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Abstract 

 

Assessing the genomic basis of local adaptation and critical thermal limits is essential for 

anticipating species persistence and distribution under climate change. Environmental 

gradients are associated with genomic and physiological differences between populations. 

South Africa�s two ocean regime creates a thermal gradient, which delimits distinct 

bioregions between its cold-temperate west coast, warm-temperate south coast and warm-

subtropical east coast. Three co-distributed key rocky shore invertebrate species 

representing different phyla were selected for a multi-species approach. The objectives of 

this dissertation were to 1) identify selectively neutral genomic loci and neutral population 

structure, 2) determine putatively adaptive loci and adaptive population structure, 3) explore 

functional annotations and 4) measure critical thermal limits (CTmin, CTmax). 

Pooled RAD-Seq (ezRAD) was utilised to identify selectively neutral shared and population-

specific single nucleotide polymorphisms (SNPs) in six populations of shore crab 

Cyclograpsus punctatus (CP), granular limpet Scutellastra granularis (SG), and Cape sea 

urchin Parechinus angulosus (PA). Population-specific SNPs were detected in all 

populations. Nucleotide diversity indices (Tajima�s pi, Watterson�s theta) appear heightened 

in PA�s northern west coast population compared to the remaining sites. Estimated pairwise 

FST values range from 0.043-0.055 (CP), 0.044-0.066 (SG) to 0.039-0.089 (PA). Selectively 

neutral genomic population structure indicates instances of intraspecific subdivisions present 

in all populations. All species populations harbour unique SNPs, yet increased nucleotide 

diversity is only detected in PA. 

The empirical FST-method, BayeScan and BayeScEnv identified overall 1102 outliers under 

positive selection, of which 69 (CP), 11 (SG) and 27 (PA) could be functionally annotated. 

Candidate loci are involved in various cellular functions including membrane transport, 

vesicle signalling, protein folding/modification and cytoskeleton function. Identified loci 

related to energy cycling might point to selection on metabolic capacity to counter 

environmental stressors. Environmental differentiation of sea surface temperature (SST), 

salinity and air temperature could be associated with several putative outliers. There is no 

isolation-by-distance (IBD), but isolation-by-environment (IBE) suggests salinity variation to 

account for 48% of genomic variation in P. angulosus and SST and air temperature for 45% 

in S. granularis. Outlier-based population structure indicates possible intraspecific 

subdivision in some species. 

Critical thermal limits (CTmin, CTmax) were investigated with thermal tolerance trials and 

compared to local min/max environmental temperature for warming and cooling tolerance. 

Across populations, mean CTmin ranges from -1.5-0.6°C (CP), -0.4-3.2°C (SG) to 5-10.9°C 
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(PA). Mean CTmax ranges from 43.8-46.1°C (CP), 34.4-35.7°C (SG) to 28.9-32.4°C (PA). 

West coast crabs have significantly higher CTmax than east coast crabs. CTmin is negatively 

and thermal breadth positively correlated with body mass (CP, PA). Significant regional 

differences in mass were detected (SG, PA). Warming and cooling tolerance appears 

sufficient, requiring further investigation with in situ microhabitat data. 

East coast rocky shore populations likely face future warm-edge range contractions, whereas 

the south coast might experience distributional shifts depending on local thermal conditions. 

The west coast is an anchor for rocky shore species in South Africa and represents a 

possible climate change refugium. Strategic recognition in regional marine conservation 

management is warranted. 
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1. Introduction 

1.1 Climate change and its impact on species 

 

Global climate change is recognised as a threat, with widespread impacts on biodiversity 

(Parmesan, 2006; Pereira et al. 2010; Bellard et al. 2012; Poloczanska et al. 2013; Archer et 

al. 2018). Climate change effects are multi-faceted and affect marine environments through 

ocean acidification, changes in ocean current patterns, melting of glaciers, the retraction of 

sea ice, sea level rise, changes in sea temperature and expanding hypoxia zones, with 

varying impact between regions (Trenberth et al. 2007; IPCC, 2013; Mora et al. 2013; Wolff 

et al. 2017). During the 21st century, the global mean sea level is predicted to rise between 

0.26 to 0.55 m (RCP2.6 scenario, representative of <2°C warming above pre-industrial 

temperatures; Representative Concentration Pathway (RCP)) and between 0.45 to 0.82 m 

(RCP8.5 scenario, representative of the highest emissions) compared to present day levels 

(2081-2100 relative to 1986-2005) (IPCC, 2013). Some researchers suggest a potential sea 

level rise of up to 2.0 m to account for uncertainties regarding the rate and magnitude of ice 

sheet loss in a warming ocean (Parris et al. 2012). Moreover, the global average surface 

temperature has been predicted to rise 0.3 to 1.7°C above the pre-industrial level in the 

lowest emissions scenario (RCP2.6) and 2.6 to 4.8°C in the highest emission scenario 

(RCP8.5) (2081-2100 relative to 1986-2005) (IPCC, 2013). Global sea surface temperatures 

(SST) increased at an average rate of 0.05°C per decade from 1880-2012 (IPCC, 2013). 

The surface warming rates vary depending on the region and while most parts of the world�s 

oceans experience warming trends, instances of cooling sea surface temperatures have 

been identified for example in parts of the North Atlantic and southern Africa (Rouault et al. 

2010; NOAA, 2016). With the current rate of emissions, it is becoming less plausible to 

contain a temperature increase below 2°C by 2100 (Raftery et al. 2017). Rates of warming 

might be even higher in tropical and subtropical regions, which could experience a departure 

from historical levels in temperature significantly earlier than temperate regions (Mora et al. 

2013; Khaliq et al. 2014).  

 

There have been numerous studies focusing on how species respond to changing 

environments (Mawdsley, O�Malley and Ojima, 2009; Pacifici et al. 2015; Miller et al. 2018; 

Foden et al. 2019). While some species may be able to acclimate to altered environmental 

conditions through phenotypic plasticity, other species may experience shifts in their 

distribution and changes in life history and phenology (Foden et al. 2019); yet other studies 

focus on evolutionary adaptation, although evidence for the latter remains limited at present 

(Miller et al. 2018). Climate change related shifts, mostly in poleward direction, have been 

reported for several species in the marine environment (Parmesan and Yohe, 2003, Perry et 
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al. 2005; Lima et al. 2007; Barton et al. 2016; Beaugrand and Kirby, 2018; Wilson, Skinner 

and Lotze, 2019). Temperature is thought to predict between 53-99% of the current 

biogeographic structure of shallow-marine benthic fauna along coastlines (Belanger et al. 

2012), which possibly makes it the most important factor defining biogeographic boundaries 

and can be expected to project large-scale biotic responses to climate change in the future 

(Roy et al. 1998; Tittensor et al. 2010; Belanger et al. 2012). Overall, changing 

environmental conditions can lead to range extensions or contractions (Walther et al. 2002), 

which is particularly relevant for species living in areas characterised by specific climatic 

conditions with no possibility to track the preferred conditions in adjacent areas (Bellard et al. 

2012; Ralston et al. 2017). For example, the prevalent poleward shifts observed for species 

in the northern hemisphere with often North-South oriented coastlines (see for example 

Perry et al. 2005) would not apply to geographical settings such as southern Africa, where 

the coastline has a predominant West-East orientation. Where a large scale poleward shift is 

geographically not possible, species are limited by available habitat offering environmental 

conditions within their (importantly thermal) tolerance limits, possibly resulting in a climate-

induced range reduction. In general, species extinctions and a loss in overall biodiversity are 

projected as a consequence of shifting temperature regimes and other factors (Bellard et al. 

2012), but the determinants linked to extinctions include diverse abiotic and biotic factors, 

which might act synergistically (Brook, Sodhi and Bradshaw, 2008). While there is evidence 

for species extinctions due to climate change, the exact mechanisms allowing populations to 

persist are still poorly understood (Cahill et al. 2013). 

 

The potential of species resilience towards climate change is also closely linked to 

intraspecific diversity, which is seen as the most fundamental level of biodiversity (May, 

1994), yet the impact of changing climatic conditions on the spatio-temporal distribution of 

genomic variation is also understudied. As such, it is unclear how species and their 

geographical distribution and spatial patterns of molecular variation may be affected by the 

wide range of shifting environmental factors potentially affecting them (Figure 1.1). This is 

because populations or lineages potentially already adjusted to different climatic conditions 

across their distribution, may not interact with changing environments in the same way 

(Mergeay and Santamaria, 2012; Exposito-Alonso et al. 2018). In addition, studying species 

distributions and the genomic variation of their populations under forecasted conditions is 

seen as critical for adaptive management frameworks (Rilov et al. 2019). Some studies have 

tried to predict the distribution of intraspecific molecular variation under changing climatic 

conditions (see for example Balint et al. 2011; Rubidge et al. 2012; Alsos et al. 2012; Pauls 

et al. 2013; Yannic et al. 2014; Jueterbock et al. 2018). A terrestrial study widely noticed for 

its conservation implications reports that the caribou, Rangifer tarandus, comprises two 
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genetically unique clades, shaped by relative climate stability in the past 21 kyr. However, 

strong shifts to the caribou distribution driven by warming climatic conditions are forecasted 

in the next 70 years. Models predict that climate change will impact the two identified clades 

of R. tarandus differently, with one potentially vanishing from its current range due to suitable 

habitat reduction of up to 89% (Yannic et al. 2014). The second example focuses on the 

poleward shifting intertidal seaweed Fucus serratus, a habitat-forming ecosystem engineer 

for rocky shores, with a contemporary distribution from northern Portugal to northern Norway 

(Jueterbock et al. 2018). Decadal sampling (2000 and 2010) showed that while genetic 

diversity values of the species mid-range, located at one of the species large former glacial 

refugia in north-western France, remained stable overall, there was a strong decline of 

genetic diversity (multi-locus heterozygosity) along the southern edge of the species 

distribution, which has been linked to a local temperature increase. The F. serratus lineage 

associated with the most southern occurrence is regarded as genetically unique and 

expected to largely disappear within the next 80 years without intervention (Jueterbock et al. 

2018).  

 

The southern African coastline is a prime study system for species potential response to 

forecasted climatic changes, just as this system has been used to illustrate past selection 

and its role in shaping ecology (e.g. Toms et al. 2014; Wright et al. 2015; Mmonwa et al. 

2015; Teske et al. 2019). South Africa�s coast is a natural gradient of contrasting 

environmental conditions, where populations of the same species inhabit cool-temperate to 

almost subtropical conditions (Branch et al. 2007; Griffiths et al. 2010; Sink et al. 2012). 

Geographic and associated environmental variation may provide the basis for some 

populations to be more resilient to climate change (see for example Teske et al. 2019). 

However, our understanding of possible local geographic variations in marine animals and 

plants with potential relevance towards climate change adaptation remains not widely 

understood at present (but see Baldanzi et al. 2017). This can be attributed to comparatively 

recent empirical interest in the matter, but also methodological constraints related to linking 

genomic and environmental variation (von der Heyden, personal communication). While the 

importance of studying species responses to climate change is well established, there is also 

a need for studies incorporating multiple taxonomic groups from the same habitat, exploring 

understudied species (non-model organisms) and applying interdisciplinary approaches to 

further the knowledge of species adaptation capacities. This project explores genomic and 

physiological variation within three abundant and common intertidal species, representing 

different taxonomic groups (Crustacea, Echinodermata, Mollusca; selection criteria are 

provided in section 1.7), within the context of climate change in South African marine 
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systems. The concepts of evolutionary potential, species resilience and phenotypic plasticity, 

which are central to studying genomic and physiological traits of species, are discussed in 

the following sections to provide a theoretical background for the research questions. 

 
 

Figure 1.1. Changing oceanic, atmospheric and terrestrial conditions, anthropogenic influences and 
the resulting abiotic and biotic stress factors from the perspective of an intertidal organism. Symbols 

mark increase (+), decrease (-) or change (~). Source: L. Mertens. 

1.2 Evolutionary potential and molecular diversity 

 
Anthropogenic environmental change widely affects global biodiversity levels (Rands et al. 

2010), with climate change (IPCC, 2013), habitat fragmentation and environmental 

degradation increasingly impacting the distribution, population size and genetic diversity of 

both terrestrial and marine species (Pereira et al. 2010; Bellard et al. 2012; Archer et al. 

2018). It is of critical importance to estimate how species might react to rapidly changing 

environmental conditions and how their potential to adapt, disperse or perish can underpin 

their conservation management (Hoffmann and Sgrò, 2011; MacLean and Beissinger, 2017; 

Rilov et al. 2019). The ability to withstand adversity or to cope with challenges is assessed in 

terms of the resilience of an organism or a system, derived from the Latin term resiliens ("act 

of rebounding") (Simpson and Weiner, 1989, p. 714). Building on the ecological definition of 

resilience (Gunderson, 2000; Thrush et al. 2009), Sgrò formulated an evolutionary definition 

of resilience as �the ability of populations to persist in their current state [�] and to undergo 

evolutionary adaptation in response to changing environmental conditions� (Sgrò et al. 2011; 

p. 327; also see Gunderson, 2000; Thrush et al. 2009). Over time, the term �evolutionary 
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resilience� morphed into the more widely and often synonymously utilised �evolutionary 

potential�, which has been suggested as �the property of a biological entity to be able to 

experience heritable change in some of its components between times t and t + !t. This 

entity can be for example a genome, a trait, a population, a species, an ecosystem, or 

something else.� (Milot, Béchet and Maris, 2020; p. 1365). The basis of evolutionary 

resilience (henceforth used synonymously with evolutionary potential) is thought to be the 

standing, or intraspecific genetic diversity of species populations across their range. 

Directional and fluctuating selective forces acting on the existing genetic composition of 

species shapes their ability to adapt genetically to novel circumstances (Barrett and 

Schluter, 2008; Forsman et al. 2011; Alsos et al. 2012; Pauls et al. 2013; Sunde et al. 2018). 

Therefore, genetic diversity has been identified as a key factor to the evolutionary past and 

future of species and their potential response to climate change (Garner et al. 2005; Alsos et 

al. 2012). Low levels of genetic diversity are thought to decrease species adaptive potential 

(Allendorf and Luikart, 2007), which underlines the importance of spatial genetic diversity 

patterns to assist the conservation of threatened populations (Provan, 2013). Further, 

widespread species are estimated to possess high genetic variation for numerous traits 

potentially involved in climatic adaptation (Hoffmann and Sgrò, 2011), which might put small 

populations of restricted range more at risk of population decline and possible extinction. 

Interestingly, a comparison of genetic diversity patterns between terrestrial and marine 

species revealed that endemic (and sometimes isolated) populations in the marine 

environment do not necessarily have low genetic diversity by default (Gaston, 1994; Gaston 

et al. 1997) and instances of high haplotype and nucleotide diversity were detected (Hobbs 

et al. 2011; Hobbs et al. 2013). Moreover, marine endemics were observed to have a higher 

abundance and therefore, the detrimental effects of genetic drift or inbreeding in small 

populations might be reduced compared to terrestrial endemic species (Frankham, 1996; 

Hobbs et al. 2011; Hobbs et al. 2013). While it is possible that high genetic diversity may 

reduce the extinction risk of species via the potentially large genetic spectrum from which to 

adapt to changing climatic conditions (Hobbs et al. 2011; Hobbs et al. 2013), it has been 

debated that demographic and environmental stochasticity, particularly for small population 

sizes or isolated populations, might have an overall stronger impact on extinction risk than 

genetic variation alone (Willi and Hoffmann, 2009). A review of 136 case studies 

investigating potential climate-change related extinctions found only seven instances in 

which approximate causes of reported local extinctions could be associated with 

anthropogenic climate change, demonstrating that the exact mechanisms are under ongoing 

investigation and currently not understood in detail (see Table 1 in Cahill et al. 2013). 
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Genetic diversity is thought to be impacted by climate change through a range of effects 

including spatial and temporal changes in the distribution and abundance of different genetic 

variants associated with shifting species ranges (Riddle et al. 2008; Pauls et al. 2013). 

Shifting ranges following contemporary climatic change have been observed across 

numerous terrestrial and marine species (Parmesan and Yohe, 2003, Perry et al. 2005, 

Hickling et al. 2006, Lima et al. 2007, Kelly and Goulden, 2008; Barton et al. 2016; 

Beaugrand and Kirby, 2018; Wilson, Skinner and Lotze, 2019). However, genetic variation is 

rarely distributed equally across species ranges, which has been attributed to synergistic 

effects of historical and contemporary influences (Provan, 2013). It is debated and likely 

species-specific if the highest genetic diversity is found in the core of the species range, at 

the leading edge or at the trailing edge of the distribution (Gibson, van der Marel and 

Starzomski, 2009; Parisod and Joost, 2010; Pfenniger et al. 2012). For instance, 

geographical areas which might have served as refugia in the past may comprise a large 

portion of the species overall genetic diversity and/or unique adaptive variation not present in 

the later established populations (Hampe and Petit, 2005). Moreover, the impact of species 

distributional shifts can include changes in the dynamics of metapopulations, as for instance 

a geographical shift of the core of a species range (Pfenniger et al. 2012). Populations 

located at the leading edge of the shifting species distribution may experience changes of 

their genetic composition due to expansion effects or colonisation bottlenecks (Garcia-

Ramos and Kirkpatrick, 1997; Vucetich and Waite, 2003), while populations in the trailing 

edge might be unable to shift and their intraspecific diversity threatened by extirpation 

(Arenas et al. 2012; Pfenniger et al. 2012). 

 

Phylogeographic lineages and other geographically-distinct features such as local adaptive 

divergence (discussed in more detail in section 1.3) as part of intraspecific genetic diversity 

play an important role for ecological plasticity, evolutionary potential and the future 

persistence of species in changing climatic conditions on a global scale (Hughes et al. 2008; 

Jump, Marchant and Peñuelas, 2009). Identifying regions or populations of high evolutionary 

potential as resources of high molecular diversity may serve conservation of species and 

help to mitigate climate change impacts (Pauls et al. 2013). An example of a predicted 

climate change-induced loss of genetic diversity has been reported for brown alga Bifurcaria 

bifurcata, whose likely poleward shift might result in the loss of a spatially restricted distinct 

southern lineage or perhaps the overall extirpation of a diversity hotspot in Morocco, 

representing the species southern range limit (Neiva et al. 2015). Scenarios such as 

forecasted for B. bifurcata, indicating the effect of spatial redistribution and the contrasting 

future outlooks of divergent lineages, may decrease the levels of genetic diversity globally 

and have the potential to remove unique evolutionary lineages from species genetic 
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spectrum in the long term (Neiva et al. 2015). Further, there is a concern for instances where 

species may respond with a temporal lag to shifted environmental conditions (Tilman et al. 

1994), meaning that some species might already follow an extinction trajectory at larger 

spatial scales, which is not recognised or underestimated in the present (Dullinger et al. 

2013). With the probability and extent of delayed extinction risks still under debate, it has 

been hypothesised that the impact of climate change on contemporary biodiversity and 

genetic diversity specifically might only become fully evident within the coming decades 

(Dullinger et al. 2013). 

 

1.3 From the genetic to the genomic perspective 

 

In the past, molecular studies assessed genetic patterns based on mitochondrial and nuclear 

markers as well as microsatellites, thus covering only a small portion of the overall genomic 

variation, although it has been advocated that single marker approaches may retain their 

value in signalling first insights into a species genetic composition and their evolutionary 

history (Bowen et al. 2014; von der Heyden, 2017). Particularly mitochondrial DNA (mtDNA) 

�still likely delivers a very strong and heuristically valuable first approximation of geographic 

genetic architecture� (Riddle, 2016; p. 7973). Traditionally utilised markers are thought to be 

mostly neutral markers and hence limited for the detection of adaptive variation in species, 

which has been associated with non-neutral (adaptive) markers (i.e. genes under selection) 

in the genome (Kirk and Freeland, 2011). Advances in sequencing technology have opened 

the door to whole-genome studies, which allow access to genetic signatures at a genome-

wide scale, leading to the differentiation between genetics (studies on certain genes or parts 

of genes) and genomics (studies on the entirety or a comparatively large proportion of an 

organism�s genes) (Luikart et al. 2003; Schlötterer, 2003; Miller et al. 2007; Baird et al. 2008; 

Hohenlohe et al. 2010; Li, 2011; Behjati and Tarpey, 2013; Buermans and den Dunnen, 

2014). Different techniques have been developed to harness the possibilities of whole-

genome sequencing (next generation sequencing (NGS)), with RAD-Seq (restriction site-

associated DNA sequencing), one of the reduced-representation sequencing approaches, 

widely utilised in its various forms (Andrews et al. 2016). RAD-Seq focuses on a subset of 

the overall genome, which is associated with greater coverage per locus (gene) and can be 

conducted without prior information of the study species (Andrews et al. 2016). Which 

percentage of the genome is covered by the RAD-Seq subset depends on the restriction 

enzyme and the species genome composition, but estimates range from 0.1%-10% 

(Floragenex, 2015) to 2%-25% (Lowry et al. 2017). Hence, RAD-Seq can be advantageous 

for studies on non-model organisms (Ekblom and Galindo, 2010). The controlled 

combination of individuals from one population or geographic location to form a �meta-

Stellenbosch University https://scholar.sun.ac.za



8 
 

sample� (pool) for sequencing while still using the RAD-Seq approach (pool-Seq), reduces 

the cost of sequencing individuals (Futschik and Schlötterer, 2010; Toonen et al. 2013; 

Schlötterer et al. 2014), which is important for comparative phylogeographic studies of non-

model species. Moreover, it has been estimated that the cost of next-generation sequencing 

per base pair might be 1/1000th the investment of traditional sequencing or lower (Bowen et 

al. 2014). Importantly, genomic data derived from RAD-Seq studies allows for the 

differentiation between selectively neutral and non-neutral (potentially adaptive) genomic 

diversity (Luikart et al. 2003; Storz, 2005; Helyar et al. 2011; Grummer et al. 2019) with more 

methodological ease than in the past (Holderegger et al. 2006; Storfer et al. 2010). This is 

achieved by separating putatively neutral single nucleotide polymorphisms (SNPs) from 

putatively adaptive SNPs. Neutral genomic variation is shaped by a variety of determinants 

encompassing random drift, mutation, population size and connectivity between populations 

(Frankham, Briscoe, and Ballou, 2002; Gaggiotti et al. 2009; Bragg et al. 2015; Gómez-

Fernández, Alcocer, and Matesanz, 2016). In contrast, outlier SNPs signal loci (or genome 

regions) which are highly differentiated compared to neutral SNPs, as a result of potentially 

experiencing divergent selection or as a result of genetic hitchhiking (Barton, 2000; Luikart et 

al. 2003; Storz, 2005; Akey et al. 2010). Conversely, signals of outlier loci may also be 

artefacts of outlier detection programs (Lotterhos and Whitlock, 2015; Meirmans, 2015).  

 

Population differentiation and signals for possible local adaptation are commonly expected 

across large-scale environmental gradients as a response to varying environmental 

pressures (Bradbury et al. 2010; Renaut et al. 2011; Bourret et al. 2013; Guo et al. 2015; 

Guo, Li and Merilä, 2016; Milano et al. 2014; Stanley et al. 2018; Phair et al. 2019). Spatial 

molecular variation can be tested for association of genomic patterns with differentiation of 

environmental variables, the latter might explain differences between populations through 

driving possible local adaptive divergence (Storz, 2005; Coop et al. 2010; Villemereuil and 

Gaggiotti, 2015). Past studies on various marine taxa point to genomic population patterns 

influenced by naturally occurring geographic differences in abiotic factors like temperature, 

salinity and primary productivity (Jump et al. 2006; Bourret et al. 2013; Milano et al. 2014; 

Berg et al. 2015; Benestan et al. 2016; Dennenmoser et al. 2017; Dalongeville et al. 2018). 

However, there is also evidence that populations in broadly homogenous marine 

environments can also show differentiation of outlier loci, suggesting potential adaptive 

divergence in close geographical distance or environmental parameters that have not been 

measured (Nielsen et al. 2009; Freamo et al. 2011; Zarraonaindia et al. 2012; Milano et al. 

2014; Ravinet et al. 2016; Wagner et al. 2017; Nielsen et al. 2018). Thus, local selective-

pressures of the environment can play an important role for structure between populations 

and potentially restrain gene exchange due to fine-scale �semi-independent adaptive 

Stellenbosch University https://scholar.sun.ac.za



9 
 

evolutionary trajectories� (Nielsen et al. 2009; p.7), which should be accounted for in the 

context of delimiting conservation units (Funk et al. 2012; Bernatchez, 2016; von der 

Heyden, 2017). Moreover, differentiation in outlier loci, associated in most instances with 

potential local adaptation and historical population factors, has been identified in numerous 

studies between populations of high gene flow species (Nielsen et al. 2009; André et al. 

2011; Milano et al. 2014; Dierickx et al. 2015; Fernández et al. 2016; Cure et al. 2017; 

Nielsen et al. 2018). This sheds new light on the paradigm that, particularly in marine 

systems, high gene flow might limit local adaptation effects by facilitating uniform allelic 

frequency among populations (Hauser and Carvalho, 2008). Weak population structure is 

possibly not the effect of high gene flow, but owed to large effective population sizes of 

species constraining the effects of genetic drift (Hauser and Carvalho, 2008). Evidence for 

highly structured outlier loci between populations indicate that local adaptation to 

environmental conditions might occur despite shallow neutral population structure, which can 

be utilised to expand marine conservation and management (Hemmer-Hansen et al. 2007).  

 

Assessing the distribution and scale of adaptive divergence in the marine environment on a 

local, regional and global scale of marine species natural ranges has been initiated for 

marine fishes (Conover et al. 2006; Nielsen et al. 2009; Limborg et al. 2012), but the 

genomic composition and patterns of potential adaptation are currently unknown for the 

majority of marine taxa, including invertebrates. Comparative phylogeographic approaches 

with genomic data for multiple, co-distributed species remain underrepresented (but see 

Gaither et al. 2015; Barrow et al. 2018; Bunnefeld et al. 2018; Nielsen et al. 2018; Crane et 

al. 2018). Multi-species comparisons allow the exploration of whether genomic responses 

are shared across different species, or whether species respond differently (Conte et al. 

2012; Westram et al. 2014; Nielsen et al. 2018; Stanley et al. 2018). Moreover, testing 

multiple species across the same geographical range can possibly reveal the scale of 

selective forces (see for example Ravinet et al. 2016; Nielsen et al. 2018; Stanley et al. 

2018). Species distribution and their corresponding evolutionary trajectory are also 

influenced by historical processes (which is discussed in more detail in section 1.6.1), which 

can make it challenging to resolve the effects of environmental selective forces and 

evolutionary history (Hart and Marko, 2010; Marko and Hart, 2011; von der Heyden, 2017). 

Leveraging advanced molecular technologies to characterise both neutral or potentially local 

adaptation, is a crucial step towards estimating the evolutionary consequences of climate 

change on species (Parmesan and Yohe, 2003; Reusch and Wood, 2007; Brown et al. 

2016). Importantly, due to the challenge of matching genotype to phenotype, exploring the 

actual adaptive benefit of a particular locus under natural conditions is a field of ongoing 
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research (Reusch and Wood, 2007; Hughes, 2007; Holderegger et al. 2010; Hoban et al. 

2016; Jones, Arnold and Bürger, 2019). 

 

1.4 Phenotypic plasticity 

 

When faced with changing or novel conditions, organisms can respond within the range of 

their phenotypic plasticity, which describes the ability of an individual genotype to express 

varying phenotypes in response to environmental conditions, or with microevolutionary 

change (Dufty et al. 2002; West-Eberhard, 2003; Hoffmann and Sgrò, 2011; Fox et al. 2019). 

Moreover, phenotypic plasticity is also regarded as an individual�s ability to regulate its 

physiological processes to withstand current or shifting environmental conditions (Canale 

and Henry, 2010). Evidence shows that climate change conditions can lead to genetic 

(evolutionary) changes and phenotypic (plastic) adaptation in some populations, but the 

empirical differentiation between the two remains challenging to resolve (Hoffmann and 

Sgrò, 2011; Merilä and Hendry, 2014). While the importance of plasticity in phenotypic 

adaptation to rapid environmental change is well recognised and frequently regarded as a 

rapid response mechanism, plasticity can act on different timescales and not all plastic 

responses are equally important to adapt for fast paced environmental change (Fox et al. 

2019). A notable constraint has been identified in the case of plasticity possibly decelerating 

adaptation through transiently blocking genes from natural selection by shifting the 

population�s phenotype distribution closer to the optimum (Huey, Hertz and Sinervo, 2003). 

To roundup the perspective on plasticity facilitating adaptation to environmental conditions, 

plastic responses can also possibly be maladaptive or neutral for an individual's fitness 

(Ghalambor et al. 2007; Merilä and Hendry, 2014).  

 

Stronger climate variations apply increasing selective pressure on characteristics that are 

linked to a wider phenotypic plasticity as species are forced to adjust to a decreasingly 

predictable environment (Pauls et al. 2013). It has been demonstrated that phenotypes with 

low plasticity in relevant (heritable) traits are selected against in an environment which 

favours high phenotypic plasticity (Nussey et al. 2005). Despite the importance of phenotypic 

plasticity as a mechanism to cope with climate change, details on genotypic and phenotypic 

plasticity are not well-known for many species� groups, particularly for marine species 

(Hallegraeff, 2010). Furthermore, although laboratory experiments have demonstrated that 

genetic adaptation can occur within a relatively rapid timescale in certain instances (Schlüter 

et al. 2014; Listmann et al. 2016; Padfield et al. 2016; Schaum et al. 2017), it remains 

speculative if species at large can adapt as quickly in the natural environment. Therefore, an 

individual�s phenotypic plasticity is an important potential buffer against the onset of climate 
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change effects (Somero, 2010). With regards to characterising phenotypic plasticity, studies 

have shown that species responses explored across environmental gradients or to changing 

climatic conditions help to estimate the organisms potential adaptive capacity by 

demonstrating the degree of phenotypic plasticity (of the studied traits) in the overall gene 

pool of the species populations (Jensen et al. 2008; Fischer and Karl, 2010). 

 

From a physiological perspective, species thermal tolerance to temperature changes and 

extremes is a key factor in the context of climate change impacts. Phenotypic plasticity (in 

terms of increased tolerance towards the impacting stress factor) of certain traits might 

support the survival of individuals before genetic (microevolutionary) changes possibly 

contribute to local adaptation in the population (phenotypic buffering) (Waddington, 1942; 

Bradshaw, 1965; Chevin et al. 2013; Reusch, 2014). Changes in temperature, including a 

possible frequency increase of extreme climatic events, are among the major consequences 

associated with climate change (IPCC, 2013), making the study of temperature tolerance 

urgent. However, critical thermal limits and thermal tolerance breadths remain unknown for 

the majority of organisms (Vinagre et al. 2013). Moreover, temperature is recognised as the 

main factor determining marine species distributions across the globe (Perry et al. 2005; 

Sorte et al. 2010; Kleisner et al. 2017; Stuart-Smith et al. 2017) and it has been shown that 

altered temperature conditions can impose substantial physiological pressure on populations 

(Pörtner and Knust, 2007; Deutsch et al. 2008; Pörtner and Peck, 2010; Hoffmann and Sgrò, 

2011). This makes it crucial to estimate intra- and inter populations thermal tolerance and 

plasticity, as it can help to plan conservation management frameworks under future change 

scenarios (Levy and Ban, 2013; Rilov et al. 2019). While most of the world�s oceans 

experience warming sea surface temperature trends, the predicted trends in southern Africa 

vary from warming to cooling depending on the geographic region, owed to South Africa�s 

dynamic oceanographic setting (discussed in more detail below, but also see Rouault et al. 

2009; Rouault et al. 2010). Hence, not only upper, but also lower thermal tolerance limits are 

relevant for South African marine species (Teske et al. 2019). Upper and lower critical 

thermal limits (CTmax, CTmin) are regarded as the �arithmetic mean of the collective thermal 

points at which the endpoint is reached� (Lowe and Vance, 1955; p. 74). The endpoint, 

considered as a state from which the organism can still recover, is broadly indicated by the 

organism�s loss of equilibrium (Bonin, Lee and Rinne, 1981); for instance the animal stops 

swimming, is unable to righten itself when inverted or does not exhibit a response to 

mechanical stimulus. Even though some endpoints may be utilised across similar species, it 

is required to confirm existing or devise novel endpoints in the experimental setup with the 

specific study species. The upper thermal maximum (CTmax) is regarded as the most reliable 

parameter for macro-physiological studies on ectotherms (Cowles et al. 1944; Lutterschmidt 
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and Hutchison, 1997), and as highly useful to investigate particularly upper thermal limits 

across different taxonomic groups (Deutsch et al. 2008; Huey et al. 2009; Somero, 2010; 

Vinagre et al. 2013). 

 

1.5 Marine biodiversity and oceanographic setting of South Africa 

1.5.1 Marine biodiversity and conservation 

 

South Africa�s environment is home to a wide array of terrestrial and marine species and has 

a high overall level of biodiversity, measured in terms of species richness and levels of 

endemism (terrestrial: Wynberg, 2002; Driver et al. 2005; Midgley and Thuiller, 2011; 

marine: Awad et al. 2002; Griffiths et al. 2010; Sink et al. 2012). At least one third of marine 

species are recognised as endemic (Griffiths et al. 2010). The contemporary southern 

African coastline formed in the transition from the late Pleistocene (500�20 kya) to the early 

Holocene (commencing ~11,700 years ago), which determined the contemporary distribution 

of rocky shores (27%), sandy beaches (42%) and mixed shores (31%) (Davies, 1973; 

Compton, 2001; Compton, 2011; Fisher et al. 2010; Sink et al. 2012). Across the 136 

recognised marine habitat types (58 coastal, 62 offshore benthic, 16 offshore pelagic), at 

least 47% are threatened (Lombard et al. 2004; Sink et al. 2012). Despite strong research 

effort over decades, the full extent of marine biodiversity remains unknown, especially for 

many of the less-well studied and small-bodied taxonomic groups (von der Heyden, 2009; 

Zemlak et al. 2009; Costello et al. 2010; von der Heyden, 2011; von der Heyden et al. 2011). 

South African marine species richness is overall high across different taxonomic groups, but 

was shown to form a gradient, with substantially lower species numbers found on the cold-

temperate west coast compared to high numbers of species located on the tropical and 

subtropical east coast (Harrison, 2002; Awad et al. 2002; Griffiths et al. 2010). This is also 

mirrored in genetic diversity, which has been hypothesised to follow a trend of increasing 

haplotype diversity from the west coast eastwards (Wright et al. 2015), providing some 

indication that historical and contemporary processes shape species and genetic diversity 

together. 

 

It is established that molecular characteristics of species populations greatly inform 

conservation planning processes (Moritz, 2002; Funk et al. 2012; Bowen et al. 2014; Selkoe 

et al. 2016; Xuereb et al. 2019; Lopez et al. 2019), but the integration is currently still not 

commonly applied (von der Heyden, 2009; Laikre, 2010; Beger et al. 2014; von der Heyden 

et al. 2014; Xuereb et al. 2019). Marine spatial planning can be enhanced by utilising even 

basal population genetic characteristics (Nielsen et al. 2017b; Beger et al. 2014; von der 

Heyden, 2017). The higher resolution power of genomic data has sparked a growing number 
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of studies aiming to detect adaptive potential and to determine how genomic variation could 

be shaped by varying environmental conditions (Baird et al. 1998; Schmidt et al. 2008; Lexer 

et al. 2014; Stanley et al. 2018; Teske et al. 2019; Xuereb et al. 2019), which allows for more 

complex population genomic patterns to be considered in delineating conservation areas 

(Loeschcke, Tomiuk and Jain, 2013; Funk et al. 2012; Narum et al. 2013; Bowen et al. 2014; 

Shafer et al. 2015; Selkoe et al. 2016; Xuereb et al. 2019). In South Africa, the importance of 

integrating findings from molecular population analyses into marine conservation planning 

has been advocated for more than a decade (von der Heyden, 2009). Established marine 

protected areas (MPAs) were historically skewed towards the east coast with its higher 

number of species than the south and west coast (von der Heyden, 2009; Griffiths et al. 

2010; Sink et al. 2012; Majiedt et al. 2013). South African MPAs are further limited by lacking 

habitat type representation between coastal regions, lack of consistent regulation 

enforcement and inadequate acknowledgement of social impacts (von der Heyden, 2009; 

Griffiths et al. 2010; Sink et al. 2011; Wright et al. 2015; Sowman, 2015; Sowman and 

Sunde, 2018). Only 0.4% of the South African mainland ocean territory had some degree of 

protection (Sink, 2016), when twenty new MPAs were announced in October 2018, which 

increases the percentage of protected ocean space within the borders of the South African 

Exclusive Economic Zone to 5% (DEA, 2018). Importantly, the new Namaqua National Park 

MPA (500 km²) constitutes the first coastal marine protection in the west coast region, which 

hosts numerous rocky shore populations (Sink et al. 2012; Majiedt et al. 2013). The 

importance of marine conservation efforts on the west coast, and elsewhere in South Africa, 

was emphasised in multiple studies (Sink et al. 2012; Majiedt et al. 2013; Wright et al. 2015; 

Nielsen et al. 2017b; Mertens, Treml, and von der Heyden, 2018) and genomic insights can 

contribute to ongoing conservation efforts by analysing potential regional differences in 

species molecular diversity and population structure. 

 

South African oceanography and marine bioregions 

 

Patterns of biodiversity in the South African region are shaped to a large extent by the 

different environmental conditions created by two dominant current systems driving 

differences in sea surface temperature and primary productivity (Bustamante et al. 1995) 

(Figure 1.2). The west coast is characterised by the influence of the cold water of the 

northwards flowing Benguela Current system, which makes this part of the southern Atlantic 

Ocean one of the most dynamic and productive upwelling regions in the world (Nelson and 

Hutchings, 1983; Shannon, 1985; Shannon and Nelson, 1996). The Benguela system is 

characterised by seasonal upwelling and relatively cool temperatures, but high primary 

productivity. In contrast, the warm-water Agulhas Current of the east coast forms part of the 
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southernmost reaches of the western Indian Ocean and flows southwards along South 

Africa�s coastline (Lutjeharms and Ballegooyen, 1988; Lutjeharms and Ruijter, 1996). It then 

retroflects along the Agulhas bank on the southern Cape coast. The Agulhas and the 

Benguela currents form an oceanographic convergence zone mainly at the southern tip of 

the African continent, which has characteristics of both oceanographic systems (Nelson and 

Hutchings, 1983; Lutjeharms and Ballegooyen, 1988; Lutjeharms and Ansorge, 2001). In 

addition, large anti-cyclonic Agulhas rings and filaments cause warm Agulhas water to flow 

into the South Atlantic at certain times throughout the year and have been implicated in the 

transport of larvae along the coastline (Ballegooyen et al. 1994; Lutjeharms and Cooper, 

1996). Another characteristic of the oceanography in the region is the Agulhas counter-

current, which flows west- and northwards and in close proximity along the south-eastern 

shore (Duncan, 1970; Wyrtki, 1973). To a smaller degree, nearshore counter currents and 

regional eddies have also been identified for the South African west coast (Boyd et al. 1992; 

Mertens, Treml and von der Heyden, 2018). 

 

The Benguela Current and the Agulhas Current form a temperature gradient from west (cold-

temperate) to east (tropical) (Figure 1.2), with mean temperatures on the west coast ranging 

seasonally from 11-15°C with short-term fluctuations, whereas for the warmer east coast 

mean temperatures range from 18-27°C (Smit et al. 2013). Moreover, the south coast 

broadly forms a continuum of temperature between the South African west and east coast 

(Smit et al. 2013). There is evidence that the thermal gradient along the coast might have led 

to temperature-defined marine bioregions (cool-temperate, warm-temperate, subtropical and 

tropical; Figure 1.2) (Teske et al. 2011a). Comparing the genomic structure between 

populations of the sand goby Psammogobius knysnaensis inhabiting different coastal 

regions showed that temperature-driven selection likely resulted in early signs of ecological 

speciation (Teske et al. 2019). Differences in the species gene regions linked to temperature 

suggest that the divergent thermal environment may delimit temperature-defined marine 

bioregions. Importantly, the thermal gradient across the southern African coast could drive 

ecological divergence between presumed locally adapted populations of P. knysnaensis 

(Teske et al. 2019). Based on environmental and species composition, the South African 

coastline (ca. 3,650 km) has been broadly categorised into four coastal ecoregions 

(Benguela, Agulhas, Natal and Delagoa) and two offshore ecoregions (South-East and 

South-West Atlantic; Sink et al. 2012). The largest habitat type proportions are rocky shore 

(27%), sandy beaches (42%) and mixed shore (31%) (Sink et al. 2012), but there are other 

habitats including seagrass meadows, mangrove systems and coral reefs, thus supporting a 

broad array of species. 
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Figure 1.2. South Africa�s thermal environmental gradient, marine bioregions and recognised costal 
genetic breaks. The cold Benguela Current on the west coast and the warm Agulhas Current on the 
east coast are associated with four temperature-delimited marine bioregions: cool-temperate, warm-
temperate, subtropical and tropical. Four locations have been suggested based on genetic data as 
genetic breaks: Cape Point, Cape Agulhas, Algoa Bay and St. Lucia (Source: Teske et al. 2011).  
 

1.5.2 Genetic breaks and the spatio-temporal variation of molecular variation 

 

In South Africa, numerous marine species inhabit multiple biogeographic regions and there 

are on the one hand examples of the absence of genetic structure across species 

distribution (see for example Neethling et al. 2008; Teske et al. 2010; Mmonwa et al. 2015) 

and on the other hand examples of multiple species indicating population structure between 

marine bioregions (Teske et al. 2006; Teske et al. 2011a; Zardi et al. 2015; Baldanzi et al. 

2016). Interestingly, various phylogeographic and phylogenetic studies suggest regionally 

distinct genetic lineages, whose phylogeographic breaks often align with the temperature-

delimited marine bioregions (von der Heyden, 2009; Teske et al. 2011a). For instance, Cape 

Point (which is also a major biogeographic break; Teske et al. 2007a; von der Heyden, 

Prochazka and Bowie, 2008) and Cape Agulhas (Evans et al. 2004; Teske et al. 2007b), 

broadly forming the disjunction between the cool-temperate west coast and the warm-

temperate south coast, have been identified as major genetic breaks (von der Heyden, 2009; 

Teske et al. 2011a). Moreover, the dynamic oceanographic transition zone between Cape 

Point and Cape Agulhas has revealed instances of genetically distinct signals in populations 

(Figure 1.2) (Teske et al. 2006; Teske et al. 2007a). Apart from the brown mussel Perna 

perna (Zardi et al. 2007), genetic breaks are less pronounced between the warm-temperate 

south coast and subtropical east coast. However, genetic disjunctions have been located in 
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the area of Algoa Bay (Teske et al. 2007c; von der Heyden, Prochazka and Bowie, 2008) 

and on the central Wild Coast (Teske et al. 2006; Teske et al. 2008). Furthermore, 

phylogeographic breaks have been detected in the region of St. Lucia (Teske et al. 2007d; 

Teske et al. 2009), broadly representing the transition from subtropical to tropical east coast, 

or even further north near Mozambique (Gopal et al. 2005; Ridgway et al. 2008). 

Comparative mtDNA data of eleven South African rocky shore and reef-dwelling marine 

species indicates overall steep isolation-by-distance (IBD) slopes for all species (but see 

Teske et al. 2018) and found that several broadcast-spawning species demonstrate similar 

levels of population structure as live-bearing clinid fishes (Wright et al. 2015). This 

unexpected finding might be influenced by factors such as egg size, spawning time and 

frequency, larval type, larval behaviour and ecological transitions across biogeographic 

regions (Wright et al. 2015). It has also been shown that the two closely related intertidal 

topshells Oxystele variegata and O. tigrina yielded strongly contrasting signals of genetic 

differentiation in the context of similar habitat requirements (Wright et al. 2015). In addition, 

the sympatric beach lice Excirolana natalensis and E. latipes show distinct differences in 

phylogeographic structure, with one species defined by a strong genetic break across Cape 

Point and one showing connectivity between the west and south coast populations 

(Mbongwa, 2018). The aforementioned studies primarily pertain to rocky shore species and 

near shore coastal species and less is currently known about the phylogeographic structure 

of sandy shore species (Grant and da Silva-Tatley, 1997; Laudien et al. 2003; Muteveri et al. 

2015; Baldanzi et al. 2016; Mbongwa et al. 2019), despite international acclaim for South 

African beaches ranking among the best-studied globally (Nel et al. 2014). Populations of 

the sandy beach plough shell Bullia digitalis displayed no population structure over their 

range of 2,400 km based on allozymes (Grant and da Silva-Tatley, 1997). A second 

allozyme study conducted with the surf clam Donax serra in Namibia and South Africa noted 

strong geographic separation between two Namibian populations, but unexpected genetic 

similarity between the remaining populations despite marked morphological differences 

(Laudien et al. 2003). Findings of mtDNA from the co-distributed plough shell Bullia 

rhodostoma revealed shallow genetic differentiation between False Bay (east of Cape Point) 

and Port St. John�s on the east coast (Muteveri et al. 2015). In contrast, the sandhopper 

Talorchestia capensis consists of three separate evolutionary significant units (Baldanzi et 

al. 2016) and populations of the sandy beach isopod Tylos granulatus appear to be 

genetically isolated from each other across the species distribution spanning South Africa 

and Namibia (Mbongwa et al. 2019). The phylogeography of marine flora remains 

understudied in the region, but a recent genomic study on the seagrass Zostera capensis 

distributed in southern and eastern Africa identified low genomic variation (but high clonality) 
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between populations spanning nearly 10,000 km and suggested two geographically distinct 

population clusters (Phair et al. 2019).  

 

In summary, genetic and genomic studies find congruent phylogeographic breaks for some 

South African coastal marine species, but more complex patterns for others, with genetic 

boundaries often appear to associate with biogeographic differences between the coastal 

regions (von der Heyden, 2009; Teske et al. 2011a). Recent evidence suggests that thermal 

regimes may drive incipient ecological speciation along the coastline (Teske et al. 2019). 

 

Drivers of molecular connectivity 

 

Species reproductive strategies (for example brooding, live-bearing and broadcast 

spawning), larval behaviour, recruitment and retention rates, dispersal scale, pelagic larval 

duration (PLD), settlement processes and other life history traits and ecological variables are 

known to impact spatial genetic population patterns of marine species (von der Heyden, 

2009; Teske et al. 2011a; Baguette et al. 2012; Pfaff et al. 2015; Selkoe et al. 2016; Bowen 

et al. 2016; Mertens, Treml and von der Heyden, 2018). During their pelagic phase, larvae 

can disperse or be hindered to disperse by land masses or dynamic ocean currents (Wares, 

Gaines and Cunningham, 2001; White et al. 2010). South Africa�s coastline is broadly �V-

shaped� with two different ocean current regimes on either side, which impacts connectivity 

between coastal populations (Teske et al. 2011a). Apart from the �V-shaped� coastline, 

South Africa�s coastal topography does not feature prominent geographical barriers, but 

dispersal of species can be influenced by local-scale oceanographic features like near-shore 

counter currents and eddies (see for example Teske, Bader and Golla, 2015; Mertens, Treml 

and von der Heyden, 2018). It has been suggested for the majority of benthic marine species 

with complex life cycles, particularly for species with sessile adult stages or with limited 

mobility, that the exchange of individuals between populations primarily occurs during the 

(pelagic) larval stage (Cowen and Sponaugle, 2009). If the larva (or adult individual) settles 

in a population different from its origin and succeeds to reproduce, it is regarded as a 

migrant and contributes to the genetic/genomic connectivity of the two populations (Pineda 

et al. 2007). It has been hypothesised that, if the local environmental conditions of the new 

population exceed the migrant�s physiological capacities, such as an individual from a 

subtropical area attempting to settle in a population in a temperate area (see for example the 

mudprawn Upogebia africana and the brown mussel Perna perna (Teske et al. 2008; 2011; 

Zardi et al. 2011)), it might not be able to survive and hence populations become 

geographically disjunct and province-specific adaptations might become more pronounced 

(Cowen and Sponaugle, 2009; Teske et al. 2011a; Baguette et al. 2012; Nosil, 2012). Thus, 
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it is not unexpected to find biogeographic and phylogenetic patterns overlap, as local 

environmental conditions in different geographic regions, representing contrasting selective 

forces, can maintain molecular structure between populations by reducing gene exchange 

(Teske et al. 2011a; Zardi et al. 2011; Nosil, 2012; Teske et al. 2019). Temperature 

differences between coastal regions and possible regionally specific physiological 

adaptations have been suspected as drivers of species divergence and possible speciation 

in P. knysnaensis (Teske et al. 2019). In summary, marine species genetic structure is 

known to be influenced by ecological, environmental, oceanographic and physiological 

factors (von der Heyden, 2009; Teske et al. 2011; Bowen et al. 2016; Selkoe et al. 2016), 

with an important additional potential driver, paleo-climatic fluctuations, explored in the 

following section. 

 

1.6 Paleoclimate and future climate change impacts in South Africa 

1.6.1 Influence of paleoclimate on marine species 

 

Global climate oscillations associated with glacial periods comprised sea level fluctuations of 

115-130 m below current level, which caused changes in ocean currents, altered the thermal 

dynamics of the water column and shifted habitable area for marine intertidal communities 

(Pillans, Chappell and Naish, 1998; Bintanja, van de Wal and Oerlemans, 2008; Ludt and 

Rocha, 2015). These changes have influenced the genetic composition of intertidal species 

(Hewitt, 2000; Ludt and Rocha, 2015), although it is not always easy to disentangle historical 

and contemporary drivers of population genetic parameters. The magnitude of habitat 

availability changes has been studied in tropical coral reefs, where sea-level lows decreased 

up to 92% of habitable shelf area (<60 m depth), from which it has been estimated that 

habitat-related separation between populations could be associated with population genetic 

bottlenecks in marine species globally (Ludt and Rocha, 2015). In the southern African 

region, paleoenvironmental models show that the Pleistocene (2.6 Ma�11.7 ka) glacial 

cycles brought periods of drastic changes in not only sea levels and ocean currents, but also 

temperature and salinity (Davies, 1973; Hewitt, 2000; Compton, 2001; Fisher et al. 2010; 

Compton, 2011), which impacted the distribution of intertidal communities and the 

connectivity of populations (von der Heyden et al. 2010; Teske et al. 2011; Toms et al. 2014; 

Seymour, 2016). The periodic reduction of habitable coastal area separating populations has 

been linked to numerous signals for long-standing historical isolation and in some instances 

might have given rise to divergent lineages in marine species (von der Heyden et al. 2010; 

Teske et al. 2011b; Muller et al. 2012; Henriques et al. 2012; Phair et al. 2015; Reynolds et 

al. 2014; Toms et al. 2014; Mmonwa et al. 2015; von der Heyden et al. 2015; Swart et al. 

2016; Potts et al. 2016). Furthermore, fluctuating habitat availability has been suspected to 
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play an important role for genetic breaks or instances of speciation in marine species in 

South Africa (Toms et al. 2014; Potts et al. 2016). Periodically decreasing and increasing 

sea levels have been documented to lead to several episodes of complex patterns of 

population colonisation, expansion and contraction (Wares, 2002; Hewitt, 2004). Signs for 

such demographic expansions have been reported for a variety of marine taxa in South 

Africa, including fishes and invertebrates, both for rocky and sandy shore species (der 

Heyden et al. 2008; der Heyden et al. 2011; Muller et al. 2012; Reynolds et al. 2014), 

although these must be interpreted with caution (Grant and Bowen, 1998). 

 

Briefly, the evolutionary history and population structure of numerous South African marine 

species may have been profoundly influenced by paleo-climatic shifts during glacial periods 

(Teske et al. 2011b; Toms et al. 2014). The current South African marine environment 

incorporates multiple drivers which can act to maintain historical patterns or influence 

contemporary molecular patterns of population differentiation including the temperature 

differences and other environmental variation between the coastal regions (von der Heyden, 

2009; Teske et al. 2011a; Teske et al. 2019), as well as local-scale oceanographic features 

like near-shore counter currents and eddies (Teske, Bader and Golla, 2015; Mertens, Treml 

and von der Heyden, 2018). Moreover, regionally specific physiological adaptations might 

lead to population divergence or even speciation (see for example Teske et al. 2008; Teske 

et al. 2011a; Zardi et al. 2011; Teske et al. 2019). Further, ecological factors such as life 

history traits, particularly related to reproduction or dispersal and other ecological variables 

are known to impact genetic population patterns of marine species (von der Heyden, 2009; 

Teske et al. 2011a; Baguette et al. 2012; Pfaff et al. 2015; Selkoe et al. 2016; Mertens, 

Treml and von der Heyden, 2018). 

 

1.6.2 Climate change in South Africa�s marine environment 

 

In South Africa, as elsewhere, there have been several signals of changing marine climates. 

Signs of the onset of changes in South African climatic conditions include an increase in 

mean annual air temperature by 0.13°C per decade (measured between 1960 and 2003) 

(Kruger and Shongwe, 2004), with further increases expected depending on the emission 

levels relative to pre-industrial values (Engelbrecht and Engelbrecht, 2016; Maúre et al. 

2018). Moreover, rainfall patterns have changed in recent decades, with an increase in 

drought and wet periods on a seasonal scale (most pronounced on the south and lower east 

coast) (Rouault and Richard, 2003; Kruger, 2006), which has knock-on effects on run-off into 

marine estuarine and marine systems. A noticeable change in sea surface temperature 

(SST) has been recorded for the Agulhas Current, which has warmed by 1.5°C since the 
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1980s due to changing wind patterns in the southern Indian Ocean (Rouault et al. 2009). As 

a result, the east coast has a positive trend in annual SST (Rouault et al. 2010). In contrast, 

a significant cooling SST trend of up to 0.5°C per decade in the southern Benguela has been 

reported in the months January to August and to a lesser magnitude also for the south coast 

in the region of Port Elizabeth/Port Alfred in the months May to August (Rouault, 2011). 

Cooling on the west coast is thought to be caused by an increase in upwelling intensity and 

frequency, which is driven by increased southerly winds, particularly in summer (Rouault et 

al. 2010). Moreover, the west coast is periodically influenced by the ENSO (El Niño-

Southern Oscillation), which affects air temperature, wind, rainfall and SST (Rouault et al. 

2010; Dufois and Rouault, 2012). ENSO events and their strength, duration and impact are 

challenging to anticipate, which makes ecological forecasts based on climate predictions 

more complex in the South African context (James and Hermes, 2011). 

 

Sea level increase varies on the South African coast (Mather et al. 2009). The west coast 

showed an average increase of 1.87 mm y-1 (from 1959-2006), the south coast of 1.48 mm y-

1 (1957-2006) and the east coast of 2.74 mm y-1 (1967-2006) (Mather et al. 2009). After 

correction of the values for changes in the barometric pressure in the regions and vertical 

crust movements, sea level appears to increase from west to east, which is influenced by the 

Agulhas and Benguela currents and their interactions (Mather et al. 2009), but also impacted 

by the recent warming of the Agulhas Current (Rouault et al. 2009). Increasing sea levels 

are currently regarded as a minor threat to South Africa�s coast, as intertidal species are 

supposed to �simply move higher up on the shore� (Griffiths et al. 2010; p. 10). This 

suggestion is challenged by the observation that appropriate coastal habitat does not extend 

infinitely inland. If sea levels rise as much as predicted in the higher IPCC emission 

scenarios (IPCC, 2013), the limitation of coastal habitat availability poses a long-term 

concern, particularly in those areas where the coastal margin is narrow. Sea level change 

would impact different habitat types in different ways; for example from a rocky shore 

perspective, the most affected shores would be situated along the east coast, where rock 

platforms are located on the lower shore and bounded by sandy habitat further above 

(Griffiths et al. 2010). As a consequence of changing horizontal species distribution in the 

intertidal, a vertical squeezing was observed for the upper limit of species due to rising air 

temperature on the northern west coast of North America (Harley, 2003), which may also 

develop into a significant challenge for South African intertidal species in the future. Due to 

steep topography and anthropogenic constructions preventing species migrating inland, it 

has been estimated that certain ecologically important bays in North America might face a 

reduction of 20-70% of intertidal habitat area during the next 100 years (Galbraith et al. 
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2002), illustrating how drastic the effect of vertical squeezing might impact on intertidal 

communities in other parts of the world. 

 

In addition to rising sea levels, a significant increase in wave height around South Africa of 5 

cm decade-1 has been recorded (Trenberth et al. 2007). Moreover, peak wave height during 

winter storms has increased in offshore waters (1994-2008; ~0.5 m over 14 years) 

(Guastella and Rossouw, 2009). Wave action and the impact of storm events play an 

important role for intertidal ecosystems (Blamey and Branch, 2009), as both can influence 

species presence/absence and the associated trophic structure (McQuaid and Branch, 1984; 

McQuaid and Branch, 1985). Rising sea levels and increased extreme weather events could 

in turn also affect disturbance to coastal ecosystems, by increasing sediment transport in 

(Drinkwater et al. 2010) and changes in ocean current patterns can impact on pelagic larval 

dispersal and later recruitment success (Menge et al. 1999). 

 

In a sensitivity assessment of the southern Benguela region, 40 marine species� sensitivity 

and capacity to face climate change were estimated, which revealed several species 

including the abalone Haliotis midae, the soupfin shark Galeorhinus galeus and the white 

steenbras Lithognathus lithognathus as highly vulnerable to impacts from changing climatic 

conditions (Ortega-Cisneros et al. 2018). Moreover, continued changes in air and sea 

temperatures may shift currently recognised biogeographic zones in South Africa, which in 

turn drive alterations in species distributions (Mead 2011; Mead et al. 2013; Blamey et al. 

2015). Considering the observed trends for regional warming and cooling in South Africa, it 

might be for example expected that the south coast climatic zone with its warm-temperate 

conditions might be reduced, which means that intertidal species might face physiological 

pressure from which a successful shift into either direction along the shoreline is not 

possible. Examples of current and imminent climate-driven coastal distribution changes in 

South Africa have been identified in species including fishes, zoobenthos and mangroves 

(Potts, Götz and James, 2015; Whitfield et al. 2016), but shifting communities and 

ecosystems are not well understood at present. Strong evidence for species on the move 

comes from a multi-year study on a South African estuarine fish community showing 

indications for a climate-induced change in community composition (James et al. 2008). 

James et al. (2008) showed that with increasing sea surface temperatures, subtropical and 

tropical fish species started occurring in the East Kleinemonde Estuary, indicating a 

southward extension of the fishes from the tropical into the warm-temperate region (James 

et al. 2008). Interestingly, potential southward shifts by (sub)tropical species are limited by 

signals of decreasing sea temperatures along the west and parts of the south coast (Rouault 

et al. 2009), thus potentially restricting adequate habitat in the future. Possibly as a result of 
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the gradually cooling temperature in these areas, the distributional limits of Ecklonia maxima 

kelp beds have been observed to shift eastwards along the south coast since 2006, where 

they were not historically found (Bolton et al. 2012). This study hypothesised that a 

continued cooling trend might cause E. maxima kelp beds and the species depending on the 

habitat-forming ecosystem engineer to gradually expand eastwards, until warming 

temperatures on the southern east coast have a limiting effect to further eastward expansion 

(Bolton et al. 2012). Moreover, a shift in community composition in False Bay (900 km2) (a 

strong transition zone between the cold-temperate west coast and warm-temperate south 

coast) has been partially associated with climate change, where a decline in native warm-

water mussel Perna perna and an increase in alien cold-water mussel Mytilus 

galloprovincialis (and in kelp) have been recorded (Mead, 2011). False Bay�s species 

composition changed significantly based on a dataset spanning 76 years, although the shift 

is thought to be associated with factors beyond changing water temperatures alone (Mead, 

2011). Regarding rocky shore communities throughout South Africa, Mead highlights that the 

number of cold-water species increased and warm-water species decreased on the west 

and south-east coast, which might be linked to cooling of near-shore water as part of 

complex biological interactive mechanisms (Rouault et al. 2010; Mead, 2011). These 

instances of large-scale shifts illustrate that it is essential to understand and possibly 

anticipate coastal species response to climate change conditions.  

 

1.7 Study species 

 

An important factor for the selection of the study species was the availability of genetic 

findings from past studies (Muller et al. 2012; Wright et al. 2015; Mmonwa et al. 2015; 

Mertens, Treml and von der Heyden, 2018; Nielsen et al. 2018). Moreover, all three species 

are broadly co-distributed across multiple marine bioregions. The invertebrates represent 

non-model species, which are not commercially harvested and abundant in South African 

rocky shore communities. Overall, the species have a diverse range of life history traits, 

inhabit different microhabitats and ecological niches in the intertidal and belong to three 

phyla (Mollusca, Echinodermata, Arthropoda). 

