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ABSTRACT 

The objective of this project is to develop an electromagnetic model that can be used to 

accurately calculate the voltage distribution in a transformer winding structure when excited 

with standard impulse excitation waves.  This voltage distribution is required during the 

design stage of a power transformer to ensure that the insulation is capable of withstanding 

the occurring electric field stresses during these tests.  This study focuses on the modelling 

of a single disk-type power transformer winding without the presence of an iron-core.  

Methods of calculating self- and mutual-inductances of transformer windings are presented 

and validated by means of finite element method software simulations. The same is done for 

the calculation methods used for calculating the capacitances in and around the winding 

structure.  The calculated and FEM-simulated results are compared to measured values as a 

final stage of validation.  The methods used to calculate the various model parameters seem 

to produce results that agrees well with measured values.  The non-linear frequency 

dependant dissipative nature of transformer windings is also investigated and a methodology 

to take this into account is proposed and implemented. The complete modelling 

methodology proposed in this thesis, which includes the calculation of the model 

parameters, model synthesis and solver algorithm, are applied to an actual case study.  The 

case study is performed on an air-core reactor manufactured using a disk-type power 

transformer winding.  The reactor is excited with standard lightning impulse waves and the 

voltages along the winding are measured.  The calculated and measured voltage wave 

forms are compared in both the frequency and time-domain.  From the comparison it is 

found that the model accurately represents the actual transient voltage response of the test-

unit for the frequency range of interest during standard factory acceptance tests. 
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OPSOMMING 

Die doel van hierdie projek is om 'n elektromagnetiese model te ontwikkel wat gebruik kan 

word om die spanningsverspreiding in 'n transformatorwindingstruktuur te bereken as 

standaard weerligimpulstoetse toegedien word. Hierdie spanningsverspreiding word vereis 

tydens die ontwerpstadium van ‘n kragtransformator om te verseker dat die isolasie in staat 

is om die elektriese veldsterkte tydens hierdie toetse te weerstaan. Hierdie studie fokus op 

die modelering van 'n enkele skyftipe-kragtransformatorwinding sonder die teenwoordigheid 

van 'n ysterkern. Metodes van berekening van self- n wedersydse-induktansie van 

transformatorwindings word aangebied en getoets deur middel van Eindige-Element-Metode 

(EEM) simulasies. Dieselfde word gedoen vir die metodes wat gebruik word vir die 

berekening van die kapasitansies in en rondom die windingstruktuur. Die berekende en 

EEM-gesimuleerde resultate word vergelyk met die gemeete waardes as 'n finale vlak van 

bekragtiging. Die metodes wat gebruik word om die verskillende modelparameters te 

bereken vergelyk goed met gemete waardes.  Die nie-lineêre frekwensie-afhanklike verliese 

van transformatorwindings word ook ondersoek en 'n metode om hierdie in ag te neem is 

voorgestel en geïmplementeer. Die volledige voorgestelde modeleringsmetodiek in hierdie 

tesis, wat die berekening van die modelparameters, modelsintese en oplosingsalgoritme 

insluit word toegepas op 'n werklike gevallestudie. Die gevallestudie is uitgevoer op 'n 

lugkern-reaktor wat 'n skyftipe-kragtransformatorwinding. Die reaktor word onderwerp aan 

die standaard weerligimpuls golwe en die spanning al langs die winding word gemeet. Die 

berekende en gemete spanning golf vorms word met mekaar vergelyk in beide die 

frekwensie- en tyd-vlak. Uit die vergelyking blyk dit dat die model die werklike 

oorgangspanningsweergawe van die toetseenheid akkuraat verteenwoordig vir die 

frekwensie reeks van belang tydens standaard fabriekaanvaardingstoetse.  
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In him was life; 

 and the life was the light of men. 

And the light shineth in darkness;  

and the darkness comprehended it not. 

 

 -   John1:5  

    King James Bible,  

    Cambridge Edition 
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1 
 

Chapter 1 Project description and motivation  

1.1 Introduction 

In our current society the use of electricity has become an integral component of the 

socioeconomic infrastructure [1].  Industries involved in manufacturing, mining and 

agriculture play a major role in the economy of a country.  These industries are highly 

dependent on a stable electrical infrastructure.  Health services, public transportation 

infrastructures and other basic service deliveries also require a reliable supply of energy. 

The power grids in developing countries such as South-Africa, operate under extremely 

challenging conditions.  Insufficient power generation, limited transmission line capacity, a 

lack of maintenance and a shortage of local content cripple the socioeconomic growth of 

these countries.  The prospective development and upkeep of these electrical infrastructures 

are faced with various challenges relating to the available financial resources [2] [3].   

The reliable supply of energy is not only a challenge faced by developing countries.  Power 

utilities of countries with strong economies such as China are required to meet the ever 

increasing demand of electricity [4]. 

The reliability of the system components used in a power grid plays a crucial role in light of 

the scenarios portrayed above.  One of these components is the large power transformer.  

Large power transformers are required throughout a power grid and are one of many system 

components required for the effective transmission of energy over large geographical areas.  

Failure of these transformers causes loss of revenue for both the power utility and its client.  

The client suffers downtime in production while the utility has considerable capital 

expenditure to repair or replace these components [5].   

The reliability and longevity of these power transformers plays a critical part in the 

performance of the power grid.  Therefore transformer manufacturers should ensure that the 

design and manufacture of these power transformers conform to international standards [6] 

[7].  Equally as important is the responsibility of the power utility to protect and maintain 

these transformers while in operation in its power grid.   

A major concern in power grids regarding the safe operation of system components is the 

occurrence of voltage transients and overvoltages.  These conditions are usually caused by 

current interruptions due to circuit breaker operations, energizing of unloaded transmission 

lines, load rejection and lightning surges on or near transmission lines [5] [8].  Transient 
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voltages are capable of disrupting power grids and may cause severe damage to electrical 

equipment [9] [10].   

For many years the modelling of power grid components, when subjected to transient 

voltages, has been a matter of great interest [11].  Numerous studies have been done on the 

modelling of transmission lines, surge arrestors, electrical motors and power transformers in 

order to predict the behaviour of the system [12] [13] [14] [15].  These have enabled 

engineers and designers to take preventative measures to protect these components. 

Power grids are subjected to continual changes.  These transformations may be due to the 

replacement of old equipment, power grid expansion or the change in the behaviour of the 

demand-side electricity usage [2].  Although these transformations are essential, they pose 

new challenges in that they change the electromagnetic behaviour of the existing power grid.   

If these behavioural changes are not understood, the failure of system components and 

disruption in power supply due to voltage abnormalities are unavoidable.  To circumvent 

these dangers engineers and designers rely heavily on the accurate modelling of these 

systems to reduce the impact of transient- and overvoltage occurrences.  Hence the 

availability of accurate electromagnetic models of power grid components such as power 

transformers is a key factor in ensuring a reliable supply of electricity. 

1.2 Project motivation 

The insulation structure of a large power transformer should be able to withstand the strain 

caused by transient voltages.  To ensure that the insulation structure is adequate, the 

transformer is subjected to a variety of standardised factory tests after manufacturing.  

During these tests the transformer windings are excited with various specified periodic- and 

aperiodic wave shapes [6] [7].   

When these excitation waves contain high frequency components, the capacitive nature of 

the transformer winding structure becomes noticeable [16] [17] [18].  The presence of these 

capacitances along with the inductive properties of the transformer winding forms an 

electromagnetic system of high order.  This system is capable of resonating at various 

excitation frequencies causing voltage amplification in different parts in the transformer 

winding structure [12] [19] [20] [21].  If these amplified voltages exceed the insulation 

strength of the insulating materials, dielectric failure may occur.  

In reality the standardised wave shapes are not representative of all the transient voltages 

that power transformers are exposed to.  Each occurrence of a lightning- or switching event 
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is unique in wave shape and amplitude.  If the actual occurring transient voltage excitation 

wave contains a frequency close to one of the major resonance frequencies of the 

transformer winding structure, dielectric failure is possible even if the transformer passed the 

specified acceptance tests [9] [22].  Preventative measures such as the implementation of 

surge arrestors are commonly used to protect power transformers, but are only sensitive to 

voltage amplitudes.  Thus, although an incoming transient voltage wave has an amplitude 

well below the protection level of the surge arrestor, it is still capable of stimulating 

resonance behaviour in the winding structure which may cause dielectric failure [10] [22].    

Both the power utility and the transformer manufacturer are faced with the challenge of 

predicting the behaviour of the transformer winding structure when subjected to transient 

voltage excitations.  The transformer manufacturer must design the transformer to withstand 

the specified factory tests and the power utility must coordinate their system response to 

avoid unnecessary transient behaviour as far as practically possible.  

During the design stage of the transformer unit, the design engineer requires the maximum 

voltages occurring in and around the winding structure when undergoing factory testing.  

This information enables the engineer to specify the required electrical clearances, insulation 

thickness and arrangement of insulation barriers to avoid insulation failure [23] [24] [25] [26].  

In addition to this the designer can implement a variety of methods to improve the transient 

response of the winding structure, such as the use of interleaved- and shielded disk 

windings and the choice of winding arrangements [27] [25] [28].   

The utility on the other hand can mitigate various transient occurrences caused by network 

switching operations.  The impact of switching transient voltages can be lessened by 

implementing synchronise switching, damping resistors and snubber circuits [9] [29] [30]. 

In either application there exists the need for an electromagnetic model that can be used to 

calculate the transient voltage behaviour of the system.  The model required is not 

necessarily the same for both.  A reduced two port network model may be sufficient when 

analysing the power grid behaviour surrounding the transformer [31].  However, a detailed 

model is required during the transformer design stage.  In order for the design engineer to 

specify the insulation structure, the voltage distribution throughout the transformer winding 

structure is required [23] [24] [26].  
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1.3 Project description 

1.3.1 Project objective 

The objective of this project is to develop an electromagnetic model that can be used to 

accurately calculate the voltage distribution in a transformer winding structure when excited 

with standard impulse excitation waves.  These voltages are required during the design 

stage of the power transformer to ensure that the insulation is capable of withstanding the 

occurring electric field stresses during these tests. 

It will be evident from Chapter 2 that the subject matter regarding the variety of transformer 

geometries, excitation wave types and boundary conditions is substantial.  To ensure that 

the project is manageable, this study will focus on the modelling of a single disk-type power 

transformer winding. These winding types are common in core-type power transformers and 

are more complex than the more familiar spiral-type windings.  It can be concluded from the 

literature survey presented in Chapter 2 that the principles applied in the modelling approach 

followed in this project are also valid for a complete transformer with other winding types.  In 

this regard, the thesis presents a foundation that can be used for modelling the transient 

voltage behaviour of power transformers to determine the voltage distribution in its winding 

structures.     

1.3.2 Research objectives 

It is important to define the various research objectives required for the successful 

completion of the project.  The following research objectives have been identified regarding 

this matter: 

 Development of a proper modelling methodology that can be applied to determine the 

voltage distribution in a power transformer’s winding structure when subjected to 

transient voltage excitations such as those found during standard factory acceptance 

tests 

 Development of methods to accurately calculate the model parameters.  This includes 

calculations of the self- and mutual-inductances of transformer windings having various 

geometrical sizes and number of turns. The calculation of other parameters such as the 

capacitances in and around the winding and the dissipative elements are also required. 

 Development of a suitable methodology for modelling non-linear frequency-dependent 

damping parameters due to stray losses such as iron losses and dielectric losses. 
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 Identification, implementation and validation of suitable solution methods to simulate the 

response of the model. 

These research objectives form the key elements of this project. Each of these objectives 

requires the execution of various project tasks to meet the requirements of the project.  

These tasks include the following: 

 

 Perform a literature study to identify the various modelling approaches used in transient 

simulations of power transformers. The different model topologies and their 

characteristics should be reviewed.  The survey should include methods used to 

calculate the self- and mutual-inductances of transformer windings and their capacitive 

elements. Special considerations such as the flux behaviour in the core during impulse 

testing and frequency dependant losses should be reviewed and their effect on the 

model parameters should be investigated in the survey.  The conclusions drawn from the 

literature study will determine the choice of model topology, parameter calculation 

methods and solution method. 

 The calculation algorithms of the model parameters should be implemented in a software 

environment.  A suitable environment must be identified to develop the code required for 

this project.  Program code must be developed to calculate the inductive, capacitive and 

dissipative elements of a transformer winding from known electrical and geometrical 

information.  The development of program code that creates the mathematical 

representation of the equivalent electrical circuit model of the transformer winding is 

required.  A solver must be implemented in the program environment to calculate the 

voltage distribution throughout the winding structure. 

 An actual test-unit must be used as a case study.  Standard lightning impulse excitation 

waves should be applied while the voltage distribution throughout the winding is 

measured.  Special considerations regarding good practices when taking measurements 

should be identified and applied.  The interaction between the measuring equipment and 

the test-unit should be investigated.  This includes the input- and output impedance 

matching of the respective systems.  Matters regarding data acquisition and its accuracy 

such as quantization errors and sampling frequency considerations must be investigated. 

For the purposes of this investigation, tests will be conducted on an air-core reactor 

rather than a complex multi winding transformer.  This is due to the exploratory nature of 

the subject matter and the time constraints of the project. 
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 The methodologies used to calculate the model parameters must be validated. This 

should be done by comparing results from multiple calculation methods.  Finite Element 

Method (FEM) software should be used in this respect as a benchmark.  The geometry 

of the test-unit must be drawn in the FEM software and appropriate boundary and 

material properties must be applied. Matters regarding the accuracy of FEM simulation 

results and their interpretation should be addressed.  These include the sensitivity of the 

problem to the size of the mesh elements as well as the effect of the boundary 

conditions. 

 A method of generating the excitation waves mathematically should be investigated and 

implemented. The function parameters required should be calculated depending on the 

required wave properties. 

 The accuracy of the solver algorithm must be evaluated by comparing the solver output 

to another solution method. Both the time- and frequency-domain should be compared to 

determine the reliability of the solver.  The matters contributing to the solver accuracy 

should be identified and applied to achieve reliable results. 

 The voltage distribution measured along the winding of test-unit should be compared 

with the calculated voltages. This requires careful evaluation of the results in both the 

time- and frequency-domain.  To ensure the correct interpretation of the processed 

signals, digital signal processing (DSP) methods, including application of the Fast 

Fourier Transform (FFT), must be reviewed. The DSP operations should take due 

cognisance of the properties of the input signal, e.g. frequency bandwidth and dynamic 

range. 

 Upon completion of the project, areas of improvement must be identified to reduce or 

mitigate the discrepancies found when comparing measured and calculated results. 

Possible research opportunities should be clearly identified that will complement the 

outcomes of this project. 

1.4 Thesis outline 

Chapter 2 presents a critical literature survey on the modelling methods used for transient 

analysis.  This requires a review of the power transformer architecture and the nature of 

transient voltages in power systems.  Methods for determining the model parameters are 

also reviewed.  The mathematical model representation and solution methods used in 

transient voltage studies are discussed.  Important considerations regarding practical 
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measurements are discussed as well as some fundamental digital signal processing 

principles.  

Using the principles discussed in Chapter 2, the development of the electromagnetic model 

is presented in Chapter 3.  Initial discussions revolve around the choice of model type and 

the level of discretisation.  Capacitance and inductance calculations are implemented and 

validated by means of finite element modelling.  Chapter 3 also includes the method in which 

the damping of oscillating voltages in windings is modelled. 

Chapter 4 presents the solvers used to evaluate the mathematical model of the 

electromagnetic system.  The solver algorithms are implemented in a MATLAB environment.  

The results obtained using two different solving methods are compared in both the time- and 

frequency-domain. 

The complete modelling approach is applied to a case study to validate the accuracy of the 

model and assess the performance of the different solvers.  The experimental setup used to 

measure the voltage distribution at multiple positions along the test-unit is presented in 

Chapter 5. The measured and calculated results are compared in both the time- and 

frequency- domain. 

Chapter 6 concludes the thesis by comparing the initial research objectives with the actual 

outcome of the project. The deviations between calculated and measured results are 

carefully evaluated and attributed to possible causes.  Recommendations are made with 

regards to future research.   
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Chapter 2 Literature review 

2.1 Overview 

This chapter presents the supporting literature that pertains to the modelling of transient 

voltage behaviour of power transformer windings.  A detailed description of the different 

components of a power transformer is presented, followed by a discussion on the causes 

and characteristics of transient voltages occurring in power grids.  A historical overview is 

presented regarding the evolution of transformer modelling for transient voltage analysis.  

