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Summary 

 

In the food industry, the colour of the product is important to the consumer as it gives an indication 

of the freshness and quality of the product.  Hens are not able to produce pigments and absorb 

pigments through their diet.  This has led to a rapidly emerging trend in poultry farming to enhance 

egg yolk colour as the yolk colour is influenced by the diet of the hen.  Over the years, natural or 

synthetic carotenoids have been added to poultry feed.  Several studies have focused on using 

astaxanthin producing microorganisms, such as the microalga, Haematococcus pluvialis, and yeast, 

Xanthophyllomyces dendrorhous.  However, the production costs are expensive and the thick cell 

walls of the microalga and yeast limits its whole cell application as a feed additive.  Some bacterial 

species are also able to produce astaxanthin, including the bacterium Paracoccus marcusii, and 

have previously not been used as a feed additive to enhance yolk colour.  The purpose of this study 

was, therefore, to determine the whole cell application of P. marcusii as a feed additive to enhance 

egg yolk colour, without the need to homogenise the cells or extract the pigment. 

 

In the first experimental chapter (Chapter 2), the growth conditions and astaxanthin production of    

P. marcusii was optimised.  Furthermore, the stability of the astaxanthin molecule under different 

storage conditions, namely lyophilisation and microencapsulation, was determined.  The optimum 

growth conditions for P. marcusii and for astaxanthin production was at 26 °C in a specialised 

medium containing yeast extract (5 g/L), bacteriological peptone (10 g/L) and NaCl (3%) at a pH 

between 6 – 7.  Astaxanthin is a valuable compound with several health promoting benefits for 

humans and animals.  However, the molecule is unstable when exposed to oxygen, light and 

temperature.  After lyophilisation in sucrose (10% m/v), there was an 85% loss in astaxanthin 

concentration after 3 weeks.  However, the loss in cell viability was low.  When P. marcusii was 

microencapsulated in calcium alginate beads, cell viability significantly decreased when stored at   

20 °C compared to 4 °C.  However, only 30% of the total astaxanthin concentration was lost after     

3 weeks at both storage temperatures.  The microencapsulation significantly improved the stability 

of astaxanthin under storage.  The highest concentration of astaxanthin obtained was 24.25 µg/g dry 

cell weight. 

 

Chapter 3 examined the pigmentation effect of P. marcusii when fed to laying hens to enhance egg 

yolk colour.  Paracoccus marcusii was fed to hens daily either in a sucrose solution (10% m/v) or 

microencapsulated in calcium alginate beads.  After the pilot study, it was clear that a diet free of all 

pigments was needed to effectively determine the pigmentation effect of P. marcusii.  In all the 

experimental trials there was a significant increase in yolk colour and no negative effect on egg 

quality, laying rate or hen weight was observed.  There was also an increase in whole egg and yolk 
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weight when compared to the control groups.  Furthermore, the microbial communities of the 

duodenum and caeca were investigated after a prolonged feeding of P. marcusii to detect any 

changes that might have occurred (Chapter 4).  The microbial community of the hen’s gastro-

intestinal tract (GIT) starts out as a simple community in the small intestines which becomes 

increasingly diverse and complex further down the intestinal tract.  The findings in this study revealed 

a similar pattern when considering the results obtained from the Shannon diversity index and total 

number of operational taxonomic units (OTUs).  Starting in the duodenum, the index ranged between 

2.14 – 2.59 and increased in the caeca to between 2.45 – 3.03.  OTUs increased from 21.44 – 28.60 

in the duodenum to 28.30 – 38.00 in the caeca.  A significant difference was only observed for the 

OTUs of the experimental group compared to the control groups in both the duodenum and caeca.  

There was no significant difference observed in the microbial community structure of the duodenum.  

However, distinct patterns and clusters formed in the caeca between the experimental diet group 

compared to the control diet groups.  Since no mortalities were recorded during the trial and all hens 

appeared in excellent health, it is safe to assume that the change in microbial community structure 

of the caeca was not negative.  Therefore, P. marcusii is safe to use as a feed additive for laying 

hens. 

 

Finally, Chapter 5 evaluated the costs associated with the small-scale production of P. marcusii 

microencapsulated in calcium alginate beads and its feasibility in the poultry industry.  Based on the 

economic assessment, the total cost for one month’s production of 210 g calcium alginate beads is 

estimated at R2912.88.  This is too expensive and not practical to be used by poultry farmers.  

Possible solutions can include the use of inexpensive peptones, production on a larger scale and 

also increasing the concentration of bacterium encapsulated in the bead. 
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Opsomming 

 

In die voedselbedryf is die kleur van ʼn produk baie belangrik vir die verbruiker, aangesien dit ‘n 

indruk skep van ‘n vars produk van goeie gehalte.  Hoenders is nie daartoe instaat om self pigmente 

te produseer nie en is afhanklik van hul dieet om dit in te neem.  Dit het gelei tot ‘n toenemende 

neiging onder pluimveeboere om die kleur van die eiergeel te manipuleer deur natuurlike of 

sintetiese kleurmiddels, byvoorbeeld karotenoïede, by die voer te meng.  Karotenoïede word oor ‘n 

lang tydperk reeds by pluimveevoer gevoeg.  Meeste van vandag se navorsing fokus op die gebruik 

van ‘n astazantien produserende mikroalge, Haematococcus pluvialis, en gis, Xanthophyllomyces 

dendrorhous.  Die gebruik van hierdie mikroörganismes as ‘n bymiddel word egter beperk aangesien 

die produksie kostes baie hoog is. Hierdie mikroörganismes het ook ‘n baie dik selwand wat die 

vrystelling van astazantien bemoeilik.  Sommige bakterieë, byvoorbeeld die bakterium Paracoccus 

marcusii, is ook daartoe instaat om astazantien te produseer, maar is voorheen nog nie gebruik as 

a bymiddel nie.  Die doel van hierdie studie was dus om te bepaal of P. marcusii gebruik kan word 

as ‘n bymiddel om die kleur van eiergeel te manipuleer sonder om die selle te homogeniseer of die 

pigmente uit te haal. 

 

In die eerste eksperimentele hoofstuk (Hoofstuk 2), is die optimale groeitoestande van P. marcusii 

vir ‘n hoë produksie astazantien bepaal.  Verder is die stabiliteit van die astazantien molekule onder 

verskillende berging metodes ook bepaal, naamlik vriesdroging en mikroënkapsulering.  Die 

optimale groeitoestande van P. marcusii was by 26 °C in ‘n gespesialiseerde medium met ‘n pH van 

tussen 6 – 7, wat gis ekstrak (5 g/L), bakteriologiese peptone (10 g/L) en NaCl (3%) bevat.  

Astazantien is ‘n baie waardevolle pigment met verskeie gesondheids voordele vir beide mense en 

diere. Hierdie molekuul is egter onstabiel wanneer dit blootgestel word aan suurstof, lig en hoë 

temperature.  Drie weke na vriesdroging in sukrose (10% m/v) was daar ‘n 85% verlies in astazantien 

konsentrasie, maar die lewensvatbaarheid van die selle was nog hoog.  Die mikroënkapsulering van 

P. marcusii in kalsiumalginaat-balletjies het ‘n laer sellewensvatbaarheid gehad by 20 °C in 

vergelyking met 4 °C en slegs 30% van die astazantien konsentrasie het verlore gegaan na drie 

weke by albei temperature.  Die mikroënkapsulering het dus die stabiliteit van die astazantien 

molekule aansienlik verbeter.  Die hoogste konsentrasie astazantien wat verkry is, was 24.25 µg/g 

droë sel gewig. 

 

Hoofstuk 3 het gekyk na die effek wat P. marcusii op die kleur van die eiergeel uitoefen wanneer dit 

vir lê-henne gevoer word.  Die henne het daagliks ‘n dosis van die bakterium gekry in óf ‘n sukrose 

oplossing (10% m/v) óf gemikroënkapsuleer in kalsiumalginaat-balletjies. Na die loodsstudie was dit 
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duidelik dat ‘n voer sonder enige pigmente nodig is om die kleuringseffek van die bakterium te kan 

bepaal.  Daar was ‘n beduidende toename in die kleur van die eiergeel by al die eksperimentele 

proewe en geen newe-effekte is waargeneem in terme van eierkwaliteit, hoeveelheid eiers wat gelê 

is of die gewig van die hoender nie.  In vergelyking met die kontrolegroepe was daar ‘n effense 

toename in die gewig van die eier en die eiergeel. Verder is daar ook gekyk na die effek van die 

bakterium op die mikrobiese gemeenskap van die duodenum en seka (Hoofstuk 4).  Die mikrobiese 

gemeenskap van die spysverteringskanaal (SVK) van die hoender begin as ‘n eenvoudinge 

samestelling van bakterieë in die dunderm wat meer kompleks en divers raak verder af in die SVK 

tot by die seka.  Die bevindinge in hierdie studie het gedui op soortgelyke patrone deur die resultate 

van die Shannon indeks en totale aantal operasionele taksonomiese eenhede (OTE) te bestudeer.  

Die indeks van die duodenum was tussen 2.14 – 2.59 en het toegeneem tot 2.45 – 3.03 in die seka.  

Die OTE het ook toegeneem van 21.44 – 28.60 tot 28.30 – 38.00.  ‘n Beduidende verskil was slegs 

waargeneem tussen die OTE waar die eksperimentele groep ‘n laer OTE gehad het as die kontrole 

groepe.  Daar was geen verskil tussen die mikrobiese samestellings van die duodenum nie, maar 

duidelike patrone en groepe was waargeneem tussen die eksperimentele groep en kontroles van 

die seka.  Aangesien daar geen mortaliteite was nie en alle hoenders gesondheid was, kan afgelei 

word dat die verandering in die mikrobiese samestelling van die seka nie negatief was nie.  Daarom 

is dit veilig om P. marcusii te gebruik as ‘n bymiddel vir lê-henne. 

 

In die finale hoofstuk (Hoofstuk 5) is die kostes verbonde aan die produksie van 

mikrogeënkapsuleerde P. marcusii in kalsiumalginaat-balletjies, en die ekonomiese haalbaarheid 

daarvan in die pluimveebedryf, bespreek.  Die maandelike koste van 210 g kalsiumalginaat-balletjies 

beloop tans R2912.88.  Die kostes is egter baie duur en nie haalbaar vir ‘n pluimveeboer nie.  

Moontlike oplossings kan die gebruik van ‘n goedkoper bron van peptone insluit, asook grootskaalse 

produksie en ‘n verhoogde konsentrasie van die bakterium in die kalsiumalginaat-balletjies.  
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Literature review 

 

There is a trend among farmers to use natural ingredients free of synthetic pigments, antibiotics and 

other chemicals in feed (Fanatico et al., 2009 and USDA, 2016).  This is partially due to the demand 

from the consumer for a more natural and organic product and because of legislative actions that 

eliminate the use of chemical additives (Cherian et al., 2002; Sean, 2002 and USDA, 2016).  Chicken 

eggs are one example of such a food group as colourants are added to the feed to enhance egg 

yolk colour. 

 

Poultry eggs 

Nutritional value and health aspects of chicken eggs 

Chicken eggs are considered to be a wholesome food source that contains minerals, proteins, 

vitamins and high quality and quantity lipids (Fredriksson et al., 2006).  The total nutrient content of 

one large raw egg compared to the Recommended Dietary Allowance (RDA) is set out in Table 1 

(USDA, 2005).   

 

Table 1 – Nutritional value of one large egg (± 50 g) compared to the Recommended 
Dietary Allowance 

(USDA, 2005) 

Nutrient Whole egg RDA Total of RDA (%) 

Macronutrients 
and energy 

Protein 6.3 g 0.8 g/kg body weight N/A 

Carbohydrate 0.4 g 130 g 0.31 

Total fat  5.0 g 65 g 7.7 

Cholesterol 212 mg  < 300 mg 71 

Vitamins 

Vitamin A 244 IU 3000 IU 8.1 

Vitamin B6 0.07 mg 1.3 mg 5.4 

Vitamin B12 0.65 µg 2.4 µg 27 

Vitamin D 18 IU 600 IU 3 

Vitamin E 0.48 mg 1000 mg 0.05 

Choline 126 mg ** ** 

Folate 24 µg 400 µg 6 

Riboflavin 0.24 mg 1.3 mg 18.5 

Thiamine 0.04 mg 1.2 mg 3.3 

Minerals 

Calcium 26 mg 1000 mg 2.6 

Iron 0.92 mg 8 mg 11.5 

Phosphorus 96 mg 700 mg 13.7 

Potassium 67 mg 4700 mg 1.4 

Magnesium 6 mg 400 – 420 mg 1.4 – 1.5 

Selenium 15.8 µg 70 µg 22.6 

Sodium 70 mg 2300 mg 3.0 

Zinc 0.56 mg 11 mg 5.1 

Carotenoids Lutein and Zeaxanthin 166 µg ** ** 
RDA – Recommended Dietary Allowance 
N/A – Not applicable 
** Not established 
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These nutrients not only protect against age related health risks, but the antioxidants (zeaxanthin 

and lutein) in the yolk have numerous health benefits.  These include the maintenance of normal 

eye health, improved skin health and immune system function and a reduced risk of cancer and 

heart disease (Boon et al., 2010 and Schonfeldt et al., 2013).  In addition, the relatively high content 

of vitamin D is noteworthy as only a few foods are recognised sources for vitamin D, such as fatty 

fish (tuna and salmon), liver and cheese (Ruxton et al., 2010).  According to the South African             

Food-Based Dietary Guidelines (FBDG), eggs can be consumed daily, but the recommended 

number of eggs are three to four eggs per week (Schonfeldt et al., 2013 and Vorster et al., 2013).  

Each year there is more evidence emerging that suggests that consuming eggs are associated with 

a good quality diet and also weight management (Van der Wal et al., 2005; 2008; Ratliff et al., 2010 

and Vorster et al., 2013). 

 

South African egg industry 

Whole chicken eggs are perishable and cannot be transported over long distances.  For this reason, 

eggs are produced in every province of South Africa.  According to a census taken in 2014 of layer 

hen distributions across South Africa, Gauteng had the highest percentage of layer hens (26.1%) 

followed by the Western Cape (17.2%), Free State (15.4%), KwaZulu Natal (14.6%), Limpopo 

(7.4%), Mpumalanga (4.6%) and Eastern Cape (4%).  The Northern Cape had the lowest percentage 

of layer hens with only 0.2% (Fig. 1) (South African Poultry Association, 2014). 

 

 

Figure 1 – Percentage distribution of layer hens across South Africa (adopted from South African Poultry 
Association, 2014). 
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Other egg products are also exported to other countries.  These egg exports include fertilised eggs 

(chickens and ostriches) for hatcheries and products including dried and liquid yolks, albumen and 

shell products.  During 2016, the main countries for export of South African eggs and egg products 

were Mozambique (69%), Zimbabwe (9.9%), Swaziland (7.9%), Lesotho (4.1%), Namibia (3.1%), 

Angola (2.1%), Cote d’Ivoire (1.9%) and Botswana (1.6%).  A small percentage of eggs and egg 

products (mostly dried eggs) are imported from other countries, including India, Italy, France, 

Germany, United States and Lesotho (South African Poultry Association, 2016). 

 

Quality of eggs 

The quality of any food product was first defined by Kramer (1951) as the properties of the food that 

have an influence on the rejection or acceptance by the consumer (Giusti et al., 2007).  Egg quality 

was first defined by Stadelman (1977) as the characteristics most important to the consumer.  These 

included yolk colour (light or dark), texture and firmness together with albumen appearance and 

consistency (Gerber, 2006).  Several factors can influence the internal quality of the egg.  These 

include environmental conditions, such as humidity and temperature, but the most influential is the 

hen’s age and storage time (Roberts et al., 2013 and Chung and Lee, 2014).  Young hens lay eggs 

with longer pores and thicker shells than older hens (Britton, 1977 and Akyurek and Okur, 2009).  

The function of the shell and membrane is to retain the moisture content and to prevent bacterial 

infections (Burley and Vadehra, 1989; Davies and Breslin, 2003 and Svobodová and Tůmová, 2014).  

As the egg ages during storage, moisture and carbon dioxide is lost through the pores, causing an 

increase in albumen pH and a larger air pocket inside the egg (Akyurek and Okur, 2009).  Although 

the internal quality starts to decline with a longer storage period, the nutritional composition remains 

the same with only a change in moisture content (Al-Obaidi et al., 2011).  The average fresh egg 

consists out of 10% shell, 32% yolk and 58% albumen.  The albumen contains mainly water (88%) 

and protein (9%) and the egg yolk contains water (51%), protein (16%) and fat (31%) (Roberts, 2004 

and Coutts and Wilson, 2007). 

 

A good quality yolk should be firm and free of all blemishes such as pigment spots, blood spots and 

meat spots (Gerber, 2006 and Coutts and Wilson, 2007).  Egg yolks lose their firmness when the 

perivitelline membrane surrounding the yolk becomes weakened during storage, causing the yolk to 

break easily (Kirunda and McKee, 2000).  For many years, the colour of the yolk has been 

manipulated by adding synthetic or natural carotenoids to the diet of the hen.  Some of the most 

important natural sources of carotenoids include grass meals, corn and maize gluten (Gerber, 2006).  

Some synthetic products available on the market include canthaxanthin for orange yolks and        

beta-apo-8-carotene ethyl ester and beta-apo-8’-carotenal for yellow yolks (Bunnell et al., 1962; 

Sunde, 1962; Norman et al., 1973 and Fletcher et al., 1978).  Yolk colour preference varies between 
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countries and corn and maize alone does not add enough colour to the yolk that is satisfactory to 

the consumer (Roberts, 2004).  By adding these synthetic or other natural supplements to the feed, 

different market demands can be met.  For example, on the yolk colour fan ranging from 1 to 15  

(Fig. 2), France prefers a yolk colour of 14, England a yolk colour of 12 and in Australia a yolk colour 

of 11 is preferred (Beardsworth and Hernandez, 2004 and Roberts, 2004). 

 

 

Figure 2 – DSM yolk colour fan. 

 

To measure albumen quality, the following formula is used to calculate the Haugh Unit: 

𝐻𝑈 = 100×log(ℎ − 1.7𝑤0.37 + 7.6) 

where h is the thick albumen height and w is the weight of the whole egg (Haugh, 1937).  The 

average HU value of the egg that leaves the farm after processing ranges between 75 – 85 and by 

the time it reaches the consumer it is about 60.  A higher HU value corresponds to a better-quality 

egg (Adamiec et al., 2002).  The albumen of a fresh egg should be a slight yellow to green colour 

and transparent.  Any discolouration to pink or a darker yellow or green may be the result of an 

excess of cottonseed meal, riboflavin and specific weed seeds in the diet (Gerber, 2006 and Coutts 

and Wilson, 2007). 

 

Egg formation 

The egg starts as a single ovum, also known as the yolk, which takes about 24 hours to completely 

pass through different sections of the oviduct (Coutts and Wilson, 2007).  In the first step, the yolk is 

released from the ovary into the funnel where chalaza covers the yolk.  From here the yolk passes 

into the magnum where the albumen is layered around the yolk.  The next part is called the isthmus 

and this is where the outer membranes are created to hold the liquid portion of the egg together.  
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From the isthmus, the egg moves to the uterus where it spends the majority of time as the calcium 

carbonate shell is built before it is passed through the cloaca (Coutts and Wilson, 2007).  Figure 3 

illustrates the flow of egg formation and the time spent in each section of the oviduct. 

 

 

Figure 3 – Oviduct of the hen and the time spent in each section (adapted from Curbstone Valley Farm, 2010). 

 

Microbial contamination of eggs 

Microorganisms can contaminate eggs either horizontally after the egg is laid (Barrow and Lowell, 

1991), or vertically, also known as the trans-ovarian route, in the reproductive organs of the hen 

(Keller et al., 1995 and Miyamoto et al., 1997).  Figure 4 illustrates these possible routes of egg 

contamination when contaminated with Salmonella.  Most eggs are sterile when they are laid and 

only get contaminated when it leaves the oviduct (Fig. 4A).  The temperature of the egg once it is 

laid is around 42 °C and as it cools down a negative pressure is created inside the egg and has a 

potential to pull material into the pores of the shell.  The egg can, therefore, potentially get 

contaminated with any surface area it comes into contact with after it is laid.  This can include faeces, 

soil, cage material, hands of workers, water, nesting material and insects (Davies and Breslin, 2003 

and Svobodová and Tůmová, 2014).  Vertical trans-ovarian contamination mainly occurs because 

of infected ovaries or from contaminated cloaca into the lower regions of the oviduct, also known as 

ascending infections (Keller et al., 1995 and Miyamoto et al., 1997).  Infected oviduct tissue or 
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ovaries directly contaminate the egg content even before the shell is formed (Fig. 4B) (Messens et 

al., 2005). 

 

 

Figure 4 – Pathogenesis by e.g. Salmonella of contaminated eggs.  Salmonella is taken up orally by the hen 
and spreads through gut colonisation, systemic spread or ascending infection.  A. Horizontal contamination 
though faeces or vagina.  B. Vertical trans-ovarian contamination through different sections of the oviduct 
(adapted from Gantois et al., 2009). 

 

On the egg shell surface, the microbial population is dominated by Gram-positive bacteria.  In 

contrast, the internal egg is mostly contaminated by Gram-negative bacteria and some                  

Gram-positive bacteria (Stadelman and Cotterill, 1995 and De Rue et al., 2006).  Some of the most 

common bacterial contaminants include the genera Athrobacter, Alcaligenes, Bacillus, Escherichia, 

Flavobacterium, Pseudomonas, Micrococcus and Staphylococcus (Stadelman and Cotterill, 1995 

and Svobodová and Tůmová, 2014). 

 

 

A 

B 
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Poultry health 

The microbiome of any living organism plays an important role in maintaining overall health and 

function of the host.  These organisms have a role in nutrient absorption, immune system function 

and feed digestion (Gong et al., 2002a; 2002b; 2007 and Stanley et al., 2012).  The microbiome is 

important in animal health and production.  It positively influences the host’s gastrointestinal 

development, physiology, immunology, biochemistry and nonspecific resistance to infections (Torok 

et al., 2008). 

 

The gastrointestinal tract (GIT) of poultry differs from mammals in that the type of microorganisms 

that will colonise are primarily influenced by the surrounding environment (Oakley et al., 2013).  

Several other factors also influence the GIT of poultry and include feed additives, treatments with 

antibiotics, age of the hen, hygiene level, type of hen, diet, climate and geography (Shaufi et al., 

2015).  Newly hatched chicks from farming industries do not come into contact with adult hens, 

therefore, the environmental microbial communities serve as a first ‘inoculum’ that will start the 

development of the GIT (Oakley et al., 2013).  The microorganisms that colonise the GIT in newly 

hatched chicks form a synergistic relationship with the host.  These organisms are important for 

absorption and utilisation of energy and nutrients and for the response of poultry to feed additives 

and enzymes (Torok et al., 2008).  As the hen ages, the microbiome becomes more diverse until it 

reaches a stable state (Pan and Yu, 2014). 

 

The gastrointestinal tract of the hen 

The GIT of the hen has several compartments each with different characteristics.  After the oral 

cavity, three segments follow; the crop (Fig. 5A), proventriculus (or stomach) (Fig. 5B) and gizzard 

(Fig. 5C).  The crop is a fermentation and food storage organ.  Food can reside in the crop for 

minutes to several hours before the food is acidified in the proventriculus and ground in the gizzard 

(Savory, 1999 and Sekelja et al., 2012).  The lower gut consists out of the small intestines (Fig. 5D), 

colon (Fig. 5E) and caeca (Fig. 5F).  The caeca are two fermentation chambers and can store 

contents for longer than the small intestines (Clench and Mathias, 1992).  The different 

compartments differ in pH, nutrient availability, atmospheric pressure, water and salt levels.  These 

variations in the different compartments select for different microorganisms along the GIT (Pedroso 

and Lee, 2015). 
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Figure 5 – Hen digestive system (adapted from Boundless, 2016). 