 

1.7.1 Granular limpet - Scutellastra granularis (Patellidae, Patelloidea) 

  

Scutellastra granularis (Linnaeus 1758) (max. 60 mm; Figure 1.3) is morphologically 

characterised by a cap-shaped shell with a distinct reddish spot on top and a ring of gills 

around the foot. The geographical distribution in southern Africa spans the coastline of 

Namibia to approximately Port St. John�s on the southern east coast (Branch et al. 2017). As 
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a grazer, S. granularis has an important function for the intertidal community by maintaining 

bare rock surface (Hawkins and Hartnoll, 1983), but it is also recorded as a facultative 

generalist feeder. Adult individuals are assumed to maintain a limited home range in the high 

shore (Gray and Hodgson, 1997; Branch et al. 2007), but the duration, distance and 

frequency of foraging excursions are unknown. Scutellastra granularis is a broadcast 

spawner and its veliger larvae have been observed to stay in the water column for up to 7-14 

days, before they settle in the lower shore (Kilburn and Rippey, 1982; Kay, 2002). There 

appears to be variability in spawning, which has been observed from June to August 

(Branch, 1974), but possibly also throughout the year with peaks in winter and summer (Vat, 

2000; Hodgson, 2010). Juvenile S. granularis move upwards into the upper balanoid zone to 

settle (Nakin and McQuaid, 2014). 

 

The population structure of S. granularis has been the focus of several studies (Mmonwa et 

al. 2015; Nielsen et al. 2018; Mertens, Treml and von der Heyden, 2018) (Table 1.1). While 

S. granularis tested panmictic along the west coast based on the COI gene (cytochrome c 

oxidase subunit I) (mtDNA; pairwise !ST: 0-0.05) (Mertens, Treml and von der Heyden, 

2018), a broader scale including also the south and east South African coast reports that S. 

granularis is possibly separated into two distinct lineages between the west coast 

populations (1) and the southern/eastern coast populations (2) with limited genetic exchange 

between the two groups (mtDNA (COI); global !ST: 0.023) (Mmonwa et al. 2015). The first 

genomic study on the species, conducted across six populations on the west coast, confirms 

no strong signal of structure in selectively neutral and outlier data (SNPs; pairwise !ST: 

0.008-0.013) in the region (Nielsen et al. 2018). Yet, the study documents that Hondeklip 

Bay, one of the northernmost populations, might be evolutionary unique based on the 

number of detected private SNPs (226 private SNPs; remaining populations: 9-42) and 

potential outlier SNPs (30 outlier SNPs; remaining populations: 8-19). Values for nucleotide 

diversity range from 0.009-0.012 (Tajima�s ") to 0.010-0.013 (Watterson�s #), with no 

geographical pattern (Nielsen et al. 2018). 
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Figure 1.3. Study species and their distribution in southern Africa. Scutellastra granularis (A), 
Parechinus angulosus (B), Cyclograpsus punctatus (C) (Adapted from: Branch et al. 2017). It is 
debated whether C. punctatus occurs on the entire west coast as shown in the map or only up to 

Jacob�s Bay, where sampling could be successfully conducted. 
 

Granular limpets are functionally sessile (sedentary) during low tide and are occasionally 

observed to form aggregates, but do not create home scars as some other limpet species 

(Branch and Branch, 1981; Branch et al. 2017; personal observation). Juvenile S. granularis 

improve their recruitment by settling onto shells of the invasive mussel Mytilus 

galloprovincialis as secondary substratum (Branch et al. 2010), but adult limpet densities 

decline in the presence of M. galloprovincialis (Sadchatheeswaran et al. 2015). Mytilus 

galloprovincialis may reduce the abundance of adult limpets and decrease their median size 

by half over time (Griffiths et al. 1992; Hockey and van Erkom Schurink, 1992). 

 

In terms of physiology, S. granularis has been tested in a South African study alongside 

another patellogastropod limpet in comparison with two pulmonate intertidal limpets 

regarding their upper thermal tolerance measured as median lethal temperature (LT50) and 

cardiac Arrhenius breakpoint temperature (ABT) (Kankondi , McQuaid and Tagliarolo, 2018). 

The study reports no differences in the overall upper thermal tolerance limits between 

patellogastropod and pulmonate limpets in both air and water despite their differences in 

respiratory morphology. In both media, S. granularis had lower LT50 and ABT values than 

the other three species, based on overall small S. granularis sample sizes (LT50: n = 3; 

ABT: n =10). The final cardiac breakpoint temperature in S. granularis appears to be, similar 

as shown in (mid to high shore) patellogastropod limpet Lottia digitalis (Bjelde and Todgham, 

2013), higher in air than in water, which might be associated with the efficient oxygen 
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absorption via the strongly vascularised mantel cavity of high-shore patellid limpets 

(Kankondi , McQuaid and Tagliarolo, 2018). 

 

1.7.2 Cape urchin - Parechinus angulosus (Echinidea, Echinoida) 

  

Sea urchin Parechinus angulosus (Leske 1778) (max. 60 mm; Figure 1.3) is characterised 

by short pointed spines of various colour variations. It inhabits rocky shores and kelp beds 

from Torra Bay region in Namibia to northern Kwazulu-Natal in the area of Margate (Branch 

et al. 2017), although its peak distribution appears to be on the west and south-west coasts, 

with lower densities of urchins found along the south-east and eastern coastlines (von der 

Heyden, personal communication). It counts as the most widespread southern African 

echinoid (Day and Branch, 2002; Branch et al. 2007). Parechinus angulosus has a key 

functional position in the ecosystem as grazer, controlling the recruitment of young kelp 

plants (Fricke, 1979a; Stuart and Field, 1981; Branch et al. 2007). Specimens can be found 

to a depth of 30 m, although they are most abundant in the intertidal and shallow sub-tidal. 

The Cape urchin does generally not adjust its selected position during low tide, which can be 

in low shore to mid shore rock pools or in low shore open water. For the purpose of this 

study, all urchins were collected from open water. Reproduction is thought to peak twice a 

year, with a major spawning event in August/September (spring) and a minor spawning 

event in April/May (autumn), but this observation has not been empirically evaluated since 

the 1980s (Fricke, 1979b; Hodgson, 2010). Experiments showed that the echinopluteus 

larvae of P. angulosus can stay in the water column for a few weeks (49 to 56 days) and 

their active choice of settlement substrate can be delayed by 11 days if no suitable substrate 

is available (Cram, 1971; Greenwood, 1975). Adult individuals reach maturity after 1-2 years 

(Greenwood, 1975). 

 

Despite factors including the planktonic larval stage, the ability to spend an extended period 

in the water column and substrate-selective larval behaviour, genetic connectivity between 

populations on the southern African coast appears to be limited based on the mitochondrial 

COI marker and the nuclear egg jelly protein (SpREJ9) marker (Muller et al. 2012) (Table 

1.1). Two distinct geographic groupings (west coast populations (1), south and east coast 

populations (2)), separated by the documented biogeographic barrier Cape Peninsula (Cape 

Point), were reported (Muller et al. 2012). Interestingly, there is also a high degree of COI 

(mtDNA) differentiation between west coast populations (Table 1.1), including a significant 

signal for isolation-by-distance (IBD) for the species (Mertens, Treml and von der Heyden, 

2018). Conversely, a SNP-based study sampling six locations on the South African west 

coast did not recover strong signals of genomic structure in selectively neutral and outlier 
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data (Nielsen et al. 2018). For P. angulosus, the most northern population Port Nolloth 

appears to be evolutionary unique based on numbers of identified private SNPs (14 private 

SNPs; remaining populations: 2-6). The potential outlier SNPs ranged from 4-8 across all 

populations. The study also suggested that values of nucleotide diversity are highest in Port 

Nolloth (Tajima�s ": 0.011; Watterson�s #: 0.012) (Nielsen et al. 2018). Patterns between 

genetic and genomic findings of P. angulosus� west coast populations differ, which is 

illustrated by the contrasting population structure (pairwise !ST) values of COI (mtDNA) 

(0.15-0.62) and SNPs (0.006-0.019) (Table 1.1); and a significant signal of IBD (mtDNA) 

versus no signal of IBD (SNPs). Mitochondrial DNA (mtDNA) is uni-parentally inherited and 

is thought to indicate species� evolutionary history (Avise, 2000; Dudgeon et al. 2012; von 

der Heyden, 2017), whereas SNPs are bi-parentally inherited and show, utilising a much 

larger scale than mtDNA markers, contemporary genomic variation, more recent population 

structure and potential adaptive variation (loci under selection) (Morin, Luikart and Wayne, 

2004; Allendorf, Hohenlohe and Luikart, 2010; Funk et al. 2012; Bowen et al. 2014; von der 

Heyden, 2017). For marine species, it has been suggested that mtDNA can in many cases, 

but not in every circumstance, constitute the first locus to reveal molecular structure based 

on its smaller effective population size (Timm et al. 2012, DeBoer et al. 2014). While mtDNA 

findings can provide a strong initial assessment of species historical population structure, 

genome-wide analyses are necessary to differentiate between neutral and selective patterns 

(Bowen et al. 2014). 

 

Critical thermal limits of adult P. angulosus have not been previously investigated. The Cape 

urchin uses debris and shells as a form of sun-shading (Branch, personal communication; 

personal observation), which might alleviate thermal stress and conceal from predators. 

Gametes of P. angulosus have a tolerance limit towards ambient temperature and salinity 

levels (Greenwood and Bennett, 1981). Globally, data on critical thermal limits in adult sea 

urchins is comparatively scarce (discussed in more detail in section 4.4.6). Across several 

temperate urchin species, upper thermal limits were shown to range from 19.5 to 26.8°C 

(Morley et al. 2016). 

 

1.7.3 Shore crab - Cyclograpsus punctatus (Brachyura, Varunidae) 

  

Cyclograpsus punctatus H. Milne Edwards 1853 (max. 30 mm; Figure 1.3) is distributed from 

the west coast in the area of Jacob�s Bay to the east coast in the area of Margate (northern 

KwaZulu-Natal; Branch et al. 2017). It possesses a carapace with convex sides and 

generally smooth body and nippers (Branch et al. 2007). The body is typically dark brown to 

black at the front of the carapace and blends into a grey-green pattern at the back. The legs 
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range from brown to orange and carry red spots (Peer et al. 2014). Cyclograpsus punctatus 

scavenges, preferably during the night and at low tide, on seaweeds and available animal 

matter (Branch et al. 2007). The shore crab is mobile and seeks shelter from sun exposure 

and predators in crevices during low tide. Juvenile shore crabs hatch from eggs which are 

held by female crabs and develop into planktonic larvae with an estimated pelagic larval 

duration (PLD) of 14 days (Branch et al. 2007; Wright et al. 2015). Two breeding seasons 

have been observed in C. punctatus, with a major peak in July (mid-winter) and a minor 

peak during January/February (summer) (Broekhuysen, 1940; Hodgson, 2010; Bliss and 

Mantel, 2012). Winter is also the main reproduction period on the warmer eastern coast and 

evidence has been recorded that more than one brood is produced during breeding season 

(Broekhuysen, 1940; Hodgson, 2010). 

  

Molecular data revealed a high degree of genetic structure in the species (COI (mtDNA); 

Table 1.1) in comparison to ten other rocky shore organisms and a significant signal of 

isolation by distance (IBD) when tested across the South African west, east and south coast 

(see Wright et al. 2015; Table 1-2, Figure 1.3a). This study constitutes the first SNP-based 

analysis of C. punctatus. From an ecological perspective, C. punctatus benefits from 

assemblages of invasive mussel M. galloprovincialis, resulting in higher overall levels of crab 

biomass, although this was only recorded for the predominantly sandy Langebaan Lagoon 

(Robinson and Griffiths, 2002). It is not entirely resolved if C. punctatus lives predominantly 

high on the shore (intertidal; Fagetti and Campodonico, 1971; Branch et al. 2007) or mainly 

in potentially overlapping lower regions of estuaries (estuaries; Alexander and Ewer, 1969; 

Hill, 1981), where the shore crab has been portrayed as �a common member of the 

estuarine brachyuran assemblage� (Winch and Hodgson, 2007; p. 118). For the purposes of 

this study all individuals were collected from high shore rocky intertidal areas. Past studies 

have been conducted on the physiology of C. punctatus collected from estuaries (Boltt and 

Heeg, 1975; Kowie Estuary; Dye and Veen, 1980; Swartkops Estuary; Winch and Hodgson, 

2007; Bushman�s River estuary), where it was shown that adult C. punctatus are less 

tolerant to low salinity levels and show a progressive decrease in osmoregulatory capacity 

during hyposaline exposure (Boltt and Heeg, 1975). Oxygen consumption increases 

significantly at the combination of high temperature/low salinity (Winch and Hodgson, 2007). 

Temperature and salinity extremes influence oxygen consumption most in small individuals 

of C. punctatus, indicating that perhaps their greater surface area to volume ratio leads to 

higher physiological stress (Winch and Hodgson, 2007). Lastly, newly hatched larvae of C. 

punctatus raised at 25°C water temperature led to 100% larval mortality (Fagetti and 

Campodonico, 1971); (however, the authors express uncertainty if temperature alone was 

the reason for the high mortality). 
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Table 1.1. Previous genetic and genomic findings on the study species (South Africa = SA). 

Species  Markers Population structure (!ST) Sample region Reference 

S. granularis mtDNA 0.023 west, south, east SA Mmonwa et al. 2015 

S. granularis mtDNA 0-0.05 west coast SA Mertens et al. 2018 

S. granularis SNPs 0.008-0.013 west coast SA Nielsen et al. 2018 

P. angulosus mtDNA, 

nDNA 

0-0.87 

0-0.71 

west, south,  

south-east SA 

Muller et al. 2012 

P. angulosus mtDNA 0.15-0.62 west coast SA Mertens et al. 2018 

P. angulosus SNPs 0.006-0.019 west coast SA Nielsen et al. 2018 

C. punctatus mtDNA 0.49 west, south, east SA Wright et al. 2015 

 

1.8 Aims and outline of the study 

 

Utilising a multi-species approach, the purpose of this dissertation is to use genomic data 

obtained from pooled RAD-sequencing to expand the current knowledge on population 

genomic structure in selected rocky shore species (S. granularis, P. angulosus, C. 

punctatus) across the South African marine environmental gradient. Previous studies based 

on single markers suggested signals for isolation-by-distance in two species (P. angulosus, 

C. punctatus) (Wright et al. 2015; Mertens, Treml and von der Heyden, 2018) and distinct 

geographic clusters (S. granularis, P. angulosus) (Muller et al. 2012; Mmonwa et al. 2015), 

but it is unknown whether these findings are reflected at genome-wide scale (except for the 

west coast: S. granularis, P. angulosus; Nielsen et al. 2018). Further, this study seeks to 

explore species ability to withstand temperature extremes and aims to establish their 

tolerance thresholds regarding high and low temperatures through thermal tolerance 

experiments. A previous study conducted on S. granularis suggests that its tolerance limits 

are lower compared to three other limpet species tested in the same experimental setup 

(Kankondi, McQuaid and Tagliarolo, 2018), but critical thermal limits are unknown for P. 

angulosus and C. punctatus and it is also not understood if geographical differences occur in 

the thermal limits between populations from different biogeographic regions. 

 

In summary, the study conducts a multi-species comparison across three intertidal phyla 

(Crustacea, Echinodermata, Mollusca) co-distributed in rocky shore populations throughout 

the South African west, south and east coast (Table 1.2) in order to (1) assess selectively 

neutral population structure based on genome-wide SNPs and compare with previously 

detected genetic patterns, (2) explore signals for adaptive processes based on outlier loci 
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and test their association with geographic distance between populations and environmental 

factors including sea surface temperature, air temperature and salinity; and (3) to establish 

the species upper and lower critical thermal limits (CTmax, CTmin), testing for possible 

differences along the natural thermal gradient. The overarching aim of the genomic and 

physiological testing is to characterise the species potential evolutionary potential and 

thermal resilience to withstand the range of changing climatic conditions predicted for the 

different coastal regions in the future. 

 

Table 1.2. Components of the study with utilised data and further details. 

Parts Data Details 

Chapter I Literature review Introduction and literature review 

Chapter II Neutral SNPs Assessing selectively neutral SNPs: 

De novo assemblies, total and private SNPs, pairwise FST, 

nucleotide diversity (Tajima�s ", Watterson�s #), cluster 

analyses 

Chapter III Outlier SNPs Assessing outlier SNPs: 

Empirical FST method, BayeScan, BayeScEnv,  

blasting outliers with BlastX, Testing for IBD and IBE (isolation 

by distance, isolation by environment) 

Chapter IV Critical thermal limits Testing critical thermal limits (CTmax, CTmin) in heating and 

cooling experimental setups 

Conclusion All Summary of findings 
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Chapter II: Characterising the neutral genomic variation of selected marine 

invertebrates in South Africa 

 

2.1 Introduction 

 

Changing climatic and environmental conditions challenge species on a global scale, which 

makes it essential to estimate their evolutionary potential to withstand or perhaps adapt 

(Mergeay and Santamaria, 2012; IPCC, 2013; Graudal et al. 2014; Exposito-Alonso et al. 

2018; Archer et al. 2018). Evolutionary potential is commonly approximated from levels of 

species intraspecific genomic variation across their geographic distribution, because the 

genome forms the available foundation for natural selection to act on (see section 1.2; Lande 

and Shannon, 1996; Pressey et al. 2007; Barrett and Schluter, 2008; Ehlers et al. 2008; 

Sgro et al. 2011; Alsos et al. 2012; Pauls et al. 2013). Spatio-temporal genomic variation 

allows the identification of populations with high diversity, which could indicate overall 

population resilience (Hughes et al. 2008) and benefit the functioning and resilience of 

ecosystems (Reusch et al. 2005; Bernhardt and Leslie, 2013; Pauls et al. 2013). Low levels 

of molecular diversity are expected to increase the risk of inbreeding depression and leave 

populations more vulnerable to extinction (Charlesworth and Charlesworth, 1987).  To 

differentiate between selectively neutral and putatively adaptive parts of the genome, it is 

required to distinguish selectively neutral loci indicating processes such as drift and gene 

flow, from outlier loci potentially signalling adaptive processes (Barrett and Schluter, 2008; 

Sgro, Lowe, and Hoffmann, 2011; Alsos et al. 2012; Pauls et al. 2013). 

 

Multi-species phylogeographic analyses with either closely related taxonomic groups or 

different phyla are conducted to gain insights into community dynamics (Ellegren, 2014; 

Delord et al. 2018), but despite the recognised importance in conservation planning 

processes, these type of studies are still not widely represented in the literature on the 

marine environment (von der Heyden, 2009; Toonen et al. 2011; Funk et al. 2012; Bowen et 

al. 2014; Magris et al. 2015; Xuereb et al. 2019). Of course, species molecular composition 

differs across taxonomic groups, which constrains comparisons, but the potential limitations 

of analysing multiple species in parallel are not well understood at present (Nielsen et al. 

2017b; Nielsen et al. 2018). However, the empirical value of multi-species comparisons is 

established for single markers (mitochondrial DNA, nuclear DNA) and microsatellite data 

(Waples, 1987; McMillan and Palumbi, 1995; Avise, 1998; von der Heyden, 2009; Teske et 

al. 2011; Wright et al. 2015, Bowen et al. 2016; Selkoe et al. 2016; Riddle, 2016). Single 

markers and microsatellites can cover only a limited range of genome regions, but genome-
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wide called single nucleotide polymorphisms (SNPs) allow resolution of spatial patterns with 

greater power (Morin, Luikart and Wayne, 2004; Funk et al. 2012; Bowen et al. 2014; Selkoe 

et al. 2016; Xuereb et al. 2019). Identifying distinct population genomic clusters or potential 

regional adaptations limited to certain populations is highly valuable for conservation and 

management (Allendorf, Hohenlohe and Luikart, 2010; Funk et al. 2012; Bowen et al. 2014; 

Shafer et al. 2015; Selkoe et al. 2016; Xuereb et al. 2019; Lopez et al. 2019). For instance, 

investigating multiple species can reveal whether they are similarly impacted by 

environmental drivers such as temperature, salinity and primary productivity and if these 

impacts differ across study species and their distribution (Conte et al. 2012; Westram et al. 

2014; Stanley et al. 2018), which can reveal fundamental processes influencing molecular 

variation across land and seascapes.  A genomic comparison across five marine species 

from different phyla indicates the presence of a climate-associated multi-species cryptic cline 

in the northwest Atlantic, where a biogeographic break coincides with a steep climatic 

gradient driven by seasonal temperature differences (Stanley et al. 2018). Dynamic ocean 

currents or land masses are thought to play a decisive role if gene flow is reduced across 

multiple species (Wares, Gaines and Cunningham, 2001). An example for this is found on 

the South African coastline, where the Cape peninsula (Cape Point; located south of Cape 

Town), appears to impede gene flow in multiple species and constitutes a biogeographic 

barrier (von der Heyden, 2008; Griffiths et al. 2010; Teske et al. 2011; Muller et al. 2012, 

Wright et al. 2015). There is further evidence from multi-species studies for varying degrees 

of genetic structure and diversity in the South African marine environment (von der Heyden, 

2009; Teske et al. 2011; Wright et al. 2015; Mertens, Treml, and von der Heyden, 2018). 

Overall, the number of studies demonstrating congruent molecular patterns across multiple 

species is growing (Bernardi, Findley and Rocha-Olivares, 2003; Gaither et al. 2015; 

Bunnefeld et al. 2018; Barrow et al. 2018; Stanley et al. 2018; Nielsen et al. 2018; Crane et 

al. 2018), but the marine environment and the forces shaping and maintaining population 

structure are complex, making it a field of ongoing investigation. Concordant spatial patterns 

can indicate important macroecological drivers of population dynamics and the composition 

of marine communities (Kuo and Avise, 2005). Several determinants or a combination of 

them have been invoked to influence multi-species patterns in the marine realm, including 

environmental gradients, ocean currents and historic divergence due to vicariance during 

glacial cycles (Stanley et al. 2018). In South Africa, such drivers have been associated with 

the contemporary genetic structure of numerous marine species, indicating that the southern 

African marine environment is a prime study region to further explore potentially congruent 

multi-species patterns suggested by genetic data with genomic tools (von der Heyden, 2009; 

Teske et al. 2011; Toms et al. 2014; Wright et al. 2015; Mmonwa et al. 2015; Mertens, 

Treml, and von der Heyden, 2018; Nielsen et al. 2018). 
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2.1.1 RAD-Seq and Pool-Seq for non-model organisms 

 

Genomic studies were previously limited to selected model organisms and associated with 

high technical and budgetary investments, before  high-throughput sequencing (HTS) 

became the standard practise for studying the genomic architecture of species (Allendorf, 

Hohenlohe, and Luikart, 2010; Davey et al. 2011; Ellegren, 2014). As opposed to whole-

genome sequencing, reduced representation sequencing approaches are a more widely 

accessible method (restriction site-associated DNA sequencing (RAD-Seq); Miller et al. 

2007; Baird et al. 2008). The original RAD-Seq protocol (Miller, 2007; Baird, 2008) 

diversified into different technical approaches, including ddRAD (Peterson et al. 2012), 2b-

RAD (Wang et al. 2012) and ezRAD (Toonen et al. 2013; utilised in this study). An emerging 

approach, which is utilised for this study in conjunction with the ezRAD method, is Pool-Seq 

(pooled sequencing approach) (Schlötterer et al. 2014), which entails pooling equimolar 

concentrations of DNA from individuals of one species or one population into a joint sample 

(pool) before sequencing. The pools form the basis for libraries, which are used for 

genotyping and quantifying thousands of single nucleotide polymorphisms (SNPs) 

throughout the genome after sequencing (Baird et al. 2008). As this study documents, SNPs 

can be called based on specifying their minimum (allele) count, minimum (sequencing) 

coverage and maximum (sequencing) coverage; influencing the number of SNPs 

incorporated in subsequent analyses. One of the ground-breaking benefits of RAD-Seq-

based sequencing approaches is the ability to genotype species for which no or very few 

prior genomic resources are available as for example in the form of an annotated reference 

genome (Seeb et al. 2011; Ekblom and Galindo, 2011; Rellstab et al. 2013). With the shift in 

time and budgetary investments of genomic sequencing approaches, studying the genomic 

composition of non-model species has become more accessible (Davey et al. 2011; Seeb et 

al. 2011; Ekblom and Galindo, 2011).  

 

2.1.2 RAD-Seq literature review 

 

RAD-Seq studies performed on marine invertebrates since 2013 (reviewed until 15th 

September 2018) were retrieved in Web of Science (WoS) and later Google Scholar (GS) 

with search terms �RADseq�, �RAD-seq�, �RAD�, �ezRAD�, �marine� and �invertebrate�. GS is 

utilised to detect sources which might not be included in traditional databases (Shariff et al. 

2013; Orduña-Malea et al. 2014). While it is possible that individual studies might have been 

undetected by the search terms, Table 2.1 captures the available studies (N=56) as 

exhaustively as possible. An important observation is the large geographical bias of the 
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studies, which leaves a gap for the southern hemisphere, but especially the African continent 

(Table 2.1). Although equal splits across taxa cannot be expected, the review reveals a 

research bias towards bivalve and gastropod molluscs (31%; N=16), Arthropoda (21%; 

N=11) and corals (21%; N=11) as study subjects (Table 2.1). Echinoderms are among the 

understudied taxonomic groups (Table 2.1). There are several studies conducted on two 

species or studies assessing within phylum species complexes (Combosch and Vollmer, 

2015; Forsman et al. 2017; Gutierrez et al. 2017; Bongaerts et al. 2017; Combosch et al. 

2017; McFadden et al. 2017; Johnston et al. 2017; Gagnaire et al. 2018; Simmonds et al. 

2018; Spano et al. 2018), but multi-species studies across different phyla are still rare (but 

see Benestan et al. 2017; Nielsen et al. 2018; Stanley et al. 2018). The literature review 

suggests that until 15th September 2018, no prior study with RAD-Seq data sets of more 

than two phyla for the purpose of exploring population structure and molecular diversity 

could be identified. The present study, through assessing species from three different phyla, 

including an echinoderm, a gastropod mollusc and a crustacean across a large 

environmental gradient, contributes towards extending the genomic knowledge on co-

distributed rocky shore marine invertebrates. 
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Table 2.1. RAD-Seq studies conducted on marine invertebrates since 2013. 

 

Authors Year Species Common name Geographic coverage 

Arthropoda     

Deagle et al.  2015 Euphausia superba Antarctic krill Antarctica 

Benestan et al. 2016 Homarus americanus American lobster North America, Atlantic coast 

Blanco-Bercial and Bucklin  2016 Centropages typicus NN [copepod] North Atlantic Ocean 

Jeffery et al.  2017a Carcinus maenas European green crab eastern North America 

Jeffery et al.  2017b Carcinus maenas European green crab eastern North America 

Forsström, Ahmad, and Vasemägi  2017 Rhithropanopeus harrisii Mud crab Baltic Sea 

Villacorta-Rath et al.  2017 Jasus edwardsii Spiny lobster southeast Australia 

Jeffery et al.  2018 Carcinus maenas European green crab eastern North America 

Wu et al.  2018 Portunus pelagicus Blue swimming crab Indo-West Pacific Ocean 

Dexter et al. 2018 Pseudodiaptomus inopinus Calanoid copepod North America, Pacific coast 

Lima and Willett  2018 Tigriopus californicus Tiger copepod North America, Pacific coast 

Echinodermata     

Tay et al.  2016 Protoreaster nodosus Chocolate chip sea star Singapore 

Paterno et al.  2017 Paracentrotus lividus Purple sea urchin central Mediterranean Sea 

Galaska et al. 2017 Astrotoma agassizii White brooding brittle star Antarctic Polar Front (APF) 

Addison and Kim 2018 
Strongylocentrotus 
droebachiensis, S. pallidus Green sea urchin 

 
North Atlantic Ocean 

Xuereb et al.  2018 Parastichopus californicus Giant California sea cucumber North America, Pacific coast 

Bivalvia & Gastropoda  
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Chu et al.  2014 Nucella lapillus Dog whelk north-western Atlantic Ocean 

Ravinet et al.  2016 Littorina saxatilis Rough periwinkle Sweden, Skagerrak coast 

Kess, Gross, and Harper  2016 Littorina saxatilis Rough periwinkle north-western Atlantic Ocean 

Gleason and Burton  2016 Chlorostoma funebralis Black turban snail North America, California 

Van Wyngaarden et al.  2016 Placopecten magellanicus Atlantic deep-sea scallop north-western Atlantic Ocean 

Miller et al.  2016 Haliotis rubra Blacklip abalone south-eastern Australia 

Lal et al.  2017 Pinctada margaritifera Black-lip pearl oyster Indo-Pacific Ocean 

Gutierrez et al.  2017 
Crassostrea gigas, 

Ostrea edulis 
Pacific oyster, 
European flat oyster 

North Atlantic Ocean 

Vendrami et al.  2017 Pecten maximus Great scallop North Atlantic Ocean 

Kess, Galindo, and Boulding  2018 Littorina saxatilis Rough periwinkle northeast Atlantic Ocean 

Maas et al.  2018 Brachidontes spp. mussels (family Mytilidae) Indonesia 

Sandoval-Castillo et al.  2018 Haliotis laevigata Greenlip abalone south-western Australia 

Gagnaire et al.  2018 
Crassostrea gigas, 
Crassostrea angulata 

Pacific oyster, 
Portuguese oyster 

north-western Pacific Ocean 

Song et al. 2018 Crassostrea gigas Pacific oyster Chinese coast 

Van Wyngaarden et al.  2018 Placopecten magellanicus Atlantic deep-sea scallop north-western Atlantic Ocean 

Lehnert et al.  2018 Placopecten magellanicus Atlantic deep-sea scallop north-western Atlantic Ocean 

Corals (Anthozoa)     

Combosch and Vollmer  2015 Pocillopora (3 species) 
stony corals (family 
Pocilloporidae) 

Tropical Eastern Pacific, 
Central West Pacific 

Everett et al.  2016 Swiftia simplex NN [deep sea coral] North America, Eastern Pacific 

McFadden et al.  2017 Ovabunda spp. soft corals (family Xeniidae) Red Sea 

Johnston et al.  2017 Pocillopora (7 species) 
stony corals (family 
Pocilloporidae) 

Tropical East Pacific, Hawai�i, 

Australia 
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Bongaerts et al.  2017 
Agaricia fragilis, 
Stephanocoenia intersepta 

Fragile Saucer coral, 
Blushing Star coral 

Bermuda, Western Atlantic 

Devlin-Durante and Baums  2017 Acropora palmata Caribbean elkhorn coral Caribbean Sea 

Forsman et al.  2017 
Porites lobata, 
Porites compressa 

Lobe coral, 
Finger coral 

Hawai�i 

Leydet et al.  2018 Oculina patagonica NN [stony coral] Spanish Mediterranean coast 

Hammerman et al.  2018 Agaricia lamarcki Lamarck's sheet coral Caribbean Sea 

Pratlong et al.  2018 Corallium rubrum Red coral Mediterranean Sea 

Simmonds et al.  2018 Porites (12 species) stony corals (family Poritidae) Indo-Pacific Ocean 

Cnidaria: Anthozoa (excluding corals) and Hydrozoa  

Reitzel et al.  2013 Nematostella vectensis Starlet sea anemone 
North America, Pacific and 
Atlantic coast  

Bellis et al. 2016 Aiptasia spp. Sea anemone(s) North America and Hawai�i 

Chang, Orive and Cartwright  2018 Ectopleura larynx Ringed tubularia (Hydrozoa) North Atlantic Ocean 

Spano et al.  2018 Anthothoe spp. sea anemones (Sagartiidae) 

South Atlantic coast,  
South Pacific coast 

Cephalopoda     

Gillanders et al.  2016 Sepia apama Giant Australian cuttlefish southern Australia 

Combosch et al.  2017 Nautilidae (6 species) Nautilus South Pacific Ocean 

Morse et al.  2018 Hapalochlaena maculosa Blue-ringed octopus southern Australia 

Porifera     

Schuster et al.  2018 Porifera (6 species) sponges 
Puerto Rico, Galapagos, 
Panama, Florida, Jamaica 

Tunicata (included despite belonging to Urochordata)  

Gao, Li, and Zhan  2018 Botryllus schlosseri Golden star tunicate Mediterranean Sea 
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Studies across different taxonomic groups  

Toonen et al.  2013 

Cellana talcosa; 

Cryptasterina hystera, 
Cryptasterina pentagona, 
Patiria miniata; 
Porites lobata, P. compressa, 
Pocillopora damicornis; 

[Paracirrhites arcatus]; 
[Stenella longirostris] 

Turtle limpet; 
sea star (family Asterinidae), 
sea star (family Asterinidae), 
Bat star; 
Lobe coral, Finger coral; 
Cauliflower coral; 
[Arc-eye hawkfish]; 
[Spinner dolphin] 

Hawai�i 

Benestan et al.  2017 
Homarus americanus, 
[Salvelinus alpinus] 

American lobster, 
[Arctic Char] 

North America, Atlantic coast 

Nielsen et al.  2018 
Scutellastra granularis, 
Parechinus angulosus 

Granular limpet, 
Cape urchin 

South Africa, west coast 

Stanley et al.  2018 

Homarus americanus, 
Placopecten magellanicus, 
Pandalus borealis, 

Carcinus maenas, 
[Gadus morhua] 

American lobster, 
Atlantic deep-sea scallop, 
Northern shrimp, 
European green crab, 
[Atlantic cod] 

north-western Atlantic Ocean 
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2.1.3 Potential drivers of South African intertidal species population structure  
 

In South Africa, there are a range of possible drivers of molecular patterns of population 

structure, in which the region�s geography and oceanography play an important role (von der 

Heyden, 2009; Teske et al. 2011; Teske et al. 2019). South Africa�s coastline is 

characterised by the cold Benguela Current on the west coast and the warm Agulhas 

Current on the east coast, shaping a natural environmental gradient with high variation in 

sea surface temperature (SST) and levels of primary productivity (Figure 1.2) (Bustamante 

et al. 1995; Griffiths et al. 2010; Smit et al. 2013). Province-specific adaptations have been 

speculated for species including the mudprawn Upogebia africana, the brown mussel Perna 

perna and the sand goby Psammogobius knysnaensis (Teske et al. 2008; 2011; 2019; Zardi 

et al. 2011). Moreover, there is evidence that the thermal gradient characterising the 

coastline strongly contributes towards shaping temperature-defined marine bioregions 

(Figure 1.2), for which an indication is found in the genome of the sand goby P. knysnaensis 

(Teske et al. 2019). The southern African coast and its thermal gradient could potentially 

harbour regionally specific adaptations in marine species. Populations might differ in their 

standing intraspecific genomic diversity and hence in their evolutionary potential to withstand 

changing conditions. Indeed, evidence from partial COI and D-loop sequences (mtDNA) in 

multiple intertidal species suggests that genetic diversity might be lower on the west coast 

relative to the remaining coastline, which raised the hypothesis that the South African 

coastline might have a spatial gradient with molecular diversity increasing from low on the 

west coast and increasing on the south and east coast (Wright et al. 2015). However, 

although more studies on a wider range of species need to be conducted, there are two 

recent studies across the South African coastline, which did not observe neutral genomic 

diversity differentiation in the abalone Haliotis midae (Rhode, Bester-van der Merwe, and 

Roodt-Wilding, 2017) and the sand goby P. knysnaensis (Teske et al. 2019; see section 

2.1.4). 

 

Aside from the role of temperature differences, the influence of paleo-climatic shifts 

associated with drastic sea-level changes in the southern African region during glacial cycles 

(see section 1.6.1) and their influence on population structure have been recognised (Toms 

et al. 2014). The historic contraction and expansion of rocky shore populations in South 

Africa is thought to have impacted their molecular structure (Teske et al. 2011; Toms et al. 

2014), but the details of genetic signatures left by expansions and contractions are not well 

understood (Grant and Bowen, 1998). Aside from the thermal gradient and paleo-

oceanographic influences, contemporary local oceanographic features such as eddies and 

near-shore counter currents have been suggested to hinder larval dispersal between 
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adjacent populations, thus contributing to differentiation in southern Africa (Teske, Bader and 

Golla, 2015; Mertens, Treml and von der Heyden, 2018). Across many molecular studies of 

population structure, life history traits, specifically reproductive strategies and larval 

characteristics driving potential dispersal or retention, have been discussed to influence 

biogeographic population dynamics in the last two decades (Teske et al. 2007; Vähä et al. 

2007; Sherman, Hunt and Ayre, 2008; Ross et al. 2009; von der Heyden, 2009; Weersing 

and Toonen, 2009; Kelly and Palumbi, 2010; Sivasundar and Palumbi, 2010; Selkoe and 

Toonen, 2011; Teske et al. 2011; Freamo et al. 2011; Bowen et al. 2016; Selkoe et al. 

2016). However, it is far from well-established how larval dynamics shape or contribute to 

genomic population structure (Weersing and Toonen, 2009; Selkoe and Toonen, 2011; 

Faubry and Barber, 2012; Treml et al. 2012; Giangrande, Gambi and Gravina, 2017). But 

pioneering work on factors such as uncoupling between larval phase and settlement and 

post-settlement biotic and abiotic mechanisms is paving the way to hopefully disentangle the 

impact better in the future (Porri et al. 2006; Pineda et al. 2010). 

 

Reviews on the marine biogeography of South Africa reveal a breadth of genetic variation, 

including the detection of cryptic species, and areas of reduced gene flow, termed genetic 

breaks or splits (see section 1.5.3), in certain species between the coastal regions (von der 

Heyden, 2009; Teske et al. 2011). Improving the understanding of the driving forces of 

marine population structure in the region is a field of ongoing development and the 

possibilities of RAD-Seq and differentiation between selectively neutral (this chapter) and 

outlier loci (Chapter III) provide new tools to assess molecular patterns in this context. 

Overall, neutral genomic variation, the focus of this chapter, is known to be shaped by a 

range of factors encompassing natural selection, random drift, population size and genetic 

connectivity between populations (Frankham, Briscoe, and Ballou, 2002; Gaggiotti et al. 

2009; Bragg et al. 2015; Gómez-Fernández, Alcocer, and Matesanz, 2016).
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Table 2.2. List of study species, including life history traits and shore height preference. 

Life history Common 
name 

Scientific name Phylum Descriptor Fertilisation PLD* Shore 
height 

Mobility 
during  
low tide 

Reference 

Brooder Shore 
crab 

Cyclograpsus 
punctatus 

Arthropoda H. Milne-
Edwards, 
1853 

Brooding, 
then pelagic 
larvae 

14 
days 

High shore mobile Wright et al. 2015; 
Branch et al. 2017 

Broadcast 
spawner 

Granular 
limpet 

Scutellastra 
granularis 

Mollusca Linnaeus, 
1758 

Spawning 7-14 
days 

High shore functionally 
sessile 

Kilburn and Rippey, 
1982; Kay, 2002; 
Branch et al. 2017 

Broadcast 
spawner 

Cape 
urchin 

Parechinus 
angulosus 

Echinodermata Leske, 1778 Spawning ~ 50 
days 

Rock pools 
from mid-
shore to 
low shore 

functionally 
sessile 

Cram, 1971; 
Greenwood, 1975; 
Branch et al. 2017 

 

Table 2.3. Previous findings on population differentiation, nucleotide diversity and suggested lineages (COI; cytochrome c oxidase subunit I). 

Species  Markers Population  
structure  
(pairwise FST) 

Global  
FST (!ST) 

 Nucleotide  
diversity (") 

Average 
Ø " 

Sample region 
South Africa 

Suggested  
lineages 

Signal for IBD 
(isolation-by- 
distance) 

Reference 

C. punctatus COI 0.15-0.91 0.49  0.002-0.018 0.009 west, south, east - ! Wright et al. 2015 

S. granularis COI 0-0.473 0.023  NA NA west, south, east west & east 
lineage** 

- Mmonwa et al. 2015 

S. granularis COI 0-0.05 0.00  0.0036-0.0052 0.0043 west coast - - Mertens et al. 2018 

S. granularis SNPs 0.008-0.013 NA  0.009-0.012 0.011 west coast - - Nielsen et al. 2018 

P. angulosus COI, 
SpREJ9 
(nDNA) 

0-0.87 
0-0.71 

NA 
 

 0.007-0.069 0.022 west, south,  
south-east 

west coast;  
south/east 
coast*** 

- Muller et al. 2012 

P. angulosus COI 0.15-0.62 0.32  0.0031-0.0163 0.0098 west coast - ! Mertens et al. 2018 

P. angulosus SNPs 0.006-0.019 NA  0.006-0.011 0.009 west coast - - Nielsen et al. 2018 

NA = not available; *pelagic larval duration, **phylogeographic break along the central South Coast, ***phylogeographic break in the area of Cape Point
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2.1.4 Comparisons between traditional markers and SNPs 

 

Molecular patterns obtained from mitochondrial DNA (mtDNA) are thought to indicate 

species past demographic history on a larger evolutionary scale (Avise, 2000; Dudgeon et 

al. 2012; von der Heyden, 2017). There are significant differences between traditional 

markers such as mtDNA compared to single nucleotide polymorphisms markers, which can 

indicate, on a much larger scale than traditional markers, contemporary population structure 

and genomic variation as well as potential adaptive loci (Morin, Luikart and Wayne, 2004; 

Allendorf, Hohenlohe and Luikart, 2010; Funk et al. 2012; Bowen et al. 2014; von der 

Heyden, 2017). Expectedly, findings derived from traditional markers might differ compared 

to SNP marker findings (for the study species see Table 2.3 and section 1.7). Mito-nuclear 

discordance identified between mtDNA and SNP marker findings can be influenced by 

factors including differences in mutation rates and sample sizes, as well as adaptive mtDNA 

introgression and possible sex-biased demographic history resulting in asymmetries 

between male and female effective population size (Toews and Brelsford, 2012). Studies on 

other marine invertebrates have documented both discordance and congruence across 

different marker types for patterns of population differentiation and molecular diversity. For 

instance, studies undertaken with traditional markers (mtDNA, microsatellites and allozymes) 

on the Atlantic dogwinkle Nucella lapillus in the North Atlantic reported weak or no genetic 

population structure (Chu et al. 2014). In contrast, SNP-based findings (and the identification 

of putatively adaptive loci) show strong evidence for a split in N. lapillus populations into 

southern and northern clades in the north western Atlantic (Chu et al. 2014). An example for 

congruence across molecular markers has been reported for brittle star Astrotoma agassizii 

populations across the Antarctic Polar Front (APF), where findings from both mitochondrial 

and nuclear DNA confirm that the APF constitutes a strong, but not insurmountable barrier 

between A. agassizii populations (Galaska et al. 2017). However, evidence from traditional 

and genomic markers might also both confirm the absence of population structure, as found 

in the abalone Haliotis rubra (Miller et al. 2016). Overall, congruence across molecular 

patterns obtained with traditional and SNP markers could also be shown in the sea star 

Protoreaster nodosus (Tay et al. 2016), the sea cucumber Parastichopus californicus 

(Xuereb et al. 2018), the mud crab Rhithropanopeus harrisii (Forsström, Ahmad and 

Vasemägi, 2017) and in Planes spp. crabs (Pfaller et al. 2019). In summary, these examples 

demonstrate that a wide spectrum of studies exists for marine invertebrates where past and 

contemporary marker patterns may either be congruent or discordant. Thus, it is difficult to 

predict in advance whether single marker findings are possibly reflected in SNP-based 

patterns. 
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2.1.5 Expectations based on previous findings 

 

The goal of this chapter is to test the hypothesis of spatial selectively neutral genomic 

structure and potential differences in molecular diversity as possible result of environmental 

differences across the South African coastal regions with a RAD-Seq approach incorporating 

pooled population samples of three rocky shore invertebrates (Table 2.2): the Cape urchin 

(Parechinus angulosus, low to mid-intertidal zone), the granular limpet (Scutellastra 

granularis, high shore) and the shore crab (Cyclograpsus punctatus, mid to high shore) (see 

section 1.7). Selecting species which represent three important taxonomic groups in the 

intertidal community (multi-species approach) potentially allows insights into community 

dynamics. The aim is to analyse selectively neutral SNPs for levels of neutral genomic 

diversity (Tajima�s pi and Watterson�s theta) and potential spatial variation thereof. Further, 

ratios of total versus private (unique to a certain population) SNPs are investigated for 

possible differentiation between sampling locations. Moreover, the obtained SNPs are 

analysed for putatively neutral population structure based on pairwise FST values and cluster 

analyses (BAPS, fastSTRUCTURE). 

 

Lower genetic diversity was measured with the COI and D-loop markers in several rocky 

shore species on the South African west coast compared to the remaining coastline (Wright 

et al. 2015), which gave rise to the preliminary hypothesis that molecular variation might 

follow a geographic gradient with increasing genetic diversity from the South African west to 

the east coast (Wright et al. 2015). However, recent genomic marker studies do not report 

strong differences in selectively neutral genomic diversity across sampled populations 

(Rhode, Bester-van der Merwe, and Roodt-Wilding, 2017; Nielsen et al. 2018; Teske et al. 

2019). If evidence for spatial molecular variation is detected in this study, it might be 

expected to be comparatively low (Hypothesis I). In this instance, �low� could be defined as 

observing shallow (no significant FST values) levels of genomic variation. Although only a 

limited number of genetic studies suggests the occurrence of a geographic molecular 

diversity gradient on the South African coastline, this study contributes to testing whether 

such a gradient exists. 

 

Despite partial COI and D-loop (mtDNA) and nuclear markers indicating strong population 

differentiation in several marine South African species (particularly for the study species; see 

Table 2.3; section 1.7), recent genomic studies with SNP markers did not observe 

pronounced evidence of neutral population structure (Table 2.3; see section 2.1.4) (Rhode, 

Bester-van der Merwe, and Roodt-Wilding, 2017; Nielsen et al. 2018; Teske et al. 2019). 

This suggests that patterns detected with mtDNA or nuclear markers do not necessarily 
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translate to SNP marker population structure due to marker system differences. It can be 

hypothesised that despite the evidence for population structure in the study species with the 

COI marker, population structure in neutral SNP markers across the field sites might be low 

(no geographically separated clusters) (Hypothesis II). Finally, the study species differ in 

biological factors such as inter-phyletic differences, reproductive modes and dispersal traits 

(Table 2.2), which may lead to possibly varying interspecific patterns of genomic diversity 

and population structure (Hypothesis III). Overall, this study contributes to a growing number 

of genomic findings of eukaryotic South African marine species (Picone, Rhode, and Roodt-

Wilding, 2015; Rhode, Bester-van der Merwe, and Roodt-Wilding, 2017; Spano et al. 2018; 

Nielsen et al. 2018; Mullins et al. 2018; Teske et al. 2019; Phair et al. 2019). 

 

2.2 Materials and Methods 

2.2.1 Sample collection 

 

Field sites were selected to span three South African coastal regions with a wide array of 

environmental conditions, particularly temperature (Figure 2.1). Covering ~1,800 km of the 

coastline, two sites from the west coast (Port Nolloth/Jacob�s Bay, Sea Point), south coast 

(Cape Agulhas, Knysna) and east coast (Cape St. Francis, Haga Haga) were chosen. Field 

collections took place from April to October 2015 and included six field sites per species 

(Scutellastra granularis, Parechinus angulosus, Cyclograpsus punctatus). The distribution of 

C. punctatus does not extend to Port Nolloth, with Jacob�s Bay the most northern site on the 

west coast for which animals could be obtained. With 120 samples overall per site, a total of 

720 samples were collected for DNA extraction. Forty individuals per species and location 

were selected to counter limitations associated with small numbers of individuals forming the 

foundation of pooled population samples (Pool-Seq) (Futschik and Schlötterer, 2010) and to 

ensure comparability with a closely related study (Nielsen et al. 2018). In this study, �pooled� 

always refers to joint DNA samples (�pools�) of multiple individuals (Pool-Seq; see section 

2.2.2). Animals occupying rock pools at the time of collection were not sampled for this 

study. Limpets (S. granularis) were carefully detached from rock surfaces with a spatula, 

urchins (P. angulosus) were retrieved from approximately the same water depth at all sites 

(~30 � 50 cm) and crabs (C. punctatus) were caught manually from under rocks and 

boulders. Sex has only been recorded for the shore crabs collected at a later stage for 

Chapter IV, as equimolar amounts of DNA were combined into a pooled sample (Pool-Seq; 

see section 2.2.2). Sampling has been conducted at the lowest point of low tide and 

independent of body size and covered around 200 meters of each coastal site. Samples 

were preserved in ethanol (100%). 
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Figure 2.1. Map of the South African coastline showing the sea surface temperature gradient 
(December 2013) and sampling locations: Port Nolloth (PN), Jacob�s Bay (JC) (C. punctatus only), 

Sea Point (SP), Cape Agulhas (CA), Knysna (KY), Cape St. Francis (CF) and Haga Haga (HH). 
Source: NASA, ID: 30487, http://svs.gsfc.nasa.gov/30487. 

 
2.2.2 DNA extraction and NGS sequencing 
 
Genomic DNA was extracted from equally sized pieces of sample tissue with DNeasy tissue 

extraction kits (Qiagen), according to the manufacturer�s protocol. Extracted DNA stems 

from tissue from muscle (C. punctatus), foot (S. granularis) and gonads (P. angulosus). The 

choice of tissue minimises the risk of contamination from symbionts or parasites. DNA 

concentration of the extracted samples was determined via Qubit fluorometry (Qubit Quant 

iT dsDNA HS Assay system at Central Analytical Facilities (CAF) of Stellenbosch 

University). The 40 individual DNA extractions were pooled per species and per location to a 

final concentration per pool of 2000 ng/#l (C. punctatus), 3000 ng/#l (S. granularis) and 2500 

ng/#l (P. angulosus), mirroring preceding pool concentrations for the same species (Nielsen, 

2017a). One pooled sample per species per site (18 pools overall) were obtained after the 

pooling protocol. Individuals were not labelled, as this technology was not available yet at 

the time of DNA sample processing. The pools were freeze-dried and shipped to the 

Genetics Core Facility (GCF) at the Hawai'i Institute of Marine Biology. The pools served as 

basis for library preparation (Knapp et al. 2016) and subsequent v3 2 × 300 PE Mi-Seq 

Illumina sequencing, following the ezRAD method protocol (Toonen et al. 2013). The pooled 

DNA sample for P. angulosus from Cape Agulhas could not be included in the study. 

 

2.2.3 Statistical analysis 

 

As pipelines that could analyse pooled samples of non-labelled individuals were not 

available at the time this study was carried out, analyses were conducted, in a stepwise 
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manner, carefully testing a variety of available software tools at each stage. This approach 

also allows for greater control of settings and parameters. Sequenced pooled reads from the 

Illumina Mi-Seq are from here on referred to as �reads�. In the first step, quality metrics of 

the obtained paired-end reads, forward and reverse, were calculated with FASTQC 

(Andrews, 2010). Trimming and removing adapter sequences was executed with 

TrimGalore! (Krueger, 2015). Reads were trimmed twice, with the phred quality score 

threshold of 25 (q25) for creating the assemblies and with the phred score quality threshold 

of 20 (q20) for downstream analyses (Figure 2.2). In the absence of an assembled genome, 

a draft genome may be assembled de novo from the sequenced reads or the reads can be 

mapped to a closely related species with an available genome (Rellstab et al. 2013; da 

Fonseca et al. 2016). The intricacies of assembling a genome or partial genome without a 

reference have led to a wide range of assembling algorithms, strategies and quality 

parameters. Importantly, the quality of the assembled genome strongly influences 

downstream analyses of the entire dataset (da Fonseca et al. 2016), requiring cautious 

choice of programmes and their parameters. 

 

 
Figure 2.2. Software tools used to create the assemblies (left) and to process the reads (right). 

 

This study tests three assembly programs that allow for pooled data, SPAdes v.3.11.1 

(Bankevich et al. 2012), ABySS v.1.9.0 (Simpson et al. 2009) and Rainbow v.2.0.4 (Chong 

et al. 2012) to obtain the highest quality draft genome for each species. Mapping to closely 

related species with annotated genomes was not performed, as the available genomic 

resources differ between the study species and using a consistent de novo assembly 
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approach across all species renders the results more comparable (Toonen et al. 2011; 

Bowen et al. 2014; Selkoe et al. 2016). Comparison of the obtained assemblies via Quast 

reports (Quast Genome Assembly Quality, Galaxy v.4.1.1, www.usegalaxy.org) led to 

utilising SPAdes for the de novo assemblies of the three species (Table 2.4). The 

assemblies� k-mer length, which describes all possible sub-sequences with length k from a 

read, were tested with the assistance of KmerGenie v.1.7016 (Chikhi and Medvedev, 2014) 

to optimise the draft assemblies (Davey et al. 2013). According to the program, the 

estimated k-mer lengths range from 19 (C. punctatus) to 21 (S. granularis) and 111 (P. 

angulosus). Basing an assembly on a computationally suggested k-mer value alone can lead 

to suboptimal assemblies and in two instances (S. granularis, P. angulosus) SPAdes failed 

to create assemblies with low range k-mer values. Thereby multiple SPAdes assemblies with 

different k-mer values were created per species and rated according to their Quast-reported 

total assembly length, contig N50 (definition follows) and the size of the largest contig. This 

process led to assemblies, which were created by SPAdes with the k-mer range 41-61-81. 

The contig N50 is an assembly quality metric describing a weighted median value of the 

distribution of contig lengths in the assembly, as described by the International Human 

Genome Sequencing Consortium in 2001. 

 

The second set of reads trimmed in TrimGalore (q20) were uploaded to the Galaxy platform 

(http://usegalaxy.org) for grooming in FastQC Groomer (v.1.1.1) to ensure correct formatting 

of the sequences (Blankenberg et al. 2010). Afterwards the Burrows-Wheeler Aligner (BWA-

MEM algorithm) was applied to map the groomed and trimmed reads against the assembled 

de novo reference (Table 2.4) (Li, 2013). Post-processing read alignments from BWA was 

achieved with SAMtools v.1.3 (Li et al. 2009; Li, 2011). Essential steps performed in 

SAMtools included removing potentially ambiguously mapped reads and the subsampling of 

reads to the minimum available pool size per species subset (Table 2.4). The purpose of the 

latter step is to avoid over-representing populations in the analyses due to a higher number 

of available reads (Cárcer et al. 2011). Concluding the SAMtools stage, individual pileups 

(maximum depth 10,000) and meta-pileups (maximum depth 1,000) of reads with quality 

score 20 were created per species for further analyses. 
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Table 2.4. Amount of q20 reads, non-ambiguously mapped reads and subsampled  
non-ambiguously mapped reads, shown by species and location. 

 

C. punctatus 

 #q20reads #mapped reads #subsampled 

JC 2,479,596 1,691,878 1,522,491 

SP 5,338,886 3,735,625 1,529,437 

CA 5,330,090 3,618,472 1,522,505 

KY 2,244,068 1,538,767 1,538,767 

CF 2,507,078 1,660,041 1,527,144 

HH 9,256,962 6,335,549 1,518,232 

S. granularis 

 #q20reads #mapped reads #subsampled 

PN 4,864,068 3,154,567 1,198,597 

SP 6,050,940 4,034,381 1,211,710 

CA 1,761,766 1,223,489 1,223,489 

KY 6,238,706 4,250,166 1,187,725 

CF 5,386,378 3,795,305 1,214,248 

HH 2,344,056 1,624,923 1,217,982 

P. angulosus 

 #q20reads #mapped reads #subsampled 

PN 4,526,062 3,663,773 2,599,470 

SP 3,561,922 2,640,735 2,614,544 

KY 35,575,174 28,996,029 2,609,508 

CF 4,576,674 2,614,279 2,614,279 

HH 6,331,076 3,469,651 2,604,195 

 

To allow for downstream compatibility, the meta-pileup had to be created using SAMtools 

v.0.1.18 instead of v.1.3, which was used for every other step requiring SAMtools. The 

difference concerns merely the data formatting and does not affect the reads themselves. 

The calculations described in the following were conducted with PoPoolation v.1.2.2 and 

PoPoolation2 v.1201 (Kofler et al. 2011a; Kofler et al. 2011b) initially using 12 different 

scenarios overall (see Table S2.1, Appendix) to document which parameters in terms of 

minimum (allele) count, minimum (sequencing) coverage and maximum (sequencing) 

coverage yield which results. Large SNP window sizes, detecting larger numbers of SNPs, 

are theoretically expected to lead to more false positives, whereas smaller window sizes, 

detecting smaller numbers of SNPs, may increase the risk for false negative findings 

(Beissinger et al. 2015; O�Leary et al. 2018). However, additional testing to document the 

Stellenbosch University https://scholar.sun.ac.za



76 
 

impact of SNP parameter variety is at present rarely performed or published in studies, 

which would provide a reference frame for novel genomic findings. Testing the SNP data 

with 12 different SNP calling parameters indicates that total numbers of SNPs are higher 

with wide (less stringent) parameters for minimum allele count and maximum sequencing 

coverage and conversely lower with stringent parameters (see Table S2.1, Appendix). For 

this study, the selected parameters were set in the middle, which is neither on the broad nor 

the narrow end of the spectrum (scenario 6). For both PoPoolation and PoPoolation2, 

scenario 6 utilises minimum (allele) count 4, minimum (sequencing) coverage 10 and 

maximum (sequencing) coverage 200. 

 

To assess selectively neutral population patterns over patterns potentially affected by outlier 

loci, detected outliers (see Chapter III) were removed manually from the overall dataset and 

calculations conducted with the selectively neutral part of the overall genomic dataset. Two 

measures of nucleotide diversity, Tajima�s pi (") (Nei and Li, 1979) and Watterson�s theta 

($w) (Watterson, 1975), were computed from the individual pileups with PoPoolation (Kofler 

et al. 2011a). The total number of SNPs and the number of private SNPs, which are 

geographically limited to a specific population and are hence considered �private�, were 

obtained with PoPoolation2 from the meta-pileup. Private SNPs were also calculated as a 

percentage of the total number of SNPs per population for comparative purposes. The 

presence of private SNPs in populations signals genomic markers which are geographically 

distinct, which may be associated with localised evolutionary and environmental processes. 

Among the possible evolutionary processes, gene flow and genetic drift are assumed to 

have a higher impact on the occurrence of private SNPs over mutation and selection 

(Hutchison and Templeton, 1999). Moreover, the spatial variation of the proportion of private 

SNPs in relation to the overall number of SNPs can indicate populations with a higher 

degree of molecular geographic distinctness possibly associated with a certain degree of 

demographic isolation (Hutchison and Templeton, 1999). Known geographic uniqueness of 

species populations relative to others is a valuable foundation for future research and can 

aid decisions regarding spatial prioritisation in conservation planning processes (von der 

Heyden, 2017). Finally, PoPoolation2 and the meta-pileup were utilised to estimate the 

fixation index (FST) values for each pairwise comparison with a sliding window approach, 

exploring potential divergence between populations (Kofler et al. 2011b). As part of 

Popoolation2, Fisher�s exact test was used to estimate the significance of allele frequency 

differences between populations (Fisher, 1922; Kofler et al. 2011b). 

 

Potential clustering among the populations was tested with BAPS v.5.4 (Bayesian Analysis 

of Population Structure) group mixture (clustering of groups of individuals) analysis (P. 
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angulosus K=1-5; S. granularis K=1-6; C. punctatus K=1-6) (Corander and Marttinen, 2006; 

Corander et al. 2006). For the instance that the suggested optimal partition equals the 

number of sampled species populations, a potentially higher number of clusters was tested 

with a vector approach (5 10 15). fastSTRUCTURE v1.0 was utilised for the same purpose, 

testing K=1-5 for P. angulosus and K=1-6 for S. granularis and C. punctatus (Raj, 2014) on 

the selectively neutral dataset with the prior logistic model and seed parameter 100. 

 

2.3 Results 

2.3.1 Assembly metrics 

 

Three assembly programs were used to create de novo assemblies (SPAdes v.3.11.1, 

ABySS v.1.9.0 and Rainbow v.2.0.4), which were compared with Quast reports (Gurevich, 

2013) to assess genome assembly quality (Table 2.5a-c). The SPAdes assemblies surpass 

the results of the other two applications in values including total length, N50 and the size of 

the largest contig. The total length of the SPAdes assembly of the Cape urchin P. angulosus 

(416 mega base pairs, Mbp) reaches around half of the documented genome assembly 

length of the purple urchin Strongylocentrotus purpuratus (814 Mbp) (Sodergren et al. 2006). 

Further, total sequence length in the granular limpet S. granularis assembly (159 Mbp) is 

smaller compared to the genome assembly of the owl limpet Lottia gigantea (360 Mbp) (JGI, 

2012). The largest difference in total sequence length between assemblies is found in the 

shore crab C. punctatus (301 Mbp) in comparison to the (more distantly related) Chinese 

mitten crab Eriocheir sinensis (1.12 giga base pairs, Gbp; Song et al. 2016; 1.55 Gbp, 

IOCAS, 2018). The total obtained assembly lengths notably differ from previous de novo 

assemblies of two of the species (Nielsen et al. 2018; Table 2.6). Constructing de novo 

assemblies is a field of ongoing developments, thereby differences across assembly 

program outputs demonstrate the value of testing multiple algorithms. 
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Table 2.5a. Quast metrics from assemblies created for C. punctatus in SPAdes, ABySS and Rainbow. 
 

