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Abstract 
Hydrocarbons provide excellent feed stocks for bioconversion processes to produce 

value added products using various micro-organisms. However, hydrocarbon-based 

aerobic bioprocesses may exhibit transport problems where the bioconversion is 

limited by oxygen supply rather than reaction kinetics. Consequently, the overall 

volumetric oxygen transfer coefficient (KLa) becomes critical in designing, operating 

and scaling up of these processes. In view of KLa importance in hydrocarbon-based 

processes, this work evaluated KLa measurement methodologies as well as 

quantification of KLa behavior in aerated agitated alkane-solid-aqueous dispersions. 

A widely used KLa measurement methodology, the gassing out procedure (GOP) was 

improved. This improvement was done to account for the dissolved oxygen (DO) 

transfer resistances associated with probe. These resistances result in a lag in DO 

response during KLa measurement. The DO probe response lag time, was 

incorporated into the GOP resulting in the GOP (lag) methodology. The GOP (lag) 

compared well with the pressure step procedure (PSP), as documented in literature, 

which also incorporated the probe response lag time.  

Using the GOP (lag), KLa was quantified in alkane-solid-aqueous dispersions, using 

either inert compounds (corn flour and CaCO3) or inactive yeast cells as solids to 

represent the micro-organisms in a hydrocarbon bioprocess. Influences of agitation, 

alkane concentration, solids loading and solids particle sizes and their interactions on 

KLa behavior in these systems were quantified. 

In the application of an accurate KLa measurement methodology, the DO probe 

response lag time was investigated. Factors affecting the lag, which included process 

conditions such as agitation (600-1200rpm), alkane concentration (2.5-20% (v/v), 

alkane chain length (n-C10-13 and n-C14-20), inert solids loading (1-10g/L) and solids 

particle sizes (3-14µm) as well as probe characteristics such as membrane age and 

electrolyte age (5 day usage), were investigated. Kp, the oxygen transfer coefficient of 

the probe, was determined experimentally as the inverse of the time taken for the DO 

to reach 63.2% of saturation after a step change in DO concentration. Kp dependence 

on these factors was defined using 22 factorial design experiments. Kp decreased on 

increased membrane age with an effect double that of Kp decrease due to electrolyte 

age. Additionally, increased alkane concentration decreased Kp with an effect 7 times 
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higher compared to that of Kp decrease due to increased alkane chain length. This 

was in accordance to Pareto charts quantification. 

KLa was then calculated, using the GOP (lag), according to equation [1] which 

incorporates the influence of Kp. Equation 1 is derived from the simultaneous solution 

of the models which describe the response of the system and of the probe to a step 

change in DO.  
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The KLa values documented in literature from the PSP and KLa calculated by the 

GOP (lag) showed only a 1.6% difference. However KLa values calculated by the 

GOP (lag) were more accurate than KLa calculated by the GOP, with up to >40% error 

observed in the latter according to t-tests analyses. These results demonstrated that 

incorporating Kp markedly improved KLa accuracy. Consequently, the GOP (lag) was 

chosen as the preferred KLa measurement methodology. 

KLa was determined in n-C14-20-inert solid-aqueous dispersions. Experiments were 

conducted in a stirred tank reactor with a 5L working volume at constant aeration of 

0.8vvm, 22ºC and 101.3kPa. KLa behavior across a range of agitations (600-

1200rpm), alkane concentrations (2.5-20% (v/v)), inert solids loadings (1-10g/L) and 

solids particle sizes (3-14µm) was defined using a 24 factorial design experiment. In 

these dispersions, KLa increased significantly on increased agitation with an effect 5 

times higher compared to that of KLa increase due to interaction of increased alkane 

concentration and inert solids loading. Additionally, KLa decreased significantly on 

increased alkane concentration with an effect 4 times higher compared to both that of 

increased solids particle sizes and the interaction of increased agitation and solids 

particle size. 

In n-C14-20-yeast-aqueous dispersions, KLa was determined under narrowed process 

conditions better representing typical bioprocess conditions. KLa behavior across a 

range of agitations (600-900rpm), alkane concentrations (2.5-11.25% (v/v)) and yeast 

loadings (1-5.5g/L) using a 5µm-yeast cell was defined using a 23 factorial design 

experiment. In these dispersions, KLa increased significantly on increased agitation. 

Additionally, KLa decreased significantly on increased yeast loading with an effect 1.2 

times higher compared to that of KLa decrease due to interaction of increased alkane 

concentration and yeast loading. 
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In this study, the importance of Kp for accurate KLa measurement in alkane based 

systems has been quantified and an accurate and less complex methodology for its 

measurement applied. Further, KLa behavior in aerated alkane-solid-aqueous 

dispersions was quantified, demonstrating KLa enhancement on increased agitation 

and KLa depression on increased alkane concentration, solids loading and solids 

particle sizes. 
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 Abstract (Afrikaans) 
Koolwaterstowwe dien as uitstekende voervoorraad vir ´n verskeidenheid van mikro-

organismes wat aangewend word in biologiese omsettingsprosesse ter vervaardiging 

van waardetoevoegende produkte. Hierdie biologiese omsettingsprosesse word egter 

vertraag weens die gebrek aan suurstoftoevoer onder aerobiese toestande. Die 

tempo van omsetting word dus beheer deur die volumetriese 

suurstofoordragkoeffisiënt (KLa) eerder as die toepaslike reaksiekinetika. Die bepaling 

van ´n akkurate KLa word dus krities tydens die ontwerp en opskalering van hierdie 

prosesse. Met dit in gedagte het hierdie studie die huidige metodes om KLa te bepaal 

geëvalueer en die gedrag van KLa in goed vermengde en belugde waterige 

alkaanmengsels met inerte vastestowwe, soos gisselle, in suspensie ondersoek. 

´n Deesdae populêre metode om KLa te bepaal, die sogenaamde 

gasvrylatingsprosedure (GOP) is in hierdie studie verbeter.  Die verbetering berus op 

die ontwikkeling van ´n prosedure om die suurstofoordragsweerstand van die pobe 

wat die hoeveelheid opgeloste suurstof (DO) meet, in berekening te bring.  Hierdie 

weerstand veroorsaak ´n vertragin in the responstyd van die probe.  Die verbeterde 

metode, GOP (lag), vergelyk goed met die gepubliseerde resultate van die 

drukstaptegniek (PSP) wat ook die responstyd in ag neem. 

GOP (lag) is ingespan om KLa te gekwantifiseer vir waterige alkaan-vastestof 

suspensies.  Inerte componente soos mieliemeel, kalsiumkarbonaat en onaktiewe 

gisselle het gedien as die vastestof in suspensie verteenwoordigend van die 

mikroörganismes in ´n koolwaterstof bio-proses.  Die invloed van vermengingstempo, 

alkaan konsentrasie, vastestof konsentrasie en partikelgrootte asook die interaksie 

van al die bogenoemde op KLa is kwatitatief bepaal in hierdie studie. 

Faktore wat die responstyd van die DO probe beïnvloed is ondersoek.  Hierdie faktore 

is onder meer vermengingstempo (600-1200opm), alkaankonsentrasie (2.5-20% 

(v/v)), alkaankettinglengte (n-C10-13 en n-C14-20), vastestofkonsentrasie (1-10g/L) en 

partikelgrootte (3-14 µm).  Faktore wat die eienskappe van die probe beïnvoed, 

naamlik membraan-en elektrolietouderdom (5 dae verbruik), is ook ondersoek.  Kp, 

die suurstofoordragskoeffisiënt, is bepaal deur ´n inkrementele verandering in die 

suurstofkonsentrasie van die mengsel te maak en die tyd vir 63.2% versadiging van 

die probelesing te noteer.  Die genoteerde tyd is die response tyd van die probe en 

Kp, die inverse van hierdie tyd. Die afhanklikheid van Kp op die bogenoemde faktore is 
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ondersoek  in ´n 22 faktorieël ontwerpte reeks eksperimente. Kp toon ´n afname met 

´n toename in membraanouderdom.  Hierdie afname is dubbel in grootte as dit 

vergelyk word met die afname relatief tot die toename in elektrolietouderdom.  Verder 

toon Kp ´n afname met ´n toename in alkaankonsentrasie.  Hierdie afname is 7 keer 

groter relatief tot die afname gesien met die toename in alkaan kettinglengte.  Hierdie 

is in goeie ooreenstemming met Pareto kaarte as kwantifiseringsmetode. 

KLa is bereken met die inagname van Kp volgens vergelyking [1]: 
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Vergelyking [1] is afgelei vanaf die gelyktydige oplossing van die bestaande modelle 

wat die responstyd van die pobe vir ´n stapverandering in DO bereken. 

Die KLa waardes van die PSP metode uit literatuur verskil in die orde van 1.6% van 

dié bereken deur vergelyking [2]. Hierdie verskil is weglaatbaar. Die KLa waardes 

verkry uit die GOP metode wat nie Kp in berekening bring nie, verskil met meer as 

40% van die huidige, verbeterde metode volgens die statistiese t-test analiese. Dit 

bewys dat die inagname van Kp ´n merkwaardige verbetering in die akuraatheid van 

KLa teweeg bring. GOP (lag) kry dus voorkeur vir die berekening van KLa verder aan 

in hierdie studie. 

KLa is bereken vir n-C14-20-water mengsels met inerte vastestofsuspensies. Die 

eksperimente is uitgevoer in ´n 5L geroerde reaktor met ´n konstante belugting van 

0.8vvm (volume lug per volume supensie per minuut), 22ºC en 101.3kPa. Die gedrag 

van KLa met betrekking tot vermengingstempo (600-1200opm), alkaankonsentrasie 

(2.5-20% (v/v)), vastestofkonsentrasie (1-10g/L) en partikelgrootte (3-14µm) is 

ondersoek in ´n 24 faktorieël ontwerpte reeks eksperimente.  Verder is die invloed van 

vloeistofviskositeit en oppervlakspanning op KLa ondersoek in ´n 23 faktorieël 

ontwerpte reeks eksperimente. KLa het ´n beduidende toename getoon met ´n 

toename in vermengingstempo. Hierdie toename was 5 keer groter as die toename 

relatief tot die interaksie van alkaan-en vastestofkonsentrasie. KLa het ook beduidend 

afgeneem met ´n toename in alkaankonsentrasie.  Die toename was 4 keer groter as 

die toename relatief tot die toename in partikelgrootte en die interaksie van 

vermengingstempo en partikelgrootte. 

In n-C14-20-water mengsels met gisselsuspensies is KLa bepaal onder kondisies 

verteenwoordigend van tipiesie biologiese omsettingsprosesse. Die gedrag van KLa 
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met betrekking tot vermengingstempo (600-900opm), alkaankonsentrasie 

(2.5-11.25% (v/v)) en giskonsentrasie (1-5.5g/L) met ´n partikelgroote van 5µm is 

ondersoek in ´n 23 faktorieël ontwerpte reeks eksperimente. Hierdie eksperimente het 

´n beduidende toename in KLa met ´n toename in vermengingstempo getoon sowel 

as ´n beduidende afname met ´n toename in giskonsentrasie.  Hierdie afname is in 

die orde van 1.2 keer groter in vergelyking met die interaksie van alkeen- en 

giskonsentrasie. 

Hierdie studie bring die kritieke rol wat Kp speel in die akkurate bepaling van KLa in 

waterige alkaansisteme met inerte vastestofsuspensies na vore. Dit stel verder ´n 

metodiek voor vir die akurate meting van en kwantifisering van beide Kp en KLa onder 

aerobiese toestande met betrekking tot vermengingstempo, alkaankonsentrasie, 

vastestofkonsentrasie en partikelgrootte. 
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1 INTRODUCTION 
Hydrocarbon processes for the production of synthetic fuels are becoming 

increasingly popular globally. However these processes result in the formation of 

large amounts of n-paraffin or alkane by-products with relatively low fuel value. These 

hydrocarbons have been identified as potential feed stocks in aerobic bioprocesses 

where bacteria and fungi can convert the alkane under moderate temperatures and 

pressures, unlike analogous chemical processes (Shennan and Levi, 1974; Singer 

and Finnerty, 1984). This means that a variety of products can be produced at low 

operating costs in these hydrocarbons based bioprocesses. High value marketable 

products which include amino acids, antibiotics, vitamins, nucleic acids, lipids, 

carbohydrates and organic acids have been reported to be produced from 

hydrocarbon based bioprocesses (Fukui and Tanaka, 1980). Recently produced 

products from these hydrocarbon based bioprocesses include biosurfactants (Kosaric 

1996; Mukherjee et al., 2006) and dioic acids (Chan and Kuo, 1997). 

The oxygen transfer rate (OTR) has been identified as a key process parameter in 

aerobic hydrocarbon based bioprocesses (equation 1.1) (Mimura et al. 1973; Hassan 

and Robinson, 1977a; Clarke et al., 2006; Correia and Clarke, 2009). The OTR is 

dependent on the oxygen concentration driving force (C*-C) and the overall volumetric 

oxygen transfer coefficient (KLa) during the bioprocess (equation 1.1). This has 

resulted in KLa being a very important parameter in optimum operation, design and 

scale up of hydrocarbon based bioprocesses (Mimura et al., 1973; Hassan and 

Robinson, 1977a; Bi et al., 2001; Nielsen et al., 2003; Clarke et al., 2006; Correia and 

Clarke, 2009). 

( )*L

dC
OTR K a C C

dt
= = −  [1.1] 

Although hydrocarbons significantly increase the oxygen solubility in alkane-aqueous 

dispersions, resulting in enhanced oxygen transfer, the viscous nature of the alkane 

plays an important part on KLa behavior due to viscosity effects on oxygen diffusivity 

(Clarke and Correia, 2008). KLa behavior has thus been reported to be dependent on 

the pressures imposed by the alterations in fluid properties upon hydrocarbon addition 

(Clarke and Correia, 2008). Moreover, difficulty in supplying adequate oxygen in 

alkane based bioprocesses has been suggested due to the absence of the oxygen 

molecule in the molecular structure of the substrate. Therefore, the oxygen demand 

must be met solely through oxygen transfer to the media. Oxygen transfer, therefore, 
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becomes more critical in alkane-based bioprocesses in comparison with carbohydrate 

based media where the hydroxyl functional group (–OH) in the carbohydrate structure 

supplies about 2/3 of the oxygen requirement (Shennan and Levi, 1974; Moo-Yang 

1975). Previous studies by Mimura et al. (1971) showed a 250% higher oxygen 

requirement for Candida petrophilum grown on n-hexane in comparison with growth 

on glucose. Another 250% higher oxygen requirement was observed by Preusting et 

al. (1993) to grow Pseudomonas oleovaraus on octane compared to Escherichia coli 

grown on glucose at the same growth rate. 

From these studies it is evident that sufficient oxygen transfer rate in alkane based 

bioprocesses is very critical. In fact, the limiting regime in alkane based bioprocesses 

is therefore likely to change from being kinetic control to transport control (Shuler and 

Kargi, 2002). 

Clarke and Correia (2008) reviewed KLa behavior in hydrocarbon-aqueous 

dispersions and showed that there are three types of KLa behavior depending on the 

reactor type, aqueous phase, hydrocarbon concentration and hydrocarbon chain 

length. In type 1, KLa increased with increase in hydrocarbon concentration to a 

maximum value then decreased upon further hydrocarbon addition, in type 2, KLa 

increased with increase in hydrocarbon concentration and lastly in type 3, KLa was 

constant or decreased upon hydrocarbon addition. Correia et al. (2010) further 

showed that turbulence and fluid properties were important parameters in quantifying 

KLa in alkane-aqueous dispersions due to their impact on the volumetric oxygen 

transfer coefficient (KL), Sauter mean diameter of the gas bubble (D32) and the gas 

hold up ( Gε ),the last two which will effectively influence the bubbles’ interfacial area 

per unit volume (a). 

Recent studies by Correia and Clarke (2009) also drew attention to finding an 

accurate KLa measurement method in alkane based bioprocesses. KLa was 

measured using two different physical methods: the pressure step procedure (PSP) 

and the gassing out procedure (GOP). The GOP methodology measured KLa 

according to a response to a step change in the amount of oxygen supplied in the 

sparge gas to the system. In this method, KLa was calculated from linearization of 

equation 1.1 which neglected the influence of the resistances associated with the 

dissolved oxygen probe. The PSP methodology measured KLa by introducing a step 

change in the partial pressure of the sparge gas and calculated KLa from mass 

balances which incorporated the effect of a probe response lag (Correia and Clarke, 
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2009). This study by Correia and Clarke (2009) confirmed that the PSP was superior 

to the GOP especially at 1200rpm and higher alkane concentrations. Correia and 

Clarke (2009) attributed this predominantly to the effects of the response lag time of 

the probe used to measure dissolved oxygen (DO). However, the PSP was 

considerably more complex, both practically and experimentally, than the GOP. 

From the work that has been done on alkane-aqueous dispersions it is evident there 

is need to first find an accurate and less complex KLa measurement method which will 

give comparable results to the PSP but is less complex to use. Furthermore, since 

bioprocesses contain solids in the form of microorganisms, there is need to quantify 

the influence of solids loading and solids particle sizes on KLa behavior in alkane-

aqueous dispersions. To date, KLa trends have only been reported in cell free alkane-

aqueous dispersions (Correia et al., 2010) there is also need to understand the 

interactions of these solid particles with agitation rate and alkane concentration. 

Evaluation of an accurate and less complex KLa measurement with critical 

assessment of the DO probe response lag time and thereafter quantification of KLa 

behavior in aerated agitated alkane-solid-aqueous dispersions will form the basis of 

this study. Alkanes cuts of C10-13 and C14-20 used in this study were obtained from 

Sasol SA. 
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2 LITERATURE REVIEW 

2.1 Oxygen transfer from gas bubble to cell  

Oxygen transfer occurs when there is non-uniformity in DO concentration in a fluid 

resulting in a concentration gradient. The concentration gradient causes transport of 

DO from a region of high concentration to a region of low concentration. Due to this 

non-uniformity, DO concentration is therefore high at the oxygen bubble surface 

compared to the rest of the fluid. This results in oxygen transfer from the gas bubble 

to the fluid then ultimately to the site of oxidative phosphorylation in the cells (Doran, 

1995). 

There are a possible 8 steps during DO transfer from a rising gas bubble into a fluid 

containing cells under turbulent conditions (Bailey and Ollis, 1986; Doran, 1995; 

Nielsen et al., 2002) (Figure 2.1). DO therefore pass through a number of transport 

resistances before it reaches the cell where the biochemical reaction can take place 

(Figure 2.1).  

 

Figure 2.1  Steps for transfer of oxygen from gas bubble to cell (Redrawn from 
  Doran, 1995) 

The magnitude of DO resistance to transfer is dependent on temperature, fluid 

composition, agitation intensity, cell-clump size, interfacial phenomena and gas 

bubble hydrodynamics (Bailey and Ollis, 1986) (Table 2.1). These steps for DO 

transfer (Figure 2.1) are individually described in Table 2.1. Resistances due to the 

gas boundary layer on the inside of the oxygen bubble are negligible because of 

oxygen’s high diffusivity. Bulk resistance is also assume negligible because of the 

relatively high turbulence. If individual cells are dispersed in the fluid rather than in 
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clumps (as is the case here), the resistance due to diffusion through the cell clump 

(Step 7) becomes negligible (Doran, 1995). 

The diffusion through the liquid-film surrounding the gas bubble (Step 3), which takes 

place via molecular diffusion, is therefore assumed to dominate the major resistance 

in gas-liquid oxygen transfer (Doran, 1995).  

Table 2.1: Steps occurring during oxygen transfer from oxygen bubble to cell (Doran, 
 1995) 
Step Oxygen transfer Contribution to oxygen 

transfer resistance 
1 Transport through interior of gas 

bubble. 
Negligible 

2 Movement through gas-liquid 
interface 

Negligible 

3 Diffusion through the relatively 
stagnant liquid film surrounding 
the gas bubble to the bulk liquid 

Major resistance 

4 Transfer through bulk liquid Negligible only in turbulent 
and less viscous media 

5 Transfer through the relatively 
stagnant liquid film surrounding 
the cells 

Negligible only if the cells are 
much smaller than the oxygen 
bubbles 

6 Movement through liquid-cell 
interface 

Negligible 

7 Diffusion through cell intra-
particle resistance 

Magnitude of resistance 
related to the cell clump size 

8 Diffusion through intracellular 
interface 

Negligible due to small 
distances involved 

2.1.1 Development of the first order model describing oxygen 
transfer 

Since the resistance to oxygen transfer is defined by molecular diffusion through the 

stagnant liquid film surrounding the gas bubble to the bulk liquid, flux of DO molecules 

during oxygen transfer is described by Fick’s law which states that the oxygen flux is 

proportional to the oxygen concentration gradient (equation 2.1) (Doran, 1995). 

2

2 2

O
O O

N dC
J D

a dx
= − = −  [2.1] 

Where JO2 is the oxygen flux (mol.m-2.s-1), NO2 is the rate of oxygen transfer in the 

solution (mol.m-3.s-1), DO2 is the oxygen diffusion coefficient (m2.s-1), a is the gas-liquid 

interfacial area per unit volume (m2.m-3), x is the distance over which the 

concentration gradient exists (m) and C is the oxygen concentration (mol.m-3). 
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Fick’s law is based on DO transfer through molecular diffusion due to a concentration 

gradient, direction of oxygen transfer from a region of high concentration to low 

concentration and DO transfer across an area which is perpendicular to the direction 

of DO diffusion (equation 2.2) (Doran, 1995). 

22
OO

dC
N D a

dx
= −  [2.2] 

Oxygen transfer between the gas and liquid phases is therefore best modeled by the 

two film theory (Lewis, 1916; Whitman, 1923). This theory suggests that a stagnant 

boundary forms at both sides of the interfaces where there is contact between the 

liquid and the gaseous phases (Doran, 1995) (Figure 2.2). Oxygen transfer will then 

involve transport of oxygen molecules from the gas bulk phase to the interface then to 

the liquid bulk phase. The resistance to oxygen transfer at the boundary layer is 

assumed negligible at moderate oxygen transfer rate and when there is no 

accumulation of surfactants at the interface (Doran, 1995). Thus the gas-liquid phases 

will be in equilibrium at the contact plane. According to the two film theory, oxygen 

transfer rate increases with decrease of the phase boundary layer between the two 

phases i.e. at higher turbulence. Fick’s law can be modified for the oxygen transfer 

between the gas phase boundary layer (equation 2.3) and liquid phase boundary 

layer (equation 2.4) if it is assumed that the rate of DO transfer is directly proportional 

to the concentration gradient and the area available for transport. 

( )
2O G G G GiN k a C C= −  [2.3] 

( )
2O L L L i LN k a C C= −  [2.4] 

Where kG and kL are the volumetric oxygen transfer coefficient in gas phase and liquid 

phase respectively (m.s-1), CGi and CLi are gas and liquid interfacial oxygen 

concentrations (mol.m-3) and CG and CL are oxygen concentration in bulk gas and 

liquid phase (mol.m-3) respectively. 
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Figure 2.2  Concentration gradients for gas-liquid oxygen transfer associated with 
 the two film theory (Redrawn from Doran, 1995) 

If oxygen transfer occurs at steady state, there will be no DO accumulation at the 

interface therefore the rate of oxygen transfer through the gas phase will equal that 

through the liquid phase hence 
2 2O G O LN N= . Therefore the OTR will be referred as 

2ON  

only. 

The interfacial terms (CGi and CLi) will be eliminated from the gas phase boundary 

layer equation 2.3 and liquid phase boundary layer equation 2.4 since they are difficult 

to measure. Elimination of the interfacial terms are described in a detailed derivation 

in Appendix 1. The OTR in gas-liquid systems will then be represented by equation 

2.5 for the liquid phase resistance and equation 2.6 for the gas phase resistance. CG* 

and CL* represent the oxygen equilibrium concentration at saturation (mol.m-3). The 

derivation of these equations is provided in Appendix 1. 

( )
2

*G G GO
N K a C C= −  [2.5] 

( )
2

*O L L LN K a C C= −  [2.6] 

Since the liquid phase DO transfer resistance will dominate due to oxygen poor 

solubility, the DO transfer rate in the fluid is therefore defined by equation 2.7. 

( )
2

*O L

dC
N OTR K a C C

dt
= = = −  [2.7] 

Phase boundary

 CG

      CGi

Liquid phase       Gas phase

     CLi

    CL

Liquid film resistance Gas film resistance
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This rate of oxygen transfer (equation 2.7), is a first order response model that has 

been widely used for KLa measurement. The first order response model has been 

used for KLa measurement according to the GOP. Specifically, it has been used in 

hydrocarbon-aqueous dispersions by Mimura et al. (1973); Hassan and Robinson, 

(1977a); Clarke et al. (2006) and Correia and Clarke (2009). A detailed derivation of 

the first order response model has been provided in Appendix A.1. 

2.1.2 Development of the second order model describing oxygen 
transfer 

During KLa measurement a DO probe is used to measure the rate of change of DO 

over time in the fluid. The characteristics of the DO probe are provided in Appendix 

A4.1. This probe has been reported to have a first order response (equation 2.8). This 

was under the assumption that the membrane is firmly attached to the cathode and 

that there are no contaminants on the membrane surface (Aiba and Huang, 1969; 

Godbole et al., 1984). This probe response is associated with the resistance to 

oxygen transfer inside the probe will in turn affect the actual amount of DO measured 

in the fluid at a particular time. This then results in a lag in the DO measurement 

( )*p
p p p

dC
K C C

dt
= −

 [2.8] 

where Kp is the oxygen transfer coefficient of the probe (s-1), Cp is the DO 

concentration indicated by the probe (mol.m-3) and Cp
* is the DO concentration 

indicated by the probe at saturation (mol.m-3)  

Nielsen et al. (2003) confirmed that the change in DO concentration indicated by the 

DO probe, dCp/dt, cannot be used to represent the change in actual DO 

concentration, dC/dt, according to equation 1.1, due to Kp effects. Instead, dCp/dt 

represents the concentration driving force between the DO in the solution and the DO 

indicated by the probe (equation 2.9).
 

