
ζ−1ϕπ̄Λ̃

a (eπ̄Λ̃(π̄ω1))−1
)

Note that
∑

ζ∈F×q ζ
k = 0 if k is not divisible by q−1, and

∑
ζ∈F×q ζ

k = −1 if k

is divisible by q−1. It is thus clear that only the terms in Pk,π̄ω̃Λ̃(X) for which
the exponent of X is divisible by q − 1 will contribute to the sum. On the
other hand the exponents of the non-zero terms in Pk,π̄ω̃Λ̃ are all congruent
to k modulo q − 1 by Proposition 2.5.2 (g), so either nothing contributes,
or everything does. Assuming from now on that q − 1 divides k, the last
expression simplifies to

Ẽk(ω̃)+ π̄k
∑
a∈A+

−Pk,π̄ω̃Λ̃

(
ϕπ̄ω̃Λ̃
a (eπ̄ω̃Λ̃(π̄ω1))−1

)
= Ẽk(ω̃)− π̄k

∑
a∈A+

Pk,π̄ω̃Λ̃(ua).
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Proposition 3.5.3. When q−1 | k, the u-expansion of the Eisenstein series
Ek(ω) is

Ek(ω) = Ẽk(ω̃)− π̄k
∑
a∈A+

Pk,π̄ω̃Λ̃(ua).

Proof. This is simply a summary of the preceding calculation.

Note incidentally that this is a sum indexed over the set A+ instead of
over Z. Expansions of this form are called A-expansions or non-standard
expansions. One may argue that since we have replaced Z by A in many
cases, this should be a better expansion than the u-expansion. This is true
at least to the point that Hecke eigenvalues are easier to read off from A-
expansions than from u-expansions. However, not every modular form (nor
even every eigenform) has an A-expansion, so they are still limited in their
application.

In rank 2, there are other forms with known A-expansions, e.g. the dis-
criminant function. In [Pe], Petrov has recently constructed an infinite family
of forms with such expansions. It would be interesting to see if this extends
to the higher rank case.

In the rest of this section we determine which coefficients are possibly
non-zero. These results are applicable, not only to Eisenstein series, but
to all modular forms for GLA(Λ). They follow the corresponding results of
Gekeler [Ge2] in the rank 2 case quite closely.

Lemma 3.5.4. Suppose that f is a modular form for GLA(Λ) and that it
has the expansion f(ω) =

∑
n≥0 fn(ω̃)un and that for some m, the function

fm(ω̃) is not identically 0. Then q − 1 | m.

Proof. Note that, since coefficients forms are modular forms for GLA(Λ),
they must be invariant under the action of scalar matrices cI, hence the
u-expansion must be invariant as well. This means that if um occurs in
the expansion of a coefficient form, then cmum = um for all c ∈ F×q , or
equivalently, q − 1 | m.

Proposition 3.5.5. Let f be one of the following modular forms for GLA(Λ):
an Eisenstein series Eqk−1(ω) or a coefficient form gi(a, ω) for any a ∈
A r Fq. Let the expansion of f be f(ω) =

∑
n≥0 fn(ω̃)un. If fm(ω̃) is not

identically 0, then q − 1 | m and m ≡ −1, 0 (mod q).

Proof. The fact that q − 1 | m is contained in Lemma 3.5.4. Abbreviate by
(∗) the property that if fm(ω̃) is non-zero, then m ≡ −1, 0 (mod q). Our
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strategy is to systematically obtain (∗) for various power series related to
Eisenstein series.

The polynomial fa(u) viewed as a power series satisfies (∗), since its
non-zero terms have exponents qdeg a − qm for m = 0, . . . , deg a − 1. The
polynomial uq

k−1 trivially satisfies (∗). Now suppose that deg a ≥ 1 and k ≥
1. Then uq

k−1
a satisfies (∗), since it equals uq

k

a u
−1
a = uq

k

a u
−qdeg a

fa(u), where
the first two factors are q-th powers and the last has already been shown. By
Proposition 2.5.2 (f), the Goss polynomial Pqk−1(X) has exponents divisible

by q, except for the leading term which is Xqk−1, and hence Pqk−1(ua) satisfies

(∗), since all exponents except uq
k−1
a are divisible by q, and for uq

k−1
a it was

just shown.
Looking at the equation from Proposition 3.5.3, one clearly sees that any

Eisenstein series satisfies (∗). The statement when f = gi is a coefficient
form follows from the relation in Proposition 3.4.11 and by induction for
i = 1, . . . , r.

3.5.2 The u-expansion of Eisenstein series for principal
congruence subgroups

As before, we let N ⊂ A be an ideal and [v] ∈ N−1Λ/Λ be a congruence class.
During the proof of Proposition 3.4.2 we obtained the formula (3.4). Since
Ek

[v] is simply a polynomial in E1
[v], we restrict ourselves to the case of weight

1 Eisenstein series in this section. In general it seems hard to do better than
(3.4), but we shall calculate the first non-zero coefficient of this expansion
in some special cases. In fact, even though everything up to equation (3.7)
is true for general N , throughout this section we assume that N = nA is
principal.

During the proof of Proposition 3.4.2 we saw that if v1 ∈ A, then there is

a constant term π̄P1

(
π̄−1Ẽ1

[ṽ]

)
= Ẽ1

[ṽ], so in that case the first non-zero coeffi-

cient is easy to obtain. Otherwise there is a unique a1 such that |a1 + v1| < 1.
Hence the unique term with lowest u-order corresponds to this a1 and is(

(a1 + v1)Φa1+v1(u−1) + Ẽ1
[ṽ](ω̃)−1

)−1

,(3.6)

where the polynomial Φa1+v1(X) is the exponential function associated to the
finite Fq-linear set L = eπ̄Nω̃Λ̃(π̄ω̃(a1 + v1)−1Λ̃). (This was the definition of
Φa1+v1(X) during the proof of Proposition 3.4.2.) We may choose v1 so that
a1 = 0. Hence, the u-expansion of this term is the multiplicative inverse of a
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polynomial cdu
−d + · · ·+ c0 in u−1, where d = q(r−1) degnv1 , c0 = Ẽ1

[ṽ](ω̃) and

cd = v1

∏′

z∈π̄v−1
1 ω̃Λ̃/π̄Nω̃Λ̃

eπ̄Nω̃Λ̃(z)−1.(3.7)

= v1

∏′

z∈v−1
1 ω̃Λ̃/Nω̃Λ̃

(
nπ̄eω̃Λ̃

( z
n

))−1

= n1−dπ̄1−dv1

∏′

z∈(nv1)−1ω̃Λ̃/ω̃Λ̃

eω̃Λ̃(z)−1

= n1−dπ̄1−dv1

∏′

z∈(nv1)−1ω̃Λ̃/ω̃Λ̃

Ẽ1
[z](ω̃)

= n−dπ̄1−dg̃(r−1) deg(nv1)(nv1, ω̃)

= n−dπ̄1−d∆̃(nv1, ω̃).(3.8)

Proposition 3.5.6. Let n ∈ A be non-constant, let [v] ∈ n−1Λ/Λ be a
residue class, let v̄ = (v1, ṽ) ∈ [v] such that |v̄| < 1 and let d = q(r−1) degnv1.
Then

E1
[v](ω) =

{
Ẽ1

[ṽ](ω̃) +O(u) if v1 = 0

ndπ̄d∆̃(nv1, ω̃)−1ud + higher terms if v1 6= 0.

Proof. The case where v1 = 0 was shown above. During the proof of Propo-
sition 3.4.2 (equation (3.2)) it was also shown that if v1 6= 0, then the unique
term containing the lowest power of u is π̄ times the multiplicative inverse of
(cdu

−d + · · ·+ c0) which is π̄ud(cd + · · ·+ c0u
d)−1 = π̄udc−1

d (1 +O(u)), since
cd is a function which is nowhere 0 on Ωr−1. By the computation leading up
to equation (3.8), the Proposition follows.

3.5.3 The u-expansion of Coefficient Forms

The goal of this section is to investigate the u-expansions of the coefficient
forms. We shall use the previous section where we computed the expansions
of Eisenstein series for principal congruence subgroups. Since we restricted
ourselves to principal ideals N , we also make that assumption now. (Again,
everything up to equation (3.10) is true for general N , but for simplicity we
make this assumption now.) One thing to note before starting our calcula-
tions is that the parameters at infinity are not the same. Let us start by
relating them. In this section, let us denote the parameter for GLr(A) by u
and the parameter for Γ(N) by uN .
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We have Γ(N) ⊂ GLA(Λ) and thus Γ(N)U ⊂ GLA(Λ)U . The index
[GLA(Λ)U : Γ(N)U ] = |N−1/A|r−1

= q(r−1) degN . Furthermore, the function u
is both GLr(A)U and Γ(N)U invariant. By Proposition 3.2.11, ordΓ(N)U (u) =

|N−1/A|r−1
ordGLA(Λ)U (u).

From the proof of Proposition 3.2.11, there is an Fp-linear polynomial Φω̃

such that eπ̄ω̃Λ̃ = Φω̃ ◦ eNπ̄ω̃Λ̃, which in this case is Fq-linear since Γ(N)U can
be viewed as a Fq-subvector space of GLA(Λ)U . Supposing that Φω̃(X) =∑d

i=0 Φω̃,iX
qi , the proof of Proposition 3.2.11 gives the relation

u =
uq

d

N

Φω̃,d

(
1 +

d−1∑
i=0

Φω̃,i

Φω̃,d

uq
d−qi
N

)−1

.

