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Abstract 

The design of industrial processes towards the production of bio-based polyethylene 

terephthalate (PET) gained much attention after the introduction of the PlantBottle®. This is 

further motivated through sustainability appeal, a continuous increase in the PET market 

growth as well as economic gains (most importantly revenue generation) through 

commercialisation of the designed process.  The first component of PET, monoethylene 

glycol, is currently commercially produced from a bio-based source, while there is a need for 

a production scheme for the second component, purified terephthalic acid (TPA), which has 

not yet been developed.  In this project, investigation of reported experimental data lead to 

the development of a number of novel processing schemes, which were subsequently 

subjected to technical and economic analyses to determine feasibilities.  Multiple companies, 

including The Coca-Cola Company, Virent and Anellotech, have invested in this research.  

However technical and economic data from these sources are not publicly released, 

therefore alternative methods of comparison where selected.  

 

The developed processing schemes firstly aimed to utilise second-generation feedstocks for 

the extraction of TPA precursors, based on feedstock availability in South Africa (scenario 

one).  Focus was placed on terephthalic acid production from terpene precursors found in 

Eucalyptus grandis leaves and Pinus elliottii needles (forestry waste sources) as well as pre-

hydrolysate relief gas from the pulping processes (pulp mill residue source).  The industrial 

application of the proposed schemes was simulated in Aspen Plus®, where flow-sheet 

analysis revealed the production capabilities and utility demands of each scheme.  Energy 

efficiency optimisation was performed through pinch point analysis applied through Aspen 

Plus®. Costing of these processes (through ASPEN Process Economic Analyser and costing 

formulae) as well as the calculation of the economic indicator, DCFROR, revealed that the 

second-generation processes are economically unviable.  Contributing factors include low 

concentration of major terpenes (TPA precursors) within feedstocks, necessity for pure 

oxygen for two major section of each process, complex purifications (due to similar boiling 

points between major terpenes and by-products/multiple other terpenes) and small scale 

production that lead to a high average production cost. 

 

The second aim (scenario two) involved determining the economic viability of first and 

second generation processes at a 10% PET market share (reasonable share for novel 

processes in the short-term).  The same approach was used to derive the first generation 

processes as for scenario one.  The discounted cash flow analyses of each process 
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considered a 16% hurdle rate (for nominal terms used) to determine the minimum TPA 

selling price:   

Process Minimum selling price Green premium 

Pine $5 227/tonne 647% 

Eucalyptus $22 443/tonne 3106% 

PHR $38 114/tonne 5345% 

Starch-based $1953/tonne 179% 

FDCA $2130/tonne 204% 

 

Through the evaluation of these selling prices together with their accompanying green 

premiums, the second generation processes were deemed economically unviable.  Through 

the selling price comparison of the TPA equivalent, FDCA (also from a starch-based 

feedstock), which was deemed worthwhile for further research and optimisation, it was 

concluded that the first generation process has the potential to become economically viable.  

Therefore, it has the potential to reach the realistic premium of 125% through fewer 

processing steps, more effective purification methods, optimised and less expensive 

catalysts and additional by-product revenue. 

Ultimately, this process initialises the opportunities towards fully bio-based PET. 
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Samevatting 

Die ontwerp van industriële prosesse wat fokus op die vervaardiging van bio-gebaseerde 

poliëtileen-tereftalaat (PET) het populariteit verwerf tydens die bekendstelling van die 

PlantBottle®.  Motivering vir laasgenoemde is versterk deur die volhoubaarheids eienskappe 

daarvan, die groei van die PET mark asook die winste geassosieer met die 

kommersialisering van die ontwerpte proses.  PET bestaan eerstens uit monoëtileenglikool 

(MEG), wat op hede op ‘n bio-basis gekommersialiseer is.  Daarenteen is ‘n bio-basis proses 

vir die tweede komponent, gesuiwerde tereftalsuur (TPA), nog nie ontwikkel nie.  In hierdie 

projek het die ondersoek op huidige literatuur (eksperimentele data) gelei tot die 

ontwikkeling van nuwe prosesskemas wat deur tegniese en ekonomiese metodes 

geanaliseer is, om ten einde individuele lewensvatbaarhede te bepaal.  Verskeie 

maatskappye, insluitende The Coca-Cola Company, Virent en Anellotech, het in hierdie 

navorsing belê.  Ongelukkig is die tegniese en ekonomiese data van hierdie prosesse nie 

beskikbaar aan die publiek nie en daarom was alternatiewe metodes van vergelyking van 

gebruik gemaak.       

 

Die eerste doel van hierdie prosesskemas is om gebruik te maak van tweede generasie 

roumateriale as bronne vir die ekstraksie van TPA voorlopers (senario een).  Literatuur was 

oorweeg met die fokus dat hierdie projek die Suid-Afrikaanse kapasiteit van die roumateriaal 

in ag neem.  Fokus was geplaas op die vervaardiging van terftalsuur vanuit terpeen-

voorlopers wat in salignabloekom blare en basden naalde (bosbou-afval bronne) asook pre-

hidrolisaat verligtingsgas (PHR) (papierfabriek afvalstroombron) gevind word.  Die industriële 

toepassing van die ontwikkelde prosesskemas is in Aspen Plus® gesimuleer, waarna die 

produksiekapasiteit en energieverbruik deur ‘n vloeiskema analise van elke proseskema.  

Energie verbruikingsoptimalisering is gedoen deur gebruik te maak van energie-integrasie 

(“pinch-point”) analise in Aspen Plus®.  Die kostes geassosieer met elke proses was bereken 

deur gebruik te maak van ASPEN Process Economic Analyser asook koste-formules.  Die 

berekening van die ekonomiese indikator, DCFROR, het getoon dat hierdie prosesse nie 

ekonomies lewensvatbaar is nie.  Bydraende faktore sluit in; ‘n lae konsentrasie van die hoof 

terpene wat in die roumateriaal voorkom, die gebruik van suiwer suurstof in twee belangrike 

afdelings van elke proses, suiweringsmetodes wat vermoeilik is deur ander terpene en 

byprodukte asook die kleinskaalse produksie wat gelei het tot ‘n hoë gemiddelde 

produksiekoste.     

Die tweede doel (senario twee) ondersoek die ekonomiese lewensvatbaarheid van eerste en 

tweede generasie prosesse op ‘n 10% PET markskaal (‘n redelike aandeel tot die mark vir 
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nuwe produk in die korttermyn). Dieselfde stappe, soos in senario een, was gebruik om die 

eerste generasie proses te ontwikkel.  Die ‘discounted cash flow analyses’ van elke proses 

het ‘n struikel-persentasie van 16% gebruik (omdat nominale terme gebruik was) om elke 

minimum TPA verkoopsprys te bepaal: 

Proses Minimum verkoopsprys ‘Green premium’ 

Pine $5 227/tonne 647% 

Eucalyptus $22 443/tonne 3106% 

PHR $38 114/tonne 5345% 

Stysel basis $1953/tonne 179% 

FDCA $2130/tonne 204% 

 

Deur die analise van elke verkoopsprys, tesame met elke ooreenkomstige ‘green premium’, 

is die tweede generasie prosesse as nie ekonomies lewensvatbaar verklaar.  Deur die 

vergelyking met die TPA ekwivalent, FDCA (ook vervaardig vanaf styselbronne), was dit 

bevestig dat die eerste generasie wel die potensiaal het om ekonomies lewensvatbaar te 

word deur verdere navorsing en optimalisering. Dit is ook bevestig dat dit die potensiaal het 

om die realistiese ‘green premium’ van 125% te haal deur minder prosesseringstappe, meer 

effektiewe suiweringsmetodes, geoptimaliseerde en goedkoper kataliste asook addisionele 

byprodukwinste. 