 

Microbial composition of the gastrointestinal tract 

Microorganisms are found across the entire length of the GIT.  Each location shows spatial variation 

in microbial community composition (Gong et al., 2007).  Table 2 is a summary of all major taxa 

found along the hens GIT taken from different studies (Gong et al., 2002a; Saengkerdsub et al., 

2007a; 2007b; Qu et al., 2008 and Yeoman et al., 2012).  Specialised microbial communities 

throughout the GIT have an important role in digesting feed that passes through the GIT.  In the 

crop, the community is dominated by Firmicutes (mostly Lactobacillus) for starch hydrolysis and 

lactate fermentation.  The cell densities can reach up to 109 CFU/g (van der Wielen et al., 2000).  In 

the proventriculus and gizzard, the cell numbers are limited to below 108 CFU/g, because of the low 

pH of the gastric juices that contains pepsin and hydrochloric acid (Yeoman et al., 2012).  The small 

A 

B 
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intestines can harbour large populations of bacteria dominated by the Firmicutes and Proteobacteria.  

The density and diversity of the microbial community is greatest in the caeca pouches, 1010 – 1011 

CFU/g, where digestion is longest (12 to 20 hours) (Qu et al., 2008).  This allows for a more 

substantial microbial fermentation (Rehman et al., 2007).  The caeca are important for the recycling 

of urea, carbohydrate fermentation and water retention (Sergeant et al., 2014). 

 

Table 2 – Spatial distribution of major taxa at phyla and genus level 

(Gong et al., 2002a; Saengkerdsub et al., 2007a; 2007b; Qu et al., 2008 and Yeoman et al., 2012) 

GIT location Cell density (CFU/g) Phyla Genera 

Crop 108 – 109 

Firmicutes Lactobacillus 

Actinobacteria Bifidobacterium 

Proteobacteria Enterobacter 

Gizzard 107 – 108 Firmicutes 
Lactobacillus 

Enterococcus 

Small intestines 108 – 109 

Firmicutes 

Lactobacillus 

Candidatis 

Arthromitus 

Ruminococcus 

Proteobacteria 
Escherichia 

Enterococcus 

Large intestines ** 
Firmicutes Lactobacillus 

Proteobacteria Escherichia 

Caeca 1010 – 1011 

Firmicutes 

Ruminococcus 

Faecalibacterium 

Pseudobutyrivibrio 

Subdoligranulum 

Acetanaerobacterium 

Clostridium 

Lactobacillus 

Megamonas 

Sporobacter 

Peptococcus 

Bacteroidetes Bacteroides 

Proteobacteria 
Escherichia 

Bilophila 

Archaea 

Methanobacterium 

Methanothermus 

Methanopyrus 

Methanococcus 

Fungi Candida 

**Cell density not known 

 

Poultry microbiome interactions 

There are several interactions that the gut microbiome has with the host, the diet and among the 

individual microorganisms (Fig. 6) (Pan and Yu, 2014). 
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Figure 6 – Model for the interactions between the gut microbiome, diet and host (adapted from Pan and Yu, 
2014). 

 

There is a two-way interaction between the bacteria in the gut and the hen in terms of nutritional 

interaction.  Both the hen and the microbiome benefit from each other by providing nutrients during 

the digestion time.  Digestible carbohydrates are easily absorbed in the gut by the hen, but 

indigestible and residual carbohydrates are broken down by the bacteria residing in the gut (Hooper 

et al., 2002).  Indigestible carbohydrates such as oligosaccharides, polysaccharides and 

disaccharides can be hydrolysed by bacteria to form sugars.  Bacteria then ferment the sugars to 

yield acetate, butyrate and propionate (short chain fatty acids: SCFAs).  These SCFAs are then 

utilised by the hen as a carbon and energy source (van der Wielen et al., 2000 and Hooper et al., 

2002).  In comparison, while the human gut microbiome prefers proteins and polysaccharides for a 

balanced growth, the hen’s microbiome requires only simple sugars and peptides (Lei et al., 2012). 

 

It is well known that an advantageous microbiome helps in maintaining normal physiological 

homeostasis, influencing organ development and metabolism and modulating the host’s immune 

system (Sommer and Backhed, 2013; Belkaid and Hand, 2014; Rodrίguez et al., 2015 and Thaiss 

et al., 2016).  The interaction between the host immune system and microbiome takes place in the 

inner layer of the gut.  The gut is lined with a thick layer of mucus formed from mucin glycoproteins 

(Forder et al., 2012).  The mucin layer consists of an outer loose layer and an inner compact layer 

(Hansson and Johansson, 2010).  The outer loose layer is where intestinal microorganisms colonise 

and the inner compact layer prevents most bacteria from penetrating the intestinal epithelium.  This 

serves as a first line of defence against infections (Brisbin et al., 2008).  Another form of immune 

defence in the gut is the presence of antimicrobial peptides (AMPs) in the intestinal epithelial surface 
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(Brisbin et al., 2008).  The most important and well-studied AMPs in poultry, are β-defensins.  These 

peptides are small, cationic peptides produced by epithelial cells, heterophils and macrophages.  

These peptides can kill a variety of pathogens by disrupting the permeability of the cell membrane, 

leading to cell death (Jenssen et al., 2006). 

 

The diet of the hen serves as a source of substrates for the growth of intestinal bacteria and has the 

greatest potential to have an impact on the microbial composition.  A small change in the type of 

cereal grain used in the feed can affect the bacterial composition at strain level (Engberg et al., 2002 

and Hammons et al., 2010).  Hammons et al. (2010) showed that a standard ration of corn to soybean 

favoured the growth of Lactobacillus agilis R5.  By changing the diet to a ration high in wheat, the 

growth of Lactobacillus agilis R1 was favoured.  The results of this study are important in 

understanding the implications of feed composition on the application of probiotics and other 

microbial feed supplements.  Lactobacillus strains are often used as a probiotic and its effectiveness 

is reliant on the successful colonisation of the bacterium in the GIT (Schrezenmeir and de Vrese, 

2001; Borriello et al., 2003 and Barrons and Tassone, 2008).  However, if composition of the feed 

selects for which strain becomes more dominant, successful establishment of the probiotic in the 

GIT will then also depend on the type of feed.  It was, therefore, suggested that a diet be chosen 

that is compatible with the probiotic or other microbial feed supplements to ensure efficiency 

(Hammons et al., 2010). 

 

Feed additives and prebiotics are commonly used in poultry diets to reduce the growth of pathogens 

and promote the growth of beneficial bacteria present in the intestines (Van Immerseel et al., 2004 

and 2009).  Prebiotics are indigestible ingredients in a diet that serves as a nutrient source for one 

or more beneficial bacteria that are present in the intestines.  Two well-known prebiotics are 

galactooligosaccharides (GOS) and fructooligosaccharides (FOS).  The inclusion of GOS promoted 

the growth of bifidobacteria in the gut of broiler hens (Jung et al., 2008) and the inclusion of FOS 

decreased Salmonella counts in laying hens (Donalson et al., 2008). 

 

In the microbiome of all living organisms, the different organisms present in the gut will have different 

interactions with each other.  All these microorganisms will be competing for nutrients and an 

attachment site (Soler et al., 2010).  In healthy hens, competitive exclusion is achieved with a layer 

of dense and complex communities on the surface of the mucus layer.  These complex communities 

prevent the attachment of possible pathogenic organisms by occupying the attachment sites, 

competing for resources in a chemical or physical niche or by attacking a potential colonist either 

chemically or physically (Oakley et al., 2014).  The use of probiotics in poultry has been extensively 
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studied.  Several lactobacilli and bacilli strains isolated from the gut of hens have shown to decrease 

the growth of Salmonella (Pascual et al., 1999), Campylobacter (Nakphaichit et al., 2011) and 

Escherichia coli (Molnár et al., 2011).  Not only were these potential probiotics able to decrease the 

number of pathogens, but an increase in feed efficiency and body weight was also observed (Oakley 

et al., 2014).  These probiotics can potentially be used to improve the safety of food by reducing the 

number of human pathogens present in the hen. 

 

Carotenoids 

For many years carotenoids have been used to manipulate the colour of egg yolk to obtain a desired 

colour (Adams, 1985).  Carotenoids can be health promoting in hens by stimulating a secondary 

antibody response for virus infections and also has an anti-inflammatory effect (Bedecarrats and 

Leeson, 2006; Rajput et al., 2013 and Moraes et al., 2016).  After the hen has ingested the feed, the 

carotenoids are released with enzymes and absorbed by the small intestines.  The free carotenoids 

are then emulsified to form oil droplets (or portomicrons) and delivered to the liver.  These molecules 

are incorporated into very low density lipoproteins (VLDL) by the liver and are delivered to the yolk 

(Surai et al., 2001 and Bortolotti et al., 2003). 

 

Carotenoids are a group of natural pigments that are utilised as colourants, nutraceuticals, 

cosmetics, feed supplements and for other biotechnological uses (Martin et al., 2008).  Carotenoids 

are yellow to intensely red coloured pigments that are lipid soluble, water-insoluble molecules.  

These pigments can be found in nature and are responsible for pigmentation, ranging from the flesh 

of fish to the feathers of birds and consist of more than 750 different compounds (Britton, 1995 and 

Kirti et al., 2014).  These molecules also have an added health benefit for plants and animals (Boon 

et al., 2010).  Some microorganisms produce carotenoids and include bacteria (Chryseobacterium 

indologenes) (Bhosale and Bernstein, 2004), microalga (Haematococcus pluvialis) (Jeon et al., 

2006), yeasts (Xanthophyllomyces dendrorhous) (An et al., 2001) and some fungal species 

(Phycomyces blakesleeanus) (Kuzina and Cerda-Olmedo, 2006). 

 

Some examples of carotenoids include zeaxanthin, lycopene, β-carotene and lutein, where                 

β-carotene is a major contributor of carotenoids found in the diet of animals and humans (Johnson, 

2002).  Carotenoids can be degraded by multiple mechanisms (Fig. 7) and because of its liposoluble 

characteristic, it can easily be incorporated into food products through emulsification with surfactants 

or with proteins.  These molecules are then oxidatively and physically stable in the emulsified form 

(Boon et al., 2010). 
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Figure 7 - Degradation mechanisms of some carotenoids, including β-carotene, lycopene and zeaxanthin 

(adapted from Boon et al., 2010). 

 

Astaxanthin 

Astaxanthin (3,3’-dihydroxy-β, β’carotene-4,4’-dione), a xanthophyll carotenoid, is in the same family 

as lutein, β-carotene and lycopene (Higuera-Ciapara et al., 2006 and Ambati et al., 2014).  

Astaxanthin is used in a wide range of applications that include the production of food for humans 

and feed for animals, cosmetics, nutraceutical and pharmaceutical industries (Higuera-Ciapara et 

al., 2006; Villalobos-Castillejos et al., 2013; Ambati et al., 2014 and Shah et al., 2016).  Astaxanthin 

has been described as the king of all antioxidants because it is 50 times stronger than β-carotene, 

a 100 times more active than α-tocopherol, 65 times stronger than vitamin C and 10 times more 

potent than canthaxanthin, zeaxanthin and lutein (Miki, 1991, Perez-Galvez and Mınguez-Mosquera, 

2005; Pérez-López et al., 2014 and Shah et al., 2016).  Astaxanthin (C40H52O4) has a molar mass of 

596.84 g/mol and consists of two chiral centres joined by a polyene chain (conjugated double bond 

structure), asymmetric carbons at positions 3 and 3’ and a hydroxyl group (-OH) at each end          

(Fig. 8) (Ambati et al., 2014). Natural astaxanthin is either in cis or trans form, but trans isomers are 

more common as they are thermodynamically more stable than the cis isomers (Higuera-Ciapara   

et al., 2006 and Chen et al., 2007a).  The two isomers commonly found in nature are (3R, 3’R) and 

(3S, 3’S) (Rao et al., 2014). 
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Figure 8 – Astaxanthin molecular structure (adopted from Ambati et al., 2014). 

 

In its free form outside of its biological structure, astaxanthin is highly unstable in the presence of 

light, oxygen, and temperature with temperature being the most influential environmental factor 

(Villalobos-Castillejos et al., 2013).  There have been several attempts to improve the stability of 

astaxanthin.  Some of these strategies included nanoencapsulation (Tachaprutinun et al., 2009), 

inclusion matrixes with hydroxypropyl-β-cyclodextrin or calcium ions (Chen et al., 2007 and Yuan et 

al., 2008), calcium alginate or chitosan microencapsulation (Higuera-Ciapara et al., 2004 and Lin et 

al., 2016) and incorporation into suspensions, emulsions and liposomes (Matsushita, 2000 and 

Ribeiro et al., 2005). 

 

Health benefits of astaxanthin 

Astaxanthin has a unique action in the cell membrane and has numerous clinical benefits.  

Astaxanthin has a superior position in the cell membrane of humans and microorganisms, because 

the polar head and tail and lipid backbone of the molecule allows it to span the entire width of the 

cell membrane (Fig. 9) (Kidd, 2011).  This provides antioxidant protection on both sides of the 

membrane and throughout the lipid bilayer by intercepting reactive molecular species (McNulty et 

al., 2007).  Other antioxidants such as β-carotene and vitamin C can only offer protection at a specific 

location of the membrane (Capelli and Cycewski, 2012). 

 

Figure 9 – Molecule orientation of vitamin C, β-carotene and astaxanthin in the cell membrane (taken from 
Capelli and Cycewski, 2012). 
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Astaxanthin has several biological functions.  It is a precursor for vitamin A, enhances the immune 

response and acts as a scavenger of free radicals (Matsuno, 1985; Jyonouchi et al., 1991; Miki, 

1991; Jyonouchi et al., 1993 and Miki et al., 1994).  Over the years, the focus has been on the 

application of astaxanthin as a nutraceutical and medical ingredient for the treatment and prevention 

of several conditions including macular degeneration (Santocono et al., 2007), infections by 

Helicobacter pylori (Wang et al., 2001), inflammation (Ohgami et al., 2003) and cancer (Nishino et 

al., 2005) to name a few.  Figure 10 shows the main health promoting benefits of astaxanthin.  In 

addition, natural astaxanthin extracted from Haematocuccus pluvialis has been granted “GRAS” 

status (Generally Recognized As Safe) by the US FDA (Food and Drug Administration) (Capelli and 

Cycewski, 2012). 

 

Figure 10 – Main health benefits of astaxanthin for humans (adopted from Yamashita, 2015). 
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Biosynthesis of astaxanthin in microorganisms 

There are five genes involved in the biosynthesis of carotenoids, crtB, crtI, crtY, crtW and crtZ        

(Fig. 11).  In 1995, Misawa et al. determined the function of all five of the biosynthesis genes through 

chromatographic and spectroscopic analysis.  The results are summarised in Table 3. 

 

Figure 11 – Proposed biosynthetic pathway of astaxanthin production at gene level in the marine bacterium, 
Paracoccus sp. (adapted from Misawa et al., 1995). 

 

Table 3 – Genes involved in the biosynthesis of carotenoids and their function  

(Misawa et al., 1995) 

Gene Enzyme Function 

crtB Phytoene synthase 
Catalyses the condensation reaction of two GGPP molecules to 

produce 15,15’-cis-phytoene 

crtI Phytoene desaturase Conversion of 15,15’-cis-phytoene to all-trans-lycopene 

crtY Lycopene cyclase 
Catalyses the terminal cyclisation reaction from all-trans-lycopene 

to all-trans-β-carotene 

crtW β-carotene ketolase 
Catalyses the conversion of methylene to keto groups to synthesise 

canthaxanthin from β-carotene via echinenone 

crtZ β-carotene hydroxylase 
Catalyses the hydroxylation reaction from β-carotene to (3R,2’R)-

zeaxanthin via β-cryptoxanthin 

GGPP: Geranylgeranyl pyrophosphate 

 

Only two genes are involved in the synthesis of astaxanthin from β-carotene (Fig. 11), i.e., crtW and 

crtZ (Misawa et al., 1995).  These gene products are believed to be bifunctional, because specific 
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enzyme assays indicated that the CrtZ enzymes formed astaxanthin from canthaxanthin, as well as 

zeaxanthin from β-carotene.  The CrtW enzymes also formed astaxanthin from zeaxanthin, as well 

as canthaxanthin from β-carotene (Misawa et al., 1995 and Fraser et al., 1997). 

 

In previous studies, the addition of cofactors significantly increased the activity of CrtW and Z, 

leading to an increase in astaxanthin production (Fraser et al., 1997 and Chougle and Singhal, 2012).  

A dioxygenase mixture consisting out of Fe2+, ascorbic acid, 2-oxoglutarate and catalase stimulated 

the activity of CrtZ six-fold more and CrtW four-fold more than the normal activity (Fraser et al., 

1997).  Further experimentation indicated that Fe2+ was the most powerful effector and is involved in 

the catalysis performed by CrtW and Z.  The presence of Fe2+ enhances 4,4’-oxygenation by CrtW 

or 3,3’-hydroxylation by CrtZ (Fraser et al., 1997).  The other cofactors (ascorbic acid, 2-oxoglutarate 

and catalase) had no independent stimulation and their role is hypothesised to be an oxidisable 

cosubstrate to generate reactive Fe2+ in the process (Dawson et al., 1993). 

 

Astaxanthin in industry 

Astaxanthin produced by microorganisms have been commercialised and applied in the colouration 

of cosmetics, beverages, dairy products, and meats (Del Campo et al., 2000; Guerin et al., 2003; 

Liang et al., 2004; Pulz and Gross, 2004 and Chandi and Gill, 2011).  There is an increase in demand 

for naturally derived astaxanthin from microorganisms instead of synthetic astaxanthin, since natural 

astaxanthin has a higher antioxidant activity when compared to synthetic astaxanthin (Capelli et al., 

2013).  The yeast, Xanthophyllomyces dendrorhous, and microalga, Haematococcus pluvialis, are 

currently used for the large-scale cultivation of astaxanthin.  Many studies have used these 

microorganisms in developing biotechnological processes to produce astaxanthin in large quantities 

(Lorenz and Cysewski, 2000; Dufosse et al., 2005; Schmidt et al., 2011; Rodrίguez-Sáiz et al., 2010 

and Mata-Gómez et al., 2014). 

 

The microalga, H. pluvialis, can accumulate up to 2% of astaxanthin (Dufosse et al., 2005).  During 

cultivation for astaxanthin production, the cells undergo a two-step batch process in which the 

physical properties and nutrient requirements of the microalga changes (Mata-Gómez et al., 2014).  

The first stage is known as the growth phase where nutrients are abundant, pH and temperature are 

controlled and there are low levels of irradiation (Fig. 12A).  In the second stage, also known as the 

“reddening” phase, the cells are introduced to different stress conditions, such as nutrient 

deprivation, high levels of irradiation and high concentrations of NaCl, forcing the production of 

astaxanthin (Fig. 12B).  The microalga cells are harvested through centrifugation, dried and milled 
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for astaxanthin extraction (Lorenz and Cysewski, 2000; Schmidt et al., 2011 and Mata-Gómez et al., 

2014). 

 

 

Figure 12 – Different phases of the cell during the two-stage batch process.  A. Haematococcus pluvialis 
growth phase.  B. “Reddening” phase of Haematococcus pluvialis aplanospores (adopted from Lorenz and 
Cysewski, 2000). 

 

There are some drawbacks in using this microalga to produce astaxanthin.  Firstly, the microalga 

requires a completely closed photobioreactor with artificial light to ensure that there is no 

contamination from other microorganisms (Lorenz and Cysewski, 2000).  Secondly, during the 

growth phases the microalga cells physically change from a motile cell (Fig. 12B) to non-motile 

aplanospores (Fig. 12B) with thick walls containing the astaxanthin.  Consequently, the walls of the 

aplanospores need to be cracked to extract the astaxanthin (Dufosse et al., 2005 and Lorenz and 

Cysewski, 2000).  These growth requirements and downstream processing to extract the astaxanthin 

can be expensive.  Without rupturing the thick walls of the microalga, the astaxanthin is not released 

from the cell and cannot be incorporated into egg yolks or the flesh of animals, limiting the application 

of a whole cell microalga (Lorenz and Cysewski, 2000). 

 

The yeast, X. dendrorhous, is commonly used as a pigmentation source in crustaceans, egg yolks 

and aquaculture (Mata-Gómez et al., 2014).  The astaxanthin yield of X. dendrorhous ranges 

between 50 – 350 µg/g dry cell weight.  This is lower than the microalga (Chandi and Gill, 2011).  

Factors that have been tested to increase astaxanthin production included temperature, pH, oxygen, 

nutrients, aeration and light (Rodrίguez-Sáiz et al., 2010 and Chandi and Gill, 2011).  Light positively 

affects the production of astaxanthin in microalga and yeast cells.  Carotenogenesis is a 

photoprotective mechanism that prevents harmful wavelengths of light from damaging the cells 

(Chandi and Gill, 2011 and Mata-Gómez et al., 2014).  Like the microalga, the yeast cells must be 

A B 
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milled or enzymatically digested before it can be used as a pigmentation source (Johnson et al., 

1977; 1980).  These methods for extraction are also expensive (An and Choi, 2003). 

 

Currently, bacteria are not used as a natural source of astaxanthin for industrial production.  Some 

bacterial species that are known to produce astaxanthin include Agrobacterium aurantiacum, 

Paracoccus carotinifaciens, Paracoccus haeundaensis and Paracoccus marcusii (Misawa et al., 

1995; Harker et al., 1998; Tsubokura et al., 1999; Lee et al., 2004 and Schmidt et al., 2011).  Species 

of the genus Paracoccus are Gram-negative, oxidase and catalase positive bacteria that grow 

aerobically.  Table 4 illustrates a species comparison of the genus Paracoccus taken from different 

studies (Harker et al., 1998; Tsubokura et al., 1999 and Lee et al., 2004). 

 

Table 4 – A comparison between known astaxanthin producing Paracoccus species 

 P. marcusii 

(Harker et al., 1998) 

P. carotinifaciens 

(Tsubokura et al., 1999) 

P. haeundaensis 

(Lee et al., 2004) 

Motility No Yes No 

Nitrate reduction No No Yes 

Flagella N/A* Peritrichous flagella N/A* 

Cell shape Cocci to short rods Rods Rods 

DNA G+C content 66 mol % 67 mol % 66.9 mol % 

Utilization of:    

    Arabinose Yes No Yes 

    Fructose Yes Yes No 

    Galactose Yes Yes Yes 

    Glucose Yes Yes No 

    Mannose Yes Yes No 

    Mannitol Yes Yes No 

* N/A – Not applicable 

 

In previous studies, yeast and microalga have been used as a pigmentation source in the diet of 

trout (Choubert and Heinrich, 1992 and Storebakken et al., 2004), salmon (Lorenz and Cysewski, 

2000) and laying hens (Johnson et al., 2003).  A significant difference was only observed after partial 

homogenisation, enzymatic digestion or by cracking the cells to increase the release of the available 

pigments (Choubert and Heinrich, 1992; Lorenz and Cysewski, 2000; Johnson et al., 2003 and 

Storebakken et al., 2004).  However, there was no need to enzymatically digest or homogenise the 

bacterium, P. marcusii, when fed to rainbow trout (Oncorhynchus mykiss) for pigmentation effect  

(De Bruyn, 2013).  The results obtained by De Bruyn (2013) indicated that an astaxanthin-producing 

bacterium could be used as a pigmentation source, instead of yeast or microalga.  
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Aim of this study 

 

The aim of this study was to optimise the growth and quantify astaxanthin production by     

Paracoccus marcusii and to prolong the stability during storage of the whole cell with astaxanthin.  