In particular, we can relate the first terms in the expansions of a form in terms
of u and uN respectively. It is perhaps worth mentioning more explicitly what
the polynomial Φω̃ is. From Proposition 2.2.5, we know that

Φω̃(X) = X
∏′

α∈N−1Λ/Λ

(
1− X

eπ̄ω̃Λ̃(π̄ω̃α)

)
,

which is exactly the polynomial whose coefficients are the normalized coef-
ficient forms π̄1−qi g̃i(N, ω̃) of rank r − 1. Let us finish this comparison by
putting all of this together in one formula (where we set d := (r− 1) degN):

u =
udN

π̄1−qd g̃d(N, ω̃)

1 +

(r−1) degN−1∑
i=0

π̄1−qi g̃i(N, ω̃)

π̄1−qd g̃d(N, ω̃)
uq

d−qi
N

−1

.(3.9)

By definition, the normalized coefficient forms are symmetric polynomials
in the Eisenstein series of weight 1. More explicitly,

gi(N,ω) =
∑

S⊂(N−1/A)r

|S|=qi

∏
[v]∈S

E1
[v](ω).

This allows us to compute the first term of most coefficient forms. By Propo-
sition 3.5.6, the minimum power of u will occur when we choose S to contain
only classes [v] where v1 ∈ A or, if this is not possible, as many such [v]
as possible. In particular, when i ≤ (r − 1) degN , the sum contains terms
where we can choose S ⊂ 0×N−1Λ̃/Λ̃ and hence gi(N,ω) is not a cusp form.
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In this case we have

gi(N,ω) =
∑

S⊂0×N−1Λ̃/Λ̃
|S|=qi

∏
[v]∈S

E1
[v](ω) +O(uN)

=
∑

S⊂0×N−1Λ̃/Λ̃
|S|=qi

∏
[v]∈S

Ẽ1
[ṽ](ω̃) +O(uN)

= g̃i(N, ω̃) +O(u),(3.10)

since gi(N,ω) is a modular form for GLA(Λ) and hence has an expansion in
terms of u.

For i = (r − 1) degN + j, (1 ≤ j ≤ degN) the unique coefficient of the
lowest power of uN will be determined by multiplying E1

[v](ω) for those [v]
that have the lowest absolute value. More explicitly, let S ′ ⊂ S be the set
{v1 : |v1| ≤ qj} × N−1Λ̃/Λ̃. Then the term with lowest power of un will be
that of

∏
[v]∈S′ E

1
[v](ω). This allows us to calculate ordΓ(N)U (gi(ω)) and the

leading coefficient for these i. We shall content ourselves with doing this for
∆(ω).3

∆(ω) = t
∏′

[v]∈(t−1A/A)r

E1
[v](ω)

= t
∏′

[v]∈(t−1A/A)r

v1=0

E1
[v](ω)

∏
[v]∈(t−1A/A)r

v1 6=0

E1
[v](ω)

The first product is∏′

[v]∈0×(t−1A/A)r−1

(
Ẽ1

[ṽ](ω̃) +O(ut)
)

=
1

t
∆̃(ω̃) +O(ut)

and the second is∏
[v]∈(t−1A/A)r

v1 6=0

(
tq

(r−1) deg tv1 π̄q
(r−1) deg tv1 g̃(r−1) deg tv1(tv1, ω̃)−1ut + higher terms

)

=
∏
v1∈F×q

∏
[ṽ]∈(t−1A/A)r−1

(π̄v−1
1 ut + higher terms)

= π̄(q−1)qr−1

 ∏
v1∈F×q

(v−1
1 ut)

qr−1

+ higher terms

= −π̄(q−1)qr−1

u
(q−1)qr−1

t + higher terms,

3Recall our notation from Definition 3.4.5 that ∆(ω) is the rank r Drinfeld discriminant
function gr(t, ω) when A = Fq[t].
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since deg tv1 = 0 and since
∏

v1∈F×q (v1)−q
r−1

=
∏

v1∈F×q v1 = −1. By equation

(3.9) we have that u =
uq
r−1

t

π̄1−qr ∆̃(ω̃)
+ higher terms, meaning that

∆(ω) = −π̄q−1∆̃(ω̃)quq−1 +O(uq).(3.11)

We shall confirm this expansion by giving a product formula for ∆(ω).

3.5.4 A product formula for the discriminant function

Assume in this section that A = Fq[t]. In [Ge1], Gekeler gave a product
formula for the rank 2 discriminant function. Hamahata generalized this to
a product formula for the general rank r discriminant function. However,
Hamahata’s expansion is in terms of r different parameters eπ̄A(π̄ωi)

−1, for
i = 1, . . . , r. In this section we give a different expansion in terms of the
parameter uω̃(ω1) at infinity. The exposition follows that of Gekeler’s original
very closely.

Theorem 3.5.7 (Gekeler [Ge1]). The rank 2 Drinfeld discriminant function
has the product expansion

∆(ω) = −π̄q2−1uq−1
∏′

a∈A

fa(u)q
2−1.

Remark. This formula does not contradict equation (3.11), since the rank 1
discriminant function ∆̃ should be the leading coefficient of ϕAt (X) associated
to the lattice A. Using Proposition 2.4.5 and the fact that ϕπ̄At (X) = tX+Xq,
we obtain ∆̃ = π̄q−1 in this case.

Note that this product makes sense, since the expansion of fa(u) is of the
form c+O(uq

deg a−qdeg a−1
) where c ∈ F×q . The first term can be calculated and

the product converges. If we were to take this formula in general rank we
find that fa(u) has constant coefficient π̄q

(r−1) deg a−1∆̃(a, ω̃)−1 and the product
would not make sense.

Definition 3.5.8. When deg a ≥ 1, set ha(X) := π̄1−q(r−1) deg a
∆̃(a, ω̃)−1fa(X).

When deg a = 0, set ha(X) = 1.

Note that division by 0 does not occur, since ∆̃(a, ω̃) is never 0 on Ωr−1.

Lemma 3.5.9. If deg a ≥ 1, then the polynomial ha(X) is of the form 1 +

O
(
Xq(r−1) deg a−q(r−1) deg a−1

)
.
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Proof. If ϕΛ̃
a (X) = aX + · · · + π̄q

(r−1) deg a−1∆̃(a, ω̃)Xq(r−1) deg a
then fa(X) =

π̄q
(r−1) deg a−1∆̃(a, ω̃)+g(r−1) deg a−1(a, ω̃)Xq(r−1) deg a−q(r−1) deg a−1

+· · ·+aXq(r−1) deg a−1

when clearly the statement holds.

Remark. The powers of π̄ that appear in Lemma 3.5.9 are there because
the coefficient forms gi and the polynomials fa and ha are defined with respect
to different lattices (ω̃Λ̃ and π̄ω̃Λ̃ respectively). In the rest of this section
when this phenomenon occurs it is for the same reason.

The product formula we shall derive is similar to Theorem 3.5.7, but with
ha(u) instead of fa(u). The key lies in the following lemmas:

Lemma 3.5.10.

∆(ω) = tπ̄q
r−1

∏′

α∈(t−1A/A)r

eπ̄ωAr(π̄ωα)−1.

Proof. We have

∆(ω) = t
∏′

[v]∈(t−1A/A)r

E1
[v](ω) by Proposition 3.4.3 (b)

= t
∏′

[v]∈(t−1A/A)r

eωAr(ωv)−1 by Proposition 3.4.2 (a)

= t
∏′

[v]∈(t−1A/A)r

π̄eπ̄ωAr (π̄ωv)−1 by Proposition 2.2.5 (a)

= tπ̄q
r−1

∏′

α∈(t−1A/A)r

eπ̄ωAr(π̄ωα)−1.

Lemma 3.5.11. Let Λ̃ = ω2A+ · · ·+ ωrA be a lattice of rank r − 1 and set
Λ = ω1A+ Λ̃. Then

eΛ(X) = eΛ̃(X)
∏′

a∈A

eΛ̃(X) + eΛ̃(aω1)

eΛ̃(aω1)
.
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Proof. We calculate

eΛ(X) = X
∏′

λ∈Λ

(
1− X

λ

)
= X

∏′

λ∈Λ̃

(
1− X

λ

) ∏′

a∈A

∏
λ∈Λ̃

(
1− X

λ− aω1

)

= eΛ̃(X)
∏′

a∈A

X + aω1

aω1

∏′

λ∈Λ̃

(
1− X+aω1

λ

1− aω1

λ

)

= eΛ̃(X)
∏′

a∈A

eΛ̃(aω1 +X)

eΛ̃(aω1)
.

Lemma 3.5.12. Let ϕ be a rank d Drinfeld A-module such that ϕt(X) =
tX+ · · ·+DXqd and fix z0 ∈ C∞. Then, as polynomials, we have the equality

D
∏

ϕt(z)=ϕt(z0)

(X − z) = ϕt(X − z0).

Proof. Note that ϕt(z) = ϕt(z0) if and only if z− z0 is a root of ϕt(X) if and
only if z is a root of ϕt(X − z0). Hence the polynomials have the same set
of roots. Moreover, the degree on both sides is qd (the left since that is the
number of pre-images of ϕt(z) under ϕt), the leading coefficients are both
equal to D and the right hand side has only simple roots. This implies that
the polynomials are equal.