Uiteindelik, bied hierdie proses die begin van vele geleenthede wat poog om volledige bio-

gebasseerde PET te vervaardig.  
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Nomenclature 

Chemical formulae 

γ-Al2O3 Gamma Alumina H2 Hydrogen Gas 

CaCl2·6H2O Calcium Chloride Hexahydrate H2S Hydrogen Sulphide 

CaO Calcium Oxide H2SO4 Sulphuric Acid 

Ca(OH)2 Calcium Hydroxide HNO3    Nitric Acid 

CaSO4 Gypsum KMnO4 Potassium Permanganate 

CeO2 Cerium Oxide MgO Magnesium Oxide 

CH4 Methane Gas Mn(CH3COO)2.4H2O Manganese (II) Acetate Tetrahydrate 

CH3SH Methyl Mercaptan Na2SO4 Sodium Sulphate 

(CH3)2S Dimethyl Sulphide Na2O Sodium Oxide 

(CH3)2S2 Dimethyl Disulphide NaOH Sodium Hydroxide 

CO Carbon Monoxide O2 Oxygen Gas 

CO2 Carbon Dioxide Pd Palladium 

Co(CH3COO)2.4H2O Cobalt (II) Acetate Tetrahydrate SiO2 Silicon Dioxide 

Co(OAc)2 Cobalt Acetate T(p-Cl)PPMnCl Tetra(p-chlorophenylporphinato) 

manganese 

 

 

Units of measurement and other 

 

 

 

μm Micrometre km Kilometre 

°C Degrees Celsius kW Kilowatt 

bar Bar Pressure mTerpene/mEssential Oil Terpene Mass per Essential Oil Mass 

g/hr Gram per Hour mg/L Milligram per Litre 

ha Hectare MJ/kg Mega Joule per Kilogram 

kg/hr Kilogram per Hour mm Millimetre 

kg/kmol Kilogram per Kilomole MPa Mega Pascal 

kg/m
3
 Kilogram per Cubic Metre ppm Parts per Million 
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1 Introduction 

1.1 Background 

The global reliance on plastic products has grown significantly since the early twentieth 

century, because of the many advantages that plastics offer, such as versatility, durability, 

non-corrosive nature and multiple applications.  The annual global consumption has grown 

from 5 million tonnes of plastic during the 1950’s to 280 million tonnes.   

Although offering advantages to the customer, plastics have negative effects on the 

environment in terms of the degradation period, toxic chemicals diffusing from the plastic, 

harmful effect on wildlife exposed to plastic waste and use of non-sustainable sources for 

production (Knoblauch, 2009).  

Currently, plastics are produced almost entirely from fossil fuel sources, utilising approximately 

6% of the oil produced globally.  Graeme Wearden (2016) predicted that the global oil 

consumption will rise to 20% by 2050, while the associated carbon emissions will rise from 1% 

to 15%.  There is, however, a slow decrease in the use of fossil fuels, through the production 

of plastics from biomaterials, as the demand for the utilization of sustainable materials 

increases (British Plastics Federation, 2008).  

According to Farouk (2015), there is a global movement towards the “Third Industrial 

Revolution”, where more focus is placed on sustainability in the production of energy and 

consumer goods.  This ‘greener movement’ is an effort to reduce the reliance on fossil fuels 

(with its detrimental impacts on the environment) and to implement solutions that look at the 

preservation of resources instead of the diminution thereof.  

One plastic, namely polyethylene terephthalate (PET), has gained particular interest as it 

contributes approximately 24% to the global thermoplastic market (Figure 1) (Nowlin, 2014).  

Polyester fibres made from PET were first produced in the early twentieth century and a few 

decades later, it was discovered that it could also be used in the packaging and resin industry 

(Zein et al., 2010).  Many products used today are contained within PET packaging, such as 

cosmetics, consumable liquids, edible substances and pharmaceuticals (Mudgal & Lyons, 

2011).   
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Figure 1: Global thermoplastic market share 

 

The production of PET involves a series of esterification and poly-condensation reactions 

using approximately 70 wt% purified terephthalic acid (TPA) and 30 wt% monoethylene glycol 

(MEG), or alternatively, dimethyl terephthalate (DMT) and ethylene glycol (EG) (Banat & El-

Rub, 2001).  Considering the above-mentioned need for sustainability and resource 

preservation, there is a need to develop processes in which these PET precursors, TPA and 

MEG, are produced from bio-based means.  These processes partially aid towards the 

development of fully bio-based PET.  

MEG is currently produced from biomass on a commercial scale using xylitol as intermediate 

chemical compound.  Xylitol can be produced from xylose through hydrogenation.  The largest 

producer of commercial bio-MEG, M&G Chemicals, uses a Ni/C catalysed process to convert 

bagasse to MEG and PG (propylene glycol) (Bari, 2014)).   

Since 2009, Coca-Cola has promoted a plastic liquid container, called PlantBottle™, as 30% 

“green content” due to the sugar-cane derived bio-MEG used during the production of the PET 

container.  Coca-Cola sources bio ethanol (produced from fermenting sugar cane juice) from 

Brazil, where after it is converted into bio-MEG in India.  The remaining 70% (terephthalic 

acid) has not yet been successfully produced from biomaterials on a commercial scale (Schut, 

2012).   

Therefore, an opportunity arises to produce bio-based terephthalic acid for polyethylene 

terephthalate production from sustainable biomaterials (i.e. bio-PET). This, in turn, will 

31% 

23% 
15% 

24% 

7% 

Polyethylene (PE)

Polypropylene (PP)
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Polyethylene
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gradually diminish the reliance on fossil-based sources, such as crude oil, that is currently 

used to produce TPA.  

Table 1 shows the possible production pathways of bio-TPA. Various companies such as VTT 

Finland, Virent and Anellotech have invested into this research, where the first commercial 

scale bio-PET operation (using partially bio-based TPA) is said to commence with plant 

construction in 2018 with a capacity of 5 000 tonnes per annum (Johnson. 2017). Pathways 

for bio-TPA production from furfural or terpene pathways are still in the laboratory/research 

phase, while the production of TPA from isobutene obtained from sugary biomass is in the 

pilot plant stage.  Bio-based p-xylene is currently being produced on a pre-industrial scale 

from isobutene (produced from a starch source) by Gevo.  This, in turn is sold to Toray 

Industries for further processing (Toray, 2016).  p-Xylene can be converted to TPA through 

oxidation and purified to produce a pure product with minimal by-products.  Minimising by-

products ensures a higher quality PET plastic in terms of colour, durability and gas and 

chemical permeability.   

From a South African location perspective, all three options listed in Table 1 may be 

technically viable.  Although accessible, most of the biomass sources or waste (such as rice 

husk and bagasse) that could serve as raw material for these monomers are utilised in other 

applications such as the production of cement, silica (Kaviyarasu et al., 2016), biogas and 

electricity or used as food sources (Grain SA, 2015).    

 Table 1: Status of TPA production pathways 

 

On the other hand, forestry wastes (such as leaves and bark) that are lignocellulosic-based 

feedstocks or second-generation (2G) feedstocks have been underutilised in South African 

commercial forests.  These feedstocks have the potential to be used to extract terpenes 

towards the production of bio-based TPA.  Terpenes, such as α-pinene and cineole, can be 

converted through dehydrogenation, oxidation and purifications steps to purified bio-TPA.  

However, a complete process scheme has not yet been developed and no accompanying 

economics exist to determine whether such a process can be competitive against the current 

Biomass source Intermediate 

Compound(s) 
Processes Production 

Status 

Corn and rice waste 

(1G) 

Furfural Oxidation, dehydration, hydrolysis 

(Tachibana et al., 2015) 

Research 

Forestry waste, citrus 

and spices (2G) 

Terpenes Dehydrogenation and oxidation 

(Howgego, 2014) 

Research 

Bagasse, palm and 

starches (1G) 

Isobutene, p-xylene Fermentation, cyclodimerization, 

oxidation (Toray, 2016) 

Pilot Plant 

Stellenbosch University  https://scholar.sun.ac.za



4 
 

commercial fossil-based production.  This project investigates the possibility of producing bio-

TPA in South Africa from these terpenes extracted from forestry waste and pulp mill residues.  

A comparison will be made with first-generation (1G) feedstocks or starch-based feedstocks 

that can be utilised for the production of bio-TPA.  It involves the processing and conversion of 

non-food starches such as grain sorghum and triticale that can be depolymerised through 

fermentation or catalytic reaction to glucose.  Through additional catalytic reactions and 

purifications, a pure p-xylene product can be produced that can be oxidised to TPA.  The use 

of grain sorghum and triticale is of particular interest as feedstock as its cultivation is currently 

being supported by the South African government through subsidies towards the production of 

bio-ethanol (Du Preez & Görgens, 2015).  An advantage to utilising triticale as feedstock is 

that high levels of endogenous amylases within triticale allows up to 99.6% of the starch 

contained within to degrade during saccharification, an 18% higher degradation potential than 

other wheat sources (Eudes, 2015).   

