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Abstract

This thesis undertakes the task of satellite image classification from a probabilistic perspective.

Our probabilistic approach is motivated by using uncertainty to address the lack of data and vari-

ability in satellite image data. In the interest of producing accurate models, we adopt Bayesian

neural networks (BNNs) as the primary focus for classification models which offer a way of com-

bining uncertainty estimation with the expressive power of deep learning. Furthermore, due to

the limited communication bandwidth of a satellite, we require the model to run on-board a

satellite which introduces major computational constraints. BNNs can also be designed to in-

troduce sparsity providing a computationally efficient solution. Despite these advantages, BNNs

are rarely used in practice as they are difficult to train. We discuss the most recent advances in

variational techniques, including Monte-Carlo variational inference, stochastic optimisation, the

reparametrisation trick, and local reparametrisation trick. However, even with these advances

BNNs often still suffer from crippling gradient variance. In an attempt to understand this we

study the relationship between probabilistic modelling and stochastic regularisation techniques,

setting the foundation for practical uncertainty estimators, compression techniques and a signal

propagation analysis of BNNs. Using this understanding we present an innovation using sig-

nal propagation theory to propose a self-stabilising prior that improves robustness in training.

We then discuss techniques for incorporating spatial information making use of probabilistic

graphical models (PGMs). We connect the output of pixel classifications of a BNN to a PGM,

developing a probabilistic system. This uses the uncertainty of the classifier, together with the

contextual information of neighbouring pixels, to have a de-noising effect on the classifier output.

Finally, we experimentally evaluate a series of Bayesian and deterministic models for satellite

image classification. We see that Bayesian methods excel in situations where data is scarce. We

also see that BNNs are able to achieve levels of accuracy comparable to modern deep learning

while either remaining well-calibrated in comparison to deterministic methods, or able to yield

extremely sparse solutions requiring only 3 % of the original weights. In addition, we qualita-

tively illustrate the value of models that recognise their fallibility and incorporating them into

probabilistic systems which can reason automatically and dynamically incorporate information

from different sources depending on the certainty of each source.
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Uittreksel

Hierdie tesis onderneem satelliet beeld klassifikasie vanuit ’n probabilistiese benadering. Ons

probabilistiese benadering is gemotiveer deur die gebruik van onsekerheid om die gebrek aan

en veranderlikheid in satelliet data te adresseer. Om akkurate modelle te verseker maak ons

hoofsaaklik gebruik van “Bayesian neural networks” (BNNs). BNNs verskaf ’n manier om onsek-

erheid skatting met die modellering krag van “deep learning” te kombineer. Daarbenewens, weens

beperkte kommunikasie bandwydte van ’n satelliet, behoort die model op die te kan satelliet op-

ereer wat groot rekenkundige beperkings voorstel. BNNs kan ook ontwerp word om parameters

te verwyder wat gevolglik koste effektiewe oplossings verskaf. Ten spyte van hierdie voordele

word BNNs selde gebruik want in praktyk kan die opleiding van die modelle geweldig moeilik

wees. Ons bespreek onlangse vernuwings in variasionele tegnieke, wat “Monte-Carlo variational

inference”, “stochastic optimisation”, die “reparametrisation trick” en “local reparametrisation

trick” insluit. Ons bestudeer ook die verwantskap tussen BNNs en stogastiese regularisering

tegnieke wat die fondament vir praktiese onsekerheid skatters, kompressie tegnieke en ’n sein

voortplanting analise van BNNs lê. Hierdie tegnieke het Bayesiese diep-leer moontlik gemaak,

maar die tegnieke ly steeds aan skadelike gradiënt variansie. Ons spreek hierdie aan met ’n in-

novasie met die gebruik van sein voortplanting teorie om ’n self-stabiliserende prior voor te stel

wat opleiding robuust maak. Daarna bespreek ons die gebruik van probabilistiese grafiese mod-

elle (PGMs) om ruimtelike inligting te inkorporeer. Ons verbind die uitset van die klassifikasie

model aan ’n PGM, om ’n probabilistiese stelsel te ontwikkel. Dit gebruik die onsekerheid van

die klassifiseerder in kombinasie met die kontekstuele inligting van die naburige pixels wat die

uitset skoon maak. Laastens maak ons ’n eksperimentele evaluering van ’n reeks van Bayesiese

en deterministiese modelle op satelliet beeld klassifikasie. Ons neem waar dat Bayesiese modelle

presteer in situasies waar data skaars is. Ons sien ook dat BNNs diep-leer vlakke van akku-

raatheid bereik terwyl hulle óf, goed gekalibreer bly in vergelyking met deterministiese metodes,

óf in staat is om uiters koste effektiewe oplossings te lewer, wat net 3 % van die oorspronklike pa-

rameters vereis. Daarbenewens, ondersoek ons die waarde van modelle wat hul feilbaarheid kan

herken wat stelsels gee wat dinamies inligting van verskeie bronne kan inkorporeer en outomaties

redeneer.

iii
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Chapter 1

Introduction

This thesis investigates satellite image classification. We study machine learning methods to

assign labels to pixels of a satellite image. This corresponds to identifying what type of crop

is growing or effectively locating and mapping farms represented on earth. The images are

hyper-spectral that provide an information-rich measurement at each pixel suitable for allowing

machine algorithms to identify complex discriminating features. These models can be used to

monitor farming, making it possible to farm more productively and efficiently. Given that we can

identify farms, we can also reason further to identify areas that need intervention due to disease,

drought etc. in farms. Frequent monitoring of agriculture is also in high demand for monitoring

and identifying crops to estimate crop yields, expected food supply and geographical change [1].

The main challenges in satellite image classification are: (1) there are extremely few labelled

training examples due to an expensive labelling process; (2) a very limited computational bud-

get since models are required to run on-board a satellite due to limited communication band-

width. This thesis focuses on the Bayesian approach to address the aforementioned challenges.

Compared to standard machine learning, Bayesian methods offer better uncertainty estimation

relative to the data a model has seen, as well as automatic model regularisation vital for reduc-

ing overfitting, particularly in settings where data is scarce. Another key advantage is that the

Bayesian framework can flexibly introduce prior information. This can take the form of inducing

sparsity into models, resulting in reduced computational cost useful for embedded applications

with limited computational resources.

Our approach involves exploring classical and proven pattern recognition models, in logistic re-

gression and neural networks, from a Bayesian perspective. These models are trained to recognise

1

Stellenbosch University https://scholar.sun.ac.za



1.1 Problem Background and Overview

the hyper-spectral signature of a pixel and assign each individual pixel to a particular class. The

predictions of these models produce a noisy image representing the mapping of farms or esti-

mated pixel classes. We then use probabilistic graphical models (PGMs) to process this image.

We use this to reason about the class of a particular pixel in the context of its neighbouring

pixels, thus integrating spatial information that has a de-noising effect.

1.1 Problem Background and Overview

Hyper-spectral satellite images contain a substantial amount of information to analyse crops. A

widely used metric for analysing vegetation is the normalized difference vegetation index (NDVI)

[2], [3], which is comprised of key spectral bands of a hyper-spectral fingerprint. The NDVI index

is used frequently to highlight vegetation and can be used by expert analysts to roughly interpret

the health of a plant. However, with machine learning we can build models to automatically make

predictions and classifications about crops. Early machine learning methods were developed and

applied in the form of classical statistical classifiers such as logistic regression, random forests [4]

and, amongst the most successful, support vector machines (SVMs) [5].

Recently, deep learning has become the predominant approach to satellite image classification [6],

[7]. These methods have shown potential for learning better feature representations in classifying

satellite images and markedly improved predictive performance. With deep learning, however,

performance is commensurate to the amount of data available. Data is inherently scarce in

remote sensing applications as the labelling process is expensive. Labelling usually requires

intensive human attention and is time-consuming. Another consideration of deep learning is

that larger, more complex or deeper models are usually associated with increased success and

improved performance. We require the model to make predictions on-board a satellite (discussed

further in the project objectives). Due to energy and computational constraints, the excessive

size of many modern neural networks precludes it from being realistically deployed on a satellite.

The main focus of this thesis is on Bayesian neural networks (BNNs) as they allow us to make

use of the predictive performance of neural networks with the benefits of the Bayesian approach.

Following the Bayesian approach makes it possible to coherently reason and train models in

uncertain conditions. This makes these techniques robust to overfitting and variations in data,

thereby making them adept to training with little data. BNNs outperform standard networks

when data is extremely limited, even with proper regularisation [8], [9]. We also intend to use a

classifier in conjunction with other probabilistic models to build a probabilistic system. In this

2
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setting it is useful for models to be able to accurately estimate their uncertainty, as Bayesian

models do, such that we can reason in context of their confidence.

The recent resurgence of BNNs is due to a host of recent advancements in approximate Bayesian

inference, making inference more scalable, efficient, accurate and faster [10], [11], [12], [13], [14].

This thesis concentrates on and discusses relevant methods that allow scalable and practical

inference that will allow us to employ the principles of Bayesian modelling to deep neural net-

works. Despite recent advances, large gradient variance still remains an issue and scaling BNNs

to larger, more expressive models is still a challenging task [15]. Addressing this, we present novel

self-stabilising priors, inspired by signal propagation theory [16], [17], [18], that allow us to more

robustly scale BNNs. We will see that BNNs with stabilising priors outperform deterministic

neural networks and other BNNs in satellite image classification in terms of accuracy and quality

of uncertainty estimation as we are able to make use of larger models from a probabilistically

principled paradigm.

Another advantage of BNNs we investigate is the ability to compress models by imposing spar-

sity inducing priors. We investigate heuristic compression techniques as well as variational

dropout [19], stemming from recent advances in interpreting stochastic regularisation techniques

as Bayesian inference [20], to sparsity models. We will see that the size of BNNs can be greatly

reduced without a decline in predictive accuracy. We are able to discard 97% of the original

weights for satellite image classification using variational dropout. By sparsifying the model, we

can deploy a powerful yet compact model that avoids unnecessary computation and resources.

Remote sensing applications usually require additional means to supplement the classification

models as hyper-spectral images are highly susceptible to noise and classes can prove difficult to

distinguish. Even for models trained on large amounts of data, the observation noise typically

causes predictions to be noisy and output images or farm mappings to be speckled. This elicited

research on filters in combination with machine learning for satellite image classification [4], [21].

A widely used class of filters are extended morphological profiles (EMP) which are based on

morphological transformations [22]. Filters are applied to suppress or reduce noise or enforce

spatial smoothness.

Traditional filters, however, do not fully capture contextual relationships and are usually char-

acterised by a series of hard-coded transformations. Probabilistic approaches, such as Markov

random fields (MRFs) [23], have been employed to more accurately model local pixel interac-

tions. In this thesis we investigate a more general probabilistic approach, using cluster graphs
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[24], allowing us to flexibly design models to address noise and inject knowledge about how

nearby pixels influence each other.

1.2 Project Objectives

Accuracy: A fundamental requirement for our system to be of any use in practice is that it

should be accurate. The model should be capable of learning underlying patterns in complex

satellite data to produce mostly correct classification assignments. Furthermore, since the task

is to deploy a system that participates in a world where it is exposed to a myriad of situations,

the system must be robust and generalise to unseen observations. We adopt the deep learning

approach as it has proven tremendously successful at various complex classification tasks. Deep

learning, however, presents difficulties in the context of satellite image classification as it can

be very computationally expensive and is particularly prone to overfitting. This leads us to our

other objectives.

Uncertainty-Aware or Calibrated Models: Many machine learning algorithms, particularly

deep learning, require a large amount of data in order to generalise well. While there is a vast

amount of satellite data available, there are very few labelled examples. Images that have

labels for crop classification are particularly scarce and are often only partially labelled. This is

because labelling satellite images is very expensive and time consuming. In situations where data

is scarce, overfitting is an important concern. Models may specialise on peculiarities present in

small subsets of data that may not be representative of the true underlying patterns. This is a

particularly relevant concern in the domain of land cover classification as a particular crop may

exhibit many variations due to season, water content, stage of growth etc. and there is a lot of

variation in hyper-spectral measurements from variations in angle, cloud cover, sun angle etc.

We thus require that the models we develop be well suited to small data regimes and training

regimes to be very robust to overfitting. We undertake this by mandating that a model be aware

of when it is uncertain. Preserving uncertainty relative to the amount of observation noise or

data observed is an effective strategy to avoid overfitting. A model should be more confident in

its correct predictions and less confident in its erroneous predictions (a model like this is said to

be calibrated). With the Bayesian framework we can also supplement uncertain predictions with

alternative sources of information such as a prior, or defer decisions on uncertain predictions to

a human expert.

Computationally efficient: The system is required to run on-board a satellite as communi-
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cation between a satellite and ground station is extremely restricted. Communication is often

only possible for short periods on occasions few and far between. With limited communication

bandwidth, it is desirable to process images on-board and only relay results which, compared

to sending a raw hyper-spectral image, is significantly more efficient. Considering the limited

energy and computational resources on-board a satellite, prioritising computational efficiency is

crucial. We thus focus on reducing model size, complexity and computation time of predictions.

Note that the computational constraints apply only to predictions and training procedures are

unrestricted.

We address these objectives by adopting the Bayesian framework for modelling. Bayesian meth-

ods excel in settings where data is scarce and have principled methods for modelling data under

uncertainty. Using BNNs, we can utilise the acclaimed predictive performance of deep learning

while accurately estimating uncertainty yielding models that are robust to overfitting as well

as capable of modelling highly complex functions. In addition, we also investigate using the

Bayesian framework to compress neural networks for huge computational savings without a re-

duction in accuracy. We also investigate Bayesian logistic regression as a baseline representing a

computationally efficient solution with uncertainty but not as powerful as a neural network.

1.3 Outcomes and Contributions

Using uncertainty in a probabilistic system: Often Bayesian methods are not considered

because they are too computationally expensive and non-trivial to implement. We successfully

implement Bayesian versions of proven models. Furthermore, we integrate these models into

a probabilistic system that uses uncertainty to assist in reasoning about pixel classes. This is

done by combining Bayesian models that recognise the spectral signature of a pixel with a PGM

to integrate spatial information. The outcome is a probabilistic system that uses uncertainty to

dynamically rely more on either the hyper-spectral information in the pixel itself or on contextual

information from neighbouring pixels. The value of these methods lie in their ability to remain

uncertain so as to reduce purporting false positives in sequential decision making systems. This

is advantageous in scenarios with little data as we can understand the reasoning of the system

and build expert knowledge into the system.

Implementing advanced variational techniques and applying Bayesian neural net-

works to satellite image classification: BNNs have been applied to very few problems as

they are difficult to train and challenging to build a stable implementation. We explore and
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implement leading-edge advances in variational inference and deep learning and apply them to

satellite image recognition. We explore the nascent field of Bayesian deep learning to utilise deep

learning as well as uncertainty for satellite image classification. By studying and implementing

advances in variational inference, we are able to scale BNNs to deeper and more powerful models,

yielding a useful application of BNNs to satellite image classification.

Theoretical contribution: Self-stabilising priors

• The following contribution was work done in preparation for a conference in collaboration

with Arnu Pretorius. The role of Pretorius was more of a supervisory nature and he

appeared as second author. In particular, Pretorius contributed substantially with advice

and several discussions around developing derivations in the domain of signal propagation

theory, building on his previous work on signal propagation in deterministic networks [16].

Although BNNs have enjoyed a resurgence in modern Bayesian deep learning, BNNs have yet to

reach the level of success of modern deep learning. Stochastic optimisation methods, which makes

inference scalable, exhibit high variance, resulting in BNNs being very sensitive to small changes

in hyper-parameters, architecture, choice of prior, and it is widely accepted that BNNs are

effectively untrainable beyond a certain depth. With signal propagation theory we can quantify

this. Inspired by signal propagation theory in deep neural networks [17], [18], [16] we derive a

novel prior to preserve the variance of signals propagating through a BNN. By choosing a prior

that optimises signal propagation behaviour, it allows us to effectively train deeper BNNs than

otherwise possible while also resulting in improved convergence. Included in this approach, we

derive a novel evidence lower bound (ELBO) objective to enable the prior to be able to influence

the network on the forward pass.

Our work extends initialisation techniques [25] [18], [16] to an iteratively updating prior to

allow more stable flow of information through the network throughout training. This defends

against poor signal propagation associated with vanishing or exploding signals and poor network

performance. We further note that this is the first application of signal propagation theory

outside of initialisation schemes for deterministic networks that we are aware of.

Sparsifying Bayesian neural networks: The final outcome is a successful sparsification of

neural networks. We prune down large models to require a fraction of the original weights without

a reduction in accuracy. In particular, we reduce a neural network with 5 layers of width 512 to

require 3 % of the original weights. This is a major result in the context of our computational

6

Stellenbosch University https://scholar.sun.ac.za



1.4 Project Summary

constraints. This drastically reduces storage space and the amount of computation required,

making it feasible to deploy on a satellite.

1.4 Project Summary

(2) Data Analysis

  (3) Bayesian Reasoning

 ● Motivation
 ● Variational Inference

    (4) Bayesian Logistic 
           Regression 

 ● Approximate Inference
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     (5) Bayesian Neural
        Networks (BNNs)

 ● Overview
 ● Modern BNNs
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       ● Compression
       ● Self stabilising 
                 Robust Priors

  (6) Probabilistic Graphical 
             Models (PGMs)

 ● Background
 ● Model

(7) Experiments

(1) Introduction

(8) Discussion

Opening SectIon

Middle Section

Closing Section

This project essentially undertakes two tasks: (1) Classification of the hyper-spectral signature of

a pixel that assigns each pixel to a class. We investigate the use of classifiers in Bayesian logistic

regression and BNNs for this task and attempt to accomplish the aforementioned objectives.

BNNs constitute a large technical focus of this thesis. (2) Integrating spatial information with the

use of PGMs. This combines the probabilistic classifiers from (1) into a probabilistic system that

actively relies more on either the hyper-spectral information in the pixel itself or on contextual

information from neighbouring pixels based on uncertainty.

Following the introduction we begin with exploring hyper-spectral satellite image data. The

discussion is intended to familiarise ourselves with, and gain insight into the data and serves

as a preface to our modelling approach. We explore the Indian Pines dataset that defines and

guides our model design and is the subject of our experiments. The dataset consists of a single
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image where each pixel contains 220 spectral bands representing a 20 × 20m square on the

earth’s surface. Despite this high resolution measurement, classification remains challenging as

the dataset consists of a single image and thus contains very few labelled examples for pixels to

conduct training and testing. We then investigate and plot the spectral profiles contained in a

pixel considering examples that exhibits the diversity of intra class variation as well as spectra

from different classes with very similar attributes. We also present a classification baseline with

logistic regression, observing a noisy mapping relative to the ground truth, demonstrating and

advocating the need to incorporate spatial information. Thus, in the context of our data, we

motivate our approach of using both spatial and spectral information. This includes BNNs,

capable of modelling complex spectral patterns under uncertainty, in combination with PGMs.

We then move our discussion to modelling and introduce the Bayesian framework.

As we have established, in satellite image classification, data is scarce and there is a large amount

of random variation in the data. This brings about our discussion of the Bayesian framework to

address this inherent randomness. Using Bayesian probability theory we are able to use proven

machine learning techniques and reason under uncertainty. Bayesian methods also have the

ability to introduce prior information or priors that encourage the model to conform to reflect

our beliefs about the world. Priors are often successfully implemented in the form of model

regularisation (overfitting is a major concern when data is scarce) and sparsification (useful for

embedded applications such as on a satellite).

In the Bayesian paradigm, parameters are considered random variables and are modelled as

distributions as they are unknown quantities. With parameters no longer representing finite point

estimates, parameters express variability or uncertainty with distributions. Bayesian inference is

performed by simple applications of the rules of probability theory. The goal is to infer a posterior

distribution over the parameters once we have seen some data or given evidence. We use the

posterior to make predictions about new observations. The posterior reflects how certain we

are about parameters relative to the data we have seen and we make predictions by integrating

over the posterior. This considers all possible weights dictated by the posterior distribution

weighted by their probability. This, in effect, automatically regularises models and quantifies

uncertainty about predictions. This is very useful as we can tell whether a model is making

informed predictions or guessing at random that is desirable in building connected probabilistic

systems. Uncertainty also has applications in low-resource settings such as active learning, which

makes the problem of data acquisition more efficient, as we can use uncertainty to identify which

labels we should acquire in an image that would be most informative.
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Bayesian reasoning is a principled framework to reason about uncertainty, but for many complex

models, exact inference can come at a prohibitive computational cost. For many models, inference

is intractable meaning no analytic expressions exist, therefore we have to employ approximate

inference techniques. In this thesis we aim to develop scalable algorithms such that we are able to

employ the modelling power of deep learning with advantages of probabilistic modelling in BNNs.

Inference for BNNs is intractable that brings us to variational inference. Variational inference

involves approximating the true posterior with some approximating variational posterior. This

approximate posterior belongs to a family of tractable distributions that is easy to manipulate.

We make use of Gaussian distributions that allows us to compute and represent distributions over

parameters using only mean and variance statistics. The posterior is estimated by minimising

the distance between the approximating posterior and the true posterior according to some

metric that measures the distance between probability distributions. We then optimise the

parameters of the approximating posterior distribution by calculating gradients with respect to

these parameters such that it minimises this distance. We focus on Monte-Carlo variational

inference (MCVI) to approximate the true posterior which forms the basis inference technique

our discussion of BNNs.

We briefly discuss Bayesian logistic regression that serves as a baseline with which we can reliably

compare more complex approaches. Logistic regression is an established classifier often used

for its interpretability, but is limited in that it is capable of only representing linear decision

boundaries. Nevertheless, Bayesian logistic regression represents a simple baseline and a reliable

method to yield uncertainty estimates. Its simplicity also amounts to a computationally efficient

solution. We introduce and discuss the Laplace approximation for inference of the posterior and

probit approximation for prediction. This serves as a demonstration of applying approximate

inference and an introduction to applying Bayesian reasoning to a simple model preparing us for

the following chapter in which we discuss BNNs.

We then turn our attention towards neural networks and deep neural networks that have proven

to be very successful in modelling input-output relationships with high predictive accuracy. How-

ever, these models require huge amounts of labelled data to generalise well and are computation-

ally expensive. Thus, we introduce BNNs and discuss the variational interpretation of these tools

such that we can apply deep learning in small data regimes. In doing so, the Bayesian frame-

work also allows us to include prior knowledge that we develop to allow us to obtain accurate

confidence estimates and model compression.

The first part of our discussion of BNNs revolves around methods that play a central role in
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Bayesian deep learning and constructing practical inference techniques that scale well to large

models with many parameters. We begin with casting BNN training to a variational inference

objective using MCVI and stochastic optimisation. We then discuss the reparametrisation trick

[12] which plays a critical role in modern Bayesian deep learning. Its significance lies in that

the reparametrisation allows us to pass gradients through stochastic nodes or random variables.

This allows us to employ gradient optimisers, so successfully used in deep learning, for varia-

tional inference. In BNNs, the weights are stochastic, thus with stochastic optimisation and

the reparametrisation trick, we are able to calculate gradients with respect to the variational

parameters of the weights. We discuss the reparametrisation trick for a Gaussian followed by

evaluating its efficiency as an estimator.

We also discuss the local reparametrisation trick [20] which improves on the reparametrisation

trick. The core idea is that instead of sampling weights and multiplying them with the inputs

to obtain a pre-activation matrix, we calculate the distribution of the pre-activation matrix

analytically and sample from the pre-activation directly. This effectively gives us independent

samples of the weights for each data point in the mini batch, whereas before we only had one

weight sample per mini batch. This leads to less gradient variance and more efficient training.

We end the introduction of BNNs by briefly discussing prediction. Since it it not possible to

analytically calculate the predictive probability for a new observation, we often estimate predic-

tion by sampling. We sample a set of weights and compute a forward pass, yielding a sample

prediction for a given an input and repeat this many times and average over the predictions. We

call this “test-time averaging”. While this produces satisfactory performance, requiring many

forward passes may be too computationally expensive for deployment on a satellite. To ad-

dress this, we discuss an alternative method called “distillation” [26]. This involves training a

deterministic neural network to mimic the behaviour of a BNN. This distills the behaviour of in-

tegrating over the posterior distribution of the weights into a different neural network from which

it is cheaper to make predictions. We then demonstrate the application of these techniques to

a BNN with fully factorised Gaussian priors and posteriors constituting non-conjugate inference

following [27],[11]. We show experiments on MNIST demonstrating robustness to overfitting and

that the model provides good uncertainty estimation.

We then turn our attention to the recent theoretical links between stochastic regularisation

techniques and Bayesian inference [28], [20]. Specifically, we consider dropout, which injects noise

into the model as a means of regularisation. This is done by dropping out or ignoring random

units in a network or injecting multiplicative noise to corrupt the weights. The key insight is that

10

Stellenbosch University https://scholar.sun.ac.za



1.4 Project Summary

dropout, by training a network with noise injection, accomplishes a form of ensembling which

resembles the Bayesian approach of asserting distributions over weights.