For simplicity write ϕ for the Drinfeld module and e(X) for the exponen-
tial function associated to the lattice π̄ω̃Λ̃. Following the same argument as
in Gekeler [Ge1], we calculate the product∏′

α∈(t−1A/A)r

e(π̄aω1)

e(π̄ωα) + e(π̄aω1)

for any fixed a ∈ A, a 6= 0. Note that e(π̄aω1) = ϕa(e(π̄ω1)) and that the set
{e(π̄ω1α) |α ∈ (t−1A/A)r} is the inverse image of the set {c · e(π̄ω1) | c ∈ Fq}
under ϕt. Therefore
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∏
α∈(t−1A/A)r

(X + e(π̄ωα))

=
∏
c∈Fq

π̄q
r−1−1∆̃(ω̃)−1ϕt

(
X − c · e(π̄t−1ω1)

)
=

∏
c∈Fq

π̄q
r−1−1∆̃(ω̃)−1 (ϕt(X)− c · e(π̄ω1))

and hence (replacing X with e(πω1))∏
α∈(t−1A/A)r

(e(π̄ωα) + e(π̄aω1))

=
∏
c∈Fq

π̄q
r−1−1∆̃(ω̃)−1 (ϕt(e(π̄aω1))− c · e(π̄ω1))

=
∏
c∈Fq

π̄q
r−1−1∆̃(ω̃)−1ϕat−c (e(π̄ω1))(3.12)

Hence∏′

α∈(t−1A/A)r

e(π̄aω1)

e(π̄ωα) + e(π̄aω1)
=

∏
α∈(t−1A/A)r

e(π̄aω1)

e(π̄ωα) + e(π̄aω1)

=
ϕa(e(π̄ω1))q

r∏
c∈Fq π̄

qr−1−1∆̃(ω̃)−1ϕat−c(e(π̄ω1))

=
fa(u)q

r∏
c∈Fq π̄

qr−1−1∆̃(ω̃)−1fat−c(u)

When deg a ≥ 1, this becomes(
π̄1−q(r−1) deg a

∆̃(a, ω̃)
)qr

ha(u)q
r∏

c∈Fq π̄
1−q(r−1)(deg a+1)∆̃(at− c, ω̃)π̄qr−1−1∆̃(ω̃)−1hat−c(u)

, which is equal to

=
ha(u)q

r∏
c∈Fq hat−c(u)

,(3.13)

(since ∆̃(at− c, ω̃) = ∆̃(ω̃)∆̃(a, ω̃)q
r−1

) and when a ∈ F×q it becomes

aq
r∏

c∈Fq hat−c(u)
=

a∏
c∈Fq hat−c(u)

.
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Lemma 3.5.13. The following infinite products are equal:∏
a∈A

deg a≥1

ha(u) =
∏′

a∈A

∏
c∈Fq

hat−c(u).

Proof. This is essentially an exercise in showing that these products converge
as functions on some neighbourhood of the cusp at infinity. Once this is
known, each product is taken over the same index set with the same factors
and we are done. More precisely, it is enough to show that for any n, there
exists rn > 0 such that each product has radius of convergence rn for every
ω̃ ∈ Ωr−1

n . This will guarantee uniform convergence on any Ωr−1
n .

By definition we have ϕa(X) = aX
∏

ϕa(α)=0

(
1− X

α

)
, and hence by def-

inition ha(X) =
∏

ϕa(α)=0(1 − αX). In these expressions, α runs over the

elements of eω̃Λ̃(a−1ω̃Λ̃). Now, by Corollary 3.2.3, we may bound the α’s by
a universal d valid for all ω ∈ Ωn. Also let ε < 1, let |X| ≤ ε/d and denote
by si (i = 1, . . . , qr−1) the i-th symmetric polynomial in the α. Note that

ha(X) = 1 +
∑q(r−1) deg a

i≥1 siX
i. By our assumption that each α ≤ d, we now

have si ≤ di and hence siX
i < εi. Since ha(X) has zero coefficients for X i

for i < q(r−1) deg a− q(r−1) deg a−1, we have |ha(X)− 1| < εq
(r−1) deg a−q(r−1) deg a−1

.
When deg a → ∞, this tends to 0, implying that the product is convergent
on the ball X < ε/d.

It remains to calculate the factor∏′

α∈(t−1A/A)r

e(π̄ωα).

Once again we may break it up into two parts, where α1 = 0 and where
α1 6= 0. We have

∏′

α1∈Fq

∏
α̃∈(t−1A/A)r−1

e
(
π̄
α1ω1

t
+ π̄ω̃α̃

)
=

∏′

α1∈Fq

∏
α̃∈(t−1A/A)r−1

(
e
(
π̄
α1ω1

t

)
+ e(π̄ω̃α̃)

)
=

∏′

α1∈Fq

π̄q
r−1−1∆̃(ω̃)−1ϕt

(
e
(
π̄
α1ω1

t

))
by Lemma 3.5.12

= π̄(qr−1−1)(q−1)∆̃(ω̃)1−q
∏′

α1∈Fq

α1 · e(π̄ω1)

= −π̄(qr−1−1)(q−1)∆̃(ω̃)1−qu1−q,(3.14)
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while

t
∏′

α̃∈(t−1A/A)r−1

e(π̄ω̃α̃)−1 = π̄1−qr−1

∆̃(ω̃)(3.15)

by Lemma 3.5.10, but applied in rank r − 1.

Theorem 3.5.14.

∆(ω) = −∆̃(ω̃)qπ̄q−1uq−1
∏′

a∈A

ha(u)q
r−1.

Proof. The proof is essentially contained in the section preceding this Theo-
rem, but we outline the argument. By Lemmas 3.5.10 and 3.5.11 we have

∆(ω) = tπ̄q
r−1

∏′

α∈(t−1A/A)r

(
e(π̄ωα)

∏′

a∈A

e(π̄ωα) + e(aπ̄ω1)

e(aπ̄ω1)

)
.

Each factor can be simplified to equation (3.13), and after taking the product
over all a ∈ A, Lemma 3.5.13 tells us that the denominator cancels with
exactly one

∏
a∈A ha(u) in the numerator. By equations (3.14) and (3.15),

the product
∏′

α∈(t−1A/A)r
e(π̄ωα)−1 is −t−1π̄q−q

r
∆̃(ω̃)quq−1. Putting this

together yields the theorem.

3.6 Rational Modular Forms

In [Ge2], Gekeler showed that some modular forms have the property that
all its coefficients lie in F . For us, the definition will be slightly more com-
plicated, since the coefficients are functions, not elements of C∞. Recalling
that these functions are themselves weak modular forms, we shall proceed to
inductively define a rational modular form as one where the coefficients are
all rational weak modular forms. We restrict ourselves to the case A = Fq[t]
and Γ = GLr(A).

3.6.1 Rational modular forms in rank 2

Let us recall in this section a few results from [Ge2] in order to get a feeling
for which forms are rational. In this case modular forms are functions of
one variable and their u-expansions have constant coefficients. Furthermore
the parameter u is eL(ω1)−1, where L is the Carlitz lattice. So we start by
investigating certain quantities related to the Carlitz module.
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Proposition 3.6.1. (a) The coefficients of the Carlitz exponential func-
tion are

en(π̄A) = D−1
n .

(b) The coefficients of the Carlitz logarithm function are

βn(π̄A) = L−1
n .

(c) The rank 1 Eisenstein series Ek(π̄A) :=
∑′

λ∈π̄A
λ−k ∈ F is rational.

Proof. For (a) we use the relation from Proposition 3.4.7, which in the case
of the Carlitz module ϕ(X) = tX +Xq becomes

(tq
k − t)ek = eqk−1.

Since e0 = 1, the statement follows by an easy induction.
Similarly, we prove (b) by induction using the relation from 3.4.12 (a),

while (c) follows from (a) and Lemma 3.4.10.

By Propositions 2.5.2 (h) and 3.6.1 (a), the Goss polynomial Pk,π̄A(X)
has rational coefficients. The u-expansion of the rank 2 Eisenstein series from
Proposition 3.5.3 thus becomes:

Ek(ω) = π̄kEk(π̄A)− π̄k
∑
a∈A+

Pk,π̄A(ua).

Furthermore, we can calculate the polynomial fa (and thus ua) more precisely.
If ϕ is the Carlitz module, then ϕt(X) = tX + Xq and hence ϕa(X) =
aX + · · · + adX

qdeg a ∈ A[X], where ad ∈ Fq is the leading coefficient of a.

Then fa(X) = ad+· · ·+aXqdeg a−1 ∈ A[X] with constant coefficient invertible

in A. That means that the power series uq
deg a

fa(u)
also has coefficients in A.

Proposition 3.6.2. For every k ≥ 1, the modular form π̄1−qkLkE
qk−1(ω)

has a u-expansion with coefficients in A.

Proof. By Proposition 2.5.2 (f), we have

Pqk−1(X) =
k−1∑
i=0

βiX
qk−qi =

k−1∑
i=0

L−1
i Xqk−qi .

Then since ua has coefficients in A it remains to note that Lk/Lj ∈ A when
j < k.
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Corollary 3.6.3. The following modular forms have integral u-expansions:

(a) π̄1−qg1(ω) ∈ A[[u]];

(b) π̄1−q2
g2(ω) ∈ A[[u]].

Proof. (a) follows from Proposition 3.6.2, while for (b) the relations g1(ω) =
[1]Eq−1 and g2(ω) = [1]qEq−1(ω)q+1 + [2]Eq2−1(ω) from Proposition 3.4.11
yield

π̄1−q2

g2(ω) = π̄1−q2
(

[1]qEq−1(ω)q+1 + [2]Eq2−1(ω)
)

= [1]q

[1]−1 −
∑
a∈A+

uq−1
a

q+1

− [1]−1 + [2]
∑
a∈A+

(
[1]−1uq

2−q
a − uq2−1

a

)
,

where the only possible non-integral term is the constant term, but it cancels
to 0.