The methodologies of determining the model parameters and their effect on the transient 

voltage behaviour of the modelled transformer are presented.  These matters will lay the 

foundation required to construct a suitable model to achieve the goal of this study.  The 

chapter concludes with a discussion regarding considerations when taking practical 

measurements.  Some considerations regarding digital signal processing and analysis are 

also reviewed. 

2.2 Power transformer anatomy 

2.2.1 Introduction 

Generally two types of transformers are referred to in the power engineering industry namely 

distribution transformers and power transformers.  Currently no clear definition exists in 

international standards that distinguish distribution transformers from power transformers 

[32].  For the purpose of this thesis, the term power transformer will refer to transformers 

with a power rating of greater than 5 MVA.   

The major transformer components discussed in the following sections will be collectively 

referred to as the active part. The active part consists mainly of the magnetic core, and the 

winding-block.  In accordance with the scope of this project, other external components such 

as the bushings and harness will be omitted.  

2.2.2 Transformer core assembly 

The core provides a low reluctance path for magnetic coupling between the primary and 

secondary windings.  Power transformers have mainly two types of core constructions 

namely shell- and core-type [25] [24].  This dissertation will exclude shell type transformers 

since the physical construction between shell- and core-type transformers are completely 

different.   
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The most common assembly used in three phase core-type power transformers is the three-

limb core as shown in Figure 2-1.  Each phase is associated with its respective main limb.  

The main limbs of the three phases are magnetically connected via the horizontal top and 

bottom yokes [24] [28].  The operating flux density of these transformer cores are in the 

region of 1.7 Tesla.  Both the core and its clamping structure are held at ground potential 

[33]. 

 

Figure 2-1: Three-limb laminated transformer core 

The core is manufactured using silicon steel with low carbon content.  The presence of the 

silicone crystalline structures reduces hysteresis losses and increases the permeability of 

the steel.  Eddy current losses are reduced by constructing the core with laminated steel 

sheets that are coated with a thin layer of insulating material.  The thickness of these 

laminated sheets varies between 0.3 and 0.25 mm and they have a silicon content of 

approximately 3 %. The core laminates are held together by a steel clamping structure and 

tie bars [24] [23] [34].   

The stacked laminated core forms a stepped cross section approximating a circular form.  

The stepped profile and insulation coating on the laminates cause a loss in effective cross 

sectional core area with reference to the gross cross section.  This ratio of effective- to gross 
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area is known as the space factor.  For economic reasons it is crucial to maintain a high 

space factor to ensure effective use of the available core area [24] [34]. 

2.2.3 Insulation material used in power transformers 

The insulation used throughout the active part of the transformer is mostly made from 

cellulose material.  The cellulose material is obtained from processed timber [25].  The fibres 

in the cellulose material are made up of long polymer chains that enable the material to have 

a measure of elasticity [35].   

The winding conductors and exit leads are covered in kraft paper.  Kraft paper provides the 

required electrical insulation around a conductor.  Fixtures providing mechanical support in 

and around the winding structure can be made of pressboard which is manufactured from 

compacted processed cellulose fibres to form a hard ridged material [28] [35].   

The complete active part is submerged in transformer oil.  The oil serves as a coolant and as 

an insulation medium since its breakdown strength is considerably higher than that of air 

[36].  The oil penetrates the cellulose structure of the pressboard and paper to form a 

composite insulation structure [35].  The oil also retards the ageing of the cellulose material.  

It is very important for the cellulose material and the transformer oil to have a low content of 

moisture.  Moisture reduces the electric strength of the insulation material and accelerates 

the rate of aging of the cellulose material.  Ageing causes the breakdown of the polymer 

chains in the cellulose structure which jeopardises the mechanical strength of the material.  

The preferable moisture content of cellulose insulation material should be no more than 5 % 

[35] [25]. 

The choice of insulation material is very important when considering a composite insulation 

structure, especially with reference to the different dielectric constants of the materials.  The 

dielectric constants of the materials should be as close as possible to each other in order to 

avoid electric field density enhancement due to dielectric displacement [37].  In general, 

mineral oil with a relative permittivity ( r) of 2.2 is used along with paper and pressboard 

which has a r of 3.5 and 4.4 respectively [35]. 

2.2.4 Winding-block assembly of power transformers 

2.2.4.1 Description of the transformer winding-block 

The winding-block refers to all the windings such as the high voltage (HV), low voltage (LV) 

and regulating windings pertaining to a specific phase.  The windings are wound on 

circumferentially spaced ribs supported by a pressboard cylinder known as the former-
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cylinder [32].  These windings are slid over each other, forming a concentric configuration 

that encloses the core limb as shown in Figure 2-2 and Figure 2-3 [38] [23].  The windings 

are separated with vertical ducts required for electrical clearance and to allow oil to flow 

along the height of the winding for cooling [24].  The oil ducts have multiple pressboard 

barriers residing in them, forming a composite insulation structure as presented in Figure 2-3 

[23]. 

The winding-block is held securely in place by a clamping structure as shown in Figure 2-4, 

consisting of clamping rings made from pressboard [25].  These plates are inserted during 

assembly while applying an axial force on the windings.  When the applied force is removed, 

the plates maintain a constant pressure on the windings.  This is done to ensure that the 

winding structure remains rigid when subjected to electromagnetic forces during short-circuit 

events [24] [25]. 

 

 

Figure 2-2: Complete power transformer winding-block assembly  
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Figure 2-3: Concentric arrangement of winding-block 

 

Figure 2-4: Winding clamping structure [25] 
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2.2.4.2 Winding types commonly used in power transformers 

In essence there are two common winding construction methods when referring to core-type 

power transformers namely spiral- and disk-wound windings [28] [34]. 

Spiral-type windings are wound continuously from the bottom to the top.  The turns may be 

wound directly adjacent to each other to form what is commonly referred to as a layer-

winding as presented in Figure 2-5 [23] [24].  Alternatively, key-spacers may be placed 

around the circumference between turns to increase the cooling surface.  These windings 

are mostly referred to as helical-windings [32].  Spiral windings are mostly used in LV 

windings and are capable of carrying large currents due to the large cooling surface of each 

conductor [34]. 

Disk windings consist of pancake-like coils known as disks as presented in Figure 2-5.  

During the manufacturing of these windings a certain amount of turns are wound radially 

before crossing over to the next disk as shown in Figure 2-6 [24] [25].  The disks are 

separated by key-spacers creating radial ducts which allow oil flow for cooling purposes.  

Disk windings are typically used in HV winding applications since it is possible to have a 

multitude of electrical turns in a relatively small axial direction [34].  

 

Figure 2-5: Layer- and disk-type winding representation 
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A matter to consider when specifying a disk winding is that the cross-overs as shown in 

Figure 2-6 causes a part of the electrical turn in the disk to be lost.  Cross-overs are 

staggered to distribute them around the winding to ensure mechanical stability.  The 

staggering is done by starting the cross-over one or multiple pitches prior to the previous 

cross-over.  A pitch refers to the distance between the middle of two adjacent spacers or 

ribs.  Thus the transition from disk A to disk B requires the conductor to cross over before 

revolving a full 360º.   

The number of turns lost due to staggering can be calculated if the total number of spacers 

around the circumference of the winding ( ) is known as well as the number of pitches 

used for staggering ( ).   If  a  winding has  disks, 1) cross-overs are required.  A 

full turn will cover all the pitches around the circumference.  The fraction of the turn that is 

lost  due to the staggering is then: 

= . (2.1)

This fraction is lost at every cross-over and so the total number of turns lost is: 

= ( 1) . (2.2)

 

Figure 2-6: Cross-overs in disk-type windings [24] 

A great advantage of disk windings in high voltage applications is the ability to interleave 

electrical turns.  Interleaving entails the non-sequential ordering of electrical turns as 
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presented in Figure 2-7 [27] [39].  Interleaved windings may reduce the non-linear transient 

voltage behaviour of the winding as will be seen in subsequent discussions.  Floating 

conductors can also be wound in disk windings - known as wound-in-shields - to improve the 

transient voltage distribution along the winding [28]. 

 

Figure 2-7: Turn configuration of ordinary- and interleaved disk windings [27]  

2.2.4.3 Conductors commonly used in transformer windings 

The conductors used in the windings are typically rectangular in cross-section and insulated 

with cellulose paper.  Copper is the preferred conductor material due to its mechanical 

strength concerning short-circuit forces, but in some cases aluminium could also be used 

[32] [34]. 

High winding currents result in heat generation due to the winding resistance.  These losses 

can be reduced by increasing the cross sectional area of the conductor.  However since the 

windings are situated in an oscillating magnetic field, eddy currents are formed on the 

conductor surface.  If the cross sectional area of the conductor is increased the outer surface 

becomes larger increasing the losses caused by eddy currents [23].  

To address this challenge, multiple conductors can be used in parallel rather than increasing 

the cross sectional area of one conductor.  Other means of reducing eddy losses in windings 

while maintaining a large cross sectional area is by using Continuously Transposed 

Conductors (CTC).  This is a special type of conductor that contains multiple enamel coated 

rectangular strands that are periodically transposed as presented in Figure 2-8 [32]. 
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Figure 2-8: Continuous Transposed Conductor (CTC) [32] 

Transpositions of parallel conductors or strands are necessary to ensure that the same 

amount of flux is enclosed by the parallel conduction paths.  If this is not done a potential 

difference will occur between the parallel paths resulting in circulating currents.  This would 

cause additional losses in the windings [32] [24].   When multiple conductors are used in a 

disk winding, the conductors are transposed at the cross-over to avoid circulating currents. 

2.3 Transient voltages in power systems 

2.3.1 Origin and characteristics of transient voltages 

A power transformer is exposed to various abnormal transient voltages during its operation 

in a power grid.  Transient voltages are caused by various events in the network such as 

lightning surges, current interruptions by circuit breakers, energization of various network 

components and faulty conditions in the network [5] [15].  These transient voltages may 

either have aperiodic- or periodic wave shapes and can have amplitudes much higher than 

the transformer’s rated operating voltage. 

The classification of transient voltages is not a trivial matter since almost every transient 

voltage event is unique with reference to its wave profile and amplitude.  Therefore the most 

practical method of distinction is with reference to the frequency content of the transient 

wave. Transient voltages can be classified into four groups namely low-frequency 

oscillations, slow-front surges, fast-front surges and very fast-front surges [40]. 

Low-frequency oscillations range from 0.1 Hz to  3  kHz.  These oscillations are typically 

caused by inrush currents when transformers are energized [41].  The transformer core may 

have had a remnant flux after its former disconnection [24].  When energised this may cause 

the core to saturate causing harmonic disturbances on the excitation voltage [25].   

Slow-front surges contain frequencies between 50 Hz and 20 kHz. Switching of capacitor 

banks is a typical cause of these surge types [30].  The circuit in which the capacitor bank 
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resides contains inductive properties forming a resonance circuit.  The instantaneous 

application of the excitation voltage may stimulate the natural frequency of the circuit 

resulting in oscillatory overvoltage [5].   

The frequencies of fast-front surges range from 10 kHz to 3 MHz and are usually caused by 

re-ignitions during circuitbreaker operations.  These are caused by the residual voltage 

stored in the capacitance of supplied network after the contacts of a circuit breaker 

separated.  These arcs may strike repetitively causing oscillatory voltage waves [5].  Fast-

front surges may also be caused by lightning impulses on or near power grid components 

[10].   

Very fast-front surges are mostly found in Gas Insulated Substations (GIS) during the 

switching events of disconnectors.  The frequency content or these wave forms ranges 

between 100 kHz and 500 MHz [8]. 

2.3.2 Standardised waves shapes 

The standard lightning impulse (LI) wave profile as shown in Figure 2-9 [7] can be 

approximated with a double exponential function.  The instantaneous voltage ( )  is 

expressed as [42] [43]: 

( ) = , (2.3)

where the parameters ,  and  are dependent on the rise time  and the time taken  

to drop to half the crest value.  The rise time is defined by the duration that it takes the signal 

to rise from 30% to 90% of its peak value  where both values are evaluated 

respectively at  and .  The parameters in equation (2.3) can be solved by means of the 

Newton-Rapson method as shown in Appendix A.  The standard LI is used in routine factory 

tests and has a  of 1.2 µs and a  of 50 µs [6] [7]. 

Another common transient voltage wave used for testing, is the standard lightning impulse 

wave with a chopped tail (LIC) as presented in Figure 2-10.  This wave profile is generated 

by collapsing the full wave voltage at an instance .  The LIC is not currently a mandatory 

test according to international standards, but some customers may request it as a special 

test.  To generate a LIC the LI wave profile is chopped at  ranging between 3 to 6 µs [7]. 
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Figure 2-9: Standard full wave lightning impulse [7] 

 

Figure 2-10: Lightning impulse wave with chopped tail [7] 

2.4 Electromagnetic behaviour of transformer windings 

2.4.1 Classification of winding response 

During normal power frequency excitation the voltage distribution along the winding is nearly 

linear.  The voltage distribution is governed by the turn ratio and resistive losses along the 

length of winding [25].  This is the typical inductive behaviour of a winding during low 

frequency excitation.   

When a transformer winding is excited with a voltage wave form with a steep front the 

voltage distribution throughout the winding is non-linear as presented in Figure 2-11 [44].  

The transient voltage behaviour is categorised into three distinctive periods namely the 

initial-, transient- and pseudo-final response [17] [18] [45].  Each of these periods are 

governed respectively by the winding’s capacitive, inductive and dissipative nature [46].  
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Figure 2-11: Transient voltage response for 100 disk winding [44]  

2.4.2 Inductive behaviour of transformer windings 

2.4.2.1 Background theory on inductance 

During normal power frequency operation, the prominent behaviour of a transformer is 

inductive [16] [17].  The inductance of a winding is governed by the distribution of magnetic 

flux in the region enclosed by the winding.  A current flowing along a closed contour 

produces a magnetic flux  in the enclosed surface  as presented in Figure 2-12 [47].  The 

self-inductance  of the contour having  turns is defined by the relation [48]: 

= . (2.4)

If two current contours are in close proximity of each other enclosing a surface  they will 

couple magnetically with each other.  The mutual-inductance  due to the flux  set up by 

the current  in nearby loop, can be expressed by the equation:  

= . (2.5)
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Figure 2-12: Current contour enclosing [47] 

The magnetic field can also be influenced by nearby ferromagnetic material.  If a 

ferromagnetic material is placed in the magnetic field enclosed by the current contours, the 

magnetic domains of the material will line up with the magnetic field [47] [49].  This causes 

the magnetic material to act as an induced magnetic source further enhancing the magnetic 

field.  Hence the presence of the magnetic material will cause the inductance of the circuit to 

increase since the total magnetic flux in the enclosed region increases.  It is therefore critical 

to evaluate the magnetic flux behaviour in and around the winding-block of a power 

transformer when determining the inductance parameters.   

The magnetic flux distribution in the core and winding-block depends on the loading 

conditions of the transformer [32] [24].  If the transformer is unloaded most of the magnetic 

flux resides in the core.  However, under operating conditions with a lagging load current, the 

magnetic flux in the core leaks into the winding structure as shown in Figure 2-13 [32] [50].  

This leakage flux is a portion of the flux created by both windings that does not link with each 

other.   

 

Figure 2-13: Leakage flux distribution in winding structure [24] 
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2.4.2.2 Classical analytic inductance calculations 

The effect of the iron-core is neglected in various inductance models used for voltage 

transient studies.  When the winding structure is excited with an impulse, the inability of 

current to change instantaneously through an inductor implies that a negligible amount of 

flux will be set up in the core during the initial-response period [51].  Another matter to 

consider is that the effective permeability of the core steel decreases at higher frequencies 

[16] [52] [53].  Considering these matters, many inductance models assume an air-core. 

Maxwell introduced an analytical formula for calculating the self-inductance of an air-core 

coil with a rectangular cross section [54].  Lyle improved the accuracy of this analytical 

formula by approximating the conductor with multiple current-carrying filaments [54].  The 

self- and mutual-inductances of these filaments were calculated by means of the elliptic 

integral formula from which the total self-inductance of the conductor was derived.  In some 

applications a single current-filament representation of each turn of the conductor in a coil 

was sufficient [23].  The method proposed by Lyle could also be used to calculate the 

mutual-inductance between two rectangular conductors based on work done by Rosa [55]. 

The evaluation of these analytical formulas was a cumbersome exercise in early studies due 

to the absence of digital computers.  For this reason Grover wrote a publication on 

inductance calculations by means of tabular data [56] [57] [58].  However, tabular data are 

valid only for a limited variety of conductor configurations and some inaccuracies become 

noticeable when working with peripheral tabular data [59]. 