This leads the discussion to Monte-Carlo dropout (MC dropout), which casts dropout training

in deep neural networks as approximate Bayesian inference in deep Gaussian processes [28] .

This method uses dropout during training as well as test time. We do not fully explore the

theoretical argument but discuss the general interpretation that suggests that dropout approxi-

mately integrates over a model with distributions over its weights. This method is widely used

for uncertainty estimation in the deep learning community but has attracted some criticisms. We

discuss the criticisms but find MC dropout to be a practical and efficient method to obtain a deep

network capable of uncertainty estimation. We then discuss the work in [20] relating Gaussian

dropout to variational inference in BNNs. Under a specific constraint of the variance parameters

we see that Gaussian dropout corresponds precisely to training a BNN. Thus, injecting weights

with multiplicative Gaussian noise is equivalent to maintaining a Gaussian posterior distributions

over the weights in a variational framework. This understanding sets the foundation for work in

model compression as well as signal propagation analysis of BNNs and self-stabilising priors for

robust Bayesian deep learning.

We then discuss using Bayesian methods to compress or sparsify neural networks. Neural net-

works are heavily overparametrised and thus use more memory and computation time than

necessary. They can be pruned significantly without any loss in accuracy. This is done by using

priors that induce sparsity which urges the model to remove parameters during the learning

process. We first explain heuristic ways of pruning down weights. This involves selecting weights

of which a large portion of the probability mass lies on zero and pruning these parameters by

setting them to zero. Alternatively, we can select to prune weights of which the variance of a

parameter is large compared to the mean. We can think of these weights as having a low signal

to noise ratio (SNR ratio) and do not contribute to the predictions of our model. We then set

weights with low signal to noise ratios to zero. We also discuss automatic relevance determination

(ARD) priors for BNNs [9] that automatically determines the degree to which inputs are relevant

to the performance. ARD priors can be used in conjunction with either of the aforementioned

criteria to promote sparsification. We then demonstrate these techniques with an experiment on

MNIST where we see that we are able to achieve the same accuracy as with all the parameters by

only using 10 % of the weights. We then discuss the work of [19] that follows the previously dis-

cussed variational dropout [20]. It turns out that the prior that is implied by variational dropout

(by interpreting training with Gaussian dropout as training a BNN [20]), implicitly describes a
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sparsity-inducing prior. Then, with the use of an additive reparametrisation trick, variational

dropout naturally sparsifies the model. The additive reparametrisation trick effectively replaces

multiplicative noise with additive noise which yields more stable gradients. This allows for a

method that sparsifies the model during the optimisation process. With variational dropout we

are able to prune a neural network, reducing parameters to 3 % of the original number of weights.

Until this point, we have introduced BNNs as useful tools for leveraging the expressive power

of deep learning with benefits of probabilistic modelling. However, BNNs have not yet reached

the level of success of modern deep learning because of their limited practicality. In practice,

deep BNNs are brittle and hard to train. Due to the stochastic nature of the optimisation, deep

architectures suffer from crippling variance and often require careful tuning of hyper-parameters

for any training to occur. We thus present adaptive Monte-Carlo variational inference (adMCVI)

with self-stabilising priors for robust training of BNNs. Using a signal propagation analysis of

BNNs [17], [18], [16], we design a prior with parameters derived to ensure stability of a signal

propagating through the network. This allows more stable flow of information through the

network throughout training. Signal propagation in BNNs is determined by the parameters of

the weight distribution in BNNs and we find conditions that allow us to adjust these parameters

and promote stable signal propagation.

Traditionally, the prior impacts the variational objective or the evidence lower bound (ELBO)

through a regularising additive term, affecting the weights at update time with backpropagation.

In this setting, the prior has no effect on the signal propagation dynamics of the network. We

suggest that priors exert their influence during the forward pass, so as to make them capable of

promoting stable signal propagation. We thus present a novel alternative variational objective to

allow the prior to influence the network on the forward pass. This is essential if any training is to

occur in deep networks, i.e. this enables the signal to reach the outputs. With this objective, we

develop a self-stabilising prior, where the parameters of the prior are adjusted at each forward pass

to preserve the variance of signals propagating forward. This approach to variational inference

stabilises network dynamics during training and leads to improved convergence and robustness.

This makes it possible to train deeper networks and in more noisy settings. We demonstrate

the effectiveness of adMCVI with stabilising priors in several experiments on MNIST, CIFAR-10

and synthetic data.

The discussion until this point has been focused on classification models or BNNs to classify

the spectra of each individual pixel. The resulting image from the classifier output, where each

pixel has been assigned a class, is most often noisy, speckled and disjoint due to variation in
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the data, measurement noise as well as an undersupply of data. We then turn our attention

towards processing the output of the classifier and creating a connected probabilistic system.

Our system constitutes inputting the outputs of the classification model into a probabilistic

graphical model (PGM) that de-noises the image. The ability of Bayesian models to include

prior information offers an advantage in low data situations as we are able to express where we

believe there to be some relationship between variables. PGMs are practical and interpretable,

making it easy to translate prior knowledge meaningfully and allow us to assert certain beliefs

when it cannot be established from the data. We wish for our resulting image to more closely

resemble real-world farms and be more continuous or smoother in shape. We make use of PGMs

to explicitly incorporate this prior knowledge into our system. Our modelling approach follows

the assumption that strong correlations exist between neighbouring pixels. We thus incorporate

spatial information by allowing neighbouring pixels to influence the probability of a particular

pixel.

Our work with PGMs focuses on cluster graphs. We introduce fundamental background informa-

tion by discussing concepts of representation and inference in these graphs. Briefly, inference is

done by communicating evidence between variables with an algorithm called belief propagation.

This involves an iterative “message-passing” algorithm that updates beliefs about variables given

evidence and relationships with other variables. Following the introduction of these, and other

fundamental concepts necessary to understand PGMs, we design a model where we integrate

spatial information into the per-pixel classification result. We discuss describing a continuous

relationship between pixels with a PGM by encoding this knowledge in the graph structure.

Pixels are configured to communicate their beliefs about what class they belong to and how it

may affect their neighbours. We can then reason about a pixel in context of its predicted class

as given by the classifier and the adjacent pixels.

We demonstrate the effect of our PGM model on some small examples but find that inference

in PGMs is expensive. The problem we face is that scaling our model to multiclass situations

grows exponentially in storage space with the number of classes. To counter this we configure

the PGM in a specific way, representing the PGM more compactly, involving a different factor

configuration. This makes it possible to scale inference to many classes and greatly reduce the

amount of storage space required. We also discuss an augmentation to our PGM where we

use the confidence of our classification models as a prior belief. This can be interpreted as the

likelihood of an error which in turn allows the PGM to probabilistically reason whether or not it

should change the belief that a pixel belongs to a specific class. These models can then function
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in a system that assesses when a pixel may need to rely more on the information supplied from

adjacent pixels or from the classification model.

We then come to the experiments chapter, considering a series of experiments investigating

whether the methods we developed are accurate and able to generalise. We compare logistic

regression and Bayesian logistic regression as well as BNNs with self-stabilising priors, nor-

mal BNNs with Gaussian priors, MC dropout and deterministic neural networks. We see that

Bayesian methods excel in situations where data is scarce. It is also evident that BNNs achieve

good accuracy while remaining aware of its uncertainty in predictions. We qualitatively analyse

the effect of using a PGM to integrate spatial information or de-noise images showing various

output examples. We also study how uncertainty aids the PGM in reasoning about pixel classes.

Finally, we compare model compression techniques using BNNs such that we can feasibly deploy

these models on a satellite.

The thesis concludes with a summarised account of the work followed by a discussion of the most

consequential results based on the experiments. We discuss how BNNs offer a flexible solution

that yield accurate models under uncertainty while also being capable of reducing computational

cost. Logistic regression offers a simple modelling procedure with efficient inference, but may

produce less meaningful decision boundaries on small data and not capture true relationships.

We review generalisation in the context data scarcity and variability and review our approach

using probabilistic systems and uncertainty to address this. Finally, we make recommendations

for satellite image classification and suggestions for future work.
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Chapter 2

Data Exploration

(2) Data Analysis

  (3) Bayesian Reasoning

 ● Motivation
 ● Variational Inference

(1) Introduction

Opening SectIon

Middle Section Closing Section

Our discussion commences with exploring hyper-spectral satellite image data. Hyper-spectral

images contain more spectral bands than regular images, representing a rich source of informa-

tion for classification. The discussion aims largely to gain insight into the data and frame our

modelling approach for the forthcoming chapters. We explore the Indian Pines dataset which is

the focal point of our experiments and the subject of our model design. The dataset consists of

a single image illustrating the relative paucity of data in satellite image classification. We inves-

tigate and plot the spectral profiles or fingerprints of representative pixel samples to investigate

and demonstrate the inter-class similarity and intra-class variability of crop classes. Lastly, we

present a classification baseline with logistic regression observing a noisy mapping relative to the

ground truth, demonstrating and advocating the need to incorporate spatial information.

2.1 Hyper-spectral satellite images

Hyper-spectral images are a major source of land cover information and a rich source of informa-

tion for monitoring and characterising agriculture [1]. This data is acquired from satellites that

capture images with a spectral resolution of hundreds of bands of the electromagnetic spectrum.

Compared to regular RGB images, containing 3 bands in the visual spectrum, these images
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2.2 Indian Pines Dataset

carry vastly more information in the infra-red and x-ray spectrum and enable more comprehen-

sive analysis of the Earth’s surface. Land cover classification is one of the most prolific uses of

hyper-spectral data. This involves training a model on a collection of pixels with known labels to

recognise and classify new pixel observations. Despite the large amount of information present

in hyper-spectral images, it can be difficult to classify due to the intra-class variability, inter-

class overlap and limited number of training samples. Furthermore, classes are usually manually

annotated, thus suffering from human biases and varying accuracy.

2.2 Indian Pines Dataset

We make use of the Indian Pines dataset that is widely used in land cover classification research

and benchmarking [29]. It contains a single 145 × 145 satellite image of agricultural land where

each pixel is labelled as belonging to one of 16 crop classes or as part of a 17-th background or

other class. Each pixel represents a 20 × 20 m patch of land on earth and contains 220 spectral

bands. Of the satellite image datasets available for research, only the Indian Pines and Salinas

datasets contain labelled hyper-spectral images for crop classification. We focus on Indian Pines

because the Salinas dataset was captured from a satellite with a much closer orbit than the

satellites we consider, representing different communication constraints as well as higher spatial

resolution with pixels representing 3.7 m for which the task and objectives will deviate from

those we set out. In Figure 2.1 we show the Indian Pines dataset image and the ground truth

labels. Machine learning models are typically trained on a training set, consisting of a subset of

randomly shuffled pixels and using the remaining pixels as a test set.

Figure 2.2 shows examples of the spectral fingerprints contained in a pixel. We show the variabil-

ity of a particular class in Figure 2.2 (b) illustrating the challenge of capturing all the fluctuations

of a single class. We also see in Figure 2.2 (c) that the differences between classes may be slen-

der and classes may overlap making it difficult to distinguish between classes. Note that the

variability presented here is contained in a single image where crops are relatively homogenous

and classification models do not contend with factors such as measurement noise between images

and seasonality. This illustrates that we do not expect that any simple procedure for recognising

spectral signatures of crops exists, and models will always have to concern themselves with er-

ratic variability always present in the data. This motivates our approach for investigating BNNs

to allow complex modelling in uncertain conditions.

As a benchmark, we present the predictive performance of a logistic regression model in Fig-
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Figure 2.1: Indian Pines dataset labelled ground truth and RGB image.
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Figure 2.2: Spectral fingerprints of different sampled crops to demonstrate proximity of
inter-class variability and intra-class fluctuation. (a) Represents a few samples from classes that

can easily be distinguished while (c) represents easily confused classes. (b) Demonstrates the
wide range of variability in a single class.

Figure 2.3: Logistic regression benchmark on Indian Pines.
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ure 2.3. This particular model is trained on 100 % of the pixels and only reflects training accuracy

and not the ability to generalise. Acquiring accurate benchmarks is challenging as training data

and test data are scarce since the dataset is comprised of a single image. Moreover, another

difficulty of using a single image is that it is not possible to learn contextual relationships from

data. This would present test leakage and would not truly reflect the model’s ability to gen-

eralise. From observation of the ground truth in Figure 2.1, we deduce that farms generally

occur in unbroken clusters or patches and nearby pixels are correlated. As shown in Figure 2.3,

per-pixel land cover classification techniques typically produce noisy estimates and could benefit

from incorporating spatial information. Remote sensing techniques have, as a result, identified

strongly with filters and building models that incorporate spatial information. This supports our

approach to use PGMs in combination with a classifier allowing us to insert prior knowledge to

model spatial relationships.

2.3 Conclusion

In this chapter we explored the dataset we will be using in our experiments. We discussed the

nature of the data establishing that we have few labelled examples as well as classes with very

similar attributes and classes with large fluctuations, making the classification task challenging.

Thus, in the context of our data, we motivated our approach of using both spectral and spatial

information. This includes BNNs, capable of modelling complex spectral patterns under uncer-

tainty, in combination with PGMs. Next we move our discussion to modelling and begin by

introducing the Bayesian framework.
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Chapter 3

Bayesian Reasoning

“To know that you do not know is the best. To think you know when you do not is a disease.

Recognizing this disease as a disease is to be free of it.”

— Lao Tzu

3.1 Motivation

(2) Data Analysis

  (3) Bayesian Reasoning

 ● Motivation
 ● Variational Inference

(1) Introduction

Opening SectIon

Middle Section Closing Section

Satellite image classification is intrinsically ensnared with randomness and uncertainty arising

from the large amount of variation in the data. A hyper-spectral signature in a particular pixel

representing a crop may look different depending on the season, stage of growth, angle, sensor

noise etc. A lack of information and randomness is inherent and it will never be possible to fully

observe all the variables. Amongst this randomness, however, there is still a comprehensible

pattern and large degree of predictability if we can reason under uncertainty.

Machine learning models are capable of finding structure in data, recognising patterns and making

predictions on future observations. However, most models have trouble dealing with uncertain

situations and have difficulty with problems involving little data. In these cases, oftentimes we

cannot tell whether a model is making intelligible predictions or guessing at random. Our aim is
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3.1 Motivation

to develop models that are able to reason automatically in uncertain conditions and generalise

deterministic models to be able to represent uncertainty.

We formalise our discussion of uncertainty by introducing the Bayesian perspective for proba-

bilistic modelling. Bayesian probability theory is a firmly established tool that offers flexible

modelling [30], [31], [24]. It presents a principled language to reason clearly amongst uncertainty

in terms of belief and probability. By treating unknown quantities probabilistically, Bayesian

methods manage uncertain situations naturally. Inference and learning is performed by simple

applications of the rules of probability theory where in general, inference refers to reasoning

about unknown probability distributions. Instead of a single variable or weight value, Bayesian

modelling treats parameters as distributions, thereby modelling all possibilities of parameters

according to a probability distribution. This distribution expresses our beliefs regarding to how

likely particular parameter values are relative to data and prior information. Treating parameters

in this way generally allows models to generalise better.

We introduce a prior to relate a likelihood function to a probability distribution. The ability

of Bayesian models to include prior information exhibits an advantage. We can flexibly insert

expert knowledge about a problem to introduce some inductive bias to place more probability

mass to better express where we believe there to be some relationship between variables. Priors

in BNNs are also commonly applied to achieve model compression [19], [32], regularisation [31],

transfer learning with informed priors [33], hierarchical models for complex and abstract variable

interactions [34] and to reflect subjective uncertainty preferences for safety-critical applications

[35].

The prior is also a common focus for criticism of the Bayesian approach because its subjectivity.

This criticism overlooks the fact that any model is subjective according to the assumptions made

by the model, citing the popular aphorism in statistics “All models are wrong, but some are

useful” [36]. It is true that a misspecified prior could lead to highly erroneous predictions in

situations where data is limited. In these situations it is usually better to reduce the sensitivity

to the prior by using an uninformative prior which allows the data to unveil patterns and rela-

tionships. In these cases, most often the data is sufficiently informative that we can accurately

reason despite the vagueness of the prior.

Injecting prior knowledge may be considered a function of the amount of data available. In sit-

uations where data is scarce we may need to rely more on prior knowledge as the data may not

be fully representative of the patterns manifesting into issues with generalisation. In low data
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applications we can encode beliefs and relationships between variables to express our knowledge.

In situations where we have a very large amount of data we might find that our prior assump-

tions of how the world works falls short of how it really works and the data will be sufficiently

informative. In this case we may prefer to use black box models like deep learning to leverage

its powerful modelling capabilities. Thus, broadly speaking, we can approach probabilistic mod-

elling in two ways: (1) small and focused models built in a principled and well-understood way

to gain insight about relationships in our data; (2) black box modelling like deep learning that

is very heuristic driven to train highly complex models with excellent predictive performance.

It has only been until relatively recently that innovations in variational inference have allowed

probabilistic modelling to scale model complexity as well as to larger datasets.

By employing a BNN on the spectra of pixels and a PGM to model contextual relationships,

we combine these approaches in a probabilistic system where these models interact. In satellite

image classification, we do not expect that there is any simple procedure for recognising the

spectral fingerprints, advocating for a BNN approach. However, in relating information regarding

neighbouring pixels, we may express some knowledge of how noise generally occurs, making use

of a PGM. The merits of an interpretable model seem clear in this case as we understand and

model a structure in which pixels interact. The ability to quantify uncertainty is essential if we

have models that interact in a probabilistic system. Understanding what a model does not know

is a critical part in dynamically allowing the system to rely more on information coming from

other sources. If our models are able to allocate a high level of uncertainty to their incorrect

predictions, the system is able to stop propagating false positives and reason in the context of

this uncertainty to make better predictions.

Apart from the discussion of how we intend to address satellite image classification, we briefly

discuss a further motivation for our choice of the Bayesian approach. An interesting study [37]

showed that in an experiment where labels are assigned completely randomly to a dataset, a

neural network consistently obtains 100 % training accuracy and 10 % test accuracy. This shows

that neural networks are capable of entirely memorising randomly labelled data rather than

finding the true dependence in the data. Dropout or regularisation did not prevent this either.

This is catastrophic over-fitting and demonstrates that we should be very careful when making

use of neural networks. The study was replicated using BNNs and random labelling [19] and

showed that BNNs obtain 10 % training accuracy and 10 % test accuracy. While these are only

specific case studies, this supports the idea that BNNs are less likely to overfit and likely to

reflect that labels are random and there is no underlying pattern.
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3.2 Bayesian Inference

Following our motivation for the Bayesian approach, we formally discuss the process of Bayesian

inference. In the inference process we observe data and infer new posterior distributions given

the evidence. We do not choose an optimal set of parameters w; we construct a distribution and

infer the most probable parameters giving the posterior distribution of the parameters p(w|D),

given data D, made up of observations x with labels y. We construct a distribution over the

weights by defining a prior distribution, p(w). For posterior inference, or learning, we observe

new data and incorporate new evidence to update the distribution over weights p(w|D). The

influence of new data is captured by the likelihood function p(D|w). This allows us to calculate

the posterior as a function of the unknown model parameters. Bayesian inference of the posterior

is derived from Bayes theorem written as

p(w|D) ∝ p(D|w)p(w), (3.1)

where it is written as a proportionality as it is not normalised. We are calculating the relative

values of the likelihood and omit the normalisation as it is generally not possible to calculate p(D).

This procedure estimates the distribution over w that maximises the likelihood in combination

with the prior. This allows the prior to influence the posterior and may be designed to regularise

or have some other effect. As the amount of data increases, and tends towards infinity, we

expect the posterior to concentrate around a point estimate and place all its probability mass

on a certain value of the parameter. This in effect washes out the effect of the prior.

For many models, inference of the posterior is intractable and no analytic expressions exist. The

difficulty arises when the likelihood function involves some non-linear mapping that makes it im-

possible to find analytic solutions for the product with a distribution. Inference of the posterior

can be done analytically for some models, such as linear regression, where the likelihood is conju-

gate to the prior. However, all the models we consider do not have a closed-form solution. Exact

Bayesian inference is not always possible. Among the techniques most used to overcome this are

approximation techniques are sampling techniques and variational inference. Sampling methods

are computationally very expensive and we therefore employ variational inference (discussed in

the next section).

We are typically interested in the value of some quantity observed in the future and making

predictions about it. We make predictions by integrating over the posterior and integrating out

uncertainty in parameters to account for all possible settings of parameters and how likely they
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are after we have seen the data. This automatically regularises predictions of a model while also

enabling accurate uncertainty quantification. For a new observation x′, we wish to calculate the

make a prediction y′ or calculate the predictive probability distribution, p(y′|w, x′,D) given by

p(y′|x′,D) =

∫
P (y′|x′, w)P (w|D)dw (3.2)

which marginalises out the posterior parameters or weights. This is often also intractable, but we

can compute its unbiased estimate by sampling and averaging outputs. The sampling estimate

usually requires fairly few samples to yield an acceptable estimate.

As an aside, we can interpret probability theory as model agnostic. We may extend the equations

presented above to express the implications of a particular model M . The posterior is then

calculated as

P (w|D,M) =
P (D|w,M)P (w|M)

P (D|M)
(3.3)

and the predictive distribution as

P (y′|x′,D,M) =

∫
P (y′|x′, w,M)P (w|D,M)dw. (3.4)

This intuitively illustrates how we may train a particular model such as logistic regression or

a neural network in a Bayesian way. We can also compute a posterior over models for model

selection with

P (M |D) =
P (D|M)P (M)

P (D)
. (3.5)

This allows us to determine whether we have successfully introduced some inductive bias with a

particular model or model architecture. Alternatively, we can find whether some models apply

better to a specific dataset. Importantly, this illustrates the idea that we are not calculating

the likelihood of data. The likelihood is the function that describes the ability of parameters to

explain data and are functions of the model we have selected and its parameters. If we misspecify

the model, no amount of data will let us explain the data. We introduced this notation to discuss

this interpretation but will make use of the standard notation that omits the model M for the

remainder of this thesis.

23

Stellenbosch University https://scholar.sun.ac.za



3.3 Advantages and Uses of Bayesian Learning

3.3 Advantages and Uses of Bayesian Learning

Now that we have introduced some of the fundamental concepts of Bayesian inference, we can

discuss some of the potential benefits that come with using the Bayesian framework. We will not

explicitly make use of all the applications we mention in this thesis, but we discuss it nonetheless

as it is relevant and useful in the context of satellite image classification.

3.3.1 Automatic Regularisation

A Bayesian model inherently incorporates uncertainty in its inference that naturally leads to

smoothed estimates and better generalisation. It maintains uncertainty relative to the data

it has seen as to not make overconfident predictions. This automatically regularises the model

that addresses the problem of overfitting, where the model learns particular patterns specific to a

dataset and does not generalise well. In contrast, maximum likelihood estimation provides a point

estimate of the optimal set of weights of the classifier. Maximum likelihood estimation is prone

to overfitting and often requires regularisation techniques such as penalising model complexity or

noise injection. Traditional regularisation, such as L2 regularisation, adds some penalty term to

constrain parameters to smaller values such that the parameter values do not grow exorbitantly

large which allows the model to generalise better. From a Bayesian perspective, we can show

that the L2-penalised solution is equivalent to selecting the mode of the posterior distribution if

a Gaussian prior is placed on the parameters that we show next.

In a standard setting our objective is to estimate the likelihood of a model p(D|w) and find

the optimal weights wMLE with maximum likelihood. Generally, we optimise the negative log

likelihood given by

wMLE = argmin
w

− log p(D|w). (3.6)

Instead, we can adopt the Bayesian framework and aim to find the posterior over the parameters

and introduce a prior. Using Bayes’ rule we optimise p(w|D) ∝ p(D|w)p(w) to find the posterior.

Adhering to frequentist estimation, we optimise this to obtain finite optimal parameters, wMAP,

that corresponds to a maximum a posteriori (MAP), instead of the posterior distribution, p(w|D).
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The MAP estimate yields

wMAP = argmin
w

− log (p(D|w)p(w)) (3.7)

= argmin
w

− log p(D|w)− log p(w). (3.8)

The log p(w) term represents our prior and acts as a regularisation term. Choosing a Gaussian

distribution with mean 0 and variance λ as the prior gives

wMAP = argmin
w

− log p(D|w)− 1

2λ
w2 + c (3.9)

that is equivalent to L2 regularisation. MAP estimation can be seen as a reduced form of Bayesian

modelling, compromising between the optimal setting of the weights while fitting prior beliefs.

The prior can be interpreted as desiring solutions close to zero as dictated by the variance or

certainty of the prior Gaussian variance.