( )p
p p

dC
K C C

dt
= −

 [2.9]
 

Simultaneous solution of equations 1.1 and 2.9 yields the second order response 

model given by equation 2.10 (Nielsen et al., 2003). Detailed derivations are provided 

in Appendices A.2 and A.3 according to different procedures. This second order 

response model forms the basis for the modified gassing out procedure that has been 

widely used for KLa measurement in aqueous systems. 
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1
1

*
pL

p

K tp K at
L

p p La

C
K e K ae

C K K
−− = − − −

   [2.10]
 

2.2 Measurement methods for the overall volumetric 
oxygen transfer coefficient 

KLa has been widely measured experimentally by physical methods in bioprocesses 

(Mimura et al., 1973; Hassan and Robinson, 1977a; Clarke et al., 2006; Correia and 

Clarke, 2009). These physical methods include the gassing out procedure (GOP) and 

the pressure step procedure (PSP) (Garcia-Ochoa and Gomez, 2009). Physical 

methods have been reported to be the most appropriate to measure KLa in 

bioprocesses since there is no chemical usage which can affect physico-chemical 

properties of fluid which result in erroneous KLa values (Garcia-Ochoa and Gomez, 

2009). Physical methods involve the dynamic response of the DO probe in the fluid 

under turbulent conditions to a step change in the oxygen in the inlet gas (Garcia-

Ochoa and Gomez, 2009). 

2.2.1 Measurement using the gassing out procedure and the first 
order response model  

The gassing out procedure without incorporation of the DO probe response lag time 

(GOP (no lag)) is the most widely used method for determining KLa in bioprocesses 

and was first developed by Bandyopadhyay et al. (1967). This is also known as the 

dynamic method. This method uses the first order response model for KLa 

measurement. Mimura et al. (1973) and Hassan and Robinson (1977a) were the first 

to use the GOP (no lag) for KLa measurement in hydrocarbon-aqueous dispersions 

containing n-dodecane and n-hexadecane. Recently this method was used for KLa 

measurement in n-C12-13-aqueous dispersions by Clarke et al. (2006) and in n-C10-13-

aqueous dispersions by Correia and Clarke (2009). The DO change over time in this 

method is measured when a step change is created when the fluid is de-aerated with 

nitrogen then sparged with air (Garcia-Ochoa and Gomez, 2009). The air sparging 

phase known as oxygen absorption has been widely used for KLa measurement. KLa 

was obtained upon linearlising the OTR first order response model (equation 1.1); 

assuming zero DO probe response lag time. 

Although the GOP (no lag) has been extensively used for KLa measurement in 

bioprocesses, its accuracy has been reported to be questionable by Correia and 

Clarke (2009) since the DO probe response lag time is not accounted for. 
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2.2.2 Measurement using the pressure step procedure  
The pressure step procedure (PSP) was first developed by Linek et al. (1989) and has 

been used for KLa measurement in aqueous systems only until recently. Correia and 

Clarke (2009) were the first to use this method for KLa measurement in a hydrocarbon 

based system. This method is based on measuring the change in DO concentration 

over time by introducing a step change in the bioreactor pressure by either decreasing 

or increasing the pressure by 20% of the initial value (Linek et al., 1993; Linek et al., 

1994; Correia and Clarke, 2009 ). A range of response profiles are then generated 

according to the pressure changes (Figure 2.3). KLa was then obtained when the 

calculated response fits the experimental profile using mass balance equations which 

incorporate different transport rates for nitrogen and oxygen from air as they are 

absorbed in the liquid across the gas-liquid interface (Figure 2.3) (Linek et al., 1989; 

Linek et al., 1993; Linek et al,. 1994; Correia and Clarke, 2009). The DO profile which 

equals the response profile used for KLa determination is adjusted to incorporate the 

dynamics of the DO probe response lag time according to the model of Linek et al. 

(1984). 

 

Figure 2.3  KLa measurement by the PSP using imposed pressure change to yield 
 DO response data (Linek et al., 1989) 

Correia and Clarke (2009) reported that the PSP gave accurate KLa values in 

hydrocarbon-aqueous dispersions mainly because it addressed the issue of the DO 

probe response lag time in its methodology. Comparison of KLa values from both the 

GOP (no lag) and the PSP in 2.5-20% (v/v) n-C10-13-aqueous dispersions for an 

agitation range of 600rpm to 1200rpm confirmed this accuracy. They indicated that 
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the PSP became increasingly superior over the GOP (no lag) as agitation rate and 

alkane concentration increased, KLa values from the GOP (no lag) became more 

dampened at higher agitations and alkane concentrations with deviations of up to 

49% at 1200rpm and 5% (v/v) (Figure 2.4). This deviation indicated that KLa 

inaccuracies were more pronounced using the GOP (no lag) in hydrocarbon based 

systems than aqueous systems possibly due to the viscous nature of the alkanes. 

However, the PSP is complex to use both experimentally and practically so there is 

need to develop an alternative method that will give comparable KLa results to those 

from the PSP in hydrocarbon based systems. 

 

Figure 2.4  Comparison of KLa values between the GOP and PSP in 2.5-20% 
 (v/v) n-C10-13-aqueous dispersions for agitation 600-1200rpm 
 (Redrawn from Correia and Clarke, 2009) 

2.2.3 Measurement using the gassing out procedure and the 
second order response model  

A study by Correia and Clarke (2009) indicated that in hydrocarbon-aqueous 

dispersions there are large discrepancies in KLa results between the PSP and the 

GOP (no lag) methodologies. There is therefore a need to investigate ways of 

incorporating Kp effects on KLa measurement, hence the GOP (lag) methodology was 

examined.  

2.2.3.1 The probe response lag time 

The DO probe response lag time ( pτ ) is defined as the time taken for the DO 

concentration to reach 63.2% of its saturation value after an experimental step 
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change (Van’t Riet, 1979; Ruchti et al., 1981; Tribe et al., 1994; Luyben and Luyben, 

1997; Nikolov et al., 2000; Juarez and Oreans, 2001).The derivation of the probe 

response lag time is detailed in Appendix A.4.2. An alternative notation, Kp, has also 

been widely used in literature indicating the inverse of the DO probe response lag 

time (Merchuk et al., 1990) or the DO resistance associated with the probe. 

pτ  
has been measured by two methods, either by transferring the DO probe from a 

sulphite saturated fluid to an air-saturated fluid (Benedek and Heideger, 1970; Fuchs 

et al., 1971) or by transferring the DO probe from a nitrogen saturated fluid to an air 

saturated one (Nakanoh and Yoshida, 1980; Godbole et al., 1984). In both cases the 

initial fluid was de-oxygenated by oxidation of sulphite or nitrogen sparging 

respectively. 

Dang et al. (1977) and Merchuk et al. (1990) suggested that pτ  
occurred due to 

resistance when DO molecules diffused through the fluid film, membrane and 

electrolyte solution to cathode where DO reacts with the anode to produce a current 

(which is proportional to the DO partial pressure in the fluid). This was in agreement to 

the work of Aiba and Huang (1969) and Benedek and Heideger (1970) who indicated 

that this DO movement from the fluid film to the cathode is on its own a mass transfer 

process which eventually results in the lag (Figure 2.5). This DO transfer resulted in a 

delay in measuring the sudden changes in actual DO concentration in the fluid, 

resulting in underestimated KLa values in the GOP (no lag), especially at high aeration 

rates (Benedek and Heideger, 1970). 
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Figure 2.5  Resistances encountered by DO from fluid film to cathode surface  

  (Redrawn from Aiba and Huang, 1969) 

The magnitude of pτ  
has been reported to be a function of membrane type, 

membrane thickness, membrane age, electrolyte usage and electrochemical 

reactions that occur within the DO probe (Aiba and Huang, 1969; Benedek and 

Heideger, 1970; Fuchs et al., 1971). pτ  = 1/Kp values in literature also varied 

depending on fluid properties (Table 2.2). 
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Table 2.2: DO probe response lag times reported in literature for various fluid properties and KLa calculation methods 

Reference Response lag time KLa range (s-1) Fluid Calculation of KLa  
Dang et al. (1977) 14.2s (dead time of 3s 

subtracted from the data) 
0.01-0.015 water, CMC solutions Dynamic model moment 

analysis 

Godbole et al. (1984) 4.7s in water,3 times 
increase in CMC 
solutions (14.1 s) 

0.01-0.04 water, CMC solutions 1st order model 

Gourich et al. (2008) 7s 0.01-0.025 water and propanol 
solutions 

2nd order model. Mat lab 6.5 
(The Math works) 

Nakanoh and Yoshida 
(1980) 

5-6s in water,9-10s in 
60% sucrose solutions 

1.36-4.76 (ratio) water, sucrose, CMC and 
PA solutions 

1st order model 

Nielsen et al. (2003) 11.2s 0-0.556 hexadecane organic 
phase 

2nd order model 

Ruchti et al. (1981) 10-13s ± 0.3-0.5s 0.021-0.19 water, CMC solutions Dynamic model moment 
analysis 
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Dang et al. (1977) further proposed a second order DO probe response model for 

viscous fluids which accounts for both the probe membrane response time and the 

diffusion film lag time ( p Fτ + τ ) (equations 2.11 and 2.12). This implied that the DO 

probe response lag time resulted from these two lags. The second order model was 

also used by Ruchti et al. (1981) who indicated that the diffusion film lag was 

dependent on the agitation rate as well as the CMC (carboxymethyl cellulose) 

concentration and that effects of the lag were more pronounced at low agitations 

(Figure 2.6). The effect of  agitation rate is a likely consequence of increased in 

turbulence with increased agitation which would result in a decrease liquid film 

thickness around the bubble. At the same time increasing the CMC concentration 

increased the liquid film diffusion lag time due to increase in thickness of the fluid film 

(Figure 2.6). 

F F

p

dC C C
dt

−=
τ

 [2.11] 

p F p

p

dC C C

dt

−
=

τ
 [2.12] 

where CF is the DO concentration due to fluid film resistance lag time (mol.m-3) 

 

Figure 2.6  Influence of agitation rate and CMC concentration on DO diffusion film 
 lag time (Redrawn from Ruchti et al., 1981) 
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membrane due to continual usage which resulted in membrane stretching. Benedek 

and Heideger (1970) had the same observations in aqueous solutions and attributed 

the increased slowdown in pτ  with usage to membrane stretching. They also 

indicated that an artificial space formed between the membrane and the cathode due 

to continual usage which resulted in the DO probe response deviating from the first 

order response model. Benedek and Heideger (1970) further showed that as the 

probe electrolyte usage increased, a reduction product, AgCI, formed at the probe 

anode which also contributed to increased pτ . Additionally Aiba and Huang (1969) 

showed that different membrane materials with the same thickness have different 

oxygen diffusivities in water which in turn affected pτ . A 53µm polypropylene 

membrane had a 5 times higher DO diffusivity of 2.4 X 107 cm2/s in air and 2.6 X 107 

cm2/s in water as compared to a 51µm triacetyl cellulose membrane which had a DO 

diffusivity of 0.50 X 107 cm2/s in air and 0.53 X 107 cm2/s in water. 

From the information reported on the DO probe response lag time, it is evident that 

the Kp values are dependent on the probe characteristics and process conditions. 

However there is still need to understand how Kp values will be affected in alkane 

multiphase systems since these data were mostly collected in aqueous systems. 

2.2.3.2 Influence of the probe response lag time on measurement of the 
overall volumetric oxygen transfer coefficient  

The DO probe response lag time has been accounted for in a few studies for KLa 

measurement using the GOP by modifying the GOP (no lag) (Fuchs et al., 1971, 

Letzel et al., 1999; Nielsen et al., 2003, Vandu and Krishna, 2004). This response lag 

is a consequence of the resistance to DO transfer across the probe membrane. 

Further, in the systems where the Kp value was incorporated, a constant value was 

used irrespective of process conditions. Nielsen et al. (2003) reported an increase of 

more than 25% for KLa values greater than 0.25 1s−  when a pτ  
of 11.2s was 

incorporated in aqueous-hexadecane phases but did not observe any difference at 

low agitation rates of 400rpm in KLa from the GOP (no lag) and the GOP (lag). 

Gourich et al. (2008) observed the same behavior in KLa due to pτ  
when they 

measured KLa in propanol-aqueous systems. After incorporating a pτ  
of 7s their KLa 

values increased significantly by more than 40% for both water and propanol at 

higher gas velocities of 0.087m/s when the GOP (lag) was used (Figure 2.7). 

However their KLa from the GOP (no lag) and the GOP (lag) did not show significant 
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differences at low gas velocities of 0.007m/s. They attributed this to KLa and Kp 

having the same magnitude hence the effects of pτ  became pronounced. This was in 

agreement to conditions set by Van’t Riet (1979) and Ruchti et al. (1981) that pτ  

should only be considered when determining KLa in the GOP if pτ  
is of the same 

magnitude as the inverse of the KLa i.e. pτ  = 1/Kp ≈ 1/KLa. Gourich et al. (2008) also 

indicated that the characteristic time of DO transfer; ft  = 1/KLa should be lower than 

10 pτ  otherwise the Kp effects are negligible. 

 

Figure 2.7  Kp impact on KLa estimation in water and 0.05% (v/v) propanol-
 aqueous solutions (Redrawn from Gourich et al., 2008) 

There is need to modify the GOP by incorporating the Kp effects and further to 

quantify the impact of Kp on KLa measurement in view of the particularly critical role 

of the correct Kp in hydrocarbon based systems (Correia and Clarke, 2009). 

2.3 Behavior of the overall volumetric oxygen transfer 
coefficient 

KLa behavior has been reported to be dependent on individual process conditions 

such as agitation rate, hydrocarbon type, concentration and chain length (or other 

related hydrocarbon derivatives) but their interactions have not been quantified 

(Mimura et al., 1973; Hassan and Robinson, 1977a; Clarke et al., 2006; Clarke and 

Correia, 2008). Furthermore different KLa trends have been identified upon 

hydrocarbon addition and attributed to either to effect of fluid surface tension or fluid 
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viscosity but their interactions have also not been quantified (Correia et al., 2010). 

Importantly the effect of solids loading and solids particle size has not been 

quantified in alkane multiphase systems. Although rheological alterations have been 

reported upon solids loading in aqueous systems (Khare and Joshi, 1990; Salvacion 

et al., 1995), no quantitative information on the effect of fluid surface tension as well 

as the solids’ interaction with the other process parameters on KLa has been 

reported. 

2.3.1 Influence of agitation rate 
Increases in agitation rate have been reported to enhance KLa in hydrocarbon 

multiphase systems by several authors (Bartos and Satterfield, 1986; Ju and 

Sundararajan, 1994; Ozbek and Gayik, 2001; Clarke et al., 2006; Clarke and Correia, 

2008; Correia and Clarke, 2009; Correia et al., 2010) (see also Figure 2.8). KLa is 

however a lumped factor comprising of the volumetric oxygen transfer coefficient (KL) 

and the gas-liquid interfacial area per unit volume (a) so increasing the agitation rate 

will therefore enhance KLa by either affecting KL, a or both parameters. The gas-

liquid interfacial area per unit volume is directly related to the gas hold up ( Gε ) and 

inversely related the DO Sauter mean bubble diameter (D32) (equation 2.13). KL is a 

measure of the inverse of resistance to DO transfer. 

32

6 Ga
D

ε=  [2.13] 
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Figure 2.8  Influence of increased agitation rate on KLa in distilled water 
containing 25wt% biomass support particles (Redrawn from Ozbek 
and Gayik, 2001) 

2.3.1.1 Influence of agitation rate on the oxygen transfer coefficient  

KL has been reported to be enhanced by an increase in agitation rate through 

decreased D32 due to the shearing action exerted by agitation on the DO bubbles 

(Alves et al., 2004). Alves et al. (2004) indicated that KL was approximately 5 times 

bigger for smaller bubbles with 2.5mm diameter compared to larger bubbles with 

diameter greater than 2.5mm. Increased agitation rates have also been reported to 

decrease the resistance to molecular diffusion due to a decrease in the stagnant 

layer thickness at high turbulence, as suggested by Lewis (1916) and Whitman 

(1923)’s two film theory resulting in KL increases. A number of correlations have also 

been reviewed by Clarke and Correia (2008) which predict KL increases with 

increases in turbulence resulting in enhanced KLa. 

2.3.1.2 Influence of agitation rate on the gas-liquid interfacial area per unit 
volume  

Increasing turbulence effects have been reported to increase the gas-liquid interfacial 

area per unit volume in hydrocarbon multiphase systems as indicated by the various 

correlations between the impeller speed (N), aeration rate (Vs) and the input power 

per unit volume (P/V) reviewed by Clarke and Correia (2008). Increased agitation 

rate increases the turbulent shear rate for DO bubble breakage resulting in a smaller 

D32 (Parthasarathy and Ahmed, 1994) thus increasing Gε  (Figure 2.9) due to lower 

DO bubble rise velocities thereby enhancing the gas-liquid interfacial area per unit 
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volume (equation 2.13) and hence the overall KLa (Sridhar and Potter, 1980; Yoshida 

and Miura, 1963; van Dierenolonck et al., 1968; Hassan and Robinson, 1977b; 

Correia et al., 2010). 

 

Figure 2.9  Influence of increased agitation rate on gas hold-up at various gas 
velocities (Redrawn from Sridhar and Potter, 1980) 

Sridhar and Potter (1980) confirmed the linear relationship between increase in Gε  

and increased agitation rate (Figure 2.9). They also indicated that increasing 

agitation will decrease D32 and went on further to show that at high agitations D32 

becomes almost constant (Figure 2.10) which was in agreement to the work of 

Calderbank (1958), Westerterp et al. (1963) and Correia et al. (2010). 

 

Figure 2.10  Influence of increased agitation rate on D32 at various gas velocities 
 (Redrawn from Sridhar and Potter, 1980) 
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2.3.2 Influence of hydrocarbon addition 
Hydrocarbon addition has been reported to alter KLa due to the influence on the fluid 

viscosity ( )µ  and fluid surface tension ( )σ  depending on hydrocarbon concentration, 

hydrocarbon type as well as hydrocarbon chain length (Koide et al., 1976; Zahradnik 

et al., 1999; Clarke and Correia, 2008). Hydrocarbon addition decreased the fluid 

surface tension whilst the fluid viscosity was increased (Queimada et al., 1976) 

(Figure 2.11). This inverse linear relationship between the fluid viscosity and fluid 

surface tension upon hydrocarbon addition had been earlier reported by Pelofsky 

(1966) (equation 2.14). 

σ = +
µ
B

In InA  [2.14] 

where A and B are constants of proportionality  

 

Figure 2.11  Relationship between fluid surface tension and viscosity at varying n-
C10H22 + n-C20H42 mole fractions (Redrawn from Queimada et al., 
1976)  

2.3.2.1 Influence of hydrocarbon addition on the oxygen transfer coefficient  

Increased hydrocarbon concentration or hydrocarbon chain length resulted in 

increased fluid viscosities which caused a decrease in the diffusivity of DO in the fluid 

thereby decreasing KL (Calderbank, 1958; Clarke and Correia, 2008). The decrease 

in KL increased resistance to DO diffusion through the gas-liquid interface. KL was 

found to be largely dependent on the diffusion coefficient (DL) for oscillating and rigid 

bubbles (equations 2.15 and 2.16) (Calderbank and Moo-Yang, 1961; Juretzek et al., 

2000; Garcia-Ochoa and Gomez, 2005). Kilonzo and Margaritis (2004) also indicated 

that increase in fluid viscosity had an inverse relationship with KL (equations 2.17 and 
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2.18) resulting in decreased KLa. Elgozalia et al. (2002) reported KLa decreases of up 

to 60% due to KL decreases when the fluid viscosity was continually increased by 

adding a polymer based thickener and this was attributed to the coalescing behavior 

of the thickener. 

= 2 / 3
L LK D  [2.15] 

= 1/ 2
L LK D  [2.16] 

−0.333 α µLK  [2.17] 

−0.167 α µLK  [2.18] 

Raymond and Zieminski (1997) reported a decrease in fluid surface tension due to 

hydrocarbon addition which resulted in decreased bubble surface mobility. This 

caused the bubbles to act as rigid spheres causing the internal motion inside the 

bubbles to decrease, hence a negative effect on KL. Linek et al. (2005) also observed 

a 0.8 decrease in KL upon addition of ocenol and CMC solutions which are fluid 

surface tension reducing substances. This was in agreement with Koide et al. (1976) 

(Figure 2.12) who used aqueous solutions of n-hexanol, n-heptanol and n-octanol 

and indicated that addition of an alcohol acted as barriers for passage of gaseous 

molecules on the gas-liquid interface since they were absorbed at the interface, 

thereby reducing KL. 
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Figure 2.12 Influence of increased hydrocarbon chain length and hydrocarbon 

 concentration on KL (Redrawn from Koide et al. 1976) 

Contrary to this, van der Meer et al. (1992) indicated that small concentrations of 

octanol enhanced KL especially when the octanol drop diameter was sufficiently 

smaller than the gas-liquid film thickness. Due to this smaller octanol size, no 

accumulation occurred at the gas-liquid interface since the octanol drops were 

sufficiently small hence increased KL. 

2.3.2.2 Influence of hydrocarbon addition on the gas-liquid interfacial area 
per unit volume  

Alterations in fluid physico-chemical properties due to hydrocarbon addition 

determine the gas-liquid interfacial area per unit volume based on Gε
 
and D32 through 

their influence on coalescence and bubble break-up (equation 2.13). 

Increases in fluid viscosity due to hydrocarbon addition have been reported to reduce 

the turbulence effects in the fluid due to increased bubble coalescence which results 

in a reduced degree of bubble break-up, and slower formation of liquid films causing 

more air to be trapped in the bubbles (Khare and Joshi, 1990; O’Connor et al., 1990; 

Schafer et al., 2002; Correia et al., 2010). This resulted in larger D32 values and 

lowering gas-liquid interfacial area per unit volume values (equation 2.28) hence 

lowered KLa (Schumpe and Deckwer, 1982; Garcia-Ochoa and Gomez, 2004; 

Kilonzo and Margaritis, 2004; Mehria et al., 2005; Correia et al., 2010). 

Al Taweel and Chang (1995) reported a fluid surface tension decrease in water from 
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0

1

2

3

0 50 100 150 200

K
L

X
 1

02
(c

m
s-1

)

Hydrocarbon concentration (ppm)

n-Octanol n-Heptanol n-Hexanol



Chapter 2   Literature review 

24 
 

gas-liquid interfacial area per unit volume. Gε
 
also increased due to inhibition of 

bubble coalescence and promotion of gas dispersions with lower rising velocities 

thus enhancing KLa (Das et al., 1985; Koide et al., 1985; Parthasarathy et al., 1991). 

Hu et al. (2005) reported a fluid surface tension decrease upon addition of diethylene 

glycol and decanol in aqueous solutions which led to D32 reduction due to 

coalescence inhibition thereby increasing KLa. Kelkar et al. (1983) also showed that 

Gε
 
increased with increase in alcohol chain length thereby increasing KLa and 

attributed this to decrease in fluid surface tension (Figure 2.13). 

 

Figure 2.13  Influence of 0.5% (v/v) hydrocarbon at constant liquid velocity of 
 0.063m/s on gas hold up (Redrawn from Kelkar et al., 1983) 

However, in highly viscous hydrocarbon-aqueous dispersions, the effect of increased 

fluid viscosity has been reported to override the effect of fluid surface tension. This 

effectively lowered the gas-liquid interfacial area per unit volume and hence the 

overall KLa. Hu et al. (2005) reported a bigger D32 in a highly viscous air-decanol 

system as compared to a low viscous air-propanol system though their fluid surface 

tension was not significantly different. Das et al. (1985) indicated an increase in D32 

for both toluene and 2-ethyl hexanol dispersions with increase in alcohol 

concentration above 10% although both alcohols had comparable fluid surface 

tensions. Recently Correia et al. (2010) reported the same trend in 2.5-20% (v/v) n-

C10-13-aqueous dispersions when both D32 and εG  decreased due to the almost 

doubling effect of increase in fluid viscosity from 1.01mPa.s to 1.95mPa.s while the 

fluid surface tension decreased from 26.0mN/m to 17.7mN/m. 
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2.3.3 Influence of solids addition 
Solids addition has been reported to affect KLa depending on solids particle size (dp), 

solids loading (wt %) and solids density (ρp) (Table 2.3). KLa studies in aqueous 

systems containing solids have been widely carried out with inert particles informing 

on KLa trends upon solids addition mostly in aqueous dispersions. Several KLa trends 

upon solids addition have been identified in literature depending on the process 

conditions, liquid medium and the solid particle properties. 

As with hydrocarbon addition, solids addition affects KLa through KL (Alper et al., 

1980; Chapman et al., 1983; Ju and Sundararajan, 1994) and the gas-liquid 

interfacial area per unit volume (Joosten et al., 1977; Quicker et al., 1984; Bartoes 

and Satterfield, 1986; Hwang and Lu, 1997; Kawase et al., 1997) or through both 

parameters (Miyachi et al., 1981; Chisti and Moo-Yang, 1988; Kim and Kim, 1990; 

Benchapattarapong et al., 2005; Mena et al., 2005). 
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Table 2.3: KLa behavior due to differences in solids properties, liquid properties and operating conditions 
Reference Medium and 

operating 
conditions 

Particle type dp (µm) ρp (kgm-3) Solids 
loading 
(wt%) 

KLa behavior 

Vandu and 
Krishna (2003) 

Ethanol 
UG:0-0.11ms-1 

Cobalt catalyst 25.4 1177 1.0 and 
3.8 

KLa and gas hold-up decreased with 
increase in the catalyst concentration. 

Albal et al. 
(1983) 

Water; 
10wt% glycerin; 
CMC solutions 
N:100-1200rpm 
 

Glass beads 
Oil shale 
particles 

150 
140 

2700 
2270 

0-25 
0-25 

KLa increased by 10-20% for 0-2.5wt% 
solids loading and then decreased 
thereafter until 25wt%. 

Sada et al. 
(1986) 

NaCI 
Distilled water 
QG=2cm3s-1 for 
2h 

Aluminum oxide 
Calcium 
hydroxide 
Calcium 
carbonate 

<3 
7 
10 
10 

3850 
2240 

Varying 
varying 

<1.0 
<1.0 
<1.0 
<1.0 

KLa remained constant for all low particles 
loading. KLa increased for particles lower 
than 10µm then decreased for 10µm 
particles depending on the solids loading. 