2.4.2.3 Analytical iron-core inductance calculations 

The presence of the iron-core can only be ignored under certain circumstances.  When the 

secondary winding is short circuited – as done during standard LI testing [7] – the currents 

produce a magnetic flux in the core opposing the main flux.  Thus, no flux resides in the 

magnetic core and it can be assumed to be air [60].  However, if the terminal conditions of 

the winding allow flux to form in the iron-core, the inductive behaviour of the winding 

structure changes significantly [60].  The reduced effective permeability of the iron-core at 

high frequencies also does not disqualify the iron-core’s effect.  Even at excitation 

frequencies of 1 MHz the effective permeability of the core is still a contributor to the 

magnetic flux behaviour [61].     

The importance of considering the presence of the iron-core became evident in studies done 

by Abbeti [20].  His publications show that the iron-core has a significant effect on the 
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mutual-inductances.  With the use of air-core models, the mutual-inductance was often 

omitted or considered only for adjacent turns [18] [52]. 

Abbeti measured the natural frequencies of windings with and without a magnetic core and 

compared them to his calculated results.  He first considered no mutual coupling between 

any conductors followed by considering coupling to only the immediate adjacent turns.  His 

final comparison was done by evaluating the mutual inductive coupling between a conductor 

and the two consecutive turns on either side.  His study showed that the measured natural 

frequencies of a winding with an iron-core correlate better with the calculated frequencies 

when mutual-inductive coupling is considered between non-adjacent turns due to the 

presence of the iron-core [20]. 

Abbeti attempted to use an iron-core inductance model in an electromagnetic model of a 

transformer winding [62].  His work was based on empirical data showing that a winding 

having an iron-core can be approximated with an equivalent air-core having a larger 

diameter [63]. 

Analytical methods for calculating winding inductance with an iron-core remain a challenging 

exercise due to the non-linear behaviour of the core.  Rabins developed an analytical 

method for calculating the magnetic flux distribution in the presence of an iron-core.  By 

calculating the vector potential  in a region with a relative permeability of  and a current 

vector  where: 

= , (2.6)

he derived the inductance from the flux distribution in the evaluated region.  As boundary 

conditions he assumed that the flux was radially unbounded in the top- and bottom yokes 

that the core had an infinite permeability [64].  Hence no radial flux component exiting the 

core was considered. 

Other analytical methods used in transient studies used a different approach.  These 

methods mainly revolved around adding a term to the calculated air-core flux.  The 

correction term represents the induced flux generated by the magnetic core and the change 

in the magnetic field outside the winding [59] [65]. 

2.4.2.4 Numerical inductance calculations 

Alternative methods of calculating inductance are by means of Finite Element Modelling 

(FEM) using two or three dimensional geometries [25] [66].  These simulations should be 

performed with careful consideration regarding the meshing criteria and specifications of the 
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boundary conditions.   The sensitivity of the required results to the mesh size and boundary 

conditions, is determined by recursively evaluating the results after successive changes in 

the mesh size or boundary condition [25].  

The inductances between the various current carrying conductors are calculated by 

recursively applying a per unit ampere excitation to each conductor while the other 

conductors contain no current [66].  The return path of the current is assumed to be outside 

the problem region.  For each recurrence the stored energy  between two sections  and 

, due to the current , are calculated from which the mutual-inductance  is derived using 

the relation [25] [28]: 

=
1
2

. (2.7)

2.4.2.5 Inductance calculation considerations 

During high frequency excitation the current does not distribute uniformly in the cross section 

of the conductor [47] [50].  This displacement of current affects the magnetic flux distribution 

in and around the conductor which results in a change of inductance [65] [67].  In light of 

this, when the above mentioned methods are used it should be acknowledged that the 

calculated inductance is only valid for a limited frequency range. 

2.4.3 Capacitive behaviour of transformer windings 

2.4.3.1 Origin and classification of winding capacitances 

When a winding is excited at very high frequencies such as those found in steep fronted 

voltage waves, it behaves like a capacitor [16] [11] [18] [51].  It is established that the 

capacitive behaviour of the transformer winding governs approximately the first 0.1 µs [39] 

[27] [45].  Traditionally the capacitances in a winding structure have been divided into three 

distinct types [38].  In this thesis these capacitances will be respectively referred to as 

series-, shunt-, and ground-capacitance. 

Adjacent turns have surfaces facing each other separated by a composite insulation of 

mineral oil and paper.  This configuration provides a space in which an electrical charge can 

be stored.  An electrical charge can also be stored between consecutive disks.  These 

capacitive structures collectively form what is known as the series-capacitances  of a 

winding [27] [39].   
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The concentric configuration of the windings as shown in Figure 2-3, forms a similar 

structure as found in a cylindrical capacitor.  Capacitive coupling occurs between adjacent 

windings which are commonly referred to as shunt-capacitances  [14] [46].   

Another capacitive component that plays an important role in the transient behaviour is the 

capacitive coupling of the complete winding structure to ground  [17].  This capacitive 

coupling mainly occurs between the inner-most winding to the core limb and the outer 

winding to the tank wall. 

The contribution of the capacitances in and around the winding structure became evident in 

studies done by Blume and Boyajian when observing the voltage distribution throughout the 

winding during the initial response time [17].  The initial transient voltage response of the 

winding is largely dependent on the ratio of the ground-capacitances to the series-

capacitance in the winding.  For a unity voltage step wave the initial voltage distribution as 

presented in equation (2.8) is governed by the gradient factor  presented in equation (2.9) 

[17] [18].   

For a winding with a grounded neutral, the voltage along the winding length  at the position 

 is shown in Figure 2-14 using the relation:  

( ) =
( )
( ) (2.8)

where: 

= (2.9)

and 

= . (2.10)

The initial voltage distribution for different  values for a winding with a grounded neutral is 

represented in Figure 2-14.  Evidently the voltage distribution is linear if there is no 

capacitance to ground similar to that of suspension insulators [16].  With a decrease in 

series-capacitance with respect to , the initial voltage distribution concentrates near the 

terminal subjected to the surge, resulting in a highly non-linear voltage distribution [68].  The 

series-capacitance can be increased by reducing the specified distance between disks and 

adjacent turns, but is constrained by the required electrical clearance. 
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Figure 2-14: Initial voltage distribution of winding with grounded neutral [25] 

Alternative methods to increase  is to apply the interleaving and wound-in-shields as 

previously mentioned in 2.2.4.2 [39] [28].  These methods do not directly increase the series 

capacitance per se, since their effect relies on a turn-to-turn voltage difference which 

requires inductive current to flow in the winding [27].  However, the initial period is confined 

to the first 0.1 µs which allows enough time for current flow to create a turn-to-turn voltage 

difference.  Due to the larger turn difference between adjacent turns in interleaved windings, 

more energy is stored in the initial period of the transient event – thus effectively increasing 

the series-capacitance.  Hence the restructuring of the capacitive coupling between the 

winding conductors by interleaving or wound-in-shields, does improve the transient 

behaviour [39] [68].  

2.4.3.2 Analytical capacitance calculations 

A common practice throughout various studies was to calculate the capacitance between the 

various elements in and around the winding structure utilizing closed form expressions such 

as the parallel- or cylindrical plate capacitor formulas [27] [24] [28] [68].  In general, the 

parallel plate capacitor formula for two plates at a distance  from each other with an 

overlapping surface area of  is expressed as:  

= , (2.11)

where  and  is the vacuum and relative material permittivity respectively.  This relation 

works well where the distance  between the elements is much smaller in comparison to the 

area .  However, as  increases, fringing occurring at the edge of the surfaces becomes 

more noticeable [69].  This causes inaccuracies in equation (2.11) if  decreases relative 

to .  However, more elaborate formulas can be used to account for the fringing at the edges 

which may yield better results [70]. 
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2.4.3.3 Numerical capacitance calculation methods 

As with inductance calculations, FEM also provides an alternative for calculating 

capacitance.  The advantage of this method is that effect of fringing is included in the results.  

However, this method is much more computationally intensive. 

The capacitances between sections such as a conductor and a part of the core is calculated 

by recursively applying a per unit voltage  excitation to each section while the other 

sections are held at ground potential [66].  The stored energy  between two sections  

and  is calculated from which the capacitive coupling  between them is derived using the 

relation [25] [28]: 

=
1
2

. (2.12)

2.4.3.4 Capacitance calculation considerations 

The equivalent relative permittivity used in calculating capacitances in and around the 

winding structure is generally done using fixed dielectric constants for the sake of simplicity.  

However, this is not the case in practice.  The dielectric constants of the insulation materials 

are a function of the excitation frequency of the electric field in which it resides as well as 

temperature [71].  Figure 2-15 and Figure 2-16 show the change due to temperature in the 

relative dielectric constant of mineral oil at various frequencies indicated in Hz above each 

curve [72].   

In composite insulation materials such as oil impregnated paper, additional parameters 

contribute to the actual relative permittivity of the insulation.  These parameters include the 

densities of the respective materials [72].  For composite insulation structures where each 

material’s dielectric constant is known, the effective relative permittivity can be calculated as 

presented in section 3.4.2 [24] [37].  This is merely an approximation of the physical system 

since the dielectric structure is in fact a 3D problem to consider if a higher order of accuracy 

is required [66]. 
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Figure 2-15: Temperature and frequency dependency of transformer oil [72] 

 

Figure 2-16: Effect of excitation frequency on dielectric constant (oil impregnated paper) [72] 

2.4.4 Damping of oscillations due to losses 

The currents arising from the transient voltage excitation causes energy dissipation due to 

the resistive losses of the medium they reside in and can mainly be classified as copper-, 

core- and dielectric losses.  The effect of these losses has already been observed in studies 

done by early authors Blume and Boyajian [17].   

When currents are set up in a conductor the effective copper area decreases with increasing 

excitation frequency due to the skin-effect.  The currents concentrate on the surface of the 

conductor resulting in higher losses.  In addition to this the current in a conductor generates 

eddy-currents on the surfaces of their neighbouring conductors resulting in the proximity-

effect [73] [65].  These two mechanisms primarily cause the losses in the copper conductors.  

The losses in the core are caused by the eddy-currents set up on the surface of the 

laminated core by the radial flux component that penetrates the core sheets perpendicularly 

[53].   
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Various experimental studies concluded that the high frequency oscillations are highly 

damped when compared to lower frequency oscillations [41].  Based on this type of 

experimental data some transient studies implemented frequency dependant damping in an 

empirical way [14].  The relationship between the damping and excitation frequency is 

presented in Figure 2-17  [14].  By means of linear curve fitting in Excel, the trend in Figure 

2-17 can be approximated by using with the following relation:  

= 5 10 + 0.0266 , (2.13)

where  represents the damping factor at the frequency .  The assumption in this 

approach is that the damping can then be represented by a time-frequency dependant 

windowing function.  Assume a discrete time-domain signal ( )  which are defined for 

each  point and sampled at intervals of .  The windowing function can then be expressed 

as shown in the following relation: 

( , ) = ( ) . (2.14)

As an example, assume a 50 kHz sinusoidal signal.  The damped signal could then be 

expressed as: 

( ) = 1.0 (50 000 2 ) ( ) , (2.15)

where 

= 5 10 (50 000 2 ) + 0.0266 . (2.16)

The resulting signal is shown in Figure 2-18.  It can be seen that, after approximately 5 µs 

the signal has been damped by 7.5 %. 

Some authors include the losses in their models by means of lumped resistive elements [74].  

The calculation of the various damping elements is not a trivial exercise.  Valiant efforts were 

made in many studies to develop or improve loss models for the purpose of transient studies 

[65] [75]. 
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Figure 2-17: Measured relationship between damping and frequency [14] 

 

Figure 2-18: Empirically damped signal 

The damping phenomenon during transient overvoltages in transformer windings cannot be 

neglected in a design and manufacturing industry.  Damping is inherently the first tier of 

defence against high voltage oscillations in the winding structure, and therefore plays a 

significant role when considering the design of the insulation in and around the winding-

block.   

Due to fact that damping has a negligible effect on the frequency response of the 

transformer winding, most models omitted the damping behaviour of the physical system 

completely or approximate its behaviour empirically [20] [14] [76].  The consequence of this 

was that calculated voltages would be more conservative than those measured in practice. 

Stellenbosch University  http://scholar.sun.ac.za



30 
 

2.5 Evolution of modelling methodologies 

2.5.1 Introduction 

The modelling of electromagnetic systems has been approached in various ways.  The 

methodologies are very closely related and present a challenge to separate them into 

distinctive categories.  For the purpose of this study the subject matter regarding modelling 

methods can be distilled into the classifications presented in Figure 2-19.   

The most common modelling methodologies applied to the modelling of transformer 

windings stems forth from one of two approaches.  One approach is based on the 

assumption that the complete system behaviour can be approximated using an electrical 

circuit equivalent [14] [41] [24].  The other approach model the system behaviour using 

electromagnetic field theory [15] [77] [78].  The derivation of these models fundamentally 

relies on Maxwell’s field equations [47]. 

 

Figure 2-19: Modelling methods of electromagnetic systems 

2.5.2 Electrical circuit equivalent models 

2.5.2.1 Lumped- and distributed parameter models 

Early documented attempts at rising to the challenge started by first modelling the responses 

of a single winding using an electrical circuit equivalent.  The winding was represented by a 

ladder network of distributed or lumped resistive, inductive and capacitive parameters as 

shown in Figure 2-20 and Figure 2-21 respectively [16] [17] [52].  Subsequent studies 

included adjacent windings in the model [12].   
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Using a distributed parameter model (DPM), the inductance , series capacitance  and 

capacitance to ground  were calculated per unit length  along the winding.  The 

electromagnetic system behaviour was described by applying Krichhoff’s voltage law (KVL) 

and Krichhoff’s current law (KCL).  Distributed network models were expressed as partial 

differential equations (PDEs) or as partial integro-differential equations.  The partial 

differential equation describing the electromagnetic behaviour of a homogeneous system 

can be written in a higher order relation as [17] [12] [18]: 

( , ) ( , ) + ( , ) = 0 , (2.17)

where ( )  is the voltage at position  along the winding at time .  Partial integro-

differential equations were mostly expressed in the frequency-domain and evaluated over a 

specific frequency range [19].   

 

Figure 2-20: Distributed parameter model of a winding (mutual-inductance not shown) [18] 

Subsequent models were simplified by grouping parts of the winding into  number of 

sections resulting in a lumped parameter model (LPM).  For a uniform winding the total 

ground- and series-capacitances, as well as the self-inductance of the winding was divided 

uniformly along the winding as presented in Figure 2-21.  Since the model parameters is no 

longer a function of position, the model can be represented by a set of ordinary differential 

equations.    

The application of the KCL on a lumped parameter network presented in Figure 2-21 yields a 

set of ordinary integro-differential equations (IDE).  The nodal currents according to KCL are 

expressed as [18] [74]:  

[ ] ( ) +
1

[ ]
( ) = ( ) (2.18)
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The ]  matrix represented the absolute lumped capacitances between the discrete 

sections.  The entries in the matrix ]  represented the lumped self- and mutual-

inductances of the discrete sections.  The column vector ) represents the voltage at each 

node in the system, while the nodal vector ( ) represents injected nodal currents in the 

system. 

 

Figure 2-21: Lumped parameter model of winding segment  

Modern modelling methods still apply the same principles in that they represent the physical 

system as a network of either distributed or lumped RLC parameters [59] [79] [26] [80].  

Distributed parameter models are limited to windings where the RLC parameters are 

uniformly distributed throughout the winding.  If a winding is not uniform, a cascade of 

confined distributed parameters can be used.  This is done by representing a group of  

disks or turns in a uniform part of the winding with a multi transmission line model (MTLM) as 

shown in Figure 2-22.  Groups of these MLTMs are cascaded, forming a hybrid model as 

shown in Figure 2-23 [26] [80] [79] [81].  In some studies the model order has been reduced 

by representing the sections that are not of interest with a single transmission line model 

(STLM) [82] [53].  The sending and receiving voltages and currents ( , ,  and  

respectively) are then calculated.   

 

Figure 2-22: MTLM representing a uniform winding segment [81] 
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Figure 2-23: Hybrid model of a winding [26] 

2.5.2.2 Discretization of transformer windings 

2.5.2.2.1 Frequency range dependency 

In the application of either the LPM or the DPM it is required to divide the actual winding into 

fictitious discrete sections where each section is represented as a MTLM or a lumped 

element.  This process is referred to as discretization.  The discretization is largely driven by 

the application of the model and the available computational resources.   