3.6.2 Rationality in higher rank

We would like to define a modular form to be rational if its coefficients are
rational. However, the coefficients are not in general modular forms, since
they may fail to be holomorphic at infinity. Hence we need to extend the
definition to weak modular forms.

Definition 3.6.4. We say that a weak modular form f of rank 2 is a rational
weak modular form if in the Fourier expansion at infinity (Proposition 3.2.5)

f(ω) =
∑
n∈Z

fnu
n,

the coefficients fn are all elements of F .
We say that a weak modular form f of rank r is a rational weak modular

form if in the Fourier expansion at infinity

f(ω) =
∑
n∈Z

fn(ω̃)un,

the functions fn are all rational weak modular forms of rank r − 1.
A modular form which is also a rational weak modular form is called a

rational modular form.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. DRINFELD MODULAR FORMS 67

Remark. Note that, by the definition, the sum, difference and product
of rational modular forms are rational modular forms (of course of possibly
different weights). The quotient is also a rational weak modular form if no
division by 0 occurs on Ωr. By Proposition 3.3.2, it is also enough to consider
expansions at one cusp, since we are considering only modular forms for
GLr(Fq[t]).

Theorem 3.6.5. The modular forms π̄1−qigi(a, ω), π̄−kEk(ω) and π̄1−qkek(Λ̃)
are rational modular forms.

Proof. By Corollary 3.4.8 and Corollary 3.4.14 it suffices to prove that π̄−kEk(ω)
is a rational modular form for every k. We now proceed by induction on the
rank.

For r = 2 this was proved in Proposition 3.6.2. Now suppose that it is
true for forms of rank r − 1. By Proposition 3.5.3 we have the expansion

π̄−kEk(ω) = π̄−kẼk(ω̃)−
∑
a∈A+

Pk,π̄Λ̃(ua).

By the induction hypothesis, the constant coefficient is a rational modular
form of weight k. By Proposition 2.5.2 (h) the coefficients of the polynomial
Pk,π̄Λ̃ lie in the ring Fq[ei(π̄Λ̃)i]. Since ei(π̄Λ̃) = π̄1−qiei(Λ̃) these functions
are all rational modular forms, hence the coefficients of Pk,π̄Λ̃ are all rational
modular forms.

Recall that ua = uq
(r−1) deg a

fa(u)
where fa(u) = uq

(r−1) deg a
ϕπ̄Λ̃
a (u−1). Thus

the coefficients of fa(u) are the coefficient forms g̃i(a, π̄ω̃) = π̄1−qi g̃i(a, ω̃)
(by Proposition 2.4.5), which are rational modular forms by our induction
hypothesis. We have fa(u) = ∆(a, π̄Λ̃) + ur(u), where r(u) is a polynomial
with rational modular forms as coefficients. Thus

uq
(r−1) deg a

fa(u)
=
uq

(r−1) deg a

∆̃(a, π̄Λ̃)

(
1 +

∑
n≥0

(
− ur(u)

∆̃(a, π̄Λ̃)

)n)
,

meaning that ua has a u-expansion with coefficients rational weak modular
forms. (They are holomorphic on Ωr−1 since ∆ has no zeros on Ωr−1, but
not necessarily modular forms since division by ∆ takes place.

Finally note that if Pk,π̄Λ̃ has rational modular forms as coefficients and ua
has a u-expansion consisting of rational weak modular forms, then Pk,π̄Λ̃(ua)
has a u-expansion with rational weak modular forms as coefficients.

In order to study properties of modular forms under reduction modulo an
ideal of A, we also need to say when they are integral, not just rational. We
may define integrality inductively in the same way as rationality was defined.
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In the rest of this section, we adopt the following normalization to ease
notation: Replace gi(ω) by π̄1−qigi(ω) and hence ∆(ω) by π̄1−qr∆(ω). Then
the functions gi(ω) and ∆(ω) are all rational modular forms. We also adopt
the notation Ek(ω) := π̄1−qkEqk−1(ω) for Eisenstein series of weight qk − 1.
Lastly we shall also often suppress the arguments ω and ω̃ and rely on the
tildes to indicate the rank of the functions (in formulas they will either be
rank r or rank r − 1).

Example. If r = 2, Proposition 3.6.2 tells us that g1 and g2 are integral
modular forms.

Before continuing with the rank 3 case, let us make a few observations.

Proposition 3.6.6. (a) If the rank i discriminant functions are integral
modular forms for 2 ≤ i ≤ r, then the multiplicative inverse of the
rank r discriminant function ∆−1 is an integral weak modular form of
weight 1− qr.

Now suppose that the rank r − 1 coefficient forms g̃i are integral modular
forms. Then the following holds:

(b) The expression ua is a power series in u with integral weak modular
forms as coefficients.

(c) ∆ is an integral modular form of weight qr − 1.

(d) g1 and g2 are integral modular forms

Proof. By equation (3.11) (and Theorem 3.5.14) the expansion of ∆(ω) is of
the form −∆̃quq−1 + · · · (after the normalization discussed directly before
the Example). Hence the expansion of ∆(ω)−1 will be a geometric series of
the form −∆̃(ω̃)−qu1−q (1 + · · · ). Since ∆(ω) is an integral modular form,
the claim would follow if ∆̃(ω̃) was an integral weak modular form. Claim
(a) now follows by induction, since we know from Theorem 3.5.7 that the
rank 2 Drinfeld discriminant function has −1 as its first non-zero coefficient.

By definition the coefficients of the polynomials ua are quotients of poly-
nomials in the coefficient forms g̃i by powers of the discriminant ∆̃. By
assumption the coefficient forms are all integral, and we have just shown
that the inverse of the discriminant function is integral, proving (b).

By the product formula in Theorem 3.5.14, ∆ is a product of expressions
of the form ua and ∆̃, proving (c).

By Propositions 3.4.11 and 3.5.3 we have g1 = [1]E1 = g̃1−[1]
∑

a∈A+
uq−1
a

which is an integral modular form by (b) and the assumption on g̃1.
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Also by Proposition 3.4.11 we have g2 = [2]E2− gq1E1 = [2]E2− [1]qEq+1
1 ,

while by Propositions 3.5.3 and 2.5.2 (f) we have

E1 = Ẽ1 −
∑
a∈A+

uq−1
a and E2 = Ẽ2 −

∑
a∈A+

(
uq

2−1
a − Ẽ1u

q2−q
a

)
.

Now note that
∑
uq

2−1
a has integral coefficients and that [2]Ẽ1

∑
uq

2−q
a has in-

tegral coefficients, since [2]Ẽ1 = [2]
[1]
g̃1. Also note that [1]q

(
Ẽ1 −

∑
uq−1
a

)q+1

=

1
[1]

(g̃1 − [1]
∑
uq−1
a )

q+1
, every term in the binomial expansion of (g̃1 − [1]

∑
uq−1
a )

q+1

except g̃q+1
1 has a factor [1], and thus remains integral after division by [1].

Hence, modulo A we have g2 ≡ [2]Ẽ2 − 1
[1]
g̃1
q+1 = g̃2, which is integral.

This completes the proof of (d).

Corollary 3.6.7. The rank 3 coefficient forms g1(ω), g2(ω), g3(ω) = ∆(ω)
are integral modular forms. The rank 4 coefficient forms g1(ω), g2(ω) and
g4(ω) = ∆(ω) are integral modular forms.

Proof. The statements in rank 3 are corollaries of Proposition 3.6.6 (c) and
(d) and Proposition 3.6.2, while the statements in rank 4 are corollaries of
Proposition 3.6.6 (c) and (d) and what was just shown in rank 3.

It is plausible that all coefficient forms turn out to be integral modular
forms. This would allow us to study their reductions modulo certain ideals.
Proposition 3.6.6 lays a good foundation for a possible inductive argument
to prove this, but a complete proof has been elusive so far.
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Hecke operators

Hecke operators play a large role in the theory of classical modular forms.
In the function field case one might say that their study has not been so
fruitful, since one does not get the same powerful results. However, it is still
interesting to study them and to see where they differ from classical Hecke
operators and why.

Hecke operators are averaging linear transformations T : Mk(Γ1) →
Mk(Γ2), where we take Γ1 = Γ2 in most cases. In the classical case one then
distinguishes those forms which are eigenforms for these operators. There
are various interesting results in the classical case, which one can hope to
generalize to the function field case. For example, in the classical case, the
eigenvalues of an eigenform can be directly read from the coefficients of its
Fourier expansion and thus no two eigenforms can have the same set of eigen-
values. This is false for Drinfeld modular forms. Another difference with the
classical case is that Hecke operators for Drinfeld modular forms are com-
pletely multiplicative.

We shall not discuss all these questions, but rather content ourselves
with developing the basic theory of Hecke operators and by computing some
examples.

4.1 Hecke Rings

The theory of general Hecke operators was developed in the first half of the
twentieth century and a good account is given by Shimura in [Sh]. Here he
proceeds to define Hecke operators for subgroups of an arbitrary groupG. For
simplicity, we shall immediately assume that A = Fq[t] and set G = GLr(F ).