Ozturk and 
Schumpe (1987) 

Ligroin and 
tetralin-aqueous 
systems 

Aluminum oxide 
Polyvinylchloride 
Polyethylene A 
Polyethylene B 

10.5 
82 

106 
124.6 

 

3180 
1380 
940 
965 

 

 Fine high density solids in small 
concentration increased KLa in this case 
aluminum due to increase in KL.  

Joosten et al. 
(1977) 

Kerosene-
helium-nitrogen 
UG=2.5cms-1 
PT=1.5kWm-3 

Glass beads 
Glass beads 
Sugar 
Polypropylene 
Polypropylene 

88 
53 

74-105 
53-105 

250 

0-40 
0-40 
0-40 
0-40 
0-40 

 KLa increased with small loadings of 10-
20wt%, stayed constant at 20wt% loading 
and decreased sharply thereafter to 
40wt% depending on the solids type and 
size.  
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KLa behavior was reported to be governed by higher solids loadings at the bottom of 

the reactor thereby significantly altering the rheological properties of the fluid 

(Joosten et al., 1977; Frijlink and Smith, 1986; Oguz et al., 1987; Mandersloot and 

Scott, 1990; Ozbek and Gayik, 2001). Correlations showing the relationship between 

the fluid viscosity and solids addition for various power per unit volume (P/V) and air 

flow rates (QG) have been formulated by Oguz et al. (1987) (equation 2.19) and van 

Weert et al. (1995) (equation 2.20) in slurry systems. Khare and Joshi (1990) and 

Salvacion et al. (1995) further showed that the rheological alterations upon solids 

addition were also dependent on the rheological properties of the liquid. 

−
−   µ=   µ   

0.750.39

4 0.56.6 10 SL t
L G

L SL

P
K a X Q

V
 [2.19] 

−
  µ=   µ   

0.390.22

0.50.036 SL t
L G

L SL

P
K a Q

V
 [2.20] 

where µSL/µL is the ratio between the slurry viscosity and the liquid viscosity, Pt is the 

total power input (W) and VSL is the volume of slurry (m3) 

2.3.3.1 Influence of solids addition on the oxygen transfer coefficient  

Solids addition have been reported to affect KL either by creating a diffusion blocking 

effect on the gas-liquid interface, thereby increasing the diffusion film layer thickness, 

or by altering the interfacial turbulence of fluid (Chisti and Moo-Yang, 1988; Mena et 

al., 2005). 

Joosten et al. (1977) showed that an increased interfacial turbulence was observed 

with low solids loading of 0.1-2.5% (v/v) therefore increasing KL resulting in a small 

KLa increase in kerosene-helium-nitrogen systems with polypropylene, sugar and 

glass beads particles. This was in agreement to Miyachi et al. (1981) who indicated a 

KL increase in aqueous-CaCO3 systems for solid particle sizes >1.75µm and 

indicated this was due to larger turbulence on the gas-liquid film caused by larger 

particles relative to smaller ones also within the same solids loading range. Albal et 

al. (1983) confirmed this trend in aqueous systems with glass beads and oil shale 

particles with KLa increases of 10-30% for 0-2.5% (v/v) solids loading. They 

demonstrated that low solids loadings do not alter the fluid viscosity but enhance the 

surface renewal rate and mobility thereby increasing KL. Chandrasekaran and 

Sharma (1977) had also reported a 60% KLa increase in a sulfite system with 0.2wt% 

activated carbon and 150% KLa increase in slurries containing 0.1-0.33wt% activated 
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carbon compared to powdered quartz, sand and oxirane-acrylic beads at the same 

loading. They had attributed this KLa enhancement to physical absorption of oxygen 

by activated carbon increasing KL. Quicker et al. (1984) had had similar observations 

for an aqueous system containing activated carbon, but no enhancement for quartz 

and beads solids particles as they were less porous. 

However, Albal et al. (1983) also showed that high solids loadings of >2.5% (v/v) 

decreased KLa due to increased fluid viscosity which increased the diffusion film 

thickness lowering KL with the largest particles showing the greatest decrease. This 

was in agreement to Ju and Sundararajan (1994) who observed a decrease in KLa 

for >0.45µm baker’s yeast particles. They attributed this to physical blockage by cells 

accumulated on the gas-liquid interface decreasing KL. 

2.3.3.2 Influence of solids addition on the gas-liquid interfacial area per unit 
volume  

Solids addition also determines the gas-liquid interfacial area per unit volume based 

on εG  and D32 through their influence on coalescence and bubble break-up (equation 

2.19). Sada et al. (1986) observed that addition of <10µm solids particles at 0.1wt% 

loadings increased εG  in aqueous systems containing aluminum oxide, calcium 

hydroxide and calcium carbonate. They indicated that fine particles hindered bubble 

coalescence hence maintained low D32. This was in agreement to the work of Khare 

and Joshi (1990) in aliphatic alcohol/electrolytic solutions with 12-1300µm particles 

with loadings of 0-10wt% but reached a maximum value upon further increase in 

solids particle size and solids loading. However Khare and Joshi (1990)’s εG  

increased with non-coalescing behavior of the fluid and they argued that the εG  

behavior was due to the synergetic effect of solids particle size, solid loading, fluid 

surface tension and fluid viscosity of liquid. This result was in agreement to Kawase 

et al. (1997) who also showed that KLa decreased upon addition of 0.002µm 

polymeric particles at 5-15wt% but increased on 0.15-0.5wt% CMC addition due to 

reduced coalescence in the fluid properties and decreased D32. 

Decreases in gas-liquid interfacial area per unit volume have been reported upon 

increased solids addition (Yagi and Yoshida, 1974; Lee et al., 1982; Gollakotta and 

Guin, 1984; Fukuma et al., 1987; Mills et al., 1987; Chisti and Moo-Yang, 1988; Sun 

and Furusaki, 1988; O’Connor et al., 1990; Zahradnik et al., 1992; Reese et al., 

1996; van Weert et al., 1999; Krishna et al., 1997; Nicolella et al., 1998; Freitas and 

Teixeira, 2001; Mena et al., 2005). Hwang and Lu (1997) demonstrated a decrease 
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in KLa on addition of 0.0024µm polystyrene cylinder particles in an air-water system 

and concluded that the decrease was attributed to a decrease in εG  due to solids 

loading resulting in formation of larger D32 and lower rise velocities. Vandu and 

Krishna (2003) had the same observation when they investigated the influence of 

25.4µm cobalt loading of 1.0-3.8wt% in ethanol solutions whereby both KLa and εG  

decreased with increase in cobalt loading despite the increase in the superficial gas 

velocities from 0-0.11m/s. Vandu and Krishna (2003) attributed this to increased 

coalescence of smaller bubbles to form larger bubbles with increase in catalyst 

loading. 

Sada et al. (1986) investigated an aqueous system containing aluminum oxide, 

calcium hydroxide and calcium carbonate; KLa values for the slurries were the same 

as those without any solids. They argued that the degree of influence of suspended 

particles in the bubble column depended on the solids particle sizes. Particles >50µm 

decreased εG  with increasing solids loading but at low loadings they showed no 

appreciable influence. This was in agreement to the work of Miyachi et al. (1981) who 

reported KLa decreases for particles >1.75µm due to reduction in gas-liquid interfacial 

area per unit volume due to the occupation of the bubbles by solids which resulted in 

larger D32. 

In addition to the influence of solids loading and solids particle sizes on KLa, solids 

density particles were also found to alter KLa behavior. High solid particle densities 

were shown to cause more coalescence in systems with bronze spheres with density 

of 8770kg/m3 compared to systems with glass spheres with density of 2500kg/m3 by 

Koide et al. (1984). These included aqueous systems with glycerol, glycol, barium 

chloride and sodium sulfate solutions. The coalescence resulted in lower gas-liquid 

interfacial area per unit volume, εG  and lower KLa. Freitas and Teixeira (2001) had 

the same observation with a KLa decrease of up to 30% in aqueous systems 

containing a 2.151mm particle with density of 1048kg/m3 compared to a 2.131mm 

calcium alginate beads with density of 1023kg/m3. The 1048kg/m3 particle had the 

lowest KLa due to increase in coalescence which was reflected by smaller gas-liquid 

interfacial area per unit volume. 
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3 HYPOTHESES, SCOPE OF PROJECT AND 
OBJECTIVES 

The hypotheses formulated for this work, scope of project and objectives were based 

on the two areas of study which are evaluation of an accurate and less complex KLa 

measurement methodology and quantification of KLa behavior in alkane systems with 

solids. 

3.1 Hypotheses 
From the literature survey it is evident that there is need to apply an accurate and 

less KLa measurement method in alkane multiphase systems which accounts for Kp 

effects. Kp has been shown to play a significant role in KLa measurements in 

aqueous systems using the GOP (lag) and also in alkane systems through the PSP, 

the latter methodology is relatively complex to use. Moreover, according to the 

literature survey, the magnitude of Kp cannot be generalized but is dependent on the 

DO probe characteristics, process conditions and fluid properties. 

There is therefore a need to first quantify the factors affecting Kp in the viscous 

alkane multiphase systems and see what parameters really affect the probe 

response lag time. There is then need to modify the GOP (no lag) to incorporate Kp 

effects per each process condition during KLa measurement. Secondly, there is need 

to benchmark the GOP (lag) methodology to the alternative PSP methodology. Both 

methodologies account for the DO transfer limitations associated with the probe. 

Hypothesis one was then formulated according to the literature study of KLa 

measurement methodology. 

Hypothesis 1: Oxygen transfer resistance associated with the probe has to be 

accounted for when measuring the DO 

It is also evident that the behavior of KLa upon hydrocarbon and solids addition is 

dependent on the agitation rate and the impact of hydrocarbon addition and solids 

addition on the fluid properties. Although there is a lot of information on KLa trends 

upon increasing agitation rate and hydrocarbon addition there in no explicit 

information on how these process parameters will interact with each other upon 

solids addition in a viscous alkane multiphase system. There is therefore need to 

quantify KLa behavior in aerated agitated alkane-solid-aqueous dispersions using an 

accurate measurement method. Furthermore influences of fluid properties through 

alterations in fluid viscosity and fluid surface tension on KLa due to alkane addition 
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and solid addition need to be quantified to fully underpin KLa behavior in these 

systems. Additionally to that there is a need to assess the influence of cells as well 

as inert solids on KLa behavior. Hypotheses two was then formulated according to 

the literature study of the KLa behavior in hydrocarbon based systems. 

Hypothesis 2: KLa behaviour in alkane-solid-aqueous dispersions is dependent 

on agitation rate, alkane concentration, inert solids loading, solids particle size 

and their interactions 

3.2 Scope of research project and objectives 
This project firstly evaluates an accurate KLa measurement method in alkane 

multiphase systems which accounts for Kp effects and, secondly, quantifies KLa 

behavior in aerated agitated alkane-solid-aqueous dispersions and the influence of 

agitation rate, alterations in fluid properties and their interactions on the KLa behavior. 

Moreover the influence of inactive yeast cells as well as inert solids on KLa behavior 

in hydrocarbon based systems is evaluated. 

3.2.1 Evaluation of measurement method for the overall 
volumetric oxygen transfer coefficient 

In evaluation of an accurate and less complex KLa measurement in alkane 

multiphase systems, factors thought to affect Kp and their interactive effects will be 

investigated according to the literature review. These factors will include the probe 

membrane age (5 day usage), probe electrolyte age (5 day usage), agitation rate 

(600-1200rpm), alkane concentration (2.5-20% (v/v)), alkane chain length (n-C10-13 

and n-C14-20), solids loading (1-10g/L) and solids particle size (3-14µm). Since Kp was 

a sensitive parameter, independent experiments on investigating the parameters 

affecting Kp will be carried out and the influence of only two parameters was 

investigated at a time. 

KLa values in n-C10-13 and n-C14-20-aqueous dispersions from the GOP (no lag) and 

the GOP (lag) will then be compared to quantify the degree of difference in KLa due 

to Kp effects. Furthermore KLa values measured with the GOP (lag) in n-C10-13-

aqueous dispersions will be compared to those previously reported by Correia and 

Clarke (2009) measured with the relatively complex PSP. 
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3.2.2 Quantification of the behavior of the overall volumetric 
oxygen transfer coefficient in alkane-solid-aqueous 
dispersions  

Quantification of KLa behavior firstly, in alkane multiphase systems with inert solids is 

necessary and see if it follows any trends in literature. Secondly, cells with properties 

almost similar to the inert solids will be introduced and resultant KLa behavior 

recorded. Comparison of KLa trends in these systems will help identify optimum 

operating conditions in systems with solids. 

KLa will be measured in alkane-inert solid-aqueous dispersions for varying agitation 

rates (600-1200rpm), alkane concentrations (2.5-20% (v/v)), solids loading (1-10g/L) 

and solids particle sizes (3-14µm) in n-C14-20 alkane, at constant aeration of 0.8vvm 

(volume of air per volume of dispersion per minute), at 22ºC and 101.3kPa. The 

measurement method used will be dependent on the outcome of the first objective. 

The fluid viscosity and fluid surface tension will then be measured in the alkane-inert 

solid-aqueous dispersions at the same process conditions where KLa values will be 

measured to fully quantify KLa behavior due to alterations in alkane concentration, 

solids loading and solids particle sizes. 

In dispersions with inert solids, corn flour and CaCO3 will be employed as solids 

since they had the same density but had different particle sizes. This enables the 

investigation of various solids loading and solids particle sizes at constant density. 

The challenge encountered for this experiment is that it is difficult to obtain an inert 

solid with a particle size of 9µm yet with the same density as corn flour and CaCO3 

so center conditions could not be investigated with the inert solids experiments. 

Further KLa measurement will be done using the 5µm yeast particle to better 

represent a typical hydrocarbon based bioprocess. Alkane-yeast-aqueous 

dispersions at various agitation rates (600-900rpm), alkane concentrations (2.5-

11.25% (v/v)) and yeast loadings (1-5.5g/L) in n-C14-20 alkane also at constant 

aeration of 0.8vvm, at 22ºC and 101.3kPa will be used. The fluid viscosity and fluid 

surface tension will also be measured in the alkane-yeast-aqueous dispersions to 

fully quantify KLa behavior due to alterations in alkane concentration and solids 

loading. The yeast cells will be inactivated since if they are respiring there will be a 

possibility of our KLa being affected as well. 
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Finally KLa behavior will be explained through the effect of agitation rate, the impact 

of fluid properties due to alterations in alkane concentration, solids loading and solids 

particle size and their interactions in the alkane multiphase systems. 
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4 EXPERIMENTAL MATERIALS AND METHODOLOGY  

4.1 Materials 
4.1.1 Hydrocarbons 
n-C10-13 and n-C14-20 alkane cuts (Sasol Ltd; South Africa) were used with alkane 

concentrations of 2.5-20% (v/v) in alkane-aqueous dispersions and alkane-solid-

aqueous dispersions with inert solids. Alkane concentrations of 2.5-11.25% (v/v) 

were used in the alkane-solid-aqueous dispersions with inactive yeast. Alkane 

compositions were obtained by gas chromatographic analysis (Table 4.1) (Correia, 

2007) and (Table 4.2) (Pennels, 2008). The alkane-solid-aqueous dispersions and 

the alkane-aqueous dispersions were made by adding solids and alkanes to distilled 

water at concentrations indicated in the text. 

Table 4.1: n-C10-13 Sasol alkane cut composition (Correia, 2007) 

Table 4.2: n-C14-20 Sasol alkane cut composition (Pennels, 2008) 

4.1.2 Solids 
Solids used in the alkane-inert solid-aqueous dispersions were corn flour with density 

of 670kg/m3 and CaCO3 with density of 700kg/m3. The solids loading was varied from 

Alkane  Chain length % Composition 

n-Decane n-C10 10.3 

n-Undecane n-C11 29.3 

n-Dodecane n-C12 30.0 

n-Tridecane n-C13 30.4 

Alkane  Chain length % Composition 

n-Tetradecane n-C14 49.0 

n-Pentadecane n-C15 33.3 

n-Hexadecane n-C16 7.1 

n-Heptaecane n-C17 6.8 

n-Octadecane n-C18 3.2 

n-Nonadecane n-C19 0.4 

n-Eicosane n-C20 0.2 
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1-10g/L for varying particle sizes of 3-14µm. Yeast with an average particle size of 

5µm and density of 900kg/m3 was used in the alkane-yeast-aqueous dispersions. 

The yeast loadings employed were 1-5.5g/L. The solids particle size distributions 

were analyzed by a Saturn Digisizer 5200 V1.10 analyzer (Micrometrics Instrument 

Company) (Figures 4.1-4.3). The solid particles were sampled 3 times to determine 

the average particle size (Table 4.3). The solids densities were obtained at 

http://www.powderandbulk.com. Corn flour and CaCO3 were naturally inert. The 

yeast cells were de-activated by soaking them in 70% ethanol for 24 hours before 

use and filtered before use. 

Nitrogen gas (>99.5% purity) was used as the nitrogen source, compressed air was 

used as source of oxygen.  

Table 4.3: Solid particles average properties 

Solid  Mean (µm) Median (µm) Mode (µm) Density (kg/m3) 

CaCO3 3.3±0.13 2.9±0.07 3.2±0.11 700 

Yeast 4.8±0.12 4.9±0.07 5.3±0.00 970 

Corn flour 13.6±0.03 14.3±0.02 16.0±0.00 670 

 

Figure 4.1 CaCO3 particle size distribution 
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Figure 4.2 Yeast particle size distribution 

 

Figure 4.3 Corn flour particle size distribution 

4.2 Experimental system set up and process conditions 
Experimental work was carried out in a 7.5L New Brunswick Bioflo 110 stirred 

bioreactor with a working volume of 5L. The geometry was as defined by Correia et 

al. (2010) (Figure 4.4). Agitation was provided by two six flat bladed Rushton turbines 

driven by an electric motor with adjustable speed (Figure 4.4). Agitation was varied 

between 600-1200rpm in alkane-aqueous dispersions and in alkane-inert solid-

aqueous dispersions. Agitation was varied between 600-900rpm in alkane-yeast-

aqueous dispersions. Aeration was constantly provided at 0.8vvm (volume of air per 

volume of dispersion per minute) by a stainless steel ring sparger located directly 

below the lower turbine. The sparger was 5mm in diameter and had 7X1mm 

diameter equally spaced holes around the ring. Temperature was controlled at 

22±1ºC by circulating cooling water below the sparger and the system pressure was 
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kept constant at 101.3kPa for all experiments. A 12mm Teflon membrane diameter 

probe was used for DO measurement (Mettler Toledo InPro® 6800, 2005) (see 

Appendix A4.1 for the DO probe characteristics). 

 

Figure 4.4  Experimental bioreactor system geometry (Redrawn from Correia et 
 al. 2010) 

KLa, Kp, fluid viscosity and fluid surface tension values were measured for all process 

conditions. Experiments were replicated 5 times and low standard deviations were 

observed i.e. the experiments were reproducible. The standard deviations values 

obtained during the experiments are noted in Appendices A7.1-A7.20.  

4.3 Measurement of the overall volumetric oxygen 
transfer coefficient  

KLa was measured by both the gassing out procedure neglecting the DO probe 

response lag time (GOP (no lag)) according to the first order response model and the 

gassing out procedure incorporating the DO probe response lag time (GOP (lag)) 

according to the second order response model. The DO probe was calibrated before 

KLa measurement in the dispersion KLa was to be measured. This was done by first 

sparging the dispersion in the bioreactor with nitrogen until the raw input data on the 

DO meter was stable at a low value when the DO concentration was set to 0% (New 

Brunswick Bioreactor manual, 2005). Air was then sparged into the dispersion until 

the DO raw input data on the DO meter became stable again value and the DO value 

was then set to 100% (New Brunswick Bioreactor manual, 2005). 
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4.3.1 Measurement using the gassing out procedure and the first 
order response model  

After calibration DO concentration was measured over time during the absorption of 

oxygen (Figure 4.5). DO absorption involves the re-sparging of air into the dispersion 

from 0% (after first de-oxygenating with nitrogen) until 100% DO saturation was 

reached (Figure 4.5). The probe then monitored DO change over time as C/C* over 

10s intervals until DO saturation was reached. 

 

Figure 4.5  DO concentration profiles 

during N2/air sparging in the GOP (no lag)  (Redrawn from Garcia-Ochoa and 
Gomez, 2009) 

The OTR first order response model was used for KLa measurement in the dispersion 

assuming zero DO probe response lag time (equation 1.1, equation 2.13). This first 

order response model is reduced to the form represented by equation 4.1 upon 

linearization. During oxygen absorption, the linearlised OTR equation (equation 4.1) 

reduces to a form represented by equation 4.2 under conditions C1 = 0 and t1 = 0. 
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A graph of ( )1 *
CIn C−  vs. time was plotted over 20s intervals and KLa was then 

obtained as the gradient of the line of this response (Figure 4.6). 
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Figure 4.6  Experimental measurement of KLa by the GOP (no lag) first order 
 response model  

4.3.2 Measurement using the gassing out procedure and the 
second order response model  

Since DO concentrations output indicated by the DO probe over time cannot be used 

to represent the actual change in DO concentration due to Kp effects, Kp had to be 

incorporated in DO measurement. The DO in the solution (equation 1.1, equation 

2.7) and the DO indicated by the probe per particular time (equation 2.9) were 

convoluted to yield a second order response model (equation 2.10). This was used to 

accurately determine KLa in alkane multiphase systems. This second order response 

model was derived by using Laplace transforms (see Appendix A.2) and analytically 

(see Appendix A.3) under conditions that Cpo = Co at initial conditions with to = 0 and 

Cp* = C* at saturation conditions. 

The Kp value for each process condition was measured and incorporated in the 

calculation of KLa. KLa was determined by minimizing the total sum of errors between 

the measured DO and the DO calculated from the second order response model 

(equation 2.10) at each time interval. That is, the total sum of errors was determined 

from the sum of the square of the difference between the measured DO and the DO 

calculated from the second order model. The DO change error was determined 

according to equation 4.3 per each finite time. The DO over 10s intervals for the 

second order response model were calculated according to equation 4.4, using KLa 

from the first order response model as the initial KLa. 
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The KLa from the first order response model was set as the initial KLa and changed 

according to Kp effects. If the Kp effects were minimal, the sum of errors (the total 

sum of the squared differences between the two methodologies per each 10s 

interval) obtained between the two OTR measurement methods will be small. 

However if Kp effects are significant then a high sum of errors will be obtained. The 

actual KLa was then attained by changing KLa obtained from the first order response 

model until the sum of errors between these two methods was minimal using 

Equation Solver in Excel (see Appendix A.5 for a sample calculation). 

( ) ( ) ( )2

2 mod 1 mod
% %nd storder el order el

Errors DO DO= −∑ ∑ ∑   [4.3] 
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4.3.3 Measurement of the probe response lag time 
The DO probe was calibrated before measuring τp  

and Kp. This was done by 

immersing the probe in a solution of excess Na2SO3 in a 500ml beaker. Na2SO3 was 

converted to Na2SO4 thereby reducing the oxygen to zero. Zero oxygen was 

achieved by continual addition of excess Na2SO3 until there was no further decrease 

in the DO raw input on the DO meter and the zero value had stabilized. The DO 

probe was then quickly transferred to the pre-aerated oxygen saturated dispersion in 

the bioreactor and calibrated to 100% DO. 

After calibration, the DO probe was immersed back to the sulfite solution (0% DO 

concentration). Then DO probe was transferred back to the oxygen saturated 

dispersion in the bioreactor and readings for %DO change were recorded as Cp/Cp* 

over 10s intervals until 100% DO saturation was reached. 

A graph of Cp/Cp* vs. time was then plotted over 10s intervals. The time taken to 

transfer the DO probe from the DO-free sulfite solution to the DO-saturated 

dispersion in the bioreactor (dead time) was accounted for by omitting DO values 

obtained during this dead time when calculating Kp. The dead time was defined as 

the initial time which needed to be deleted so as to obtain a DO vs. time trend line 

with R2 
≈ 1. The dead time was typically less than 8s. 

pτ  is defined as the time taken by the DO to undergo 63.2% of DO saturation after 

an experimental step change. At this condition, Cp/Cp* = 0.632 and the time of 

experiment, t, is equal to the DO probe response time, pτ  i.e. pt = τ  (Luyben and 
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Luyben, 1997). Appendix A4.2 provides the analytical solution for the DO probe 

response lag time. Consequently, τp  was determined from the graph of Cp/Cp* vs. 

time by solving the equation of the line when Cp/Cp* = 0.632 with y = 0.632 and x as 

τp  (Nakanoh and Yoshida, 1980; Luyben and Luyben, 1997; Juarez and Oreans, 

2001) (Figure 4.7). 

 

Figure 4.7  Experimental determination of τp  by solving the equation of line 

 when Cp/Cp* = 0.632 

τp  
which can also be expressed as: pτ  = 1/Kp (Merchuk et al. 1990), where Kp is the 
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squares regression from a graph of  − 
 
1 *
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In C  vs. time using the DO probe first 

order response model (equation 2.24) as the slope of the line (Figure 4.8) (Letzel et 

al., 1999; Bi et al., 2001; Vandu and Krishna 2004). The τp  and Kp values obtained 

from both methods were similar with slight deviations as low as 5%. For example in 

Figure 4.7 τp  is about 17s and the inverse Kp from non-linear regression in Figure 

4.8 gives 17.8s. 
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Figure 4.8  Experimental determination of Kp by non-linear regression from DO 
 probe first order response model  

4.4 Measurement of fluid viscosity and fluid surface 
tension 

Fluid viscosity and fluid surface tension were measured to fully underpin KLa 

behavior due to influences of fluid properties in alkane-solid-aqueous dispersions at 

the same conditions KLa was measured. Prior to taking fluid viscosity and fluid 

surface tension measurements the alkane-solid-aqueous dispersions samples were 

homogenized. Samples were analyzed immediately after homogenization. 

Homogenization followed by analysis was repeated 5 times for each sample with 

reproducible results. 

4.4.1 Homogenization of alkane-solid-aqueous dispersions 
A lab bench model homogenizer which is ideal for preparing laboratory samples was 

used for homogenization (Figure A6.1). 100cm3 of the alkane-solid-aqueous 

dispersion were homogenized at a time. The dispersion was poured into the feeding 

cone at a time after vigorous shaking. 20cm3 of sample were then drawn in the 

feeding cone at a time to ensure uniformity in the sample. 10cm3 of the dispersion 

were then used during viscosity and surface tension measurements soon after 

homogenization. 
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Cleaning of the homogenizer was carried out with 70% ethanol after every 

experimental run to ensure no blockages occurred and to ensure consistent 

operation of the homogenizer. The theory on the homogenization process is detailed 

in Appendix A6.1.  