Careful consideration must be made in the discretization of the physical system.  The 

desired frequency range plays a significant role in the required length per section [83].  If the 

physical length  of a section exceeds the wave length  of the highest required frequency, 

multiple reflections can occur which would not be noticed at the terminals of the section [84].   

The physical length of the conductor represented by a lumped circuit should be much shorter 

than the shortest required wave length. Good results have been documented where [85]: 

= 0.12 . (2.19)

The lowest discretization resolution of a physical transformer is obtained when representing 

the primary and secondary winding with a single inductive branch  and  respectively with 

their resistances and  as presented in Figure 2-24.  These types of models are usually 

used in system studies [86].   

Since these model types do not contain nodes along the winding structure, they lend 

themselfs of little use for transformer insulation design purposes.  They do however give a 

summary of the parameters that need to be taken into consideration at high frequency 

excitation.   represents the capacitive coupling between the primary and secondary 

winding.   and  represents the series capacitance of the primary and secondary winding 

respectively.  The capacitance of each winding to ground   is also an important 

parameter to consider. 
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Figure 2-24: Low order high frequency model of a power transformer 

2.5.2.2.2 Effect of discretization on model parameters 

The way in which the winding is discretised affects the methodology in which the model 

parameters are evaluated.  For a DPM or LPM having a fine resolution as shown in Figure 

2-25, the calculated turn-to-turn capacitance  and turn-to-ground capacitance  can 

readily be implemented if each turn represents a section.  However, if a group of turns or 

disks constitutes a single section as presented in Figure 2-25 the equivalent series-

capacitance  and equivalent capacitance to ground must be derived in some way from 

the initial detailed parameters. 

Models used for transformer design traditionally have a resolution where a section 

represents at least a disk pair [24].  Thus a disk pair is represented with a single inductive 

branch, a series-capacitance and a capacitance to ground.  An equivalent series- 

capacitance can be calculated by assuming a unity linear voltage drop   across the section.  

The stored energy  between each conductor,  and , in the section is calculated and 

converted to an equivalent series-capacitance  that would store the same energy using the 

relation [24] [27]:  

=
2

, (2.20)

In practice the voltage distribution inside a section behaves similarly to the voltage 

distribution along the whole of the winding in that it is non-linear [39].  In some transient 

studies the non-linear voltage distribution inside the disks are accounted for, resulting in a 

more accurate representation of the equivalent capacitance [14].  The same approach can 

be used in reducing the number of inductive parameters.  An equivalent inductive branch 

can be derived by preserving the flux of all the inductive elements of the original detailed 

sections [67].   
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Figure 2-25: Reduction of capacitive model to a single -network  

If a single conductor is used, the method is quite simple and presented in Figure 2-26.  If 

multiple conductors are used in parallel, the stored energy in each conductor must be 

calculated with respect to the current distribution in the two paths.  From this energy the 

equivalent inductance value can be calculated.  This is only valid if the conductors are 

properly transposed which implies that all three conductors in the section under 

consideration have the same inductance. 

 

Figure 2-26: Reduction method of inductance matrix [67] 

2.6 Solving electromagnetic models 

2.6.1 Introduction 

Due to the complexity and size of the mathematical models, initial studies evaluated the 

mathematical models only for a unit voltage step [17] [18] [11].  While the industrial 

application of mathematical models lingered due to the absence of digital computers, 

physical scaled models were used during the design stage of a transformer in order to 

determine the expected voltage oscillations, thereby insuring adequate insulation in and 

around the winding structure [62].  However, this meant that for each transformer design a 
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new scale model had to be constructed resulting in an expensive and time consuming 

exercise. 

The feasibility of detailed mathematical models became evident with the developments in 

digital computing.  Computational speed and memory capacity grew to an extent where 

mathematical modelling became an attractive alternative to scale models.  The digital 

computer was first used for transient studies by Abetti [11].  The model consisted of an 

equivalent circuit representing discrete subdivisions of the transformer winding, where each 

division had its individual self-inductance, mutual-inductance to all other sections and 

capacitive coupling to adjacent sections and earth.  The voltage throughout the winding was 

determined by solving the set of ODEs representing the LPM [13]. 

As mentioned in section 2.5.2.1, both the DPM and LPM can be expressed in either 

differential form or in integro-differential form.  These mathematical representations can be 

expressed in various ways each lending it more or less appropriate to different solution 

methods.  This literature survey will be limited to the two common formulations used in 

transient simulation studies namely the state-space formulation and the nodal formulation. 

2.6.2 Common model formulations 

2.6.2.1 State-space form 

For both equations (2.17) and (2.18) the unknown voltages can be calculated using the 

state-space formulation as presented below [87]: 

= [ ] + (2.21)

and 

= [ ] + , (2.22)

where  denotes the column vector of the derivative of the state variables.  [ ] and [ ] are 

matrices of constant coefficients and  is the column vector of the output voltages.  Both the 

 and  column vectors contain constant coefficients.  The two state variables commonly 

used, are the currents through the inductors and the voltages across the capacitors [25] [59] 

[14]. 

The state variables of a DPM as presented in Figure 2-20 are both time and space 

dependant.  Neglecting the losses, the state of the system can be expressed by means of a 

set of PDEs [38] [18] [79] as expressed in the following relations:  
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( , )
= [ ]

( , )
(2.23)

and 

( , )
= [ ]

( , )
. (2.24)

This formulation is also referred to as the Telegrapher’s equations.  The voltage ( , ) and 

current ( , ) are both a function of time and position along the winding.  In this format the 

matrix [ ] represents the distributed self-inductance of each disk or turn and the mutual-

inductances between them.  These values are expressed in per-unit length.  The matrix [ ] 

contains the per unit length values of the capacitances between the disks or turns [24]. 

For LPMs, the state variables are only time dependant and can therefore be written as a set 

of ODEs.  Unlike the [ ] and [ ] matrices of the DPM, the matrices of the LPM contains the 

lumped capacitive and inductive values of each discrete section.  

2.6.2.2 Nodal form 

Instead of expressing the system in state-space form, the application of substitution results 

in the nodal form.  This formulation may take on various forms such as that used in modified 

nodal analysis (MNA).  Generally the nodal form of a LPM, where the parameters, voltages 

and currents are only dependant on time, is expressed as an integro-differential equation as 

shown in the following relation:  

[ ] ( ) = ( ) (2.25)

where 

[ ] = [ ] + [ ] . (2.26)

The matrix [ ] is known as the nodal admittance matrix.  The [ ] and [ ] matrices in 

equation (2.26) are represents the capacitances and inductance connected to each node in 

the model. 

2.6.3 Time- and frequency-domain solution methods 

The mathematical formulations can be solved in both the time- and frequency-domain.  The 

reduced complexity of circuit analysis in the frequency-domain portrays this method as the 
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preferred route and has been used in various studies when main interest is the resonance 

behaviour of the winding [21] [88] [79] [81].  The time-domain response can be obtained by 

using the inverse Fourier transform.  However, time dependant model parameters such as 

switches cannot readily be address in the frequency-domain.  Another challenge is the 

presence of non-linear model parameters such as those representing surge arrestors.     

Time-domain solvers can easily accommodate non-linear model parameters as well as 

switches.  However the handling of frequency dependant parameters such as dielectric 

losses and the skin-effect mentioned in section 2.4.4 become more complicated.  Estimated 

RC or RL branches can be used to represent these frequency dependant losses when 

solving the model in the time-domain [65].  Frequency-domain solvers, on the other hand, 

can facilitate these matters more easily [89] [82].   

2.7 Signal measurement 

In order to validate the response of the model it should be compared to the measured 

response of the physical system under consideration.  The connection of the measurement 

equipment inherently applies an additional load to the system subjected to testing.  Care 

should be taken to minimise the effect of the measuring equipment on the actual system 

response.  

2.7.1 Effect of probe connections 

Various types of probes are available, but due to the simplicity and economic benefits of 

passive RC probes this thesis will only discuss these probe types.  The probe head and 

connecting lead has specified input impedances as presented in Figure 2-27 [90].  The 

capacitance to ground  and the shunt resistance  of the probe along with the inductance 

in the ground lead  of the probe should be considered during the experimental setup.  

 

Figure 2-27: High frequency circuit of probe and test subject [90] 
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For accurate measurements the effect of ,  and  on the source having an output 

resistance  and capacitance  should be kept as small as possible.  Selecting a probe 

with a very small  and a large  will accomplish this.  To keep  as small as possible, 

the ground lead should be made as short as possible [90]. 

2.7.2 Quantization- and ambient noise 

A measured signal is subjected to noise arising from ambient interference and quantization 

noise.  Ambient noise is mostly regarded as arbitrary interferences in a signal.  Noise may 

be caused by sources external or internal to the measurement equipment. External noise 

may arise from equipment producing electromagnetic discharges. Other sources of external 

noise are atmospheric noise caused by lightning and radiation from space caused by solar 

activities [91]. Internal noise on the other hand is mostly caused by temperature variations in 

devise components. 

Unlike ambient noise, quantization noise is an inherent characteristic of every analogue to 

digital conversion device (ADC).  It originates from the digital binary representation of an 

analogue signal.  The number of bits used by the ADC determines the resolution of the 

signal amplitude [92] [93].  Signal values that do not coincide with the resolution are either 

truncated or rounded.  This causes a step-like profile on the wave as presented Figure 2-28.  

These noise components need to be taken into account during measurements. 

 

Figure 2-28: Digital quantisation of analogue signal [93] 

Using an ADC with a high resolution reduces the effect of the quantisation [93].  Averaging 

can also be used to reduce noise on a measured signal.  The total mean square error (MSE) 

of a sampled signal can be reduced using the average of  measurements of such that the 

total  can be expressed as [94]: 
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= ( 12 + ) (2.27)

where  is the sample interval and  is the noise variation.  Thus by taking multiple 

measurements of the signal of interest the error caused by quantization- and ambient noise 

can be reduced. 

2.8 Digital signal processing considerations 

2.8.1 Introduction 

The response of electromagnetic model of the power transformer is evaluated in both the 

time and frequency-domain.  Aside from proper measurement considerations such as those 

presented in 2.7, some fundamental signal processing matters also need to be addressed.  

The two topics discussed in this section are due to their importance in the context of this 

project. 

2.8.2 Sampling frequency 

The fidelity of the measured signal is strongly dependant on the sampling frequency .  If 

the sampling frequency is too low, aliasing can occur as shown in Figure 2-29 [92].  The 

Shannon theorem states that the sample frequency must be at least twice that of the highest 

frequency component of the signal [95].  This frequency is known as the Nyquist frequency 

.  The sampling frequency also plays an important role in the frequency-domain analysis of 

a sampled signal.  This matter is discussed in the following section.  

2.8.3 Frequency-domain signal analysis 

The transformation of time-domain signals to the frequency-domain can be done either by 

the Fourier transform or the Laplace transform [95] [92].  The choice of transformation 

method depends mainly on the application.  When analysing discretised time signals (n) 

the favourable method is the Discrete Time Fourier Transform (DTFT) [95] [92] defined as: 

( ) = ( ) (2.28)

where ( ) is a series of complex exponentials.  The Fast Fourier Transform (FFT) is a 

DTFT algorithm used in various frequency estimation applications in discrete time signal 

processing.  Application of the FFT to a discrete time signal, results in a finite series of 
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rotating vectors expressed as complex conjugate pairs.  These conjugate pairs represent 

multitudes of 0,1,2, … , /2 of the fundamental frequency  of the signal expressed as [53]: 

= (2.29)

It is therefore imperative that  is high enough to ensure that the frequency step  is not 

too large.  If  is too large, frequencies of interest may be lost between consecutive 

multitudes of the fundamental frequency.  In addition to this,  must be large enough to 

represent the lowest frequency of interest. 

Another matter to consider is the discontinuities caused at the beginning and end of the 

analysed signal.  The input signal is assumed to be periodical and given for a period of .  

Non-zero values at the beginning- and end of the signal causes discontinuities as presented 

in Figure 2-30.  These discontinuities can cause high frequency components to reflect in the 

frequency plot the analysed signal.   This can be remedied by applying windowing functions 

to the signal of interest.  However, if possible, non-zero values at the beginning and end of 

the signal should be avoided. 

 

Figure 2-29: Aliasing effect of under-sampled time-domain signal [92] 

 

Figure 2-30: Non-zero discontinuities interpretation of FFT algorithm 
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Chapter 3 Modelling approach  

3.1 Selection of model type  

The ability to represent the LPM as a system of ODEs makes it an attractive approach due 

to its reduced complexity and intuitive nature.  It is also easy to implement in a digital 

computer algorithm and can accommodate a non-uniform winding structure with ease. 

As discussed in section 2.5.2.1, many transient studies have been done using the LPM and 

it is thus a tried-and-trusted method.  Though the LPM has a smaller bandwidth than a MTL, 

the frequency range of interest is still relatively low enough to implement a LPM with a fair 

accuracy [80].   

3.2 Discretisation methodology of transformer winding structure  

The highest frequency that this study is concerned with is 500 kHz.  The matter to consider 

during discretization of the actual geometry is the physical length of a discrete section as 

discussed in section 2.5.2.2.  The wave length  of the highest frequency  is given by the 

expression [47]: 

= (3.1)

where  is the velocity of the traveling wave.  Assuming a vacuum medium where  is 300e6 

m/s the wave length would be 600 m.  Refering to equation (2.19), this means that the 

physical length of a discrete winding element should ideally not be longer than 72 m.  Power 

transformers have windings where the mean turn length of a winding can be up to 70 m.  

Thus a suitable resolution would be to divide the winding into sections where each section 

represents a single turn of a conductor in the winding as shown in Figure 3-1. 

The core is also divided into sections as shown in Figure 3-2.  For the purpose of this study 

the core is divided into the same number of sections as the number of sections of the inner-

most winding facing the core.  For simplicity sake, the yoke area above the winding is 

assumed to cover the entire circumference of the winding. 
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Figure 3-1: Discretisation of disk winding 

 

Figure 3-2: Main core limb discretisation 

Each section in the transformer winding is represented with an inductive element that has its 

self-inductance and mutual inductive coupling with all other sections.  Capacitive coupling 

exists between sections but is only considered when in close proximity of each other. 

3.3 Inductance model development 

3.3.1 Requirements and considerations 

The primary requirement of the model is that it must be able to portray the inductive 

behaviour of the transformer winding structure during factory tests.  These tests are 

specified in [7].  Therefore three important aspects need to be considered, namely the initial 

conditions of the system, the boundary conditions during these tests and the frequency 

range that the inductance model should be valid for. 
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As mentioned in Chapter 2 fast-front surges range from 10 kHz to 3 MHz. However, the 

frequency range concerning lightning-impulse studies is ideally 10 – 500 kHz [10]. 

Another matter that must be considered is that the tests specified in [7] require all non-

impulsed winding terminals to be grounded.  High currents are set up in the winding 

structure due to the short circuit state of the unexcited windings.  The main flux in the core is 

cancelled out by the unexcited short circuited windings [60].  The penetration of the magnetic 

flux into the core is further hampered by eddy-currents forming on the surface due to the 

varying magnetic flux perpendicular to the core surface [52].  The contribution of the induced 

magnetic field due to the core is expected to be negligible. 

With the specified application of the inductance model, the effect of the iron-core on the 

inductive behaviour of the transformer will be ignored.  Various documented electromagnetic 

models of transformers for similar applications have been implemented neglecting the effect 

of the core for frequencies above 10 kHz with acceptable results [60] [96].  It is vital to 

emphasise that the power transformer is in reality not a linear device.  The linear inductance 

model is only appropriate for the application defined in the scope of this thesis. 

The self- and mutual-inductances of current-carrying conductors are calculated by 

approximating the conductor with a current-filament at its centre as presented in Figure 3-3. 

As mentioned in section 2.4.2.2, a single current-filament approximation does seem to give a 

reasonable result in some applications. 

 

Figure 3-3: Current-filament approximation of conductors 
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3.3.2 Self-inductance calculations 

The conductors used in power transformers are rectangular.  The self-inductance  of a 

single turn in air where the current is uniformly distributed inside the conductor of a 

rectangular geometry is given by the relation [54] [56]: 

= 4
8

2 , (3.2)

 
where  is the mean radius of the conductor and  is the geometrical-mean-distance of 

the cross-section of the conductor.  The  of a rectangular conductor can be expressed 

by the relation [55] 

= 0.2235( + ) , (3.3)

 
where  and  are the height and the width of the conductor respectively.  Equation (3.2) 

and (3.3) are used to calculate the self-inductance of each section excluding the sections 

that reside in the core, shielding-cylinder or tank.   