Assembly SPAdes ABySS Rainbow 

# contigs (>= 0 bp) 713,932 4,424,788 192,205 

# contigs (>= 1000 bp) 81,505 13,064 45 

Total length (>= 0 bp) 423,811,236 780,855,861 37,692,017 

Total length (>= 1000 bp) 116,609,349 16,016,864 53,358 

# contigs 354,486 162,024 867 

Largest contig 23,947 4,537 1,773 

Total length 301,060,503 112,560,268 550,936 

GC (%) 42.85 43 44 

N50 863 675 597 

N75 639 572 536 

L50 118,049 63,784 356 

L75 220,292 109,255 601 

# N's per 100 kbp 0 0 0 

 
 
Table 2.5b. Quast metrics from assemblies created for S. granularis in SPAdes, ABySS and Rainbow. 
 

Assembly SPAdes ABySS Rainbow 

# contigs (>= 0 bp) 559,934 2,882,823 684,970 

# contigs (>= 1000 bp) 37,975 686 34 

Total length (>= 0 bp) 254,301,125 641,592,484 98,651,348 

Total length (>= 1000 bp) 51,345,516 782,835 42,935 

# contigs 200,797 50,253 539 

Largest contig 9,127 2,904 2,141 

Total length 159,310,926 30,540,454 357,771 

GC (%) 36.53 37 42 

N50 790 586 631 

N75 606 534 549 

L50 69,908 21,765 216 

L75 128,009 35,454 368 

# N's per 100 kbp 0 0 0 
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Table 2.5c. Quast metrics from assemblies created for P. angulosus in SPAdes, ABySS and Rainbow. 
 

Assembly SPAdes ABySS Rainbow 

# contigs (>= 0 bp) 368,464 19,703,262 439,765 

# contigs (>= 1000 bp) 145,763 6,322 384 

Total length (>= 0 bp) 466,183,889 1,728,124,915 100,965,369 

Total length (>= 1000 bp) 359,424,766 8,141,286 450,683 

# contigs 227,992 79,185 7,493 

Largest contig 28,426 4,937 1,996 

Total length 416,409,222 54,519,890 5,005,584 

GC (%) 35.6 36 36 

N50 2,471 659 644 

N75 1,385 563 566 

L50 49,211 30,925 3,069 

L75 105,757 53,415 5,140 

# N's per 100 kbp 0 0 0 

 
 

Table 2.6. Total assembly length shown per species, indicating the total number of bases in the 
SPAdes assemblies together with the nearest available reference genome assembly. 

 
Species Nielsen et al. 

2018 

This study nearest 

reference 

Source 

 

C. punctatus 

 

- 

 

301 Mbp 

 

1.12 Gbp 

1.55 Gbp 

 

E. sinensis  

(Song et al. 2016; 

IOCAS, 2018) 

S. granularis 180 Mbp 159 Mbp 360 Mbp L. gigantea  

(JGI, 2012) 

P. angulosus 200 Mbp 416 Mbp 814 Mbp S. purpuratus 

(Sodergren et al. 2006) 

 

 

2.3.2 Total and private SNPs 

 

The number of total SNPs and private SNPs as calculated by PoPoolation2, are presented in 

Figure 2.3-4 (see also Appendix S2.5-7). The total number of SNPs ranges between 50,000 

to 60,000 in P. angulosus and S. granularis, with an exception of the most western 

population (Port Nolloth) in P. angulosus, which returned over 100,000 SNPs. Substantially 

more SNPs are found in C. punctatus, ranging from 120,000 to almost 150,000. The number 
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of private SNPs amounts to 1-2 % in S. granularis and C. punctatus, but is substantially 

higher in P. angulosus, ranging from 5-9% (Table 2.7). There is overall no geographical 

variation across SNP numbers, the exception being, as mentioned above, a higher number 

of total and private SNPs found in the urchin P. angulosus in Port Nolloth.  

 

Figure 2.3. Number of total SNPs in C. punctatus (A), S. granularis (B) and P. angulosus (C).  
Location abbreviations are listed in Figure 2.1. 
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Figure 2.4. Number of private SNPs in C. punctatus (A), S. granularis (B) and P. angulosus (C).  
Location abbreviations are listed in Figure 2.1. 

 
 

Table 2.7. Number of private SNPs shown as percentage by species and location. 
 

Location C. punctatus S. granularis P. angulosus 

Port Nolloth / Jacob�s Bay 0.7% 1.8% 7.6% 

Sea Point 0.9% 1.7% 7.6% 

Cape Agulhas 1.1% 0.8% - 

Knysna 0.8% 0.8% 4.7% 

Cape St. Francis 1.0% 0.8% 9.1% 

Haga Haga 0.9% 1.4% 5.5% 

 
 

2.3.3 Nucleotide diversity (Tajima�s ") and Watterson�s theta ($w) 
 
Nucleotide diversity (Tajima�s pi (") and Watterson�s theta ($w)) was estimated by 

PoPoolation based on the individual pileups (Table 2.8; see Table S2.2-4, Appendix). Values 

of Tajima�s " range from 0.010-0.012 (C. punctatus) to 0.009-0.010 (S. granularis) and 

0.009-0.015 (P. angulosus). Watterson�s theta ($w) ranges from 0.011-0.013 (C. punctatus) 

to 0.009-0.011 (S. granularis) and 0.010-0.017 (P. angulosus). There was no significant 

difference in diversity values between sampling sites for the granular limpet and the shore 

crab. For the Cape urchin, a paired-samples t-test was conducted to compare the values of 

" and $w across populations. There is a significant difference in the scores for " (M= 0.011, 

SD= 0.0025) and $w (M= 0.012, SD= 0.0029); t(4)= 2.776, p = 0.005. 
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Table 2.8. Number of SNPs, Tajima�s " and Watterson�s $w values as estimated in PoPoolation. The 
last column indicates the average values across populations. Location abbreviations are listed in 

Figure 2.1. 
 

C. punctatus JC SP CA KY CF HH Ø average 

# SNPs 21,257,499 31,319,803 36,545,844 27,545,887 32,910,660 29,735,374 29,885,845 

pi 0.010 0.010 0.012 0.010 0.011 0.010 0.011 

theta 0.011 0.011 0.013 0.011 0.011 0.011 0.011 

S. granularis PN SP CA KY CF HH  

# SNPs 5,951,362 9,101,835 7,169,491 4,238,802 5,790,902 5,096,943 6,224,889 

pi 0.010 0.010 0.010 0.009 0.009 0.009 0.010 

theta 0.010 0.011 0.010 0.009 0.010 0.010 0.010 

P. angulosus PN SP  - KY CF HH  

# SNPs 122,319,835 62,779,686  71,632,295 63,025,279 62,558,141 76,463,047 

pi 0.015 0.011  0.009 0.010 0.009 0.011 

theta 0.017 0.012   0.010 0.012 0.010 0.012 

 
 

2.3.4 Pairwise FST values 

 

The estimated pairwise FST values range from 0.039-0.089 (P. angulosus), 0.044-0.066 (S. 

granularis) and 0.043-0.055 (C. punctatus) (Table 2.9; see Appendix S2.8-10). According to 

Fisher�s exact test, there are no significant differences between the sampled populations in 

the three species. 
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Table 2.9. FST as estimated in PoPoolation2 (scenario 6) incorporating 14,392 (A), 5,440 (B) and 
4,235 (C) SNPs. Location abbreviations listed in Figure 2.1. 

 

 
 

2.3.5 Cluster analyses 
 

The number of estimated potential clusters differs between BAPS and fastSTRUCTURE 

(Table 2.10). The optimal partitions estimated in BAPS range from 4 (S. granularis, P. 

angulosus) to 5 (C. punctatus) and in fastSTRUCTURE from 1 (C. punctatus, P. angulosus) 

to 3 (S. granularis). Importantly, all partitions are present at all populations and the 

suggested clusters do not follow any geographical pattern (see Appendix, Figure S2.1-2). 

 

Table 2.10. Number of estimated population clusters per species and application. 
 

  C. punctatus S. granularis P. angulosus 

BAPS 5 4 4 

BAPS Log (ml)* -2076450.8497 -475298.4289 -187512.439 

fastSTRUCTURE 1 3 1 
            *log (marginal likelihood) of optimal partition 

C. punctatus (A) JC SP CA KY CF HH 

JC -           

SP 0.049 -         

CA 0.050 0.045 -       

KY 0.050 0.044 0.044 -     

CF 0.052 0.049 0.043 0.046 -   

HH 0.055 0.052 0.048 0.049 0.046 - 

S. granularis (B) PN SP CA KY CF HH 

PN -      

SP 0.051 -     

CA 0.061 0.055 -    

KY 0.061 0.059 0.051 -   

CF 0.061 0.055 0.044 0.050 -  

HH 0.066 0.063 0.053 0.053 0.051 - 

P. angulosus (C) PN SP  - KY CF HH 

PN -           

SP 0.066 -         

KY 0.074 0.049 - -     

CF 0.089 0.061 - 0.053 -   

HH 0.082 0.055 - 0.039 0.059 - 
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Table 2.11. Findings from mtDNA and SNPs: study species pairwise FST values, nucleotide diversity, suggested lineages and potential clusters. 

 

Species Markers Population  
structure  
(pairwise 

FST) 

Global  
FST 

(!ST) 

 Nucleotide  
diversity (") 

Average 
Ø " 

Sample region 
South  
Africa* 

Suggested  
lineages  
based on 
mt/nDNA 

Signal 
for  
IBD 

Clusters 
(BAPS, 

fast- 
structure) 

Reference 

C. punctatus COI** 0.15-0.91 0.49  0.002-0.018 0.009 west, south, 
east (11) 

- ! - Wright et al. 2015 

C. punctatus SNPs 0.043-0.055 NA  0.010-0.012 0.011 west, south, 
east (6) 

 NA! 5/1 This study 

S. granularis COI 0-0.473 0.023  NA 0.09078 west, south, 
east (16) 

west & 
east 

lineage*** 

- - Mmonwa et al. 2015, 
Mmonwa, 2013 

S. granularis COI 0-0.05 0.00  0.0036-
0.0052 

0.0043 west coast (7) - - - Mertens et al. 2018 

S. granularis SNPs 0.008-0.013 NA  0.009-0.012 0.011 west coast (6) - - - Nielsen et al. 2018 

S. granularis SNPs 0.044-0.066 NA  0.009-0.010 0.010 west, south, 
east (6) 

  4/3 This study 

P. angulosus COI, 
SpREJ9 
(nDNA) 

0-0.87 
0-0.71 

NA 
 

 0.007-0.069 0.022 west, south,  
south-east 

(18) 

west 
coast;  

south/east 
coast**** 

- - Muller et al. 2012 

P. angulosus COI 0.15-0.62 0.32  0.0031-
0.0163 

0.0098 west coast (6) - ! - Mertens et al. 2018 

P. angulosus SNPs 0.006-0.019 NA  0.006-0.011 0.009 west coast (6) - - - Nielsen et al. 2018 

P. angulosus SNPs 0.039-0.089 NA  0.009-0.015 0.011 west, south, 
east (5) 

 NA 4/1 This study 

IBD = isolation-by-distance; NA = not available; *number of sampled populations shown in brackets, ** cytochrome c oxidase subunit I, ***phylogeographic 
break along the central South Coast, ****phylogeographic break in the area of Cape Point. 
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2.4 Discussion 

 

 The focus of this chapter is to investigate the following hypotheses (see section 2.1.6): 1) 

Based on past genomic studies, neutral genomic diversity might not show an east-west 

gradient and appear rather uniform across populations, 2) neutral genomic population 

structure (if detected) might not indicate geographically separated clusters and 3) findings 

are expected to display possible interspecific differences in levels of genomic diversity and 

population structure based on inter-phyletic differences. 

 

2.4.1 Genomic diversity 

 

The intraspecific number of total SNPs does not vary greatly across the sampled populations 

(~50,000), but there are two notable exceptions. While less SNPs relative to the remaining 

populations are detected in the shore crab C. punctatus in Jacob�s Bay, the opposite is true 

for the urchin P. angulosus, which shows a roughly doubled total SNP count (>100,000) in 

Port Nolloth (both west coast sites) (Figure 2.3). The number of private SNPs, referring to 

single nucleotide polymorphisms which are unique to the sampled population, ranges 

without an apparent spatial pattern between 500-1,000 per population (1-2% of the total 

SNPs) in C. punctatus and S. granularis. As expected from the high number of P. angulosus� 

total SNPs in Port Nolloth, this population also shows with ~8,500 by far the highest 

occurrence of unique SNPs. This finding is congruent with Nielsen also reporting the highest 

amount of private SNPs in Port Nolloth, which has been attributed to complex �patterns of 

genetic drift and gene flow� rather than mutation and selection (Nielsen et al. 2018; p. 8). A 

comparatively large number of private SNPs may be a sign of subtle demographic isolation 

of a population (Nielsen et al. 2018). However, the species is not constrained by rocky shore 

habitat availability in the Port Nolloth area (Majiedt et al. 2013; Figure 4) and hydrodynamic 

larval dispersal models suggest theoretical larval connectivity with other west coast 

populations (Mertens, Treml and von der Heyden, 2018; Figure 3). Interestingly, the Cape 

urchin further shows increased values (~ 4,500) of private SNPs in the second west coast 

population (Sea Point) and in Cape St. Francis on the southern east coast (Figure 2.4, Table 

2.7), which might point to possible local unique evolutionary and environmental processes at 

these localities. In general, the amount of private SNPs appears to be significantly higher in 

the urchin P. angulosus compared to the other two species. The samples were prepared and 

analysed with the same procedures to reduce confounding methodological influences, which 

increases the possibility that the observation may be linked to taxonomic differences such as 

higher levels of polymorphisms in the genome of urchins or even in individual urchins 

(Balhoff and Wray, 2005; Cameron et al. 2005; Cameron et al. 2009). 
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Nucleotide diversity estimates do not demonstrate variation across populations (with the 

exception of Port Nolloth in P. angulosus). From a genetic perspective, it is unexpected to 

recover such similar nucleotide diversity estimates, because there is for instance evidence 

for highly polymorphic individual sea urchins and a high degree of polymorphism in urchin 

genomes (Balhoff and Wray, 2005; Cameron et al. 2005; Cameron et al. 2009; Sodergren et 

al. 2006). Differences in life history traits (see Table 2.2) could perhaps have contributed to 

spatial variations in nucleotide diversity, but  nucleotide diversity estimates are remarkably 

congruent across study species and similar to other South African coastal marine species 

(Rhode, Bester-van der Merwe, and Roodt-Wilding, 2017; Nielsen et al. 2018; Teske et al. 

2019). Interestingly, a neutral genetic diversity survey across 167 species from 14 phyla 

suggests that despite patchy availability of species estimates, broader patterns indicate that 

significant differences in genetic diversity across phyla appear to exist (Leffler et al. 2012). 

Further, there is evidence for phyla with a wide range of nucleotide diversity levels, pointing 

to pronounced genetic variation among species of the same phylum and also across phyla 

(Leffler et al. 2012). Although some limited whole genomic data was incorporated by Leffler 

et al., it will be valuable to investigate the estimates and ensuing patterns of nucleotide 

diversity derived from SNP markers in future research to revisit the observations across 

multiple phyla. Returning to the study results, Tajima�s " and Watterson�s $w values in the 

urchin P. angulosus however indicate significant geographic differentiation (Table 2.8). Both 

indices suggest Port Nolloth on the northern South African west coast as an area of 

increased nucleotide diversity relative to the remaining coastline, which is congruent with 

similar estimates for this species in the Port Nolloth region (": 0.011, $w: 0.012; Nielsen et al. 

2018). The present study confirms that this population of P. angulosus is possibly 

�evolutionary unique� (Nielsen et al. 2018; p. 8), which should be considered for regional 

conservation plans as an indication of evolutionary potential. 

 

A study across eleven South African rocky shore and reef-dwelling marine species with 

(partial) COI and D-loop markers suggested the preliminary hypothesis of a nucleotide 

diversity gradient at the South African coastline with lower molecular diversity on the west 

coast compared to higher estimates on the south and east coast (Wright et al. 2015). 

However, this observation is strongly influenced by the low diversity measured in topshell 

Oxystele variegata and fish Clinus cottoides in the west coast region (Wright et al. 2015). 

The present study contributes evidence against this hypothesis, because genomic SNP 

markers across three species suggest no spatial variation between the populations. The 

urchin�s Port Nolloth population constitutes the notable exception, as it appears to turn the 

hypothetical gradient upside down with comparatively higher molecular diversity on the 
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northern west coast. Importantly, more genomic studies are required to assess molecular 

diversity in South African marine species beyond the study species. Overall, the evidence 

contributes to the observation that molecular patterns from traditional markers such as COI 

might not be aligned with patterns by genomic markers. 

 

Overall, neutral genomic diversity can be impacted by a range of determinants, which 

include natural selection, random drift, effective population size (Ne) and genetic connectivity 

between populations (Frankham, Briscoe, and Ballou, 2002; Gaggiotti et al. 2009; Bragg et 

al. 2015; Gómez-Fernández, Alcocer, and Matesanz, 2016). Regarding the lack of spatial 

genomic population structure across study species, it could be hypothesised that the species 

large effective population size in the intertidal ecosystem might contribute to the observation. 

However, the species effective population size across the South African coastline has at 

present not been empirically studied. Moreover, life history traits differ strongly between 

study species (Table 2.2). But it is not established with certainty which effect reproductive 

strategies (e.g. broadcasting vs. brooding followed by pelagic larvae), PLD (pelagic larval 

duration) and other larval traits such as feeding mode (planktotrophic, lecithotrophic) and 

larval behaviour have on the genomic structure of intertidal populations at the South African 

coastline. For example, genomic connectivity and oceanographic current patterns between 

populations might be one of the factors facilitating the observed similar nucleotide diversity 

levels. A further possible influence stems from the paleo-climatic history in southern Africa, 

which is discussed in more detail in the next section. The lack of neutral nucleotide diversity 

differentiation (exception: urchins/Port Nolloth) is likely not attributable to a single factor, but 

the result of multiple influences and further research is necessary to unravel which drivers 

are at play. 

 

RAD-Seq studies on marine species from the same phyla as the study species (Arthropoda, 

Echinodermata, Mollusca) have been reviewed for nucleotide diversity estimates (see Table 

S2.11, Appendix) to gain a preliminary reference frame for nucleotide diversity variation in 

other marine ecosystems across the world. Directly comparing nucleotide diversity estimates 

from SNPs across multiple studies is impeded by a multitude of differences including number 

of sampled populations, sampled geographical area, selected RAD-Seq approach, applied 

filtering protocols, utilisation of subsampling, varying software tools and analytical 

parameters. Investigating estimates from the available marine species RAD-Seq literature 

revealed that reporting nucleotide diversity metrics appears to some extent less common 

compared to past phylogeographic studies based on traditional markers (Benestan et al. 

2016; Kess et al. 2016; 2018; Vendrami et al. 2017; Jeffery et al. 2017b; Wu et al. 2018) or 

alternative diversity indices are reported (Ravinet et al. 2016; Jeffery et al. 2017a; Villacorta-
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Rath et al. 2017; Paterno et al. 2017; Forsström, Ahmad, and Vasemägi, 2017; Galaska et 

al. 2017; Xuereb et al. 2018; Sandoval-Castillo et al. 2018). From other marine species (see 

Table S2.11, Appendix), it is evident that there is a spectrum of nucleotide diversity values 

across arthropods, molluscs and echinoderms. For instance, nucleotide diversity may vary 

between 0.0002 to 0.0086 in marine Arthropoda, between 0.0003 to 0.94 in Mollusca and 

between 0.00146 to 0.307 in Echinodermata (Table S2.11, Appendix). Such a range is 

expected, as these taxa inhabit different geographical locations, have different life history 

traits and were sampled at different spatial scales. These methodological differences 

complicate analyses across broader geographical scales, which may well influence the 

inferences that can be made across studies. This includes a discussion on the definition of 

what constitutes low or high genomic diversity. In marine arthropods, SNP-based nucleotide 

diversity found in the shore crab C. punctatus is noticeably higher than in red king crab 

(Grant and Cheng, 2012; Table S2.11), but not far removed from shrimps, copepods and 

barnacles (Daizhen et al. 2016; Nunez et al. 2018; Dexter et al. 2018; Zhang et al. 2019; 

Choquet et al. 2019). Nucleotide diversity estimates for the granular limpet S. granularis are 

congruent with earlier estimates of the same species (Nielsen et al. 2018) and comparable 

with genomic diversity in the Pacific and the Portuguese oyster (Gagnaire et al. 2018; Song 

et al. 2018). Although nucleotide diversity as high as 0.94 ($") has been found in 

Brachidontes spp. mussels (Maas et al. 2018), values estimated for S. granularis (0.010; 

Table S2.11) are notably higher than for two other intertidal molluscs (Chu et al. 2014; 

Gleason and Burton, 2016). In the Cape urchin P. angulosus, nucleotide diversity is 

comparable to values estimated for the same species (Nielsen et al. 2018; Table S2.11), but 

noticeably lower than observed in two other urchin species by Addison and Kim (2018). 

Nucleotide diversity values appear broadly similar when obtained from multiple species in 

the same study (for instance, Gagnaire et al. 2018; Nielsen et al. 2018; Addison and Kim, 

2018; Choquet et al. 2019; this study), which may signal the influence of the RAD-Seq 

approach, data filtering protocols and software tools among other reasons. SNP-based 

estimates for nucleotide diversity ("; $w) might be available for a larger number of species in 

the near future, as RAD-Seq studies on marine invertebrates will likely increase. 

 

2.4.2 Genomic differentiation 

 

To detect potential population structure, pairwise FST values were estimated and two tests 

for genomic clustering conducted. While some degree of FST-based differentiation is 

detected across study species populations, it is not significant according to Fisher�s exact 

test. The lowest range of pairwise FST values is found in C. punctatus (0.043-0.055; Table 

2.9). The Cape urchin P. angulosus has the highest range of FST values (0.039-0.089), which 
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is likely associated with the species relatively high numbers of private SNPs. The level of 

divergence, when regarded as the widest range of FST values, is much higher in P. 

angulosus compared to the other two species, but does not appear to occur in a specific 

spatial pattern (e.g. in relation to suggested phylogeographic or biogeographic breaks, see 

section 1.5.3). This may be regarded as evidence that population structure found with 

mtDNA does not necessarily reflect findings from SNP markers (see section 2.4.3). To test 

for the presence of population clusters, BAPS v.5.4 and fastSTRUCTURE v1.0 were utilised 

(Table 2.10; Figure S2.1-2, Appendix). BAPS estimates a higher number of possible clusters 

across the species, ranging from 4 (S. granularis, P. angulosus) to 5 (C. punctatus). 

However, fastSTRUCTURE suggests three clusters in S. granularis and no subdivision of a 

single population in the other two species. Importantly, and this is congruent across both 

programs, there is no spatial separation between possible clusters, meaning all potential 

subdivisions (where estimated) occur in all sampled populations (Figure S2.1-2, Appendix). 

Differences in the optimal number of estimated clusters across BAPS, fastSTRUCTURE and 

Structure (Pritchard et al. 2000; precursor of the improved inference model used in 

fastSTRUCTURE) have also been observed in other studies with some estimates yielding 

vastly contrasting numbers of clusters (Steiner et al. 2018; Mura-Jornet et al. 2018; Paz et 

al. 2019; Pinho, Cardoso and Hey, 2019), which may demonstrate the different 

methodological approaches of the underlying models (Wilkinson et al. 2011). For instance, 

BAPS is thought to identify finer genetic differentiation patterns compared to other Bayesian 

genotypic clustering methods and thus might estimate a higher number of underlying 

population clusters, which appears congruent with the findings of this study (Wilkinson et al. 

2011). Lastly, low population differentiation is thought to decrease the overall power of 

clustering algorithms to detect population clusters (Latch et al. 2006; Wollstein and Lao, 

2015). 

 

The absence of significant differentiation in selectively neutral loci across the study species 

populations is concordant with findings of other South African marine genomic studies 

(Nielsen et al. 2018; Mullins et al. 2018; Teske et al. 2019; but see Rhode, Bester-van der 

Merwe, and Roodt-Wilding, 2017). Internationally, multiple studies found spatial genomic 

differentiation across different geographic scales with FST-based approaches in marine 

invertebrates with a range of life history traits (e.g. Arthropoda: Tepolt and Palumbi, 2015; 

Benestan et al. 2016; Jefferey et al. 2017a; Forsström, Ahmad, and Vasemägi, 2017; Pfaller 

et al. 2019; Choquet et al. 2019; Mollusca: Chu et al. 2014; Ravinet et al. 2016; Vendrami et 

al. 2017; Lal et al. 2017; Kess, Galindo, and Boulding, 2018; Echinodermata: Galaska et al. 

2017; Paterno et al. 2017; Xuereb et al. 2018). On the contrary, there is also evidence for 

the absence of or very low genomic differentiation across marine invertebrate populations 
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(e.g. Arthropoda: Villacorta-Rath et al. 2017; Nunez et al. 2018; Hay, Jorge, and Poulin, 

2018; Dexter et al. 2018; Mollusca: Gleason and Burton, 2016; Miller et al. 2016; Sandoval-

Castillo et al. 2018; Echinodermata: Tay et al. 2016; Addison and Kim, 2018). For the South 

African context, it may become clearer with future research whether the absence of 

significant genomic differentiation in selectively nuclear markers applies to other marine 

invertebrates. 

 

2.4.3 Comparison of SNP-based and traditional single marker findings 

 

Traditional single markers (for instance from species mitochondrial DNA) are commonly 

used to elucidate past demographic history (Avise, 2000; Dudgeon et al. 2012; von der 

Heyden, 2017), whereas single nucleotide polymorphisms markers reveal contemporary 

population structure and loci with adaptive potential (Morin, Luikart and Wayne, 2004; 

Allendorf, Hohenlohe and Luikart, 2010; Funk et al. 2012; Bowen et al. 2014; von der 

Heyden, 2017). Patterns derived from single marker studies and SNPs studies can therefore 

be expected to differ, even though this is not automatically the case. Several contrasting 

signals between the traditionally used COI locus (mtDNA) and SNP markers are observed in 

this study. While nucleotide diversity estimates are broadly similar across marker types in 

the study species, pairwise FST values between populations contrast strongly with generally 

higher FST-based differentiation in the partial COI locus (mtDNA) compared to SNP markers 

(Table 2.11). Further, the presence of pronounced spatial population structure is indicated in 

COI data (mtDNA) (Table 2.3), but not confirmed with SNP markers across study species 

(see section 2.4.2). While a certain degree of molecular subdivision appears to perhaps exist 

depending on the Bayesian cluster model (i.e. BAPS and fastSTRUCTURE), these are not 

occurring in spatial separation from each other (Table 2.10). 

 

Analyses of the study species population structure with the COI marker (mtDNA) detected 

significant levels of spatial differentiation across the South African coastline (Muller et al. 

2012; Wright et al. 2015; Mmonwa et al. 2015; see section 1.7; Table 2.3). The absence of 

genomic structure across populations in this study in selectively neutral SNP markers is 

however congruent with previous regionally limited findings (Nielsen et al. 2018). Low levels 

of genomic population structure can be influenced by a range of environmental and 

biological factors such as for instance oceanographic current patterns (Belanger et al. 2012; 

Bowen et al. 2014; Selkoe et al. 2016). The South African oceanographic seascape is 

particularly dynamic due to the influence of the warm Agulhas Current associated with the 

Indian Ocean in the east and the cold Benguela Current associated with the southern 

Atlantic Ocean in the west (Bustamante et al. 1995). However, how prevalent current 
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systems influence the genomic population structure of species in coastal ecosystems is not 

established in detail at the South African coast (Siegel et al. 2008; Pfaff et al. 2015; Mertens, 

Treml and von der Heyden, 2018), but there are pioneering studies on oceanographic larval 

dynamics across the Agulhas bank (Porri et al. 2006; Porri et al. 2008; Porri et al. 2014; 

Weidberg et al. 2015; Weidberg et al. 2019). Furthermore, species life history traits are 

regarded as important influencing factors for marine genomic population structure (Teske et 

al. 2007; Vähä et al. 2007; Freamo et al. 2011; Zarraonaindia et al. 2012; Young et al. 2015; 

McKeown et al. 2017). The three study species possess a wide range of life history traits, 

including differences in pelagic larval duration (PLD) from estimated 7-14 days (S. granularis 

(Kilburn and Rippey, 1982; Kay, 2002); C. punctatus (Branch et al. 2007; Wright et al. 2015)) 

to around 50 days (P. angulosus; Cram, 1971; Greenwood, 1975). Hydrodynamic dispersal 

networks constructed for larvae of the urchin P. angulosus demonstrate a hypothetically high 

dispersal potential for the species larvae at the west coast (Mertens, Treml and von der 

Heyden, 2018), but this is not evidenced in the high population structure indicated by the 

COI locus (Muller et al. 2012) and the high (neutral) nucleotide diversity in Port Nolloth 

(Nielsen et al. 2018; this study). Other life history traits include preferred intertidal 

microhabitat niche and attributes like mobility during low tide and reproductive traits such as 

spawning frequency throughout the year and variable recruitment. However, it is fiercely 

disputed if and then to which degree the often not well established life history traits of marine 

invertebrates serve as reliable indicators for genomic population structure in the ocean 

(Weersing and Toonen, 2009; Selkoe and Toonen, 2011; Faubry and Barber, 2012; Treml et 

al. 2012; Giangrande, Gambi and Gravina, 2017). 

 

Apart from oceanography and life history traits, population differentiation may also arise from 

changes of the species demographic history. For instance, contemporary population 

structure based on the mtDNA control region (D-loop) across South African intertidal fish 

populations has been attributed to intermittent spatial isolation caused by changes in paleo-

oceanography during the Pleistocene (Toms et al. 2014). It has been suggested that since 

the historic population divergence, factors such as oceanographic patterns and near shore 

coastal dynamics may have decreased the effect of potential past isolation (Toms et al. 

2014). The evidence for the three study species specific historic demography is limited (e.g. 

Mmonwa et al. 2015; Seymour, unpublished data), but as they widely share the same rocky 

shore habitat across the coastline, it might be possible if not likely that past spatial 

separation and subsequently re-established connectivity between historic intertidal 

populations may have played a role in shaping the detected differences between mtDNA and 

SNP marker findings. Evidence for the evolutionary effects of Pleistocene climate oscillations 

(and ocean current patterns) on species phylogeography has been observed in several 
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South African coastal marine species (Reynolds et al. 2014; Toms et al. 2014; Muteveri et al. 

2015; von der Heyden et al. 2015). Discordance between mitochondrial DNA and SNPs has 

been associated with adaptive mtDNA introgression, varying sample sizes, differing mutation 

rates and sex-bias in demographic history causing asymmetries of effective population size 

between males and females (Toews and Brelsford, 2012). Due to the complex nature of 

biological and environmental factors potentially shaping population structure or the absence 

thereof in the marine environment, it is important to conduct further investigations across the 

range of co-distributed intertidal species occupying the heterogeneous South African 

coastline. 

 

Both congruence and discordance between traditional single markers and SNP markers has 

been observed in marine invertebrates. An example for discordance is a study on calanoid 

copepod Centropages typicus, where significant population structure became evident with 

RAD-Seq derived SNPs after traditional markers did not indicate differentiation (Blanco-

Bercial and Bucklin, 2016). Similarly, discordant observations across marker types were 

made in scallop Pecten maximus (Vendrami et al. 2017), intertidal snail Chlorostoma 

funebralis (Gleason and Burton, 2016) and in the Atlantic dogwinkle Nucella lapillus (Chu et 

al. 2014; see section 2.1.4). Examples for congruent findings across marker types include 

evidence for population differentiation in the urchin Paracentrotus lividus across the 

Mediterranean Sea (Paterno et al. 2017) and in the crab Carcinus maenas in eastern North 

America (Jefferey et al. 2017a). Congruent patterns are indicated in a range of marine 

invertebrates (Tay et al. 2016; Forsström, Ahmad and Vasemägi, 2017; Xuereb et al. 2018; 

Pfaller et al. 2019), but both marker types might also equally confirm no presence of 

population structure, such as in the abalone Haliotis rubra (Miller et al. 2016). It is evident 

that findings obtained with traditional single markers do not allow a prediction of SNP-based 

patterns. The possible ongoing relevance of traditional single markers has been advocated 

for insights into the genetic composition and corresponding evolutionary history of species 

(see section 1.3; Bowen et al. 2014; von der Heyden, 2017; Riddle, 2016), because the 

coverage achieved with whole genome sequencing remains costly and might not be feasible 

for comparative multi-species studies. 

 

2.4.4 Evolutionary resilience 

 

The concept of evolutionary potential or resilience seeks to infer species capacity to respond 

to changing conditions based on their genomic diversity or signals for adaptive variation (the 

latter is subject of Chapter III) (Bonin et al. 2007; Sgro et al. 2011). High molecular diversity 

in populations and species may lower their risk of extinction and vice versa (Reed and 
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Frankham, 2003). Populations with high genomic diversity and thus a broader molecular 

foundation to potentially adapt from, might indicate regional species groups with higher 

evolutionary resilience compared to other populations in their geographic range. Signs of 

regional variation in genomic diversity may warrant recognition in spatial prioritisation 

processes along coastlines and thus harbour value for conservation management of species 

(von der Heyden, 2017; Flanagan et al. 2018; Xuereb et al. 2019). For instance, one may 

actively focus on low diversity areas and coordinate protection for high diversity regions 

(Drury et al. 2017). There is evidence from two mtDNA markers (COI, D-loop) for species 

with lower molecular diversity on the west coast than on the south and east coast (Wright et 

al. 2015). However, the SNP markers findings (see section 2.4.1), indicate against the 

occurrence of a molecular diversity gradient across the South African coastline. Moreover, 

roughly equal levels of selectively neutral nucleotide diversity may suggest that evolutionary 

resilience related to neutral SNPs appears to be evenly distributed across the species 

populations. Observing comparable molecular diversity across three co-distributed species is 

interesting in the context of the vast geographical distance and the heterogeneous 

environmental conditions across the South African coastline. A striking exception is Port 

Nolloth on the northern west coast, which shows significantly higher nucleotide diversity 

estimates in the urchin P. angulosus (Table 2.8). This regional signal is congruent with a 

previous study (Nielsen et al. 2018; incorporating outlier loci) and may thus perhaps 

constitute a real biological signal for the evolutionary uniqueness and distinct molecular 

signatures of this keystone species in the specific geographical area. 

 

Molecular diversity estimates have been utilised in other studies in the marine environment 

as indicators for varying degrees of inferred evolutionary resilience. For instance, molecular 

diversity has been investigated across the taxonomic subclass of sharks and rays against 

the background of the species estimated level of threat (Domingues, Hilsdorf and Gadig, 

2018). On the intraspecific level, distinct marine populations with comparatively high 

molecular diversity have been identified (Drury et al. 2017; Cahill et al. 2017). In one 

example, data across multiple species allowed to compute entire bioregions with outstanding 

overall genetic diversity (Pope et al. 2015). Further, there is evidence that low molecular 

diversity, among other potential factors, can be associated with the impact of human 

activites and that in turn, low human population densities may correlate with higher 

molecular diversity (Cahill et al. 2017). Human population densities vary across the seven 

combined South African sites in this study. For instance, Sea Point is located close to the 

commercial port of Cape Town, whereas the other six sampled locations serve as 

recreational destinations and thus experience fluctuating impact from human activities. It 

remains speculative at present how the significantly higher genomic diversity of the urchin P. 
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angulosus might be associated with human presence around Port Nolloth (>6,092 

inhabitants, statssa.gov.za, Census 2011), because the town is historically associated with 

mining of diamonds from the sea (Majiedt et al. 2013). The influence of sea diamond mining 

and other possible industry-related effects on local genomic population structure at the west 

coast remain to be determined. 

 

2.4.5 Comparisons across different SNP parameters 

 

Single nucleotide polymorphisms derived from RAD-Sequencing and the application of 

pooled sampling strategies facilitate the exploration of large numbers of loci in non-model 

species (Delord et al. 2018; Xuereb et al. 2019). RAD-Seq and Pool-Seq studies are 

increasing overall (Therkildsen and Palumbi, 2017), but the impact of different bioinformatic 

procedures and the lack of standardised analysing (and reporting) is not well understood yet 

(Shafer et al. 2017). As genomic findings obtained in these studies may be drawn on to 

inform conservation and management processes, it is important to better understand the 

reliability (or potential variability) of results (Shafer et al. 2017). Findings from RAD-Seq and 

Pool-Seq studies may be influenced through several factors (Kofler et al. 2016; Shafer et al. 

2017), but this study explores how the results can vary depending on different parameters of 

what may constitute a SNP in terms of minimum allele count, minimum coverage and 

maximum coverage (Table S2.1, Appendix). In this study, stringent and less stringent SNP 

parameters are represented with minimum allele count ranging from 2-16, minimum 

coverage from 10-32 and maximum coverage 50-200 (Table S2.1), with the understanding 

that the selected values can vary in studies and for instance reach up to 500 for maximum 

coverage (Pandey et al. 2011). The range of PoPoolation�s estimates under stringent and 

less stringent SNP definitions for number of SNPs, number of private SNPs, nucleotide 

diversity (", $w) and FST values, is summarised in Table S2.12 and the full estimates for all 

locations are shown in Table S2.2-10 (Appendix). To illustrate the range of results, the Sea 

Point site is selected in this instance, because it has been sampled across all three study 

species. Some of the most drastic differences between varying minimum allele count, 

minimum coverage and maximum coverage are observed in P. angulosus (Table S2.12, 

Appendix). For instance, the number of total SNPs and private SNPs calculated by 

PoPoolation2 can range from 1,243-56,185 (total SNPs) and 41-4,287 (private SNPs). 

Moreover, nucleotide diversity indices vary from 0.008-0.016 (" ) and 0.008-0.020 ($w), 

depending on which parameter stringency is selected. Lastly, pairwise FST estimates 

(between Sea Point and Knysna, which is calculated for all three species) range from 0.019-

0.063 (Table S2.12). As expected, the estimates derived from stringent parameters are 

overall lower than results obtained under less stringent parameters. Aside from P. 
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angulosus, the other two study species also show notable variation across SNP parameters 

(Table S2.12). This demonstrates, while the investigation towards understanding the impact 

and reliability of estimates obtained from different bioinformatic processes and pipelines is 

ongoing, there is a need to report prominently which SNP parameters were utilised and if 

possible to also report potential variation under different parameters. This would help some 

way towards making RAD-Seq (and Pool-Seq) studies more comparable and better the 

scientific understanding of genomic estimates in different geographical contexts. SNP 

parameters have been specifically reported in studies utilising PoPoolation (e.g. Guo et al. 

2015; 2016; Nielsen et al. 2018; Phair et al. 2019), but with an increasing number of 

bioinformatic pipelines for RAD-Seq data (for instance Stacks (Catchen et al. 2013); 

assessPool (Barba et al. 2018)), there is a need to strive for better understanding of how 

findings might vary in different scenarios and how potential variation might be accounted for 

in decision making processes. Several authors are advocating for more standardisation in 

Pool-Seq data analyses paths (Anderson, Skaug, and Barshis, 2014; Kofler et al. 2016). In 

this study, estimates derived from minimum allele count 4, minimum coverage 10 and 

maximum coverage 200 (scenario 6; Table S2.1) in PoPoolation and PoPoolation2 were 

selected to broadly represent a middle ground across stringent and less stringent SNP 

parameters. Reporting across multiple SNP parameters might, despite the substantial time 

investment, facilitate enhanced comparison between study organisms in different 

geographical settings and serve to demonstrate the reliability of estimates based on their 

documented variation.  

 

2.4.6 De novo assemblies 

 

Traditional genome assemblies require substantiated research endeavours and resources, 

which has concentrated past and continued efforts on a selected range of model organisms 

and their reference genomes (Seeb et al. 2011). The reduced investment of SNPs derived 

from RAD-Seq approaches and the utilisation of pooled samples has made genotyping 

available for non-model species and paved the way for comparative multi-species studies 

(Delord et al. 2018). The development gave rise to the necessity of assemblies created from 

scratch (de novo) in the absence or very small amount of genomic information or resources 

available for the majority of species. Multiple statistical approaches and algorithms have 

been developed to create de novo assemblies (see section 2.3) and three of them allowing 

for pooled data were tested to create draft genomes for the study species (SPAdes v.3.11.1 

(Bankevich et al. 2012), ABySS v.1.9.0 (Simpson et al. 2009) and Rainbow v.2.0.4 (Chong 

et al. 2012)). The highest values for total assembly length, contig N50 and the size of the 

largest contig were obtained with the assemblies created by SPAdes v.3.11.1 (Table 2.5a-c) 
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and refined with k-mer length optimisation (Davey et al. 2013; Chikhi and Medvedev, 2014). 

The final draft genome assemblies of the three study species have notably less Mbp than 

their nearest identified reference genomes (Table 2.6), which is expected based on for 

instance the different sequencing approaches (e.g. whole-genome shotgun and bacterial 

artificial chromosome (BAC) sequences as opposed to pooled RAD-Seq) and multi-year 

research efforts conducted to assemble, for example, the genome of the purple urchin 

Strongylocentrotus purpuratus (a model organism for developmental and systems biology; 

Sodergren et al. 2006). Differences are also evident between draft genomes of two species 

(S. granularis, P. angulosus) created for this study (159 Mbp, 416 Mbp) and a previous RAD-

Seq study (180 Mbp, 200 Mbp) (Table 2.6; Nielsen et al. 2018). These differences could 

have arisen from a number of factors, for example from utilising different versions of SPAdes 

(v.3.11.1 vs. v.3.5.0), sampling geographically different populations (exception: Port Nolloth, 

Sea Point), determining different optimised k-mer values and the subsampling approach 

applied in this study (see Table 2.4). The differences between the draft genomes created for 

the same species signal the cumulative impact varying determinants might have in the 

assembling process. As is to be expected, draft genomes showed different assembly lengths 

across phyla (159 Mbp, 301 Mbp, 416 Mbp), which is indicated by the taxonomic distance 

connected to different genomic compositions between the study species and can also be 

observed in the vast size contrasts between the nearest identified reference genomes (see 

Table 2.6). Notably, two previous RAD-Seq draft genomes appear similar in size across 

species (180 Mbp, 200 Mbp), which was attributed to the enzymatic activity of RAD-Seq 

leading to similar sized fragments influencing the draft genome size (Nielsen et al. 2018). 

This was not observed for the same two species and their de novo assemblies in this study. 

Finally, the Quast genome assembly quality reports across multiple assemblers (see Table 

2.5a-c) emphasise the benefit of testing multiple assembly algorithms to identify the highest 

draft genome quality. Advances in both RAD-Seq methodology and de novo assembly 

programs will facilitate continually improved draft genomes of non-model organisms, thus 

expanding the genomic knowledge and the foundation for genomic analyses for a wide 

range of species in the future. 

 

2.4.7 Conclusion 

 

Congruent with initial expectation, nucleotide diversity indices (", $w) in C. punctatus, S. 

granularis and P. angulosus do not show geographical variation across the selected 

populations (with the exception of P. angulosus� Port Nolloth population) and FST-estimated 

population differentiation is not significant. These findings contraindicate the hypothesis of a 

west-east molecular diversity gradient (Wright et al. 2015), but are broadly in congruence 
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with other genomic studies on marine animals in the region (Rhode, Bester-van der Merwe, 

and Roodt-Wilding, 2017; Nielsen et al. 2018; Mullins et al. 2018; Teske et al. 2019). 

Contrary to theoretical expectations, diversity indices show similar levels of nucleotide 

diversity across species. This is unexpected, because there are inter-phyletic differences 

such as very polymorphic individual sea urchins and a high number of polymorphisms in the 

genome of urchin (Balhoff and Wray, 2005; Cameron et al. 2005; Cameron et al. 2009; 

Sodergren et al. 2006). But as expected, distinct geographical lineages in S. granularis and 

P. angulosus identified with two single markers (see Table 2.3) could not be confirmed with 

SNP-based FST estimates and cluster analyses. Potential genomic subdivision into multiple 

clusters across populations is indicated by both clustering algorithms in S. granularis, but 

only in BAPS for C. punctatus and P. angulosus. However, there is, as initially expected, no 

indication of a spatial division into separate geographic clusters. The findings are congruent 

with several previous genomic studies in the South African marine environment, which did 

not detect population structure in their species selectively neutral markers (Nielsen et al. 

2018; Mullins et al. 2018; Teske et al. 2019). Overall, this study contributes evidence 

towards discordant patterns between traditional markers such as COI and SNP markers in 

marine invertebrates (Chu et al. 2014; Blanco-Bercial and Bucklin, 2016; Gleason and 

Burton, 2016; Vendrami et al. 2017), which cautions against predicting species (neutral) 

genomic population differentiation with past findings derived from mtDNA, microsatellites 

and allozymes. Finally, methodological comparisons between calculations based on different 

SNP parameters demonstrate how genomic estimates can vary, which advocates for careful 

selection and clear reporting of SNP parameters.  
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2.5 Appendix 

2.5.1 Population metrics (12 scenarios) 

 

As described in section 2.3 (Statistical analysis), the results of overall 12 different scenarios 

(Table S2.1) constituting different definitions of putative SNPs are shown in their variation 

between locations in terms of total number of SNPs, nucleotide diversity measured as 

Tajima�s pi (") and Watterson�s theta ($w) in PoPoolation v.1.2.2 (scenario 1-9) (Kofler et al. 

2011a) and pairwise FST values and total SNPs in comparison to private SNPs in 

PoPoolation 2 (Kofler et al. 2011b) (scenario 4-12) (Table S2.2-10). 

 
Table S2.1. Settings used for PoPoolation (individual pileups) and PoPoolation 2 (meta-pileup). 

 

Scenario Minimum count Minimum coverage Maximum coverage 

1 2 10 50 

2 2 10 100 

3 2 10 200 

4 4 10 50 

5 4 10 100 

6 4 10 200 

7 8 20 50 

8 8 20 100 

9 8 20 200 

Scenario Minimum count Minimum coverage Maximum coverage 

4 4 10 50 

5 4 10 100 

6 4 10 200 

7 8 20 50 

8 8 20 100 

9 8 20 200 

10 16 32 50 

11 16 32 100 

12 16 32 200 
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Table S2.2. Cyclograpsus punctatus (Shore crab). Number of SNPs and values for pi and theta shown per location in scenario 1-9 (PoPoolation). 
 

Location Parameter 1 2 3 4 5 6 7 8 9 

Jacob's Bay # SNPs 52,336,240 62,568,057 67,760,222 15,846,250 19,333,188 21,267,399 3,249,104 4,808,579 5,593,130 

 pi 0.015 0.015 0.015 0.010 0.010 0.010 0.008 0.008 0.008 

 theta 0.019 0.020 0.020 0.010 0.010 0.011 0.009 0.009 0.009 

Sea Point # SNPs 74,435,146 89,625,104 100,440,717 21,923,350 27,160,823 31,330,966 4,110,050 6,346,464 8,012,299 

 pi 0.016 0.016 0.016 0.010 0.010 0.010 0.008 0.008 0.008 

 theta 0.020 0.021 0.022 0.011 0.011 0.011 0.008 0.008 0.009 

Cape Agulhas # SNPs 90,946,783 107,476,785 117,424,971 26,552,414 32,772,546 36,564,139 4,779,875 7,696,646 9,201,562 

 pi 0.019 0.019 0.019 0.012 0.012 0.012 0.009 0.009 0.009 

 theta 0.023 0.024 0.024 0.012 0.012 0.013 0.009 0.009 0.009 

Knysna # SNPs 65,572,161 78,970,430 86,893,531 20,011,976 24,790,595 27,559,328 3,760,334 5,904,986 7,095,303 

 pi 0.016 0.016 0.016 0.010 0.010 0.010 0.008 0.008 0.008 

 theta 0.019 0.020 0.021 0.011 0.011 0.011 0.008 0.008 0.008 

Cape St. 
Francis # SNPs 75,277,595 91,862,536 100,978,777 23,486,804 29,532,469 32,934,261 4,713,753 7,563,394 8,973,891 

 pi 0.016 0.016 0.016 0.011 0.011 0.011 0.009 0.009 0.009 

 theta 0.019 0.020 0.021 0.011 0.011 0.011 0.009 0.009 0.009 

Haga Haga # SNPs 70,590,834 85,361,965 94,358,052 21,541,146 26,720,904 29,752,579 4,431,257 6,760,123 8,047,062 

 pi 0.015 0.015 0.015 0.010 0.010 0.010 0.009 0.009 0.009 

 theta 0.019 0.020 0.020 0.010 0.011 0.011 0.009 0.009 0.009 
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Table S2.3. Scutellastra granularis (Granular limpet). Number of SNPs and values for pi, theta and D shown per location in scenario 1-9 (PoPoolation). 

 

Location Parameter 1 2 3 4 5 6 7 8 9 

Port Nolloth # SNPs 13,978,004 16,914,029 19,065,384 4,100,410 5,120,032 5,962,855 704,370 1,192,122 1,656,937 

 pi 0.015 0.015 0.015 0.010 0.010 0.010 0.006 0.006 0.006 

 theta 0.019 0.019 0.019 0.010 0.010 0.010 0.006 0.007 0.007 

Sea Point # SNPs 21,467,587 25,303,480 27,864,122 6,621,616 8,054,955 9,111,996 1,077,945 1,712,855 2,182,612 

 pi 0.016 0.015 0.015 0.011 0.010 0.010 0.007 0.007 0.007 

 theta 0.018 0.019 0.019 0.011 0.011 0.011 0.007 0.007 0.007 

Cape Agulhas # SNPs 18,565,615 21,715,855 23,777,691 5,335,379 6,405,137 7,176,152 956,999 1,426,261 1,835,911 

 pi 0.016 0.016 0.015 0.010 0.010 0.010 0.007 0.007 0.007 

 theta 0.019 0.019 0.020 0.010 0.010 0.010 0.007 0.007 0.007 

Knysna # SNPs 11,883,049 14,115,000 14,655,079 3,301,664 4,069,197 4,244,029 556,544 893,421 972,014 

 pi 0.014 0.014 0.014 0.009 0.009 0.009 0.006 0.006 0.006 

 theta 0.018 0.018 0.018 0.009 0.009 0.009 0.006 0.006 0.006 

Cape St. 
Francis # SNPs 15,162,801 17,993,012 19,419,406 4,201,181 5,231,317 5,794,681 715,425 1,179,481 1,438,644 

 pi 0.016 0.015 0.015 0.010 0.010 0.009 0.007 0.007 0.007 

 theta 0.019 0.019 0.019 0.010 0.010 0.010 0.007 0.007 0.007 

Haga Haga # SNPs 14,002,665 16,463,919 17,355,814 3,906,406 4,793,732 5,101,154 729,650 1,140,679 1,293,210 

 pi 0.015 0.015 0.015 0.010 0.010 0.009 0.006 0.006 0.006 

 theta 0.019 0.019 0.019 0.010 0.010 0.010 0.006 0.006 0.006 
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Table S2.4. Parechinus angulosus (Cape urchin). Number of SNPs and values for pi and theta shown per location in scenario 1-9 (PoPoolation). 

 

Location Parameter 1 2 3 4 5 6 7 8 9 

Port Nolloth # SNPs 241,577,002 290,850,149 319,197,953 90,302,002 110,788,178 122,365,447 15,069,715 23,146,642 27,663,338 

 pi 0.021 0.020 0.020 0.016 0.016 0.015 0.011 0.010 0.010 

 theta 0.023 0.024 0.025 0.016 0.016 0.017 0.011 0.011 0.011 

Sea Point # SNPs 144,208,724 172,895,279 194,199,718 44,974,685 54,744,483 62,821,927 7,589,471 11,704,229 14,971,803 

 pi 0.016 0.016 0.016 0.011 0.011 0.011 0.008 0.008 0.008 

 theta 0.019 0.020 0.020 0.011 0.011 0.012 0.008 0.008 0.008 

Knysna # SNPs 151,731,269 200,324,980 236,672,805 43,023,692 58,649,726 71,686,624 7,851,036 13,691,447 18,452,300 

 pi 0.014 0.014 0.014 0.009 0.009 0.009 0.006 0.006 0.006 

 theta 0.018 0.019 0.020 0.009 0.010 0.010 0.006 0.006 0.007 

Cape St. 
Francis # SNPs 123,490,435 171,956,186 203,064,103 34,764,131 50,988,422 63,036,008 6,315,824 12,511,086 17,166,864 

 pi 0.016 0.016 0.017 0.010 0.010 0.010 0.008 0.008 0.008 

 theta 0.020 0.022 0.023 0.011 0.011 0.012 0.008 0.008 0.009 

Haga Haga # SNPs 150,957,240 199,168,924 225,956,567 38,162,507 52,949,962 62,600,326 6,546,170 11,638,162 15,153,067 

 pi 0.016 0.016 0.016 0.009 0.009 0.009 0.006 0.006 0.006 

 theta 0.021 0.022 0.023 0.010 0.010 0.010 0.006 0.007 0.007 
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Table S2.5. Cyclograpsus punctatus (Shore crab). Number of SNPs and private SNPs shown per location in scenario 4-12 (PoPoolation2). 

 

Location Parameter 4 5 6 7 8 9 10 11 12 

Jacob's Bay # SNPs 61,950 98,145 122,116 10,141 29,488 46,699 1,555 7,462 16,064 

 
# private 
SNPs 538 746 849 2 3 7 0 0 0 

Sea Point # SNPs 72,186 114,611 142,443 11,788 33,811 52,950 2,048 8,748 17,943 

 
# private 
SNPs 628 1,061 1,289 2 13 21 0 1 1 

Cape 
Agulhas # SNPs 76,967 119,326 146,323 13,147 35,178 53,943 2,343 9,088 18,240 

 
# private 
SNPs 1,225 1,522 1,650 32 32 32 3 3 3 

Knysna # SNPs 70,422 111,285 138,140 11,683 33,030 51,669 1,944 8,487 17,563 

 
# private 
SNPs 659 971 1,131 7 10 11 0 0 0 

Cape St. 
Francis # SNPs 73,145 114,977 141,243 12,276 34,143 52,438 2,181 8,974 17,994 

 
# private 
SNPs 902 1,261 1,396 59 65 67 10 11 11 

Haga Haga # SNPs 70,207 111,604 138,584 12,034 33,240 51,348 2,141 8,790 17,600 

 
# private 
SNPs 643 1,057 1,268 9 18 21 2 3 3 
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Table S2.6. Scutellastra granularis (Granular limpet). Number of SNPs and private SNPs shown per location in scenario 4-12 (PoPoolation2). 

 

Location Parameter 4 5 6 7 8 9 10 11 12 

Port Nolloth # SNPs 28,487 41,734 50,681 4,511 10,536 16,646 932 2,662 5,738 

 
# private 
SNPs 424 705 888 8 20 32 1 4 9 

Sea Point # SNPs 35,433 50,352 59,877 5,149 11,855 18,328 1,237 3,248 6,457 

 
# private 
SNPs 397 769 993 4 19 32 0 0 0 

Cape 
Agulhas # SNPs 33,029 47,208 55,586 4,647 11,275 17,389 979 2,866 5,918 

 
# private 
SNPs 238 389 471 0 1 2 0 0 4 

Knysna # SNPs 28,380 40,707 48,294 3,961 9,836 15,424 781 2,355 5,151 

 
# private 
SNPs 207 318 380 5 5 7 0 0 0 

Cape St. 
Francis # SNPs 31,759 45,320 53,568 4,554 10,959 16,960 955 2,720 5,687 

 
# private 
SNPs 261 382 437 2 3 4 0 0 1 

Haga Haga # SNPs 32,751 45,912 53,988 4,443 10,700 16,597 974 2,682 5,615 

 
# private 
SNPs 361 620 771 2 12 30 0 1 6 
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Table S2.7. Parechinus angulosus (Cape urchin). Number of SNPs and private SNPs shown per location in scenario 4-12 (PoPoolation2). 

 

Location Parameter 4 5 6 7 8 9 10 11 12 

Port Nolloth # SNPs 82,221 94,658 109,515 11,810 15,792 21,671 3,240 5,476 7,662 

 
# private 
SNPs 6,853 7,428 8,372 226 245 291 23 32 34 

Sea Point # SNPs 31,863 42,550 56,185 5,233 8,290 13,722 1,243 2,473 4,287 

 
# private 
SNPs 3,964 4,108 4,287 206 225 242 41 59 65 

Knysna # SNPs 31,118 45,454 62,817 6,311 9,897 16,167 1,818 3,331 5,402 

 
# private 
SNPs 2,014 2,471 2,938 53 64 66 3 5 5 

Cape St. 
Francis # SNPs 26,544 37,291 51,036 5,192 8,416 14,054 1,546 3,048 5,116 

 
# private 
SNPs 4,145 4,336 4,623 307 326 332 46 56 56 

Haga Haga # SNPs 29,469 41,839 56,851 5,348 8,524 14,135 1,450 2,769 4,615 

 
# private 
SNPs 2,088 2,630 3,106 49 52 58 4 4 5 
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Table S2.8. Cyclograpsus punctatus (Shore crab). Pairwise FST values shown between locations in scenario 4-12 (PoPoolation2). 

 

 4 5 6 7 8 9 10 11 12 

#SNPS used 10,245 13,199 14,392 1,984 4,766 5,960 84 1,604 2,721 

JCvsSP 0.060 0.052 0.049 0.037 0.031 0.028 0.023 0.023 0.019 

JCvsCA 0.059 0.053 0.05 0.036 0.031 0.028 0.027 0.023 0.019 

JCvsKY 0.060 0.053 0.049 0.037 0.031 0.028 0.027 0.022 0.019 

JCvsCF 0.061 0.055 0.052 0.037 0.033 0.030 0.030 0.024 0.021 

JCvsHH 0.062 0.057 0.055 0.039 0.034 0.033 0.029 0.024 0.023 

SPvsCA 0.054 0.048 0.045 0.034 0.028 0.025 0.027 0.020 0.016 

SPvsKY 0.054 0.047 0.044 0.034 0.027 0.024 0.024 0.019 0.016 

SPvsCF 0.057 0.052 0.049 0.036 0.030 0.028 0.026 0.022 0.019 

SPvsHH 0.060 0.054 0.052 0.039 0.034 0.032 0.029 0.024 0.022 

CAvsKY 0.053 0.047 0.044 0.031 0.027 0.024 0.022 0.019 0.016 

CAvsCF 0.050 0.045 0.043 0.031 0.025 0.023 0.022 0.017 0.015 

CAvsHH 0.054 0.050 0.048 0.033 0.029 0.028 0.024 0.021 0.019 

KYvsCF 0.055 0.049 0.046 0.034 0.029 0.026 0.024 0.020 0.017 

KYvsHH 0.057 0.051 0.049 0.035 0.031 0.029 0.024 0.022 0.020 

CFvsHH 0.053 0.048 0.046 0.033 0.029 0.027 0.023 0.020 0.018 
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Table S2.9. Scutellastra granularis (Granular limpet). Pairwise FST values shown between locations in scenario 4-12 (PoPoolation2). 

 

 4 5 6 7 8 9 10 11 12 

#SNPS used 3,175 4,713 5,440 400 1,361 2,023 16 336 866 

PNvsSP 0.063 0.055 0.051 0.037 0.034 0.030 0.026 0.026 0.023 

PNvsCA 0.070 0.064 0.061 0.043 0.039 0.038 0.024 0.030 0.030 

PNvsKY 0.071 0.065 0.062 0.042 0.040 0.039 0.027 0.031 0.031 

PNvsCF 0.071 0.065 0.062 0.046 0.040 0.039 0.035 0.031 0.031 

PNvsHH 0.075 0.069 0.066 0.045 0.043 0.042 0.030 0.031 0.032 

SPvsCA 0.064 0.058 0.055 0.043 0.036 0.034 0.038 0.028 0.025 

SPvsKY 0.069 0.063 0.059 0.046 0.040 0.037 0.032 0.032 0.029 

SPvsCF 0.065 0.059 0.055 0.042 0.036 0.034 0.039 0.029 0.026 

SPvsHH 0.072 0.066 0.063 0.048 0.043 0.040 0.037 0.031 0.028 

CAvsKY 0.061 0.055 0.051 0.036 0.031 0.028 0.025 0.023 0.020 

CAvsCF 0.055 0.048 0.044 0.031 0.026 0.023 0.015 0.018 0.016 

CAvsHH 0.063 0.057 0.053 0.035 0.033 0.030 0.022 0.022 0.022 

KYvsCF 0.061 0.054 0.050 0.036 0.030 0.026 0.026 0.022 0.018 

KYvsHH 0.064 0.057 0.053 0.037 0.033 0.030 0.029 0.023 0.021 

CFvsHH 0.060 0.055 0.051 0.036 0.032 0.029 0.020 0.022 0.021 
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Table S2.10. Parechinus angulosus (Cape urchin). Pairwise FST values shown between locations in scenario 4-12 (PoPoolation2). 

