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Abstract

Bifibrational duality in non-abelian algebra and the
theory of databases

T. Weighill
Mathematics Division
Department of Mathematical Sciences

University of Stellenbosch
Private Bag X1, Matieland 7602, South Africa

Thesis: MSc Mathematics
December 2014

In this thesis we develop a self-dual categorical approach to some topics in
non-abelian algebra, which is based on replacing the framework of a category
with that of a category equipped with a functor to it. We also make some first
steps towards a possible link between this theory and the theory of databases
in computer science. Both of these theories are based around the study of
Grothendieck bifibrations and their generalisations. The main results in this
thesis concern correspondences between certain structures on a category which
are relevant to the study of categories of non-abelian group-like structures, and
functors over that category. An investigation of these correspondences leads
to a system of dual axioms on a functor, which can be considered as a solution
to the proposal of Mac Lane in his 1950 paper "Duality for Groups" that
a self-dual setting for formulating and proving results for groups be found.
The part of the thesis concerned with the theory of databases is based on a
recent approach by Johnson and Rosebrugh to views of databases and the view
update problem.
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Uittreksel

Bifibrasionele dualiteit in nie-abelse algebra en die teorie
van databasisse

T. Weighill

Wiskunde Afdeling
Departement Wiskundige Wetenskappe

Universiteit Stellenbosch
Privaatsak X1, Matieland 7602, Suid-Afrika

Tesis: MSc Wiskunde
Desember 2014

In hierdie tesis word 'n self-duale kategoriese benadering tot verskeie onder-
werpe in nie-abelse algebra ontwikkel, wat gebaseer is op die vervanging van
die raamwerk van 'n kategorie met dié van 'n kategorie saam met 'n funktor
tot die kategorie. Ons neem ook enkele eerste stappe in die rigting van 'n ska-
kel tussen hierdie teorie and die teorie van databasisse in rekenaarwetenskap.
Beide hierdie teorieé is gebaseer op die studie van Grothendieck bifibrasies
en hul veralgemenings. Die hoof resultate in hierdie tesis het betrekking tot
ooreenkomste tussen sekere strukture op 'n kategorie wat relevant tot die stu-
die van nie-abelse groep-agtige strukture is, en funktore oor daardie kategorie.
'n Verdere ondersoek van hierdie ooreemkomste lei tot 'n sisteem van duale
aksiomas op 'n funktor, wat beskou kan word as 'n oplossing tot die voorstel
van Mac Lane in sy 1950 artikel “Duality for Groups” dat 'n self-duale konteks
gevind word waarin resultate vir groepe geformuleer en bewys kan word. Die
deel van hierdie tesis wat met die teorie van databasisse te doen het is geba-
seer op 'n onlangse benadering deur Johnson en Rosebrugh tot aansigte van
databasisse en die opdatering van hierdie aansigte.
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Chapter 1

Introduction

1.1 Axiomatic contexts for group theory

In his 1950 paper Duality for Groups 73|, Mac Lane states that

“certain dualities arise in those theorems of group theory which
deal, not with the elements of groups, but with subgroups and
homomorphisms.”

Thinking of subgroups as injective group homomorphisms, this observation
naturally motivates the axiomatisation of the category of groups. Indeed, cat-
egory theory deals with precisely those aspects of mathematics which can be
described in terms of structure-preserving maps (for example, group homo-
morphisms).

By an axiomatisation of the category of groups, we mean the formulation
of a list of axioms on a category which allows one to prove results from group
theory. Such an axiomatisation would allow the formulation of general proofs
which could be applied to other algebras such as rings, modules, loops or
topological groups, depending of course on whether the axioms hold for these
structures.

Mac Lane also mentions another advantage of doing group theory in such an
axiomatic context, namely that of duality. Every category has a dual category
whose objects are the same as the original category, but whose morphisms are
in the opposite direction. If a result can be proved from axioms which are true
of both the category and its dual, then for each result we obtain a dual result
by reversing the arrows. In the paper, Mac Lane postulates that

“a further development giving the first and second isomorphism the-
orems, and so on, can be made by introducing additional carefully
chosen dual axioms.”

Mac Lane only develops such a list of axioms for the case of abelian groups.
Nonetheless, this development led to the notion of abelian category, a notion
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which dominated the first two decades of category theory [51] and was applied
to areas such as algebraic geometry and homological algebra. Crucially, how-
ever, the category of all groups is not an abelian category. Moreover, many
of the important properties shared by the category of abelian groups and the
category of groups have duals which hold only for the abelian case.

The idea to axiomatise the category of all groups inspired other notions,
such as protomodular categories, Mal’'tsev categories and Barr-exact cate-
gories. These developments culminated in the notion of a semi-abelian cat-
egory introduced by Janelidze, Marki and Tholen [51|. Subsequent develop-
ments demonstrated the power of semi-abelian categories as a context for doing
group theory. The axioms defining a semi-abelian category, however, are not
self-dual. In fact, if a category and its dual are both semi-abelian, then the
category is necessarily abelian.

In this thesis, we make some first steps in one possible approach to Mac
Lane’s proposal, which is due to Z. Janelidze. The idea behind this approach
is in some sense already contained in Mac Lane’s paper. In the first quote,
notice that Mac Lane lists subgroups and homomorphisms as separate entities,
although typically we identify subgroups with monomorphisms in a category.
The central idea behind the approach described in this thesis is to axiomatise
not just the category of groups, but the bifibration of subgroups. By the
bifibration of subgroups, we mean the following: let Grp be the category of
all groups, and let SubGrp be the category whose objects are pairs (G, S) of
groups with S a subgroup of G, and where a morphism (G, S) — (G',5") is a
morphism f : G — G’ in Grp such that the image of S under f is contained
in S’. We then have a forgetful functor U (which we call the bifibration of
subgroups):

U : SubGrp — Grp

The functor U sends an object (G,S) to G and a morphism f to f seen
as a morphism in Grp. Our goal is to formulate a list of axioms on a functor
F which reflects the properties of the functor U. Thus we are indeed treating
the notion of subgroup as fundamental (it is encoded by a functor, which may
not be in any way associated with the structure of monomorphisms in the base
category).

An immediate consequence of this idea is that the dual of an axiom for
a functor F' : B — C is that axiom stated for the dual functor F°P : B°® —
Ce°P. Tt turns out that while the category of groups seems to lack duality,
the bifibration of subgroups (and the bifibration of subobjects of semi-abelian
categories in general) has many important properties which are self-dual in
this sense [58].

The main idea underlying this thesis can be stated as follows: replace the
axiomatic context of a category with that of a functor, and hence the notion
of duality with functorial duality. The goal of this thesis is to explore this idea
and relate it to other developments, particularly in the axiomatic treatment of
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groups and group-like structures. The main type of functor considered in this
thesis is one which is faithful and amnestic, which we call a form.

There are other areas where the idea to study a certain type of functor
rather than just a category is motivated by a concrete problem. In this thesis,
we look at one such case, namely an approach to view updatability in databases
introduced by Johnson and Rosebrugh [65].

A database can be seen as a structured way to store data. This data can be
updated by inserting or deleting entries in such a way that the structure of the
database is still preserved. Database states together with these updates form
a category D, which can be defined as the models for a sketch (see Chapter 6).
However, in practical applications, it is often the case that a user has access
to only part of the data contained in or derived from the database state. We
refer to such a piece of the data as a view. From the perspective of the user,
a view is just another database, and can be updated, and so we have another
category V of view states and updates to the view. Since every update to
the database immediately translates to the view in an obvious way, we have a
functor:

VvV :D—V.

An important question when dealing with views in practical applications
is to what extent an update to a view can be propagated back to the rest of
the database. This is not always possible, and the problem of finding if and
how such a propagation can be done is called the view update problem.

The view update problem and the search for a self-dual axiomatic context
for group theory are thus related superficially by the idea of replacing a cate-
gory with a functor. However, it turns out that the connection is deeper than
this: the two situations are linked by the notion of a fibration introduced by
Grothendieck [45]. A view is defined to be completely updatable by Johnson
and Rosebrugh when a restricted version of the functor V* is a bifibration. On
the other hand, being a bifibration (or having a slightly weaker property) is
one of the most important axioms on a functor considered in the categorical
algebra part of this thesis, since it allows the formulation of other axioms and
theorems inspired by the category of groups.

1.2 Outline of the thesis

Chapter 2: Background In this chapter, we give some background necessary
for the understanding and motivation of the rest of the thesis.

Chapter 3: Forms of subobjects and exact sequences In this chapter, we
develop a correpondence between functors to a category and certain structures
on a category given by a class of morphisms satisfying certain conditions. We
characterise those functors which are, up to an equivalence, codomain functors
restricted to a class of morphisms containing the identity morphisms. We
also characterise those functors which are (up to an equivalence) so-called
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forms of N -short-exact-sequences for an ideal N of null morphisms. We then
derive a correspondence between conditions on these classes of morphisms and
conditions on the correponding functors.

Chapter 4: FEzact forms In this chapter, we look at the notion of ezact
form inspired by the First Isomorphism Theorem for groups, and some weaker
notions. We show some links between these notions and the theory of factorisa-
tion systems [37], and also to Grandis exactness structures on a category [41].
In particular, we show that a Grandis ex4-category is the same as an Isbell
bicategory [47] satisfying a certain condition.

Chapter 5: Forms of subobjects of normal categories In this chapter we
give a characterisation of those categories with finite products which are nor-
mal categories [55] via self-dual conditions on the form of subobjects. We then
combine this result with previous results to give characterisations of proto-
modular categories [13] and semi-abelian categories [51]. We end the chapter
by giving an illustration of diagram chasing in the context of a form.

Chapter 6: Forms in database theory In this chapter, we given an overview
of the approach to view updatability by Johnson and Rosebrugh [65], which
uses the notion of a bifibration, and relate this approach to the work in the
previous chapters.

1.3 Guide to the content

The terminology and results contained the Background section are taken from
the literature. The proofs contained in the Background section are either the
author’s own or adaptation of proofs in the literature. In particular, the proofs
of Proposition 8, Lemma 10 and Proposition 20 are the author’s own, while
the proof of Theorem 3 uses an important notion from the proof in [14] (the
simplicial kernel of a relation), but is otherwise the author’s own proof.

The work contained in Chapters 3, 4 and 5 is based on three joint papers
with Z. Janelidze (|59],]60] and [61] respectively). Experts in the field who are
familiar with these three papers may be interested in the following new results
of the thesis which are not contained in these three papers:

e Chapter 3 contains a different perspective on the work in [59]. In par-
ticular, the notion of cover relation is not used. Chapter 3 also contains
some generalisations of results in [59]. In particular, Theorems 4 and 5
generalise Theorem 2.4 from [59] to the case where the class of morphisms
M is no longer required to contain only monomorphisms, and also no
longer required to constitute a right factorisation system. Theorem 6
and Corollary 5 generalise Corollary 3.2 from [59]. The correspondence
between the results in Chapter 3 and in [59] is also described in more
detail in Chapter 3.
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e In Chapter 4, Proposition 23 follows from a result (Theorem 5.7) in the
third paper [61], while the observations following Lemma 31 are new.

e In Chapter 5, the results in Section 5.6 follow easily from a combination
of [61] and [58] (as noted in the chapter), but they are not explicitly
stated in [61]. Lemma 39 is also not contained in [61].

All the definitions in Chapter 6 are taken from the literature. The obser-
vations in Section 6.5 are (to the best of the author’s knowledge) new. The
results in Section 6.6 are based on remarks by Johnson and Rosebrugh [65]
and Janelidze [50], but the exact statement and proofs are the author’s own.

The following is a list of the main results and notions in the thesis which
are solely due to the author:

e the original form of Theorem 4 in Chapter 3 (the current form incorpo-
rates a remark by Z. Janelidze);

e Theorems 5 and 6 in Chapter 3;
e the notion of an exact form in Chapter 4;

e the original form of Theorem 10 in Chapter 4 (the current form is taken

from [60]);
e Propositions 23 and 24 in Chapter 4;
e condition (A4) and its role in Theorem 16 in Chapter 5;
e Proposition 26 in Chapter 5;
e the observations in Section 6.5 in Chapter 6;

e Theorem 18 in Chapter 6.
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Chapter 2

Background

This chapter contains some background material which is necessary for the
understanding of the subsequent chapters, and which also helps motivate the
work contained in them and place this work in the context of the current lit-
erature. The first section deals with some types of functors which play an
important role in the work in this thesis. In the second, we describe in more
detail the motivation for the part of the thesis which is concerned with cate-
gorical algebra by examining a hypothesis due to Mac Lane. We then describe
some of the work inspired by this hypothesis, namely the development of the
theory of semi-abelian categories. In the third section we discuss the moti-
vation for the work concerned with databases by discussing the view update
problem, while also giving an overview of relational database theory.

We will assume familiarity with the basic notions of category, functor and
natural transformation, as well as with limits and colimits, monomorphisms,
epimorphisms and isomorphisms. A treatment of these topics can be found, for
example, in Mac Lane’s Categories for the Working Mathematician |75]. We
will also assume a basic understanding of group theory, which can be gained,
for example, from Mac Lane and Birkhoft’s Algebra [7].

2.1 Special functors

In this section we look at some special types of functors, namely hom-functors,
adjunctions and fibrations. The definitions and terminology in this section
were taken from a combination of [75; 9; 10].

2.1.1 Preliminaries

For a category C, we denote by C(C,C"), or hom(C,C"), the set of all mor-
phisms from an object C' to an object C’ (such sets are in general called
hom-sets). Given a functor F' : C — D, we say that F' is faithful if for every
pair of objects C,C" in C, the induced map C(C,C") — D(F(C), F(C")) is
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injective. We say that F' is full when this map is surjective for every pair
(C,C"). We will call a functor F' : C — I essentially surjective when every
object in DD is isomorphic to an object in the image of F.

For a functor F' : C — D, the dual functor of F' is the functor F°P : C°? —
D°P whose definition on objects and arrows is the same as F' when we think of
objects and arrows of C°P as objects and arrows (in the other direction) of C.

Given any two categories C, I, we denote by C (or sometimes Fun(DD, C))
the category defined as follows:

e an object of CP is a functor F from D to C;

e a morphism « : F' — F’ in CP is a natural transformation from F to F’.

Given two functors F,G : C — D, we will sometimes denote the set of all
natural tranformations from F to G by Nat(F, G) (it is in fact nothing but the
hom-set CP?(F,@)). There is an isomorphism of categories:

Fun(D, C®) = Fun(D x B, C) (2.1.1)

which assigns to each functor F : D — CP the functor F/(—)(—), which sends an
object (D, B) of D x B to F(D)(B) and a morphism (d: D — D' )b: B — B’)
in D x B to the component of the natural transformation F'(d) at B. Now,
D x B is isomorphic to B x D, so we obtain the further isomorphism:

Fun(D, C®) = Fun(B, C)

For any functor ' : D — C® and any object B, there is thus a functor
F(=)(B) : D — C, while for every morphism b : B — B’ in B we obtain a
natural transformation F(—)(b) : F'(—)(B) — F(—)(B’) whose component at
an object D of D is F(D)(D).

Finally, we recall some basic facts about natural transformations. Let
F:C—Dand G,H : D — E be functors and let « : G = H be a natural
transformation. Then there is a natural transformation from GF to H F’ which
we denote by aF', whose component at an object C' in C is ap). Now let
I :E — F be a further functor. Then there is a natural transformation from
IG to I H which we denote by I«a, whose component at an object D of D is
I(ap). Also, recall that if §: H — H' is another natural transformation, then
we can compose « with £ to form the natural transformation foa : G — H’
(composition is simply done component-wise).

2.1.2 Hom-functors

We will denote the category of sets by Set and the category of (small) cate-
gories by Cat. Given a category C, the category C° x C has as objects pairs
(C,C") of objects of C, while a morphism (f,g) : (C,C") — (D, D’) is a pair
(f,g9) with f: D — C and g : C" — D’ morphisms in C. There is a functor
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hom : C°? x C — Set,
called the hom-functor, which is defined as follows:

e for an object (C,C") of C® x C, hom(C,C") = C(C, (") is the set of all
morphisms from C' to C”;

e for a morphism (f,g) : (C,C") — (D, D"), hom(f, g) is the function which
sends a morphism ¢ : C' — C” to the morphism goco f: D — D’.

By the isomorphism (2.1.1) in the previous section, the hom-functor corre-
sponds to a functor

Y : C° — SetC.

This functor is called the Yoneda functor |75 or the Yoneda embedding and
it has many important properties. The functor Y assigns to each object C' in
C the functor C(C, —) : C — Set, whose value at an object D is hom(C, D)
and at a morphism f is hom(1g, f). The following famous lemma is due to
N. Yoneda.

Lemma 1 (Yoneda Lemma). Let F': C — Set be a functor and let C' be an
object in C. Then there is a bijection

y - Nat(C(C, —), F) = F(C)

which sends a natural transformation o to the image of the identity 1o under
Qc.

Proof. Let ¢ be an element of F'(C'). It is enough to show that there is exactly
one natural transformation a such that ac(l¢) = ¢. Let f be a morphism in
C(C, D). Then supposing that such an « does exist, ap(f) is uniquely defined,
as the commutative diagram below shows.

C(C,C)—2—= F(C)
c(C,f) F(f)

C(C,D)—2— F(0)

Indeed, we have ap(f) = ap o C(C, f)(1¢) = F(f)(c). Now it remains to
check that this always defines a natural transformation, which is easy. O]
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The bijection y in the lemma above is in fact natural in the following two
senses. Firstly, if F' and G are two functors from C to Set and o : F — G is
a natural transformation, then the following diagram of sets commutes, where
the horizontal arrows are instances of the bijection y:

Nat(C(C, —), F) — F(C)

ao_l lac

Nat(C(C, —), G) — G(C)

Secondly, for any morphism f : ' — D in C, the following diagram of sets
commutes:

Nat(C(C, —), F) — F(C)

et |

Nat(C(D, —), F) —— F(D)

Note that for the first naturality to make sense, C needs to be a small category
(see [75]).

Corollary 1. For every category C, the Yoneda embedding Y : C® — Set® is
full and faithful.

Proof. This is an easy consequence of the Yoneda Lemma. Replacing F' by
C(D, —) for some object D, we obtain a bijection:

y - Nat(C(C, —),C(D, —)) = C(D, C).

Looking at the proof of the Yoneda Lemma, we see that the inverse 3y~ of this
bijection is simply the action of ¥ on morphisms in C(D, ), so Y is indeed
full and faithful. O

Note that there is also the dual functor Y’ : C — Set®”, which is also some-
times referred to as the (covariant) Yoneda embedding. It is also clearly full
and faithful. It is not hard to see that full and faithful functors reflect limits,
colimits and identity morphisms, so in particular they also reflect monomor-
phisms, epimorphisms and isomorphisms. Thus the Yoneda embedding also
reflects all these properties.

Another important property of the Yoneda embedding is that it preserves
all limits which turn out to exist in C. We first recall that limits in a functor
category C® can often be computed “point-wise”, as indicated by the following
lemma.

Lemma 2. Let C and B be two categories and let F : D — CB be a diagram
in B such that for every object B, the diagram F(—)(B) : D — C has a limit.
Then the limit of I is given by the functor L : B — C defined as follows:
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e for an object B of B, L(B) is the limit of F(—)(B) : D — C;

e for a morphism b : B — B’, L(b) is the unique arrow arising via the
universal property of the limit L(B') and the natural transformation
F(=)(b) o ap, where ap is the limit cone of F(—)(B).

Proof. 1t is easy to check that L is indeed a functor. Let D be an object of
D. For every object B of B, we obtain a morphism pp : L(B) — F(D)(B).
The definition of L on morphisms ensures that the family (pg)pgep actually
constitutes a natural transformation Ap from L to F(D). Moreover, it is easy
to check that by the definition of L, the family (Ap)pep constitutes a cone
A :ip = F, where iy : D — CB is constant functor on L. We claim that ) is a
limit cone. Suppose there is a cone i; = F for some functor J : B — C, where
iy : D — CPB is the constant functor on J. Then for every object B, there is a
cone ijg) = F(—)(B), where ijp) : D — C is the constant functor on J(B).
This gives rise to a morphism ap : J(B) — L(B) by the property of the limit
L(B). If (ap) ep constitutes a natural transformation o from J to L, then we
are done, since then the uniqueness of a follows from the uniqueness of each
apg. It is easy to check that the naturality follows from the uniqueness part of
the definition of a limit. O

Note that the above lemma can be dualized to say something about colimits
in functor categories. Also, note that if C is complete, then so is C®, with all
(small) limits computed point-wise.

Lemma 3. For a category C and an object C in C, C(C,—) : C — Set
preserves all limits that exist in C.

Combining the above two lemmas, we obtain:

Proposition 1. For a category C, the (covariant) Yoneda embeddingY' : C —
Set™ preserves all limits that exist in C.

Proof. Let D : D — C be a diagram in C which has a limit. Since Set is
complete, by Lemma 2, the limit of Yo D is the functor which takes an object
C'in C°P to the limit of the diagram C(C, D(—)) : D — Set. Since the functor
C(C, —) preserves limits by Lemma 3, this is the same as C(C, L), where L is
the limit of D. Thus the image of the limit of D under Y’ coincides on objects
with the limit of Y’ o D, and a straightforward calculation shows that the two
functors agree on morphisms as well. Thus Y’ preserves the limit of D. n

Lemma 4. Let F' and G be two functors from a category C to Set, and let « :
F — G be a natural transformation between them. Then a is a monomorphism
in Set® if and only if every component of a is a monomorphism.
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Proof. Suppose « is a monomorphism, and let o be the component of « at
an object C' of C. By the naturality part of the Yoneda Lemma, we have that
the following diagram of sets commutes:

Nat(C(C, —), F) —s F(C)

]

Nat(C(C, -), G) — G(C)

Now the map a o — is a monomorphism because « is a monomorphism, so the
map «¢ must also be a monomorphism, since the horizontal arrows represent
bijections. The converse is easy to verify. O

The power of the Yoneda lemma is demonstrated by the following “metathe-
orem” taken from [11]. For an example of the application of this metatheorem,
the Reader is referred to the proof of Theorem 3 in Section 1.2.6.

Metatheorem 1. Let P be a statement of the form ¢ = 1, where ¢ and
can be expressed as conjunctions of properties in the following list:

e some finite diagram commutes;

e some morphism is a monomorphism;

e some morphism is an isomorphism;

e some finite diagram is a limit diagram;

e some arrow f factors (necessarily in a unique way) through a specified
monomorphism m.

Then if P is valid in Set, then it is valid in every category.

Proof. Let C be any category. We have already mentioned that since Y : C —
Set™ is full and faithful, it reflects all the above properties. All functors pre-
serve the first and third properties, while any limit preserving functor (e.g. Y)
preserves the rest (recall that being a monomorphism is a limit property: a
morphism m is a monomorphism if and only if its pullback along itself is an
isomorphism). Thus to prove P it is sufficient to prove it for Set®™. All the
properties above hold in Set®” precisely when they hold point-wise in Set.
Indeed, the first and third are obvious, the second is contained in Lemma 4
and the fourth is contained in Lemma 2, noting that Set is complete. As for
last property, let F'; G and M be functors from C to Set, let a : F = G
be a natural transformation and let § : M = G be a monomorphic natural
transformation such that for every component a¢ of o, ac = ¢ o ec for some
morphism eg, i.e. a¢ factors through Se. It remains to show the naturality of
(ec)cec. Let f: C'— D be a morphism in C. Then we have:

BpoM(f)oec =G(f)oBcoec=apoF(f)=ppoepoF(f),
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so M(f)oec =epo F(f) since fp is a monomorphism. Thus it is sufficient
to prove that P always holds in Set. O]

2.1.3 Adjunctions

There are a number of equivalent definitions of an adjunction. We present
one particular one here, and then give a proposition (whose proof can be
found in [75] for example) from which we may obtain a number of equivalent
definitions.

Definition 1. An adjunction from a category C to a category D is a quadruple
(F,G,n,e), where

e ':C—D, G:D— C are functors, and
e n:lc — GF, ¢: FG — 1p are natural transformations,

such that the following identities (called the triangle identities) are satisfied:

€FOF?7:1F
GeonG = 1g.

We write F 4 G, and say that G is right adjoint to F' and F' is left adjoint
to G. We call n and € the unit and counit of the adjunction respectively.

Proposition 2. Let F: C — D and G : D — C be two functors. Then there
18 a byjection between:

(1) adjunctions (F,G,n,¢);

(2) families (¢c.p)cec,pep where for every pair of objects C' in C and D in
D, ¢c.p is a bijection of hom-sets:

¢C,D : C(Ca G(D)) = D(F(O>a D)
which 1s natural in C and D;

(8) natural transformations n : 1c — GF such that every component nc is
universal to G from C, i.e. for any morphism f : C' — G(D), there is a
unique morphism d : F(C) — D in D such that G(d) one = f;

(4) natural transformations € : FG — 1¢ such that every component ep is
universal to D from F, i.e. for any morphism g : F(C) — D, there is a
unique morphism ¢ : C' — G(D) in C such that ep o F(c) = g.
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When we say that the bijection of hom-sets C(C,G(D)) = D(F(C), D) is
natural in C, we mean that for any morphism f : C'— C’ in C, the following
diagram (of sets) commutes, while “natural in D” is defined similary.

C(C,G(D)) —2% s D(F(C), D)

C(£,.G(D)) D(F(f),D)

b
C(C",G(D)) ——=—D(F(C), D)

We briefly mention how the bijection in Proposition 2 is established. To
any adjunction in (1), we simply assign the unit and counit in (3) and (4). In
(2), we define, for any pair of objects C'in C and D in D, a bijection ¢¢ p as
follows:

¢cp:(f:C—G(D))— (epo F(f): F(C)— D).

Note that if ¢ is the identity natural transformation, then this is just the action
of F' on morphisms. We now recall some important properties of adjunctions.

Proposition 3. Any two left adjoints of a functor are naturally isomorphic.
Dually, so are any two right adjoints.

Proposition 4. A functor F' : C — D which has a left adjoint preserves all
limits which exist in C. Dually, if F' has a right adjoint, then it preserves all
colimits that exist in C.

It will be important for our purposes to examine the case where the cate-
gories C and D are (partially) ordered sets (also called posets). An adjunction
between two such categories is nothing but a (covariant) Galois connection.
Recall that a poset is a set X together with a reflexive, transitive and anti-
symmetric relation <.