3.3.3 Mutual-inductance calculations 

The mutual-inductance  between two sections  and  is calculated by assuming that each 

section can be approximated by a single current-filament [56].  For two sections  and  

having a mean radius  and  respectively, the mutual-inductance between the two 

current-filaments is given by the relation [97]: 

= 4 , (3.4)

where 

=
4

+
(3.5)

and  is the vertical distance between the current-filaments.   and  are the complete 

elliptic integrals of the first and second kind of the modules . 

3.3.4 Compensation for cross-overs in disk windings 

The equations in the preceding sections assume each section to revolve a full 360o at a 

constant radius.  In practice, the winding conductors do not follow this exact behaviour which 
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will cause deviations in calculated and measured results.  A particular consideration 

regarding this very matter is the reduction of effective electrical turns due to staggered cross-

overs as discussed in 2.2.4.2. 

To account for the lost portion of the electrical turn due to the staggered cross-overs, 

equation (3.2) and (3.4) are corrected with the factor  resulting in the actual per unit 

electrical turn.   represents the fraction of an electrical turn pertaining to a mechanical 

turn.  Thus for a winding having  mechanical turns and  number of turns are lost, 

 is calculated with the following relation: 

= 1 . (3.6)

The self- and mutual-inductance are then calculated using relation (3.7) and (3.8) 

respectively. 

= 4
8

2 ( ) (3.7)

= 4
2 2

( ) (3.8)

3.3.5 Structure of the inductance matrix 

3.3.5.1 Branch-inductance matrix 

The calculated self- and mutual-inductances are captured in a ( × ) branch-inductance 

matrix [ ]  where  represents the total number of sections in the winding structures.  

These are the sections in the discretised transformer geometry that will carry currents.  Thus 

sections belonging to the tank and core are not considered.  The off-diagonal elements, , 

represent all the mutual-inductances and the diagonal elements,  ,represent the self-

inductance of the respective section. 

A branch representation is useful when calculating currents, but a nodal representation of 

the inductances is desired since the nodal voltages are calculated at different nodes.  

Therefore the branch-inductance matrix must be transformed into a nodal-inductance matrix.  

This is done via a transformation formula of impedance [98]: 

[ ] = [ ][ ][ ] , (3.9)

where [ ] is the adjacency matrix described in the next section and [ ]  is the transpose of 

[ ]. 
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3.3.5.2 Adjacency matrix definition 

The adjacency matrix [ ] reflects the relationship of the inductive branches (sections) with 

the system’s nodes.  [ ] is expressed as an ( × ) matrix where  represents all the 

inductive branches and  represents the total number of system nodes.  The matrix values 

are either ‘0’, ‘1’ or ‘-1’ and are dependent on the direction of the current flow in the branch.  

The convention used in this thesis regards the current flow out of a node as positive.  The 

construction of the adjacency matrix will be explained with reference to the network 

presented in Figure 3-4.  The network consists of 5 inductive branches and 8 nodes. 

The current flow is indicated by the arrows and the polarity of each inductor is shown by dot 

notation.  The adjacency matrix of the system is built by evaluating each branch.  A branch 

resides between two nodes and the current enters one node and exits the other.  Depending 

on the polarity of the branch, the current may either flow in a positive or negative direction. 

 
Figure 3-4: Network with node and branch allocations 

With reference to Figure 3-4 branch 1 is located between node 1 and 2.  Current exits node 

1 and enters node 2.  This is indicated on the adjacency matrix where row 1 represents 

branch 1, column 1 represents node 1 and column 2 represents node 2.  Current exits node 

1 and is therefore designated a ‘1’.  Current enters node 2 and is therefore designated a ‘-1’.  

This convention is followed throughout the complete system until the adjacency matrix is 

completely populated. Relation (3.10) presents the transposed adjacency matrix. 

[ ] =

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

(3.10)
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3.3.6 Calculation of winding inductance with parallel conductors 

The total self-inductance  of a winding wound with one conductor having  branches, 

can be calculated as illustrated in Figure 2-26 using the following relation [56] [99] [67]: 

= + , (3.11)

where  is the inductance between section  and . 

However, the test-unit under consideration has two conductors in parallel.  The inductances 

values calculated using (3.7) and (3.8) are based only on the geometrical properties of the 

sections.  In order to calculate the total inductance of a winding having two conductors in 

parallel, the law of energy conservation can be implemented.   

Assuming that the conductors are perfectly transposed as mentioned in 2.5.2.2.2, the total 

winding current  divides equally in two branch currents namely  and  as presented in the 

following expression:  

= ( + ) (3.12)

where  and  are the currents flowing in conductor 1 and conductor 2 respectively.  Both  

and  are equal in magnitude and flows in the same direction.  The total energy  

stored in the winding can be expressed as the sum of the energy stored in and between the 

inductive branches as expressed in the following relation:   

=
1
2

+
1
2

+
1
2

+
1
2

. (3.13)

 and  are the respective total self-inductance of each conductor throughout the whole 

winding according to relation (3.11), while  and  are the mutual-inductances between 

them.  Having unity current and assuming equal current distribution, the total winding 

inductance  can be calculated using the following equation: 

=
1
4

( + + 2 ) (3.14)

3.3.7 Validation of inductance calculations using FEM 

3.3.7.1 Description of geometry used in FEM modelling for validation 

To validate the analytical equations the geometry of the test-unit presented in section 5.1 

was drawn in Ansoft Maxwell® Version 15.0.0 as an axisymmetric 2D geometry shown in 
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Figure 3-5.  Each section residing in the core is presented with a rectangle of vacuum 

material type.  Each turn of every conductor in the winding is represented with a rectangle of 

copper material. The model was simplified by omitting the edge radii of the conductors.  The 

paper and enamel covering of the conductors were also omitted since these do not have an 

effect on the magnetic field distribution.  The  of the conductors and the surrounding 

medium was set to 1 since no magnetic core is present.   A unity current excitation is applied 

to all sections in the winding.  Two additional dummy regions were created around the 

winding geometry for refined mesh operations. 

3.3.7.2 FEM simulation considerations 

Due to the pitfall briefly mentioned in 2.4.2.4 regarding FEM simulations, a boundary and 

mesh sensitivity analysis was done to ensure the reliability of the problem definition.  The 

change in the self-inductance of the bottom disk and mutual-inductances of the top and 

bottom disk was evaluated to determine the severity of the changes in boundary and mesh 

definitions.  For both analyses the current was assumed to be unity in all conductors. 

 

Figure 3-5: 2D FEM Geometry of test-unit 
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3.3.7.2.1 Effect of boundary definition and sensitivity   

For magnetostatic FEM simulations the boundary conditions are usually defined by the 

behaviour of the vector potential  at the boundaries.  The magnetic flux is either specified 

as tangential or perpendicular to the boundaries of the problem.  With some experience this 

type of boundary condition can be used with a fair amount of accuracy. 

Some FEM solution methods facilitate a boundary condition that does not force the vector 

potential to be tangential or perpendicular.  Instead it allows a certain degree of freedom by 

assuming an extrapolation of the magnetic flux curvature before intercepting with the 

boundary.  In Ansoft Maxwell® this method is referred to as a balloon-type boundary. 

For the boundary sensitivity analysis the magnetic field strength  at the revolving axis was 

assumed to only have a  component by setting the boundary type to symmetric.  The 

balloon- and vector potential type boundaries were compared for three cases.  The boundary 

was moved closer to the winding geometry by reducing the radius of the outer boundary. 

The radius of the outer boundary for case 1, 2 and 3 was set to 3000 mm, 1850 mm and 

1350 mm respectively.  The change in the self-inductance of the bottom disk was evaluated 

as shown in Figure 3-6.  The mutual-inductance between the top and bottom disk was also 

evaluated and is presented in Figure 3-7. 

From these two graphs it is evident that the model having a balloon-type boundary is the 

least sensitive to the distance of the boundary from the area of interest.  Both the self- and 

mutual-inductance remains fairly constant in value regardless of the distance to the 

boundary.  The model having a vector potential type boundary on the other hand is clearly 

influenced by the distance of the boundary.  However, the change in values in this example 

is not more than 1%.  Thus with good judgement, both boundary types can be used 

depending on the desired accuracy. 
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Figure 3-6: Boundary sensitivity of self-inductances 

 

Figure 3-7: Boundary sensitivity of mutual-inductances 
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3.3.7.2.2 Effect of mesh resolution and sensitivity   

The mesh sensitivity analysis was done by refining the mesh of the inner and outer dummy 

region as presented in Figure 3-8 using a balloon type boundary.  Using the same validation 

criteria as used in the boundary sensitivity analysis, the self- and mutual-inductances of the 

top and bottom disk were compared and presented in Figure 3-9 and Figure 3-10.  The 

distribution of the number of elements in the 2D geometry is shown in Figure 3-11. 

 

Figure 3-8: Mesh detail used in sensitivity study 

It is clear that the changes in inductance values for different number of elements ranging 

from 9053 to 280702 are nearly negligible.  Thus to avoid unnecessary computational 

overhead, the simulation can be done with 9053 elements with a fair accuracy. 
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Figure 3-9: Change in self-inductance due to total number of mesh elements 

 

Figure 3-10: Change in mutual-inductance due to total number of mesh elements 
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Figure 3-11: Number of elements in dummy regions used in mesh sensitivity analysis 

3.3.7.2.3 Pre- and post-processing in Ansoft Maxwell® 

In the initial setup as described in section 3.3.7.1, the effect of the cross-overs is not taken 

into account since the geometry is defined as axisymmetric.  All turns are assumed to be 

complete.  Another matter that is not reflected in the input is the fact that the winding 

sections belong to either one of two parallel conductors.  Unity current is used during the 

calculation and generation of the inductance matrix as mentioned in 2.4.2.4.  It is therefore 

not readably possible to compare a detailed inductance matrix calculated by means of 

equation (3.7) and (3.8) to that obtained using Ansoft Maxwell®.   

The post-processing capability of Ansoft Maxwell® allows the grouping of sections where the 

number of electrical turns per section can be specified as well as the number of parallel 

paths in the grouped sections.  The total winding inductance can be calculated by grouping 

all sections representing the winding conductors into one group with two parallel paths.  The 

number of electrical turns of each section can now be assigned the calculated value  as 

calculated according to (3.6). 
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In conclusion, the detailed pre-processed inductance matrix generated in Ansoft Maxwell® 

can be used to validate equation (3.2) and (3.4).  Using the post-processing functionality of 

Ansoft Maxwell®, the suitability of equations (3.7) and (3.8) can be indirectly validated in 

terms of the complete winding inductance. 

3.3.7.3 Detailed inductance matrix validation 

The calculated and simulated self- and mutual-inductance values of the sections in the 

bottom disk of the test-unit are presented in  

Table 3-1 and Table 3-2.  All turns are assumed to be complete with unity current excitation.  

The percentage deviation is shown in Table 3-3.  The maximum deviation of 3.6% in 

calculated and simulated results is the mutual-inductance between section 84 and 85.  

Table 3-1: Inductance matrix of disk 1 (Ansoft Maxwell®) 

Section 84 85 86 87 88 89 
84 1.13E-06 9.58E-07 8.09E-07 7.17E-07 6.52E-07 6.02E-07 
85 9.58E-07 1.17E-06 9.92E-07 8.39E-07 7.44E-07 6.77E-07 
86 8.09E-07 9.92E-07 1.21E-06 1.03E-06 8.70E-07 7.72E-07 
87 7.17E-07 8.39E-07 1.03E-06 1.25E-06 1.06E-06 9.00E-07 
88 6.52E-07 7.44E-07 8.70E-07 1.06E-06 1.29E-06 1.10E-06 
89 6.02E-07 6.77E-07 7.72E-07 9.00E-07 1.10E-06 1.33E-06 

Table 3-2: Calculated inductance matrix of disk 1 - Eq. (3.2) and (3.4)  

Section 84 85 86 87 88 89 
84 1.13E-06 9.93E-07 8.20E-07 7.22E-07 6.55E-07 6.04E-07 

85 9.93E-07 1.17E-06 1.03E-06 8.50E-07 7.49E-07 6.80E-07 

86 8.20E-07 1.03E-06 1.21E-06 1.06E-06 8.81E-07 7.77E-07 

87 7.22E-07 8.50E-07 1.06E-06 1.25E-06 1.10E-06 9.11E-07 

88 6.55E-07 7.49E-07 8.81E-07 1.10E-06 1.29E-06 1.14E-06 

89 6.04E-07 6.80E-07 7.77E-07 9.11E-07 1.14E-06 1.33E-06 

Table 3-3: Deviation of calculated and simulated inductance values for disk 1 - Eq. (3.2) and (3.4) 

Section 84 85 86 87 88 89 
84 0.00% 3.59% 1.35% 0.69% 0.46% 0.33% 
85 3.59% 0.00% 3.76% 1.30% 0.67% 0.44% 
86 1.35% 3.76% 0.00% 2.87% 1.26% 0.65% 
87 0.69% 1.30% 2.87% 0.00% 3.70% 1.21% 
88 0.46% 0.67% 1.26% 3.70% 0.00% 3.57% 
89 0.33% 0.44% 0.65% 1.21% 3.57% 0.00% 
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The mutual-inductance values of the sections in the bottom disk to those in the top disk are 

presented in Table 3-4 and Table 3-5.  A unity current was assumed in each section and 

turns were assumed to be complete.  The percentage deviation is shown in Table 3-6.  The 

maximum deviation of 0.35% in calculated- and simulated results, is the mutual-inductance 

between section 84 and 570. 

Table 3-4: Mutual-inductance matrix of disk 1 and 82 (Ansoft Maxwell®) 

Section 570 571 572 573 574 575 
84 2.69E-09 2.83E-09 2.98E-09 3.14E-09 3.29E-09 3.45E-09 
85 2.83E-09 2.99E-09 3.15E-09 3.31E-09 3.47E-09 3.64E-09 
86 2.98E-09 3.15E-09 3.31E-09 3.48E-09 3.66E-09 3.83E-09 
87 3.14E-09 3.31E-09 3.48E-09 3.66E-09 3.84E-09 4.03E-09 
88 3.29E-09 3.47E-09 3.66E-09 3.84E-09 4.03E-09 4.23E-09 
89 3.45E-09 3.64E-09 3.83E-09 4.03E-09 4.23E-09 4.43E-09 

Table 3-5: Calculated mutual-inductance matrix of disk 1 and 82 - Eq. (3.2) and (3.4) 

Section 570 571 572 573 574 575 
84 2.69E-09 2.84E-09 2.98E-09 3.14E-09 3.29E-09 3.45E-09 
85 2.84E-09 2.99E-09 3.15E-09 3.31E-09 3.47E-09 3.64E-09 
86 2.98E-09 3.15E-09 3.31E-09 3.48E-09 3.66E-09 3.83E-09 
87 3.14E-09 3.31E-09 3.48E-09 3.66E-09 3.84E-09 4.03E-09 
88 3.29E-09 3.47E-09 3.66E-09 3.84E-09 4.04E-09 4.23E-09 
89 3.45E-09 3.64E-09 3.83E-09 4.03E-09 4.23E-09 4.44E-09 

Table 3-6: Deviation between calculated and simulated mutual-inductances - Eq. (3.2) and (3.4) 

Section 570 571 572 573 574 575 

84 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 
85 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 
86 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
87 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
88 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 

89 0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 
 

The results shown above have neglected the effect of the cross-overs.  From the calculated 

and simulated results it is clear that the closed-form equation (3.2) and (3.4) gives 

reasonably accurate results when compared the results obtained by Ansoft Maxwell®.   
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3.3.7.4 Total winding inductance validation 

Using the equation (2.2) and the data presented in Table 5-1, the total number of turns lost 

in the winding due to cross-overs are 13.5 turns.  The winding has three mechanical turns 

per disk and 82 disks.  Thus, there are 246 mechanical turns in the winding.  Using equation 

(3.6) each mechanical turn represents 0.945 p.u electrical turns.  If equation (3.7) and (3.8) 

are used to calculate each section’s self- and mutual-inductance respectively, the total 

winding inductance according to relation (3.14) is 7,9 mH.  The winding inductance was 

measured with an RLC bridge at 1 kHz. Table 3-7 shows the calculated and measured 

inductance values. 