 

1.2 Problem statement  

In order to reduce the dependence of PET production on fossil sources, the production of bio-

based TPA is necessary, so that the resulting bio-PET is produced completely from 

sustainable sources.  

Although available literature concerning the production of bio-TPA from bio-based sources 

containing terpenes, such as forestry waste and pulp mill residues (2G feedstocks), covers 

only a few facets of the terpene conversion, the development of a comprehensive process of 

TPA from bio-based sources is absent in literature. Thus, it is necessary to evaluate the 

technical and financial feasibility of a prospective industrial process.  

Similarly, the conversion of 1G feedstocks to TPA can be described through literature but a 

complete process scheme with its accompanying economics is yet to be developed and 

assessed.   

 

1.3 Aims and objectives 

The aim of this study is to determine whether it is economically viable to produce terephthalic 

acid in South Africa using 1G or 2G feedstocks. Two scenarios were investigated to address 

this aim; firstly it was determined whether it is economically viable to produce TPA from 2G 

feedstocks on the basis of the South African biomass capacity (client’s scenario).  The second 
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scenario assumed that a realistic PET market share (10%) could be achieved.  This share was 

used to determine the production of TPA (1G and 2G processes) scale at which the economic 

viability was evaluated.  The detailed objectives of these scenarios are as follows:  

Scenario 1 Scenario 2 

Estimate the availability of biomass resources 
from which terpenes can be extracted from for bio-

TPA production 
 

Selection of most effective processes towards the 
production of TPA from 1G feedstocks 

 

Selection of most effective processes towards the 
production of TPA from 2G feedstocks 

 

Perform technical modelling of oxidation and 
purification of p-xylene to TPA in Aspen Plus

®
 

 

Perform technical modelling on selected 
processes in Aspen Plus

®
 

 

Determine costs associated with the construction, 
set-up and production of the TPA production plant 

(1G) 
 

Compare 2G process modelling results 
Scale-up economics from Scenario 1 to 10% PET 

market share scale 

Determine costs associated with the construction, 
set-up and production of the TPA production 

plants (2G) 
 

Determine economic feasibility of 1G and 2G 
processes through economic indicators, such as 
discounted cash flow rate of return and minimum 

TPA selling price 

Determine economic feasibility of selected 
processes through economic indicators, such as 
discounted cash flow rate of return and minimum 

TPA selling price 
 

Compare 1G and 2G process economics based 
on minimum TPA selling price 

 

1.4 Thesis structure 

Figure 2 shows the overall research structure that was followed and includes; literature review, 

process selection and description, technical modelling and heat integration as well as costing 

and economic analyses.  The literature review examines all literature pertaining to feedstocks, 

residues as well as methods for the extraction, conversion and purification of TPA 

intermediates.  Process selection and description involves combining the selected literature to 

define each process description.  The modelling methodology of each process is described 

thereafter. Finally, costing of each plant and the comparison of each process’ economics were 

completed. 
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2 Literature review 

This chapter discusses the appropriate sources of 1G and 2G feedstocks within a South 

African context, current process technologies as well as the main intermediate compounds 

found in each process scheme.  The selection of these sources will depend on the biomass 

capacity, major terpene/starch content as well as limiting the number of processing/purifying 

steps towards the production of bio-based terephthalic acid.  The selection of the pulp mill 

residue will depend greatly on the type of pulping technology, which affects the content and 

processing of the residue to isolate the contained major terpene.  From these processes, the 

most effective and/or data rich will be selected and outlined in Chapter 3. 

2.1 Forestry sector 

2.1.1.  Plantation distribution and content 

In 2013, the total allocated forest area for plantations in South Africa was approximated at 1.5 

million hectares, and accounted for about 1.2% of the total area of South Africa.  The three 

different genera seen within South African plantations are Pine, Eucalyptus and Wattle 

(Acacia) (Forestry, 2014).  Table 2 depicts the names of the species of these three genera 

used in South African plantations.   

Table 2: South African commercial forest species 

Genus Species 

Pinus P. patula, P. elliottii, P. canariensis, P. halapensis, P. pinaster, P. pinea, P. radiate, P. 

roxburghii and P. taeda 

Eucalyptus E. grandis, E. dunnii, E. smithii, E. saligna, E. badjensis, E. nitens, E. dorrigoensis, E. 

fraxinoides, E. macarthurii, E. benthamii, E. globulus and E. fastigata 

Acacia A. mearnsii, A. implexa, A. melanoxylon 

 

2.1.1.1 Review of Pine species 

Pinus patula has the largest planted area of Pine species in South African plantations (61% of 

the total planted Pine area), but has lower terpene yields and therefore, Pinus elliottii is a more 

viable choice in terms of terpene yield.  It covers 29% of the total planted Pine area in South 

Africa, which is approximately 180 000 ha (Sappi, 2012).      

P. elliottii, also known as slash Pine or pitch Pine, grows optimally in regions where 

temperatures do not regularly fall below 4°C or exceed 32°C and the annual rainfall is between 

650 to 2500 mm in an acidic soil that has a high draining capacity.  The natural origin of P. 

elliottii is the north-eastern part of North America and has been introduced to a few other 

countries including South Africa, Australia, New Zealand and Zambia.  To obtain the seeds for 

new plantation of Pine trees, cones are sun-dried or oven dried at a temperature of 48°C to 
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remove moisture and initiate germination.  After about 20 days, the seedlings are allowed to 

grow in a nursery usually with the aid of mycorrhizae, which is a symbiotic relationship 

between fungi and the roots of the seedling aiding in water, sugar and mineral intake.  At a 

length of about 30cm and 4 to 8 months of age, the seedlings are transferred to a plantation 

area.  Weed control is needed in the first two years after plantation to eliminate the growth 

inhibition of the young trees.  Pine trees usually have a rotation cycle of 20 to 25 years, when 

used for pulping, and 45 to 55 years, when used for timber (Louppe, 2008).   

Mature P. elliottii wood has a density range of 420 to 700 kg/m3 and a moisture content of 

approximately 12%.  Wood fibres are on average 2 to 4mm long, while the diameter ranges 

from 39 to 54 μm.  A typical dry-weight chemical composition of the wood is as follows: 57 to 

73% holocellulose (total polysaccharide fraction), 36 to 42% alpha-cellulose and 28 to 32% 

lignin (structural support of wood) (Louppe, 2008). 

 

2.1.1.2 Review of Eucalyptus species 

Eucalyptus grandis is considered to be the most important hardwood in the South African 

forestry industry and has a planted area of just under 300 000 ha (36% of the total Eucalyptus 

planted area).  It is also more favourable because of the possible additional rotation (new 

growth sprouting from stumps after log harvesting).  Its oil also has the potential to be rich in 1, 

8-cineole, which can be a precursor to the production of terephthalic acid (Sappi, 2012). 

E. grandis, also referred to as rose gum, is originally found in parts of Australia, but has been 

utilized in Brazil and African countries.  The optimal growth conditions are found in subtropical 

areas where temperatures do not fall below sub-zero, do not increase beyond 35°C and where 

the typical annual rainfall ranges from 700 to 4000 mm. Soil preferences include good 

drainage and sufficient natural or chemical fertilizing.  Uses for this type of wood include 

furniture, plywood, tissue paper, flooring and most importantly paper and packaging (Louppe, 

2008). 

In preparation for new Eucalyptus plantations, the seeds are collected from the fruit of the tree 

one year after reaching maturity.  Up to 25 seeds can be harvested per fruit and germinated 

within two weeks.  Seedlings are placed in plastic packaging to allow growth for two to eight 

months.  At about 30 cm tall, the young trees are transferred to the plantation where fertilizing, 

pruning and weed management is applied to avoid growth inhibition (Louppe, 2008).  For use 

as pulpwood, the rotation period is usually 6 to 10 years, while the rotation period for saw log 

wood is 30 years.     