Definition 2. A Galois connection from a poset (X, <) to a poset (Y,<) is a
pair of (set-theoretic) maps f: X =Y and g : Y — X such that for any two
elementsx € X andy €Y,

r<gy) e flz) <y

In particular, the maps f and g will be order-preserving (also called mono-
tone). Applying Proposition 2 and noting that in a poset any diagram com-
mutes (in particular, naturality squares and the component-wise versions of
the triangle identities always commute), we obtain that two monotone maps
f: X —=Yand g:Y — X give a Galois connection if and only if for any two
elements r € X andy € Y, x < gf(z) and y > fg(y).

Finally, we deal with the notion of equivalence of categories.
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Definition 3. A functor F : C — D is an equivalence of categories if there is
a functor G : D — C and natural isomorphisms GF = 1¢ and FG = 1.

An adjoint equivalence is an adjunction (F,G,n,¢) such that both n and
¢ are natural isomorphisms. Notice then that (G, F,e~!,n7!) is also an ad-
junction, so G is both a right and left adjoint of F'. The following important
theorem about equivalences is taken from [75].

Theorem 1. Let F: C — D be a functor. Then the following are equivalent:
e [ is an equivalence;
e [ is part of an adjoint equivalence (F,G,n,¢);

o [ is full, faithful and essentially surjective.

2.1.4 Fibrations

We now reach the central concept of the thesis: that of a Grothendieck fi-
bration. Fibrations were first introduced by Grothendieck in [45] as a means
to develop descent theory. In this section, we give the definition of a fibra-
tion, together with a technique for constructing fibrations (and their duals,
opfibrations) from functors into the category of categories Cat.

Definition 4. Let ' : B — C be a functor. A morphism a : X — Y in B
1s cartesian with respect to F' or F-cartesian if for every pair of diagrams
of solid arrows below, with the left diagram in B and the right diagram in C
and where the diagram on the right commutes, there is a unique morphism c,
shown by the dotted arrow, such that F(c) = h and the diagram on the left
commutes.

Z F(Z)
)%—>Y F(X) —>F(Y)

@ F(a)
We recall the following, easy to prove, properties of cartesian morphisms:
Lemma 5. Let F : B — C be any functor. Then:
e F-cartesian morphisms are closed under composition;

eifa: X — Y and b : Z — Y are two F-cartesian morphisms and
F(a) = F(b), then there is a unique isomorphism 0 : X — Z such that
F(0) =1px) andbo b = a.
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Definition 5. A functor F : B — C s a fibration if for every object X in
B and every morphism f : C'— F(X), there exists an F-cartesian morphism
b:Y — X such that F(b) = f. Such a morphism b will be called the cartesian
lifting of f to X.

Note that by Lemma 5, the morphism b in the definition above will be
unique up to isomorphism when it exists.

Definition 6. Let F : B — C and F’ : B’ — C be two fibrations. A cartesian
functor from F to F' is a functor H : B — B’ such that F' o H = F and H
maps F-cartesian morphisms to F'-cartesian morphisms.

Definition 7. For a functor F' : B — C and an object C' of C, the fibre of F
at C' (denoted by F~*(C)) is the subcategory of B whose objects are all objects
X of B such that F(X) = C and whose morphisms are those morphisms b in
B such that F(b) = 1¢.

Given a fibration F' : B — C, every morphism f : C' — ' in C gives rise
to a functor f*: F~1(C'") — F~!(C) which sends every object X in F~1(C")
to the domain of a cartesian lifting of f to X. For a morphism a : X — X’
in F~1(C"), f*(a) is defined to be the unique morphism o’ : f*(X) — f*(X’)
such that F'(a’) = 1¢ and which commutes with the chosen cartesian liftings
of f to X and X', as given by the cartesianness property. The uniqueness of
the choice of @’ ensures that f* is indeed a functor.

We now describe how to construct a fibration over a category C from a
functor ¢ : C — Cat, where Cat is the category of all categories. In fact,
this construction applies more generally to pseudo-functors. The notion of a
pseudo-functor is weaker than that of a functor, and represents a certain kind
of morphism between 2-categories. Roughly speaking, 2-categories have, in
addition to objects and morphisms, 2-cells between morphisms. The category
of all categories, with natural transformations as 2-cells, is a classical example
of a 2-category. It is beyond the scope of this section to describe the general
theory of 2-categories, and it is not needed for the rest of the thesis. However,
we will define a pseudo-functor from a category C (i.e. a 2-category whose
2-cells are all trivial) into Cat in elementary terms so as to describe their
relation to fibrations. For a general definition, and more on 2-categories, the
Reader may consult [9].

Definition 8. A pseudo-functor ¢ from a category C to Cat consists of the
following data:

e for every object C in C, an object ¢(C) of Cat;
e for every morphism f: A — B, a morphism ¢(f) : ¢(A) — ¢(B);

e for every pair of composable morphisms f : A — B, g : B — C, a
natural isomorphism ¢4 : ¢(g) 0 ¢(f) = d(go f);
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e for every object C of C, a natural isomorphism d¢c : 1ycy = ¢(1¢).
satisfying the following conditions:

e for every triple of arrows f: A— B, g: B—C,h:C — D,

Yorn © (2(h)V1.9) = Vrng © (Vand(f))

(where ¢p(h) and ¢(f) are functors, and hence compose with natural trans-
formations as defined in Section 2.1.3.)

e for every morphism f : A — B in C,
Mag 0 (0(f)0a) = Lo(r) = V115 © (080(f))

We now describe the Grothendieck construction, which constructs a fibra-
tion over a category C from a contravariant pseudofunctor from C into Cat.
Let ¢ : C°P — Cat be a pseudofunctor. Let [ ¢ be the category defined as
follows:

e an object of [ ¢ is a pair (A, X), where A is an object of C and X is an
object of ¢(A);

e a morphism (A4, X) — (B,Y) is a pair (f,a) where f : A — B is an
arrow of C and a : X — (b( )(Y) is an arrow of ¢(A) (note that ¢(f) is
a functor from ¢(B) to ¢(A));

e for two morphisms (f,a) : (A, X) — (B,Y) and (¢,b) : (B,Y) — (C, 2),

the composite is defined as follows:

(9:0) 0 (f,a) = (go f,7oo(f)(b)oa)
where the second component is the composite

X o) 22 6(£)(6(9)(2) —— élg 0 £)(2),

where v comes from the definition of the pseudofunctor ¢.

That [ ¢ is a category (i.e. that composition is associative and that it has
identity morphisms) follows straightforwardly from the axioms of a pseudo-
functor. In particular, it is easy to check for the case when ¢ is actually a
functor, i.e. when ~ is always the identity. Let F : [ ¢ — C be the first
component functor, i.e. F(A,X)= A and F(f,a) = a.

Proposition 5. The functor F' defined above is a fibration.
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Proof. Let (B,Y) be a object B and f : A — B = F(B,Y) a morphism in
C. We claim that the morphism f" = (f, ls(nvy) @ (A, 0(f)(Y)) = (B,Y) is
cartesian. Let (g,0) : (C,Z) — (B,Y) be a morphism in B, and let h : C' — A
be a morphism in C such that foh = g. We must show the existence of a unique
morphism (h,¢) : (C,Z) = (A, ¢(f)(Y)) in B such that f' o (h,c) = (g,b). In
other words, we require a morphism ¢ from Z to ¢(h)(¢(f)(Y)) such that

v 0 ¢(h)(1g(r)v)) o c =D,

where 7 is the isomorphism ¢(h)(¢(f)(Y)) = ¢(g)(Y). Since ¢(h) is a functor,
this is equivalent to vy o c¢ = b. Clearly ¢ = v~ ! o b gives the unique such
morphism. O

In fact, every fibration arises (up to isomorphism) from a contravariant
pseudofunctor in this way. To show this, we show how to construct a pseudo-
functor ¢ from a fibration F'. This requires the axiom of choice. Let F': B — C
be a fibration. Define a pseudofunctor ¢ : C°® — Cat as follows (we will treat
all objects and morphisms in C°P as objects and morphisms of C):

e for an object C' in C, ¢(C) is the fibre of F' at C;

e for a morphism f: A — B in C, we must define a functor ¢(f) : ¢(B) —
¢(A). This functor will be nothing but (one choice of) the functor f*
defined earlier;

e for a pair of morphisms f: A — B, g : B — C in C and an object
Z in ¢(C), the cartesianness condition implies a unique isomorphism
o(f)(P(9)(Z)) = ¢(go f)(Z) in the fibre of A which commutes with the
chosen liftings. The family of these isomorphisms indexed by Z will be
the natural isomorphism 7, ¢.

e for an object C' of C and an object X in ¢(C), there is also a unique
isomorphism X = ¢(1¢)(X). The family of these isomorphisms indexed
by X will be the natural transformation d¢.

It is an easy application of Lemma 5 that this defines a pseudofunctor.
Moreover, we will show that applying the Grothendieck construction to this
pseudofunctor recovers F' up to isomorphism. We will say that two fibrations
F and G with the same codomain are isomorphic if there is an isomorphism
I such that G o I = F (in particular, every such isomorphism is a cartesian
functor).

Proposition 6. Let F' : B — C be a fibration. Let ¢ be the corresponding
pseudofunctor under the construction above and let F' : [ ¢ — C be the functor

obtained from ¢ via the Grothendieck construction. Then F' is isomorphic to
F'.
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Proof. We define a functor I : B — [ ¢ as follows:
e for an object X in B, I(X) is defined to be (F(X), X);

e for a morphism b : X — Y, I(b) is defined to be (F(b),V') : (FI(X),X) —
(F(Y),Y), where b is the unique morphism from X to b*(Y") in the fibre
of F(B) which when composed with the cartesian lifting gives b.

The uniqueness in the definition of &’ guarantees that [ is a functor. We also
define a functor H : [ ¢ — B as follows:

e for an object (4,X) in [ ¢, H(A, X) is defined to be simply X;

e for a morphism (f,a) : (A, X) — (B,Y), H(f,a) is defined to be the
composite of a : X — f*(Y) with the cartesian morphism f’: f*(Y) —
Y.

We claim that this defines a functor. Let (f,a) : (A4,X) — (B,Y) and
(g,b) : (B,Y) — (C, Z) be two morphisms in [ ¢. We have the isomorphism
(go /)(Z) = f*(¢g*(Z)). By examining the definition of ¢, we see that this
isomorphism is precisely the inverse of the isomorphism v occuring in the def-
inition of the composite (g, b) o (f, a), ensuring the functoriality of H. Finally,
it is easy to check that H o [ and I o H are both identity functors, and that
F’' oI = F, which gives the required result. O]

We may ask about the other direction: what happens if we apply the
Grothendieck construction to a pseudofunctor ¢ and then construct a pseudo-
functor ¢’ from the resulting fibration? Since there is some choice to be made
in constructing the functor ¢', we cannot expect that the functors will be
equal. However, there is always a so-called pseudo-natural isomorphism be-
tween them. In the language of 2-categories, the 2-categories PsFun(C, Cat)
(objects are pseudofunctors, morphisms are pseudo-natural transformations
and 2-cells are so-called modifications) and Fib(C) (objects are fibrations,
morphisms are cartesian functors and 2-cells are so-called cartesian natural
transformations) are 2-equivalent. For a full definition and a detailed proof,
the Reader is referred to Section 8.3 in [10].

Of course the Grothendieck construction applies in particular to actual
functors C — Cat. The resulting fibrations have the special property that we
can choose cartesian liftings in such a way that they form a subcategory.

Definition 9. A fibration F : B — C is called split when for every morphism
f A — B and every object Y in the fibre of B, we can choose a cartesian lift-
ing fy such that the family of all such morphisms fy (indexing over morphisms
f and objects Y ) form a subcategory of B.

While every fibration is equivalent to a split fibration (see [10]), not every
fibration is itself split. To show this, we will first describe how groups can be
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viewed as categories. Given a group (G, we can view it as a one object category
G whose morphisms are elements of G and where composition is given by
multiplication in G. In particular, every morphism will be an isomorphism. A
category where every morphism is an isomorphism is called a groupoid. Groups
are thus in bijection with one-object groupoids. Group homomorphisms are
nothing but functors between the corresponding groupoids.

Lemma 6. Any functor F : G — H where F' is surjective on objects and full,
and where G and H are groupoids, is a fibration.

Proof. Let f: A— B be a morphism in H and Y be an object in the fibre of
B. Let f': X — Y be any morphism such that F'(f') = f (at least one such
exists by the conditions on F'). We claim that f is cartesian. Let g : C' — B
and h : C'— A be morphisms in H such that foh =v and let b: Z — X be
a morphism in G such that F'(b) = g. Then let i/ = f'~1 ob. Clearly f'h' = b,
while (/) = f~' o g = h. The morphism A’ is the unique choice since f’ is a
monomorphism. O

Proposition 7. Let Z and Zsy be the group of integers and the two element
cyclic group respectively, both thought of as one object groupoids. The functor
(i.e. group homomorphism) F : 7 — Zs which sends a morphism n in Z to
n mod 2 s a fibration, but it is not split.

Proof. The fact that F'is a fibration follows from Lemma 6. Suppose F' admits
a splitting. Such a splitting is a choice of a single cartesian morphism in
Z for every morphism in Z, (since Z has only one object). These cartesian
morphisms must form a subcategory, i.e. a subgroup of Z, whose image under F’
must include all the morphisms of Z,, so the choice function must be injective.
Now it remains to note that there is no subgroup of Z with exactly two distinct
elements. O

We now mention a generalisation of the notion of fibration, due to Street [84].
One of the most important features which distinguishes Street fibrations from
Grothendieck fibrations is that all equivalences are Street fibrations, but not
all equivalences are Grothendieck fibrations.

Definition 10. A functor F : B — C is a Street fibration if for every object
Y € B and every morphism f: A — F(Y) in C, there is a cartesian morphism
f': X =Y and an isomorphism h: F(X) = A such that foh = F(f').

We now consider the dual notion to that of a fibration, namely the notion of
an opfibration. A functor F' is an opfibration precisely when F°P is a fibration.
Since we will often be working with both fibrations and opfibrations, we state
the definition here in full.
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Definition 11. Let F : B — C be a functor. A morphism a : X =Y in B is
cocartesian with respect to F' or F-cocartesian if for every pair of diagrams
of solid arrows below, with the left diagram in B and the right diagram in C
and where the diagram on the right commutes, there is a unique morphism c,
shown by the dotted arrow, such that F(c) = h and the diagram on the left
commutes.

7z F(2)
XTH/ F(X)TF(Y)

Definition 12. A functor F : B — C is an opfibration if for every object
X in B and every morphism f : F(X) — B, there exists an F-cocartesian
morphism f': X =Y such that F(f") = f. Such a morphism f" will be called
a cocartesian lifting of f from B.

Definition 13. A functor which is both a fibration and an opfibration is called
a bifibration.

Given an opfibration F' : B — C, we can define for every morphism f :
A — Bin C a functor f, : F~'(A) — F~!(B) which is the dual of the functor
f* corresponding to the fibration F°P. In particular, f, sends an object X in
F~1(A) to the codomain of a cocartesian lifting of f from A. The following
lemma is easy to prove:

Lemma 7. Let F' be a functor and f be an F'-cartesian morphism. Then if
fa=fp and F(a) = F(B), then o = .

Proposition 8. A fibration F' : B — C is a bifibration if and only if for every
morphism f in C, the functor f* has a left adjoint, denoted by f..

Proof. For the ‘if’ part, let f : A — B be a morphism in C and let X be an
object in the fibre of A. Define f’ to be the composite of the component 7y
of the counit of f, 4 f* and the cartesian morphism f : A (fe(X)) = fu(X).
We claim that f" is F-cocartesian. Clearly F(f') = f, solet u : A — C and
v : B — C be morphisms in C with vf = u and let v’ : X — Z be a morphism
in B with F(u') = u. Consider the following diagram of solid arrows, where
f" is the unique morphism such that F(f"”) = f and vZ o f” = u', where v#
is the cartesian lifting of v to Z, and f” is the cartesian lifting of f to v*(Z).

e (2) L (2)
X f(X)
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We establish some bijections (in each case see the dotted arrows):

e there is a bijection between morphisms v’ such that F'(v') = v and v’ o
f" = u, and morphisms v” in the fibre at B such that vz ov” o f/ = u
(cartesianness of v%);

e a morphism v” in the fibre of B satisfies vy o v” o f' = 4’ if and only if
it satisfies v o f' = f” (Lemma 7);

e there is a bijection between morphisms v” in the fibre of B such that
v" o f/ = f"” and morphisms w in the fibre of A such that f” ow = f"”
— for this, we use the bijection hom(f.(X),v*(Z)) = hom(X, f*(v*(2)))
from the adjunction f, - f* and note that for any bijective pair (v”, w),
the rectangle always commutes;

e a morphism w in the fibre of A satisfies f” o w = f” if and only if it
satisfies vz o f” ow = u' (Lemma 7).

Thus it is enough to note that since vZ o f” is cartesian, there is precisely one
such w.

For the ‘only if’ part, let F' be a bifibration and let f : A — B be a
morphism of C. We claim that f, 4 f*, where f, is defined as above. Let X
be an object of the fibre of A. Then there is the morphism [’ : X — f.(X)
and the cartesian morphism f” : f*(f.(X)) — f.(X), which gives a unique
morphism nx : X — f*(f.(X)) such that F(nx) = 14 and f"nx = f’. Dually,
for an object Y in the fibre of B, we obtain a morphism ey : f.(f*(Y)) — Y.
Naturality of the family (7x)xcr-1(4) follows from Lemma 7 and cartesianness
of the morphism f*(f.(X’)) — X'. Dually, (¢y)yer-1(p) also gives a natural
transformation. Finally, the fact that n and e satisfy the triangle identities
follows again from Lemma 7 and cartesianness and cocartesianness of the maps
f*(Y) =Y and X — f.(X) respectively. O

We can thus conclude that every bifibration over C comes from a pseudo-
functor from C°P to Cat which takes every morphism in C to a functor which
has a left adjoint. We state two more properties of fibrations without proof:

Lemma 8. Fibrations are closed under composition.
Lemma 9. Fibrations are stable under pullbacks in Cat.

Before we conclude this section, we should make some elementary obser-
vations on the case when F' is faithful and amnestic, which will be the main
context considered in the thesis. A functor F': B — C is amnestic when there
are no non-identity isomorphisms in each fibre. The following proposition
follows easily from the material in this section.

Proposition 9. Let F': B — C be a faithful, amnestic fibration. Then:
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e cvery fibre is a poset;
e the functors f* are just order-preserving maps;
e F' is split — moreover, cartesian liftings are unique;

e F' is a bifibration if and only if every f* is the right adjoint in a Galois
connection.

Moreover, such fibrations are in bijection with functors from C° to the category
Ord whose objects are posets and whose morphisms are order-preserving maps.

Finally, we conclude this section by remarking that fibrations are ubiqg-
uitous in mathematics. They play an important role in many areas such as
foundations [6], logic 48], algebraic geometry [45], topology [89], topos the-
ory [69] and non-abelian algebra [14] (the references given are examples which
readily show the importance of fibrations). We also hope to demonstrate the
importance of (bi)fibrations in algebra through this thesis.

2.1.5 Comma categories

In this section, we give the definition of a comma category and relate it to the
notion of fibration.

Definition 14. Let F': A — C and G : B — C be functors. Then the comma
category (F' | G) is the category defined as follows:

e an object of (F' | G) is a triple (A, f, B), with A an object of A, B an
object of B and f : F(A) — G(B) a morphism in C;

e a morphism of (F' | G) from (A, f, B) to (A, f', B') is a pair (a,b) where
a:A— A is a morphism in A and b : B — B’ is a morphism in B such
that G(b) o f = f' o F(a);

e composition is defined component-wise as in A and B.

Proposition 10. Given the comma category (F' | G) of two functors F': A —
C and G : B — C, there are two obvious projection functors U : (F | G) — A
and V : (F | G) = B and a canonical natural transformation o : F o U =
GoV.

Proof. Let U be the functor (A, f,B) — A, (a,b) — a and V be the func-
tor (A, f,B) — B, (a,b) — b. Then « is the natural transformation whose
component at (A, f, B) is simply f. H
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Proposition 11. With the notation of the previous proposition, (F | G) to-
gether with U, V' and « is the universal such structure, i.e. for any pair of
functors U' : D — A and V' : D — B and natural transformation §: FoU' =
G o V', there is a unique functor W : D — (F | G) such that U oW = U’,
VoW =V"and aW = j.

Proof. For an object D in D and a morphism d : D — D’ in D, define W (D) =
(U'(D), Bp,V'(D)) and W(d) = (U'(d), V'(d)). It is clearly the unique functor
satisfying the conditions. m

The above proposition can be taken as a definition of a comma object in
any 2-category, since such a structure will be unique up to isomorphism. As
usual, we refer to the comma category, with the understanding that this only
specifies an object up to isomorphism. In the case of categories, there are
two important cases of comma categories to consider, which each have special
terminology in the literature.

o If F =G = 1¢, then (F | G) is the arrow category Arr(C). It is also
isomorphic to C2, where 2 is the category with two objects A and B and
one non-identity morphism A — B.

e If (G is the inclusion of a single object C' and the morphism 1 into C and
F' is the identity on C, then (F' | G) is the slice category C/C. Dually,
if F'is the inclusion and G is the identity, then (F' | G) is the coslice
category C'/C.

We now give a proposition due to R. Street [84] which links the two major
topics of this section, namely adjunctions and fibrations, to comma categories.
The result and the lemma below require the axiom of choice. Recall the fol-
lowing lemma from [9]:

Lemma 10. A functor F : B — C has a right adjoint if and only if each
object C' in C admits a coreflection along F, i.e. an object R(C) in B and a
morphism ec : FR(C') — C which is universal to C from F.

Proposition 12. Let F' : B — C be functor and let A = (1¢c | F). Consider
the diagram below:

where I is the canonical functor to the comma category A. Then F' is a fibration
if and only if I has a right adjoint R such that Pe = 1p, where € is the counit
of F 4 R (in partcular then, [ o R = P).
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Proof. The category A has objects of the form (C, f : C' — F(B), B) and the
functor I takes an object B to (F(B),1pp), B) and a morphism b: B — B’
to (F(b),b). Let A = (C, f,B) be an object of A. To say that A has a
coreflection along I is to say that there exists an object B’ of B and morphism
(i, f") + (F(B),1pwm),B") — (C, f,B) which is universal to A from /. The
universal property of (i, f’) can be stated as follows: for any object B” of B
and any morphisms u : F(B"”) — C and v : B” — B such that F(v) = f ou,
there is a unique morphism b : B” — B’ such that i o F'(b) = v and f'ob = v.
If we require that ¢ is the identity and that F'(f’) = f, then this is equivalent
to saying that f’ is a cartesian lifting of f to B. Suppose then that every
object A has a coreflection and consider the resulting right adjoint to F. In
the above notation, for i to be the identity and to have F'(f') = f for every A
is equivalent to requiring that Pe = 1p and F' o R = P respectively. Thus for
every object B in B and morphism f : C'— F(B) in C, there is a cocartesian
lifting from f to B if and only if the functor I has a right adjoint satisfying
the conditions. O

2.2 Non-abelian categorical algebra

2.2.1 Duality for groups hypothesis

In his 1950 paper Duality for Groups 73], Mac Lane proposes the axiomatic
study of the category of groups (i.e. the category whose objects are groups and
whose morphisms are group homomorphisms). He proposes the formulation
of a list of dual axioms on a category which allow one to prove isomorphism
theorems and other results from group theory. He then gives a list of dual
axioms, suitable only for the category of abelian groups, and arrives at the
notion of an abelian bicategory, the forerunner of the notion of an abelian
category (first introduced in [20]| under the name of ezact category). Abelian
categories were extensively used in the first two decades of category theory,
for example in Grothendieck’s famous Tohoku paper [44| (where the name
of abelian category was first used) and in subsequent work on homology and
algebraic geometry.

The category of all groups, however, does not satisfy Mac Lane’s axioms for
an abelian bicategory. For example, axiom ABC-3 in |73] requires that every
subobject be “normal” (as defined in the paper), which translates as expected
into the condition that every subgroup is normal, a condition which does not
hold for groups in general, but does hold for all abelian groups. We may thus
view Mac Lane’s statement that, for the case of all (not necessarily abelian)
groups,

“a further development giving the first and second isomorphism the-
orems, and so on, can be made by introducing additional carefully
chosen dual axioms”
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as a hypothesis, which we will refer to as the duality for groups hypothesis. A
crucial difference between the category of groups and the category of abelian
groups (which we denote by Grp and Ab throughout this thesis) is that the
most important properties of the latter are self-dual, while duals of similar
properties of the former almost never hold. Indeed, an abelian category can
be defined using self-dual axioms. Before we state these axioms, we will need
the following definitions.

Definition 15. A category C is called pointed when it has an object Z (called
a zero object) which is both terminal and initial. Morphisms which factor
through a zero object are called zero morphisms. We write f = 0, or say that
f s zero, to indicate that f is a zero morphism.

Definition 16. Let C be a pointed category. For a morphism f : X — Y,
the kernel of f is a morphism k : K — X such that fk is zero and such that
for any other morphism k' with fk' zero, there is a unique morphism i such
that ki = k'. Dually, the cokernel of f is a morphism ¢ :' Y — C such that
cf is zero and such that for any other morphism ¢ with ¢ f zero, there is a
unique morphism 1 such that ci = ¢’. Both these morphisms are unique up to
isomorphism, and we denote the kernel of f by ker(f) : Ker(f) — X and the
cokernel of f by coker(f) :Y — Coker(f).

The axioms for an abelian category were considerably refined after Mac
Lane introduced abelian bicategories. We give what is possibly the shortest
list of axioms which define the modern notion of an abelian category (see [51]
and the references there):

(A1) C has finite products and is pointed,

(A2) every morphism in C factorizes as a cokernel followed by a kernel.

The condition of being pointed is clearly self-dual, as is the entirety of
(A2). However, (A1) only requires C to have finite products, and not finite
coproducts. Nonetheless, it is well-known that one of the many consequences
of these two simple axioms is that C is additive, and that therefore coproducts
not only exist in C, but coincide with products (i.e. they are biproducts).
Thus the notion of an abelian category is defined by dual axioms, and so every
property which holds in every abelian category will have a dual which also
holds.