Furthermore, the aim was to evaluate the potential application of P. marcusii as a feed additive to 

poultry to enhance egg yolk colour and the effect it might have on the microbial diversity structure in 

the gastrointestinal tract of the laying hen.  Additionally, an economical assessment was also done 

to determine the cost benefit of producing astaxanthin with P. marcusii.  

Stellenbosch University  https://scholar.sun.ac.za



 

22 
 

References 

 

Adams, C.A. 1985. Pigmenters and poultry feeds. Feed Compounder 5, 12–14. 

 

Adamiec, J., Dolezal, M., Mokova, K. and Davidek, J. 2002. Changes in egg volatiles during 

storage. Czech Journal of Food Sciences 20, 79-82. 

 

Akyurek, H. and Okur, A.A. 2009. Effect of storage time, temperature and hen age on egg quality 

in free-range layer hens. Journal of Animal and Veterinary Advances 8, 1953-1958. 

 

Al-Obaidi, F., Al-Shadeedi, S.M.J. and Al-Dalawi, R.H. 2011. Quality, chemical and microbial 

characteristics of table eggs at retail stores in Baghdad. International Journal of Poultry Science 10, 

381-385. 

 

Ambati, R.R., Phang, S.M., Ravi, S. and Aswathanarayana, R.G. 2014. Astaxanthin: Sources, 

extraction, stability, biological activities and its commercial applications. Marine Drugs 12, 128-152. 

 

An, G.H. and Choi, E.S. 2003. Preparation of the red yeast, Xanthophyllomyces dendrorhous, as 

feed additive with increased availability of astaxanthin. Biotechnology letters, 25, 767-771. 

 

An, G., Jang, B. and Cho, M. 2001. Cultivation of carotenoid-hyper-producing mutant 2A2n of the 

red yeast Xanthophyllomyces dendrodhous (Phaffia rhodozyma) with molasses. Journal of 

Bioscience and Bioengineering 92, 121-125. 

 

Barrons, R. and Tassone, D. 2008. Use of Lactobacillus probiotics for bacterial genitourinary 

infections in women: A review. Clinical Therapeutics 30, 453-468. 

 

Barrow, P.A. and Lowell, M.A. 1991. Experimental infection of egg laying hens with Salmonella 

enteritidis phage type 4. Avian Pathology 20, 335–348. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

23 
 

Beardsworth, P.M. and Hernandez, J.M. 2004. Yolk colour – an important egg quality attribute. 

International Poultry Production 12, 17-18. 

 

Bedecarrats, G.Y. and Leeson, S. 2006. Dietary lutein influences immune response in laying hens. 

Journal of Applied Poultry Research 15, 183–189. 

 

Belkaid, Y. and Hand, T. 2014. Role of the Microbiota in Immunity and inflammation. Cell 157, 121-

141. 

 

Bhosale, P. and Bernstein, P.S. 2004. β-Carotene production by Flavobacterium multivorum in the 

presence of inorganic salts and urea. Journal of Industrial Microbiology and Biotechnology 31, 565-

571. 

 

Boon, C.S., Mc Clements, J., Weiss, J. and Decker, E.A. 2010. Factors influencing the chemical 

stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition 50, 515-532. 

 

Borriello, S.P., Hammes, W.P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M. and 

Valtonen, V. 2003. Safety of probiotics that contain Lactobacilli and Bifidobacteria. Clinical Infectious 

Diseases 36, 775-780. 

 

Bortolotti, G.R., Negro, J.J., Surai, P.F. and Prieto, P. 2003. Carotenoids in eggs and plasma of 

red-legged partridges: Effects of diet and reproductive output. Physiological and Biochemical 

Zoology 76, 367–374. 

 

Boundless. 2016. Vertebrate Digestive Systems. Boundless Biology. Online. Available: 

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/animal-nutrition-and-the-

digestive-system-34/digestive-systems-195/vertebrate-digestive-systems-748-11981/ (13 June 

2016). 

 

Brisbin, J.T., Gong, J. and Sharif, S. 2008. Interactions between commensal bacteria and the gut-

associated immune system of the chicken. Animal Health Research Review 9, 101-110. 

Stellenbosch University  https://scholar.sun.ac.za

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/animal-nutrition-and-the-digestive-system-34/digestive-systems-195/vertebrate-digestive-systems-748-11981/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/animal-nutrition-and-the-digestive-system-34/digestive-systems-195/vertebrate-digestive-systems-748-11981/


 

24 
 

Britton, G. 1995. Structure and properties of carotenoids in relation to function. The Federation of 

American Societies for Experimental Biology Journal 9, 1551-1558. 

 

Britton, W.M. 1977. Shell membrane of eggs differing in shell quality from young and old hens. 

Poultry Science 56, 647-653. 

 

Bunnell, R.H., Marusich, W.L. and Bauernfeind, J.C. 1962. β-Apo-8’-Carotenal as an egg yolk 

pigmenter. Poultry Science 41, 1109-1115. 

 

Burley, R.W. and Vadehra, D.V. 1989. The Avian Egg: Chemistry and Biology. John Wiley and 

Sons, New York, 68-71. 

 

Capelli, B. and Cycewski, G.R. 2012. The world’s best kept health secret: Natural Astaxanthin. 

Kailua: Cyanotech Corporation. 

 

Capelli, B., Bagchi, D. and Cysewski, G.R. 2013. Synthetic astaxanthin is significantly inferior to 

algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical 

supplement. Nutrafoods 12, 145-152. 

 

Chandi, G.K. and Gill, B.S. 2011. Production and characterization of microbial carotenoids as an 

alternative to synthetic colors: A Review. International Journal of Food Properties 14, 503–513. 

 

Chen, C.S., Wu, S.H., Wu, Y.Y., Fang, J.M. and Wu, T.H. 2007. Properties of astaxanthin/Ca2+ 

complex formation in the deceleration of cis/trans isomerization. Organic Letters 9, 2985–2988. 

 

Cherian, G., Holsonbake, T.B. and Goeger, M.P. 2002. Fatty acid composition and egg 

components of specialty eggs. Poultry Science 81, 30-33. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

25 
 

Choubert, G. and Heinrich, O. 1992. Carotenoid pigments of the green alga Haematococcus 

pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic 

astaxanthin and canthaxanthin. Aquaculture 112, 217-226. 

 

Chougle, J.A. and Singhal, R.S. 2012. Metabolic precursors and cofactors stimulate astaxanthin 

production in Paracoccus MBIC 01143. Food Science and Biotechnology 21, 1695-1700. 

 

Chung, S.H. and Lee, K.W. 2014. Effect of hen age, storage duration and temperature on egg 

quality in laying hens. International Journal of Poultry Science 13, 634-636. 

 

Clench, M.H. and Mathias, J.R., 1992. A complex avian intestinal motility response to fasting. 

American Journal of Physiology 262, 498-504. 

 

Coutts, J.A. and Wilson, G.C. 2007. Optimum egg quality: A practical approach. The Poultry site, 

Department of Primary Industries and Fisheries. The State of Queensland, Australia. 

 

Curbstone Valley Farm. 2010. Egg Formation. Online. Available: 

https://curbstonevalley.com/blog/?p=3301 (5 April 2015). 

 

Davies, R.H. and Breslin, M. 2003. Investigation of Salmonella contamination and disinfection in 

farm egg-packing plants. Journal of Applied Microbiology 94, 191–196. 

 

Dawson, G. W., Hick, A. J., Bennett, R. N., Donald, A., Pickett, J. A., and Wallsgrove, R. M. 

1993. Synthesis of glucosinolate precursors and investigations into the biosynthesis of phenylalkyl- 

and methylthioalkylglucosinolates. Journal of Biological Chemistry 268, 27154–27159. 

 

De Bruyn, A. 2013. Isolation of potential probiotic and carotenoid producing bacteria and their 

application in aquaculture. Department of Microbiology. Stellenbosch University. 

 

Stellenbosch University  https://scholar.sun.ac.za

https://curbstonevalley.com/blog/?p=3301


 

26 
 

Del Campo, J.A., Moreno, J., Rodrίguez, H., Vargas, M.A., Rivas, J. and Guerrero, M.G. 2000. 

Carotenoid content of chlorophycean microalga: Factors determining lutein accumulation in 

Muriellopsis sp. (Chlorophyta). Journal of Biotechnology 76, 51-59. 

 

De Reu, K., Grijspeerdt, K., Messens, W., Heyndrickw, M., Uyttendaele, M., Debevere, J. and 

Herman, L. 2006. Eggshell factors influencing eggshell penetration and whole egg contamination 

by different bacteria, including Salmonella Enteritidis. International Journal of Food Microbiology 

112, 253-260. 

 

Donalson, L.M., McReynolds, J.L., Kim, W.K., Chalova, V.I., Woodward, C.L., Kubena, L.F., 

Nisbet, D.J. and Ricke, S.C. 2008. The influence of a fructooligosaccharide prebiotic combined with 

alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella enteritidis infection, and 

intestinal shedding in laying hens. Poultry Science 87, 1253-1262. 

 

Dufosse, L., Galaupa, P., Yaronb, A., Aradb, S.M., Blancc, P., Murthyd, K.N.C. and 

Ravishankar, G.A. 2005. Microorganisms and microalga as sources of pigments for food use: a 

scientific oddity or an industrial reality? Trends in Food Science and Technology 16, 389–406. 

 

Engberg, R.M., Hedemann, M.S. and Jensen, B.B. 2002. The influence of grinding and pelleting 

of feed on the microbial composition and activity in the digestive tract of broiler chickens. British 

Poultry Science 43, 569–579. 

 

Fanatico, A.C., Owens, C.M. and Emmert, J.L. 2009. Organic poultry production in the United 

States: Broilers. Journal of Applied Poultry Research 18, 355-366. 

 

Fletcher, D.L., Harms, R.H. and Janky, D.M. 1978. Yolk color characteristics, xanthophyll 

availability, and a model system for predicting egg yolk color using beta-apo-8’-carotenal and 

canthaxanthin. Poultry Science 57, 624-629. 

 

Forder, R.E., Nattrass, G.S., Geier, M.S., Hughes, R.J. and Hynd, P.I. 2012. Quantitative analyses 

of genes associated with mucin synthesis of broiler chickens with induced necrotic enteritis. Poultry 

Science 91, 1335-1341. 

Stellenbosch University  https://scholar.sun.ac.za



 

27 
 

Fraser, P.D., Miura, Y. and Misawa, N. 1997. In vitro characterisation of astaxanthin biosynthetic 

enzymes. Journal of Biological Chemistry 272, 6128-6135. 

 

Fredriksson, S., Elwinger, K. and Pickova, J. 2006. Fatty acid and carotenoid composition of egg 

yolk as an effect of microalga addition to feed formula for laying hens. Food Chemistry 99, 530−537. 

 

Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Gast, R., Humphrey, T.J. and Van 

Immerseel. F. 2009. Mechanisms of egg contamination by Salmonella enteritidis. FEMS 

Microbiology Reviews 33, 718-738. 

 

Gerber, N. 2006. Factors affecting egg quality in the commercial laying hen: a review. Egg Producers 

Federation of New Zealand Inc. New Zealand. 

 

Giusti, A.M., Bignetti, E. and Canella, C. 2007. Exploring new frontiers in total food quality definition 

and assessment: From chemical to neurochemical properties. Food and Bioprocess Technology 1, 

130-142. 

 

Gong, J., Forster, R.J., Yu, H., Chambers, J.R., Sabour, P.M. and Wheatcraft, R. 2002a. Diversity 

and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria 

in the cecal lumen. FEMS Microbiology Letters 208, 1–7. 

 

Gong, J., Forster, R.J., Yu, H., Chambers, J.R., Wheatcroft, R. and Sabour, P.M. 2002b. 

Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with 

bacteria in the cecum. FEMS Microbiology Ecology 41,171–179. 

 

Gong, J., Si, W., Forster, R.J., Huang, R., Yu, H. and Yin, Y. 2007. 16S rRNA gene-based analysis 

of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from 

crops to ceca. FEMS Microbiology Ecology 59, 147–157. 

 

Guerin, M., Huntley, M.E. and Olaizola, M. 2003. Haematococcus astaxanthin: Applications for 

human health and nutrition. Trends in Biotechnology 21, 210-216. 

Stellenbosch University  https://scholar.sun.ac.za



 

28 
 

Hammons, S., Oh, P.L., Martínez, I., Clark, K., Schlegel, V.L., Sitorius, E., Scheideler, S.E. and 

Walter, J. 2010. A small variation in diet influences the Lactobacillus strain composition in the crop 

of broiler chickens. Systematic and Applied Microbiology 33, 275-81. 

 

Hansson, G.C. and Johansson, M.E. 2010. The inner of the two Muc2 mucin-dependent mucus 

layers in colon is devoid of bacteria. Gut Microbes 1, 51- 54. 

 

Harker, M., Hirschberg, J. and Oren, A. 1998. Paracoccus marcusii sp. nov., an orange Gram-

negative coccus. International Journal of Systematic Bacteriology 48, 543-548. 

 

Haugh, R.R. 1937. The Haugh unit for measuring egg quality. U.S. Egg and Poultry Magazine 43, 

552-555, 572. 

 

Higuera-Ciapara, I., Felix-Valenzuela, L. and Goycoolea, F.M. 2006. Astaxanthin: a review of its 

chemistry and applications. Critical Reviews in Food Science and Nutrition 46, 185-196. 

 

Higuera-Ciapara, I., Felix-Valenzuela, L., Goycoolea, F.M. and Arguelles-Monal, W. 2004. 

Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polymers 56, 41–45. 

 

Hooper, L.V., Midtvedt, T. and Gordon, J.I. 2002. How host-microbial interactions shape the 

nutrient environment of the mammalian intestine. Annual Review of Nutrition 22, 283-307. 

 

Jenssen, H., Hamill, P. and Hancock, R.E. 2006. Peptide antimicrobial agents. Clinical 

Microbiology Reviews 19, 491- 511. 

 

Jeon, Y.C., Cho, W.C. and Yun, Y. 2006. Combined effects of light intensity and acetate 

concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme and Microbial 

Technology 39, 490-495. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

29 
 

Johnson, E.A., Conklin, D.E. and Lewis, M.J. 1977. The yeast Phaffia rhodozyma as a dietary 

pigment source for salmonids and crustaceans. Journal of the Fisheries Research Board of Canada 

34, 2417–2421. 

 

Johnson, E.A., Lewis, M.J. and Grau, C.R. 2003. Pigmentation of egg yolks with astaxanthin from 

the yeast Phaffia rhodozyma. Poultry Science 59, 1777-1782. 

 

Johnson, E.A., Villa, T.G. and Lewis, M.J. 1980. Phaffia rhodozyma as an astaxanthin source in 

salmonid diets. Aquaculture 20, 123–134. 

 

Johnson, E.J. 2002. The role of carotenoids in human health. Nutrition in Clinical Care 5, 56–65. 

 

Jung, S.J., Houde, R., Baurhoo, B., Zhao, X. and Lee, B.H. 2008. Effects of galacto-

oligosaccharides and a Bifidobacteria lactis- based probiotic strain on the growth performance and 

fecal microflora of broiler chickens. Poultry Science 87, 1694-1699. 

 

Jyonouchi, H., R. J. Hill, Y. Tomita, and R. A. Good. 1991. Studies of immunomodulating actions 

of carotenoids. I. Effects of b-carotene and astaxanthin on murine lymphocyte functions and cell 

surface marker expression in in vivo culture system. Nutrition and Cancer 16, 93–105. 

 

Jyonouchi, H., L. Zhang, and Y. Tomita. 1993. Studies of immunomodulating actions of 

carotenoids. II. Astaxanthin enhances in vivo antibody production to T-dependent antigens without 

facilitating polyclonal B-cell activation. Nutrition and Cancer 19, 269–280. 

 

Keller, L.H., Benson, C.E., Krotec, K. and Eckroade, R.J. 1995. Salmonella enteritidis colonization 

of the reproductive tract and forming and freshly laid egg of chickens. Infection and Immunity 63, 

2443–2449. 

 

Kidd, P. 2011. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging 

potential. Alternative Medicine Review 16, 355-364. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

30 
 

Kirti, K., Amita, S., Priti, S., Kumar, A.M. and Jyoti, S. 2014. Colorful world of microbes: 

Carotenoids and their applications. Advances in Biology 2014, e837891. doi: 10.1155/2014/837891. 

 

Kirunda, D.F.K. and McKee, S.R. 2000. Relating quality characteristics of aged eggs and fresh 

eggs to vitelline membrane strength as determined by texture analyser. Poultry Science 79, 1189-

1193. 

 

Kramer, A. 1951. What is quality and how can it be measured: From a food technology point of view. 

Marketing Research Workshop Report, Michigan State College, USA. 

 

Kuzina, V. and Cerda-Olmedo, E. 2006. Modification of sexual development and carotene 

production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces 

blakesleanus. Applied and Environmental Microbiology 72, 4917-4922. 

 

Lee, J.H., Kim, Y.S., Choi, T., Lee, W.J. and Kim, Y.T. 2004. Paracoccus haeundaensis sp. nov., 

a Gram-negative, halophilic, astaxanthin-producing bacterium. International Journal of Systematic 

and Evolutionary Microbiology 54, 1699–1702. 

 

Lei, F., Yin, Y., Wang, Y., Deng, B., Yu, H.D., Li, L., Xiang, C., Wang, S., Zhu, B. and Wang, X. 

2012. Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human 

gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology 78, 

5763-5772. 

 

Liang, S., Wueming, L., Chen, F. and Chen, Z. 2004. Current microalgal health food R&D activities 

in China. Hydrobiologia 512, 45-48. 

 

Lin, S.F., Chen, Y.C., Chen, R.N., Chen, L.C., Ho, H.O., Tsung, H., Sheu, M.T. and Liu, D.Z. 

2016. Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS 

ONE 11, e0153685. doi: 10.1371/journal.pone.0153685. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

31 
 

Lorenz, R.T. and Cysewski, G.R. 2000. Commercial potential for Haematococcus microalga as a 

natural source of astaxanthin - Review. Trends in Biotechnology 18, 160-167. 

 

Martin, J.F., Gudini, E. and Barredo, J.L. 2008. Conversion of β-carotene into astaxanthin: Two 

separate enzymes or a bifunctional hydroxylase-ketolase protein? Microbial Cell Factories 7, 1-10. 

 

Mata-Gómez, L.C., Montañez, J.C., Méndez-Zavala, A. and Aguilar, C.N. 2014. Biotechnological 

production of carotenoids by yeasts: an overview. Microbial Cell Factories 13, 1-12. 

 

Matsuno, T. 1985. New structures of carotenoids in marine animals. Pure and Applied Chemistry 

57, 659–666. 

 

Matsushita, Y. 2000. Antioxidant activity of polar carotenoids including astaxanthin--glucoside from 

marine bacterium on PC liposomes. Fisheries Science 66, 980–985. 

 

McNulty, H.P., Byun, J., Lockwood, S.F., Jacob, R.F. and Preston Mason, R. 2007. Differential 

effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. 

Biochimica et Biophysica Acta (BBA) – Biomembranes 1768, 167-174. 

 

Messens, W., Grijspeerdt, K. and Herman, L. 2005. Eggshell penetration by Salmonella: a review. 

World’s Poultry Science Journal 61, 71-86. 

 

Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry 

63, 141–146. 

 

Miki, W., N. Otaki, N. Shimidzu, and A. Yokoyama. 1994. Carotenoids as free radical scavengers 

in marine animals. Journal of Marine Biotechnology 2, 35–37. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

32 
 

Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., Ohtani, T. and Miki, 

W. 1995. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster 

and astaxanthin biosynthetic pathway proposed at the gene level. Journal of Bacteriology 177, 6575-

6584. 

 

Miyamoto, T., Baba, E., Tanaka, T., Sasai, K., Fukata, T. and Arakawa, A. 1997. Salmonella 

Enteritidis contamination of eggs from hens inoculated by vaginal, cloacal and intravenous routes. 

Avian Diseases 34, 463–465. 

 

Molnár, A.K., Podmaniczky, B., Kürti, P., Tenk, I., Glávits, R., Virág, G. and Szabó, Z. 2011. 

Effect of different concentrations of Bacillus subtilis on growth performance, carcass quality, gut 

microflora and immune response of broiler chickens. Poultry Science 52, 658-665. 

 

Moraes, M.L., Ribeiro, A.M.L., Santin, E. and Klasing, K.C. 2016. Effects of conjugated linoleic 

acid and lutein on the growth performance and immune response of broiler chickens. Poultry Science 

95, 237-246. 

 

Nakphaichit, M., Thanomwongwattana, S., Phraephaisarn, C., Sakamoto, N., Keawsompong, 

S., Nakayama, J. and Nitisinprasert, S. 2011. The effect of including Lactobacillus reuteri KUB-

AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poultry 

Science 90, 2753- 2765. 

 

Nishino, H., Murakoshi, M., Xiao, Y.M., Wada, S., Masuda, M., Ohsaka, Y., Satomi, Y. and Jinno, 

K. 2005. Cancer prevention by phytochemicals. Oncology 69, 38–40. 

 

Norman, G.M., Sykes, A.H. and Bayley, H.S. 1973. Deposition of orally administered β-carotene, 

β-apo-8’-carotenoic acid ethyl ester and zeaxanthin in the egg yolk by laying hens. British Poultry 

Science 14, 507-519. 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

33 
 

Oakley, B.B., Morales, C.A., Line, J., Berrang, M.E., Meinersmann, R.J., Tillman, G.E., Wise, 

M.G., Siragusa, G.R., Hiett, K.L. and Seal, B.S. 2013. The poultry-associated microbiome: Network 

analysis and farm-to-fork characterizations. PLoS ONE 8, e57190. doi: 

10.1371/journal.pone.0057190. 

 

Oakley, B.B., Lillehoj, H.S., Kogut, M.H., Kim, W.K., Maurer, J.J., Pedroso, A., Lee, M.D., Collet, 

S.R., Johnson, T.J. and Cox, N.A. 2014. The chicken gastrointestinal microbiome. FEMS 

Microbiology Letters 360, 110-112. 

 

Ohgami, K., Shiratori, K., Kotake, S., Nishida, T., Mizuki, N., Yazawa, K. and Ohno, S. 2003. 

Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Investigative 

Ophthalmology and Visual Science 44, 2694–2701. 

 

Pan, D. and Yu, Z. 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut 

Microbes 5, 108-119. 

 

Pascual, M., Hugas, M., Badiola, J.I., Monfort, J.M. and Garriga, M. 1999. Lactobacillus salivarius 

CTC2197 prevents Salmonella enteritidis colonization in chickens. Applied and Environmental 

Microbiology 65, 4981-4986. 

 

Pedroso, A.A. and Lee, M.D. 2015. The composition and role of the microbiota in chickens. 

Intestinal Health, 21-50. 

 

Perez-Galvez, A. and Mınguez-Mosquera, M.I. 2005. Esterification of xanthophylls and its effect 

on chemical behavior and bioavailability of carotenoids in the human. Nutrition Research 25, 631–

640. 

 

Pérez-López, P., González-García, S., Jeffryes, C., Agathos, S.N., McHugh, E. and Walsh, D. 

2014. Life-cycle assessment of the production of the red antioxidant carotenoid astaxanthin by 

microalga: from lab to pilot scale. Journal of Cleaner Production 64, 332–344. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

34 
 

Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalga. Applied 

Microbiology and Biotechnology 65, 635-648. 

 

Qu, A., Brulc, J.M., Wilson, M.K., Law, B.F., Theoret, J.R., Joens, L.A., Konkel, M.E., Angly, F., 

Dinsdale, E.A., Edwards, R.A., Nelson, K.E. and White, B.A. 2008. Comparative metagenomics 

reveals host-specific metavirulomes and horizontal gene transfer elements in the chicken cecum 

microbiome. PLoS One 3, e2945. doi: 10.1371/journal.pone.0002945. 