 

 4 5 6 7 8 9 10 11 12 

#SNPS used 1,484 3,021 4,235 101 582 1,240 2 101 425 

PNvsSP 0.083 0.074 0.066 0.055 0.052 0.044 0.018 0.037 0.033 

PNvsKY 0.088 0.081 0.074 0.064 0.062 0.053 0.029 0.051 0.045 

PNvsCF 0.101 0.095 0.089 0.075 0.069 0.061 0.039 0.058 0.050 

PNvsHH 0.099 0.089 0.082 0.068 0.065 0.056 0.084 0.051 0.047 

SPvsKY 0.063 0.054 0.049 0.037 0.036 0.031 0.019 0.032 0.026 

SPvsCF 0.072 0.066 0.061 0.041 0.040 0.037 0.018 0.034 0.029 

SPvsHH 0.072 0.062 0.055 0.042 0.039 0.034 0.054 0.030 0.028 

KYvsCF 0.064 0.058 0.053 0.038 0.033 0.030 0.038 0.026 0.021 

KYvsHH 0.057 0.045 0.039 0.034 0.025 0.021 0.077 0.018 0.016 

CFvsHH 0.073 0.065 0.059 0.040 0.035 0.032 0.023 0.023 0.022 
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Table S2.11. Range of selected SNP-based nucleotide diversity estimates (pi and theta) of marine species from the phyla  

Arthropoda, Mollusca and Echinodermata. 
 

Phylum/Species Common name Nucleotide diversity (", $w) Reference 
Arthropoda    
Semibalanus balanoides Acorn barnacle 0.0048-0.0058 (") Nunez et al. 2018 
Pseudodiaptomus inopinus copepod 0.0011-0.0043 (") Dexter et al. 2018 
Calanus finmarchicus copepod 0.0063-0.0073 (") Choquet et al. 2019 
Calanus glacialis copepod 0.0074-0.0082 (") Choquet et al. 2019 
Oratosquilla oratoria Mantis shrimp 0.00409-0.00669 (") Daizhen et al. 2016 
Litopenaeus vannamei White leg shrimp (king prawn) 0.00369 (") Zhang et al. 2019* 
Paralithodes camtschaticus Red king crab 0.0002-0.0086 (") Grant and Cheng, 2012 
Cyclograpsus punctatus Shore crab 0.011 ("), 0.011 ($w) This study 
Mollusca    
Crassostrea gigas Pacific oyster 0.0101 (") Gagnaire et al. 2018 
Crassostrea gigas Pacific oyster 0.0077 ("), 0.0119 ($w) Song et al. 2018 
Crassostrea angulata Portuguese oyster 0.0096 (")  Gagnaire et al. 2018 
Brachidontes spp. bivalve mussels 0.81-0.94 ($")***, 0.0091-0.0124 ($w) Maas et al. 2018 
Nucella lapillus Dog whelk 0.0003-0.0005 (") Chu et al. 2014 
Tegula funebralis** Black turban snail 0.0006 (") Gleason and Burton, 2016 
Scutellastra granularis Granular limpet 0.011 ("), 0.012 ($w) Nielsen et al. 2018 
Scutellastra granularis Granular limpet 0.010 ("), 0.010 ($w) This study 
Echinodermata    
Apostichopus japonicus Japanese sea cucumber 0.00146 (") Jo et al. 2017 
Protoreaster nodosus Chocolate chip sea star 0.305-0.307 (") Tay et al. 2016 
Strongylocentrotus droebachiensis Green urchin 0.155-0.161 (") Addison and Kim, 2018 
Strongylocentrotus pallidus Pale urchin 0.238-0.263 (") Addison and Kim, 2018 
Parechinus angulosus Cape urchin 0.009 ("), 0.010 ($w) Nielsen et al. 2018 
Parechinus angulosus Cape Urchin 0.011 ("), 0.012 ($w) This study 

                *wild population, **(until recently known as Chlorostoma funebralis), ***theta pi ($"), calculated according to Nei, 1987. 
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Table S2.12. Summary of the range of findings for varying SNP parameters (see Table S2.1) for study species (see Table S2.2-10) shown for  

Sea Point population. 
 
 

 C. punctatus S. granularis P. angulosus 
SNPs (PoPoolation) 4,110,050 - 100,440,717 1,077,945 - 27,864,122 7,589,471 - 194,199,718 
pi 0.008 - 0.016 0.007 - 0.016 0.008 - 0.016 
theta 0.008 - 0.022 0.007-0.019 0.008 - 0.020 
SNPs (PoPoolation2) 2,048 -142,443 1,237-59,877 1,243 - 56,185 
private SNPs 0 - 1,289 0 - 993 41 - 4,287 
FST [SP vs. KY] 0.016 - 0.054 0.029 - 0.069 0.019 - 0.063 
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2.5.2 Clustering analyses 

2.5.2.1 Mixture analysis based on mixture of groups of individuals 

 

Each grouping is automatically assigned a colour, with each clustered individual represented 

by a vertical bar with the colour pointing to the associated cluster. Optimal partitions 

estimated in BAPS range from 5 (C. punctatus) to 4 (S. granularis, P. angulosus). All 

estimated partitions are present at all populations and the suggested clusters do not follow a 

geographical order (Figure S2.1). 

 

 
 

Figure S2.1. Coloured partition of clusters suggested for C. punctatus (A), S. granularis (B) and P. 
angulosus (C). Location abbreviations are listed in Figure 2.1. 
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2.5.2.2 Population structure inference with fastSTRUCTURE 

 

Suggested admixture proportions are visualised by plotting the mean of the variational 

posterior distribution over the admixture proportions, grouped according to geographic 

location. Each population is automatically assigned a colour and �K� denominates the 

number of estimated clusters (Figure S2.2a-c). The K means clustering analysis estimates a 

range of potential K values (C. punctatus: K= 1-4, S. granularis: K = 3-5, P. angulosus: K = 

1-3). The admixture graph analysis suggests one overall population for C. punctatus and P. 

angulosus and three for S. granularis, which are present at all sampled geographic locations. 

 

 

Figure S2.2a. Suggested admixture proportions for C. punctatus over the suggested range (overall K 
= 1-4) with (1) K = 1, (2) K = 2, (3) K = 3, (4) K = 4. 
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Figure S2.2b. Suggested admixture proportions for S. granularis over the suggested range (overall K 
= 3-5) with (1) K = 3, (2) K = 4, (3) K = 5. 

 

 

Figure S2.2c. Suggested admixture proportions for P. angulosus over the suggested range (overall K 
= 1-3) with (1) K = 1, (2) K = 2, (3) K = 3. 
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Chapter III: Characterising the putatively adaptive potential of selected marine 

invertebrates in South Africa 

 

3.1 Introduction 

 

Exploring the molecular basis of adaptive divergence in species is a fundamental pursuit in 

evolutionary biology (Ford, 1975; Tenaillon and Tiffin, 2008; Balkenhol et al. 2017). Local 

adaptation arises when individuals possess a higher average fitness in their local habitat 

conditions relative to individuals from different populations (Williams, 1966; Kawecki and 

Ebert, 2004; Savolainen, Lascoux and Merilä, 2013), which has traditionally been studied 

with resource-intensive reciprocal transplant or common garden experiments (Flanagan et 

al. 2018). The occurrence of local adaptation is thought to rise with larger molecular variation 

across species populations and with larger environmental and phenotypic disparity among 

populations (Lande, 1976; Endler, 1977; García-Ramos and Kirkpatrick, 1997). Geographic 

variation of environmental variables can lead to natural selection shaping the spatial 

distribution of species traits (Linhart and Grant, 1996). Patterns of local adaptation are often 

associated with spatially diverging environmental conditions between populations, which can 

be observed through phenotypic and/or molecular differentiation along environmental 

gradients (such as latitude, altitude, water depth) or across different types of habitats 

(Becker et al. 2006; Hereford and Winn, 2008; Conover, Duffy and Hice, 2009). For instance, 

geographic phenotypic variation is central to Bergmann�s rule, which observes that body size 

increases with latitude in several species (Bergmann, 1847; Atkinson and Sibly, 1997). Also, 

geographic phenotypic variation in the shape of a latitudinal cline has for example been 

observed for flowering time in plants (Stinchcombe et al. 2004). Further, evidence for 

geographical patterns of genetic variation influenced by an ecological gradient have been for 

example recovered in sticklebacks (Gasterosteus aculeatus) in the Baltic Sea, indicating 

local adaptation to spatial variation in salinity levels (DeFaveri and Merilä, 2014). Evidence 

of spatially varying selective pressures in numerous studies involve pronounced 

environmental gradients (Bradbury et al. 2010; Milano et al. 2014; Guo et al. 2015; Guo, Li 

and Merilä, 2016; Dalongeville et al. 2018; Stanley et al. 2018), often revealing clinal gene 

frequency patterns for putatively adaptive loci (Eckert et al. 2010). Interestingly, spatially 

varying molecular patterns in areas characterised by relatively homogeneous environmental 

conditions have also been discovered (Nielsen et al. 2018). Further evidence suggests that 

selective pressures can impact relatively closely related species inhabiting the same 

geographical area differently, pointing to dissimilar processes shaping their evolutionary 

trajectory (Cullingham, Cooke and Coltman, 2014). Importantly, divergent selection driving 
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local adaptation over species populations exposed to heterogeneous environmental 

conditions across their range may initiate early phases of speciation (Nosil, Funk and Ortiz-

Barrientos, 2009; Nosil 2012; Ravinet et al. 2017; see for example Teske et al. 2019; 

Tisthammer et al. 2020). 

 

While local adaptation and associated higher average fitness can benefit organisms in 

locally experienced environmental conditions, there is a potential trade-off in terms of 

consequently lower average fitness in other environments (Hereford, 2009). Possible trade-

offs related to local adaptation to the environmental conditions of a certain area might 

stimulate molecular variation between species populations across their range, which can 

result in physiological and/or morphological differentiation (Futuyma and Moreno, 1988; 

Jasmin and Kassen, 2007). A range of factors, as for example low molecular variation in 

populations, can influence or limit local adaptation potential (Hereford, 2009). High levels of 

gene flow may potentially homogenise allele frequencies between populations and hence 

reduce local adaptation, but it has been demonstrated that adaptive divergence can arise in 

the presence of gene flow (Schluter, 2009; Leinonen et al. 2013; see for example Guo et al. 

2015). Further, the occurrence of local adaptation in species might be impacted by genetic 

drift, large (effective) population size and by selection processes related to short term 

environmental variability (Kawecki and Ebert, 2004; Cano et al. 2008; Nosil, Funk and Ortiz-

Barrientos, 2009; Lotterhos and Whitlock, 2015). Next to limited standing genetic variation, 

the molecular composition of relevant genes (Le Corre and Kremer, 2012; Gagnaire and 

Gaggiotti, 2016) and wide phenotypic plasticity (Fraser et al. 2011) are also thought to hinder 

adaptive divergence in populations. Hence, detected local adaptation may be shaped by a 

range of factors and might not be solely the result of divergent selection due to spatial 

ecological variation (Kawecki and Ebert, 2004; Leinonen et al. 2013; Blanquart et al. 2013). 

 

Putatively adaptive regions in the genome, which may signal local adaptation patterns, have 

been discovered in a wide range of species (Lewontin and Krakauer, 1973; Leimu and 

Fischer, 2008; Hereford, 2009; Feng, Jiang and Fan, 2015; Dayan, 2018). There is evidence 

from studies linking genomic variation (genotypes), the evolutionary basis of adaptation, to 

phenotypic variation (phenotypes) in some species (Hohenlohe et al. 2010; Renaut et al. 

2011; Deagle et al. 2012; Jones et al. 2012; McGaughran et al. 2016; Marques et al. 2018). 

However, the molecular basis of adaptive divergence is still not well understood (Savolainen, 

Lascoux and Merilä, 2013; Harrisson et al. 2014). As established in section 1.3, high-

throughput sequencing and RAD-Seq (restriction-site-associated sequencing) technology 

have made detecting potentially adaptive genomic regions more widely accessible and cost 

effective (Manel et al. 2016; Andrews et al. 2016; but see Lowry et al. 2017), particularly for 
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species with no or few existing molecular resources (non-model organisms) (Luikart et al. 

2003; Manel et al. 2010, 2016; Ekblom and Galindo, 2011; Ellegren, 2014; Delord et al. 

2018; Weigand and Leese, 2018). Moreover, the scale of genomic data (as opposed to 

traditional markers) helps to facilitate comparative studies exploring biogeographic 

processes of co-distributed species (Papadopoulou and Knowles, 2016). However, studies 

based on genomic data obtained by scanning for SNPs can be subject to genotyping errors 

(Xue et al. 2009; O�Leary et al. 2018) and the discovery of false positive loci (Excoffier, Hofer 

and Foll, 2009). Utilising limited genome-wide data, such as the reduced representation 

approach (RAD-Seq), as opposed to whole genome data might also risk missing signals of 

adaptive selection (Toonen et al. 2013; Puritz et al. 2014; Hoban et al. 2016; Lowry et al. 

2017). Further, low coverage of genomic data and strict bioanalytical filtering protocols can 

additionally hinder the detection of signs of adaptive evolutionary change (Hoban et al. 2016; 

O�Leary et al. 2018). Conversely, it is recommended to use stringent filter parameters to 

increase the confidence of detected candidate loci and to lower the rate of false positives 

(Cantarel et al. 2014; Nevado and Pérez-Enciso, 2015; O'Leary et al. 2018). For instance, 

large SNP window sizes are thought to lead to more false positives, whereas smaller window 

sizes may raise false negative findings (Beissinger et al. 2015; O�Leary et al. 2018). Lastly, 

sampling design is thought to impact analyses of genomic data and sampling many 

populations with a few individuals has since been suggested above selecting a small number 

of populations with numerous individuals (De Mita et al. 2013; Lotterhos and Whitlock, 

2015). 

 

At the same time as the above-mentioned quickly expanding biotechnological possibilities, 

natural populations are being adversely impacted by changing climatic conditions, 

anthropogenic pressures and invasive species (Parmesan, 2006; Hoffmann and Sgrò, 2011; 

Mead et al. 2013; Hillebrand et al. 2018). Species may respond to changing environmental 

conditions in their habitat by phenotypic plasticity (Chevin, Lande and Mace, 2010), 

geographically shifting their range to an appropriate area if available (Loarie et al. 2009) 

and/or genetically adapting to the new conditions (Franks and Hoffmann, 2012). Populations 

which are unable to adapt or shift geographically might face extinction (Aitken et al. 2008; 

Cahill et al. 2013). Importantly, climate change-induced shifts of environmental conditions 

have the capacity to influence prevalent selection processes in the local environment of 

species populations (Franks and Hoffmann, 2012). Evidence of spatially varying adaptive 

signals across populations can contribute to estimate how species occupying environmental 

gradients or latitudinal clines might be able to respond to changing conditions, if for instance 

some populations already face challenging or extreme conditions (Alberto et al. 2013; Guo et 

al. 2015; Balkenhol et al. 2017; Stanley et al. 2018; Exposito-Alonso et al. 2018). Species 
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estimated capacity to respond to changes of climatic conditions on the genomic level might 

be inferred from the detection and geographic distribution of putatively adaptive loci to help 

conserve and maximise their molecular diversity and evolutionary potential (Fraser and 

Bernatchez, 2001). 

 

3.1.1 Adaptive variation and evolutionary potential  

 

Species capacity to respond to changing climatic conditions may be estimated from the 

molecular diversity and �adaptive uniqueness� of their populations, as the genome builds the 

basis for natural selection to act on (Lande and Shannon, 1996; Fraser and Bernatchez, 

2001; Barrett and Schluter, 2008; Hereford, 2009; Alsos et al. 2012; Pauls et al. 2013; 

Graudal et al. 2014). Genomic uniqueness of populations can be incorporated into 

conservation strategies (Sgrò, Lowe and Hoffmann, 2011; Flanagan et al. 2018), although 

the best avenues to implement species spatial adaptive characteristics are not well 

established yet (Harrisson et al. 2014; Hendricks, Schweizer and Wayne, 2019; Hoelzel, 

Bruford and Fleischer, 2019). The rationale is that adaptive evolution potential arising from 

standing genomic variation and the distribution of putatively adaptive loci across the species 

native range might indicate the persistence of populations under changing climatic 

conditions (Exposito-Alonso et al. 2018; Lai et al. 2019). For instance, flowering plant 

Arabidopsis thaliana is widely found across Europe, but populations in the Mediterranean 

and Scandinavian regions demonstrate larger variety of drought resistance alleles (linked to 

higher drought resistance) compared to Central European populations, which influences the 

respective resilience of their populations to changing climatic conditions (Exposito-Alonso et 

al. 2018). Adaptations to environmental heterogeneity or extreme conditions at the edges of 

the species range, which are based on intraspecific genomic heterogeneity, might be the key 

to enable an evolutionary response under climate change. It is possible that the distinct 

environmental differences between the most western and most eastern South African 

coastal study sites (Port Nolloth, Haga Haga) could facilitate the basis for within-species 

adaptive variation in the populations. Nevertheless, the long-term persistence of species 

depends on both neutral and adaptive elements of genomic diversity and it is still in question 

to which extent and with which spatio-temporal patterns both elements determine species 

evolutionary potential (Romiguier et al. 2014; Mittell, Nakagawa and Hadfield, 2015). Thus, it 

has been advocated that genomic markers may likely not directly translate into future 

adaptive potential of populations (Christmas, Breed and Lowe, 2016) and that evolutionary 

potential possesses an additional epigenetic component and possible variation thereof 

(Harrisson et al. 2014). Functional annotations are not widely available for non-model 

organisms at present, RAD-Seq data covers less markers relative to whole-genome scan 

Stellenbosch University https://scholar.sun.ac.za



141 
 

data (see Lowry et al. 2017) and outlier detection approaches have technical limitations 

(Weigand and Leese, 2018), which means putatively adaptive loci in this study serve as an 

early indication of possible evolutionary potential. The identification of interesting candidate 

loci has been described as a starting point (Lotterhos and Whitlock, 2015; Gagnaire and 

Gaggiotti, 2016; Catchen et al. 2017), which can be expanded in the future with ongoing 

innovation of genomic tools and evidence of the specific functional role of outliers (Pardo-

Diaz, Salazar and Jiggins, 2015). 

 

3.1.2 Outlier detection approaches 

3.1.2.1 Outlier differentiation method (FST) 

 

Identifying loci potentially showing patterns of local adaptation is practised with two broadly 

adapted methods: the frequency-based outlier differentiation approach, which focuses on 

loci which display distinctively high differentiation across the remaining genomic data and the 

correlation-based environmental association approach, which investigates loci which may be 

impacted by the influence of environmental variables. The former approach follows the 

rationale that alleles associated with local adaptation are likely to possess a higher 

frequency in populations where they improve fitness and reversely a lower frequency if they 

decrease fitness (Hoban et al. 2016). Hence, determining which alleles display above 

average differentiation (i. e. higher variance compared to putatively neutral loci) in the 

genome could point to loci under selection among species populations (Lewontin and 

Krakauer, 1973; Storz, 2005; Beaumont, 2005; Schilling et al. 2014; but see Nei and 

Maruyama, 1975). Genomic differentiation is widely estimated with fixation index (FST; 

Wright, 1949; Ahrens et al. 2018) approaches, coining the term �FST outliers� (Lotterhos and 

Whitlock, 2014). Theoretically, loci affected by adaptive selection processes exhibit high FST 

values and reversely low FST values if they are under balancing selection (Excoffier, Hofer 

and Foll, 2009; Leinonen et al. 2013). A drawback of the outlier differentiation method is that 

loci can deviate from neutrality (neutral processes) due to other processes than adaptive 

divergence (Lotterhos and Whitlock, 2014; Gagnaire and Gaggiotti, 2016), such as 

background selection, pre-/post-zygotic isolation, stochastic effects, selection attributed to 

deleterious alleles and differential introgression (Bierne et al. 2011; Bierne, Roze and Welch, 

2013; Gosset and Bierne, 2013; Lotterhos and Whitlock, 2015; Fraïsse et al. 2016; 

Matthey-Doret and Whitlock, 2019). In spite of the various factors possibly influencing FST 

estimates throughout the genome, this outlier detection method is widely applied and serves 

as valuable initial step to establish candidate loci which might be targets of selection among 

a large range of species and their populations (Beaumont, 2005; Jensen, Foll and 
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Bernatchez, 2016; Ahrens et al. 2018; but see Bierne et al. 2003; Bierne, Roze and Welch, 

2013). 

 

This study conducts two FST-based outlier differentiation approaches, of which the first one is 

the empirical FST method. The empirical FST method designates SNPs as outliers whose 

pairwise FST estimates between populations are so strongly differentiated that they are found 

in the upper 0.5% (alternatively 0.1%) proportion of the empirical distribution of all estimated 

values (99.5 percentile; Akey et al. 2010; Feulner et al. 2013). For instance, the empirical FST 

method has been used to identify the molecular basis of phenotypic variation across 275 

modern domesticated dogs from phenotypically diverse breeds (Akey et al. 2010). The 

outlier detection through the empirical FST distribution is thought to reveal a list of candidate 

genes of interest, but it may be influenced by how susceptible the footprints of selection are 

to the demographic background of the species (Teshima, Coop and Przeworski, 2006; 

Lotterhos and Whitlock, 2015). Also, the method might lower representation of adaptive 

divergence from standing molecular variation or from recessive variation (Teshima, Coop 

and Przeworski, 2006; Lai et al. 2019). Early studies which utilise this empirical outlier 

detection path include investigations on fruit fly Drosophila melanogaster (Kolaczkowski et 

al. 2011) and mosquito complex Anopheles gambiae (Cheng et al. 2012). In the marine 

environment, this approach has been used for instance in three-spined sticklebacks 

Gasterosteus aculeatus (Feulner et al. 2013; Guo et al. 2015), rainwater killifish Lucania 

parva (Kozak et al. 2014) and Atlantic herring Clupea harengus (Guo, Li and Merilä, 2016). 

 

The second conducted outlier detection approach infers from a Bayesian perspective that 

gene frequencies in a neutrally structured population model might be estimated with a 

multinomial Dirichlet distribution (Beaumont, 2005). BayeScan version 2.1 (Foll and 

Gaggiotti, 2008) utilises a Bayesian-based framework where FST serves as a model 

parameter to estimate the posterior probability that a locus is under directional selection (Foll 

and Gaggiotti, 2008). The application scans for a �departure from neutrality� in the genome 

based on differences in allele frequencies between populations (Fischer et al. 2011; p. 1453; 

also see Foll and Gaggiotti, 2008; Foll et al. 2010). Moreover, BayeScan estimates q-values 

for each locus which indicate the minimum false discovery rate (FDR) at which the individual 

locus might be considered significant. BayeScan has been suggested as more efficient at 

detecting outlier loci in comparison to other approaches (Pérez-Figueroa et al. 2010; Narum 

and Hess, 2011; De Mita et al. 2013), but this may strongly depend on the criteria utilised to 

judge significance (Lotterhos and Whitlock, 2014). Also, it is thought that BayeScan might be 

potentially impacted by the presence of population structure such as isolation-by-distance 

(IBD) and range expansions (Lotterhos and Whitlock, 2014). BayeScan has been used 
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across a broad range of species populations and examples for the application in marine 

invertebrates include the California sea cucumber Parastichopus californicus (Xuereb et al. 

2018), the spiny lobster Panulirus homarus (Al-Breiki et al. 2018) and the Eastern oyster 

Crassostrea virginica (Bernatchez et al. 2019). 

 

3.1.2.2 Environmental association method 

3.1.2.2.1 Background 

 

The second approach to detect outlier loci seeks correlations of population allele frequencies 

with spatial differentiation of environmental variables occurring across a species range or a 

section thereof (Endler, 1986). If an allele imparts a benefit under specific environmental 

conditions, it is expected to appear at an increased frequency in species populations with the 

conditions or is likely identified by a strong geographic allele frequency difference between 

populations (Coop et al. 2010; Bragg et al. 2015). Methods following this approach aim to 

investigate if alleles are stronger correlated with tested environmental variables than 

presumed from neutral processes alone (Coop et al. 2010; Günther and Coop, 2013; 

Bradburd, Ralph and Coop, 2013; Villemereuil and Gaggiotti, 2015). For instance, a 

comparative genomic approach revealed candidate loci presumably associated with high-

altitude adaptation in Tibetans, who are exposed to strongly different environmental 

conditions than humans inhabiting lowland regions (Simonson et al. 2010; Beall et al. 2010). 

Aside from factors such as altitude, climatic conditions are recognised as influential selective 

pressures acting on species populations (Parmesan, 2006; Hancock et al. 2008; Urban, 

2015; Foden et al. 2019). Exploring the molecular basis of local adaptation is therefore key 

in the context of climate change, which is associated with comparatively rapid changes in 

climatic conditions (IPCC, 2013). Moreover, environmental association approaches have the 

potential to reveal signals of local adaptation which might not be detectable by population 

genomic differentiation methods or be able to support and add to them (Rellstab et al. 2015). 

 

Nevertheless, the environmental association approach has drawbacks: It is restricted to 

detecting loci based on the tested environmental variables and therefore may possibly 

overlook other environmental variables or indicate a potential multicollinearity between them 

(Cullingham, Cooke and Coltman, 2014; Bragg et al. 2015; Rellstab et al. 2015). Moreover, 

this approach depends not only on the estimated environmental variables which might be 

most biologically relevant for the species populations (Lotterhos and Whitlock, 2014), but at 

the same time on the resolution of the available environmental data (Hoban et al. 2016). 

Further, without direct natural selection being involved, several instances, including hidden 

demographic effects (De Mita et al. 2013; Lotterhos and Whitlock, 2015), variation in the 

Stellenbosch University https://scholar.sun.ac.za



144 
 

mutation and recombination rate (Roesti et al. 2012; Tine et al. 2014), isolation by distance 

(Vasemägi, 2006), hitchhiking genes (Bierne et al. 2011; Lotterhos and Whitlock, 2015), 

secondary contact following allopatric divergence (Bierne et al. 2003) and allele surfing 

related to range expansions (Klopfstein, Currat and Excoffier, 2006; Travis et al. 2007) might 

lead to correlations between genomic patterns and environmental variables. Parameters 

such as for instance recombination rate estimates are not known yet for many non-model 

organisms, which means genome scans for natural selection need to be interpreted 

cautiously with the potential influence of genomic heterogeneity in mind (Haasl and Payseur, 

2016). Nonetheless, environmental association studies allow an exploration of the genome 

(or sections thereof in case of RAD-Seq) which was not possible with the technical 

limitations of the pre-genomic investigation era (Rellstab et al. 2015). 

 

3.1.2.2.2 Environmental variables 

 

The strength of environmental association approaches depends on predicting which 

variables might be most relevant to the populations across their spatial distribution, which 

might be challenging to forecast (Lotterhos and Whitlock, 2014). In the marine environment, 

sea surface temperature (SST) is a dominant factor influencing the geographical distribution, 

physiology and reproduction of numerous marine species (Perry et al. 2005; Pörtner and 

Farrell, 2008; Marbà et al. 2015; Hiddink, Burrows and García-Molinos, 2015; Riginos et al. 

2016; Free et al. 2019). Depending on the niche marine species are inhabiting, alternatives 

to SST might be SBT (sea bottom temperature) (Gaudin et al. 2018) or seasonal measures 

such as average winter or summer sea temperature (Stanley et al. 2018; Van Wyngaarden 

et al. 2018). For example, spatial molecular differentiation in five marine species appears to 

be best explained by spring bottom temperature and winter sea surface temperature in the 

northwest Atlantic (Stanley et al. 2018). Other examples include mean bottom temperature 

putatively driving local adaptation in populations of California sea cucumber Parastichopus 

californicus (Xuereb et al. 2018) and seasonal phases of thermal minima in sea scallop 

Placopecten magellanicus (Lehnert et al. 2019). Apart from sea water temperature, another 

potential determinant are salinity levels. For instance, due to the very distinct salinity 

gradient in the Baltic Sea (from ~25 psu to <1 psu (practical salinity unit); Bonsdorff, 2006), it 

is not unexpected to recover patterns of likely local adaptation to salinity variation in 

numerous marine species inhabiting the region (e.g. Atlantic cod (Gadus morhua), Berg et 

al. 2015; Malachowicz and Wenne, 2019; (marine) three-spined stickleback (Gasterosteus 

aculeatus), Guo et al. 2015; blue mussel (Mytilus spp.), Larsson et al. 2017). Nevertheless, 

examples for putatively divergent selection driven by salinity differences are not limited to the 

Baltic Sea and were discovered across other geographic areas as well (e.g. European hake 
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(Merluccius merluccius) (Milano et al. 2014); striped red mullet (Mullus surmuletus) 

(Dalongeville et al. 2018); turbot (Scophthalmus maximus) (Do Prado et al. 2018); small 

yellow croaker (Larimichthys polyactis) (Zhang et al. 2019a); oyster (Crassostrea ariakensis) 

(Liu et al. 2019)). 

 

Detailed environmental data availability permitting, studies on marine species have 

furthermore tested genome-environment association with a wide range of factors including 

for instance seawater density, chlorophyll A (as proxy for primary productivity), inorganic 

nutrient concentrations (Van Wyngaarden et al. 2018), current velocity, dissolved oxygen 

concentration (Xuereb et al. 2018) and turbidity (Zhang et al. 2019a). While the factor air 

temperature might not appear as decisive for the majority of marine species, it can pose a 

challenge for those living at the marine-terrestrial interface such as intertidal rocky shore 

ecosystems. Species inhabiting the mid- to high shore experience different degrees of air 

temperature variation during low tide phases (Helmuth et al. 2006a; Somero, 2012). 

Therefore, testing genomic data for environmental association with air temperature might 

yield insights into possible signs of local adaptation in those species. Overall, air 

temperature has been previously considered as a factor influencing molecular patterns in 

sea birds (Tigano et al. 2017) and a range of freshwater fish populations (Matala, Hess and 

Narum, 2011; Perrier et al. 2017; Chen et al. 2018). In intertidal species, air temperature has 

been investigated regarding adaptive divergence in the intertidal oyster Crassostrea gigas 

(Li et al. 2017) and air temperature is speculated to contribute to a genetic cline in the 

barnacle Balanus glandula (Wares and Skoczen, 2019). The latter two studies do not utilise 

RAD-Seq approaches, but testing intertidal species for impacts of air temperature is for 

example also well established in the field of experimental physiology (Miller, Harley and 

Denny, 2009; see Chapter IV). 

 

Potential associations between environmental driving factors and genomic patterns have 

been previously detected in the South African coastal marine environment. Putatively 

adaptive loci of the sea grass Zostera capensis demonstrated signs of influence by spatial 

variation in sea temperature and precipitation across the species distribution in southern 

Africa (Phair et al. 2019). Moreover, environmental association with the thermal gradient 

across the South African coastline has also been recovered in the genome of the sand goby 

Psammogobius knysnaensis (Teske et al. 2019). And although more of circumstantial 

nature, the authors by a study on the South African abalone Haliotis midae suggest that their 

findings might point to the influence of varying local environmental conditions across coastal 

regions in South Africa (Rhode, Bester-van der Merwe and Roodt-Wilding, 2017). Further, 

studies on DNA methylation in populations of the brown mussel Perna perna (Watson et al. 
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2018) and the South African sandhopper Talorchestia capensis suggest that local 

environmental conditions might drive differences between their epigenetic profiles (Baldanzi 

et al. 2017). 

 

Contributing to the research on genome-environment associations in South Africa�s marine 

environment and with time constraints of a multi-species approach in mind, this study tests 

the RAD-Seq data of three intertidal species for potential association with mean annual sea 

surface temperature, salinity and air temperature. Sea surface temperature (SST) and 

salinity influence egg buoyancy, hatching, larval retention/survival and the density of adults 

in marine species and have hence been suggested as �functional and operative proxies of 

the variation of complex environmental and oceanographic conditions� of a greater 

geographical area (Milano et al. 2014, p. 119, and references therein; also see Porri et al. 

2014). Beyond SST, salinity and air temperature, future empirical endeavours will be able to 

expand on a wider range of environmental variables insofar as available for the geographical 

locations of the species populations. Lastly, this study explores the potential impact of 

environmental variables on multiple co-distributed species, which is at present still 

comparatively rare in the field of population genomics (see Chapter II). Comparative 

phylogeographic studies have the potential to shine light on drivers of spatial genomic 

differentiation (Toonen et al. 2011; von der Heyden et al. 2014; Stanley et al. 2018). 

Selection footprints may vary among populations and species (Conte et al. 2012; Westram 

et al. 2014; Ravinet et al. 2016) and it is not well understood whether environmental factors 

commonly have similar or contrasting impacts on co-distributed species. For example, a past 

study describes two Canadian pine sister species likely subjected to different evolutionary 

selection pressures despite inhabiting the same geographic area (Cullingham, Cooke and 

Coltman, 2014). However, there is evidence for concordant patterns across multiple species 

with clines or similar genetic discontinuities (Barber et al. 2000; Bernardi, Findley and 

Rocha-Olivares, 2003). The advances of genotyping technology and the utilisation of 

genome-environment association methods might reveal more occurrences of congruent 

multi-species patterns. For instance, a congruent climate-associated multi-species cline has 

been found for five marine species with contrasting life history traits across a strong 

environmental gradient in the north-western part of the Atlantic, where sea water 

temperature appears to play a decisive role for population structure (Stanley et al. 2018). 

While the impact of climate change on species and populations is complex (Parmesan, 

2006; Hoffmann and Sgrò, 2011; Cahill et al. 2013; Hillebrand et al. 2018), comparative 

phylogeographic studies of intraspecific genomic patterns across environmental gradients 

can serve to explore population structure and win insights on the potential influence of 

climate change on species (Avise, 2000; Kelley et al. 2016). 
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3.1.2.2.3 BayeScEnv, isolation-by-distance (IBD) and isolation-by-environment (IBE) 

 

BayeScEnv (Villemereuil and Gaggiotti, 2015), which was selected to conduct the 

environmental association approach in this study, compares the differentiation of the 

environmental variables with the genomic variation. The application estimates the empirical 

patterns of covariance between allele frequencies from different populations and utilises this 

as a null model for testing individual SNPs (Villemereuil and Gaggiotti, 2015). The correlation 

is not estimated between the allele frequencies and the environmental variables, but the 

patterns of differentiation between both (Villemereuil and Gaggiotti, 2015). Using a Bayesian 

approach, the application runs a Reversible Jump MCMC to estimate the posterior 

probability of a specific loci being affected by local adaptation. Importantly, possible 

divergent selection and other influences apart from local adaptation such as range 

expansions, background selection and varying mutation rates, are accounted for 

(Villemereuil and Gaggiotti, 2015). The authors claim that BayeScEnv has a lower rate of 

false discovery compared to methods based on FST estimates alone. Lastly, the tool may be 

best suited for species with a medium to high dispersal capacity, which specifically includes 

marine species with those attributes (Villemereuil and Gaggiotti, 2015). In the South African 

marine environment, the application has been utilised to investigate sea grass populations 

Zostera capensis, revealing signs of local adaptation to temperature and precipitation clines 

(Phair et al. 2019). Internationally, BayeScEnv contributed to studies on marine invertebrates 

including the red coral Corallium rubrum (association with sea water temperature) (Pratlong 

et al. 2018), the American lobster Homarus americanus (association with sea surface 

temperature) (Benestan et al. 2016), and the green crab Carcinus maenas (association with 

winter sea surface temperature and other variables) (Jeffery et al. 2018). Another important 

aspect of genome scans for local adaptation pertains to accounting for the role of geographic 

factors across the spatial distribution of populations. 

 

Apart from the potential impact of environmental variables, geographic distance or barriers 

related to prominent landscape features can influence patterns of species spatial genomic 

variation (Wright, 1943; 1946; Bragg et al. 2015). Theoretically, geographical factors may 

limit dispersal, whereby the levels of migration can be higher in adjacent populations and 

decreasing among remote populations, which means that genomic differentiation across 

species populations can increase with geographic distance, ecological distance (if present) 

or both (Bradburd, Ralph and Coop, 2013). An occurrence of isolation by environment can 

arise if local adaptation is so prevalent that it may decrease the dispersal and settlement 

ability beyond the environmental conditions experienced at the origin (Bragg et al. 2015). 
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The relative strength of environmental variables and geographic distance in population 

structure can be assessed by testing genomic data for the impact of isolation-by-distance 

(IBD) and isolation-by-environment (IBE) (Orsini et al. 2013; Shafer and Wolf, 2013; Tiffin 

and Ross-Ibarra, 2014; Sexton, Hangartner and Hoffmann, 2014). Nevertheless, assessing 

the influence of IBD and IBE can be challenging in case geographic distance and 

environmental variables may be covarying (Sexton, Hangartner and Hoffmann, 2014). 

Constrained ordinations such as performed with redundancy analysis (RDA) (Legendre and 

Legendre, 2012), are suggested to outperform univariate approaches in detecting signals of 

selection (Forester et al. 2018). Importantly, the South African coastline might be regarded 

as a principal study system for potential IBD/IBE patterns in marine species owed to the 

roughly linear coastline, the total distance of over 2,500 km and the distinct thermal gradient 

(Branch and Branch, 1981; Branch et al. 2017). 

 

3.1.2.3 Outlier detection approaches summary 

 

Overall, it has been acknowledged that outlier detection methods each have methodological 

limitations to detect statistical outliers in genomic data (Excoffier, Hofer and Foll, 2009; 

Narum and Hess, 2011; Hoban et al. 2016; Haasl and Payseur, 2016). Therefore, as 

suggested by a number of past studies, it has become established to utilise multiple 

methods in conjunction to decrease the potential of false-positive outliers (Narum and Hess, 

2011; Nunes et al. 2011; De Mita et al. 2013; Rellstab et al. 2015). Due to the different 

strengths of outlier detection strategies (Lotterhos and Whitlock, 2015), combining outlier 

differentiation and environmental association methods can assist to capture a wider range of 

outlier loci than a single approach (Rellstab et al. 2015). It is expected that contrasting 

methods might detect different outliers, which can overall contribute to the effort to 

understand signs of local adaptation in species (Vasemägi and Primmer, 2005; Nunes et al. 

2011; Rellstab et al. 2015). It has been suggested that outlier differentiation approaches 

appear to yield higher numbers of false positives as opposed to environmental association 

methods (De Mita et al. 2013), but both methods are subject to inherent limitations and 

dismissing either technical approach might result in missing interesting candidate loci. 

Generally, loci identified by more than one detection method are considered as more robust 

(Pérez-Figueroa et al. 2010; Narum and Hess, 2011; Nunes et al. 2011; De Mita et al. 2013; 

Rellstab et al. 2015; Lotterhos and Whitlock, 2015), but exploring only loci identified by 

multiple methods typically reduces the overall amount of outliers (Guo, Li and Merilä, 2016). 

It is also possible that there might be few to no overlap between the identified outliers across 

detection methods (Villemereuil et al. 2014; Lotterhos and Whitlock, 2015). Conservative 

exclusion of outlier loci to reduce false positives could result in losing loci of interest for 

Stellenbosch University https://scholar.sun.ac.za



149 
 

future research (Gosset and Bierne, 2013), therefore this study aims to combine outlier lists 

yielded by different methods. Outlier loci are subsequently tested for a potential functional 

association with a general blast search in NCBI�s protein sequence reference database 

BlastX (see section 3.2.2.5). Further, outlier loci are evaluated for population structure 

patterns in BAPS (Bayesian Analysis of Population Structure; Corander and Marttinen, 2006; 

Corander et al. 2006) and fastSTRUCTURE (see section 3.2.2.7; Raj, Stephens and 

Pritchard, 2014) as in Chapter II tested with the selectively neutral loci. It is important to 

acknowledge the difficulties to ascertain which outliers are potentially false positives. 

Essentially, every method yields a number of loci per species which can be regarded as 

hypothetical adaptive loci (Jensen, Foll and Bernatchez, 2016; Gagnaire and Gaggiotti, 

2016), which require to be assessed and confirmed for instance by functional analyses of 

candidate genes, common garden or reciprocal transplant experiments and gene expression 

studies in future research efforts (also see section 3.4.7) (Hereford, 2009; Lotterhos and 

Whitlock, 2015; Pardo-Diaz, Salazar and Jiggins, 2015). Candidate loci provide a foundation 

to uncover the species molecular basis of adaptive changes (Pardo-Diaz, Salazar and 

Jiggins, 2015), which is particularly useful for species with few or no prior molecular 

resources (Tiffin and Ross-Ibarra, 2014; Bragg et al. 2015; Catchen et al. 2017). 

 

3.1.3 Goals and expectations 

 

The main objective of this chapter is to combine outlier differentiation (FST) and genome-

environment association approaches to explore the presence and distribution of putative 

signals of adaptation and assess potential drivers of adaptive variation in three co-distributed 

intertidal non-model species across the natural environmental gradient of the South African 

coastline (as previously described: Granular limpet Scutellastra granularis, Cape urchin 

Parechinus angulosus; shore crab Cyclograpsus punctatus). Based on findings in Chapter II, 

selectively neutral loci show low genomic variation and overall limited genomic evidence for 

underlying population structure in the three species. However, other studies on marine 

species have reported low neutral genomic variation with simultaneously distinct differences 

between populations putatively adaptive loci (Guo et al. 2015; Guo, Li and Merilä, 2016; 

Gleason and Burton, 2016; Sandoval-Castillo et al. 2018; Nielsen et al. 2018; Phair et al. 

2019; Teske et al. 2019). On that account, footprints of selection possibly related to localised 

processes such as the influence of environmental factors were expected, despite the study 

species relatively low neutral genomic background structure (see Chapter II). This study 

builds on a previous genomic investigation, which demonstrated putatively adaptive signals 

for two species on the comparatively environmentally homogeneous South African west 

coast (S. granularis, P. angulosus; Nielsen et al. 2018). Hence, additional candidate loci 
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possibly related to adaptive processes can be expected with an extension of the study area 

to the south and southern east coast of South Africa (spanning the thermal environmental 

gradient; Smit et al. 2013; Teske et al. 2019). Sea water temperature has been recognised 

as a dominant factor shaping marine population structure (Perry et al. 2005; Hiddink, 

Burrows and García-Molinos, 2015; Riginos et al. 2016; Free et al. 2019) and evidence for 

molecular signs of thermal adaptation to different coastal areas in the South African marine 

environment have been reported (Teske et al. 2008; 2019). Therefore, genome-

environmental association can be expected to possibly recover SST (sea surface 

temperature) to be associated with the largest number of putatively adaptive loci. 

Alternatively, high-shore specialists C. punctatus and S. granularis, which are exposed to air 

for extended periods during low tide phases, might perhaps indicate more air- than sea 

temperature-associated outlier loci. As the salinity differences across the sampled 

populations are less pronounced, they might play a lesser role in proportion to potential 

temperature-associated outliers. Moreover, it is possible that two or all three environmental 

variables influence the same putatively adaptive loci in the species genomes, which may 

provide some evidence towards how the environment might driving selection. 

 

A South African west coast study on S. granularis and P. angulosus functionally associated 

some of the detected genomic outliers via blasting against a reference database (Nielsen et 

al. 2018). Observing identical outliers might be expected, which however could be influenced 

by different sampling scales (two vs. six west coast populations sampled per study) and 

utilised analytical parameters. Moreover, more outlier loci from S. granularis and P. 

angulosus can be expected to be attributed due to the existing annotations in the genomes 

of the owl limpet Lottia gigantea and the purple sea urchin Strongylocentrotus purpuratus. 

Less closely related genomic resources are available for C. punctatus, which could translate 

into functionally associating only a small number of outlier loci compared to the other two 

study species. 

 

Apart from environmental differences and the possible presence of IBE (isolation-by-

environment), the geographical distance between the species populations of around 1,800 

km might contribute to the occurrence of IBD (isolation-by-distance). The species differ in 

their biological characteristics such as pelagic larval duration (PLD) and the ability of adult 

individuals for dispersal (migration between populations). The estimated PLD ranges from 

>50 days in P. angulosus to ~14 days in S. granularis and C. punctatus, which perhaps 

makes a genomic sign of IBD in the latter two more likely (but see Weersing and Toonen, 

2009; Selkoe and Toonen, 2011). Further, there is evidence from comparative multi-species 

phylogeographic studies for clines or shared genetic breaks (Barber et al. 2000; Bernardi, 
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Findley and Rocha-Olivares, 2003; Toonen et al. 2011; Stanley et al. 2018), but given the 

complex environmental heterogeneity across the South African coastline and the different 

life history traits of the study species (such as taxonomic differences and reproductive 

parameters), it cannot be predicted with confidence whether a shared environmentally-

associated cline might exist across species. Nevertheless, there is the possibility that the 

species cold west coast populations (Port Nolloth/Jacob�s Bay, Sea Point) and the warm 

east coast populations (Cape St. Francis, Haga Haga) demonstrate spatially distinct 

adaptive signals. Nielsen et al. found Port Nolloth to show evolutionary distinct localised 

adaptive signals in P. angulosus (and nearby Hondeklip Bay appears to harbour distinct 

signals in S. granularis), which might be similarly the case in this study (Nielsen et al. 2018). 

Further, it is possible that the two east coast populations (CSF, HH) with the comparatively 

higher sea water and air temperatures might reflect these selection pressures with a 

potentially increased number of localised adaptive signals. Overall, a combination of outliers 

shared across and outliers unique to specific populations were expected. Potential 

intraspecific geographic variation of adaptive signals and the identification of interesting 

candidate loci may provide a starting point to explore future resilience towards changing 

climatic conditions. 

 

In summary, the overarching goal is to explore the three study species intraspecific 

putatively adaptive signals across six coastal populations in southern Africa with a range of 

outlier detection methods to investigate possible footprints of selection in RAD-Seq-derived 

genomic markers. The potential role of environmental heterogeneity across South Africa�s 

coastal thermal gradient is explored by testing SST, salinity and air temperature as selection 

factors in the species genomes and investigate the potential occurrence of isolation-by-

distance (IBD) and isolation-by-environment (IBE). The following questions were addressed: 

1) whether a functional role of outlier loci can be assigned and to which extent this is 

possible in each species depending on molecular resources, 2) whether loci found in Nielsen 

et al. 2018 from two study species are detected again, 3) whether spatially distinct outliers 

occur in populations, 4) whether SST appears as the dominant environmental factor over 

salinity and air temperature, 5) whether the two high shore species are impacted more by air 

temperature than by sea water temperature and 6) whether there are specific outliers 

showing signs of selection by multiple environmental factors. 
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3.2 Methods and Materials 

3.2.1 Data collection 

 

The outlier detection has been conducted with RAD-Seq pools from Chapter II sampled from 

six different rocky shore populations of three species S. granularis, C. punctatus and P. 

angulosus at the South African coastline (see Figure 2.1). The shore crab C. punctatus is not 

found at the most western site Port Nolloth, thereby it was collected from Jacob�s Bay 

instead. The pooled sample from Cape Agulhas is not available for P. angulosus. 

 

3.2.2 Statistical analysis 

 

Three methods were utilised to detect potential outlier loci: the empirical FST method (1), 

BayeScan (2) and BayeScEnv (3). 

 

3.2.2.1 Empirical FST method 

 

The empirical FST approach has been performed with the species RAD-Seq SNP datasets as 

described by Akey (Akey et al. 2010). Scripts used in this chapter were adapted from 

Baocheng Guo (Guo et al. 2015; Guo, Li and Merilä, 2016), with the SNP parameters 

remaining consistent as reported in Chapter II (minimum allele count 4, minimum coverage 

10 and maximum coverage 200). To detect signals of selection, FST values were first 

estimated for each SNP and pairwise population comparison (6 populations: C. punctatus, S. 

granularis; 5 populations: P. angulosus) in PoPoolation2 (Kofler, Pandey and Schlötterer, 

2011). The SNPs contained in the 99.5 percentile of the empirical distribution of the pairwise 

FST estimates were treated as possible outlier loci (Akey et al. 2010; Guo et al. 2015; Guo, Li 

and Merilä, 2016). 

 

3.2.2.2 BayeScan 

 

BayeScan version 2.1 (Foll and Gaggiotti, 2008; Foll et al. 2010; Fischer et al. 2011) utilises 

a Bayesian framework to assess SNPs on the basis of GenePop-formatted files, which store 

high-throughput sequencing reads and associated details (http://genepop.curtin.edu.au). 

While GenePop formatting software is available as standalone application (Rousset, 2008), it 

has been adapted into Popoolation2 (Kofler, Pandey and Schlötterer, 2011) 

(sync2GenePop.pl). GenePop files were processed via Popoolation2 on the University of 

Stellenbosch Central Analytical Facilities HPC2 (http://www.sun.ac.za/hpc). The obtained 

GenePop files, which contain individual level genotype data with loci which have an allele 
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variant count of >2, were converted with PGDSpider version 2.1.1.5 (Lischer and Excoffier, 

2012) into GESTE/BayeScan format. The BayeScan-compatible GenePop files were 

constructed with minimum allele count 4, minimum coverage 10 and maximum coverage 

200, which yields different numbers of total loci (S. granularis: 10 462, P. angulosus: 4638, 

C. punctatus: 46 527). The chain parameters in BayeScan were set to performing 5000 

reversible jumps with a thinning interval of 10, after 20 pilot runs with 5000 runs each and a 

burn-in length of 50 000. The prior odds for the neutral model were set to 10. The q-value 

threshold was set to 5%, meaning that 5% of the outliers which have a q-value lower than 

5% may be expected to report false positives. 

 

3.2.2.3 Environmental and geographic variables 

 

To test the potential influence of environmental variables, the annual mean sea surface 

temperature (SST in °C) and salinity (in ppt) measured in 1° grid cells, were obtained from 

the National Oceanic and Atmospheric Administration (NOAA) World Ocean Atlas 2013 

version V2 (Locarnini et al. 2013; Zweng et al. 2013; Garcia et al. 2010; 

https://www.nodc.noaa.gov/OC5/woa13/woa13data.html; The latest World Ocean Atlas 

(2019) was published after the analyses had been finalised.) Annual mean air temperature 

(in °C) at the sites was obtained from WorldClim at the smallest grid cell size reporting data 

for all sites (res10) (Fick and Hijmans, 2017). Environmental variables were extracted with 

QGIS (v2.8.9; QGIS Development Team (2016); WGS84; EPSG: 32734) according to the 

GPS coordinates of the sampling locations (Table S3.1-3, Appendix). The variables were 

standardised by subtracting the mean and dividing by the standard deviation across all 

populations, as is required by BayeScEnv (Villemereuil and Gaggiotti, 2015; see section 

3.2.2.4), and the values were used in their original form for the RDA analysis, as required by 

the application (Legendre and Legendre, 2012; see section 3.2.2.6). Geographic along-

shore distances (in km) between sampling locations were calculated in QGIS (v2.8.9) 

utilising the shapefile �Africa.shp� provided by SANBI (South African National Biodiversity 

Institute). 

 

3.2.2.4 BayeScEnv 

 

In BayeScEnv (Villemereuil and Gaggiotti, 2015), 5000 reversible-jump MCMC chains with a 

thinning interval of 10 were utilised, after 20 pilot runs with each 2000 iterations and a burn-

in length of 50 000. The MCMC chains were evaluated for convergence in the R package 

CODA version 0.19.1 (Plummer et al. 2006) with the Heidelberger and Welch's Convergence 

Diagnostic test (Heidelberger and Welch, 1981; 1983; Schruben, 1982). All chains 
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converged except for the chain testing the variable �sea surface temperature� in S. 

granularis. In the latter case, the MCMC was calibrated to perform 5000 reversible-jump 

chains with a thinning interval of 20, after performing 25 pilot runs with each 3000 iterations 

and a burn-in length of 50 000. Loci with a qvalue_g below 0.05 were identified as potential 

outlier loci. 

 

3.2.2.5 Annotation with BlastX 

 

To determine if outlier loci are shared between populations or private to certain populations, 

customised Unix bash commands were utilised. This step seeks to confirm whether potential 

adaptive signals are shared or unique among the species populations. Further, a general 

blast search was conducted to assess the potential functional role (or general possible 

genomic association) of the outlier loci in NCBI�s BlastX, the protein sequence reference 

database by the National Center for Biotechnology Information (https://bit.ly/2KgiuMz; 

Altschul et al. 1997), with the nucleotide sequence of the contigs associated with the 

identified locus and 1,000 bp on either side of the contig, as the signal of selection might 

possibly point to a region adjacent to the suggested outlier. 

 

3.2.2.6 IBD and IBE 

 

The subject of the IBD/IBE testing are the minor allele frequencies of the SNPs, which 

describe the rate at which the minor vs. the major allele occurs, which indicates genomic 

variability and serves as response variable in the RDA models. The models evaluate 

geographic distances between populations and selected environmental variables (SST, air 

temperature, salinity) as possible predictors for the species minor allele frequencies. Three 

environmental variables (SST, air temperature, salinity) and geographic distances between 

the respective populations were tested across the study species. Parechinus angulosus was 

not tested for air temperature variation, since the individuals are not exposed to air during 

low tide if they can avoid it. The redundancy analysis (RDA) (Legendre and Legendre, 2012) 

was conducted in R (version 3.5.1) with the rda function in the vegan package (Oksanen et 

al. 2018). The pcnm function was used to transform geographic distances to a PCNM matrix 

(Principal Coordinates of Neighbourhood Matrix). Environmental variables were supplied to 

the model as shown in Table S3.2 (Appendix). The best fitting model across the 

environmental variables was selected with the ordistep function. The first RDA involved 

testing the species minor allele frequency against the geographic distance matrix of their 

respective sampling sites. The second RDA tested which environmental variables or 

combinations of environmental variables could predict the minor allele frequencies. The third 
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and fourth (partial) RDAs assessed whether the retained environmental variation or the 

geographic distance matrix could be partitioned from the total variation of the different 

models. The significance of the RDA outputs was tested with the ANOVA function (999 

permutations). 

 

3.2.2.7 BAPS and fastSTRUCTURE 

 

Outlier loci were tested with BAPS v.5.4 (Bayesian Analysis of Population Structure) for 

potential population clustering with the following settings: minimum size of population 40, 

number of iterations 50, number of reference individuals from each population 40, number of 

reference individuals iterations 10 (P. angulosus K=1-5; S. granularis K=1-6; C. punctatus 

K=1-6) (Corander and Marttinen, 2006; Corander et al. 2006). Moreover, fastSTRUCTURE 

v1.0 was used with K=1-5 for P. angulosus and K=1-6 for S. granularis and C. punctatus 

(Raj, Stephens and Pritchard, 2014) seed parameter 100 and the prior logistic model. 
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3.3 Results 

3.3.1 Empirical FST method and BayeScan 

 

The empirical FST method detects loci, which fall into the 99.5 percentile of the empirical 

distribution of the pairwise FST estimates (Table 3.1). The percentage of detected outliers per 

species compared to the overall loci analysed ranges from 2.86%-3.43% (empirical FST 

method) to 0.03%-0.34% (BayeScan). The spatial distribution of the empirical outliers is 

shown in table S3.4 (Appendix). Outliers detected with BayeScan did not show spatial 

variation, i.e. are found in all populations. 

 

Table 3.1. Detected outliers with empirical FST method and BayeScan. The total number of loci differs 
due to the different methodological approaches to identify outlier loci. 

 

 C. punctatus S. granularis P. angulosus 

empirical FST method    

Outlier loci 493 165 121 

Total loci 14392 5440 4235 

% outliers/total 3.43% 3.03% 2.86% 

BayeScan    

Outlier loci 15 36 7 

Total loci 46527 10462 4638 

% outliers/total 0.03% 0.34% 0.15% 

 
 

3.3.2 BayeScEnv 

 

BayeScEnv tested differentiation of environmental variables including sea surface 

temperature (SST), air temperature and salinity against the allele frequencies of the study 

species populations to suggest outlier loci which are putatively influenced by the respective 

environmental variable (Table 3.2). The total number of outliers estimated across species 

ranges from 225 (C. punctatus) to 45 (S. granularis) and 4 (P. angulosus) (after deducting 

outliers suggested by multiple factors). The BayeScEnv outliers are found in all populations 

and therefore do not show spatial variation across sampling sites. 
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Table 3.2. Number of outliers detected by BayeScEnv, which are putatively influenced by  
differentiation in sea surface temperature, air temperature and salinity across the study populations. 

 

Environmental variable C. punctatus S. granularis P. angulosus 

Sea surface temperature 
(SST) 

56 13 0 

Air temperature 80 4 - 

Salinity 91 32 4 

Shared between variables    

SST : salinity 2 4 - 

SST : air temperature - - - 

Salinity : air temperature - - - 

 

3.3.3 Summary of detected outliers 

 

To summarise the findings from the outlier detection methods, a numerical summary is 

presented in Table 3.3, which is followed by species-specific Venn diagrams (Figure 3.1 to 

3.3) illustrating outlier loci detected across two or all outlier detection methods. 

 

Table 3.3. Summary of outliers detected by the selected methods in comparison. 
 

Summary C. punctatus S. granularis P. angulosus 

FST Outliers 493 165 121 

BayeScan 15 36 7 

BayeScEnv 56 (sea surface 
temperature) 

80 (air temperature) 
91 (salinity) 

13 (sea surface 
temperature) 

4 (air temperature) 
32 (salinity) 

0 (sea surface 
temperature) 

- 
4 (salinity) 
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Figure 3.1. Outlier loci detected for C. punctatus in BayeScan,  
BayeScEnv and the empirical FST method. 

 

 

 
Figure 3.2. Outlier loci detected for S. granularis in BayeScan,  

BayeScEnv and the empirical FST method. 
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Figure 3.3. Outlier loci detected for P. angulosus in BayeScan,  

BayeScEnv (salinity) and the empirical FST method. 
 

3.3.4 Outlier FST estimates 

 

Outliers detected by BayeScan, BayeScEnv and the empirical FST method were combined to 

obtain outlier FST estimates (Table 3.4) for the study species in PoPoolation (Kofler et al. 

2011a,b). Selected SNP parameters (minimum allele count 4, minimum coverage 10 and 

maximum coverage 200) were applied to all calculations. The estimated FST values range 

from 0.108-0.185 in C. punctatus and 0.108-0.287 in S. granularis to 0.109-0.310 in P. 

angulosus. Overall, estimates indicate increasing differentiation between the most peripheral 

populations. Fisher�s exact test suggests that the pairwise comparisons between populations 

are significant across all species populations. A comparison between estimates obtained 

from outlier loci alongside selectively neutral loci (previously discussed in Chapter II) is 

included in the Appendix (Table S3.5). 
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Table 3.4. FST estimated in PoPoolation2 (scenario 6) incorporating 494 (A), 165 (B) and 121 (C) 
outliers. Asterisk(*) indicates significance according to Fisher�s exact test. Location abbreviations  

are listed in Figure 2.1. 
 

C. punctatus (A) JC SP CA KY CF HH 

JC -           

SP 0.116* -         

CA 0.113* 0.108* -       

KY 0.135* 0.112* 0.110* -     

CF 0.153* 0.128* 0.119* 0.114* -   

HH 0.185* 0.160* 0.153* 0.128* 0.111* - 

S. granularis (B) PN SP CA KY CF HH 

PN -           

SP 0.131* -         

CA 0.242* 0.195* -       

KY 0.242* 0.190* 0.113* -     

CF 0.258* 0.195* 0.109* 0.111* -   

HH 0.289* 0.239* 0.138* 0.151* 0.133* - 

P. angulosus (C) PN SP KY CF HH   
PN -           
SP 0.213* -         
KY 0.261* 0.125* -       
CF 0.310* 0.162* 0.121* -     
HH 0.286* 0.141* 0.109* 0.143* -   

 

 

3.3.5 Outlier annotation (BlastX) 

 

The total number of outlier contigs obtained in this chapter varies between species and 

approach from 4 to 375 (Table 3.5). Proteins or protein domains suggested by the BlastX 

database are listed per species in Table 3.6 (empirical outliers) and Table 3.7 (BayeScan 

and BayeScEnv outliers). Further, numerous outlier contigs point to uncharacterised or 

hypothetical proteins (see Table 3.5), highlighting the still unknown dimensions of non-model 

invertebrate genomes (for the full list see Appendix, Table S3.6-7). 
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Table 3.5. Number of outlier contigs, BlastX database results per E-value cut off, hypothetical and 
putatively identified BlastX findings listed per species. Percentage in brackets relates to the total 

number of outlier contigs. 
 