4.4.2 Measurement of fluid viscosity  
Fluid viscosity measurements were carried out at shear rates from 0-1000s-1 using a 

Paar Physica MCR 501 Rheometer. Viscosity measurements were carried out using 

5cm3 of fluid for each process condition then readings at 600s-1 were only considered 

since the dispersions showed a Newtonian behavior. A double gap method (DG 26.7) 

was used for viscosity determination (Figure 4.9). This method is useful in measuring 

low viscosity fluids with viscosities close to that of water and it also increases the 

surface area of the fluid enabling measurements to be done at low torques (Mezger, 

2002). The DG 26.7 system consists of a bob and a cylindrical central part that 

allows an annular gap for the alkane-solid-aqueous dispersion (Figure 4.9). 

The sample was placed in the cup annular gap and the inner cylinder was then 

rotated within the cup. The rheometer then measured the cylindrical cup’s angular 

velocity and torque of rotation within the fluid. These quantities were then used to 

measure the shear stress ( τ ) and the shear rate ( γ ) after which the viscosity was 

determined from Newton’s Law of Viscosity for Newtonian fluids (equation 4.5) for 

each process condition. A computer program Rheoplus was used for viscosity 

analysis. The theory on fluid viscosity is detailed in Appendix A6.2. 

tancons t
τ = µ =
γ

 [4.5] 

Where τ  is the shear stress, the shear rate ( γ ) the shear rate which is constant for 

Newtonian fluids. 
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Figure 4.9  Double gap system used for fluid viscosity measurements (Mezger, 
 2002) 

4.4.3 Measurement of fluid surface tension  
A Du Noüy tensiometer with a 6mm radius platinum ring was used for surface tension 

measurements. The tensiometer was placed at a level surface and was calibrated 

before taking measurements. During calibration the bar attached to the platinum ring 

was aligned horizontally to the torsion balance using the fine adjustment screw and a 

surface tension reading was taken. A small piece of paper (78g) was weighed and 

placed on the platinum ring then a second surface tension reading was taken. The 

correction factor (CF) was then obtained by multiplying the mass of the paper with 

the acceleration due to gravity and dividing it by the perimeter of the ring and the 

differences in surface tension readings with and without the paper (equation 4.6). 

The effectiveness of calibration was tested by measuring the surface tension of 

distilled water which was found to be 71.8mN/m at 22ºC. 

mg
CF

RI
=   [4.6] 

where m is the mass of piece of paper (g), g is the acceleration due to gravity (m2/s), 

R is the difference in tensiometer readings with and without paper (mN/m) and I is 

the perimeter of ring which is equal to π4 r  with r as radius of the ring (mm) 

The platinum ring was cleaned with distilled water between measurements for 

accurate results. The ring was handled with care to avoid deformations and it was 

made sure that the ring did not touch the sides of the beaker for accurate results. 

Surface tension readings were then taken after calibration. 10cm3 of fluid were 

Direction of torque of rotation

Cup with cylindrical center part
Bob

Alkane-solid-aqueous dispersion
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poured into a beaker which was placed on the sample platform directly beneath the 

platinum ring. The ring was suspended in the dispersion by raising the sample 

platform until the ring was 5mm immersed in the dispersion. Using the fine 

adjustment screw, the platinum ring was continuously lifted up until the ring was 

within the surface of the fluid and the torsion balance scale was zeroed. The torsion 

that supports the wire was increased by turning the torsion balance scale upwards. 

This increased the torsion on the ring until the ring broke away from the surface of 

the fluid. The force required to break through the fluid/air surface was directly 

proportional to the surface tension of the fluid. Measurements obtained when the ring 

broke free from the fluid surface were multiplied by the correction factor to obtain the 

actual fluid surface tension. The correction factor used for this analysis was 0.46 and 

the torsion balance was zeroed at 21mN/m. 

4.5 Experimental design and statistical analyses 

All experiments done in this work were carried out through experimental designs and 

analyses were carried out statistically. Experimental design and analyses is 

necessary in using experiments to gain maximum knowledge at minimum cost and 

time (Vining, 1998). Factorial designs were used in evaluation of an accurate and 

less complex KLa measurement method in alkane multiphase systems as well the 

quantification of KLa behavior in these systems. This allowed the simultaneous 

examination of the effects of various parameters on Kp, KLa, µ and σ as well as their 

degree of interaction. In addition to that the t-test was used for comparing KLa values 

from the different measurement methods. The t-test assesses whether there is a 

statistically significant difference between two groups. This tested the significant 

difference between the average KLa values in each of the different methodologies. 

The F-variance ratio is a part of the t-test and it assesses if the variance between 

groups are statistically different. The influence of Kp on KLa as agitation rate 

increased was quantified by the F-variance ratio at each individual agitation rate.  

All experimental designs were carried out at 99% confidence interval. The low levels 

and high levels applied in the factorial designs were based on reported process 

conditions from literature, with the low level being the minimum process condition 

reported and the high level being the maximum process condition employed. The low 

levels and high levels used for the Kp, KLa, µ and σ experiments are shown in Tables 

4.4, 4.6, 4.8, 4.10 and 4.12. 
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Pareto charts, which show the relative effects of the different process parameters in 

their decreasing order on Kp, KLa, µ and σ as well as their degree of interaction, were 

used for results analyses. The 99% confidence interval value used for analyses was 

represented by a probability value (p-value) of 0.1 on the Pareto chart. Any effect 

crossing the vertical line on the Pareto chart for the p-value of 0.1 was significant. 

The number relating to each variable on the Pareto charts signifies the calculated 

effect of that parameter, relative to the other parameters for that particular factorial 

experimental design. The negative sign shows it has a decreasing effect and the 

positive sign an increasing effect on the response variables. 

In addition, surface response curves were drawn to represent the information 

indicated by the Pareto charts at the low and high levels, giving possible trends in Kp, 

KLa, µ and σ. The effect of two parameters and their interaction were evaluated at a 

time during which the other parameters (if any) were kept constant at the average 

conditions of the experiment.  

4.5.1 Evaluation of measurement methodology 

Factors underpinning Kp which related to the DO probe characteristics and process 

conditions were first investigated using 22 factorial experimental designs. The 

influences of various parameters on Kp which included the probe membrane age (5 

day usage), probe electrolyte age (5 day usage), agitation rates (600-1200rpm), 

alkane concentrations (2.5-20% (v/v)), alkane chain lengths (n-C10-13 and n-C14-20), 

solids loadings (1-10g/L), solids particle sizes (3-14µm) and their interactions were 

investigated at the chosen low level (-1) and high level (1) (Table 4.4). Four 

independent 22 factorial experimental designs were used to statistically quantify the 

effects of these factors on Kp using an analysis tool pack (STATISTICA) which led to 

the analysis of the first hypothesis. The Kp values obtained according to the series of 

designs are listed in Appendices A7.1-A7.4. A 22 experimental design is a two level 

factorial experiment with two factors under investigation showing all possible 

treatment combinations at the two levels (-1 and 1) (Vining, 1998) (Table 4.5). 

Table 4.4: Factors affecting Kp at two levels 
Experiment Factor Low level  High level 

1 A. Membrane age Day 1 Day 5 

 B. Electrolyte age Day 1 Day 5 

2 A. Agitation rate  600rpm 1200rpm 

 B. Alkane concentration  2.5% (v/v) 20% (v/v) 
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Table 4.5: 22 Experimental design used to quantify factors affecting Kp at two levels 

After evaluating factors affecting Kp, KLa was measured in n-C10-13-aqueous 

dispersions and n-C14-20-aqueous dispersions for varying alkane concentrations of 

2.5-20% (v/v) and agitation rates of 600-1200rpm. Average KLa results from the 

second order response model, GOP (lag) and the first order response model, GOP 

(no lag) in the alkane-aqueous dispersions were compared using a t-test to 

statistically quantify Kp effects on KLa measurement in alkane multiphase systems 

leading to further analysis of the first hypothesis. Also the effect of agitation rate on 

KLa differences due to Kp effects in these dispersions was also quantified using the t-

test in these dispersions. Additionally, average KLa results from the PSP and the 

GOP (lag) in the n-C10-13-aqueous dispersions were compared using the t-test to 

statistically quantify if the PSP and GOP (lag) methodologies resulted in the same 

KLa values since they both account for Kp effects. This also led to the analysis of the 

first hypothesis. 

4.5.2 Quantification of the behavior of the overall volumetric 
oxygen transfer coefficient  

4.5.2.1 Alkane-aqueous dispersions with inert solids 

The influences of various parameters on KLa in alkane-solid-aqueous dispersions 

with inert solids including agitation rates (600-1200rpm), alkane concentrations (2.5-

20% (v/v)), solids loadings (1-10g/L) and solids particle sizes (3-14µm) were 

investigated at both the low level (-1) and the high level (1) (Table 4.6). A 24 factorial 

experimental design was used to statistically quantify the effects of these factors and 

their interactions on KLa considering the low level (-1) and the high level (1) (Vining, 

3 A. Alkane chain length  n-C10-13 n-C14-20 

 B. Alkane concentration  2.5% (v/v) 20% (v/v) 

4 A. Solids loading 1g/L 10g/L 

 B. Solids particle size  3µm 14µm 

  Factor Treatment Combination 

A B  

-1 -1 A low,B low 

1 -1 A high,B low 

-1 1 A low,B high 

1 1 A high,B high 
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1998) (Table 4.7). This led to the analysis of the second hypothesis. A 24 

experimental design is a two level factorial experiment with four factors under 

investigation showing all possible treatment combinations at the two levels (Vining 

1998). The effect of two factors and their interaction was determined when the other 

two factors were kept constant at the center conditions i.e. agitation of 900rpm, 

alkane concentration of 11.25% (v/v), solids loading of 5.5g/L and solids particle size 

of 9µm. 

The centre conditions in this system could not be investigated due to the absence of 

a solid particle with similar density to corn flour and CaCO3 but with a particle size of 

9µm. So the data from the experiments only show KLa behavior at the low and high 

levels but does not conclusively show the actual KLa trend since no center conditions 

were investigated. However, this was enabled the estimation of the range of 

parameters to use in the experiments with inactive yeast cells where process 

conditions at the centre point could be evaluated. 

Table 4.6: Factors affecting KLa in alkane-inert solid-aqueous dispersions at two 
 levels 

 

Factor Low level (-1) High level (1) 

A. Agitation rate  600rpm 1200rpm 

B. Alkane concentration  2.5% (v/v) 20% (v/v) 

C. Solids loading  1g/L 10g/L 

D. Solids particle size  3µm 14µm 
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Table 4.7: 24 Experimental design used to quantify factors affecting KLa in alkane-
 inert solid-aqueous dispersions 

Factor Treatment Combination
 

A B C D  

-1 -1 -1 -1 A low,B low,C low,D low 

1 -1 -1 -1 A high,B low,C low,D low 

-1 1 -1 -1 A low,B high,C low,D low 

1 1 -1 -1 A high,B high,C low,D low 

-1 -1 1 -1 A low,B low,C high,D low 

1 -1 1 -1 A high,B low,C high,D low 

-1 1 1 -1 A low,B high,C high,D low 

1 1 1 -1 A high,B high,C high,D low 

-1 -1 -1 1 A low,B low,C low,D high 

1 -1 -1 1 A high,B low,C low,D high 

-1 1 -1 1 A low,B high,C low,D high 

1 1 -1 1 A high,B high,C low,D high 

-1 -1 1 1 A low,B low,C high,D high 

1 -1 1 1 A high,B low,C high,D high 

-1 1 1 1 A low,B high,C high,D high 

1 1 1 1 A high,B high,C high,D high 

Additionally, influences of alkane concentrations (2.5-20% (v/v)), solids loadings (1-

10g/L), solids particle sizes (3-14µm) and their interactions on fluid viscosity and fluid 

surface tension were quantified at the low level (-1) and the high level (1) (Table 4.8). 

A 23 factorial design was used to quantify effects of alkane concentration, solids 

loading, solids particle size and their interaction on fluid viscosity and fluid surface 

tension at two levels in alkane-inert solid-aqueous dispersions (Table 4.9). 
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The effect of individual parameters and interaction between two factors was 

determined when one of the factors was kept constant i.e. at alkane concentration of 

11.25% (v/v), solids loading of 5.5g/L and solids particle size of 9µm. The factorial 

design on influences of fluid viscosity and surface tension in systems with inert solids 

helped in analysis of the second hypothesis. 

Table 4.8: Factors affecting fluid viscosity and fluid surface tension at two levels in 
 alkane-inert solid-aqueous dispersions 

Table 4.9: 23 Experimental design used to quantify factors affecting fluid surface 
 tension and fluid viscosity in alkane-inert solid-aqueous dispersions 

4.5.2.2 Alkane-aqueous dispersions with inactive yeast cells 

The influences of various parameters on KLa in alkane-solid-aqueous dispersions 

with inactive yeast including of agitation rates (600-900rpm), alkane concentrations 

(2.5-11.25% (v/v)) and yeast loadings (1-5.5g/L) as typical on KLa were investigated 

in alkane-yeast-aqueous dispersions at both the low level (-1) and high level (1) as 

well as the centre run (0) (Table 4.10). In the yeast experiment, the parameter range 

Factor Low level (-1) High level (1) 

A. Alkane concentration  2.5% (v/v) 20% (v/v) 

B. Solids loading  1g/L 10g/L 

C. Solids particle size  3µm 14µm 

 Factor  Treatment Combination 

A B C  

-1 -1 -1 A low,B low,C low 

1 -1 -1 A high,B low,C low 

-1 1 -1 A low,B high,C low 

1 1 -1 A high,B high,C low 

-1 -1 1 A low,B low,C high 

1 -1 1 A high,B low,C high 

-1 1 1 A low,B high,C high 

1 1 1 A high,B high,C high 
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was narrowed to more accurately represent conditions in a bioprocess. A centre run 

was done at an alkane concentration of 6.88% (v/v), agitation rate of 750rpm and 

yeast loading of 3.25g/L for the alkane-yeast-aqueous dispersions to check for any 

curvature in KLa behavior. 

A 23 factorial experimental design was used to statistically quantify effects of agitation 

rate, alkane concentration, yeast loading and their interaction on KLa considering the 

low level and the high level (Table 4.11). This led to the analysis of the third 

hypothesis. A 23 experimental design is a two level factorial experiment with three 

factors under investigation showing all possible treatment combinations at the two 

levels (Vining, 1998) (Table 4.11). 

Table 4.10: Factors affecting KLa at two levels in alkane-yeast-aqueous dispersions 

Table 4.11: 23 Experimental design used to quantify factors affecting KLa in alkane-
 yeast-aqueous dispersions 

Factor
 

Low level (-1)
 

Center point (0)
 

High level (1)
 

A. Agitation rate
 

600rpm
 

750rpm
 

900rpm
 

B. Alkane concentration
 

2.5% (v/v)
 

6.88% (v/v)
 

11.25% (v/v)
 

C. Yeast loading
 

1g/L
 

3.25g/L
 

5.5g/L
 

 Factor  Treatment Combination 

A B C  

-1 -1 -1 A low,B low,C low 

1 -1 -1 A high,B low,C low 

-1 1 -1 A low,B high,C low 

1 1 -1 A high,B high,C low 

-1 -1 1 A low,B low,C high 

1 -1 1 A high,B low,C high 

-1 1 1 A low,B high,C high 

1 1 1 A high,B high,C high 

0 0 0 Center point 
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Additionally, influences of alkane concentrations (2.5-11.25% (v/v)), yeast loadings 

(1-5.5g/L) and their interactions on fluid viscosity and fluid surface tension were also 

quantified in the alkane-yeast-aqueous dispersions at the low level (-1) and high level 

(1) (Table 4.12). A centre run (0) was done at an alkane concentration of 6.88% (v/v) 

and yeast loading of 3.25g/L to check for any curvature in fluid viscosity and fluid 

surface tension behavior in these systems (Table 4.12). A 22 factorial design with a 

centre point (Table 4.13) was used to quantify effects of alkane concentration; yeast 

loading and their interaction on fluid viscosity and fluid surface tension at two levels 

in alkane-yeast-aqueous dispersions (Table 4.13). The factorial design on influences 

of fluid viscosity and surface tension in systems with inactive yeast helped in analysis 

of the third hypothesis. 

Table 4.12: Factors affecting on fluid viscosity and fluid surface tension at two levels 
 in alkane-yeast-aqueous dispersions 

Table 4.13: 22 Experimental design used to quantify factors affecting on fluid viscosity 
 and fluid surface tension at two levels in alkane-yeast-aqueous 
 dispersions 

Factor Low level (-1) Center point (0) High level (1) 

A. Alkane concentration  2.5% (v/v) 6.88% (v/v) 11.25% (v/v) 

B. Yeast loading  1g/L 3.25g/L 5.5g/L 

  Factor Treatment Combination 

A B  

-1 -1 A low,B low 

1 -1 A high,B low 

-1 1 A low,B high 

1 1 A high,B high 

0 0 Center point 
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5 RESULTS AND DISCUSSION 
Results and discussion are divided into two parts which are, firstly, the evaluation of 

an accurate KLa measurement method in alkane multiphase systems, which 

accounts for Kp effects and, secondly, the quantification of KLa behavior in aerated 

agitated alkane-solid-aqueous dispersions in systems with inert solids and inactive 

yeast using this accurate measurement method. When quantifying KLa, the influence 

of fluid viscosity and fluid surface tension on KLa was also evaluated in alkane-solid-

aqueous dispersions with both inert solids and inactive yeast. Analysis software 

(STATISTICA) was used for results analysis at 99% confidence interval and the t-test 

was used for comparing KLa results from different measurement methods. The 

details of the statistical analyses are detailed in section 4.5. 

5.1 Evaluation of measurement method in alkane 
multiphase systems 

The DO probe response lag time and how it impacts KLa measurement in an alkane 

based system was investigated. Influences of membrane age, electrolyte age, 

agitation rate, alkane concentration, alkane chain length, solids loading, solids 

particle size and their interactions on Kp were investigated. The effects of these 

parameters will be explained in accordance with the individual experiments carried 

out. 

Additionally, Kp was incorporated into KLa measurement for each process condition 

according to the GOP (lag) second order response model, and the results were 

compared to those from the GOP (no lag) first order response model in which Kp was 

neglected. Lastly the KLa calculated from the second order response model and the 

PSP were compared since both methods incorporate Kp effects in their methodology. 

5.1.1 Factors affecting the probe response lag time 

5.1.1.1 Effect of membrane age, electrolyte age and their interaction  

Increase in membrane age and electrolyte age contributed to Kp decrease over a 

period of 5 days in 2.5% (v/v) n-C14-20-aqueous dispersions at 1000rpm (see Table 

A7.1 for results). Membrane age caused the major decrease with an effect of -21.34 

compared to electrolyte age which had approximately half the effect. Their interactive 

effect on Kp was insignificant at 99% confidence interval (Figure 5.1). 
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Figure 5.1 Pareto chart for effect of membrane age, electrolyte age and their 

 interaction on Kp in 2.5% (v/v) n-C14-20-aqueous dispersions at 

 1000rpm 

The influence of the membrane and electrolyte age is demonstrated by means of a 

surface plot (Figure 5.2). Kp had a maximum value of 0.0559s-1 when both membrane 

and electrolyte were new and gradually decreased to 0.0329s-1 with an increase in 

membrane age and electrolyte usage. This behavior is in agreement to the work of 

Aiba and Huang (1969) who studied oxygen permeability and diffusivity in polymer 

membranes immersed in aqueous solutions and to that of Benedek and Heideger 

(1970) who studied the effect of the response lag time in non-steady state aeration 

aqueous systems. They demonstrated that when the membrane was continuously 

used, an artificial space formed between the DO probe membrane and cathode due 

to stretching which resulted in longer probe response times. This artificial space also 

resulted in the formation of excess platinum oxides at the cathode which resulted in 

an over potential, making the platinum oxides behave like contaminants at the 

cathode, thus the DO probe’s slow response. Also as the DO probe electrolyte usage 

increased, a reduction product, AgCI, formed at the probe anode which also 

contributes to the slow response of the probe and possibly reduction in conductivity 

of electrolyte. 
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Figure.5.2 Surface response for effect of membrane age, electrolyte age and 
their interaction on Kp in 2.5% (v/v) n-C14-20-aqueous dispersions at 
1000rpm 

5.1.1.2 Effect of agitation rate, alkane concentration and their interaction  

An increase in alkane concentration decreased Kp with an effect of -9.12 whilst an 

increase in agitation rate was insignificant at 99% confidence interval (Figure 5.3) 

(see Table A7.2 for results). Secondly the interactive effect between increasing 

agitation rate and alkane concentration was insignificant at 99% confidence interval 

(Figure 5.3). 
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Figure 5.3 Pareto chart for effect of agitation rate, alkane concentration and their 
interaction on Kp in 2.5-20% (v/v) n-C14-20-aqueous dispersions 

Kp had a maximum value of 0.0434s-1 when the alkane concentration in the 

dispersion was 2.5% (v/v) and agitation rate was at 1200rpm. As the alkane 

concentration increased to 20% (v/v), Kp decreased to 0.0373s-1 at 600rpm and 

0.0377s-1 at 1200rpm (Figure 5.4). This was possibly because, as the alkane 

concentration increased, the fluid viscosity increased as indicated by Queimada et al. 

(2004) and Correia et al. (2010). This thickened the liquid film increasing the 

resistance to DO transfer through the liquid film. This same result was obtained by 

Dang et al. (1977) in 2% (v/v) CMC solution and they indicated that for very viscous 

systems the film diffusion contributes to higher probe response lag times which 

cannot be neglected. They also indicated that the probe response times in 2% (v/v) 

CMC additive can be 15% higher than that free from any additives which was in 

agreement to Godbole et al. (1980)’s findings who reported a threefold increase in 

the probe response lag time in CMC solutions compared to water. 
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Figure 5.4 Surface response for effect of agitation rate and alkane concentration 
on Kp in 2.5-20% (v/v) n-C14-20-aqueous dispersions at 1000rpm 

5.1.1.3 Effect of alkane chain length, alkane concentration and their 
interaction  

Kp decreased with increase in alkane chain length from n-C10-13 to n-C14-20 and alkane 

concentration from 2.5% (v/v) to 20% (v/v) with alkane concentration having the 

major effect of -44.8, about 7 times greater than the effect of the average alkane 

chain length (Figure 5.5) (see Table A7.3 for results). The interaction between these 

two factors on Kp was insignificant at 99% confidence interval (Figure 5.5). 
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Figure 5.5  Pareto chart for effect of alkane chain length, alkane concentration 
and their interaction on Kp in 2.5-20% (v/v) n-C14-20-aqueous 
dispersions at 1000rpm 

Kp had a maximum value of 0.0589s-1 in 2.5% (v/v) n-C10-13-aqueous dispersions and 

slightly decreased to 0.0556s-1 in 2.5% (v/v) n-C14-20-aqueous dispersions. However 

at an alkane concentration of 20% (v/v) Kp decreased from 0.0327s-1 in n-C10-13-

aqueous dispersions to 0.0280s-1 in n-C14-20-aqueous dispersions (Figure 5.6). This 

was attributed to an increase in the fluid viscosity with increase in both alkane chain 

length alkane concentration as indicated by Koide et al. (1976) and Correia et al. 

(2010), resulting in more time required by the DO to diffuse through the liquid film 

hence longer DO probe response lag times. The same result was obtained by Ruchti 

et al. (1981) when their response lag time due to the film diffusion effect increased 

from 21s in 1% (v/v) CMC to about 40s in 2.7% (v/v) CMC solution. This was also in 

agreement to the work of Nakanoh and Yoshida (1980) who indicated that Kp was 

very much dependent on fluid properties. 
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Figure 5.6 Surface response for effect of alkane chain length and alkane 
concentration on Kp in 2.5-20% (v/v) n-C10-13 and n-C14-20-aqueous 
dispersions at 1000rpm 

5.1.1.4 Effect of solids loading, solids particle size and their interaction  

Increasing solids loading from 1g/L to 10g/L, solids particle size from 3µm to 14µm 

and their interaction did not have statistically significant effects on Kp in 2.5% (v/v) n-

C14-20-solid-aqueous dispersions at 1000rpm at 99% confidence interval. Solids 

loading depressed Kp with a minor effect of -1.46; solids particle sizes depressed Kp 

with an effect of -0.46 and their interactive effect was 1.29 which insignificantly 

enhanced Kp (Figure 5.7) (see Table A7.4). 
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Figure 5.7 Pareto chart for effect of solids loading, solids particle size and their 
interaction on Kp in 2.5% (v/v) n-C14-20-solid-aqueous dispersions at 
1000rpm 

This is also evident in the surface plot where only a slight decrease in Kp occurred 

with increase on solids addition (Figure 5.8). Maximum Kp of 0.0376s-1 was found at 

a solids particle size of 3µm and solids loading of <2g/L. Nevertheless, in a system 

by Mills et al. (1987), it has been suggested that solids loading promoted solids 

accumulation on the gas-liquid film hindering DO movement through the gas-liquid 

film to the membrane and solids particles acted as physical barriers to DO transfer 

through the gas-liquid interface both decreasing Kp. Mills et al. (1987) showed that a 

DO probe in a NaCI aqueous system containing 40wt% of 66µm soda lime beads 

had a probe response time of 25s which was 6s higher as compared to a NaCI 

aqueous system without solids. This suggests that the effect of solids loading 

becomes significant at higher levels, possibly at levels higher than would be 

expected in a bioprocess. 
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Figure 5.8 Surface response for effect of solids loading and particle size on Kp in 
2.5% (v/v) n-C14-20-solid-aqueous dispersions at 1000rpm 

When considering the relative effects of the investigated parameters on Kp, it appears 

that Kp was predominantly influenced by the increase in the probe electrolyte age and 

probe membrane age, alkane concentration and alkane chain length which 

decreased Kp (Figure 5.1; Figure 5.3 and Figure 5.5). 