 

Rajput, N., Naeem, M., Ali, S., Zhang, J.F., Zhang, L. and Wang, T. 2013. The effect of dietary 

supplementation with the natural carotenoids curcumin and lutein on the broiler pigmentation and 

immunity. Poultry Science 92, 1177-1185. 

 

Ratliff, J., Leite, J.O., de Ogburn, R., Puglisi, M.J., VanHeest, J. and Ferdnandez, M.L. 2010. 

Consuming eggs for breakfast influences plasma glucose and ghrelin, while reducing energy intake 

during the next 24 hours in adult men. Nutrition Research 30, 96-103. 

 

Rehman, H.U., Vahjen, W., Awad, W.A. and Zentek, J. 2007. Indigenous bacteria and bacterial 

metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition 61, 

319–335. 

 

Ribeiro, H.S., Rico, L.G., Badolato, G.G. and Schubert, H. 2005. Production of O/W emulsions 

containing astaxanthin by repeated premix membrane emulsification. Journal of Food Sciences 70, 

E117–E123. 

 

Roberts, J.R. 2004. Factors affecting egg internal quality and egg shell quality in laying hens. 

Journal of Poultry Science 41, 161-177. 

 

Roberts, J.R., Chousalkar, K. and Samiullah, S. 2013. Egg quality and age of laying hens: 

implications for product safety. Animal Production Science 53, 1291-1297. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

35 
 

Rodrίguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Juge, N., Avershina, E., Rudi, 

K., Narbad, A., Jenmalm, M.C., Marchesi, J. and Collado, M.C. 2015. The composition of the gut 

microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease 

26, e26050. doi: 10.3402/mehd.v26.26050. 

 

Rodrίguez-Sáiz, M., de la Fuente, J.L. and Barredo, J.L. 2010. Xanthophyllomyces dendrorhous 

for the industrial production of astaxanthin. Applied Microbiology and Biotechnology 88, 645-658. 

 

Ruxton, C.H.S., Derbyshire, E. and Gibson, S.A. 2010. The nutritional properties and health 

benefits of eggs. Nutrition and Food Science 40, 263-279. 

 

Saengkerdsub, S., Anderson, R.C., Wilkinson, H.H., Kim, W.K., Nisbet, D.J. and Ricke, S.C. 

2007a. Identification and quantification of methanogenic archaea in adult chicken ceca. Applied and 

Environmental Microbiology 73, 353–356. 

 

Saengkerdsub, S., Herrera, P., Woodward, C.L., Anderson, R.C., Nisbet, D.J. and Ricke, S.C. 

2007b. Detection of methane and quantification of methanogenic archaea in faeces from young 

broiler chickens using real-time PCR. Letters in Applied Microbiology 45, 629–634. 

 

Santocono, M., Zurria, M., Berrettini, M., Fedeli, D. and Falcioni, G. 2007. Lutein, zeaxanthin and 

astaxanthin protect against DNA damage in SK-N-SH human neuroblastoma cells induced by 

reactive nitrogen species. Journal of Photochemistry and Photobiology B: Biology 88, 1–10. 

 

Savory, C.J., 1999. Temporal control of feeding behaviour and its association with gastrointestinal 

function. Journal of Experimental Zoology 283, 339-347. 

 

Schmidt, I., Schewe, H., Gassel, S., Jin, C., Buckingham, J., Hümbelin, M., Sandmann, G. and 

Schrader, J. 2011. Biotechnological production of astaxanthin with Phaffia rhodozyma 

/Xanthophyllomyces dendrorhous. Applied Microbiology and Biotechnology 89, 555–571. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

36 
 

Schonfeldt, H.C., Pretorius, B. and Hall, N. 2013. “Fish, chicken, lean meat and eggs can be eaten 

daily”: a food-based dietary guideline for South Africa. South African Journal of Clinical Nutrition 26, 

S66-S76. 

 

Schrezenmeir, J. and De Vrese, M. 2001. Probiotics, prebiotics, and synbiotics – approaching a 

definition. The American Journal of Clinical Nutrition 73, 361-364. 

 

Sean, M. 2002. Commission proposes that EU ban certain antibiotics from animal feed. Chemical 

Market Reporter 13, 6-7. 

 

Sekelja, M., Rud, I., Knutsen, S.H., Denstadli, V., Westereng, B., Naes, T. and Rudi, K., 2012. 

Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal 

origin. Applied and Environmental Microbiology 78, 2941-2948. 

 

Sergeant, M.J., Constantinidou, C., Cogan, T.A., Bedford, M.R., Penn, C.W. and Pallen, M.J. 

2014. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 

9, e91941. doi: 10.1371/journal.pone.0091941. 

 

Shah, M.M.R., Liang, Y., Cheng, J.J and Daroch, M. 2016. Astaxanthin-producing green microalga 

Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant 

Science 7, 1-28. 

 

Shaufi, M.A.M., Sieo, C.C., Chong, C.W., Gan, H.M. and Ho, Y.W. 2015. Deciphering chicken gut 

microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathogens 

7, 1-12. 

 

Soler, J.J., Martín-Vivaldi, M., Peralta-Sánchez, J.M. and Ruiz-Rodríguez, M. 2010. Antibiotic-

producing bacteria as a possible defence of birds against pathogenic microorganisms. Open 

Ornithology Journal 3, 93-100. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

37 
 

Sommer, F. and Backhed, F. 2013. The gut microbiota–masters of host development and 

physiology. Nature Reviews Microbiology 11, 227–238. 

 

South African Poultry Association. 2014. The provincial distribution of chicken farms in South 

Africa. Online. Available: http://www.sapoultry.co.za/pdf-statistics/provisional-distribution-of-

chickens-in-sa (2 April 2015). 

 

South African Poultry Association. 2016. Key Market Signals in the Egg Industry. Online. 

Available: http://www.sapoultry.co.za/pdf-statistics/egg-industry-key-market-signals (9 October 

2016). 

 

Stadelman, W.J. 1977. Quality identification of shell eggs in egg science and technology. 2nd 

Edition. Westport, Connecticut: AVI Publishing Company Inc., 33. 

 

Stadelman, W.J. and Cotterill, O.J. 1995. Egg science and technology. The Haworth Press, Inc. 

New York. 

 

Stanley, D., Denman, S.E., Hughes, R.J., Geier, M.S., Crowley, T.M. and Chen, H. 2012. 

Intestinal microbiota associated with differential feed conversion efficiency in chickens. Applied 

Microbiology and Biotechnology 96, 1361–1369. 

 

Storebakken, T., Sorensen, M., Bjerkeng, B. and Hiu, S. 2004. Utilization of astaxanthin from red 

yeast, Xanthophyllomyces dendrorhous, in rainbow trout, Oncorhynchus mykiss: effects of 

enzymatic cell wall disruption and feed extrusion temperature. Aquaculture 236, 391-403.  

 

Sunde, M.L. 1962. The effect of different levels of vitamin A, β-apo-8’-carotenal and alfalfa on yolk 

color. Poultry Science 41, 532-541. 

 

Surai, P.F., Bortolotti, G.R., Fidgett, A.L., Blount, J.D. and Speake, B.K. 2001. Effects of 

piscivory on the fatty acid profiles and antioxidants of avian yolk: studies on eggs of the gannet, 

skua, pelican and cormorant. Journal of Zoology 255, 305–312. 

Stellenbosch University  https://scholar.sun.ac.za

http://www.sapoultry.co.za/pdf-statistics/
http://www.sapoultry.co.za/pdf-statistics/egg-industry-key-market-signals%20(9


 

38 
 

Svobodová, J. and Tůmová, E. 2014. Factors affecting microbial contamination of market eggs: A 

review. Scientia Agriculturae Bohemica 45, 226-237. 

 

Tachaprutinuna, A., Udomsupa, T., Luadthonga, C. and Wanichwecharungruang, S. 2009. 

Preventing the thermal degradation of astaxanthin through nanoencapsulation. International Journal 

of Pharmaceutics 374, 119–124. 

 

Thaiss, C.A., Zmora, N., Levy, M. and Elinav, E. 2016. The microbiome and innate immunity. 

Nature 535, 65-74. 

 

Torok, V.A., Ophel-Keller, K., Loo, M. and Hughes, R.J. 2008. Application of methods for 

identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied 

and Environmental Microbiology 74, 783–791. 

 

Tsubokura, A., Yoneda, H. and Mizuta, H. 1999. Paracoccus carotinifaciens sp. nov., a new 

aerobic Gram-negative astaxanthin-producing bacterium. International Journal of Systematic 

Bacteriology 49, 277-282. 

 

U.S. Department of Agriculture. 2005. USDA National Nutritional Database for Standard 

Reference. Online. Available: http://www.ars.usda.gov/nutrientdata (6 October 2016). 

 

U.S. Department of Agriculture. 2016. The National Organic Program (NOP). Online. Available: 

http://www.ams.usda.gov/nop (9 February 2017). 

 

Van der Wal, J.S., Gupta, A., Khosla, P. and Dhurandhar, N.V. 2008. Egg breakfast enhances 

weight loss. International Journal of Obesity 32, 1545-1551. 

 

Van der Wal, J.S., Marth, J.M., Khosla, P., Jen, K.L. and Dhurandhar, N.V. 2005. Short-term 

effect of eggs on satiety in overweight and obese subjects. Journal of the American College of 

Nutrition 24, 510-515. 

 

Stellenbosch University  https://scholar.sun.ac.za

http://www.ars.usda.gov/nutrientdata%20(6
http://www.ams.usda.gov/nop%20(9


 

39 
 

Van Der Wielen, P.W., Biesterveld, S., Notermans, S., Hofstra, H., Urlings, B.A. and Van 

Knapen, F. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens 

during growth. Applied and Environmental Microbiology 66, 2536-2540. 

 

Van Immerseel, F., De Buck, J., Pasmans, F., Huyghebaert. G., Haesebrouck, F. and Ducatelle, 

R. 2004. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian 

Pathology 33, 537-549. 

 

Van Immerseel, F., Rood, J.I., Moore, R.J. and Titball, R.W. 2009. Rethinking our understanding 

of the pathogenesis of necrotic enteritis in chickens. Trends in Microbiology 17, 32-36. 

 

Villalobos-Castillejos, F., Cerezal-Mezquita, P., Hernandez-De Jesus, M.L. and Barragan-

Huerta, B.E. 2013. Production and stability of water-dispersible Astaxanthin oleoresin from Phaffia 

rhodozyma. International Journal of Food Science and Technology 48, 1243-1251. 

 

Vorster, H.H., Badham, J.B. and Venter, C.S. 2013. An introduction to the revised food-based 

dietary guidelines for South Africa. South African Journal of Clinical Nutrition 26, S1-S164. 

 

Wang, X., Hirmo, S., Willen, R. and Wadstrom, T. 2001. Inhibition of Helicobacter pylori infection 

by bovine milk glycoconjugates in a BALB/cA mouse model. Journal of Medical Microbiology 50, 

430–435. 

 

Yamashita, E. 2015. Let astaxanthin be thy medicine. PharmaNutrition 3, 115–122. 

 

Yeoman, C.J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N.D. and White, B.A. 2012.  The 

microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews 13, 89-99. 

 

Yuan, C., Jin, Z., Xu, X., Zhuang, H. and Shen, W. 2008. Preparation and stability of the inclusion 

complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chemistry 109, 264–268. 

  

Stellenbosch University  https://scholar.sun.ac.za



   

 
 

Chapter 2 

 

Optimisation, quantification and storage stability of 

astaxanthin produced by the bacterium,        

Paracoccus marcusii 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



 

41 
 

Abstract 

 

Astaxanthin is a potent antioxidant that provides several health benefits to humans and animals.  

Some microorganisms, including the Gram-negative bacterium Paracoccus marcusii, are able to 

produce astaxanthin naturally.  This study investigated the ability of P. marcusii to produce 

astaxanthin, as well as the stability of the molecule during storage together with the cell viability after 

whole cell lyophilisation or microencapsulation.  The growth conditions for cell growth and 

astaxanthin production were optimised.  The optimum growth conditions for P. marcusii and for 

astaxanthin production was at 26 °C in a specialised medium containing yeast extract (5 g/L), 

bacteriological peptone (10 g/L) and NaCl (3%) at a pH between 6 – 7.  Harvested cells were either 

lyophilised in sucrose (10% m/v) or microencapsulated in calcium alginate beads and stored for          

3 weeks at either 4 °C or room temperature (± 20°C).  Astaxanthin was extracted every week with 

methanol in the dark at 26 °C on a rotary shaker (150 rpm).  Lyophilisation ensured viability of the 

cells but there was a significant loss in astaxanthin concentration.  Astaxanthin was more stable in 

the calcium alginate beads after 3 weeks even though viability of the cells significantly decreased at        

20 °C.  This study shows promising results in using calcium alginate beads as a possible storage 

method compared to lyophilisation.  
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Introduction 

 

Over the years there have been an increase interest in carotenoids and the biological functions of 

the molecules.  Carotenoids are widely distributed in plants as well as microorganisms (Ausich, 1997 

and Bhosale and Bernstein, 2005).  One carotenoid, astaxanthin, has captured the most attention, 

because of its potent activity as an antioxidant (Miki, 1991, Pérez-López et al., 2014 and Shah et al., 

2016).  Astaxanthin (3,3’-dihydroxy-β, β’carotene-4,4’-dione) is a byproduct of the glycolytic 

metabolic pathway in several microorganisms.  The most well-known microbial sources of 

astaxanthin include the yeast, Xanthophyllomyces dendrorhous (An et al., 2001), and microalga, 

Haematococcus pluvialis (Jeon et al., 2006).  Some bacteria are also able to produce astaxanthin, 

but are currently not used in the industry for large-scale production.  These bacteria include species 

of the genus Paracoccus (Harker et al., 1998; Tsubokura et al., 1999 and Lee et al., 2004) and 

Agrobacterium aurantiacum (Misawa et al., 1995). 

 

Synthetic astaxanthin has been used as a colouring agent and as a feed additive in aquaculture and 

poultry (Guerin et al., 2003).  Synthetic astaxanthin is, however, not available for human 

consumption.  This is a result of concerns around the use of carcinogenic petrochemicals in the 

production of astaxanthin (Newsome, 1986).  There are several methods of production of synthetic 

astaxanthin that include the reaction between two C15-phosphonium salts with C10-dialdehyde 

(Widmer et al., 1981), canthaxanthin hydroxylation (Bernhard et al., 1984) and lutein isomerisation 

to zeaxanthin from marigold which is then oxidised to astaxanthin (Schloemer and Davis, 2001).  

Synthetic astaxanthin is a mixture of three isomers (3S, 3’S), (3R, 3’R) and (3R, 3’S) in a ratio of 

1:1:2 (Schiedt et al., 1988 and Higuera-Ciapara et al., 2006).  Natural astaxanthin is either in cis or 

trans form, but trans isomers are more common as they are thermodynamically more stable than the 

cis isomers as can be seen in Figure 1 (Higuera-Ciapara et al., 2006 and Chen et al., 2007a).  The 

two isomers commonly found in nature are (3R, 3’R) and (3S, 3’S) (Rao et al., 2014).   

 

The use of natural astaxanthin in the food industry is restricted because of its unstable conjugated 

double bond structure (polyene chain) and the 4-keto and 3-hydroxy groups at both ends of the 

molecule (Mendes-Pinto et al., 2001).  When astaxanthin is removed from the stable biological 

matrix, it becomes highly unstable and is vulnerable to degradation when exposed to light, oxygen 

or high temperatures (Chen et al., 2007a; Boon et al., 2010 and Villalobos-Castillejos et al., 2013).  

Several studies have been done to improve the stability of astaxanthin and prevent loss of 

pigmentation.  Some strategies included lyophilisation or storage at low temperatures, addition of 

antioxidants such as β-carotene, avoiding direct contact with light or oxygen and storage under 

nitrogen (Mendes-Pinto et al., 2001; Boon et al., 2010 and Villalobos-Castillejos et al., 2013).  Some 
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studies have also reported a greater astaxanthin stability when it is kept within the biomass structure 

compared to the extracted astaxanthin (Gouveia and Empis, 2003 and Delgado et al., 2016). 

 

The aim of this study, therefore, was to determine the optimum growth conditions of             

Paracoccus marcusii and to quantify the astaxanthin produced.  We also aimed to determine the 

viability of the cells and the stability of astaxanthin within the cell under different storage conditions, 

namely lyophilisation and microencapsulation.  

 

Materials and Methods 

 

Origin of Paracoccus marcusii 

The bacterium used in all experimental work was previously isolated from the gastrointestinal tract 

of the South African abalone (Haliotis midae) (De Bruyn, 2013). 

 

Optimum growth conditions of Paracoccus marcusii 

Temperature 

Twelve test tubes containing 9.9 ml Luria Bertani (LB) broth (5 g/L yeast extract, 10 g/L tryptone and 

10 g/L NaCl) (Biolab, South Africa) were prepared.  Each test tube was inoculated with 0.1 ml of the 

starter culture (OD550nm – 0.781).  An absorbance value was measured and the test tubes were 

incubated in triplicate on a wheel at 20 °C, 26 °C, 30 °C and 37 °C, respectively.  Every 12 hours for 

120 hours an absorbance value was measured for all test tubes. 

 

NaCl concentration 

Twenty-one test tubes containing 9.9 ml bacteriological peptone (10 g/L) (Oxoid, United Kingdom) 

and yeast extract (5 g/L) (Biolab, South Africa) were prepared.  Different concentrations of NaCl 

were added to obtain concentrations of 0%, 1.5%, 3%, 4.5%, 6%, 7.5% and 9%, respectively.  Each 

test tube was inoculated with 0.1 ml of the starter culture (OD550nm – 0.781).  An absorbance value 

was measured and the test tubes were incubated on a wheel at 26 °C.  Every 12 hours for 120 hours 

an absorbance value was measured for all test tubes.  All experiments were done in triplicate. 
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pH range 

Twenty-one test tubes containing 9.9 ml LB broth were prepared.  The pH of each test tube was 

adjusted with 10 M NaOH pellets or 1 M HCl solution to pH 4, 5, 6, 7, 8, 9 and 10, respectively.  Each 

test tube was inoculated with 0.1 ml of the starter culture (OD550nm – 0.781).  An absorbance value 

was measured and the test tubes were incubated on a wheel at 26 °C.  Every 12 hours for 50 hours 

an absorbance value was measured for all test tubes.  All experiments were done in triplicate. 

 

Optimum growth conditions for astaxanthin production 

Culturing 

The following growth media were used to determine the ability of P.  marcusii to produce astaxanthin: 

Nutrient broth (1 g/L meat extract, 2 g/L yeast extract, 5 g/L peptone and 8 g/L NaCl) (Biolab, South 

Africa), LB broth (5 g/L yeast extract, 10 g/L tryptone and 10 g/L NaCl) (Biolab, South Africa) and a 

specialised medium (5 g/L yeast extract (Biolab, South Africa), 10 g/L bacteriological peptone (Oxoid, 

United Kingdom) and 3% NaCl (m/v)).  The NaCl concentration of the Nutrient and LB broth was 

adjusted to 3% (m/v).  The different media were incubated at 26 °C until an absorbance value of 1 

at 550 nm was measured.  Aliquots of cells were harvested through centrifugation at 10000 rpm for 

5 minutes and washed once with sterile dH2O.   

 

Extraction of astaxanthin and Liquid Chromatography-Mass Spectrometry (LC-MS) 

Carotenoids were extracted in the dark with 1 ml methanol at 26 °C for 90 minutes on a shaker     

(150 rpm) (Harker et al., 1998).  The extracted carotenoids were then separated from the cell content 

through centrifugation at 10000 rpm for 10 minutes.  The methanol (now containing the carotenoids) 

was transferred into an amber vial and sent to CAF (Central Analytical Facility), Stellenbosch 

University, for analysis.  Liquid chromatography-mass spectrometry was performed as previously 

described with minor modifications, where a mobile phase of acetonitrile was used instead of 

acetonitrile/methanol/isopropyl alcohol (90:6:40, v/v/v) (Fraser et al., 1997).  Figure 2 indicates the 

mobile phase gradient profile. Column: Waters UPLC HSS C18, 2.1 x 150 mm.  Solvent A:                 

1% Formic Acid.  Solvent B: Acetonitrile.  Source: Electrospray positive.  Capillary voltage 3 kV.  

Cone voltage 15 V.  Mass spectra obtained by scanning from m/z 200 – 700.  A standard                    

(3S, 3′S) trans-astaxanthin solution (from Haematococcus pluvialis, SML0982, Sigma-Aldrich, 

United States) was prepared with concentrations 2, 4, 6, 8, 10 and 20 ppm (Fig. 3). 
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Final growth conditions and media used for further experimental work 

The media selected for further culturing of P. marcusii contained 5 g/L yeast extract, 10 g/L 

bacteriological peptone and 3% NaCl at a pH between 6 – 7.  The incubation temperature for further 

experimental work was 26 °C. 

 

Cell viability of Paracoccus marcusii and stability of astaxanthin 

In preparation for lyophilisation in sucrose and microencapsulation in calcium alginate beads, cells 

were cultured in 2 L Schott bottles containing 1 L of specialised medium and incubated at 26 °C for    

4 – 7 days.  The cells were harvested through centrifugation at 10000 rpm for 5 minutes and washed 

once with sterile dH2O. 

 

Paracoccus marcusii lyophilised in sucrose 

Lyophilisation process 

Cell pellets from every 1 L of harvested cells were resuspended in 200 ml sucrose (10% m/v) and 

transferred into sterile 500 ml Schott bottles.  The solution was frozen overnight at -80 °C and 

lyophilised until dry (VirTis benchtop K, model 6KBTEL-85, SP Scientific, United States)           

(Heckly, 1961).  Lyophilised cells were stored in a dark airtight container at 4 °C. 

 

Cell viability 

A dilution series of 10-2 – 10-8 was prepared by adding 0.1 g of lyophilised cells to 9.9 ml of sterile 

saline solution (0.9% NaCl).  The dilutions were plated onto Nutrient Agar (1 g/L meat extract,               

2 g/L yeast extract, 5 g/L peptone, 8 g/L NaCl and 12 g/L agar-agar) (Biolab, South Africa) and 

incubated for 4 – 5 days at 26 °C.  Dilutions and plating were performed in triplicate.  The total colony 

forming units (CFU) were counted for each plate and the average calculated.  Viability of cells was 

determined directly after lyophilisation and then every week for 3 weeks. 

 

Astaxanthin extraction and storage stability 

One gram of lyophilised cells was resuspended in 10 ml of dH2O to dissolve the sucrose before 

extraction.  The cells were harvested through centrifugation at 10000 rpm for 5 minutes and the 

supernatant discarded.  Carotenoids were extracted from the pellet in a 50 ml Falcon tube with          

10 ml methanol at 26 °C on a rotary shaker at 150 rpm for 90 minutes in the dark.  The samples 
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were centrifuged at 5000 rpm for 10 minutes and the methanol transferred to an amber vial.  The 

samples were sent to CAF for analysis, as previously described.  Carotenoids were extracted directly 

after lyophilisation and then every week for 3 weeks.  Extractions were performed in triplicate. 

 

Paracoccus marcusii microencapsulated in calcium alginate beads 

Microencapsulation process 

Every 3 L of harvested cells were resuspended in 200 ml of 2% sodium alginate solution.  The 

extrusion method was used to encapsulate whole P. marcusii cells in calcium alginate beads (Lin et 

al., 2016).  The sodium alginate solution containing P. marcusii was added drop-wise using a 21G x 

1.5” hypodermic needle and syringe into 200 ml of 2% CaCl2 solution under constant stirring of 150 

rpm (Fig. 4A).  The resulting beads (Fig. 4B) were separated from the CaCl2 solution using a sieve 

and allowed to dry overnight in a laminar flow cabinet at room temperature (Fig. 5A and B).  Equal 

volumes of control beads were also made and dried over-night (Fig. 6).  This solution contained no 

P. marcusii cells.  The dried control and P. marcusii beads were weighed (Fig. 7) and the total weight 

of P. marcusii in 1 g of beads was calculated.  The size of the beads was measured with an electronic 

digital calliper and morphology of the beads were examined using a light microscope                   

(Model: UB200i, Lasec, South Africa) under 40x and 100x magnification.  The beads were stored in 

a dark container at 4 °C and room temperature (± 20 °C). 