This regularises the model but still yields a point estimate. Anything that is not observed

should be integrated out to maintain uncertainty. Our parameters are not observed so we should

integrate over them. Only in the case where the amount of data increases to a very large

degree, where we expect the posterior to concentrate around some finite parameter, can we be

absolutely certain of the value of a parameter. In the context of the vast amount of variance and

noise present in satellite image classification, it is naive to assume that one set of parameters can

adequately capture and describe the underlying pattern.

Recent work has also related stochastic regularisation techniques in neural networks to Bayesian

inference [20], [28], [35]. These noise-based regularisation techniques include variants of dropout

[38], [39] that corrupt either the inputs or weights by injecting noise. The result of [35] asserts

that for almost any network trained with a stochastic regularisation technique, we can obtain a

predictive mean and variance, or confidence, related to some deep Gaussian process. In addition,

[20] showed that training a BNN with variational inference, under some restrictions, is precisely

the same as training a network with Gaussian dropout. Stochastic regularisation techniques

have achieved great success in reducing overfitting and have become customary in deep learning

practice. However, the regularising effects of noise regularisation are automatically encompassed

by a Bayesian model. Essentially, from a Bayesian point of view the introduction of noise is

interpreted as learning a distribution over the parameters, instead of a point estimate parameter.

With dropout, instead of searching for optimal parameters, the parameters are effectively sampled

from a distribution, thus training an ensemble of networks.
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3.3.2 Sparsifying Models

Bayesian methods have often been used to compress models [19], [32], [9], [40]. We can prune

redundant parameters to reduce computational complexity and storage space. Reducing the

number of parameters is desirable in situations where there is limited storage space and energy

like onboard a satellite. We do this by using priors that induce sparsity that urges the model to

remove irrelevant parameters.

An example of a sparsity-inducing prior includes placing a Laplace distribution over the weights.

If the mode of the posterior is used, i.e. the MAP estimate, this corresponds to the L1 solution

similar to the Gaussian and L2 regularisation. The Laplacian distribution has a very sharp

peak compared to a Gaussian. If we place this peak on zero, it strongly encourages the model

to set parameters that do not contribute towards prediction to zero, thus resulting in a sparse

solution. We later investigate sparsification of neural networks, making use of variational dropout

to sparsify BNNs [19].

3.3.3 Online Learning

Bayesian methods naturally learn continually. This is useful for streaming data as it is not

required to retrain the entire model each time we receive more data. Data can be used to update

the beliefs or the parameters then discarded and never revisited [41], [42].

To illustrate this, we assume that the dataset arrives in M independent different parts. This

gives a dataset as

D = D1 ∪D2... ∪DM . (3.10)

We infer the posterior given the first batch of data, D1, using Bayes rule:

p(w|D1) =
p(D1|w)p(w)∫
p(D1|w)p(w)dw

. (3.11)

As we continue to receive data we can continue to train sequentially to update our posterior.

Assuming the data D1 and D2 is conditionally independent given w we can use the previously
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obtained posterior as the prior for the next batch of data:

p(w|D1,D2) =

p(D2|w)

[
p(D1|w)p(w)

]
∫
p(D2|w)

[
p(D1|w)p(w)

]
dw

(3.12)

=
p(D2|w)p(w|D1)∫
p(D2|w)p(w|D1)dw

. (3.13)

The original prior is always incorporated and we can naturally learn incrementally without

requiring to retrain with the arrival of each new batch of data. Doing this for all M parts is then

the same as p(w|D).

3.3.4 Active Learning

Deep learning usually requires large amounts of labelled data to generalise well. Labelling satellite

images is very expensive and time consuming. One could approach the problem with an active

learning approach [43] that we expand on next.

One can use the uncertainty estimates in a Bayesian system to identify what unlabelled data

would be most informative for the model. This learning system actively proposes which pixels

to label by a human annotator in order to improve performance. This allows the system to

efficiently explore the variation in the data and gradually increase confidence as more data is

observed. The data points to be labelled are selected through an acquisition function, which

determines how informative a data point may be. Many different acquisition functions exist,

such as expected improvement, which consider the exploration exploitation trade-off. Using

active learning significantly decreases the amount of training data required in achieving good

performance.

3.4 Variational Approximations

(2) Data Analysis

  (3) Bayesian Reasoning

 ● Motivation
 ● Variational Inference

(1) Introduction

Opening SectIon

Middle Section Closing Section

Now that we have studied Bayesian inference and considered its benefits, we discuss a family
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Figure 3.1: Variational inference as optimising the distance between the true posterior p(w|D),
and our approximate posterior q(w). We choose an approximating family of distributions that
may closely resemble the true posterior. This introduces bias as the approximating distribution

will never exactly capture the posterior. However, this allows us the convenience of
representing and computing distributions over variables using only a few statistics that describe

the distribution.

of practical Bayesian approximate inference algorithms called variational inference. For all the

models we consider in this thesis, computing the exact posterior distribution is intractable. In

variational inference we project the posterior onto an approximating family of tractable distribu-

tions. This allows us to easily manipulate, compute and represent distributions over parameters

using only a few sufficient statistics. We then estimate the posterior through optimisation. We

use gradient-based procedures to optimise for parameters of an approximating posterior distri-

bution such that it approaches the true posterior. Computing derivatives is often much easier

than computing integrals that makes it possible to scale models while maintaining distributions

over parameters. Furthermore, we are able to leverage the optimisation tools and methods used

in deep learning to make scaling possible.

The true posterior p(w|D), over parameters w, usually cannot be evaluated analytically. We

approximate this with a variational distribution q(w), which usually has convenient properties,

such as simple representation and simple calculation of integrals. The aim is for our approxi-

mating distribution to be as close as possible to the true posterior distribution. We measure the

distance between the distributions with the Kullback-Leibler (KL) divergence given by

KL[q(w)||p(w|D)] =

∫ ∞
−∞

q(w) log
q(w)

p(w|D)
dw. (3.14)

We use this to optimise the parameters of our variational distribution to get closer to the poste-

rior. This entails computing gradients with respect to the parameters that define q(w).
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3.5 Bias Variance trade-off

The traditional view of overfitting is seen as a trade-off between bias and variance of models.

Both bias and variance cause error in predictions. Bias is the tendency of a model to be incorrect

or the average difference between predictions and the true value. Variance is the variability of

model predictions based on how sensitive the model is to random variation. Simple models have

high bias but lower variance. Complex models are flexible and are capable of representing the

true relationships in data, thereby achieving low bias. This flexibility, however, allows the model

to fit and memorise the random variation in the training data and suffer from high variance.

In the context of Bayesian inference, the bias variance trade-off exists in terms of the method in

which we do inference, by either sampling methods or variational methods. Sampling methods

are unbiased, i.e. we can model more complex probability distributions, but this comes at the

price of high variance. For infinite samples, the variance would be zero but in practice we need

to determine some acceptable number of samples. Different samples will give different answers

which introduces sampling error resulting in fluctuations in our answer. Sampling methods do

not make assumptions about the posterior distribution, whereas variational methods restrict us

to a set of distributions which we understand. These restrictions or assumptions allows simple

representation of the variational distribution and simplifies expressions, often making it possible

to analytically calculate approximations of integrals. The variational approximation, however,

introduces bias by projecting the posterior on this domain. The true posterior typically lies

outside our chosen set of distributions and we attempt to find the best approximating distribution

as we show in Figure 3.1. Even if we train our model for an infinite number of iterations with

infinite data we will have an irreducible error between our approximation and the true posterior.

The projection makes assumptions we cannot overcome.

While variational inference is more limited or restricted than the full set of all probability distri-

butions, it is practical, stable and has low variance. The bias we incur in variational inference is

often much less costly than the variance we incur with sampling. Sampling methods are usually

only used in smaller models as the number of samples required to counter the variance grows

substantially with the number of parameters. We investigate variational methods as they are

the only practical methods of scaling probabilistic models to allow Bayesian deep learning.
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3.6 Formulation of Variational Objective

Probabilistic models have only recently been scaled to large models and datasets with the intro-

duction of stochastic optimisation for variational inference [14]. We now consider the objective

for stochastic optimisation of probabilistic models (broadly following the common modern varia-

tional formulation of BNNs [10], [11]). Our goal is to approximate the true intractable posterior

distribution of our parameters or weights p(w|D), given data D, with an approximating distri-

bution qφ(w), from a tractable family parametrised by variational parameters φ. The goal is to

find the values of the parameters φ that minimises the KL divergence. We write this as

φ∗ = argmin
φ

KL[qφ(w)||p(w|D)] (3.15)

= argmin
φ

∫
qφ(w) log

qφ(w)p(D)

p(D|w)p(w)
dw (3.16)

= argmin
φ

∫
qφ(w) log

qφ(w)

p(w)
dw −

∫
qφ(w) log p(D|w)dw (3.17)

= argmin
φ

KL[qφ(w)||p(w)]− Eqφ(w) log p(D|w). (3.18)

For discriminative models, where we are interested in modelling p(y|x,w), we can show

φ∗ = argmin
φ

KL[qφ(w)||p(w)]−
∫
qφ(w) log p(y|x,w)dw. (3.19)

This minimises the distance up to some constant of the evidence bounded by the evidence lower

bound (ELBO). The bound represents a constant irreducible distance between true posterior and

the approximating posterior. Thus KL divergence minimisation to the true posterior is equivalent

to maximising the ELBO or Lq which we define as

Lq :=

∫
qφ(w) log p(y|x,w)dw −KL[qφ(w)||p(w)]. (3.20)

This defines the objective we will refer to henceforth that we separate and rewrite as

Lq = LD(φ)−KL[qφ(w)||p(w)] (3.21)

LD(φ) = Eqφ(w)[log p(y|x,w)]. (3.22)

The term LD(φ) is the expected log-likelihood of the data under qφ(w). Maximising this encour-

ages the approximate posterior to explain the data well. The second term in (3.21) is the KL

divergence between the approximate posterior and the prior over the weights and can usually be
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calculated analytically. This introduces some regularisation as it encourages the posterior to be

resemble the prior. Thus, in variational inference, we maximise this objective to find the best fit

for the variational parameters φ, defining the distribution over our weights, that will explain the

data while being close to the prior distribution.

We extend this framework and define qφ(W ), a probability distribution over any set of parameters

represented by tractable probability distributions, such as a Gaussian, and p(y|x,W ) any para-

metric model, such as a neural network, which maps input x to the probability of y. Instead of

optimising the network’s weights W directly, we use gradient-based procedures to optimise their

variational parameters, φ. As part of the optimisation objective we require an estimate of (3.22).

We discuss how to obtain a stochastic estimate of this expectation with the reparametrisation

trick.

3.6.1 Monte-Carlo Estimators in Variational Inference

We cannot calculate the expectation in (3.22) in general. We use what is known as Monte-Carlo

variational inference (MCVI) with doubly stochastic optimisation to estimate the integral.

There are three main Monte-Carlo estimation techniques, of which we use path-wise gradient

estimators [44]. This method has shown success in modern stochastic optimisation [27], [13],

[12], offers low variance and is easy to implement. It essentially entails pushing the parameters

of the variational distribution into the objective function and then finding the derivatives of the

new objective function (this is also called the “push in” method and we discuss how we push

in the gradient function in Appendix A). We do this by making use of the “reparametrisation

trick” [12] that we discuss in much greater detail in Section 5.4.1 in the context of BNNs.

Essentially we move the expectation from approximate posterior q(w), to auxiliary distribution

p(ε). This distribution is transformed using a function ξ, that is differentiable in the parameters

φ, such that w = ξ(ε, φ). We then rewrite our expected log likelihood as

LD(φ) = Eq(w) log p(y|x,w) (3.23)

= Ep(ε) log p(y|x,w = ξ(ε, φ)) (3.24)

where have moved or “pushed in” the dependence of the variational parameters to inside the

expectation. The auxiliary distribution p(ε) is easy to sample from and usually a standard

Gaussian. Since the expectation is intractable, we approximate this with a Monte-Carlo estimate
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given by

LD(φ) ≈
N∑
n=1

log p(yn|xn, w = ξ(ε, φ)). (3.25)

This allows us to sample from our distribution qφ(w) and efficiently calculate derivatives directly

with respect to the variational parameters φ. We are now able to move the gradient operation

inside the expectation, leading to less gradient variance, and find the optimal parameters φ∗.

3.6.2 Doubly Stochastic Optimisation

We optimise the expectation in (3.25) using stochastic optimisation constituting stochastic vari-

ational inference [14]. We take the gradient with respect to the parameters of the distribution

φ. We write this as

∇φLD(φ) ≈
N∑
n=1

∇φ log p(yn|xn, w = ξ(ε, φ)) (3.26)

Specifically the gradient is with respect to the distribution q, so that we optimise the parameters

of its distribution to minimise the distance between the approximate posterior and the true

posterior.

The second source of stochasticity is introduced by sampling mini batches. Sub-sampling the data

provides better generalisation and it is also useful when it is too costly to perform computations

over the entire dataset. For a specific mini-batch of size M we estimate the integral as

∇φLD(φ) ≈ N

M

M∑
m=1

∇φ log p(ym|xm, w = ξ(ε, φ)) (3.27)

randomly selecting mini-batches. This approximation forms an unbiased stochastic estimator

to (3.26). This describes doubly stochastic MCVI and the objective function for BNN training

which we return to in a later chapter.
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Chapter 4

Bayesian Logistic Regression

We briefly discuss Bayesian logistic regression that serves as a baseline with which we can reliably

compare more complex approaches. Logistic regression is a well established classifier often used

for its interpretability. The Bayesian implementation of logistic regression offers a simple solution

to obtaining a model with uncertainty, requiring little computational cost.

This chapter also provides an introduction to applying approximate inference methods to clas-

sification models in preparation of our discussion of BNNs. In Bayesian logistic regression, both

the posterior inference and prediction is intractable. We follow [31] in discussing the Laplace

approximation for approximate inference of the posterior as well as the probit approximation for

prediction.

    (4) Bayesian Logistic 
           Regression 

     (5) Bayesian Neural
        Networks (BNNs)

 ● Overview
 ● Modern BNNs
 ● Dropout  
       ● Compression
       ● Self stabilising 
                 Robust Priors

  (6) Probabilistic Graphical 
             Models (PGMs)

 ● Background
 ● Model

Opening Section

Middle Section

Closing Section

4.1 Logistic Regression

First, we briefly introduce logistic regression as a binary classifier. The logistic sigmoid function

can be interpreted as the probability of an input vector, x, belonging to a class labelled y = 0,
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of two possible classes with labels 0 or 1, given parameters or weights, w, written as

P (y|w,x) = σ(wTx) (4.1)

=
1

1 + ewTx
. (4.2)

This establishes a classifier with a linear decision boundary at wTx = 0 where the probability of

x belonging to either class is 0.5. The classifier assigns a binary outcome to an input according

to where it falls in relation to the decision boundary. The likelihood then follows a Bernoulli

distribution and, over a set of observations D = (xi, yi) where n = {1, ..., N}, can be expressed

as

p(y|w,x) =
N∏
i=1

p(yi|xi,w) (4.3)

=

N∏
i=1

[(
σ(wTxi)

)yi
+
(
1− σ(wTxi)

)1−yi]
. (4.4)

Training a logistic classifier usually entails taking the log of the likelihood function and setting

the derivative, with respect to the parameters w, to zero. This defines the objective we minimise

given by

∇w ln p(y|w) =
N∑
i=1

(σ(wTxi)− yi)xi = 0. (4.5)

4.2 Bayesian Logistic Regression

Bayesian logistic regression faces the problem that the posterior is intractable. We introduce a

prior probability over w and combine it with the likelihood in (4.3) which gives the posterior as

p(w|D) ∝ p(w)
N∏
i=1

p(yi|xi,w). (4.6)

Due to the non-linearity introduced by our likelihood in (4.4), inference can no longer be carried

out analytically. Thus, we consider approximate approaches to inference.
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4.2 Bayesian Logistic Regression

4.2.0.1 Laplace Approximation

The Laplace approximation capitalises on underlying simplicity of the log likelihood function of

logistic regression. The log likelihood is concave that suggests that a Gaussian approximation

of the posterior distribution is appropriate. The Laplace approximation exploits this concavity

by finding a Gaussian approximate posterior q(w), centered at the mode of the true posterior

p(w|D). The covariance matrix is calculated based on the Taylor expansion at this mode.

In finding the posterior, we recall the expression for the posterior in (4.6) and we substitute the

the likelihood and a Gaussian prior, p(w) = N(µ0,Σ0). This gives

ln p(w|D) = −1

2
(w − µ0)

TΣ0(w − µ0) (4.7)

+
N∑
i=1

(
yi lnσ(wTxi) + (1− yi) ln(1− σ(wTxi))

)
+ c. (4.8)

We optimise this expression to yield the MAP solution, defining the mean of the approximating

distribution wMAP. We obtain the covariance from the inverse of the Hessian (discussed in [31])

given as

Σ−1N = −∇∇ ln p(w|D) (4.9)

= Σ0 +
N∑
n=1

σ(wTxn)(1− σ(wTxn))xnxn
T . (4.10)

The posterior given by the Laplace approximation is then given by

q(w) = N(w|wMAP,ΣN ). (4.11)

4.2.1 Prediction

Using the posterior we obtained, we can make predictions y′ on a new observation x′ by inte-

grating out the effect of the parameters given by

p(y′|x′,D) =

∫
p(y′|x′,w)p(w|D)dw. (4.12)

Instead of taking a single set of weights this integration considers all possible parameters weighted

by their probability defined by the posterior. For logistic regression we make use of the probit

approximation as in [31] that provides closed-form approximations to the predictive distribution.
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We approximate the predictive distribution as

p(y′|x′,D) ≈ σ(κ(σ2a)µa) (4.13)

where

κ(σ2) =

(
1 +

πσ2

8

)− 1
2

, (4.14)

µa = µTx′, (4.15)

σa = x′TΣx′. (4.16)

This gives us a method to efficiently average over the posterior in closed form. We can then

accurately estimate uncertainty based on the full posterior and, as shown in Figure 4.1, find

certain and uncertain regions relative to the amount of data seen. The predictive distribution

under the probit approximation is shown in Figure 4.1. This illustrates how the approximation

allows consideration of the full posterior distribution in making predictions.

Figure 4.1: Bayesian logistic regression predictions with the probit approximation. This
illustrates the effect of a closed-form approximation to incorporate the full posterior. This

produces uncertain regions near where the model is yet to see data.

4.3 Conclusion

This chapter introduced logistic regression and explicated a Bayesian implementation of the clas-

sifier. We introduced practical methods of evaluating intractable integrals with approximations

in the Laplace approximation of the posterior distribution as well as the probit approximation

for the predictive distribution. These approximations represent closed form solutions, which is

possible due to the simplicity of logistic regression. For the remainder of this thesis we consider

more complicated models, in neural networks, for which closed-form approximations become
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prohibitively complex.

Bayesian logistic regression represents a simple and reliable baseline that capable of estimating

uncertainty. Due to its simplicity, it also amounts to a very efficient solution in terms of compu-

tation time and memory. Logistic regression, however, is very limited in that it is able to only

represent linear decision boundaries between features. In the upcoming chapter we discuss BNNs

that are capable of much more complex modelling.
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Chapter 5

Bayesian Neural Networks

In this chapter we introduce and discuss Bayesian neural networks (BNNs). BNNs have emerged

as useful tools for leveraging the modelling capacity of deep learning while offering the flexibility

of incorporating prior information and principled parameter estimation of the Bayesian frame-

work. We develop BNNs for two scenarios: (1) modelling data under uncertainty and (2) model

compression or sparsification.

    (4) Bayesian Logistic 
           Regression 

     (5) Bayesian Neural
        Networks (BNNs)

 ● Overview
 ● Modern BNNs
 ● Dropout  
       ● Compression
       ● Self stabilising 
                 Robust Priors

  (6) Probabilistic Graphical 
             Models (PGMs)

 ● Background
 ● Model

Opening Section

Middle Section

Closing Section

We discuss a short history of BNNs followed by a brief review of neural networks. We then

discuss recent advances in variational inference, including the reparametrisation trick and the

local reparametrisation trick, that have made it possible to train BNNs at scale. Subsequently,

using these techniques we introduce and discuss the training procedure of a standard modern

BNN with fully factorised Gaussian priors and posteriors. This model is able to accurately

estimate uncertainty that we demonstrate with an experiment on MNIST, where we corrupt the

inputs. A discussion then follows of work casting stochastic regularisation techniques in neural

networks as Bayesian inference that lays the foundation for model compression techniques, signal

propagation analysis of BNNs and robust priors. The chapter concludes by discussing prediction

with distillation methods.
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5.1 Motivation

Deep neural networks are powerful tools for modelling highly complex functions, but tend to-

wards overconfidence. As a result, their confidence estimates are not accurate, particularly for

inputs that vary from the training data distribution. Furthermore, since these models are able

to easily memorise random patterns in data [37], they are prone to overfitting, resulting in poor

generalisation. This in effect makes them unsuitable for problems with small datasets such as in

satellite image classification. Additionally, this may be troublesome for informing downstream

decision tasks in a connected probabilistic system. To address this shortcoming we make use of

BNNs. This framework allows us to capture uncertainty in the neural network with a posterior

distribution over the parameters. By integrating over this distribution we obtain better uncer-

tainty about the predictions of the model. This also brings about automatic model regularisation

and improved ability to learn from small datasets.

A further trait of deep neural networks is that they regularly contain millions of parameters and

require considerable computation time and memory. Deep learning is generally implemented on

GPUs or power-hungry specialised hardware, making it inappropriate for embedded applications

with limited power such as on a satellite. Neural networks, however, are overparametrised and

contain redundant parameters and can be pruned significantly without any loss in accuracy.

The Bayesian paradigm presents a principled procedure to prune these models. By introduc-

ing sparsity-inducing priors, we can easily discard more than 90% of the original weights. By

sparsifying the model, we can deploy a powerful yet compact model that avoids unnecessary

computation and resources.

5.2 Brief Overview of Bayesian Neural Networks

Early work considering the task of approximate inference for BNNs followed [45], using the

Laplace approximation to provide a deterministic approximation to the posterior. Much like in

our discussion of logistic regression, it is easily obtained by approximating a Gaussian centred at

the MAP estimate of the parameters. It requires inverting the Hessian of the log-likelihood that

limits its scalability. It is possible to relax some dependencies with approximations to scale the

model, but this generally weakens performance. First variational inference methods for neural

networks were presented in [46], which later formed the basis for variational inference in modern

BNNs. Hamiltonian Monte-Carlo was later developed in [9] as an efficient gradient-based Monte-
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Carlo method that was considered the choice inference method for BNNs for many years. These

methods are, however, also difficult to scale and, as a sampling method, it may be difficult to

assess convergence.

Only recently, with the introduction of the Monte-Carlo variational inference (MCVI) type BNN

estimators in [10], have variational methods been made practically scalable allowing the enhanced

performance of larger models. With the introduction of stochastic optimisation techniques [14]

and improved approximate inference in probabilistic modelling [27], accompanied by practical

and efficient estimation tricks in the reparametrisation trick [12], [13], new developments in BNNs

were driven and “Bayes by backprop” was introduced [11] which has led to successful large-scale

applications.

Probabilistic backpropagation [47] was also proposed to address scalability that uses message

passing techniques (widely used in PGMs), specifically expectation propagation [48]. It showed

good results and is easily parallelisable but require custom implementations. Other alternative

inference methods have since been proposed such as [49], [50]. We implement and build on the

large body of work based on MCVI and Bayes by backprop. Our aim is to leverage the modelling

power of deep learning, requiring the ability to easily scale inference techniques. MCVI allows us

to make use of the scalability, flexibility and applicability of methods in modern Bayesian deep

learning techniques such as the reparametrisation trick that simplifies the training of BNNs.

This allows training BNNs to become a simple stochastic optimisation task. MCVI also allows

training of non-conjugate models [27], allowing versatility and potential for designing many

possible combinations of priors and posteriors.

5.3 Review of Neural Networks

We briefly review neural networks following Bishop:2006:PRM:1162264 which serves mainly

as an introduction to the notation used in this chapter. The network takes in a set of input vectors

or observations D = (xn,yn) where n = {1, ..., N} with a parameter matrix W of dimension

Dl−1 × Dl. We compute the output y(x,W ) as a function of hidden layers h of which each

layer is made of a vector h(l) of hidden unit pre-activations. Individual units, with an input

x = {hl−10 , ..., hl−1Dl−1
}, are defined by

h
(l)
j (x) =

Dl−1∑
i=1

w
(l)
i,jxi + b

(l)
j . (5.1)
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Figure 5.1: Diagram describing a two-layer neural network.

Here, w
(l)
i,j is the weight on the connection from the input x

(l)
i to hidden unit j. The biases and

hidden unit output feeding into h
(l)
j are denoted with b

(l)
j and xi respectively. Each output value

is a weighted sum of hidden units with the addition of a bias which then passes through a non-

linear activation function denoted by g(.). This gives the value of a hidden unit post activation

after a non-linearity is introduced g(h
(l)
j (x)). An activation function defines the output of a node

and can be seen as extracting intermediate features and representing them in the hidden units

as “hidden features” that are useful in modelling input-output relationships.