Stellenbosch University  https://scholar.sun.ac.za



9 
 

The density range of E. grandis wood is 540 to 775 kg/m3 and has an average moisture 

content of 12%.  A typical dry-weight chemical composition of the wood contains 

approximately 40% cellulose, 20% glucuronoxylan (a hemicellulose component) and 30% 

lignin.  Wood fibres are on average 0.9 mm long and 20 μm in diameter.  Analysis of the E. 

grandis leaf oil shows the following average range of chemical components: 30.4 to 68.9% α-

pinene, 0.4 to 47% β-pinene, 16% p-cymene, 11% terpinen-4-ol, 5% 1, 8 –cineole and 2.4 to 

5.6% limonene.  The leaf oil is on average 2 to 3% of the total leaf mass (Louppe, 2008).   

2.1.1.3 Review of Acacia species   

The Acacia genus was not selected as possible bio-source for the production of TPA, because 

of the absence of terpene species, suggested as TPA precursor in literature.  

 

2.1.2 Sustainability 

Plantation sustainability is defined by the conservation of the environment, positive impact on 

the community and company profitability.  South African legislation encourages sustainable 

plantation management through the National Forests Act (1998) as well as the Forestry Law 

Amendment Act (2005).  Sustainable actions include: immediate replantation after harvesting, 

no harm to any indigenous species (fauna or flora), use of species not listed on the 

International Union for the Conservation of Nature Red List  of Threatened Species, 

conservation of water and the limitation of emission gases regardless of photosynthesis 

(Mondi, 2011). 

 

2.1.3 Estimating 2G feedstock availability in South Africa 

2.1.3.1 P. elliottii needles 

Considering the accessibility and moderate uniformity in content for feed to a production unit, 

the needles of P. elliottii could be an appropriate feedstock for the extraction of the terpene, α-

pinene, which can be used as precursor towards the production of TPA.  The amount of 

hectares potentially available to supply the needles can be estimated using the latest forestry 

figures (Forestry Economics Services, 2015) where a radius of 300 km of South African land 

was considered as origin for biomass harvest in an area that limits transportation cost and 

access difficulties.  This area, which includes the northern and southern part of Mpumalanga 

as well as a section of the northern part of KwaZulu-Natal, contains the highest concentration 

of P. elliottii, without considering clones of this species.  
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 In 2013, South Africa had just under 173 000 ha of P. elliottii planted area.  Each region of 

forestry area has a different rotation age (harvest age) for the purpose of pulpwood, sawlogs 

and others.  For softwoods, only 29% of the available biomass is used for pulpwood at its 

rotation age, the other 71% is harvested for sawlogs.  Table 3 and Table 4 depict the available 

needle mass calculated for the chosen regions at the rotation age and the rotation age per 

region, respectively. The total biomass available at rotation age is the total amount of P. 

elliottii available within South African forests (seen in Table 3), while the biomass in 

prospective regions is the biomass available within the 300 km radius area.  The expected leaf 

mass can be calculated using the following ratio: 6.3:17.5 (tonnes of needle mass: hectares of 

available biomass) and should account for 5% loss that could occur from spillage during 

transport or minor fire losses.  An average of 2% of the total needle mass is expected to 

represent the essential oil mass.  The minimum and maximum figures can then be determined 

with figures following the current rotation year.  As the available biomass (given in hectares) 

following the current rotation year does not follow any pattern or growth curve, the annual feed 

to the plant cannot be constant (Forestry Economics Services, 2015). 

Table 3: Available biomass: P. elliottii needles 

 Unit Minimum Average Maximum 

Total biomass at rotation age ha 2700 4500 6200 

Biomass in Mpumalanga regions ha 1800 2600 3500 

Biomass in KwaZulu-Natal region ha 300 400 400 

Biomass in chosen regions ha 2100 3000 3900 

Expected leaf mass ton/year 710 1030 1350 

Expected essential oil mass ton/year 14 21 27 

 

Table 4: P. elliottii rotation age per region 

Region Purpose Rotation age (years) 

Northern Mpumalanga Pulpwood 18 

 Sawlogs 28 

Southern Mpumalanga Pulpwood 20 

 Sawlogs 28 

Northern KwaZulu-Natal Pulpwood 20 

 Sawlogs 28 

 

2.1.3.2 E. grandis leaves 

Considering accessibility and moderate uniformity of content for a production line feed, the 

leaves of E. grandis could be an appropriate feedstock for the extraction of the terpene 1,8-

cineole.  The available amount of biomass can be estimated using the latest forestry figures 

(Forestry Economics Services, 2015).  The commercial forest area considered for biomass 
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harvest has a radius of 300 km of South African land and includes the northern and southern 

part of Mpumalanga as well as a section of the northern part of KwaZulu-Natal.  These regions 

collectively contain the highest concentration of E. grandis in comparison to the rest of South 

Africa that contain commercial forests, which will limit the cost of transport to the plant.  

Clones of this species were not considered as potential feedstock because of the great 

variations in terpene content of each clone.  

 In 2013, South Africa had just under 300 000 ha of E. grandis planted area.  Each region of 

forestry area has a different rotation age (harvest age) for the purpose of pulpwood, sawlogs 

and others.  For softwoods, 73% of the available biomass is used for pulpwood at its rotation 

age, while 5% is harvested at the rotation age for sawlogs.  Table 5 and Table 6 depict the 

available mass of needles calculated for the chosen regions and rotation age per region, 

respectively. The total biomass at rotation age depicted in Table 5 is the total amount of E. 

grandis available for harvest in South African commercial forests.  The available biomass for 

each region in the 300km radius is then calculated by considering the amount of biomass 

used for pulpwood and sawlogs at each rotation age and calculating the total hectares of E. 

grandis available.  The expected leaf mass can be estimated using a ratio: 1.8:3 (tonnes of 

expected leaf mass: hectares of biomass available), while the expected essential oil mass is 

assumed an average of 2% of the total leaf mass and accounts for 5% losses in the case of 

spillage during transport or minor fire losses.  The minimum and maximum figures can then be 

determined with later rotation years and does not follow any correlation, therefore the annual 

feed to the plant cannot be constant (Forestry Economics Services, 2015). 

Table 5: Available biomass: E. grandis leaves 

 Unit Minimum Average Maximum 

Total biomass at rotation age ha 23 700 24 100 24 500 

Biomass in Mpumalanga regions ha 8400 8800 9200 

Biomass in KwaZulu-Natal region ha 1900 3000 4200 

Biomass in chosen regions ha 10 300 11 800 13 400 

Expected leaf mass ton/year 5900 6800 8000 

Expected essential oil mass ton/year 120 140 160 

 

Table 6: E. grandis rotation age per region 

Region Purpose Rotation age (years) 

Northern Mpumalanga  Pulpwood 9 

 Sawlogs 13 

Southern Mpumalanga  Pulpwood 9 

 Sawlogs 21 

Northern KwaZulu-Natal Pulpwood 9 

 Sawlogs 18 
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2.2  Paper and pulp industry  

2.2.1 Plant distribution 

Several pulp and paper mills exist in South Africa, of which the majority are represented by 

PAMSA (The Paper Manufacturers Association of South Africa).  These mills mainly produce 

paper (for magazines, newspapers, office paper, etc.), wrapping paper, tissue paper and 

packaging.  Table 7 shows the main paper and pulp companies in South Africa and their main 

products. 

Table 7: South African paper and pulp companies 

Company Location Production 

Mpact Felixton, Piet Retief, Springs Containerboard and carton board 

Sappi Ngodwana, Stanger, Tugela, 

SAICCOR 

Newspaper, office paper, 

containerboard, speciality paper 

Mondi Durban, Richard’s Bay Paper and linerboard 

Kimberly-Clark Springs Towel and tissue products 

Nampak Isithebe, Bellville, Pietermaritzburg Paper packaging 

 

2.2.2 Pulping technologies 

The production of pulp and paper from wood sources or other biomass (such as rice straw and 

bagasse) has similar steps.  A simplified scheme of a pulp mill is given in Figure 3; raw 

material such as logs are debarked and chipped to the appropriate size for the digesting 

process.  A cooking vessel may be used prior to digestion to prepare the pulp fibres.  Either 

the digestion is by mechanical (fibre processing through stone or metal plate grinding) or 

chemical (fibre separation in an aqueous solution) means. In some cases, both digestion 

methods are used, for example with neutral sulphite semi-chemical pulp processing (NSSC).  

The chemical digestion step allows lignin and other extractives to be dissolved (partially) and 

releases individual fibres that are converted to the final product.  Thereafter through pressing, 

drying and cutting within a paper machine, the product is formed, where after it can be 

textured, glossed or coloured depending on the product specifications (Deslauriers et al., 

2009).  