 

Cell viability 

One gram of calcium alginate beads was first dissolved in 200 ml of 0.05 M Na2CO3/ 0.02 M citric 

acid buffer (Mater et al., 1995).  This buffer solution allows for 100% cell recovery and viability.  The 

buffer solution containing the beads were placed on a rotary shaker at 200 rpm until all the beads 

were dissolved (Fig. 8A).  A dilution series of 10-1 – 10-8 were prepared by adding 1 ml of the 

dissolved solution to 9 ml of sterile saline solution (0.9% NaCl).  The dilutions were plated onto 

Nutrient Agar (1 g/L meat extract, 2 g/L yeast extract, 5 g/L peptone, 8 g/L NaCl and 12 g/L agar-

agar) (Biolab, South Africa) and incubated for 4 – 5 days at 26 °C.  Dilutions and plating were 

performed in triplicate.  The total colony forming units (CFU) were counted for each plate and the 

average calculated.  Viability of cells was determined directly after microencapsulation and then 

every week for 3 weeks. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

47 
 

Astaxanthin extraction and storage stability 

One gram of calcium alginate beads was first dissolved as described above.  The cells were 

separated from the alginate solution through centrifugation at 14000 rpm for 20 minutes.  The water 

and alginate content (Fig. 8B) was discarded and the pellet rinsed once with dH2O.  The carotenoids 

were extracted from the pellet in a 50 ml Falcon tube with 10 ml methanol at 26 °C on a rotary shaker 

(150 rpm) for 90 minutes in the dark.  The samples were centrifuged at 5000 rpm for 10 minutes and 

the methanol supernatant (Fig. 8C) was transferred to an amber vial.  The samples were sent to 

CAF for analysis, as described previously.  Carotenoids were extracted directly after 

microencapsulation and then every week for 3 weeks.  Extractions were performed in triplicate. 

 

Results 

 

Optimum growth conditions of Paracoccus marcusii 

Temperature 

Paracoccus marcusii was able to grow at all temperatures, with an optimum growth temperature 

observed at 26 °C (Fig. 9).  A lag phase was only observed at 20 °C and 26 °C.  After 24 hours, the 

absorbance values were similar for the temperatures 26 °C, 30 °C and 37 °C (OD550nm ± 1.10).  After 

36 hours, the absorbance value started to decrease at 37 °C and after 60 hours at 30 °C, while 

absorbance still increased at 26 °C until it reached a plateau after 60 hours (OD550nm ± 1.6).  

Pigmentation was observed to be less at the higher temperatures (30 °C and 37 °C; yellow to light 

orange) and higher at the lower temperatures (20 °C and 26 °C; bright to dark orange). 

 

NaCl concentration 

Paracoccus marcusii was unable to grow at all NaCl concentrations tested (Fig. 10).  An optimum 

growth was observed between 1.5% and 3% (OD550nm ± 1.45).  Even though P. marcusii was able to 

grow at 0% NaCl, pigmentation was lower compared to 1.5% and 3%.  There was an initial lag phase 

between 4.5% and 6%, but after 60 hours all absorbance values were similar (OD550nm ± 1.43).  No 

growth was observed at concentrations of 7.5% and 9%. 
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pH level 

Optimum growth was observed at a pH between 6 (1.40 ± 0.02) and 7 (1.31 ± 0.05) (Fig. 11).  With 

an increase in pH (8, 9 and 10) there was a decrease in absorbance value (lower than 1.11), although 

relatively good growth was still observed.  There was no growth observed at pH of 4 and 5. 

 

Optimum growth conditions for astaxanthin production 

The mean concentration of astaxanthin produced by P. marcusii was the highest in the specialised 

medium with 3.35 ppm (± 0.21), followed by LB broth with 2.1 ppm (± 0.14) and Nutrient broth with 

1.65 ppm (± 0.49) (Fig. 12).  Figure 13 is one example of the typical results obtained of extracted 

carotenoids from P. marcusii.  Five individual peaks can be seen on the extracted sample run         

(Fig. 13A) with the first peak aligning with the standard solution peak (Fig. 13B). 

 

Cell viability of Paracoccus marcusii and stability of astaxanthin 

Paracoccus marcusii lyophilised in sucrose 

Cell viability and astaxanthin storage stability 

The viability of P. marcusii in sucrose and the loss of astaxanthin concentration over time is illustrated 

in Figure 14.  Directly after lyophilisation, the mean cell count was 16 x 106 CFU/ml (Fig. 14, dotted 

line).  However, one week after lyophilisation the cell count decreased significantly                                

(3.04 x 106 CFU/ml), but remained similar after 2 and 3 weeks with a cell count of 2.49 x 106 CFU/ml 

and 1.87 x 106 CFU/ml, respectively.  After lyophilisation the mean astaxanthin concentration was 

2.78 ppm (± 0.06) (Fig. 14, bars).  In the first week, the concentration decreased to 2.39 ppm (± 0.05) 

and then 1.87 ppm (± 0.06) in the second week.  There was a significant loss in astaxanthin 

concentration in the final week (week 3) with a concentration of 0.40 ppm (± 0.15) detected. 

 

Paracoccus marcusii microencapsulated in calcium alginate beads 

Microencapsulation of Paracoccus marcusii 

The total weight of the dried control and P. marcusii beads were 4.5 g and 7.5 g, respectively.  The 

total dry cell weight per gram of beads is estimated to be 400 mg.  The shape of the beads was 

spherical and uniform in size (± 5 mm) after being dripped into the CaCl2 solution.  However, after 

drying the beads lost their spherical shape and were ellipsoidal with curvy edges and some flat 

surfaces (Fig. 15A and B).  The diameters of the dried beads ranged between 0.9 mm and 1.10 mm. 
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Cell viability and astaxanthin storage stability 

The viability of P. marcusii in the calcium alginate beads and the loss of astaxanthin concentration 

over time stored at 4 °C and room temperature (± 20 °C) is illustrated in Figure 16.  The mean cell 

count after microencapsulation was 44.5 x 108 CFU/ml.  The cell count decreased for both 

temperatures with a significant loss in viability at 20 °C after 3 weeks with a cell count of                      

5.98 x 108 CFU/ml, compared to 29.85 x 108 CFU/ml at 4 °C (Fig. 16, dotted lines).  The concentration 

of astaxanthin decreased over time, but remained relatively stable (Fig. 16, bars).  After 

microencapsulation, the mean astaxanthin concentration was 9.65 ppm (± 0.07) (24.25 µg/g dry cell 

weight) and after 3 weeks it was 6.55 ppm (± 0.13) and 6.65 ppm (± 0.05) at 4 °C and 20 °C, 

respectively.  There was no significant difference between 4 °C and 20 °C in terms of astaxanthin 

concentration. 

 

Discussion 

 

Astaxanthin (3,3’-dihydroxy-β, β’carotene-4,4’-dione), a xanthophyll carotenoid, has been described 

as the king of all carotenoids because of its potent antioxidant activity and wide range of applications 

in the food and health industry (Perez-Galvez and Mınguez-Mosquera, 2005; Villalobos-Castillejos 

et al., 2013 and Shah et al., 2016).  Microorganisms that are well known to produce astaxanthin in 

large quantities include the microalga, Haematococcus pluvialis, and yeast,            

Xanthophyllomyces dendrorhous (Johnson et al., 1977; 1980 and Dufosse et al., 2005).  Some 

bacteria are also able to produce astaxanthin and include the bacterium, Paracoccus marcusii 

(Harker et al., 1998 and Chougle and Singhal, 2012).  This is a Gram-negative, catalase and oxidase 

positive bacterium that grow aerobically and was isolated from the gastrointestinal tract (GIT) of the 

South African abalone, Haliotis midae (Harker et al., 1998 and De Bruyn, 2013).  The stability of 

astaxanthin is strongly influenced by temperature, oxygen and light, with high temperatures being 

the most influencial factor (Villalobos-Castillejos et al., 2013 and Lin et al., 2016).  In order to use   

P. marcusii as a possible pigmentation source for application in poultry feed, large quantities of the 

bacterium are needed.  Therefore, in this study we aimed to determine the optimum growth 

conditions of P. marcusii and to quantify and enhance the production of astaxanthin.  Furthermore, 

we also aimed to determine the viability of the cells and the stability of astaxanthin under two storage 

conditions, namely lyophilisation in a sucrose solution and microencapsulation in calcium alginate. 

 

The optimum growth temperature was determined at 26 °C even though P. marcusii was also able 

to grow relatively well at 20 °C, followed by 30 °C and 37 °C (Fig. 9).  The colour of the growth at   

30 °C and 37 °C appeared yellow to light orange compared to the 20 °C and 26 °C which had a 
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bright to dark orange colour.  It has been suggested by Sandmann et al. (1999) that lower 

temperatures promote a slower expression of the genes responsible for carotenogenesis which 

leads to an enhanced activity of enzymes and added phenyl pyrophosphates (carotenoid 

precursors).  Several other reports have indicated the importance of incubation temperature on 

carotenoid production as it triggers a survival mechanism in microorganisms to accumulate 

carotenoids (Bhosale and Gadre, 2002; Bhosale, 2004 and Durmaz et al., 2009).  The optimum NaCl 

concentration of between 1.5% - 3% (Fig. 10) and pH between 6 – 7 (Fig. 11) is similar to the 

conditions of sea water from which the bacterium was isolated (Mater et al., 1995 and De Bruyn, 

2013).  These optimum growth conditions correlate with a previous study conducted by De Bruyn 

(2013). 

 

With the optimum conditions determined for biomass production, the use of different combinations 

of nitrogen and carbon sources to produce astaxanthin was also determined.  The highest 

concentration of 3.35 ppm (± 0.21) of astaxanthin was produced in the specialised medium 

containing 5 g/L yeast extract, 10 g/L bacteriological peptone and 3% NaCl (3.35 ppm), followed by 

LB broth and Nutrient broth with 2.1 ppm (± 0.14) and 1.65 ppm (± 0.49), respectively (Fig. 12).  The 

difference in astaxanthin production can be explained by the available carbon and nitrogen 

compounds in the media.  Nitrogen and carbon are the energy source and building blocks of the cell 

and are also involved in the formation of biomolecules, such as astaxanthin (Chougle and Singhal, 

2012). Chougle and Singhal (2012) compared the production of astaxanthin by                            

Paracoccus MBIC 01143 with different nitrogen sources.  They found that the highest concentration 

of astaxanthin was obtained with media containing bacteriological peptone, followed closely by yeast 

extract and the lowest with meat extract.  However, a combination of yeast extract and bacteriological 

peptone obtained even higher concentrations (Chougle and Singhal, 2012).  The results of this study 

are in agreement with Chougle and Singhal (2012), as the highest concentration of astaxanthin was 

obtained with a combination of yeast extract (5 g/L) and bacteriological peptone (10 g/L) compared 

to LB broth and Nutrient broth. 

 

Lyophilisation is a method commonly used to preserve biological samples (Delgado et al., 2016).  

However, the process may affect the stability of astaxanthin as the lyophilised sample will have a 

porous surface, allowing for oxidation of the molecule (Rodriguez-Amaya, 2001 and Wessman et al., 

2011).  Another method includes the microencapsulation of compounds in calcium alginate beads 

for storage stability and a controlled release (Delgado et al., 2016).  This method is simple, there is 

less stress on the cell and molecules and the matrix created provides protection from environmental 

conditions (Lin et al., 2016).  Therefore, in this study, we determined the stability of astaxanthin in  

P. marcusii lyophilised in sucrose (10% m/v) and whole cell microencapsulation in calcium alginate 
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beads.  Skimmed milk and sucrose are both common lyoprotectants used to obtain a higher survival 

rate of bacteria after lyophilisation (Leslie et al., 1995; Schoug et al., 2006 and Peiren et al., 2015).  

However, hens are lactose intolerant and for this reason sucrose was used as a lyoprotectant in this 

study.  The results obtained from the first few weeks after lyophilisation in sucrose showed some 

promise, but after 3 weeks there is a significant loss in astaxanthin concentration (less than                

0.5 ppm, Fig. 14).  However, the cells remained viable at total cell counts ranging between                                     

1.5 – 2.5 x 106 CFU/ml.  Lyophilisation with sucrose may be suitable for preserving viable cells, but 

not for long term storage of astaxanthin. 

 

The microencapsulation of whole P. marcusii cells showed promise to be used as a method for long 

term storage.  The astaxanthin concentration over time was similar for both storage temperatures 

and loss of concentration was low compared to the lyophilisation.  After 3 weeks, only 30% of the 

astaxanthin content was lost with the microencapsulated beads at both temperatures compared to 

the lyophilisation in sucrose with a total loss of 85%.  However, the viability of the cells was lower at 

20 °C (Fig. 16).  Since the aim is to use P. marcusii as a feed additive to enhance egg yolk colour, 

the viability of the cells is not important but rather the storage stability of the astaxanthin molecule.  

These results indicate the ability of calcium alginate beads to improve the thermal stability of 

astaxanthin as both storage temperatures had similar concentrations every week even though the 

cell viability was the lowest at 20 °C.  As cell viability decreases, astaxanthin is released from the 

cells, but are still stable within the bead matrix.   Calcium ions are believed to have a bifunctional 

role in the calcium alginate beads matrix.  First, calcium ions act as a crosslinker to link the chains 

of alginate to form the matrix layer, preventing exposure to oxygen.  Second, calcium is able to form 

a complex with the free astaxanthin molecule, enhancing the stability of the molecule (Chen et al., 

2007b and Lin et al., 2016).   
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Conclusion 

 

In this study, we aimed to determine the optimum growth conditions for astaxanthin production by 

Paracoccus marcusii and a possible storage method for a longer stability of astaxanthin over time.  

The optimum growth conditions for P. marcusii and for astaxanthin production was at 26 °C in a 

specialised medium containing yeast extract (5 g/L), bacteriological peptone (10 g/L) and                    

NaCl (3% m/v) at a pH between 6 – 7.  The astaxanthin concentration of the lyophilised cells 

decreased significantly compared to the microencapsulated cells (4 °C and 20 °C), but viability was 

more stable for the lyophilised cells and microencapsulated cells stored at 4 °C.  The stability of 

astaxanthin was similar for the two temperatures of calcium alginate beads, indicating a relatively 

thermostable product.  The highest concentration of astaxanthin detected was 9.65 ppm              

(24.25 µg/g dry cell weight) in the microencapsulated beads directly after microencapsulation.  

Further studies need to be done to further optimise the production of astaxanthin and storage 

stability.  Also, future studies can include a total quantification of other possible carotenoids and 

astaxanthin isomers produced by P. marcusii.  
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Figures 

 

 
Figure 1 – Chromatogram example of astaxanthin isomers compared to other well-known carotenoids. 

  

 
Figure 2 – Mobile phase gradient profile. Column: Waters UPLC HSS C18, 2.1 x 150 mm. Solvent A: 1% 

Formic Acid. Solvent B: Acetonitrile. Source: Electrospray positive. Capillary voltage 3 kV. Cone voltage 15 V. 

Mass spectra obtained by scanning from m/z 200 – 700. 
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Figure 3 – Astaxanthin standards used for calibration curve. 

 

 
Figure 4 – Extrusion method. A. Needle and syringe containing sodium alginate and P. marcusii polymer 

solution. B. Calcium alginate beads with P. marcusii in CaCl2 solution. 

 

 
Figure 5 – Microencapsulated P. marcusii in calcium alginate beads. A. Wet beads. B. Desiccated beads after 

drying. 
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Figure 6 – Control calcium alginate beads before drying, containing no P. marcusii. 

 

 
Figure 7 – Dried calcium alginate beads. A. Control beads. B. Beads with P. marcusii. 

 

 
Figure 8 – Astaxanthin extraction process from calcium alginate beads containing P. marcusii. A. Calcium 

alginate beads dissolved in 0.05 M Na2CO3/ 0.02 M citric acid buffer solution. B. Paracoccus marcusii pellet 

after centrifugation. C. Total carotenoids extracted, left, compared to the astaxanthin standard, right. 
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Figure 9 – Growth curve of P. marcusii at different temperatures. 

 

 
Figure 10 – Growth curve of P. marcusii at different NaCl concentrations. 
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Figure 11 – Growth curve of P. marcusii at different pH ranges. 

 

 
Figure 12 – Astaxanthin concentration (in parts per million) of P. marcusii grown in different growth media. 
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Figure 13 – Example of LC-MS chromatogram results of extracted astaxanthin compared to the standard. A. Extracted astaxanthin peak at 7.46 minutes followed by 

other possible carotenoids or isomers of astaxanthin. B. Astaxanthin standard peak at 7.45 minutes.  
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Figure 14 – Combined graph of loss of astaxanthin concentration (purple bars) and total colony forming units 

(dotted red line) of P. marcusii lyophilised in sucrose over a 3-week period stored at 4 °C. 

 

 
Figure 15 – Microscopic view of morphological features of P. marcusii calcium alginate beads at A. 40x and 

B. 100x magnification. 

 

0

2

4

6

8

10

12

14

16

18

0

0.5

1

1.5

2

2.5

3

0 1 2 3

T
o

ta
l C

o
lo

n
y
 F

o
rm

in
g

 U
n

its
 p

e
r m

l
(C

F
U

/m
l) (1

0
^

6
)

A
s
ta

x
a
n

th
in

 c
o

n
e
n

tr
a
ti

o
n

 (
p

p
m

)

Weeks

Astaxanthin ppm CFU/ml

A 

C

a

C

l2 

s

o

l

u

ti

o

n 

C

a

C

l2 

s

o

l

u

ti

o

n 

B 

C

a

C

l2 

s

o

l

u

ti

o

n 

C

a

C

l2 

s

o

l

u

ti

o

n 

Stellenbosch University  https://scholar.sun.ac.za



 

66 
 

 
Figure 16 – Combined graph of loss of astaxanthin concentration (light green and orange bars) and total colony 

forming units (dotted red and blue lines) of microencapsulated P. marcusii in calcium alginate beads over a   

3-week period stored at 4 °C and room temperature (± 20 °C).  
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Chapter 3 

 

Application of Paracoccus marcusii as a potential feed 

additive for laying hens 
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Abstract 

 

Carotenoids have been used for many years as an added pigment source to enhance egg yolk 

colour.  One such carotenoid, astaxanthin, has a strong antioxidant activity and is produced by 

several microorganisms, including the bacterium Paracoccus marcusii, and has shown promise to 

be used as a feed additive.  Therefore, this study investigated the use of P. marcusii as a possible 

source of pigmentation in layer hen feed to enhance egg yolk colour.  Paracoccus marcusii was fed 

to hens either in a sucrose solution (10% m/v) or microencapsulated in calcium alginate beads.  The 

hens were fed daily and eggs were collected for analysis.  Dilutions of egg contents were plated out 

onto selective media to detect the presence of known food pathogens (E. coli, Listeria and 

Salmonella).  In all the feeding trials there was no negative effect on the weight of the hen, the laying 

rate or the overall quality of the egg.  All trials indicated a significant increase (P ≤ 0.05) in yolk colour 

as well as an increase in whole egg and yolk weight.   There were also no known food pathogens 

detected in any of the egg samples.  This study has shown promising results in using this bacterium 

as an effective feed additive for laying hens. 
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Introduction 

 

The chicken (Gallus gallus domesticus) is a domesticated subspecies of the red junglefowl        

(Gallus gallus).  Chickens have become one of the most common domesticated animals and are 

mainly kept as a source of food for meat and eggs.  In 2015, the South African layer flock size was 

24.9 million hens and has since increased to 25.05 million hens in 2016 (South African Poultry 

Association, 2016).  Chicken eggs remain one of the largest animal product sectors in the South 

African agriculture after beef, chicken meat and milk with a gross turnover of R9.83 billion in 2015 

(Department of Agriculture, Forestry and Fisheries (DAFF), South Africa). 

 

Egg quality is an important factor that contributes to the price of table eggs (Monira et al., 2003).  

Stadelman (1977) first defined egg quality as the characteristics important to the consumers.  These 

characteristics affect the acceptability by the consumer and it is of great importance that the quality 

is maintained.  Egg quality parameters include eggs size, whole egg weight, shell thickness, shell 

weight, yolk height, yolk colour, albumen height and Haugh Unit.  Each of these parameters differs 

within species, breeds, lines, strains and families (Buss, 1982).  In some studies they have shown 

that coloured feathered hens generally lay bigger eggs than white feathered hens (Halaj and Grofík, 

1994 and Vits et al., 2005).  Other external quality parameters include freshness and cleanliness.  

As soon as the egg is laid its internal quality starts to decline (Dudusola, 2010).  The quality of the 

egg is heavily influenced by the age, nutrition and management of the hen and the storage and 

handling of the eggs before it reaches the consumer (Gerber, 2006). 

 

For many years carotenoids have been used to manipulate the colour of egg yolk to obtain a desired 

colour (Adams, 1985).  Poultry can easily absorb carotenoids from their diet (Hudon, 1994).  After 

the hen has ingested the feed, the carotenoids are released by enzymes and absorbed in the small 

intestines.  The free carotenoids are then emulsified to form oil droplets (or portomicrons) and 

delivered to the liver.  These molecules are incorporated into very low density lipoproteins (VLDL) 

and delivered to the yolk (Surai et al., 2001 and Bortolotti et al., 2003). 

 

Astaxanthin produced by microorganisms have been commercialised and applied in the colouration 

of cosmetics, beverages, dairy products, and meats (Del Campo et al., 2000; Guerin et al., 2003; 

Liang et al., 2004; Pulz and Gross, 2004 and Chandi and Gill, 2011).  There is an increase in demand 

for naturally derived astaxanthin from microorganisms instead of synthetic astaxanthin, since natural 

astaxanthin has a higher antioxidant activity when compared to synthetic astaxanthin (Capelli et al., 

2013).  The yeast, Xanthophyllomyces dendrorhous, and microalga, Haematococcus pluvialis, are 

Stellenbosch University  https://scholar.sun.ac.za



 

70 
 

currently used for the large scale cultivation for astaxanthin production.  Many studies have used 

these microorganisms in developing biotechnological processes to produce astaxanthin in large 

quantities (Lorenz and Cysewski, 2000; Dufosse et al., 2005; Schmidt et al., 2011 and Mata-Gómez 

et al., 2014). 

 

In previous studies, the yeast and microalga have been used as a pigmentation source in the diet of 

trout (Choubert and Heinrich, 1992 and Storebakken et al., 2004), salmon (Lorenz and Cysewski, 

2000) and laying hens (Johnson et al., 2003).  A significant difference was only observed after partial 

homogenisation, enzymatic digestion or by cracking the cells to increase the release of the available 

pigments (Choubert and Heinrich, 1992; Lorenz and Cysewski, 2000; Johnson et al., 2003 and 

Storebakken et al., 2004).  However, there was no need to enzymatically digest or homogenise the 

bacterium, P. marcusii, when fed to rainbow trout (Oncorhynchus mykiss) for pigmentation effect  

(De Bruyn, 2013).  The results obtained by De Bruyn (2013) showed the promising application of 

using an astaxanthin producing bacterium as a pigmentation source, instead of the yeast or 

microalga. 

 

The aim of this study was, therefore, to determine if whole Paracoccus marcusii cells can be used 

as a possible pigmentation source to enhance egg yolk colour and possibly improve egg quality 

without the need to extract the pigment from the cell. 

 

Materials and Methods 

 

Experimental layout, hens and feed 

All three feeding trials took place at the poultry unit of Mariendahl Experimental Farm, University of 

Stellenbosch.  The facility consisted of a hen house equipped with a two-tier A-shape battery system.  