A neural network can be defined as a series of transformations given in (5.1). For classification,

we use the softmax function σ(.) at the output layer which yields a vector of probabilities. In

Figure 5.1 we illustrate a typical neural network with one hidden layer with a weight matrix W ,

of which the output is computed as follows:

y(x,W ) = σ

Dl−1∑
j=1

w
(2)
k,jg

(
D∑
i=1

w
(1)
j,i xi + b(1)

)
+ b(2)

 . (5.2)

We will omit the superscript l denoting the layer until our discussion of signal propagation in

BNNs.

It was shown that a neural network with one hidden layer can approximate any function arbi-
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trarily closely, if there are a sufficient number of hidden units [51], [52]. However, modern deep

learning makes use of deeper and more complex architectures with great success. This usually

includes adding more layers or including a variety of specialised layers, such as convolutional

layers. We make use of the ReLU activation function, g(x) = max(0, x), in this thesis.

Training involves using backpropagation, a gradient-based algorithm to adjust or tune the param-

eters, made up of our weights and biases. There are many backpropagation-based optimisation

algorithms to minimise the difference between the measured error between the network outputs

and targets on the training set. We make use of the Adam optimiser [53].

5.4 Variational Inference for Bayesian Neural Networks

    (4) Bayesian Logistic 
           Regression 

     (5) Bayesian Neural
        Networks (BNNs)

 ● Overview
 ● Modern BNNs
 ● Dropout  
       ● Compression
       ● Self stabilising 
                 Robust Priors

  (6) Probabilistic Graphical 
             Models (PGMs)

 ● Background
 ● Model

Opening Section

Middle Section

Closing Section

We now formulate the objective for training BNNs using MCVI (introduced in Section 3.4)

most commonly used in modern BNNs [10], [11]. Considering a set of weight matrices W =

{W 1, ..,WL} for L layers and weights wli,j constituting matrices W l ∈ RDl×Dl−1 , we aim to

approximate the true intractable posterior distribution p(W |D), over our parameters, with an

approximating distribution qφ(W ), from a tractable family parametrised by our variational pa-

rameters φ. Our goal is to find the values of our parameters φ that minimises the ELBO or L.

We write this as

L(φ) = argmin
φ

Eqφ(W )[log p(y|W,x)]−KL[qφ(W )||p(W )], (5.3)

where the first term is the expected loss or expected likelihood of our data with respect to qφ(W ).

This is our data fitting term where we can use any deep neural net or parametric model which

maps x to the probability of y. For example, with classification it would be the cross entropy

loss averaged over all the possible settings of our weights. The expectation of this model is taken

with respect to the distribution over the parameters qφ(W ). Calculating the expectation over a

deep neural network is intractable so we require some approximation. We can obtain an accurate

and efficient stochastic estimate of this expectation with the reparametrisation trick which we
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discuss in the next section. The second term is the distance between the variational distribution

and the prior distribution which can usually be calculated analytically. This introduces some

regularisation as it forces the posterior to be close to the prior.

5.4.1 The Reparametrisation Trick

In this section we make use of the reparametrisation trick, a recent innovation in variational

inference to allow for tractable and scalable inference and parameter learning in probabilistic

models. The reparametrisation trick was introduced in [12] forming a fundamental component

of variational auto-encoders. In short, the aim is to, instead of learning a mapping of a com-

pressed representation onto a fixed vector as with auto-encoders, mapping a compressed latent

representation onto a probability distribution instead. The reparametrisation trick’s significance

lies in that the reparametrisation allows gradients to pass through stochastic nodes or random

variables. This allows training BNNs end to end with gradient optimisers. In BNNs the weights

are stochastic and in training we sample one set of weights with each forward pass. In this the-

sis, all weights are independent distributions that we can reparametrise individually such that

we can calculate gradients with respect to their variational parameters. We first discuss the

reparametrisation for Gaussians, then in general followed by evaluating its efficiency.

We formulated a probabilistic model in the previous section, thus unlike conventional neural

networks, the output is non-deterministic, i.e. the output will differ every forward pass through

the network for the same data. We are not optimising the likelihood, we optimise the expected

likelihood. Because we are treating the weights as random variables, we optimise the expectation

of the likelihood function with respect to qφ(W ). We cannot optimise qφ(W ) directly with a

gradient estimator because weights are random variables and represent stochastic nodes in the

computation graph. The reparametrisation trick, as we will see, allows us to sample only once and

get an unbiased estimate of the expectation allowing us to train BNNs with gradient optimisers.

It allows us to, instead of optimising the network’s weights, rather optimise their variational

parameters directly. In other words, the trick allows us to obtain an unbiased differentiable

Monte-Carlo estimator of the expected log-likelihood.
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Figure 5.2: The reparametrisation trick in a computation graph. In the first image we have a
stochastic node that is blocking all of our gradients because we cannot backpropagate through
a stochastic node. In the second image we reparametrise to move the stochastic part outside

the path from which we wish to calculate the gradient. This allows us to use backpropagation
to optimise the variational parameters of our weight distribution.

5.4.1.1 Gaussian Example

In the more general context of the reparametrisation trick we consider a random node z (rep-

resenting a stochastic variable such as a weight wi,j in BNN). Let us look at the computation

graph in Figure 5.2 (a). Considering a Gaussian distribution, that we want to sample from on the

forward pass, but we cannot calculate the gradient of the sampling operation on the backward

pass. To overcome this obstacle, we replace the random node with a reparametrised version as

seen in the computation graph in Figure 5.2 (b). What this reparametrisation has done is move

the source of noise outside of the main flow of the network.

For a Gaussian random variable z = N(µ, σ2), we can write the reparametrised node or random

variable that we are sampling as

z = µ+ σε (5.4)

where the distribution p(ε) is a standard Gaussian ε ∼ N(0, 1). This is equivalent to sampling

from N(µ, σ2). Here, µ and σ represent parameters of our variational distribution that we wish

to learn with backpropagation and the variable ε is a fixed stochastic node, we do not need to

learn anything about it as it does not depend on any parameters. In a forward pass we draw a

sample from p(ε), multiply with our variance, add our mean and we have a sample of our random
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node. On the backward pass it is now possible to calculate the partial derivatives with respect

to µ and σ, making it possible to optimise these parameters.

5.4.1.2 General Form

We introduced a way to get samples from a Gaussian distribution and its derivatives with respect

to the parameters of the distribution, but it is not limited to Gaussians. Almost every continuous

distribution can be decomposed to a different form where we sample from a simpler distribution

p(ε). We can employ the reparametrisation trick if there exists a deterministic function that will

transform samples from ε into samples of z. In general, for an approximate posterior qφi,j (wi,j)

we can reparametrise the random variable wi,j ∼ qφi,j (wi,j) using a differentiable transformation

g(ε, φi,j). We write this as

w = g(ε;φi,j) where ε ∼ p(ε). (5.5)

Our random variable wi,j , becomes a function of φi,j and ε where p(ε) is distributed according

to a distribution that does not depend on any parameters and g is the function that transforms

samples while making it possible to maintain a path or flow of partial derivative for backpropa-

gation.

It is not always possible to reparametrise for any distribution, but for our interests, it is always

possible to do so with Gaussians. We can always express an arbitrary normal distribution with

a standard normal distribution, as it is just a linear operation to shift the mean and scale the

variance. Then the gradient with respect to the mean and variance can easily be computed or

gradients are able to flow through the computation graph. Instead of taking the derivative with

respect to sampled weights w from qφ(w), where gradients will vary with each sample, we can

say w is a function that takes parameter φ and some noise, p(ε), and we can calculate gradients

with respect to φ. This results in much lower gradient variance that we discuss next.

5.4.1.3 Examining the Variance

In stochastic variational inference, a major goal is to reduce variance and thus increase the

efficiency of the estimator. We can then obtain more accurate inference with fewer samples or

scale to larger models and bigger datasets. We now examine how the reparametrisation trick

helps in efficiently calculating gradients with respect to parameters.
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For a straightforward scalar objective that resembles the ELBO (in the sense of calculating the

gradient of a variational parameter in expectation), let us consider the task of finding a parameter

µ with the objective

argmin
µ

Eqµ(z)[z] (5.6)

where we assume qµ to be normally distributed qµ = N(µ, σ2) and our aim is to estimate the

parameter µ. In optimising for µ we consider the quantity ∇µ Eqµ(z)[z]. Without the use of the

reparametrisation trick we can calculate the quantity as follows

∇µ Eqµ(z)[z] =

∫
z∇µqµ(z)dz (5.7)

∇µ Eqµ(z)[z] =

∫
z
qµ(z)

qµ(z)
∇µqµ(z)dz (5.8)

then using the log derivative trick gives

=

∫
zqµ(z) ln qµ(z)dz (5.9)

= Eqµ(z)[z ln qµ(z)]. (5.10)

For the Gaussian qµ = N(µ, σ2) this becomes

∇µ Eqµ(z)[z] = Eqµ(z)
[
z

(
− 1

2σ2
(z − µ)2 − 1

2
ln 2πσ2

)]
. (5.11)

We can then estimate this drawing S samples of z as zs. Ignoring the terms that do not depend

on µ gives

≈ 1

S

∑
s

zs

(
−(zs − µ)2

2σ2

)
. (5.12)

Our estimate of the gradient will vary and introduce a sampling error for each different occasion

that we draw samples. We may require many samples as this exhibits a large amount of variance

and computing this multiple times over a dataset of samples s will yield very different answers.

For the reparametrised version we can rewrite the expectation such that the distribution with

respect to which we take the gradient is independent of the parameter µ. We can directly

calculate the gradient and it is not necessary to introduce the ratio
qµ(z)
qµ(z)

as in (5.6). Compared

to the previous approach, by applying the reparametrisation trick, we exchange the distribution
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with respect to which we are taking the expectation with p(ε) as follows

∇µ Eqµ(z)[z] = ∇µ Ep(ε)[(µ+ σε)] where ε ∼ N(0, 1) (5.13)

which allows us to push in the gradient operator since it is independent of p(ε). This gives

∇µ Eqµ(z)[z] = Ep(ε)[∇µ(µ+ σε)] (5.14)

that for S samples, the gradient with respect to µ of the expression Eq(z)[z] gives

=
1

S

∑
s

1 (5.15)

= 1. (5.16)

We see that in estimating the quantity∇µ Eq(z)[z] there is no variance when using the reparametri-

sation trick and the gradient is independent of the parameter µ. This reduction of variance is

a huge benefit as each estimate of the gradient is closer to the true expectation. With the

reparametrisation trick, stochastic optimisation is more feasible as gradient estimates are accu-

rate despite being with respect to stochastic variables. This allows us to train significantly more

efficiently.

5.4.2 Monte-Carlo Estimator for Bayesian Neural Networks

Let us examine the reparametrisation trick in the context of optimising BNNs. We recall the need

to estimate the first term of (3.27) that is an expectation taken with respect to a distribution

that depends on parameters φ or

Eqφ(W )[log p(y|x,W )]. (5.17)

The goal is to optimise this expectation with respect to the variational parameters φ. Taking

the gradient gives

∇φ
∫
qφ(W ) log p(y|x,W )dW. (5.18)
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In order to take the derivative we require an estimate of
∫
qφ(W ) log p(y|x,W )dW . To obtain

an unbiased estimation for this expression we take a Monte-Carlo estimate given by

≈ 1

n

n∑
i=1

log p(y|x,Wi) where Wi ∼ qφ(W ) (5.19)

that will have good accuracy for sufficient n. The problem, however, is that we are sampling

many weights to get a Monte-Carlo estimate and taking derivatives with respect to this estimate.

We are trying to optimise φ but we can only calculate gradients with respect to samples of W

and use that to update φ. This has very high variance as sampling first then differentiating

ignores that the distribution of the weights qφ(W ) depends on φ. Derivatives will vary greatly

for each set of sampled weights. For example, if we take a sample of one set of weights and take

the gradient, then we take another sample of weights and take the gradient, the two gradients

may point in vastly different directions.

We want to move the dependence of φ from the probability distribution into the integral function.

We can also think of this as trying to move the derivative operator to inside the integral to avoid

sampling then differentiating. So we reparametrise qφ(W ) to give

∇φ
∫
p(ε) log p(y|x, f(ε,φ))dε (5.20)

This allows us to move differentiation inside the expectation giving us

∫
p(ε)∇φ log p(y|x, f(ε,φ))dε. (5.21)

We can now rewrite the Monte-Carlo integration to compute the expectation as

≈ 1

n

n∑
i=1

∇φ log p(y|x, f(εi,φ)) where εi ∼ p(ε). (5.22)

Here we get an efficient unbiased estimator of the expectation of our neural network and we

can calculate the gradient of our variational parameters φ directly. We can move the derivative

operator into our Monte-Carlo estimate and remove sampling variance. In essence our estimate

of
∫
qφ(W ) log p(y|x,W )dW , of which we require to take the derivative, we write as

∇φ
∫
qφ(W ) log p(y|x,W )dW ≈ 1

n

n∑
i=1

∇φ log p(y|x, f(εi,φ)). (5.23)

This is very efficient as we usually need just one sample per iteration. By doing this it is
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guaranteed that our stochastic gradient estimator will have the least possible variance.

5.4.2.1 Conclusion

In this section we saw that the reparametrisation trick is a tool by which we substitute random

variables of some known distribution with a deterministic transformation of another random

variable. This greatly reduces the variance in our gradient and we can calculate derivatives with

respect to our variational parameters directly. In a BNN we use the reparametrisation trick for

all of our weights individually such that we can learn the posterior variational parameters with

gradient descent. What we observe in practice, however, is that while this dramatically reduces

variance, our estimator still struggles with high variance in larger models, we thus implement

the local reparametrisation trick which we will discuss next.

5.4.3 Local Reparametrisation Trick

The local reparametrisation trick was introduced in [20], which builds on the reparametrisation

trick, to further reduce variance in BNNs that use batches during training. The core idea is

instead of sampling weights and multiplying them with the inputs to get a pre-activation matrix,

we calculate the distribution of the pre-activation matrix analytically and sample from this

directly. We first discuss its implementation, then how it affects efficiency during training.

Given that our weights are drawn from independent Gaussian distributions with means µi,j , and

variance σ2i,j , we write individual weights of weight matrix W as wi,j ∼ N(µi,j , σ
2
i,j) . We define

a new pre-activation matrix, B, after the weights have been multiplied as

B = XW, (5.24)

where X is the input batch. Matrix B is still Gaussian as it is only shifted and scaled by the

input batch. We calculate the mean and variance of the elements bi,j of this matrix to sample

from by taking the moments. At an arbitrary layer l of width Dl with an input batch of size M

yielding x of size M ×Dl−1 and weight matrix Dl−1 ×Dl with a layer of size Dl, the moments
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yields

E[bi,j ] = γm,j where γm,j =

Dl−1∑
i=1

xm,iµi,j , (5.25)

Var[bi,j ] = δm,j where δm,j =

Dl−1∑
i=1

x2m,iσ
2
i,j , (5.26)

where xm is the m-th element of the input batch X. Then we can define the distribution of bi,j

as

bi,j ∼ N(γm,j , δm,j). (5.27)

This is the reparametrised distribution at a pre-activation from which we sample with the local

reparametrisation trick.

Returning to matrix notation, we consider µi,j ∈ θ and σ2i,j ∈ Σ defining matrices of the inde-

pendent weights parameters. To simplify notation, we regard the square root in the following

equation as element wise. We can then sample a matrix of pre-activations with

B = X � θ +
√
X �X � Σ� Σ� E (5.28)

and � is the element-wise product. Here, E is a M×Dl matrix with elements εm,j ∼ N(0, 1). We

thus only require only M ×Dl samples, yielding Dl−1 fold savings. We sample directly from this

distribution with the reparametrisation trick rather than the weight distribution. This defines

the core computation of a Bayesian layer in modern Bayesian deep learning.

Sampling directly from this distribution results in independent weight samples for each data

point, whereas if we sample from qφ(W ) we only have one weight sample per mini batch. Pre-

viously, we had just one sample of weights per batch which all used the same ε. The noise

terms were shared across a mini batch in the weight sample which cause predictions to become

correlated and therefore gradients to vary. Moving the noise injection from the parameters to

the pre-activations gives us more independent parameter samples with each forward pass at the

same computational cost. Effectively, we translate the global noise in the weights into local noise

that is not correlated between data points in the mini batch.

A single noise sample per mini batch causes predictions to tend to deviate from their expected

values as predictions become correlated. Let us examine Li, the contribution of the i-th data point

in the mini batch M given by log p(yi|xi,W = f(φ, ε)). We estimate LD(φ) of the entire dataset
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with a Monte-Carlo estimator LD(φ) ≈ L̂ = N
M

∑M
i=1 Li. Here the variances and covariances are

only determined by the mini batch, xi and yi, and ε which is a shared noise sample, i.e.

Var[Li] = Var[log p(yi|xi,W = f(φ, ε))]. (5.29)

We can then compute the empirical variance of (5.29) over a mini batch by taking the second

moment, the sum of the variances plus the sum of the covariances. Because different estimates are

identically distributed, they have the same variances and covariances, we can write the variance

of the Monte-Carlo estimator for a mini batch as

Var[L̂] =
N2

M2

 M∑
i=1

Var[Li] + 2
M∑
i=1

M∑
j=1

Cov[Li, Lj ]

 (5.30)

= N2

(
1

M
Var[Li] +

M − 1

M
Cov[Li, Lj ]

)
. (5.31)

The key observation here is that when our mini batch size M is not equal to 1, the covariance

dominates the variance. This means for even moderately large mini batches there will be high

variance in our estimator and thus large gradient variance.

As discussed in [20], the weights W , and noise ε, influence the expected log likelihood L, only

through the neuron pre-activations B. If we can therefore sample the random pre-activations B

directly, without sampling W or ε, we obtain an estimator where Cov[Li, Lj ] = 0 and at a much

lower cost than drawing separate samples for weight matrices for each training example.

In summary, we saw that the local reparametrisation trick leads to less gradient variance because

it draws independent noise samples for each weight entry in the mini-batch. This reparametri-

sation simply requires analytically calculating the mean and variance of the pre-activations and

sampling from that distribution. Before we discuss applying thes reparametrisation tricks to a

BNN and training these models we briefly cover prediction in the next section.

5.5 Prediction

Our introduction of BNNs ends with a consideration of prediction methods. To predict the label

y from an input x, we have to average over the posterior qφ(W ). We can make predictions on
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new data given a new observation x with

p(y|x) =

∫
p(y|x,W )qφ(W )dW (5.32)

and average the outputs. This is intractable and in practice we take many samples as an estimate.

We sample a set of weights and do a forward pass, yielding a sample prediction for a given input

and repeat this many times and average over the predictions. We call this test-time averaging.

The accuracy saturates relatively quickly and may require very few samples; usually 20 samples

are adequate to acquire reliable estimates.

5.5.1 Distillation

An alternative is to distill the ensemble behaviour into a different deterministic neural network

[26]. In the case when taking many samples or requiring many forward passes of the network is

too computationally expensive or slow, we may train a neural network to mimic the behaviour

of a BNN.

We train a neural network, which is referred to as the student network, to minimise the dis-

tance between predictions of the ensemble, or the teacher network. Over a dataset with X =

[x0, ...,xN ] and Y = [y0, ...,yN ] we optimise

L(Wstudent) = Eqφ(Wteacher)

[
H [(p(Y |X,Wstudent), p(Y |X,Wteacher))]

]
(5.33)

where H represents the cross entropy between the outputs of the student and the teacher network.

We propagate the samples through both then use the cross entropy to update the student. This

typically does not do as well as an ensemble, but does better than a single network.

We first train the teacher BNN and obtain an approximate posterior qφ(W ). To train the

student deterministic network, we sample a minibatch and sample the predictions of the teacher.

The softmax output of the teacher is used as soft labels labels for the student. The student

network minimises the distance between the output of the teacher network and its outputs start

to resemble the teacher. Next we will apply the methods we have discussed, applying both

reparametrisation tricks to a BNN with fully factorised Gaussian posteriors.
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5.6 Bayesian Neural Networks with Fully Factorised Gaussian

Priors and Posteriors

We now discuss the training procedure of a BNN with fully factorised Gaussian priors and

posteriors, similar to [10] and [11], as we will be using for many of our experiments. This

follows [27] in that inference is non-conjugate. Fully factorised Gaussian posteriors are robust to

overfitting and provide accurate uncertainty estimates. For a particular layer W l for all layers

l ∈ 1, ..., L we approximate the posterior distribution over our weights to be one-dimensional

Gaussians, yielding

qφ(W l) =
∏
∀i∈W

N
(
wli|µli, (σli)2

)
. (5.34)

For brevity we write W as the set of weights containing all layers {W 1, ...,WL} We apply the

local reparametrisation trick, where we sample from the pre-activation matrix B before the

non-linearities, given in (5.28) as our expression for our weights. This ensures that there is no

correlation from a shared noise sample from our sampled weights. Using the local reparametri-

sation trick, using (5.25) and (5.26), to obtain a weight sample at the pre-activation we compute

bi,j = γm,i +
√
δm,jε where ε ∼ N(0, 1). (5.35)

We choose our prior to be fully factorised Gaussians with a prior mean µprior and variance

σ2prior given by p(wi,j) = N(µprior, σ
2
prior). The objective function is then derived from our MCVI

objective in (5.3), which we recall as

L(φ) = argmin
φ

Eqφ(W ) log p(y|W,x)−KL[qφ(W )||p(W )]. (5.36)

Replacing the first term with the reparemtrised version and the KL term as the summation of

the KL distance, in closed form for Gaussians, between the independent posteriors and the prior,

the objective is then given by

L(θ,Σ) = Ep(E)

[
log p(y|x,W = θ + Σ� E) +

∑
∀i∈W

log
σ2i
σ2prior

+
µ2i − µ2prior + σ2i − σ2prior

2σ2prior

]
.

(5.37)

During training, when using reparametrisation tricks, one forward pass with one sample per
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weight is sufficient to estimate the first term, p(y|x,W = θ + Σ � E). We optimise this with

respect to θ and Σ. The first term represents an MCVI estimator with the reparametrisation

trick. The second part is the KL distance between two Gaussians that we have calculated in

closed form as a function of our prior and variational parameters. This adds some regularisation

to the mean vector to keep it close to µprior and also some regularisation to the variance that

encourages posterior variances close to prior variances. Typically it is better to use small values

for σprior and initialise σ to start small for stability.

From here it is simple gradient-based optimisation to find θ and Σ. For simplicity we treat non-

expressive parameters such as biases as deterministic parameters. It is possible to place priors

over them by augmenting the input at each layer with an additional column of ones and adding

an extra column of weights to treat biases as random variables. However, these parameters are

not likely to overfit and this brings a degree of complexity introducing even more randomness in

a forward pass of a network when using stochastic optimisation methods.

We implement a BNN of this kind trained on MNIST and demonstrate an experiment showcasing

uncertainty estimation using this network and noisy inputs in Figure 5.3. Using entropy of

the softmax output as a measure of confidence, the confidence for predictions on unseen or

majorly distorted digits is drastically reduced. This demonstrates how BNNs naturally account

for uncertainty when faced with observation noise. Inputs that no longer resemble a handwritten

digit is assigned high entropy reflecting uncertainty.
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(a) Clean Example
Entropy: 0.000

(b) Rotated 30 degrees
Entropy: 0.683

(c) Rotated 30 degrees
Entropy: 1.291

(d) Warped example
Entropy: 1.395

(e) Medium Noise
Entropy: 0.327

(f) High Noise
Entropy: 0.954

Figure 5.3: We show BNN predictions on noisy MNIST inputs. We measure the entropy as a
representation of uncertainty. We distort a clean example given in (a) with rotation, warping

and adding noise. We see that entropy rises significantly when the inputs no longer resemble a
handwritten digit.
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Now that we have introduced BNNs, we discuss recent work [28], [20] relating stochastic regular-

isation techniques to Bayesian inference. We introduce MC dropout that relates binary dropout

to Bayesian inference in Gaussian processes that, despite drawing some criticisms, we find be

a practical method for uncertainty estimation. We also discuss variational dropout which pre-

cisely relates Gaussian dropout to training BNNs. This interpretation sets the foundation for

the following sections.

5.7.1 MC Dropout

Here we discuss work [28] casting dropout training in deep neural networks as approximate

Bayesian inference in deep Gaussian processes [54]. This method is referred to as Monte-Carlo
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dropout (MC dropout) and makes use of dropout during training as well as test time. Dropout

was introduced as a regularisation technique used to avoid overfitting in neural networks [55],

[38]. We do not fully explore the theoretical link between Gaussian processes and dropout, but

discuss the interpretation suggesting that dropout approximately integrates over a model with

distributions over its weights. This method is widely used in uncertainty estimators in the deep

learning community but has attracted some criticisms. We discuss these criticisms but find it to

be practical and efficient.