5.1.2 Influence of the probe response lag time on the overall 
volumetric oxygen transfer coefficient 

After an understanding of factors affecting Kp, KLa was determined using both the 

GOP (lag) second order response model and the GOP (no lag) first order response 

model in n-C14-20-aqueous dispersions (see Tables A7.5-A7.7 for results) and n-C10-

13-aqueous dispersions (see Tables A7.8-A7.10 for results). Analysis of the results 

using a t-test whereby equal KLa means were assumed from the two methodologies 

to test for the differences (see Table A8.1 and Table A8.2 for analysis) showed that 

the GOP (lag) and the GOP (no lag) did not give the same KLa values under the 

same process conditions (Figure 5.9 and Figure 5.10). The discrepancy was mainly 

attributed to the effect of Kp. Overall average KLa values in n-C14-20-aqueous 

dispersions were about 50% higher in the GOP (lag) whilst those in n-C10-13-aqueous 

dispersions were about 40% higher compared to those from the GOP (no lag) for 

agitation rates of 600-1200rpm and alkane concentrations of 2.5-20% (v/v). Although 
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there did not appear to be a definite trend in the difference in KLa values with 

changes in alkane concentration, the difference in  these values appeared to be 

damped at the highest alkane concentration for both chain lengths.(Figure 5.11 and 

Figure 5.12). 

Figure 5.9 Comparison of KLa results from GOP (no lag) and GOP (lag) in 0-

 20% (v/v) n-C14-20-aqueous dispersions for agitation 600-1200rpm 

 

Figure 5.10 Comparison of KLa results from GOP (no lag) and GOP (lag) in 0-
20% (v/v) n-C10-13-aqueous dispersions for agitation 600-1200rpm 
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However, as agitation rate increased, the difference between the KLa values in the 

GOP (no lag) and the GOP (lag) increased in both n-C14-20 and n-C10-13-aqueous 

dispersions (Figure 5.11 and Figure 5.12). A t-test which is based on the analysis of 

variance quantified the effect of increasing KLa error in the GOP (no lag) due to Kp 

effects with increasing agitation rate as significant since the F variance ratio 

increased as agitation rate increased from 600rpm to 1200rpm (see Table A8.3 and 

Table A8.4 for analysis). 

As agitation rate increased, from 600rpm to 1200rpm the difference for average KLa 

values between the GOP (no lag) and the GOP (lag) increased for all the alkane 

concentrations and alkane chain lengths, but, is more evident for agitation rates 

>800rpm (Figure 5.11 and Figure 5.12). In addition, the differences on KLa due to Kp 

effects was more than 1.7 times greater at 1200rpm as compared with 600rpm for all 

alkane concentrations and alkane chain lengths (see Table A8.3 and Table A8.4’s F 

variance ratio at different agitations). Greatest deviations of 45% were observed at 

1200rpm in 5% (v/v) n-C14-20-aqueous dispersions and 46% at 1200rpm and 10% 

(v/v) in n-C10-13-aqueous dispersions (Figure 5.11 and Figure 5.12). This is probably 

due to the fact that as agitation rate increased, KLa increased due to enhanced 

bubble breakage and turbulence on the gas-liquid interface thus promoting DO 

transfer. Under these conditions, the magnitude of KLa and Kp became almost equal 

i.e. pτ  ≈ 1/Kp ≈ 1/KLa. Van’t Riet (1979) and Ruchti et al. (1981) have suggested that 

Kp effects when pτ  ≈ 1/KLa could not be neglected. 

This result was similar to the work of Nielsen et al. (2003) who reported an increase 

of more than 25% in KLa values greater than 0.25s-1 if a DO probe response lag time 

of 11.2s in hexadecane organic phases. Interestingly they obtained the same KLa 

from the GOP (no lag) and the GOP (lag) at low agitations of 400rpm. Gourich et al. 

(2008) also measured KLa in propanol and water systems and after incorporating a 

DO probe response lag time of 7s, their KLa increased by more than 40% both in 

water and propanol at higher gas velocities of 0.087m/s but did not change at low 

gas velocities of 0.007m/s compared to KLa measured by the GOP (no lag). 
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Figure 5.11 Difference in average KLa results from the GOP (no lag) and GOP 
(lag) in 0-20% (v/v) n-C14-20-aqueous dispersions for agitation 600-
1200rpm 

 

Figure 5.12  Difference in average KLa results from the GOP (no lag) and GOP 

(lag) in 0- 20% (v/v) n-C10-13-aqueous dispersions for agitation 600-

 1200rpm 

KLa results for n-C10-13-aqueous dispersions measured from the GOP (lag) second 

order response model in this work and those previously measured from the PSP by 

Correia and Clarke (2009) (see Table A7.11 for results) were compared. KLa results 

from the two methodologies showed no significant difference (Figure 5.13). A t-test 

analysis for the overall average KLa values from both the GOP (lag) and the PSP 

showed only a 1.6% difference which was insignificant (see Table A8.5 for analysis). 
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Correia and Clarke (2009) also reported the PSP to be superior over the GOP (no 

lag) as agitation rate increased for all alkane concentrations and a 49% 

underestimation was observed in 5% (v/v) and 1200rpm (see Figure 2.4). This was 

mainly attributed to increase in Kp effects on KLa as agitation rate and alkane 

concentration increased resulting in erroneous KLa values. This agrees with the 

trends found in both n-C14-20-aqueous dispersions with a deviation of 45% at 

1200rpm in 5% (v/v) and 46% in n-C10-13-aqueous dispersions at 1200rpm in 10% 

(v/v) for this work (Figure 5.11 and Figure 5.12). 

 

Figure 5.13  Comparison of KLa results from the PSP by Correia and Clarke (2009) 

  and GOP (lag) in 0-20% (v/v) n-C10-13-aqueous dispersions for  

  agitation 600-1200rpm 

The GOP (lag) second order response model was therefore, chosen as the accurate 

KLa measurement method in alkane solid-aqueous dispersions over the PSP due to 

its relative simplicity. 
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5.2 Quantification of the behavior of the overall 
volumetric oxygen transfer coefficient in aerated 
agitated alkane-solid-aqueous dispersions 

KLa behavior was quantified in aerated agitated alkane-solid-aqueous dispersions 

using the GOP (lag) second order response model methodology. The effect of 

agitation rate and the impact of alterations in fluid properties due to changes in solids 

loading, solids particle sizes, alkane concentration and their interactions on KLa, µ 

and σ were quantified in both alkane-inert solid-aqueous dispersions and alkane-

yeast-aqueous dispersions. 

5.2.1 Alkane-aqueous dispersions with inert solids 
KLa behavior was quantified at discrete agitation rates (600-1200rpm), alkane 

concentrations (2.5-20% (v/v)), inert solids loadings (1-10g/L), solids particle sizes (3-

14µm) and their interactions in n-C14-20-inert solid-aqueous dispersions (see Table 

A7.13 and Table A7.14 for results). According to the statistical analysis KLa was 

significantly enhanced by increasing agitation rate by an effect of 19.8 and the 

interaction between increasing alkane concentration and solids loading by an effect 

of 4.15 (Figure 5.14). Contrarily increase in alkane concentration significantly 

decreased KLa with an effect of -13.6, increase in solids particle size decreased KLa 

with an effect of -3.33 and also the interaction between increasing agitation rate and 

solids particle size with an effect of -3.54 (Figure 5.14). 

The fluid viscosity was also measured in n-C14-20-inert solid-aqueous dispersions for 

the same process conditions in which KLa was determined to understand KLa 

behavior in terms of fluid properties. The magnitude of the effects and their 

interactive effects were quantified (see Table A7.15 for results). According to the 

statistical analysis the fluid viscosity significantly increased with increase in alkane 

concentration with an effect of 6.12 and solids loading with an effect of 4.37 (Figure 

5.15). Contrarily, the fluid viscosity decreased with increase in solids particle size with 

an effect of -8.24, the interaction between increasing alkane concentration and solids 

particle size with an effect of -7.55 and the interaction between increasing solids 

loading and solids particle size with an effect of -3.85 (Figure 5.15). 

The fluid surface tension was also measured in n-C14-20-inert solid-aqueous 

dispersions for the same process conditions at which KLa was determined and the 

size of the effects and their interactive effects were quantified (see Table A7.16 for 

results). According to the statistical analysis the fluid surface tension significantly 
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increased with increase in solids loading with an effect of 7.05 (Figure 5.16). 

Contrarily, increase in solids particle size decreased the fluid surface tension with an 

effect of -5.50 and the interaction between increasing alkane concentration and 

solids particle size with an effect of -9.85 (Figure 5.16). 

 

Figure 5.14 Pareto chart for effect of agitation, alkane concentration, inert solids 
loading, particle size and their interactions on KLa 

 

Figure 5.15  Pareto chart for effect of alkane concentration, inert solids loading, 
particle size and their interactions on fluid viscosity 
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Figure 5.16  Pareto chart for effect of alkane concentration, inert solids loading, 
particle size and their interactions on fluid surface tension 

The effects of the parameters as well as their interactions on KLa in n-C14-20-inert 

solid-aqueous dispersions are discussed in the following sections 5.2.1.1 - 5.2.1.10. 

The surface response curves in these sections were generated for two varying 

parameters whilst the other two parameters were assumed constant at median 

conditions i.e. agitation of 950rpm, alkane concentration of 11.25% (v/v), solids 

loading of 5.5g/L and solids particle size of 9µm. 

5.2.1.1 Effect of agitation rate  

Increasing agitation rate from 600rpm to 1200rpm significantly enhanced KLa in n-

C14-20-inert solid-aqueous dispersions (Figure 5.14). Due to the influence of agitation 

rate, KLa increased from 0.0275s-1 to 0.060s-1 in 2.5% (v/v) alkane (Figure 5.17) and 

increased from 0.025s-1 to 0.050s-1 at a solids loading of 1g/L (Figure 5.18) and 

solids particle size of 3µm (Figure 5.19) over the same agitation range. Increases in 

agitation rate have also been reported to enhance KLa in hydrocarbon-aqueous 

dispersions and aqueous systems with solids suspended by several authors (Bartos 

and Satterfield, 1986; Ju and Sundararajan, 1994, Ozbek and Gayik, 2001; Clarke et 

al., 2006; Correia and Clarke, 2009). 

Increased agitation rate promotes DO bubble breakage resulting in higher gas-liquid 

interfacial area per unit volume due to reduction in D32 and increased Gε  (Yoshida 

and Miura, 1963; van Dierenolonck et al., 1968; Hassan and Robinson, 1977b; 

Parthasarathy and Ahmed, 1994; Correia et al., 2010). Increased agitation also 
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caused a reduction in the gas-liquid boundary thickness due to the increased 

turbulent effects resulting in a higher KL (Alves et al., 2004). This combined effect 

caused the higher KLa values resulting in increased agitation rate being a major KLa 

enhancement factor. 

 

Figure 5.17  Surface response for effect of agitation and alkane concentration on 
KLa at constant inert solids loading of 5.5g/L and particle size of 9µm 

 

Figure 5.18  Surface response for effect of agitation and inert solids loading on 
KLa at constant 11.25% (v/v) n-C14-20 alkane and particle size of 9µm 
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Figure 5.19  Surface response for effect of agitation and particle size on KLa at 
constant 11.25% (v/v) n-C14-20 alkane and inert solids loading of 
5.5g/L 

5.2.1.2 Effect of alkane concentration 

Increase in alkane concentration from 2.5% (v/v) to 20% (v/v) significantly decreased 

KLa in n-C14-20-inert solid-aqueous dispersions (Figure 5.14). KLa decreased from 

0.0275s-1 to 0.0175s-1 at an agitation of 600rpm (Figure 5.17); decreased from 

0.050s-1 to 0.0275s-1 at a solids loading of 1g/L (Figure 5.20) and decreased from 

0.050s-1 to 0.0475s-1 at solids particle size of 3µm (Figure 5.21) over the same 

alkane concentration range. This is more evident at concentrations >15% (v/v) due to 

increase in fluid viscosity with increase in alkane concentration (Figure 5.15) from 

1.075mPa.s to 1.20mPa.s at a solids loading of 1g/L (Figure 5.22) and increase from 

1.15mPa.s to 1.40mPa.s at solids particle size of 3µm (Figure 5.23). This 

counteracted the insignificant decrease in fluid surface tension due to increase in 

alkane concentration from 65mN/m to 63mN/m at a solids loading of 1g/L (Figure 

5.16 and Figure 5.24). This overall increase in fluid viscosity promoted bubble 

coalescence, lowering the gas-liquid interfacial area per unit volume through 

increased D32 and lowered Gε  as indicated by several authors in literature (Schumpe 

and Deckwer, 1982; Das et al., 1985; Khare and Joshi, 1990; O’Connor et al., 1990; 
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Schafer et al., 2002; Garcia-Ochoa and Gomez, 2004; Kilonzo and Margaritis, 2004; 

Hu et al., 2005; Mehria et al., 2005). 

The overall increase in fluid viscosity also resulted in lowered DO transport through 

the gas-liquid film resulting in lower KL values due to decreased DO diffusivity 

(Calderbank and Moo-Yang, 1961; Juretzek et al., 2000; Elgozalia et al., 2002; 

Garcia-Ochoa and Gomez, 2005). This is in agreement to the work of Correia et al. 

(2010) who reported a doubled increase in fluid viscosity over fluid surface tension 

with increase in alkane concentration in 2.5-20% (v/v) n-C10-13-aqueous dispersions 

resulting in KLa decrease. 

 

Figure 5.20  Surface response for effect of alkane concentration and inert solids 
loading on KLa at constant agitation of 900rpm and particle size of 
9µm 



Chapter 5   Results and discussion 

72 
 

 

Figure 5.21  Surface response for effect of alkane concentration and particle size 
on KLa at constant agitation of 900rpm and inert solids loading of 
5.5g/L 

 

Figure 5.22  Surface response for effect of alkane concentration and inert solids 
loading on fluid viscosity at constant particle size of 9µm 
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Figure 5.23  Surface response for effect of alkane concentration and particle size 
on fluid viscosity at constant solids loading of 5.5g/L 

 

Figure 5.24  Surface response for effect of alkane concentration and inert solids 
loading on fluid surface tension at constant particle size of 9µm 
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5.2.1.3 Effect of solids loading  

Increase in solids loading from 1g/L to 10g/L decreased KLa in n-C14-20-inert solid-

aqueous dispersions but the effect was insignificant (Figure 5.14). KLa decreased up 

to 0.0250s-1 at an agitation of 600rpm (Figure 5.18); decreased from 0.050s-1 to 

0.0375s-1 in 2.5% (v/v) n-C14-20 alkane (Figure 5.20) and decreased from 0.050s-1 to 

0.0375s-1 at a particle size of 3µm (Figure 5.25) over the same solids loading range. 

Decreases in KLa with increase in solids loading have been widely reported in 

literature by several authors although the decrease has never been confirmed 

statistically (Bartoes and Satterfield, 1986; Mills et al., 1987; Chisti and Moo-Yang, 

1988; Ju and Sundararajan, 1994; Hwang and Lu, 1997; Kawase et al., 1997; Ozbek 

and Gayik, 2001; Benchapattarapong et al., 2005; Mena et al., 2005). 

A lowering of KLa on increased solids loading has been suggested to result due to 

enhanced coalescence since solids loading increased fluid viscosity. This lowered 

gas hold up and increasing D32 resulting in decreased gas-liquid interfacial area per 

unit volume (Lee et al., 1982; Gollakotta and Guin, 1984; Fukuma et al., 1987; Mills 

et al., 1987; Chisti and Moo-Yang, 1988; Sun and Furusaki, 1988; O’Connor et al., 

1990; Zahradnik et al., 1992; Yagi and Yoshida, 1994; Van Weert et al., 1999; 

Krishna et al., 1997; Reese et al., 1996; Nicolella et al., 1998; Freitas and Teixeira, 

2001). Solids loading also resulted in blockage of the gas-liquid interface decreasing 

DO diffusivity and also increased coalescence in the dispersion, both factors 

effectively lowering KL (Chisti and Moo-Yang, 1988). 

In this work, both fluid viscosity and fluid surface tension increased upon solids 

addition (Figure 5.15 and Figure 5.16). The fluid viscosity increased from 1.075mPa.s 

to 1.175mPa.s in 2.5% (v/v) n-C14-20 alkane (Figure 5.22) and also from 1.175mPa.s 

to 1.40mPa.s for a particle size of 3µm (Figure 5.26). Likewise the fluid surface 

tension increased from 65mN/m to 70mN/m in 2.5% (v/v) n-C14-20 alkane (Figure 

5.24) and also from 67mN/m to 72mN/m for a particle size of 3µm (Figure 5.27). This 

promoted coalescence effects in the dispersion. Albal et al. (1983) also reported a 

fluid viscosity increase upon increased solids loading in glass beads and oil shale 

particles aqueous systems which resulted in overall decrease of KLa. 
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Figure 5.25  Surface response for effect of inert solids loading and particle size on 
KLa at constant agitation of 900rpm and 11.25% (v/v) n-C14-20 alkane 

 

Figure 5.26  Surface response for effect of inert solids loading and particle size on 
fluid viscosity at constant 11.25% (v/v) n-C14-20 alkane 
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Figure 5.27  Surface response for effect of inert solids loading and particle size on 
fluid surface tension at constant 11.25% (v/v) n-C14-20 alkane 

5.2.1.4 Effect of solids particle size  

KLa significantly decreased with increase in solids particle size from 3µm to 14µm in 

n-C14-20-inert solid-aqueous dispersions (Figure 5.14). KLa was less than 0.0250s-1 at 

an agitation of 600rpm (Figure 5.19), from 0.0500s-1 to 0.0475s-1 in 2.5% (v/v) n-C14-

20 alkane (Figure 5.21) and from 0.0400s-1 to 0.0350s-1 at a solids loading of 1g/L 

(Figure 5.25) over the same solids particle size range. Large solid particles caused a 

reduction in gas-liquid interfacial area per unit volume due to the attachment of solid 

particles on the gas bubble resulting in larger D32 and decreased gas hold-up 

(Miyachi et al., 1981; Sada et al., 1986). Due to this KLa decreased with increase in 

solids particle sizes despite the decrease in both fluid viscosity (Figure 5.15; Figure 

5.23 and Figure 5.26) and fluid surface tension (Figure 5.16 and Figure 5.27) with 

increase in solids particle sizes. The same behavior was reported by Nicolella et al. 

(1998) in aqueous systems with 2.2wt% of 0.34mm basalt particles and 12wt% of 

1.95mm biofilm particles. Their Gε  decreased with increase in both solids loading and 

solids particle size and they attributed this to decrease in the number of bubbles 

present in the system resulting in an overall decreased KLa. 

5.2.1.5 Effect of interaction between agitation rate and alkane concentration  

The interactive effect between increasing both agitation rate from 600rpm to 1200rpm 

and alkane concentration from 2.5% (v/v) to 20% (v/v) in n-C14-20-inert solid-aqueous 

dispersions was insignificant on KLa (Figure 5.14). This was because of the viscous 
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nature of the alkane (Figure 5.15). This reduced the turbulent effect exerted by 

increase in agitation rate, resulting in both lower gas-liquid interfacial area per unit 

volume and KL (Calderbank, 1958; Khare and Joshi, 1990; O’Connor et al., 1990; 

Schafer et al., 2002). Since the influence of fluid surface tension was negligible in this 

range, only the effects of turbulence and fluid viscosity were considered. 

5.2.1.6 Effect of interaction between agitation rate and solids loading  

The interactive effect between increasing agitation rate from 600rpm to 1200rpm and 

solids loading from 1g/L to 10g/L insignificantly depressed KLa in n-C14-20-inert solid-

aqueous dispersions (Figure 5.14). This is possibly because as solids loading 

increased, the turbulent effects in the fluid were reduced due to the significant 

increase in both fluid viscosity and fluid surface tension (Figure 5.15 and Figure 

5.16). This counteracted the effect of the agitation rate by lowering both gas-liquid 

interfacial area per unit volume and KL. 

5.2.1.7 Effect of interaction between agitation rate and solids particles size  

The interactive effect between increasing agitation rate from 600rpm to 1200rpm and 

solids particle size from 3µm to 14µm significantly depressed KLa in the n-C14-20-inert 

solid-aqueous dispersions (Figure 5.14). This was possibly because of the tendency 

of the solid particles to attach on the gas-liquid interface as well as on the oxygen 

bubble especially the large solid particle sizes. This effectively reduced both KL and 

the gas-liquid interfacial area per unit volume. This effect counteracted the turbulent 

effect of the agitation rate, despite a significant decrease in both the fluid viscosity 

(Figure 5.15) and fluid surface tension (Figure 5.16) on increasing particle size. 

5.2.1.8 Effect of interaction between alkane concentration and solids loading  

The interactive effect between increase in alkane concentration from 2.5% (v/v) to 

20% (v/v) and increase in inert solids loading from 1g/L to 10g/L significantly 

enhanced KLa in n-C14-20-inert solid-aqueous dispersions (Figure 5.14). This can be 

explained by a tendency of DO bubble breakage formed by the viscous alkane for 

concentration of >15% (v/v) by continual solids loading. This was supported by the 

decrease in both fluid viscosity and surface tension enhancing bubble breakage in 

the system (Figure 5.15 and Figure 5.16). An alkane-water bubble was found to have 

a size of 43.97µm in 20% (v/v) with 1g/L of CaCO3 but when 10g/L were introduced, 

the alkane-water-CaCO3 bubble was reduced to a size of 39.39µm supporting the 

bubble break up hence enhanced KLa. 
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5.2.1.9 Effect of interaction between alkane concentration and solids particle 
size  

The interactive effect between increase in alkane concentration from 2.5% (v/v) to 

20% (v/v) and solids particle size from 3µm to 14µm insignificantly enhanced KLa 

(Figure 5.14). This was possibly due to their interactive effect which caused a 

significant decrease in both fluid viscosity (Figure 5.15) and fluid surface tension 

(Figure 5.16). This reduced the dispersion coalescing properties therefore increasing 

both the gas-liquid interfacial area per unit volume and KL though in overall it does 

not enhance KLa. 

5.2.1.10 Effect of interaction between solids loading and solids particle size 

The interactive effect between increase in solids loading from 1g/L to 10g/L and 

increase in solids particle size from 3µm to 14µm insignificantly enhanced KLa. This 

is possibly because their interactive effect significantly decreased the fluid viscosity 

with an effect almost double that of the insignificant increase in fluid surface tension 

in the n-C14-20-inert solid-aqueous dispersions (Figure 5.14, Figure 5.15 and Figure 

5.16). 

5.2.2 Alkane-aqueous dispersions with inactive yeast cells 
Further work was done under narrowed process conditions to underpin KLa behavior 

in typical bioprocess conditions with 5µm yeast cells as solids (see Table A7.17 and 

Table A7.18 for results). In the n-C14-20-yeast-aqueous dispersions agitation rate 

(600-900rpm), alkane concentration (2.5-11.25% (v/v)) and yeast loading (1-5.5g/L) 

were employed. According to the statistical analysis KLa was enhanced by increase 

in agitation rate by an effect of 10.78 whilst increasing yeast loading had an almost 

equal opposing effect on KLa (Figure 5.28). Also the interaction between increasing 

alkane concentration and yeast loading decreased KLa with an effect of -7.73 (Figure 

5.28). 

The fluid viscosity was also measured in n-C14-20-yeast-aqueous dispersions (see 

Table A7.19 for results) to underpin KLa behavior due to alterations in fluid properties. 

According to the statistical analysis increase in both alkane concentration and yeast 

loading significantly increased the fluid viscosity with almost equal effects (Figure 

5.29). 

The fluid surface tension was also measured in n-C14-20-yeast-aqueous dispersions 

(see Table A7.20 for results) and according to the statistical analysis only increase in 
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yeast loading significantly increased the fluid surface tension with an effect of 5.71 

(Figure 5.30). 

 

Figure 5.28 Pareto chart for effect of agitation, alkane concentration, yeast 
loading and their interactions on KLa 

 

Figure 5.29  Pareto chart for effect of alkane concentration, yeast loading and 
their interaction on fluid viscosity 
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Figure 5.30  Pareto chart for effect of alkane concentration, yeast loading and 
their interaction on fluid surface tension 

The effects of the parameters and their interactions on KLa in n-C14-20-yeast-aqueous 

dispersions are discussed in the following sections, 5.2.2.1 - 5.2.2.6. The surface 

response curves were generated when two process parameters were varying and 

one parameter kept constant. A center condition with an agitation of 750rpm, alkane 

concentration of 6.88% (v/v) and yeast loading of 3.25g/L was investigated to check 

for any curvature in KLa behavior. 

5.2.2.1 Effect of agitation rate  

Increase in agitation rate from 600rpm to 900rpm enhanced KLa in n-C14-20-yeast-

aqueous dispersions (Figure 5.28). KLa increased from 0.0230s-1 to 0.040s-1 in 2.5% 

(v/v) n-C14-20 alkane (Figure 5.31) and also from 0.0290s-1 to 0.0450s-1 at a yeast 

loading of 1g/L (Figure 5.32) over the same agitation rate. Increased agitation rates 

promoted bubble breakage resulting in lower D32 increased both the gas hold-up and 

the gas-liquid interfacial area per unit volume. High turbulent conditions also reduce 

the resistance to oxygen transfer through the decreased gas-liquid boundary layer 

increasing KL. 
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Figure 5.31  Surface response for effect of agitation and alkane concentration on 
KLa at constant yeast loading of 3.25g/L 

 

Figure 5.32  Surface response for effect of agitation and yeast loading on KLa at 
constant 6.88% (v/v) n-C14-20 alkane 

5.2.2.2 Effect of alkane concentration  

The effect of increasing alkane concentration from 2.5% (v/v) to 11.25% (v/v) 

insignificantly depressed KLa in n-C14-20-yeast-aqueous dispersions (Figure 5.28). 

However there were exceptions for cases when there were no yeast particles in the 

n-C14-20-yeast-aqueous dispersions and for yeast loadings of <2g/L (Figure 5.33). 

When there were no yeast particles, when alkane concentration increased, KLa 

increased from 2.5% (v/v) to 11.25% (v/v). This was possibly because of the low fluid 

viscosity and fluid surface tension when there are no yeast cells resulting in less 

coalescence behavior of the fluid (Kelkar et al., 1983; Hu et al., 2005). This is also in 
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agreement to the work of van der Meer et al. (1992) who indicated that small 

concentrations of octanol enhanced KL especially when the octanol drop diameter 

was sufficiently smaller than the gas-liquid since no adsorption occurred at the gas-

liquid interface. 