Table 3-7: Total winding inductance of test-unit 

Method Inductance value (mH) 

Calculated using equation (3.6), (3.7), (3.8) and (3.14) 7,95 

Ansoft Maxwell® as described in section 3.3.7.2.3 7.89 

Measured 7.9 

 

3.4 Capacitance model development 

3.4.1 Calculating capacitances inside and outside of windings 

The accurate calculation of the capacitive coupling between the various sections in the 

winding structure is a complex exercise.  In practice there exists capacitive coupling between 

all sections in the geometry.  Calculating the capacitance between non-adjacent sections 

becomes a less trivial exercise since the arrangement and permittivities of the separating 

materials should be considered.   

This study will simplify the capacitance model by only considering the charge stored 

between the overlapping surfaces between two sections.  The fringing-effect is ignored as 

done by M. Loose [59].  The capacitance between radially adjacent sections i and j as 

presented Figure 3-12 is calculated using the parallel plate capacitor.  By using the parallel 

plate equation, the capacitance between the two conductors separated by a distance   and 

having an overlapping height , can be calculated using the following expression [25]:   
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= 2  (3.15) 

where  is the mean radius between the adjacent conductors as presented in Figure 3-12. 

 is the permittivity of free space (8.854 10 ) and  is the relative permittivity of the 

material occupying the region between the two conductors.  The same approach is used for 

sections that are axially adjacent.  Only the overlapping width in the radial direction is 

considered. 

3.4.2 Equivalent permittivities of composite insulation structures 

The relative permittivity of the insulation material  between the two sections separated by a 

composite insulation material, can be approximated by representing the insulation structure 

as a per unit volume with a per unit voltage drop across it [86].  Figure 3-13 depicts the per 

unit volume representation of the insulation structure typically found between disks as shown 

Figure 2-6. 

 

Figure 3-12: Coaxial radially adjacent sections 

 

Figure 3-13: Insulation configuration for adjacent sections 
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The percentage of oil occupying the circumferential region between two disks is represented 

by  shown in the following relation: 

=
1

( ) , (3.16)

where  is the width of each spacer,  is the number of spacers around the 

circumference and  is the mean radius of the winding.   represents the percentage of 

paper residing in the space between the two disks and is calculated as follows: 

= (3.17)

where  represents the total paper thickness in region between the two disks. The 

distance between copper surfaces of the conductors in the disks is denoted by . 

The equivalent relative permittivity of the insulation structure between disks in a winding, is 

derived by calculating the total equivalent capacitance from the fictitious lumped 

capacitances , , and  as presented in Figure 3-13 using the equations (3.18), (3.19) 

and (3.20) respectively [86]. 

=
1

1
(3.18)

=
1

(3.19)

= (3.20)

The total per unit capacitance   in the insulation structure (assuming that there is a 

unity voltage drop across the insulation structure) is then expressed by the following relation: 

=
1

+
1

. (3.21)

 
Substituting equation and (3.18), (3.19) and (3.20) into equation (3.21) yields the relation: 
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= =
1
+ 1

+ (3.22)

The fixed dielectric constants used for the insulation material are those determined at a 50 

Hz field excitation at 90 ºC.  However, the deviation in relative permittivity ranging from 50 - 

600 Hz the as presented in Figure 2-15 is practically negligible.  The relative permittivities 

used in this study are shown in Table 3-8 [72].  

Table 3-8: Dielectric constants (50 Hz)  

Material Relative permittivity ( 90oC ) 

Transformer oil 2.2 

Craft paper (dry, 0.7 g/cm3) 1.8 

Press board (dry, 1.15 g/cm3) 2.6 

Craft paper (oil impregnated, 0.7 g/cm3) 3.5 

Press board (oil impregnated, 1.15 g/cm3) 4.5 

 

3.4.3 Capacitance matrix 

After each section-to-section capacitance has been calculated, the calculated value is 

halved and assigned to the top and bottom node of the respective sections [59].  In this 

manner, the nodal capacitance matrix [ ] is constructed.  For example assume the top and 

bottom node of section 103 is node 105 and 106 respectively and section 107 has node 111 

and 108 at the top and bottom respectively as presented in Figure 3-14.  The calculated 

capacitance between section 103 and 107 is then distributed as presented in Figure 3-15.  If 

there are multiple capacitance assignments between node 106 and 111, the equivalent 

capacitance between node 106 and node 111 is the sum total as presented in and Figure 

3-16. 
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Figure 3-14: Capacitance between sections 

 

Figure 3-15: Redistribution of section capacitances 

 

Figure 3-16: Redistribution of multiple nodal capacitances 
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The capacitance matrix is a (n x n) matrix, where n is the total number of nodes in the 

system.  The diagonal matrix entries represent the sum of the capacitances connected to the 

respective node.  The off-diagonal matrix values represent the capacitance connected 

between the two respective nodes and are negative values as seen in relation (3.23). 

= 0

0

( + )
0

0

…

( )

0

0
( )

( )

(3.23)

 

3.4.4 Capacitance model validation 

3.4.4.1 Considerations for validation methods 

The two major contributors to the accuracy of the calculated capacitance values is the effect 

of fringing and the accuracy of the calculated equivalent permittivity of the complex insulation 

structures.  The challenge is to differentiate which one is causing the discrepancy between 

calculated and measured values. 

To ascertain the degree of influence the fringing has in the system, all insulation material can 

be omitted in a FEM simulation and compared to the calculated capacitance values.  Any 

deviation can only be caused by fringing since all materials have a permittivity of 1.  The 

analytically based capacitance model can then be altered until the deviation is acceptable.  If 

the calculated and FEM-simulated capacitance values agree well without the presence of 

insulation, the effect of fringing can be ruled out. 

The validation of the calculated equivalent permittivities of complex insulation structures 

would require actual capacitance measurements.  However, the only capacitance that can 

effectively be measured is .  This would indicate if the calculated equivalent permittivies of 

the insulation structure to ground is correct or not.  The remaining challenge is to validate  

since this is more an abstract parameter.  This can be addressed by comparing the 

measured initial voltage distribution to the calculated response.  By means of relation (2.9) 

the accuracy of the series-capacitance can be evaluated which would indirectly reflect the 

accuracy of the calculated equivalent permittivies inside the winding.  

Stray-capacitances are also a matter that needs to be considered when doing 

measurements.  Abetti did extensive measurements on a test winding that has been a 

benchmark in various studies [100] [20] [19].  The coil was mainly used to investigate the 
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effect of a magnetic core on the inductance of the winding.  The test winding had a very 

important feature regarding its capacitive behaviour.  The winding was enclosed by an 

electrostatic shielding-cylinder.  This confined the stray-capacitance from the outside of the 

winding to ground to a known region.  The test-unit presented in section 5.1 does not have 

an outer shielding-cylinder and may therefore have a larger capacitive coupling to ground 

than the transformer model.  

In light of the above mentioned considerations, the development of the capacitance model is 

more challenging than the inductance model since the inductance model does not need to 

take into account the presence of nearby magnetic material. This reduces the elements of 

uncertainties and deviation may enlarge be attributed to a geometrical nature.  This is not 

the case with the capacitance model since the insulation material properties has a significant 

effect on the capacitances.  There are thus more uncertainties with capacitance calculations.  

The development of the capacitance model is a fine balancing act which requires insight in 

the capacitive behaviour of the winding as presented in 2.4.3.    

3.4.4.2 FEM simulation configuration 

To evaluate the discrepancies caused by the omittance of the fringing-effect in the 

capacitance calculations, the permittivity of all the materials was set to one.  Thus the 

suitability of equation (3.15) can be validated by means for FEM only in a uniform permittivity 

structure.   The validation of the capacitance model was done in a similar manner as that 

used for the validation of the inductance model.  The electrostatic solver of Ansoft Maxwell ® 

Version 15.0.0 was used to obtain partial capacitance matrices of the geometry of the test-

unit as presented in Figure 3-5. 

In order to determine the capacitive coupling between the sections, Ansoft Maxwell ® 

calculates the stored energy between each section by recursively applying a per unit voltage 

on each section while the other sections are kept at zero volts.  The equivalent capacitances 

between two sections are calculated using the relation in (2.20).   

The results were obtained after a boundary- and mesh sensitivity analysis was done similarly 

to that of the inductance simulation.  The outer boundary was set to a balloon type boundary 

and the revolving axis was set to a symmetric boundary.  The calculated and simulated 

capacitances in disk 40 are compared in Table 3-9 and Table 3-10.  The methodology 

described in 3.4.1 ignores capacitive coupling between non-overlapping surfaces.  These 

sections are assumed to have zero capacitive coupling as shown in Table 3-10.  The 

presented Table 3-12 and Table 3-13 compare the capacitance of the sections in disk 40 to 

the sections in disk 41. 
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Table 3-9: Capacitance matrix of disk 40 using FEM (pF) 

Section 318 319 320 321 322 323 
318 232.1 169.7 0.1071 0.0017 2.68E-05 4.32E-07 
319 169.7 384.16 174.5 0.10851 0.00172 2.76E-05 
320 0.1071 174.5 395.09 179.4 0.11149 0.00179 
321 0.0017 0.10851 179.4 406.03 184.3 0.11638 
322 2.68E-05 0.00172 0.11149 184.3 416.96 189.31 
323 4.32E-07 2.76E-05 0.00179 0.11638 189.31 368.49 

Table 3-10: Calculated capacitance matrix of disk 40 (pF) 

Section 318 319 320 321 322 323 
318  145.9     
319 145.9  150.1    
320  150.1  154.3   
321   154.3  158.6  
322    158.6  162.8 

323     162.8  

Table 3-11: Deviation between FEM and calculated  capacitances in disk 40  

Section 318 319 320 321 322 323 
318  15.1%     

319 15.1%  15.0%    

320  15.0%  15.0%   

321   15.0%  15.0%  

322    15.0%  15.1% 

323     15.1%  

Table 3-12: Capacitance matrix of disk 40 to 41 using FEMM (pF) 

Section 324 325 326 327 328 329 
318 23.797 3.3815 0.05358 0.00085 1.34E-05 2.16E-07 
319 3.3808 13.056 3.427 0.05423 0.00086 1.38E-05 
320 0.05352 3.427 13.428 3.5232 0.05578 0.0009 
321 0.00085 0.05428 3.5232 13.799 3.6192 0.0582 
322 1.34E-05 0.00086 0.05574 3.6193 14.169 3.7765 
323 2.16E-07 1.38E-05 0.0009 0.05821 3.7767 79.294 

Table 3-13: Calculated capacitance matrix of disk 40 to 41 (pF) 

Section 324 325 326 327 328 329 
318 16.8      
319  17.3     
320   17.8    
321    18.3   
322     18.8  

323      19.2 
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Table 3-14: Deviation between FEM and calculated  capacitances between disk 40 and 41  

Section 324 325 326 327 328 329 
318 34.5%      
319  28.0%     
320   28.0%    
321    28.0%   
322     28.1%  

323      122.0% 

 

From the results seen in Table 3-11 and Table 3-14 it is evident that fringing plays a 

significant role and causes a considerable error when not taken into account.  This is 

especially evident at the edges of the disk.  For the capacitances between section 318 and 

324 and also that of section 323 to 329 suggests that the fringing at the edge of the disk 

causes a higher capacitive coupling than that calculated.  
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3.4.4.3 Ground-capacitance validation 

As a final evaluation of the capacitance model, the test-unit in 5.1 was simulated using the 

capacitance model methodology presented in this chapter.  The total ground-capacitance of 

the test-unit was measured at 1 kHz with an RLC bridge and compared to the calculated 

total ground-capacitance.  The results are shown in Table 3-15.  

Table 3-15: Total winding capacitance to ground 

Method Capacitance value (pF) 

Calculated using equation (3.6), (3.7), (3.8) and (3.14) 636 

Measured 766 

 

As discussed in 3.4.4.1, this deviation in measured and calculated values is influenced by 

various matters.  Table 3-11 and Table 3-14 already indicated that the omittance of fringing 

in the capacitance calculation caused a significant error.  Thus, by including the fringing 

effect in the calculation method the difference in measured and calculated capacitance 

values should reduce.  The difference could also be further reduced by placing and 

electrostatic shield around the test subject to reduce the stray capacitive coupling to a 

confined area. 

3.5 Modelling of damping due to losses 

3.5.1 Calculation of copper losses 

The resistance  of a conductor having a length of  and a cross sectional area of  be 

calculated using the following relation [47]: 

= (3.24)

where  is the resistivity of the conductor material as shown in Appendix B.  Due to the skin-

effect, the effective area of the conductor reduces due to the reducing penetration depth.  

The penetration depth  in a highly conductive medium excited at a frequency  can be 

expressed using the following relation [23] [47]: 

= 2 (3.25)

where  is the relative permeability of the conductor and  is the conductivity of the 

conductor.  The effective area for a square conductor is then 
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= ( 2 ) (3.26)

where  is defined as per equation (3.3).  For the purpose of this project, the angular 

frequency ( = 2 ) at which the losses are calculated are the mean frequency of the range 

over which the model are required to be valid, hence = 225 .  This method is used to 

calculate the resistance of each inductive branch. 

3.5.2 Dielectric loss calculations 

The dissipation factor represents the ratio of resistive to displacement current in an 

insulation medium and is expressed in the following equation [37] :  

( ) = (3.27)

where  is the resistive current and  is the displacement current in the dielectric material. 

Equation (3.27) can be rewritten in the following form in terms of the applied potential across 

the insulation medium resulting in the following expression: 

( ) = ( ) (3.28)

The conductance of the insulation material can then be calculated if the dissipation factor is 

and capacitance is known and is expressed as: 

= ( ) (3.29)

The dissipation of a new transformer at 50 Hz is approximately 0.5 % [101].  This dissipation 

factor was also used in the calculation of the dielectric losses.  The calculated capacitance 

matrix was used in (3.29).  
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Chapter 4 Model formulations and solution algorithms 

4.1 Introduction 

Chapter 3 presented the discretization of the model and the calculations of the model 

parameters.  This chapter presents the two model formulations and the solution methods 

used to evaluate them.  First the nodal formulation will be presented followed by a state-

space formulation.  Each formulation is solved using a different solution method.  The two 

modelling methodologies are used to model the electromagnetic behaviour of the test-unit 

described in section 5.1.  The discretisation was done the same for both methodologies. The 

electric circuit equivalent model of the test-unit contains 495 nodes including the excitation 

node, and 492 inductive branches. 

4.2 Implementation of difference equation method on nodal 
model  

4.2.1 Nodal formulated model synthesis 

The nodal model used for modelling the power transformer winding presented in section 5.1 

is synthesised without any losses.  The only losses in the system are due to the small 

resistive elements connecting the excitation source and ground to the LC network as 

presented in Figure 4-1. 

Using the [ ] and [ ] matrix as presented in Chapter 3 and a [ ] matrix representing only 

the resistive elements connecting the system to the excitation source and to ground, the 

voltage distribution can be calculated using the following relation: 

[ ] + [ ] + [ ] ( ) = ( ) . (4.1)

In this thesis equation (4.1) will be solved using the difference equation method as presented 

in the following section. 
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Figure 4-1: Synthesis of nodal formulated electromagnetic model 

Stellenbosch University  http://scholar.sun.ac.za



70 
 

4.2.1.1 Difference equation method 

Dommel presented a paper whereby a large RLC network can be solved by transforming the 

inductive and capacitive elements to equivalent resistive elements by means of trapezoidal 

integration [102].  This solution method is known as the difference equation method (DEM).  

Using Figure 4-3 and Figure 4-4 as reference, the current through the inductor in Figure 4-2 

– when using a resistive base element - can be expresses as [103] [102]: 

( ) =
2

[ ( ) ( )] + ( ) , (4.2)

where 

( ) = ( ) +
2

[ ( ) ( )] (4.3)

 
Figure 4-2: A Simple RLC circuit 

The resistive network for the capacitive element can be expressed in a similar way using 

equation (4.4) and (4.5) with reference to Figure 4-5 and Figure 4-6. 

( ) =
2

[ ( ) ( )] + ( ) (4.4)

where 

( ) = ( )
2

[ ( ) ( )] (4.5)

Unlike inductive and capacitive elements, a purely resistive element has no memory. Thus, 

with reference to Figure 4-7: 

( ) =
1

[ ( ) ( )] (4.6)
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Figure 4-3: Inductive element 

 
Figure 4-4:  Equivalent resistive representation of inductive element 

 

Figure 4-5: Capacitive element 

 

Figure 4-6: Equivalent resistive representation of capacitive element 

 

Figure 4-7: Purely resistive element 
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The network in Figure 4-2 can now be represented using Equations (4.2), (4.4) and (4.6) in 

matrix form: 

[ ] ( ) = ( ) ( ) (4.7)

where [ ] is the nodal admittance matrix, ( ) is the nodal voltage column vector and ( ) 

and ( ) is the injected nodal current- and history current column vectors respectively. 