Just as the category of groups failed to be an abelian bicategory, so it also
fails to satisfy (Al) and (A2). To see this, one only has to note that (A2)
implies that every monomorphism is a kernel. Indeed, given a monomorphism
f, if f = me for a kernel m and cokernel e, then e is also a monomorphism
and hence an isomorphism, which gives that f is a kernel. Clearly not every
monomorphism in groups is a kernel — this would be to require that every
subgroup is normal.
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The notion of abelian category is thus not suitable for an axiomatic investi-
gation of the totality of groups and of other, non-abelian, group-like structures
(for example rings). A different axiomatic context is thus needed. In the next
sections we describe one such context, that of a semi-abelian category, which
provides a suitable setting for a variety of topics arising out of group theory,
but whose axioms, unlike those of an abelian category, are not self-dual.

2.2.2 Factorization systems

In the category of sets, groups or indeed in any variety of universal algebras,
every morphism factorises as an epimorphism followed by a monomorphism.
The notion of a factorisation system, introduced by Freyd and Kelly [37],
generalises this property. We will now give the definition of a factorisation
system as well as that of two weaker notions, namely a prefactorisation system
and a right factorisation system. We will say that a class C of morphisms in a
category C is closed under composition with isomorphisms if vcu € C whenever
¢ € C and v and u are both isomorphisms.

Definition 17. A factorisation system [37] on a category C is a pair (€, M)
of classes of morphisms satisfying the following conditions:

(i) each of £ and M contains the identity morphisms and are closed under
composition with tsomorphisms;

(i1) every morphism f in C can be written as f = me, where m € M and

e € & (this is called an (€, M)-factorisation of f);

(iii) for any commutative diagram of solid arrows below, with m,m’ € M and
e, e € &, there is a unique morphism w making the diagram commute:

e, _m,

LEl

——

e m’

Note that in (iii), if v and w are isomorphisms, then so is w. Thus the
(€, M)-factorisation of a morphism is unique up to isomorphism. We now
look at the notion of a prefactorisation system. Let C be a category. For
two morphisms f : X — Y and g : X' — Y, we write f | g if, for every
commutative square of solid arrows below, there is a unique morphism ¢ making
the diagram commute.

XL}Y

fl 7 L}
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For a class of morphisms C, we set

Cl={fIVgec(f L 9)},  C* = {fVec(g L )}

Definition 18. A prefactorisation system on a category C is a pair (€, M) of
classes of morphisms having & = M" and M = ET.

The following proposition is easy to prove and appears in [21], where the
notion of prefactorisation system was introduced. Notice that condition (iii)
in the definition of a factorisation system is implied by & C M™.

Proposition 13. Fuctorisation systems are precisely those prefactorisation
systems which satisfy condition (ii) in the definition of a factorisation system.

We now recall a weaker notion than that of a factorisation system, which
is designed to allow one to define “images” in a category. The notion first ap-
peared under a different name in [30] (what we here call a right M-factorisation
was there called a strong M-image). The following definition and name are
taken from [28].

Definition 19. Let C be a category and let M be a class of morphisms. Then
a right M-factorisation of a morphism f is a factorisation f = me, with
m € M, such that for any commutative diagram of solid arrows below, where
n € M, there is a unique morphism w making the diagram commute.

| )

We will say that a category C admits a right M-factorisation system when
every morphism in C has a right M-factorisation. Factorisation systems are
special cases of right factorisation systems, as the following proposition taken
from [28] shows.

Proposition 14. Let C be a category and let M be a class of morphisms. Then
M is part of a factorisation system (£, M) if and only if M is closed under
composition with isomorphisms, every morphism admits a right M factorisa-
tion and M is closed under composition. Moreover, the class £ is uniquely
determined by M when this is the case.

Example 1. An example of a class M for which every morphism has a right
M-factorisation, but which is not part of a factorisation system, is the class of
all normal monomorphisms in Grp: every morphism factors through the nor-
mal closure of its image, but since normal monomorphisms are not closed under
composition, M cannot be part of a factorisation system by Proposition 14. It
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should be noted that normal epimorphisms are closed under composition in
Grp, another example of a property whose dual does not hold in the category

of groups.

Definition 20. Let (£, M) be a factorisation system on a category C. We call
(€, M) stable when the class & is pullback stable, i.e. when for any morphism
f: X =Y and any morphism e : E — Y with e € £, the pullback of e along
f is also in E.

The class M in a factorisation system (£, M) is always pullback-stable, so
in particular, a stable factorisation system allows us to compute the factori-
sation of the pullback of a morphism f along a morphism g “piece-by-piece”.
More precisely, if f = me is the factorisation of a morphism f, then in the
diagram below, where both squares and hence also the outer rectangle are
pullbacks, f = m'e’ is the factorisation of f’, where f’ is the pullback of f
along g.

/ /
€ m

Example 2. For a category C, let C be the class of all morphisms and let T be
the class of all isomorphisms. Then there are always two factorisation systems

(C,Z) and (Z,C) on C, both of which are stable.

Example 3. The category Top of topological spaces admits two factorisations
systems:

o (£, M) where & = all quotient maps and M = all injective maps;
o (&, M) where £ = all surjective maps and M = all embeddings of spaces.

Only the second of these is stable, however.

2.2.3 Regular and normal categories

Regular categories were introduced in [3]. One way to view the axioms of a
regular category is as the minimal list of axioms required to establish a calculus
of relations, i.e. the ability to compose relations in a meaningful way.

Definition 21. A category C is regular if it satisfies the following conditions:
(S1a) C has finite limits,

(S1b) every morphism in C can be factorized as a regular epimorphism (i.e. a
coequalizer) followed by a monomorphism.
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(Sic) regular epimorphisms are stable under pullback

Lemma 11. Let e be a regqular epimorphism and m be a monomorphism in a
category C. Then e | m.

Let RegEpi be the class of all regular epimorphisms, and let Mono be the
class of all monomorphisms. Lemma 11 thus states that RegEpi € Mono'.
Combining this observation with (S1b), we can equivalently state the definition
of a regular category as a finitely complete category which admits a stable
(RegEpi, Mono)-factorisation system.

Example 4. Any variety of universal algebras is reqular (the required factori-
sation is simply the image factorisation,).

Example 5. While the category of topological spaces does satisfy conditions
(S1a) and (S1b), it was already mentioned that it does not satisfy condi-
tion (Sic) (regular epimorphisms are precisely the quotient maps). Its dual
(i.e. Top®?), is regular, however.

Definition 22. A category C is normal [55] if it is pointed, reqular and every
reqular epimorphism is a normal epimorphism (i.e. a cokernel).

An equivalent definition for a normal category is a pointed, finitely com-
plete category which admits a stable (NormEpi, Mono)-factorisation system
(where NormEpi is the class of all normal epimorphisms). An example of a
category which is pointed and regular but is not normal is the category of
pointed sets. The notion of a normal category generalises a classical result of
group theory known as the First Isomorphism Theorem.

Theorem 2 (First Isomorphism Theorem). Any homomorphism of groups
f:G — H factors as f = mo@oe, wheree: G — G/Ker(f) is a quotient
map, 0 is an isomorphism, and m : Im(f) — H is the inclusion of the image

of f into H.

Cokernels in Grp are precisely the quotient maps, which coincide with the
surjective maps and hence also with the regular epimorphisms. As a direct
consequence of the First Isomorphism Theorem, we thus have:

Proposition 15. Grp s a normal category.

2.2.4 Internal relations and Barr-exact categories

A relation from a set X to a set Y can be viewed as a subset of the product
X xY. This notion can be generalised to give the notion of an internal relation
in a category C. Recall that a pair of morphisms (f : X — Y, g: X — Z)
in a category C are called jointly monic if (fh = fh' A gh = gh') = h =R
for all pairs of morphisms h, ' : W — X. If C admits products, then this is
equivalent to the morphism (f,g) : X — Y x Z being a monomorphism.
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Definition 23. Let C be a category. An internal relation from an object X
to an object Y is triple (R,m1 : R — X,ry : R — Y) such that r1 and ro are
jointly monic.

Let (R,r1,72) be a relation from an object X to an object Y. Then for
every object S in C, the functor hom(S, —) sends (R, r1,72) to the diagram:

hom(S, X )+~ hom(S, R) — =" hom(S,Y)

We have already noted that the functor hom(S, —) preserves all limits that
exist in C. Being a relation is a property that can be expressed in terms of
limits which always exist. Indeed, a pair of morphisms (ry, ) is jointly monic
if and only if the following is a limit diagram (i.e. the object R together with
the identity morphisms form the limit cone over the rest of the diagram):

R=————=R

1

T2

x
Y

Thus hom(S, —) sends a relation in C to a relation in Set. Now let (R, 71, 72)
be a relation from X to X in a category C. We say that (R,ry,79) is reflez-
ive/symmetric/transitive when for every object S, the relation

hom(S, X) +——— hom(S, R) — =" hom(S, X)

is reflexive/symmetric/transitive. An internal equivalence relation in C is an
internal relation which is reflexive, symmetric and transitive.

In the presence of finite limits, reflexivity, symmetry and transitivity can
be expressed without reference to the hom-functor. For a finitely complete
category C, a relation (R, 71, 72) from X to X is reflexive if and only if there is
a common splitting of (ry,r3), i.e. a morphism § such that r;00 =ry0d = 1.
The relation (R,ry,79) is symmetric if and only if there exists a morphism
0 : R — R such that r;y = ry 00 and ro = r; o 0. Let the pullback of r5 along
r1 be given by the following diagram:

Rxx RZ-R

R——m—

T2
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Then (R, r1,7) is transitive if and only if there is a morphism 7 : Rx x R —
R such that ryop; =rio7 and rpopy =ryo 7.

We have already mentioned that regular categories allow one to compose
relations. Let C be a regular category, let (R,7,72) be a relation from an
object X to an object Y and let (S, s1,s2) be a relation from Y to an object
Z. Let (T',t),t,) be the pullback of ro along s; as shown in the following
diagram:

X Y A
R R
N

T/

The triple (T, r; ot], s2 o t,) may no longer be a relation. However, we can
factorise the morphism (ry ot],s00t)) : T" — X x Z as a regular epi followed
by a monomorphism (¢;,t3) : T — X x Z, which will be defined to be the
composite of R and S (denoted by RS).

Note that it is not true in general that the composite of two equivalence
relations is again an equivalence relation. It is however easy to check that the
composite of two reflexive relations is again a reflexive relation.

Definition 24. For a morphism f in a category C, the kernel pair of f (de-
noted by (Eq(f),m1,m)) is the pullback of f along itself. The relation induced
by a morphism f is its kernel pair.

Proposition 16. For any morphism f in a category C, the kernel pair

(Eq(f)a T, 772)
is an internal equivalence relation (when it exists).

We sometimes refer to just the two morphisms 7y, 75 as a kernel pair. It is
easy to check that every regular epimorphism is in particular the coequalizer
of its kernel pair viewed in this way. Conversely, a kernel pair is always the
kernel pair of its coequalizer. Regular categories always have coequalizers of
kernel pairs: indeed, if m;, 7y are the kernel pair of a morphism f, then the
regular epi e occuring in the factorisation of f is the coequalizer of 71 and ms.

Given an object C' in a category C which has coequalizers of kernel pairs,
we can consider the poset K¢ whose objects are kernel pairs with codomain
C' and where for two kernel pairs (m,m) and (7}, 7)), (71, m) < (7, wh) if
there is a morphism r such that 7] or = m; and 75 o r = w5 (such a morphism
will always be unique). We can also consider the poset E whose objects are
regular epis with domain C' and where e < ¢’ if €’ factors through e. It is easy
to show using the above remarks that there is an isomorphism between K¢
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and F¢o which sends a kernel pair to its coequalizer and whose inverse sends a
regular epi to its kernel pair.

Definition 25. An internal equivalence relation is called effective when it is
the kernel pair of some morphism. A category C is called Barr-exact [3] if it
18 reqular and every internal equivalence relation is effective.

Examples of Barr-exact categories include all varieties of universal algebras.
In particular, Grp is Barr-exact.

2.2.5 Protomodular categories

Let C be a category and let B be an object in C. Then the category of points
of B in C (denoted by Ptc(B)) is defined as follows (see for example [51]):

e objects of C are triples (F,p,s) with morphisms p: £ — B, s: B - F
such that pos = 1p;

e a morphism f : (E,p,s) — (E',p/,s') is a morphism f in C such that
p'f=pand fs=s"

Given any morphism f : X — Y in C, there is a pullback functor f* :

Ptc(Y) — Ptc(X), whose definition we now recall (note that it will be defined

only up to natural isomorphism). For an object (E,p,s) of Ptc(Y), let the
pullback of p" along f be given by the following diagram:

oy

A
X — Y
Then the pullback functor sends (E, p, s) to the object (E',p/, s"), where &’

is the unique morphism such that p’os’ = 1x and f'os’ = so f obtained from
the property of the pullback. For a morphism ¢ : (Ey, p1, $1) — (E2, p2, S2), let

f*((Ehplel)) = (Einplbsll) and f*((E27p2782)) = (Eé7pl278/2)7 with f{ and fé
the pullbacks of f along p; and ps respectively. Then we have ps o (go f]) =
f o), so there is a morphism ¢’ : E] — E) such that p, o ¢’ = p}. It remains
to show that ¢’ o &) = s, for ¢’ to be a morphism in Ptc(X). We have:

fro(gios))=gofiosi=gosiof=s0f=fyos
and

pyo(gosi) =piosy=1x=phos)
so by the uniqueness part of the property of the pullback, we have that ¢'os] =
sh. The functor f* sends the morphism ¢ to ¢’. It is easy to check that this
defines a functor.
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Definition 26. A category C is called (Bourn)-protomodular [13] if it has
pullbacks and if for every morphism f in C, the pullback functor f* reflects
isomorphisms (i.e. f*(0) is an isomorphism if and only if 0 is).

Lemma 12. A pointed category C with zero object 0 is protomodular if and
only if for every zero morphism zy : 0 — Y, the pullback functor zy reflects
1somorphisms.

Proof. Suppose zj reflects isomorphisms for every zero morphism zy. Let
f X — Y be a morphism in C. Then f o zxy = 2y, so it is easy to check
that z% o f* = 2z} for some choice of 2§ (as remarked earlier, it is defined
only up to natural isomorphism). Thus since z; reflects isomorphisms and z7%
preserves isomorphisms (any functor does), it is easy to see that f must reflect
isomorphisms as well. The converse is obvious. O

For a zero morphism 2y : 0 — Y, 27 is nothing but the functor which
associates to each morphism p : £ — Y its kernel object Ker(p). Thus a
pointed category C is protomodular if and only if for every object X in C,
the kernel functor kerx : Ptc(X) — C(= Ptc(0)) reflects isomorphisms. This
is equivalent to the Split Short Five Lemma holding in C, i.e. that in any
commutative diagram of the form of the one below, with k£ = ker(p) and
[ = ker(q) and p and ¢ split epimorphisms, w is an isomorphism if u and v are.

u w l (2.2.1)

In a normal category C, split epimorphisms are always normal epimor-
phisms, so for a normal category to be protomodular it is sufficient to have
that the Short Five Lemma (which appears under the name of ABC' extension
property in |73]) holds, i.e. the above property but where p and ¢ are only
required to be cokernels (they will then in particular be the cokernels of k£ and
[ respectively).

Proposition 17. Grp is protomodular.

Proof. 1t is enough to prove the Short Five Lemma, and the proof is classical.
Consider a diagram of the form of 2.2.1, where k = ker(p), | = ker(q), p and ¢
are the cokernels of k£ and [ respectively, and u and v are both isomorphisms.
To prove that w is a isomorphism, it is sufficient to prove that its kernel is
trivial and that it is surjective. Suppose w(f) = 0 for some f € F. Then
vq(f) = pw(f) = 0, so since v is an isomorphism, ¢(f) = 0. Thus f is in
the kernel of ¢, so there is an element x € L such that I(z) = f. Then
ku(z) = wl(xz) = 0, but v and k are injective, so x = 0 and thus f =1I(z) =0
as required. Now let e be an element of E. Let f be an element in the inverse
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image of v~ 'p(e) under ¢q. Consider the element ¢ = w(f) - e~ !. Clearly

p(e’) = 0, so there must be an element y of K such that k(y) = ¢’. Consider
then the element lu~'(y~') - f. We have:

wlu™ (y™) - f) =k(y™) w(f) = w(f) =e
S0 w is surjective as required. O]

The Short Five Lemma is one of the results that can be obtained from the
axioms for a abelian bicategory introduced by Mac Lane. In fact, since those
axioms are self-dual, it is only necessary to prove that w has trivial kernel,
and the other half follows by duality. This type of argument cannot be used
straightforwardly in case of groups, because of the lack of duality there. At
the end of Chapter 5, we discuss an alternative proof of this lemma using the
new context developed in this thesis.

Protomodularity is essentially a condition on split epimorphisms. It is
thus useful to look more closely at split epimorphisms in Grp. They turn
out to be precisely the projections from so-called semi-direct products. This
property holds in the more general setting of semi-abelian categories (with
semi-direct products suitably defined) [17], and leads to the study of internal
object actions [12]. The following definition can be found in [7].

Definition 27. Let G and H be groups and let 6 be a group homomorphism
from H to the automorphism group Aut(G) of G. Then the semi-direct product
of G and H relative to 0, denoted by G x¢ H, is defined as follows:

e the underlying set of G x9 H is the same as G x H,

e for two elements (g, h) and (¢', k'), using multiplicative notation,

(9,h)- (g, 1) = (g-(0(h)(g")), M'R)

Notice that for every semi-direct product we have the following two group
homomorphisms: firstly, the projection my : G X9 H — H which sends (g, h)
to h and secondly, the injection 6 : H — G Xy H which sends h to (1,h).

Proposition 18. Letp: G — H and s : H — G be group homomorphisms
such that po s = 1g, and let N be the kernel of p (seen as a subgroup of G
for simplicity). Then there is an isomorphism ¢ from the semi-direct product
N xy H to G, where 6 sends an element h € H to the automorphism n
s(h) -n-s(h)™" of N. Moreover, po ¢ = my, where my : N xg H — H s the
projection (n,h) — h and s = ¢ 08, where 6 : H — N xg¢ H is the injection
h— (1,h).
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Proof. We define a map ¢ : N xg H — G as follows: ¢(n,h) = n - (s(h)).
We claim that this is a group homomorphism. Let (n,h) and (n/, h’) be two
elements of N xg H. Then:

¢((n,h) - (0, 1)) = d(ns(h)n’s(h) ™", hh') = ns(h)n's(R') = d(n, h) - $(n', )

Thus ¢ is a group homomorphism, p(¢(n,h)) = p(n-s(h)) =1-ps(h) =h =
m1(n,h) and s = ¢pod is obvious. It remains to show that ¢ is an isomorphism.
For this it is enough to show that it is surjective and has kernel the zero group.
Suppose that ¢(n,h) = 1 (where 1 is the unit of G). Then n - s(h) = 1, so
p(n-s(h)) = h =1, hence n = 1, which shows that the kernel of ¢ is trivial.
Now let g be an element of G. Then n’ = g - (sp(g))~! is in the kernel of p,
i.e.in N. Thus g =n'-sp(g) = ¢(n',p(g)). O

2.2.6 Mal’tsev categories

By now we have all the ingredients necessary to describe semi-abelian cat-
egories, but we should make some remarks on a related notion, namely the
notion of a Mal’tsev category. Mal’tsev categories were introduced by Car-
boni, Kelly and Pedicchio [22|, although since then the requirement that the
category be Barr-exact has been dropped. This form of the definition is given
in [23].

Definition 28. A category C is Mal’tsev if it has finite limits and satisfies the
following condition:

(M) every reflexive internal relation is an equivalence relation.

The roots of this notion go back to a classical theorem of A. Mal’tsev |76],
which states that the composition of congruences on any object in a variety
X is commutative if and only if the theory of X contains a ternary term u
satisfying the term equations

Wz, v, y) = = py,,z).

Such varieties were later called Mal’tsev varieties [83]. As expected, those
varieties of universal algebras which form Mal'tsev categories are precisely the
Mal’tsev varieties (see [36] and [87]). Thus we can already conclude that Grp
is a Mal'tsev category: simply set u(z,y,z) = zy 'z (using multiplicative
notation).

There are a number of conditions on a category which in various settings
are equivalent to condition (M) — see [19] for a survey of these, as well as
two other characterisations of Mal’tsev categories using so-called approxzimate
Mal’tsev operations.

Observe that in a regular Mal’tsev category, the composite of two equiv-
alence relations is again an equivalence relation. Define an order on rela-
tions from an object X to itself in the obvious way, namely that (R,rq,72) <
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(R, 7, 7h) (we will sometimes just say that R is contained in R') if there is a
morphism u : R — R’ such that r; ou = r] and 75 o u = r5 (such a morphism
will necessarily be unique). Then it is easy to show that the composite RS of
two equivalence relations on an object X is the join (i.e. least upper bound)
of R and S in the partially ordered set of equivalence relations.

We end this section by proving the following theorem taken from [14]. The
proof given in [14] goes via another characterisation of Mal’tsev categories;
here we present a direct proof which relies heavily on the Yoneda Lemma (see
Section 2.1.2).

Theorem 3. Every finitely complete protomodular category C (so, in partic-
ular, any pointed protomodular category) is a Mal’tsev category.

Before we prove this proposition, we need some further facts about relations
in categories. For a reflexive relation R from a set X to itself (which we can
view as an internal relation (R, 71,79) in Set), it is easy to see that R is an
equivalence relation if and only if the following holds:

xRy N xRz = yRz.

Otherwise stated, let Ry be the set of triples (z,y, z) with xRy and 2Rz
and K be the set of triples (z,y, z) with Ry, xRz and yRz. Then R is an
equivalence relation if the obvious inclusion j : K3 — Ry is an isomorphism.
Both K3 and Ry can be expressed as a limit of a diagram (K is called the
simplicial kernel of R — see for example [14]). Indeed, Ry is just the pullback
of r1 along itself, while K5 is the limit of the diagram of solid arrows below
(where the dotted arrows show the limit cone):

X
72 T1
X X
r1 T
71 T2
R R N
. K2 .

Thus for a reflexive relation in any finitely complete category C, we can
define Ky and Ry. Since ri1k; = r1ks, we have a morphism j : Ky — Ry such
that p1j = ki and pyj = ko, which for sets is precisely the inclusion we earlier
required to be an isomorphism.

Thus we have that the following are equivalent, where the last equivalence
follows from the fact that the Yoneda embedding reflects isomorphisms (which
are the same as component-wise isomorphisms):
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e R is an equivalence relation;

e for every object Y, hom(Y, —) takes R to an equivalence relation;
e for every object Y, hom(Y, j) is an isomorphism;

e 7 is an isomorphism.

Proof of Proposition 3. Let R be a reflexive relation in C and consider the
situation described above. We are required to show that the morphism j is an
isomorphism. We have the following cone:

T2

>\

/\
-

so there is a morphism o; : R — K5 such that ko1 = keoy = 1 and k3o =
sry. Let (Rg, p1,p2) be the pullback of r; along itself. Then p; and ps have a
common splitting . The two morphisms jo; : R — Ry and 6 : R — Ry are
in fact equal by the uniqueness part of the property of the pullback. Hence
J is a morphism in Ptc(R) from (Ko, ki, 01) to (Ro,p1,d). Consider now the
pullback functor s* : Ptc(R) — Ptc(X). Let

s'(4) = 5"+ (K5, Ky, 01) = (Ro, ph, 6).

R T

R

/

We claim that j' is an isomorphism. Since j’ is defined using only limits and
composites, we can apply Metatheorem 1. Thus, consider the same situation,
but where C is Set. Note that Set is obviously not a Mal’cev category itself,
so j will not in general be an isomorphism. However, we will now show that
j' always is.

We have already given a description of j, so j' is simply the pullback of j
along the joint splitting of the relation. The object R{ is then the set of all
triples (z,z,y) with zRx and xRy, while K} is the set of all triples (z,z,y)
with xRz, xRy and (now redundantly) zRy. Clearly the inclusion j' is an
isomorphism. Returning to the case of an arbitrary category C which is finitely
complete and protomodular, we obtain that j’ is an isomorphism also in the
case of C. Now we apply the protomodularity of C. Since C is protomodular,
s* reflects isomorphisms, and thus j must be an isomorphism. O
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2.2.7 Semi-abelian categories

Semi-abelian categories were defined in [51], and represent a culmination of a
number of developments towards an axiomatic context corresponding to the
category of groups.

Definition 29. A category C is semi-abelian if it satisfies the following con-
ditions:

(S1) C is (Barr-)ezact,
(S2) C is (Bourn-)protomodular, and
(S3) C is pointed and has binary coproducts.

It was already remarked that all varieties of universal algebras satisfy con-
dition (S1) in the definition of a semi-abelian category. Moreover, every variety
of universal algebras admits coproducts (for example, it is well-known that the
coproduct of two groups G and H is given by the so-called free product of G
and H). Thus those varieties of universal algebras which form semi-abelian
categories are precisely the pointed protomodular ones. Recalling that Grp is
indeed pointed, Proposition 17 gives:

Proposition 19. Grp is semi-abelian.

We should also mention that a characterisation of those varieties of univer-
sal algebras which form semi-abelian categories is given in [18|. The charac-
terisation makes it clear that groups are indeed an example of a semi-abelian
category. However, the direct proof of the Short Five Lemma is illuminating
for other reasons, as well as not requiring any background other than classical
group theory, hence we included it in the section on protomodularity.

We now prove that every semi-abelian is normal. This is of course to be
expected, since normal categories capture the First Isomorphism Theorem for
groups, one of the most important results which distinguish groups from other
algebraic structures. A proof is given already in [51|, though not using the
term “normal”. Here we give a slightly more detailed proof which highlights
how conditions about normal epimorphisms can be translated into conditions
about split epimorphisms by considering kernel pairs, motivating in some sense
the condition of protomodularity.

Lemma 13. Fvery semi-abelian category is finitely cocomplete.

Proof. Let C be a semi-abelian category. Since it is pointed, it is enough to
have pushouts. Moreover, following [51], in the presence of coproducts, it is
enough to have pushouts of split epimorphisms along split epimorphisms, since
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the following two diagrams have isomorphic colimits:

B A+ B
I
Cc——A A+C+B— A+ B

! ( 1.]‘;4 >+1B
Since split epimorphisms are always regular epimorphisms, it is sufficient to
have pushouts of regular epis along regular epis. Let f : X - Y andg: X — Z
be two regular epis. Let (R,71,72) and (S, s1,s2) (R and S for short) be the
kernel pairs of f and g respectively. Let (T t1,t3) be the composite of R and S.
We have coequalizers of kernel pairs, and since C is Barr-exact and Mal'tsev
(Proposition 3), (T,t1,t2) is the kernel pair of some morphism. Let h be its

coequalizer. Then h = uf = vg for some unique morphisms v and v since R
and S are both contained in 7. We claim that the square below is a pushout:

u

g
Let p and ¢ be morphisms such that pf = gg. Then the equivalence relation
(K, k1, k3) induced by pf = gg contains both R and S. Since T is the join
of R and S, K must contain T as well, and thus pf = gq factors through
h = uf = vg. The rest follows easily from the fact that f and g are both
epi. ]

Proposition 20. Fvery semi-abelian category is normal.