 

 

 

 

Raw 
Material 

Size 
Reduction 
(Chipper) 

Pulp Mill 
(Digester) 

Paper Machine 
(Pulp Press) 

Product Finishing 
(Sizing/Texturizing) 

Figure 3: Simplified pulp mill process 
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   Table 8 shows the general types of wood pulping technologies used in pulp and paper mills.  

The technologies used within South African paper and pulp mills will be further discussed 

(Gibbons, 1989).  

  Table 8: Wood-pulping technologies  

Pulp grade Wood type Application 

Chemical pulps:   

Sulphite pulp Softwood & Hardwood Fine and printing paper 

Kraft pulp Softwood & Hardwood Writing paper and paperboard 

Dissolving pulp Softwood & Hardwood Cellophane, acetate fibre and film 

Semichemical pulps:   

Cold-caustic process Softwood & Hardwood Newsprint and groundwood paper 

Neutral sulphite process Hardwood Newsprint and groundwood paper 

Mechanical pulps:   

Stone groundwood Softwood Corrugating medium 

Refiner mechanical Softwood Newsprint and groundwood paper 

Thermomechanical Softwood Newsprint and groundwood paper 

 

2.2.2.1 Neutral Sulphite Semi-chemical pulping process (NSSC) 

The NSSC pulping process allows the use of hard- and softwood species within the digester 

and is a method used within Mpact’s Piet Retief Mill in Mpumalanga, South Africa, in the 

production of containerboard liners.  For this specific mill, anthraquinone is used as pulp 

catalyst in the continuous digester that operates above 10 bar and the pulping reagents 

include sodium sulphite and sodium carbonate.  Debarked logs (hardwood) and sawmill chips 

(softwood) are introduced via a feeder after being sorted by vibrating screens and subjected to 

a steam vessel that extracts the air trapped within the wood particles.  The cooking process 

allows the separation of fibres, as lignin is dissolved by chemical means and the neutral 

conditions prevents hemicellulose degradation.  At a temperature around 179°C various 

volatile compounds such as sulphur oxides, nitrogen oxides, carbon monoxide and other 

volatile organic compounds such as terpenes are emitted from the cooking liquid and relieved 

through a relief-vent.  Some mills have modified the digestion unit to recycle spent liquor by 

separating the solid particles using a mesh-type apparatus and reintroducing the spent liquor 

with top-up fresh liquor to reduce the waste from the pulping process    

A stronger paper can be produced by means of a chemical cooking process rather than 

mechanical methods that produce shorter, less flexible fibres.  Semi-chemical pulping involves 

a combination of chemical and mechanical methods, where the mechanical aspect of the 

pulping follows the cooking process and combines the individual fibres.  The ratio between the 
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dry weight of pulp to the dry weight of wood used during the semi-chemical process is 

between 0.7 and 0.85 (Antonides, 2000). 

The pulp extracted during digestion is further processed by means of chemical separation, 

slurrification and water extraction (up to 96% up to the finished product).  Refining the pulp 

defines the strength of the pulp and ultimately the strength of the linerboard.  The degree of 

refining as well as the strength of the pulp can be observed by looking at the freeness of the 

pulp, as it is directly correlated.  The freeness of the pulp is a measurement defined by the 

rate of water drainage of the pulp.  The freeness of the pulp also determines the speed at 

which the linerboard is produced via the paper machine (Antonides, 2000).  The first section of 

the paper machine presses the pulp between two felt rollers that gives a texture to the product 

and removes more water.  Excess water might compromise the structure of the product line.  

The product line is then dried by heated cylinders where the last water part is extracted.  

Depending on the specifications of the end-product, imprints can be made by using rubber or 

metal rollers where after the product is cooled and wound up on a roller or sent for further 

processing to obtain colour, gloss or other finishes (The Paper Mill Store, 2015).    

   

2.2.2.2 Soda pulping 

Cold soda pulping involves the introduction of sodium hydroxide to the raw material and 

subjecting the mixture to mechanical digesting (El-Sakhawy, 2014).  This pulping method is 

used at Sappi’s Stanger Mill in Stanger, KwaZulu-Natal, where bagasse is used as raw 

material and anthraquinone is used as pulping catalyst.  Matt and gloss paper for labelling and 

magazines, packaging and tissue paper are produced at this mill (Sappi, 2015). 

   

2.2.2.3 Kraft pulping process 

Kraft pulping is used within Sappi’s Ngodwana mill in Mpumalanga, South Africa, for the 

production of newspaper and containerboard (shown in Figure 4).  It is also utilised at Mondi’s 

Richards bay mill in KwaZulu-Natal, South Africa.  After logs are debarked and chipped, the 

chips are pre-steamed to remove some of the impurities before digestion.  This stage is known 

as the pre-hydrolysate stage and utilises water approximately four times the mass of the 

woody biomass entering the cooking vessel.  Pre-hydrolysate relief gas (CST) contains higher 

concentrations of terpenes (especially α-pinene when Pine chips are cooked) compared to 

other relief-gas and effluent streams in the Kraft process (SAPPI, 2016).  This creates an 

opportunity to investigate processing the relief-gas as feed in TPA production.  The majority of 
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Figure 4: SAPPI Ngodwana Kraft process scheme 

the chips used in the Ngodwana mill at the time of this project have a Pine origin and therefore 

only Pine was considered as source for the relief-gas.  

Within the digester, a white liquor of sodium hydroxide and sodium sulphide at high pressure 

and temperature is added to dissolve the lignin present in the wood particles.  The pulp is 

washed after digestion to remove the black liquor (spent cooking mixture after digestion) and 

sent to a bleaching stage (Deslauriers et al., 2009). 

Chlorine dioxide and other oxygen-based chemicals are used to whiten the pulp and remove 

residual lignin still present after the digesting stage.  Screening and press drying refines the 

bleached fibres according to the unique product specification and can also involve gloss 

addition, texture application and cutting to the desired size (Deslauriers et al., 2009).    

 

 

2.2.3 Pulp mill residue selection 

The pulp mill residue for possible selection depends on the content of the residue, which will 

dictate possible additional processing/purification to obtain the major terpene.  The location of 

the pulp mill can also be considered for possible integration with a similar process, where the 

bio-resource of this process’ transport cost is a factor.  Thus, SAPPI’s Ngodwana mill is can 

be considered as the base case pulp mill and the pre-hydrolysate relief-gas as the residue 

described in Chapter 2.2.2.3.  The majority of terpenes extracted from the wood chips are 

released within the pre-hydrolysate stage.  Preliminary processing of the relief-gas includes 

Stellenbosch University  https://scholar.sun.ac.za



16 
 

separating the water from the CST and desulphurisation of naturally occurring sulphurous 

compounds.      

      

2.3 Overview of TPA production pathways from 2G feedstocks 

The description and evaluation of bio-TPA production processes (from forestry waste and pulp 

mill residue) obtained from literature is found in Chapters 2.4 to 2.5.  The evaluations of these 

processes were based on product concentration and yield, extraction or conversion efficiency 

and the practicability of industrial implementation.  Figure 5 depicts a simplified scheme of the 

possible processes that lead to the production of bio-TPA.  The major terpene (α-pinene or 

cineole) from each 2G feedstock should be extracted before conversion through 

dehydrogenation to p-cymene.  The oxidation of p-cymene produces TPA that should be 

purified to minimise by-products.  These by-products affect the quality and selling price of the 

final PET product.   

 

 

 

 

  

 

2.4 Technologies for terpene extraction and purification 

2.4.1 Tapping 

Traditionally, oleoresins (which include pinenes) were obtained from living trees by a method 

called tapping.  Tapping involves etching a V-shape into the bark and collecting the resins 

secreted.  Mature trees can be tapped several times during its lifetime, because the wounding 

only affects the bark of the tree.  Excessive wounding of the inner flesh, however, might 

terminate the life of the tree (Ciesla, 1998).  Associated Resins, located near St. Lucia, Kwa-

Zulu Natal, extracted gum turpentine from softwood via tapping with a maximum capacity of 

550 tons of resin per month.  Resin usually contains 70 – 75% rosin, 15-20% turpentine and 

10% unwanted compounds.  The resin is distilled to produce rosin, which is used to 

manufacture adhesives, violin string wax and other products used during paper sizing.  Due to 

Forestry Waste 

Pulp Mill Residue 

Terpene Extraction 
Major Terpene 

Dehydrogenation 
p-Cymene 

Oxidation 
Crude Terephthalic Acid Pure Terephthalic Acid 

Purification 

Figure 5: Simplified lignocellulosic-based process scheme 
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conservation issues in St. Lucia, the operation has been terminated (Triumph Venture Capital, 

2004).      