Let G = GLr(F ). Recall that two subgroups Γ1,Γ2 ⊂ G are said to be

70
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commensurable if Γ1 ∩ Γ2 is of finite index in both Γ1 and Γ2. This defines
an equivalence relation ∼ on the set of subgroups of G. Indeed, the only
non-trivial part is to check transitivity. Suppose that Γ1 ∼ Γ2 and Γ2 ∼ Γ3.
Then [Γ1 ∩ Γ2 : Γ1 ∩ Γ2 ∩ Γ3] ≤ [Γ2 : Γ2 ∩ Γ3]. So [Γ1 ∩ Γ2 ∩ Γ3] is of finite
index in Γ2 ∩ Γ3 and by symmetry of finite index in Γ1 ∩ Γ2. Since these are
of finite index in Γ1 and Γ3, respectively, we have that Γ1∩Γ2∩Γ3 is of finite
index in both Γ1 and Γ3. Then also Γ1 ∩ Γ3 must be of finite index.

We note that by definition a congruence subgroup of GLr(A) contains
some Γ(N) which is defined as the kernel of the map GLr(A)→ GLr(A/N).
Hence Γ(N), and indeed every congruence subgroup, is of finite index in
GLr(A) and hence is commensurable with it. Thus all the congruence sub-
groups fall in the same commensurability class.

Lemma 4.1.1. For every g ∈ GLr(F ) and any congruence subgroup Γ′, the
group gΓ′g−1 is also a congruence subgroup.

Proof. We can find m ∈ A such that Γ(m) ⊂ Γ′ and both mg and mg−1 have
coefficients in A. Then g−1Γ(m3)g ⊂ g−1(I + m3Mr(A))g = I + m ·mg−1 ·
Mr(A) ·mg ⊂ I + mMr(A). Noting that the determinant of any matrix in
gΓ′g−1 is an element of F×q allows us to deduce that g−1Γ(m3)g ⊂ Γ(m).
Then Γ(m3) ⊂ gΓ(m)g−1 ⊂ gΓ′g−1.

Hecke operators will be based on double cosets of the form Γ1αΓ2, where
α ∈ GLr(F ) and Γ1 and Γ2 are congruence subgroups of GLr(A). This
implies that αΓ1α

−1 ∼ Γ2. A double coset like this can always be written as
a union of left cosets or as a union of right cosets.

Proposition 4.1.2. If α ∈ GLr(F ), then the double coset Γ1αΓ2 can be
written as a disjoint union of [Γ1 : Γ1 ∩ α−1Γ2α] left cosets or as a disjoint
union of [Γ2 : Γ2 ∩ αΓ1α

−1] right cosets.

Proof. [Sh] Proposition 3.1.

Now let R12 be the free Z-module on expressions Γ1αΓ2, where α ∈
GLr(F ). We can define a weighting on R12 by defining deg(Γ1αΓ2) to be the
number of right cosets from Proposition 4.1.2, and then extend it linearly
to R12. (Note that it can also be done with left cosets, but we shall only
consider right cosets here.)

We can now define a multiplication map R12×R23 → R13, which is well-
defined and associative. If we write the following double cosets as unions of
right cosets

Γ1αΓ2 =
⋃
i

Γ1αi, and Γ2βΓ3 =
⋃
j

Γ2βj,
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then their product should be related to Γ1αΓ2βΓ3 = ∪jΓ1αΓ2βj = ∪i,jΓ1αiβj.
The latter can be reinterpreted as a union of double cosets Γ1γΓ3. But for
the product to be associative we need to count them with multiplicity. So
we define Γ1αΓ2 × Γ2βΓ3 as the sum of double cosets Γ1γΓ3, where such a
term is taken with multiplicity #{(i, j) |Γ1αiβi = Γ1γ}. For more details,
e.g. that this is well defined, we refer to [Sh] Chapter 3.1.

Proposition 4.1.3. Let x ∈ Γ1αΓ2, y ∈ Γ2βΓ3 and z ∈ Γ3γΓ4. Then

(a) deg(x× y) = deg(x) deg(y) and

(b) (x× y)× z = x× (y × z).

Proof. [Sh] Propositions 3.3 and 3.4.

Now let us assume that Γ := Γ1 = Γ2 = Γ3 and that α lies in some semi-
group S such that Γ ⊂ S ⊂ GLr(F ). Define R(Γ, S) as the free Z-module
on expressions ΓαΓ where α ∈ S. The multiplication operator defined above
defines a ring structure on R(Γ, S). When Γ = Γ(N), then matrix transpo-
sition defines an anti-isomorphism of Γ. Then [Sh] Proposition 3.8 implies
that R(Γ, S) is commutative.

Before ending this section, let us quickly mention how all of this can
be adapted to the case where A is not a principal ideal domain. There
are essentially two ways this can be done. In the first way, instead of
GLr(A), we should take GLA(Λ) for various projective modules Λ. How-
ever, in this case only the operators that preserve the relevant component
are present. To obtain all the operators we should replace GLr(A) with
G = GLr(Af

F ), the adelic points of the general linear group and replace Γ(N)

by K(N) = ker(G → GLr(NÂ)). If this is done, we should get exactly the
same definitions as the algebraic Hecke operators defined in [Pi].

4.2 The Hecke Ring for Γ = GLr(A)

Our goal in this section is to study the Hecke ring R(Γ, S) when Γ = GLr(A)
and S = GLr(F ) ∩Mr×r(A), the semigroup of matrices with entries in A
and non-zero determinant. The results in this section might not have been
known, but the proofs are direct translations of those found in [Sh] into the
function field situation. We assume throughout that A is a principal ideal
domain.

We shall need the notion of lattices in a vector space V = F r. They
are very similar to lattices in C∞, hence the same terminology. If there is

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. HECKE OPERATORS 73

confusion we shall distinguish between them by saying either “a lattice in V ”
or “a lattice in C∞.” However, there will not be much confusion, since the
former is used only in this chapter, and this chapter uses that notion almost
exclusively.

Definition 4.2.1. A lattice in V is a rank r projective A-submodule of V .

Theorem 4.2.2 (Elementary Divisors). Let L be a free module over A and
M ⊆ L a non-zero finitely generated submodule. Then there exists a basis B
of L, a subset {e1, . . . , em} ⊆ B and elements a1, . . . , am ∈ A such that:

(a) {a1e1, . . . , amem} is a basis of M ; and

(b) ai | ai+1 for i = 1, . . . ,m− 1.

Moreover, the ai are determined uniquely (up to multiplication by a unit)
satisfying these conditions.

Proof. [La] III. Theorem 7.8.

For lattices L1 ⊂ L2 of the same rank, the Theorem of Elementary Di-
visors tells us that the quotient L2/L1 is of the form

∏r
i=1(A/aiA) where

ai ∈ A and ai | ai+1 for each i. We shall denote this ordered set of elements
(a1, . . . , ar) by {L2 : L1}. Also denote by [L1 : L2] := a1a2 · · · ar the product
of these elements. Note that this notation replaces the usual notation for the
index, which is now qdeg[L1:L2] instead.

Lemma 4.2.3. The diagonal matrices diag[a1, . . . , ar] where a1, . . . , ar ∈ A
and ai | ai+1 for i = 1, . . . , r− 1, form a set of representatives for the double
coset Γ\S/Γ.

Proof. Let g ∈ S and consider its action on the standard lattice L = Ar.
Clearly g(L) ⊆ L and g(L) is also of rank r, since det g 6= 0. Hence g(L) is
a lattice of finite index in L. By the Theorem of Elementary Divisors, there
exist a basis e1, . . . , er of L and a1, . . . , ar such that g(L) = a1e1A + · · · +
arerA. If P is the matrix that changes the basis from the standard basis
to (e1, . . . , er), then this means that P−1gP = diag[a1, . . . , ar] and since
P ∈ GLr(A), we conclude that ΓgΓ = Γdiag[a1, . . . , ar]Γ.

By Lemma 4.2.3 we know the double cosets have representatives of the
form diag[a1, . . . , ar], and hence that the Hecke algebra is generated by double
cosets of the form ΓαΓ where α = diag[a1, . . . , ar].

Definition 4.2.4. Define the following double cosets:
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(a) For any r-tuple (ai) ∈ Ar such that ai | ai+1 for every i, let T (a1, . . . , ar) :=
ΓαΓ, where α = diag[a1, . . . , ar].

(b) For any prime p ∈ A and i = 1, . . . , r, let T
(r)
p,i := T (1, . . . , 1︸ ︷︷ ︸

r−i

p, . . . , p︸ ︷︷ ︸
i

).

Later when p is fixed, we shall write simply T
(r)
i .

(c) For any n ∈ A, let Tn :=
∑
T (a1, . . . , ar) where the sum is taken over

all r-tuples (ai) ∈ Ar such that ai | ai+1 for every i and n = a1 · · · ar.

In order to study these operators by using lattices, we would like to make
the association Γδ 7→ Arδ between right cosets of Γ in ΓαΓ and lattices in
F r, but as it stands this is not well-defined. From now on we denote the
standard lattice Ar by L.

Lemma 4.2.5. Let M,N ⊂ L be lattices. Then {L : M} = {L : N} if and
only if Mα = N for some α ∈ GLr(A).

Proof. Since an element of GLr(A) preserves any lattice, the “if” part is
clear. Now, suppose that {L : M} = {L : N} = (a1, a2, . . . , ar). By the
definition of this index there exist 2r elements u1, . . . , ur, v1, . . . , vr ∈ A such
that L = u1A+ · · ·+ urA = v1A+ · · ·+ vrA, M = a1u1A+ · · ·+ arurA and
N = a1v1A + · · · + arvrA. We define α by letting uiα = vi for i = 1, . . . , r.
This means that Lα = L (and hence α ∈ GLr(A)) and Mα = N .

Lemma 4.2.6. Suppose that ΓαΓ = T (a1, . . . , ar). The association Γδ 7→ Lδ
defines a bijection between the right cosets Γδ in ΓαΓ and the lattices M ⊂ L
such that {L : M} = (a1, . . . , ar).