Proof. Let C be a semi-abelian category. It is enough to prove that every
regular epimorphism is normal. Let f be a regular epimorphism. Then f
decomposes as f = coker(ker(f)) o m = e o m, with e a normal epimorphism
(here we use the fact that C is cocomplete to produce the cokernel). Consider
the kernel pairs (Eq(f),m,ms), (Eq(e), 7}, m5) of f and e respectively. Since
fmy = fm, there is a morphism ¢ : Eq(e) — Eq(f) such that 7] = m o ¢ and
7y = me 0 ¢. Both e and f are regular epimorphisms, so they are in particular
coequalizers of their kernel pairs. Thus for e and f to be isomorphic, it is
sufficient to show that ¢ is an isomorphism. We have the diagram below,
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where both inner squares are pullbacks:

L} L
[ -1 [
ker(my) 72

The outer rectangle is also a pullback, so the kernel object of 7y is isomorphic
to the kernel object of f. Similarly, the kernel object of 7] is isomorphic to the
kernel object of e, which in turn is isomorphic to the kernel object of f. Thus,
since both 71 and 7] are split epis (a kernel pair is always a reflexive relation), ¢
is an isomorphism by the Split Short Five Lemma, i.e. by protomodularity. [

That semi-abelian categories provide a good generalisation of the category
of groups should be attested to by two facts: firstly, that the category of groups
is an example of a semi-abelian category, and secondly, that the context of a
semi-abelian category is suitable for the treatment of important topics arising
from group theory. The former fact has been demonstrated already. As to the
latter, semi-abelian categories and some weaker versions thereof have indeed
been used in treating a variety of such topics, including torsion theories [16],
commutator theory [34], homology [33] and cohomology [40].

2.3 Databases and views

In this section, we give a brief overview of databases and views of databases.
In particular, we give some background on the relational database model,
since this will be the model considered as a guiding example in Chapter 6.
The relational model, originally introduced in [26], is currently the dominant
technology for storing data. More recently, non-relational trends such as the
noSQL movement (see for example [72]) have gained popularity. Non-relational
database management systems such as Apache Cassandra [81] have been used
by large companies such as Twitter, Netflix and eBay. Interestingly, a recent
paper by Meijer and Bierman suggests that relational and noSQL database
models should in fact be viewed as dual to one another [79].

2.3.1 Components of a relational database

The following terminology is adapted from [27]. Note that the structure of a
relational database described here is the conceptual structure. In other words,
it is the structure of the database as perceived by the user, and does not
necessarily bear any resemblance to the way the data is physically stored.
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2.3.1.1 Domains

Individual data values in the relational model are considered to be atomic —
i.e. they cannot be further decomposed from the perspective of the model. A
set of all possible data values of a certain type is called a domain. Examples
might include the set of all integers in a certain range, or of all strings of a
certain length containing characters from a specified list.

2.3.1.2 Relations

Let Dy, ..., D, be sequence of domains. Then a relation on D+, ..., D,
consists of

e a heading consisting of a fixed set of attributes Ay, ..., A,
e a body consisting of a relation R C Dy X ... x D,,.

A typical visualisation of a relation is as a table, whose column headings
are the attributes Ay, ..., A, and whose rows are the elements of R (each such
row is called a tuple). Note that relations are considered to be unordered, so
that rearranging the domains and attributes in the same way give the same
relation (even though it will only be isomorphic as a set).

Sometimes the term “relation” refers to a fixed heading with a body that
is time-dependent, i.e. varying as data is inserted and deleted over time. Part
of the purpose of the work of Johnson and Rosebrugh as described in the last
chapter of this thesis is to clarify the ambiguity between abstract database
schemas and database states which may vary over time. Roughly speaking, a
database schema is a collection of relations whose bodies are all empty, together
with some specified keys (see the next section), which acts as a template for a
database.

2.3.1.3 Keys

Suppose a relation on domains Dy, ..., D, is given by a heading A, ..., A, and
arelation R. Then a candidate key is aset { Ay, Apyy oo Az} C AL, AL}
which is minimal with the property that the projections 7., ..., 7, are

jointly monic for every possible state of the relation R. In other words, it is a
minimal set of attributes which uniquely determines any tuple in the relation.
In particular, every relation has at least one candidate key, since the set of
morphisms {A;,...,A,} is jointly monic, and there are only finitely many
subsets of this set.

Note that the condition of being a candidate key depends on the allowable
states for the relation R, i.e. its values over time. This will either be enforced
by whatever software is used to manage the database, or it will be an external
rule that must be adhered to. For example, an ID number might uniquely
identify any person, but only if duplicate ID numbers are prohibited. For a
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given relation, one candidate key is designated as the primary key, and the
rest will be called alternate keys. Primary keys allow the user of a database
to access any single tuple uniquely, and thus are an important part of any
relational database system.

A foreign key is an attribute (or combination of atttributes) in a relation
Ry whose values are required to match those of the primary key in a relation
Ry. In particular, the foreign key and corresponding primary key should be
defined on the same set of domains. Foreign keys are what allow relationships
between different relations in the database.

2.3.1.4 Integrity rules

The two integrity rules below were introduced in Codd’s original paper [26].
They will not be expressed mathematically, since they rely on the notion of null
value, a value used by a database management system to indicate incomplete
data. For a mathematical approach to null values, see for example [64].

o FEntity integrity: No attribute which is part of a primary key of a relation
is allowed to accept null values.

o Referential integrity: If FK is a foreign key in a relation R; matching
a primary key PK in a relation R,, then every value of F'K must be
either (a) equal to the value of PK in some tuple of Ry or (b) wholly
null (i.e. every component of the tuple is null).

2.3.2 Queries and Views

A query language allows a user to extract, manipulate and combine informa-
tion held in the database. Currently, SQL is by far the most widely-used query
language. It was first defined by Chamberlin and others at the IBM Research
Laboratory [25]. It includes data definition functions which are used to ma-
nipulate the database schema by creating relations (called “tables” in SQL) or
deleting them, as well as functions for manipulating data stored in a relational
database (inserting or deleting tuples for example).

We will not describe the syntax of SQL in detail here, since it is not nec-
essary for the work in Chapter 6. We will show just one example of a query,
along the lines of the example given in Chapter 6. Suppose a database con-
tains a table (i.e. a relation) called suppliers containing all the suppliers for a
certain company, with attributes ‘Name’ and ‘Location’. The following query
(a SELECT query) will extract every row of that table where the ‘Location’
attribute is ‘Cape Town’, and return it to the user:

SELECT *
FROM suppliers
WHERE suppliers.Location = ‘Cape Town’;
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Note that the string ‘Cape Town’ must be included in the domain of the
‘Location’ attribute for this to be defined.

A view, as defined in SQL, is a named, derived table. Consider again the
above example of suppliers for a company. One possible view would be the
table consisting of all those suppliers based in Cape Town. To obtain this
view, the user will execute the query

CREATE VIEW capetown_suppliers AS
SELECT *

FROM suppliers

WHERE suppliers.Location = ‘Cape Town’;

We will not explain the syntax in detail here, but comparing this query
with the one above we see that the view, like any view in SQL, is obtained
from a query (in this case, a SELECT query on the table suppliers). This is
what is meant by a “derived” table. Note that while it was the case here, it is
not necessary that a view contain every attribute of a table.

Views can also be seen as virtual tables. Upon executing the query above,
the user may manipulate (or attempt to manipulate) the view as if it were
a table in the database, using the SQL language. The central question of
Chapter 6 is to what extent this is possible.

2.3.3 View updates

The view update problem is the problem of determining when and how changes
to a view can be propagated to the underlying database. For example, consider
a view of the suppliers table which only contains the names and not the
locations of the suppliers. This view is returned by the following query:

CREATE VIEW capetown_suppliers AS
SELECT name
FROM suppliers;

If the user inserts a new supplier ‘Supplier X’ into this view (thinking of
it as a table), and the change must be propagated back to the underlying
database, then a choice must be made for the ‘Location’ attribute for this
supplier. Possible solutions include a default value, or the null value, but in
general these are not always allowed by the database system. In other words,
not all views are updatable. More detailed examples of updatable and non-
updatable views can be found in Date’s book [27|, Johnson and Rosebrugh’s
paper [65] and Chapter 6 of this thesis.

In practice, the view update problem is dealt with by database management
systems in an ad hoc way: certain views are defined to be updatable, with no
general criteria for updatability. It is precisely the lack of a rigorous, general
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treatment of the view update problem that motivated the work in [65] and
described in Chapter 6 of this thesis.

Views of databases abound in practical applications. They are used, for
example, when a user does not have permission to, or does not desire to, access
all of a company’s data (for example, a cashier in a store, or an external audi-
tor). Views and view updates are especially important in distributed systems
and crowd-sourcing websites, where users must be able to make changes to cer-
tain parts of the available data without jeopardising the rest of the database.
View updatability is also important in the context of linked databases which
are required to interoperate (see [62]).

A survey of mathematical approaches to view updatability is given in [65],
together with links to the work of the authors. For example, an important
alternative approach to the view update problem is given by the notion of
lens [8], which turns out to be related to the work in [65] via the more general
notion of c-lens [68], a notion which turns out to be nothing but a Grothendieck
opfibration — the central notion for this thesis.
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Chapter 3

Forms of subobjects and exact
sequences

3.1 Introduction

The theme of this thesis can be described as follows: replace the axiomatic
context of a category C, with that of a functor F' : B — C. A natural
consequence of this idea is that the notion of duality at the level of a category
C is replaced by the notion of functorial duality: the dual of the statement
about F is that statement stated for F°P : B°® — C°P. In this chapter, we
describe how to translate certain structures on a category C into functors
F :B — C. This is done by way of “classification” theorems: theorems which
classify, using axioms on a functor F', different types of structures on categories
that are typically encountered in categorical algebra.

In this chapter, we look primarily at two such structures on a category C.
The first is a class of morphisms M in C which allows one to work with “direct
images”. By this we mean that M satisfies the following axioms due to Ehrbar
and Wyler [30]:

(M;) M is closed under composition with isomorphisms;

(My) every morphism in C admits a right M-factorisation, i.e. a factorisation
f = me, with m € M, such that for any commutative diagram of solid
arrows below, where n € M, there is a unique morphism w making the
diagram commute.

The second structure we consider is that of a class A of morphisms in C
which we think of as playing the role played by zero morphisms in a pointed

45
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category. This idea goes back to Ehresmann [31], Lavendhomme [71], as well as
Kelly [70]. Such a structure together with certain axioms was used by Grandis
in his “categorical foundations of homological algebra” [41]. The fundamental
requirement on N is that it is closed under right and left composition with
arbitrary morphisms (such a class is called an ideal of null morphisms), a
property which zero morphisms in a pointed category always have, for example.
One may then introduce the notions of kernel, cokernel and exactness of a
sequence relative to A. This allows for the development of homological algebra
in the context of a category equipped with an ideal — see [43] for the complete
theory, as well as examples and applications.

These two structures are related in that they both represent a way to gen-
eralise results and constructions from abelian categories to non-abelian ones:
the class M replaces the notion of the (cokernel, kernel)-factorisation system,
while the ideal N replaces the notion of pointedness (and hence the classical
notions of cokernel and kernel). What is more surprising is that the work
in this chapter shows that they are mathematically linked: the axioms which
characterise functors arising from classes M, together with their (functorial)
duals, are precisely those that characterise functors arising from ideals N'. This
is made more precise in the subsequent sections.

In this chapter, we first look at the general case of codomain functors, of
which the notion of form of M-subobjects arising from a class M is a special
case. We then restrict to the case of faithful, amnestic functors (called forms),
and derive a correspondence between classes M of monomorphisms satisfying
(M;) and (M2) and functors satisfying certain conditions. We then deal with
functors which are so-called forms of N -short-exact sequences for an ideal N
of null morphisms, and relate the axioms which characterise these functors to
those corresponding to forms of M-subobjects.

Some of the results in this chapter can be obtained via another route, one
which goes via the work of Z. Janelidze on cover relations |54]. This approach
is contained in a joint paper with Z. Janelidze [59].

3.2 Codomain functors

Let C be a category and C? be the category of arrows of C. A class C of
morphisms in C can be viewed as a full subcategory of C2, which we denote
simply by C, following a suggestion of Tholen. Thus the category denoted
by C has as objects morphisms ¢ : A — C' in the class C and as morphisms
commutative squares of the form

;)D

Td (3.2.1)
B

" Q)

_
g
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where ¢ and ¢ are in the class C. Following the notation used in [30], we write
such a square as (f,g) : ¢ = ¢. The codomain functor Code : C — C takes
such a square to f : C' — D and the domain functor Dom¢ : C — C takes it to
g : A — B. Many conditions on C can be translated into conditions on Codc,
as the following two lemmas show.

Lemma 14. Suppose C contains all the identity morphisms. Then the square
(8.2.1) is cartesian with respect to Code if and only if it is a pullback.

Lemma 15. Suppose C contains all the identity morphisms. Then the square
(8.2.1) is cocartesian with respect to Codc if and only if ¢ o g is a right C-
factorisation of f oc.

In particular, the notion of pullback becomes dual to the notion of right
C-factorisation when we think in terms of the codomain functor Codc. This is
not surprising, since these two notions typically correspond to the notions of
inverse image and direct image, respectively, in a category [30].

Lemma 16. Let C be a class of morphisms in a category C containing the
identity morphisms. Let lde : C — C be the functor which takes every object
C in C to the identity morphism on C' and every morphism f : C — D to
(f,f):1c = 1p. Then

(1) there are two adjunctions (Code,ldc,7,1) and (ldc, Dome, 1,0), where 1
denotes the identity natural transformation on 1¢ and where for a mor-
phism ¢ : A — C in C, the components of the natural transformations ~y
and § are given by v. = (1g,¢) : ¢ = 1¢ and 6. = (¢, 1¢) : 14 — ¢;

(2) the class C is the image of all the components of 6 under Codc, and
dually, the image of all the components of v under Dom¢;

(8) every component of ¢ is cocartesian with respect to Code, and dually,
every component of v is cartesian with respect to Dome.

Proof. (1) is easy to verify and (2) is obvious. By Lemma 15, the first part of
(3) is equivalent to the statement that every morphism ¢: A — C in C has a
right C-factorisation co 14, which is easy to check. The second part of (3) can
be proved dually. O]

By an equivalence from a functor F' : B — C to a functor F’ : B’ — C,
we mean an adjoint equivalence (E, D, ¢, 1) from B to B’ such that ['E = I,
FD =F' F¢ = 1p and F'ip = 1. We will call two functors F : B — C
and [’ : B" — C equivalent when there is an equivalence from F' to F’. The
following lemma is easy to verify.

Lemma 17. Let (E, D, ¢,) be an equivalence from a functor F to a functor
F'. Then E and D preserve cartesian and cocartesian morphisms.
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Theorem 4. For any functor F : B — C, the following are equivalent:

(1) there exists a class C of morphisms in C containing the identity mor-
phisms such that Code and F are equivalent;

(2) there ezist adjunctions (F,T,n,1) and (T, L,«,¢) with T a full functor
such that every component e of € is cocartesian with respect to F' (where
1 is the identity natural transformation on 1¢);

(8) there exists a full functor T such that FT = l1c and an adjunction
(T, L, v, €) such that every component eg of € is cocartesian with respect
to F'.

Proof. (1) = (2) Suppose (E, D, ¢,1) is the adjoint equivalence between B
and C which witnesses the equivalence of F' and Code. Set T'= D o lde and
L = Dom¢ o E. Then since E is a left and right adjoint of D, we obtain
the required adjunctions. In particular, the fact that F' 4 T has counit the
identity follows from Cod¢®) = 1lcod,. The functor T is clearly full since it is
the composite of the full functors Ide and D. In the notation of Lemma 16, the
counit of "4 L will be e = DJFE o ¢. Each component ep is E-cocartesian (as
indeed any morphism in B is), and E(ep) is Cod¢-cocartesian (it is isomorphic
to dp(p), which is Cod¢-cocartesian by Lemma 16). It is easy to check that
this makes e F'-cocartesian as required.

(2) = (3) is obvious.

(3) = (1): We have the natural transformation Fe : L = F'. Since C? is the
comma category (C | C), this gives rise to a functor £ : B — C2. Explicitly,
E takes an object B to the arrow F(eg), and a morphism b: B — B’ in B to
the square:

FB)— . p(By)

T TF(EB/)

L(B) —— 57— L(B)

We will show that FE is full and faithful. Consider a commutative square of
the following form:

F(B)——— F(B)
F(en T TF(&B/) (3.2.2)

L(B) ———— L(B")
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For a morphism b : B — B’, g = L(b) if and only if the diagram below
commutes:

B b s B/
EBT EB/T (3.2.3)
TL(B) T>TL(B')

Thus (3.2.2) is the image of b under E if and only if F'(b) = f and (3.2.3)
commutes. By cocartesianness of g, there is a unique such morphism b.

The image of F is nothing but a class of morphisms C’. Let C be the closure
of C' under right composition with isomorphisms. If we restrict £ to the functor
E' : B — C, the functor E’ will be an equivalence, since C is contained in the
essential image of E. The fullness of T" ensures that for every object C in
C, er(c) is an isomorphism. Hence so is F(ep)) : LT(C) — C, and thus C
will contain the identity on C' (simply right compose with its inverse). Thus
C contains all the identity morphisms. Assuming the axiom of choice, every
equivalence is part of an adjoint equivalence, and it is easy to check that we can
construct the adjunction (E’, D, ¢,1) such that it satisfies all the conditions
required to make it an equivalence between F' and Codc. ]

By equivalence classes of functors, we always mean equivalence classes of
functors under the equivalence relation “ F' is equivalent to G”. For convenience,
we will denote condition (2) in the above theorem by (L):

(L) there exist adjunctions (F,7,n,1) and (7', L, a, ) with T" a full functor
such that every component g of € is cocartesian with respect to F.

Theorem 5. Let C be a category. Then there is a bijection between:

(1) classes of morphisms which contain the identity morphisms and are closed
under right composition with isomorphisms, and

(2) equivalence classes of functors F' : B — C satisfying (L).

Proof. To each class C of morphisms we assign the equivalence class of the
functor Codc (all functors in this class satisfy (L) by Theorem 4), while to
each equivalence class represented by a functor ' we assign the closure under
right composition with isomorphisms of the family (F'(¢p))pep, which we will
denote by F* (this is the class C from the proof of Theorem 4). We need to
show that this is well-defined. Firstly, we, we need to show that [ is invariant
under the choice of adjoints 7" and L. A straightforward calculation shows that
for any two chains of adjunctions F 47T 4 L and F' 4T - L', there is a natural
isomorphism € such that ¢’ o § = ¢, where ¢ and ¢ are the counits of 7" - L'
and T - L respectively. This gives the required result. Secondly, we need to
show that the action F' — F™ is invariant under equivalence. Suppose F' and
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F’ are two equivalent functors satisfying condition (L). By symmetry, it is
enough to show that F'* C F"*. Suppose (E, D, ¢, 1) witnesses the equivalence
of ' and F’, and F’ is part of a chain of adjoints F' 4 T" 4 L', where &’ is
the counit of 7" - L’. By the previous remark, we can calculate F* using the
chain ' 4 DoT" 4 L' o E. The counit of this last adjunction is De'E o ¢.
Consider a component DS/E( B)© ¢p. Its image under F is F’ 5}3( B) which is in
F™ so we have F* C F™ as required. Now all that remains is to show that
this assignment gives a bijection. By Lemma 16 we have that Cod; = C, and
the fact that Codp- is equivalent to £ follows from the proof of Theorem 4. [

It is now possible to combine Theorem 5 with other well-known results
to obtain a correspondence between conditions on a class of morphisms and
conditions on a functor F. For example, let M be a class of morphisms
containing the identity morphisms. Then it follows from Lemma 15 that the
following are equivalent:

e (M) and (Ms) (see Introduction) hold;

e Cod,, is an opfibration.

It is easy to check that the property of being an opfibration is preserved
under equivalence (it is not true in general that Grothendieck opfibrations are
closed under composition with equivalences of categories, but the additional
requirements in the definition of an equivalence of functors ensures this re-
sult). Also note that any class satisfying (M) and (Ms) contains the identity
morphisms, and that under (My), condition (M;) is equivalent to the weaker
condition:

(M) M is closed under right composition with isomorphisms.
Thus we immediately obtain:
Corollary 2. Let C be a category. Then there is a bijection between:
(1) classes of morphisms which satisfy (My) and (My), and
(2) equivalence classes of opfibrations F' : B — C satisfying (L).

Again when M contains all the identity morphisms, the following are equiv-
alent by Lemma 14:

e all pullbacks along morphisms in M exist and M is pullback-stable;

e Cod,, is a fibration.

We thus obtain another bijection between:
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e classes M of morphisms satisfying (M]) such that all pullbacks along
morphisms in M exist and M is pullback-stable, and

e cquivalence classes of fibrations F' : B — C satisfying (L).

3.3 Forms of M-subobjects

We will call a functor F' a form when it is faithful and amnestic. In particular,
the fibres of such a functor will be (partially) ordered sets. Note that in the
original definition in [58], the term “form” was reserved for faithful amnestic
functors which are also bifibrations. In this section we borrow terminology
freely from [59].

Definition 30. A form F : B — C is called locally bounded above if every
fibre F=Y(C) has a terminal object (i.e. a top element), which we denote by
T(C).

Definition 31. Given a form F : B — C which is locally bounded above, a left
universalizer [58] of an object B in B, denoted by lun(B) : Lun(B) — F(B), is
a terminal morphism in C among those morphisms f : A — F(B) in C with
the property that there exists a morphism f" from T'(A) to B with F(f') = f.

In other words, for an object B with a left universaliser lun(B) : Lun(B) —
F(B), there is a (unique) morphism eg : T(Lun(B)) — F(B) with F(ep) =
lun(B) and moreover, for any other morphism f : T(C') — B, where C is an
object of C, there is a morphism i such that F(ep) oi = F(f). Consider the
following condition on a form F

(LE) for every object C' and morphism f : C' — C" in C, if the fibre of C' has
a terminal object T'(C'), then there is a (unique) cocartesian lifting of f
from T'(C'), whose codomain we denote by f - 1.

The object f -1 was called the left norm of f in [58]. When we define
something to be f -1, we are in particular implying that it (and the terminal
object in fibre at the domain of f) exists. For a form F' satisfying (LE), the
notion of left universaliser can be suggestively rephrased:

Lemma 18. Let F' : B — C be a form which is locally bounded above and
which satisfies (LE). Then the assignment C' — T(C) extends to a functor in
a unique way such that FoT = 1¢. An object B has a left universaliser if and
only if it has a coreflection along T .

Proof. For a morphism f : C' — C’, define T(f) to be the composite of the
cocartesian lifting of f from 7'(C') and the unique morphism in the fibre at C”
from f -1 to T(C"). Since F' is faithful, this is the unique way to define T,
and the uniqueness ensures that 7 is a functor (moreover, 7" will be full and
faithful). The second part is now easy to verify. m
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The following proposition follows easily from the lemma above:
Proposition 21. Let F : B — C be a form satisfying (LE). Then

(1) there is an adjunction (F,T,n,1) if and only if F is locally bounded above
(where 1 is the identity natural transformation on 1¢), and

(2) when this is the case, then there is an adjunction (T, L, «, ) if and only
if every object B in B has a left universalizer.

Note that when both (1) and (2) in Proposition 21 hold, condition (LE) will
ensure that F'is an opfibration, since every object is the image of a cocartesian
morphism with domain a terminal object. The following lemma gives a useful
fact about cocartesian morphisms for faithful functors:

Lemma 19. Let F : B — C be a faithful functor and let f and g be a com-
posable pair of morphisms in B. Then g is cocartesian if go f 1is.

Definition 32. Let F : B — C be a form which is locally bounded above. We
say that an object B 1s conormal if it is equal to f -1 for some morphism f in
C, 1.e. it is the codomain of a cocartesian morphism with domain a terminal
object. We say that a form F : B — C which is locally bounded above is
conormal if every object B in B is conormal.

Lemma 20. Let F': B — C be a form which is locally bounded above, and let
B be an object of B which has a left universaliser lun(B). Then B is conormal

if and only if lun(B) -1 = B.
Proof. This is a straightforward application of Lemma 19. [

Two forms F' : C — C and F’ : B — C are equivalent as functors if
and only if they are isomorphic, i.e. there exists an isomorphism I such that
F'I = F. Equivalence classes of forms will thus be referred to as isomorphism
classes. Notice that every faithful functor is equivalent to a form — we simply
identify isomorphic objects in each fibre. Moreover, cartesian and cocartesian
liftings are preserved by this process by Lemma 17.

When C is a class of morphisms containing the identity morphisms, it is
easy to check that Cod¢ is faithful if and only if every morphism in C is a
monomorphism. For a class M of monomorphisms, we will call the form
which is equivalent to Cody, the form of M-subobjects, and denote it by

COdM ﬂ—HC

We say that a form F' : B — C which is locally bounded above admits left
universalisers when every object B in B has a left universaliser. Combining
the results in this section with Theorems 4 and 5 (and noting that a right
inverse T' of F' will be full whenever F is faithful), we obtain the following two
corollaries:
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Corollary 3. Let FF : B — C be a form. Then there exists a class M of
monomorphisms containing the identity morphisms such that the form of M-
subobjects is isomorphic to F if and only if F is locally bounded above, conormal
and admits left universalisers.

Corollary 4. Let C be a category. Then there is a bijection between:
(1) classes of monomorphisms which satisfy (M) and (Ms), and

(2) isomorphism classes of faithful amnestic opfibrations F : B — C which
are locally bounded above, admit left universalisers and are conormal.

Under this bijection, each class M 1is assigned to the form of M-subobjects,
while to each form F we assign the class of all left universalisers for .

This second corollary is Theorem 2.4 from [59]. The approach to this
result in [59], however, goes via a more general correspondence between faithful
amnestic opfibrations which are locally bounded above and conormal (but
which do not necessarily admit left universalisers) and reflexive and transitive
cover relations [58].