[Empirical] Outlier contigs E-value >1.0E-5 Hypothetical Identified E-value <1.0E-5 

C. punctatus 375 111 (30%) 68 (18%) 43 (11%) 264 (70%) 

S. granularis 116 29 (25%) 21 (18%) 8 (7%) 87 (75%) 

P. angulosus 100 35 (35%) 13 (13%) 22 (22%) 65 (65%) 

[BayeScan]      

C. punctatus 12 4 (33%) 2 (17%) 2 (17%) 8 (67%) 

S. granularis 19 5 (26%) 3 (16%) 2 (11%) 14 (74%) 

P. angulosus 7 5 (71%) 1 (14%) 4 (57%) 2 (29%) 

[BayeScEnv] C. punctatus     

SST 51 15 (29%) 8 (16%) 7 (14%) 36 (71%) 

Salinity 91 22 (24%) 13 (14%) 9 (10%) 69 (76%) 

Air 68 18 (26%) 10 (15%) 8 (12%) 50 (74%) 

[BayeScEnv] S. granularis     

SST 11 3 (27%) 3 (27%) - 8 (73%) 

Salinity 25 4 (16%) 3 (12%) 1 (4%) 21 (84%) 

Air 4 3 (75%) 3 (75%) - 1 (25%) 

[BayeScEnv] P. angulosus     

Salinity 4 1 (25%) - 1 (25%) - 
 
 

Table 3.6. Suggested protein domains of empirical outliers listed per species with contig query length, 
query cover, respective E-value and the percentage of the contig identical with the putative protein. 

 
Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 C. punctatus    

1306 
Retrovirus-related Pol polyprotein from type-1  
retrotransposable element R2 26% 5E-23 50.43% 

1291 ATP-binding cassette sub-family F member 2 38% 2E-30 66.67% 

1160 wsv191-like protein 34% 2E-28 47.41% 

1009 ATP-binding cassette sub-family F member 2 49% 4E-64 66.47% 

1077 wsv220-like protein 99% 9E-36 27.93% 

1140 RTBS 23% 1E-16 61.90% 

1069 Craniofacial development protein 2-like 31% 2E-28 46.96% 

1138 Putative nuclease HARBI1 69% 3E-97 57.09% 

1289 PiggyBac transposable element-derived protein 4-like 21% 2E-11 43.96% 

1148 Transposon Ty3-G Gag-Pol polyprotein 99% 2E-127 47.52% 
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1105 LIM domain kinase 1-like isoform X2 27% 1E-17 74.58% 

1048 Tectonin beta-propeller repeat-containing protein 12% 4E-09 69.05% 

1742 E3 ubiquitin-protein ligase MYCBP2-like 25% 9E-17 63.24% 

1226 Prefoldin subunit 3 9% 3E-12 97.30% 

1309 Proline/betaine transporter 14% 5E-06 45.45% 

1265 Myc box-dependent-interacting protein 1-like 35% 2E-20 34.53% 

1302 RNA-directed DNA polymerase 39% 2E-34 50.49% 

1147 Protein flightless-1 17% 3E-34 96.92% 

1465 Methyltransferase-like protein 7A 21% 2E-18 67.24% 

1414 dtw domain-containing protein 2 36% 7E-16 32.60% 

1270 Glutenin, high molecular weight subunit DY10-like 94% 2E-22 29.21% 

1189 Nck-associated protein 5 99% 4E-164 75.89% 

1303 Growth hormone secretagogue receptor type 1 18% 1E-25 68.35% 

1323 Reticulophagy regulator 3-like 12% 3E-06 53.03% 

1382 
Repressor of the inhibitor of the protein kinase-like (52 
kDa) 38% 3E-15 38.98% 

1435 THAP domain-containing protein 6-like 12% 3E-12 56.67% 

1253 N-acetylglucosamine-6-phosphate deacetylase 11% 1E-17 95.74% 

1159 RNA-directed DNA polymerase 36% 8E-15 50.98% 

1094 Dynein intermediate chain 1, axonemal-like 12% 3E-08 62.22% 

1104 RTXE 75% 6E-30 37.50% 

1084 
Putative protein in type-1 retrotransposable element 
R1DM 67% 1E-111 70.49% 

1075 Putative disco-interacting protein 2 isoform X2 20% 6E-27 100.00% 

1005 
RNA-directed DNA polymerase from mobile element 
jockey-like 97% 2E-60 38.21% 

932 
RNA-directed DNA polymerase from mobile element 
jockey-like 96% 4E-68 41.59% 

866 Adaptin ear-binding coat-associated protein 1 83% 1E-31 36.56% 

1112 Formyl-CoA transferase 57% 7E-118 86.38% 

933 NADH dehydrogenase subunit 6 46% 6E-30 50.34% 

859 Putative sidestep protein, partial 17% 5E-06 53.06% 

826 KRAB-A domain-containing protein 2, partial 70% 3E-59 68.87% 

358 Protein SpAN-like 56% 8E-24 65.67% 

449 NADH dehydrogenase subunit 4 99% 7E-51 83.89% 

215 
Putative RNA-directed DNA polymerase from transposon 
BS 99% 1E-29 73.24% 

181 Ribosome-binding protein 1-like 100% 8E-06 52.73% 

 S. granularis    

9127 Cytochrome b 11% 2E-158 76.76% 
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1263 Putative nuclease HARBI1 30% 6E-32 49.61% 

1241 

Dolichyl-diphosphooligosaccharide-protein 
glycosyltransferase  
48 kDa subunit 22% 1E-10 70.45% 

843 Beta-1,4-N-acetylgalactosaminyltransferase bre-4-like 24% 3E-30 81.16% 

676 Sodium-independent anion transporter 99% 5E-70 48.89% 

833 Phospholipase A2 AP-PLA2-I 17% 7E-07 79.59% 

572 Cytochrome c oxidase subunit I 99% 4E-94 82.63% 

587 
Putative RNA-directed DNA polymerase from transposon 
BS 97% 7E-61 48.19% 

 P. angulosus    

1052 
Bromodomain adjacent to zinc finger domain protein 2B 
isoform X7 25% 3E-19 87.93% 

1283 Myophilin-like 12% 1E-23 89.09% 

1410 Protein LCHN 14% 4E-14 71.01% 

1283 Gastrula zinc finger protein XlCGF8.2DB-like 53% 8E-60 47.52% 

1401 Roundabout homolog 1 isoform X2 47% 5E-57 86.10% 

1255 Band 4.1-like protein 4A isoform X2 7% 4E-05 90.00% 

1340 GPI ethanolamine phosphate transferase 2(*) 36% 1E-31 72.63% 

1488 Putative growth factor receptor-bound protein 14 21% 4E-20 62.50% 

1312 Nuclear pore complex protein Nup214 19% 2E-40 87.21% 

1501 Vesicle-associated membrane protein 7 23% 3E-31 86.96% 

1406 Fibrillin-1 14% 6E-09 78.57% 

1442 Serine/arginine repetitive matrix protein 2 isoform X4 13% 1E-21 85.94% 

1183 Protein disulfide-isomerase TMX3 11% 2E-18 91.30% 

1183 Beta-galactosidase-1-like protein 2 7% 6E-09 93.55% 

1275 Toll-like receptor 3 84% 4E-70 41.16% 

1124 Hydroxylysine kinase isoform X2 18% 1E-21 72.86% 

1292 Tubulin polyglutamylase TTLL5 14% 1E-07 100.00% 

1077 Serine/threonine-protein kinase H1 28% 2E-31 94.23% 

1013 Echinoderm microtubule-associated protein (77 kDa) 15% 3E-24 96.23% 

1125 Krev interaction trapped protein 1 isoform X2 13% 7E-05 92.31% 

617 Endonuclease-reverse transcriptase 98% 2E-98 69.31% 

426 ABC transporter ATP-binding protein 94% 9E-42 54.48% 

(*) potentially similar protein domain identified in Nielsen et al. 2018 for P. angulosus. 
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Table 3.7. Suggested protein domains of BayeScan and BayeScEnv outliers listed per species with 
contig query length, query cover, respective E-value and the percentage of the contig identical with 

the putative protein. Protein domains suggested across BayeScan and BayeScEnv or between 
multiple environmental parameters appear in grey. 

 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 C. punctatus    

 (BayeScan)    

1113 Lysosomal-trafficking regulator 13% 7E-22 92.16% 

1021 
putative RNA-directed DNA polymerase from transposon 
X-element 99% 4E-127 56.93% 

 (BayeScEnv, sea surface temperature (SST))    

975 

R2DM Retrovirus-related Pol polyprotein from type II 
retrotransposable  
element 76% 6E-37 34.13% 

977 E3 ubiquitin-protein ligase SHPRH 27% 5E-40 82.95% 

1035 
putative RNA-directed DNA polymerase from transposon 
BS 56% 2E-83 65.13% 

1091 Guanine nucleotide-releasing factor 2-like isoform X6 32% 1E-09 44.53% 

1109 RTXE 43% 3E-19 40.91% 

964 Kinesin-like protein KIF20B isoform X1 35% 7E-25 86.57% 

512 Solute carrier family 22 member 3 28% 3E-18 77.55% 

 (BayeScEnv, salinity)    

1035 

R2DM Retrovirus-related Pol polyprotein from type II 
retrotransposable  
element 71% 1E-36 34.13% 

1201 RTJK, partial 74% 9E-57 54.63% 

1096 
RNA-directed DNA polymerase from mobile element 
jockey-like 56% 3E-21 31.78% 

1105 WD repeat-containing protein 35 11% 2E-05 81.40% 

1104 
MAM and LDL-receptor class A domain-containing protein 
1-like, partial 15% 4E-05 42.11% 

1152 
RNA-directed DNA polymerase from mobile element 
jockey-like 79% 5E-63 39.34% 

1119 Protein pangolin, isoforms A/H/I/S-like 13% 2E-18 98.04% 

1043 Craniofacial development protein 2-like 59% 2E-67 57.89% 

834 ATP synthase F0 subunit 6 80% 3E-106 87.05% 

 (BayeScEnv, air temperature)    

975 

R2DM Retrovirus-related Pol polyprotein from type II 
retrotransposable  
element 76% 6E-37 34.13% 

1075 Retrovirus-related Pol polyprotein from transposon 17.6 23% 2E-14 48.98% 

998 Zinc finger protein 2 19% 9E-08 54.55% 

1095 putative RNA-directed DNA polymerase from transposon 53% 6E-83 65.13% 
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BS 

904 Kinesin-like protein KIF20B isoform X1 35% 5E-21 86.67% 

878 TPA: Endonuclease-Reverse Transcriptase 82% 7E-51 43.33% 

272 Solute carrier family 22 member 3 60% 2E-19 66.13% 

417 SDR family oxidoreductase 99% 1E-92 96.38% 

 S. granularis    

 (BayeScan)    

903 Beta-1,4-N-acetylgalactosaminyltransferase bre-4-like 22% 4E-30 81.16% 

454 UDP-N-acetylmuramate dehydrogenase 97% 2E-47 55.26% 

 (BayeScEnv, salinity)    

471 Protein ZBED8-like 99% 2E-79 86.57% 

 P. angulosus    

 (BayeScan)    

5400 Baculoviral IAP repeat-containing protein 6 isoform X6 13% 5E-18 92.50% 

1105 Monocarboxylate transporter 9 21% 1E-07 56.96% 

1328 Iron-sulfur protein NUBPL isoform X2 10% 6E-15 91.11% 

1252 Inositol 1,4,5-trisphosphate receptor isoform X8 27% 7E-26 98.72% 

 (BayScEnv, salinity)    

10126 Baculoviral IAP repeat-containing protein 6 isoform X6 10% 1E-42 96.59% 

 

 

3.3.6 IBD and IBE testing 

 

The first RDA (redundancy analysis), testing genomic variation against the geographic 

distance matrix, did not indicate significance in any study species. The second RDA, relating 

environmental variables and combinations thereof, tested significant for the following two 

species: The optimal model for P. angulosus suggests that salinity variation may account for 

48% of genomic variation (Pr(>F)=0.025). The optimal model for S. granularis suggests that 

the joint effect of SST and air temperature variation may account for 45% of genomic 

variation (Pr(>F)=0.0236). Models of S. granularis containing only SST or only air 

temperature were not significant. The partial RDAs, partitioning the effect of geographic 

distance against the retained most informative environmental variables and vice versa, were 

not significant (S. granularis, P. angulosus). In S. granularis, the reduction of the model for 

the partial RDAs to one factor (SST vs. air temperature partitioned against geographical 

distance) indicated no significance. While differentiation in the tested environmental 

variables might contribute to genomic variation in two of the study species, this could not be 

confirmed for the possible influence of geographic distance across species populations.  
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3.3.7 BAPS and fastSTRUCTURE 

 

FastSTRUCTURE does not suggest structure across the study species putatively adaptive 

loci, whereas BAPS estimates four potential divergent clusters in two of the species (C. 

punctatus, P. angulosus) (Table 3.8). Each possible grouping is automatically assigned a 

colour, with each clustered individual represented by a vertical bar with the colour pointing to 

the associated cluster (Figure 3.4). 

 

Table 3.8. Number of estimated population clusters based on putatively adaptive loci listed by 
application and species compared to population clusters estimated in Chapter II with selectively 

neutral loci. 
 

  C. punctatus S. granularis P. angulosus  

BAPS 4 1 4 Outlier loci 

fastSTRUCTURE 1 1 1 Outlier loci 

BAPS 2 2 1 Neutral loci 

fastSTRUCTURE 1 3 1 Neutral loci 

 

 

 

Figure 3.4. Coloured partition of clusters suggested by BAPS (left) and fastSTRUCTURE (right) for C. 
punctatus (A), S. granularis (B) and P. angulosus (C). Location abbreviations are listed in Figure 2.1. 
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3.4 Discussion 

 

Across three South African rocky shore species, a total of 1102 candidate outlier loci 

potentially implicated with adaptive processes were identified. The findings are utilised to 

address the questions, 1) whether adaptive signals are present despite the low neutral 

genomic background structure, 2) whether SST or air temperature (the latter for the high 

shore species) play a dominant role for environmentally-associated loci over salinity, 3) if 

outliers impacted by multiple environmental factors can be identified, 4) whether previously 

detected outlier loci in two study species are recovered, 5) if spatially distinct loci occur, 6) if 

functional associations can be obtained to similar extent across the species, 7) if signs for 

isolation-by-distance or -environment can be detected and 8) if there is evidence for distinct 

evolutionary uniqueness in populations. 

 

3.4.1 Detection of outlier loci 

 

Recovering different numbers of outliers per species is expected based on differentiation 

between the methodological detection frameworks and interspecific genomic differences. For 

instance, the empirical FST approach yielded a higher number of potential outliers than 

utilising BayeScan (Table 3.1). Remarkably, the latter method was conducted based on a 

comparatively larger quantity of SNPs, highlighting the inherent methodological differences 

between the two approaches (see section 3.1.2.1). Detecting only small numbers of 

BayeScan outliers or none at all compared to other outlier methods has been reported 

across a wide range of species, which has been attributed to the application conservatively 

dismissing smaller footprints of selection (Buckley, Butlin and Bridle, 2012; Huang et al. 

2012; Dillon et al. 2014; Zhan et al. 2015; Miller et al. 2016; Al-Breiki et al. 2018). Comparing 

detection levels between species reveals that both the empirical FST approach and 

BayeScan find the lowest number of potential outliers in the Cape urchin P. angulosus, 

whereas the highest number of outliers are found in the shore crab C. punctatus (empirical 

FST) and the granular limpet S. granularis (BayeScan) (Table 3.1). Further differences in 

outlier detection relate to the spatial occurrence. Identified BayeScan-outliers are detected 

across all populations of the respective species, whereas the pairwise comparison of 

populations with the empirical FST approach indicates differences between some sampling 

locations. The estimated number of potentially spatially distinct outliers appears slightly 

higher between the most western population (Port Nolloth in S. granularis and Jacob�s Bay 

in C. punctatus) and the nearest sampled adjacent population Sea Point (Table S3.4, 

Appendix). The remaining pairwise population estimates indicate varying degrees of 

putatively unique outliers in no apparent geographical pattern. As the shore crab C. 
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punctatus demonstrates the highest total number of empirical FST-outliers, it is expected to 

also find the highest number of potential outliers shared across all pairwise population 

estimates in this species (Table S3.4, Appendix). 

 

The outliers potentially associated with environmental parameters are discussed further in 

section 3.4.2. and 3.4.4, but it is important to note that the total number of outliers detected 

by BayeScEnv differs strongly between species (Table 3.2-3). Congruent to the observed 

BayeScan and empirical FST-outliers, the lowest number of BayeScEnv outliers is found in 

the urchin P. angulosus (Table 3.2). This is notable as there is evidence for highly 

polymorphic individuals in sea urchins and a high degree of polymorphism in urchin 

genomes (Balhoff and Wray, 2005; Cameron et al. 2005; Cameron et al. 2009; Sodergren et 

al. 2006). The interpretation of what constitutes few or many outliers is biased by the other 

two study species relatively higher outlier numbers and it is important to acknowledge that it 

is presently not understood how many outliers can be regarded low or high. The number of 

identified outliers reported across urchin RAD-Seq studies varies from 12 (Nielsen et al. 

2018), 17 (Paterno et al. 2017) to 304 (Addison and Kim, 2018), which is also influenced by 

the size of the geographical area and other study design parameters. In general, the 

disparity between species outlier detection numbers highlights a challenge specific to multi-

species studies, where for example a wider SNP window might have yielded a higher 

number of outliers in P. angulosus, but in turn perhaps diluted findings in the other two 

species. This quandary warrants further consideration and possible avenues of resolution 

may emerge with growing numbers of multi-species studies. 

 

Contrary to the outlier detection numbers in the urchin P. angulosus, the crab C. punctatus 

demonstrates the highest number of outliers across BayeScEnv and the empirical FST-

approach. Overall, only nine outliers are jointly identified by two detection approaches and 

none by all three methods (Figure 3.1-3). In fact, only BayeScan and BayeScEnv jointly 

identified 3 outlier loci in C. punctatus and 6 in S. granularis. Hence, the advocated 

cautionary approach to minimise false positive outlier identification by only treating loci 

suggested by two or more methods as robust �true� outliers (Pérez-Figueroa et al. 2010; 

Narum and Hess, 2011; Nunes et al. 2011; Zhao et al. 2013; De Mita et al. 2013; Rellstab et 

al. 2015) may prove too limiting. These findings expand the evidence towards recovering few 

or no outliers across multiple approaches (de Villemereuil et al. 2014; Lotterhos and 

Whitlock, 2015). Some past studies might have focused only on outliers suggested by 

multiple applications, but all outliers across the three methods and species in this study are 

considered as putative adaptive signals and assessed for functional association (see section 

3.4.4). 
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In general, the findings in this chapter suggest the possibility that despite a largely similar 

neutral genomic background, outlier loci may signal the presence of adaptive processes in 

the species genomes. Present day technology has facilitated the advance into non-model 

species genomes, but there are caveats which need to be briefly acknowledged before the 

results are discussed in more detail. RAD-Seq is a pioneering technique for genomic 

exploration at a large scale (in terms of numbers of samples), with the drawback that RAD-

Seq loci represent a fraction of all loci possibly under divergent selection (Lowry et al. 2017). 

Further, detected loci and their functional association are strictly candidate loci and remain 

promising but hypothetical until conclusively evidenced by future directed research. The 

expertise regarding adaptive marker identification is growing rapidly, but of course, as 

described in earlier sections, there may be other processes which might promote patterns of 

genomic divergence. These include demographic effects, background selection, selective 

sweeps, pre-/post-zygotic isolation, stochastic effects, variation in the mutation and 

recombination rate, differential introgression and hitchhiking genes (Bierne et al. 2011; 

Roesti et al. 2012; De Mita et al. 2013; Bierne, Roze and Welch, 2013; Gosset and Bierne, 

2013; Lotterhos and Whitlock, 2014; Tine et al. 2014; Lotterhos and Whitlock, 2015; Fraïsse 

et al. 2016; Gagnaire and Gaggiotti, 2016; Matthey-Doret and Whitlock, 2019). In this study, 

measures such as stringent quality filtering and conservative SNP parameters (see section 

3.2.2.1) contribute to the quality of detected putatively adaptive candidate outliers. 

 

3.4.2 Outliers with potential environmental association 

 

The number of outliers possibly impacted by environmental factors differs notably between 

species (as discussed in 3.4.1; for functional associations see section 3.4.4). Across all 

environmental factors, water temperature such as SST is known to strongly shape 

populations in the marine environment (Perry et al. 2005; Pörtner and Farrell, 2008; Riginos 

et al. 2016; Free et al. 2019). Hence, the majority of environmentally-associated outliers 

were expected to be linked to SST variation. Furthermore, salinity differentiation is in 

comparison less pronounced than SST and air temperature throughout the sampling region, 

which might result in small numbers or the absence of salinity-associated outliers. Contrary 

to these speculations, most outliers were linked to salinity over air temperature (where 

applicable) and SST variation across the study species (Table 3.2). It is important to interpret 

this preliminary observation cautiously and treat the outliers as candidate loci under the 

consideration of methodological caveats which have been discussed for environmental 

association methods (see section 3.1.2.2.1). Nevertheless, there is evidence from marine 

species populations for which salinity parameters ranked as the most influential 
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environmental factor for adaptive molecular signals over SST and other variables (Van 

Wyngaarden et al. 2018; Carreras et al. 2019; Yang et al. 2020; also see Montes et al. 2016; 

Xuereb et al. 2018). Strictly excluding Baltic Sea species affected by the steep regional 

salinity gradient, this study contributes to these instances where salinity differentiation 

appears to play a dominant role. For instance, the overall only four BayeScEnv outliers 

detected in the Cape urchin P. angulosus appear to be environmentally associated with 

salinity variation. Sea urchins have poor abilities to regulate osmosis and ion concentrations, 

leaving them sensitive to salinity conditions (Binyon, 1972; Stickle and Diehl, 1987; Russell, 

2013). Although different populations may have varying capabilities of acclimation and 

tolerance, past studies have reported that salinity levels can constitute a notable selective 

pressure for Echinodermata (Kaack and Pomory, 2011; Delorme and Sewell, 2014; Agüera 

et al. 2015; Xuereb et al. 2018; Carreras et al. 2019). Importantly, salinity conditions in rocky 

shore micro niches may fluctuate depending on shore height, tidal phase and proximity to 

freshwater input from rivers, which can create a mosaic of salinity levels over small spatial 

scales (Morris and Taylor, 1983; Drouin, Himmelman and Béland, 1985; Bible and Sanford, 

2016). As has been shown in Hawaiian limpets (Bird, 2011; Bird et al. 2011), localised fine 

scale salinity measurements with spatial, tidal and seasonal considerations are paramount to 

further elucidate the role of salinity as potential selective force on intertidal species molecular 

composition. 

 

Concerning air temperature, the two high-shore specialists (C. punctatus, S. granularis) 

could hypothetically demonstrate air temperature differentiation as a factor driving genomic 

divergence due to their long exposure during low tide. The putative environmental 

association with air temperature differentiation appears more potent in C. punctatus (80 loci) 

over S. granularis (4), which is contrary to their ability to avoid temperature stress (e.g. 

through hiding under rocks). Nevertheless, interspecific genomic differences and different 

numbers of tested loci per species may not support a direct side-by-side comparison and the 

impact of putatively adaptive loci is not defined by their absolute detection numbers. 

Although genome-environment association investigations with air temperature are still a 

rarity for the marine environment, studies testing air temperature variables for adaptive 

significance in the mussel Mytilus galloprovincialis (Han and Dong, 2020) and the Atlantic 

salmon Salmo salar (Bourret et al. 2013; Sylvester et al. 2018) found that this factor appears 

to notably impact spatial genomic structure in the species populations. The intertidal 

environment is thermally heterogeneous at diel, tidal, seasonal and microhabitat level 

(Helmuth et al. 2006a,b; Sinclair, Thompson and Seebacher, 2006) and therefore the use of 

one air temperature or environmental variable per site lacks consideration of the fine-scale 

patterns of thermal (or other) conditions experienced by local organisms (Lathlean, Seuront 
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and Ng, 2017). Further investigation which could employ detailed temperature 

measurements at various scales will greatly expand the knowledge of species local 

adaptation capacity in the region. With climatic conditions changing globally, air temperature 

might overall grow in importance as a driver for ecological divergence in relevant marine 

populations next to the widely established influence of sea water temperature variables such 

as SST. 

 

Sea surface temperature variation appears to account for 51 outliers in C. punctatus and 11 

outliers in S. granularis with putative environmental -association (Table 3.2; none in the third 

species). Water temperature differences are regarded as a strong driver for molecular 

divergence and even early stages of speciation (Van Wyngaarden et al. 2018; Jeffery et al. 

2018; Zhao et al. 2018; Stanley et al. 2018; Teske et al. 2019), although in this study with 

less dominance than expected relative to other tested factors. The shore crab depends on 

moist crevices during low tide and lives submerged in sea water during high tide phases, 

therefore it is not unexpected that a number of loci with suspected influence from sea water 

temperature are observed. The candidate loci for selection through SST variation can help to 

forge a path to better understanding of how environmental conditions shape species 

genomic composition. As with fluctuating patterns of air temperature and salinity levels in the 

intertidal, establishing the latitudinal spectrum of SST variation experienced by the species 

microhabitats represents a challenge towards obtaining more detailed observations. 

 

Environmental conditions, their possible interactions and impacts on species are far from 

simplistic in any marine habitat, but the intertidal with its drastic daily extremes constitutes a 

particularly complex habitat. One of the initial expectations was that potential outliers might 

be influenced by multiple tested environmental factors. In fact, both SST and salinity 

differentiation are suggested to influence four loci in S. granularis and two in C. punctatus, 

which could not be observed for the third study species or any other combination of the 

tested variables (Table 3.2). There is evidence for putatively adaptive markers jointly 

influenced by water temperature and salinity in other marine species (Jeffery et al. 2018; 

Zhang et al. 2019a; Carreras et al. 2019; Bernatchez et al. 2019). In this study only SST, 

salinity and air temperature were considered, while it is plausible that other combinations 

than water temperature/salinity such as for instance water/air temperature (Micheletti et al. 

2018; Han and Dong, 2020) or alternative factors including wave action, pollution and 

desiccation (Sanford and Kelly, 2011; Puritz and Toonen, 2011; Tisthammer et al. 2020) 

might drive genomic divergence at the species outlier loci. Other variables were not 

investigated as the focus of this study is on the environmental factors likely to shape broad-

scale population patterns of the three species. 
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Testing multiple species with the same environmental variables might reveal which drivers 

are most dominant or which joint factors may account for molecular divergence. 

Nevertheless, the findings demonstrate that species showed contrasting numbers of putative 

environmentally associated outliers. Apart from inherent molecular differences between 

phyla, it is possible that the various intertidal microhabitats with their dynamic conditions 

impact the genome in a way which conceals broad-scale patterns of environmental influence 

identified in multiple species (see e.g. Stanley et al. 2018). It is important to acknowledge 

that that the environmental data in this study has a coarse resolution, which might impact 

detected putatively adaptive loci. Further comparative multi-species testing of more 

comprehensive (higher resolution) environmental data sets will benefit the understanding of 

selective processes affecting co-distributed species. 

 

3.4.3 Spatial differentiation of outlier loci and outlier FST estimates 

 

The spatial distribution of outlier loci might indicate the presence of spatially distinct loci in 

populations, which could be a sign of the species potential local adaptation (Coop et al. 

2010; Bragg et al. 2015; Flanagan et al. 2018). It was hypothesised to recover a combination 

of shared outliers and unique population-specific outliers. Due to the varying environmental 

conditions across South African coastal regions, there might be an increased number of 

unique outlier loci as putative signals of local adaptation in the most western (cold-

temperate) populations (Port Nolloth/Jacob�s Bay, Sea Point) and the most eastern 

(subtropical) populations (Cape St. Francis, Haga Haga) relative to the populations located 

on the south coast between them. The two most eastern populations (CSF, HH) experience 

the highest sea water and air temperature, possibly acting as strong selection pressures. 

Hence, these two populations might reveal the overall highest numbers of outlier loci relative 

to the remaining populations. Contrary to these expectations, the outliers detected with 

BayeScan and BayeScEnv are detected in all populations, not demonstrating geographic 

patterns (see section 3.4.3). These shared BayeScan and BayeScEnv outliers might 

represent large scale genomic dynamics and environmental processes affecting all 

populations. For instance, a small number of loci is detected by both methods in C. 

punctatus and S. granularis (Figure 3.1-2), which could indicate that there might be an 

overarching process or combination of factors leading to high differentiation of these loci 

across all populations (not observed in P. angulosus, Figure 3.3). The 

BayeScan/BayeScEnv loci constitute candidates for further investigation, as a range of other 

factors such as background selection, differential introgression, stochastic effects and 

variation in mutation and recombination rate may contribute to detected molecular signals 
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(see section 3.1.2.1, 3.1.2.2.1). In general, BayeScan has been found to conservatively 

dismiss low selection signals (Narum and Hess, 2011; and similarly BayeScEnv, Villemereuil 

and Gaggiotti, 2015), thereby identifying fewer outliers and there are cases where the 

detection number was so low that population structure in terms of spatial occurrence of 

these outliers could not be assessed (for instance Gonçalves da Silva, Appleyard and 

Upston, 2015; Stockwell et al. 2016; Maroso et al. 2016; Galaska et al. 2017; Al-Breiki et al. 

2018). As opposed to BayeScan and BayeScEnv, the empirical FST method (discussed 

further below) is not designed to identify spatially unique outliers in populations due to the 

nature of pairwise estimations. There is also the fact that a large number of studies are not 

reporting or specifically investigating location-specific outliers and instead use for instance 

STRUCTURE and BAPS (see section 3.4.5) to determine potential structure of neutral and 

adaptive SNPs. Finally, it is important to acknowledge that RAD-Seq-derived SNPs and 

outlier loci represent a small portion of the overall species genome and it is possible for 

location-specific outliers to be identified in future research. 

 

The empirical FST outlier detection method estimates a range of 22 to 73 outliers as shared 

across the populations of the respective species (Table S3.4, Appendix). The remaining 

species outliers are suggested as uniquely occurring among specific population pairs (as per 

the FST method, assessing pairs of populations, see e.g. Kess, Galindo and Boulding, 2018; 

therein Table 3), ranging in numbers from up to 10 (P. angulosus) to 18 (S. granularis) and 

30 (C. punctatus) (Table S3.4, Appendix). Nevertheless, distinct spatial patterns such as 

regionally higher or lower FST outliers are not evident. By definition, outlier loci constitute 

significant deviations from neutral expectations in genomic data, hence high differentiation 

between them as evidenced in the outlier FST estimates between the loci is expected (Table 

3.4). The significant outlier FST estimates are highest in P. angulosus (0.310) and S. 

granularis (0.287), which is not too distant from the peak value in C. punctatus (0.185). The 

decisive factor appears to be the distance between populations, as the outlier FST estimate is 

highest, across all species, in the respective most geographically distant populations. Other 

studies on marine invertebrates have interpreted outlier FST estimates of 0.40-0.48 (Plough, 

2017) and 0.44 (Lal et al. 2017) as high, which brings P. angulosus and S. granularis into the 

vicinity of what may be considered as the upper end of the outlier FST range. Nevertheless, 

outlier FST estimates for marine invertebrates can reach 0.64-0.74 (Kess, Galindo and 

Boulding, 2018), which would rank the obtained values in this study in the �medium� outlier 

FST range (Sandoval-Castillo et al. 2018). Which estimates constitute high and low and in 

which context and phyla might only be elucidated in more detail with a growing body of 

published marine invertebrate FST outlier estimates. 
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Findings in Chapter II showed that every population possesses a certain quantity of 

selectively neutral location-specific SNPs (see section 2.3.2; Figure 3.5), indicating that all 

sampled locations harbour unique genomic signatures. Interestingly, the Cape urchin P. 

angulosus demonstrated the highest number of neutral location-specific SNPs across its 

populations, peaking at almost 8% of total SNPs in Port Nolloth at the west coast. Despite 

higher rates of neutral private SNPs relative to the other two species, P. angulosus revealed 

the lowest numbers of putatively adaptive outliers (Table 3.3). As evidenced by the findings 

in this chapter, location-specific neutral components are not necessarily an indication for the 

presence or quantity of unique outlier loci or unique environmentally-associated outliers. 

Instead, BayeScan and BayeScEnv uncovered loci occurring across all populations, which 

may be caused by broad-scale selection processes or other presently unknown factors. 

Although speculative, another hypothesis might be that a set of SST-associated 

environmental outliers is, while present in all populations, subjected to different directions of 

selection pressure (Siepielski et al. 2013). To stay with the factor SST, warming sea water 

conditions on the southern east coast may drive divergence at physiologically relevant loci 

which are conversely under selection by cooling sea water conditions on the west coast. It 

remains unknown whether the Bayes-outliers represent selection processes where the 

driving factor (e.g. SST, air temperature) might differ in its directional impact in populations. 

 

3.4.4 Functional association of outliers 

 

Cumulatively, 1102 outlier loci were detected and blasted in the BlastX database across the 

three methods and study species, providing pointers to their potential functional association. 

The outlier loci primarily matched to protein-coding sequences in the BlastX database 

identified in the horse crab Portunus trituberculatus, the owl limpet Lottia gigantea and the 

purple sea urchin Strongylocentrotus purpuratus. Typically, few or no genomic data or 

reference resources exist for non-model species (Ellegren, 2014; Delord et al. 2018; 

Weigand and Leese, 2018). This is evidenced by the number of outliers which bear no 

resemblance to documented protein sequences or whose E-value did not meet the >10e-5 

threshold. Further, matched sequences with relevant E-values are in some instances still 

hypothetical or uncharacterised proteins (Table 3.5). It is necessary to acknowledge these 

outlier loci with presently unknown functional association, as they harbour presently 

inaccessible insights. Overall, 69 (C. punctatus), 11 (S. granularis) and 27 outlier contigs (P. 

angulosus) could be matched to non-hypothetical protein sequences, leaving an association 

gap of 90% relative to the overall 1102 loci (Table 3.6-7). Genomes of non-model species 

are still widely uncharted territory, which demands to document and retain unidentified 

candidate loci for future investigative use and to focus on the functionally associated outliers. 
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The degree of successful functional association was expected to be relatively high in 

echinoderm P. angulosus and mollusc S. granularis due to genomic resources on functional 

roles derived from the model organisms Strongylocentrotus purpuratus and Lottia gigantea 

(Greenspan, 2005; Hamdoun et al. 2018). Interestingly, slightly higher numbers of functional 

associations were obtained for the shore crab C. punctatus, which is to some extent 

facilitated by profound research interest in decapod genomic resources and particularly 

genes and protein sequences related to immune system dynamics by the global aquaculture 

sector (Lai and Aboobaker, 2017; discussed in section 3.4.4.1). Across the study species, it 

is demonstrated that genomic resources from a relatively closely related organism are only 

one of several factors determining the functional association rate of outliers. 

 

Shore crab (C. punctatus) 

Across the three species, the associated functional roles of the detected outliers fall into a 

variety of categories and functions such as developmental proteins, membrane transport, 

vesicle signalling, protein folding/modification, enzymes and cytoskeleton functional 

components (Table 3.6-7). This spectrum is particularly evident in the shore crab C. 

punctatus, whose 69 putatively associated functions include established elements of 

historically viral or bacterial origin commonly found in numerous species genomes 

(retrovirus-related Pol polyprotein, RTXE, wsv191-like protein, further discussed in 3.4.4.1), 

essential components of the electron transport chain (NADH dehydrogenase subunits, ATP 

synthase, see section 3.4.4.2) and diverse other protein domains and families such as solute 

carriers and ubiquitin-protein ligases. In this study, the solute carrier family 22 member 3 is 

suggested to be putatively under selection by both sea surface temperature and air 

temperature differentiation in C. punctatus. In functional terms, this solute carrier facilitates 

transmembrane transport of organic cations (Verri et al. 2012). Although speculative for C. 

punctatus, the solute carrier family 22 member 3 emerged in another marine invertebrate as 

likely molecular actor during heat shock response (Li and Xu, 2018). The potential adaptive 

significance of this type of solute carrier is presently not understood, but may become 

clearer with expanding knowledge of molecular adaptive mechanisms in invertebrates. 

Another type of protein appearing under selection are two E3 ubiquitin-protein ligases 

(BayeScEnv/SST: E3 ubiquitin-protein ligase SHPRH; emp. FST: E3 ubiquitin-protein ligase 

MYCBP2-like). E3 ligases are tasked with attaching ubiquitin to proteins, which regulates 

signal transduction, protein degradation and serves in DNA repair and cell cycle control 

(Hershko and Ciechanover, 1998; Ardley and Robinson, 2005; Teixeira and Reed, 2013). 

Further, the ubiquitin system has been associated with organism development, immune 

response, apoptosis and environmental stress response (Hershko and Ciechanover, 1998; 

Ciechanover, Orian and Schwartz, 2000; Pespeni et al. 2012). The involvement in these 
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essential processes may make identified E3 ligases plausible candidates for selection. The 

E3 ubiquitin-protein ligase SHPRH assists with DNA repair to counter genotoxic stress 

(Motegi et al. 2006). In marine crustacean Penaeus monodon, multiple E3 ligases including 

SHPRH were detected as part of the immune response to disease (WSSV, also see section 

3.4.4.1; Robinson et al. 2014). The E3 ubiquitin-protein ligase MYCBP2 ortholog has been 

linked to key neural development such as axon guidance and synaptogenesis in organisms 

(James, Key and Beverdam, 2014). This study appears as the first instance where MYCBP2 

was detected in relation to a marine invertebrate, but it has been associated with 

physiological stress in a marine fish (Mu et al. 2015). In general, several E3 ligases were 

found to be among adaptive signals in other marine invertebrates (Pespeni et al. 2012; 

Gleason, 2015; Wang et al. 2016; Silliman, 2019a,b; Vera et al. 2019; Leiva et al. 2019), 

which underpins their potential as putative signs of selection in C. punctatus. 

 

Granular limpet (S. granularis) 

From the eleven functionally associated outliers in the limpet S. granularis, the empirical FST-

outliers represent a range of protein functions, which interestingly includes two outliers 

pointing to the mitochondrial electron transport chain (Cytochrome b; Esposti et al. 1993; 

Cytochrome c oxidase subunit I; Tsukihara et al. 1996; Table 3.6; further discussed in 

section 3.4.4.2). Two outliers identified with BayeScan and BayeScEnv (salinity) respectively 

(Table 3.7) include a protein from the oxidoreductase family (UDP-N-acetylmuramate 

dehydrogenase; Schomburg and Stephan, 1995) and a putative ancient transposon 

(ZBED8-like protein; Hayward et al. 2013). Further, both BayeScan and the empirical FST-

approach detected an ortholog of Beta-1,4-N-acetylgalactosaminyltransferase as outlier loci 

(loci to contig reference; Table 3.6-7). This protein transfers galactose onto proteins and 

lipids as part of protein glycosylation (Kawar, Van Die and Cummings, 2002; Griffitts et al. 

2003). Invertebrate glycobiology is not understood in sufficient detail to speculate about a 

functional adaptive role (Zhu, Li and Chen, 2019). However, Beta-1,4-N-

acetylgalactosaminyl-transferase appears to play a role in the immune response in disease-

resistant abalone Haliotis iris (Neave et al. 2019) and has been detected in molluscs under 

ocean acidification stress (Koh et al. 2015; Timmins-Schiffman et al. 2019). Identified across 

two outlier detection methods, the Beta-1,4-N-acetylgalactosaminyltransferase might 

represent a possible candidate loci to further elucidate molecular actors of adaptive signals 

in marine molluscs. 

 

Cape urchin (P. angulosus) 
The empirical FST-outliers in the urchin P. angulosus span a range of molecular functions 

from vesicle transport to cytoskeletal structural elements (Table 3.6; ABC transporter ATP-
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binding protein is discussed further in 3.4.4.2). It was expected to observe previously 

identified outliers in P. angulosus. Among the functionally associated outliers, there appears 

to be only one instance where a potential outlier (GPI ethanolamine phosphate transferase; 

Table 3.6) may perhaps belong to a similar protein family (here: structural domain 

associated with protein family) which was previously detected (Endonuclease/ 

Exonuclease/Phosphatase family; Nielsen et al. 2018; therein Supplementary Table S2). 

There were no similarities for previously detected S. granularis outliers (Nielsen et al. 2018) 

and C. punctatus (no previous outlier data). Importantly, it is possible that unidentified or 

uncharacterised proteins in this study (Table S3.6-7, Appendix) may demonstrate similarities 

to previously detected outliers, which can only be confirmed with expanding genomic 

resources of the species. 

 

Functional associations detected for the Bayesian-based outliers of P. angulosus are related 

to membrane transport (Monocarboxylate transporter 9; Nakayama et al. 2013), assembly of 

the mitochondrial respiratory complex (Iron-sulfur protein NUBPL isoform X2; Sheftel et al. 

2009) and a receptor mediating cytosolic calcium (Inositol 1,4,5-trisphosphate receptor 

isoform X8; Picard, Coquil and Mauger, 1998; Table 3.7). The loci to contig reference 

process revealed an identical outlier contig jointly identified across BayeScan and 

BayeScEnv (salinity), the Baculoviral IAP (inhibitor of apoptosis) repeat-containing protein 6 

isoform X6 (BIRC6) (Table 3.7). The BIR protein domain is involved in regulating apoptosis 

and cell division by controlling caspases (Bartke et al. 2004; Pohl and Jentsch, 2008). BIR 

serves as one of three possible subdomains of NLR proteins (nucleotide-binding domain and 

leucine-rich repeat containing gene family; Ting et al. 2008; Wilmanski, Petnicki-Ocwieja and 

Kobayashi, 2008), which are tasked with detecting cellular stress patterns. Beyond evidence 

in vertebrates, NLR proteins were first confirmed in sea urchins as part of the invertebrate 

immune system in terms of pathogen recognition (Rast et al. 2006; Davis, Wen and Ting, 

2011). It is presently not understood in detail how BIRC6 may influence both immune 

response and apoptosis in echinoderms, but there are apparently profound evolutionary and 

functional links across regulatory networks overseeing apoptosis and immune response 

(pathogen defence) (Robertson et al. 2006). This study constitutes the first instance in which 

a Baculoviral IAP repeat protein is detected as a putatively adaptive loci in sea urchins (but 

see Todgham and Hofmann, 2009). Nevertheless, there are studies on other marine 

invertebrates who found Baculoviral IAPs to be implicated with immune response and 

physiological stressors, which may carry significance for adaptive processes (Lesser and 

MacManes, 2016; Détrée et al. 2017; Feis et al. 2018). The fact that both BayeScan and 

BayeScEnv point to BIRC6 as putatively under selection possibly makes it an interesting 

candidate loci for further evaluation. 
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3.4.4.1 Established genomic elements of initially viral or bacterial origin 

 

Overall, suggested proteins and protein domains appear to span a wide array of molecular 

functions and dynamics in the study species (Table 3.6-7). Nevertheless, a number of them 

are particularly interesting for various reasons. For instance, one particular marker in C. 

punctatus appears as putatively under selection by all BayeScEnv-tested environmental 

parameters. This retrovirus-related Pol polyprotein (Table 3.7) is thought to have aspartic-

type endopeptidase activity (Fujita et al. 2017). Generally, large numbers of endogenous 

viral elements (EVE; Holmes, 2011) and specifically retroviral sequences (endogenous 

retroviruses (ERV); Cotton, 2001) are found in all species genomes, where their functional 

roles are varied and extend beyond potential host-virus interactions (Katzourakis and 

Gifford, 2010; Blomberg, Ushameckis and Jern, 2013). Frequently, ERVs can be dominating 

parts of the genome and as such increase genomic diversity (Blomberg, Ushameckis and 

Jern, 2013). From the different types of polyproteins (Pol, Env, Gag; Coffin, Hughes and 

Varmus, 1997), specifically the env protein is known for rapid gene sequence divergence 

possibly due to high selective pressure related to regulating the host immune response 

(Malik, Henikoff and Eickbush, 2000; Cotton, 2001). The polyprotein genes are located in 

close proximity, suggesting that high divergence in one of them may likely contribute to the 

Pol polyprotein being identified as outlier. Importantly, genomic signals for endogenous viral 

elements do not equate to contamination, because genome sequences resembling or 

originating historically from viruses are widespread in marine arthropods (such as C. 

punctatus) and may serve functional roles, which remain to be further explored (Flegel, 

2009; Hauton, 2017). Integrated viral genome elements are hypothesised to perhaps aid 

with the recognition and suppression of virus replication and thus increase host immunity 

(Flegel, 2009; Hauton, 2017). For instance, there is genomic evidence that a variety of 

reverse transcriptase (RT) sequences overlap between decapod crustaceans and the purple 

sea urchin S. purpuratus, which might indicate that these RT sequences occur in other 

marine invertebrates and could be specific to the marine realm (Harms et al. 2013). Further, 

a study across 7407 malacostracan genes related to immune response derived from 55 

species demonstrated the dynamic divergent evolutionary adaptations of these immunity 

components (Lai and Aboobaker, 2017), which might generally contribute to sequences 

associated with pathogen recognition being identified as outliers. 

 

Interestingly, the empirical FST outlier method identified two sequences regarded as signs of 

possible pathogenic presence in C. punctatus (wsv191-like protein, wsv220-like protein; 

Table 3.6). The wsv220-like protein is found in all six populations, whereas the wsv191-like 
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protein is limited to the south coast sites (Cape Agulhas, Knysna). Wsv proteins are 

associated with white spot syndrome virus (WSSV), which is a feared crustacean pathogen 

in the aquaculture industry (Cavalli et al. 2013). The virus has been detected in wild 

crustacean populations (Cavalli et al. 2013; Macías-Rodríguez et al. 2014) and in non-

crustacean host invertebrates (Desrina et al. 2013). White spot syndrome has been 

described as �most dangerous and devastating marine pathogen affecting crustaceans� 

(Gong, Ju and Zhang, 2018; p. 2). Two sequences showing similarity to wsv proteins in the 

present study are not conclusive evidence for the occurrence of WSSV in local populations 

of C. punctatus, but future investigation is warranted. There is currently no recorded 

outbreak of white spot syndrome in South Africa, but the disease occurred in Mozambique in 

the last decade (Tang, Le Groumellec and Lightner, 2013; Oakey et al. 2019). Until proven 

otherwise, proteins with high similarity to wsv proteins may not be treated as indication for 

white spot syndrome. However, WSSV has been demonstrated to show regional genotypic 

differences between strains (Oakey et al. 2019) and the ecological dynamics of the pathogen 

are still not well understood (Sánchez-Paz et al. 2015). A possible alternative hypothesis 

might be that the sequences resembling wsv-like proteins in C. punctatus might be involved 

with recognising pathogens such as WSSV as part of a protective immune function (see 

Flegel, 2009; Hauton, 2017), which would make sense for the wsv220-like protein found 

present in all six populations. 

 

Aside from endogenous viral elements, there is evidence for the presence of endogenous 

bacteria-associated proteins in C. punctatus (not in the other two species) in the form of 

RTXE, a cytotoxic ATP-binding protein (Table 3.6, Linhartová et al. 2010). Virulence factors 

such as RTX (repeats in toxin) proteins originate from a wide variety of bacterial pathogen 

genera (Linhartová et al. 2010) and create pores to permeate the membrane of eukaryotic 

(preferably immune) target cells (Chenal, Sotomayor-Perez and Ladant, 2015). For instance, 

evidence from Pseudovibrio spp. suggests high bacterial metabolic flexibility and varied 

adaptations to a range of marine invertebrate hosts (Alex and Antunes, 2018; Versluis et al. 

2018). To summarise, roughly a third or more of all putatively functionally associated outlier 

sequences in C. punctatus (Table 3.6-7) point to the occurrence or similarity of endogenous 

viral elements in the genome (and to a smaller extent endogenous elements of bacterial 

origin) across the three detection methods. In comparison, this applies to only three 

functionally associated markers in S. granularis and P. angulosus, which may be influenced 

by an overall larger quantity of C. punctatus outliers. In general, instances of outlier 

sequences identified as polyproteins, transposable elements (retrotransposons, 

transposons) or other elements of endogenous viral nature have similarly been reported 

from population studies of marine invertebrates in the phyla Mollusca and Arthropoda 
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(Crustacea), but to our knowledge not yet in Echinodermata (Galindo, Grahame and Butlin, 

2010; Plough, 2017; Metivier, Kim and Addison, 2017; Rhode, Bester-van der Merwe and 

Roodt-Wilding, 2017; Silliman, 2019a,b; Cheng et al. 2020). It is plausible that transposable 

elements are experiencing selection in sea urchins, as for instance the genome of the purple 

sea urchin S. purpuratus contains 8.36% transposons (Zhang et al. 2017a). Evidence for P. 

angulosus might only open up with expanding the level of functional associations of its 

detected outlier loci. Overall, it is important to emphasise that these genomic elements may 

not be directly targeted by selection, but linked to markers under selection (Metivier, Kim and 

Addison, 2017). To conclude this section, there is evidence that transposable elements, due 

to their capacity to drive gene and genome evolution (Joly-Lopez et al. 2012; Hoen and 

Bureau, 2015) and to regulate gene expression levels (González, Macpherson and Petrov, 

2009), have been suggested to play a significant role in local adaptation to environmental 

conditions (González et al. 2008; van�t Hof et al. 2016; Rey et al. 2016). It is possible that the 

identified outlier loci discussed in this section are impacted by positive selection and might 

therefore play a role in the adaptive divergence of C. punctatus and S. granularis, who both 

demonstrated transposable elements among their functionally associated loci. 

 

3.4.4.2 Outlier loci and (metabolic) adaptive divergence 

 

Outlier loci in the shore crab C. punctatus point to NADH dehydrogenase subunits, ATP 

synthase and ATP-binding proteins (Table 3.6-7). Further outlier loci detected in the other 

study species include the ABC transporter ATP-binding protein (P. angulosus), cytochrome b 

and the cytochrome c oxidase subunit I (both S. granularis) (Table 3.6-7). Facing changing 

climatic conditions or other environmental stressors is energetically costly for species 

(Sørensen and Loeschcke, 2007; Sokolova et al. 2012) and prompts high intracellular 

demand for energy production (Somero, 2002; Harvey et al. 2014). The required additional 

energy to withstand environmental stress decreases the energy balance to the disadvantage 

of growth, reproduction and development (Sokolova et al. 2012). Adaptive shifts of metabolic 

functions are thought to be a key contributor to coping with stressful conditions (Somero, 

Lockwood and Tomanek, 2017). Evolutionary processes detected in metabolic gene 

networks have been suggested as an attempt to adjust tolerance limits to stress factors (De 

Wit, Dupont and Thor, 2016). In the marine environment, genes related to energy 

metabolism appear to be under selection in several species (Galindo, Grahame and Butlin, 

2010; De Wit and Palumbi, 2013; Xu et al. 2017; Zhang et al. 2019a,b; Tisthammer et al. 

2019; Lou, Gao and Han, 2019). Around 95% of energy capacity of eukaryotic cells stems 

from mitochondria (da Fonseca et al. 2008). Mitochondrial protein-coding genes are at the 

centre of energy metabolism and several mechanisms of biosynthesis (Green and Reed, 
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1998; Newmeyer and Ferguson-Miller, 2003; Mitchell, 2011). There is mounting evidence 

that the often regarded as neutral mitochondrial genome can be a target of positive selection 

(da Fonseca et al. 2008; Galtier et al. 2009; Czarnomska et al. 2019). Non-synonymous 

changes in SNPs contained in genes encoding components of the electron transport chain 

may influence essential subunit binding sites and overall electron flow (Beckstead et al. 

2009). Such mutations can potentially impact the electron transport chain functionality and 

ultimately metabolic capacity, associated biosynthetic processes and species fitness traits 

(Ballard and Whitlock, 2004; Gershoni, Templeton and Mishmar, 2009). Importantly, a more 

flexible respiratory metabolism can serve as an adaptive advantage (Ballard and Rand, 

2005; Dowling, Friberg and Lindell, 2008). 

 

To provide a brief overview before going into detail, the oxidative phosphorylation via the 

electron transport chain involves five complexes: nicotinamide adenine dinucleotide (NADH) 

dehydrogenase, succinate dehydrogenase, cytochrome bc1 complex, cytochrome c oxidase, 

and ATP synthase (Carroll et al. 2009; McKenzie, Lazarou and Ryan, 2009). The five 

complexes consist of numerous subunits, which are encoded in mitochondrial genes, but in 

part also in nuclear genes (Rand, Haney and Fry, 2004; Burton and Barreto, 2012). The 

highest energy capacity is achieved when these sets of genes interact smoothly, meaning 

that a dissonance in the mito-nuclear evolution can interfere with molecular population 

structure to create instances in which species mtDNA and nuclear DNA deviate from fully 

complementary roles (Burton and Barreto, 2012). The complexity of the respiratory subunit 

origins and the mito-nuclear interactions highlight the impact even small changes may have 

on traits associated with species physiological fitness (Brandt, 2006; Coyle et al. 2019). 

Evidence shows that positive selection on the mitochondrial genome can drive adaptive 

divergence (Ballard and Whitlock, 2004; Galtier et al. 2009; Jacobsen et al. 2016). Signs for 

adaptive evolution have been detected in genes linked to essential electron transport chain 

complexes such as NADH dehydrogenase (Xu et al. 2007; Yu et al. 2011; Zhang et al. 

2017b; Sun et al. 2018), cytochrome b (da Fonseca et al. 2008), cytochrome c oxidase (Luo 

et al. 2008) and ATP synthase (Hassanin et al. 2009; Zhou et al. 2014; Zhang et al. 2017b; 

Sun et al. 2018). 

 

NADH dehydrogenase 

Three outliers in C. punctatus are associated with NAD+/NADH dynamics: NADH 

dehydrogenase subunit 4 and 6 and possibly the outlier identified belonging to the family of 

short-chain dehydrogenases/reductases (SDR), of which many of the latter are NAD- or 

NADP-dependent oxidoreductases (Table 3.6-7; Jörnvall et al. 1995). As the detailed 

functional association of the SDR outlier is not determined at present, the following section 
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focuses on the NADH outliers. NADH dehydrogenase serves as the first and largest enzyme 

complex in the respiratory electron transport chain and facilitates the electrochemical proton 

gradient required to generate ATP (Kaniuga, 1963; Brandt, 2006). Molecular changes in 

subunits or associated enzymes might impact the process of protons pumped to drive the 

gradient (da Fonseca et al. 2008). NADH subunit 4 (ND4) has been suggested to constitute 

one of the designated proton pumping components of the complex (Brandt, 2006), hence 

potential mutations may interfere with its efficiency. The detailed role of NADH subunit 6 

(ND6) is less well understood, even though mutations in the corresponding gene (MT-ND6) 

have been related to certain disease patterns (Jun, Brown and Wallace, 1994; Ronchi et al. 

2011). Generally, NAD2 and ND4 have widely been used as markers for phylogeographic 

research and a number of studies on mitogenomes emphasise the importance of the NADH 

dehydrogenase genes for adaptive evolutionary processes (Xu et al. 2007; da Fonseca et al. 

2008; Ning et al. 2010; Yu et al. 2011). There are a number of instances where NADH 

dehydrogenase-components have been identified as putative signals for adaptive 

divergence in marine invertebrates. These include molluscs (Galindo, Grahame and Butlin, 

2010; Saunier et al. 2014; Zhong et al. 2016; Gleason and Burton, 2016; Rhode, Bester-van 

der Merwe and Roodt-Wilding, 2017; Silliman, 2019a,b), crustaceans (Nunez et al. 2018; 

Wang et al. 2017; Zhang et al. 2019b) and echinoderms (Hart and Foster, 2013; Mu, Liu and 

Zhang, 2018). While the detected NADH-related outliers in C. punctatus must still be 

regarded as candidate loci for selection, there is evidence from aforementioned studies that 

they might indeed to some extent constitute a signal for adaptive evolution associated with 

NADH dehydrogenase capacity. 

 

Cytochrome b and c 

Cytochrome b and c oxidase are positioned downstream of the NADH dehydrogenase 

complex in the electron transport chain (Carroll et al. 2009). Cytochrome b facilitates the 

electron transfer between ubiquinol and cytochrome c, which is linked to the translocation of 

protons against the gradient ultimately producing ATP (Saraste, 1999; Mitchell, 2011). 

Similar to NADH, cytochrome b and c markers have widely been used to assess 

phylogenetic population structure (Avise, 2000; Ballard and Whitlock, 2004; Karlsen et al. 

2014). In the limpet S. granularis, cytochrome b and the cytochrome c oxidase subunit I are 

detected as putatively adaptive loci (Table 3.6-7). To draw from other marine invertebrates, 

several cytochrome c oxidase genes are upregulated when polychaete Protolaeospira 

stalagmia is exposed to thermal stress (Nieva, 2019). The higher expression of these genes 

is interpreted as a possible metabolic response to high energy demand such as heat shock 

protein (Hsps) production (Nieva, 2019). There are other lines of evidence from several 

marine species that divergent selection in the cytochrome b (Cytb) gene may be correlated 
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with the impact of sea temperature (Foote et al. 2011; Silva et al. 2014; Xu et al. 2017; Deng 

et al. 2019). Overall, temperature has been recognised as a major driver of selection on the 

mitogenome (Ballard and Whitlock, 2004; Coyle et al. 2019). Nevertheless, cytochrome b 

has also been identified as putatively adaptive in relation to other selection pressures in the 

aquatic environment apart from temperature (Bélanger-Deschênes et al. 2013) and the full 

range of possible influencing factors is not well understood at present. Hence, there is a 

certain possibility that the two cytochrome outliers detected in S. granularis with the 

empirical FST-method (Table 3.6-7) might be impacted by sea or air temperature, but this 

requires further exploration in the future, as testing the genomic data for association of these 

two factors with BayeScEnv did not point to similar markers (which could be functionally 

associated) in the species. 

 

ATP synthase and ATP-binding 

As the last enzyme complex, the ATP synthase utilises the transmembrane proton gradient 

generated by upstream respiratory chain components to generate adenosine triphosphate 

(ATP) from adenosine diphosphate (Saraste, 1999; Mitchell, 2011). Ubiquitous in all life 

forms, ATP is regarded as a universal molecular currency to transfer energy in cells and to 

drive processes such as chemical synthesis and muscle contraction (Knowles, 1980). 

Molecular variation in the ATP synthase (ATPase) are expected to influence the production 

of ATP and ultimately energy metabolism (Mishmar et al. 2003; Wallace, 2007). Past studies 

have associated changes in the ATP synthase dynamics with species capacity to adapt to 

different environmental conditions (Hassanin et al. 2009; Zhou et al. 2014; Slimen et al. 

2017; Zhang et al. 2017b). In ectotherms, it has even been advocated that persisting 

environmental variability is determined by the capability to regulate ATP production 

(Seebacher et al. 2010). For instance, diversifying selection pressure might impact ATP-

related pathways or networks of metabolic genes to redirect ATP and possibly enhance 

tolerance to environmental stressors (Evans et al. 2017). In the shore crab C. punctatus, the 

ATP synthase was identified to have possible adaptive association (Table 3.6). Studies on 

marine crustaceans have detected the ATP synthase in the context of environmental 

adaptation in the blue crab Callinectes sapidus and the alvinocaridid shrimp Shinkaicaris 

leurokolos (Yednock and Neigel, 2014; Sun et al. 2018). 

 

In C. punctatus and P. angulosus, further outlier sequences point to ATP-binding proteins 

possibly under selection (Table 3.6). Although ATP-binding proteins are not directly part of 

the electron transport chain, they are included here in the context of ATP-related cellular 

energy dynamics. Generally, ATP-binding cassette proteins (ABC transporters) facilitate 

transmembrane transport of diverse substances in cells, where ATP enables the transport 
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process (Jones and George, 2004; Linton, 2007). Interestingly, ATP-binding proteins have 

been detected among the most frequent genomic signals driving metazoan�s evolutionary 

response to thermal changes in their environment (Porcelli et al. 2015). Signs for selection 

related to ATP-binding have been found in intertidal crustaceans (Rock et al. 2009) and sea 

urchins (Kober and Pogson, 2017; Uthicke et al. 2019). For the sake of completeness 

regarding the limpet S. granularis, none of the functionally annotated loci point to ATP 

dynamics , but there is mounting evidence from other marine molluscs (ATP synthase: 

Rhode, 2013; De Wit and Palumbi, 2013; Saunier et al. 2014; Sandoval-Castillo et al. 2018; 

Pante et al. 2019; ATP-binding: Ravinet et al. 2016). It is biologically plausible that such loci 

might be contained in the detected putatively adaptive loci whose functional association 

could not be determined with the presently available genomic database resources. 