5.7.1.1 Dropout

Dropout is a stochastic regularisation technique introduced in [38], [55] that ignore or “drop

out” random units or neurons or in a neural network. At each training step we temporarily

set random sets of neurons to zero and these are not considered during a particular forward or

backward pass. As seen in Figure 5.4 this results in a sparse net at each training step. The

result is that we train many of these sparse networks and approximately combine many different

neural network architectures.

(a) Standard neural network. (b) Neural network applying
dropout.

Figure 5.4: Illustration of dropout randomly switching off nodes.

Performing dropout essentially adds Bernoulli noise to the inputs of hidden layers of a normal

feed-forward neural network. We multiply the inputs to a hidden layer X with a random noise

matrix R where elements ri,j are drawn from a Bernoulli distribution with a dropout probability

p given by ri,j ∼ Bernoulli(p) . Then given weight matrices W and bias vector b, the output of
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a neural network layer becomes

h = g(W (X �R) + b) (5.38)

and only non-zero weights are updated.

In each training step we train a sparse model that causes the network not to rely too heavily

on one set of node features. It forces the network to learn various discriminating features and

independent features. This has proven to be very successful in regularising neural networks and

avoid overfitting.

5.7.1.2 Dropout as Approximate Bayesian Inference

In [28], it was shown that a neural network with dropout applied is equivalent to an approximation

to a deep Gaussian process [54]. This allows a method of estimating uncertainty using dropout

with the MC dropout procedure. With the derivations being non-trivial, we only discuss an

example of how we may specify our neural network as to gain some intuition of how dropout is

linked to probabilistic modelling. We define a new weight matrix Ŵ , as

Ŵ = W �R where ri,j ∼ Bernoulli(p) (5.39)

(5.40)

where we inject Bernoulli noise. If we maintain the noise in the prediction, we can interpret

Ŵ as a random variable similar to BNNs. We can envisage Ŵ as sampled from a probability

distribution q(W ), construed as a posterior distribution over the weights and similar to training

an ensemble of networks. From this point of view we are not training a fixed set of weights W

but rather having weights as random variables or maintaining a distribution of weights q(W ).

This suggests that sampling or injecting noise approximately integrates over model parameters

instead of choosing one set of weights. Notice that the regularising effect of noise regularisation

is naturally encompassed by a Bayesian model by integrating over uncertainty.

To apply MC dropout in practice, we compute stochastic forward passes at test time to average

over the random units or use sample predictions to find the moments. The method differs from

training a neural network only by using dropout in the network at test time. We repeat this T

times with dropping out different units every forward pass and aggregate the predictions. We
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calculate an estimate mean, y∗, of the prediction samples ŷt by taking the first moment,

E[y∗] ≈ 1

T

T∑
t=1

ŷt. (5.41)

This represents an estimate with T samples of approximate predictions, ŷt, sampled from a net-

work with dropout in the forward pass. As T goes to infinity, we should get the true expectation.

Similarly, we use the second moment for the outcomes

Var[y∗] ≈ 1

T

(
T∑
t=1

ŷTt ŷ − E[y∗]T E[y∗]

)
(5.42)

that represents our uncertainty for regression (note this is a simplified version of the original

variance proposed in [28]). For classification we average the outputs and measure the entropy of

the softmax output as our uncertainty.

A direct result of this that we can apply dropout at inference time and easily obtain an un-

certainty estimator. With MC dropout we acquire practical uncertainty estimates while using

well-established deep learning methods without needing to change the models or optimisation.

We alleviate the problem of representing uncertainty without incurring a great deal more of

computational complexity or sacrificing predictive performance.

Some concerns have been raised about this method, particularly that the model’s uncertainty

is not well calibrated [56]. The predictive variance seems to be too heavily influenced by the

dropout probability and [57] showed that for a small neural network, the predictive uncertainty

does not decrease with more data that brings the approximation into question. However, due

to its ease of implementation, it is still widely used and in our own experiments we are able to

produce satisfactory results.

5.7.2 Variational Dropout

Here we discuss variational dropout [20], which interprets Gaussian dropout, multiplicative noise

injection, as variational inference. This interpretation underpins the development of techniques

for model compression as well as robust Bayesian deep learning. We begin with interpreting

the noise injection as sampling from Gaussian weights. This allows us to write the objective

function of Gaussian dropout in a similar way to MCVI to relate the objective of Gaussian

dropout training to the objective of variational inference. This then allows us to work backwards
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to relate a specific prior that is consistent with Gaussian dropout and Bayesian inference.

Gaussian dropout is a stochastic regularisation method [58], where, instead of dropping out units

with Bernoulli noise, Gaussian noise is injected by means of multiplication. The noise distribution

does not change the mean value of the weights, it only slightly corrupts the weights with noise.

The Gaussian noise distribution, given by ε, with noise parameter α, is given by

ε ∼ N(1, α) (5.43)

that is then multiplied with a weight of a neural network. This is also called fast dropout,

because relative to binary dropout this results in faster convergence. This is because there is

less stochasticity in the computation of the gradient when units are slightly corrupted by noise

rather than being dropped out. Gaussian dropout was shown to be related to binary dropout

[58], where the parameters of the different noise distributions are related by

α =
p

1− p. (5.44)

Variational dropout extends Gaussian dropout by defining an approximate posterior distribution

q(W |θ, α) where θ is construed as either the weight matrix of a normal neural network with

Gaussian dropout, or the set of mean parameters of Gaussian posteriors. To be consistent with

dropout, one scalar value, α, defines a shared variance. Since Gaussian dropout does not affect

the expected value of a weight, the sampling distribution for a particular weight ŵi,j ∈ W , on

which Gaussian dropout of rate α, can be written as

ŵi,j ∼ N(wi,j , αw
2
i,j) (5.45)

or similarly the posterior distribution as

q(wi,j) = N(θi,j , αθ
2
i,j) (5.46)

where wi,j , of a deterministic network, is analogous to θi,j the mean parameter of a posterior

distribution and α is shared amongst all weights and represents the dropout rate. This is treated

as a noise hyper-parameter, which determines the spread around the mean. We then define our

variational parameters as the set φ = (θ, α) allowing us to write our posterior over a particular

weight as qφi,j (wi,j). Any multiplicative noise that affects our weights we may call a posterior

distribution in this way. We illustrate this idea in Figure 5.5.

59

Stellenbosch University https://scholar.sun.ac.za



5.7 Dropout as Bayesian Inference

Non-LineariyPre-activation

∑
�=1

��−1

��,���

Inputs

[ , . . . , ]�0 ��

Weight Distribution

( , � )��� �
2
��∼ �̃ ��

∼ �̂ �,�

Weight distribution

( , �)��,� �
2
�,�

OR

NoiseWeights

��,�  (1, �)⊙

Figure 5.5: Gaussian dropout as a posterior distribution over weights. The noise distribution
does not change the mean value of the weights, it only adds multiplicative noise. We can thus

interpret multiplicative noise either as Gaussian dropout or training a BNN with Gaussian
posteriors.

We now look to relate the procedure of Bayesian inference to the posterior we just discussed to

Gaussian dropout. The procedure of training networks with Gaussian dropout is a stochastic

optimisation task as we optimise the expected log likelihood. Thus we write the training objective

of Gaussian dropout, making use of the reparametrisation trick, giving

Ep(ε)∼N(0,I)[log p(y|x,W = θ � (1 +
√
αE))]. (5.47)

During dropout training, W or θ is adapted to optimise this objective. This is equivalent

to the likelihood term in variational inference of BNNs. Thus, the optimisation process of a

neural network with dropout is the equivalent to the optimisation process of finding variational

parameters of a BNN without incorporating a prior.

We require some restrictions on the prior for the optimisation to be congruous with the optimi-

sation of a variational lower bound. We work backwards from the objective to find a prior to

allow this to be consistent with Bayesian inference. The objective for variational dropout, which

includes a prior p(W ), can be written as

Eqφ(W ) log p(y|x,W )−KL(qφ(W )||p(W )). (5.48)

If we can find p(W ) consistent with dropout optimisation, Gaussian dropout and variational

inference become equivalent. To determine the prior, as discussed in [20], the KL divergence

KL(qφ(W )||p(W )) should not depend on θ. If we constrain our prior, p(W ), to depend only on

α and we fix α, the only prior that meets this requirement is the scale-invariant log-uniform
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distribution:

p(wi,j) ∝
1

|wi,j |
. (5.49)

The KL divergence term is then given by

−KL(qφ(W )||p(W )) =
1

2
α− Eε∼N(1,αi,j) log |ε|+ C. (5.50)

where C is approximated with a straight line function (see Appendix B for more details; we do

not make use of this particular prior in any of our implementations).

The result of this is that there is some prior that casts Gaussian dropout as exactly equivalent

to a special case of training BNNs. This allows us to train individual dropout rates αi,j for each

weight. Later we discuss how an improvement on this, with an additive reparametrisation trick,

which allows us to sparsify models. We also make use of this new interpretation to relate signal

propagation theory for deterministic neural networks with stochastic regularisation to signal

propagation for BNNs in the following chapter.
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Closing Section

Our discussions until now have only considered BNNs as uncertainty estimators. Here we extend

the discussion to the use of Bayesian methods to compress neural networks. Compressing neural

networks to reduce parameters is advantageous in situations where there is limited storage space

and energy such as onboard a satellite. We do this by using priors that induce sparsity that

urges the model to remove parameters in the learning process and prune the weights. We first

explain heuristic ways of pruning down weights followed by variational dropout, which proves to

automatically sparsify the model during the optimisation process.

In neural networks, a large number of parameters are present that supposedly learn feature repre-

sentations that could be included to improve predictive performance. Neural networks, however,

are heavily overparametrised, having many redundant parameters, and thus use more memory

and computation than necessary. We show that they can be pruned significantly without any
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loss in accuracy. However, we cannot be sure which parameters are more closely associated with

the targets and are truly relevant in making predictions. Neural networks are not interpretable,

the underlying mechanisms are not well understood, so we cannot confidently determine which

attributes are relevant. Priors can be designed to induce sparsity or for automatic relevance de-

termination (ARD). The model can then automatically determine the degree to which inputs of

unknown relevance are in fact relevant. Accordingly, inference is based on a combined objective

of improving the model’s ability to explain the data as well as limiting the number of parameters.

6.1.1 Pruning Neural Networks with Gaussian posteriors

The simplest form of compression can be done by heuristically pruning the number of parameters

in the network. We start removing parameters according to some criteria until the accuracy on

some held-out data starts to decline.

In the case of Gaussian posteriors, the variance parameter for our weight can serve as parameter

uncertainty. Uncertainty in this context describes how certain we are about the values of the

parameters or to what extent they contribute to the predictions of our model. We decide to

prune a weight if the variance of a parameter is large compared to the mean. We interpret this

similar to a signal to noise ratio (SNR) given by

SNR =
E[w]√
Var[w]

. (6.1)

If the expected value is much less than the variance, the SNR is high and we remove the weight.

Alternatively, the metric we can use to prune a parameter is simply the probability that it will

be zero given its probability distribution. We order our parameters by the likelihood that a

particular parameter will take the value of zero, according to its distribution, and start removing

them until the validation accuracy starts to fall below an acceptable level. We show an experiment

demonstrating pruning with this criteria in Figure 6.1.

We can also encourage this by using sparsity-inducing or ARD priors as in [9], [27]. Considering a

BNN with fully factorised Gaussian posteriors, we define a Gaussian prior p(wi,j) = N(0, σ2prior).

The variational lower bound objective with this prior is then given by

L(θ,Σ) = Ep(E)

[
log p(y|x,W = θ + Σ� E) +

∑
∀i∈W

log
σ2i
σ2prior

+
µ2i + σ2i − σ2prior

2σ2prior

]
. (6.2)
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Figure 6.1: Pruning a Bayesian neural network on MNIST and CIFAR-10. We see that we
require only 10 % of the weights without any decline in accuracy. This experiment uses the

criteria of pruning weights in order of probability that a particular parameter will take the value
of 0 given the weight distribution. We train a 2-layer BNN and sort weights by this criteria and
incrementally remove parameters, evaluating accuracy each step that parameters are removed.

Similar to logistic regression in [27], we can find the optimal value for each prior hyper-parameter

by taking the derivative with respect to σ2prior and setting it to zero. For a matrix W l of size Dl

by Dl−1 this gives σ2
priorl

= 1
Dl×Dl−1

∑
∀i∈W l(µli)

2 + (σli)
2. Substituting the optimal parameters

back into the objective we can obtain a simplified objective in

L(θ,Σ) = E
ε∼N(0,I)

[
log p(y|x,W = θ + Σ� E) +

1

2

∑
∀i∈W

log
σ2prior
µ2i + σ2i

]
. (6.3)

This encourages the posterior to have a high density around zero and removing parameters

with high likelihood of zero, yields sparse solutions and has an ARD effect. Since we choose

hyper-parameters that optimise the likelihood of the data, this is considered and empirical Bayes

(EB) procedure. The legitimacy of this is often questioned from a pure Bayesian perspective

as it is possible to overfit by having the data influence the prior. However, EB is often used

in practice with great success [59]. Next, we discuss variational dropout and its function as a

sparsity-inducing prior.

6.1.1.1 Variational Dropout for Sparsification

Here we continue our discussion of relating dropout to Bayesian inference and discuss model

sparsification using variational dropout presented in [19]. Due to an additive reparametrisation

trick, which reduces the variance of variational dropout, it is possible to more stably train, as

well as sparsify, BNNs. We will see that variational dropout automatically yields sparse solutions

by naturally encouraging the removal of weights.
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6.1.1.2 Additive Reparametrisation Trick

In the original paper presenting variational dropout [20], the authors reported trouble with train-

ing models with large dropout rates α, and recommended constraining dropout rates restricted

to α ≤ 1. As discussed in [19] the concern is due to α corresponding to multiplicative noise that

grows rapidly and results in gradients with high variance for large α. The additive reparametri-

sation trick effectively replaces multiplicative noise with additive noise that yields more stable

gradients.

To implement this additive reparametrisation, we consider an individual weight where the vari-

ational parameters for a weight wi,j are defined by the set φi,j = (θi,j , αi,j) and αi,j represents

the dropout rate. In variational dropout, our weights are computed as

wi,j = θi,j(1 +
√
αi,jεi,j) where εi,j ∼ N(0, 1). (6.4)

The additive reparametrisation involves introducing a new parameter σi,j so that we can write

(6.4) as

wi,j = θi,j + σi,jεi,j , (6.5)

and for this to be true we require

σ2i,j = αi,jθ
2
i,j . (6.6)

The optimisation process now involves three interdependent parameters, σ, α and θ. The objec-

tive function and the posterior distribution remain the same with this parametrisation. We only

adjusted the parametrisation of the approximate posterior and the computation of a forward

pass in a network that reduces variance in the gradient.

The success of this parametrisation is attributed to greatly reducing the variance of the gradient

for large α. Using this trick, we can train the model within the full range of αi,j i.e. α is no

longer restricted to α ≤ 1. It is clear when we look at the partial derivative with respect to the

parameters θi,j given by

∂L

∂φi,j
=

∂L

∂wi,j

∂wi,j
∂θi,j

. (6.7)
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The usual form that we calculate from (6.4) is given by

∂wi,j
∂θi,j

= 1 +
√
αi,j (6.8)

and with the additive reparametrisation calculated from (6.5) we get

∂wi,j
∂θ

= 1. (6.9)

We can see that the gradients of θ no longer vary depending on α. Large values for α correspond

to random or noisy weights when sampled, which corrupts the feed-forward signal. Considering

the computation of a weight in (6.5), large values of α correspond to a node that is absolutely

random and contributes nothing to the signal propagating through the network.

To gain some intuition, we compare Gaussian dropout with ordinary binary dropout. We recall

from (5.44) that binary and Gaussian dropout are related by

p =
α

1 + α
(6.10)

where p is the probability we switch off the neurons in binary dropout and α the variance of the

Gaussian noise in Gaussian dropout. If α = 1, the dropout probability is 0.5 that corresponds to

a frequently used dropout rate in practice. If α is very small, there is little Gaussian noise and

p goes zero. This corresponds to a small chance that a neuron is to be switched off or dropped

out. If α is very large, then there is a lot of dispersion around the weight mean and becomes

indistinguishable from random noise. In this case p is high and there is a high probability the

weight is to be switched off or dropped out. Or as α → ∞ then p = 1 which effectively means

that the corresponding weight or neuron is always dropped out and can be removed from the

model. A random weight will reduce the likelihood of the data and we thus remove it from the

network.

It turns out that if we put no restrictions on α it leads to very large values of α and very sparse

solutions. This will become clear by examining a simplified ELBO for intuition given by

EW∼q(W |θ,α) log p(y|x,W )−KL(α) (6.11)

where for our interest KL(α) is the KL divergence and is some function of the value α. The

optimisation attempts to maximise this function, and in doing so, increase the negative KL di-

vergence. The negative KL divergence grows as α grows, so a larger α maximises the ELBO. The
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objective thus naturally favours large dropout rates. As discussed previously, large dropout rates

correspond to absolutely random weights that we select to remove. Thus variational dropout

with the additive reparametrisation trick leads to very sparse solutions. This effect is similar to

ARD effect as it automatically decides which weights are irrelevant and to remove. It automat-

ically prunes down the network with no accuracy degradation. This is our final sparsification

technique and concludes our discussion of compression. The succeeding section continues to build

on variational dropout and the interpretation of stochastic regularisation techniques as training

BNNs without the additive reparametrisation.

6.2 Self-Stabilising Robust Bayesian Neural Networks

    (4) Bayesian Logistic 
           Regression 

     (5) Bayesian Neural
        Networks (BNNs)

 ● Overview
 ● Modern BNNs
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       ● Self stabilising 
                 Robust Priors
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             Models (PGMs)

 ● Background
 ● Model

Opening Section
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Closing Section

Contribution statement: As discussed in the contributions sections, this section is joint work

with Arnu Pretorius.

BNNs have emerged as useful tools for modelling data under uncertainty due to advances in

variational inference, making it possible to train BNNs at scale. However, despite these advances,

BNNs remain brittle and hard to train, especially in the following two instances: (1) when

using deep architectures consisting of many hidden layers and (2) in situations of large weight

variance. Here we introduce adaptive Monte-Carlo variational inference (adMCVI) with self-

stabilising priors, which makes it possible to successfully train BNNs in both (1) and (2). This

prior is derived and inspired by a signal propagation analysis of deep BNNs. The effectivity of

the stabilising prior depends on reformulating the ELBO objective such as to allow the prior

to influence the network during the forward pass. Then, by allowing the prior to influence the

network during the forward pass, we develop a self-stabilising prior, where the distributional

parameters of the prior are adjusted at each forward pass to ensure stability of a propagating

signal. This approach to variational inference stabilises network dynamics during training and

leads to improved convergence and robustness. This makes it possible to train deeper networks

and in more noisy settings. We demonstrate the effectiveness of adMCVI with stabilising priors
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in several experiments on MNIST, CIFAR-10 and synthetic data.

Inspired by signal propagation theory in deep neural networks [17], [18], [16], we propose a

heuristic similar in nature to an iterated application of empirical Bayes (EB) for setting prior

hyper-parameters, as is common in BNN training ([10], [50]) and [27] propose closed-form updates

for prior hyper-parameters). While EB chooses hyper-parameters that optimise the likelihood

of the data, our approach instead chooses prior hyper-parameters for each forward pass that

attempt to optimise signal propagation behaviour in the network. This allows us to effectively

train deeper BNNs than otherwise possible, but we also observe improved performance in the

previously trainable regime. We further note that this is the first application of signal propagation

theory for neural networks outside of initialisation schemes that we are aware of.

6.2.1 Reformulating the ELBO: Adaptive MCVI

The prior pα(W ), with hyper-parameters α, in the variational objective as in (5.3) impacts the

ELBO through the KL term, affecting the weights at update time with backpropagation. Note,

however, that these updates only take place after a completed forward pass, having no effect on

the signal propagation dynamics of the network. We instead argue for priors that exert their

influence during the forward pass, so as to simultaneously promote stable signal propagation,

and improve robustness in deep BNNs. It is essential that a stabilising prior be able to influence

the network on the forward pass if any training is to occur in deep networks i.e. to enable the

signal to reach the outputs. To be able to achieve this effect, we make two innovations: (1) we

reformulate the ELBO to allow the prior to influence the signal propagation of the network and

(2) we derive a novel prior, specifically for ReLU networks, that stabilises the signal during each

forward pass during training.

We reformulate the ELBO by lower bounding the log marginal likelihood of the data as follows

log p(y|x) = log

∫
p(y|x,W )pα(W )dW (6.12)

= log

∫
p(y|x,W )pα(W )

qφ(W )

qφ(W )
dW, (6.13)

where we combine the prior and approximating posterior as q̃{α,φ}(W ) = pα(W )qφ(W )/Z. The

combined approximating posterior q̃{α,φ}(W ), requires the normalisation constant Z to be a valid

probability distribution. We thus multiply the ratio Z/Z into (6.13). Then, we can construct a
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lower bound making use of Jensen’s inequality which gives

log p(y|x) = log

∫
pα(W )qφ(W )

Z

Z

p(y|x,W )

qφ(W )
dW (6.14)

= log

∫
q̃{α,φ}(W )Z

p(y|x,W )

qφ(W )
dW (6.15)

≥
∫
q̃{α,φ}(W ) log

Zp(y|x,W )

qφ(W )
dW

= Eq̃{α,φ}(W ) [log p(y|x,W )]− Eq̃{α,φ}(W )

[
log

qφ(W )

Z

]
. (6.16)

By reformulating the ELBO in this way, we can estimate the above expectations using a Monte-

Carlo estimator with samples drawn from q̃{α,φ}(W ) instead of qφ(W ). This ensures that the

sampled weights of the network are being influenced by the current prior pα(W ) during the

forward pass. Finally, we define our new variational objective as

Lq̃ := Ep(ε) [log p(y|x,W = ξ(ε, α, φ))]−KL(q̃{α,φ}(W )||pα(W )), (6.17)

where ε ∼ N(0, I). This reformulation of the ELBO allows the prior to exercise its stabilising

effect during the forward pass as well as adaptively changing the expectation of the likelihood in

MCVI, leading to more efficient estimates and stable training.

Next, we derive the signal propagation dynamics of a BNN that enables us to find a stabilising

prior by finding optimal prior parameters α as a function of the approximate posterior parameters

φ. The prior is updated after every gradient update to φ to ensure it adapts to the current

setting of the posterior (see Algorithm 1 for simple sequence of updates). These prior parameters

will turn out to be optimal in the sense that together with the reformulated ELBO in (6.17),

the sampled weights from q̃{α,φ}(W ) will have a self-stabilising effect on the signal propagation

dynamics of a deep BNN.

6.2.2 Signal Propagation in BNNs

Our work follows from signal propagation being extended to include noise regularisation [16] and

BNNs being related to stochastic regularisation techniques [28], [20]. We analyse BNNs from a

signal propagation theoretic perspective in an attempt to understand how to scale BNNs and

make them more robust during training. We know that at a certain depth neural networks lose

the ability to propagate discriminatory information about their inputs [18], moreover, stronger

noise regularisation reduces this depth [16]. Thus it was shown in [16] that the distribution of the
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parameters with which one randomly initialises a deterministic network should be determined

by the strength of the noise regularisation. In BNNs, signal propagation is determined by the

parameters of the weight distribution. We look to find conditions that allow us to adjust these

parameters to promote stable signal propagation. Our work extends initialisation techniques

in deterministic networks to an iteratively updating prior to allow more stable flow of infor-

mation through the network throughout training. This defends against poor signal propagation

associated with vanishing or exploding signals and poor network performance.

Our approach to deriving a stabilising prior is inspired by recent work in signal propagation

theory for infinite width neural networks [17], [18], [16]. Specifically, we make use of the mean-field

assumption [60], [17]. The mean-field assumption allows for the components of the pre-activation

vectors hl to be treated as independent Gaussian random variables, fully characterised by their

second-order statistics. This assumption is supported by the following observation: sampling

weights i.i.d. for an infinite width neural network means that the pre-activations in a given layer

each consist of an infinite sum of i.i.d. random variables (the incoming connections from the

previous layer). Then, according to the central limit theorem, these pre-activations are Gaussian

distributed. Although we work in the limit of infinite width setting, there is empirical evidence

that the assumption is accurate even in neural networks of reasonable finite width (e.g. Dl = 256

or 512) [61],[18],[62],[63],[64],[16].