Each row contained 12 cages with sliding doors, slightly slanted floors which allowed the eggs to roll 

out of the cage for easy collection and a feeding tray in front of the cage (Fig. 1).  Water was provided 

ad libitum by two nipple-type drinkers per cage (Ethical clearance protocol number: SU-ACUM14-

0034 (Pilot study) and SU-ACUD15-00088 (Experimental trials)). 

 

Pilot study 

A total of 50 hens of 36 weeks of age were selected.  Ten hens were randomly assigned into a group.  

The hens were allowed to adjust to their new surroundings for four days before starting with the 

Stellenbosch University  https://scholar.sun.ac.za



 

71 
 

experimental diets.  After five weeks of the experimental treatments the hens were fed a basal diet 

for two weeks to determine if the change in pigmentation was because of the bacterium.  The basal 

feed consisted of commercially available layer hen feed. 

 

Experimental trials 

Bacterium in sucrose solution 

A total of 120 hens of 16 weeks of age were selected.  Twenty hens were randomly assigned into a 

group.  For the first four weeks, all hens were fed prelay feed containing white maize before starting 

with the experimental diets for eight weeks on peaking feed containing either yellow maize (Fig. 2A) 

or white maize (Fig. 2B) (Table 1). 

 

Bacterium microencapsulated in calcium alginate beads 

After the bacterium in sucrose trial, the beads trial followed.  A total of 60 hens of 28 weeks of age 

were selected.  Fifteen hens were randomly assigned into a group.  The hens were allowed to adjust 

to their new surroundings for four days before starting with the experimental diets for three weeks.  

The basal feed consisted of peaking feed containing either yellow maize or white maize (Table 1). 

 

Experimental treatments 

All dosages given every day at each trial is indicated in Table 2.  Dosages were given by hand every 

day either in liquid or in bead form to ensure that the hens were fed equal amounts of the control or 

the bacterium.  The next day all of the feeding trays were checked to observe if any of the previous 

days’ bacterium was still present. 

 

Pilot study 

Five different diets were prepared and randomly assigned to each group of 10 hens.  Treatment 1 

and 2 served as negative controls which consisted of a basal feed with no additives (Control) and    

1 ml sucrose solution (10% m/v) (Sucrose Control).  Treatments 3 – 5 consisted of a basal feed and 

a dosage of Paracoccus marcusii, either freeze-dried (PM-Freeze-dried) and resuspended in sterile 

dH2O or live cells (PM-1 and PM-5), which were dripped onto the feed. 
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Experimental trials 

To effectively determine the pigmentation effect of the bacterium to enhance egg yolk colour, all 

experimental diet groups (PM-Feed and PM-Beads) were fed a diet containing white maize, except 

for the positive control diet groups which were fed a diet containing yellow maize. 

 

Bacterium in sucrose solution 

Six different diets were prepared and randomly assigned to each group of 20 hens.  Treatments        

1 – 4 served as the control groups.  For treatments 5 and 6, a sucrose solution containing the 

bacterium, P. marcusii, was dripped onto the feed (Fig. 3A) (PM-Feed) or added to the water system 

(PM-Water) every day. 

 

Bacterium microencapsulated in calcium alginate beads 

Four different diets were prepared and randomly assigned to each group of 15 hens.  Treatments    

1 – 3 served as the control groups which consisted of a basal feed containing yellow maize as the 

positive control (Yellow Maize Control) and two negative controls which consisted of a White Maize 

Control with no calcium alginate beads and a White Maize Beads Control where calcium alginate 

beads containing no bacterium was sprinkled over the feed every day.  For treatment 4 (PM-Beads), 

calcium alginate beads containing the bacterium was sprinkled over the feed every day (Fig. 3B). 

 

Preparation of Paracoccus marcusii for feeding trials 

In preparation for the feeding trials, P. marcusii was cultured in 2 L Schott bottles containing 1 L of 

specialised medium (10 g/L bacteriological peptone (Oxoid, United Kingdom), 5 g/L yeast extract 

(Biolab, South Africa), 3% NaCl and pH 7-8).  Schott bottles were incubated at 26 °C for 4 – 7 days 

(see Chapter 2).  When an absorbance value of 1 at 550 nm was measured, the cells were harvested 

through centrifugation at 10000 rpm for 10 minutes and washed once with sterile dH2O.  New cells 

were cultured each week to ensure viability of cells. 

 

Pilot study 

Cells were resuspended in equal volumes of sucrose (10% m/v).  Aliquots of cells were transferred 

into separate flasks representing the different diet groups (PM-1 and PM-5).  For freeze-drying,         

50 ml of cells resuspended in sucrose (10% m/v) were frozen overnight in 250 ml Erlenmeyer flasks 

at -80 °C.  The VirTis benchtop K (model: 6KBTEL-85, SP Scientific, United States) was used to 

freeze-dry the cells until dry. 
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Experimental trials 

Bacterium in sucrose solution 

For the bacterium in the sucrose experimental trial, every day 2 L of cells were harvested and 

resuspended in 40 ml of sucrose (10% m/v).  Twenty ml aliquots of cells were transferred into 

separate flasks representing the different diet groups (PM-Feed and PM-Water). 

 

Bacterium microencapsulated in calcium alginate beads 

The extrusion method was used to encapsulate whole P. marcusii cells in calcium alginate beads         

(see Chapter 2) (Lin et al., 2016).  Three litres of cells were harvested and resuspended in 200 ml 

of 2% alginate.  The solution was then added drop-wise into 200 ml of 2% CaCl2 solution using a 

21G x 1.5” hypodermic needle and syringe.  The CaCl2 solution was constantly stirred at 150 rpm at 

room temperature.  The resulting beads were then separated from the solution using a sieve and 

allowed to dry overnight in a laminar flow cabinet at room temperature.  The beads were stored at 

room temperature in a dark container. 

 

Hen weight and laying rate  

The initial and final mean weight was measured for all diet groups in all feeding trials.  The egg 

production rate of each group was calculated using the total number of eggs laid over the duration 

of the trial. 

Layingrate(%)=(Totaleggslaid)/(Numberofhens×Numberofdays)×100  (1) 

 

Egg quality analysis 

Eggs were collected every day following the acclimation period.  Daily measurements included the 

following: whole egg weight, shell thickness, shell weight, yolk weight, yolk height, yolk colour and 

thick albumen height.  The Haugh Unit (HU) was calculated using the formula: 

𝐻𝑈 = 100 log(h − 1.7𝑤0.37 + 7.6) (2) 

where h is the height of the albumen and w is the whole egg weight (Haugh, 1937).  The shell 

thickness was measured using an electronic digital caliper (Fig. 4A).  The height of the albumen and 

yolk was measured by using a Haugh meter (Fig. 4B).  For measuring the colour of the yolk, the yolk 

was first separated from the albumen and placed into a plastic petri dish (90 mm x 15 mm).  The 

colour was then measured using a yolk colour fan (DSM) (Fig. 4C). 
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Detection of Paracoccus marcusii in hen faecal matter 

Hen faecal matter was collected from three hens per group.  A dilution series (10-1 – 10-10) was 

prepared in sterile saline solution (0.9% NaCl) and plated onto nutrient agar (2 g/L yeast extract,       

5 g/L peptone, 1 g/L meat extract, 8 g/L NaCl and 15 g/L agar) (Biolab, South Africa).  The plates 

were incubated at 26 °C for 4 days and analysed to detect the presence of P. marcusii (bright orange 

colony, Fig. 5). 

 

Detection of potential food pathogens and Paracoccus marcusii in the egg content 

Eggs were randomly selected during the trials from all diet groups and tested for the presence of 

potential food pathogens (Salmonella, Listeria and E. coli) (Gast, 1992) and P. marcusii in the egg 

content.  The surface of the egg was sterilised by rolling the whole egg in 70% ethanol.  The internal 

egg content was homogenised in a plastic petri dish (90 mm x 15 mm) and a dilution series of            

10-1 – 10-5 was prepared in sterile saline solution (0.9% NaCl).  The dilutions were plated in triplicate 

onto PALCAM-Listeria-selective agar (3 g/L yeast extract, 23 g/L peptone, 5 g/l NaCl, 1 g/L starch, 

10 g/L mannitol, 0.8 g/L aesculin, 0.5 g/L glucose, 0.5 g/L ammonium iron(III) citrate, 0.08 g/L phenol-

rot, 15 g/L lithiumchloride and 13 g/L agar) (Merck, Germany), SS agar (10 g/L lactose, 10 g/L 

peptone, 10 g/L NaCl, 8.5 g/L ox bile dried, 1 g/L ammonium iron(III) citrate, 8.5 g/L sodium 

thiosulfate, 0.025 g/L neutral red, 0.0003 g/L brilliant green and 12 g/L agar) (Merck, Germany), 

LEVINE-EMB-agar (10 g/L lactose, 10 g/L peptone, 0.4 g/L eosin yellow, 0.065 g/L methylene blue, 

2 g/L di-potassium hydrogen phosphate and 13.5 g/L agar) (Merck, Germany) and nutrient agar        

(2 g/L yeast extract, 5 g/L peptone, 1 g/L meat extract, 8 g/L NaCl and 15 g/L agar) (Biolab,            

South Africa).  The Listeria, EMB and SS agar plates were incubated for 2 – 3 days at 37 °C and the 

nutrient agar plates were incubated for 4 – 5 days at 26 °C. 

 

Statistical analysis 

Statistical analysis was performed using Statistica (version 13.0, Statsoft Inc., United States).           

One-way analysis of variance (ANOVA) was used for mean comparisons and Tukey’s honest 

significant difference (HSD) was calculated where P ≤ 0.05. 
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Results 

 

Hen weight 

Pilot study 

The average body weight at the start of the trial was 1.77 kg (± 0.16) between all diet groups.  There 

was no significant increase between all diet groups at the end of the trial (Table 3). 

 

Experimental trials 

At the start of the experimental trial, the mean body weight was 1.45 kg (± 0.11) between the diet 

groups.  There was no significant difference in hen body weight at the start of the trial.  The increase 

in body weight of the hens were consistent at the end of the trial with a significant difference                 

(P ≤ 0.05) only between the different maize groups (white or yellow maize), where the yellow maize 

groups gained more weight (1.97 kg ± 0.18) than the white maize groups (1.79 kg ± 0.15) (Fig. 6). 

 

Laying rate 

Pilot study 

There was a significant difference (P ≤ 0.05) detected in the hen laying rate between the sucrose 

control, PM-Freezedried, PM-1 and PM-5 groups compared to the control group.  The control group 

had the lowest laying rate of 89.35% (± 9.98), followed by PM-Freezedried and PM-5 with 94.52% 

(± 6.75 and ± 7.23, respectively), sucrose control with 96.09% (± 6.08) and PM-1 with 96.45%             

(± 4.86) (Fig. 7, green columns). 

 

Experimental trials 

Bacterium in sucrose solution 

A significant difference (P ≤ 0.05) was detected between the yellow control, yellow sucrose control, 

white sucrose control and PM-Feed compared to the white control.  The white control group had the 

lowest laying rate of 85.06% (± 4.31), followed by PM-Feed with 92.38% (± 3.64), white sucrose 

control with 92.59% (± 3.98), yellow control with 95.21% (± 5.06) and yellow sucrose control with 

96.40% (± 1.53) (Fig. 7, red columns). 
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Bacterium microencapsulated in calcium alginate beads 

There was a significant difference (P ≤ 0.05) detected in the hen laying rate.  The white control group 

performed the worst with a laying rate of 84.44% (± 1.92) compared to the white control beads 

(88.06% ± 5.80) and PM-Beads (90.22% ± 0.61).  The yellow control group had the highest laying 

rate of 94.16% (± 2.10) (Fig. 7, purple columns). 

 

Egg quality 

 Pilot study 

There was a significant difference (P ≤ 0.05) detected for all egg quality parameters measured   

(Table 4).  PM-Freeze-dried and PM-1 had heavier egg weights (58.85 g ± 4.43 and 58.65 g ± 3.31, 

respectively) compared to the control groups (Control and Sucrose Control) and PM-5                    

(57.23 g ± 3.31, 57.91 g ± 2.90 and 56.72 g ± 4.44, respectively).  PM-Freeze-dried (15.10 g ± 1.32), 

PM-1 (15.41 g ± 1.23) and PM-5 (15.02 g ± 1.36) had heavier yolk weights compared to the control 

and sucrose control (Fig. 8). 

 

There was a significant increase (P ≤ 0.05) in yolk colour for all bacterial treatments compared to the 

controls, where PM-5 had the highest yolk colour average of 7.53 (± 0.76) (Table 4).  The yolk colour 

increased significantly after week 4 for PM-5 and PM-Freeze-dried from 7.46 (± 0.18) and 6.97            

(± 0.27), respectively, to 8.12 (± 0.26) and 7.83 (± 0.67), respectively, in week 5 (Fig. 9).  There was 

a slight increase in yolk colour for the control groups, but did not exceed the experimental treatments 

and seemed to stabilise after 4 weeks.  After cessation of the experimental treatments the colour of 

the yolk decreased for all diet groups. 

 

 Experimental trials 

Bacterium in sucrose solution 

Five weeks into the trial there was no significant increase (P ≥ 0.05) in the yolk colour for the            

PM-Water group.  The treatment for the PM-Water group was stopped for the rest of the trial and no 

further data was collected. 

 

There was no significant difference (P ≥ 0.05) detected in albumen height and HU (Table 4).  The 

yellow maize groups had heavier egg weights (57. 96 g ± 4.81 and 56.93 g ± 4.57) compared to the 

white maize groups (54.38 g ± 5.11 and 54.06 g ± 4.78), but the PM-Feed had a significantly                

(P ≤ 0.05) heavier egg weight (55.54 g ±  4.68) compared to the white control groups (Fig. 10).  There 
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was also a significant difference (P ≤ 0.05) in yolk weight between the PM-Feed (13.67 g ± 1.15) 

compared to the white control (13.07 g ± 1.67) and white sucrose control (13.39 g ± 1.11).  PM-Feed 

and yellow sucrose control had similar yolk weights (13.67 g ± 1.15 and 13.75 g ± 1.30, respectively), 

but the yellow control had a significantly heavier yolk weight of 13.95 g (± 1.40) (Fig. 8). 

 

In terms of yolk colour, there was a significant difference (P ≤ 0.05) between the yellow maize diet 

groups compared to the white maize diet groups.  A significant difference was also detected between 

the PM-Feed (3.69 ± 1.23) compared to the white control (1.00 ± 0.00) and white sucrose control 

(1.00 ± 0.00) (Table 4).  Three weeks after starting with the experimental treatments the yolk colour 

for the yellow control and yellow sucrose control stabilised (Fig. 11).  The yolk colour for PM-Feed 

increased significantly after 4 weeks to 2.58 (± 0.73) and stabilised after 7 weeks at 3.78 (± 0.82).  

The highest number obtained in PM-Feed was a 4 on the yolk colour fan (Fig. 12). 

 

Bacterium microencapsulated in calcium alginate beads 

There was no significant difference (P ≤ 0.05) detected in egg size, yolk height, albumen height and 

HU (Table 4).  The egg weight and yolk weight of PM-Beads were slightly heavier than the white 

control and white control beads, but not significantly. 

 

A significant difference (P ≤ 0.05) was detected in yolk colour between the PM-Beads compared to 

the white control and white control beads.  After 3 weeks the yolk colour had increased significantly 

for PM-Beads (2.88 ± 0.75) compared to the white maize groups (1.00 ± 0.00) (Fig. 13).  The           

PM-Beads yolk colour did not exceed the yellow control group (6.43 ± 0.75) after 3 weeks. 

 

Detection of Paracoccus marcusii in hen faecal matter 

There were no P. marcusii colonies detected on any of the faecal dilution plates (Fig. 14).  All plates 

were clear at the highest dilution of 10-10. 

 

Detection of potential food pathogens and Paracoccus marcusii in the egg content 

None of the potential food pathogens (E. coli, Listeria and Salmonella) were detected in any of the 

egg contents plated out.  There were also no P. marcusii colonies on any of the nutrient agar plates.  

All the plates were clear at the lowest dilution of 10-1. 
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Discussion 

 

The increase in demand for the use of feed additives and colourants in poultry farming to enhance 

egg yolk colour has prompted the application of using a carotenoid producing bacterium.  For most 

consumers, the colour of food indicates the quality and freshness of the product (Clydesdale, 1993).  

Carotenoids have long been used as feed additives to generate good quality food products that meet 

the demands of the consumer and also hold a health benefit for the animal (Breithaupt, 2007).  

Plants, algae, fungi and bacteria produce carotenoids, but only a few are of industrial importance 

(Ambati et al., 2014).  Some microorganisms can be used to produce carotenoids economically.  

One such microorganism, Paracoccus marcusii, produces astaxanthin naturally (Harker et al., 1998).  

In a previous study, De Bruyn (2013) has shown that P. marcusii can be used as an additive for fish 

to enhance skin pigmentation.  This same principle can be applied in poultry feed to enhance egg 

yolk colour.  Hens are not able to synthesise carotenoids and need to consume pigments through 

their feed (Surai et al., 2001 and Bortolotti et al., 2003).  In this study we aimed to evaluate the 

potential whole cell application of P. marcusii to be used as a feed additive for laying hens to enhance 

egg yolk colour. 

 

This study has shown that P. marcusii has the potential to be used in the poultry industry as a feed 

additive.  In all of the feeding trials there were no negative effect on the weight of the hen, the laying 

rate or the overall quality of the egg observed.  In some cases, the experimental groups performed 

better than the control groups i.e. laying rate, egg weight, yolk weight and colour.  There seems to 

be a significant increase in laying rate between all the experimental diets compared to their control.  

In the experimental trials, the white control diets had a significantly lower (P ≤ 0.05) laying rate than 

the yellow control diets and the experimental diets (Fig. 7).  It is suspected that the white maize used 

in this study might not have provided enough energy to the hen to produce eggs on a daily basis.  

Some studies have indicated that a difference in protein, sugar and starch content between maize 

varieties can directly influence the layer hens’ performance (Moore, 2007).  White and yellow maize 

are believed to be similar in nutritional composition.  However, composition can be affected by maize 

hybrid type, geographical growing site, harvesting maturity, plant density and soil nitrogen fertilisation 

(Zeidan et al., 2006, Moore, 2007, Idikut et al., 2009 and Raymond et al., 2009).  The added 

bacterium, sucrose or calcium alginate in the experimental diets might have provided additional 

energy and, therefore, they performed significantly better than the white control diets.  Even in the 

pilot study where all hens were fed a commercially available feed containing yellow maize, all the 

experimental diets performed significantly better than the control.  These findings are in contrast to 

a previous study.  Walker et al. (2012) fed various concentrations of alga biomass to laying hens to 

determine the effect on the quality of the egg and yolk colour change.  They found that the added 
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alga biomass had no effect on the laying rate of the hen and all diet groups had a mean laying rate 

above 90% (Walker et al., 2012). 

 

There is a definite increase in yolk weight and whole egg weight in all feeding trials where the 

experimental diets had heavier eggs compared to the control groups.  There seems to be no 

correlation between egg weight and yolk weight.  Some diet groups had a lighter egg weight 

compared to the controls, but had a heavier yolk weight.  This can indicate that even if the whole 

egg is not heavier, the yolk weight increased with dosage of P. marcusii.  However, these findings 

are in contrast to previously reported studies.  Some studies have shown that by adding probiotics, 

antibiotics or bacterial enzymes, such as xylanase, to the feed of hens had no effect on any of the 

quality parameters, including egg and yolk weight (Yalçin et al., 2002; Yörük and Bolat, 2003; Yörük 

et al., 2004; Mahdavi et al., 2005 and Yang et al., 2006). 

 

The HU values were not significantly different between the diet groups in the experimental trials.  

These results are in agreement with previous studies.  The supplementation of vitamins C and E 

(astaxanthin precursors) or algae biomass had no undesirable effect on the HU of different 

experimental treatments (Franchini et al., 2002 and Walker et al., 2012).   

 

After the pilot trial it was clear that a diet free of all pigments was needed to effectively evaluate the 

pigmentation effect of P. marcusii.  In the experimental trials, there was a significant increase in yolk 

colour compared to the white control.  A higher dosage of P. marcusii resulted in a higher yolk colour 

change.  The intestinal cells of the hen easily absorb natural sources of carotenoids.  These pigments 

are transported to the yolk once it is released from the feed content (Surai et al., 2001 and Bortolotti 

et al., 2003).  Different carotenoids have different deposition rates in eggs because of the 

bioavailability of esterified or free forms of carotenoids (Bowen et al., 2002).  To be able to compete 

with a yellow maize diet a higher dosage of P. marcusii is needed.  However, this was not possible 

in this study because of culturing limitations.  The egg quality results indicate that whole P. marcusii 

cells can be used as a pigmentation source without the need for downstream processing to break 

the cells.  However, higher cell concentrations are still needed to increase yolk colour. 

 

This study further looked at the ability of P. marcusii to survive the hen’s digestive tract.  There are 

several reasons why no P. marcusii colonies were detected in the faecal sample dilutions.                     

Paracoccus marcusii is an aerobic bacterium with optimum growth at 26 °C and a pH between 6 – 7 

(see Chapter 2).  One reason could be that the cells were able to colonise the gastrointestinal tract 

(GIT), but this is highly unlikely as the established microbiota will prevent any unknown 
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microorganisms from colonising the GIT (Brisbin et al., 2008).  The whole GIT is also predominantly 

anaerobic and also highly acidic at the start of the intestinal tract (pH 2.5 – 3.5) in the proventriculus 

and gizzard (Gauthier, 2002 and Yeoman et al., 2012).  The bacterium is, therefore, unlikely to 

survive the GIT and is most probably completely digested in the stomach.  Further studies are 

needed to determine the effect of P. marcusii on the microbial diversity of the hen’s GIT. 

 

Some well-known food pathogens associated with chicken egg products are E. coli, Listeria and 

Salmonella (Gast, 1992).  It was, therefore, necessary to determine if these organisms are present 

in the egg contents.  None of the dilution plates had any growth on them.  It is possible that the 

microorganisms were not viable anymore or the colony forming units were too low to detect.  

However, we did not expect to find any of the pathogens or P. marcusii in the egg content as previous 

studies have shown that the internal egg only gets contaminated when it comes into contact with the 

outer shell where trace amounts of the pathogens might be present and if the pathogens are present 

in the immediate environment of the hen (De Reu et al., 2005; Mallet et al., 2006 and Jones et al., 

2011).  None of the hens in all the trials were sick and the way the cages are designed prevents the 

egg from coming into contact with faecal matter on the floor of the house that might contain these 

pathogens (De Reu et al., 2005; Mallet et al., 2006 and Svobodová and Tůmová, 2014).  The 

surroundings of the hen must be kept clean to prevent the potential contamination of food pathogens. 

 

Conclusion 

 

The findings in this study demonstrate the potential use of Paracoccus marcusii as a feed additive 

to enhance yolk colour.  P. marcusii significantly increased the yolk colour in all experimental trials 

compared to the white maize diet groups and there is also an increase in whole egg and yolk weight.  

There was no negative effect on the overall egg quality.  Paracoccus marcusii can, therefore, be 

used as a feed additive to enhance yolk colour in laying hens.  It is important for future studies to 

determine the optimum dosage needed and the type of association between the bacterium and the 

hen.  
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Figures 

 

 

Figure 1 – Hen cages with sliding cage doors and slanted floors for easy collection of the eggs. 

 

 

Figure 2 – Mixed feed used in the feeding trials containing either A. yellow maize or B. white maize. 
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Figure 3 – A. Paracoccus marcusii in sucrose (10% m/v) dripped on feed. B. Paracoccus marcusii in calcium 

alginate beads sprinkled over feed. 