Proof. Assume, without loss of generality, that α = diag[a1, . . . , ar]. If Γδ =
Γαβ (β ∈ Γ), then {L : Lδ} = {L : Lαβ} = {L : Lα} = (a1, . . . , ar) by
Lemma 4.2.5.

Conversely, if {L : M} = (a1, . . . , ar), then by Lemma 4.2.5 M = Lαβ
for some β ∈ Γ. Since β ∈ Γ, we have Γαβ ⊂ ΓαΓ. The fact that this
correspondence defines a bijection follows by noting that Γδ = Γδ′ if and
only if Lδ = Lδ′.

Corollary 4.2.7. The degree of T (a1, . . . , ar) (the number of right cosets in
Γdiag[a1, . . . , ar]Γ) equals the number of lattices M ⊂ L such that {L : M} =
(a1, . . . , ar).

Proposition 4.2.8. The multiplication of two double cosets is given as fol-
lows: ΓαΓ ·ΓβΓ =

∑
γ cγΓγΓ, where cγ equals the number of lattices M such

that {L : M} = {L : Lβ} and {M : Lγ} = {L : Lα}.
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Proof. Let ΓαΓ = ∪iΓαi and ΓβΓ = ∪jΓj be disjoint unions of these double
cosets. By the way multiplication is defined, we have

cγ = #{(i, j) |Γαiβj = Γγ} = #{(i, j) |Lαiβj = Lγ}.

Given γ and j, note that i is uniquely determined by Γαi = Γγβ−1
j . If

Lαiβj = Lγ, set M = Lβj. Then {L : M} = {L : Lβj} = {L : Lβ} and
{M : Lγ} = {Lβj : Lαiβj} = {L : Lαi} = {L : Lα}.

Conversely, suppose that M is a lattice such that {L : M} = {L : Lβ} and
{M : Lγ} = {L : Lα}. By Lemma 4.2.6 this means that there is a unique βj
such that M = Lβj. Then {L : Lγβ−1

j } = {Lβj : Lγ} = {L : Lα}. Now, by

Lemma 4.2.6, we must have Lγβ−1
j = Lαi for some i. Then Lγ = Lαiβj.

Proposition 4.2.9. These double cosets satisfy the following multiplication
laws:

(a) T (a1b1, . . . , arbr) = T (a1, . . . , ar)T (b1, . . . , br) if gcd(ar, br) = 1.

(b) T (ca1, . . . , car) = T (c, . . . , c)T (a1, . . . , ar) for every c ∈ A and every
r-tuple (ai).

Proof. Note that if gcd(ar, br) = 1, then gcd(ai, bi) = 1 for every i = 1, . . . , r.
Let α = diag[a1, . . . , ar] and β = diag[b1, . . . , br] and let γ ∈ ΓαΓβΓ. Suppose
for a contradiction that there exist two lattices M and M ′ such that both
{L : M} = {L : M ′} = {L : Lβ} and {M : Lγ} = {M ′Lγ} = {L : Lα}. By
the Second Isomorphism Theorem, the indices [M+M ′ : M ] = [M ′ : M∩M ′].
(Here, and in the remainder of this proof, the index refers to the usual concept
and not the one defined in terms of {· : ·}.) Since M + M ′ ⊂ L, the left
hand side must be a divisor of [L : M ] = det(β) and since Lγ ⊂M ∩M ′, the
right hand side is a divisor of [L : Lα] = det(α). Since det(α) and det(β) are
relatively prime, both quantities must be 1, implying that M = M ′. This
means that if ΓαΓ · ΓβΓ =

∑
γ cγΓγΓ, then each cγ = 1.

On the other hand, if γ ∈ ΓαΓβΓ, then we can find a lattice M satisfying
these properties. Then Lγ ⊂ M ⊂ L, and the quotient L/Lγ ∼= L/M ⊕
M/Lγ ∼= L/Lα⊕ L/Lβ ∼= L/Lαβ, since gcd(det(α), det(β)) = 1.

Part (b) follows from the fact that the matrix c · id commutes with every
element of Γ.

Proposition 4.2.9 allows us to focus our study to elements of the form
T (pe1 , . . . , per) where p ∈ A is prime and e1 ≤ · · · ≤ er. Let R

(r)
p (Γ, S) be

the subalgebra of R(Γ, S) generated by elements of the form T (pe1 , . . . , per).

It turns out that R
(r)
p (Γ, S) is generated by the elements T

(r)
p,i . We prove this
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by induction on the rank, explaining why the superscript is included in the
notation. From now on fix a prime p. Then A/pA is a finite field with qdeg p

elements.

Proposition 4.2.10. Let c
(r)
k be the number of k-dimensional (A/pA)-subvector

spaces of (A/pA)r. Then

deg
(
T

(r)
k

)
= c

(r)
k =

(qr deg p − 1)(qr deg p − qdeg p) · · · (qr deg p − q(k−1) deg p)

(qk deg p − 1)(qk deg p − qdeg p) · · · (qk deg p − q(k−1) deg p)
.

Proof. By Corollary 4.2.7 the degree of T
(r)
k is the number of lattices M ⊂ L

such that {L : M} = (1, . . . , 1︸ ︷︷ ︸
r−k

p, . . . , p︸ ︷︷ ︸
k

). In that case pL ⊂M ⊂ L and M/pL

is a n− k-dimensional subspace of L/pL ∼= (A/pA)r. On the other hand, for
every n − k-dimensional subspace W of (A/pA)r, there is a unique M such
that M/pL = K.

The formula for c
(i)
k is standard and well-known. See for example [Ro] I.1

Exercise 21.

Let π : R
(r+1)
p → R

(r)
p be the Z-linear map

{π(T (1, pe1 , . . . , per)) = T (pe1 , . . . , per), π(T (P e0 , . . . , per)) = 0 for e0 > 0.

Lemma 4.2.11. The map π is a surjective ring homomorphism with kernel
T

(r+1)
r+1 R

(r+1)
p .

Proof. Surjectivity is clear and the fact that the kernel is as stated, follows
from Proposition 4.2.9 (b). Set a′ = (1, pa1 , . . . , par), b′ = (1, pb1 , . . . , pbr),
d′ = (1, pd1 , . . . , pdr) and a = (pa1 , . . . , par), b = (pb1 , . . . , pbr), d = (pd1 , . . . , pdr)
and suppose that a · b contains the term d with coefficient cd and that a′ · b′
contains the term d′ with coefficient c′d. It suffices to prove that for any d we
have cd = c′d.

Let L = u1A + · · · + urA, L′ = u0A + L and N = pd1u1A + · · · pdrurA,
N ′ = u0A + N . Then {L : N} = d and {L′ : N ′} = d′. By Corollary
4.2.7 we know that cd = #{M | {L : M} = b, {M : N} = a} and c′d =
#{M ′ | {L′ : M ′} = b′, {M ′ : N ′} = a′}. Let M ′ be a lattice for which
{L′ : M ′} = b′ and {M ′ : N ′} = a′ and set M = M ′ ∩ L. Then {L : M} = b
and {M : N} = a. On the other hand let M be a lattice in u1F + · · ·+ urA
for which {L : M} = b and {M : N} = a and set M ′ = u0A + M . Then
{L′ : M ′} = b′ and {M ′ : N ′} = a′, providing the one-to-one correspondence
that proves c′d = cd.
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Now we know that T (a)·T (b) =
∑

d cdT (d) and T (a′)·T (b′) =
∑

d′ c
′
dT (d′)+

T (p, . . . , p)x for some element x ∈ R(n+1)
p . (The last term appears, since there

are lattices M ′ with the desired indices that are not of the form u0A + M ,
but these are necessarily contained in pL.) Then

π(T (a′)·T (b′)) = π

(∑
d′

c′dT (d′)

)
+π(T (p, . . . , p)x) =

∑
d

cdT (d) = T (a)·T (b).

Definition 4.2.12. For any element of Rp(Γ, S) define w(
∑
cαΓαΓ) :=

max{z | pz = detα, cα 6= 0}. Call an element
∑
cαΓαΓ homogeneous if

detα is the same for every α where cα 6= 0.

The elements ΓαΓ and T (pe1 , . . . , per) are trivially homogeneous, while it
is also clear that the product of any two homogeneous elements is homoge-
neous.

Theorem 4.2.13. The ring R
(r)
p is the polynomial ring in r algebraically

independent elements T
(r)
i for i = 1, . . . , r.

Proof. The proof is by induction on r. If r = 1, Proposition 4.2.9 (b) implies
that T (pe) = T (p)e. Now assume that r ≥ 2 and that the result is true for r.
To prove that every element of the form T (pe0 , . . . , per) is a polynomial in the
required elements, we proceed by induction on w(T (pe0 , . . . , per)) = e0 + · · ·+
er. Note that if this is zero, then e0 = · · · = er = 0 and T (1, . . . , 1) = 1 ∈ Z.

If e0 > 0, then by Proposition 4.2.9 (b), we have the equality T (pe0 , . . . , per) =
T (p, . . . , p)e0T (1, pe1−e0 , . . . , per−e0), so it suffices to handle the case where
e0 = 0. Let X = T (1, pe1 , . . . , per). By the induction hypothesis, the element

π(X) = T (pe1 , . . . , per) ∈ R(r)
p can be represented as a polynomial

Φ(T
(r)
1 , . . . , T (r)

r ) =
∑
k

ukMk(T
(r)
1 , . . . , T (r)

r ),

where the Mk are monomials and uk ∈ Z. Note that since X is homogeneous,
this polynomial must be homogeneous in the sense that w(Mk) is the same

for every k. Now consider the element Y = Φ
(
T

(r+1)
1 , . . . , T

(r+1)
r

)
∈ R(r+1)

p .