In signal propagation we study the statistics of a signal xl through the layers of the network. In

order to do this in a BNN we recursively define layers, given an input x0 ∈ RD0 , as

hl = W lxl + bl, spa for l = 1, ..., L (6.18)

where the weights W l ∈ RDl×Dl−1 and the biases bl ∈ RDl constitute the model parameters

θ = {W l, bl}L1 . This is a recursive sequence of operations as the previous layer feeds into the

current layer, feeding into the next etc. At any layer in a deep network the signal propagation

dynamics is recursively is captured by

xl = g(hl−1). (6.19)

We denote the dimensionality of the hidden layers using Dl and compute activations at each

layer element-wise using an activation function g(·).

We can analyse the signal propagation dynamics of BNNs by recursively examining the statis-
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tics of an input at each layer and in expectation of the parameters over infinitely wide layers.

Considering factorised Gaussian posterior distributions over the weights and focussing on ReLU

activations, i.e. g(a) = max(0, a), we consider a single scalar hidden unit hlj at an arbitrary

layer l in the network. We calculate the mean and variance of a propagating signal at hlj for a

ReLU network in expectation over the weights and biases under the mean-field assumption. We

make the assumption, as in [9], that for networks of infinite width, individual contributions by

the weights feeding into a hidden unit, are roughly equal. Thus, for a hidden unit j at layer l,

weights determining signal propagation are identical with means µlqj and variances (σlqj )
2. The

relevant statistics governing signal propagation in the forward pass are thus given by Lemmas 1

& 2:

Lemma 1

Var[hlj ] = νlj = E

Dl−1∑
i=1

wli,jg(hl−1j + bj)

2− E

Dl−1∑
i=1

wli,jg(hl−1j + bj)

2

(6.20)

= (µlqj )
2

[
(τ l−1)2

4
+ τ l−1

√
νl−1

2π
+

(
1− 1

π

)
νl−1

2

]

+ (σlqj )
2

[
(τ l−1)2

2
+ 2τ l−1

√
νl−1

2π
+
νl−1

2

]
+ σ2b , (6.21)

and

Lemma 2

E[hlj ] = τ l = E

Dl−1∑
j=1

wli,jg(hl−1j + bi)


= µlqj

(
τ l−1

2
+

√
νl−1

2π

)
+ µlb (6.22)

where τ l−1 and νl−1 are the mean and variance of the incoming signal to hidden layer l respec-

tively. This defines how the signal will progress through the layers. The output mean τ l, and

variance νl, of a layer feeds into the next layer and grows or shrinks relative to weight mean µlqj

and variance (σlqj )
2. We will use the equations in Lemmas 1 & 2 above and some assumptions to

design a prior that will preserve the variance of a signal in a BNN. This ensures that an input

signal is not destroyed by the variance either vanishing or exploding.
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Proof: Lemma 1 & 2

We consider the quantity E[(hlj)
2] during a forward pass. This quantity is the second

moment of a single hidden unit hlj in layer l, consisting of Dl−1 incoming connections,

where the expectation taken is over the network parameters and is given by

E[(hlj)
2] = E

Dl−1∑
i=1

wli,jx
l
i + blj

2 (6.23)

=

Dl−1∑
i=1

E[(wli,j)
2]E[(xli)

2] + E[(blj)
2]. (6.24)

We define

σlq̃j =

Dl−1∑
i=1

(σli,j)
2 and µlq̃j =

Dl−1∑
i=1

µli,j (6.25)

to use as the statistics to describe
∑Dl−1

i=1 wi,j . Note that while it is true that we can write

Dl−1∑
i=1

wli,j ∼ N
(
µlq̃j , (σ

l
q̃j )

2
)

(6.26)

at initialisation, in our analysis of the network at an arbitrary stage of the stage of training

the i.i.d. assumption of the central limit theorem (CLT) does not strictly hold. As in [50],

we empirically find that some form of the CLT holds for the hidden units during training.

We thus continue to approximate the expectation with a Gaussian according to the CLT.

Next, in designing q̃{α,φ}(W ) we scale the variance and impose E[(wli,j)
2] =

(µlq̃)
2+(σlq̃)

2

Dl−1
,∀i, j

to ensure that the variance is bounded in the infinite width limit [18]. This also allows

the variance propagated forward to be independent of the layer width. We now have

E[(hlj)
2] = ((µlq̃j )

2 + (σlq̃j )
2)

1

Dl−1

Dl−1∑
i=1

g(hl−1i )2 + ((µlb)
2 + (σlb)

2). (6.27)

As Dl−1 →∞, hlj becomes an infinite sum of i.i.d. random variables and becomes Gaussian

distributed according to the CLT. We can thus write

E[(hlj)
2] = ((µlq̃)

2 + (σlq̃j )
2)Ez[φ(τ l−1 +

√
νl−1z)2] + (µlb)

2 + (σlb)
2 (6.28)

where z ∼ N(0, 1), and τ l−1 and νl−1 are the incoming signal to layer l’s mean and variance

72

Stellenbosch University https://scholar.sun.ac.za



6.2 Self-Stabilising Robust Bayesian Neural Networks

respectively. If we use the ReLU activation, i.e. g(a) = max(0, a), then

E[(hlj)
2] = ((µlq̃)

2 + (σlq̃j )
2)

{∫ ∞
−∞

Φ(z)φ(τ l−1 +
√
νl−1z)2dz

}
+ (µlb)

2 + (σlb)
2

= ((µlq̃)
2 + (σlq̃j )

2)

{∫ ∞
0

Φ(z)
(

(τ l−1)2 + 2τ l−1
√
νl−1z + νl−1z2

)
dz

}
+ (µlb)

2 + (σlb)
2

= ((µlq̃)
2 + (σlq̃j )

2)

[
(τ l−1)2

2
+

2τ l−1
√
νl−1√

2π
+
νl−1

2

]
+ (µlb)

2 + (σlb)
2 (6.29)

where Φ(z) = e−z
2/2

√
2π

.

Similarly, we can show that the relevant statistics governing signal propagation in the

forward pass are given by

E[hlj ] = E

Dl−1∑
j=1

wli,jg(hl−1j + bi)


= µlq̃j

(
τ l−1

2
+

√
νl−1

2π

)
+ µlb (6.30)

and

νlj = E

Dl−1∑
j=1

wli,jg(hl−1j )

2− E

Dl−1∑
j=1

wli,jg(hl−1j )

2

= (µlq̃j )
2

[
(τ l−1)2

4
+ τ l−1

√
νl−1

2π
+

(
1− 1

π

)
νl−1

2

]

+ (σlq̃j )
2

[
(τ l−1)2

2
+ 2τ l−1

√
νl−1

2π
+
νl−1

2

]
+ (σlb)

2. (6.31)

It is widely accepted that random networks and BNNs are effectively untrainable beyond a

certain depth. With signal propagation theory we quantify this. Signal propagation has already

been applied to quantify random initialisation in deterministic networks and design initialisation

schemes to make it possible to train deeper networks. Stable signal propagation for ReLU

networks requires pre-activations of variance 2 in the infinite width limit (only half the signal

propagates through the activation). This corresponds to the He initialisation widely used for

ReLU networks [25]. In ReLU networks this is more appropriate than the Xavier/Glorot [65]

initialisation that suggests unit pre-activation variances (half the He initialisation that leads to

vanishing signals in ReLU networks).
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6.2.3 Self-stabilising Prior

For models with few parameters, there are principled ways to select priors and get sensible

posteriors, however, in the context of BNNs, selecting meaningful priors seems obscure. In

addition, BNNs are sensitive to the choice of prior [9]. Our approach is to design a prior to

optimise stable signal propagation. In effect we use knowledge about the network architecture

and activations and how signals propagate in the infinite width limit to inform our prior.

To begin, we make the following distributional assumptions for the prior, approximating posterior

and their product. Importantly, we define a shared prior variance for weights feeding into the

same hidden unit following from our assumption that in the infinite width limit contributions to

the variance feeding into a single hidden unit are roughly equal. Specifically, for every element

wli,j of the weight matrix W l, we assume

pα(wli,j) = N(µlpi,j , (σ
l
pj )

2), αli,j = {µlpi,j , σlpj}

qφ(wli,j) = N(µlqi,j , (σ
l
qi,j )

2), φli,j = {µlqi,j , σlqi,j}

q̃β(wli,j) = N(µq̃i,j , (σ
l
q̃i,j )

2), βli,j = {αli,j , φli,j}

where the parameters for the joint distribution q̃β(w) are determined by α and φ as follows

µlq̃i,j =
µlqi,j (σ

l
pi,j )

2 + µlpi,j (σ
l
qi,j )

2

(σlpj )
2 + (σlqi,j )

2
, whitespaceσlq̃i,j =

√
(σlpj )

2(σlqi,j )
2

(σlpj )
2 + (σlqi,j )

2
. (6.32)

We also define

µlq̃j =

Dl−1∑
i=1

µlq̃i,j , whitespace(σ
l
q̃j )

2 =

Dl−1∑
i=1

(σlq̃i,j )
2 (6.33)

and similarly for p and q.

Our aim is to extend initialisation techniques and design q̃{α,φ}(W ) to preserve variances in a

BNN, presented in (6.21), throughout training. Focusing on the signal propagation dynamics for

a BNN with ReLU activations described in equation (6.21) and the recursive definition of a deep

neural network, we can derive α to preserve the variance of a signal propagating through a BNN.

We assume zero-mean inputs at each layer, a somewhat unrealistic assumption (further discussed

in Discussion 1), allowing us to maintain τ l−1 = 0 during training. Under these conditions the
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variance of the signal in equation (6.21) reduces to

νlj =

[(
1− 1

π

)
(µlq̃j )

2 + (σlq̃j )
2

]
νl−1

2
. (6.34)

Discussion 1: Assumptions for mean-preserving prior

Previously described is the signal propagation dynamics in general. With a mean preserv-

ing prior we can only control variance by multiplicatively expanding or squeezing σlq̃j . We

can only design for conditions that set τ l−1 = 0 and σb = 0, which is true at initialisation

but starts to break down during training. In order to continue, we thus implicitly assume

that during training: (1) the mean of the summed weights’ means across a hidden layer’s

pre-activation remain mean zero i.e. E[(
∑Dl

j=1 µ
l
qj )] = 0; (2) biases are zero (note, it is

possible to absorb the biases by augmenting the input at each layer with an additional

column of ones, this yields more stable signal propagation. We find that treating biases

as deterministic parameters aids in training and outweighs the minor gain in stabilising

propagation). This allows us to write the variance νlj as

νlj =

[(
1− 1

π

)
(µlq̃j )

2 + (σlq̃j )
2

]
νl−1

2
. (6.35)

We find forcing our assumptions and setting parameter means and biases to zero does not

allow for any training.

To stabilise the signal, we look for conditions that preserve the variance during the forward pass,

more specifically, we want to ensure Var[hlj ] = Var[hl−1j′ ] or νlj = νl−1j′ , where j′ ∈ {1, ..., Dl−1}.
Setting the variances equal in such a way leads (6.34) to yield

(1− 1/π)(µlq̃j )
2 + (σlq̃j )

2 = 2, (6.36)

defining the condition for BNN pre-activations with stable signal propagation.

Since the forward pass makes use of q̃{α,φ}(W ) with the reformulated ELBO, we can solve prior

parameters α using (6.36) to yield a self stabilising-prior. We first choose our prior mean µlpi,j to

preserve the mean during the forward pass and set it equal to the approximate posterior mean

µlqi,j . Secondly, we find we find σlpj in (6.32), to satisfy the condition in (6.36). This gives the
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stabilising prior parameters α as

µlpi,j = µlqi,j , whitespaceσ
l
pj =

√√√√ (σlq̃j )
2γ

(σlq̃j )
2 − γ , (6.37)

where γ = |2− (1− 1/π)(µlqj )
2| and we take the absolute value to ensure positive variances (see

Discussion 2 for an alternative formulation to avoid negative variances). Note that we can apply

the result in (6.34) recursively for all layers l = 1, ..., L, with base case Var[x0] = 1
D0

(x0)T · x0.

Therefore, sampling the elements of W as w ∼ q̃β(w) at each forward pass, while setting the prior

pα(wi,j) = N(µlq, |(σlq)2γ/((σlq)2 − γ)|/Dl−1), enables the network to simultaneously update our

current posterior as well as promote stable signal propagation to improve robustness. Algorithm

1 gives an overview of the training procedure.

Algorithm 1: Algorithm to train BNN with signal stabilising priors.

1. Initialize qφ(W ) ;

2. Calculate α based on qφ(W ) to ensure stable signal propagation of q̃{α,φ} using

equation (6.37);

while Training do

3. Compute forward pass for minibatch ;

4. Update φ using backpropagation on ∇φLq̃ (equation (6.17));

5. Calculate α based on qφ(W ) to ensure stable signal propagation of q̃{α,φ} using

equation (6.37);

end

Discussion 2: Alternative formulation augmenting Empirical Bayes

We consider an alternative formulation of the prior in which we augment empirical Bayes

(EB) [27] to eliminate situations yielding negative variances for the prior. We set the

parameters of the distribution according to EB and exponentiate our prior distribution

with β. Omitting the superscript l for all parameters at the current layer we write the

prior as

p(wi,j) = N(µqi,j , σ
2
qi,j )

β. (6.38)
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Thus on a forward pass the sampling distribution becomes

q̃(wi,j) = N(wi,j |µqi,j , σ2qi,j )N(wi,j |µqi,j , σ2qi,j )β. (6.39)

Using the result that σ2q̃ =
σ2
q

β+1 when the variances are equal, we find β satisfying the

condition (1− 1/π)(µlq̃j )
2 + (σlq̃j )

2 = 2 yielding

β =
σ2qj
γ
− 1, (6.40)

where γ = 2 − (1 − 1/π)µ2qj . We constrain β ∈ [1,∞) to yield a prior that default

parameters are determined by EB, while in situations of larger variance β increases and

the prior becomes more active in encouraging sampling closer to the mean to stabilise

signal propagation.

6.2.4 Discussion

The effect of the stabilising prior is shown in Figure 6.2. Intuitively, the larger the mean and

variance of the incoming weights, the more likely it is to destroy the signal, whereas if the means

are close to zero, it is not likely to add noise to the signal. The prior becomes active when the

second moment of the distribution is large. Once active, the prior urges the weight distribution

to sample closer to its means.

We examine signals in a ReLU network in Figure 6.3 to analyse the effect of the prior on the

network signal propagation. We monitor the variance dynamics of the same data point through-

out training by calculating the empirical variance of the vector of pre-activations at each layer

during a forward pass. In Figures 6.3 (a) and (b) we show a controlled example, where we force

our assumptions, setting biases and parameter means to zero and see that the prior preserves

the signal, whereas in a standard BNN it explodes. Furthermore, we show a typical training

scenario in Figures 6.3 (c) and (d), where we see that our assumptions hold in the early stages

of training and start to break down later in training, yielding less stable signal propagation.

We opt to always include the prior during test time i.e. we sample from q̃(W ) instead of q(W )

because we find that the training accuracy of the model progresses faster requiring fewer training

epochs. Since we require adjustment during the forward pass throughout training to ensure stable
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Figure 6.2: Adaptive self stabilising prior. At a layer we replace the original weight
distribution, q(W ), with q̃(W ). This incorporates knowledge of how signals propagate through
a network in the infinite width limit through the prior. The prior is optimal in the sense that it
preserves the variance of signals being propagated forward through the network. It forms part

of q̃(W ) that allows its signal-stabilising effect to be exerted on the forward pass that is
beneficial for deep networks. The prior adapts based on the sum of weights feeding into the

same hidden unit. The effect of this is that when the second moment of the weight distribution
around the origin becomes large, it is likely to significantly contribute noise to the signal

propagating through the network and destroy the signal. The prior becomes active when the
variance increases and encourages the weight distribution to sample closer to its mean.

signal propagation, it seems reasonable to include it in the forward pass at test time. Note that

the adjustment to the variational posterior for signal propagation is in this sense unlike the

use of EB to choose the hyper-parameters maximising the likelihood, in such a case the prior

should not be factored in and q(W ) would be appropriate. Using only q(W ) at test time exhibits

performance similar to networks with unstable signal propagation. We investigate what effect

including the prior at test time has on the quality of prediction uncertainty in the subsequent

experiments section.

6.2.4.1 Experiments

We have proposed a prior intending to stabilise the signal propagation in deep Bayesian ReLU

networks. For this prior to be effective we make use of the reparametrisation q̃(W ) at each layer

and investigate the impact with a series of experiments. The goal in our work is to develop a

training scheme that is robust to a wide range of network depths and widths, with respect to the

initial specification of the variational posterior parameters. This allows more freedom of choice

of architecture and reduces the need to tune hyper-parameters. No tuning is necessary for the

width, since it is incorporated in the derivation of the technique. We consider classification on
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(a) Control experiment: Standard BNN
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(b) Control experiment: Stabilising prior
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(c) Prior in practice: Early training stages

0 5 10 15 20

Layer (l)

0

5

10

15

20

25
(d) Prior in practice: Later in training

Figure 6.3: Signal propagation dynamics of the same signal propagated through different
networks. We track the variance of a data point throughout training by calculating the

empirical variance of the vector at the pre-activation at each layer. Lines are shaded from
lighter, in early epochs, to darker in later epochs. In a controlled setting we achieve perfectly
stable signal propagation. In practice our assumptions hold for the early stages of training.
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MNIST and CIFAR-10 and also study the quality and calibration of the uncertainty estimates.

We restrict ourselves to BNNs with fully-connected layers with a specified number of hidden

layers, all of constant width. We initialise all networks with the He initialisation [25] and use a

batch size of 1000. See Appendix C for a detailed discussion of reproducing these experiments.

Limits of trainability. We investigate performance at extremities by training a series of

networks with hidden layer widths of 256 with varying depths and initial variances using 50

training epochs. We compare a series of networks with our proposed stabilising prior incorporated

on the forward pass with a standard non-conjugate Gaussian prior [27] with small variance (the

prior variance does not have much effect on the limits of training and only affects the extent

to which the weights are regularised) that we report in Figures 6.4 (a) to (d). We observe our

stabilising prior makes it possible to train deeper BNNs and in more noisy conditions. We further

note that the signal explodes in standard BNNs deeper than 30 layers, failing to train.
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(a) MNIST With Stabilising Prior
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Figure 6.4: MNIST and CIFAR-10 large scale experiments. Classification accuracy grid of
ReLU networks trained on MNIST and CIFAR-10 with varying depths and initial variance

conditions.

Accelerated training. In general, we also observe that our prior increases the training speed

as demonstrated in Figure 6.5. In this experiment, we compare with EB as in [27] that uses

the gradient to find optimal hyper-parameters for the prior. We compare these priors with a

regularising Gaussian prior and report their results for both the reparametrisation trick (RT)
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EB on forward pass RT
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Figure 6.5: Progression of test accuracy for various networks through training averaged over 10
runs for a 5 layer deep 512 wide network with an initial variance of 0.001.

[12] and local reparametrisation trick (LRT) [20]. We observe empirically that incorporating the

EB prior on the forward pass also accelerates training relative to leaving the influence of the

prior to a KL term added to the loss. Our prior only outperforms EB in some settings. We

find an advantage over EB with settings involving deeper networks, higher initial variance and

wider networks, where the central limit theorem more strongly holds (see Discussion 2 for an

alternative formulation of the prior augmenting EB).

Quality of uncertainty. Finally, we turn to the issue of what effect this prior has on un-

certainty and calibration. We measure calibration with the Brier score and, similar to [56], the

accuracy of predictions above 50% and 90% confidence to see whether our models tend towards

overconfidence. We monitor the progression of these metrics of models with different priors

through 100 epochs reported in Figure 6.6. As with any iteratively updating prior, we expect

that it may adapt to the dataset and overfit, as is shown to be true of our stabilising prior and

EB in Figure 6.6. As an answer to this we explore combining a regularising and stabilising prior

that trains faster and results in a well-calibrated model with better Brier scores than any solitary

prior.

6.2.5 Conclusion

We have used signal propagation theory to derive priors for BNNs that promote stable signal

propagation. The prior incorporates knowledge of model architecture and activation function,

ReLU in particular, derived from how signals propagate in the network in the infinite width

limit. We showed that these priors, when their effect is exerted in the forward pass, makes it
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Figure 6.6: Uncertainty and calibration experiments on CIFAR-10. Iteratively updating priors
overfit, however, we can combine regularising and optimal priors to maintain calibrated

confidence and better Brier scores. In (d) we also see we are able to get reasonable uncertainty
estimates with a deep neural network on a toy dataset.
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6.3 Conclusion

possible to train deeper networks and in more noisy conditions. This alleviates the need to tune

hyper-parameters and extends BNNs to deeper architectures. We also observe in general that

stable signal propagation accelerates training, which we attribute to cleaner signals and gradients

being propagated through the network with more efficient expectations.

6.3 Conclusion

We have explored BNNs which are powerful estimators that leverage the predictive performance

of modern deep learning with reliable uncertainty estimation or to sparsify models for more com-

putationally efficient predictions. We discussed the advances in variational inference that have

made it possible to scale Bayesian deep learning in the reparametrisation trick, local reparametri-

sation trick, the additive reparametrisation trick, MCVI and stochastic variational inference. We

also presented our work on self stabilising priors which improves robustness in Bayesian deep

learning.
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Chapter 7

Spatial Integration with Probabilistic

Graphical Models

Thus far we have discussed classification models to model the hyper-spectral signature of a pixel

and assign each pixel to a class. We now turn our attention to the second task this thesis

undertakes: integrating spatial information into the system. We explore combining contextual

information, from neighbouring pixels, with hyper-spectral information in the pixel itself, from

the predictions of the classifiers.

    (4) Bayesian Logistic 
           Regression 

     (5) Bayesian Neural
        Networks (BNNs)

 ● Overview
 ● Modern BNNs
 ● Dropout  
       ● Compression
       ● Self stabilising 
                 Robust Priors

  (6) Probabilistic Graphical 
             Models (PGMs)

 ● Background
 ● Model

Opening Section

Middle Section

Closing Section

7.1 Introduction

In this chapter we make use of probabilistic graphical models (PGMs) to explicitly incorporate

domain or prior knowledge into the system. PGMs offer a powerful framework for dealing

with complex problems in Bayesian inference. Our approach follows the assumption that strong

correlations exist between neighbouring pixels and measurement noise is commonly observed. We

thus incorporate spatial information by allowing neighbouring pixels to influence the probability

of a particular pixel. This is motivated by the observation that the output from our classification
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models are often noisy mappings or flecked images. We may expect more continuous or smoother

shapes as to more closely resemble real-world farms. Our system constitutes inputting the output

probabilities of our classification model into the PGM that de-noises the image, i.e. inputting the

noisy image where each pixel has been assigned a class into a PGM. This approach is common

in image processing and plays a large role image segmentation and image de-noising [24]. Note

this thesis is focused on the application of PGMs and we make use of the EMDW library [66],

which automatically constructs and handles many of the requirements of cluster graphs, therefore

we only discuss concepts key to understanding the mechanics and behaviour of PGMs before

focussing on application and modelling.

7.2 Probabilistic graphical models (PGMs)

PGMs are graphical representations of our interpretations or models of the world, representing

conditional dependencies among random variables. Statistical relationships between random

variables are encoded by the graph as a structured probabilistic model. We represent a joint

probability distribution and the structure represents how variables factorise with independence

assumptions, i.e. what variables are independent of other variables given some information. This

allows us to more efficiently calculate conditional probability distributions deriving from the full

joint distribution. We can thus efficiently reason about large probabilistic systems. PGMs offer

a modular language for representing probability distributions in an interpretable manner and

allow us to use graph algorithms for inference and learning. This makes it possible to model and

express many different dependencies between variables and automatically reason about them.

Sprinkler

Rain

Wet grass

Rain   P(Rain) 
0        0.2
1        0.8

Rain Sprinkler    Wet Grass 
                       T       F

F         F            0.0       1.0
F         T            0.2       0.8
T         F            0.1       0.9
T         T          0.99     0.01Sprinkler   P(Sprinkler) 

0             0.4
1             0.6

Figure 7.1: An introductory example to PGMs. The graph encodes the relationship between
random variables as whether the grass is wet certainly depends on the weather and whether the

sprinkler is on.

The nodes in PGMs correspond to random variables, and edges to the relationship between the

random variables. In Figure 7.1 we show an example of a PGM, specifically a Bayesian net-
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work, that encodes the local interactions in the form of conditional probability densities (CPDs).

Briefly, Bayesian networks allow us to easily summarise more direct or causal relationships be-

tween variables. Bayesian networks do not necessarily always represent causal links but typically

simplifies the understanding and parametrisation of the model. The joint probability is fac-

torised into a product of CPDs using the product rule p(A,B) = p(A|B)p(B) or can be written

as P (Rain, Sprinkler, Wet Grass) = P (Rain)P (Sprinkler)P (Wet Grass|Rain, Sprinkler) and the

resulting PGM is shown. We later make use of Markov networks, considered more general than

Bayesian networks in the sense that they are not required to be acyclic. Markov networks are

undirected and thus allow us to represent random variables with inter-dependent relationships,

rather than causal relationships as with Bayesian networks, useful for the model we present later

where we encode correlations between random variables and neighbouring pixels may influence

and be influenced by each other. We only use Bayesian networks and Markov networks to aid in

representation and use cluster graphs for inference. To reason about these variables we require

inference techniques. We will discuss message passing techniques, where we pass messages be-

tween variables to disseminate evidence amongst correlated variables. These algorithms exploit

the graph structure, allowing efficient inference consisting of smaller systems communicating

about their combined outcome.