Recall that a category C is finitely M-complete in the sense of Dikran-
jan and Tholen [28] when it satisfies (M;) and (M,) and all pullbacks along
morphisms in M exist (the class M will then be pullback-stable). Thus the
bijection in Corollary 4 restricts to a bijection between

e classes M of monomorphisms such that C is finitely M-complete, and

e isomorphisms classes of faithful amnestic bifibrations (called biforms)
over C which are locally bounded above, conormal and admit left uni-
versalizers;

It is also well known that a class M satisfying (M) and (M,) is part of a
(uniquely determined) factorisation system (£, M) in the sense of Freyd and
Kelly [37] if and only if M is closed under composition. Thus we obtain a
bijection between

e classes M of monomorphisms which are part of a factorization system

(€, M), and

e isomorphisms classes of left forms over C which are locally bounded
above, conormal, admit left universalizers, and for which the class of left
universalizers is closed under composition.

As a direct corollary of Proposition 1.4.20 in [58] and the bijection between
cover relations and forms established in [59], we obtain that this last condition,
namely that the class of left universalisers is closed under composition, is
equivalent to the following one:
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e for every left universaliser m : M — Y, the push-forward functor m* :
F~YM) — F7Y(Y) is full.

We should remark that the results obtained in these last two sections are
closely related to the work in [46], where only the case when M is a class of
morphisms which is part of a factorisation system (€, M) is considered.

3.4 Forms of N-exact sequences

A class A of morphisms in a category C is called an ideal of null morphisms [31;
70; 71] if it satisfies the following condition:

(N) for any triple of morphisms f: A - B, g: B — C and h: C — D,
geEN = hgf eN.

Definition 33. Let C be a category and N be an ideal of null morphisms.
Then an N -kernel of a morphism f : A — B is a morphism k : K — A such
that fk € N and such that for any other morphism k' : K' — A such that
fk' € N, there is a unique morphism i such that ki = k'. An N -cokernel of a
morphism g is defined dually.

A pair (f,g) of composable morphisms (i.e. for which g o f is defined) will
be called N-short-exact when f is the N-kernel of g and ¢ is the N-cokernel
of f. Let P be a class of composable pairs of morphisms in a category C.
We consider some conditions on P inspired by the example of NV -short-exact
sequences for an ideal \:

(P1) for any two pairs (f,g) and (f’,¢') in P and any morphism h as shown
in the diagram below, there is a bijection between morphisms ¢ such that
hf = f’i and morphisms j such that jg = ¢'h:

f g

< &

(Py) for every object C' in C, there are composable pairs (1¢,¢) and (k, 1¢)
in P, with ¢ an epi and k£ a mono.

Lemma 21. Conditions (P1) and (P3) together imply the following condition:

(P3) for every pair (f,g) in P, f is mono and g is epi.
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Proof. Suppose (P1) and (P3) hold and let (f,g) be a pair in P. Let « and 3
be two morphisms such that fa = f/3. Consider the diagram:

<

a lfca ]

e

where (1,¢) is in P and ¢ is epi. Then there is at most one morphism j
such that jc = gh, which means there is at most one morphism ¢ such that
fi = fa = fB, which gives a = 3. The fact that g is epi follows dually. m

Given any class P of composable pairs of morphisms, we can consider P
as a full subcategory (which we also denote by P) of the category C? x¢ C?
of composable pairs of morphisms in C. We can then consider the restricted
“midpoint” functor Midp : P — C which takes a composable pair (f : A —
B,g: B — C) to B. When (P3) holds, this functor is faithful, and so we can
produce a form

Midp : P = C

by identifying isomorphic objects in each fibre. We call this form the form
of P-sequences. We now give definitions for the duals of some of the notions
which appeared in the previous chapter.

Definition 34. A form F : B — C s called locally bounded below if every
fibre F~1(C) has an initial object (i.e. a bottom element), which we denote by
I(C). A form F which is locally bounded below and above will be called locally
bounded.

Definition 35. Given a form F : B — C which is locally bounded below,
a right universalizer [58] of an object B in B, denoted by run(B) : F(B) —
Run(B), is an initial morphism in C among those morphisms f : F(B) — C
in C with the property that there exists a morphism f' from B to I(C) with
F(f) = f.

For a form which is locally bounded below, we denote the domain of the
cartesian lifting of a morphism f: A — B to I(B) by 0- f (when it exists).

Definition 36. Let F' : B — C be a form which is locally bounded below. We
say that an object B is normal if it is equal to O - f for some morphism f in
C. We say that a form F : B — C which s locally bounded below is normal if
every object B in B is normal.

We also have a notion which is dual to the notion of form of M-subobjects.
Given a class £ of morphisms, we can consider the domain functor Domg : £ —
C. If € is a class of epis, this functor is equivalent to a form

Domg : £ — C,

which we call the form of £-quotients.
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Theorem 6. The following are equivalent for any form F :B — C:

(1) there exists a class P of pairs of composable morphisms satisfying (P1)
and (P3) such that F is isomorphic to the form of P-sequences;

(2) F satisfies (L) and its (functorial) dual;

Proof. (1) = (2): For a class P of composable pairs of morphisms, let M
(resp. £) be the class of all morphisms which appear as a first (resp. second)
component in some element of P, and let 7 : P - M and my : P — &
be the first and second projection functors respectively. Conditions (P;) and
(P3) ensure that both m; and 7y are equivalences, and that both £ and M
contain the identity morphisms. Moreover, m; and 7y form part of equivalences
between the functor Midp and Codn; and Domg respectively. Thus the form
of P-sequences is isomorphic to Cody, and Domg, and hence satisfies (L) and
its dual by Corollary 3 and the dual result.

(2) = (1): By Corollary 3 (and the dual result), we have isomorphisms
I:B— MandJ:B — & for some classes M (of monos) and & (of epis) such
that M ol = F = EoJ, where M and E are the forms of M-subobjects and
E-quotients respectively. This gives rise to a functor H : B — M x¢ &, where
M x¢ € is the pullback of M along E. While H may not be an isomorphism,
it is easy to check that it is full and faithful (the fact that F' itself is faithful
plays an important role here). Thus restricting H to its image, it becomes an
isomorphism. The image of H is nothing but a class of composable pairs of
(isomorphism classes of ) morphisms. In other words, H is isomorphic to a form
of P-sequences for some P. Since I and J are isomorphisms, m; : MxcE — M
and 7y : M x¢ & — € will be faithful, so P satisfies condition (P;). Condition
(P3) is satisfied since M and £ both contain the identities and are classes of
monos and epis respectively.

]

Consider the following condition on a class P of pairs of composable mor-
phisms:

(Po) if (f,g9) € P, then (fu,vg) € P for any isomorphisms u and v such that
the composites fu and vg are defined.

A class P of morphisms satisfying (Py), (P1) and (P2) is completely deter-
mined by the class M of those morphisms which appear as a first component
in P, since every morphism m in M is part of exactly one pair (m, e), up to left
composition of e by an isomorphism. This allows us to restrict the bijection
given in Theorem 5 to obtain:

Corollary 5. Let C be a category. Then there is a bijection between:

e classes of pairs of composable morphisms P satisfying (Py), (P1) and
(P2).
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e isomorphism classes of forms F which satisfy (L) and its (functorial)
dual.

Under this bijection, we assign to P the form of P-sequences, while to a form
F we assign the class of all pairs (m,e) such that m is a left universaliser and
e is a right universaliser of the same object B.

Any class P satisfying (P1) and (Py) determines an ideal N of null mor-
phisms relative to which identity morphisms have cokernels and kernels. In-
deed, define the ideal as follows: a morphism f : A — Bisin N if f = mc
for some morphisms m and ¢ with (14,¢) € P. Clearly, by condition (P;),
a morphism f satisfies this condition if and only if it satisfies the dual one,
i.e. f = ke, for some morphisms k and e with (k,15) € P. Using these two
equivalent definitions, one easily sees that the class N is an ideal of null mor-
phisms. The kernel and cokernel of an identity morphism 14 are simply the
morphisms k£ and ¢ occuring in (Py) respectively.

We can also describe this construction in terms of the corresponding form
of P-sequences P. A morphism f is defined to be in N precisely when it fits
inside a diagram of the following form:

Ik

where the top and bottom pairs are in P. In fact, the top (resp. bottom) pair
is a representative of the terminal (resp. initial) objects in the fibre of P at
the domain (resp. codomain) of f. Thus a morphism f : A — B is in N if
and only if it is the image of a morphism f’' : T(A) — I(B) from a terminal
object to an initial object. For an arbitrary form F', we call such a morphism
f an F-null morphism.

Lemma 22. Let P be a class of composable pairs of morphisms satisfying (P1)
and (Py) and let N be the corresponding ideal of null morphisms. Then any
pair (f,g) in P constitutes a short exact sequence relative to N

Proof. By duality, it is enough to show that f is the kernel of g. Suppose gh is
in V for a morphism h. Then we have the following diagram of solid arrows:

- _c
b

where gh factors through ¢ and (1, ¢) is in P by definition. But then, by (Py),
we have a morphism ¢ shown by the dotted arrow which makes the diagram
commute, and moreover, it is the unique such since c is epi. O
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Given a ideal of null morphisms A, we can consider the class Ex(N) of all
short exact sequences relative to N. We will call the form of Ex(N)-sequences
the form of N -short-exact sequences.

Theorem 7. For a given category C, there is a bijection between:
(1) ideals of null morphisms N in C admitting all cokernels and kernels;

(2) isomorphism classes of binormal biforms F : B — C which are locally
bounded above and below, and admit all left and right universalisers;

Under this bijection, each ideal N is assigned to the form of N -short-exact-
sequences, while to each form F we assign the class of all F-null morphisms.

Proof. By Corollary 5, forms satisfying the conditions in (2) are in bijection
with classes P satisfying conditions (Pg)-(P2) and whose form of P-sequences
is a bifibration. We claim that such classes are in bijection with ideals N
admitting all kernels and cokernels. One direction of the bijection will be
given by assigning to an ideal N the class of N-short-exact sequences, while
the other direction will be the construction of an ideal from a class P given
earlier. Given an ideal A/, N is clearly equal to the ideal corresponding to the
class of NV -short-exact sequences (a morphism is in A if and only if it factors
through a cokernel of an identity). Now let P be a class of composable pairs of
morphisms satisfying the conditions and consider the biform of P-sequences.
It is easy to show that if f is a morphism in C, then the morphism shown by
the diagram below is cartesian if and only if m is the A/-kernel of f.

e

Thus the corresponding ideal ANV admits all kernels and cokernels. We have
by Lemma 22 that P is contained in Ex(A). On the other hand, given any
N-short-exact sequence (k: W — X,e: X — Y), the first component of the
cartesian lifting of e to the pair (k,1y) € P must be an N-kernel of e by
the above remark. Thus (k,e) must be in P by condition (Pg). This shows
that every A -short-exact sequence is in P, so P = Ex(N). Composing this
bijection with the one given earlier in the proof gives the required result. [J

A consequence of Corollay 4 and it dual result is that there is a bijec-
tion between isomorphism classes of forms satisfying the conditions in (2) in
Theorem 7 above, and pairs (£, M), where M is a class of monomorphisms
satisfying (M) and (Ms), and & is a class of epimorphisms satisfying the dual
conditions, such that the form of M-subobjects is isomorphic to the form of
E-quotients. Composing with the bijection in Theorem 7, we obtain that an
ideal A/ admitting all kernels and cokernels is the same as such a pair (£, M),
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where by “is the same as” we mean that there is a bijection between these two
types of structures — namely, for an ideal N the corresponding pair (£, M)
consists of the class £ of N-cokernels and the class M of N -kernels.

Theorem 7 is also contained in [59]. The approach to the result there goes
via a correspondence between ideals N for which every morphism f : B — C
in C is part of an N-exact (not necessarily short exact) sequence

A4 -l c_h.p

(with the notion of M-exact suitably defined) and binormal biforms which are
locally bounded (but do not necessarily admit left and right universalisers).
A pair (C,N), where C is a category and N is an ideal of null morphisms
in C, is an ex2-category in the sense of Grandis [41] if C admits all cokernels
and kernels relative to N and moreover these cokernels and kernels are closed
under composition. Combining Theorem 7 above with the remark at the end of
the last section, we see that for a given category C there is a bijection between:

e ideals of null morphisms A such that (C, ') constitutes an ex2-category,
and

e isomorphism classes of binormal biforms F' to C which are locally bounded,
admit all left and right universalisers and where for every left /right uni-
versaliser, the push-forward/pull-back functor induced by it is full.

It is worth noting that throughout this section, we have only dealt with
faithful functors, i.e. forms, whereas in the previous sections we were able to
sometimes obtain bijections for more general functors. Since the generalisation
of pointed categories to categories equipped with an ideal has led to develop-
ments in non-abelian homological algebra, it would be interesting to see if a
notion of homological algebra could be developed with the form of AN -exact
sequences replaced by a non-faithful functor satisfying similar axioms.

3.5 Concluding remarks

Let F be a biform, and consider the following weaker versions of condition (L)
and its dual:

(L") F is locally bounded above and admits left universalisers.

(R’) F is locally bounded below and admits right universalisers.

A biform F' satisfying both of these conditions is precisely one which fits
into the following picture:
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R H\|\I 4 |F H|T 4L

~N-

C

where the counit of ' 4 T and the unit of I 4 F are the identity (and as a
result, the unit of 7' - L and the counit of R - I are isomorphisms). This struc-
ture, which is simplicial in character, is similar to the pointed combinatorial
ezactness structures considered in [52|. In the case of pointed combinatorial
structures, however, the categories C and B are replaced with sets.

The most important case of a form which we will consider in this thesis is
that of the form of subobjects in a category C, i.e. the form of M-subobjects
with M the class of all monomorphisms in C. The guiding example of such
a form is the form of subgroups over the category of groups. In this case,
the functors in the simplicial picture above represent well-known notions in
group theory. Indeed, T" and I take a group G to G and the zero group re-
spectively (seen as subgroups of ), while L and R take a subgroup S of G
to S and the quotient group G/S respectively (in case S is not normal, this is
the quotient of G by the normal closure of S). The idea (due to Z. Janelidze)
behind the work in [59; 60; 61], as well as in this thesis, is to use the context of
such a simplicial structure, together with some additional axioms, to establish
isomorphism theorems and other results for groups in a self-dual way. This
simplicial stucture was mentioned in a talk by Z. Janelidze [57], but the de-
scription there contained a mistake, which the work presented in this chapter
fixes. Forms of subobjects of group-like structure will be further studied in
the subsequent chapters.
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Chapter 4

Exact forms

Adapted from: Z. Janelidze and T. Weighill, Duality in non-abelian algebra
II. From Isbell bicategories to Grandis exact categories (submitted; preprint at
hitp://math.sun.ac.za/cms/).

4.1 Introduction

In the previous chapter, we defined the notion of a form and the related no-
tions of left and right universalisers, amongst others. The idea behind the
development of the theory of forms is to define a self-dual axiomatic context
in which isomorphism theorems and diagram lemmas for non-abelian algebras
such as groups can be established. The next step should thus be to organise a
suitable list of self-dual axioms which capture important aspects of the cate-
gory of groups. In this chapter we look at one such axiom (axiom (E) below),
and the corresponding notion of ezact form.

The First Isomorphism Theorem for groups states that every group homo-
morphism f : G — H factorises as follows:

f

N A

G/ker(f) ——Im(f)

G H

where m is the inclusion of the image of f into H, # is an isomorphism, and e is
the evident quotient map. This can be expressed categorically as the following
statement about the category Grp of all groups: every morphism f factorises
as a normal epi e followed by a monomorphism m. The dual of this statement
does not hold in Grp (it does, however, hold in the category Ab of abelian
groups).

Recalling the notation and terminology of the previous chapter, we can
state the First Isomorphism Theorem for groups in a self-dual way. Let C be
the category of groups and let F' : B — C be the bifibration of subgroups

61
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(i.e. the form of subobjects over Grp). Then it turns out that the First
Isomorphism Theorem can be expressed as follows:

(E) every morphism f in C in factorises as f = lun(f - 1) orun(0- f).

In this chapter, we examine this statement, which we consider as a con-
dition on a form F, as well as some weaker conditions. These conditions
turn out to be closely related to the notion of prefactorisation and factori-
sation systems [37]. They also turn out to classify, via the correspondence
established in the previous chapter, various exactness axioms considered by
Grandis in [41; 42; 43|.

4.2 Preliminaries

We begin by introducing some new notation suitable for the type of forms we
will be dealing with in this chapter. In general, these forms will always be
locally bounded, but will not admit all left and right universalisers, and will
not be conormal or normal. Nonetheless, many important results carry over
from the previous chapter (see for example Lemma 27 later in this section).

Let F : B — C be a form. For an object X of C, we write 1% (and
sometimes simply 1) for the upper bound of F'~1(X), when it exists, and 0%
(or simply 0) for the lower bound, again when it exists. When a morphism
f: X — Y has a cocartesian lifting at an object A € F~1(X), the codomain
of this cocartesian lifting will be denoted by fA (and sometimes by f - A).
Dually, when f has a cartesian lifting at B € F~!(Y), the domain of this
lifting will be denoted by Bf (and sometimes by B - f). When we say that B f
(or fA) is defined we are making a claim/assumption that the object which it
is supposed to represent exists, i.e. the (co)cartesian lifting of f at B (at A)
exists. In particular, for a locally bounded form, f -1 and 0- f are as defined
in the previous chapter. The following lemmas are consequences of standard
properties of (co)cartesian liftings of morphisms:

Lemma 23. Consider two morphisms f : X — Y and g : Y — Z, and an
object A € F~1(X). If f- A is defined, then g- (f - A) is defined if and only if
(go f)- A is defined, and g-(f-A) = (go f)- A when they are defined. Dually,
for any object B € F~Y(Z), if B - g is defined then (B - g) - f is defined if and
only if B-(go f) is defined, and (B -g)-f = B-(go f) when they are defined.

Lemma 24. Consider a morphism f : X — Y and two objects Ay, Ay €
F7YX). Ifboth f-Ay and f-As are defined, then A1 < Ay implies f-A; < f-As.
Dually, for any two objects By, By € F~1(Y)), if both By-f and Bo- f are defined,
then By < By implies By - f < By - f.

Henceforth in this section we work in a category C equipped with a form
F which is bounded in the following sense:
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Definition 37. A form F over a category C is said to be bounded when it is
locally bounded and for any morphism f : X — Y in C, both f-1 and 0- f are
defined.

In other words, a bounded form is a locally bounded form satisfying con-
dition (LE) and its dual from the previous chapter. Note that the notion of a
bounded form is self-dual: a form F': B — C is bounded if and only if the dual
form F°P : B°P — C°P is bounded. Also note that in a bounded form, left and
right universalisers can be defined equivalently as follows: a left universalizer
of an object B € F~1(Y) is a morphism f : X — Y which is terminal with the
property that f - 1% < B, while a right universalizer of an object A € F~(X)
is a morphism f : X — Y which is initial with the property that A < 0¥ - f.
The following lemma is easy to prove.

Lemma 25. Any left universalizer f of an object B € F~1(Y) is necessarily
a monomorphism, and f' is another left universalizer of the same object B if
and only if f' = fi for some isomorphism i. Dually, a right universalizer of
an object A € F~YX) is an epimorphism, and if f is a right universalizer
of A then f' is also a right universalizer of A if and only if f' = jf for a
isomorphism j.

The proof of the above lemma uses the fact that if f : X — Y is an
isomorphism then f - 1% = 1Y (and dually, 0¥ - f = 0%). In general, a
morphism f : X — Y such that f-1% = 1V will be called a thick morphism.
Dually, when 0Y - f = 0% we say that f is thin.

A class C of morphisms is said to be a left class if it has the following
properties:

e C contains all identity morphisms.
e ( is closed under composition.
o If fg € C then g €C.

Dually, C is said to be a right class if the first two conditions above hold, and
fg € C always implies f € C. Notice that the class of split monomorphisms is
the smallest left class, and the class of split epimorphisms is the smallest right
class. Note also that a left/right class always contains all isomorphisms. The
class of all mono(/epi)morphisms is another example of a left(/right) class.

Lemma 26. The class of all thin morphisms is a left class, and dually, the
class of all thick morphisms is a right class.

Recall that an object A € F~1(X) is said to be normal when A = 0¥ - f
for some morphism f : X — Y in C, and that, dually, an object B € F~}(Y)
is said to be conormal when B = f - 1% for some morphism f : X — Y.
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Lemma 27. Consider a left universalizer f : X — Y of an object B €
F~YY). Then:

e f is also a left universalizer of f - 1%.
e B is conormal if and only if f - 1% = B.
e f is an isomorphism if and only if it is thick.

Dually, if f is a right universalizer of an object A € F~1(X), then f is also
a right universalizer of 0¥ - f and A is normal if and only if 0¥ - f = A, and
finally, f is an isomorphism if and only if it is thin.

A morphism f: X — Y is said to be an embedding if for any two conormal
objects Ay, Ay € F~1(X) we have

f-A<f- A = A <A.

Dually, f is a coembedding if for any two normal objects By, By € F~1(Y) we
have

A <A f = A <A
Lemma 28. The class of all (co)embeddings is a left (right) class.

4.3 The general theory

We recall from [37] (see also [21], and the Background section in this thesis)
some notation and some very basic notions and results from the theory of
factorization systems. A morphism e is said to be orthogonal to a morphism
m, written as e | m, if any commutative square of solid arrows

.L}.

L e l (4.3.1)

.T>.

admits a unique diagonal fill-in d which makes the two triangles inside the
square commute. For two classes & and M of morphisms, we write £ | M
when e | m for all e € £ and m € M. Then, for a class C of morphisms,

Ct=1{m|CL{m}}, C'={e|{e}iC}.

A prefactorization system is a pair (£, M) such that &€ = M" and &F =
M. A factorization system is a prefactorization system (€, M) such that any
morphism f decomposes as f = me where e € £ and m € M. Already in a
prefactorization system both classes £ and M contain isomorphisms and are
closed under composition. A factorization system can be equivalently defined

as a pair (£, M) such that £ | M and in addition:
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e both £ and M contain identity morphisms are are closed under compo-
sition with isomorphisms;

e any morphism f decomposes as f = me where e € £ and m € M.

Lemma 29. In a category equipped with a bounded form, we have e | m in
any of the following cases:

e when e is thick and m is a left universalizer;
e when e is a right universalizer and m is thin.

Proof. Suppose e is thick and m is a left universalizer. Consider a commutative
square (4.3.1) of solid arrows. Since m is a monomorphism (Lemma 25),
it suffices to show that md = u for some morphism d. Since m is a left
universalizer of m - 1 (Lemma 27), the existence of such d will follow from the
inequality u-1 < m-1. Since e is thick, we have: u-1 = u-(e-1) = (uoe)-1 = (mo
v)-1=m-(v-1) (Lemma 23). At the same time, m-(v-1) < m-1 (Lemma 24).
Orthogonality of e and m in the case when e is a right universalizer and m is
thin follows by duality. m

Throughout the rest of this chapter, for a bounded form F', we write Rp
to denote the class of right universalizers and Lz denote the class of left uni-
versalizers.

Definition 38. A bounded form F over a category C is said to be

e a pre-exact form when every conormal object has a left universalizer and
every normal object has a right universalizer;

e an orthogonal form when it is a pre-exact form and Rp | Lr;

e a closed orthogonal form when it is an orthogonal form and in addition

Rp=RY and Lp = L} ;

e an exact form when it is a pre-exact form and (Rp,Lr) is a prefactor-
1zation system.

Proposition 22. For any pre-exact form F we have: £} is the class of thick
morphisms and 'R% 15 the class of thin morphisms.

Proof. Already by Lemma 29, E} contains all thick morphisms. If a morphism
f X — Y belongs to L'}, then we obtain a commutative diagram
—

IR
Lun(f1)|—>un(f1)Y

!
"
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This gives that lun(f1) is a split epimorphism. As lun(f1) is also a monomor-

phism (Lemma 25), we obtain that it is an isomorphism. Then f1 = 1
(Lemma 27), showing that f is thick. Dually, R} is the class of thin mor-
phisms. O

Note that as a consequence of the above proposition, we get that for a
pre-exact form F' the following conditions are equivalent:

(i) F' is an orthogonal form.
(ii) Every left universalizer is thin.
(iii) Every right universalizer is thick.

We now characterize orthogonality of forms via existence of special factoriza-
tions of morphisms:

Theorem 8. For any bounded form F over a category C the following condi-
tions are equivalent:

(i) F is an orthogonal form.

(ii) Each morphism f: X — Y in C admits a factorization f = mée where
m s a left universalizer of f1 and e is a right universalizer of Of.

Proof. (i) = (ii): Suppose (i) holds. Consider any morphism f : X — Y in C.

Since f1 is conormal, it has a left universalizer. Dually, 0f has a right univer-

salizer. We then obtain a commutative diagram, where the morphisms u and

v arise from the universal properties of the given left and right universalizers,
Run(0f)

respectively:
X
\ .

Lun(f1) —>|un(f1)

run(0f)

|

=)

f

Now, orthogonality produces a diagonal fill-in:

X
Lun(fl —>|un(f1

run(0f)

l

Run(Of

-

The zigzag in the above diagram is the desired factorization of f.

(ii) = (i): Suppose that (ii) holds. For a conormal object B = f - 1%, the
left universalizer of B is the morphism m in the factorization of f given by
(ii), which shows that every conormal object has a left universalizer. Dually,
every normal object has a right universalizer. So F' is a pre-exact form. With
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Proposition 22 in mind, to show that F' is an orthogonal form, it suffices to
show that any left universalizer is thin. If f is a left universalizer, then f is
a left universalizer of f1 (Lemma 27), which forces the composite fe in the
factorization f = mée given by (ii) to be an isomorphism (Lemma 25). This
implies that e is a split monomorphism. Since e is a right universalizer, it
is also an epimorphism (Lemma 25). Hence e is an isomorphism. Now, e is
a right universalizer of 0f, and so 0f = 0 (Lemma 27), showing that f is
thin. O

Closed orthogonal and exact forms can be also characterized via the pres-
ence of suitable factorizations of morphisms, as the two theorems below show.
In fact, as we will see, much more can be said in these two cases. We state
both theorems before presenting their proofs:

Theorem 9. For any bounded form F over a category C the following condi-
tions are equivalent:

(i) F is a closed orthogonal form.