There was also a transition zone for yeast loadings of 1-2g/L which did not affect KLa 

for all the alkane concentrations before KLa started to decrease (Figure 5.33). This 

was in agreement to the work of Albal et al. (1983) who indicated that low solids 

loading of 0.2wt% did not alter KLa, but enhanced the surface renewal rate and 

mobility. 

 
Figure 5.33  Surface response for effect of alkane concentration and yeast 

loading on KLa at constant agitation of 750rpm 
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Figure 5.34  Surface response for effect of alkane concentration and yeast 
loading on fluid surface tension 

 

Figure 5.35  Surface response for effect of alkane concentration and yeast 
loading on fluid viscosity 

5.2.2.3 Effect of yeast loading  

An increase in yeast loading from 1g/L to 5.5g/L significantly depressed KLa in n-C14-

20-yeast-aqueous dispersions (Figure 5.28 and Figure 5.33). This can be attributed to 
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increase in coalescence behaviour since increase in yeast loading increased both 

fluid viscosity (Figure 5.29 and Figure 5.35) and fluid surface tension (Figure 5.30 

and Figure 5.34). This resulted in lower specific interfacial areas due to increased D32 

and lowered gas hold up. KL also decreased due to decreased DO diffusivity due to 

the increased coalescence in the media. (See also section 5.2.1.3 for explanation). 

5.2.2.4 Effect of interaction between agitation rate and alkane concentration  

The interactive effect between increasing both agitation rate from 600rpm to 900rpm 

and alkane concentration from 2.5% (v/v) to 11.25% (v/v) depressed KLa in n-C14-20-

yeast-aqueous dispersions but the effect was insignificant (Figure 5.28). This was 

because the viscous alkane reduced the turbulent effect exerted by increase in 

agitation rate. 

5.2.2.5 Effect of interaction between agitation rate and yeast loading  

The interactive effect between increasing agitation rate from 600rpm to 900rpm and 

yeast loading from 1g/L to 5.5g/L depressed KLa in n-C14-20-yeast-aqueous 

dispersions but the effect was insignificant (Figure 5.28). This was possibly because 

as yeast loading increased, the turbulent effects in the fluid were reduced due to 

increase in both fluid viscosity and fluid surface tension (Figure 5.29 and Figure 

5.30). This counter acted the effect of the agitation rate lowering both the gas-liquid 

interfacial area per unit volume and KL.  

5.2.2.6 Effect of interaction between alkane concentration and yeast loading  

The interactive effect between increase in alkane concentration from 2.5% (v/v) to 

11.25% (v/v) and increase in yeast loading from 1g/L to 5.5g/L significantly 

decreased KLa (Figure 5.28). This was despite their interactive effects insignificantly 

decreasing both the fluid viscosity and (Figure 5.29) and the fluid surface tension 

(Figure 5.30). This was possibly due to the diminishment of the gas-liquid flux area 

by the denser yeast particles in the viscous alkane media; this resulted in the 

decrease of the interfacial area per unit volume. 

5.2.3 Comparison of trends in systems with inert solids to those 
with inactive yeast 

An increase in agitation rate increased KLa in systems with both inert solids and 

inactive yeast i.e. from 600rpm to 1200rpm in n-C14-20-inert solid-aqueous dispersions 

and increase from 600rpm to 900rpm in n-C14-20-yeast-aqueous dispersions (Figure 

5.14 and Figure 5.28). 
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An increase in alkane concentration decreased KLa in both systems, but was 

significant only in n-C14-20-inert solid-aqueous dispersions since high alkane 

concentrations of 2.5-20% (v/v) were used unlike in the n-C14-20-yeast-aqueous 

dispersions were low alkane concentrations of 2.5-11.25% (v/v) were used (Figure 

5.14 and Figure 5.28). 

An increase in solids loading decreased KLa in both systems, but was only significant 

in systems with inactive yeast compared to that with inert solids loading (Figure 5.14 

and Figure 5.28). This was possibly because the yeast particle was denser than the 

corn flour and CaCO3 particles. The increased density likely increased coalescence 

thereby diminishing of the oxygen flux area resulting in lower KLa. This is shown by 

the large differences in KLa values between the 3µm CaCO3 particle with density of 

700kg/m3 and the 5µm yeast with density of 900kg/m3 irrespective of agitation rate 

employed (Table 5.1). 

Higher solid particle densities were also found to cause a more pronounced KLa 

decrease in aqueous systems with glycerol, glycol, barium chloride and sodium 

sulfate solutions when comparing in the effect of bronze spheres (density 8770kg/m3) 

with glass spheres (density of 2500kg/m3) Koide et al. (1984). Freitas and Teixeira 

(2001) confirmed this behavior with solids loading of up to 30% (v/v) in aqueous 

solutions containing a 2.151mm particle with density of 1048kg/m3 compared to 

2.131mm calcium alginate beads with density of 1023kg/m3. They indicated that 

denser particles had lower KLa due to increased coalescence due a diminished flux 

area as reflected by a smaller gas-liquid interfacial area per unit volume. 

Table 5.1: KLa behavior due to density differences in 2.5% (v/v) n-C14-20-solid 
aqueous dispersions 

The interaction of increasing alkane concentration and solids loading enhanced KLa 

in systems with inert solids but depressed KLa in systems with inactive yeast (Figure 

 KLa in 1g/L solids loading  

Agitation Yeast CaCO3 % Diff in KLa 

600rpm 0.0237 0.0278 15 

1200rpm 0.0350 0.0762 54 

 KLa in 10g/L solids loading   

Agitation Yeast CaCO3 % Diff in KLa 

600rpm 0.0153 0.0315 51 

1200rpm 0.0341 0.0559 39 
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5.14 and Figure 5.28). This was possibly because the reduction of the gas-liquid flux 

area by the denser yeast particles in the viscous alkane media outweighed the 

bubble breakage tendency that was observed in lower density solids systems (corn 

flour and CaCO3). This interaction was the only difference between the two systems. 

Lastly the interactions of increasing agitation rate and alkane concentration as well 

as increasing agitation rate and solids loading insignificantly depressed KLa in both 

systems with the inert solids and inactive yeast. 

. 
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6 CONCLUSIONS 
Conclusions from this work are based on two major parts which are firstly, the 

evaluation of an accurate and less KLa measurement method which incorporates the 

Kp effects. Secondly, the quantification of KLa behavior in aerated agitated alkane-

solid-aqueous dispersions with inert solids and inactive yeast using the GOP (lag) 

methodology is addressed. Quantification of KLa behavior was based on effects of 

agitation rate as well as alterations in fluid properties due to alkane concentration, 

solids loading, solids particle sizes and their interactions. 

6.1 Evaluation of measurement methodology  
In evaluation of an accurate and less complex KLa methodology, the GOP (lag) with 

Kp effects incorporated, the second order response model was found to be superior 

over the GOP (no lag) first order response model. Kp was found to significantly affect 

KLa measurement in the GOP in viscous alkane multiphase systems. 

Kp was found to be a varying parameter depending on the DO probe dynamics, 

alkane concentration and alkane chain length. Kp decreased with increases in both 

the probe membrane and probe electrolyte age with membrane age causing the 

major decrease about double the effect. Increase in membrane usage promoted 

stretching of the membrane whilst continual usage of the electrolyte decreased its 

conductivity. High Kp values of 0.0559s-1 were obtained when both membrane and 

electrolyte were new but decreased to 0.0329s-1 after 5 days in use. 

Kp also decreased with increase in alkane concentration from 2.5% (v/v) to 20% (v/v) 

but was independent of agitation rates of 600rpm to 1200rpm and the interaction 

between these two factors. Increase in alkane concentration increased the thickness 

of the liquid film due to the alkanes’ viscous nature which decreased the transfer of 

DO through the film thereby increasing the DO probe response lag time. The 

agitation rate in this work provided sufficient mixing such that Kp was not influenced 

by the range of agitation used in this work. Consequently, a maximum Kp of 0.0434s-1 

was therefore found in 2.5% (v/v) at 1200rpm. 

Further increase in alkane chain lengths from n-C10-13 to n-C14-20 and alkane 

concentration from 2.5% (v/v) to 20% (v/v) both decreased Kp. Alkane concentration 

had an effect 7 times greater as compared to that of alkane chain length. Both factors 

increased the fluid viscosity hence thickening of the liquid film resulting in longer 

probe response lag times. High Kp values of 0.0589s-1 were therefore obtained in 
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2.5% (v/v) n-C10-13-aqueous dispersions as compared with relatively lower Kp of 

0.0280s-1 obtained in 20% (v/v) n-C14-20-aqueous dispersions. 

Lastly, increased solids loading from 1g/L to 10g/L and increased solids particle size 

from 3µm to 14µm did not significantly affect Kp in alkane-solid-aqueous dispersions. 

It’s possible that such solids loadings and particle sizes do not exert any significant 

resistance at the fluid film since they were in suspension. All the interactive effects 

investigated on Kp were negligible. 

These results demonstrate that Kp is not a constant value but is determined by the 

alkane chain length and alkane concentration in alkane multiphase systems. This 

means that Kp needs to be determined before measuring KLa in alkane multiphase 

systems to achieve the accurate KLa value. 

Comparison of KLa values measured by the gassing out procedure incorporating the 

actual Kp (GOP (lag)) with those measured by the gassing out procedure assuming 

zero Kp (GOP (no lag) demonstrated conclusively that KLa values from the former 

were more accurate. Differences of over 40% were observed for agitations of 600-

1200rpm and alkane concentrations of 2.5-20% (v/v). The differences were attributed 

to the influence of Kp. Additionally, the differences on KLa due to Kp effects increased 

with increase in agitation rate and was more than 1.7 times higher at 1200rpm as 

compared to those at 600rpm for all alkane concentrations and alkane chain lengths. 

Specifically, the highest deviation of 45% was observed at 1200rpm in 5% (v/v) n-C14-

20-aqueous dispersions and 46% in n-C10-13-aqueous dispersions at 1200rpm and 

10% (v/v). This was attributed to the magnitude of Kp being almost equal to KLa i.e. 

Kp ≈ KLa at higher agitation rates, when the effect of Kp became more pronounced. 

Lastly KLa values measured by the GOP (lag) and the more complex PSP were the 

same for all agitations and alkane concentrations, with differences as low as 1.6% 

which was very insignificant at 99% confidence interval. This confirmed the accuracy 

of the GOP (lag) methodology. 

Consequently, the GOP (lag) second order response model was then chosen as the 

accurate KLa measurement method over the relatively more complex PSP 

methodology. For the first time, the GOP (lag) with the actual Kp value incorporated 

per each process condition was applied in quantification of KLa in the alkane-solid-

aqueous dispersions. 
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6.2 Quantification of the behavior of the overall 
 volumetric oxygen transfer coefficient in alkane-
 solid-aqueous dispersions 

Conclusions will be based only on the significant effects affecting KLa in the 

multiphase systems with either inert solids or inactive yeast. Furthermore, 

conclusions based will be based in similarities or different between these two 

systems. 

6.2.1 Alkane-aqueous dispersions with inert solids 
In the n-C14-20-inert solid-aqueous dispersions KLa was enhanced by increased 

agitation rate with an effect 5 times higher that of enhancement due to interaction of 

increased alkane concentration and solids loading. An increase in agitation rate 

increased KLa, most likely through increasing both the gas-liquid interfacial area per 

unit volume due to increased Gε  and decreased D32 and increased KL due to 

increased turbulence reducing the gas-film thickness. In addition, interaction between 

increase in alkane concentration and inert solids loading enhanced KLa due to 

breakage of the alkane-DO bubble by continual solids loading decreasing D32 and 

increasing the gas-liquid interfacial area per unit volume. This was however, only 

observed for alkane concentrations greater than 15% (v/v). Also their interactive 

effect between these two parameters decreased the fluid viscosity reducing the 

bubble coalescence in the system. 

In the n-C14-20-inert solid-aqueous dispersions KLa was depressed by increased 

alkane concentration with an effect 4 times higher that of depression due to 

increased solids particle sizes and the interaction of increased agitation rate and 

solids particle sizes. An increase in alkane concentration decreased KLa due to an 

overall increased fluid viscosity. The increase in fluid viscosity had a 2.35 higher 

effect compared to decrease in fluid surface tension promoting an overall effect of 

increased coalescence in the dispersion. This lead to increased D32, lowering both 

the gas-liquid interfacial area per unit volume, Gε  and in also reducing DO transport 

through the film with resultant lower KL. Additionally, increasing solids particle sizes 

decreased KLa since solids particles via their attachment to the DO bubble increasing 

D32, possibly lowered the gas-liquid interfacial area per unit volume. The decrease on 

KLa upon increased solids particle sizes suggest that the negative effect of 

attachment to the oxygen bubble predominate over the positive effect of the 

decrease in fluid viscosity and surface tension by almost equal magnitudes. 
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Furthermore, interaction between increase in agitation rate and solids particle size 

significantly depressed KLa, possibly due to the presence of solid particles as 

physical barriers to DO transfer counteracting the turbulent effects of agitation. 

Due to the different impact the type of solids, alkane concentration and agitation rate 

have on KLa, maximum KLa of 0.0762s-1 was obtained in 2.5% (v/v)-3µm-n-C14-20-

inert solid-aqueous systems with the inert solids at a solids loading of 1g/L and 

agitation of 1200rpm. 

6.2.2  Alkane-aqueous dispersions with inactive yeast 
In the n-C14-20-yeast-aqueous dispersions KLa was enhanced on increased agitation 

rate with an effect of 10.78. An increase in agitation rate increased KLa, most likely 

through increasing both the gas-liquid interfacial area per unit volume due to 

increased Gε  and decreased D32 and increased KL due to increased turbulence 

reducing the gas-film thickness. 

In the n-C14-20-yeast-aqueous dispersions KLa was depressed by increased yeast 

loading with an effect 1.2 times higher than that of depression due to interaction of 

increased yeast loading and alkane concentration. Increase in yeast loading 

decreased KLa since yeast loading significantly increased both fluid viscosity and 

fluid surface tension by equal effects, thereby promoting coalescence and thickening 

of the gas-liquid interface. This caused a decrease in the gas-liquid interfacial area 

per unit volume through increasing the D32, lowering the Gε  and also decreasing KL. 

Yeast particles had a significant effect on KLa decrease due to their high density. In 

addition the interaction of increase in alkane concentration and yeast loading 

depressed KLa also due to the diminishment of the gas-liquid flux by the high density 

yeast particles in the viscous alkane media resulting in lower gas-liquid interfacial 

areas per unit volume. 

In n-C14-20-yeast-aqueous dispersions KLa had a maximum value of 0.0415s-1 in 

11.25% (v/v) and yeast loadings of 1g/L and agitation of 900rpm. A typical 

bioprocess using yeast as cells in alkane multiphase systems is advisable at 1g/L, 

11.25% (v/v) and 900rpm from an oxygen supply perspective since the oxygen 

transfer rate will be at maximum at these conditions. 
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6.2.3 Comparison of trends in systems with inert solids to those 
 with inactive yeast 

An increase in agitation rates enhanced KLa in both systems whilst increasing alkane 

concentration and solids loading depressed KLa in both systems as well. However 

there was a contradiction between the interaction of increasing alkane concentration 

and solids loading. In systems with inert solids, the interaction promoted bubble 

breakage resulting in enhanced KLa whist in systems with inactive yeast, the 

interaction depressed KLa due to diminishment of the gas-liquid flux resulting in lower 

KLa values. 

In conclusion KLa is enhanced by increased agitation rates and depressed by 

increased alkane concentration, solids loading, solids particles sizes and solids 

density in alkane based bioprocesses. 
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7 RECOMMENDATIONS 
After a rigorous quantification of KLa behavior in alkane multiphase systems using an 

accurate, reliable measurement method, the following recommendations are useful 

for future work. Firstly there is need to experimentally quantify the individual 

contributions of the volumetric oxygen transfer coefficient (KL) and the gas-liquid 

interfacial area per unit volume (a) to KLa behavior in alkane-solid-aqueous 

dispersions. Since KLa is affected by both parameters there is need to know the 

actual contribution of each parameter so that we can fully underpin KLa behavior in 

alkane multiphase systems in terms of each parameter. 

Secondly there is need to simulate and model the experimental results obtained for 

KLa in the multiphase systems and apply the model to a range of aeration rate, 

agitation rate, alkane concentration, solids loading and solids particle size in alkane-

solid-aqueous dispersions. Since KLa is a critical parameter for oxygen transfer, 

developing a predictive model will be valuable for designing and operating of 

hydrocarbon based bioprocesses. 
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APPENDICES  

A.1:  Derivation of first order response model used for 
 measurement of the overall volumetric oxygen 
 transfer coefficient 
According to the two film theory Fick’s law can be applied to the oxygen transfer 

between the gas phase (equation A1.1) and liquid phase (equation A1.2) if it is 

assumed that the rate of DO transfer is directly proportional to the concentration 

gradient and the area available for transport. 

( )
2O G G G GiN k a C C= −  [A1.1] 

( )
2O L L L i LN k a C C= −  [A1.2] 

If oxygen transfer occurs at steady state, there will be no DO accumulation in the 

liquid or at the interface i.e. any oxygen transported through the gas phase will be 

transported to the liquid phase hence 
2 2O G O LN N= . Therefore the OTR will be referred 

as 
2ON  only. The equilibrium concentration of the gas phase will be directly 

proportional to the liquid phase concentration when equilibrium exists at the interface 

(equation A1.3) (Doran, 1995). 

Gi LiC mC=  [A1.3] 

Where m is the oxygen distribution coefficient 

Or alternatively this gas phase concentration at equilibrium, which is proportional to 

the liquid phase concentration at equilibrium (equation A1.3), can be written in the 

form represented by equation A1.4; 

Gi
Li

C
C

m
=  [A1.4] 

Equations A1.3 and A1.4 are then used to eliminate the interfacial concentrations 

(CGi and CLi) in equations A1.1 and A1.2. On substitution of equation A1.3 into 

equations A1.1, equation A1.5 is obtained for the gas phase transfer. Likewise, 

substitution of equation A1.4 into equation A1.2, equation A1.6 is obtained for the 

liquid phase transfer: 

2O
G Li

G

N
C mC

k a
= −  [A1.5] 
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2O Gi
L

L

N C
C

k a m
= −  [A1.6] 

Upon re-arranging equation A1.2 and multiplying the result by m, the oxygen 

distribution factor equation A1.7 is obtained. On substitution of equation A1.3 into 

A1.7, equation A1.8 is obtained. 

2O
Li L

L

mN
mC mC

k a
= −  [A1.7] 

2O
Gi L

L

mN
C mC

k a
= −

 [A1.8]
 

Likewise, re-arranging equation A1.1 and dividing the result by m equation A1.9 is 

obtained. On substitution of equation A1.4 into A1.9, equation A1.10 is obtained. 

2O G Gi

G

N C C
mk a m m

= −  [A1.9] 

2O G
Li

G

N C
C

mk a m
= −  [A1.10] 

The interfacial term for the gas phase (CGi) can now be eliminated by adding 

equations A1.5 and A1.8 together to yield equation A1.11. Likewise, the interfacial 

term for the liquid phase (CLi) can be eliminated by adding equations A1.6 and A1.10 

together to yield equation A1.12. This is done under the condition that there is no 

accumulation at the gas-liquid interface i.e. Gi LiC mC= . 

2

1
O G L

G L

m
N C mC

k a k a

 
+ = − 

 
 [A1.11] 

2

1 1 G
O L

G L

C
N C

mk a k a m

 
+ = − 

 
 [A1.12] 

The oxygen transfer coefficient for the gaseous phase resistance can defined as KG 

(equations A1.13). Likewise the DO transfer coefficient liquid phase resistance can 

then be defined as KL (equation A1.14). 

1 1

G G L

m
K a k a k a

= +  [A1.13] 

1 1 1

L G LK a mk a k a
= +  [A1.14] 
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When equation A1.13 is substituted into equation A1.11, equation A1.15 according to 

the gas phase resistance is obtained. If equation A1.14 is substituted into equation 

A1.12, equation A1.16 according to the liquid phase resistance is obtained. 

Equations A1.15 and A1.16 represent the oxygen transfer rate in the gas-liquid 

system. 

( )
2

G G LO
N K a C mC= −  [A1.15] 

2

G
O L L

C
N K a C

m
 = − 
 

 [A1.16] 

Equations A1.15 and A1.16 are usually expressed using equilibrium concentrations 

for the gaseous phase (equation A1.17) and for the liquid phase (equation A1.18) 

(Doran, 1995). 

*L GmC C=  [A1.17] 

*G
L

C
C

m
=  [A1.18] 

Substitution of equation A1.17 into equation A1.15 results in equation A1.19 which 

defines OTR according to the gas phase resistance. Likewise, substitution of 

equation A1.18 into equation A1.16 results in equation A1.20 which defines OTR 

according to the liquid phase resistance (Doran, 1995). 

( )
2

*G G GO
N K a C C= −  [A1.19] 

( )
2

*O L L LN K a C C= −  [A1.20] 

If resistance to oxygen transfer is predominantly controlled by the gas phase 

resistance, i.e. kG>>kL, the oxygen transfer coefficient for the gas phase is defined as 

KG. The OTR according to the gas phase resistance (equation A1.19) is used to 

predict the oxygen transfer rate and equation A1.13 will reduce to 1/KGa >>> 1/kGa. 

Likewise if resistance to DO transfer is predominantly controlled by the liquid phase 

resistance, i.e. kG << kL, the overall DO transfer coefficient in the liquid phase is 

defined as KL. The DO transfer rate according to the liquid phase resistance 

(equation A1.20) is used to predict the DO transfer rate and equation A1.14 will 

reduce to 1/KLa >>> 1/kLa. 

Since the liquid phase DO transfer resistance will dominate due to oxygen poor 

solubility (Doran, 1995), the DO transfer rate in the fluid is defined by equation A1.21. 
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This is the first order response model used for KLa measurement in the gassing out 

procedure (Mimura et al., 1973; Hassan and Robinson, 1977a; Clarke et al., 2006; 

Correia and Clarke, 2009). 

( )
2

*O L

dC
N OTR K a C C

dt
= = = −  [A1.21] 
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A.2: Laplace transforms solution for second order 
 response model used for measurement of the 
 overall volumetric oxygen transfer coefficient 
A Laplace transform is an integral transform that is denoted by ( )f t ℑ    as the linear 

operator of an original function ( )f t
 
with 0t ≥  that transforms into an image function 

( )F s  with a complex argument s (equation A2.1) (Seborg et al., 1989; Marlin, 1995). 

( ) ( ) ( )
0

stF s f t f t e dt
∞

− = ℑ =  ∫  [A2.1] 

A general first order response model has a transfer function with an output variable, 

Y(s) and an input variable; X(s) (equation A2.2) (Seborg et al., 1989; Marlin, 1995). 

( )
( ) 1

Y s K
X s s

=
τ +

 [A2.2] 

Where K is the process gain (-) and τ  is the time constant (s-1). 

For a step input as applied in cases when measuring the DO probe response and 

LK a , the step input is denoted with magnitude M. The input variable, X(s) will then 

equal to the step input magnitude divided by the complex argument (equation A2.3). 

( ) M
X s

s
=  [A2.3] 

The output variable, Y(s) from equation A2.2 can therefore be represented by 

equation A2.4 after incorporating equation A2.3. 

( ) ( )1
KM

Y s
s s

=
τ +

 [A2.4] 

Where KM is a lumped constant for the process gain and the step input magnitude 

that represent the final steady state value after a step change i.e. the DO saturation 

in this case. 

Using the Laplace transform for the first order response model with a step change 

time domain function (Table A2.1), the output variable after a step change (equation 

A2.4), the time domain (equation A2.5) is obtained (Seborg et al., 1989; Marlin, 

1995). 

( ) ( )1
t

y t KM e
− τ= −  [A2.5] 
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Table A2.1: Laplace transforms for 1st and 2nd order models (Seborg et al. 1989) 

If the output variable for the transfer function after a step change (equation A2.5) is 

applied to both the first order response model for the DO transfer rate (equation 

A2.6) and the first order response model for the DO probe response (equation A2.7), 

equations A2.8 and A2.9 are obtained respectively with KM = C* = Cp* at saturation 

conditions and to = 0 and C(t) and Cp(t) as the output variables. 

( )*L

dC
K a C C

dt
= −  [A2.6] 

( )*p
p p p

dC
K C C

dt
= −  [A2.7] 

( )( ) * 1 LK atC t C e−= −  [A2.8] 

( )( ) * 1 pK t
p pC t C e−= −  [A2.9] 

A second order transfer function (equation A2.10) results whenever two first order 

processes are connected in series (Figure A2.1). In our case this applies to the DO 

probe first order response model (equation A2.7) which is used to measure KLa and 

the first order response model for DO transfer rate (equation A2.6). 

( )
( ) ( )( ) ( )( )

1 2

1 1 1 1

Y s K K
X s s s s s1 2 1 2

Κ= =
τ + τ + τ + τ +

 [A2.10] 

Where K1 and K2 are process gain constant for both first order models. 

 

Figure A2.1 Two first order models in series which yield an overall second order 
model (Seborg et al., 1989) 
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Using the Laplace transform for a second order response time domain functions, the 

transfer function for a 2nd order model (equation A2.10), the time domain (equation 

A2.11) is obtained (Table A2.1) (Seborg et al., 1989; Marlin, 1995). 

( ) 1 2

1

1 t t

y t e e
− −τ τ

2

 = − τ − τ  
 [A2.11] 

The time domain (equation A2.11) implies that 
1τ  is 1/KLa and 

2τ  is 1/Kp
 
since the 

DO probe, which has a first order response model is being introduced in series with 

the oxygen transfer rate first order response model in the alkane multiphase system. 

This also implies that K1 = 1/KLa and K2 = 1/Kp. 

The time domain (equation A2.11) will therefore be represented by equation A2.12 

and can be reduced in the form represented by equation A2.13. 

( )
11

1 2

1
1 1

pL

tt

KK a

L p

y t K e K e

K a K

−− 
 = − 
 −  

 [A2.12] 

( ) ( )1 2
pL

K tL p K at

p L

K aK
y t K e K e

K K a

−−= −
−

  [A2.13] 

Equation A2.13 reduces to equation A2.14 after substituting the process gain 

constants K1 and K2. 