 

In summary, adaptive divergence in a wide variety of species has been linked to genes 

coding for energy metabolism functions. Further, the electron transport chain and its enzyme 

complexes are at the centre of cellular energy production. The three study species show 

putatively adaptive genomic outliers related to key energy production components (NADH 

dehydrogenase, cytochrome b and c oxidase, ATP synthase), which have been associated 

in other marine invertebrates with divergent selection driven by evolutionary pressures such 

as environmental stressors. Testing SST, salinity and air temperature with BayeScEnv 

yielded a small number of putatively associated loci with functional association (see section 

3.4.1-2). To reiterate, this study only considered these particular environmental variables 

and other factors such as ocean currents, wave exposure, upwelling, pH and small scale 

biotic interactions can also drive selection (Pespeni et al. 2012; Galindo and Grahame, 2014; 

Jeffery et al. 2018). Nevertheless, temperature acts as a major selective force on the 

genome and particularly mitochondrial DNA (Ballard and Whitlock, 2004). Therefore, it can 

be suggested that further relevant candidate loci related to sea and air temperature (and 

likely other factors) will become evident once a higher degree of functional genomic 

association is achieved, alternative environmental-association methods might have been 

consulted and higher resolution environmental data is established. Overall, scouring largely 

uncharacterised genomes of non-model species for loci associated with adaptive evolution 

poses a distinct challenge. It needs to be emphasised that the putatively adaptive loci 

detected with the described outlier methods in this study can be characterised as candidate 

loci and require empirical validation. The adaptive significance of identified target loci 

appearing under selection needs to be further empirically explored. Based on multiple 

previous studies discussed in this section, it might be promising to examine loci linked to 

genes associated with energy metabolism dynamics as target candidates for adaptive 

divergence. Because SNPs reflect contemporary genomic patterns (see section 2.1.5), it is 
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an unresolved question in this context how potential past historic adaptive processes driven 

by paleo-climatic changes in sea surface temperature, oceanic currents, air temperature and 

other environmental factors (see section 1.6.1) might have laid the ground for current 

adaptive signals. 

 

3.4.5 Population structure estimates 

 

Analyses based on the COI locus (and the nuclear egg jelly protein (SpEJ9) marker in P. 

angulosus) pointed to various signs of population structure across the study species South 

African range (see Table 2.3; Muller et al. 2012; Wright et al. 2015; Mmonwa et al. 2015), 

but findings based on selectively neutral loci in Chapter II (see section 2.3.4-5) suggest no 

significant division across sampled populations. There are instances in other species where 

outlier loci have indicated population divergence despite the lack of population structure in 

selectively neutral genomic composition (Guo et al. 2015; Funk et al. 2016; Gaither et al. 

2018) and even in smaller regions with relatively homogeneous environmental conditions 

(Nielsen et al. 2018; and references therein). This phenomenon and differences in 

environmental conditions across the South African sampling range, the study species 

varying biological characteristics and microhabitat preferences could be expected to 

contribute to population divergence among detected outliers. In the South African 

oceanographic context, it might be plausible that the west coast populations (Port 

Nolloth/Jacob�s Bay, Sea Point) and the east coast populations (Cape St. Francis, Haga 

Haga) constitute spatially distinct outlier groups. Nevertheless, in summary, the findings 

suggest either the absence of structure or possible divergent groups, but no distinct 

separation of populations into regional clusters supported by multiple approaches. 

 

Absence of IBD, but some signals of IBE effects 

 

Across study species, no signals for isolation-by-distance (IBD) were detected (see section 

3.3.6). Testing for isolation-by-environment (IBE) indicates that a combination between 

geographic distance, SST and air temperature variation may possibly account for up to 45% 

of genomic divergence in the limpet S. granularis. This hints the potential role of synergistic 

effects between geographical and environmental distance on the species genomic 

differentiation in this system. The influence of multi-factorial IBE or joint IBE/IBD on species 

molecular patterns has been confirmed in other marine species (e. g. Nanninga et al. 2014; 

Whittaker and Rynearson, 2017; Phair et al. 2019). In the Cape urchin P. angulosus, RDA 

models suggest that salinity variation might influence up to 48% of molecular variation. 

Echinoderms are known to experience strong selection pressure by salinity conditions (e.g. 
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Agüera et al. 2015; Xuereb et al. 2018; Carreras et al. 2019), but it is important to remember 

that these are preliminary observations and future research with widely assessed in situ 

measurements is necessary to ascertain the role of environmental factors for the molecular 

composition of South African marine invertebrates. From a comparative multi-species 

perspective in this study, it could be noted that the possible presence of IBE effects on 

species does not seem to be influenced by the number of detected putatively 

environmentally-associated outliers. For instance, C. punctatus revealed the highest total 

number of this type of outlier (see Table 3.2), but as tested here, there is no IBE signal in the 

shore crab. In accordance with what has previously been discussed on environmental 

association approaches, it is of course possible that factors not tested here might influence 

molecular processes in the species. 

 

Population structure: Different levels of resolution 

 

FastSTRUCTURE determines the absence of structure across all species outliers, which is 

congruent tested with BAPS in the limpet S. granularis. Hence, the outlier markers detected 

in the granular limpet populations demonstrate a lack of population structure according to 

fastSTRUCTURE, BAPS and IBD, except for the possible combined influence of IBE/IBD 

described above. BAPS groups outliers of the shore crab and the Cape urchin into four units 

(Table 3.8), which appears at first glance as a contrasting finding (to fastSTRUCTURE). In 

this estimation, P. angulosus populations in Knysna and Cape St. Francis might form a 

group and BAPS further assumes one cluster in C. punctatus including Sea Point, Knysna 

and Haga Haga populations, which does have different degrees of geographical plausibility 

(see Figure 2.1). In general, accurate estimations of population structure are influenced by 

factors such as uneven sample sizes per population (Fenderson, Kovach and Llamas, 

2020), which was controlled for by utilising pooled samples constructed from equal numbers 

of individuals per location (see section 2.2.1-2). Further influence on assessing population 

divergence is exerted by the number of molecular markers and their variability (Puechmaille, 

2016), which notably varied among study species (see section 3.3.3). Adapted from its 

precursor STRUCTURE (Pritchard, Stephens and Donnelly, 2000), every component of a 

sample in fastSTRUCTURE models has equal prior probability to belong to any of K 

populations (Raj, Stephens and Pritchard, 2014), whereas BAPS (Corander and Marttinen, 

2006; Corander et al. 2006) employs a clustering approach with an extent of spatial 

autocorrelation, where the likelihood of samples to cluster together decreases with growing 

geographical distance. It is possible that the difference between lack of population division 

(fastSTRUCTURE, IBD testing) and four units (BAPS) in C. punctatus and P. angulosus 

might to some extent be influenced by different modelling assumptions. Additionally, BAPS 
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appears to have a tendency to overestimate the number of clusters, because it may detect 

finer molecular variation and indicate low threshold groupings dismissed by other 

applications (Wilkinson et al. 2011; Pinho, Cardoso and Hey, 2019). Another important 

aspect is that the BayeScan and BayeScEnv outliers are present in all populations and 

merely a limited number of empirical FST outliers are estimated as exclusive to certain 

population pairs (see section 3.4.3, Table S3.4, Appendix). With numerous outliers shared 

across the species populations, fastSTRUCTURE may speculatively place higher 

importance on shared outlier sequences across populations (no structure) and BAPS might 

place more emphasis on the small number of outlier sequences which are not shared by all 

populations. Isolation-by-distance, which was tested for, and other demographic processes 

further discussed later are known to impact patterns of apparent population divergence 

(Lawson, van Dorp and Falush, 2018). Finally, low levels of molecular differentiation, as 

attested by fastSTRUCTURE and IBD testing across species, might decrease the capacity 

of clustering applications to detect relevant clusters (Latch et al. 2006; Wollstein and Lao, 

2015). 

 

In summary, there is strong evidence from IBD testing and fastSTRUCTURE pointing to the 

absence of population structure in all study species. On the level of individual species, there 

is no support for outlier-based population structure in the limpet S. granularis, except for the 

signal of a joint IBE/IBD effect possibly influencing genomic variation. In the shore crab C. 

punctatus, only BAPS suggests a division into four divergent groups, which might be 

influenced by the methodological factors discussed above, particularly by empirical FST 

outliers occurring in some, but not all populations. Lastly, the Cape urchin P. angulosus 

might experience genome-environment influence from salinity conditions (IBE) and was 

assessed into four possible groups by BAPS. It can be acknowledged that the latter findings 

may be influenced by the overall low numbers of outliers in the Cape urchin compared to the 

other two species. Overall, no explicit population division into regional clusters is supported 

by multiple approaches. 

 

Neutral and outlier-based population structure estimates 

 

Reviewing the species population structure estimates for selectively neutral markers 

(Chapter II) and putatively adaptive markers, it becomes evident that notably less structuring 

was identified than anticipated based on the large scale environmental gradient. Across 

neutral and outlier markers, as discussed in the previous section, BAPS appears to estimate 

generally more signals of population structure compared to fastSTRUCTURE (Table 3.8), 

which might stem from varying sensitivities and differences in underlying model assumptions 
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leading to different levels of resolution or overestimation of clusters due to low levels of 

molecular differentiation. Across species and types of SNP markers, fastSTRUCTURE 

estimates a single population, with the exception of three divergent groups of selectively 

neutral markers in the limpet S. granularis. As discussed in Chapter II, these divergent 

groups are present in all sampled locations and do not indicate spatially distinct clustering. 

Perhaps most notable is that both programs indicate the absence of structure in S. 

granularis outliers, but pick up on two (BAPS) or three (fastSTRUCTURE) possible divergent 

groups among the neutral markers (see Chapter II). 

 

For the urchin P. angulosus, the only signal for population divergence is identified by BAPS 

among the outlier markers, which is contrary to fastSTRUCTURE estimating a single 

population. In comparison with S. granularis, the Cape urchin represents the opposite case, 

where selectively neutral markers are found to lack structure and signs of divergence are 

limited to the outlier loci. This is a valuable take-away from a multi-species study, cautioning 

that patterns of population structure, neutral or outlier-oriented, cannot be extrapolated easily 

across phyla boundaries or perhaps even species boundaries. 

 

The shore crab C. punctatus constitutes the only species where possible signals for 

population divergence are not limited to either selectively neutral markers (as in P. 

angulosus) or potential outliers (as in S. granularis). The evidence is however not 

conclusive, as the two divergent groups of neutral loci and four groups of outlier loci (both 

estimated by BAPS) are opposed by fastSTRUCTURE detecting a single group each. With 

the tendency of BAPS to possibly overestimate clusters (Pinho, Cardoso and Hey, 2019), 

the number of suggested C. punctatus groups may be lower than estimated, as advocated 

by fastSTRUCTURE testing. 

 

Lack of population structure: Possible causes of low population differentiation 

 

In this study, the granular limpet S. granularis demonstrates no population structure in its 

outlier loci and the Cape urchin P. angulosus in its selectively neutral markers (less clear-cut 

in the shore crab C. punctatus, where fastSTRUCTURE assesses no structure across all 

marker types and BAPS suggests multiple groups). Several processes, which are not 

mutually-exclusive, can lead to the absence of significant population structure. For instance, 

lack of geographic structure may arise from migration of individuals between populations. 

Assuming migration as the underlying cause appears tempting, as the study species are 

broadcast spawners with their larvae dispersing during a pelagic phase (see section 1.7). 

Nevertheless, this may be too simplistic, as it has been established that reproductive 
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strategy and pelagic larval duration (PLD) are not reliable proxies for genetic and genomic 

population structure (Weersing and Toonen, 2009; Selkoe and Toonen, 2011; Faurby and 

Barber, 2012; Riginos et al. 2016). Instead of a steady exchange of migrants, it might be 

plausible that genetic exchange between populations is facilitated by a series of stochastic 

or rare dispersal episodes (Knowles, 2009; Hock and Mumby, 2015). In a neutral framework, 

as few as one to ten migrants per generation can decrease genomic heterogeneity and 

create a setting perceived as panmictic (Mills and Allendorf, 1996; Waples and Gaggiotti, 

2006), but inferences about dispersal can not be made with non-neutral loci (Kimura, 1991; 

Ohta, 1992; Gillespie, 1994; Whitlock and McCauley, 1999). The impact of mesoscale 

oceanographic features and near shore current patterns on marine population connectivity in 

the highly dynamic southern African region (see section 1.5.2) are the focus of continued 

research (Porri, McQuaid and Radloff, 2006; Pineda et al. 2010; Porri et al. 2014; McQuaid 

et al. 2015; Weidberg et al. 2015). In situ measurements of near shore current dynamics are 

necessary to better understand which role they might play towards the lack of genomic 

structure in populations (White et al. 2010). Moreover, high abundance of species can 

contribute to apparent lack of molecular heterogeneity, because large population sizes may 

promote a lack of drift leading to genomic similarity (Whitlock and McCauley, 1999; Kelly and 

Palumbi, 2010; Riginos et al. 2016). All three species are fairly abundant in South African 

rocky shores, with local caveats (e.g. settling space competition for S. granularis from 

barnacles at Buffel�s Bay (Knysna), personal observation). Further, changing environmental 

conditions driven by glacial cycles in South Africa were associated with population shifts 

(see section 1.6.1). These past population shifts might conceal genomic differentiation 

through high numbers of ancestral polymorphisms and shared standing genomic variation 

(Knowles, 2009; Riginos et al. 2016), which may be treated as a sign for non-equilibrium 

patterns of drift-migration (Slatkin, 1993). Thereby, genomic similarity might be a molecular 

signature of the past, where shared population history might mimic what may be interpreted 

as high rates of contemporary larval exchange (Hart and Marko, 2010; Marko and Hart, 

2011). To some extent, species evolutionary history might be inferred from traditional marker 

studies, where the three study species demonstrated significant differentiation between their 

partial COI sequences across their geographic range (Muller et al. 2012; Wright et al. 2015; 

Mmonwa et al. 2015). Beyond these studies, the species suspected demographic history in 

southern Africa is not well known, which limits interpretations towards the impact of past 

events. The causes of apparent lack of population structure suggested across certain marker 

types of the study species are likely multi-faceted and further investigation is necessary to 

determine their definite causes and drivers. 
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Outlier loci and signals for divergence 

 

Lack of population structure might be associated with the absence of diversifying loci (e.g. 

Tay et al. 2016). Importantly, this is not the case in this study, where the three species 

indicate outlier markers, environmentally-associated outliers (Table 3.3) and potential 

divergent groups among their populations (BAPS: P. angulosus; C. punctatus). The limpet S. 

granularis may be impacted by a joint IBE/IBD effect and the urchin P. angulosus showed an 

IBE signal for salinity conditions (see section 3.3.6). The wealth of putatively 

environmentally-associated outliers and the lack of isolation-by-distance contribute to the 

hypothesis that genomic divergence might be driven by environmentally mediated selection 

processes rather than geographical distance. It can be acknowledged that molecular 

patterns of diversifying processes may under circumstances resemble signals created by 

allelic surfing, which however becomes less likely with large population sizes and some 

degree of genomic connectivity (Klopfstein, Currat and Excoffier, 2006; Excoffier and Ray, 

2008). Other possible similarities can arise from hitchhiking genes (Bierne et al. 2011; 

Lotterhos and Whitlock, 2015), hidden demographic effects (De Mita et al. 2013; Lotterhos 

and Whitlock, 2015) and varying recombination and mutation rates (Roesti et al. 2012; Tine 

et al. 2014). It can be hypothesised that the main source of adaptive divergence (outlier loci) 

in the study species possibly stems from processes related to heterogeneous environmental 

conditions. RAD-Seq derived SNPs represent only a small portion of the overall genome, 

therefore it could be suggested that the impact of environmental variables on the species 

genome might be larger than detected here and that further research is necessary to 

elucidate the extent of environmentally-mediated selection processes in the study species 

populations across the South African coastal gradient. 

 

3.4.6 Implications for resilience 

 

Changing climatic conditions and other anthropogenic disturbances challenge species 

resilience and capacity to cope on a global scale (Pereira et al. 2010; Bellard et al. 2012; 

Archer et al. 2018). Adaptive divergence has been associated with evolutionary potential, 

where species with signals of adaptive processes might be at an advantage in the face of 

adversity (Barrett and Schluter, 2008; Alsos et al. 2012; Pauls et al. 2013) and spatial 

differentiation of outliers can possibly indicate areas of unique evolutionary distinctness. 

High genomic diversity, lack of population structure and absent diversifying loci have been 

interpreted as �high resilience� against �still minimal� impact from anthropogenic stressors in 

the sea star Protoreaster nodosus (Tay et al. 2016; p. 1; p. 12). It is important to question 

whether this can be conclusively deducted from a single study without incorporating possible 
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environmental influences. On the contrary, analyses of adaptive divergence indicated 

several spatially distinct clusters in abalone Haliotis laevigata, which is treated as strong 

evidence that they should be considered as separate management units in a marine 

conservation framework (Sandoval-Castillo et al. 2018). Both instances demonstrate that 

adaptive divergence or the apparent lack thereof create a spectrum of molecular potential for 

resilience, which makes management considerations challenging for less straightforward 

patterns. In this study, distinct spatial patterns of putative adaptive divergence are not 

detected (S. granularis) or are not supported by multiple approaches (C. punctatus, P. 

angulosus). Nevertheless, all three species revealed potential selective processes in the 

shape of putatively adaptive markers and environmentally-associated outliers. The candidate 

loci cover a wide range of possible cellular functions, including a number of markers involved 

in energy metabolism dynamics. It can be hypothesised that the candidate outliers probably 

influence the resilience of S. granularis, P. angulosus and C. punctatus populations at 

present and in future environments. Further evidence for selective processes comes from 

the likely joint influence of SST, air temperature and geographic distance on the genomic 

variation in S. granularis and the impact of salinity conditions on genomic variation in P. 

angulosus. The significantly higher neutral nucleotide diversity found in the Cape urchins 

northern west coast population (Port Nolloth) is an important observation (Chapter II), which 

may indicate unique evolutionary distinctness in this area (congruent with Nielsen et al. 

2018). Following a precautionary approach, it might be prudent to consider genomic 

monitoring of the species populations for temporal allelic fluctuations and to investigate 

additional environmental variables (Toonen and Grosberg, 2011). Further, the avenue of a 

candidate gene approach (Yednock and Neigel, 2014) could be promising to explore 

adaptive processes. In the case of the Cape urchin, the Port Nolloth population appears to 

hold a special position with regards to neutral nucleotide diversity, which warrants 

recognition in possible conservation measures. In summary, this study confirms the 

presence of hundreds of putatively adaptive loci across the intertidal species, which 

demonstrates the likely presence of adaptive selective processes across the examined 

South African populations. It can be hypothesised that the detected candidate markers 

might, together with other possibly not yet discovered divergent markers, serve as the 

foundation for spatially distinct adaptive patterns to emerge in the future. From the multi-

species perspective of the study, it became evident that adaptive divergence differs notably 

across phyla, which advocates considering multiple rather than single species for genomic 

monitoring to facilitate effective conservation of marine communities for generations to 

come. 
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3.4.7 Conclusion 

 

The findings in this chapter contribute to the growing empirical knowledge of adaptive 

divergence in marine invertebrates inhabiting coastal environmental gradients and introduce 

candidate loci putatively associated with selective environmental processes. Possible signals 

for adaptive divergence in populations of the shore crab C. punctatus, the granular limpet S. 

granularis and the Cape urchin P. angulosus were explored across the majority of their 

distribution in South Africa. In total, 1102 putatively adaptive loci were detected across 

species and assessed for possible functional association and population structure. 

Moreover, sea surface temperature, air temperature and salinity differentiation were tested 

for putative genome-environmental association, which revealed against initial expectations 

that the largest number of candidate markers appears to be associated with salinity 

conditions over sea surface temperatures. Further, it became evident that levels of likely 

genome-environment associations differ notably between species and that markers exist 

which may be impacted by two environmental factors in C. punctatus and S. granularis. 

Contrary to the hypothesis of detecting site-specific (unique) outlier loci, the outliers detected 

with BayeScan and BayeScEnv were found present in all sampled populations. However, 

the empirical FST-method suggests a number of outliers which occur only in two sites 

(pairwise population estimates), which hints at a certain degree of spatial variation. 

Functional associations pointing to a large variety of cellular functions could be determined 

for around 10% of the outlier loci. Congruent with past studies, a number of these markers 

appear to incorporate endogenous viral elements such as retrotransposons or might form 

part of key metabolic components such as the electron transport chain. These types of loci 

have been implicated with local adaptation processes in studies on other marine 

invertebrates. In contrast to COI marker findings, there is no indication for isolation-by-

distance between populations, but two species suggest the possible influence of isolation-

by-environment (P. angulosus) or a joint IBE/IBD effect (S. granularis) on their genomic 

divergence. Contrary to the expectation of spatial differentiation in outlier loci across the 

populations, testing population structure for possible clustering suggests that there are no 

patterns supported by multiple approaches and that there are no geographical clusters of 

outliers. Likely attributable to varying model sensitivities, the species might represent a 

single population each or consist of multiple slightly divergent groups (C. punctatus, P. 

angulosus). Importantly, all study species demonstrate multiple loci which might be 

ecologically relevant and carry adaptive significance, regardless of the largely similar 

genomic neutral background levels established in Chapter II. In terms of resilience and 

evolutionary potential, it can be recommended to conduct genomic monitoring of temporal 

allele fluctuations across the populations, as the detected outlier markers possibly represent 
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the molecular foundation on which spatially distinct clusters may emerge. Moreover, the 

identified candidate loci likely play a role for the species resilience in future environments, 

which warrants their further validation and investigation. The study system spans a vast 

geographical area, where factors such as near shore current patterns and detailed in situ 

measurements of environmental variables in the intertidal are not well understood or 

available at present. The candidate markers obtained with RAD-Seq genomic data may 

constitute only a small percentage of loci affected by adaptive processes in the study 

species and further assessment is necessary to confirm detailed functional roles of 

candidate loci. Whole-genome sequencing, reciprocal transplant studies and transcriptome-

based physiological experiments are promising avenues to better elucidate and validate 

markers putatively under selection, as well as to gain more insights into the impact of 

environmental factors (Larsen et al. 2008; Hereford, 2009; Limborg et al. 2012; Lotterhos 

and Whitlock, 2015; Pardo-Diaz, Salazar and Jiggins, 2015). For instance, candidate SNPs 

with putative environmental association can be verified with physiological experiments 

combined with transcriptomic approaches, where groups of the study species are exposed to 

variations of the environmental variable of interest such as SST, air temperature or salinity 

under laboratory controlled conditions. Exposure to physiological pressure such as 

increased sea water temperature upregulates the expression of genes involved in the 

species metabolic response. For example, a study on the Japanese mantis shrimp 

(Oratosquilla oratoria) exposed to different sea water temperatures identified adaptive genes 

underpinning the species molecular response to regulate the environmental stress (Lou, Gao 

and Han, 2019). Similar approaches have been utilised to explore genes linked to salinity 

stress in marine species (Liu et al. 2019; Malachowicz et al. 2019). Identified candidate 

genes can be subjected to qRT-PCR analysis (Real-Time Quantitative Reverse 

Transcription PCR; see for example Larsen et al. 2008) to validate genes with presumed 

adaptive potential and their possible involvement in physiological pathways. Comparing 

marine invertebrate populations from the South African east coast and west coast with a 

transcriptomic approach can reveal whether gene expression displays regional differences 

and possibly verify candidate loci detected in this study. Different levels of sea water and air 

temperature conditions have been shown to incite different genome expression trends 

(Gleason and Burton, 2015; Lou, Gao and Han, 2019), hence it might be hypothesised that 

regional transcriptomic differences exist in South African marine species inhabiting the 

coastal gradient. 
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3.5 Appendix 

3.5.1 Geographic and environmental variables (RDA analysis) 
 

Table S3.1. GPS coordinates utilised to extract environmental variables used in BayeScEnv  
and RDA analysis (Abbreviations listed in Figure 2.1). 

 

Site C. punctatus* S. granularis** P. angulosus** 

JC*/PN** 
SP 
CA 
KY 
CF 
HH 

-32.977944, 17.885978 
-33.915117, 18.386147 
-34.828587, 20.011403 
-34.089115, 22.973161 
-34.210609, 24.837540 
-32.766773, 28.241982 

-29.266415, 16.870284 
-33.915117, 18.386147 
-34.828587, 20.011403 
-34.089115, 22.973161 
-34.210609, 24.837540 
-32.766773, 28.241982 

-29.266415, 16.870284 
-33.915117, 18.386147 

- 
-34.089115, 22.973161 
-34.210609, 24.837540 
-32.766773, 28.241982 

 
Table S3.2. Geographic along-shore distances (km) between sampling locations utilised  

in the RDA analysis. Source: SANBI (South African National Biodiversity Institute). 
 

C. punctatus JC SP CA KY CF HH 

JC   240.459 598.727 958.626 1165.07 1592.21 

SP 240.459   359.717 719.254 925.274 1352.44 

CA 598.727 359.717   359.896 565.915 992.744 

KY 958.626 719.254 359.896   202.982 633.238 

CF 1165.07 925.274 565.915 202.982   430.416 

HH 1592.21 1352.44 992.744 633.238 430.416   

S. granularis PN SP CA KY CF HH 

PN   753.391 1110.39 1470.78 1673.76 2102.6 

SP 753.391   359.717 719.254 925.274 1352.44 

CA 1110.39 359.717   359.896 565.915 992.744 

KY 1470.78 719.254 359.896   202.982 633.238 

CF 1673.76 925.274 565.915 202.982   430.416 

HH 2102.6 1352.44 992.744 633.238 430.416   

P. angulosus PN SP KY CF HH   

PN   753.391 1470.78 1673.76 2102.6   

SP 753.391   719.254 925.274 1352.44   

KY 1470.78 719.254   202.982 633.238   

CF 1673.76 925.274 202.982   430.416   

HH 2102.6 1352.44 633.238 430.416     
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Table S3.3. Environmental variables (SST and air temperature in °C, salinity in ppt) utilised  
in the RDA analysis and BayeScEnv. Source: World Ocean Atlas, 2013. 

 

C. punctatus         

sites y x SST salinity air 

JC -32.9779 17.88598 14.945 35.022 17.8 

SP -33.9151 18.38615 16.175 35.200 16.8 

CA -34.8286 20.0114 18.172 35.389 16.9 

KY -34.0891 22.97316 18.752 35.314 16.6 

CF -34.2106 24.83754 18.861 35.298 17.1 

HH -32.7668 28.24198 23.103 35.484 18.5 

S. granularis         

sites y x SST salinity air 

PN -29.2664 16.87028 13.807 34.879 14.7 

SP -33.9151 18.38615 16.175 35.200 16.8 

CA -34.8286 20.0114 18.172 35.389 16.9 

KY -34.0891 22.97316 18.752 35.314 16.6 

CF -34.2106 24.83754 18.861 35.298 17.1 

HH -32.7668 28.24198 23.103 35.484 18.5 

P. angulosus         

sites y x SST salinity air 

PN -29.2664 16.87028 13.807 34.879 - 

SP -33.9151 18.38615 16.175 35.200 - 

KY -34.0891 22.97316 18.752 35.314 - 

CF -34.2106 24.83754 18.861 35.298 - 

HH -32.7668 28.24198 23.103 35.484 - 
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3.5.2 Outlier SNPs (empirical FST, BayeScan, PoPoolation) 
 

The total number of estimated empirical FST outliers across species is shown in Table 3.1. 

Table S3.4 below shows how many unique potential outliers were detected in the pairwise 

comparison across locations and how many are shared by all. 

 

Table S3.4. Number of unique potential outliers detected with the empirical  
FST method pairwise population estimation. 

 

C. punctatus JC SP CA KY CF HH 

JC -           

SP 30 -         

CA 19 28 -       

KY 15 24 15 -     

CF 9 13 16 23 -   

HH 4 4 5 11 24 - 

Shared by all 73      

S. granularis PN SP CA KY CF HH 

PN -           

SP 18 -         

CA 1 - -       

KY 2 2 10 -     

CF 2 - 10 13 -   

HH - 2 4 6 10 - 

Shared by all 28      

P. angulosus PN SP KY CF HH   

PN -           

SP 6 -         

KY - 10 -       

CF 3 7 9 -     

HH 2 7 10 10 -   

Shared by all 22      
 

 
3.5.3 Comparison FST estimates 
 
The following table shows a comparison between estimates obtained from outlier loci 

alongside selectively neutral loci (previously discussed in Chapter II) (Table S3.5). 
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Table S3.5. FST estimated in PoPoolation2 (scenario 6) for selectively neutral loci (left) and outlier loci (right).  
Location abbreviations as listed in Figure 2.1. 

 

  Neutral Loci Outlier Loci 

C. punctatus (A) JC SP CA KY CF HH JC SP CA KY CF HH 

JC -           -           

SP 0.049 -         0.116* -         

CA 0.050 0.045 -       0.113* 0.108* -       

KY 0.050 0.044 0.044 -     0.135* 0.112* 0.110* -     

CF 0.052 0.049 0.043 0.046 -   0.153* 0.128* 0.119* 0.114* -   

HH 0.055 0.052 0.048 0.049 0.046 - 0.185* 0.160* 0.153* 0.128* 0.111* - 

S. granularis (B) PN SP CA KY CF HH PN SP CA KY CF HH 

PN -           -           

SP 0.051 -         0.131* -         

CA 0.061 0.055 -       0.242* 0.195* -       

KY 0.061 0.059 0.051 -     0.242* 0.190* 0.113* -     

CF 0.061 0.055 0.044 0.050 -   0.258* 0.195* 0.109* 0.111* -   

HH 0.066 0.063 0.053 0.053 0.051 - 0.289* 0.239* 0.138* 0.151* 0.133* - 

P. angulosus (C) PN SP KY CF HH   PN SP KY CF HH   
PN -           -           
SP 0.066 -         0.213* -         
KY 0.074 0.049 -       0.261* 0.125* -       
CF 0.089 0.061 0.053 -     0.310* 0.162* 0.121* -     
HH 0.082 0.055 0.039 0.059 -   0.286* 0.141* 0.109* 0.143* -   
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3.5.4 List of BlastX protein domains 
 

The full list of protein sequences with an E-value above >1.0E-5 per study species from the 

empirical outlier detection method (Table S3.5) and the BayeScan and BayeScEnv outlier 

identification method (Table S3.6). 

 

Table S3.6. Putatively identified and hypothetical or uncharacterised protein domains from empirical 
outliers listed per species with contig query length, query cover, respective E-value and the 

percentage of the contig identical with the suggested protein domain. 
 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 C. punctatus    

1266 HAZT_HAZT007701 (hypothetical protein) 17% 1E-23 93.06% 

1271 LOC107337606 (uncharacterized protein) 48% 5E-06 30.32% 

1184 hypothetical protein 28% 4E-62 89.19% 

1113 DSY42_03570 (hypothetical protein) 25% 6E-07 37.00% 

1306 

Retrovirus-related Pol polyprotein from type-1 
retrotransposable  
element R2 26% 5E-23 50.43% 

1328 DSY42_04590 (hypothetical protein) 75% 7E-113 50.89% 

1258 DSY42_03545 (hypothetical protein) 44% 3E-78 61.62% 

1192 T4E_7988, partial (hypothetical protein) 37% 6E-30 60.27% 

1291 ATP-binding cassette sub-family F member 2 38% 2E-30 66.67% 

1215 LOC114966011 (uncharacterized protein) 99% 6E-135 50.58% 

1130 ECANGB1_2401, partial (hypothetical protein) 15% 1E-17 77.19% 

1160 wsv191-like protein 34% 2E-28 47.41% 

1160 LOC105323971 (uncharacterized protein) 84% 3E-122 56.40% 

1009 ATP-binding cassette sub-family F member 2 49% 4E-64 66.47% 

1047 hypothetical protein 45% 2E-12 31.65% 

1093 LOC108672789 (uncharacterized protein) 66% 2E-26 27.87% 

1124 F54H12.2-like (uncharacterized protein) 43% 4E-10 28.40% 

1164 E1301_Tti011794 (hypothetical protein) 38% 1E-39 52.35% 

1032 hypothetical protein 27% 1E-33 64.89% 

1153 hypothetical protein 21% 3E-05 53.57% 

1131 C7M84_002030 (hypothetical protein) 61% 1E-52 48.97% 

1068 BRAFLDRAFT_97280 (hypothetical protein) 29% 3E-09 34.91% 

1077 wsv220-like protein 99% 9E-36 27.93% 

1072 E2C01_015619 (hypothetical protein) 95% 1E-107 50.15% 

1167 LOC108182213, partial (uncharacterized protein) 58% 4E-26 31.15% 
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1067 E2C01_088635 (hypothetical protein) 82% 2E-104 58.98% 

1181 hypothetical protein 20% 4E-17 54.43% 

1140 RTBS 23% 1E-16 61.90% 

1069 Craniofacial development protein 2-like 31% 2E-28 46.96% 

1138 Putative nuclease HARBI1 69% 3E-97 57.09% 

1121 hypothetical protein 16% 5E-10 51.61% 

1289 PiggyBac transposable element-derived protein 4-like 21% 2E-11 43.96% 

1099 E2C01_024578 (hypothetical protein) 10% 6E-12 92.31% 

4107 hypothetical protein 72% 7E-175 34.99% 

1148 Transposon Ty3-G Gag-Pol polyprotein 99% 2E-127 47.52% 

1105 LIM domain kinase 1-like isoform X2 27% 1E-17 74.58% 

1129 C7M84_011008 (hypothetical protein) 13% 5E-20 96.00% 

1049 AVEN_124460_1 (hypothetical protein) 20% 5E-18 53.42% 

1186 E2C01_079680 (hypothetical protein) 51% 2E-39 51.90% 

1130 CAPTEDRAFT_211086 (hypothetical protein) 70% 2E-62 42.11% 

1117 hypothetical protein 52% 3E-43 54.00% 

1077 K02A2.6-like (uncharacterized protein) 99% 7E-51 33.79% 

1317 CAPTEDRAFT_215442 (hypothetical protein) 12% 1E-14 59.65% 

1055 KP79_PYT00846 (hypothetical protein) 29% 6E-09 35.92% 

1104 LOC111106872 (uncharacterized protein) 59% 1E-42 42.04% 

1048 Tectonin beta-propeller repeat-containing protein 12% 4E-09 69.05% 

1206 ECANGB1_2036 (hypothetical protein) 34% 4E-44 62.86% 

1076 hypothetical protein 12% 7E-09 73.33% 

1201 ECANGB1_2401, partial (hypothetical protein) 41% 4E-18 41.07% 

1203 AC249_AIPGENE14849, partial (hypothetical protein) 62% 3E-42 41.54% 

1742 E3 ubiquitin-protein ligase MYCBP2-like 25% 9E-17 63.24% 

2636 E2C01_093774 (hypothetical protein) 5% 1E-08 61.22% 

1226 Prefoldin subunit 3 9% 3E-12 97.30% 

1309 Proline/betaine transporter 14% 5E-06 45.45% 

2898 LOC107341966 (uncharacterized protein) 45% 4E-121 46.52% 

1265 Myc box-dependent-interacting protein 1-like 35% 2E-20 34.53% 

1302 RNA-directed DNA polymerase 39% 2E-34 50.49% 

1147 Protein flightless-1 17% 3E-34 96.92% 

1086 E2C01_023748 (hypothetical protein) 26% 4E-21 72.60% 

1465 Methyltransferase-like protein 7A 21% 2E-18 67.24% 

1652 hypothetical protein 16% 2E-06 35.56% 

1414 dtw domain-containing protein 2 36% 7E-16 32.60% 
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1331 ECANGB1_2401, partial (hypothetical protein) 66% 6E-32 46.86% 

1500 LOC113393431 (uncharacterized protein) 10% 1E-06 51.28% 

1270 Glutenin, high molecular weight subunit DY10-like 94% 2E-22 29.21% 

1189 Nck-associated protein 5 99% 4E-164 75.89% 

1266 C7M84_008981 (hypothetical protein) 51% 5E-98 67.89% 

1303 Growth hormone secretagogue receptor type 1 18% 1E-25 68.35% 

1323 Reticulophagy regulator 3-like 12% 3E-06 53.03% 

1382 
52 kDa repressor of the inhibitor of the protein kinase-
like 38% 3E-15 38.98% 

1435 THAP domain-containing protein 6-like 12% 3E-12 56.67% 

1253 N-acetylglucosamine-6-phosphate deacetylase 11% 1E-17 95.74% 

1210 hypothetical protein 90% 4E-82 44.29% 

1159 RNA-directed DNA polymerase 36% 8E-15 50.98% 

1133 XENTR_v90017050mg (hypothetical protein) 18% 8E-08 36.62% 

1094 Dynein intermediate chain 1, axonemal-like 12% 3E-08 62.22% 

1104 RTXE 75% 6E-30 37.50% 

1159 hypothetical protein 14% 3E-19 73.68% 

1084 
Putative protein in type-1 retrotransposable element 
R1DM 67% 1E-111 70.49% 

1075 Putative disco-interacting protein 2 isoform X2 20% 6E-27 100.00% 

1689 hypothetical protein, partial 65% 1E-82 37.97% 

1012 hypothetical protein 66% 3E-23 30.90% 

1034 hypothetical protein 76% 3E-79 64.68% 

1005 
RNA-directed DNA polymerase from mobile element 
jockey-like 97% 2E-60 38.21% 

1015 LOC109468467 (uncharacterized protein) 39% 5E-60 75.56% 

932 
RNA-directed DNA polymerase from mobile element 
jockey-like 96% 4E-68 41.59% 

866 Adaptin ear-binding coat-associated protein 1 83% 1E-31 36.56% 

1195 D6690_01995 (hypothetical protein) 99% 2E-51 35.73% 

925 LOC101239284, partial (uncharacterized protein) 71% 6E-51 42.27% 

1112 Formyl-CoA transferase 57% 7E-118 86.38% 

917 unnamed protein product 42% 2E-48 55.81% 

1061 BSL78_07387 (hypothetical protein) 93% 2E-108 50.00% 

1039 C7M84_018246, partial (hypothetical protein) 23% 5E-28 66.27% 

1010 Evm_004501 (hypothetical protein) 67% 3E-17 30.67% 

985 ECANGB1_2309, partial (hypothetical protein) 15% 4E-15 81.13% 

949 LOC114544175, partial (uncharacterized protein) 21% 7E-06 47.14% 

933 NADH dehydrogenase subunit 6 46% 6E-30 50.34% 
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859 Putative sidestep protein, partial 17% 5E-06 53.06% 

826 KRAB-A domain-containing protein 2, partial 70% 3E-59 68.87% 

754 LOC113814571 isoform X1 (uncharacterized protein) 21% 8E-06 72.00% 

727 hypothetical protein 80% 4E-51 65.96% 

358 Protein SpAN-like 56% 8E-24 65.67% 

345 ECANGB1_2036 (hypothetical protein) 89% 7E-26 73.33% 

449 NADH dehydrogenase subunit 4 99% 7E-51 83.89% 

433 DSY59_01135, partial (hypothetical protein) 81% 6E-40 58.47% 

411 ECANGB1_252 (hypothetical protein) 100% 5E-74 75.91% 

406 B7P43_G02324, partial (hypothetical protein) 98% 9E-29 46.38% 

360 AVEN_15752_1 (hypothetical protein) 95% 3E-20 40.87% 

215 
Putative RNA-directed DNA polymerase from 
transposon BS 99% 1E-29 73.24% 

181 Ribosome-binding protein 1-like 100% 8E-06 52.73% 

153 predicted protein, partial 100% 4E-12 62.75% 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 S. granularis    

9127 Cytochrome b 11% 2E-158 76.76% 

1198 CRN43_01760 (hypothetical protein) 70% 6E-61 38.24% 

1134 KP79_PYT00092 (hypothetical protein) 67% 1E-24 32.03% 

1146 LOTGIDRAFT_161039 (hypothetical protein) 65% 5E-50 40.32% 

1208 LOTGIDRAFT_155952 (hypothetical protein) 92% 4E-83 40.48% 

1263 Putative nuclease HARBI1 30% 6E-32 49.61% 

1241 

Dolichyl-diphosphooligosaccharide-protein 
glycosyltransferase  
48 kDa subunit 22% 1E-10 70.45% 

1159 EGW08_018866, partial (hypothetical protein) 22% 2E-07 57.14% 

1198 LOC111344944 (hypothetical protein) 99% 3E-111 46.15% 

998 LOTGIDRAFT_234217 (hypothetical protein) 12% 3E-10 78.05% 

1027 LOC114525576 (uncharacterized protein) 75% 6E-68 45.08% 

843 Beta-1,4-N-acetylgalactosaminyltransferase bre-4-like 24% 3E-30 81.16% 

946 LOTGIDRAFT_237366 (hypothetical protein) 19% 3E-19 72.58% 

1076 LOTGIDRAFT_160045 (hypothetical protein) 64% 9E-97 64.53% 

808 LOTGIDRAFT_176514, partial (hypothetical protein) 45% 8E-13 29.92% 

676 Sodium-independent anion transporter 99% 5E-70 48.89% 

833 Phospholipase A2 AP-PLA2-I 17% 7E-07 79.59% 

642 hypothetical protein, partial 98% 5E-77 58.96% 

650 LOTGIDRAFT_228644 (hypothetical protein) 33% 1E-26 68.06% 
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572 Cytochrome c oxidase subunit I 99% 4E-94 82.63% 

727 C0Q70_17168 (hypothetical protein) 21% 5E-24 90.20% 

709 CRYPA_1252 (hypothetical protein) 52% 6E-18 37.80% 

669 LOTGIDRAFT_168316 (hypothetical protein) 72% 2E-56 57.14% 

587 
Putative RNA-directed DNA polymerase from 
transposon BS 97% 7E-61 48.19% 

559 AC249_AIPGENE8055 (hypothetical protein) 75% 1E-60 70.21% 

554 LOC114974970 (uncharacterized protein) 86% 7E-62 61.01% 

341 CRYPA_469 (hypothetical protein) 99% 4E-51 73.45% 

279 LOC111948367 (uncharacterized protein) 97% 1E-30 65.93% 

277 LOC115316855, partial (uncharacterized protein) 88% 7E-23 56.10% 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 P. angulosus    

1052 
Bromodomain adjacent to zinc finger domain protein  
2B isoform X7 25% 3E-19 87.93% 

1283 Myophilin-like 12% 1E-23 89.09% 

1410 Protein LCHN 14% 4E-14 71.01% 

1372 LOC589927 (uncharacterized protein) 21% 6E-25 81.69% 

1451 LOC576652 (uncharacterized protein) 19% 4E-15 85.11% 

1283 Gastrula zinc finger protein XlCGF8.2DB-like 53% 8E-60 47.52% 

1401 Roundabout homolog 1 isoform X2 47% 5E-57 86.10% 

1255 Band 4.1-like protein 4A isoform X2 7% 4E-05 90.00% 

1340 GPI ethanolamine phosphate transferase 2 36% 1E-31 72.63% 

1464 "deleted in malignant brain tumors 1 protein, partial" 16% 2E-16 67.14% 

1443 LOC105440060 (uncharacterized protein) 11% 4E-06 52.73% 

1488 Putative growth factor receptor-bound protein 14 21% 4E-20 62.50% 

1167 
Putative DDB_G0271606 isoform X1 (uncharacterized 
protein) 23% 2E-16 69.31% 

1312 Nuclear pore complex protein Nup214 19% 2E-40 87.21% 

1476 LOC579728 (uncharacterized protein) 15% 8E-25 68.83% 

1501 Vesicle-associated membrane protein 7 23% 3E-31 86.96% 

1406 Fibrillin-1 14% 6E-09 78.57% 

1442 Serine/arginine repetitive matrix protein 2 isoform X4 13% 1E-21 85.94% 

1229 BSL78_26173 (hypothetical protein) 32% 4E-18 48.11% 

1183 Protein disulfide-isomerase TMX3 11% 2E-18 91.30% 

1286 LOC100893564 (uncharacterized protein) 39% 2E-12 51.92% 

1183 Beta-galactosidase-1-like protein 2 7% 6E-09 93.55% 

1275 Toll-like receptor 3 84% 4E-70 41.16% 
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1124 Hydroxylysine kinase isoform X2 18% 1E-21 72.86% 

1292 Tubulin polyglutamylase TTLL5 14% 1E-07 100.00% 

1077 Serine/threonine-protein kinase H1 28% 2E-31 94.23% 

1013 Echinoderm microtubule-associated protein (77 kDa) 15% 3E-24 96.23% 

1125 Krev interaction trapped protein 1 isoform X2 13% 7E-05 92.31% 

912 LOC594540 (uncharacterized protein) 24% 4E-12 88.64% 

1096 "deleted in malignant brain tumors 1 protein" 34% 2E-57 81.15% 

1149 LOC105438137 (uncharacterized protein) 20% 8E-22 66.23% 

663 LOC100893246 (uncharacterized protein) 23% 2E-11 64.71% 

617 Endonuclease-reverse transcriptase 98% 2E-98 69.31% 

426 ABC transporter ATP-binding protein 94% 9E-42 54.48% 

323 BSL78_04809, partial (hypothetical protein) 83% 1E-47 80.00% 
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Table S3.7. Putatively identified and hypothetical or uncharacterised protein domains from BayeScan 
and BayeScEnv outliers listed with contig query length, query cover, respective E-value and the 

percentage of the contig identical with the suggested protein domain. Protein domains suggested 
across BayeScan and BayeScEnv or between multiple environmental parameters appear grey. 

 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 C. punctatus    

 (BayeScan)    

1113 Lysosomal-trafficking regulator 13% 7E-22 92.16% 

1077 XENTR_v90000373mg, partial (hypothetical protein) 32% 2E-12 33.00% 

895 D6690_01995 (hypothetical protein) 95% 3E-38 40.00% 

1021 
putative RNA-directed DNA polymerase from transposon 
X-element 99% 4E-127 56.93% 

 (BayeScEnv, sea surface temperature (SST))    

980 C7M84_008981 (hypothetical protein) 54% 2E-66 58.99% 

966 LOC113808154 (uncharacterized protein) 65% 4E-23 33.33% 

1046 hypothetical protein 34% 3E-15 46.25% 

975 

R2DM Retrovirus-related Pol polyprotein from type II 
retrotransposable  
element 76% 6E-37 34.13% 

984 predicted protein 27% 9E-21 60.67% 

977 E3 ubiquitin-protein ligase SHPRH 27% 5E-40 82.95% 

1035 
putative RNA-directed DNA polymerase from transposon 
BS 56% 2E-83 65.13% 

1091 Guanine nucleotide-releasing factor 2-like isoform X6 32% 1E-09 44.53% 

1109 RTXE 43% 3E-19 40.91% 

1041 hypothetical protein 21% 3E-05 54.10% 

964 Kinesin-like protein KIF20B isoform X1 35% 7E-25 86.57% 

1010 hypothetical protein 23% 3E-06 45.00% 

895 D6690_01995 (hypothetical protein) 95% 3E-38 40.00% 

795 ECANGB1_2036 (hypothetical protein) 19% 2E-18 75.00% 

512 Solute carrier family 22 member 3 28% 3E-18 77.55% 

 (BayeScEnv, salinity)    

1089 DSY42_09150 (hypothetical protein) 35% 1E-59 80.00% 

1031 DEA37_0001408, partial (uncharacterized protein) 91% 8E-58 39.34% 

1046 hypothetical protein 34% 3E-15 46.25% 

1011 C7M84_008216 (hypothetical protein) 56% 6E-33 45.27% 

1019 hypothetical protein 50% 8E-62 59.41% 

1035 

R2DM Retrovirus-related Pol polyprotein from type II 
retrotransposable  
element 71% 1E-36 34.13% 
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1201 RTJK, partial 74% 9E-57 54.63% 

1096 
RNA-directed DNA polymerase from mobile element 
jockey-like 56% 3E-21 31.78% 

1086 hypothetical protein 23% 6E-21 53.49% 

1105 WD repeat-containing protein 35 11% 2E-05 81.40% 

1104 
MAM and LDL-receptor class A domain-containing protein 
1-like, partial 15% 4E-05 42.11% 

1152 
rna-directed dna polymerase from mobile element jockey-
like 79% 5E-63 39.34% 

1068 ECANGB1_2401, partial (hypothetical protein) 26% 4E-32 80.85% 

1119 protein pangolin, isoforms A/H/I/S-like 13% 2E-18 98.04% 

1043 Craniofacial development protein 2-like 59% 2E-67 57.89% 

1042 LOC108673117 isoform X2 (uncharacterized protein) 22% 5E-05 45.10% 

935 hypothetical protein 26% 1E-09 50.91% 

1050 ECANGB1_208 (hypothetical protein) 65% 6E-71 53.22% 

1070 hypothetical protein 21% 3E-06 45.00% 

895 D6690_01995 (hypothetical protein) 95% 3E-38 40.00% 

834 ATP synthase F0 subunit 6 80% 3E-106 87.05% 

716 hypothetical protein 64% 2E-72 72.73% 

 (BayeScEnv, air temperature)    

1040 C7M84_008981 (hypothetical protein) 57% 1E-77 60.10% 

975 

R2DM Retrovirus-related Pol polyprotein from type II 
retrotransposable  
element 76% 6E-37 34.13% 

1020 hypothetical protein 50% 2E-57 57.89% 

1075 Retrovirus-related Pol polyprotein from transposon 17.6 23% 2E-14 48.98% 

966 hypothetical protein 14% 3E-07 56.52% 

998 Zinc finger protein 2 19% 9E-08 54.55% 

1095 
putative RNA-directed DNA polymerase from transposon 
BS 53% 6E-83 65.13% 

923 LOC113825078 isoform X2 (uncharacterized protein) 20% 1E-27 95.24% 

904 Kinesin-like protein KIF20B isoform X1 35% 5E-21 86.67% 

950 hypothetical protein 24% 2E-06 45.00% 

835 D6690_01995 (hypothetical protein) 95% 3E-38 40.96% 

878 TPA: endonuclease-reverse transcriptase 82% 7E-51 43.33% 

795 ECANGB1_2036 (hypothetical protein) 19% 2E-18 75.00% 

820 putative uncharacterized protein K02A2.6-like 99% 9E-95 57.72% 

246 unnamed protein product, partial 95% 2E-06 39.74% 

272 Solute carrier family 22 member 3 60% 2E-19 66.13% 

417 SDR family oxidoreductase 99% 1E-92 96.38% 
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241 hypothetical protein 99% 1E-21 76.62% 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 S. granularis    

 (BayeScan)    

1045 AC249_AIPGENE27713 (hypothetical protein) 99% 1E-152 60.63% 

903 Beta-1,4-N-acetylgalactosaminyltransferase bre-4-like 22% 4E-30 81.16% 

464 EAZ74_07105 (hypothetical protein) 56% 5E-36 69.32% 

454 UDP-N-acetylmuramate dehydrogenase 97% 2E-47 55.26% 

426 PPERSA_06560 (hypothetical protein) 93% 3E-30 61.04% 

 (BayeScEnv, sea surface temperature (SST))    

997 LOTGIDRAFT_174945 (hypothetical protein) 25% 4E-13 86.05% 

1204 LOTGIDRAFT_157217 (hypothetical protein) 61% 1E-35 35.48% 

727 C0Q70_17168 (hypothetical protein) 21% 5E-24 90.20% 

 (BayeScEnv, salinity)    

1129 LOC105347521 isoform X3 (uncharacterized protein) 15% 5E-05 55.56% 

1105 AC249_AIPGENE27713 (hypothetical protein) 99% 6E-166 61.68% 

727 C0Q70_17168 (hypothetical protein) 21% 5E-24 90.20% 

471 protein ZBED8-like 99% 2E-79 86.57% 

 (BayeScEnv, air temperature)    

1117 LOTGIDRAFT_174945 (hypothetical protein) 23% 7E-13 86.05% 

1204 LOTGIDRAFT_157217 (hypothetical protein) 61% 1E-35 35.48% 

727 C0Q70_17168 (hypothetical protein) 21% 5E-24 90.20% 

Query 
length Protein domain name 

Query 
cover 

E-
values %identical 

 P. angulosus    

 (BayeScan)    

5400 Baculoviral IAP repeat-containing protein 6 isoform X6 13% 5E-18 92.50% 

1152 LOC100889761 (uncharacterized protein) 9% 6E-12 92.11% 

1105 Monocarboxylate transporter 9 21% 1E-07 56.96% 

1328 Iron-sulfur protein NUBPL isoform X2 10% 6E-15 91.11% 

1252 Inositol 1,4,5-trisphosphate receptor isoform X8 27% 7E-26 98.72% 

 (BayScEnv, salinity)    

10126 Baculoviral IAP repeat-containing protein 6 isoform X6 10% 1E-42 96.59% 
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Chapter IV: Assessing the thermal tolerance in three intertidal marine 

invertebrates 

 

4.1 Introduction and background 

4.1.1 Temperature and species distribution 

 

Temperature impacts the physiology, ecology and evolution of species (Angilletta, 2009). 

Hence, globally changing climatic conditions are likely to significantly influence species 

fitness and interactions and thus ecosystem functioning (Castañeda, Lardies and Bozinovic, 

2004; Mora and Maya, 2006; Nguyen et al. 2011; Stillman, 2019). Further, temperature is a 

main factor in determining species abundance and distributions (Helmuth, 2002; Parmesan 

and Yohe, 2003; Loarie et al. 2009; Thomas, 2010; Chen et al. 2011). With the onset of 

climate change, a wide range of taxonomic groups have shifted their range poleward to 

evade rising temperature (Parmesan and Yohe, 2003; Hickling et al. 2006; Parmesan, 2006; 

Smith, Dowling and Brown, 2019). Range-shifts attributed to temperature changes could 

also be observed in multiple marine species (Perry et al. 2005; Loarie et al. 2009; Ling et al. 

2009; Hawkins et al. 2009; Chen et al. 2011; Flagor and Bourdeau, 2018). Sea surface 

temperature (SST) appears as a stronger determinant for the distribution of coastal shallow 

water species compared to pelagic organisms (Belanger et al. 2012), which might also face 

additional constraints by lack of available habitat to shift into (Fenberg, Posbic and Hellberg, 

2014). There are also physiological differences between species inhabiting temperate and 

tropical regions (Stillman, 2002; Bonebrake and Deutsch, 2012). Thermal conditions in the 

tropics are generally more stable relative to the seasonal variability in temperate areas 

(Richard et al. 2012). Tropical ectotherms are thought to already exist closer to their upper 

thermal limits (Deutsch et al. 2008; Huey et al. 2009; Duarte et al. 2012; Sunday, Bates and 

Dulvy, 2012), which might make them more vulnerable to warming conditions (Sinervo et al. 

2010; Bonebrake and Deutsch, 2012; Pinsky et al. 2019). To predict effects of changing 

temperatures on ecosystems, it is essential to assess species� capacity to cope with these 

changes through plastic and/or evolutionary responses or by shifting their distribution 

(Stillman, 2003; Deutsch et al. 2008; Hughes et al. 2018). Knowledge about temperature 

responses and adaptations is therefore of key importance for managing biodiversity or 

conservation planning and to explore the possible regional impact of climate change across 

populations. 
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4.1.2 The South African ocean temperature gradient 

 

Ocean current regimes can create natural gradients of thermal conditions across coastlines 

and are able to affect the distribution of intertidal organisms and the evolution of 

temperature-associated traits (Stillman, 2002; Somero, 2005; Pulgar, Bozinovic and Ojeda, 

2005). The South African coastline has one of the most defined marine thermal gradients 

(Bustamante et al. 1995; Teske et al. 2019; see section 1.5.2; Figure 1.2), where mean 

temperatures on the west coast can seasonally range from 11-15°C with short-term 

fluctuations and temperatures on the east coast range from 18-27°C (Smit et al. 2013). 

Climate change predictions for South Africa differ depending on the coastal region (see 

section 1.6.2), with increasing temperatures on the east coast (Rouault, Penven and Pohl, 

2009) and likely decreasing temperatures on the west coast (Rouault, Pohl and Penven, 

2010; Dufois and Rouault, 2012). At the south coast, some areas might experience warming 

and others cooling temperature conditions (Rouault, 2011). Several endemic rocky shore 

species are distributed across the cold-temperate western, warm-temperate southern and 

subtropical eastern coastal regions of South Africa (Branch, 2017). Populations of the same 

species inhabiting these different temperature-defined bioregions might possess 

physiological adaptations to local temperature conditions (Somero, 2005; Gaitán-Espitia et 

al. 2014). For instance, larvae of the subtropical lineage of South African mud prawn 

Upogebia africana apparently fail to successfully settle in populations of the warm-temperate 

mud prawn lineage, suggesting that population-specific temperature adaptations limit 

dispersal and exchange between habitats (Teske et al. 2008). Further, a study on the sand 

goby Psammogobius knysnaensis uncovered evidence for geographically-distinct 

differences in temperature-associated gene regions across populations (Teske et al. 2019). 

Selection pressure from regional temperature differences might possibly drive ecological 

speciation in P. knysnaensis (Teske et al. 2019). 

 
In species populations spanning multiple coastal regions, the temperature differences could 

be associated with geographic variation in critical thermal limits. Thermal limits of coastal 

species should hypothetically be highest on the subtropical east coast and lowest on the 

cold-temperate west coast, with the warm-temperate south coast forming an intermediate 

region. 

 

4.1.3 Intertidal zonation of the rocky shore 

 

The rocky shore is a highly dynamic environment under constant influence of tides and wave 

action and with drastic fluctuations of abiotic conditions such as water temperature, air 
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temperature, salinity, dissolved oxygen and pH (Stillman, 2002; Gaines and Denny, 2007). 

Further, environmental conditions for intertidal species have diel, tidal, lunar and seasonal 

variations in the additional context of latitudinal clines, vertical zonation and microhabitats 

(Harley and Helmuth, 2003; Helmuth et al. 2006; Sinclair, Thompson and Seebacher, 2006). 

Rocky shore species require physiological, morphological and behavioural adaptations to 

withstand the stress imposed by their dynamic environment (Somero, 2002; Muñoz et al. 

2005; Williams et al. 2005; Harley et al. 2009). Although there can be exceptions, most 

intertidal organisms are distributed in horizontal bands across a vertical zonation of upper, 

middle and low shore, which creates a high variety of microhabitats (Gaines and Denny, 

2007). The upper limits of intertidal species distribution on the high shore are set by thermal 

stress from extended exposure to high or low air temperature and increased desiccation risk 

(Helmuth and Hofmann, 2001). Further, lower limits of rocky shore species distribution are 

structured by competition and predation (Harley, 2011; Sorte et al. 2019). The body 

temperature of intertidal species is determined by seawater temperature during high tide, but 

can sharply increase or decrease during low tide due to air temperature, solar radiation, wind 

speed, cloud cover, wave height, relative humidity levels and the timing of low tide (Helmuth 

and Hofmann, 2001; Helmuth et al. 2011). For instance, biomimetic loggers placed inside 

mussel shells demonstrated that water temperature can range from 10°C to more than 40°C 

over the course of a single low tide period in temperate coastal regions (Harley and Helmuth, 

2003). In tropical coastal regions, temperature might even surpass 50°C (Williams and 

Morritt, 1995). Overall, intertidal invertebrates are thought to already exist at or near their 

upper thermal tolerance limit (Somero, 2002) and possess limited capacity for acclimation 

(Hopkin et al. 2006; Tomanek, 2010; Somero, 2010). Changing climatic conditions may put 

these species further at risk, because the highly dynamic fluctuations in factors such as 

maximum or minimum habitat temperature in the intertidal might respectively exceed their 

upper or lower thermal limits (Somero, 2010). Species occupying the high shore are usually 

most impacted by extreme temperature events during emersion, which can result in �high 

shore kills� during summer heat waves (Williams et al. 2005; p. 213; Williams, Chan and 

Dong, 2019; p. 384) and substantial population decline during winter cold waves (Crisp, 

1964; Firth, Knights and Bell, 2011; Firth et al. 2015). Further, preferred shore height in 

species is associated with physiological differences, where high shore species likely have a 

higher thermal tolerance compared to low shore or shallow subtidal species (Stillman and 

Somero, 2000; Nguyen et al. 2011; Sorte et al. 2019). Distinct differences between high-

shore and low shore thermal limits could for instance be shown in Petrolisthes crabs 

(Stillman, 2002). For this study, the high-shore species (S. granularis, C. punctatus) are 

expected to show higher thermal tolerance than the low shore species (P. angulosus). 

Across the three species, the granular limpet S. granularis might possibly have the highest 
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tolerance to high temperatures due to its extended direct sun exposure compared to the 

shore crab C. punctatus. 

 

4.1.4 Impacts of climate change on intertidal communities 

 

Environmental and body temperatures are closely associated in ectotherms, thus changing 

climatic conditions will impact their distribution, abundance and survival (van Heerwaarden, 

Malmberg and Sgrò, 2016). Impacts of climate change might occur more rapidly in shallow 

coastal waters (Helmuth et al. 2006; Menge, Chan and Lubchenco, 2008; Hawkins et al. 

2009; Rastrick et al. 2014; Peck et al. 2014; Vinagre et al. 2016), which thus have been 

suggested to serve to some extent as early warning systems for climate change effects 

(Helmuth et al. 2006; Eslami-Andergoli et al. 2015; Chemello, Vizzini and Mazzola, 2018). 

Shallow coastal ecosystems such as rocky shores possess lower thermal inertia in 

comparison with open ocean areas and thermal impacts are more directly influenced by 

oceanographic and atmospheric conditions (Vinagre et al. 2018). Populations in temperate 

climate regions experience a wider temperature range with pronounced seasonal variation 

compared to populations with more stable temperatures in the tropics (Richard et al. 2012). 