(ii) Each morphism f: X — Y in C admits a factorization f = mée where
m 1s a thin left universalizer, e is a thick right universalizer, and 0 is

both thick and thin.

(iii) Each morphism f: X — Y in C admits a factorization f = mbe where

m is a left universalizer of f1, e is a right universalizer of 0f, and 0 is
both thick and thin.

(iv) F is an orthogonal form with both Ry and Lr closed under composition.

(v) Every conormal object has a left universalizer which is a thin embedding,
and dually, every normal object has right universalizer which is a thick
coembedding.

vi) F' 1s an orthogonal form and the pairs RF,Ri and (LY, Lr) are fac-
g p F F
torization systems.

Theorem 10. For any bounded form F' over a category C the following con-
ditions are equivalent:

(i) F is an exact form.

(ii) F is a closed orthogonal form and any morphism in C that is both thick
and thin is an isomorphism.

(#ii) Each morphism f : X — Y in C admits a factorization f = me where
m is a thin left universalizer, and e is a thick right universalizer.

(iv) Each morphism f : X — Y in C admits a factorization f = me where
m is a left universalizer of f1, and e is a right universalizer of Of.
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(v) F is a pre-ezact form and the pair (Rp, Lr) is a factorization system.

Proof of Theorem 9. (i)=-(ii): Suppose F' is a closed orthogonal form. By
Theorem 8, we have a factorization

X Y

=m %)ﬂn

Run(0f) —— Lun(f1)

Since the form is orthogonal, e is thick and m is thin (Proposition 22). We
would like to show that € is both thick and thin. Since #1 is conormal, it has
a left universalizer. Since Lp = E?, a composite of two left universalizers is a
left universalizer. In particular, the composite molun(61) is a left universalizer.
Then, it is a left universalizer of (molun(61))-1 (Lemma 27). Since lun(61)-1 =
61 (Lemma 27), we have:

(molun(f1))-1=m- (lun(f1)-1) =m-01 = (mob)-1
(Lemma 23). Now, since e is thick, we further have:
(mof)-1=(mof)-(el)=(moboe)-1=f1

(Lemma 23). Thus, m o lun(f1) is a left universalizer of f1. But so is m, and
hence lun(A1) is an isomorphism (Lemma 25). Then, 1 = 1 (Lemma 27). This
shows that 6 is thick. By a dual argument, 6 is also thin.

(ii)=>(iii): Suppose (ii) holds. Consider a factorization

X ! Y
\IQT./

where e is a thick right universalizer, m is a thin left universalizer, and 0 is
both thick and thin. Since both e and 6 are thick, so is their composite e
(Lemma 26). Then m1 =m - (fe-1) = (mbe) -1 = f1 (Lemma 23). So m is a
left universalizer of m1 = f1 (Lemma 27). Dually, e is a right universalizer of
0f.

(iii)=(iv): Suppose (iii) holds. Then F' is an orthogonal form by Theo-
rem 8, and so by Proposition 22, every left universalizer is thin and every right
universalizer is thick. We show that L is closed under composition. Consider
a composite mims of two left universalizers, and a commutative diagram of
solid arrows

vy T

e=run(0Omami) lun(momi1l)=m

Run(0mgmy) / Luﬁ.(mgmll)
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obtained by (iii). Since e is thick and 6 is thick, so is their composite fe
(Lemma 26). The orthogonality fe | ms (Lemma 29) produces a morphism
dy such that msd; = m and dife = my. Next, the orthogonality fe | m;
produces a morphism dy such that dsfe is an identity morphism, and mydy =
dy. Altogether, since the m’s are monomorphisms (Lemma 25), we obtain that
fe is an isomorphism (with inverse dy). Then, since mom; = mfe and m is
a left universalizer, mym; is also a left universalizer (Lemma 25). This shows
that L is closed under composition. Dually, R is closed under composition.

(iv)=-(v): Suppose that (iv) holds. Consider a left universalizer f : X — Y
and two conormal objects Ay, Ay € F71(X). Then A; = lun(A4;) -1 and A, =
lun(Asg)-1 (Lemma 27). Suppose f-A; < f-As. By (iv), the composite flun(Ay)
is a left universalizer, and hence it is a left universalizer of (flun(Asy)) -1
(Lemma 27). Now, (flun(A42)) -1 = f-(lun(Ag)-1) = f - Ay (Lemma 23),
and similarly, (flun(A4;)) 1= f-A;. So, f-A; < f- Ay implies flun(4;) =
flun(Az)u for some morphism u. Since f is a monomorphism (Lemma 25), we
get lun(A;) = lun(Az)u. This in turn gives A; = lun(A4;) - 1 = (lun(Az)u) - 1 =
lun(Az) - (u - 1) (Lemma 23). Finally, lun(As) - (u-1) < lun(Ay) -1 = Ay
(Lemma 24) and so A; < A,. This shows that any left universalizer is an
embedding. Dually, any right universalizer is a coembedding. Since by (iv)
the form is orthogonal, to obtain (v) it remains to apply Proposition 22.

(v)=(vi): Suppose (v) holds. Then the form is pre-exact and so by
Proposition 22, L’} is the class of thick morphisms and Rﬁ; is the class of
thin morphisms. (v) implies that every left universalizer is thin, and so
pr D L which is the same as Rr | Lp. The form F' is therefore orthog-
onal. Consider a morphism f : X — Y. By Theorem 8, it decomposes as
f = lun(f1) o @ orun(0f). We claim that 6 o run(0f) is thick. Indeed, on
the one hand we have f1 = lun(f1) -1 (Lemma 27), and on the other hand,
f1 = (lun(f1) o @ orun(0f)) - 1 = lun(f1) - ((6 o run(0f)) - 1) (Lemma 23).
Since lun(f1) is an embedding, it follows that 1 < (o run(0f)) - 1, and hence
1 =(Aorun(0f)) -1, showing that 6 o run(0f) is thick. So any morphism f de-
composes as a thick morphism followed by a left universalizer, which together
with Lemma 29 and the fact that E} and Lr contain identity morphisms and
are closed under composition with isomorphisms (Lemmas 25 and 26), show
that (Ll Lr) is a factorization system. Dually, (Rg, R%) is a factorization
system.

(vi)=(i): When (£L, L) and (Rp, R%) are factorization systems we have
Lp =Ll and Rp =Ry O

Proof of Theorem 10. (i)=-(ii): Any exact form is a closed orthogonal form.
When F' is pre-exact, Rfﬂ N E} is the class of morphisms which are both
thick and thin (Proposition 22). When (Rp, Lr) is a prefactorization system,
RENLL = Lz N Ry is the class of isomorphisms.

(ii)=-(iii) follows from Theorem 9.
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(iii)=(iv) by the same argument as the one used to prove (ii)=-(iii) in
Theorem 9, with 8 there to be taken as an identity morphism.

(iv)=(v): Suppose (iv) holds. By Theorem 9, F' is a closed orthogonal
form and so it pre-exact and we have Lp = E? and Rp C E}. The existence
of factorizations described in (iv) leave to show that F is an exact form, and
for this it suffices to show that [,? C Rpr. Recall from Proposition 22 that L'?
is the class of thick morphisms. So we must show that any thick morphism is
a right universalizer. If a morphism f : X — Y is thick, then since f1 =1
the morphism m in the factorization f = me given by (iv) is an isomorphism
(Lemma 27). Since in the same factorization e is a right universalizer, we get
that f = me is a right universalizer (Lemma 25).

(v)=-(i) since any factorization system is a prefactorization system. O

4.4 The binormal case

Recall from the previous chapter that a form is binormal when in each fibre
every object is both normal and conormal. In such a form, to say that every
(co)normal object has a right (left) universalizer, is the same as to say that
the form admits right (left) universalisers. Also, a binormal form is bounded if
and only if it is locally bounded and is a bifibration. For a general form F', we
denote the class of all F-null morphisms (as defined in the previous section)
by F™*.

Lemma 30. In a category C equipped with a binormal pre-exact form F, a
morphism f: X — Y is thin if and only if it is F*-mono in the sense of [43],
1.e. f has a kernel which belongs to F*. Dually, f is thick if and only if f is
F*-epi in the sense of [43], i.e. f has a cokernel which belongs to F*.

Proof. Suppose f is thin. Then its kernel k is a left universalizer of 0f = 0.
This implies that k1 = 0, i.e. k € F*. Conversely, if k € F* then 0 = k1 =0f
and so f is thin. O

Recall that a semiexact category or exl-category in the sense of M. Gran-
dis [41; 43] is a pair (C,N') where C is a category, and N is an ideal of null
morphisms in C admitting kernels and cokernels, such that N is a closed ideal,
i.e. any morphism from N factors through an isomorphism which belongs to
N. By Theorem 1.5.4 in [43], this latter additional requirement is equivalent
to every kernel being N-mono, and is also equivalent to every cokernel being
N-epi. So in view of the above lemma, in our language this is stating that a
binormal pre-exact form defines a closed ideal if and only if every left univer-
salizer is thin, and if and only if every right universalizer is thick. Thanks to
Proposition 22, we know that for a pre-exact form the last two conditions are
equivalent to orthogonality, and so we obtain:
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Theorem 11. A binormal bounded form F over a category C is an orthogonal
form if and only if the pair (C, F*) is a Grandis semiexact category (which is
the same as a Grandis exl-category).

After this theorem, the implication (i)=-(ii) of Theorem 8 in the binor-
mal case becomes the basic known result that in a semiexact category any
morphism has a normal factorization — see Section 1.5.5 in [43].

An ez2-category in the sense of M. Grandis [41; 43| is an exl-category in
which the class of kernels and the class of cokernels are both closed under
composition. So, from Theorem 9 we reobtain the following result from the
previous chapter:

Theorem 12. A binormal bounded form F over a category C is a closed
orthogonal form if and only if the pair (C, F*) is a Grandis ex2-category.

The equivalences (iii)<(iv)<(v) of Theorem 9 are established in Section
2.1.3 of [43], in the context of semiexact categories.

An ezxact category or an ex4-category in the sense of M. Grandis [41; 43]
is a semiexact category in which any morphism f factories as f = me where
m is a kernel of a cokernel of f and e is a cokernel of a kernel of f. In the
language of the underlying binormal form, this is the same as to say that m is
a left universalizer of f1 and e is a right universalizer of 0f. So, Theorem 10
gives:

Theorem 13. A binormal bounded form F' over a category C is an exact form
if and only if the pair (C, F*) is a Grandis exact category (which is the same
as a Grandis exj-category).

In the context of semiexact categories, the equivalence (iv)<(ii) of Theo-
rem 10 is made explicit in Section 2.2.6 of [43|. Thus we have the following
hierarchy of bijections (where the first row is obtained from Corollary 4.2 in
[59]):
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ideals of null morphisms isomorphism classes of
admitting enough exact sequences binormal bounded forms

Q

U )

ideals of null morphisms isomorphism classes of

Q

admitting kernels and cokernels binormal pre-exact forms
U U
ex1-category structures ~ isomorphism classes of ( 4.4 1)
(= semiexact category structures) binormal orthogonal forms s

U U

isomorphism classes of
binormal closed orthogonal forms

%

ex2-category structures

v U

ex4-category structures ~ isomorphism classes of
(= exact category structures) binormal exact forms

4.5 Grandis exact categories via Isbell
bicategories

As we saw in Theorem 10, any exact form gives rise to a proper factorization
system, i.e. a factorization system (£, M) where £ is a class of epimorphisms
and M is a class of monomorphisms [37]. We now ask the question: which
proper factorizations systems arise from binormal exact forms? We obtain the
answer by combining Theorem 7 from the previous chapter (and the subsequent
remark) and Theorem 10 above.

Theorem 14. For any category C there is a bijection

proper factorization systems

(€, M) such that the form ~ isomorphism classes of

of E-quotients is isomorphic binormal exact forms F over C
to the form of M-subobjects

given by assigning to an isomorphism class of a binormal exact form F the
factorization system (€, M) where £ is the class of right universalizers for F
and M is the class of left universalizers for F.

Recall that an Isbell bicategory [47] is a category equipped with a class £
of morphisms called projections and a class M of morphisms called injections,
such that the pair (£, M) is a proper factorization system on C. The above
theorem together with Theorem 13 lead to the following conclusion:

Corollary 6. A Grandis exact category is the same as an Isbell bicategory
in which the form of £-quotients is isomorphic to the form of M-subobjects,
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where £ is the class of projections and M is the class of injections of an Isbell
bicategory (which become the classes of cokernels and kernels, respectively, of
the Grandis exact category).

After this, one may ask: which proper factorization systems arise from
exact forms that are not necessarily binormal? The answer is all, as we now
show:

Proposition 23. For any proper factorization system (£, M) on a category
C there exists an exact form F' over C such that £ is the class of right univer-
salizers and M is the class of left universalizers for F.

Proof. First, we construct the domain B of F. Objects of B are triples
(X, E, M) where

e X is an object of C,

e [/ is a class of morphisms of C having the following property: either
E = @ or there exists a morphism e € £ (which we will call a generator
of E) such that the domain of e is X, and F is the class E = (e] of all
composites ue where u is any morphism in C,

e M is a class of morphisms of C having the following property: either
M = @ or there exists a morphism m € M (which we will call a generator
of M) such that the codomain of m is X, and M is the class M = [m)
of all composites mv where v is any morphism in C,

e Exactly one of E and M is the empty set.

A morphism f: (X, E,M) — (X', E', M’) in B is a morphism f: X — X' in
C such that the following conditions hold:

e for any morphism m € M we have fm € M’,
e for any morphism e € E' we have ef € F,
o if M =@ and ' = @ then f € M' or f € E.

It is a routine to verify that composition and identity morphisms can be defined
in B via composition and identity morphisms in C. Then, mapping a morphism
f(X,E,M) — (X', E', M") to the morphism f : X — X’ defines a faithful
functor F': B — C. In fact, F is even amnestic, and hence it is a form. In each
fibre F~1(X), the top element 1% is given by the triple (X, &, [1x)), while the
bottom element is given by the triple (X, (1x],@). So, F' is locally bounded.
It is not difficult to show that F' is in fact a bounded form where for each
morphism f : X — Y we have f-1% = (Y, @, [m)) and and 0¥ - f = (X, (e], @)
where m and e constitute an (€, M)-factorization f = me of f. Then, it is
again not difficult to show that m is a left universalizer of f - 1% and e is a
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right universalizer of 0¥ - f, and hence F is an exact form. We also get at once
that every morphism in M is a left universalizer and every morphism in £ is a
right universalizer. Moreover, we get that M is the class of left universalizers
of conormal objects and £ is the class of right universalizers of normal objects.
Via Lemma 27 this implies that M is the class of all left universalizers and £
is the class of all right universalizers. O]

4.6 Exactness up to a class of morphisms and
Grandis ex3-categories

In analogy with the terminology used in [41; 43|, we call a morphism f in a
category equipped with a bounded form ezact up to ©, where © is a class of
morphisms in the category, if f admits a factorization f = mfe where m is a
left universalizer of f1, e is a right universalizer of 0f, and 6 € ©.

By Theorems 8, 9 and 10, a bounded form over a category is

e orthogonal, if and only if any morphism in the category is exact up to
the class of all morphisms;

e closed orthogonal, if and only if any morphism in the category is exact
up to the class of morphisms which are both thick and thin;

e exact, if and only if any morphism in the category is exact up to the class
of identity morphisms, or equivalently, up to the class of isomorphisms.

In view of the fourth bijection in the table (4.4.1), the ex3-categories or ho-
mological categories in the sense of M. Grandis [41; 43| are precisely those
categories equipped with a binormal closed orthogonal form in which any mor-
phism f which decomposes as f = em where m is a left universalizer and e
is a right universalizer such that Oe < ml, is exact up to the class of identity
morphisms.

4.7 Exact forms of subobjects

For a category C, recall that the form of subobjects is the form obtained from
the codomain functor Cod,s, where M is the class of all monomorphisms.
In particular, this form is always conormal, locally bounded above and admits
left universalisers. We introduce some notation specific to forms of subobjects.
Let F': B — C be the form of subobjects over a category C. Then:

e objects of B will be pairs (X, [m]) where X is an object in C and [m] is
an equivalence class of monomorphisms m having codomain X, for the
equivalence relation under which m; is equivalent to msy when m; = msi
for some isomorphism ¢;
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e a morphism [ : (X,[m]) — (Y,[n]) in B will be a morphism f: X — Y
in C such that fm = nj for some morphism j;

e F(X,[m])=X and F(f)=f.

Lemma 31. Let C be a pointed category with form of subobjects F' : B — C.
Then

(1) the bottom element in the fibre at an object C' of C is the (isomorphism
class of ) the zero morphism to C;

(2) the zero morphisms in C coincide with the F-null morphisms;

(8) for a morphism f in C, O- f exists if and only if f has a kernel k, in
which case 0 - f = [k];

(4) the cokernels in C coincide with the right universalisers for F when C
has kernels of cokernels.

Proof. (1) and (2) are easy to prove. Recall that cartesian morphisms for a
form of subobjects are always given by pullbacks, which gives (3). The right
universaliser of an object [m] is clearly the cokernel of m, while any cokernel
c is the cokernel of its kernel, and hence the right universaliser of [k], where k
is its kernel. This gives (4). O

For convenience, we introduce the following condition on a category C:

(M) every morphism in C admits a right M-factorisaton, where M is the
class of all monomorphisms.

We thus have the following characterisation of forms of subobjects satisfy-
ing the conditions in this chapter:

e The form of subobjects F' of a pointed category C is bounded if and only
if C satisfies (M) and admits all kernels.

e When this is the case, F' will be pre-exact if and only if C admits all
cokernels of kernels (i.e. ' admits right universalisers of normal objects).

e Since monomorphisms always have trivial kernel, F' will be orthogonal
as soon as it is pre-exact (since left universalisers will then be thin).

e To additionally require that F'is closed orthogonal it is enough to require
cokernels to be closed under composition.

Finally, by Theorem 10, we have the following proposition, which shows that
the exactness axiom on a form of subobjects captures the first isomorphism
theorem.
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Proposition 24. Let C be a pointed category with form of subobjects F.
Then F is exact if and only if C admits all kernels and a (cokernel, mono)-
factorisation system.

4.8 Some examples

We begin by recalling some examples from [43|. The forms of normal subob-
jects in the following pointed categories are binormal and orthogonal, but not
closed orthogonal:

e the category of groups, where normal subobjects are given by normal
subgroups;

e the category of rings without unit, where normal subobjects are given
by ideals.

The forms of normal subobjects in the following pointed categories are binor-
mal closed orthogonal, with the corresponding ex2-category being homological,
but not exact:

e the category of lattices and Galois connections, where normal subobjects
are given by principal down-closed sets;

e the category of commutative monoids, where normal subobjects are given
by submonoids H that satisfy [a+h € H A h € H] = [a € HJ;

e the category of topological vector spaces (over a given topological field),
where normal subobjects are given by closed linear subspaces;

e the category of Banach spaces (over the field of reals or complex numbers)
and bounded linear mappings, where normal subobjects are given by
closed linear subspaces;

e the category of pointed sets, where normal subobjects are given by sub-
sets containing the base point.

In any abelian category, the form of normal subobjects (which are the same as
subobjects) is binormal exact. The form of subobjects in any normal category
in the sense of [55] is exact, but in general is not binormal; in fact, to ask
binormality would be equivalent to ask that the normal category is abelian. A
principal example of a non-abelian normal category is the category of groups
(where subobjects are given by subgroups). In these cases, any object in a fibre
is still conormal. A natural example of an exact form where this is no longer
the case is the form of additive subgroups of unitary rings, over the category
of unitary rings. In this form, for a unitary ring R, the fibre F~!(R) consists
of additive subgroups of R, and a left/right action by a ring homomorphism
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is given by taking the inverse/direct image of an additive subgroup along the
homomorphism. Then, conormal objects are subrings, while normal objects
are ideals. But in fact, non-binormal examples of exact forms abound, as
witnessed by Proposition 23.
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Chapter 5

Forms of subobjects of normal
categories

Adapted from: Z. Janelidze and T. Weighill, Duality in non-abelian algebra
III. Normal categories and O-reqular varieties (submitted; preprint at
http://math.sun.ac.za/cms/).

5.1 Introduction

In this chapter, we relate the theory of forms developed so far to other ax-
iomatic developments aimed at the study of group-like structures. We do so
by characterising different types of categories which play a role in categorical
algebra via conditions on their forms of subobjects. Our aim is to obtain a list
of “classification theorems” of the following form: a category C is of a certain
type if and only if its form of subobjects satisfies certain conditions. Moreover,
these conditions should be self-dual.

The main result of this chapter is a characterisation of normal categories [55],
where the notion of exact form introduced in the previous chapter plays an
important role. Indeed, normal categories can be seen as pointed regular cat-
egories in which the First Isomorphism Theorem (the theorem which inspired
the notion of exact form) holds.

We then combine the characterisation of normal categories with the results
in [58] (which we recall) to obtain characterisations of pointed regular [3| pro-
tomodular [13] categories (also called homological categories [11]) and pointed
Barr-exact protomodular categories (which are the same as semi-abelian cat-
egories [51| when the existence of coproducts is required). In doing so, we
organise a list of axioms on a form which can be used as a self-dual axiomatic
context for group theory. Some results which can be established in this con-
text were given in a talk by Z. Janelidze [57]. They include, for example, the
Zassenhaus Lemma and the Jordan-Hélder Theorem.

At the end of the chapter we give a proof of the Short Five Lemma as

78
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an example of diagram-chasing in the context of forms satisfying self-dual
conditions, and relate this proof to the the classical group-theoretic proof given
in the Background section, as well as to proofs by Mac Lane and Grandis in
different contexts.

Some further characterisation of special types of normal categories in terms
of so-called Wyler joins for a form, as well as some additional results, can be
found in a joint paper with Z. Janelidze [61].

5.2 Normal categories

In this paper we will be looking at self-dual axioms on the bifbration of sub-
objects of a category, i.e. a form of subobjects which is at the same time a
bifibration. From the results in Chapter 3 we have:

Lemma 32. The form of subobjects over a category C is a bifibration if and
only if every morphism in C admits a right M-factorisation (for M the class
of all monomorphisms) and all pullbacks along monomorphisms.

Recall that a normal category [55] is a category C having the following
properties:

(N1) C has a zero object and pullbacks (and hence all finite limits).

(N2) Any morphism f in C factorizes as f = me where m is a monomorphism
and e is a normal epimorphism.

(N3) The class of normal epimorphisms in C is stable under pullbacks (along
arbitrary morphisms).

Equivalently, a normal category is the same as a regular category [3] which is
pointed and where every regular epimorphism is a normal epimorphism. Al-
though the present name for this concept was used for the first time in [55],
the concept itself is a very old one, which has roots both in early investigations
in categorical algebra and in universal algebra (see [53; 51] and the references
there). In particular, algebraic normal categories were first studied in [35],
where they were called varieties with ideals. Various aspects of normal cate-
gories have been extensively studied also in recent literature [38; 39; 56; 77].

If we remove axiom (N3), then we get what we call in this chapter an
unstably normal category. To emphasise the difference, we may refer to normal
categories as stably normal categories. In this section we show that in any
unstably normal category, the stability axiom (N3) can be decomposed into
the following stability axioms:

(N4) The class of normal epimorphisms in C is stable under pullbacks along
arbitrary monomorphisms.
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(N5) The class of normal morphisms in C, i.e. those morphisms which factor
as a normal epimorphism followed by a normal monomorphism, is stable
under pullbacks (along arbitrary morphisms).

(N6) The pullback of any normal epimorphism in C along a split epimorphism
is a normal morphism in the above sense.

Theorem 15. For an unstably normal category, the axiom (N3) is equivalent
to the conjunction of (N4) and (N5), as well as to the conjunction of (N4) and
(N6).

Proof. (N3) implies (N4) trivially. We can also get (N5) from (N3) since the
class of normal monomorphisms is stable under pullbacks (along arbitrary
morphisms) in any pointed category.

Note that (N5) implies (N6) simply because any normal epimorphism is a
normal morphism.

It remains to show that (N4) and (N6) imply (N3). Any morphism f :
X — Y in C can be decomposed as

X xY
X 7 Y

where (1, f) is a split monomorphism, and the product projection s is a split
epimorphism (the morphism (0, 1y) : Y — X XY, where 0 is the zero morphism
Y — X, is a right inverse of 7). So it suffices to show that the class of normal
epimorphisms is stable under pullbacks along split monomorphisms and along
split epimorphisms. We already have the first of these by (N4). To show the
second, we will use the fact that because of (N2), any split epimorphism in C
is a normal epimorphism. Let

X1 Xy XQLXQ

X1 —F Y
be a pullback where f; is a normal epimorphism and f; is a split epimorphism,
with a right inverse g : Y — X5. Then 7 is also a split epimorphism (with a
right inverse given by the pair (1x,,¢gf1)). Let k : K — X3 be a kernel of f,.
Then there is a morphism u : K — X; Xy X3 such that meu = k (it is given by
the pair (0,k)). By (N6), the morphism 7y is normal and so it decomposes as
my = me where e is a normal epimorphism and m is a kernel of some morphism
h:Y — Z. Since k factors through ms, and f5 is a normal epimorphism, we
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obtain a factorization
X,z

4

Next, we claim that v is a null morphism, and hence so is h. Since f; and
7 are both epimorphisms, it suffices to show that v fi7 is a null morphism,
which is certainly true as v fim; = vfome = hme. Since h is a null morphism, its
kernel m must be an isomorphism. This makes 7; into a normal epimorphism,
since it factorises as m; = me where e is such. O

5.3 Axioms (A1-4)

In the case when F' : B — C is a bounded biform, we can give a third equivalent
definition for left and right univeralisers. Given an object W € F~1(Y), a left
universaliser of an object W € F~1(Y) is a morphism f : X — Y such that
1X = Wf and for any morphism f’ : X’ — Y such that 1X = Wf, there
exists a unique morphism j : X’ — X such that f' = fj. Given an object
V € F~1(X), a right universalizer of an object W € F~'(Y) is a morphism
f: X — Y such that fV = 0¥ and for any morphism f’: X — Y’ such that
f'V = 0", there exists a unique morphism j : Y — Y’ such that f' = jf. This
is in fact the original definition in [58], where only the context of a biform is
considered.

We will see in the subsequent section that for the form of subobjects in an
unstably normal category, normal morphisms in following sense are the same
as in the sense of Section 5.2: a normal morphism (in a category equipped
with a bounded biform) is a morphism f : X — Y such that f1¥ is normal,
and hence binormal since f1¥ is automatically conormal. Dually, a conormal
morphism is a morphism f : X — Y such that 0¥ f is conormal (binormal).