( ) ( )1 pL K tK at
p L

p L

y t K e K ae
K K a

−−= −
−

 [A2.14] 

The time domain for DO concentration change indicated by the DO probe, Cp, is 

represented by equation A2.14 at any given time which then takes the form of 

equation A2.15 since the response is a second order form for both the DO probe and 

the DO transfer. 

( ) *

*
p p

p po

C C
y t

C C

 −
=   − 

 [A2.15] 

This implies that equation A2.14 = equation A2.15, and an equation represented by 

A2.16 is obtained. 

* 1
*

pL K tp p K at
p L

p po p L

C C
K e K ae

C C K K a
−− −

 = −    − − 
 [A2.16] 
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If initial conditions are considered; Cpo = 0 at to = 0; equation A2.16 reduces to 

equation A2.17 and A2.18 (Fuchs et al., 1971; Nakanoh and Yoshida, 1980; Keitel 

and Onken, 1981; Letzel et al., 1999; Vandu and Krishna, 2004). 

1
1

*
pL K tp K at

p L
p p L

C
K e K ae

C K K a
−− 

 − = −     − 
 [A2.17] 

1
1

*
pL

K tp K at
p L

p p L

C
K e K ae

C K K a
−− = − − −

 [A2.18] 

This, equation A2.18 is the second order response model used to measure KLa 

accurately in the hydrocarbon multiphase systems. 
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A.3:  Analytical derivation of second order response 
model used for measurement of the overall 
volumetric oxygen transfer coefficient  

The rate of DO transfer in hydrocarbon multiphase phase systems has a first order 

response model (equation A3.1) (Mimura et al., 1973; Hassan and Robinson, 1977a; 

Clarke et al., 2006). 

( )*L

dC
K a C C

dt
= −  [A3.1] 

The DO probe used to measure the DO change also has a first order response 

model (equation A3.2) (Aiba and Huang, 1969; Van’t Riet 1979; Ruchti et al., 1981; 

Godbole et al., 1984; Tribe et al., 1994; Luyben and Luyben, 1997; Nikolov et al., 

2000; Juarez and Oreans, 2001). 

( )*p
p p p

dC
K C C

dt
= −  [A3.2] 

Dimensionless quantities are introduced (equations A3.3 and A3.4) for both the DO 

transfer rate (equation A3.1) and the DO probe response (equation A3.2) 

respectively (Fuchs et al., 1971): 

*
* o

C C
Y

C C

 −= − 
 [A3.3] 

*

*
p p

p
p po

C C
Y

C C

 −
=   − 

 [A3.4] 

In these expressions (equations A3.3 and A3.4), Cpo and Co represent the DO 

concentration at initial conditions and Cp* and C* represent the DO concentration at 

saturation conditions. 

DO concentration outputs cannot be used to represent the actual DO concentration 

due to Kp effects. In actual fact, the DO concentration indicated by the oxygen probe, 

Cp, as a function of time, t, is related to the actual concentration by equation A3.5. 

This equation A3.5 represents the DO change as a function of time with the Kp 

effects incorporated (Fuchs et al., 1971; Nielsen et al., 2003; Vandu and Krishna, 

2004). 

( )p
p p

dC
K C C

dt
= −  [A3.5] 
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The dimensionless quantity for oxygen transfer (equations A3.3) was substituted into 

the oxygen transfer rate (equation A3.1) resulting in equation A3.6. Likewise the 

dimensionless quantity for the DO probe (equation A3.4) was substituted into the 

actual DO change that is taking place with the DO probe lag time incorporated 

(equation A3.5) resulting in equation A3.7. 

L

dY
K aY

dt
= −  [A3.6] 

( )p
p p

dY
K Y Y

dt
= −  [A3.7] 

Re-arranging and integrating the oxygen transfer rate equation with its dimensionless 

constant substituted (equation A3.6) obtained equations A3.8-A3.10: 

L

dY
K adt

Y
= −∫ ∫  [A3.8] 

LK atInY e C−= +  [A3.9] 

LK atY Ce−=  [A3.10] 

Expanding and separating variables in the actual DO change taking place with its 

dimensionless constant substituted (equation A3.7) yields equation A3.11. 

p
p p p

dY
K Y K Y

dt
= −  [A3.11] 

Upon substitution of equation A3.10 into A3.11, equation A3.12 is obtained. 

Lp K at
p p p

dY
K Ce K Y

dt
−= −  [A3.12] 

Equation A3.12 is then solved using the linear non-homogeneous differential 

equations concept by separating variables and integrating to yield equations A3.13-

A3.32. 

0p
p p

dY
K Y

dt
+ =  [A3.13] 

p
p

dY
K dt

Y
= −∫ ∫  [A3.14] 

pK t
pInY e D−= +  [A3.15] 
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pK t
pY De−=  [A3.16] 

The function from equation A3.16 is in the form represented by equation A3.17 and 

the complimentary function represented by equation A3.18. 

'' A tf B e−=  [A3.17] 

Such that the complimentary function is represented by equation A3.18. 

'' A t
cY B e−=  [A3.18] 

The complimentary form for equation A3.12 is represented by equation A3.19 which 

upon re-arranging equation A3.20 is obtained. 

' '' ' 'A t A tc
p c p

dY
K Y K B e B A e

dt
− −+ = −  [A3.19] 

( ) '' ' ' A tc
p c p

dY
K Y K B B A e

dt
−+ = −  [A3.20] 

Equation A3.20 can also be written in the form represented by equation A3.21 since 

it is a complimentary form of equation A3.12. 

LK atc
p c p

dY
K Y K Ce

dt
−+ =  [A3.21] 

Equating equation A3.20 and A3.21 implies that: 

' LA K a=  [A3.22] 

And  

( )' ' 'p pK B B A K C− =  [A3.23] 

( )' 'p pB K A K C− =  [A3.24] 

'
'

p p

p p L

K C K C
B

K A K K a
= =

− −
 [A3.25] 

But the complimentary form (Y’) is a combination of both the DO change in the 

multiphase systems and the DO probe response i.e.  

' p cY Y Y= +  [A3.26] 

Equation A3.26 represents our function and the complimentary form for the DO 

change with the DO probe response dynamics incorporated. 
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Substitution of equations A3.16 and A3.18 into equation A3.26 results into equation 

A3.27 with substitution of B’ from equation A3.25. 

' p LK t p K at

p L

K C
Y De e

K K a
− −= +

−
 [A3.27] 

Upon re-arranging and expanding of equation A3.27 yields equation A3.28. 

( )1
' p LK t K at

p L p
p L

Y D K K a e K Ce
K K a

− − = − + −
 [A3.28] 

Equation A3.28 implies that: 

( ) ; 1p L LD K K a K a C− = − =  [A3.29] 

Or upon further simplification equation A3.29 can be represented by equation A3.30. 

; 1L

p L

K a
D C

K K a
−= =

−
 [A3.30] 

Equation A3.28 can therefore be written as equation A3.31 after substituting equation 

A3.30. 

1
' p LK t K at

L p
p L

Y K ae K e
K K a

− − = − + −
 [A3.31] 

If Y’ from equation A3.26 is equal to the actual change in DO with probe 

characteristics incorporated, equation A3.32 is obtained. 

*
'

*
p p

p po

C C
Y

C C

 −
=   − 

 [A3.32] 

Equating equation A3.31 and equation A3.32 yields the second order response 

model used for KLa measurement in the hydrocarbon multiphase systems (equation 

A3.33). 

* 1
*

pL K tp p K at
p L

p po p L

C C
K e K ae

C C K K a
−− −

 = −    − − 
 [A3.33] 

This 2nd order response model (equation A3.33) reduces to equations A3.34-A3.37 

upon further simplification considering initial conditions when Cpo = 0 and to = 0 

(Fuchs et al., 1971; Nakanoh and Yoshida, 1980; Keitel and Onken, 1981; Letzel et 

al., 1999; Vandu and Krishna, 2004). These equations are in the form represented by 

equation A2.18. 
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1
1

*
pL K tp K at

p L
p p L

C
K e K ae

C K K a
−− 

 − = −     − 
 [A3.34] 

1
1

*
pL K tp K at

p L
p p L

C
K e K ae

C K K a
−− = − − −

 [A3.35] 

The DO probe response lag time ( pτ ) can also be expressed as the inverse of the 

DO probe response lag time (Kp) i.e. pτ  
= 1/Kp (Merchuk et al., 1990), substitution of 

pτ  
into equation A3.35 results in equation A3.36 (Garcia-Ochoa and Gomez, 2009). 

1
1

* 1
p L

t
p K at

p L
p p L

C
K ae e

C K a

− τ − = + τ − − τ  
 [A3.36] 
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A.4:  Characteristics of the probe and derivation of the 
  probe response lag time  

A4.1: Probe characteristics 
The DO probe used in this work for DO measurements was a 12mm Mettler Toledo 

membrane type which was used for DO transfer from the fluid film to the electrolyte 

and KCI was used as the electrolyte. This electrolyte provided a full circuit for the 

electrolytic reactions to occur between the anode and cathode. Redox equations 

occur at the probe silver anode and the platinum cathode during DO change 

measurements (equations A4.1-A4.3) (Mettler Toledo instrument manual, 2005). 

Cathode reaction: 

− −+ + →2 22 4 4O H O e OH  [A4.1] 

Anode reaction: 

− −+ → +4 4 4 4Ag CI AgCI e  [A4.2] 

Overall reaction: 

− −+ + + → +2 24 4 2 4 4Ag CI O H O AgCI OH  [A4.3] 

 

Figure A4.1  Mettler Toledo InPro® 6800 DO probe used for %DO change 
measurements (Redrawn from Mettler Toledo Instrument manual)  



Appendix 4  Characteristics of the probe  

118 
 

The DO probe was first polarized for 6 hours before calibration. KLa, τp  
and Kp were 

then determined after the calibration procedure. 

A4.2:  Derivation of the probe response lag time 
The DO probe used to measure the DO has a first order response model (equation 

A4.4) (Aiba and Huang, 1969). The DO probe response lag time ( pτ ) is defined as 

the time for the DO to reach 63.2% of DO saturation after an experimental step 

change in the sparged gas (Van’t Riet, 1979; Ruchti et al., 1981; Tribe et al., 1994; 

Luyben and Luyben, 1997; Nikolov et al., 2000; Juarez and Oreans, 2001). 

*p
p p p

dC
C C

dt
τ = −  [A4.4] 

Where the DO probe response lag time can also be written as the inverse of the DO 

probe lag time (Kp) (equation A4.5) (Merchuk et al., 1990). 

1
p

pKτ =  [A4.5] 

Upon re-arranging the DO probe first order response model (equation A4.4), 

equations A4.6 and A4.7 are obtained. 

*p p p

p

dC C C

dt

−
=

τ
 [A4.6] 

1
*

p

p p p

dC
dt

C C
=

− τ
 [A4.7] 

Upon integrating when Cpo = 0 and to = 0 at initial conditions equation A4.7 and re-

arranging, equations A4.8-A4.12 are obtained. 

( )* 1
*

p po
o

p p p

C C
In t t

C C

 −
= −  − τ 

 [A4.8] 

( )* 1
*

p p
o

p o pp

C C
In t t

C C

 −
= − − 

 − τ 
  [A4.9] 

At initial conditions for a non-respiring system; as in the alkane-solid-aqueous 

dispersions during DO absorption, Cpo = 0 and to = 0, equation A4.9 can therefore be 

represented as equations A4.10. 

* 1
*

p p

p p

C C
In t

C

 −
= −   τ 

  [A4.10] 
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Upon linearization of equation A4.10 and re-arranging, equations A4.11-A4.12 are 

obtained. 

1
*

p

t

p

p

C
e

C
τ−− =  [A4.11] 

1
*

p

t

p

p

C
e

C
τ−= −  [A4.12] 

The DO probe response lag time is then determined when the time of experiment is 

equal to the DO response lag time i.e. pt = τ  (Luyben and Luyben, 1997). The DO 

probe response (equation A4.12) at this condition can be represented by equation 

A4.13 which upon further simplification results in equation A4.14 which shows the 

fraction of Cp over Cp* at that particular time as 0.632. The time at which this fraction 

is 63.2% of the final steady state value corresponds to the DO response lag time. 

11 1
*

p

pp

p

C
e e

C

τ
τ− −= − = −  [A4.13] 

0.632
*

p

p

C

C
=  [A4.14] 
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A.5:  Sample calculation of the overall volumetric 
 oxygen transfer coefficient using the second order 
 response model  
Equation solver was used to minimize the sum of errors between the GOP 

(lag) second order response model and the GOP (no lag) first order response 

model by changing KLa in the target cell. KLa from the first order response 

model was used as the initial KLa and changed depending on the Kp value. The 

actual KLa was obtained when the sum of errors between the %DO from the 

first order response model and the %DO second order response model was 

minimal per finite time. Table A5.1 shows a sample KLa calculation in Excel. 

The initial KLa from the first order response model was 0.0453s-1 and when a 

Kp of 0.0440s-1 was incorporated to the %DO change in the second order 

response model, KLa increased to 0.0823 s-1 with a minimal sum of errors of 

152.7. 

Table A5.1: Sample KLa calculation using the second order response model in 
 Excel 

Kp 
0.0440 

KLa (2nd order model) 0.0823 
Time %DO (1st order model) %DO (2nd order model) Σ Errors 
0 0.0 0.0 0.00 
10 4.0 12.1 65.08 
20 27.3 33.1 33.08 
30 51.7 52.4 0.44 
40 69.8 67.3 6.06 
50 81.6 78.1 12.26 
60 88.8 85.5 10.78 
70 93.3 90.5 7.80 
80 95.9 93.8 4.35 
90 97.6 96.0 2.61 
100 98.8 97.4 1.96 
110 99.6 98.3 1.64 
120 100.1 98.9 1.40 
130 100.5 99.3 1.44 
140 100.7 99.5 1.32 
150 100.8 99.7 1.19 
160 100.9 99.8 1.18 
Final 101.0  Σ152.57 
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A.6:  Theory on fluid viscosity and surface tension 
measurement 

The n-C14-20-aqueous dispersions with solids particles were first homogenized before 

viscosity and surface tension measurements. This was done to ensure uniformity of 

the dispersion for accurate measurements. 

A.6.1  The homogenization process 
A lab bench model homogenizer was used for homogenization (Figure A6.1). 

Homogenization is the breaking down of the dispersed particles under pressure 

which is created when the dispersion is passed through a small orifice causing 

changes in physical properties of dispersion such that a uniform emulsion is obtained 

(Gous, 2003). The alkane-solid-aqueous dispersion was passed through a 4mm 

diameter non-return ball type valve by downward movement into the homogenizer 

cylinder. The dispersion was trapped within the cylinder by the plunger and spring 

which were tightly fitted inside the homogenizer cylinder. The plunger was divided 

into two sections; section 1 with a diameter of 4.5mm and section 2 with a diameter 

of 8mm, both with 0.25mm deep grooves (Figure A6.1). This was done to increase 

the homogenized surface area of fluid as it flowed down the cylinder. Pressure was 

created inside the cylinder due to the trapping of fluid forcing the 6mm diameter 

spring to compress. This forced the fluid to flow through the plunger grooves causing 

a shearing action to be exerted on the particles resulting in a uniformly distributed 

emulsion (Kirk-Othmer, 1978). The emulsion was then expelled from the cylinder to a 

100ml beaker through a 4mm nozzle where it was subjected to a sudden pressure 

drop enhancing the uniformity of the alkane-solid-aqueous dispersion (Figure A6.1). 
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Figure A6.1  Homogenizer components (Gous, 2003) 

A.6.2 Theory on fluid viscosity and surface tension 
The dynamic viscosity of a fluid is related to the fluid‘s resistance to flow (Doran, 

1995) and is determined through directly relating the velocity gradient of the fluid to 

its shear force (F) (equation A6.1). 

∝dv
F

dy
  [A6.1] 

Where v is the fluid velocity (ms-1) and y is the distance of fluid layer from the bottom 

plate (m). 

If flow between two plates is considered with the top plate being stationery whilst the 

bottom plate is moved by a shear force, F, then a thin film of the fluid attaches itself 

to both plates. The fluid attached at the stationery plate will have a zero velocity 

whilst the bottom plate moves with the fluid. The fluid attached to the plates has the 

greatest velocity which decreases as the distance towards the stationery plate 

decreases (Doran 1995). The shear stress ( τ ) can therefore be said to be equal to 

the force per unit area of the fluid within the plates (equation A6.2). 

τ = F
A

   [A6.2] 
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If the relationship of the fluid velocity gradient to the shear force (equation A6.1) and 

the fluid shear stress (equation A6.2) is combined, a proportionality relationship 

(equation A6.3) is obtained which reduces to Newton’s Law of Viscosity (equation 

A6.4) with the dynamic viscosity (µ) as the constant of proportionality (Doran 1995). 

τ ∝ dv
dy

  [A6.3] 

τ = −µ dv
dy

  [A6.4] 

The shear rate ( γ ) can therefore be described as -dv/dy such that Newton’s law of 

viscosity (equation A6.4) can also be represented by the ratio between the shear 

stress ( τ ) and the shear rate ( γ ) which is constant for Newtonian fluids (equation 

A6.5) 

tancons t
τ = µ =
γ

 [A6.5] 

The fluid surface tension is a property of a fluid that makes it behave as if its surface 

is enclosed in an elastic skin due to the effect of intermolecular forces surrounding 

each molecule in the fluid (http://www.tutorvista.com/ks/defination-of-surface-tension. 
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A.7:  Reproducibility of raw data in the alkane multiphase 
 systems 

Experimental results for Kp, KLa, fluid viscosity and fluid surface tension were 

repeated 5 times in the alkane-aqueous dispersions and alkane-solid-aqueous 

dispersions for improved accuracy and an average result was used. All experiments 

were reproducible and a very small standard deviation was observed (see Figures 

A7.1-A7.4 and Tables A7.1-A7.20). Furthermore KLa results from n-C10-13-aqueous-

dispersions GOP (no lag) first order response model were reproducible to those of 

Correia (2007) under the same conditions with deviations as low as 2.2% according 

to a t-test analysis (see Figure A7.5 and Tables A7.8 and A7.12). The slight 

differences observed may be due to Kp effects since different membrane age and 

electrolyte ages were used. 

 

Figure A7.1 Kp reproducibility in the alkane multiphase systems 
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Figure A7.2 KLa reproducibility in the alkane multiphase systems 

 

Figure A7.3 Fluid viscosity reproducibility in the alkane multiphase systems 
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Figure A7.4 Fluid surface tension reproducibility in the alkane multiphase systems 

 

Figure A7.5 KLa reproducibility in n-C10-13-aqueous dispersions using the GOP 
(no lag) with same process conditions as Correia (2007) 
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Table A7.1: Kp data for influence of membrane age, electrolyte age and their interaction in 2.5% (v/v) n-C14-20-aqueous dispersions 

Table A7.2: Kp data for influence of agitation rate, alkane concentration and their interaction in n-C14-20-aqueous dispersions 

n-C14-20 Agitation Membrane Electrolyte  Replicates (Kp; s
-1)   Average Standard 

(% v/v) rate (rpm) age (days) age (days) 1 2 3 4 5  deviation 

2.5 1000 1 1 0.0554 0.0555 0.0568 0.0562 0.0554 0.0559 0.0006 

2.5 1000 1 5 0.0398 0.0381 0.0403 0.0406 0.0394 0.0396 0.0010 

2.5 1000 5 1 0.0428 0.0455 0.0443 0.0484 0.0473 0.0457 0.0023 

2.5 1000 5 5 0.0327 0.0330 0.0350 0.0328 0.0309 0.0329 0.0015 

n-C14-20 Agitation     
 Replicates (Kp; s

-1) 
 Average Standard 

(% v/v) rate (rpm) 1 2 3 4 5  deviation 

2.5 600 0.0430 0.0427 0.0423 0.0423 0.0416 0.0424 0.0005 

2.5 1200 0.0410 0.0414 0.0455 0.0460 0.0430 0.0434 0.0023 

20 600 0.0365 0.0372 0.0370 0.0376 0.0380 0.0373 0.0006 

20 1200 0.0377 0.0385 0.0364 0.0370 0.0391 0.0377 0.0011 
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Table A7.3: Kp data for influence of alkane chain length, alkane concentration and their interaction in alkane-aqueous dispersions 

Table A7. 4: Kp data for influence of solids loading, solids particle size and their interaction in 2.5% (v/v) n-C14-20-solid-aqueous 
dispersions 

Alkane conc. Chain length Agitation   
 Replicates (Kp; s

-1) 
    Average Standard 

(% v/v)  rate (rpm) 1 2 3 4 5  deviation 

2.5 C10-13 1000 0.0601 0.0582 0.0584 0.0590 0.0586 0.0589 0.0008 

20 C10-13 1000 0.0320 0.0322 0.0340 0.0326 0.0328 0.0327 0.0008 

2.5 C14-20 1000 0.0554 0.0555 0.0568 0.0562 0.0542 0.0556 0.0010 

20 C14-20 1000 0.0266 0.0274 0.0314 0.0288 0.0256 0.0280 0.0023 

n-C14-20 Agitation Solids loading Solids particle    Replicates (Kp; s
-1)     Average Standard 

(% v/v) rate (rpm) (g/L) size (µm) 1 2 3 4 5  deviation 

2.5 1000 1 3 0.0358 0.0404 0.0433 0.0355 0.0332 0.0376 0.0041 

2.5 1000 1 14 0.0347 0.0353 0.0369 0.0342 0.0331 0.0348 0.0014 

2.5 1000 10 3 0.0364 0.0377 0.0381 0.0348 0.0330 0.0360 0.0021 

2.5 1000 10 14 0.0358 0.0374 0.0385 0.0336 0.0337 0.0358 0.0022 
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Table A7.5: KLa data obtained from the GOP (no lag) in n-C14-20-aqueous dispersions 

n-C14-20 Agitation rate   
  
Replicates (KLa; s-1)     Average Standard 

conc. (% v/v) (rpm) 1 2 3 4 5  deviation 

0% 600 0.0297 0.0297 0.0296 0.0297 0.0299 0.0297 0.0001 
  800 0.0358 0.0378 0.0407 0.0400 0.0398 0.0388 0.0020 
  1000 0.0443 0.0424 0.0486 0.0440 0.0494 0.0457 0.0031 
  1200 0.0483 0.0441 0.0486 0.0457 0.0444 0.0462 0.0021 

2.5% 600 0.0208 0.0227 0.0219 0.0226 0.0221 0.0220 0.0008 
  800 0.0264 0.0241 0.0246 0.0246 0.0238 0.0247 0.0010 
  1000 0.0265 0.0255 0.0256 0.0265 0.0251 0.0258 0.0006 
  1200 0.0262 0.0257 0.0265 0.0253 0.0265 0.0260 0.0005 

5% 600 0.0201 0.0208 0.0199 0.0200 0.0198 0.0201 0.0004 
  800 0.0237 0.0229 0.0228 0.0234 0.0235 0.0233 0.0004 
  1000 0.0262 0.0256 0.0262 0.0260 0.0269 0.0262 0.0005 
  1200 0.0273 0.0254 0.0270 0.0266 0.0284 0.0269 0.0011 

10% 600 0.0181 0.0189 0.0197 0.0180 0.0194 0.0188 0.0008 
  800 0.0228 0.0220 0.0223 0.0235 0.0221 0.0225 0.0006 
  1000 0.0247 0.0239 0.0248 0.0252 0.0242 0.0246 0.0005 
  1200 0.0255 0.0239 0.0256 0.0261 0.0252 0.0253 0.0008 

20% 600 0.0144 0.0138 0.0199 0.0133 0.0135 0.0150 0.0028 
  800 0.0201 0.0195 0.0199 0.0200 0.0186 0.0196 0.0006 
  1000 0.0216 0.0226 0.0235 0.0232 0.0232 0.0228 0.0008 
  1200 0.0242 0.0244 0.0245 0.0245 0.0250 0.0245 0.0003 
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Table A7.6: KLa data obtained from the GOP (lag) in n-C14-20-aqueous dispersions 

n-C14-20 Agitation rate    Replicates (KLa; s-1)     Average Standard 

conc. (% v/v) (rpm) 1 2 3 4 5  deviation 

0% 600 0.0268 0.0271 0.0242 0.0309 0.0301 0.0278 0.0027 
  800 0.0455 0.0524 0.0525 0.0533 0.0494 0.0506 0.0032 
  1000 0.0646 0.0669 0.0697 0.0704 0.0778 0.0699 0.0050 
  1200 0.0818 0.0826 0.0820 0.0709 0.0827 0.0800 0.0051 

2.5% 600 0.0222 0.0233 0.0211 0.0244 0.0246 0.0231 0.0015 
  800 0.0277 0.0247 0.0270 0.0300 0.0277 0.0274 0.0019 
  1000 0.0321 0.0326 0.0344 0.0364 0.0341 0.0339 0.0017 
  1200 0.0342 0.0367 0.0375 0.0384 0.0408 0.0375 0.0024 

5% 600 0.0201 0.0202 0.0209 0.0207 0.0206 0.0205 0.0003 
  800 0.0278 0.0284 0.0273 0.0288 0.0287 0.0282 0.0006 
  1000 0.0353 0.0372 0.0374 0.0394 0.0399 0.0378 0.0019 
  1200 0.0458 0.0441 0.0490 0.0432 0.0617 0.0488 0.0076 

10% 600 0.0175 0.0195 0.0197 0.0185 0.0200 0.0190 0.0010 
  800 0.0283 0.0290 0.0292 0.0309 0.0314 0.0298 0.0013 
  1000 0.0351 0.0356 0.0404 0.0338 0.0365 0.0363 0.0025 
  1200 0.0438 0.0433 0.0467 0.0413 0.0450 0.0440 0.0020 