Thus, populations in temperate regions might be more tolerant to larger shifts in temperature 

conditions than tropical populations (Tewksbury, Huey and Deutsch, 2008; Hofmann and 

Todgham, 2010; Nguyen et al. 2011; Vinagre et al. 2019). Further, tropical and polar marine 

ectotherm species are likely to have decreased physiological capacity for acclimation 

compared to similar species living in temperate regions due to the more pronounced 

seasonal temperature variability in the latter (Peck et al. 2014; but see Brahim, Mustapha 

and Marshall, 2019). Due to global warming, the frequency, duration and severity of extreme 

heat waves is predicted to increase and future heat waves are expected to take place in a 

wider time frame from late spring to early fall (IPCC, 2014; Angélil et al. 2017; Frölicher, 

Fischer and Gruber, 2018). Summer heat wave mortality has increasingly occurred during 

the last decade (Buckley and Huey, 2016; Stillman, 2019) and annual marine heat wave 

days rose by 54% from 1925 to 2016 globally (Oliver et al. 2018). For intertidal species, 

summertime temperature extremes can have severe impacts (Garrabou et al. 2009; Leung, 

Connell and Russell, 2017), because they face strong temperature fluctuations with often 

pronounced peaks during low tide. Further, rocky shore organisms may suffer greater 

mortality from future heat waves due to the adverse effects of accumulated heat exposure 

(Vinagre et al. 2018; Siegle, Taylor and O�Connor, 2018). Apart from heat waves, cold 

waves are predicted to decrease in many parts of the world due to global warming (Chust et 

al. 2011; IPCC, 2013; van Oldenborgh et al. 2019), but certain regions such as the South 
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African west coast, are forecasted to undergo further cooling temperatures, while warming is 

expected in other regions (Rouault, Pohl and Penven, 2010; Dufois and Rouault, 2012).  

 

Populations inhabiting the edge of the species range commonly face the extreme ends of 

environmental stress gradients, which the species is able to tolerate (Gaston, 2009; Sexton 

et al. 2009; Sorte et al. 2019). Range edge populations might therefore already experience 

strain by the contemporary environmental conditions and hence may be more vulnerable to 

further changes in climatic conditions (Sorte and Hofmann, 2004; Sagarin and Somero, 

2006; Lima et al. 2016; Han et al. 2019). Assessing responses to thermal stress across 

populations spanning a gradient of different conditions of the species distribution is essential 

to explore the species phenotypic and genotypic variability and its potential resilience to 

climate change. In this study, the populations located on the southern east coast represent 

the sampled range edge most exposed to high temperatures in all three species (Figure 2.1) 

and might thus exist under most current and potentially future temperature stress. The range 

of the Cape urchin P. angulosus and the granular limpet S. granularis extends to the 

southern Namibian coast (Branch, 2017; see section 1.7), therefore their most western 

South African populations in this study are by definition not range edge populations. 

However, the crab C. punctatus has not been found further North of Jacob�s Bay (Figure 

2.1), which might constitute its most western range edge population. Generally, changes in 

temperature conditions have led to poleward shifts in multiple species in order to track their 

accustomed habitat and preferred thermal range (Bellard et al. 2012; Ralston et al. 2017; 

see section 4.1.1). Importantly, poleward shifts are geographically limited in South Africa due 

to the West-East orientation of the coastline (Figure 2.1). For instance, while the predicted 

temperature changes on the south coast are complex, an attempted poleward shift for west 

coast populations could be associated with an increase in water temperature. In the absence 

of adequate habitat to shift into, climate change might cause a range compression for local 

species. Lastly, interspecific physiological differences in intertidal species can occur due to 

vertical zonation patterns, where high-shore species typically have higher thermal tolerance 

limits compared to low shore species (Stillman and Somero, 2000; Sorte et al. 2019; see 

section 4.1.3). However, the higher thermal upper limits of high-shore species place them 

more at risk from climate change impacts compared to species lower on the shore (Somero, 

2010; see section 4.1.6). Assessing thermal tolerance limits is an important step towards 

predicting species fitness, abundance and ecosystem composition in the future. 
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4.1.5 Thermal tolerance limits 

 

Physiological tolerance limits demonstrate high intra- and interspecific variability and can 

differ according to the developmental stage (Stillman and Somero, 2000; Stillman, 2003; 

Folguera et al. 2010; Sorte, Jones and Miller, 2011). In some aquatic invertebrates, thermal 

stress response may vary with sex (Sornom et al. 2010; Madeira et al. 2012b; Vaughn, 

Turnross and Carrington, 2014; Bedulina et al. 2017; Grilo et al. 2018). For example, female 

Pachygrapsus marmoratus crabs were shown to have higher critical upper limits than their 

male counterparts (Madeira et al. 2012b). Sex-dependent differences in thermal traits have 

been associated with physiological differences and varying energy allocation between males 

and females (Grilo et al. 2018). The body size of animals can also influence thermal 

tolerance (Peck et al. 2007; Peck et al. 2009; Madeira et al. 2012b; Muñoz, Kelley and De 

Rivera, 2017; Gunderson et al. 2019). For instance, smaller crabs can prove more heat 

tolerant than larger crabs (Jensen and Armstrong, 1991; Madeira et al. 2012b; Gunderson et 

al. 2019). In this context, body mass is often used as proxy for body size. Importantly, there 

is also the possibility that size confounds the measurement of physiological parameters (see 

for example Woiwode and Adelman, 1992). 

 

Small-scale spatial and temporal variation of thermal conditions (thermal mosaic) commonly 

found for example in rocky shores can give rise to varying thermal performance (Helmuth et 

al. 2011; Richter-Boix et al. 2015). This constrains the deduction of community-level 

responses to thermal changes (Clark et al. 2017). Most organisms have an optimal thermal 

range for their physiological performance, which is broadly congruent with the range of 

thermal conditions experienced in their habitat (Pörtner et al. 2000; Pörtner, 2010; Somero, 

2010).This means that within this optimal range, species can show the highest activity level, 

the fastest growth and produce the most offspring. Thermal performance is usually 

characterised by a bell-shaped curve (Figure 4.1), where the optimum temperature (TOPT) 

describes the temperature at optimal performance for the respective organism, whereas the 

critical upper (CTmax) and lower thermal tolerance limit (CTmin) set the upper and lower 

boundary of thermal tolerance beyond which long term survival is not ensured. A critical limit 

is reached when the organism is able to recover after displaying physiological failure such as 

loss of righting capacity (ability to invert when placed on dorsal surface), knockdown or lack 

of response to a stimulus (Schmidt-Nielsen, 1997; Lutterschmidt and Hutchison, 1997a; 

Blackburn et al. 2014). Returning to the performance curve, the breadth characterises the 

thermal breadth (Tbr), which is regarded as the range of body temperatures for species to 

perform well (Angilletta, 2006; Rohr et al. 2018). If the ambient temperature is below a 

species� optimum, climate change conditions can increase body temperature in ectotherms 

Stellenbosch University https://scholar.sun.ac.za



248 

 

towards their optimal temperature, which would have a positive effect on their fitness (Figure 

4.2; Huey et al. 2012). However, if body temperature rises beyond optimum temperature, 

fitness and associated thermal performance will decrease (Figure 4.2; Huey et al. 2012). 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 4.1. The thermal performance curve indicates the relationship between environmental 
temperature and the physiological rate of an ectotherm. The optimum temperature (TOPT) indicates the 
temperature at optimum performance. The thermal performance breadth is determined by the thermal 

minimum (CTmin) and maximum (CTmax) (Figure adapted from Tuff, Tuff and Davies, 2016). 
 

Warming and cooling tolerance 

 

Warming tolerance (WT) is considered as the gap between the upper critical thermal limit 

(CTmax) and the maximum habitat temperature (Tmax) and thus approximates the capacity to 

tolerate further warming of the habitat due to for instance climate change (Deutsch et al. 

2008). Theory suggests that the larger the warming tolerance is, the better species 

populations might be able to withstand rising temperatures (Deutsch et al. 2008). On the 

other end of the spectrum, the suggested cold equivalent is the difference between lower 

critical thermal limits (CTmin) and minimum habitat temperature (Tmin) as cooling tolerance 

(CT) (Gutiérrez-Pesquera et al. 2016). In general, cold tolerance in temperate rocky shore 

organisms has received comparatively less empirical investigation than heat tolerance (Qari 

and Aljarari, 2014; Chiba et al. 2016). In some parts of the world, marine ectotherms can 

experience temperatures below their freezing point in winter low tides, which requires 

tolerance to extracellular ice formation to persist (Ronges et al. 2012). Nevertheless, most 

marine intertidal ectotherms do not survive at low temperatures above their freezing point 

and the processes underpinning non-freezing cold injury are not well understood (Ronges et 

al. 2012). On the South African coast, extended periods of below-zero temperatures are 

uncommon, but species may still suffer from cold damage induced by marine cold-spells 

(Schlegel et al. 2017). Cooling tolerance has previously been studied in ectothermic 
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vertebrates (Oyamaguchi et al. 2018; Pintanel et al. 2019), but further investigations are 

needed to ascertain the predictive power of cooling tolerance for the complex circumstances 

of low temperature tolerance potential in rocky shore invertebrates. Moreover, there is 

evidence that lower critical thermal limits might exhibit substantial intra- and interspecific 

variation, while upper thermal limits are considered as more conserved across lineages 

(Araújo et al. 2013). This could be associated with different physiological mechanisms 

governing thermal limits when species face high and low temperatures (Araújo et al. 2013). 

Asymmetric variation in upper and lower thermal limits might make warming tolerance 

estimates overall firmer than cooling tolerance estimates. Additionally, the upper critical 

thermal limit (CTmax) appears to be highly repeatable (Morgan, Finnøen and Jutfelt, 2018) 

and might be directly compared across diverse taxonomic groups (Bates and Morley, 2020). 

Patterns of geographic variation of warming and cooling tolerance can serve as valuable tool 

to assess the impact of extreme temperatures on populations across species ranges (Sorte, 

Jones and Miller, 2011; Morley et al. 2016). In general, warming tolerance is expected to be 

lower in tropical species compared to species in higher latitudes (Comte and Olden, 2017). 

Furthermore, it is likely that cooling tolerance is higher in temperate regions relative to 

tropical regions, based on the greater seasonal temperature variability (Stuart-Smith, Edgar 

and Bates, 2017). 

 
Figure 4.2. Thermal performance curves under different warming scenarios. (a) Climate warming can 
shift the distributions of Tb (body temperature). If warming raises Tb closer to TOPT of a species (e.g. 
shift from A to B), warming can enhance fitness. If warming increases Tb higher than TOPT (e.g. shift 
from B to C), the fitness will decline. (b,c) Increases in Tb from warming can have much bigger effects 
on (b) thermal specialists than on (c) thermal generalists (Figures adapted from Huey et al. 2012). 
 

Influence of experimental parameters 

 

When thermal limits are assessed, the experimental design can influence the measured 

temperature tolerance for instance by the selected starting temperature and the rate of 

temperature increase (Terblanche et al. 2007; Faulkner et al. 2014; Morley et al. 2016; 

Kingsolver and Umbanhowar, 2018; Bates and Morley, 2020). The starting temperature is 

typically the same constant temperature at which animals are held prior to heating or cooling 
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(Terblanche et al. 2007). Ectotherms typically have higher thermal limits at faster rates of 

temperature change and lower limits at slower rates (Morley et al. 2016; Kingsolver and 

Umbanhowar, 2018; Bates and Morley, 2020). For instance, intertidal crustaceans from 

different geographic regions showed lower maximum thermal tolerance with lower rates of 

change, whereas fast rates of temperature change led to a higher measured maximum 

thermal tolerance (Faulkner et al. 2014; Noisette et al. 2014; Gunderson and Stillman, 2015). 

Finally, acclimatisation might lead to different thermal tolerance limits during winter than 

during summer due to changes in animal physiology related to seasonal changes in 

temperature (Schmidt-Nielsen, 1997). Thermal limits are considered ecologically relevant, 

because they provide insight into the activity range of individuals under varying temperature 

conditions (Vannier, 1994; Somero, 2005) and can be utilised in climate envelope models to 

project future patterns of biodiversity or local extinctions (Helmuth, 2009; Peck et al. 2009; 

Rilov et al. 2019).  

 

Oxygen limitation and the intertidal 

 

Oxygen supply can also play a role in thermal performance, as for instance hypoxia limits 

the oxygen carrying capacity in species (Wang et al. 2014; Devor et al. 2016; Sambraus et 

al. 2017). In aquatic animals, the oxygen- and capacity-limited thermal tolerance (OCLTT) 

hypothesis postulates that species response to temperature increase above their optimum 

temperature is determined by the transition from aerobic to anaerobic metabolic processes 

and that thermal parameters such as critical upper limits can be considered oxygen-limited 

(Pörtner, 2010; Pörtner, Bock and Mark, 2017; Box 1; p. 2687). Though there is certain 

evidence to support the OCLTT, the generality and the boundaries of the concept remain 

debated and expanded upon (Jutfelt et al. 2018; Pörtner, Bock and Mark, 2018; Ern, 2019; 

MacMillan, 2019). Intertidal tide pools can, depending on shore height and heating during 

low tide, experience drastic fluctuations of oxygen (Truchot and Duhamel-Jouve, 1980; 

Richards, 2011) and the effects of oxygen limitation are well documented in for instance 

intertidal fish inhabiting them (Mandic, Todgham and Richards, 2009; Richards, 2011; Craig 

et al. 2014; McArley, Hickey and Herbert, 2020). The subtidal zone, located below the shore, 

can also have fluctuations in oxygen and temperature. However, these variations are 

typically much less pronounced than in any other part of the intertidal zone (Richards, 2011). 

Upper high shore species are usually adapted to longer periods of full aerial exposure during 

low tide and are most threatened by extreme temperatures, desiccation and/or predation. In 

this study, the shore crab C. punctatus and the limpet S. granularis are both high shore 

specialists and the urchin P. angulosus was only collected from below the shore�s waterline 

at low tide, not from tide pools. 
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Limits of physiological plasticity and acclimatisation 

 

Species responses to thermal stress might include the upregulation of physiological 

processes such as ventilation (Sokolova et al. 2012) and cardiac activity (Braby and 

Somero, 2006) with associated energy costs increasing disproportionally. Moreover, 

defensive cellular responses to stress may involve changes of metabolic rate, the cell cycle 

and apoptosis (Kültz, 2005; Sokolova et al. 2012). Thermal limits are determined by the 

duration and magnitude of temperature exposure in ectotherms (Morley et al. 2016). The 

impact of changing climatic conditions is subject to species thermal limits and their 

acclimatisation capacity, both of which are understudied in the majority of species (Vinagre 

et al. 2016). Existing phenotypic plasticity in populations is the foundation for acclimatisation, 

which is a crucial process to withstand changes in environmental temperature conditions 

(Lucassen et al. 2006; Brahim, Mustapha and Marshall, 2019; Neel et al. 2020). 

Nevertheless, species are constrained by the plasticity limits of their thermal tolerance to 

keep up with more extreme temperature events (Stillman, 2019). Thus, it is possible that 

physiological plasticity might not be sufficient for long-term survival of populations in future 

climate change (Gunderson and Stillman, 2015; van Heerwaarden, Kellermann and Sgrò, 

2016; Gunderson, Dillon and Stillman, 2017). The increased occurrence of extreme 

temperatures could exceed species capacity for acclimatisation (Stillman, 2019). Further, 

increased tolerance towards higher or lower temperatures in species might be hindered by 

physiological and genetic constraints (Addo-Bediako, Chown and Gaston, 2000; Hoffmann, 

Chown and Clusella-Trullas, 2013; Araújo et al. 2013; Meester, Stoks and Brans, 2018). For 

instance, it appears as if the phenotypic plasticity of upper thermal limits is substantially 

reduced compared to variation in lower limits (Araújo et al. 2013). If limits of physiological 

plasticity are exceeded, species can only shift their geographic range, adapt on an 

evolutionary scale or face extinction (Chevin, Lande and Mace, 2010; Urban, 2015; Stillman, 

2019). Thermal adaptation has a multivariate genetic basis and the capacity of populations 

to respond to warming or cooling temperatures is underpinned by available genomic 

variation and covariation in traits under selection (Williams et al. 2012; Healy et al. 2018). 

There is evidence that the evolutionary scope to extend upper thermal limits in species could 

be limited and determined by the type of thermal stress experienced (van Heerwaarden and 

Sgrò, 2013; Blackburn et al. 2014). Furthermore, it is questionable whether molecular 

adaptation can keep up with the contemporary rate of climate change (Hoffmann and Sgrò, 

2011; Reusch, 2014; Fox et al. 2019). 

 

 

Stellenbosch University https://scholar.sun.ac.za



252 

 

4.1.6 Preferred intertidal niches of study species 

 

The three study species, the shore crab Cyclograpsus punctatus, the granular limpet 

Scutellastra granularis and the Cape urchin Parechinus angulosus, are prominent members 

of South African rocky shore communities and belong to the three phyla Arthropoda, 

Mollusca and Echinodermata, respectively (Branch, 2017; see section 1.7). The shore crab 

and the granular limpet are high-shore specialists, whereas the Cape urchin prefers the low 

shore and tide pools, which allow the species to preferentially remain submerged throughout 

the tidal phases (Branch, 2017; see section 1.7). The shore crab retains its mobility during 

emersion and typically shelters in crevices to behaviourally regulate body temperature and 

reduce the risk or predation (personal observation). Behavioural thermoregulation by moving 

and/or hiding is an important mechanism against changing temperature conditions, but it 

might not be sufficient to persist climate change for ectotherms (Blackburn et al. 2014). High 

shore crabs in particular are thought to already live close to their temperature maxima 

(Stillman and Somero, 1996; Somero, 2005; Madeira et al. 2012a). The granular limpet is 

functionally sessile in low tide phases and remains attached to vertical or horizontal high-

shore rock surfaces, which limits its ability to evade extreme temperatures (personal 

observation). Certain limpet species including S. granularis have been found to utilise 

�mushrooming behaviour�, whereby the animal raises its shell from the rock surface for 

assumed temporary relief from heat stress (Williams et al. 2005; p.1; also see Williams and 

Morritt, 1995). Nevertheless, shell raising for evaporative cooling might be of little effect in 

these small-bodied animals with restricted internal water reservoirs (Denny, Miller and 

Harley, 2006; Diederich, 2015). Tide pools or low shore areas can undergo drastic 

temperature fluctuations and remaining submerged is not guaranteed for the Cape urchin, 

whose settling position is generally stationary during low tide (personal observation). The 

species displays covering behaviour (Figure 4.3), which could be interpreted as an attempt 

to shield itself with small debris from radiation and/or predators during low tide (Brothers and 

McClintock, 2015). 

 

Preferred shore height is likely decisive for impacts from climate change on intertidal species 

(see section 4.1.4). The highest temperature and desiccation stress occurs on high-shore 

and horizontal surfaces (Williams and Morritt, 1995; Denny, Miller and Harley, 2006; Miller, 

Harley and Denny, 2009). Both the shore crab C. punctatus and the granular limpet S. 

granularis are high-shore species, but the latter is severely limited in its ability to evade 

temperature stress during emersion and might thus be most at risk from changing climatic 

conditions across the three species. The Cape urchin P. angulosus has the thermal 

advantage of inhabiting the low shore, but as a functionally sessile organism, is unable to 
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substantially change its position during low tide. If the physical geography allows, intertidal 

sea urchin species can generally hide under large platform-type rocks during low tide and 

can create moist �micro-pools� in the presence of malleable dune rock (Francesca Porri, 

personal communication). It is possible that the shore crab C. punctatus, despite being a 

high-shore organism, might be best prepared to cope with changing climatic conditions due 

to its mobility and thermoregulatory behaviour (sheltering). 

 

 
 

Figure 4.3. Parechinus angulosus individuals engaging in �covering� behaviour, photographed on the 
west coast (Port Nolloth) during low tide. White circles are added for better identification.  

(Source: L. Mertens). 
 
4.1.7 Research aims and expectations 

 

The main objective of this chapter is to investigate upper and lower critical thermal limits 

(CTmax, CTmin) and thermal breadth (Tbr) in three intertidal invertebrate species from three 

coastal regions to establish whether populations across the South African temperature 

gradient exhibit different thermal limits (and Tbr) between biogeographic regions. (1) Thermal 

tolerance theory suggests that the highest intraspecific critical thermal limits would be 

expected on the east coast and the lowest thermal limits on the west coast. The south coast 

might hypothetically indicate �intermediate� thermal limits between the west and east coast. 

(2) Thermal breadth is predicted to be narrower at the east coast compared to the west 

coast (3). Interspecifically, high-shore limpet species S. granularis would be expected to 

demonstrate the highest thermal tolerance due to its direct exposure to solar radiation and 

air temperature on horizontal and vertical rock surfaces compared to the shade-seeking crab 

C. punctatus during low tide. In contrast, the constantly submerged low shore urchin species 

P. angulosus might have the lowest thermal limits. A further objective of this chapter is to 

calculate warming and cooling tolerance (WT, CT) to investigate which population(s) would 

be most at risk from predicted regional temperature trends in South Africa. Based on local 
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temperature data, (4) eastern populations (Cape St. Francis, Haga Haga) are expected to 

live closest to their upper thermal limits (lowest warming tolerance) and western populations 

(Port Nolloth, Jacob�s Bay, Sea Point) are expected to exist closest to their lower thermal 

limits (lowest cooling tolerance). 

 

4.2 Materials and Methods 

4.2.1 Field collection 

  

The study area on the South African coast stretched from 29°S to 32°S and from 16°E to 

28°E. Field sites (Port Nolloth, Sea Point, Cape Agulhas, Knysna, Cape St. Francis and 

Haga Haga; Figure 2.1) were visited between July and mid-September 2017 to collect 

individuals for the thermal tolerance trials. Port Nolloth and Haga Haga broadly represent the 

western and eastern range edge of the study species distribution in South Africa, 

respectively (Branch, 2017). Jacob�s Bay was substituted for Port Nolloth given the more 

limited distribution of C. punctatus. Around 25 individuals per species were collected over an 

area of roughly 200 m at all sites during low tide during daytime. All field collections 

commenced at the lowest tidal height according to public tidal charts. Shore crabs (C. 

punctatus) were caught on the high shore from underneath large rocks and boulders. As sex 

differences might play a role for C. punctatus (Madeira et al. 2012b), equal numbers of male 

and female individuals were collected. The granular limpets (S. granularis) were haphazardly 

removed from sun-exposed vertical and horizontal rock surfaces on the upper high shore. 

After removal from the substratum, all animals were inspected for foot damage. The Cape 

urchins (P. angulosus) were collected from ~50 cm water depth within 30 minutes of the 

lowest tidal height to ensure similar microhabitat conditions. No sea urchins were collected 

from tide pools (Vinagre et al. 2018). With around 75 individuals overall per site, a total of 

450 individuals were collected for the thermal experiments and transported separated by 

species and field site back to Stellenbosch University�s Department of Botany and Zoology in 

battery-pump aerated dark transport containers filled with fresh sea water. Transport times 

ranged from one hour to twelve hours, depending on the distance to the collection site. 

 

4.2.2 Acclimation and maintenance 

 

Collected S. granularis and P. angulosus individuals were acclimated at 18±1°C (mean±SE) 

for 7-10 days in 60-litre perspex aquaria (600 x 300 x 300 mm) with a salinity of 35±2 � 

(mean±SE). The acclimation temperature of 18°C was selected, because it lies within the 

temperature range experienced by all populations (Figure 4.4). This approach was utilised 

by Broom et al. for similar experiments with South African rocky shore klipfish Clinus 
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superciliosus (Broom, 2016). Shore crab C. punctatus specimens were kept in plastic boxes 

(10x10x8 cm) covered with shading net with small rocks providing shelter and a small 

amount of sea water, mimicking the conditions under which they are found in the field. Tests 

in advance of the field collection proved the importance of keeping this species separate, as 

intraspecific aggression including cannibalism may occur (personal observation). Keeping 

the crustaceans separate prevents the potential stress induced by conspecifics. All animals 

were fed small pieces of kelp ad libitum. Animals were not fed 24 hours before trials. An 

acclimation period of 1-2 weeks has been used in similar experiments on rocky shore 

invertebrates (Madeira et al. 2012a,b; 2014; Vinagre et al. 2012; 2013). Salinity levels were 

monitored daily with a salinity meter (Model 30, YSI Inc., Yellow Springs, OH). Sea water 

was prepared from sea salt kits (Seachem Reef Salt). Every 2 days, ~40-50% of the 

aquaria�s water volume was changed and accumulated organic matter waste removed. The 

filters of the pumps were cleaned every 2-3 days. Test kits were used twice a week to 

monitor the levels of pH, nitrate and ammonium (Sera GmbH, Heinsberg, Germany). 

Cyclograpsus punctatus was sexed according to the shape of its abdominal flap, which is 

established for decapod crabs (Lee, Yamauchi and Yamazaki, 1994; Branch et al. 2007). 

 

 

Figure 4.4. (A) Interpolated summertime sea surface temperature (SST) measurements across 87 
sites (Port Nolloth to Sodwana Bay; broadly grouped by red boxes into west, south and east coast) 
from varying periods ranging between 1972 and 2012. The data was collected in situ either manually 
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with hand-held thermometers or electronically with underwater temperature recorders (UTRs) within 
400 m from the coast at depths ranging from 20 cm to 9 m by different institutions (compare Figure 1 
in Smit et al. 2013). The compiled data records were used to calculate a monthly temperature 
climatology, which served to produce an interpolated dataset representing temperature records at 
evenly spaced sites along the coast. These same data are also plotted in the lower panel (B) to 
further highlight the alongshore gradients. The middle and upper panels in (B) show the seasonal 
mean monthly in situ temperature for August and February respectively representing winter and 
summer (Smit et al. 2013). 
 

Acclimation setup for S. granularis 

 

For the limpet S. granularis, the following method has proven successful for maintaining 

intertidal limpets in circumstances when flow through tanks or tidal variation systems are not 

available. As a high shore animal, S. granularis is used to being fully exposed to air during 

low tide for multiple hours per day. These circumstances perhaps reflect in their settling 

preference in the aquaria, such when given free choice on where to position themselves, 

individuals choose to be semi-emerged or completely emerged over the waterline. In rocky 

shore habitats, tidal phases naturally regulate the range of S. granularis, as the animals 

merely wait for the upcoming high tide to submerge them or splash them again with fresh 

sea water. When housed in aquaria, S. granularis was expected to self-regulate its internal 

water levels for instance by occasional nightly foraging. However, without intervention, 

animals would desiccate beyond recovery (personal observation). The circumstances of self-

regulation behaviour for internal water levels or the absence thereof in S. granularis would 

be an interesting issue for future research. To prevent desiccation and to standardise the 

acclimation temperature, the animals were placed on a Perspex plate as an artificial island. 

The water level and the air pump were adjusted to constantly cover the island in a thin, 

moving water layer, which also helped to flush organic waste away (Figure 4.5). The bottom 

of the tank was filled with a layer of sand to discourage the molluscs to cross over to the 

walls for uncontrolled emergence. This simple setup allows to maintain limpets without 

access to tanks with regulated water levels or climbing confinements like nets or grids. Due 

to limitations of available aquaria and crab containers, two populations could be maintained 

in the laboratory facility at the same time. New populations were acclimated as soon as the 

trials for examined ones were completed. 
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Figure 4.5. Schematic setup of the artificial Perspex island for the acclimation of S. granularis, 
which are depicted as oval circles. The arrow indicates the direction of the water flow 

generated by the aquaria pump. 

 

4.2.3 Thermal tolerance experiments 

 

In the limpet S. granularis, individuals were distinguished by combinations of coloured dots 

on the shell and overall shell length. For the urchin P. angulosus, length, weight and 

naturally occurring colour variations as well as multi-coloured cotton threads were utilised for 

identification. Shore crabs were kept separately in labelled plastic containers. Following the 

acclimation period of 7 days, including the pre-trial 24 hour period of starvation, experiments 

were conducted in species-specific setups (Figure 4.6-8). Limpets were carefully transferred 

to a small high-walled container and allowed to firmly attach to its walls for 15-20 minutes. 

Both the crab C. punctatus and the limpet S. granularis specimen were assessed in air, 

which corresponds to low tide field conditions, when both species are fully emerged from sea 

water and exposed to air. The Cape urchin P. angulosus was tested in sea water (volume 

~2L), congruent with its habitat position during low tide. All trials were conducted in thermal 

baths (Grant GP200 R4, Grant Instruments, Cambridge, UK) containing water (CTmax) or a 

glycol:water (50:50) mix (CTmin). A wide range of different heating rates has been utilised for 

various intertidal organisms in thermal tolerance studies (Lutterschmidt and Hutchison, 

1997b). Similar studies on intertidal invertebrates have applied heating rates between 0.1-

0.5°C per minute (Limpets and mussels: Braby and Somero, 2006; Dong and Williams, 

2011; Logan, Kost and Somero, 2012; Tagliarolo and McQuaid, 2015; Kankondi, McQuaid 

and Tagliarolo, 2018; Sea urchins: Sherman, 2015; Collin et al. 2018; Crabs: Metzger et al. 

2007; Walther et al. 2009; Vinagre et al. 2013; Madeira et al. 2014). In this study, a heating 

and cooling rate of 0.5°C per minute is utilised to enable comparisons of populations and 

possibly species while maintaining a rate within the range reported in the literature. 

Consistency of heating rate was confirmed in preliminary tests. Temperature loggers used to 

capture the endpoint during the trials (Thermochron iButtons, DS1922L, Maxim Integrated 
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Products Inc., Sunnydale, CA; resolution ~0.5°C; time interval 60 sec) were positioned with 

reusable putty adhesive Prestik© (C. punctatus, S. granularis) or submerged in a thin, 

sealed silicone capsule (P. angulosus) as close as possible to the animal. The time at which 

the pre-determined endpoints (see section 4.2.3.1-3) occurred was noted immediately in 

every trial and the temperature measurement retrieved from the iButton recordings 

afterwards, ensuring that times were synchronized to the second for both. Past studies have 

used hand-held thermometers or thermocouples in this context, but the iButton position was 

consistent across species trials and minimised interference with the setup. CTmin was first 

assessed by cooling and afterwards animals were given 12 hours to recover in their 

maintenance tanks. CTmax was then tested by heating in the same individuals, which were 

then returned to the maintenance tanks. Every individual was measured once for CTmin and 

once for CTmax. Obtained lower and upper thermal limits were only included in analyses, if 

the animal was in good condition after the recovery period following both tests. The number 

of animals tested for both lower and upper critical thermal limits is listed in Table S4.2 

(Appendix). 

 

4.2.3.1 Cyclograpsus punctatus 

 

Congruent with the maintenance containers, the experimental chamber for the C. punctatus 

crabs required a high rim. A high-walled plastic container was placed in the thermal bath with 

a weight at the bottom preventing floating (Figure 4.6). For the trial, the individual animal and 

the iButton were positioned in the container, separated from the weight at the bottom by a 

layer of 3 mm cardboard (Figure 4.6). The thermal bath was covered with a 1 mm plastic 

sheet and a custom piece of foam board to maintain the temperature inside the chamber. To 

begin, the thermal bath was set to the acclimation temperature (18°C) and allowed to 

equilibrate. The trial started after the animal was placed in the experimental chamber. The 

animal was turned on its back with tweezers, following a method described by Vinagre and 

Madeira for assessing CTmin/CTmax on intertidal crustaceans (Madeira et al. 2012c; Vinagre 

et al. 2015). For both CTmax and CTmin trials, the animal was inverted every 10 minutes in the 

initial phase of the experiment (first 50 minutes), then the interval shortened to 5 minutes 

until the individual was unable to right itself (invert when placed on dorsal surface) within 60 

seconds. The loss of righting response was noted as the endpoint of the trial as critical 

thermal minimum and critical thermal maximum, respectively. Once CTmax was determined, 

individuals were removed from the chamber, weighed, measured and splashed with a few 

drops of sea water before returning to their respective maintenance containers for recovery. 
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Figure 4.6. Schematic setup of the CTmin and CTmax trials for C. punctatus. 

 

4.2.3.2 Scutellastra granularis 

 

Among the approaches to assess thermal limits in limpets is the duration for which the 

animal is able to remain attached to a substratum with muscle capacity (Morley et al. 2011). 

Other possibilities include the assessment of cardiac performance during heat stress (Dong 

and Williams, 2011; Han et al. 2013) or the evaluation of heat shock protein 70 (HSP70) as 

indication of near lethal stress (Miller, Harley and Denny, 2009; Han et al. 2013). During heat 

stress, some limpet species including S. granularis display mushrooming behaviour, where 

the shell is lifted off the substrate by several millimetres to likely provide temporary relief 

(Williams et al. 2005; Harley et al. 2009). In this study, the heating endpoint (CTmax) was 

recorded when the shell was lifted off the surface on all sides by 1-2 millimetres. For the trial, 

a limited number of animals (6-10) were distributed over the walls of a plastic chamber and 

allowed to settle. Limpets were spaced as far apart as possible and did not move or interact 

with each other during a trial. Low temperatures do not induce mushrooming behaviour and 

there are at present no established, widely applicable approaches to measure CTmin in 

limpets. To avoid drastically different setups between CTmax and CTmin, the latter was 

determined with a mechanical stimulus by prodding the shell with the backend of a scalpel 

until the animal was unable to stay attached to the substrate (wall). The CTmin endpoint was 

noted as soon as the animal was unable to hold its attached position on the vertical surface 

(Figure 4.7). During the trial, a thin plastic sheet and foam board were used to maintain the 

temperature. Prior tests confirmed that briefly lifting the cover to assess or prod the animals 

did not affect the temperature conditions inside. For the CTmax trials, the animals were 

observed for the occurrence of mushrooming behaviour throughout the experiment. During 

the CTmin trials, the mechanical stimulus was applied every 10 minutes in the initial phase of 
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the experiment (first 70 minutes) and then every 5 minutes till the endpoint occurred 

(detachment). 

 

Figure 4.7. Schematic setup of the CTmin and CTmax trials for S. granularis. 
 

4.2.3.3 Parechinus angulosus 

 

Different approaches to assess thermal limits in sea urchins have been suggested, including 

whether the urchin is able to right itself quickly when inverted (Sherman, 2015) or remains 

attached to a vertical surface (Hernández et al. 2004). Both strategies are not applicable to 

P. angulosus, which prefers not to remain attached to vertical surfaces during trials and its 

capacity to right itself after inversion is highly dependent on the individual and the number of 

times the animal is inverted (preliminary tests at 18°C and 25°C sea water). Testing revealed 

that P. angulosus responds with strong tube feet activity to a mechanical stimulus, such as 

briefly prodding with large tweezers. The sub-lethal points (CTmin and CTmax) were noted 

when the tube feet no longer display a response to prodding. Further, tests showed that P. 

angulosus does not habituate to the prodding during the trial and shows the same tube feet 

response intensity throughout. To commence the trial, an individual urchin was submerged 

together with the silicone capsuled iButton in a container filled with sea water (18°C) inside 

the thermal bath. The setup was covered with a thin Perspex sheet and foam board. In an 

unfamiliar environment, P. angulosus displays a brief period of increased tube feet activity to 

explore the immediate surroundings. The trial only started when the animal returned to not 

using the tube feet (resting state), which usually took under 2 minutes. For the CTmax trials, 

the animals were prodded every 10 minutes in the initial phase of the experiment (first 30 

minutes) and then every 3 minutes until the endpoint was observed. To assess CTmin, 

animals were prodded every 10 minutes in the initial phase of the experiment (first 50 

minutes) and then every 5 minutes until the endpoint was observed (with an ±accuracy of 

2.5 °C). The animal was removed from the experimental chamber as soon as no response 
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occurred to the stimulus, measured, weighed and placed in the maintenance tank to begin 

the recovery period. As with the other species, every animal was tested once for CTmin and 

once for CTmax. 

 

Figure 4.8. Schematic setup of the CTmin and CTmax trials for P. angulosus. 

 
 4.2.4 Habitat temperature 

 

Measurements of habitat temperature allow the approximation of species possible warming 

(Deutsch et al. 2008) and cooling tolerance (Gutiérrez-Pesquera et al. 2016). For upper high 

shore species such as the limpet S. granularis and the crab C. punctatus, air temperature is 

likely more decisive than SST during vulnerable low tide phases. In contrast, SST is most 

relevant to the low shore urchin P. angulosus, which remains submerged throughout tidal 

phases. Maximum and minimum air temperature (averaged monthly mean, 2009-2019) of 

the field sites or the closest available locations were provided by the South African Weather 

Service (SAWS) (Table 4.1). Further, SAWS oversees data collection of coastal sea surface 

temperature, which is recorded with alcohol thermometers at the same place and time each 

day from the shore (Table 4.2). Coastal SST data was made available for the years 2017-

2019. Maximum and minimum measurements are not captured by the data collection 

protocol. Collected data from Sea Point was excluded due to insufficient data quality. 
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Table 4.1. Air temperature minima and maxima for the seven study locations (averaged monthly 
mean (2009-2019; Coffee Bay: 2010-2019); Source: South African Weather Service (SAWS)) or the 

closest available locations (*Cape Columbine (<20 km), **Cape Town Yacht Harbour (<5km), *** 
Coffee Bay (~200 km)). 

 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Port Nolloth                       

Max °C 21.5 21.6 21.0 21.2 19.8 19.1 19.6 18.5 19.1 19.7 20.3 21.3 

Min °C 13.9 13.6 13.2 11.8 10.4 9.1 8.8 8.4 9.4 11.0 12.2 13.8 

Jacob's Bay*                       

Max °C 21.3 22.0 21.0 20.4 18.3 16.8 16.8 16.5 17.6 19.2 19.9 21.1 

Min °C 13.9 14.1 13.6 12.8 11.9 10.7 10.3 10.1 10.9 12.0 12.6 13.7 

Sea Point**                       

Max °C 27.8 28.0 26.4 24.7 21.4 18.8 19.0 19.3 20.4 22.9 24.8 26.6 

Min °C 17.6 17.5 16.3 15.0 13.1 11.2 11.0 11.4 12.4 13.9 15.2 16.8 

Cape Agulhas                       

Max °C 24.2 24.1 23.1 21.1 19.5 17.8 17.6 17.6 18.6 19.8 21.1 23.1 

Min °C 18.8 18.6 17.4 15.4 13.8 11.7 11.3 11.4 12.6 14.3 15.5 17.6 

Knysna                       

Max °C 27.0 27.1 26.3 24.4 23.1 20.8 20.4 20.5 20.9 22.6 23.7 25.8 

Min °C 17.3 17.2 16.1 13.3 11.3 8.8 8.5 9.0 10.6 12.6 13.7 16.0 

Cape St. Francis                       

Max °C 23.3 22.5 22.0 20.7 20.1 19.1 18.7 18.4 18.6 19.2 20.3 22.1 

Min °C 17.7 16.8 16.4 14.7 13.2 10.9 10.9 11.2 12.5 13.8 14.7 16.5 

Haga Haga***                       

Max °C 27.2 27.6 27.2 25.6 25.0 23.8 23.1 23.1 23.3 23.1 24.4 25.4 

Min °C 18.7 18.9 18.5 15.7 13.9 11.2 11.3 11.9 13.3 14.5 16.3 17.6 
 

Table 4.2. Monthly average sea surface temperature (SST) for the seven study locations (2017-2019; 
Source: South African Weather Service) or the closest available locations (*Saldanha Bay (distance: 5 
km), **Mosselbay (~100 km), ***Port Elizabeth (~100 km), ****East London, Orient Beach (~50 km)). 

 

(°C) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Port Nolloth 16.1 16.3 16.5 16.5 16.2 15.9 15.9 15.3 15.3 15.9 16.4 17.0 
Jacob's Bay* 18.8 18.5 17.6 16.4 14.6 14.3 14.0 14.1 15.0 16.1 17.8 17.5 

Cape Agulhas 18.9 18.3 17.7 14.3 15.0 14.2 14.3 14.0 15.1 16.2 17.3 18.0 

Knysna** 22.1 21.0 20.5 18.9 16.3 15.2 15.3 16.0 17.1 17.7 19.0 20.4 

St. Francis Bay*** 21.3 20.1 20.0 18.4 17.1 16.1 16.1 15.9 17.2 17.6 18.5 19.4 

Haga Haga**** 19.2 18.6 18.4 18.3 17.2 16.9 17.0 17.2 18.1 18.6 18.4 18.7 
 
 

It is important to acknowledge that habitat temperature is not an ideal proxy for species body 

temperature, because the influencing factors of body temperature are vastly complex 

(Broitman et al. 2009; Potter, Woods and Pincebourde, 2013). Sea surface temperature and 

air temperature represent a coarse indication of temperature possibly experienced at 

intertidal microsites. Deploying in situ temperature loggers (for instance Lima and Wethey, 
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2009) at the seven study sites microhabitats was part of the project planning framework, but 

could not be technically realised in the time frame of the study. Sea surface data collected by 

institutions of the Western Indian Ocean Coastal Observing System (WIOCOS) and by Smit 

et al. (Figure 4.4) were also considered but excluded due to data deficiency at several study 

sites (Smit et al. 2013). 

 

4.2.5 Thermal breadth and warming and cooling tolerance (WT, CT) 

 

The thermal tolerance range (thermal breadth) was calculated by subtracting CTmin from 

CTmax (Tbr = CTmax! CTmin). Warming and cooling tolerance were calculated from CTmax/CTmin 

and the maximum/minimum habitat temperature (Tmax, Tmin) respectively (WT=CTmax!Tmax; 

CT=CTmin!Tmin) (Deutsch et al. 2008; Gutiérrez-Pesquera et al. 2016). Air temperature was 

utilised for the exposed upper shore species (S. granularis, C. punctatus) and water 

temperature for the low shore species (P. angulosus). 

 

4.2.6 Statistical analysis 

 

The goal of this chapter is to test if the three species reveal regional differences in CTmax, 

CTmin and Tbr and how these thermal parameters might be influenced by mass and (in C. 

punctatus) sex. Statistical analyses were performed in R (version 4.0.2; http://cran.r-

project.org). Sampling sites were regionally grouped into west coast (WC; Port Nolloth 

(PN)/Jacob�s Bay (JC); Sea Point (SP)), south coast (SC; Cape Agulhas (CA), Knysna (KY)) 

and east coast (EC; Cape St. Francis (CF); Haga Haga (HH)). Data was assessed for 

normal distribution and homogeneity of variance with Shapiro�Wilk�s test (Shapiro and Wilk, 

1965), the function skewness (package moments; Komsta and Novomestky, 2015), 

Levene�s Test (Levene, 1960; car package, Fox and Weisberg, 2011) and Bartlett�s Test 

(Bartlett, 1937) (Appendix, Table S4.1). Using the lmer function in the package lme4 (Bates 

et al. 2015), linear mixed-effect models were fitted with body mass as response variable, 

region as fixed effect (three levels: west, south and east coast) and site as random effect (six 

levels: Port Nolloth/Jacob�s Bay, Sea Point, Cape Agulhas, Knysna, Cape St. Francis, Haga 

Haga). In C. punctatus, sex was fitted as an additional fixed effect to test for differences 

between male and female crabs. Identical models were fitted with CTmin, CTmax and Tbr as 

respective response variable. To test the potential effect of mass on critical thermal limits, 

additional models were fitted with CTmin (CTmax; Tbr) as response variable and region and 

mass as fixed effect and site as random effect. For the latter models, CTmin, CTmax, Tbr and 

mass were log10-transformed for appropriate allometric scaling. For CTmin data containing 

negative values, a constant was added before log10-transformation. Pairwise post hoc 
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comparisons between regions were conducted by estimating marginal means with the 

package emmeans (formerly lsmeans) (Lenth et al. 2018). Values represent mean ± 

standard error unless stated otherwise. 

 

4.3 Results 

4.3.1 Preliminary analyses: Body mass 

 

The mean body mass of Scutellastra granularis was found to be significantly higher in west 

coast populations compared to populations at the south (p = 0.021) and east coast (p = 

0.031) (Table 4.3, Table S4.2; Figure 4.9). Further, west coast populations of P. angulosus 

indicate higher body mass than south coast populations (p = 0.041) (Table 4.3; Figure 4.9). 

No regional mass differences were detected in C. punctatus, but male crabs possess 

significantly higher body mass than females (p = <0.001) (Table 4.3). 

 

4.3.2 Critical lower temperature limits (CTmin) 

 

Linear mixed effect models suggest no significant CTmin differences in C. punctatus, S. 

granularis and P. angulosus (Table 4.4, Table S4.3; Figure 4.9). CTmin is suggested to be 

negatively correlated with mass in both C. punctatus (p = <0.001) and P. angulosus (p = 

0.007) (i.e. heavier individuals have lower CTmin) (Table 4.4). 

 

4.3.3 Critical upper temperature limits (CTmax) 

 

Populations of C. punctatus demonstrate significantly higher CTmax in west coast populations 

compared to east coast populations (p = 0.033) (Table 4.5, Table S4.4; Figure 4.10). The 

models suggest no significant CTmax differences in S. granularis and P. angulosus. In the 

urchin P. angulosus, CTmax is suggested to be positively correlated with mass (p = 0.005) 

(i.e. heavier individuals have higher CTmax) (Table 4.5). 

 

4.3.4 Thermal breadth (Tbr) 

 

Linear mixed effect models suggest no significant Tbr differences in C. punctatus, S. 

granularis and P. angulosus (Table 4.6, Table S4.5; Figure 4.10). Thermal breadth is 

suggested to be positively correlated with mass (i.e. heavier individuals have larger thermal 

breadth) in both C. punctatus (p = <0.001) and P. angulosus (p = <0.001) (Table 4.6). 
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C. punctatus     
(mass) ~ sex + region + (1 | site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 1.4616 0.9615 3.4071 1.52 0.215 
sexm 2.6300 0.4351 98.3828 6.044 <0.001*** 

regionSC 4.1012 1.3251 3.0744 3.095 0.052 
regionWC 3.9704 1.3199 3.0262 3.008 0.057 
Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC -4.101 1.33 3.05 -3.095 0.103 
EC - WC -3.97 1.32 3.00 -3.008 0.112 
SC - WC 0.131 1.32 2.96 0.099 0.995 
S. granularis     
(mass) ~ region + (1 | site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 2.5974 0.6495 2.735 3.999 0.033* 

regionSC -0.5706 0.9289 2.861 -0.614 0.584 
regionWC 4.7163 0.9311 2.8876 5.065 0.016* 

Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC 0.571 0.929 2.94 0.614 0.823 
EC - WC -4.716 0.931 2.97 -5.065 0.031* 

SC - WC -5.287 0.941 3.1 -5.616 0.021* 

P. angulosus     
(mass) ~ region + (1 | site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 20.791 2.428 2.802 8.561 0.004** 

regionSC -3.792 3.441 2.824 -1.102 0.355 
regionWC 11.719 3.463 2.892 3.385 0.045* 

Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC 3.79 3.44 2.94 1.101 0.577 
EC - WC -11.72 3.46 3.01 -3.382 0.085 
SC - WC -15.51 3.47 3.03 -4.467 0.041* 

 

Table 4.4. Model parameter estimates of linear mixed models fitted 
for CTmin. t-tests use Satterthwaite's method. 

C. punctatus         
(log10(CTmin)) ~ (log10(mass)) + sex + region + (1|site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 0.8530 0.06212 4.33816 13.732 <0.001*** 

log10(mass) -0.2764 0.0799 99.04419 -3.459 <0.001*** 

sexm -0.0137 0.03343 97.75248 -0.410 0.683 
regionSC -0.0186 0.08736 4.22584 -0.213 0.841 
regionWC 0.0302 0.08695 4.15853 0.348 0.745 
Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC 0.0186 0.0878 4.20 0.212 0.976 
EC - WC -0.0302 0.0874 4.14 -0.346 0.937 
SC - WC -0.0488 0.0789 2.86 -0.619 0.821 
P. angulosus         
(log10(CTmin)) ~ (log10(mass)) + region + (1|site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 1.1882 0.13354 9.74776 8.898 <0.001*** 

log10(mass) -0.1916 0.06989 105.4016 -2.742 0.007* 

regionSC -0.1693 0.13989 3.00121 -1.21 0.313 
regionWC -0.0831 0.14064 3.06548 -0.591 0.595 
Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC 0.1693 0.140 3.00 1.210 0.525 
EC - WC 0.0831 0.141 3.06 0.591 0.834 
SC - WC -0.0861 0.141 3.13 -0.609 0.825 

 

 

Table 4.3. (left) Model parameter estimates of linear mixed models fitted for 
mass. t-tests use Satterthwaite's method. 
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Figure 4.9. Body mass and CTmin shown by region. Significant differences are marked with asterisks (* = p<0.05). Box and whisker  
plot showing quartiles and median. Small circles represent outliers. 
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Table 4.5. Model parameter estimates of linear mixed models fitted for 
CTmax. t-tests use Satterthwaite's method. 

C. punctatus         
(log10(CTmax)) ~ (log10(mass)) + sex + region + (1|site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 1.645062 0.002919 5.466814 563.6 <0.001*** 

log10(mass) 0.004455 0.005102 81.02667 0.873 0.385 
sexm -0.00111 0.002198 98.43329 -0.506 0.614 
regionSC 0.007083 0.004073 5.077881 1.739 0.142 
regionWC 0.014513 0.004041 4.99 3.592 0.016* 

Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC -0.00708 0.00417 5.64 -1.700 0.284 
EC - WC -0.01451 0.00412 5.54 -3.522 0.033* 

SC - WC -0.00743 0.0033 2.69 -2.254 0.221 
P. angulosus         
(log10(CTmax)) ~ (log10(mass)) + region + (1|site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 1.443528 0.022374 9.732509 64.517 <0.001*** 

log10(mass) 0.03322 0.011694 105.4078 2.841 0.005** 

regionSC -0.00384 0.023467 3.010837 -0.164 0.880 
regionWC -0.0294 0.023592 3.074974 -1.246 0.299 
Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC 0.00384 0.0235 3.00 0.164 0.985 
EC - WC 0.0294 0.0236 3.06 1.246 0.508 
SC - WC 0.02555 0.0237 3.13 1.077 0.586 

 

Table 4.6. Model parameter estimates of linear mixed models fitted for 
thermal breadth. t-tests use Satterthwaite's method. 

C. punctatus         
(log10(Tbr)) ~ (log10(mass)) + sex + region + (1|site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 1.625291 0.00557 4.90697 291.78 <0.001*** 

log10(mass) 0.033484 0.009052 88.89694 3.699 <0.001*** 

sexm -0.00073 0.00386 98.11506 -0.188 0.851 
regionSC 0.007938 0.007794 4.640686 1.018 0.359 
regionWC 0.012399 0.007739 4.553217 1.602 0.176 
Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC -0.00794 0.00792 5.18 -1.002 0.606 
EC - WC -0.01240 0.00785 5.08 -1.580 0.334 
SC - WC -0.00446 0.00654 2.75 -0.682 0.791 
P. angulosus         
(log10(Tbr)) ~ (log10(mass)) + region + (1|site) 
Fixed effects Estimate SE df t-value Pr(>|t|) 
(Intercept) 1.201275 0.060781 5.870168 19.764 <0.001*** 

log10(mass) 0.098574 0.025344 105.2042 3.889 <0.001*** 

regionSC 0.050144 0.072612 3.005358 0.691 0.539 
regionWC -0.00952 0.072802 3.036836 -0.131 0.904 
Pairwise regional comparisons 
Contrasts Estimate SE df t-value p 
EC - SC -0.05014 0.0726 3.00 -0.691 0.785 
EC - WC 0.00952 0.0728 3.03 0.131 0.991 
SC - WC 0.05966 0.073 3.06 0.817 0.719 
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Figure 4.10. CTmax and thermal breadth shown by region. Significant differences are marked with asterisks (* = p<0.05). Box and whisker  
plot showing quartiles and median. Small circles represent outliers. 
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4.3.5 Warming (WT) and cooling tolerance (CT) 

 

The range between upper critical limits and maximum habitat temperature (warming 

tolerance, WT), as well as the range between lower critical limits and minimum air 

temperature (cooling tolerance, CT) are listed in Table 4.7 for the high-shore species C. 

punctatus and S. granularis. For instance, the average maximum air temperature in the 

Jacob�s Bay area in January is reported as 21.3°C (Table 4.1) and the mean CTmax 

measured for the population is 45.9°C (Table S4.4, Appendix), signalling a potential warming 

tolerance of 24.5°C (Table 4.7). For P. angulosus, the range between upper and lower critical 

limits was calculated in reference to the available mean SST data (Table 4.8). 

 

Table 4.7. Warming and cooling tolerance (in °C) calculated in relation to upper/lower critical limits and 
mean maximum/minimum air temperature per population and month in C. punctatus and S. granularis. 

 
C. punctatus Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Jacob's Bay            

WT (C°) 24.5 23.8 24.9 25.4 27.6 29.1 29.1 29.4 28.3 26.6 26.0 24.8 
CT (C°) 13.6 13.8 13.3 12.5 11.6 10.4 10.0 9.8 10.6 11.6 12.3 13.4 
Sea Point            

WT (C°) 18.3 18.1 19.8 21.4 24.8 27.3 27.1 26.8 25.7 23.2 21.3 19.6 
CT (C°) 18.2 18.1 17.0 15.6 13.7 11.9 11.6 12.0 13.0 14.6 15.8 17.4 
Cape Agulhas            

WT (C°) 21.1 21.2 22.2 24.2 25.8 27.5 27.7 27.7 26.7 25.5 24.2 22.2 
CT (C°) 18.3 18.1 17.0 15.0 13.3 11.2 10.9 10.9 12.1 13.8 15.1 17.2 
Knysna            

WT (C°) 18.1 18.0 18.8 20.7 22.0 24.3 24.7 24.6 24.2 22.6 21.4 19.3 
CT (C°) 18.9 18.7 17.6 14.8 12.8 10.3 10.0 10.5 12.1 14.2 15.2 17.5 
Cape St. Francis            

WT (C°) 20.5 21.4 21.9 23.2 23.7 24.7 25.1 25.5 25.2 24.7 23.6 21.7 
CT (C°) 16.4 15.5 15.1 13.4 11.9 9.6 9.6 9.9 11.2 12.5 13.4 15.2 
Haga Haga            

WT (C°) 17.5 17.1 17.5 19.2 19.7 21.0 21.6 21.6 21.4 21.6 20.3 19.3 
CT (C°) 18.2 18.3 17.9 15.1 13.4 10.6 10.7 11.3 12.7 13.9 15.8 17.0 
S. granularis Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Port Nolloth                       
WT (C°) 13.1 13.0 13.7 13.5 14.8 15.5 15.0 16.1 15.5 15.0 14.3 13.3 
CT (C°) 14.0 13.7 13.3 11.9 10.6 9.2 8.9 8.5 9.5 11.1 12.3 13.9 
Sea Point            

WT (C°) 7.3 7.2 8.8 10.5 13.8 16.4 16.2 15.9 14.7 12.3 10.4 8.6 
CT (C°) 18.0 17.9 16.8 15.4 13.5 11.6 11.4 11.8 12.8 14.4 15.6 17.2 
Cape Agulhas            

WT (C°) 10.3 10.4 11.3 13.3 15.0 16.6 16.8 16.8 15.8 14.7 13.4 11.4 
CT (C°) 15.6 15.4 14.3 12.2 10.6 8.5 8.2 8.2 9.4 11.1 12.3 14.5 
Knysna            

WT (C°) 8.7 8.6 9.4 11.3 12.6 14.9 15.3 15.2 14.8 13.2 12.0 10.0 
CT (C°) 16.2 16.1 14.9 12.1 10.2 7.7 7.4 7.9 9.5 11.5 12.6 14.8 
Cape St. Francis            

WT (C°) 12.3 13.2 13.7 15.0 15.5 16.5 17.0 17.3 17.0 16.5 15.4 13.5 
CT (C°) 18.0 17.2 16.7 15.1 13.6 11.2 11.2 11.5 12.8 14.2 15.0 16.8 
Haga Haga            

WT (C°) 8.2 7.8 8.3 9.9 10.4 11.7 12.4 12.4 12.2 12.4 11.1 10.0 
CT (C°) 18.8 19.0 18.6 15.8 14.0 11.2 11.4 12.0 13.4 14.6 16.4 17.7 
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Table 4.8. Warming and cooling tolerance (in °C) calculated in relation to upper/lower critical limits  
and mean SST temperature per population and month in P. angulosus. 

 

P. angulosus Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Port Nolloth                       

WT (°C) 12.8 12.5 12.4 12.4 12.7 13.0 12.9 13.6 13.5 12.9 12.4 11.9 

CT (°C) 10.5 10.7 10.9 10.9 10.6 10.3 10.4 9.7 9.7 10.4 10.8 11.4 

Cape Agulhas            

WT (°C) 10.3 11.0 11.6 14.9 14.3 15.1 15.0 15.2 14.1 13.0 12.0 11.2 

CT (°C) 10.8 10.2 9.6 6.2 6.8 6.1 6.2 5.9 7.0 8.1 9.2 9.9 

Knysna            

WT (°C) 9.0 10.1 10.6 12.2 14.9 15.9 15.8 15.1 14.1 13.5 12.2 10.8 

CT (°C) 17.1 16.0 15.5 13.9 11.2 10.2 10.3 11.0 12.0 12.6 14.0 15.3 

Cape St. Francis            

WT (°C) 7.8 8.9 9.1 10.6 11.9 12.9 12.9 13.2 11.8 11.4 10.6 9.6 

CT (°C) 10.4 9.2 9.1 7.6 6.3 5.2 5.3 5.0 6.3 6.7 7.6 8.6 

Haga Haga            

WT (°C) 13.2 13.8 14.0 14.2 15.2 15.5 15.4 15.2 14.4 13.8 14.1 13.7 

CT (°C) 12.0 11.4 11.2 11.1 10.0 9.7 9.9 10.0 10.9 11.4 11.2 11.5 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



271 

 

4.4 Discussion 

 

Analysing intraspecific variation of physiological traits across environmental gradients in 

multiple species is key to establish macrophysiological patterns (Osovitz and Hofmann, 

2007; Helmuth 2009; Gaston et al. 2009; Richard et al. 2012). Thermal tolerance limits are 

understudied in the majority of species, yet their investigation is crucial to anticipate potential 

physiological resilience to climate change impacts (Vinagre et al. 2016). This study 

contributes upper and lower critical thermal limits of three co-distributed rocky shore 

invertebrates inhabiting a pronounced marine thermal gradient and indicates that west coast 

crabs have higher upper thermal limits than east coast crabs. Impacts from climate change 

can be expected to differ depending on the local thermal conditions which populations 

experience on the South African coastline. 

 

4.4.1 Body mass differences associated with primary productivity and SST 

 

This chapter contributes evidence for regional body mass differences in South African marine 

invertebrates in two of three study species. Within sites, animals were collected randomly to 

minimise potential sampling bias, yet the Cape urchin P. angulosus demonstrates 

significantly higher body mass on the west coast compared to the south coast (Table 4.3; 

Figure 4.9). Further, west coast limpets (S. granularis) are significantly larger than limpets at 

the south and east coast (Table 4.3; Figure 4.9). Repeated visits to the field sites over 

multiple years confirm that the findings represent patterns reflected in the greater local 

populations (personal observation). Detecting significant mass (or size) differences across 

the South African coast corroborates earlier work on a probable relationship between 

intertidal primary productivity and consumer biomass in different coastal regions (Kilburn and 

Rippey, 1982; Bustamante et al. 1995). Assessments of nutrient concentrations including 

nitrates, nitrites, phosphates and silicates in addition to chlorophyll a levels produced by 

micro algae confirm the presence of a large scale intertidal primary productivity gradient 

around the coast (Bustamante et al. 1995). Intertidal primary production and nutrient 

concentrations are highest on the west coast, intermediate on the south and finally lowest on 

the east coast (Bustamante et al. 1995). Strong upwelling on the South African west coast is 

associated with nutrient rich waters and high biological productivity, whereas productivity is 

comparatively low on the south and east coast due to the nutrient poor waters brought by the 

Agulhas Current from the tropical Indian Ocean (Hill and McQuaid, 2008; Griffiths et al. 

2010). The grazer S. granularis and filter feeder P. angulosus directly or mostly consume 

algae biomass, which links them closer to primary productivity than omnivorous scavenger C. 

punctatus (Branch, 2017). It appears probable that intertidal primary productivity plays a 
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major role in ecological patterns of varying body mass of rocky shore invertebrates on the 

South African coast (Bustamante et al. 1995; Hill and McQuaid, 2008). Other possible 

influencing factors could be the impact of wave exposure, other oceanographic variables 

such as sea surface temperature, predator-prey interactions and demand for intertidal 

animals as food source (Bustamante et al. 1995; Branch and Odendaal, 2003; Griffiths et al. 