For a biform F' : B — C and a morphism f : X — Y in C, we call the
push-forward functor f*: F~'(X) — F~1(Y) (i.e. the functor whose action
on objects is A — f - A) the left action of f. Dually, the functor B — B - f
will be called the right action of f. Together, the left and right action make
up the change of base adjunction induced by f. A morphism f : X — Y is
said to be an injection or a surjection when the left action of f is an injection
or a surjection, respectively. Note that the left action is injective if and only
if the right action is surjective, and when this is the case the left action is a
right inverse of the right action — all for a given morphism f. Dually, the left
action is surjective if and only if the right action is injective (and then the left
action is the left inverse of the right action).

We are now ready to state the self-dual axioms on a bounded biform F,
which will be used to characterise normal categories:
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(Al) F is exact, i.e. any morphism f : X — Y in the ground category C
decomposes as f = me where e is a right universalizer of 0¥ f and m is
a left universalizer of f1%.

(A2) For any object X in the ground category C, we have: 1% is normal and
0% is conormal.

(A3) All left universalizers are injections, and dually, all right universalizers
are surjections.

(A4) The class of normal morphisms is stable under those pullbacks which
exist in the category, and dually, the class of conormal morphisms is
stable under those pushouts which exist in the category.

5.4 The main results

In this section we prove the following:

Theorem 16. The form of subobjects of a category C having finite products is
a bounded biform and satisfies the axioms (A1-4) if and only if C is a normal
category.

We will prove this theorem as follows: first, we will show that the axioms
(A1) and (A2) together are equivalent to C being an unstably normal category.
Then, we will show that in an unstably normal category (A3) is equivalent
to the stability axiom (N4), and (A4) to (N5). The rest will follow from
Theorem 15.

We begin by considering a category C with a terminal object equipped with
a form F : B — C satisfying (A1) and (A2). It turns out that this already
implies that C is pointed, and that the zero morphisms in C are nothing but
the F-null morphisms. Recall the following result from the previous chapter:

Lemma 33. If aziom (A1) holds, then a morphism f : X — Y is a right
universalizer if and only if f1% = 1Y. Dually, under axiom (A1), f is a left
universalizer if and only if 0¥ f = 0%. In particular, if f15 = 1Y (i.e. f is
thick) and 0¥ f = 0% (i.e. f is thin), then f is an isomorphism.

Note also that for any biform F' : B — C and any morphism f in C, f-0 =0
and 1- f = f since left /right adjoints preserve colimits/limits.

Lemma 34. Let C be a category which has a terminal object and let F': B — C
be a bounded biform satisfying (A1) and (A2). Then, an object X in C is a
terminal object in C if and only if 1X = 0%, i.e. if and only if |F~1(X)| = 1.

Proof. Suppose X is a terminal object. Consider the right universalizer e :
X — Y of 1%, and the unique morphism u : ¥ — X. Note that since by



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. FORMS OF SUBOBJECTS OF NORMAL CATEGORIES 83

axiom (A2) the object 1% is normal, it must have a right universaliser. Then
uel® = u0¥ = 0%. Since X is a terminal object, ue = 1x, and so 1%¥ = 0¥.
Conversely, suppose 1¥ = 0. Consider the unique morphism f : X — T from
X to a terminal object T. Since 1¥ = 0% and 17 = 07, f is thick and thin
and hence an isomorphism. ]

Recall that an extremal monomorphism is a monomorphism f such that
every time we have a factorization f = me where e is an epimorphism, it
follows that e is an isomorphism. Then, it follows trivially from axiom (A1)
that any extremal monomorphism is a left universalizer. In particular, this
means that any split monomorphism, and more generally, any equalizer is a
left universalizer. Dually, any extremal epimorphism (which is defined dually
to an extremal monomorphism), and hence in particular any split epimorphism
and any coequalizer is a right universalizer.

Lemma 35. Let C be a category which has a terminal object and let ' : B — C
be a bounded biform satisfying (A1) and (A2). Then C is a pointed category.
Moreover, a morphism n : X — Y in C is a null morphism if and only if
n1X = 0Y, or equivalently, 1* = 0¥ n.

Proof. For the first part, we need to show that a terminal object X in C is at
the same time an initial object. Consider an object Y in C. We will show that
there is a unique morphism from some terminal object X to Y. Consider a
left universalizer f : X — Y of 0. Then 1* = 0¥ f = 0% and by Lemma 34,
X is a terminal object. Suppose f': X — Y is also a morphism from X to
Y. Then f’ is clearly thin, so it is a left universaliser of f/1%¥ = 0¥, so it is
isomorphic to f. Since X is terminal, it must be equal to f. This shows that
f X — Y is the unique morphism from the terminal object X to Y.

We now prove the second part of the lemma. Suppose n : X — Y is a
zero morphism. Then it factors through a zero object Z. Since 14 = 07,
we obtain that n1% = 0Y. Conversely, suppose n1%X = 0. Then 1¥ = 0¥ n
and so n factors through the left universalizer of 0¥. As we already showed
above, the domain of this left universalizer is a zero object, and so n is a zero
morphism. O

Remark 1. Note that a binormal exact form satisfies (A1) and (A2). Thus we
obtain the following corollary of the above lemmas by combining then with the
results of the previous chapter: if (C,N) is a Grandis ex4-category [41] and C
has a terminal object, then C is pointed and N is the class of zero morphisms.
In particular, C will be exact in the sense of Puppe-Mitchell [82; 80]. If in
addition C admits binary products, it will be abelian.

Now let C be a category having finite products, and let F' be its form of sub-
objects, which we assume to be a bounded biform. We have already remarked
(Lemma 32) that since F' is a bifibration, all pullbacks along monomorphisms
exist.
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Lemma 36. If axiom (A1) holds then C has all finite limits.

Proof. Since C already has all finite products, it is sufficient to show that C
has pullbacks. In fact, it is sufficient to show that C has pullbacks of split
monomorphisms along split monomorphisms. Indeed, any pullback

X1 Xy XQLXQ

X ——Y

f
can be computed via the pullback
Xl Xy X2 (r1,m2) ? Xl X XQ
(m1,m2) Lx; x(f2,1x,)

Xy x Xg—— (X1 xY) x Xo = X1 x (Y x Xy)
(Ixy,f1)x1x,
of split monomorphisms (1x,, f1) X 1y, and 1x, X (fs2,1x,). Split monomor-
phisms are in particular monomorphisms, and pullbacks of monomorphisms
exist by Lemma 32. O

Since C has all kernels and is pointed, we have the following by Lemma 31
from the previous chapter:

Lemma 37. Suppose azioms (A1) and (A2) hold. Consider a morphism f :
X =Y in C. A right universalizer of f1% is the same as a cokernel of f. In
particular, this implies that the class of right universalizers coincides with the
class of normal epimorphisms.

Thus far, by using only axioms (A1) and (A2), we have obtained that C
is a finitely complete pointed category in which any morphism decomposes
as a normal epimorphism followed by a monomorphism. Moreover, we also
know that monomorphisms are the same as left universalisers, and normal
epimorphisms are the same as right universalisers. We also have the converse:
if C is a finitely complete pointed category in which any morphism decomposes
as a normal epimorphism followed by a monomorphism, then the axioms (A1)
and (A2) will hold. Indeed, by Proposition 24 in the previous chapter, it
is enough to show that every top element has a right universaliser, i.e. that
identity morphisms have cokernels, which is obviously true.

We have thus proved the following:

Theorem 17. The form of subobjects of a category C having finite products
is a bounded biform and satisfies the azioms (A1) and (A2), if and only if C
is an unstably normal category (i.e. it satisfies axioms (N1) and (N2)).
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Theorem 16 now follows from the following proposition and Theorem 15:

Proposition 25. For an unstably normal category C with its form of subob-
jects, (A3) is equivalent to (N4), and (A4) is equivalent to (N5).

Proof. First, we note that injectivity of left universalisers always holds. Indeed,
for a form of subobjects this is equivalent to monomorphisms being closed
under composition, which is always true (see Chapter 3).

Surjectivity of a morphism f : X — Y states that for every subobject [n]
of Y, we have: f([n]f) = [n]. Recall that here [n]f is given by pulling back n
along f:

XT>Y

To get f([n]f), we need to decompose the composite fm into a normal epimor-
phism followed by a monomorphism. Say fm = n’e is such a decomposition.
Then, [n'] = f([n]f) and examining the commutative square

L).

l I

—Y
n

we see that the claim [n'] = [n] is equivalent to g being a normal epimorphism.
So, f is surjective if and only if for any monomorphism n with codomain Y, the
pullback of f along n is a normal epimorphism. Since normal epimorphisms
are the same as right universalisers, this proves that (A3) is equivalent to (N4).

The equivalence of (A4) and (N5) is easy to verify. O

As a final remark, we note that the form of subobjects of an unstably
normal category can be characterised as the unique conormal bounded biform
over that category satisfying (A1) and (A2):

Proposition 26. Let C be a category with finite products and F : B — C be
a bounded conormal biform satisfying (A1) and (A2). Then F is the form of
subobjects over C.

Proof. Clearly F' admits left universalisers and is locally bounded above. Thus
it is the form of L-subobjects, where L is the class of all left universalisers (see
Chapter 3). It is thus enough to prove that every monomorphism m : X — Y is
a left universaliser, which by (A1) is equivalent to every monomorphism being
thin, i.e. that 0 - m = 0. By Lemma 35, C is pointed, and null morphisms
coincide with F-null morphisms. Consider then the left universaliser m’ :
M’ — X of 0-m and the zero morphism z from M’ to X. Then both m o m/
and mo z are F-null, so they are zero morphisms and thus they coincide. Since
m is mono, we have m’ = z, which gives that m is thin as required. O
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Corollary 7. A category C is a normal category if and only if there exists a
bounded conormal biform over C satisfying (A1-4).

The notion of form of subobjects is much more familiar than that of a
bounded conormal form, however, hence the phrasing of Theorem 16. Also,
the self-dual nature of the result is better revealed when one considers only
the form of subobjects.

5.5 Some examples

In this section, we first recall a characterisation of those varieties which form
normal categories, from which we may obtain a wide variety of examples of
normal categories (and thus forms satisfying (A1-4)). We then give some
examples which illustrate the independence of some subsets of the axioms
(A1-4), although the question of the independence of each individual axiom is
still open.

5.5.1 Normal varieties

A classical result in universal algebra obtained in [35] states that a pointed
variety of universal algebras is a normal category if and only if its algebraic
theory contains a constant 0 and a sequence dq,...,d, of binary terms satis-

fying
Ndi(z.y) =0 & z=y.
=1

Recall that pointedness of a variety is equivalent to it having a unique constant
0. Among normal varieties are thus the varieties of groups, abelian groups,
rings without unit, modules, loops, and many other group-like structures.

5.5.2 Groups with equivalence relations

In [61], the question of whether for an unstably normal category the axioms
(N4) and (N5) (as well as (N4) and (N6)) are independent of each other was
left open; each example of an unstably normal category that the authors of [61]
have examined either satisfies both (N4) and (N6) (and hence is a stably normal
category by virtue of the above theorem), or satisfies neither (N4) nor (N6).
For instance, such is the category Abg, where

e objects are pairs (A, F) where A is an abelian group and E is an equiv-
alence relation on the underlying set of A,

e a morphism f: (A, FE) — (A, E') is a group homomorphism f: A — A’
such that a;Fay = f(ay)E' f(ay) for all a;,ay € A,
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e composition of morphisms is defined as the usual composition of group
homomorphisms.

The fact that Abg, is an unstably normal category is an easy consequence of
the fact that Ab is a normal category. To see that Abg, does not satisfy (N4),
consider the pullback

1

where

Ey is the smallest equivalence relation on Z4 under which 0 ~ 1 ~ 2,

FE is the smallest equivalence relation on Zg under which 0 ~ 1 and
5~ 6,

F5 is the largest equivalence relation on Z,
e and Fj5 is smallest equivalence relation on Z,.

The bottom horizontal morphism in the above pullback is a normal epimor-
phism, the right vertical morphism is a monomorphism, while the top hori-
zontal morphism is not a normal epimorphism since the equivalence relation
generated by the image of Fj3 is the smallest equivalence relation on Zs, which
is different from Fy. To see that Abg, does not satisfy (NG6), consider the
pullback

(1,0) ——(1,0)
(0,1) —————(2,1)
(1,0) (0,1) (Zg X Lo, EY) —— (Zy X Za, EY) (1,0) (0,1)

A N W

4 (Zg,El)—>(Z4,EQ>
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where
e Fy and FE; are the same as above.

e [ is the smallest equivalence relation on Z4 X Zy under which (0,0) ~

(1,0) ~ (2,0) and (0,1) ~ (2,1),

e F! is the smallest equivalence relation on Zg x Zs under which (0,0) ~
(1,0) and (5,0) ~ (6,0).

As before, the bottom horizontal morphism in the above pullback is a normal
epimorphism. The right vertical morphism is a split epimorphism. Now, the
top horizontal morphism is not a normal morphism. To see why, first note
that from the fact that the underlying map is surjective it follows that this
morphism is a normal morphism if and only if it is a normal epimorphism. This
morphism cannot be a normal epimorphism since for the smallest equivalence
relation containing the image of E% under this morphism, we do not have
(0,1) ~ (2,1) and hence this equivalence relation does not coincide with EY.
For the same reasons, other similarly constructed categories such as the
category Grpg, of groups with equivalence relations, are examples of unstably
normal categories which satisfy neither (N4) nor (N6) (and hence do not satisfy
(N5) either). Note that any unstably normal quasi-variety of universal algebras
will necessarily be stably normal, since any quasi-variety is a regular category.

5.5.3 Bounded meet semi-lattices, and groupoid
structures

Let C be a regular category. Then its form of subobjects is a biform. It is not
bounded because, in general, an object X might not have a least subobject.
Indeed, it is not difficult to find an example of a regular category where objects
do not have least subobjects: any meet semi-lattice with an upper bound but
not a lower bound is one (regular epimorphisms in this category are the same
as identity morphisms, while any morphism is a monomorphism). Requiring
the biform of subobjects of a regular category to be bounded is equivalent to
requiring that any object in the category has a least subobject. In particu-
lar, this could be a bounded meet semi-lattice. In this example, the class of
right universalisers coincides with the class of identity morphisms, while nor-
mal morphisms are morphisms whose domain is the initial object — the lower
bound of the meet semi-lattice. Is it then not difficult to see that in this exam-
ple (A1), (A3) and (A4) hold, while (A2) fails. Axioms (A1), (A3) and (A4)
hold more generally for all sequentiable categories in the sense of Bourn [15],
as the study of these categories in [15] reveals. For the form of subobjects of a
sequentiable category, right universalisers coincide with cokernels in the sense
of [15], which, by Proposition 2 in [15], are the same as regular epimorphisms.
Then, axiom (A2) for a sequentiable category becomes simply pointedness. As
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explained in [15], the category of groupoid structures over a fixed set of objects
gives an example of a sequentiable category. It is pointed if and only if the
fixed set is either empty or a singleton — in the first case we get a singleton
category, and in the second case we get the category of groups. So, to get a
non-pointed example, it suffices to choose a set having at least two elements.

5.5.4 Pointed sets

As remarked above, the biform of subobjects in a regular category C is bounded
if and only if every object in C has a least subobject. Let C be such a regular
category. It is not difficult to see that all right universalisers for the form
of subobjects in C are regular epimorphisms. The converse need not be the
case: it is not the case, for instance, in the category Set, of pointed sets,
where regular epimorphisms are precisely the surjective maps of pointed sets
which are injective beyond their kernels. The property that every regular
epimorphism is a right universaliser is equivalent to validity of (A1), for the
form of subobjects of any category C as above. At the same time, the fact
that right universalisers are regular epimorphisms ensures that axiom (A3)
holds. In fact, axiom (A4) will also hold. This follows from the fact that
normal morphisms are precisely those whose regular image is a pullback of a
least subobject — since in a regular category regular images commute with
pullbacks, pullback stability of the class of normal morphisms reduces to the
trivial fact that a pullback of a pullback of a least subobject is a pullback of a
least subobject. Note that we need not worry about the conormal part of axiom
(A4) since in the form of subobjects all objects in the fibres are conormal. So,
for a category C as above, the form of subobjects satisfies both (A3) and (A4).
The category of sets gives an example of such C, with neither (A1) nor (A2)
being satisfied. The category of pointed sets still does not satisfy (Al), as
already remarked above, but it satisfies (A2) as a simple consequence of the
fact that in this category every subobject is normal.

5.6 Protomodular and semi-abelian categories

Given a biform F' : B — C, a morphism f in C is called left/right cartesian 58]
if the image of the left/right action of f is down/up-closed. The form F' is
called (left/right) cartesian when every morphism in C is (left /right) cartesian.
In Corollary 1 in [58], it was shown that for a regular category C, the following
are equivalent:

e the form of subobjects F' over C is cartesian;

e C is protomodular.

The following lemma is taken from [58]:
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Lemma 38. Let F' : B — C be a locally bounded biform and f : X — 'Y be
a morphism in C. Then f is left cartesian if and only if for any object A in
FYY), f-(A-f) = AN f1. Dually, f is right cartesian if and only if for
any object B in F~Y(X), (f-B)-f=BVO0f.

Corollary 8. For a category C having finite products, the following are equiv-
alent:

(1) C is pointed, reqular and protomodular (i.e. it is a homological category);

(2) the form of subobjects over F is a bounded biform, satisfies the axioms
(A1) and (A2), and is cartesian.

Proof. (1) = (2): It is well-known that every homological category is normal
(see for example [15]), so the result follows easily from Corollary 1 in [58].

(1) = (3): Clearly cartesianness together with (A1) gives (A3), so we have
that C satisfies (N1), (N2) and (N4). By Theorem 15, it remains to show that
it satisfies (N6). By the remarks in the previous sections, normal epimorphisms
(and in particular split epimorphisms) are precisely the right universalisers for
F. Thuslet e : E — Y and f : X — Y be two right universalisers, with f
a split epi, and let g : A — X be the pullback of e along f as shown in the
diagram below:

A2 X

o]

E——Y

We are required to show that g1 is normal. In fact, we will show that g1 =1,
which together with (A2) gives the result. By cartesianness, if g1 > 0f, then
gl=g1lVvOf=(fgl) - f=(ehl)-f=(el)-f=1,since h will also be a split
epi, and hence a thick morphism under (Al). Translating the requirement
gl > 0f back into the language of monomorphisms, we see that it is sufficient
for the kernel of f to factor through g. This follows easily from the property
of the pullback. O

A biform F : B — C is called left (resp. right) stable [58] when conormality
(resp. normality) of objects is preserved under right (resp. left) action of left
(resp. right) universalisers. A form which is both right and left stable is called
simply stable. In Theorem 2 in [58] it was shown that for a pointed regular
category with binary coproducts, the following are equivalent:

e the form of subobjects F' over C is cartesian and stable;

e (C is semi-abelian.

We obtain the following corollary:
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Corollary 9. For a category C having finite products and coproducts, the
following are equivalent:

(1) C is semi-abelian;

(2) the form of subobjects over F is a bounded biform, satisfies the azioms
(A1) and (A2), is cartesian and is stable.

Thus the axioms (A1) and (A2) on a bounded biform, together with carte-
sianness and stability, provide a suitable context for studying group-like struc-
tures. Indeed, one only has to further require that the form is conormal to com-
pletely characterise forms of suobjects of semi-abelian categories (Lemma 7).
However, when proving results in the context of a form satisfying these condi-
tions, we do not use the fact that the form is conormal, since this is precisely
the non-self-dual part of the properties of such a form.

We also have the following characterisation of abelian categories, which is
easy to verify from the results in this chapter (for example from the remark
following Lemma 35).

Proposition 27. For a category C having finite products, the following are
equivalent:

o C is abelian;

o the form of subobjects over F is a bounded binormal biform satisfying
(A1).

Note that any exact binormal form is cartesian; this was already noted (in
the language of ideals of null morphisms) in [41].

5.7 Formal diagram chasing

We end this chapter with an illustration of diagram chasing in the context
of a form satisfying self-dual conditions, as first introduced in [58|. Since we
proved the Short Five Lemma for groups in the Background section, we prove
a version of this lemma for forms here. In fact we prove a slightly more general
lemma, based on the formulation in [74]. The proof is based on the “subobject
chasing” argument introduced by Mac Lane in [74] and further developed by
Grandis in [43].

Lemma 39. Let F : B — C be a bounded biform which satisfies (A2) and
which is cartesian. Then given any commutative diagram of the following
form in C:

Xty .z

4 k)

X,T>Y/—/>Z/
r
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where r and v’ are thick, | and l' are thin, -1 =0-r andl'-1 =0-1', we
have that w is thin/thick if both v and u are thin/thick. In particular, w is an
isomorphism if both v and u are.

Proof. Suppose u and v are thin. Since v is thin,
(row)-(0-w)=0= (vor)-(0-w)=0=7r-(0-w)=0

since left actions preserve bottom elements. Thus 0-w < 0-r =1{-1. Then by
cartesianness,

0-w=1-(0-(wol))=0-(uol)=0.

which gives that w is thin. The fact that w is thick when u and v are thick
follows dually, and the fact that w is an isomorphism when it is thick and thin
follows from condition (A1). O

Notice that we are able to prove one half of the lemma and have the other
half by dual arguments, since all the axioms used are self-dual. This is in
contrast to the group-theoretic proof given in the Background section, where
injectivity and surjectivity had to be proved separately using different methods.

The proof given here is based on the proof of the Five Lemma in [41], where
it is also the case that one half is proved and the other deduced by duality.
The proof in [41] is in the context of a “modular semi-exact category” of which
any abelian category is an example, but of which the category of groups is not.
Modular semi-exact categories correspond (under the bijection in Theorem 7)
to cartesian binormal orthogonal forms. Thus, the difference between the proof
given here and the one in [41] is that the arguments used here will also apply
to the case of homological categories, since we never required the form to be
binormal. Indeed, it is not hard to see, using the results of this chapter, that
if F'is the form of subobjects of a homological category, this lemma translates
into the classical Short Five Lemma for pointed categories.
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Chapter 6

Bifibrations in database theory

6.1 Introduction

In this chapter, we explore some connections between the work in the previous
three chapters and the theory of databases. In particular, we look at an ap-
proach to the view update problem introduced by Johnson and Rosebrugh [65],
where the notion of bifibration plays an important role. The goal of this chap-
ter is to give an overview of the bifibrational model of view updatability, with
the hope of providing a starting point for further applications of the theory of
bifibrations, in particular that part which plays a role in categorical algebra,
to the theory of databases. Some elementary remarks and elaborations on the
work of Johnson and Rosebrugh are also made in this chapter.

We first look at the notion of a sketch, and the sketch data model developed
by Johnson and Rosebrugh. We then give Johnson and Rosebrugh’s definition
of view updatability in this context, before looking at two examples which il-
lustrate a connection between the functor from database states to view states
and the functors encountered in the previous chapters. The first example is
that of a codomain bifibration. In particular, the codomain and subobject bi-
fibrations over the category of finite groups are examples of bifibrations arising
from views. The second example is that of a domain functor, which in general
does not represent an updatable view, for reasons which we discuss in detail.
Finally, we look at a simplified version of the view update problem, which leads
us to a proposition giving necessary and sufficient conditions for a reflection
whose domain is finitely complete to be a fibration. This proposition uses the
notion of semi-left-exact reflection in the sense of [24| (see also [21]).

6.2 Sketches and models

The notion of a sketch is due to Ehresmann [32]. The following definitions are
taken from [5]:

93
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Definition 39. A sketch & = (G, D, L,C) consists of a graph G, a set D of
diagrams in G , a set L of finite cones in G and a set C of finite cocones in
G. A morphism of sketches from a sketch S = (G, D, L,C) to a sketch 8" =
(G', D', L', C") is a graph homomorphism F : G — G' which sends diagrams in
D, L and C to diagrams in D', L and C' respectively.

By a cone in G, we mean a graph homomorphism D : G’ — G, a dis-
tinguished node d in G and for each object ¢ in G’ a distinguished arrow
ly:d— D(g). A cocone is defined dually.

Definition 40. A model of S in a category C is a graph homomorphism from
G to the underlying graph of C which sends diagrams in D, L and C to com-
mutative diagrams, limit cones and colimit cones respectively.

Every category C has an underlying sketch, whose graph is the underlying
graph of G and where the diagrams in D, £ and C are precisely the commu-
tative, limit and colimit diagrams in C respectively. Thus a model of a sketch
S in C can be equivalently defined as a morphism of sketches from S to the
underlying sketch of C.

Every sketch S determines (up to equivalence) a category Th(S) which is
finitely complete and cocomplete, which we call the theory of S, and a model
My of § in Th(S) which has the universal property that for any model M of
S in a category C, there is a (unique up to natural isomorphism) finite limit-
and colimit-preserving functor F': Th(S) — C such that F'o My = M [4].

By a (limit-class, colimit-class)-sketch, we mean a sketch where £ and C are
required to only contain cones and cocones from the specified limit class and
colimit class respectively. The theory of such a sketch is then only closed under
the limits and colimits in these classes, and has the corresponding universal
property. For example, a finite limit sketch S is a sketch for which C is empty,
and whose theory is thus only finitely complete. Models of such a sketch in
a category C are in bijection with functors from Th(S) to C which preserve
finite limits.

Definition 41. Let M, M’ : Th(S) — C be two models of a sketch S in a cal-
egory C (thought of as functors from the theory of S). Then a homomorphism
of models from M to M’ is a natural transformation from M to M'.

We could of course define homomorphisms of models without referring to
theories — we need only adapt the notion of natural transformation to apply
to a homomorphism of graphs between a graph G and the underlying graph of
a category C in the obvious way.

Given a sketch § and a category C, we thus have the category of models
Mod(S, C) whose objects are models of S in C and whose morphisms are
model homomorphisms. Every category of universal algebras, for example. is
(up to equivalence) a category of models for a sketch (see [5]). In practice,
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the sketches for even simple algebras can have lengthy definitions (see [5] for
a sketch corresponding to semi-groups). It will be enough for us to observe
that there is a sketch & whose category of models in Set is equivalent to Grp
(depending on the definition of a group, we can even say that it is Grp).