The nodes can then be subdivided into group A and B for which the nodal voltages are 

unknown and known respectively.  Rewriting equation (4.7) results in the following matrix 

equation [102] [103]: 

[ ] [ ]
[ ] [ ]

( )
( ) =

( )
( )

( )
( ) . (4.8)

The unknown voltages, [VA(t)], can then obtained at each time step by solving the system of 

algebraic equations expressed in the following relation: 

[ ] ( ) = [ ] ( ) , (4.9)

where 

= ( ) ( ) . (4.10)

The base element does not need to be resistive, but could be capacitive or inductive as 

presented by Degeneff [103].  In this case equation (4.8) is expressed in terms of either 

magnetic flux if the base element is inductance or electric charge if the base element is 

capacitance.  These have various advantageous depending of the context of application.  In 

this thesis, a resistive base element has been chosen. For a nodal resistance matrix , 
nodal capacitance matrix  and an inverse nodal inductance , the admittance matrix 

used in the application of Dommel’s method can be rewritten as: 

[ ] =
2

+ [ ] +
2

(4.11)

4.2.1.2 Validation of solution routine 

To implement equation (4.8) means that the nodes of the network must be arranged in such 

a way that the highest node numbers represent the excited and grounded nodes.  To 

simplify the algorithm implementation, the highest node number represents the ground node 

and the preceding node is the point of excitation as depicted in Figure 4-2.   
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To test the solution routine, the step response of the small network in Figure 4-2 was solved 

and compared to the results obtained when the circuit response is calculated using Laplace 

transformation.  The ], ], and ] matrices were constructed manually and imported 

to the solution routine in MATLAB.  The results are portrayed in Figure 4-8 and Figure 4-9 

where a time step size  was chosen to be 1 µs and 0.075 µs respectively [104]. 

 

Figure 4-8: Step response of RLC circuit in using difference equation solving technique [104] 

 
Figure 4-9: Step response of RLC circuit when compared to Laplace [104] 

Stellenbosch University  http://scholar.sun.ac.za



74 
 

4.3 Application of ‘lsim’ function on a state-space formulation 

4.3.1 State-space formulated model synthesis 

Unlike the nodal formulated model in 4.2, another model was developed for the test-unit 

presented in section 5.1 which includes dielectric losses and losses in the inductive 

branches.  This model is shown in Figure 4-10.  The losses were calculated as presented in 

in section 3.5.  

The formulation of the state-space equations representing the network presented in Figure 

4-10 requires the [ ] and [ ] matrix as presented in Chapter 3. The [ ] matrix in this 

formulation includes the conductive elements connecting the system to the excitation source 

and to ground as well as the dielectric losses associated with each capacitive element in the 

nodal capacitance matrix. [ ]  is a matrix having entries only on the diagonal which 

represents the copper loss of each branch.  

Using a similar approach as that done by Fergistad, the column and row of [ ], [ ] of the 

excitation node is removed yielding [ ], [ ]  respectively [14] [74]. The row relating to the 

excitation node is also removed from [ ] yielding [ ].  [ ] and [ ] remains unchanged. 

 is the column removed from [ ] without the row pertaining to the excitation node.  The 

state-space formulation excited with a voltage ( ) is then realised as presented in the 

following relation: 

( )
( ) =

[ ] [ ]
[ ] [ ]

( )
( ) + ( ), (4.12)

where the unknown nodal voltages are then presented as: 

( ) = [[ ] [ ]]
( )
( ) (4.13)

 is an identity matrix. 

4.3.2 Matlab linear simulation tool 

The state-space model presented above can be solved numerically using various numerical 

ODE solvers.  Matlab contains various built-in ODE solvers and was therefore the preferred 

software platform to implement the solver routine. The control system toolbox of Matlab 

contains the linear simulation tool which can be used to solve a set of ODEs representing a 

linear system.  The solver function pertaining to this simulation tool that was used in this 

thesis is called lsim. 
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The lsim function is capable of solving the system of ODEs for arbitrary inputs. The input to 

the function is the synthesised dynamic system model, time vector and the input signal 

corresponding to the time vector.  In this context, the dynamic system model is represented 

by the state-space model. 
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Figure 4-10: Synthesis of state-space formulated electromagnetic model 
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Chapter 5 Model validation 

5.1 Air-core reactor test-unit specifications 

The complete model response was validated against measurements taken while applying a 

recurring low voltage LI on a disk winding air-core reactor.  The reactor test-unit was 

constructed as a disk-type winding as referred to in section 2.2.4.2.  There are 82 disks 

where each disk has three radial turns using two parallel conductors.  The conductors are 

naturally transposed when the ordinary disk winding configuration is used similar to the 

illustration in Figure 2-7.  Each conductor has two insulated strands which are transposed at 

the cross-over from disk 41 to disk 42. 

Table 5-1: Winding construction detail 

Number of disks 82 n/a 

Number of turns per disk 3 n/a 

Number of conductors per turn 2 n/a 

Number of key spacers on circumference 12 n/a 

Spacer thickness 3 mm 

Spacer width 38 mm 

Winding inner diameter 420 mm 

Radial build of winding 37 mm 

Table 5-2: Winding conductor detail 

Number of strands radially 2 n/a 

Number of strands axially 1 n/a 

Strand height 9.95 mm 

Strand width 2.5 mm 

Strand edge radius 0.8 mm 

Strand enamel covering thickness (double sided) 0.12 mm 

Paper covering thickness of conductor (double sided) 0.8 mm 
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Figure 5-1: Geometrical detail of test-unit 
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Figure 5-2: Actual test-unit 

An electrostatic shield was fitted on the inside the former-cylinder of the disk winding to 

represent the surface of an iron-core.  The shield was realised by cladding the inside of 

pressboard cylinder with aluminium foil.  The diameter of the electrostatic shield is 376 mm. 

The shield may not form a closed cylinder otherwise it will behave like a shorted turn.  To 

avoid this, a 5 mm wide strip was cut out of the foil from top to the bottom.  The electrostatic 

shield was held at ground potential at one end only to avoid circulating currents. 
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5.2 Experimental arrangement 

Two sets of tests was performed and analysed in the arrangement shown in Figure 5-3.  The 

first set of tests were done by exciting the winding with a standard low voltage LI by means 

of a recurrent surge generator.  The second set of tests was done by exciting the winding 

with a standard low voltage LIC.  For each test the voltages ( ), ( )  and ( ) was 

measured at the three places along the height of the winding as presented in Figure 5-4.  

The voltage ( ) across the terminals of the winding represents the excitation wave.  

The measurements were done on the outer cross-over of the disks along the winding.  The 

measurements and its respective place in the winding as well as its corresponding node in 

the electromagnetic model are presented in Table 5-3.   

Table 5-3 : Location of measured voltages 

Measurement Disk Node 
( ) 82 494 

( ) 62 434 
( ) 42 374 
( ) 20 308 

 

The environmental parameters were measured at 1333 m above sea level using a T3004 

Top Tronic temperature and humidity meter.  The tests were conducted at an ambient 

temperature of 25 ºC and a relative humidity of 46 % using the following equipment: 

 Oscilloscope: Yokogawa DL850,  Analogue voltage modules - 720210 

 Recurrent Surge Generator: HAEFELY RSG 482 

 Voltage probes: HAMEG HZ154 1:1/1:10 

To ensure accurate measurements as discussed in section 2.7, the voltage probes were set 

to a ratio of 10:1.  With reference to Figure 2-27, this increases  to 10  which is much 

higher that the winding resistance.  The probe capacitance is 12 pF where the total  of the 

winding is 766 pF.  In the arrangement of the ground lead was kept straight and as short as 

possible to lower . 
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Figure 5-3: Experimental arrangement 

 

Figure 5-4: Diagram of experimental arrangement  
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Measurements were recorded at a sampling rate  of 100 MS/s at an 8 bit A/D resolution.  

In adherence with the principle presented by relation (2.27) the average acquired over 128 

repetitive signals was used for each measurement.  This was done to reduce the error 

caused by quantisation- and ambient noise.  The parameter values of the recurrent surge 

generator with reference to the schematic in Figure 5-5 are given in Table 5-4.  These 

parameters were used to obtain the low voltage standard 1.2/50 µs LI and LIC wave shapes. 

Table 5-4: Recurrent Surge Generator Parameter Values 

Cserial 

(µF) 

Rserial 

( ) 

Cload 

(nF) 

Rparallel 

( ) 

Lserial 

 (mH) 

1 22 10 150 0 

 

Figure 5-5: Schematic of HAEFELY RSG 482 
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5.3 Simulation results 

5.3.1 Introduction 

To validate the complete model in terms of the requirements set out in section 1.3.1, the LI 

and LIC standardised excitation waves were used.  The measured voltages along the 

winding are compared to the calculated voltages.  Initial validation is done using the 

measured excitation wave as the input to the model.  Final validation is done by first 

generating the excitation waves using the mathematical expressions presented in 2.3.2.  The 

measured signals were obtained using the experimental setup presented in section 5.2. 

The two formulations presented in Chapter 4 with their respective solution methods were 

used to determine the model response.  Having calculated results using two different solvers 

and formulations presents an opportunity to validate both model accuracy and solver fidelity.  

If any discrepancies occur during the comparison of measured- and calculated values, the 

source of error can be isolated. 

The difference equation solution method is applied to a formulation that does not represent 

damping. Therefore a considerable deviation is expected in the time-domain representation 

of the calculated- and measured voltage signals.  However, as mentioned in 2.4.4, the 

frequency content of the model response should not be affected by damping.  If the 

calculated response of the model corresponds well in the frequency-domain using the two 

different solvers – regardless of accuracy – it would be a good indication the solvers are 

reliable.  The state-space formulation does contain damping. If the developed model 

presented in Chapter 3 is correct, the time- and frequency representation of both the 

measured- and calculated voltage signals should correspond well if the state-space 

formulation is used. 

5.3.2 LI excitation response 

5.3.2.1 Measured LI system response 

Using the arrangement presented in section 5.2, voltages along the winding were measured 

and are presented in Figure 5-6.  The measured voltages at each location in the winding are 

individually compared to the calculated response at its respective node as presented in 

Table 3-1.  The comparison is made in both the time- and frequency-domain. 
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Figure 5-6: Measured voltage along air-core reactor for actual LI  

5.3.2.2 LI response of nodal formulation solved with DEM 

The application of DEM to the nodal formulation of the transformer model was evaluated and 

compared to the measured voltage waves.  The measured voltage applied to the terminals 

of the test-unit was used as the input signal to the model.   

The calculated and their respective measured voltage waves are presented in Figure 5-7 to 

Figure 5-12.  In general the calculated time-domain response has a significant deviation from 

what is measured.  This was expected since no damping is included in the equivalent 

electrical circuit model shown in Figure 4-1 used for the nodal formulation.  The absence of 

damping elements causes the calculated voltage waves to maintain an oscillation of 

considerable amplitude while the measured voltage eventually reaches steady state.  This is 

observed in Figure 5-7, Figure 5-9 and Figure 5-11. 

In the frequency-domain the results look very promising.  In Figure 5-8, Figure 5-10 and 

Figure 5-12 it can be seen that the first resonance point of the calculated and measured 

voltage waves is at nearly at the same frequency.  The third and second resonance points 

for all three measured and calculated voltage waves also does seem to have a matching 

trend.  These resonance frequencies ,  and   are presented in Table 5-5.  Another 
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matter that is evident from the frequency analysis is that the amplitudes of the resonance 

frequencies of the measured values are lower than that of the measured voltage waves.  

This is due to the absence of damping in the system. 

Table 5-5: Resonance frequencies of model 

 
Measured 

kHz 
Calculated 

kHz 

fr1 259.9 249.8 

fr2 569.8 529.8 

fr3 939.0 789.7 
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Figure 5-7: Measured and calculated voltages at disk 62 using DEM 

 

Figure 5-8: Frequency content of voltages at disk 62 using DEM 
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Figure 5-9: Measured and calculated voltages at disk 42 using DEM 

 

Figure 5-10: Frequency content of voltages at disk 62 using DEM 
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Figure 5-11: Measured and calculated voltages at disk 20 using DEM 

 

Figure 5-12: Frequency content of voltages at disk 20 using DEM 
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5.3.2.3 LI response of state-space formulation solved with LSim 

The state-space formulation of the model was defined in Matlab® using the ‘ss’ function. The 

state-space model was solved using a linear differential solver function called ‘lsim’.  The 

measured voltage applied to the terminals of the test-unit was used as the input signal to the 

model.   

The time-domain representations of the calculated and respective measured voltage waves 

are presented in Figure 5-13, Figure 5-15 and Figure 5-17.  The time-domain voltage wave 

shapes correspond very well to the measured voltage waves.  This is due to the fact that the 

state-space formulated model includes damping.  This allows the calculated voltage wave to 

attenuate in an appropriate manner.  

Since damping does not affect the frequency response noticeably, the frequency plot of the 

voltages calculated using the state-space formulation should not differ significantly from that 

of the nodal formulation.  This can be seen in Figure 5-14, Figure 5-16 and Figure 5-18.  The 

state-space formulation with damping yields the exact same resonance points as that of the 

nodal formulation without damping as presented in Table 5-5.  It is also noticeable that the 

amplitude difference of the frequency components of the measured and calculated voltage 

wave forms is much less than that observed from the nodal formulated model.  This is also 

due to the presence of the damping parameters in the state-space formulated model. 
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Figure 5-13: Measured and calculated voltages at disk 64 using state-space formulation 

 

Figure 5-14: Frequency content of voltages at disk 64 using state-space formulation 
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Figure 5-15: Measured and calculated voltages at disk 42 using state-space formulation 

 

Figure 5-16: Frequency content of voltages at disk 64 using state-space formulation 
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Figure 5-17: Measured- and calculated voltages at disk 20 using state-space formulation 

 

Figure 5-18: Frequency content of voltages at disk 64 using state-space formulation 
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5.3.3 LIC excitation response 

5.3.3.1 Measured LIC system response 

The LIC response of the test-unit was measured using the same arrangement as presented 

in 5.2.  To obtain the desired wave shape, the standard LI was chopped on its tail at 6 µs.  

The measured voltages at disk 62, 42 and 20 is shown in Figure 5-19. 

 

Figure 5-19: Measured voltage along air-core reactor for LIC 

5.3.3.2 LIC response of nodal formulation solved with DEM 

The nodal formulation of the model was solved using DEM.  The measured LIC voltage 

across the terminals of the test-unit was used as the input signal to the model.  The time-

domain representation is presented in Figure 5-20, Figure 5-22 and Figure 5-24.  As seen 

previously with the LI response of the model, the time-domain representation of the 

measured and calculated values agrees poorly due to the absence of damping parameters 

in the nodal formulated model developed in this study. 

Apart from the difference in amplitude, the frequency-domain representation of the 

calculated values matches that of the measured voltage waves to a reasonable extent as 

seen in Figure 5-21, Figure 5-23 and Figure 5-25.  The resonance frequencies of the 

measured- and calculated voltage wave forms coincide at the values shown in Table 5-5. 
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Figure 5-20: Measured and calculated voltages at disk 62 for LIC excitation using DEM 

 

Figure 5-21: Frequency content of voltages at disk 62 using DEM for LIC excitation 
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Figure 5-22: Measured and calculated voltages at disk 42 for LIC excitation using DEM 

 

Figure 5-23: Frequency content voltages at disk 42 using DEM for LIC excitation 
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Figure 5-24: Measured and calculated voltages at disk 20 for LIC excitation using DEM 

 

Figure 5-25: Frequency content of voltages at disk 20 using DEM for LIC excitation 
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5.3.3.3 LIC response of SS formulation solved with LSim 

Using the state-space formulation, the model was solved for a LIC excitation wave using 

Matlab’s ‘lsim’ function.  The measured LIC voltage across the terminals of the test-unit was 

used as the input signal to the model.  The time-domain representation is presented in 

Figure 5-26, Figure 5-28 and Figure 5-30.  It is evident that the time-domain representation 

matches very well due to the damping elements in the state-space formulated model.   

The frequency-domain representation of the measured and calculated voltage waves are 

shown in Figure 5-27, Figure 5-29 and Figure 5-31.  Both amplitude and location of the 

resonance frequencies of the calculated response matches that of the measured values.  