 

 

Figure 4 – A. Electronic digital caliper. B. Haugh meter. C. Yolk colour fan. 
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Figure 5 – Bright orange colony characteristic of Paracoccus marcusii on a nutrient agar plate. 

 

  

Figure 6 – Mean body weight of the hens at the start and the end of the experimental trial. 

*Letters a and b indicates a significant difference at a confidence level of 95%, where P ≤ 0.05. 
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Figure 7 – Mean laying rate for all feeding trials where green is the pilot study, red is the bacterium in sucrose 

trial and purple is the bacterium in calcium alginate beads trial. 

*Letters a-c indicates a significant difference at a confidence level of 95%, where P ≤ 0.05. 

 

Figure 8 – Mean yolk weight for all feeding trials where green is the pilot study, red is the bacterium in sucrose 

trial and purple is the bacterium in calcium alginate beads trial.  

*Letters a-c indicates a significant difference at a confidence level of 95%, where P ≤ 0.05. 
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Figure 9 – Yolk colour change over a 7-week period in the pilot study. 

 

Figure 10 – Mean egg weight for bacterium in sucrose solution trial. 

*Letters a-c indicates a significant difference at a confidence level of 95%, where P ≤ 0.05. 
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Figure 11 – Yolk colour change over an 8-week period in the bacterium in sucrose solution trial. 

 

  
Figure 12 – Highest yolk colour obtained in PM-Feed. Yolk colour increased from a 1 to a 4. 
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Figure 13 – Yolk colour change over a 3-week period in the bacterium in calcium alginate beads trial. 

 

 

Figure 14 – Hen faecal dilution plates. 
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Tables 

 

Table 1 – Layer hen feed composition 

Ingredient 
Prelay Peaking 

% Weight (kg) % Weight (kg) 

Maize (White or yellow) 65,806 658,063 63,338 633,379 

Soybean Full Fat 7,088 70,876 9,479 94,789 

Soybean 46 18,790 187,896 18,790 187,901 

DL Methionine 0,109 1,092 0,203 2,033 

L-Threonine - - 0,001 0,014 

Vitamin and Mineral Premix 0,150 1,500 0,150 1,500 

Limestone 5,975 59,747 5,961 59,607 

Salt (NaCl) 0,262 2,616 0,263 2,629 

Monocalcium Phosphate (MCP) 1,596 15,956 1,593 15,929 

Sodium bicarbonate 0,225 2,253 0,222 2,218 

Total 100 1000 100 1000 

 

Table 2 – Diet groups for all feeding trials and their dosages 

Feeding 

Trial 

Treatment 

number 
Diet group name Dosage 

Pilot 

study 

1 Control None 

2 Sucrose 1 ml sucrose (10% m/v) 

3 PM-F 5 ml freeze-dried cells * 

4 PM-1 1 ml live cells ** 

5 PM-5 5 ml live cells ** 

Experimental trials 

Bacterium 

in 

sucrose 

1 Yellow Maize Control None 

2 Yellow Maize + Sucrose Control 1 ml sucrose (10% m/v) 

3 White Maize Control None 

4 White Maize + Sucrose Control 1 ml sucrose (10% m/v) 

5 PM-Feed 50 ml live cells ** 

6 PM-Water 50 ml live cells ** 

Bacterium 

in calcium 

alginate 

beads 

1 Yellow Maize Control None 

2 White Maize Control None 

3 White Maize + Beads Control 300 mg calcium alginate beads 

4 PM-Beads 
500 mg calcium alginate beads with bacterium 

*** 

*Cells were lyophilised in sucrose (10% m/v) and resuspended in sterile dH2O before feeding 
**1.4 x 108 CFU/ml 
***Each 500 mg of beads contained about 200 ml of P. marcusii with a cell density of 1.4 x 108 CFU/ml 
 

 

Table 3 – Mean body weight at the start and end of the pilot study 

Diet groups Weight before (kg) Weight after (kg) 

Control 1.70 ± 0.15 1.76 ± 0.16 

Sucrose Control 1.74 ± 0.14 1.77 ± 0.16 

PM-Freezedried 1.81 ± 0.16 1.80 ± 0.18 

PM-1 1.79 ± 0.17 1.87 ± 0.14 

PM-5 1.82 ± 0.18 1.82 ± 0.19 

P value 0.44 0.60 
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Table 4 – Egg quality parameters of all feeding trials 

Feeding 

Trial 
Diet Groups Egg size (mm) Egg Weight (g) 

Yolk Height 

(mm) 
Yolk Weight (g) Yolk Colour 

Albumen 

Height (mm) 
Haugh Unit 

Pilot study 

7 weeks 

Control 54.65 ± 1.78 ab 57.23 ± 3.31 ab 17.77 ± 0.89 ab 14.70 ± 1.08 a 6.89 ± 0.52 b 6.56 ± 1.41 bc 83.53 ± 10.88 ab 

Sucrose Control 55.29 ± 1.61 c 57.91 ± 2.90 bc 17.61 ± 0.71 a 14.86 ± 0.99 ab 6.57 ± 0.74 a 6.19 ± 1.48 ab 80.79 ± 9.79 ab 

PM-Freezedried 55.37 ± 1.45 c 58.85 ± 4.43 c 17.91 ± 0.85 b 15.10 ± 1.32 bc 7.01 ± 1.19 b 6.76 ± 1.03 c 84.25 ± 6.38 b 

PM-1 54.91 ± 1.76 bc 58.65 ± 3.31 c 17.94 ± 0.98 b 15.41 ± 1.23 c 7.33 ± 0.64 c 6.51 ± 1.40 abc 82.38 ± 8.90 ab 

PM-5 54.17 ± 1.81 a 56.72 ± 4.44 a 17.57 ± 0.88 a 15.02 ± 1.36 ab 7.53 ± 0.77 c 6.14 ± 1.28 a 80.78 ± 8.0 a 

P value ** ** ** ** ** ** ** 

Bacterium in 

sucrose trial 

12 weeks 

Yellow Control 55.03 ± 1.79 a 57.96 ± 4.81 a 18.96 ± 1.03 a 13.95 ± 1.40 a 6.20 ± 0.80 a 8.72 ± 0.99 93.65 ± 5.03 

Yellow Sucrose Control 54.56 ± 1.85 ab 56.93 ± 4.57 ab 18.78 ± 0.79 ab 13.75 ± 1.30 ab 6.12 ± 0.81 a 8.67 ± 0.98 93.63 ± 5.07 

White Control 54.12 ± 1.84 b 54.38 ± 5.11 c 18.34 ± 0.80 d 13.07 ± 1.67 c 1.00 ± 0.00 c 8.75 ± 1.06 94.63 ± 5.52 

White Sucrose Control 54.56 ± 2.15 ab 54.06 ± 4.78 c 18.43 ± 0.77 cd 13.39 ± 1.11 bc 1.00 ± 0.00 c 8.87 ± 1.13 95.22 ± 5.69 

PM-Feed 54.85 ± 2.24 a 55.54 ± 4.68 bc 18.62 ± 0.73 bc 13.67 ± 1.15 ab 3.69 ± 0.84 b 8.84 ± 1.23 94.61 ± 6.50 

P value ** ** ** ** ** 0.48 0.04 

Bacterium in 

calcium 

alginate 

beads trial 

3 weeks 

Yellow Control 55.26 ± 2.06 58.28 ± 4.28 18.81 ± 0.77 14.35 ± 1.32 6.43 ± 0.75 a 8.94 ± 0.98 94.60 ± 5.27 

White Control 55.66 ± 2.45 56.34 ± 4.57 18.65 ± 0.56 14.13 ± 1.14 1.00 ± 0.00 c 8.51 ± 1.03 95.22 ± 5.06 

White Control Beads 55.35 ± 2.38 55.74 ± 5.20 18.38 ± 0.79 13.97 ± 0.95 1.00 ± 0.00 c 8.94 ± 0.76 93.05 ± 4.18 

PM-Beads 55.15 ± 1.53 56.54 ± 3.18 18.70 ± 0.84 14.25 ± 1.19 2.88 ± 0.75 b 8.72 ± 0.99 93.99 ± 4.87 

P value 0.72 0.07 0.09 0.52 ** 0.13 0.23 

Values are means ± standard deviations. Letters a-d in the same column indicates a significant difference at a confidence level of 95%, where **P ≤ 0.05.
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Abstract 

 

The microbiome of any living organism is important for maintaining the overall health and function of 

the host.  Paracoccus marcusii, first isolated from the gastrointestinal tract of the South African 

abalone (Haliotis midae), has shown promise to be used as a feed additive to laying hens to enhance 

pigmentation in egg yolks.  The aim of this study was, therefore, to determine the effect of prolonged 

feeding of P. marcusii on the microbial community structure of the duodenum and caeca.  Hens were 

fed different diets, namely a positive control (yellow maize), two negative controls (white maize; white 

maize with sucrose (10% m/v)) and experimental group (P. marcusii in sucrose (10% m/v)).  After 

12 weeks, duodenum and caeca samples were taken, DNA extracted and analysed with             

ARISA-PCR.  The microbial community structure of the duodenum indicated no significant difference 

between the different diet groups and there were high similarities between groups.  However, the 

microbial community structure of the caeca shifted with a significant difference observed between 

the experimental group and the control groups.  Since no mortalities were recorded and no hens 

showed signs of poor health, it is safe to assume that P. marcusii did not have a negative effect on 

the hens’ overall health and function.  
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Introduction 

 

The microbiome is important in animal health and production as it plays an important role in 

maintaining the overall health of the host (Gong et al., 2002a; 2002b; 2007, Torok et al., 2008 and 

Stanley et al., 2012).  The poultry microbiome is a major contributor to zoonotic infections worldwide 

(Scallan et al., 2011).  The gastrointestinal tract (GIT) of poultry differs from mammals.  It is much 

shorter and the type of microorganisms that will colonise are primarily influenced by the environment 

surrounding the hen (Oakley et al., 2014).  The transit digestion times are shorter than that of 

mammals, but just as efficient and can be explained by the complex microbiome in the gut that is 

characterised by specialised communities (McWhorter et al., 2009 and Sergeant et al., 2014).  The 

short digestion time of less than 3.5 hours selects for bacteria that grows fast and that can adhere 

to the mucosal layer in the gut (Table 1) (Gauthier, 2002 and Hughes, 2008).  However, digestion is 

longer in the caeca (12 to 20 hours) and is an ideal habitat for a more dense and diverse microbial 

community (Rehmen et al., 2007 and Pan and Yu, 2014).  Some of the major phyla found in the 

caeca include Bacteroidetes, Firmicutes, Proteobacteria and Archaea (Gong et al., 2002a; 

Saengkerdsub et al., 2007a; 2007b and Qu et al., 2008).  These microorganisms are important for 

urea recycling and fermentation of carbohydrates (Sergeant et al., 2014).   

 

Antibiotics have been used in poultry feed since the late 1940’s to treat diseases and was first 

documented by feeding cyclotetracycline fermentation waste as an inexpensive source of vitamins 

(Stokstad and Jukes, 1950).  Sub-therapeutic levels of antibiotics (STAT) enhances the growth of 

the hens and has been widely used in the USA and other countries for more than 50 years (Chapman 

et al., 2010).  Additionally, STAT is also used as a tool to reduce the risk of foodborne diseases by 

reducing the number of pathogenic microorganisms (Gustafson and Bowen, 1997).  Unfortunately, 

as with all antibiotics used in feed nutrition, there is a risk of transferring antibiotic resistant genes to 

human pathogens.  STATs act non-specifically and affects a wide range of microorganisms.  In the 

late 1960’s it was already suggested that using STATs could lead to an increase in genes available 

to enhance antibiotic resistance in human pathogens (Swann, 1969) as several pathogens are able 

to colonise the GIT of both chickens and humans (Johnson et al., 2007 and 2008).  In later years, 

metagenomic surveys have revealed an abundant source of resistant genes, almost four times more, 

in the poultry GIT of STAT treated hens.  These genes encode for resistance to antibiotics commonly 

used in poultry feed (virginamycin, neomycin sulphate, tylosin, streptomycin, penicillin, 

chlortetracycline, oxytetracycline and erythromycin) as well as resistance to cobalt, cadmium and 

zinc (Qu et al., 2008; Danzeisen et al., 2011 and Zhou et al., 2012).  Currently, legal steps are being 

taken to remove the use of STATs in poultry feed in the USA and is already banned within the 

European Union (Van Immerseel et al., 2002 and Yeoman et al., 2012).  Other methods are needed 
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to limit the increase of pathogenic microorganisms and this can include the use of probiotics and 

prebiotics (Van Immerseel et al., 2004 and 2009). 

 

Probiotics and prebiotics are commonly used in poultry feed to promote the growth of bacteria that 

are beneficial in the GIT and to inhibit the growth of pathogenic microorganisms (Van Immerseel et 

al., 2004 and 2009).  Poultry probiotics have been extensively studied.  More than a few bacilli and 

lactobacilli strains isolated from a healthy hen’s gut have effectively inhibited the growth of some 

known pathogens, including E. coli (Molnár et al., 2011), Campylobacter (Pascual et al., 1999) and 

Salmonella (Nakphaichit et al., 2011).  Not only are these potential probiotics able to reduce the 

number of pathogens, but these studies have also revealed an increase in hen body weight and feed 

efficiency (Oakley et al., 2014).  Prebiotics are complex ingredients added to poultry feed that serves 

as a nutrient source for beneficial bacteria already present in the GIT.  There are two well-known 

prebiotics.  Galactooligosaccharides (GOS) promotes the growth of bifidobacteria in broiler hens and 

fructooligosaccharides (FOS) decreases Salmonella counts in laying hens (Donalson et al., 2008 

and Jung et al., 2008). 

 

With the exclusion of antibiotics from animal feed, it is becoming more of a reality to formulate feed 

that might have a beneficial effect on the gut microorganisms.  The function and composition of gut 

microorganisms are possible influenced by the dietary components of the feed and this change in 

composition of gut microorganisms affects the animal’s health, wellbeing and food safety (Rehman 

et al., 2007 and Hammons et al., 2010).  There are several factors of feed that effects the intestinal 

health of poultry, including non-starch polysaccharides (NSP), physical texture and the form of feed 

(Yegani and Korver, 2008).  NSP, such as arabinoxylans and β-glucans, are a major group of anti-

nutritional compounds present in feed ingredients like maize (corn) (Iji, 1999 and Yegani and Korver, 

2008).  NSP is able to increase the transit digestion time of the GIT allowing for a more efficient 

digestion of nutrients and enables microbial colonisation and activity (Waldenstedt et al., 2000 and 

Yegani and Korver, 2008).  Hammons et al. (2010) studied the influence of different variations in 

poultry feed on the microbial composition of the crop.  They found that a diet high in wheat had an 

effect at strain level compared to a standard diet of corn/soymeal rations even though there was no 

significant difference observed in species composition (Hammons et al., 2010).   

 

With the relative sensitive nature of the microbial community of the GIT to shift with a change in diet 

type, composition or additives, it is important to note what the impact might be of other 

microorganisms as a feed additive.  The Gram-negative bacterium, Paracoccus marcusii, is an 

astaxanthin producing bacterium and has the potential to be used as a feed additive for laying hens 
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to enhance egg yolk colour.  Therefore, the aim of this study was to determine the potential effect of 

P. marcusii on the microbial community of the GIT, specifically the duodenum and caeca. 

 

Materials and Methods 

 

Experimental layout, hens and feed 

The experimental layout, hens and feed is described in Chapter 3.  Only hens from the experimental 

trial with sucrose were used for this part of the study to determine the effect of prolonged feeding of 

P. marcusii on the gut of the hen.  The Yellow Maize Control group served as the positive control to 

compare to the unknown effect of the white maize diets.  The abattoir is also located at the poultry 

unit of Mariendahl Experimental Farm, Stellenbosch University.  The abattoir consisted of two rooms.  

One room for the stun and bleed of the hens and the other for the dissection.  The rooms were 

cleaned with a high-pressure hose before and after the slaughter (Ethical clearance protocol number:                        

SU-ACUD15-00088). 

 

Collection of intestinal samples 

At 28 weeks of age, after completion of the experimental trial described in Chapter 3, 10 hens were 

randomly selected from the following groups: Yellow Control, White Control, White Sucrose Control 

and PM-Feed (Table 2 and 3).  The hens were stunned to render them insensible to pain and bled 

within 10 seconds of stun.  The whole duodenum (Fig. 1B) and caecum pouches (Fig. 1C) were 

dissected and placed in separate sterile 50 ml Falcon tubes and immediately placed on ice.  The 

duodenum was selected because it is where most carotenoids are absorbed (Yeum and Russell, 

2002) and the caeca is the fermentation chambers where digestion is the longest (Rehman et al., 

2007).  Dissecting scissors and gloves were cleaned with ethanol (70% v/v) before dissecting the 

different gut samples and after use on each hen to minimize contamination between samples.  The 

gut contents were discarded and the gut samples rinsed twice with sterile saline solution                

(0.9% NaCl).  All samples were cleaned and DNA was extracted within 24 hours of dissection. 

 

DNA extractions 

For the DNA extraction of the gut samples, glass beads (Sigma Aldrich, South Africa) and 20 ml of 

sterile saline solution was added to the Falcon tube.  This aided in the homogenisation of each 

sample on a vortex (Vortex-2 Genie, Model: G560E, Scientific Industries, Inc., United States) for       

10 minutes.  Total genomic DNA was extracted from the homogenised duodenum and caeca using 
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the ZR Fungal/Bacterial DNA extraction kitTM (Zymo Research Corp., USA).  The success of the 

DNA extraction was confirmed on an Ethidium Bromide (EtBr) stained 1% agarose gel and visualised 

under Ultra Violet (UV) light.  The extracted DNA was then used in further analysis for ARISA-PCRs. 

 

ARISA-PCR and analysis 

The Automated Ribosomal Intergenic Spacer Analysis (ARISA) was used to characterise the 

bacterial communities from the two different gut samples.  This method estimates community 

composition and microbial diversity by amplifying the highly conserved region (Internal Transcribed 

Spacer, ITS) between the 16S and 23S rRNA genes.  The natural variability in length of these ITS 

regions infer diversity with the different lengths representing different OTUs (Operational Taxonomic 

Units).  The PCRs were done using a fluorescently labelled (6-carboxy-fluorescein) forward primer 

(ITSF-FAM-(5’-GTCGTAACAAGGTAGCCGTA-3’)) and the reverse primer (ITSReub-(5’-

GCCAAGGCATCCACC-3’)) (Cardinale et al., 2004).  The reaction mixture (a total of 10 µl) contained 

the following components: 4.1 µl ddH2O, 5 µl KapaTaq ready-mix (Kapa Biosystems, South Africa), 

10 pmol of the forward and reverse primers and 0.5 µl genomic DNA.  The PCR was carried out 

using the following conditions: 95 °C for 5 minutes (1 cycle), followed by 36 cycles of 95 °C for                      

45 seconds, 56 °C for 50 seconds and 72 °C for 70 seconds and a final cycle at 72 °C for 7 minutes.   

The presence of DNA was confirmed on an Ethidium Bromide (EtBr) stained 1% agarose gel and 

visualised under UV light. 

 

The PCR products obtained were sent to the Central Analytical Facility (CAF) at Stellenbosch 

University.  An automated Genetic Analyser ABI 3010XI was used for capillary analysis using the 

Liz 1200 size standard for bacteria.  The raw data was used to generate electropherograms using 

different fluorescent intensities and fragment lengths and analysed using Gene Mapper® Version    

5 Software (Applied Biosystems, United States).  After performing size calling per the applicable size 

marker, the genotypes table was exported to Microsoft Excel (2016) (Microsoft Corporation, United 

States) for further analysis.  Peak height was preferred over peak size. 

 

To test similarities between samples, the Whittaker similarity index (Sw) was calculated using the 

following formula: 

𝑺𝑾 =∑(
|𝒃𝒊𝟏 − 𝒃𝒊𝟐|

𝟐
)

𝒏

𝒊=𝟏

 

where the b1 and b2 variables represent the percentage contributed to the ith OTU of two samples.  

Each sample was compared in a pairwise manner to generate a distance matrix.  The Whittaker 
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similarity index ranges on a scale from 0 to 1, where 0 is completely similar and 1 is completely 

dissimilar.  Multi-Dimensional Scaling (MDS) scatterplots were drawn and the similarities and/or 

dissimilarities were analysed using Ward’s method to calculate dendrograms using Statistica, 

version 13.0 (Statsoft Inc., USA).   

 

Analysis of similarity (ANOSIM) on the dissimilarities matrix was also performed using R, version 

3.3.1 (The R Foundation for Statistical Computing, Austria) for between group comparisons.  

ANOSIM compares between group dissimilarity means to within group dissimilarity means.  R-values 

range on a scale from -1 to 1, where a value closer to 1 suggests dissimilarities between groups,     

0 suggest an even distribution of low and high ranks between and within groups and a value less 

than 0 suggest that dissimilarities are greatest within groups and not between groups (Clarke, 1993). 

 

The Shannon diversity index (H’) was calculated using the following formula: 

𝐻′ =−∑𝑝𝑖𝑙𝑜𝑔𝑒𝑝𝑖 

where the index is defined as the negative sum of each OTUs proportional abundance (pi) multiplied 

by the natural log of its proportional abundance.  Shannon diversity index is a quantitative 

measurement that reflects species evenness and abundance.  The more unequal the abundances 

of the type, the larger the weighted geometric mean of the pi values and the smaller the Shannon 

index.  Shannon index approaches 0 when all abundances are concentrated to one type. 

 

Statistical analysis 

Statistical analysis was performed using Statistica, version 13.0 (Statsoft Inc., United States).  One-

way analysis of variance (ANOVA) was used for mean comparisons of the Shannon diversity index 

and total number of OTUs observed.  Tukey’s honest significant difference (HSD) was calculated 

where P ≤ 0.05. 
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Results 

 

ARISA-PCR analysis 

Duodenum 

There was no distinct pattern observed between the bacterial community structures of the different 

diet groups on the MDS scatterplots (Fig. 2).  The dendrograms indicated distinct cluster patterns 

(Fig. 3).  However, when considering the different diet groups, no distinct patterns were formed.  This 

is further supported by the Shannon diversity index (Table 4).  There was no significant difference 

(P ≥ 0.05) between the Shannon diversity index of the different diet groups.  The index ranges 

between 2.14 (± 0.42) and 2.59 (± 0.29).  The number of OTUs observed ranges between 21.44      

(± 6.13) and 28.60 (± 3.34) (Table 4).  A significant difference (P ≤ 0.05) was observed where the 

PM-Feed diet group had the lowest number of OTUs compared to the White Control diet group that 

had the highest number of OTUs. 

 

The R-values of the communities from the duodenum indicated significant differences (P ≤ 0.05) 

between diet groups, where the R-value of PM-Feed was significantly different to White Control       

(R-value – 0.175), as well as White Sucrose Control (R-value – 0.145) (Table 5).  A significant 

difference (P ≤ 0.05) was also observed between the White Control and White Sucrose Control        

(R-value – 0.122).  No significant difference (P ≥ 0.05) was observed for the Yellow Control diet 

group compared to the other diet groups. 

 

Caeca 

Distinct patterns were observed on the MDS scatterplots between the bacterial community structures 

of the different diet groups (Fig. 4).  This is supported by the dendrogram indicating two distinct 

clusters (Fig. 5).  The first cluster consists of PM-Feed and some control samples and the second 

cluster consists of the remaining control samples.  However, there is no significant difference              

(P ≥ 0.05) between the Shannon diversity index of the different diet groups (Table 4).  The Shannon 

diversity index ranges between 2.45 and 3.03, where the PM-Feed had the lowest index and the 

White Sucrose Control had the highest index.  A significant difference (P ≤ 0.05) was observed in 

the total number of OTUs (Table 4).  The White Sucrose Control diet group had the highest number 

of OTUs (38.00) compared to the PM-Feed with the lowest number of OTUs (28.30). 
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The R-values of the caeca communities indicated a significant difference (P ≤ 0.05) between the 

PM-Feed diet group compared to all the control diet groups with the highest dissimilarity between 

the PM-Feed and White Control diet group (R-value – 0.435) (Table 5).  A negative R-value was also 

measured between White Control and White Sucrose Control (R-value – 0.014). 