We now show that for any sketch S, there is a sketch Sy (which we will call
the arrow sketch of S) whose category of models in a category C is isomorphic
to the category of arrows of Mod(S, C). It is constructed as follows. Consider
a sketch S = (G, D, L,C), and let Sy = (Ga, Da, L2, C3) be the sketch obtained

as follows:

e the graph G, is the disjoint union of G with itself, together with a family
of arrows ay : (¢,0) — (g,1), one for each object g of G;

e the set D, contains the images of all the diagrams in D under the in-
clusions Iy, I1 : G — Go, as well as, for every arrow f : g — h in G, the
following ‘“naturality” diagram:

(9,0) L% (1, 0)

(9.1) NTEY (h,1)

e the sets Lo and Cy contain the images of all the diagrams in £ and C
respectively under the inclusions Iy, I; : G — G'.

It is easy to check that a model M for &; in a category C is nothing
but a pair of models M; and M, of § together with a model homomorphism
f: My — Ms. Indeed, the inclusion of the naturality squares in Dy ensures
that (M (oy))geg gives a model homomorphism. Thus we have an isomorphism:

Mod(S,) = Mod(S)?

Given any sketch S = (G,D,L,C) and an arrow f : g — h in G, we
can recover those models M of § such that M(f) is a monomorphism as the
models for a new sketch §’. We obtain S’ by firstly adding an additional arrow
ly,: 9 — g to G, and then add the following diagram to L:

g%h

T
9—79
g
Any model M must send such a diagram to a pullback, and since M (1,) =
M(1,) (note, however, that it need not be equal to 1)), we have that f

must be monic. Conversely, if M(f) is a monomorphism for a model M, then
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sending 1, to the identity on M(g) clearly defines a model of §’. We say that
an arrow f in G is a specified monomorphism to mean that every model sends
f to a monomorphism [67]. In particular, we can specify each «, in G, above
to be a monomorphism, and arrive at a sketch (which we will denote by S,,),
whose models are pairs of models M; and My of S together with a model
homomorphism whose every component is a monomorphism (in particular, it
will be a monomorphism in Mod(S, C)).

Finally, we give a construction which will play an important role in the
subsequent sections. Suppose we have two sketches S and &’ and a model of
S in Th(S’). Then for any category C there is a functor:

F* : Mod(S',C) — Mod(S, C)

which takes a model M to M’ o F, where M’ is the functor from Th(S’) to C
corresponding to M.

6.3 The sketch data model

The main idea of the sketch data model is that database schemas should cor-
repond to sketches, while database states should correspond to models. The
sketch data model has been the used in a number of successful major informa-
tion system consultancies by Johnson and Rosebrugh, demonstrating its power
in real-world applications (see [65] and the references there).

Definition 42. An EA (entity-attribute) sketch [65] is a (finite limit, finite
discrete cocone)-sketch S = (G, D, L, C) such that L contains a specified cone in
L with empty base (denoted by 1). Arrows with domain 1 are called elements.
Nodes which are vertices of cocones all of whose injections are elements are
called attributes. Nodes which are neither attributes, nor 1, are called entities.

Relational databases, as described in the Background section, are easy to
represent as EA sketches. Given a relational database, we construct an EA
sketch S = (G, D, L,C) as follows. For every domain D we add an attribute
(in the sense of the above definition) to S. For every relation R with attributes
(Ai,..., A,) and corresponding domains (Dy, ..., D,), we add a node R and
a family of arrows (r; : R — D;)icq1,2,..n}, together with a limit diagram spec-
ifying that this family of arrows be monic. If the family {A,,, Az, ..., Ay}
is a primary key, we add a limit cone specifying that the family of arrows
{rays T2y, -+ Ta, } be jointly monic. Finally, if a relation R has an attribute A
which is a foreign key referencing an attribute A’ in a relation R’, and which
takes values in a domain D, then we add an arrow a : R — R’ to G and the
following diagram to D:
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R—%s R
DNZ
D

where d and d' are the arrows from R and R’ corresponding to the attributes
A and A’ respectively. It is easy to generalise this to the case when the foreign
key consists of multiple columns.

Given a sketch § corresponding to a database scheme, the theory of S
has the interesting property that it contains many of the important queries
implemented by a typical database system. For example, suppose a database
scheme consists of three tables tableA, tableB and tableC. Suppose tableA
and tableB both contain a foreign key column columnX which references the
primary key in tableC. The corresponding EA sketch & for this schema has
an underlying graph containing the following diagram:

1 tableC

tableA tableB
A typical query on this database would be (in SQL):

SELECT * FROM tableA INNER JOIN tableC
ON tableA.columnX = tableB.columnX;

This query returns a new table, each row of which is a pair of rows, one row
from tableA and one row from tableB, such that the entries in columnX of
each row are the same. Suppose M is a database state for S. Then this query
simply forms the pullback of M(f) along M(g). Thus the query is represented
by the pullback of f along g in Th(S).

Another important query already mentioned is a SELECT query. The
result of such a query can also be represented by an object of the theory.
Suppose that the column columnX contains a number, and we want to select
all those rows in tableC for which that number is 2. In SQL, we would execute
the following query:

SELECT * FROM tableC WHERE columnX=2;

In order to represent this query as an object in the theory of a sketch, an
“integers” attribute N must be added to the sketch. We should also have an
arrow from tableC to /N which we think of as interpreting the value of columnX
(call it 7). Now, suppose we have a database state D of this sketch where N
is taken to the set {1,2,...,n} and each coproduct injection i,, : 1 — N is
taken to the morphism from the singleton set which picks out the number m.
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In this case, we can compute the result of the select query above as the image
under D of the limit of the following diagram (which is an object of Th(S)):

tableC

1——— N
io

Note that the result of this query is always relative to the choice of D(N),
i.e. the chosen representation of the number attribute.

Remark 2. While it is not noted explicitly in [65], it is fairly clear that a sketch
need only have one attribute. Every value in every row in a database, reqardless
of whether we view it as a number or a string, can be (and practically speaking
already is) encoded uniquely as a natural number (since the possibilities for
such fields are always finite). We can therefore define one entity which is the
coproduct of sufficiently many copies of 1 as the sole attribute in the sketch.

Not only can EA sketches capture many of the aspects of traditional rela-
tional databases and their query languages, but the sketch data model further
allows the use of additional constraints which, while natural to consider, aren’t
typically expressible in a language like SQL. For example, the class D of com-
muting diagrams can enforce certain real-world constraints on a database (see

[63]).

6.4 Updates and views

Now that we have defined an EA sketch, we can define database states and
updates. The following definition is taken from [65].

Definition 43. Given an EA sketch S, a database state for S is a model of S
in setg, the category of all finite sets. An insert update (resp. delete update)
for a database state D is a monomorphism D — D' (resp. D' — D) in the
category Mod(S).

As mentioned in the Background section, a view of a database allows a
user to manipulate part of the data contained in or derived from the whole
database. In SQL, for example, the create view query returns the result of a
query on the database as a virtual table, which the user can manipulate [88|.
The authors of [65] argue that views of databases should be allowed to include
multiple tables, as well as tables derived from the larger database via queries.
With this in mind, the following definition is given in [65]:
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Definition 44. A view of an EA sketch S is an FA sketch V together with a
model V' of V in Th(S) (or equivalently, a sketch morphism V' from V to the
underlying sketch of Th(S)).

As demonstrated in a previous section, any view V' gives rise to a functor
(which we call the substitution functor):

V™ : Mod(S, setg) — Mod(V, sety)

from database states for S to database states for V (which we call view states).

The view update problem can be phrased in this language as follows: given
an update to a view state, is there a “best” update to the database state which
extends this update? The authors of [65] define such a “best” insert/delete as
follows:

Definition 45. Let V : V — Th(S) be a view and let D be a database state
for §. Leti : T — T’ be an insert update with T = V*(D). Then i is a
propagatable insert (relative to D) if there exists an update i’ : D — D' in
Mod(S, sety) such that V*(i') = i and for any insert updates j : T — T",
k:T —T" and k' : D — D" with V*(k') = k = j o, there exists a unique
insert update j' such that j' o' =k and V*(j') = j.

In other words, given a database state D and the corresponding view state
T, an update to T is propagatable whenever it can be extended to the rest of
the database D in a “universal” way. Propagatable deletes are defined dually:

Definition 46. Let V : V — Th(S) be a view and let D be a database state
for §. Leti : T" — T be an delete update with T = V*(D). Then i is a
propagatable delete (relative to D) if there exists an update i' : D' — D in
Mod(S, setg) such that V*(i') = i and for any insert updates j : T" — T,
k:T"— T and k' : D" — D with V*(k') = k =i o j, there exists a unique
insert update j such that i' o 7' = k' and V*(j') = j.

If every insert/delete update on a view state T' is propagatable, then we
call the view state insert/delete updatable. An insert/delete updatable view is
one for which every view state is insert/delete updatable.

The definitions resemble the definitions for cocartesian and cartesian mor-
phisms, but with the added complication of only allowing monomorphisms.
For a sketch S, we denote by Mon(S) the subcategory of Mod(S,sety) con-
sisting of all the monomorphisms — if S is an EA sketch, then this is nothing
but the category of database states and insert updates for S. We thus have
the following proposition from [65]:

Proposition 28. Let S and V be sketches and let V :'V — Th(S) be a view
such that V* preserves monomorphisms. Then the restricted functor V' :
Mon(S) — Mon(V) is a fibration/opfibration if and only if V' is delete/insert
updatable.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. BIFIBRATIONS IN DATABASE THEORY 100

Note that whenever S is keyed in the sense of [65], then every morphism
of database states for S is a monomorphism (see [67]). Also, the functor V*
will always preserve monomorphisms when V' is an inclusion into § itself.

Suppose we have a view V for which V* : Mon(S) — Mon(V) is a bifi-
bration. Given a morphism f : A — B in Mon(V), consider the change of
base adjunction f* - f, induced by f. Recall that an important concept in
the previous chapters was when the unit/counit if this adjunction is trivial
(for forms this is equivalent to f, being injective/surjective). In terms of the
database schema, this would mean that the insert/delete update represented
by f is reversible, i.e. performing the update on the view and then undoing it
returns the database to the original state.

Developing connections of this kind between bifibrations in algebra and in
database theory could help illuminate aspects of both. It may be interesting to
look at cases where some of the conditions introduced in the previous chapters
hold for a view bifibration, and see if these cases have any real-world meaning.
This is left for future work.

6.5 Updatable view schemas

In [66] and [65], various examples of updatable and non-updatable views are
given (although the definition of updatability differs subtly between these two
papers — see the section on update definitions below). Here we look at only two
examples of views. The first is motivated from the codomain functors in the
previous chapters, while the second is similar, but simpler, and illustrates the
lack of duality in the definition of updatability arising from the monomorphic
requirement in the definition. This requirement is discussed further in the final
subsection.

6.5.1 Codomain and subobject views

Groups can be defined as models in Set for a finite limit sketch §. Finite
groups are models of this sketch in setq, so finite groups are database states
for an EA sketch §. Models (or database states) for the arrow sketch S,
(as defined earlier), are then group homomorphisms. The second injection
I, : § — &, gives rise to a substitution functor

I} : Mod(S,, setg) — Mod(S, sety)

which is precisely the codomain functor Cod over the category of finite groups.
Is I, seen as a view, updatable? Clearly I is a bifibration, but we need to
consider the restriction to monomorphisms. We will denote the category of
finite groups by grp and the subcategory consisting of all monomorphisms by

grpy-
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Lemma 40. Let C be a category, and let C? be its category of arrows. If C
has an initial object, then a morphism (f,g) : a — b in C? is a monomorphism
if and only if both f and g are monomorphisms in C.

Proof. If C has an initial object, then it is easy to see that Cod : C? — C has
a left adjoint. We have already noted that the domain functor Dom has a left
adjoint, so both Cod and Dom preserve limits, and hence also monomorphisms,
which gives the required result. O]

It makes sense then to consider the subcategory grp3, of grp? consisting
of all the monomorphisms in grp?, and the restricted functor

I, : grpy; — TPy

The cocartesian liftings and cartesian liftings for the codomain functor restrict
to this context. Indeed, recall that given morphisms f: A — B, g: C — D
and a monomorphism m : B — D, the Cod-cocartesian lifting of m from f
is (m,14) : f — mo f, while the cartesian lifting of m to g is given by the
pullback of m along ¢, and it is straightforward to check that these morphisms
are also cocartesian and cartesian with respect to the restricted functor I7,.
Thus the view I; is both delete and insert updatable.

This argument holds more generally for any finite limit sketch &, not just
for the sketch for groups. Recall that a category is the category of models in
Set for some finite limit sketch if and only if it is a locally finitely presentable
category (see [1]). In particular, these categories are always complete and
cocomplete, and so have pullbacks and initial objects. Thus if we include
models in Set as database states, every codomain functor over a locally finitely
presentable category is a substitution functor arising from a view. Moreover,
this view is updatable.

Practically, this result (that the view [; is always updatable) is not surpris-
ing. Roughly speaking, if a view of a database contains a collection of tables
such that the rest of the database resembles a copy of the view with references
into the view state, then any change to the view can easily be propagated to
the rest of the database. In particular, inserting into the view does not change
the rest of the database at all (see the construction of the cocartesian lifting
above), while any delete updates must “cascade” into the rest of the database
— this is the notion represented by taking the pullback.

The subobject functor over grp also arises from an updatable view. Let §
be the sketch for groups, and recall from Section 6.2 that we can specify each o
in Sy to be a monomorphism to obtain the sketch S,,,. The category of models
for S,, is then the category of model homomorphisms f : M — M’, each of
whose components is a monomorphism. Clearly for the sketch of groups this
is equivalent to f being a monomorphism in Mod(S, setq). More generally, we
have the following result:
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Lemma 41. Let S be a finite limit sketch whose theory has finite hom-sets.
Then a homomorphism of models m : M — M’ is a monomorphism in
Mod(S, sety) if and only if every component of m is a monomorphism.

Proof. The category Mod(S, sety) can be equivalently expressed as the cat-
egory of finite limit preserving functors from Th(S) to sety,. In particular,
this category contains all the representable functors from Th(S), so the result
follows from the Yoneda lemma (see the proof in Background for the case of
arbitrary presheaves) ]

Thus the category Mod(S,,,set) is isomorphic to the full subcategory of
the arrow category grp? with objects all the monomorphisms. Now consider
the view I; : § — §,,,. The substitution functor arising from this view is the
subobject functor over grp, and it is easy to see that the view [ is updatable.
Indeed, the functor I restricted to monomorphisms is simply the codomain
functor over grp,,.

6.5.2 Domain views

We cannot immediately conclude that the view Iy (i.e. the first injection S —
S) has all its view states updatable, since pushouts do not necessarily exist in
Mon(S). This is precisely the non-dual part of the definition of updatability:
that we only deal with monomorphisms. The following discussion is meant to
illuminate this issue.

Suppose we have the following simple example of an EA sketch § =
(G,D, L,C), namely that G has only one node with no edges, and D, £ and C
are all empty (apart from the distinguished node 1). As a database, this is just
a single entity, and states for S are just finite sets. Consider the corresponding
arrow sketch S;. Models of S, are then functions between finite sets. Now,
consider the view I : § — Ss. The functor § is the domain functor over set,
which we know to be a bifibration.

Let D be a state for S, i.e. a pair of sets D; and D, and a function
f: Dy — Dy, and let m : D; — T be a monomorphism, i.e. an insert update
on the view state D;. The cocartesian lifting of m from f with respect to Cod
is given by the pushout of f along m, shown in the diagram below:

Dy s T (6.5.1)

s

DIT>T

The morphism m’ will be a monomorphism, but this is not necessarily a
cocartesian lifting with respect to the restricted functor

15, : Mon(S;) — Mon(S)
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In fact, there is no cocartesian lifting of m from f in general. To see this,
let Dy = {1}, Dy = {1,2} and f = m be the inclusion D; — Dy. There are
the following commutative diagrams:

{1,2} =—={1,2} {1,2} =—={1,2}

1| 1
1 —- {12} 1= {12}

where h is the map 1 — 1, 2 — 1. Suppose (n,m) : f — g is a cocartesian
lifting of m from f, where ¢ is a morphism from {1,2} to X, as shown in the
diagram below:

122 +x

1]
1 (1)

Looking at the left-hand diagram, we conclude that g must be a split monomor-
phism. But looking at the right-hand diagram, we conclude that there must be
a monomorphism k from X to {1,2} such that kg = h, which is not possible.

6.5.3 Definitions of update

Consider the meaning of the pushout diagram (6.5.1) in the previous section in
the language of databases. Recalling the construction of pushouts in set, the
object T" above is the disjoint union of Dy and the complement of the image of
m. In the language of databases, the update m adds to the rows of entity D;.
Each new row must reference a row of Dy, but since no universal choice can be
made from D, itself, D, is expanded to freely include references for the new
rows. However, another possible update to the database consistent with the
view update m consists in manually choosing the values referenced by the new
rows. In order that the propagated update be universal, it will be necessary
to reassign the freely added values later on, but this is a modification of data,
not an insert update.

The example in the previous section is in some sense trivial, but it illumi-
nates some aspects of the definition of an update. Adding rows freely might
not be something that a database management system implements, in which
case we might want to conclude the view [ is not insert updatable. However,
allowing modification of data to be included in the definition of an update
allows for a universal propagation of the update which would also make sense
in the context of databases, namely the use of “placeholder” values (i.e. freely
added values). Thus depending on the context, it may or may not be sensible
to consider non-monomorphic updates.

We should also note that an earlier definition of propagatable view update
by the same authors in [66] seems to omit one of the requirements in Defini-
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tion 45: it requires the lifting i’ to be a monomorphism, but does not require
the morphism j” to be a monomorphism. This is significant: Example 16 in [66]
is for example not true under the definition given here (which is taken from
the later paper [65]), as shown by the example in the previous section.

6.6 Bifibrations between categories of
presheaves

By a linear sketch, we mean a sketch which is required to have both £ and
C empty (in other words a (none, none)-sketch in the terminology of Sec-
tion 6.2). Let S = (G,D,,d) be a (linear) sketch and V' : ¥V — S be a
full sketch inclusion. Further, assume that G is finite and acyclic, so that
the theory of S will also be finite. In this section we show that the functor
V*: Mod(S, sety) — Mod(V, sety) is always a bifibration. Note that this does
not mean that the view V' is updatable, even with the addition of the required
cone 1, since updatability requires us to look at the functor V* restricted to
monomorphisms. However, the result provides some insight into the view up-
datability problem for simple sketches, especially if the definition of update
is relaxed to include natural transformations which are not monomorphisms.
Note that a closely related result was already mentioned without proof in [66].
Since § is a linear sketch, we have the isomorphism:

Mod(S, setq) = seto ")

so, writing S = Th(S) and V = Th(V), and denoting the inclusion V — S by
V' we are required to prove that the functor

V' seto® — setg

is a bifibration. We will prove this via a more general result regarding reflec-
tions.

Lemma 42. Let F': B — C be a functor with a right adjoint T such that the
counit of F' o T is the identity. Let f,g : X — T(B) be two morphisms in B
such that F(f) = F(g). Then f = g.

Proof. We have the bijection hom(X,T(B)) — hom(F(X), B) whose action
on morphisms is that of F', since the counit is trivial. O

The following proposition is based on a remark by Janelidze [50].

Proposition 29. Let F : B — C be a functor with a right adjoint T such that
the counit of F' T is the identity. Then the following are equivalent:

(1) F is a Street fibration (see Background section);
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(2) B admits all pullbacks of the following form:

where n is the unit of F 4T, and F preserves such pullbacks (i.e. F' is
a semi-left-exact reflection in the sense of [24]).

Proof. Let F' 4T be such an adjunction, and consider a commutative square
in B of the following form, where F(p) is an isomorphism:

We claim that this square is a pullback if and only if f” is cartesian. It follows
from Lemma 42 that given any morphism v : Z — B, there exists a morphism
v:Z — T(X) such that f' ov = ngow if and only if there exists a morphism
g: F(Z) — X such that F'(u) = F(f")og (the morphism g will then be F(v)).
Since p is an isomorphism, this is equivalent to the existence of a morphism
g : F(Z) — F(P) such that F(f")og" = F(u). For such a morphism v and the
corresponding morphisms ¢ and ¢’, a morphism w : Z — P satisfies f"ow = u
and pow = v if and only if satisfies f” ow = u and F(w) = ¢'. It is now easy
to see that the square above is a pullback if and only if f” is cartesian.

(1) = (2): Consider an object B in B and a morphism f": T'(X) — TF(B).
The object B is in the fibre of TF(B), so let f” : P — B be the cartesian
lifting of F(f") to B (i.e. such that F(f") o6 = F(f") for some isomorphism
0 : F(P) — X). By adjunction, there is a morphism p : P — T'(X) such that
F(p) = 6. By the above result, p will then be the pullback of ng along f’.
Moreover, since F(np) = 1ppy and F(p) is an isomorphism, F' preserves this
pullback.

(2) = (1): Let f: A— F(Y) be a morphism in C. Consider the pullback:

b

F(Y)

P—>

T(A

Since F is semi-left-exact, the morphism F'(p) must be the pullback of F'(ny) =
Lpyy along FT(f) = f, i.e. an isomorphism such that F(f') = fo F(p). Thus,
f' is cartesian by the earlier result. O]
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Note that semi-left-exact reflections were called admissible reflections by
Janelidze in his Galois theory [49] (for the connection between the two notions
and more on semi-left-exact reflections, see [21]).

Corollary 10. Suppose F' : B — C has a right adjoint T and a left adjoint 1
such that the counit of I 4T and the unit of I 4 F are both trivial. Then if
B admits pullbacks and pushouts, then F is a Street bifibration.

Proof. Since F' has a left and right adjoint, it preserves all limits and colimits,
so the result follows from the previous result and its dual. O

Remark 3. Recall that a functor F' having left and right adjoints I 4 F 4T
such that the counit of F 4T and the unit of I 4 F are both trivial was one
of the most important contexts considered in the previous chapters. By the
above result, the requirement that F' be a Street bifibration is equivalent to the
existence of certain pullbacks and pushouts. Note, however, that the existence
of the adjoints I and T is stronger than F being locally bounded (see Chapter

3).

Returning to the functor V"*, we notice that its domain is finitely complete
and cocomplete (limits and colimits are computed point-wise). Moreover, since
pullbacks are computed pointwise in sety and setj, it is easy to see that we can
always choose the pullback in (2) in Proposition 29 such that F(p) is in fact
an identity and not only an isomorphism. Thus, V"* will be a Grothendieck
bifibration as soon as it has left and right adjoints for which the corresponding
unit and counit are trivial. Adjoints to V'* always exist, and they are given
by so-called Kan extensions (see for example [75]).

Definition 47. Let A, B and C be categories, and let F' : A — B be a functor.
Consider the functor F* : C® — C». If it has a left adjoint Fy, then F is
called the left Kan extension operation along F. For a functor H : A — C,
we call Fy(H) the left Kan extension of H along F. If F' has a right adjoint

F,, then F, is called the right Kan extension operation along F'. For a functor
H: A — C, we call F.(H) the right Kan extension of H along F.

Recall that whenever C is complete and cocomplete, the left and right Kan
extension of any functor H : A — C along any functor F' : A — B exists
(see for example [75]), so that the functors F} and F, in the above definition
always exist. In fact, when A and B are finite, it is enough for C to have finite
limits and colimits. Also from [75|, we recall that when F' is full and faithful,
the unit and counit of the adjunctions Fi 4 F* and F* - F, respectively are
trivial. Together with Proposition 29, we thus have:

Theorem 18. Let S = (G, D, 5, D) be a linear sketch where G is finite and
acyclic, and let V : V — § be a full inclusion. Then the substitution functor
V*: Mod(S, sety) — Mod(V, sety) is a bifibration.
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Conclusion

7.1 Concluding remarks

At the end of the first chapter, we arrived at the following structure: a faithful
amnestic functor F' which fits into the following picture:

B

R A|I 4 |F 4|T 4L

C

where the counit of F' 47T and the unit of I 4 F' are the identity. We noted that
many important concepts in group theory such as quotient groups, subgroup
inclusions and zero subgroups are already represented in this picture when we
think of F' as the bifibration of subgroups.

In order to represent the notions of kernel and image, we must require
that F' be a bifibration. The last proposition in the previous chapter gives an
equivalent way to state this: F' is a bifibration if and only if certain pullbacks
and pushout exist in B. Moreover, these pushouts and pullbacks are familiar,
and play a role in categorical Galois theory and the theory of factorisation
systems. Proposition 29 should in some sense have appeared earlier in the
thesis. However, the author arrived to it while thinking about the work in
Chapter 6, so it is included there.

107
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7.2 Future work

7.2.1 Group theory

The most obvious next step is to use the context developed here as a means
for doing group theory in a self-dual way. Already we have seen that the First
Isomorphism Theorem can be stated in a self-dual way in the context of such
a structure, and that other self-dual axioms capture the notions of normal,
protomodular and semi-abelian categories. In each case, the only non-self-
dual part is the requirement is that the form is a form of subobjects, which is
often equivalent to the form being conormal (see Chapter 4).

The technique for proving isomorphism theorems and other results in such
a context should be to assume that objects are conormal only so far as will
ensure that the statement of the theorem remains self-dual. Hopefully this
way of formulating and proving results for groups leads to new conceptual
links between results, as well as more efficient proofs. There is still much work
to be done in this direction, however. The first proofs in this line were given
in a recent talk by Z. Janelidze in Sydney [57].

7.2.2 Other topics in categorical algebra

It would be interesting to see which other areas of categorical algebra could be
extended to the context of a form. For example, the very first steps towards
generalising homological algebra have already been made. A basic treatment
of homological algebra in this context is work in progress by Z. Janelidze and
Van der Linden, and was presented in detail in [85]. Z. Janelidze has also
remarked on a number of occasions that it may be interesting to develop a
theory of closure operators in the context of forms. This became the starting
point for the PhD research in progress of his student A. Abdalla. Some basic
results about torsion theories for a form have been formulated by the author
and discussed in a recent talk [86].

7.2.3 Views of databases

The question of extending the definition of update to a database to include
arbitrary modifications and not just inserts and deletes was already mentioned.
It would also be good to continue to apply the mathematical theory of view
updates to real-world problems, and to investigate real-world problems in order
to inspire new theory. In particular, the idea of applying this theory to large
networks of database systems is particularly interesting.

Links between the conditions on a bifibration which arise in categorical
algebra, and aspects of bifibrations arising from views should also be investi-
gated. As mentioned in the previous chapter, it would be interesting to see
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if these conditions have real-world meanings in the context of databases, and
can inform the process of defining and implementing view updatability.
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