7.2.1 Cluster Graphs

Here we introduce a specific type of PGM called cluster graphs and the concepts necessary for

representation and inference. These graphs are known for their ability to perform inference over

problems with many inter-dependant random variables and excel at solving combinatorial type

problems. We use cluster graphs as they are generally simple to construct and generalise other

types of PGMs. Under the condition that the graph satisfies the running intersection property

(RIP) (briefly discussed later), cluster graphs are not restricted to being acyclic and may contain

loops, which is usually a concern in message passing algorithms.

A cluster graph is made up of factors that describe the relationships between random variables.

This enables a cluster graph to compactly represent a total joint probability as the product of

smaller factors. A factor is defined over a cluster of variables and determine how those variables

are related. These factors are constructed to represent our assumptions or how we believe there

to variable relationships. We only make use of discrete factors in this thesis. A discrete factor

is represented by a table containing all possible combinations that the random variables can

assume and their respective probabilities. An example can be seen in Table 7.1. The nodes of a
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cluster graph consists of one or more factors. These nodes are connected into a graph structure

by connections holding a subset of variables, called a sepset. Information about the random

variables in the cliques is communicated through the sepsets. Next we discuss how cliques pass

messages to their neighbours with messages, also encoded as factors, which produce approximate

marginals.

B

E

Ψ0

Ψ1

Ψ2
Ψ3

�1→2

�0→2

�2→3

�3→2

A,B

B, C
C

E,FB, C, E

X

X

Sepset

Cluster

��→�

Ψ2

Message

Cluster
potential

Figure 7.2: Cluster graph representing message passing. The message being calculated is from
cluster 2 to cluster 3 represented by a green arrow. The messages included in the product are

represented as blue arrows and the message from the target that needs to be excluded is shown
as a red arrow.

7.2.2 Inference

Inference is done in PGMs by passing information between factors through connecting sepsets

with one of the many PGM inference techniques. We first discuss the operations necessary to do

inference, after which we discuss belief propagation.

7.2.2.1 Factor Operations

In order to perform inference or pass messages in PGMs with the discrete factors, we require the

following operations:

Multiplication: The product of two discrete probability tables involves calculating the product

of the probabilities where the values of the shared random variables match. In cases when there

are random variables that are not shared, we expand the table to include all the variables. The

new entries create a Cartesian product (see [24] for more examples and details).

Division: Much like multiplication, we divide the probabilities of the random variables where

the shared variables match and do not typically divide factors that do not share all the same

variables.

Marginalisation: Similar to the continuous version of integrating out a variable, we sum out

all entries of a particular variable. We sum the probabilities associated with the random variable
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being marginalised such that there is one entry for all combinations of the other variables.

Normalisation: Normalising involves dividing all the probabilities in the table by the sum of

the probabilities. This ensures that the entries sum to 1 and represents a valid probability table.

Messages should also be normalised as the values can become extremely small due to many

product operations between probabilities in the computation.

7.2.2.2 Belief Propagation

We now introduce the sum-product belief propagation algorithm that is one of many variants of

belief propagation. It is an iterative message passing algorithm introduced in [67] used to update

beliefs or do inference on a loopy graph. It consists of a series of local message-passing rounds

that change each clique’s belief about its variables.

To compute an outgoing message δs→t from a sending cluster, s, to a target, t, containing sets of

corresponding variables xs and xt, we multiply all the incoming messages from the neighbouring

nodes and the cluster potential of the node itself Ψ. We then marginalise out the variables

that are not shared by the receiving node so that they match the variables of the sepset. It is

important to note that the message excludes the message δt→s from the node that is receiving

the message. We denote this with the backslash where the set of neighbours s\t does not contain

δt→s in the set of neighbours of s. We can then write an outgoing message as

δs→t =
∑
xs

(
Ψst(xs, xt)

∏
i∈neighbours s\t

δi→s

)
. (7.1)

By excluding the receiving node’s message, an outgoing message does not contain the information

from the cluster that it is sending its message to such as to avoid a positive feedback loop. We

may think of a message as containing all the information a sender can get from its neighbours

about the target’s probability, but leaving out the message that the target is sending to the

sender so as to not become self-affirming. In general a cluster can only send a message when it

has received all the messages from its neighbours. We show an example in Figure 7.2 where we

show a message being sent from the cluster 2 to cluster 3.

We also make use of a variant called the belief update (BU) algorithm [68]. There is a minor

difference in that instead of excluding the message from the target we include it in the multipli-

cation and subsequently dividing it out. The difference is subtle as they appear as though they
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should compute to the same value, we observe, however, that we often obtain slightly better

results with the BU algorithm. We write these messages as

δs→t =

∑
xs

(
Ψst(xs, xt)

∏
i∈neighbours

δi→s

) /δt→s. (7.2)

Marginals obtained from message passing algorithms on tree structured graphs converge to the

exact marginals. However many useful and meaningful PGMs contain loops. In graphs with

loops, we can use loopy belief propagation (LBP) or update (LBU). These algorithms pass

messages between clusters just like in BP, but do not require all incoming messages before sending

messages. They iteratively pass messages until convergence which lead to approximate marginals.

Loopy graphs have no guarantee of convergence [24], but are still widely and successfully used

[69].

Once we have a graph that has converged, we may want to find the belief B(xi) of a specific

variable xi. This involves integrating out all the other variables from the cluster belief cluster

containing xi. Cluster potentials are defined as the product of all incoming messages from each

neighbouring cluster with the cluster potential Ψi(xi) given as

B(xi) = Ψi(xi)
∏

n∈neighbours
δn→i. (7.3)

As the messages are passed in a cluster graph, they change the belief of the particular clusters.

Convergence occurs when the belief about all variables of each cluster is equal to the belief about

those variables of neighbouring clusters at each edge. This represents the shared belief of a

variable by all the clusters once all the information has circulated. If the cluster graph satisfies

the running intersection property (RIP), we ensure that there are no positive feedback loops. RIP

requires that there may only be one unique direct path for which information about a random

variable can take between pairs of clusters [24]. We make use of a C++ library, EMDW, which

automatically constructs a cluster graph from a given list of factors and ensures RIP while also

handling message scheduling and convergence [66].

7.3 Model

In our model we aim to incorporate our belief that there is a relationship with adjacent pixels

using a PGM. A firm relationship is observed in data as we generally observe that farms are
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clustered patches and have defined boundaries. Our model integrates spatial information into

the per-pixel hyper-spectral classification result allowing us to infer what crop is growing where,

based on each pixel’s spectral fingerprint in the context of its neighbours.

We consider a grid of pixels, where each pixel is a random variable denoted by Xi,j where i and j

denote the row and column respectively. These represent discrete-valued random variables that

reflect the true class of crop that the pixel belongs to. The initial value of a variable X is defined

by the class prediction made by a neural network or BNN for a particular pixel and the neural

network is in this sense “connected” to the PGM model. We discuss how we can account for

errors made by the neural network by augmenting the model in section 7.3.1. An example of

pixels as random variables and the relationship between such a grid of random variables is shown

with a Markov network in Figure 7.3 for a variable Xi,j and its neighbours.

��,�

��,�+1

��−1,� ��+1,�

��,�−1��−1,�−1

��−1,�+1 ��+1,�+1

��+1,�−1

Figure 7.3: Pixels as random variables. We focus on a specific pixel or random variable Xi,j in
a grid of pixels as in an image.

We found it safe to assume that pixels more than one pixel apart have a negligible influence on

each other. We thus consider a variable Xi,j and only its adjacent neighbours. The relationship

between the random variables is dictated by the graph structure and how we connect nodes. In

figure 7.4 we represent a Markov network overlayed with two different methods with which we

may select our factors to construct a cluster graph from which to do inference. In Figure 7.4 (a)

we show how we might have two “triplet” factors for each variable Xi,j . One factor takes into

account neighbours from above and below and the other left and right. Note that there are two

90

Stellenbosch University https://scholar.sun.ac.za



7.3 Model

factors for each pixel in the image and the factor containing variables Xi,j , Xi,j−1 and Xi,j+1

would overlap with the set of neighbouring factors associated with Xi,j+1 and Xi,j−1 i.e. the

factor for Xi,j−1 contains the variables Xi,j , Xi,j−1 and Xi,j−2. Each of these factors represent

a probability table as given in Table 7.1. In Figure 7.4 (b) we introduce an “alternative” factor

setup. In this configuration there are 4 factors associated with each variable Xi,j including 4

variables each and differs from (a) by defining a relationship with diagonally adjacent pixels.

The probability table for the alternative setup is constructed in a similar nature to triplet factor

and is shown in Table D.1.

��,�

��,�+1

��−1,� ��+1,�

��,�−1

��−1,� ��,� ��+1,�

��,�−1

��,�+1��−1,�−1

��−1,�+1 ��+1,�+1

��+1,�−1

��−1,�−1 ��+1,�−1

��+1,�+1��−1,�+1

(a) Triplet factors. This
configuration yields 2 factors per
pixel including 3 variables each.

Factors supplying the centre pixel
with information from neighbouring
pixels above and below and left and

right. Probability table shown in
Table 7.1.

��,�

��,�+1

��−1,� ��+1,�

��,�−1��−1,�−1

��−1,�+1 ��+1,�+1

��+1,�−1

(b) Alternative factor setup. This
configuration yields 4 factors per
pixel including 4 variables each.

Factors allowing diagonal
neighbours to also influence the
centre pixel. Probability table

shown in D.1.

Figure 7.4: Alternative factor setups overlayed on Markov network. We mostly make use of the
triplet factor setup but the alternative factor setup produces very different behaviour, enforcing

very strong smoothing, which we compare in the experiments section.

In Figure 7.5 we show a simplified example of how one would construct a cluster graph given a

list of factors for a largely reduced model similar to the setup way we have described. Given a

grid of variables as shown in Figure 7.5 (a) we show the corresponding cluster graph in Figure

7.5 (b). Note that, with the use of EMDW, the cluster graph is constructed automatically while

satisfying RIP. We believe Markov networks are more intuitive and interpretable in representing

relationships between grids of variables and we can return to Markov networks for representation

with either factor setup.

The probability table for our factors, as in Table 7.1 for the triplet factor and Table D.1 in

Appendix D, represent our prior beliefs about the relationship between a pixel of interest and

its neighbours either above and below or left and right. For our example in Figure 7.4 (a) we
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(a) Grid of random
variables with

reduced example of
how factors make up
relationships between

random variables.
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(b) Example converted to cluster
graph.

Figure 7.5: Constructing cluster graph from list of factors. A list of factors, such as the
groupings in the example in (a), would be provided to EMDW which automatically constructs

a valid cluster graph as shown in (b).

represent the probability of a particular pixel, Xi,j , given information from two adjacent pixels.

We may interpret our the probabilities in the factor table as one of three cases: (1) the current

pixel belongs to the same class as both its neighbours, or it agrees with both of its neighbours

that we believe to have a high probability; this may reflect a pixel in the middle of a field or

a mono-culture entity; (2) the current pixel belongs to the same class as one of its neighbours,

this may represent a border and is reasonably probable; (3) the current pixel does not belong to

the same class as either of its neighbours; this we believe to be unlikely and a result of noise in

the system. The same reasoning follows for the factor configuration Figure 7.4 (b) by including

a corner pixel, extending it to four variables, which slightly increases probabilities when the

diagonally adjacent pixel is also in agreement with the pixel of interest shown in Table 7.4.

Once we have the factors, we use loopy belief propagation to infer a new image. Figure 7.6

demonstrates the PGM applied on a toy example and the intended de-noising effect.

It is possible to learn the factor probabilities from data if we had access to more data. However,

we expect that the relationships to vary greatly between images and the ability to select the

prior probabilities allows flexibility for the designer. The probabilities should, however, reflect

the belief of the amount of noise in the system as well as the confidence we have in the probabilities

of our predictions from our classification model. We find that substituting the exact values, i.e.

empirically calculated percentages of how many pixels agree from the ground truth image, does

not have a noticeable impact.
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Xi,j Xi,j−1 Xi,j+1 φ(Xi,j , Xi,j−1, Xi,j+1)
0 0 0 0.35
0 0 1 0.1
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.1
1 1 0 0.1
1 1 1 0.35

Table 7.1: Factor containing agreement probabilities normalised over the whole table. Each
random variable is assigned the probability given that it belongs to a certain class. The first and
last rows represent where the middle pixel belongs to the same class as its neighbouring pixels.
The second and third rows represent where the centre pixel agrees with or belongs to the same
class as one of the adjacent pixels. This represents a border or boundary and is not as likely to

be true as represented 0.1 probability. The fourth and fifth rows represent where the middle
pixel believes it belongs to a different class than both of its neighbours, this is not as likely but
because we have set up our factors only vertical or horizontal this may still come up. This can

be extended to multi-class where Xi,j has a belief that it belongs to any of the K classes.

(a) Noisy example before PGM. (b) Cleaned example after PGM.

Figure 7.6: PGM applied to a toy example. Factors for each each pixel are constructed as
discussed and inference is done noisy image such as in (a) to result in a cleaned image (b).
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7.3.1 Augmentation for Calibrated Inputs

If we can be sure that we can trust the confidence of our predictions of our classification models

we can augment our models with another variable that we show in Figure 7.7. As previously

discussed Xi,j represents the true class or crop type that a pixel represents that we wish to

infer. The initial value this variable takes is assigned by the classification of a neural network.

We now introduce a new variable Yi,j for each pixel that represents the observed pixel. Our

classifier then estimates P (Xi,j |Yi,j). This represents the classifier’s confidence or belief and can

also be interpreted as the prior error rate or the belief of the likelihood of an error by the neural

network. Using the softmax probability of the neural network to estimate P (Xi,j |Yi,j) represents

the probability of a prediction for Xi,j is erroneous and allows the PGM to probabilistically

reason whether or not it should change the belief that a pixel belongs to a specific class. Having

calibrated models is useful as the system is then able to determine when a pixel may need to rely

more on the information supplied from adjacent pixels. In general we would follow an approach

similar to this augmentation where we may specify some prior over each variable that reflects

our belief that the classifier is correct. In this general approach, using the probability assigned

by the classifier as a prior, when the model is not calibrated, may lead to errors downstream in

the decision making process as we will see in the experiments chapter. In this case we may opt

to use the training accuracy as a blanket prior belief of an error rate accounting for incorrect

predictions instead. This augmentation only makes sense when a model is calibrated and differs

slightly to better incorporate uncertainty from the classifier where we can trust the uncertainty

estimates.

Usually, the graph structure indicates the relationship to some underlying true value, X, of

which we are only able to observe via some measurement Y . More formally, we observe Y and

normalise obtaining

P (X|Y = y) = P (Y = y|X)P (X)/Z, (7.4)

which translates to a likelihood and prior over X. However, with a classifier we are now simply

directly estimating P (X|Y = y) and implicitly includes the prior over X.
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Figure 7.7: Classifier output as estimating P (X|Y = y). The classifier models this conditional
probability directly and is connected via an undirected link to the associated latent pixel class
variable. Shaded nodes represent observed variables in, Yi,j which represents some unreliable

measurement process to the true variable Xi,j . The factor for relating Xi,j and Yi,j by
observing Yi,j is shown in Table 7.2

Xi,j P (Xi,j |Yi,j)
0 classifier(P (Xi,j = 0|Yi,j))
1 classifier(P (Xi,j = 1|Yi,j))
2 classifier(P (Xi,j = 2|Yi,j))
...

...
K classifier(P (Xi,j = K|Yi,j))

Table 7.2: Probability table of an augmented model for calibrated inputs observing Yi,j the
feature vector or spectral fingerprint associated with pixel Xi,j . The conditional takes the
predictive probability of the classifier, in effect observing the variable Yi,j and making a

prediction, serving as a noisy measurement to the true value Xi,j .

7.3.2 Graph structure

We can arrange the factors in many ways to suit different purposes but we are concerned with

accurate and realistic de-noising and, since inference can be very computationally expensive,

computationally efficient solutions. With these goals in mind we experimented with the factor

setup shown in Figures 7.4 (a) and (b).

7.3.2.1 Factor Setup for Loopy Graphs

Considering the two factor configurations shown in Figures 7.4 (a) and (b), we might expect that

(b) offers an advantage by allowing us to incorporate knowledge from pixels diagonally adjacent.

However, the variable overlap is large, creating many small loops in the graph structure. For (a),
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the number of messages sent between when a cluster is scheduled to send messages is larger than

(b). This makes for more variable interactions or space between loops and reduces the severity

that introducing loops into the graph has on inference and convergence. In other words more

messages are sent between sending a message and receiving a message again. This allows a greater

opportunity for the evidence and information to disseminate through the graph. This presents

favourable conditions for loopy graphs and aids in convergence and approximation accuracy.

7.3.2.2 Factor trick

If each pixel can assume K discrete values, or K different classes, the factor P (Xi,j , Xi,j−1, Xi,j+1)

would have K3 different probabilities. For the 17 classes of Indian Pines, this scales unmanage-

ably for most computers. It is possible to split the problem into smaller sections to be processed

separately. Alternatively, we may reduce the problem to a binary class inference problem or a

one-vs-all approach, whereby we run inference on a map with the aim of classifying, for example,

wheat farm or not wheat farm. This may still be useful for some applications but we present a

simple and effective strategy involving a different factor configuration to scale to many classes.

We aim to describe the factors more compactly while maintaining the same net effect by intro-

ducing two new latent variables. We introduce the variable Ai,j which represents the agreement

between two pixels next to each other. This variable can only take the value 1 if the classes of Xi

and Xj are the same as shown in Table 7.3. For all combinations where neighbours do not agree

Ai,j will have value 0. This implies a latent variable interpreted as representing agreement when

adjacent pixels belong to the same class and takes the value 1 or “agree”, and “disagree” when

adjacent class labels differ and Ai,j takes the value 0. We then reason about Xi,j in terms of Ai,j

and Aj,k for which the probability table is shown in 7.4. The variable Aj,k acts similar to a “flag

variable” or latent “on or off” variable. We show a Bayesian network representation in Figure 7.8

to represent these “agreement variables” and the relationship with the factors originally posed.

The directed line from Xi and Xj to Ai,j indicates the probability P (Ai,j |Xi, Xj).

The probability setup now contains factors of size 2K2 and 22K resulting in a more compact

representation. Furthermore, we also do not store values with probability zero resulting in a

sparser representation and saving even more space. The new graph with factors P (Ai,j |Xi, Xj)

and P (Ai,j , Aj,k, Xj) contain only 2K2 +22K different probabilities sized factor per pixel instead

of K3 scaling well for an arbitrary number of classes with analogous behaviour to Table 7.1.
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Figure 7.8: Latent agreement variable for saving space for multi-class variables. The variables
Ai,j and Aj,k represent the agreement between Xi and Xj and takes either a value of 1 if they

belong to the same class or 0 if neighbouring pixels do not belong to the same class. A new
factor to reason about Xj is shown in Table 7.4 which depends on Ai,j and Aj,k. The colours

show the variables related to the original triplet factor setup.

Xi Xj Ai,j P (Ai,j |Xi, Xj)
0 0 1 0.111
1 1 1 0.111
2 2 1 0.111
0 1 0 0.111
1 0 0 0.111
0 2 0 0.111
2 0 0 0.111
1 2 0 0.111
2 1 0 0.111
others 0.0

Table 7.3: Probability tables of latent agreement variables for 3 classes normalised over the
whole table. The agreement variable takes the value 1 when the classes of Xi and Xj agree, as

shown in the first 3 entries, and 0 when they are different.

Ai,j Aj,k Xj P (Ai,j , Aj,k, Xj)
0 0 0 0.35
0 1 0 0.1
1 0 0 0.1
1 1 0 0.05
0 0 1 0.35
0 1 1 0.1
1 0 1 0.1
1 1 1 0.05
0 0 2 0.35
0 1 2 0.1
1 0 2 0.1
1 1 2 0.05

Table 7.4: Table of agreement using latent variables for 3 classes. Unnormalised to show
correspondence to Table 7.1. This configuration scales better for multiclass problems yielding

tables of size 22K for K classes.
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7.4 Conclusion

We showed how to implement a PGM to incorporate spatial information in a satellite image.

We built a model that, for each pixel, we can reason about its probability given neighbouring

pixels and the belief that those pixels belong to a specific class. We also saw that we can use

the confidence of our classification models as an indication on whether we should rely more on

spectral or spatial information in determining what class a pixel belongs. We can thus leverage

models which preserve uncertainty to offer an advantage over standard filter techniques.

These methods are relatively computationally expensive and are likely not feasible for on-board

satellite computation. This framework may be more useful for analysis by offering flexible and

interpretable modelling, providing a means of inserting domain specific knowledge. We could

increase the probability of a specific class given that we know what region an image is taken

from and what typically grows there. We may also have some idea of the shape of a farm and

we can adjust that area of individual priors to reflect this.
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Experiments

(7) Experiments (8) DiscussionOpening Section Middle Section

We now consider a series of experiments investigating whether the methods we developed are in

alignment with our objectives of designing accurate models that generalise well, while remain-

ing aware of uncertainty and considering limited computational capacity. We compare logistic

regression and Bayesian logistic regression as well as deterministic neural networks with a series

of BNNs and observe that Bayesian methods excel in situations where data is scarce. We then

study the quality of uncertainty of the different methods measuring calibration and accuracy as

a function of confidence. We qualitatively analyse the effect of using a PGM to integrate spatial

information or de-noise images and study how uncertainty aids the PGM in reasoning about

pixel classes. Finally, we compare model compression techniques using BNNs such that we can

feasibly deploy these models on a satellite.

8.1 Method

We make use of the Indian Pines dataset and compare: (1) BNNs with self-stabilising priors; (2)

normal BNNs with Gaussian priors and posteriors; (3) MC dropout, each layer with a binary

dropout rate of 0.5; (4) deterministic neural networks; (5) Bayesian logistic regression and (6)

deterministic logistic regression. In the compression section we compare the various BNN com-

pression techniques we have discussed. We evaluate accuracy, quality of uncertainty, a qualitative

assessment of PGM de-noising and computational complexity. In all the experiments we collect
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5 different samples over 5 different folds of the data and present the average. If not specified,

models are trained on a 75 % training and 25 % test split.

The goal is to verify claims of contrasting methods rather than searching optimal model config-

urations, so for the neural network models we restrict ourselves to fully-connected layers with

three hidden layers of width 512 to facilitate the comparison. We use the ReLU activation, He

initialisation [25], the Adam optimiser with a learning rate of 0.001, a batch size of 100 and train

for 20 epochs unless otherwise specified.

8.2 Accuracy

We compare the accuracy and data efficiency of various classifiers discussed in this thesis by

measuring the prediction accuracy on the test set with various test and train splits of the data.

We report the average and variability over 5 different folds in Figure 8.1. Accuracy represents

the modelling power and expressivity of a model whereas comparing different test-train splits

reflects a model’s capacity to efficiently learn from data and attempts to investigate the model’s

ability to generalise. As seen in Figure 8.1 neural network models generally achieve significantly

better predictive performance, while Bayesian methods excel when data is scarce.
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Figure 8.1: Data efficiency of various models. Accuracy measured of different models with
different train-test splits averaged over 5 different folds. We plot the mean performance with

shading depicting the standard deviation.

As a further investigation, we inspect the quality of performance that different accuracies rep-

resent in comparison with the ground truth in Figure 8.2. In addition, while not of critical

importance, we show rates of convergence for different models in Figure 8.3, demonstrating

again the improved convergence of our proposed self-stabilising prior relative to other BNNs.

100

Stellenbosch University https://scholar.sun.ac.za



8.2 Accuracy

(a) 70 % accuracy (b) 85 % accuracy (d) Ground Truth
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bldg-grass-tree-drives
stone-steel towers

Figure 8.2: Qualitative assessment of accuracy. Different accuracies achieved by providing a
neural network with varying amounts of exposure to the training data to intuitively

demonstrate the usefulness of models of certain accuracies. Each pixel is assigned a class where
the colour represents a type of crop and white represents background or no particular crop.
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Figure 8.3: Convergence of different neural networks. Progression of test accuracy of different
neural networks through epochs averaged over 10 runs. The self-stabilising prior presents the

best convergence of probabilistic techniques.
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8.2.1 Quality of Uncertainty

In order to quantify the quality of uncertainty of different models, we use calibration as a measure

of uncertainty. Accurate calibration represents a model that can correctly assign more confidence

in its correct predictions and less confidence in its errors. This gives us a model that is robust

to overfitting and able to generalise well. We compare Brier scores that is general measure of

accuracy of probabilistic predictions for categorical outcomes, and the accuracy of a model for its

predictions above certain confidence thresholds similar to [56] to measure whether models tend

towards overconfidence. As we will see, the Bayesian methods are better calibrated than their

deterministic counterparts.