2.4.2 Steam distillation 

Steam distillation can be used to distil plant material to obtain the essential oils contained 

within and can easily be used on a large-scale.  The steam is supplied by an external boiler 

unit (1) and introduced at the bottom section of the contact reactor (2) as shown in Figure 6.  

The flask is never heated to more than 100°C to avoid thermal degradation.  The components 

in the vapour are formed when the temperature of the flask fluid has met or exceeded the 

boiling point of that component.  The overhead vapour line (3) condenses the vapour and 

carries the condensate to the collector and decanter (4) (Handa et al., 2008).  

 

 

 

 

 

 

 

2.4.3 Hydro-distillation 

Hydro-distillation involves boiling the feedstock (woodchips, leaves, bark, etc.) in water in a 

reactor to obtain the essential oils.  The vapours produced flows through an overhead section 

that contains a condenser.  The condensed liquid is collected in a decanter that separates the 

organic oil layer from the aqueous layer.  The mechanism of this type of distillation involves 

hydro-diffusion, hydrolysis and decomposition.  Hydro-diffusion allows the hot water to draw 

the essential oils through the plant cell membranes by osmosis, where it is then carried over 

by the formed steam.  Through hydro-diffusion, the possibility of a higher essential oil yield is 

increased.  Acids and alcohols can also be produced during the hydrolysis phase, depending 

on the presence of esters and the temperature of the water.  However, this will decrease the 

yield of the essential oils when large amounts of water are used during distillation.  As the 

temperature of the water increases, so does hydro-diffusion but also the hydrolysis of esters.  

Additional heat will induce the decomposition of some of the natural components (including 

major terpenes and their alcohols).  The three mechanisms affect each other simultaneously 

and it is therefore essential to choose a lower temperature (preferably lower than 70° in the 

Figure 6: General Steam Distillation Setup 

(1) Steam Boiler, (2) Contact Reactor, (3) Condenser, (4) Decanter 
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presence of a vacuum) and water loading (commonly four times the weight of the fed 

biomass) to obtain the highest yield of essential oils (Handa et al., 2008).  

Potential feedstock for recovering essential oils using hydro-distillation can include shredded 

branches, leaves, bark, wood particles.  Hydro-distillation can be used to distil macerated 

pieces of biomass for a few hours.  The residence time of the biomass in the boiling chamber 

depends on the severity of the maceration, biomass and water loading, configuration in case 

of multiple chamber use and volatility of the contained terpenes.  The extracted oil can be 

dried over anhydrous Na2SO4 or decanted, depending on the type of extracted terpenes 

(Salem, et al., 2014). 

 

2.4.4 Supercritical CO2 extraction 

In the case of extracting chemical components not easily released from the biomass during a 

distillation process or components that have a high solubility in the used solvent, another 

method must be used to obtain the said component.  CO2 can be used as solvent to extract 

terpenes at a relatively low temperature without the extraction of many other components 

found within the biomass.  This is done through the diffusion of the liquid CO2 within the plant 

cells and dissolving of terpenes into the solvent under high pressure.  Cell lysis also occurs at 

these pressures and exposes more of the terpene oils; this increases terpene extraction 

efficiency.  In the case of leaves or needles with a protective wax layer, the terpenes are 

extracted together with these waxes, which make up a small fraction of the total biomass 

(approximately 0.6%).  These waxes can easily be condensed off because of the difference in 

boiling points between the terpenes and waxes.  The CO2 can also easily be separated from 

the liquid terpenes through distillation after the pressure is lowered (Francisco et al., 2001).   

 

2.4.5 Microwave assisted extraction 

Submerging biomass in a solvent such as ethanol and hexane and introducing microwaves 

can lead to the extraction of terpenes.  This is caused by cell lysis experienced by the 

microwaves.  This extraction method has been successfully applied to herbs and seeds and 

can be modified by changing parameters, such as power, temperature, incubation period and 

the solvent used (Chemat et al., 2005).   
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2.4.6 Comparison of α-Pinene extraction technologies 

Tapping Pine trees can be a viable option because of the relatively high resin yield (1-4 kg 

resin per tree per year) (Ciesla, 1998).  It can also create an increase in employment 

opportunities (etchers and resin collectors) in South Africa, though worker inexperience with 

tapping equipment or techniques may cause tree termination.  Exposed resin is also a highly 

flammable substance that aggravates forest fires.  It can be unfavourable in the extraction of 

terpenes to use the resin as a raw material in a large-scale plant due to its viscosity, as it 

might cause equipment problems and clogging (Lovett, 2005).   

Steam distillation is preferred for large-scale operations, because of the lower possibility of 

hydrolysis and the control of steam supplied to the contact reactor.  The risk of thermal 

decomposition of components is also reduced when utilizing steam distillation.  There is, 

however, a higher capital cost when using steam-distillation and without hydro-diffusion, the 

yield of essential oils might be lower (Handa et al., 2008).  A problem that arises when using 

an alkaline solution to extract pinenes is that it can encourage hemicellulose extraction from 

polysaccharides and can therefore lead to additional separation steps when isolating the 

terpenes from the condensate (Bensah et al., 2013).  

For a process development, literature is required to describe the efficiency and parameters 

needed to define the process and techniques such as CO2 and microwave assisted extraction 

for α-pinene from Pine biomass, although this is not the case.  Thus, hydro-distillation is 

favoured as an appropriate method of extraction because of the higher concentration of α-

pinene that is extracted when compared to steam distillation, and also because it is well 

described.  There is also easy separation between the water used as solvent and α-pinene.   

Table 9 shows different hydro-distillation extractions done on different species of Pine.  The 

method described by Pagula et al. (2006) is superior to the other methods for extracting 

precursors from Pine needles, because of the high yield of the required precursor, α-pinene.  

The main areas in South Africa where P. elliottii is planted for use in paper and pulp mills, 

Mpumalanga and Kwa-Zulu Natal, have a similar climate and rainfall to Maputo in 

Mozambique and may therefore have a similar terpene composition (World Weather & Climate 

Information, 2016).  The factors that affect the terpene content of trees include the age of the 

tree, the climate and rainfall of the region, the season in which the tree was harvested, the 

temperature and retention time at which the hydro-distillation was performed, etc. (Peñaelas & 

Llusià, 1997).  These factors are influenced by wind or rain transporting volatile terpenes, 

monoterpene scavenging radicals (OH and O3) as well as the physiological properties of the 

specific tree that affect the production of terpenes (Lee et al., 2017). 
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Table 9: Needle extraction from Pinus species via hydro-distillation 

Species Region 
Major components 
(mTerpene/mEssential Oil) 

Reference 

P. roxburghii Alexandria, Egypt 
3-carene: 33.4% 
α-pinene: 39% 

Salem et al. (2014) 

P. virginiana Huntsville, USA 
β-pinene: 25.1% 
α-pinene: 22.8% 

Stewart et al. (2015) 

P. radiata Attiki, Greece 
β-pinene: 26.4% 
α-pinene: 16.7% 

Petrakis et al. (2001) 

P. elliottii Maputo, Mozambique 
β-pinene: 27% 
α-pinene: 43% 

Pagula et al. (2006) 

 

2.4.7 Comparison of cineole extraction technologies 

Hydro-distillation as well as steam-distillation are viable options for the extraction of terpenes.  

The latter is the current industrial method for extraction of essential oils and water/oil 

separation is done manually.  The water layer, also called floral water/hydrosol, contains a 

large amount of cineole and is sold separately from the oil layer.  The floral water is used in 

many pharmaceutical and cosmetic products (Esoteric Oils, 2016).  Distillation of Eucalyptus 

leaves might not be suited for the sole purpose of extracting cineole because of its large 

solubility in water (3500 mg/L), due to its oxygenated functional group and difficult separation 

with additional methods.  Current literature has not yet proposed an effective method for this 

separation (Miller et al., 2000).  