20% 600 0.0151 0.0151 0.0157 0.0158 0.0169 0.0157 0.0008 
  800 0.0247 0.0245 0.0256 0.0273 0.0234 0.0251 0.0015 
  1000 0.0271 0.0275 0.0306 0.0262 0.0280 0.0279 0.0017 
  1200 0.0323 0.0321 0.0343 0.0308 0.0331 0.0325 0.0013 
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Table A7.7: Kp values used for KLa determination from the GOP (lag) in n-C14-20-aqueous dispersions 

n-C14-20 Agitation    Replicates (Kp;  s
-1)     Average Standard 

conc. (% v/v) rate (rpm) 1 2 3 4 5  deviation 

0 1000 0.0393 0.0418 0.043 0.0445 0.0424 0.0422 0.0019 

2.5 1000 0.0554 0.0555 0.0568 0.0562 0.0542 0.0556 0.0010 

5 1000 0.0443 0.0442 0.0394 0.0392 0.0452 0.0425 0.0029 

10 1000 0.0338 0.0341 0.0351 0.0352 0.0365 0.0349 0.0011 

20 1000 0.0484 0.0483 0.0485 0.0496 0.0521 0.0494 0.0016 
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Table A7.8: KLa data obtained from the GOP (no lag) in n-C10-13-aqueous dispersions 

n-C10-13 Agitation rate    Replicates (KLa; s-1)     Average Standard 

conc. (% v/v) (rpm) 1 2 3 4 5  deviation 

0% 600 0.0297 0.0297 0.0296 0.0297 0.0299 0.0297 0.0001 
  800 0.0358 0.0378 0.0407 0.0400 0.0398 0.0388 0.0020 
  1000 0.0443 0.0424 0.0486 0.0440 0.0494 0.0457 0.0031 
  1200 0.0483 0.0441 0.0486 0.0457 0.0444 0.0462 0.0021 

2.5% 600 0.0281 0.0277 0.0281 0.0269 0.0284 0.0278 0.0006 
  800 0.0343 0.0316 0.0344 0.0349 0.0325 0.0335 0.0014 
  1000 0.0407 0.0358 0.0377 0.0397 0.0350 0.0378 0.0024 
  1200 0.0415 0.0334 0.0397 0.0488 0.0318 0.0390 0.0068 

5% 600 0.0242 0.0238 0.0237 0.0234 0.0227 0.0236 0.0006 
  800 0.0313 0.0296 0.0295 0.0321 0.0301 0.0305 0.0011 
  1000 0.0337 0.0331 0.0329 0.0336 0.0331 0.0333 0.0003 
  1200 0.0322 0.0312 0.0312 0.0327 0.0322 0.0319 0.0007 

10% 600 0.0184 0.0199 0.0188 0.0179 0.0191 0.0188 0.0008 
  800 0.0277 0.0262 0.0290 0.0276 0.0260 0.0273 0.0012 
  1000 0.0307 0.0314 0.0316 0.0323 0.0316 0.0315 0.0006 
  1200 0.0320 0.0317 0.0311 0.0317 0.0311 0.0315 0.0004 

20% 600 0.0141 0.0150 0.0141 0.0137 0.0142 0.0142 0.0005 
  800 0.0219 0.0205 0.0208 0.0217 0.0203 0.0210 0.0007 
  1000 0.0309 0.0299 0.0314 0.0332 0.0319 0.0315 0.0012 
  1200 0.0324 0.0317 0.0307 0.0300 0.0310 0.0312 0.0009 
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Table A7.9: KLa data obtained from the GOP (lag) in n-C10-13-aqueous dispersions 

n-C10-13 Agitation rate    Replicates (KLa; s-1)     Average Standard 

conc. (% v/v) (rpm) 1 2 3 4 5  deviation 

0% 600 0.0268 0.0271 0.0242 0.0309 0.0301 0.0278 0.0027 
  800 0.0455 0.0524 0.0525 0.0533 0.0494 0.0506 0.0032 
  1000 0.0646 0.0669 0.0697 0.0704 0.0778 0.0699 0.0050 
  1200 0.0818 0.0826 0.0820 0.0709 0.0827 0.0800 0.0051 

2.5% 600 0.0342 0.0342 0.0342 0.0342 0.0342 0.0342 0.0000 
  800 0.0438 0.0436 0.0436 0.0438 0.0435 0.0437 0.0002 
  1000 0.0580 0.0613 0.0477 0.0528 0.0529 0.0545 0.0052 
  1200 0.0589 0.0578 0.0632 0.0792 0.0725 0.0663 0.0092 

5% 600 0.0247 0.0255 0.0247 0.0246 0.0255 0.0250 0.0005 
  800 0.0393 0.0380 0.0393 0.0393 0.0379 0.0388 0.0008 
  1000 0.0409 0.0448 0.0409 0.0409 0.0448 0.0424 0.0021 
  1200 0.0549 0.0523 0.0588 0.0514 0.0448 0.0524 0.0052 

10% 600 0.0194 0.0179 0.0160 0.0194 0.0177 0.0181 0.0014 
  800 0.0316 0.0286 0.0386 0.0316 0.0286 0.0318 0.0041 
  1000 0.0417 0.0454 0.0387 0.0387 0.0387 0.0407 0.0030 
  1200 0.0690 0.0562 0.0534 0.0586 0.0529 0.0580 0.0065 

20% 600 0.0120 0.0111 0.0120 0.0120 0.0110 0.0116 0.0005 
  800 0.0227 0.0217 0.0218 0.0217 0.0216 0.0219 0.0005 
  1000 0.0481 0.0482 0.0479 0.0480 0.0480 0.0480 0.0001 
  1200 0.0535 0.0481 0.0473 0.0398 0.0556 0.0488 0.0062 
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Table A7.10: Kp values used for KLa determination from the GOP (lag) in n-C10-13-aqueous dispersions 

n-C10-13 Agitation   Replicates (Kp;  s
-1)    Average Standard 

conc. (% v/v) rate (rpm) 1 2 3 4 5  deviation 

0 1000 0.0393 0.0418 0.0430 0.0445 0.0424 0.0422 0.0019 

2.5 1000 0.0368 0.0391 0.0372 0.0391 0.0409 0.0386 0.0017 

5 1000 0.0347 0.0370 0.0363 0.0357 0.0347 0.0357 0.0010 

10 1000 0.0252 0.0259 0.0296 0.0240 0.0240 0.0257 0.0023 

20 1000 0.0238 0.0239 0.0234 0.0222 0.0224 0.0231 0.0008 
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Table A7.11: KLa data obtained from the PSP in n-C10-13-aqueous dispersions by Correia (2007) 

n-C10-13 Agitation rate Replicates (KLa; s-1) Average Standard 

conc. (% v/v) (rpm) 1 2   deviation 

0% 600 0.0272 0.0243 0.0258 0.0021 

  800 0.0485 0.0440 0.0463 0.0032 

  1000 0.0579 0.0601 0.0590 0.0016 
  1200 0.0709 0.0664 0.0687 0.0032 

2.5% 600 0.0253 0.0258 0.0256 0.0004 

  800 0.0304 0.0327 0.0316 0.0016 

  1000 0.0432 0.0457 0.0445 0.0018 

  1200 0.0608 0.0618 0.0613 0.0007 

5% 600 0.0235 0.0212 0.0224 0.0016 

  800 0.0414 0.0421 0.0418 0.0005 

  1000 0.0593 0.0614 0.0604 0.0015 
  1200 0.0723 0.0720 0.0722 0.0002 

10% 600 0.0183 0.0198 0.0191 0.0011 

  800 0.0383 0.0365 0.0374 0.0013 

  1000 0.0513 0.0514 0.0514 0.0001 
  1200 0.0711 0.0694 0.0703 0.0012 

20% 600 0.0128 0.0132 0.0130 0.0003 

  800 0.0228 0.0224 0.0226 0.0003 

  1000 0.0328 0.0325 0.0327 0.0002 
  1200 0.0568 0.0569 0.0569 0.0001 
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Table A7.12: KLa data obtained from the GOP (no lag) in n-C10-13-aqueous dispersions by Correia (2007) 

n-C10-13 Agitation rate    Replicates (KLa; s-1)     Average Standard 

conc. (% v/v) (rpm) 1 2 3 4 5  deviation 

0% 600 0.0265 0.0273 0.0264 0.0254 0.0257 0.0263 0.0007 
  800 0.0370 0.0358 0.0345 0.0343 0.0352 0.0354 0.0011 
  1000 0.0386 0.0395 0.0379 0.0377 0.0373 0.0382 0.0009 
  1200 0.0368 0.0361 0.0367 0.0372 0.0368 0.0367 0.0004 

2.5% 600 0.0268 0.0275 0.0255 0.0254 0.0240 0.0258 0.0014 
  800 0.0365 0.0352 0.0303 0.0317 0.0300 0.0327 0.0029 
  1000 0.0363 0.0350 0.0341 0.0352 0.0333 0.0348 0.0011 
  1200 0.0324 0.0299 0.0329 0.0331 0.0320 0.0321 0.0013 

5% 600 0.0226 0.0216 0.0212 0.0217 0.0233 0.0221 0.0009 
  800 0.0307 0.0301 0.0309 0.0319 0.0261 0.0299 0.0022 
  1000 0.0357 0.0360 0.0361 0.0358 0.0293 0.0346 0.0030 
  1200 0.0339 0.0345 0.0342 0.0355 0.0279 0.0332 0.0030 

10% 600 0.0193 0.0210 0.0204 0.0202 0.0211 0.0204 0.0007 
  800 0.0335 0.0316 0.0314 0.0311 0.0304 0.0316 0.0012 
  1000 0.0397 0.0391 0.0380 0.0382 0.0376 0.0385 0.0009 
  1200 0.0417 0.0400 0.0392 0.0389 0.0381 0.0396 0.0014 

20% 600 0.0133 0.0139 0.0129 0.0130 0.0128 0.0132 0.0004 
  800 0.0225 0.0226 0.0234 0.0230 0.0221 0.0227 0.0005 
  1000 0.0292 0.0297 0.0302 0.0304 0.0294 0.0298 0.0005 
  1200 0.0338 0.0351 0.0343 0.0335 0.0337 0.0341 0.0006 



Appendix 7     Reproducibility of raw data  

137 
 

Table A7.13: KLa data obtained from the GOP (lag) in n-C14-20-inert solid-aqueous dispersions 

n-C14-20 Agitation rate Solids loading Solids particle   
Replicates (KLa; s-1) 
    Average Standard 

conc. (% v/v) (rpm) (g/L) size (µm) 1 2 3 4 5  deviation 

2.5 600 1 3 0.0295 0.0266 0.0280 0.0277 0.0271 0.0278 0.0011 

2.5 1200 1 3 0.0824 0.0757 0.0680 0.0752 0.0762 0.0755 0.0051 

20 600 1 3 0.0180 0.0183 0.0194 0.0202 0.0199 0.0192 0.0010 

20 1200 1 3 0.0367 0.0351 0.0435 0.0399 0.0424 0.0395 0.0036 

2.5 600 10 3 0.0351 0.0311 0.0300 0.0317 0.0297 0.0315 0.0022 

2.5 1200 10 3 0.0476 0.0500 0.0542 0.0662 0.0614 0.0559 0.0078 

20 600 10 3 0.0179 0.0185 0.0185 0.0170 0.0176 0.0179 0.0006 

20 1200 10 3 0.0402 0.0422 0.0425 0.0482 0.0440 0.0434 0.0030 

2.5 600 1 14 0.0473 0.0329 0.0358 0.0351 0.0313 0.0365 0.0063 

2.5 1200 1 14 0.0611 0.0647 0.0498 0.0553 0.0554 0.0573 0.0058 

20 600 1 14 0.0137 0.0132 0.0141 0.0133 0.0125 0.0134 0.0006 

20 1200 1 14 0.0314 0.0352 0.0364 0.0337 0.0395 0.0352 0.0030 

2.5 600 10 14 0.0418 0.0309 0.0247 0.0288 0.0258 0.0304 0.0068 

2.5 1200 10 14 0.0444 0.0417 0.0461 0.0589 0.0483 0.0479 0.0066 

20 600 10 14 0.0175 0.0166 0.0166 0.0158 0.0194 0.0172 0.0014 
20 1200 10 14 0.0320 0.0349 0.0419 0.0445 0.0432 0.0393 0.0055 



Appendix 7     Reproducibility of raw data  

138 
 

Table A7.14: Kp values used for KLa determination from the GOP (lag) in n-C14-20-inert solid-aqueous dispersions 

n-C14-20 Agitation rate Solids loading Solids particle    Replicates (Kp; s
-1

 )     Average Standard 

conc. (% v/v) (rpm) (g/L) size (µm) 1 2 3 4 5  deviation 

2.5 600 1 3 0.0447 0.0433 0.0448 0.0442 0.0432 0.0440 0.0008 

2.5 1200 1 3 0.0447 0.0433 0.0448 0.0442 0.0432 0.0440 0.0008 

20 600 1 3 0.0424 0.0448 0.0442 0.0418 0.0421 0.0431 0.0013 

20 1200 1 3 0.0424 0.0448 0.0442 0.0418 0.0421 0.0431 0.0013 

2.5 600 10 3 0.0422 0.0436 0.0455 0.0445 0.0451 0.0442 0.0013 

2.5 1200 10 3 0.0422 0.0436 0.0455 0.0445 0.0451 0.0442 0.0013 

20 600 10 3 0.0424 0.0448 0.0442 0.0418 0.0421 0.0431 0.0013 

20 1200 10 3 0.0424 0.0448 0.0442 0.0418 0.0421 0.0431 0.0013 

2.5 600 1 14 0.0366 0.0376 0.0368 0.0364 0.0379 0.0371 0.0007 

2.5 1200 1 14 0.0366 0.0376 0.0368 0.0364 0.0379 0.0371 0.0007 

20 600 1 14 0.0391 0.0392 0.0405 0.0396 0.0398 0.0396 0.0006 

20 1200 1 14 0.0391 0.0392 0.0405 0.0396 0.0398 0.0396 0.0006 

2.5 600 10 14 0.0427 0.0399 0.0405 0.0396 0.0376 0.0401 0.0018 

2.5 1200 10 14 0.0427 0.0399 0.0405 0.0396 0.0376 0.0401 0.0018 

20 600 10 14 0.0426 0.0422 0.0413 0.0427 0.0403 0.0418 0.0010 
20 1200 10 14 0.0426 0.0422 0.0413 0.0427 0.0403 0.0418 0.0010 
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Table A7.15: Fluid viscosity data obtained in n-C14-20-inert solid-aqueous dispersions 

n-C14-20 Solids loading Solids particle   
 Replicates (µ; mPa.s) 
 Average Standard 

conc. (% v/v) (g/L) size (µm) 1 2 3 4 5  deviation 

2.5 1 3 1.075 1.040 1.060 1.070 1.110 1.071 0.026 

20 1 3 1.170 1.325 1.300 1.325 1.320 1.288 0.067 

2.5 10 3 1.145 1.170 1.170 1.250 1.230 1.193 0.045 

20 10 3 1.320 1.450 1.450 1.585 1.455 1.452 0.094 

2.5 1 14 1.080 1.125 1.075 1.125 1.105 1.102 0.024 

20 1 14 1.155 1.120 1.075 1.100 1.070 1.104 0.035 

2.5 10 14 1.130 1.055 1.165 1.195 1.145 1.138 0.052 

20 10 14 1.080 1.000 1.155 1.090 1.105 1.086 0.056 
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Table A7.16: Fluid surface tension data obtained in n-C14-20-inert solid-aqueous dispersions 

n-C14-20 Solids loading Solids particle   
 Replicates (σ; mNm-1) 
  Average Standard 

conc. (% v/v) (g/L) size (µm) 1 2 3 4 5  deviation 

2.5 1 3 59.47 57.18 59.01 61.30 63.13 60.02 2.27 

20 1 3 71.82 71.37 70.91 71.37 71.82 71.46 0.38 

2.5 10 3 68.62 68.62 70.45 69.99 71.37 69.81 1.19 

20 10 3 71.37 71.82 72.28 71.37 71.37 71.64 0.41 

2.5 1 14 67.25 66.33 68.16 68.16 66.79 67.34 0.82 

20 1 14 51.69 51.69 50.78 49.86 51.69 51.15 0.82 

2.5 10 14 69.54 70.45 70.45 70.91 70.91 70.45 0.56 

20 10 14 63.59 64.50 65.88 61.30 64.05 63.86 1.67 
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Table A7.17: KLa data obtained from the GOP (lag) in n-C14-20-yeast-aqueous dispersions 

n-C14-20 Agitation rate Yeast loading   
 Replicates (KLa; s-1) 
    Average Standard 

conc. (% v/v) (rpm) (g/L) 1 2 3 4 5   deviation 

2.5 600 1 0.0262 0.0267 0.0202 0.0248 0.0204 0.0237 0.0032 

2.5 900 1 0.0433 0.0365 0.0373 0.0392 0.0467 0.0406 0.0043 

11.25 600 1 0.0361 0.0345 0.0335 0.0336 0.0286 0.0333 0.0028 

11.25 900 1 0.0385 0.0471 0.0465 0.0395 0.0358 0.0415 0.0051 

2.5 600 5.5 0.0264 0.0265 0.0273 0.0255 0.0257 0.0263 0.0007 

2.5 900 5.5 0.0348 0.0334 0.0333 0.0362 0.0350 0.0345 0.0012 

11.25 600 5.5 0.0148 0.0153 0.0141 0.0146 0.0145 0.0147 0.0004 

11.25 900 5.5 0.0256 0.0254 0.0238 0.0261 0.0250 0.0252 0.0009 

6.8 750 3.25 0.0333 0.0323 0.0345 0.0345 0.0325 0.0334 0.0010 
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Table A7.18: Kp values used for KLa determination from the GOP (lag) in n-C14-20-yeast-aqueous dispersions 

n-C14-20 Agitation rate Yeast loading   
 Replicates (Kp;  s

-1) 
    Average Standard 

conc. (% v/v) (rpm) (g/L) 1 2 3 4 5  deviation 

2.5 600 1 0.0485 0.0469 0.0466 0.0504 0.0458 0.0476 0.0018 

2.5 900 1 0.0384 0.0394 0.0402 0.0412 0.0434 0.0405 0.0019 

11.25 600 1 0.0472 0.0466 0.0509 0.0492 0.0475 0.0483 0.0018 

11.25 900 1 0.0472 0.0466 0.0509 0.0492 0.0475 0.0483 0.0018 

2.5 600 5.5 0.0384 0.0394 0.0402 0.0412 0.0434 0.0405 0.0019 

2.5 900 5.5 0.0384 0.0394 0.0402 0.0412 0.0434 0.0405 0.0019 

11.25 600 5.5 0.0437 0.0432 0.0437 0.0439 0.0432 0.0435 0.0003 

11.25 900 5.5 0.0472 0.0466 0.0509 0.0492 0.0475 0.0483 0.0018 

6.8 750 3.25 0.0385 0.0411 0.0407 0.0415 0.0394 0.0402 0.0013 
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Table A7.19: Fluid viscosity data obtained in n-C14-20-yeast-aqueous dispersions 

n-C14-20 Yeast loading     
Replicates (µ; mPa.s) 
   Average Standard 

conc. (% v/v) (g/L) 1 2 3 4 5  deviation 

2.5 1 1.060 1.050 1.100 1.100 1.110 1.084 0.027 

11.25 1 1.420 1.540 1.300 1.325 1.320 1.381 0.100 

2.5 5.5 1.390 1.400 1.400 1.330 1.330 1.370 0.037 

11.25 5.5 1.490 1.390 1.650 1.680 1.540 1.550 0.119 

6.88 3.25 1.550 1.500 1.650 1.560 1.550 1.562 0.054 
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Table A7.20: Fluid surface tension data obtained in n-C14-20-yeast-aqueous dispersions 

 

n-C14-20 Yeast loading      
Replicates (σ; mNm-1) 
    Average Standard 

conc. (% v/v) (g/L) 1 2 3 4 5  deviation 

2.5 1 27.22 27.68 27.91 26.76 27.91 27.49 0.50 

11.25 1 27.68 26.30 25.39 25.62 25.16 26.03 1.02 

2.5 5.5 29.28 32.94 33.40 33.40 35.23 32.85 2.18 

11.25 5.5 33.17 29.51 29.74 29.28 29.74 30.28 1.62 

6.8 3.25 29.28 31.34 32.48 32.02 31.79 31.38 1.25 
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A.8:  Statistical validation of experimental results 
Major conclusions from this work were made statistically. Besides the statistical 

interpretation of results by STATISTICA for factors affecting Kp (see section 5.1.1; 

Figure 5.1; Figure 5.3; Figure 5.5 and Figure 5.7). KLa behavior in aerated agitated 

alkane-inert solid-aqueous dispersions and the influence of fluid viscosity and fluid 

surface tension in these alkane-inert solid-aqueous dispersions were quantified at 

99% confidence interval using STATISTICA (see section 5.2.1; Figures 5.14 - 5.16). 

In addition KLa behavior in aerated agitated alkane-yeast-aqueous dispersions and 

influence of fluid viscosity and fluid surface tension in these dispersions were also 

quantified statistically at 99% confidence by STATISTICA (see section 5.2.2; Figures 

5.28 - 5.30). 

Furthermore when determining the accuracy of KLa measurement method, the t-test 

was used for comparing KLa results from the GOP (lag) and the GOP (no lag) in n-

C10-13 and n-C14-20-aqueous dispersions for all process conditions at 99% confidence 

interval (see section 5.1.2; Figure 5.9 and Figure 5.10; Table A8.1 and Table A8.2). 

In addition to that, it was also proven statistically using a t-test that the differences 

between the GOP (lag) and the GOP (no lag) in n-C10-13 and n-C14-20 aqueous 

dispersions for all alkane concentrations significantly increased with increase in 

agitation rate at 99% confidence interval (see section 5.1.2; Figure 5.11; Figure 5.12; 

Table A8.3 and Table A8.4). This is also supported by the increase in the F-variance 

ratio with increase in agitation rate (Table A8.3 and Table A8.4). Also the t-test was 

used to compare the KLa results in n-C10-13-aqueous dispersions from the PSP 

reported by Correia and Clarke (2009) to those from the GOP (lag) in this work and 

no significant difference was noted at 99% confidence interval (see section 5.1.2; 

Figure 5.13 and Table A8.5). Lastly the t-test was used to check for any variance 

between KLa results in n-C10-13-aqueous dispersions from this work and those 
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obtained by Correia (2007) measured by the GOP (no lag) (see Tables A7.8 and 

A7.12; Figure A7.5 and Table A8.6). No significant difference was found between the 

KLa data at 99% confidence interval. 

For all t-test analyses, if the modulus of stat critt t>  for the one tail and the two tails, 

then the differences will be significant else the opposite holds. 

Table A8.1: t-test two-sample assuming equal variances for KLa results from GOP 
(no lag) and GOP (lag) in 0-20% (v/v) n-C14-20-aqueous dispersions and 
agitation 600-1200rpm 

Table A8.2: t-test two-sample assuming equal variances for KLa results from GOP 
(no lag) and GOP (lag) in 0-20% (v/v) n-C10-13-aqueous dispersions and 
agitation 600-1200rpm 

Statistical parameter KLa (s-1) (GOP no lag) KLa(s-1) (GOP lag) 

Mean 0.0244 0.0357 

Variance 0.0000 0.0002 

Observations 120 120 

Pearson correlation 0.765  

Hypothesized mean difference 0  

df 119  
t Stat -11.927  

P(T<=t) one-tail 0.000  
t Critical one-tail 1.658  

P(T<=t) two-tail 0.000  
t Critical two-tail 1.980  

Statistical parameter  KLa(s-1) (GOP no lag) KLa(s-1) (GOP lag) 

Mean 0.0297 0.0417 

Variance 7.3E-05 3.3E-04 
Observations 120 120 

Pooled variance 0.000  

Hypothesized mean difference 0  

df 238  

t Stat -6.579  

P(T<=t) one-tail 0.000  

t Critical one-tail 2.342  

P(T<=t) two-tail 0.000  

t Critical two-tail 2.597  
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Table A8.3: t-test two-sample for independent results for KLa average results from GOP (no lag) and GOP (lag) in 0-20% (v/v) n-C14-20-
aqueous dispersions and agitation 600-1200rpm 

Table A8.4: t-test two-sample for independent results for KLa average results from GOP (no lag) and GOP (lag) in 0-20% (v/v) n-C10-13-
aqueous dispersions and agitation 600-1200rpm 

Agitation GOP (no lag) GOP (lag) t-value df p Stdev (GOP no lag) Stdev (GOP lag) F ratio var p Variances 

600 0.021 0.021 -0.110 8 0.915 0.006 0.005 1.641 0.643 

800 0.026 0.032 -1.115 8 0.297 0.007 0.010 1.936 0.538 

1000 0.029 0.041 -1.450 8 0.185 0.010 0.016 2.995 0.313 

1200 0.030 0.049 -2.023 8 0.078 0.009 0.019 4.062 0.203 

Agitation GOP (no lag) GOP (lag) t-value df p Stdev (GOP no lag) Stdev (GOP lag) F ratio var p Variances 

600 0.024 0.023 0.091 8 0.930 0.006 0.009 2.143 0.479 

800 0.030 0.037 -1.233 8 0.252 0.007 0.011 2.742 0.352 

1000 0.036 0.051 -2.556 8 0.034 0.007 0.012 3.559 0.246 

1200 0.036 0.061 -3.994 8 0.004 0.006 0.012 3.813 0.223 
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Table A8.5: t-test two-sample assuming equal variances for average KLa results from 
GOP (lag) and PSP in 0-20% (v/v) n-C10-13-aqueous dispersions and 
agitation 600-1200rpm 

Table A8.6: t-test two-sample assuming equal variances for KLa results from GOP 
(no lag) from this work and those reported by Correia (2007) in 0-20% 
(v/v) n-C10-13-aqueous dispersions and agitation 600-1200rpm 

 

Statistical parameter KLa (s-1) (GOP lag) KLa (s-1) (PSP) 

Mean 0.0438 0.0431 

Variance 0.000 0.000 

Observations 20 20 

Pooled variance 0.000  

Hypothesized mean difference 0  

df 38  

t Stat 0.111  

P(T<=t) one-tail 0.456  

t Critical one-tail 2.429  

P(T<=t) two-tail 0.912  

t Critical two-tail 2.712  

Statistical parameter 
KLa (s-1) (GOP no lag) this 

work 
KLa (s-1) (GOP no lag) 

Correia (2007) 

Mean 0.0297 0.0304 

Variance 0.0001 0.0000 

Observations 120 120 

Pooled variance 6E-05  

Hypothesized mean difference 0  

df 222  

t Stat -0.635  

P(T<=t) one-tail 0.263  

t Critical one-tail 2.343  

P(T<=t) two-tail 0.526  

t Critical two-tail 2.598  