 

Discussion 

 

The Gram-negative bacterium, P. marcusii, has shown promise to be used as a feed additive in 

poultry feed to enhance egg yolk colour (Chapter 3).  This species is able to produce astaxanthin, a 

xanthophyll carotenoid with several health benefits that include improved blood flow and boosting 

the immune system (Harker et al., 1998 and Yamashita, 2015).  Previously, P. marcusii has been 

used as a feed additive for fish (De Bruyn, 2013) and as a potential probiotic for                  

Apostichopus japonicas (juvenile sea cucumber) (Yan et al., 2014).  Therefore, we aimed to 

determine the effect of prolonged feeding of P. marcusii on the microbial community structure in the 

GIT of laying hens. 

 

The chicken GIT microbial diversity has previously been studied using both culture-dependent and 

culture-independent studies.  These studies have revealed a simpler microbial community starting 

in the small intestines which becomes increasingly complex and more diverse further down the 

intestinal tract to the caeca (Gong et al., 2002a; 2002b, and Lu et al., 2003).  This was also true in 

this study and was evident in the Shannon diversity index and total number of OTUs measured 

(Table 4).  In the duodenum, which is the start of the small intestines, the mean index ranged 

between 2.14 and 2.59.  The index increased in the caeca and ranged between 2.45 and 3.03.  The 

total number of OTUs observed also increased from the duodenum (21.44 – 28.6) to the caeca 

(28.30 – 38.00).  In both the Shannon diversity index and the total number of OTUs of the duodenum 

and caeca, the PM-Feed diet group had the lowest mean, but significance was only observed for the 

OTUs compared to the control diet groups.  Surprisingly, the White Sucrose Control diet group had 

the highest number of OTUs in the caeca (38.00) followed by the White Control and Yellow Control 

with 33.80 and 29.40, respectively.  The lower OTU observed for the Yellow Control compared to 

the White Control was unexpected as the only difference in feed was the maize type (Table 3) and 

white and yellow maize are similar in nutritional value.  Therefore, there should be a similar microbial 

composition in terms of total OTUs and Shannon diversity index.  However, there are some studies 

that indicated a difference in starch, protein and sugar content between maize varieties that directly 

influenced layer hen performance.  This is affected by maize hybrid type, the nitrogen fertilisation of 

the soil, geographical growing site, plant density and harvesting maturity (Zeidan et al., 2006, Moore, 
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2007, Idikut et al., 2009 and Raymond et al., 2009).  This difference in nutritional composition will 

have a direct effect on the microbial community structure as previously reported (Rehman et al., 

2007 and Hammons et al., 2010).  The effect of sucrose in the White Sucrose Control diet group 

was not unexpected as sucrose is made up of glucose and fructose, both of which are commonly 

used in poultry feed as prebiotics to enhance the growth of bifidobacteria and inhibit the growth of 

possible food pathogens (Donalson et al., 2008 and Jung et al., 2008).  However, it is unknown why 

this was not the same with the PM-Feed diet group that also contained a sucrose dosage.   

 

There was no similarity in microbial community structure of the duodenum between the different diet 

groups (Fig. 2 and 3).  Although there was a significant R-value between PM-Feed compared to 

White Control and White Sucrose Control and between White Control compared to White Sucrose 

Control, all R-values were close to 0, suggesting an even distribution of low and high ranks between 

and within groups (Table 5).  The short transit digestive time of the duodenum of 5 – 8 minutes only 

allows for rapidly growing bacteria and bacteria that can adhere to the mucosal layer of the gut 

(Hughes, 2008).  Paracoccus marcusii grows relatively slow (replication time of ± 12 hours, see 

Chapter 2) and will, therefore, not be able to colonise in the small intestines. 

 

For the caeca, distinct patterns and clusters formed between the PM-Feed diet group compared to 

the control groups (Fig. 4 and 5).  There was no similarity in the community structure between the 

different control diet groups.  Therefore, the different maize types (yellow or white) and added 

sucrose did not have an influence on the microbial community structure of the caeca.  However, the 

community structure between the White Control and White Sucrose Control were more similar than 

both diet groups compared to the Yellow Control (Fig. 5).  Significant R-values was observed 

between the PM-Feed diet group compared to the White Control, White Sucrose Control and Yellow 

Control with the highest dissimilarity of 0.435 between PM-Feed and White Control (Table 5).  It is 

suspected that the longer digestion time of 12 – 24 hours in the caeca might be the reason for 

observing a change in community structure compared to the shorter digestion time of 5 – 8 minutes 

in the duodenum (Gauthier, 2002).  The caeca are also known as the fermentation chambers for the 

important utilisation of carbohydrates not easily digested by the hen (Sergeant et al., 2014). 

 

Paracoccus marcusii will most likely not be able to survive the conditions in the GIT of the hen.  

Paracoccus marcusii is an aerobic bacterium with an optimum growth at 26 °C and a pH between   

6 – 7 (see Chapter 2).  The whole GIT is predominantly anaerobic and also highly acidic at the start 

of the intestinal tract (pH 2.5 – 3.5) in the proventriculus and gizzard (Gauthier, 2002).  Therefore, it 
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is suggested that the digested cells could have released by-products that influenced the microbial 

composition in the caeca where it could have been utilised by a specific group of microorganisms. 

 

When considering the different results, it is reasonable to assume that P. marcusii did not influence 

the diversity or similarity of the microbial community structure in the duodenum of the hens.  

However, there is a shift in community structure of the caeca.  The shift in the community structure 

of the caeca could also be explained by the different maize types.  However, all R-values for the 

control groups were close to 0, indicating a similar distribution of high and low ranks between and 

within groups and no significant difference (P ≥ 0.05) was observed.  We can also assume that the 

shift in community structure was not negative as no mortalities were recorded during the trial and all 

hens in the experimental diet appeared to be in excellent health.  Signs typically associated with 

poor health in hens include diarrhoea, depression and unwillingness to move. 

 

Conclusion 

 

This study has shown the effect of feeding Paracoccus marcusii to laying hens on the microbial 

community structure of the gastrointestinal tract over a prolonged period of time.  The microbial 

community structure of the duodenum was similar between the different diet groups, but there was 

a shift in community structure of the caeca.  The change in microbial composition did not have an 

influence on the overall health of the hen as no signs of disease were observed.  Future studies are 

needed to determine which microorganisms were affected by the added bacterium in the hen’s diet 

and if this change in microbial composition will influence food health safety and the production 

performance of the hen. 
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Figures 

 

 

 

Figure 1 – A. Diagram indicating location of gastrointestinal tract samples taken. B. Duodenum. C. Caeca. 
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Figure 2 – Multi-Dimensional Scaling scatterplot representing the microbial community of the different diet 

groups in the duodenum, where red is Yellow control, yellow is White Control, blue is White Sucrose Control 

and green is PM-Feed. 

 

 
Figure 3 – Dendrogram of bacterial community structure of the duodenum of chicken fed different diets. YC – 

Yellow Control. WC – White Control. WSC – White Sucrose Control. PMF – PM-Feed. 
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Figure 4 – Multi-Dimensional Scaling scatterplot representing the microbial community of the different diet 

groups in the caeca, where red is Yellow control, yellow is White Control, blue is White Sucrose Control and 

green is PM-Feed. 

 

 
Figure 5 – Dendrogram of bacterial community structure of the caeca of chicken fed different diets. YC – Yellow 

Control. WC – White Control. WSC – White Sucrose Control. PMF – PM-Feed. 
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Tables 

 

Table 1 – Digestive transit time and pH in the poultry GIT 
(Gauthier, 2002) 

GIT segment 
Digestive transit time 

(min) 
pH 

Crop 50 5.5 

Proventriculus/Gizzard 90 2.5 – 3.5 

Duodenum 5-8 5 – 6 

Jejunum 20-30 6.5 – 7 

Ileum 50-70 7 – 7.5 

Caeca 12 – 24 hours 7 – 8 

 

 

Table 2 – Diet groups chosen for microbial community analysis 

Treatment number Diet group name Dosage 

1 Yellow Maize Control None 

2 White Maize Control None 

3 White Maize + Sucrose Control 1 ml sucrose (10% m/v) 

4 PM-Feed 50 ml live cells * 

*1.4 x 108 CFU/ml 

 

Table 3 – Layer hen feed composition 

Ingredient 
Prelay Peaking 

% Weight (kg) % Weight (kg) 

Maize (White or yellow) 65,806 658,063 63,338 633,379 

Soybean Full Fat 7,088 70,876 9,479 94,789 

Soybean 46 18,790 187,896 18,790 187,901 

DL Methionine 0,109 1,092 0,203 2,033 

L-Threonine - - 0,001 0,014 

Vitamin and Mineral Premix 0,150 1,500 0,150 1,500 

Limestone 5,975 59,747 5,961 59,607 

Salt (NaCl) 0,262 2,616 0,263 2,629 

Monocalcium Phosphate (MCP) 1,596 15,956 1,593 15,929 

Sodium bicarbonate 0,225 2,253 0,222 2,218 

Total 100 1000 100 1000 
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Table 4 - Shannon diversity index and number of OTUs observed for each diet group 

Diet Group Shannon diversity (SD) Number of OTUs 

Duodenum 

PM-Feed 2.14 ± 0.42 21.44 ± 6.13 b 

White Control 2.59 ± 0.29 28.6 ± 3.34 a 

White Sucrose Control 2.20 ± 0.38 23.6 ± 4.45 ab 

Yellow Control 2.27 ± 0.43 24.3 ± 4.79 ab 

P value 0.065 0.017 

Caeca 

PM-Feed 2.45 ± 0.60 28.30 ± 7.83 bc 

White Control 2.92 ± 0.60 33.80 ± 8.89 ab 

White Sucrose Control 3.03 ± 0.52 38.00 ± 7.63 a 

Yellow Control 2.65 ± 0.42 29.40 ± 6.02 ab 

P value 0.086 0.028 

*Values are mean ± standard deviation. Letters a-c in the same column indicates a significant difference at a confidence 

level of 95%, where **P ≤ 0.05. 

 

Table 5 - Analysis of similarity (ANOSIM) between different diet groups 

Duodenum 

Diet Group PM-Feed White Control White Sucrose Control Yellow Control 

PM-Feed  0.019 0.036 0.142 

White Control 0.175  0.043 0.103 

White Sucrose Control 0.145 0.122  0.073 

Yellow Control 0.068 0.079 0.110  

Caeca 

Diet Group PM-Feed White Control White Sucrose Control Yellow Control 

PM-Feed  0.001 0.009 0.033 

White Control 0.435  0.445 0.251 

White Sucrose Control 0.304 -0.014  0.335 

Yellow Control 0.189 0.022 0.011  

*The R-values are indicated in the lower left part of the table. The P values are indicated in the upper right part and where 

there is significance (P ≤ 0.05) is indicated in red and bold. 
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Concluding remarks 

 

The colour of any food product is important to consumers.  In poultry farming a new trend is emerging 

to use natural sources of colourants to enhance pigmentation of egg yolks.  Previous studies have 

focused on adding a carotenoid-producing microalga or yeast to the feed of poultry.  However, the 

use of whole microalga or yeast cells had no significant effect on pigmentation of the yolks.  

Therefore, this study aimed to determine if whole Paracoccus marcusii cells can be used as a 

pigmentation source to enhance egg yolk colour without the need to extract the pigment from the 

cell.  This bacterium is able to produce astaxanthin naturally under certain growth conditions.  In 

Chapter 2, the highest concentration of astaxanthin obtained with P. marcusii was 24.25 µg/g dry 

cell weight.  The storage stability of the bacterium with astaxanthin was improved through 

microencapsulation in calcium alginate beads.  After 3 weeks, only 30% of the astaxanthin content 

was lost compared to lyophilisation in sucrose with a total loss of 85%. 

 

The pigmentation effect of P. marcusii fed to laying hens was evaluated in Chapter 3.  All trials 

indicated a significant increase (P ≤ 0.05) in yolk colour when compared to the white control groups 

with no negative effect on the overall quality of the egg.  There was also an increase in whole egg 

and yolk weight observed.  These results indicated the possibility of using whole P. marcusii cells as 

a feed additive.  After the feeding trials, it was important to evaluate the effect of P. marcusii on the 

microbial community structure of the gastrointestinal tract (Chapter 4).  Gut samples were taken from 

the duodenum, where carotenoids are absorbed, and from the caeca, where digestion is the longest.  

The results obtained indicated no significant difference in microbial composition of the duodenum.  

However, there was a shift in microbial composition of the caeca.  There were no mortalities during 

the trials and all hens were in good health.  It was, therefore, concluded that P. marcusii is safe to 

be used as a feed additive as it did not have a negative effect on the microbial composition of the 

gut or the overall performance and health of the hen as no signs of disease were detected.  A 

preliminary economical evaluation was also done to determine the feasibility of the developing 

product for the poultry industry (see Addendum).  Based on the analysis done, it was determined 

that microencapsulated P. marcusii is too expensive and, therefore, not feasible for poultry farmers 

at this stage. 

 

For future research it is important to further optimise the production and storage stability of 

astaxanthin by P. marcusii.  It is also important to determine the optimal dosage for satisfactory 

pigmentation effect and the possible long-term effect of the shift in microbial composition in the 

caeca.  It is also essential to find other alternative and low-cost sources of peptone to lower the total 

production costs. 
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A preliminary economic assessment of a potential feed 

additive for laying hens: Paracoccus marcusii 

microencapsulated in calcium alginate beads 
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Abstract 

 

Astaxanthin is a high value compound used in aquaculture and poultry as a colouring agent.  Over 

the years the focus has been on the production costs of astaxanthin by the microalga, 

Haematococcus pluvialis and yeast, Xanthophyllomyces dendrorhous, and the use thereof as a feed 

additive with little focus on astaxanthin producing bacteria.  Therefore, we aimed to evaluate the 

economic value of a developing product of microencapsulated Paracoccus marcusii in calcium 

alginate beads.  A total of 84 L of bacterium could be cultured each month on a small-scale 

production.  Based on the analysis, the total cost is estimated at R2912.88/month for 210 g of           

calcium alginate beads containing P. marcusii.  This is too expensive and not feasible for the poultry 

industry.  Possible solutions to lower production costs is the use of alternative sources of peptone 

(soybean peptone), large-scale production and increasing the concentration of bacterium 

microencapsulated in calcium alginate beads.  
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Introduction 

 

Astaxanthin is a very valuable compound with an estimated market value of about $250 million per 

year (Milledge, 2011).  Commercial astaxanthin is currently dominated by synthetic astaxanthin, 

because of its relatively cheaper production cost of around $1000/kg (± R15 000/kg) and a market 

value above $2000/kg (± R30 000/kg) (Olaizola, 2003 and Milledge, 2011).  Over the years synthetic 

and natural astaxanthin has been used as a colouring agent and as a feed additive in poultry to 

enhance egg yolk colour and in aquaculture for a rosier flesh in fish (Choubert and Heinrich, 1992; 

Lorenz and Cysewski, 2000; Guerin et al., 2003; Storebakken et al., 2004 and Johnson et al., 2003).  

Even though synthetic astaxanthin is a stable source for larger quantities, some concerns have been 

raised about the food safety and little is known about its biological functions.  In 1986, Newsome 

was the first to raise the concern of using carcinogenic petrochemicals to produce synthetic 

astaxanthin.  There are several methods to produce synthetic astaxanthin.  This includes the reaction 

between two C15-phosphonium salts with C10-dialdehyde (Wittig reaction) (Widmer et al., 1981), 

canthaxanthin hydroxylation (Bernhard et al., 1984) and lutein isomerisation to zeaxanthin from 

marigold and then oxidised to astaxanthin (Schloemer and Davis, 2001).  Synthetic astaxanthin also 

consist of a mixture of three isomers (3R, 3’R), (3R, 3’S) and (3S, 3’S) in a ratio of 1:2:1, respectively 

(Schiedt et al., 1988 and Higuera-Ciapara et al., 2006).  Figure 1 illustrates the mechanisms of 

production of synthetic astaxanthin.   

 

Currently, Haematococcus pluvialis is used for the industrial scale production of natural astaxanthin.  

This process has been developed and optimised since the late 1990s (Lorenz and Cysewski, 2000).  

The astaxanthin yield from this microalga ranges between 1.5% - 3% of its dry cell weight and is 

achieved through nutrient deprivation, higher temperatures and/or high levels of light in the growth 

phase known as the ‘reddening phase’ (Lorenz and Cysewski, 2000).  Extraction of astaxanthin from 

the cell is achieved through centrifugation to harvest all the cells, followed by drying and milling of 

the cells (Schmidt et al., 2011).  The microalga exclusively produce the isomers (3R, 3’R) or          (3S, 

3’S) (Higuera-Ciapara et al., 2006).  The market value for astaxanthin produced by H. pluvialis is 

around $7000/kg (± R100 000) (Li et al., 2011). 

 

Astaxanthin production by the yeast Xanthophyllomyces dendrorhous is simpler than the microalga 

in terms of a faster growth rate and higher cell density that can be achieved.  However, the 

astaxanthin yield with X. dendrorhous is lower than the microalga with concentrations ranging 

between 50 – 350 µg/g dry cell weight (Chandi and Gill, 2011).  Factors that have been tested to 

increase astaxanthin production included temperature, pH, oxygen, nutrients and light.  Unlike           
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H. pluvialis, yeast only produce the (3, 3’R) isomer of astaxanthin (Nguyen, 2013).  For extraction of 

astaxanthin, like the microalga, the yeast cells must be milled or enzymatically digested to retrieve 

the astaxanthin (Johnson et al., 1977 and 1980).  The market price for yeast astaxanthin is around 

$2500/kg (± R37 500), a lot cheaper than microalga and almost the same as synthetic astaxanthin 

(Li et al., 2011). 

 

Currently, bacteria are not used as a natural source of astaxanthin for industrial production.  There 

is a possibility to reduce costs because of the characteristics of bacteria which include a thinner cell 

wall which eliminates the need to crack the cell wall for extraction, faster growth rate and use of a 

simpler media and growth conditions compared to yeast and microalga.  Therefore, the aim of this 

study is to provide a preliminary economic assessment of the small-scale production costs of a 

developing product of microencapsulated P. marcusii calcium alginate beads for poultry feed. 

 

Cost Analysis 

 

Method of production process at small-scale 

 Growth conditions, media and equipment 

In Chapter 2, the production and storage stability of astaxanthin by P. marcusii was optimised.  In 

short, P. marcusii was cultured in 2 L Schott bottles containing 1 L of specialised medium                     

(10 g/L bacteriological peptone, 5 g/L yeast extract, 3% NaCl and pH 7 – 8).  Schott bottles were 

incubated at 26 °C for 4 – 7 days.  Cells were harvested through centrifugation at 10000 rpm for      

10 minutes and washed once with sterile dH2O.  Every 3 L of harvested cells were resuspended in 

200 ml of 2% sodium alginate.  Using a 21G x 1.5” hypodermic needle and syringe, the solution was 

added drop-wise to 200 ml of 2% CaCl2 solution under constant stirring of 150 rpm.  The gel-like 

beads were separated from the CaCl2 solution using a sift and dried overnight in a laminar flow 

cabinet at room temperature.  Every 200 ml of sodium alginate and bacterium produced 7.5 g of 

dried beads.  One gram of calcium alginate beads contained approximately 400 mg of dry cell weight 

and 9.65 ppm of astaxanthin. 

 

 Total needed per hen 

During the feeding trial in Chapter 3, there was a significant increase in yolk colour compared to the 

white maize controls after 3 weeks when calcium alginate beads containing P. marcusii was fed to 
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laying hens.  Each hen was given 500 mg of calcium alginate beads every day that contained 

approximately 4.8 ppm astaxanthin. 

 

Analysis of operational and fixed capital investments 

All costs are based on working parameters and actual quotes or purchased prices.  Table 1 

summarises all operational and fixed costs according to a small-scale production of 84 L per month.  

Given the facilities available at Stellenbosch University for a small-scale production of P. marcusii 

beads, the total production cost is estimated at R2912.88/month.  Eighty-four litres of culture will 

produce 210 g of calcium alginate beads/month and a total of 420 hens can be fed with the beads 

produced.  The estimated cost for every hen is R6.94 per day and R194.32 per month.  Of this, 

64.8% of the total cost is for the specialised medium, followed by electrical appliances (28.3%) and 

microencapsulation (6.9%). 

 

Solutions to consider 

There are several possibilities to reduce production costs of the beads.  More than 50% of the total 

cost is for the use of bacteriological peptone (R1522.58 of R2912.88).  Peptone and yeast extract 

are important components of the medium as these compounds form the building blocks from which 

biomolecules, such as astaxanthin, are produced (see Chapter 2) (Chougle and Singhal, 2012).  

There are some alternative media components that can be used.  One example is the use of soybean 

products.  There are several products available that can be used, including soybean peptone, 

soybean meal and soybean protein isolate, of which soybean protein isolate is the most inexpensive 

(R0.13/g).  Large-scale cultivation methods might also reduce the total costs and a higher 

concentration of bacterium could be added to the sodium alginate solution.  Future research is 

needed to determine if the bacterium is able to use soybean as a carbon and nitrogen source to 

grow and produce astaxanthin, what the lowest amount in g/L of yeast extract and peptone are 

needed, what the highest concentration of bacterium is that can be added to the sodium alginate 

solution without losing product consistency and also if a large-scale cultivation will reduce costs. 
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Conclusion 

 

The Paracoccus marcusii microencapsulated in calcium alginate beads is an effective egg yolk 

colourant and is stable under different environmental conditions.  For this reason, an economic 

assessment was done to determine the feasibility of the product for poultry farmers.  Currently, the 

production cost alone to produce enough beads for one hen is R194.32/month (R6.94/day) of which 

almost 65% of the total cost is for the growth media.  This is too expensive and not feasible for poultry 

farmers.  There are several ways to decrease production costs that include the use of soybean 

protein isolate or related products, large-scale cultivation and increasing the concentration of 

bacterium microencapsulated in calcium alginate beads.  
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Figures 

 

 

Figure 1 – Synthetic reactions to produce astaxanthin. A. Wittig reaction. B. Canthaxanthin hydroxylation. C. 

Zeaxanthin oxidation (taken from Nguyen, 2013). 
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Tables 

 

Table 1 - Summary of fixed and operational costs for 1 month 

 Unit (g) Unit costs (R) R/g 
Total needed (g) Cost (R) 

84 L 

Media components 

Yeast extract 

500 344.28 0.69 

420 194.91 
2500 2736 1.09 

5000 3442.8 0.69 

25000 11601.78 0.46 

Bacteriological peptone 
500 906.3 1.81 

840 1522.58 
1000 3239.88 3.24 

NaCl 
500 79.8 0.16 

2520 170.93 
5000 339.15 0.07 

Microencapsulation in calcium alginate 

    5.6 L 

Sodium alginate 
1000 1915.2 1.92 

112 168.54 
5000 7524 1.50 

CaCl2 

500 142.5 0.29 

112 31.92 1000 1774.2 1.77 

5000 3399.48 0.68 

Equipment 

 kW h/week R/kWh  Cost (R) 

Bench-top shaker 1.1 120 

1.24 

 
 
 
 

654.72 

Centrifuge 5.52 2 54.76 

Magnetic stirrer 0.698 6 20.77 

Laminar flow cabinet 0.525 36 93.74 

R Total 2912.88 

Green highlighted rows are the cheapest in R/g and was used in further calculations 
* Total of 210 g calcium alginate beads produced 
** 420 hens can be fed with 210 g of calcium alginate beads 
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