Thus, supercritical fluid extraction using CO2 as solvent might be the appropriate method of 

cineole extraction because it eliminates the use of water and only leafy waxes are additionally 

extracted (Francisco et al., 2001).  These waxes can range from 0.2 to 1.1% of the dry leaf 

mass of mature Eucalyptus trees, an average of 0.6% is assumed during calculations.  Leafy 

waxes such as nonacosane, dotriacontane, pentatriacontane and hexatriacontane were 

considered during calculations while other waxes present in traces were ignored (Li et al., 

1997).  Francisco et al. (2001) reports yields of up to 86% cineole (as per weight percentage 

of liquid terpenes) extracted from E. radiata through this method of extraction.  Supercritical 

pressures ranges from 80 to 250 bar, while temperatures are kept relatively low between 40°C 

and 200°C. 

 

2.4.7 Cineole purification 

The presence of 1, 4-cineole and other monoterpenes during the dehydrogenation of 1, 8- 

cineole can lead to many undesired by-products that lower the quality of the final product.  

Mitchell (1985) suggests a purification step, where hydroquinone (HQ) (an inexpensive, 

common chemical used in a variety of industrial processes) is added to the terpene mixture at 

Stellenbosch University  https://scholar.sun.ac.za



21 
 

a low temperature of -10°C.  At this temperature the HQ forms a complex solely with 1, 8-

cineole.  The rest of the terpenes are flashed off under vacuum at an increased temperature of 

50°C and can be sold without the need for further purification because of the insolubility of 

terpenes in hydroquinone.  Final distillation produces 1, 8-cineole with a purity of 

approximately 96%, while a recovery of about 50% is accomplished.  If economics allows for 

another extraction cycle, a recovery of about 75% can be achieved.  An advantage to this type 

of purification step is that the HQ can be reused for each cycle with minor losses.   

 

2.4.8 Relief-gas desulphurisation  

Additional to a large amount of water, pre-hydrolysis relief-gas also contains natural 

sulphurous compounds such as methyl mercaptan, dimethyl sulphide, dimethyl disulphide and 

hydrogen sulphide.  These compounds must be limited during production because they can 

poison the catalysts used during the production of PET, induce a foul odour in the final 

product, are flammable and highly toxic (Räsänen, et al., 2013).  Desulphurisation is therefore 

necessary to ensure that these compounds remain below the following odour thresholds 

(Rava, 2008):     

Table 10: Natural sulphurous compound odour threshold 

Compound Chemical Formula Odour Threshold (ppm) 

Methyl mercaptan CH3SH 0.08 

Dimethyl sulphide (CH3)2S 0.65 

Dimethyl disulphide (CH3)2S2 0.014 

Hydrogen sulphide H2S 0.03 

 

The desulphurisation step is applied after dehydrogenation of the relief-gas, because of the 

additional reactions that these sulphurous compounds undergo during the dehydrogenation of 

α-pinene (Figure 8). 

Methods developed towards the desulphurisation of the sulphurous compounds in the relief-

gas can include the use of chlorine gas, hydrogen peroxide, iron and nitrate salts or potassium 

permanganate.  Considering toxicity, solubility, handling, corrosion and chemical cost, 

hydrogen peroxide is favoured as desulphurisation agent.  The products formed as well as the 

molar ratio of hydrogen peroxide required varies according to the pH of the system (as shown 

in Figure 7).  The second reaction equation for an alkaline environment involves the 

conversion of mercaptans and disulphides, where R symbolises the carbon portion of the 

sulphurous species (Solvay Chemicals, 2005) 
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Figure 7: Variation in molar fraction of sulphurous species with pH 

 

 

𝐴𝑐𝑖𝑑 𝑝𝐻: 𝐻2𝑆 + 𝐻2𝑂2 → 𝑆0 + 2𝐻2𝑂 

𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝐻:  𝐻+ + 𝐻𝑆− + 𝐻2𝑂2 → 𝑆0 + 2𝐻2𝑂  

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑒 𝑝𝐻:   𝑆= + 4𝐻2𝑂2  → 𝑆𝑂4
= + 4𝐻2𝑂 

2𝑅𝑆𝐻 +  𝐻2𝑂2  → 𝑅𝑆𝑆𝑅 +  2𝐻2𝑂 

(𝐶𝐻3)2𝑆 +  𝐻2𝑂2  →  (𝐶𝐻3)2𝑆𝑂 +  𝐻2𝑂 

 

 

 

2.5 Terpene and p-cymene conversion technologies 

2.5.1 p-Cymene production from α-pinene  

The conversion of α-pinene to p-cymene via isomerisation and the desulphurisation step via 

dehydrogenation can occur simultaneously over a zeolite catalyst.  The process takes place in 

a fixed bed reactor using a vapour feed, with the temperature ranging from 300°- 350° C to 

avoid cracking of molecules or low conversion rates (Räsänen et al., 2013).  The continuously 

fed reactor can operate at various temperatures, while the pressure is kept at around 5 bar.  

Faujasite Y (FAU Y), Mordenite (MOR) and Faujasite X (FAU X) are appropriate zeolite 

catalysts for these reactions, because of their acidity and selectivity during aromatization.  

Faujasite Y is the optimum choice as catalyst for this conversion reaction, because of its 

higher performance.  It also has a much higher selectivity towards the three cymene isomers 

(p-, m- and o-cymene) with a cymene selectivity of 34% compared to 17% and 3.9% seen 

from MOR and FAU X, respectively.   

At steady state, nitrogen is utilized as carrier gas because of its inert behaviour in the absence 

of oxygen (Batt, 2014).  Linnekoski et al. (2014) proposed a system where the terpene feed 

stream is introduced to the reactor at 160°C, while the optimum cymene yield is achieved at a 

reactor temperature of 300°C.  The mechanism for this process (shown in Figure 8) relies on a 

few reactions to complete the aromatization of α-pinene.  Cationic intermediates usually form 

first and undergo further reaction to produce three cymene isomers in the product stream 

(para-, meta- and orto-cymene).  The isomerisation has a higher conversion in the presence of 
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the acidic catalyst, which also catalyses the rearrangement of the terpene isomers.  At a 

temperature above 280 °C, it is possible to achieve dehydrogenation of the monocyclic 

terpenes to cymenes.  The selected acid catalyst aids in the formation of the cymenes.  As 

dehydrogenation takes place, the released hydrogen molecules are accepted by other 

terpenes to form menthenes and menthanes.  The desulphurisation of natural occurring 

sulphur compounds takes place as three steps (shown in Figure 8): hydrogenolysis, 

disproportionation and reduction by the following reactions: 

 

                       

                        

                  

         

 

 

           

 

 

 

 

 

At these conditions, there is complete conversion (X) of α-pinene and the selectivity (S) of o-, 

m- and p-cymene is 0.31, 7.7 and 20, respectively.  The selectivity of unwanted by-products, 

menthenes (MW = 138) and menthanes (MW = 140), are 16 and 3.8, respectively, where the 

selectivity and conversion is defined as:  

 
𝑆 =

𝑀𝑜𝑙𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑀𝑜𝑙𝑒𝑠 𝛼 − 𝑝𝑖𝑛𝑒𝑛𝑒 𝑟𝑒𝑎𝑐𝑡𝑒𝑑
 𝑥 100 

 

(1) 

 
𝑋 =

𝑀𝑜𝑙𝑒𝑠 𝛼 − 𝑝𝑖𝑛𝑒𝑛𝑒 𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝑀𝑜𝑙𝑒𝑠 𝛼 − 𝑝𝑖𝑛𝑒𝑛𝑒 𝑖𝑛 𝑓𝑒𝑒𝑑
 𝑥100 

(2) 

 

Figure 8: Reaction mechanism for α-pinene conversion 

+H
+ 

+ 

+H2 +H2 

-H2 

α-Pinene 

Dehydrogenation 

Acid catalysed isomerization Hydrogenation 

Cationic intermediates 

𝐶𝐻3𝑆𝐻 + 𝐻2 → 𝐶𝐻2 + 𝐻2𝑆    (Hydrogenolysis) 

2𝐶𝐻2𝑆𝐻 →  (𝐶𝐻3)2𝑆 + 𝐻2𝑆  (Disproportionation) 

(𝐶𝐻3)2𝑆 + 2𝐻2  → 2𝐶𝐻4 + 𝐻2𝑆  (Reduction) 

Stellenbosch University  https://scholar.sun.ac.za



24 
 

The isomers formed during the reaction (with an overall selectivity of 11) include terpinolene, 

α-terpinene, γ-terpinene and menthadiene.  The formation of limonene is excluded due to the 

absence of 3-carene in the feed (Zou et al., 2012).  