Uncertainty, in the context of classification, refers to the output softmax probabilities. This

describes the certainty with which a particular input is assigned to a class. A model is usually

assumed to be calibrated when predictions with prediction probability p are correct p percent

of the time. The predictive probability then accurately reflects the accuracy of the model.

We measure accuracy as a function of confidence, similar to [56], to evaluate the usefulness

of predictive uncertainty. In this experiment the model is evaluated only on cases where the

model’s confidence is above a threshold. Given a prediction p(y = k|x), we define the prediction

as ŷ = argmax
k

p(y = k|x) and confidence as p(y = ŷ|x). We then measure the accuracy of

predictions above 50%, 70% and 90% confidence thresholds. We also measure the Brier score,

assuming one-hot encoding, given as

BS =
1

N

N∑
n=1

(p(yn|xn,W )− yn)2 (8.1)

where p(yn|xn,W ) is the probability forecast and yn is the actual label and lower scores are

more accurate with 0 being perfect. We report the Brier score as a percentage i.e. BS × 100,

since it will always be less than 1. This measures the accuracy of probabilistic predictions in a

classification setting.

The calibration metrics of the various models are reported in Table 8.1. We see that Bayesian

methods are generally well calibrated. BNNs with self-stabilising priors exhibit the best scores

among most metrics that we attribute to these measures having a strong connection with accu-

racy, i.e. an incorrect prediction strongly negatively impacts the Brier score. The calibration

and accuracy of the deterministic network suffers in comparison with BNNs as it tends to overfit

and requires regularisation. We also observe in general experimentation that the larger the size
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Neural Networks
Accuracy above

confidence threshold
Brier
Score

Prediction
Accuracy

50 % 70 % 90 %

Regular BNN 85.4 92.2 94.4 22.8 84.1

BNN with self-stabilising priors 86.2 93.7 98.1 21.9 85.0

MC Dropout 88.5 91.4 92.2 26.3 80.9

Deterministic Neural Net 84.3 85.5 95.0 28.5 84.5

Logistic Regression
Accuracy above

confidence threshold
Brier
Score

Prediction
Accuracy

50 % 70 % 90 %

Bayesian Logistic Regression 89.6 91.0 93.1 33.4 75.2

Logistic Regression 81.7 88.8 94.4 33.9 75.2

Table 8.1: Measuring the quality of uncertainty of classifiers.
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Figure 8.4: Qualitatively analysis of uncertainty output of logistic regression compared to
Bayesian logistic regression with 25 % of the data used in training.

of a deterministic network, the less calibrated the network, while the calibration of BNNs do not

deteriorate, but rather begin to suffer from more gradient variance. Interestingly, MC dropout

achieves the highest accuracy for predictions above 50 % confidence, although it achieves the low-

est overall accuracy of neural network models. We suppose this to be due to the noise injection

causing the model to struggle to concentrate on a sensible posterior.

We also qualitatively show the uncertainty output of logistic regression compared to Bayesian

logistic regression with 25 % of the data used in training in Figure 8.4. We see that Bayesian

logistic regression, by maintaining a distribution over the parameters, appears to better capture

and explain patterns in this low data setting.

8.3 Spatial Information Integration

Here we investigate integrating spatial information into the system with a PGM and compare

the effect that different PGM configurations have on smoothing or de-noising an image. We also
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(a) Input (b) Triplet Factor Setup (c) Alternative Factor Setup (d) Ground Truth

Figure 8.5: Comparison of PGM performance.

investigate the role of uncertainty in the reasoning process of a PGM.

In Figure 8.5 we show representative examples of how the different factor configurations differ

(the factor configurations discussed in Section 7.3 and illustrated in Figure 7.4). We compare the

triplet factor setup, where each pixel bears a factor allowed to communicate information with

neighbouring pixels above, below, left and right; and the alternative factor setup that allows

diagonal neighbours to influence the centre pixel. The triplet configuration fails to completely

clean the image and some speckles remain but provides useful spatial integration. Alternatively,

we see that the alternative factor setup produces very smooth images, but often connects gaps

or completely discards small patches.

Next, we compare the outputs of the augmented PGM for calibrated inputs (discussed in Section

7.3.1). The classifier makes predicts the probability of each pixel belonging to each of the classes.

The PGM takes this vector of probabilities and assigns them to the probabilities of factors before

inference is done. This considers using the probability of the classifier as the likelihood of an

error allowing the PGM to probabilistically reason whether or not it should change the belief

that a pixel belongs to a specific class. We compare this using the same augmented PGM

with inputs being generated by either deterministic or probabilistic models. We train a neural

network and BNN on 90 % of the training data for 50 epochs such as to encourage overfitting

to demonstrate extremes of contrasting approaches. We show the outputs of the augmented

PGM with a triplet factor setup in Figure 8.6. We see that the PGM struggles to clean the

output of the deterministic network as the network starts to grow overconfident in its erroneous

predictions. The PGM assumes that predictions with high accuracy are correct and does not

change their class despite its neighbours belonging to a different class. Observing the output from

a probabilistic model, we conclude that a well-calibrated model with this augmentation assists

the PGM to dynamically rely more on either spatial or spectral information. Furthermore, we

show in Figures 8.7 and 8.8 how the system makes use of uncertainty in reasoning by observing

how uncertainty changes from the output of the classifier to after inference of the PGM. We
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(a) Input example trained 
 on 90 % data

(b) Output of PGM from 
 deterministic input

(c) Output of PGM from 
 probabilistic input (d) Ground Truth

Figure 8.6: Comparison of augmented PGM performance. (a) shows an example of predictions
made by a model trained on 90 % of the available data. We compare performance of the PGM

when given class probabilities generated from a deterministic neural network in (b), where
predictions tend to be overconfident, with a BNN in (c). We see that uncertainty awareness

helps the PGM reason.

Figure 8.7: Uncertainty of Bayesian logistic regression before and after PGM inference.

see that once PGM inference is complete, the uncertainty lies on the boundaries between farms,

offering some transparency to the reasoning process of the PGM.
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(b) Uncertainty after PGM inference
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Figure 8.8: Uncertainty of a BNN before and after PGM inference.

8.4 Computational Complexity

Here we compare the BNN compression techniques studying: (1) SNR pruning, removing weights

with a low signal to noise ratio or weights with high variance relative to their means; (2)

pruning weights with a high likelihood of being zero; (3) variational dropout with the addi-

tive reparametrisation trick. We measure the percentage of remaining weights after weights

deemed to be irrelevant have been removed. This translates directly into required storage space

and the amount of computations necessary to make predictions. We see that variational dropout

achieves the most compression with only 3 % of the original weights remaining. Variational

dropout, however, sacrifices a small amount of accuracy while SNR pruning achieves the highest

accuracy and calibration, but the least compression at 14 %.

For pruning weights with a high probability of zero we sort weights by how likely each weight is to

be zero calculating p(w = 0|µ, σ2) according to Gaussian probability density function. Then we

incrementally remove the weights, starting with those with most mass on zero until we observe

a decline in prediction accuracy. Similarly, for SNR pruning, we sort by lowest SNR ratio to

highest and remove parameters until predictive performance declines. For both these models we

used non-conjugate Gaussian BNNs with either (1) ARD priors or (2) priors with zero means

and small initial variance, σ2p = 0.0001, such that the model is encouraged to resemble a prior

and strongly drawn towards zero. We found that pruning weights with a high probability of 0

benefited more from an adaptive ARD prior while SNR pruning performed better with a specified

prior.

For variational dropout, as in [19] we use the additive reparametrisation trick and pre-train the

network before applying variational dropout. This can be seen as a warm-up period such that

the network can establish which weights may be relevant for prediction instead of immediately
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Acc.
Brier
Score

Percentage of removed weights per layer Total remaining
weights

percentage
Input
Layer

L1 L2 L3
Output
Layer

Variational
Dropout

82.7 34.4 75.0 97.7 99.1 98.9 72.2 3.05

SNR Pruning 84.1 31.1 71.1 92.4 98.8 94.1 67.0 14.11

Pruning of
weights with high
probability of zero

84.1 32.8 73.3 94.5 99.0 94.8 68.9 11.4

Table 8.2: Measuring effectivity of sparsification techniques.

pushing weights to zero. We anneal after this pre-training has occurred and then activate the

KL term to encourage sparsification. This significantly increases the training phase, but since

we are only interested in test-time efficiency, this is not a concern. We clip weights with variance

values σ2 ≥ 20 for numerical stability. This value also acts as the criteria to prune weights and

these weights are considered random and do not contribute towards prediction.

In Table 8.2 we report the sparsity in each layer, the overall sparsity as well as the accuracy and

Brier score. We see that variational dropout achieves the best compression while SNR pruning

achieves the highest accuracy and calibration with the least compression. Pruning weights with

a high probability of zero offers a compromise between accuracy and compression. The table

shows a relationship between compression ratio and the ability to express uncertainty. In heavily

parametrised models, such as deep neural networks, it appears only a few of the parameters

are responsible for the predictive performance, while the remaining parameters contribute to

explaining uncertainty. We illustrate the extreme sparsity of variational dropout in Figure 8.9.
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(a) Weight matrix at initialisation.
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(b) Weight matrix after 20 epochs with
variational dropout.

Figure 8.9: Visualisation of compression for variational dropout. We show a weight matrix of
dimension 512 × 512 using a heatmap to visualise the values of weights at initialisation and in

variational dropout training. (a) Represents initialisation and (b) corresponds to 99 %
compression.

8.5 Discussion

In this chapter we evaluated a series of Bayesian and deterministic models and studied accuracy,

data efficiency, calibration, de-noising in combination with a PGM, and compression techniques.

We saw that neural network architectures produce the highest accuracy while logistic regression

offers a computationally efficient solution but may produce less meaningful decision boundaries.

We also saw that Bayesian methods excel in situations where data is scarce and deterministic

networks are often less calibrated. We demonstrated the utility of BNNs which offer a way

of incorporating uncertainty estimation while leveraging the expressive power of deep learning.

Much of the value of the Bayesian methods discussed lie in their ability to remain uncertain

and “know what they do not know” when making predictions. If the confidence estimates are

well calibrated, one can trust the model’s prediction probabilities, allowing applications such as

detecting out-of-distribution inputs, building labelling systems with a human in the loop etc.

We demonstrated using uncertainty in a probabilistic system, using a PGM to integrate spatial

information or de-noise images and aid in reasoning about pixel classes. Alternatively, we showed

that BNNs can be designed to introduce sparsity, providing a computationally efficient solution

with the modelling power of deep learning. These models, however, were seen to sacrifice their

uncertainty and calibration in removing parameters.
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Chapter 9

Summary and Discussion

(7) Experiments (8) DiscussionOpening Section Middle Section

9.1 Summary

This thesis provided a probabilistic solution to satellite image classification motivated by using

uncertainty to combat the lack of data and variability in satellite images. Additionally, in the

interest of improving accuracy whilst under computational constraints, we adopted BNNs as

the primary focus for classification of hyper-spectral signatures of pixels. The use of BNNs

allowed us to leverage the modelling capacity of deep learning while permitting the preservation

of uncertainty or the flexibility of introducing priors to induce sparsity in neural networks. We

then developed a probabilistic system, connecting the output of the per-pixel classification with

a PGM, to incorporate spatial information, having a de-noising effect on the classifier output.

Hence, we were able to automatically reason about pixel labels using hyper-spectral information

and uncertainty in classifiers in tandem with contextual information from PGMs.

Focussing largely on BNNs required the discussion of advanced variational techniques, including

recent innovations such as stochastic variational inference, MCVI, the reparametrisation trick

and local reparametrisation trick. We also investigated the relationships between stochastic reg-

ularisation and variational inference and saw that with dropout we can easily obtain a deep neural

network with practical uncertainty estimates in MC dropout. Furthermore, we saw that varia-

tional dropout corresponds exactly to training a BNN that set the foundation for compression

techniques and signal propagation analysis of BNNs for robust priors.
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9.1 Summary

In the context of our limited computational budget, we considered Bayesian methods to com-

press models while attempting to preserve predictive performance. With the use of the additive

reparametrisation trick, we were able to make use of variational dropout, which implicitly induces

sparsity, to compress neural networks to 3 % of the original number of weights. We compared

this to heuristic procedures for pruning BNNs and found variational dropout to yield extremely

sparse solutions while sacrificing some calibration compared to these methods.

The Bayesian interpretation of noise regularisation also inspired our work extending noisy signal

propagation theory to BNNs. We used signal propagation to analyse BNNs and develop tech-

niques to improve robustness in Bayesian deep learning. We first presented the signal propagation

properties of BNNs then derived an alternative ELBO to allow the prior to exert its stabilising

effect on the forward pass. Using these results we provided a novel prior that stabilises the signal

propagation dynamics of a BNN during training. This allowed us to train deeper networks than

previously possible and exhibited improved convergence properties.

We then combined our classification approaches with a PGM model to incorporate spatial infor-

mation. Observing noisy output mappings from our classifiers testified to the need to incorporate

information from neighbouring pixels to influence a pixel’s class. Because of the lack of data,

we are not able to learn contextual relationships, we made use of PGMs to encode our prior

beliefs into graphical representations. Using cluster graphs we proposed two alternative fac-

tor configurations with varying behaviour and some further model augmentations to improve

performance.

In our experiments we tested various neural network and logistic regression models on the Indian

Pines dataset. We saw that Bayesian methods excel in situations where data is scarce. We

qualitatively analysed the effect of using a PGM to integrate spatial information or de-noise

images and saw how uncertainty aids the PGM in reasoning about pixel classes. Finally, we

compared model compression techniques using BNNs, demonstrating the ability of models to

accurately model the relationships with a fraction of the parameters. Of the classification models

investigated, BNNs offer a flexible solution that yield accurate models under uncertainty while

also being capable of reducing computational cost. Logistic regression offers a simple modelling

procedure with efficient inference but may produce less meaningful decision boundaries on small

data and not capture true relationships.
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9.2 Discussion

Understanding issues of generalisation is still highly immature and very troublesome to evaluate

in situations where data is so scarce as well as erratic such as in satellite image classification.

In order to improve generalisation, we investigated the value of using probabilistic systems and

classifiers that recognise their fallibility to improve generalisation. This yields a system which

can dynamically incorporate information from different sources depending on the certainty of

each source. Each part can contribute meaningfully, while being aware of its shortcomings, to

reason automatically about a subject and reach a general agreement or consensus.

Bayesian deep learning is a promising emergent field of development for informing downstream

decision making tasks or safety-critical applications, but face issues of practicality. We con-

tributed to the development of Bayesian deep learning both by examining BNN signal propaga-

tion dynamics, and using this result in combination with a novel ELBO, that allows the prior to

influence the network during a forward pass, to derive a self-stabilising prior. Using such a prior

makes it possible to train deeper architectures and exhibits improved convergence properties.

The self-stabilising prior is designed considering signal propagation in the infinite width limit.

This allows us to utilise the prior knowledge of the activation function and architecture to

promote stable signal propagation and robustness. This prior offers an attractive alternative

prior for neural networks, particularly deep BNNs, where designing meaningful priors is invariably

obscure.

9.3 Future Work

This thesis focussed mainly on making use of uncertainty to improve predictive performance.

However, remote sensing could benefit from further applications of uncertainty. For example,

we can use uncertainty to build a system to aid in labelling. We can actively estimate what

unlabelled data would be most informative for the model. The system then actively proposes

which pixels to label by a human annotator in order to improve performance [43]. This allows

efficient exploration of the variation in the data and reduces the amount of data required in

training useful models.

While we focussed on land-cover classification in this thesis, once we know the locations or

positions of farms, we can reason further to provide more useful information to governments
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or farmers. Given that we know what crop is growing at a particular pixel, we can use this

to monitor change and detect abnormalities. This pertains to anomaly detection techniques

[70]. Alternatively, another promising avenue for further research is time-series prediction for

monitoring the health of crops or yield estimation [71]. However, this requires the acquisition of

a large amount of labelled data over a long period of time. Nevertheless, this is highly valuable

for helping farmers improve and manage crop production and planning for food security.

Alternatively, another advantage of Bayesian modelling is the ability to express different forms

of uncertainty. We can group uncertainty into types of uncertainty being aleatoric and epistemic

uncertainty [72]. Aleatoric uncertainty accounts for noise innate to the observation process.

This is ingrained in satellite image data as they capture information on a very large scale and

sensor noise or motion noise as well as variations in the data due to seasonality etc. is always

present. Aleatoric uncertainty cannot be reduced even when given infinite data. We could apply

this by employing aleatoric uncertainty to obtain specific noise models related to observation

noise. Alternatively, epistemic uncertainty captures the uncertainty in the model. This reduces

as more data is collected. This is useful for explaining variation in data or identifying out-of-data

examples and more robustly identify anomalies, which can be useful for detecting sick crops or

unidentified classes.
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Appendix A

Path-wise Estimator

This follows the derivation of the path-wise derivative estimator as in [35]. We introduce an

auxiliary variable ε that is usually a standard Gaussian which we can transform into any Gaussian.

We assume we can write
∫
qφ(w, ε)dε =

∫
qφ(w|ε)p(ε)dε with qφ(w|ε) = δ(w − g(φ, ε)) the dirac

delta for a given ε. We apply this transformation to the stochastic optimisation expectation and

get

∇φ
∫
f(w)qφ(w)dw = ∇φ

∫
f(w)

(∫
qφ(w, ε)dε

)
dw (A.1)

= ∇φ
∫
f(w)qφ(w|ε)p(ε)dεdw (A.2)

= ∇φ
∫ (∫

f(w)δ(w − g(φ, ε))dw

)
p(ε)dε (A.3)

which simplifies from the dirac delta having a point mass at w = g(φ, ε) and being zero elsewhere,

giving

= ∇φ
∫
f(g(φ, ε))p(ε)dε (A.4)

Now that the gradient does not depend on the new simple distribution p(ε) we can write

∇φ
∫
f(w)qφ(w)dw =

∫
p(ε)∇φf(g(φ, ε))dε (A.5)

or

∇φ Eqφ(w)[f(x)] = Ep(ε)[∇φf(g(φ, ε))]. (A.6)

This allows us to sample from our distribution qφ(w) and efficiently calculate derivatives directly

with respect to the variational parameters φ. The key thing here is that f(g(φ, ε)) is a determin-

istic function. We only sample once and compute the gradient and we have it with respect to φ.
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Appendix B

Approximation of Kullback-Leibler
Divergence for Variational Dropout

The KL divergence was calculated up to an additive constant C in [20] which was later improved

by [19] to allow a better fit for larger values of α which we present here. The KL divergence

between the log-scale uniform prior distribution and the true posterior is given as

KL
(
q(wi,j |θi,j , αi,j)||p(wi,j)

)
≈ k1σ(k2 + k3 logαi,j)− 0.5 log(1 +

1

αi,j
) + C (B.1)

(B.2)

where

k1 = 0.63576 k2 = 1.87320 k3 = 1.48695 (B.3)
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Appendix C

Reproducing Self-Stabilising Priors
Experiments

Here we describe the procedure used to produce the experiments on self-stabilising priors. All

of our experiments make use of ReLU networks, the He initialisation [25] and ADAM optimiser

[53] We make use of the reparametrisation q̃(W ) at each layer. We restrict ourselves to BNNs

with fully connected layers with a specified number of hidden layers all of constant width. The

specified number of hidden layers does not include input layers and output softmax layers. We

consider classification on MNIST and CIFAR-10 using a batch size of 1000.

Limits of trainability. We investigate performance at extremities by training a series of

networks with hidden layer widths of 256 with varying depths and initial variances using 50

training epochs. We compare a series of networks with our proposed stabilising prior incorporated

on the forward pass with a standard non-conjugate Gaussian prior [27] with variance 0.00001

which we report in Figures C.1 (a) and (b). This involves training 100 networks of each type.

We train 10 networks initialising the approximating posterior q(W ) with mean 0 and vary the

variance from 0.0005 to 0.5 multiplying intermediate variances with 5. For each of these 10

networks we train 10 more at the given variance adjusting the depth or amount of hidden layers

from 1 hidden layer to 30, incrementing the depth with 3 for each successive network.

Accelerated training. We observe that our prior increases the training speed in general

as demonstrated in Figure C.2. This experiment is repeated and averaged over 10 runs. We

compare with EB as in [27] which uses the gradient to find optimal hyper-parameters for the

prior. Our prior only outperforms EB in some settings. We find an advantage over EB with

settings involving deeper networks, higher initial variance and wider networks. We show a

representative example of architecture in this experiment of 5 hidden layers and 512 layer width.
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Figure C.1: MNIST and CIFAR-10 large scale experiments. Classification accuracy grid of
ReLU networks trained on MNIST and CIFAR-10 with varying depths and initial variance

conditions.
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Figure C.2: Progression of test accuracy for various networks through training averaged over 10
runs for a 5 layer deep 512 wide network with an initial variance of 0.001.
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Note that because of the scaling of the variance of the dimension of the incoming hidden layer

Dl being incorporated in the derivation, the stabilising excels with wider networks. This also

dictates that the prior tends to resemble deterministic networks in the infinite width limit if

means grow large. We also initialise the posterior with an initial variance of 0.001. The larger

the variance the better the relative performance of the stabilising prior. We compare these priors

with a regularising Gaussian prior and report their results for both the reparametrisation trick

(RT) [12] and local reparametrisation trick (LRT) [20]. As expected, the local reparametrisation

trick converges faster than the reparametrisation trick for all versions. We observe empirically

that incorporating the EB prior on the forward pass also accelerates training relative to leaving

the influence of the prior to a KL term added to the loss. We also find that when we combine

EB with our stabilising prior we see an even further improvement in training speed. But the

focus of our work is analysing the signal propagation dynamics and performance of the proposed

prior.

Quality of uncertainty. We measure calibration with the Brier score for which there are many

libraries available online that can compute this. The Brier score effectively measures discrepancy,

between for categorical probabilities. A lower Brier score represents better calibrated predictions.

We also measure the accuracy of predictions above 50 % and 90 % , similar to [56]. This is to

present an alternative measurement to analyse whether models become overconfident. We only

present experiments on CIFAR-10 as it presents many cases where models require to be aware

of their uncertainty. MNIST is too simple and models easily achieve 95 % accuracy. We monitor

the progression of these metrics of models with different priors through 100 epochs reported in

Figure C.3. As with any iteratively updating prior, we expect that it may adapt to the dataset

and overfit, as is shown to be true of our stabilising prior and EB in Figure C.3. However, relative

to a deterministic network these methods excel. As an answer to this we explore combining a

regularising and stabilising prior which trains faster and results in a well calibrated model with

better Brier scores than any solitary prior.

The experiment in Figure C.3 (d) is trained on the “half moons” dataset generated from the

PyMC3 library [73]. The network is a 20 layer deep, 512 wide network with a self-stabilising

prior, showing that it is possible to obtain reasonable uncertainty estimates with very deep BNNs.

Half moons is a common dataset used to visualise uncertainty of a model.
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Figure C.3: Uncertainty and calibration experiments on CIFAR-10. Iteratively updating priors
overfit, however, we can combine regularising and optimal priors to maintain calibrated

confidence and better Brier scores. In (d) we also see we are able to get reasonable uncertainty
estimates with a deep neural network on a toy dataset.
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Appendix D

Probability table for alternative
factor setup

Xi,j Xi+1,j−1 Xi+1,j Xi,j−1 P (Xi,j , Xi+1,j−1, Xi+1,j , Xi,j−1)
0 0 0 0 0.35
0 0 0 1 0.1
0 0 1 0 0.1
0 0 1 1 0.05
0 1 0 0 0.03
0 1 0 1 0.08
0 1 1 0 0.08
0 1 1 1 0.32
1 0 0 0 0.32
1 0 0 1 0.08
1 0 1 0 0.08
1 0 1 1 0.03
1 1 0 0 0.05
1 1 0 1 0.1
1 1 1 0 0.1
1 1 1 1 0.35

Table D.1: Probability table that represents a factor containing agreement probabilities for
alternative factor setup shown again in Figure D.1. The probabilities are chosen to be very

similar to the triplet factors as in Table 7.1, as well as being left unnormalised to show
relationship, with the addition of having the diagonally adjacent or corner pixel slightly reduce

probabilities when it not in agreement. This is seen for example with rows 1-4, which
corresponds to the same as the triplet factors, compared to rows 5-8 where the corner pixel is

not in agreement and slightly reduces probability.
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��−1,� ��+1,�
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Figure D.1: Alternative factor setup.
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