2010; Kosloski, Dietl and Handley, 2017). Size clines across species geographic distribution 

have also been regarded as possible result of phenotypic plastic response to local thermal 

conditions or the product of optimising natural selection towards local adaptation (Lee and 

Boulding, 2010; Sanford and Kelly, 2011). Evidence for the former could be observed in 

several crab species, where larger crabs are found in areas with cooler temperatures, known 

as the temperature-size rule (Atkinson, 1994; Kelley et al. 2015; Jaramillo et al. 2017; 

Johnson et al. 2019). However, regional mass differences in C. punctatus are not significant 

in linear mixed effect models (Figure 4.9). Where phenotypic plasticity is exceeded, warmer 

water temperature might act as selection pressure against larger body size in shore crabs 

(Muñoz, Kelley and De Rivera, 2017). Regarding Bergmann�s rule (Bergmann, 1847), the 

South African coast represents an interesting case, because the common association of cold 

water at higher latitude and warm water at lower latitudes does not apply. Upwelling on the 

west coast drives lower water temperatures than on the south and east coast, which could 

influence observed body size differences in P. angulosus and S. granularis (Griffiths et al. 

2010). Importantly, geographic variations of size or body mass in marine invertebrates 

should not be generalised, because these gradients are driven by complex interactions of 

environmental and biological factors (Angilletta and Dunham, 2003; Malvé, Gordillo and 

Rivadeneira, 2018). Nevertheless, patterns of intertidal primary productivity and sea surface 

temperatures are likely key factors for geographic size variation in South African rocky shore 

species. 

 

4.4.2 Mass influences thermal tolerance 

 

A number of studies have shown that thermal stress response can differ with body size (or its 

proxy mass) (Peck et al. 2007; Peck et al. 2009; Madeira et al. 2012b; Muñoz, Kelley and De 

Rivera, 2017; Gunderson et al. 2019). The Cape urchin P. angulosus demonstrates negative 

size correlation in CTmin values and positive mass correlation in CTmax and thermal breadth 

(Table 4.4-4.6), which gives larger urchins a thermal advantage over smaller individuals. On 

the west coast, mean water temperatures can seasonally vary between 11-15°C with short-

term fluctuations, whereas water temperatures at the east coast vary between 18-27°C (Smit 

et al. 2013; Figure 4.4). Mean mass in west coast urchins was measured at 32 g, compared 

to generally lighter urchins at the east coast (21 g) and south coast (17 g) (Table S4.2). If 
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larger Cape urchins have a thermal advantage due to their body size, west coast urchins 

might consequently be better equipped at coping with thermal stress than urchin populations 

at the south and east coast. Interestingly, the smaller east coast urchins display slightly 

higher mean critical thermal limits (CTmax: 30.9°C; CTmin: 8.9°C) than west coast urchins 

(CTmax: 29.2°C; CTmin: 7.3°C) (Table S4.3-4; see section 4.4.3). Considering that large Cape 

urchins have a thermal advantage over smaller ones, it is possible that larger body size at 

the west coast signals a physiological adaptation to colder temperatures. This expands 

considerations for regional size differences in South African marine invertebrates (see 

section 4.4.1). For populations of P. angulosus in warmer regions (south and east coast), an 

increased body size would improve thermal resistance. Essentially, factors such as nutrient 

concentrations, which might limit body size in P. angulosus at the east coast and south coast 

(see section 4.4.1), could also negatively influence their thermal tolerance capacity. Cape 

urchins occur in high abundance at the west coast (see section 1.7.2), which indicates that 

young P. angulosus withstand the regionally lower water temperatures sufficiently. One 

avenue to navigate low water temperatures during earlier life stages is the timing of 

spawning, which for P. angulosus reportedly takes place mostly after low winter 

temperatures subside (see section 1.7.2). Larvae of the Cape urchin have displayed active 

substrate settlement behaviour (Cram, 1971; Greenwood, 1975), which might allow them to 

choose advantageous microsites before reaching maturity. 

 

In marine crustaceans, smaller crabs can be more heat tolerant than larger crabs (Jensen 

and Armstrong, 1991; Madeira et al. 2012b; Gunderson et al. 2019). Although upper critical 

thermal limits do not show mass correlation in C. punctatus, larger shore crabs tolerate lower 

temperatures (CTmin) and demonstrate wider thermal breadth (Table 4.4, 4.6). The mean 

mass of C. punctatus at the west and south coast lies around ~7 g, compared to below 3 g in 

east coast crabs (Table S4.2). The mass correlation of CTmin and thermal breadth in C. 

punctatus suggests that west and south coast crabs are thermally advantaged to withstand 

extreme temperatures compared to east coast crabs. Mean CTmin is lower in west and south 

coast crabs (-0.2°C; -0.5°C) compared to east coast crabs (0.9°C) (Table S4.3) and mean 

thermal breadth in east coast crabs is smaller (43.3°C) than at the west and south coast 

(46.2°C; 45.7°C) (Table S4.5). This could be a possible signal that C. punctatus 

physiologically adapted through a regional increase in body size at the west and south coast 

to better tolerate local temperatures. Higher temperatures at the east coast mitigate the 

physiological pressure to tolerate low temperatures. Mass is not correlated with CTmax, which 

means that for CTmax there is no apparent advantage to adaptively increase or decrease 

body size. In general, body size can confound physiological measurements (see for example 

Woiwode and Adelman, 1992) and smaller body size in east coast crabs might possibly 
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reflect environmental limitations to attaining a higher body mass (see section 4.4.1). An 

unsolved question in this context is the potential influence of maturity and its relationship with 

thermal tolerance, as it is currently not known how mass (body size) relates to age across 

regions in C. punctatus. 

 

This study also contributes evidence that mass (or body size) does not necessarily influence 

critical thermal limits or thermal breadth in marine invertebrates. Mass does not impact 

thermal tolerance in S. granularis, even with significant regional mass differences (Figure 

4.9). It demonstrates that the role of mass in thermal characteristics of intertidal invertebrates 

is complex and cannot merely be deducted from co-occurring species. Other studies have 

shown that body size does not necessarily influence species thermal stress response 

(Prentice and Schneider, 1979; Taylor, 1982; Lee and Boulding, 2010; Monaco, Brokordt and 

Gaymer, 2010; Darnell, Nicholson and Munguia, 2015). Aside from body size, thermal traits 

in aquatic invertebrates can be influenced by sex (Sornom et al. 2010; Madeira et al. 2012b; 

Vaughn, Turnross and Carrington, 2014; Bedulina et al. 2017; Grilo et al. 2018), where 

female crabs might for instance demonstrate higher CTmax than males (Madeira et al. 2012b). 

However, other studies report no impact of sex on thermal traits (Todd and Dehnel, 1960; 

Tagatz, 1969; Sim"i" et al. 2014; Darnell, Nicholson and Munguia, 2015). This study 

contributes evidence that marine invertebrates do not necessarily display sex differences in 

thermal characteristics, as observed across male and female C. punctatus. Overall, thermal 

limits can be influenced by ontogeny, gravidness, nutritional status and desiccation stress 

(Terblanche et al. 2011; Madeira et al. 2012b; Klockmann, Günter and Fischer, 2017). 

 

4.4.3 Regional difference in CTmax 

 

Spanning regions from cool-temperate to warm-temperate to subtropical/tropical (Smit et al. 

2013; Teske et al. 2019), the South African coastline is a likely setting for populations to 

display geographic variation in critical thermal limits in response to local temperature 

conditions. Species in subtropical/tropical regions are generally associated with higher CTmin 

and CTmax limits (Stillman, 2002; Bonebrake and Deutsch, 2012), but variation in species 

physiological traits across thermal gradients can produce various patterns (Levins, 1968; 

Conover and Schultz, 1995; Angilletta, 2009; Conover, Duffy and Hice, 2009). The highest 

thermal limits are expected for populations in the warmest region of the species distribution 

(Sorte, Jones and Miller, 2011), yet the highest mean CTmax values in the shore crab C. 

punctatus are detected on the cool-temperate west coast. The high temperature variability in 

colder regions possibly shapes animals to withstand more extreme temperatures (Richard et 

al. 2012; Peck et al. 2014). Moreover, physiological variation in populations is influenced by 
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both environmental and genomic factors, which can create �counter-gradient� patterns 

(Angilletta, 2009; Gardiner, Munday and Nilsson, 2010; Marshall and Chua, 2012). The 

counter-gradient variation model suggests that cool-region populations can exhibit higher 

thermal limits than warm-region populations if environmental and genomic influences are 

negatively associated (Angilletta, Niewiarowski and Navas, 2002; Angilletta, 2009; Gardiner, 

Munday and Nilsson, 2010), which could be the case for C. punctatus. In this study, 

significant difference in mean CTmax between west coast and east coast crabs might reflect 

variation in phenotypic plasticity, epigenetic plasticity and/or local adaptation to the thermal 

gradient (Gardiner, Munday and Nilsson, 2010; Schulte, Healy and Fangue, 2011; 

Yampolsky, Schaer and Ebert, 2014; Collins et al. 2020).  

 

Regional variation in thermal tolerance or in indicators of thermal stress such as heat shock 

proteins are generally expected with geographic environmental variation and could be shown 

in intertidal crabs (Tepolt and Somero, 2014; Darnell and Darnell, 2018), gastropods (Kuo 

and Sanford, 2009; Gleason and Burton, 2015; Wang et al. 2019) and sea urchins (Fujisawa, 

1989; Osovitz and Hofmann, 2005; Byrne et al. 2011; Pecorino et al. 2013). For example, 

Darnell and Darnell (2018) showed that CTmax is highest in two fiddler crab species inhabiting 

the warmest region on the American east coast between southern Texas and New York. In a 

further example, Osovitz and Hofmann (2005) found that levels of heat stress response in 

the purple sea urchin Strongylocentrotus purpuratus populations are higher in southern 

California compared to cold-temperate Oregon. Nevertheless, macrophysiological patterns of 

geographic variation in thermal traits do not occur by default, as demonstrated by studies 

confirming only weak or no evidence for clinal differences in intertidal crustaceans (Gaitán-

Espitia et al. 2014), gastropods (Sagarin and Somero, 2006; Lee and Boulding, 2010) and 

sea urchins (Hammond, 2010). Here, no significant regional differences were detected in S. 

granularis and P. angulosus, which demonstrates the temperature variations these species 

can tolerate. Other examples include populations of the porcelain crab Petrolisthes 

violaceus, which did not show thermal tolerance differences across a latitudinal gradient of 

3000 km in Chile in spite of a latitudinal gradient in environmental temperature (Gaitán-

Espitia et al. 2014). Furthermore, two rocky shore gastropods did not demonstrate clinal 

variation in heat stress response across populations spanning 22 degrees of latitude with 

marked differences in ambient temperature conditions (Sagarin and Somero, 2006). 

 

Overall, organismal stress response can be influenced by local effects, species-specific 

differences and complex patterns of environmental conditions along coasts such as 

oceanography, coastal geomorphology and geographic differences in tidal regimes (Sagarin 

and Somero, 2006; Kuo and Sanford, 2009). To reiterate, thermal response can also vary 
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due to phenotypic and/or epigenetic plasticity and genomic local adaptation (Gardiner, 

Munday and Nilsson, 2010; Schulte, Healy and Fangue, 2011; Yampolsky, Schaer and 

Ebert, 2014; Baldanzi et al. 2017; Collins et al. 2020). As mentioned before, critical thermal 

trials are influenced by experimental factors such as acclimation period, length of exposure, 

heating rate and single compared to repeated thermal stress exposure (Terblanche et al. 

2007; Nguyen et al. 2011; Faulkner et al. 2014; Vinagre et al. 2015; Díaz et al. 2017). 

 

4.4.4 Highest thermal breadth in C. punctatus 

 

Thermal breadth (Tbr) or thermal tolerance range in populations inhabiting warmer regions is 

generally expected to be narrower compared to cold region counterparts (climatic variability 

hypothesis), due to the higher temperature variability associated with colder areas (Richard 

et al. 2012; Peck et al. 2014; Gutiérrez-Pesquera et al. 2016). There is an indication for this 

theoretical expectation in the shore crab C. punctatus, which displays lower mean Tbr in east 

coast crabs (43.3°C; Table S4.5) compared to west coast crabs (46.2°C; Table S4.5). 

However, linear mixed effect models determine no significant regional Tbr differences across 

the three study species (Figure 4.10; see section 4.4.3). Thermal breadth averaged across 

all regions shows largest Tbr in the crab C. punctatus (45.1°C) and narrowest Tbr in the urchin 

P. angulosus (22.6°C) (S. granularis (Tbr): 34.7°C; Table S4.5, Appendix). In the intertidal, 

high shore species are suggested to have the widest thermal breadth (Davenport and 

Davenport, 2005), which is interspecifically evidenced in low shore P. angulosus 

demonstrating the narrowest Tbr. For comparison with literature values, Tbr was calculated 

from recorded lower and upper thermal limits as part of the same study on a specific species. 

The Cape urchin displays a similar Tbr to the purple urchin Strongylocentrotus purpuratus 

(18.5°C; Farmanfarmaian and Giese, 1963) and the white urchin Tripneustes ventricosus 

(20.3°C; Collin et al. 2018), whereas seven other urchin species demonstrated broader Tbr 

values ranging from 28.8-31.8°C (Collin et al. 2018). In marine gastropods, Tbr around ~30-

31°C for Cellana radiata is comparable with S. granularis, whereas Tbr in Siphonaria atra is 

narrower at around 22-23°C (Morley et al. 2014). In marine crabs, Tbr can vary between 25.0-

29.7°C in tropical and subtropical species (Qari and Aljarari, 2014; Azra et al. 2018) and 

32.9-33.8°C in temperate species (Tepolt and Somero, 2014; Cumillaf et al. 2016). A study 

on benthic populations of Cancer pagurus in Norway suggests that the species thermal 

breadth might differ by as much as ~10°C between winter and summer (Bakke, Siikavuopio 

and Christiansen, 2019). Hence, it appears reasonable to assume a certain degree of 

seasonal variation in Tbr across the study species, which remains to be confirmed. 
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4.4.5 Warming and cooling tolerance 

 

Comparing critical thermal limits against maximum and minimum habitat temperatures 

provides an important indication for how much species are at risk for their thermal limits to be 

exceeded. Theoretical expectations (Deutsch et al. 2008; Huey et al. 2009; Sunday, Bates 

and Dulvy, 2012; Comte and Olden, 2017) would suggest east coast populations to live 

closest to their upper limits (lowest warming tolerance) and west coast populations closest to 

their lower thermal limits (lowest cooling tolerance). Moreover, high shore animals are 

expected to possess lower warming tolerance than low shore species (Vinagre et al. 2016). 

In the high-shore specialists C. punctatus and S. granularis, the warming and cooling 

tolerance is well above 5°C and often much higher (Table 4.7). Nevertheless, it would be 

misleading to deduct that these species have thermal limits which might easily buffer 

changing climatic conditions. Mean monthly maximum and minimum air temperatures are a 

coarse approximation of the temperature mosaic typical for intertidal habitats and their 

associated thermal niches. The temperature experienced by intertidal species during low tide 

can drastically rise or drop under the influence of factors such as solar radiation, wind speed, 

cloud cover, wave height and relative humidity levels (Helmuth and Hofmann, 2001; Helmuth 

et al. 2011) and further depends on microtopography of rocky substrates such as substrate 

surface orientation (Harley, 2008; Miller, Harley and Denny, 2009; Seabra et al. 2011). 

 

In the urchin P. angulosus, the lowest warming tolerance is suggested for the Cape St. 

Francis population during summer months (Dec-Feb; Table 4.8), which corroborates 

expectations to identify low WT in warm regions compared to cooler regions (Comte and 

Olden, 2017). The highest warming tolerance might be expected for west coast populations 

during austral winter months. However, local temperature data indicates the highest WT in 

Knysna instead (Table 4.8), which demonstrates the potential for local thermal variability on 

the south coast. Interestingly, the Knysna population is also suggested to potentially possess 

the highest cooling tolerance (Dec-Feb) and Cape St. Francis the lowest cooling tolerance 

(Jun-Aug; Table 4.8). The latter supports expectations of lower cooling tolerance in warmer 

regions (Stuart-Smith, Edgar and Bates, 2017), whereas the high variability of local thermal 

conditions on the south coast (Rouault, 2011; Blamey et al. 2015) likely influences the former 

finding. These are preliminary considerations, which require further assessment with 

minimum and maximum temperatures for the field sites. 

 

Only the strategic fine-scale collection of air and water temperature data across the intertidal 

zone and large-scale data collection across the thermal coastal gradient itself over longer 

time periods will allow more accurate risk estimations for local rocky shore species. Further, 
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species thermal limits might be higher in summer compared to (in this study: austral) winter, 

which would lead to varying warming tolerance (Schmidt-Nielsen, 1997). To reach a better 

understanding of the study species thermal resilience, future investigation towards summer 

CTmax and CTmin would be valuable. This effort could be supported by a recent framework of 

the South African Department of Environmental Affairs to collect in situ intertidal temperature 

data in numerous rocky shore locations as part of �Operation LIMPET� (Long-term Intertidal 

Monitoring through Participation, Evaluation and Training). 

 

4.4.6 Interspecific comparison of �winners� and �losers� 

 

As famously stated by Somero (2010), climate change has �winners� and �losers� depending 

on their ability to adjust their thermal limits on a phenotypic and/or evolutionary scale. 

Ranging across populations from 28.9°C to 32.4°C, average CTmax values of low shore 

species P. angulosus, are notably below the thermal limits of the high shore species C. 

punctatus (43.8°C to 45.9°C) and S. granularis (34.4°C to 35.7°C; Table S4.3, Appendix), 

which confirms the expectation of low shore species having lower thermal limits compared to 

high shore species (Stillman and Somero, 2000; Stillman, 2002; Nguyen et al. 2011; Sorte et 

al. 2019). Counter to the hypothesis that the limpet S. granularis might have higher upper 

thermal limits due to prolonged direct sun exposure during low tide, the highest CTmax values 

are detected in the shade-seeking crab C. punctatus. The order remains the same for lower 

critical limits, which are lowest in the shore crab (-1.5°C to 1.3°C) and highest in the Cape 

urchin (5.6°C to 10.9°C), with the granular limpet falling in between (-0.4°C to 3.2°C) (Table 

S4.2, Appendix). The shore crab C. punctatus demonstrates a substantial thermal range, 

displaying the highest upper critical thermal limits and the largest thermal range (from 43 to 

almost 47°C), which provides this species a potential advantage in future climate change. 

Thermal limits may show seasonal differences (Schmidt-Nielsen, 1997; Cuculescu, Hyde and 

Bowler, 1998; Qari and Aljarari, 2014), but it remains to be confirmed whether the shore crab 

displays higher CTmax in summer, as the values assessed in late winter/spring in this study 

(43.8-46.1°C) surpass upper thermal limits measured in tropical crabs (Qari and Aljarari, 

2014; Cumillaf et al. 2016; Azra et al. 2018; Roni et al. 2019). It needs to be investigated how 

long C. punctatus can survive such peaks in temperature and how repeated exposure would 

affect the species thermal resilience. Cumillaf et al. (2016) argue that temperate intertidal 

crabs have a CTmax limit around 35°C, seemingly corresponding with low CTmax limits of 

tropical crabs (34�36°C). With C. punctatus demonstrating a regional average CTmax of 46°C 

on the cold temperate South African west coast, this study provides evidence against very 

defined thermal limits between temperate and tropical crustaceans. 
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In the literature, upper thermal tolerance in intertidal crabs ranges from 20-36.4°C in 

temperate species (Cuculescu, Hyde and Bowler, 1998; McGaw, 2003; Stillman, 2004; 

Hopkin et al. 2006; Kelley, de Rivera and Buckley, 2011; Madeira et al. 2012a,b; Tepolt and 

Somero, 2014; Cumillaf et al. 2016; Darnell and Darnell, 2018; Bakke, Siikavuopio and 

Christiansen, 2019) to 41.5-44.38°C in subtropical and tropical species (Stillman, 2004; Qari 

and Aljarari, 2014; Azra et al. 2018; Darnell and Darnell, 2018; Roni et al. 2019). There is a 

dominant emphasis on upper thermal limits in comparison to lower thermal limits in marine 

crustaceans, which has been recognised (Qari and Aljarari, 2014; Bakke, Siikavuopio and 

Christiansen, 2019). Lower critical thermal limits in temperate crab species are reported from 

-1.3°C to 2.7°C (Stillman, 2004; Tepolt and Somero, 2014; Cumillaf et al. 2016; Bakke, 

Siikavuopio and Christiansen, 2019) and from 11.3°C to 19.30°C in subtropical and tropical 

regions (Stillman, 2004; Qari and Aljarari, 2014; Azra et al. 2018). 

 

For limpets, lower thermal limits range between 2.6°C and 15.6°C (Morley et al. 2014), but 

data for temperate and tropical species is very limited. In temperate limpet species, upper 

thermal limits are generally observed between 30°C and 42°C (Miller, Harley and Denny, 

2009; Bjelde et al. 2015; Miller et al. 2015; Chapperon et al. 2016; Drake, Miller and 

Todgham, 2017; Vinagre et al. 2019; Wang et al. 2019). The highest upper thermal tolerance 

limit in a temperate limpet was observed at 42.5°C in Patella vulgata (Chapperon et al. 

2016). Tropical limpet species show upper limits between 28.3°C and 42°C (Morley et al. 

2014; Díaz et al. 2015; Vinagre et al. 2018). A previous study on South African S. granularis 

measured the upper mean LT50 (median lethal temperature) at ~36°C in austral winter across 

three east coast populations, which are located between the present study�s Cape St. 

Francis and Haga Haga populations (Kankondi, McQuaid and Tagliarolo, 2018). This finding 

appears congruent with the mean CTmax (35.5°C, Table S4.4, Appendix) obtained for S. 

granularis from the east coast region. 

 

Lower critical thermal limits in urchins are reported between 5°C to 19.1°C (Farmanfarmaian 

and Giese, 1963; Collin et al. 2018), but cold tolerance in urchins is otherwise poorly 

understood. Upper thermal limits range in temperate species from 19.5 to 26.8°C (Morley et 

al. 2016). In tropical regions, upper thermal limits have been observed between 23.5°C and 

37.1°C (Farmanfarmaian and Giese, 1963; Hernández et al. 2004; Nguyen et al. 2011; 

Sherman, 2015; Collin and Chan, 2016; Morley et al. 2016; Collin et al. 2018), with the 

highest thermal limit (38.42°C) reported for the tropical urchin Arbacia stellata (Díaz et al. 

2017). This study contributes lower and upper critical thermal limits for temperate populations 

of adult urchins, which are generally underrepresented in the literature as opposed to urchin 

embryos or larvae (Greenwood and Bennett, 1981; Sconzo et al. 1986; Sewell and Young, 
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1999; Byrne et al. 2009; Ling et al. 2009; Hammond and Hofmann, 2010; Byrne et al. 2011; 

Hardy et al. 2014; Collin and Chan, 2016). In general, limited available data for thermal 

tolerance in adult intertidal marine invertebrates highlights the need for empirical 

investigation of critical thermal limits across temperate and tropical regions. 

 

Thermal regulation through behaviour 

 

Behavioural thermal regulation influences species temperature resilience, for which the study 

species display different strategies to persist in their intertidal microhabitat. Shade seeking, 

as practised by C. punctatus, is regarded as the most important thermoregulatory behaviour 

(Jackson, 2010; Gunderson et al. 2019; Brahim, Mustapha and Marshall, 2019), but it 

remains questionable whether it will be sufficient for the shore crab to evade climate change 

impacts (Blackburn et al. 2014). The low shore urchin P. angulosus usually remains 

submerged throughout the tidal cycle, which creates a certain buffer against temperature 

change. Additionally, the Cape urchin demonstrates behaviour interpreted as protection from 

solar radiation and potential predators by self-covering with small rocks and shells (Figure 

4.3; Millott, 1956; Crook and Barnes, 2001; Brothers and McClintock, 2015; Ziegenhorn, 

2017). Further, the low shore position in the intertidal zone makes it more feasible for P. 

angulosus to evade rising temperatures by permanently seeking out deeper waters (Perkins 

et al. 2015). Thermoregulatory behaviour in intertidal gastropods such as S. granularis is 

influenced by a variety of factors. 

 

Behaviour trade-offs affect thermal resilience in S. granularis 

 

High shore gastropods are already constrained by physiological stress in the intertidal 

(Garrity, 1984). Apart from microhabitat selection, thermoregulatory behaviour can include 

shell orientation, mucous holdfast and shell-raising (mushrooming) (Garrity, 1984; Williams 

and Morritt, 1995; Muñoz et al. 2005; Williams et al. 2005; Chapperon et al. 2016; Seuront 

and Ng, 2016). Gastropod aggregations might also be considered as thermal regulation 

behaviour (Garrity, 1984), but there is evidence suggesting otherwise (Coleman, 2010). 

South African S. granularis faces limited possibilities for mitigation of thermal stress during 

low tide. Aerial exposure likely acts as a strong cue to prime intertidal animals for thermal 

stress (Drake, Miller and Todgham, 2017). However, the phenomenon termed desiccation-

risk-avoidance describes that high-shore gastropods stop crawling when the substrate 

becomes hot and dry with the receding tide to prevent desiccation, which undermines the 

selection of a thermally suitable settling position (Monaco, McQuaid and Marshall, 2017). 

Failure to select settling positions on thermal cues means individuals tend to assume their 
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low tide position in direct sunlight (Marshall and Chua, 2012; Marshall, Baharuddin and 

McQuaid, 2013; Monaco, McQuaid and Marshall, 2017). Not surprisingly, high-shore animals 

may be most threatened by mortality from acute overheating over gradual long term 

temperature increases (Williams and Morritt, 1995; Marshall and McQuaid, 2011; Marshall et 

al. 2011). Scutellastra granularis has been observed to utilise shell-raising as a temporary 

heat relief, which does however greatly increase its risk of desiccation (Williams and Morritt, 

1995; Williams et al. 2005). Some limpet species maintain home scars, which are specific 

crevices they return to if not even defend (Branch and Branch, 1981; Gray, 1997), but S. 

granularis does not form home scars. The possible effects of shell-orientation or microhabitat 

selection have not been studied in the granular limpet and there is evidence that wind-driven 

convective cooling can marginally reduce temperature impacts (Helmuth et al. 2011), but the 

persistence of high-shore gastropods is uncertain under ongoing climate change. Around the 

world, limpets are regarded as key herbivorous grazers, which shape the rocky shore 

community with control of algal growth (Branch, 1981; Hawkins and Hartnoll, 1983; Geller, 

1991; Bustamante, Branch and Eekhout, 1995; Coleman et al. 2006). Hence, the decline of 

limpet species from thermal stress will impact ecological processes in the intertidal.  

 

Climate change poses a drastic physiological challenge with presumed �winners� and �losers� 

(Somero, 2010). Risking simplification of this complex matter, critical thermal limits combined 

with behavioural thermoregulation strategy suggest the crab C. punctatus as possible 

�winner� and the limpet S. granularis as �loser�, with the sea urchin P. angulosus falling 

between them on the climate change risk estimation scale. However, it could count as 

opposite argument to regard high shore species in general as more at risk than low shore 

species such as P. angulosus (Somero, 2010). 

 

4.4.7 Regional variation of climate change impacts 

 

Assessing species thermal limits is an important step towards anticipating their ability to cope 

with climate change. In South Africa, geographically varying climatic predictions lead to 

different risks from climate change for local rocky shore species. To briefly recapitulate, the 

South African coastal SST gradient ranges seasonally from 11-15°C on the west coast to 18-

27°C on the east coast (see section 1.5.2; Smit et al. 2013). The east coast will warm further 

(see section 1.6.2; Rouault, Penven and Pohl, 2009), the west coast shows signs of cooling 

(Rouault, Pohl and Penven, 2010; Dufois and Rouault, 2012) and the south coast is 

expected to both warm and cool depending on the area (Rouault, 2011; Blamey et al. 2015). 
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Shore crab C. punctatus 

West coast shore crabs possess the overall highest average CTmax values, which likely 

makes them most thermo-resilient. Moreover, west coast crabs benefit from the 

advantageous regional conditions, such as the highest intertidal primary productivity, which is 

in turn lowest on the east coast (Bustamante et al. 1995). Importantly, temperatures on the 

west coast are predicted to cool rather than warm (Rouault, Pohl and Penven, 2010; Dufois 

and Rouault, 2012), which creates a temperature refugium supported by nutrition-rich waters 

connected to strong upwelling (Whitfield et al. 2016). In general, areas associated with 

coastal upwelling are characterised by lower warming rates than adjacent areas, making 

them a shelter for species from climate change (Lourenço et al. 2020). Additionally, 

upwelling-driven cool water temperatures create unfavourable conditions for certain 

pathogens impacting intertidal invertebrates in warmer areas (Lester, Tobin and Behrens, 

2007). Changing climate conditions will likely pose the strongest burden on shore crab 

populations on the east coast, which � in spite of facing the highest environmental 

temperatures � have the lowest mean CTmax limits across all regions and possibly already 

face limitations from environmental factors such as low primary productivity in the area 

(Bustamante et al. 1995). Climatic predictions for the south coast are less clear (Rouault, 

2011; Blamey et al. 2015), suggesting that the thermal resilience of southern populations will 

depend on local temperature trends in specific areas. 

 

Granular limpet S. granularis 

Granular limpets usually settle in full sunlight high on the shore for low tide (desiccation-risk-

avoidance), which greatly increases their risk of overheating. Thus, rising temperatures on 

the east coast (Rouault, Penven and Pohl, 2009) could drive a population decline and/or 

local extinctions at the range edge of S. granularis and other high shore gastropods. South 

coast populations might fare better than east coast populations, but predictions at the 

population level will only become possible with more fine-scale climatic predictions for this 

coastal stretch. Across South African marine species, the cold-water west coast has been 

suggested as a climate change shelter (Whitfield et al. 2016). High levels of nutrients linked 

to upwelling likely facilitate the high S. granularis body mass compared to the south and east 

coasts (see section 4.4.1). Western populations appear to be in a better position to cope with 

climate change, but it is important to remember that the limpet�s low tide settling behaviour 

greatly increases mortality induced by extreme temperatures (see section 4.4.6), overall 

lowering the species thermal resilience. 
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Cape urchin P. angulosus 

Further warming of the east coast (Rouault, Penven and Pohl, 2009) is bound to increase the 

physiological strain on populations of P. angulosus. Other urchin species around the world 

have started to seek out deeper waters or shifted poleward in response to rapidly changing 

environmental conditions (Ling et al. 2009; Wernberg et al. 2011; Cheung et al. 2012; 

Perkins et al. 2015; Poloczanska et al. 2016). The Cape urchin occurs up to a depth of 30 m 

(see section 1.7.2) and is the only species which is able to permanently retreat to deeper 

waters as a means of tracking its preferred conditions. If shifts towards deeper waters in 

South African rocky shore urchin populations occur, it is plausible for eastern populations to 

display them first due to the higher environmental temperatures on the east coast. While it is 

difficult to predict exact consequences, it has to be considered that vertical shift in the urchin 

distribution will also shift grazing pressure on intertidal algae communities and may result in 

altered vertical zonation patterns and ecological interactions. Responses of south coast 

urchins will depend on whether the local temperature conditions warm or cool (Rouault, 

2011; Blamey et al. 2015) and on other relevant factors including the occurrence of extreme 

temperature events (Schlegel et al. 2017). West coast urchins indicate the highest body 

mass levels and apparently benefit from upwelling-driven nutrient-rich waters, which appear 

to provide the most favourable conditions for P. angulosus populations across the South 

African coast. Ultimately, west coast Cape urchins may be buffered to some degree against 

impending climate change impacts. 

 

Interspecific regional patterns 

 

Of all coastal regions, east coast rocky shore organisms are most at risk from future climate 

change impacts, which is congruent with expectations for ectotherms in subtropical/tropical 

regions (Sinervo et al. 2010; Bonebrake and Deutsch, 2012; Pinsky et al. 2019). Additionally, 

populations on the southern east coast constitute the approximate range edge of the study 

species distribution (notwithstanding that rocky shore species can occur further east of Haga 

Haga), where populations already experience strain from higher temperatures at present 

(Gaston, 2009; Sexton et al. 2009; Sorte et al. 2019). Consequently, these populations are 

more vulnerable than in other coastal regions to future climate change (Sorte and Hofmann, 

2004; Sagarin and Somero, 2006; Han et al. 2019). Species are likely further disadvantaged 

by environmental limitations including nutrient-poor waters and low intertidal primary 

productivity (Bustamante et al. 1995). 

 

The south coast is characterised by high variability of local temperature trends (Rouault, 

2011; Blamey et al. 2015), which hinders predictions for species future trajectories in 
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response to climatic changes. Depending on geographic position, species might either 

benefit from cooling conditions or battle with the effects of warming conditions. An example 

for east-west coastline orientation and climate-driven effects can be found at the northern 

Gulf of Mexico and the Gulf of Maine in North America, where depth shifts of invertebrate 

assemblages and demersal fish to cooler waters have been observed (Nye et al. 2009; 

Pinsky et al. 2013). In Australia, the south coast also has an east-west orientation and 

harbours most of the continent�s temperate communities (Wernberg et al. 2011). This narrow 

latitudinal band is expected to undergo �tropicalisation� with the incipient distribution shift of 

species from warmer waters (Cheung et al. 2012). The development leads to species gains 

and losses, with far reaching implications for temperate marine communities. On the South 

African south coast, a similar development is plausible, yet the oceanographic processes and 

associated local water temperature variability are not directly comparable with southern 

Australia. Cooling of the Benguela Current and warming of the Agulhas Current are expected 

to drive a contraction of warm-temperate conditions on the south coast (Blamey et al. 2015; 

Whitfield et al. 2016). Upwelling filaments (cold-water tongues) occurring on the south coast 

(Lutjeharms and Stockton, 1991; Roberts and Van Den Berg, 2005; Jackson et al. 2012) 

could concentrate temperate species in certain areas, whereas warming areas will attract 

warmer-water species. 

 

West coast populations continue to benefit from nutrient-rich cold water upwelling, which 

creates a temperature refugium for local rocky shore species (Whitfield et al. 2016; Lourenço 

et al. 2020). Predicted cooling for the west coast might affect local rocky shore communities 

less than warming temperature conditions expected for other regions, because populations in 

temperate regions are expected to tolerate temperature shifts better than populations in 

subtropical/tropical regions (Tewksbury, Huey and Deutsch, 2008; Hofmann and Todgham, 

2010; Nguyen et al. 2011; Vinagre et al. 2019). Overall, this provides important evidence 

towards managing and protecting parts of the west coast as possible climate change 

refugium for rocky shore species, which are likely to suffer from the impact of warming 

temperatures in other coastal regions (Whitfield et al. 2016). Unlike species in other parts of 

the world (Perry et al. 2005; Ling et al. 2009; Flagor and Bourdeau, 2018), coastal South 

African species are unable to shift their range poleward to evade rising temperatures due to 

the east-west orientation of the coastline. The absence of this escape avenue emphasises 

the importance of supporting and protecting the South African west coast as thermal 

refugium (Whitfield et al. 2016). The west coast has received some conservation attention 

(Majiedt et al. 2013; Sink, 2016), but it is crucial that further recognition is considered to 

support and protect rocky shore communities. 
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Climate change impacts on species distribution 

 

Rising temperatures have the potential to drastically reduce or extirpate range edge 

populations in the warmest regions of species distribution (Stuart-Smith, Edgar and Bates, 

2017). The rocky shore species in this study might experience warm range edge contractions 

on the east coast and may possibly cease to occur in this coastal region in the long term. 

Distributional shifts could also appear towards deeper waters in the urchin P. angulosus, with 

widespread ecological implications. On the south coast, warming areas might generally 

become less attractive for rocky shore species (Wernberg et al. 2011; Cheung et al. 2012), 

which could lead to a species concentration in cooling areas on the south coast. The west 

coast will increase in its importance as anchor for the distribution of rocky shore species in 

South Africa. If west coast populations stand to benefit from cooling temperatures in their 

abundance remains to be established in accordance with factors such as industrial use 

impacts (Majiedt et al. 2013). Moreover, the occurrence of extreme temperature events can 

be expected to influence regional distribution patterns. 

 

Impact of extreme temperature events on South African coasts 

 

Aside from gradually changing temperature conditions, climate change is also associated 

with more frequent and extended extreme temperature events (IPCC, 2014; Angélil et al. 

2017; Frölicher, Fischer and Gruber, 2018). In the intertidal, high shore species are 

disproportionally at risk from heat waves (Williams et al. 2005; Williams, Chan and Dong, 

2019) and cold waves (Firth, Knights and Bell, 2011; Firth et al. 2015) compared to low shore 

species. Consequently, low shore P. angulosus may be least at risk compared to S. 

granularis and C. punctatus, which are exposed during low tide. The latter two species are 

more exposed to temperature extremes and may for instance suffer more extensively from 

the adverse impacts of accumulated heat exposure (Pasparakis, Davis and Todgham, 2016; 

Vinagre et al. 2018; Siegle, Taylor and O�Connor, 2018). In South Africa, marine heat waves 

have increased over the last 20 years and marine cold-spells have decreased, with regional 

differences in frequency and intensity between coasts (Schlegel et al. 2017). Regionally, cold 

waves are decreasing more on the east than on the west coast, which is advantageous for 

population inhabiting the former (Schlegel et al. 2017). However, the occurrence of marine 

heat waves increases from the west coast to the east coast, rendering intertidal east coast 

populations most vulnerable to heat-induced mortality (Schlegel et al. 2017). Despite the 

limited duration of heat waves or cold-spells, extreme temperature events can have profound 

and lasting adverse impacts on intertidal communities such as collapsing or extirpating 

marginal populations when physiological thresholds are surpassed (Garrabou et al. 2009; 
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Firth, Knights and Bell, 2011; Wethey et al. 2011; Smale and Wernberg, 2013; Rilov, 2016; 

Thomsen et al. 2019). 

 

Factors limiting acclimation to climate change 

 

Overall, acclimation facilitated by variation in phenotypic plasticity is essential to cope with 

environmental changes (Brahim, Mustapha and Marshall, 2019; Neel et al. 2020), but 

physiological and genetic constraints (Hoffmann, Chown and Clusella-Trullas, 2013; Araújo 

et al. 2013; Meester, Stoks and Brans, 2018) as well as the impact of increasing extreme 

temperature events are expected to limit its scope (Stillman, 2019). Further, subtropical and 

tropical populations are likely to have lower acclimation potential compared to temperate 

populations (Peck et al. 2014). Climate change may exceed species physiological plasticity 

and ability to acclimate to new conditions in the long term (van Heerwaarden, Kellermann 

and Sgrò, 2016; Gunderson, Dillon and Stillman, 2017). The concern for limited acclimation 

ability is very relevant for South African rocky shore species, which are geographically 

unable to shift polewards in pursuit of lower temperatures. Shifting within the intertidal 

zonation as a thermal risk mitigation strategy for high shore species is, on a longer time 

scale, hampered by rising sea levels (IPCC, 2013). Coastal habitat is reduced as tidal 

boundaries move upslope (Harley, 2003; Schleupner, 2008; Leo et al. 2019). Vertical 

squeezing constrains species including S. granularis and C. punctatus specifically when fixed 

landward boundaries are present. Finally, the resilience of rocky shore communities is, 

beyond climate change, threatened by non-climate stressors such as environmental pollution 

and coastal development, which act synergistically to lower species persistence to impacts 

from storms, invasive species and diseases (Lester, Tobin and Behrens, 2007; Wernberg et 

al. 2011; Whitfield et al. 2016). 

 

4.4.8 Summary 

 

To briefly recapitulate, the findings in this chapter provide further evidence for regional body 

mass differences in certain intertidal species across South Africa�s coastal regions. It is 

possible that physiological adaptation to thermal conditions contributes to these regional 

mass differences. Upper and lower critical thermal limits vary substantially across species 

and confirm theoretical expectations of higher thermal tolerance in high shore species. 

Findings indicate no sex-bias in thermal tolerance across male and female C. punctatus. 

Highest upper critical thermal limits were expected to be measured in the high shore limpet 

S. granularis and lowest critical thermal limits in the urchin P. angulosus. Surprisingly, both 

the highest and the lowest thermal limits were measured in the shore crab C. punctatus. In 
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general, thermal limits were expected to be higher in eastern populations over western 

populations. In contrast, the highest CTmax was measured in C. punctatus� west coast 

populations and both P. angulosus and S. granularis did not reveal regional differences in 

critical thermal limits. Theoretical expectations suggest that the thermal breath is usually 

smaller in populations in warmer compared to colder regions, yet no significant differences 

were measured in this study. In general, warming and cooling tolerance is suggested to be 

narrowest in warmer regions, but this study observes that populations at the south coast, 

which experience high local thermal variation, might have the narrowest warming and cooling 

tolerance. In light of increasing marine heat waves in South Africa (Schlegel et al. 2017), 

populations at the east coast are at high risk from future heat waves and further increasing 

temperatures. Cold water temperatures from upwelling give the west coast region high 

importance to shelter species from climate change impacts, but general predictions for the 

south coast are constrained by the high variation of local thermal conditions. While 

phenotypic plasticity enables intertidal organisms to adjust their physiology in response to 

their environment and thereby allows them to extend their thermal limits to some degree, 

temperature changes exceeding their phenotypic limits could prove fatal. To cope with such 

changes, evolutionary adaptations are required, which will however depend on species 

genomic potential as well as the rate of adaptation. 

 

Remarkably, the shore crab C. punctatus demonstrates a broad thermal range and high 

upper critical thermal limits compared to other crustaceans (see section 4.4.6). Because the 

thermal tolerance experiments were conducted after the study species were collected in late 

winter/early spring, it would be interesting to assess how critical thermal limits measured in 

midsummer compare at the field sites. Further, thermal tolerance can also be measured with 

failure of cardiac function (Arrhenius break temperature) and irreversible protein damage 

(carbonylation), which could offer further insights into the species� thermal resilience (see for 

example Stillman and Tagmount, 2009; Dong and Williams, 2011; Han et al. 2013; Tepolt 

and Somero, 2014; Wang et al. 2019). A future question worth investigating is the possible 

impact of accumulated heat stress from repeated exposure to thermal stress (Terblanche et 

al. 2007; Faulkner et al. 2014; Vinagre et al. 2015; Siegle, Taylor and O�Connor, 2018). 

Moreover, in situ intertidal water and air temperature data is required to investigate 

microhabitat conditions experienced by the study species during low tides. For instance, 

calculating appropriate warming and cooling tolerance in the Cape urchin P. angulosus 

requires near-shore minimum and maximum sea water temperatures at rocky shore sites. 

Reflecting on the study findings overall, it is remarkable that the shore crab C. punctatus 

indicates a significant regional difference in thermal tolerance between west and east coast 

crabs (see section 4.4.3), which is not indicated by geographic differences in the species 
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(selectively neutral) population structure (Chapter II) and detected putatively adaptive loci 

(Chapter III). A transcriptome-based physiological experimental approach could further 

explore this observation (see section 3.4.7). With a regional thermal tolerance difference in 

C. punctatus, it could be hypothesised that gene expression geographically varies in this and 

possibly other marine invertebrates in response to environmental stress. Following up 

transcriptomic data with qRT-PCR analysis would allow the comparison and functional 

verification of putatively adaptive loci identified in this study. 
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4.5 Appendix 
 

Table S4.1. Shapiro Wilk�s Test, distribution skewness coefficient, Levene�s Test and Bartlett�s Test 
values per coastal region across species for body mass, CTmax, CTmin and Tbr (thermal breadth). 

Significant values are indicated in bold. 
 

 

    
Univariate 

Shapiro Wilk's 
Test 

Distribution 
skewness 

Levene's Test Bartlett Test 

B
o
dy

 m
a
ss

 Crab 
W = 0.956, 
p = 0.001 

0.67 F(2) = 4.01, 
p = 0.021 

k²(2) = 8.80, 
p = 0.012 

Limpet 
W = 0.824, 
p = <0.001 

1.55 F(2) = 23.83, 
p = <0.001 

k²(2) = 57.21, 
p = <0.001 

Urchin 
W = 0.961, 
p = 0.002 

0.60 F(2) = 2.52, 
p = 0.085 

k²(2) = 5.07, 
p = 0.079 

C
ra

b
 

CTmax 
W = 0.923, 
p = <0.001 

-0.89 F(2) = 4.87, 
p = 0.010 

k²(2) = 13.84, 
p = 0.001 

CTmin 
W = 0.983, 
p = 0.214 

0.01 F(2) = 0.47, 
p = 0.626 

k²(2) = 0.514, 
p = 0.774 

Tbr 
W = 0.981, 
p = 0.133 

-0.51 
F(2) = 0.35, 
p = 0.705 

k²(2) = 1.12, 
p = 0.571 

L
im

p
et

 

CTmax 
W = 0.955, 
p = <0.001 

-0.77 F(2) = 6.80, 
p = 0.002 

k²(2) = 16.68, 
p = <0.001 

CTmin 
W = 0.942, 
p = <0.001 

0.86 F(2) = 4.85, 
p = 0.009 

k²(2) = 10.16, 
p = 0.006 

Tbr 
W = 0.954, 
p = <0.001 

-0.85 
F(2) = 6.51, 
p = 0.002 

k²(2) = 13.61, 
p = 0.001 

U
rc

h
in

 

CTmax 
W = 0.982, 
p = 0.134 

-0.34 F(2) = 2.91, 
p = 0.059 

k²(2) = 11.68, 
p = 0.003 

CTmin 
W = 0.977, 
p = 0.048 

-0.11 F(2) = 1.89, 
p = 0.157 

k²(2) = 2.65, 
p = 0.266 

Tbr 
W = 0.988, 
p = 0.444 

-0.23 
F(2) = 3.04, 
p = 0.052 

k²(2) = 5.57, 
p = 0.062 
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Table S4.2. Summary of mass data for all three species, including sample size (N), mean and median 
(in g), standard deviation and standard error per region and population. 

 

C. punctatus Sample size [N] Mean [g] Median [g] SD SE 

west coast 38 6.79 6.52 2.82 0.46 
south coast 35 7.11 6.84 3.20 0.54 
east coast 32 2.69 2.13 1.87 0.33 
Total/Average 105 5.5 5.2 2.6 0.4 

S. granularis Sample size [N] Mean [g] Median [g] SD SE 

west coast 38 7.31 6.75 2.99 0.48 
south coast 40 2.02 1.75 1.07 0.17 
east coast 53 2.58 2.63 1.16 0.16 

Total/Average 131 4.0 3.7 1.7 0.3 

P. angulosus Sample size [N] Mean [g] Median [g] SD SE 

west coast 35 32.08 31.29 9.59 1.62 
south coast 38 17.05 15.35 6.57 1.07 
east coast 39 20.77 19.77 7.75 1.24 
Total/Average 112 23.3 22.1 8.0 1.3 

C. punctatus Sample size [N] Mean [g] Median [g] SD SE 

Jacob's Bay 18 5.80 5.57 2.42 0.57 

Sea Point 20 7.68 7.11 2.91 0.65 

Cape Agulhas 18 5.96 5.60 2.60 0.61 

Knysna 17 8.34 6.93 3.38 0.82 

Cape St. Francis 16 1.99 1.47 1.36 0.34 

Haga Haga 16 3.40 2.81 2.08 0.52 

Total/Average 105 5.53 4.91 2.46 0.59 

S. granularis Sample size [N] Mean [g] Median [g] SD SE 

Port Nolloth 19 8.37 7.90 2.31 0.53 

Sea Point 19 6.26 5.15 3.26 0.75 

Cape Agulhas 19 2.28 1.95 1.35 0.31 

Knysna 21 1.77 1.69 0.68 0.15 

Cape St. Francis 25 3.00 2.79 0.78 0.16 

Haga Haga 28 2.20 1.90 1.31 0.25 
Total/Average 131 3.98 3.56 1.62 0.36 

P. angulosus Sample size [N] Mean [g] Median [g] SD SE 

Port Nolloth 15 36.94 36.39 8.90 2.30 

Sea Point 20 28.43 28.15 8.57 1.92 

Cape Agulhas 17 16.38 14.42 5.96 1.45 

Knysna 21 17.59 18.57 7.12 1.55 

Cape St. Francis 18 21.20 23.67 7.11 1.67 

Haga Haga 21 20.40 19.25 8.42 1.84 

Total/Average 112 23.49 23.41 7.68 1.79 
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Table S4.3. Summary of CTmin data set for all three species, including sample size (N), mean and 
median (in °C), standard deviation and standard error per region and population. 

 

C. punctatus Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 38 -0.2 -0.3 1.7 0.3 
south coast 35 -0.5 -0.6 1.9 0.3 
east coast 32 0.9 1.5 1.7 0.3 
Total/Average 105 0.1 0.2 1.7 0.3 

S. granularis Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 38 -0.3 -0.8 2.2 0.4 
south coast 40 2.1 1.6 2.6 0.4 
east coast 53 -0.2 -0.4 1.6 0.2 

Total/Average 131 0.5 0.1 2.1 0.3 

P. angulosus Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 35 7.3 7.0 2.7 0.5 
south coast 38 6.4 6.5 2.1 0.3 
east coast 39 8.9 8.8 2.2 0.3 
Total/Average 112 7.5 7.4 2.3 0.4 

C. punctatus Sample size [N] Mean [°C] Median [°C] SD SE 

Jacob's Bay 18 0.3 0.3 1.8 0.4 

Sea Point 20 -0.6 -0.8 1.4 0.3 

Cape Agulhas 18 0.5 0.8 1.6 0.4 

Knysna 17 -1.5 -1.7 1.6 0.4 

Cape St. Francis 16 1.3 1.6 1.7 0.4 

Haga Haga 16 0.6 0.7 1.7 0.4 

Total/Average 105 0 0.1 1.8 0.2 

S. granularis Sample size [N] Mean [°C] Median [°C] SD SE 

Port Nolloth 19 -0.2 -0.8 1.7 0.4 

Sea Point 19 -0.4 -1.4 2.6 0.6 

Cape Agulhas 19 3.2 2.3 2.2 0.5 

Knysna 21 1.1 0.2 2.6 0.6 

Cape St. Francis 25 -0.3 -0.6 1.9 0.4 

Haga Haga 28 -0.1 -0.4 1.4 0.3 

Total/Average 131 0.5 -0.1 2.4 0.2 

P. angulosus Sample size [N] Mean [°C] Median [°C] SD SE 

Port Nolloth 15 5.6 6.2 1.9 0.5 

Sea Point 20 8.6 9.3 2.5 0.5 

Cape Agulhas 17 8.1 8.3 1 0.3 

Knysna 21 5 5.2 1.7 0.4 

Cape St. Francis 18 10.9 11 1 0.2 

Haga Haga 21 7.2 6.7 1.3 0.3 

Total/Average 112 7.6 7.8 2.5 0.2 
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Table S4.4. Summary of CTmax data set for all three species, including sample size (N), mean and 
median (in °C), standard deviation and standard error per region and population. 

 

C. punctatus Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 38 46.0 46.2 1.1 0.2 
south coast 35 45.2 45.2 0.7 0.1 
east coast 32 44.3 44.7 1.3 0.2 
Total/Average 105 45.2 45.4 1.0 0.2 

S. granularis Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 38 34.9 35.0 1.0 0.2 
south coast 40 35.1 35.5 1.6 0.3 
east coast 53 35.5 35.7 0.9 0.1 

Total/Average 131 35.2 35.4 1.2 0.2 

P. angulosus Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 35 29.2 29.5 1.5 0.3 
south coast 38 30.3 30.4 1.4 0.2 
east coast 39 30.9 31.6 2.3 0.4 
Total/Average 112 30.1 30.5 1.7 0.3 

C. punctatus Sample size [N] Mean [°C] Median [°C] SD SE 

Jacob's Bay 18 45.9 46 1.1 0.3 

Sea Point 20 46.1 46.2 1.1 0.3 

Cape Agulhas 18 45.3 45.3 0.5 0.1 

Knysna 17 45.1 45.2 0.8 0.2 

Cape St. Francis 16 43.8 44.5 1.7 0.4 

Haga Haga 16 44.7 44.9 0.6 0.1 

Total/Average 105 45.2 45.3 1.3 0.1 

S. granularis Sample size [N] Mean [°C] Median [°C] SD SE 

Port Nolloth 19 34.6 34.9 1.1 0.2 

Sea Point 19 35.2 35.5 0.8 0.2 

Cape Agulhas 19 34.4 34.7 1.4 0.3 

Knysna 21 35.7 36.4 1.6 0.3 

Cape St. Francis 25 35.7 35.8 0.7 0.1 

Haga Haga 28 35.4 35.7 1.1 0.2 

Total/Average 131 35.2 35.5 1.2 0.1 

P. angulosus Sample size [N] Mean [°C] Median [°C] SD SE 

Port Nolloth 15 28.9 28.9 1.4 0.4 

Sea Point 20 29.4 29.6 1.6 0.3 

Cape Agulhas 17 29.3 29.2 1 0.2 

Knysna 21 31.1 31.2 1 0.2 

Cape St. Francis 18 29 29.4 2.1 0.5 

Haga Haga 21 32.4 32.5 0.9 0.2 

Total/Average 112 30.1 30.1 1.9 0.2 
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Table S4.5. Summary of thermal breadth per species population including the mean (in °C),  
standard deviation and standard error per region and population. 

 

C. punctatus Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 38 46.2 46.5 2.0 0.3 
south coast 35 45.7 45.6 1.9 0.3 
east coast 32 43.3 43.5 2.2 0.4 
Total/Average 105 45.1 45.2 2.1 0.3 

S. granularis Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 38 35.2 35.4 2.3 0.4 
south coast 40 33.0 33.2 3.3 0.5 
east coast 53 35.7 35.6 1.9 0.3 

Total/Average 131 34.7 34.7 2.5 0.4 

P. angulosus Sample size [N] Mean [°C] Median [°C] SD SE 

west coast 35 21.8 21.8 2.9 0.5 
south coast 38 23.9 23.8 3.1 0.5 
east coast 39 22.0 23.0 4.2 0.7 
Total/Average 112 22.6 22.9 3.4 0.6 

C. punctatus Sample size [N] Mean [°C] Median [°C] SD SE 

Jacob's Bay 18 45.6 45.9 2.3 0.5 

Sea Point 20 46.8 46.8 1.7 0.4 

Cape Agulhas 18 44.8 44.5 1.4 0.3 

Knysna 17 46.7 47.2 1.9 0.5 

Cape St. Francis 16 42.6 42.6 2.6 0.6 

Haga Haga 16 44.2 44.2 1.6 0.4 

Total/Average 105 45.1 45.2 1.9 0.5 

S. granularis Sample size [N] Mean [°C] Median [°C] SD SE 

Port Nolloth 19 34.8 34.8 1.9 0.4 

Sea Point 19 35.6 36.6 2.7 0.6 

Cape Agulhas 19 31.3 31.7 2.6 0.6 

Knysna 21 34.6 35.1 3.1 0.7 

Cape St. Francis 25 36 36.3 2.1 0.4 

Haga Haga 28 35.5 35.5 1.8 0.3 

Total/Average 131 34.6 35 2.4 0.5 

P. angulosus Sample size [N] Mean [°C] Median [°C] SD SE 

Port Nolloth 15 23.3 23.5 2.2 0.6 

Sea Point 20 20.8 20.3 2.9 0.6 

Cape Agulhas 17 21.1 21.0 1.5 0.4 

Knysna 21 26.1 25.7 2.2 0.5 

Cape St. Francis 18 18.2 18.3 2.7 0.6 

Haga Haga 21 25.2 25.1 1.6 0.4 

Total/Average 112 22.5 22.3 2.2 0.5 
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5. Conclusion 

South Africa is home to numerous marine and terrestrial endemic species and counts among 

the most biodiverse countries in the world (Sink et al. 2012; Whitfield et al. 2016; Warner, 

Sobrevila, and Ledec, 2016). The contrasting influences of the cold Benguela Current and the 

warm Agulhas Current drive an environmental gradient with temperature-delimited bioregions 

along the South African coast (Bustamante et al. 1995; Smit et al. 2013; Teske et al. 2019). 

Rocky shores cover 27% of South Africa�s coastal area and also contribute to mixed shore 

areas (Sink et al. 2012). Among rocky shore species, the Cape urchin Parechinus angulosus 

exerts decisive grazing pressure on ecosystem-engineering kelp and the granular limpet 

Scutellastra granularis contributes to grazing dynamics on the high shore (Branch, 2017). The 

omnivorous predator Cyclograpsus punctatus (shore crab) holds a vital position in the rocky 

shore ecosystem (Branch, 2017). Due to drastic abiotic variations on multiple scales, the 

intertidal is a high-stress environment for species (Stillman, 2002), which places its inhabitants 

at higher risk from adverse climate change impacts (Helmuth et al. 2006). Species persistence 

and distribution under climate change depend on physiological and genomic characteristics, 

yet these are unknown for the majority of species (Sanford and Kelly, 2011; Vinagre et al. 

2013). The present study investigates thermal tolerance limits and the genomic potential for 

local adaptation across three species from different phyla and six locations across the 

coastline to lay the foundation for consideration in integrated cross provincial environmental 

management frameworks. 

Selectively neutral SNPs demonstrated no distinct geographic pattern across the coastline 

with low to intermediate pairwise FST values across species (see section 2.3). This finding 

expands past studies conducted with mitochondrial markers which detected marked genetic 

population structure across all study species (Muller et al. 2012; Wright et al. 2015; Mmonwa 

et al. 2015). In this study, substantial amounts of population-specific neutral SNPs point to 

genomic diversity at the sampled field sites. Moreover, two nucleotide diversity indices 

(Tajima�s pi and Watterson�s theta) display a significant increase on the northern west coast 

(Port Nolloth) in the urchin P. angulosus, which is an important signal for the molecular 

significance of this area. Further, 1102 putatively adaptive RAD-Seq loci were identified across 

species with three different methods (see section 3.3). The findings show that environmental 

differentiation in sea surface temperature (SST), salinity and air temperature appears, to 

varying degrees, associated with positive selection in the species genomes. Putatively 

adaptive loci indicated a lack of geographic population structure, which could for instance be 

observed in the South African sand goby (Teske et al. 2019). Overall, 69 (C. punctatus), 11 

(S. granularis) and 27 (P. angulosus) outliers could be functionally associated with a wide 

range of cellular processes from membrane transport to protein folding/modification and 
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cytoskeleton function. Across the study species, there is evidence for possible selection on 

loci linked to energy cycling, which has been interpreted as response to environmental stress 

in past studies (see section 3.4.4.2). Compared to patterns of single marker population 

structure (Muller et al. 2012; Wright et al. 2015; Mmonwa et al. 2015), the study species do 

not indicate geographic separation into spatially separate lineages or subgroups, which could 

count as a positive sign for genomic and/or evolutionary resilience. It is sensible to 

acknowledge that geographic genomic differences between regional populations might still 

exist, which might only become evident with future investigations. Although the molecular 

findings are multi-faceted, increased nucleotide diversity in Port Nolloth could signal that the 

local population of P. angulosus possesses higher evolutionary resilience compared to its 

other South African populations. 

Coping with changing temperature conditions is one of the key aspects determining species 

distribution and resilience under climate change (Helmuth, 2002; Stillman, 2019). The present 

study establishes upper and lower critical thermal limits (CTmin, CTmax) in the three study 

species across the South African coastal thermal gradient (see section 4.3). The shore crab 

C. punctatus indicates significantly higher CTmax at the west coast compared to the east coast, 

but no regional thermal tolerance differences were detected in the other two species. 

Calculated thermal breadth values are comparable with thermal breadth in related species, 

with the shore crab C. punctatus tolerating a notably vast temperature range. Warming and 

cooling tolerance might appear adequate, but this requires further investigation with peak and 

minimum environmental temperatures during low tide. Regional body mass differences found 

in P. angulosus and S. granularis corroborate previous findings of regional biomass 

differences in South Africa (Bustamante et al. 1995). The Cape urchin demonstrates a mass 

correlation for CTmin, CTmax and thermal breadth, whereas the shore crab only indicates mass 

correlation for CTmin and thermal breadth. The findings introduce the possibility that regional 

body mass differences might, among other factors, be associated with physiological 

adaptation. Combining critical thermal limits with considerations of behaviour and intertidal 

niche to approximate the study species physiological resilience indicates very different 

capacities to withstand climate change impacts (see section 4.4.7). 

Climate change will likely lead to distribution shifts in South Africa. Rising temperatures on the 

east coast might surpass the abilities of local rocky shore species and cause decreasing 

population sizes or even collapse of east coast populations. It is plausible that the thermal 

variability found across the south coast region will attract warmer-water species to warming 

areas (�tropicalisation�) and concentrate cool-preferring species in colder areas. Attributed to 

strong upwelling, the cool-temperate conditions on the west coast represent a climate change 

refugium for South African rocky shore species, which warrants acknowledgement in marine 
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management frameworks to maintain South Africa�s status as one of the most biodiverse 

nations in the world. 
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