These resonance frequencies are the same as those shown in Table 5-5. 
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Figure 5-26: Voltages at disk 62 using state-space formulation (LIC) 

 

Figure 5-27: Frequency content voltages at disk 62 using state-space formulation (LIC) 
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Figure 5-28: Voltages at disk 42 using state-space formulation (LIC) 

 
Figure 5-29: Frequency content voltages at disk 42 using state-space formulation (LIC) 
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Figure 5-30: Voltages at disk 20 using state-space formulation (LIC) 

 

Figure 5-31: Frequency content of voltages at disk 20 using state-space formulation (LIC) 
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5.3.4 Function generated wave excitation 

The response of the state-space formulated model was used to validate if the artificially 

created wave form which was generated using equation (2.3) is suitable for replicating the 

actual excitation wave.  The time-domain representations are shown in Figure 5-32, Figure 

5-35 and Figure 5-37.  The result is very similar to that of an actual LI excitation wave input. 

The frequency-domain representation shown in Figure 5-33, Figure 5-35 and Figure 5-37 

also yields similar results as that shown in 5.3.2.3. In this study, the calculated excitation 

wave seems to be an appropriate substitute for the actual excitation wave. 
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Figure 5-32: Voltages at disk 62 using state-space formulation (Generated LI) 

 

Figure 5-33: Frequency content of voltages at disk 62 (state-space formulation with generated LI) 
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Figure 5-34: Voltages at disk 42 using state-space formulation (Generated LI) 

 

Figure 5-35: Frequency content of voltages at disk 42 (state-space formulation with generated LI) 
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Figure 5-36: Voltages at disk 20 (state-space formulation with generated LI) 

 

Figure 5-37: Frequency content of voltages at disk 20 (state-space formulation with generated LI) 
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Chapter 6 Conclusions and recommendations 

6.1 Introduction 

This chapter discusses the conclusions that can be drawn from the results presented in the 

preceding chapters. These conclusions are derived with reference to the project and 

research objectives stated in 1.3.1.  Each objective is reviewed along with the relevant 

outcome on completion of this project.  Recommendations are made based upon the 

conclusions presented in the following sections.  This includes a discussion of possible 

improvements that can be made, as well as some matters that may require further research 

to improve model accuracy. 

6.2 Conclusions 

6.2.1 Overview 

From the point of view of the power transformer manufacturer, the insulation structure of the 

power transformer is designed to withstand the maximum overvoltage expected during 

standard factory acceptance tests.  In light of this, the only matter that the design engineer is 

interested in is the voltage profile along the winding for the duration of the applied excitation 

wave.  Of particular interest to the design engineer is the maximum voltage value and the 

trend in terms of the wave attenuation. 

Chapter 5 presents a case study where the modelling methods presented in this thesis were 

applied to a test-unit. The test-unit is a single disk-type winding which is commonly found in 

large power transformers.  No magnetic core is present due to the facts presented in section 

2.4.2.2.  The test-unit was modelled by using both a lossless model in differential equation 

form and a model in state-space form that includes the iron and copper losses.  A 

comparison between the models was done for two measured input signals namely LI and 

LIC. The results of the two models were compared to the measured voltages of the actual 

test-unit for the same input excitation wave.  A third comparison was done using a signal that 

was mathematically created to represent a LI wave. 

 A comparison in the frequency-domain of the output of both models indicated a good 

correlation with the measured signals for the first two resonance points which extend up to 

300 kHz. The magnitudes of the resonance frequencies calculated using the lossless model 

are not as accurate as that of the model containing losses but the locations of the 

frequencies matche well. From the comparisons done for LIC excitation, it would seem that 
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the lossless model does not perform well for frequencies above 300 kHz. However, the 

model that accounts for the losses accurately represents the resonance frequencies up to 

650 kHz with respect to both amplitude and location. 

The result that is of particular interest to the power transformer design engineer is the 

accuracy of the representation of the time-domain response.  When comparing the 

measured and calculated results presented in this thesis, it is evident that the lossless model 

does not fulfil this need. The model that includes the losses in the transformer succeeds in 

this. 

The results from the case study given in Chapter 5 indicate that the project objective has 

successfully been achieved.  The research objectives that led to the successful outcome of 

the project are those presented in section 1.3.2.  These objectives and their respective 

outcomes are discussed in the following section. 

6.2.2 Development of a modelling methodology 

The literature survey presented in Chapter 2 revealed a wide variety of modelling methods 

which can be used to achieve the objective of this project. The choice of an appropriate 

modelling method was not a trivial one, since various approaches seemed suitable for the 

application. 

The chosen method was to represent the winding with an equivalent electrical circuit to form 

a lumped parameter model as discussed in 2.5.2.1.  This method provided an intuitive way 

to represent the capacitive, inductive and dissipative behaviour of the transformer winding.  

The application of this methodology was also easy to implement in a digital environment. 

The frequency-domain response shows a decrease in accuracy as the frequency content of 

the excitation wave increases. This could be caused by the inherent error of a discretised 

model as mentioned in 2.5.2.2.  However, the deviation between measured and calculated 

results does not seem to be significant at the frequencies of interest.  It can therefore be 

assumed that the order of the model is appropriate for this application. 

6.2.3 Calculation methods for the model parameters 

The calculation of winding inductances and capacitances could be approached in multiple 

ways.  The use of FEM simulations as the primary method is not practical due to the time 

required for generating the geometry and setting up of boundary and material properties. 

The calculation time is also excessive especially for large geometries.  FEM simulations 

does however provide very accurate results and these were used as a benchmark in the 
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evaluation of alternative calculation methods.  To maintain short computation time, closed-

form equations were used for the calculation of the model parameters.  The validation of the 

inductance and capacitance calculation by means of closed-form equations was done by 

comparing the results with actual measured values. 

The inductance of the winding was calculated assuming an air-core in light of the matters 

discussed in section 3.3.1. The calculated self- and mutual-inductances were compared to 

results obtained from FEM.  The deviation between the results obtained using closed-form 

equations versus those found using FEM was very small.  The calculated self-inductance of 

the winding was compared to the measured inductance of the actual test-unit.  The deviation 

was negligible. 

The capacitances in and around the winding was also calculated using closed-form 

equations.  The calculated values were also compared with FEM results and the values 

measured during laboratory testing.  Values calculated using closed-form equations varied in 

accuracy when compared to those found using FEM. The deviations observed were much 

higher than that found in the inductance calculations. The measured ground capacitance of 

the winding was also a bit higher than the values calculated.  The severity of these 

deviations does not seem to be of concern when analysing the time-domain response of the 

model. 

6.2.4 Modelling of non-linear frequency dependant damping 

Copper and dielectric losses were considered in this project.  The copper losses caused by 

the reduction of the effective conductor area due to the skin-effect was calculated and 

included in series with the inductive element of each branch in the model.  The dielectric 

losses due to the leakage currents in the dielectric material were also included in the model. 

Since the model application will be limited to the frequency range of 10 - 500 kHz, an 

average frequency of 225 kHz was used to calculate all losses in the system.  

6.2.5 Identification, implementation and validation of solver algorithms 

In Chapter 4 two mathematical formulations of the equivalent electrical circuit model were 

explored.  The initial approach was to implement a nodal formulated model.  The advantage 

of this formulation is that its structure simplifies model expansion and the addition of non-

linear time dependant elements and sub-networks.  The model was solved by means of the 

difference equation method.  The challenge faced when using this formulation is that the 

addition of loss components in the inductive branches increases the complexity of the history 

terms.  In light of this, the model did not include system losses. 
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An alternative approach was to use a State-space formulation.  The structure of this 

formulation can easily include losses in the inductive branches.  The copper and dielectric 

dissipation was included in the model and an ODE solver was used to solve the system of 

differential equations. 

The solver algorithms were implemented in a MATLAB® environment.  Appendix C presents 

the code of the difference equation solver used to solve the nodal formulated model.  The 

state-space formulated model was solved using a built-in solver of MATLAB® namely lsim.  

In terms of execution time, lsim performed much better than the difference equation solver.  

A model representing the test-unit was solved using both solvers.  The lsim solver took 

approximately 30 s to execute while the execution of the difference equation solver required 

a runtime of two orders higher than that of the lsim solver. 

The investigation identified the state-space formulation in conjunction with the built-in lsim 

function of MATLAB® as the preferable solution methodology. This is due to the ease with 

which dissipative elements are included in the inductance branches and the fast runtime. 

6.3 Recommendations 

Though the project objective has been successfully accomplished, various matters have 

been identified that requires further research. Various opportunities exist that can be used to 

improve the accuracy of calculations. The application of the work done in this project can 

also be broadened with some augmentations.  The following sections presents the major 

aspects that can to be addressed in future work. 

6.3.1 Modelling effect of iron-core 

In this study the effects of the iron-core were not taken into account.  The reasoning behind 

this methodology is presented in 2.4.2.2.  However, since the test-unit did not contain an 

iron-core, the validity of this assumption still remains unaddressed and requires additional 

research.  The non-linear frequency dependency of the core’s magnetic properties and the 

isotropic nature of the material’s permeability are all constituents of the complex behaviour of 

the core.    

To determine the severity of the effects when considering the context defined in section 1.2, 

the test-unit must be fitted with a laminated iron-core.  A comparison should then be made 

between the calculated and measured inductance and voltage values.  An investigation of 

this nature will confirm or dismiss the assumption made in the inductance calculation 

methods which currently omits the effect of the presence of the iron-core.  It would also be 
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valuable to consider the effect of the iron-core on other model parameters such as the 

losses in the system.  Alternative inductance calculation methodologies such as those briefly 

discussed in section 2.4.2.3 could also be implemented to improve the model accuracy when 

an iron-core is present.  

6.3.2 Improved modelling of non-linear frequency dependant losses 

Only copper- and dielectric losses were considered in the modelling methods presented in 

this thesis.  Reasonable results were obtained in this way. It can, however, be reasoned 

from the concluding remarks in section 6.2.3 that losses do contribute to the model accuracy 

especially when analysing the model response to high frequency excitation – a fact also 

supported by various authors as presented in 2.4.4.  It may be possible to achieve a higher 

level of accuracy in the high frequency range by merely improving the calculation of the 

damping in the system. 

Another matter to consider is the fact that the losses in the system were calculated for a 

fixed frequency of 225 kHz. In actual fact, the frequency content of the voltage wave varies 

over time and position, and thus is not a constant for the duration of the transient.  Thus, for 

greater accuracy, the losses should be updated for each element after each time step. 

Since no core was present in the test-unit, omitting core losses is only logical.  However, if 

an iron-core is present in the test-unit, losses due to eddy currents on the core surface 

should also be considered during the model development.   

6.3.3 Extending model to multi-winding configurations 

The project objective in this study was limited to the modelling of a single power transformer 

disk-type winding.  This was the very first step in the development of a complete 

electromagnetic modelling methodology for power transformer with complex winding 

configurations and winding types.   

After the above mentioned recommendations have been addressed, another case study 

should be done on a complete power transformer assembly that includes primary and 

secondary windings as well as a laminated iron-core.  The effect of the magnetic coupling to 

other phases in a three phase transformer can also be investigated and implemented.  
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Appendix A Calculation of impulse function constants 

With reference to Figure 2-9, the constants in equation (2.3) can be determined in the 

following manner.  The derivative of equation (2.3)  results in the following equation: 

= + . (A.1)

The gradient at the peak value at time  is zero, such that (A.1) can be written as: 

0 = ( + ) . (A.2)

From equation (A.2)  can be calculated as: 

=
( )

( ) . (A.3)

For a per-unit voltage wave the equation (2.3) can be written as: 

1.0 = ( ) (A.4)

When the voltage drop to 50 % of its peak value (2.3) can be written as: 

0.5 = ( ) (A.5)

Using the Newtwon-Rapshon numerical differential solver, the constants can be calculated 

by first defining the Jacobian matrix for the following functions: 

=
( )

( ) (A.6)

= 1.0 ( ) (A.7)

= 0.5 ( ) (A.8)

The entries of the Jacobian matrix are then expressed in the following relations: 

=
( ) ( )

( ) (A.9)
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=
1

( )
( )

( ) (A.10)

= 0 (A.11)

= (A.12)

= (A.13)

= (A.14)

= (A.15)

= (A.16)

= (A.17)

The system of differential equations can then be written as: 

= (A.18)

 

From Figure 2-9 it is seen by inspection that the front time can be expressed as: 

= ( ) . (A.19)

There also exists a relationship between  and  such that: 

= 0.6 / . (A.20)
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Appendix B Resistivity of materials 
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Appendix C Dommel’s solution method in Matlab 

function [vn,t] = solveDommel(G,Qn,Cn,E,t) 
%SOLVELDOMMEL Time-domain solver for system 
  
%    Vn = solveDommel(G,Qn,Cn,E,t)solves the voltages for a nodal 

formulation model representation of a RLC network. The solver 
algorithm does not take into account dielectric and copper losses.  

  
%   INPUTS 
%   G:    Admittance matrix. 
%   Qn:   Inverse nodal inductance matrix. 
%   Cn:   Nodal capacitance matrix. 
%   E:    Voltage excitation row vector. 
%   t:    Time row vector. 
  
%% Prelim data  
% First add ground nodes to nodal matrices 
cGnds = sum(Cn); 
qGnds = zeros(size(cGnds)); 
gGnds = sum(G); 
  
Cn(end+1,end+1) = sum(cGnds);  
Qn(end+1,end+1) = sum(qGnds); 
G (end+1,end+1) = sum(gGnds); 
Cn(1:end-1,end) = -cGnds'; 
Cn(end,1:end-1) = -cGnds; 
Qn(1:end-1,end) = -qGnds'; 
Qn(end,1:end-1) = -qGnds; 
G(1:end-1,end) = -gGnds'; 
G(end,1:end-1) = -gGnds; 
  
dt = max(t)/length(t); 
points = length(E); 
nodes = length(Cn); 
 
% Find inductive and capacitive elements  
[Ci,Cj,CVal]= find(Cn); 
[Qi,Qj,QVal]= find(Qn); 
[Gi,Gj,GVal]= find(G); 
GL  = (dt/2)*QVal;     % G's of L 
GC  = (2/dt)*CVal;     % G's of C 
  
cInd = sub2ind(size(Cn),Ci,Cj); 
qInd = sub2ind(size(Qn),Qi,Qj); 
gInd = sub2ind(size(G),Gi,Gj); 
  
% Build G 
Gtmp = zeros(size(Cn)); 
Gtmp(cInd)  = Gtmp(cInd) + GC; 
Gtmp(qInd)  = Gtmp(qInd) + GL; 
Gtmp(gInd)  = Gtmp(gInd) + GVal; 
  
% Split G into sub groups respective of known and unknown voltages; 
Gaa = Gtmp(1:end-2,1:end-2); 
Gbb = Gtmp(end-1:end,end-1:end); 
Gab = Gtmp(1:end-2,end-1:end); 
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% Current and voltage vectors at t = 0; 
vb      = E(1);                  % All known voltages 
va      = zeros(length(Gaa),1);  % All unknown nodal voltages 
IHistCv  = zeros(numel(cInd),1); % History currents through C's - Vector  
IHistLv  = zeros(numel(qInd),1); % History currents through L's - Vector 
IHistCm  = zeros(size(CnMod)); % History currents through C's - Matrix 
IHistLm  = zeros(size(QnMod)); % History currents through L's - Matrix  
IHa     = zeros(length(Gaa),1);  % History currents in nodes where 
voltages are known 
ia      = zeros(length(Gaa),1);  % Injected currents at nodes where 
voltages are unknown 
 
%% Solving nodal voltages 
[GaaL,GaaU]=lu(Gaa);   
for k = 1:points 
    % Solving [Gaa][Va(t)] = [ia(t)]-[Iha(t-dt)]-[Gab][Vb(t)]; 
    vb = [E(k);0];   % Known nodal voltages. 
    Itota = ia - IHa - Gab*vb; 
    va = GaaU\(GaaL\Itota); 
    vTemp = [va;vb]; 
    vn(:,k)=vTemp; 
    % History current through each element: 
    IHistCv = -2*(vTemp(Ci)-vTemp(Cj)).*GC - IHistCv; % History current 
source values for C's from i to j 
    IHistLv =  2*(vTemp(Qi)-vTemp(Qj)).*GL + IHistLv; % History current 
source values for L's from m to n 
    % Rebuild history current matrixes 
    IHistCm(cInd)=IHistCv; 
    IHistLm(qInd)=IHistLv; 
    IH = (sum(IHistCm) + sum(IHistLm))'; 
    IHa = IH(1:end-2,1); 
end 
end 
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