Note that since X is homogeneous, it too is homogeneous. We have π(X) =

π(Y ), implying by Lemma 4.2.11 that X − Y = T
(r+1)
r+1 · Z for some Z ∈

R
(r+1)
p . Consequently, X − Y is homogeneous, and hence Z is homogeneous,

but w(Z) < w(X). By our induction hypothesis, Z is a polynomial in the

elements T
(r)
i (i = 1, . . . , r).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. HECKE OPERATORS 78

For algebraic independence, suppose that there is some polynomial rela-
tion between the T

(r)
i :

Φ
(
T

(r+1)
1 , . . . , T (r+1)

r

)
=

n∑
d=m

(
T

(r+1)
r+1

)d
Φd

(
T

(r+1)
1 , . . . , T (r+1)

r

)
= 0,

where Φm,Φn 6= 0. Since T
(r+1)
r+1 is not a zero divisor (by Proposition 4.2.9

(b)), this means that

n∑
d=m

(
T

(r+1)
r+1

)d−m
Φd

(
T

(r+1)
1 , . . . , T (r+1)

r

)
= 0

Thus 0 = π(0) = π
(

Φd

(
T

(r+1)
1 , . . . , T

(r+1)
r

))
= Φd

(
T

(r)
1 , . . . , T

(r)
r

)
, giving a

contradiction with the assumption that Φm 6= 0.

As in the classical case, we shall obtain a recurrence relation for the
elements Tpk by interpreting the formal power series

∑∞
k=0 TpkX

k as the mul-

tiplicative inverse of
∑r

i=0(−1)iq
1
2
i(i−1) deg pT

(n)
i X i. To do this we need two

lemmas. Recall that c
(k)
i was defined in Proposition 4.2.10.

Lemma 4.2.14. If we make the conventions that c
(k)
i = 0 when i > k and

c
(0)
0 = 1, then

T
(r)
i X i

(
∞∑
j=0

TpjX
j

)
=

r∑
k=0

c
(k)
i

( ∑
1≤d1≤···≤dk

T (1, . . . , 1, pd1 , . . . , pdk)Xd1+···+dk

)
.

Proof. For any k and any k-tuple (d1, . . . , dk) we shall compute the coefficient

m(d1, . . . , dk) of T (1, . . . , 1, pd1 , . . . , pdk) in the product T
(r)
i X i

(∑∞
j=0 TpjX

j
)

.

Note that for any such k-tuple only the term TpjX
j where i+j = d1 + · · ·+dk

can contribute to this coefficient. LetN be a fixed lattice such that {L : N} =
(1, . . . , 1, pd1 , . . . , pdk). By Proposition 4.2.8 we can compute

m(d1, . . . , dk) =
∑
α

#{M | {L : M} = (1, . . . , 1︸ ︷︷ ︸
r−i

p, . . . , p︸ ︷︷ ︸
i

), {M : N} = {L : Lα}},

the sum ranging over ΓαΓ where det(α) = pm and α ∈ ∆. If N ⊂ M then
there exists α ∈ S such that {M : N} = {L : Lα} and det(α) = [M : N ] =
pm. Thus

m(d1, . . . , dk) = #
{

lattices M
∣∣∣ [M : N ] = pm,

{L : M} = (1, . . . , 1︸ ︷︷ ︸
r−i

p, . . . , p︸ ︷︷ ︸
i

)
}
.(4.1)
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If L = u1A + · · · + urA and N = u1A + · · · + ur−kA + pd1ur−k+1A +
· · ·+ pdkurA, then pL+N = u1A+ · · ·+ ur−kA+ pur−k+1 + · · ·+ purA, and
hence L/(pL+N) ∼= (A/pA)k. Furthermore, if M satisfies the conditions in
equation (4.1), then L/M ∼= (A/pA)i. If i > k, then there is no M satisfying
the conditions, and hence m(d1, . . . , dk) = 0. If i ≤ k, then M/(pL + N) ∼=
(A/pA)k−i is a subspace of L/(pL + N) ∼= (A/pA)k. Conversely, for every
such subspace, there exists a unique lattice M satisfying the conditions in
equation 4.1. Therefore m(d1, . . . , dk) = c

(k)
i .

Lemma 4.2.15. For any k > 0, we have

k∑
i=0

(−1)iq
1
2
i(i−1) deg pc

(k)
i = 0.

Proof. Let Φ(X) = (X − 1)(X − qdeg p) · · · (X − q(k−1) deg p) be a polynomial
of degree k, and consider the polynomial

Ψ(X) =
k−1∑
i=0

Φ(X)

Φ′(qideg p)(X − qi deg p)
.

The polynomial Ψ has degree strictly less than k and for j = 0, 1, . . . , k−1 we
have Φ′(qj deg p) = (qj deg p−1)(qj deg p− qdeg p) · · · (qj deg p− q(j−1) deg p)(qj deg p−
q(j+1) deg p) · · · (qj deg p − q(k−1) deg p) which is also the value of Φ(X)

(X−qj deg p)
at

X = qj deg p. Therefore Ψ(X) = 1 for k values X = qj deg p, j = 0, 1, . . . , k− 1
and hence Ψ(X) is identically 1.

Then also

1 = Ψ(qk deg p) =
k−1∑
i=0

(qk deg p − 1)(qk deg p − qdeg p) · · · (qk deg p − q(k−1) deg p)

Φ′(qi deg p)(qk deg p − qideg p)
,

where Φ′(qideg p) = (qideg p−1)(qi deg p−qdeg p) · · · (qideg p−q(i−1) deg p)(qideg p−
pi+1) · · · (qideg p−q(k−1) deg p). Each factor (qideg p−q(i+t) deg p) = − qk deg p−q(k−t) deg p

q(k−i−t) deg p

(for t = 1, . . . , k − 1− i), so that

1 =
k−1∑
i=0

(qk deg p − 1)(qk deg p − qdeg p) · · · (qk deg p − q(i−1) deg p)p
1
2

(k−i)(k−i−1)

(qideg p − 1)(qideg p − qdeg p) · · · (qi deg p − q(i−1) deg p)

=
k−1∑
i=0

q
1
2

(k−i)(k−i−1) deg pc
(k)
i .

Replacing k − i by j, this becomes 1 =
∑k

j=1 q
1
2
j(j−1) deg pc

(k)
j .
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Theorem 4.2.16. The operators Tn satisfy the following:

(a) If n = p is prime, then Tp = T
(r)
1 = T (1, . . . , 1, p),

(b) If gcd(m,n) = 1, then Tmn = TmTn.

(c)

Tpk =
r∑
i=1

(−1)i+1q
1
2
i(i−1) deg pT

(r)
i Tpk−i .

Proof. The definition of Tn immediately gives (a), while (b) follows from
Proposition 4.2.9 (a). The statement of (c) will follow by comparing coeffi-
cients of Xk in the equality of formal power series(

∞∑
m=0

TmX
m

)(
r∑
i=0

(−1)iq
1
2
i(i−1) deg pT

(r)
i X i

)
= 1,

which is true, since by Lemma 4.2.14, this power series is

r∑
i=0

(−1)iq
1
2
i(i−1) deg p

r∑
k=0

c
(k)
i

∑
1≤d1≤···≤dk

T (1, . . . , 1, pd1 , . . . , pdk)Xd1+···+dk .

By 4.2.15 the coefficients of Xk where k ≥ 1 sum to 0, proving the identity.

4.3 Hecke Operators on Drinfeld modular forms

In this section we show how the abstract Hecke ring R(Γ, S) can be repre-
sented in the space of Drinfeld modular forms of weight k. To do this, we as-
sociate to an element ΓαΓ (or more generally Γ1αΓ2 for congruence subgroups
Γ1 and Γ2) a linear operator Mk(Γ)→Mk(Γ) (resp. Mk(Γ1)→Mk(Γ2)).

Definition 4.3.1. Let Γ1,Γ2 ⊂ GLr(A) be congruence subgroups and let
α ∈ GLr(F ). Define the weight k [Γ1αΓ2] double coset operator as the linear
operator [Γ1αΓ2] :Mk(Γ1)→Mk(Γ2) defined by

f [Γ1αΓ2]k =
∑
j

f [βj]k,

where Γ1αΓ2 = ∪jΓ1βj is a disjoint union of right cosets.
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First note that the definition does not depend on the choice of βj, since
Γ1βj = Γ1β

′
j if and only if β′j = αβ for some α ∈ Γ1, implying that f [β′j]k =

f [α]k[βj]k = f [βj]k, since f is a modular form with respect to Γ1.
To show that we end up with a weak modular form for Γ2, note that for

any γ ∈ Γ2 we have

(f [Γ1αΓ2]k)[γ]k =
∑
j

f [βj]k[γ]k =
∑

f [βjγ]k = f [Γ1αΓ2]k,

since if {βj} is a set of right coset representatives of Γ1αΓ2, then so is {βjγ}.
Lastly, note that f [Γ1αΓ2]k[δ]k is holomorphic at infinity for each δ ∈

GLr(F ), since for any modular form f and any δ ∈ GLr(F ), the function
f [δ]k is holomorphic at infinity. This means that the image is contained in
Mk(Γ2). By the same reasoning, if f is a cusp form, then f [Γ1αΓ2] is a cusp
form.

Since Drinfeld modular forms take values in a field of characteristic p,
many of the results from the previous section become much easier than in
the classical case, or in the case of characteristic 0 valued automorphic forms.
In particular, Theorem 4.2.16 becomes

Tpk = T
(r)
1 Tpk−1 = TpTpk−1 ,

which by induction implies that Tpk = (Tp)
k for all primes p ∈ A and all

k ∈ Z≥0. Together with Theorem 4.2.16 (b), we have complete multiplica-
tivity of Hecke operators for Γ = GLr(A).

Now, let us compute the action of the Hecke operators on modular forms,
starting with Tp. A set of right coset representatives for ΓαΓ where α =
diag[1, . . . , 1, p] is the set of β ranging over matrices of the form

1
. . .

p

∗ . . .

∗ 1


which are almost diagonal with 1’s on the diagonal, except for one entry
which is p; and the only other non-zero entries are in the column below that
p. These entries can also be chosen to have degree less than deg p. Indeed, on
any matrix with determinant p one can perform row reduction (since Γ acts
on the left) until you get a matrix with only 1’s and one p on the diagonal.
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Completing the row reduction then shows that any matrix is in a coset Γβ
for some β of the form stated.

By definition, for such a β, we have f [β]k(ω) = j(β, ω)−kf(βω) = j(β, ω)−k

f(j(β, ω)−1ω · β−1). Next, note that if

β =


1

. . .

p

bi
. . .

br 1


then

β−1 =


1

. . .

1/p

−bi/p
. . .

−br/p 1

 ,(4.2)

(i ranging from m + 1 to r, where p appears in column m). Denote ωm,β =
ωm−b1ωm+1−···−brωr

p
. Then, if m < r, we have

f [β]k(ω) = f((ω1, . . . , ωm−1, ωm,β, ωm+1, . . . , ωr)),

since j(β, ω) = 1, and if m = r, we have

f [β]k(ω) = pkf((pω1, . . . , pωr−1, ωr)),

since j(β, ω) = 1/p.

Proposition 4.3.2. For each Hecke operator Tp, every Eisenstein series
Ek(ω) is an eigenform for Tp with eigenvalue pk.

Proof. By definition of Tp we have

TpE
k(ω) =

∑
β

Ek(ω)

=
r−1∑
m=1

∑
bm+1,...,br∈(A/pA)

Ek((ω1, . . . , ωm−1, ωm,β, ωm+1, . . . , ωr))

+pkEk((pω1, . . . , pωr−1, ωr))

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. HECKE OPERATORS 83

By definition of Ek(ω), it is the sum of λ−k as λ ranges over the elements of
the lattice ωΛ. Hence Ek((ω1, . . . , ωm−1, ωm,β, ωm+1, . . . , ωr)) is the sum over
λ−k where λ ranges over elements of the lattice Λβ := ω1A+ · · ·+ ωm−1A+
ωm,βA+ωm+1A+· · ·+ωrA, which contains ωΛ with [Λβ : ωΛ] = p. Moreover,
as m ranges through 1 to r − 1 and bm+1, . . . , br range over all elements of
(A/pA), Λβ ranges over all such lattices, except Λp := ω1A + · · · + ωr−1A +
1
p
ωrA. However,

pkEk((pω1, . . . , pωr−1, ωr)) = pk
∑
λ∈pΛp

λ−k

=
∑
λ∈Λp

λ−k.

Hence TpE
k(ω) is the sum of λ as λ ranges through all lattices that contain

ωΛ with index p. Note that some terms get repeated, namely those where λ ∈
ωΛ. Moreover, each such term gets repeated 1+qdeg p+q2 deg p+· · ·+q(r−1) deg p

times (for column m, there are r − m bi’s, each chosen in qdeg p ways). In
characteristic p, this is the same as just counting it once.

Hence the sum includes each λ ∈ 1
p
ωΛ exactly once and

TpE
k(ω) =

∑
λ∈ωΛ

(
λ

p

)−k
= pkEk(ω).

Proposition 4.3.3. The space of cusp forms of weight qr − 1 and type 0 is
one-dimensional and generated by the discriminant function ∆.

Proof. Suppose that there is some non-zero cusp form f of weight qr −
1 that is not a multiple of ∆. Then, by Theorem 3.4.15 (a), and since
∆(ω) is already of weight qr − 1, it must be a polynomial in the coef-
ficient forms g1(ω), . . . , gr−1(ω). Suppose that it is of the form f(ω) =∑

(ei)
g1(ω)e1 · · · gr−1(ω)er−1 . Then, by equation (3.10), the constant term

in its u-expansion is f0(ω̃) =
∑

(ei)
g̃1(ω̃)e1 · · · g̃r−1(ω̃)er1 , which is identically

0 by assumption that it is a cusp form. However, by Theorem 3.4.15, the
rank r− 1 coefficient forms g̃1(ω̃), . . . , g̃r−1(ω̃) are algebraically independent,
implying that the polynomial that defines f must be the zero polynomial.
Then f must actually be identically 0 itself, which is a contradiction.

Proposition 4.3.4. The discriminant function ∆(ω) is an eigenform of Tp
with associated eigenvalue pq−1.
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Proof. By Proposition 4.3.3, it follows that ∆ is an eigenform. It remains
to calculate the eigenvalue. We do this by calculating the first non-zero
coefficient of Tp∆, since we already know the first non-zero coefficient of ∆ to
be−π̄q−1∆̃(ω)quq−1. We show that the β (among double coset representatives
from equation 4.2) with non-trivial column m contribute only to higher terms
when m > 1 and that there is a nice formula for those β where the non-trivial
column is column 1.

First suppose that 2 ≤ m ≤ r− 1. Then ∆[β]qr−1(ω) has an expansion in
terms of eπΛβ(πω1)−1, where Λβ is the lattice ω2A+ · · ·+ ωm−1A+ ωm,βA+

ωm+1A+ · · ·+ ωrA. This lattice contains Λ̃ with [Λβ : Λ̃] = p, and hence by
Proposition 2.2.5 (b) there is an Fq-linear polynomial Φ of degree qdeg p such

that eπΛβ(πω1) = Φ(eπΛ̃(πω1)). Suppose that Φ(X) = X + · · · + DXqdeg p
.

Remembering that eπ̄ω̃Λ̃(ω1) = u−1, we then have

eπΛβ(πω1)−1 = (Φ
(
u−1)

)−1
=
uq

deg p

D
(1 + · · · )−1,

the last factor being an inverse which is a power series expansion in u. Each
term in the expansion of ∆[β]k(ω) thus has only terms with powers of u
greater than q − 1 appearing.

Essentially the same thing can be done for m = r, since then ω2A+ · · ·+
ωr−1A+ ωr

p
A is again a lattice that contains Λ̃ with the same index as before.

The factor j(β, ω)−k = pk plays no role in the end.
We are left to compute what happens when we take the sum over all β

where the non-trivial column is the first. We have∑
β

∆[β]qr−1(ω) =
∑

b2,...,br∈(A/pA)

f (ω1,β, ω2, . . . , ωr)

=
∑
b2,...,br

∑
n≥0

fn(ω̃)uω̃

(
ω1 − b2ω2 − · · · − brωr

p

)n
=

∑
n≥0

fn(ω̃)
∑
b2,...,br

eπω̃Λ̃

(
π
ω1 − b2ω2 − · · · − brωr

p

)−n
The internal sum will turn out to be exactly over elements of the Fq-linear
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set Λp := eπω̃Λ̃

(
π
p
ω̃Λ̃
)

and this allows us to write it as a Goss polynomial.

∑
b2,...,br

eπω̃Λ̃

(
π
ω1 − b2ω2 − · · · − brωr

p

)−n
=

∑
b2,...,br

(
eπω̃Λ̃(πω1/p)− eπω̃Λ̃

(
b2ω2 + · · ·+ brωr

p

))−n
=

∑
λ∈Λp

(eπω̃Λ̃(πω1/p)− λ)−n

= Pn,Λp

∑
λ∈Λp

(eπω̃Λ̃(πω1/p)− λ)−1


= Pn,Λp

(
eΛp (eπω̃Λ̃(πω1/p))

−1)
By Proposition 2.2.5 (b), eΛp (eπω̃Λ̃(πω1/p)) = eπ

p
ω̃(πω1/p) = p−1u−1. Hence∑

β

∆[β]qr−1(ω) =
∑
n≥0

fn(ω̃)Pn,Λp(pu).

By Lemma 3.5.4, every n for which fn is not identically 0 is divisible by q−1,
and by Proposition 2.5.2 (g), every term of Pn,Λp with non-zero coefficient
must then also be divisible by q − 1. Thus the coefficients of ui for i =
1, . . . , q − 2 are 0.

If n = q − 1, then Pq−1,Λp(X) = Xq−1 (Proposition 2.5.2 (e)), hence

there is a term −π̄q−1pq−1∆̃(ω̃)quq−1. To complete the proof we show that
for n ≥ q, the polynomial Pn,Λp(X) has no Xq−1 term. By Proposition 3.5.5,
the only n that appear are congruent to 0 or −1 modulo q. If q | n, then
by Proposition 2.5.2 (d) there can clearly be no term with exponent q − 1.
So suppose that n = mq − 1, where m ≥ 2. Then, by Proposition 2.5.2 (i),
X2P ′n,Λp(X) = (q − 1)Pmq,Λp(X) = −

(
Pm,Λp(X)

)q
. By Proposition 2.5.2 (c),

if m ≥ 2, then Pm,Λp(X) has no X term, implying that the least non-zero
term of P ′n,Λp(X) must be at least X2q−2, and hence that Pn,Λp(X) can have

no Xq−1 term.
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