Due to the absence of O2 and the medium temperature of 300°C used, coking formation is 

negligible, while catalyst deactivation is considered further.  

 

2.5.2 p-Cymene purification 

After the completion of α-pinene dehydrogenation, the p-cymene product can be purified prior 

to oxidation, to reduce the amount of oxidised by-products in the final product.  Difficult 

distillation, such as extractive or azeotropic distillation, steps are usually needed to separate 

components with close boiling points, which is the case for p-cymene, menthenes and 

menthanes, with boiling points of 177°C, 174.5°C and 170.9°C, respectively.  Thus, an acidic 

environment (1-25% w/w acid), created by sulfuric acid (98%), encourages the polymerisation 

of any monoterpene to form diterpenes (terpenes with twenty carbon atoms) in vacuum.  This 

creates an opportunity to transform menthenes and menthanes, which are monoterpenes, into 

diterpenes.  Many monoterpenes extracted during hydro-distillation can also have boiling 

points within 30°C of the boiling point of p-cymene and the formation of diterpenes (with much 

higher boiling points) ensures a much easier separation from p-cymene through downstream 

distillation.  Typical diterpenes include isocupressic acid, cembrene-A, phytane and T-

communol (Brücher et al., 2013).   

 

2.5.3 p-Cymene production from cineole  

Various metal-doped alumina catalysts have been considered by Leita et al. (2009) for the 

conversion reaction of cineole to p-cymene by using an argon/oxygen mix as carrier gas 

(shown in Figure 9).  Metals such as molybdenum, cobalt, iron, chromium and palladium have 

been evaluated for this specific reaction.  Pd γ-Al2O3 is the superior catalyst option for 

obtaining a higher yield and selectivity towards cineole.  Leita et al. (2011) suggested a 

method for conversion within a tubular reactor that utilises the optimal catalyst at a reactor 

temperature of 280° C.  Cineole in vapour form is introduced into the reactor via the carrier 

gas, argon (together with oxygen to utilize some of the hydrogen produced).  It is reported that 

a maximum yield of nearly 99% can be obtained within one hour, whilst producing hydrogen in 

large amounts (which can be purified and sold as additional product).  The catalyst remains 

stable throughout the process with an almost negligible rate of deactivation.  This route can be 
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promising because of the conditions at which the reaction takes place and the high yields of p-

cymene observed.  The reaction mechanism starts with the dehydration of the cineole 

molecule producing several isomers including α- and γ-terpinene, dipentene, iso-terpinolene 

and menthadienes.  This first step is encouraged due to the weak oxygen-carbon bond and 

occurs much faster than the following step, which is dehydrogenation.  The isomers 

experience dehydrogenation and rearrangement to produce p-cymene, and as a result expel 

hydrogen gas.  An advantage to using specifically Pd γ-Al2O3 is that dehydration products 

(isomers) are absent due to rapid dehydrogenation.   

 

 

 

 

 

 

2.5.4 Terephthalic acid production from p-cymene 

A method for the conversion of p-cymene to TPA is a two-step oxidation process suggested 

by Berti et al. (2015).  p-Cymene is firstly acidified with a mineral acid, such as HNO3 (65%), 

within a mixture of the crude p-cymene and water.  This mixture is left to react at 80°C for 24 

hours in an isolated vessel and then cooled to 25°C for dichloromethane (DCM) extraction.  

The extracted organic layer is washed with water and concentrated to remove any remaining 

acid and reduce the amount of by-products, such as p-toluic acid, present in this layer.   

Water and NaOH is introduced to the solids obtained to convert the formed p-toluic acid from 

the first oxidation step to TPA.  The second step adds a transition metal oxidant, such as 

potassium permanganate into the reactor.  The reaction medium is allowed to proceed within 

an isolated vessel for 16 hours at 100°C.  A celite pad is used to filter the slurry after the 

reaction, while water is gradually added to remove additional solvent.  To ensure a maximum 

precipitation of TPA, H2SO4 (98%) is added to the aqueous layer.  The solids obtained by 

filtration after precipitation is washed with DCM and water.  The product obtained is a white 

solid, which is approximately 85% bio-based terephthalic acid.  This research proposed by 

Berti et al. (2015) is still in the patent phase with little information regarding tested runs of the 

reaction, therefore this method can be excluded further.  

Cineole 

Δ, Ar, O2 

Metal-doped  

γ-Al2O3 

p-Cymene Dipentene 

H2O 

Hydrophilic phase 

H2 + CO + CO2 

Gaseous phase 

Figure 9: Cineole conversion reaction scheme 
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An alternative method described by Neatu et al. (2016), the direct oxidation of p-cymene might 

be a viable process to produce TPA and Figure 10 shows the reaction scheme.  The possible 

intermediates produced is as follows: (a) tertiary cymene hydroperoxide, (b) p, α-

dimethylstyrene, (c) p-cymenol, (d) p-methylacetophenone, (e) p-tolualdehyde, (f) p-toluic 

acid, (g) cuminaldehyde, (h) p-isopropyl benzoic acid.  At a reactor temperature of 140°C and 

pressure of 20 bar, full conversion of p-cymene is observed together with a higher selectivity 

of p-toluic acid and TPA (56 and 38, respectively).  Another intermediate formed at these 

parameters is p-isopropyl benzoic acid with a selectivity of 5.  The selectivity (S) and 

conversion (X) is calculated by the following equations: 

 

 
𝑆 =

𝑀𝑜𝑙𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑀𝑜𝑙𝑒𝑠 𝑝 − 𝑐𝑦𝑚𝑒𝑛𝑒 𝑟𝑒𝑎𝑐𝑡𝑒𝑑
 𝑥 100 

 

(3) 

 
𝑋 =

𝑀𝑜𝑙𝑒𝑠 𝑝 − 𝑐𝑦𝑚𝑒𝑛𝑒 𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝑀𝑜𝑙𝑒𝑠 𝑝 − 𝑐𝑦𝑚𝑒𝑛𝑒 𝑖𝑛 𝑓𝑒𝑒𝑑
 𝑥 100 

(4) 

 

 

  

 

 

 

 

As demonstrated, the catalyst and oxidising compounds are introduced into the reactor, 

Mn/Fe/O, and accelerates the reaction by the introduction of a free-radical chain mechanism.  

The activation of one C-H bond is initiated by removing a hydrogen atom (shown in Figure 11).  

This reaction consumes surrounding energy and takes place at a slow rate to form tertiary 

cymene hydroperoxide, which in turn can form the rest of the intermediates (shown as (b)-(h) 

in Figure 10) and eventually TPA through a second oxygen diatom addition.    

 

 

 

Figure 10: TPA formation reaction scheme 

p-Cymene (a) (b) (c) (d) (e) (f)  (g)  (h) TPA 
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The oxidation of unconverted α-pinene present in the feed to the reactor is also included in the 

study by Neuenschwander et al. (2010).  In the presence of oxygen, various products can 

form including verbenyl-hydroperoxide, pinenol, pinocarveol, α-pinene oxide, verbenol, 

pinocarvone and myrtenol.  At the reactor conditions only α-pinene oxide, verbenol and 

verbenyl-hydroperoxide were considered the main formed products.  

The direct oxidation of p-cymene produces TPA and p-toluic acid with selectivities of 38 and 

56, respectively.  Thus, an additional oxidation stage is therefore necessary to convert p-toluic 

acid to TPA.  This process involves a high pressure environment (approximately 1.2 MPa) in 

which air is introduced to the system together with acetic acid and a low concentration of T(p-

Cl)PPMnCl and Co(OAc)2 as catalysts.  These catalysts fall under the category of 

metalloporphyrins.  Depending on the concentration of p-toluic acid, the selectivity of TPA can 

be up to 97.6% with a 56.4% conversion of p-toluic acid.  4-carboxybenzaldehyde (4-CBA), an 

undesired product, forms together with TPA with a much lower selectivity than TPA.  Figure 12 

shows the scheme for this reaction where a formation of peroxides, due to the specific 

combination of catalysts, induce the oxidation reaction by the formation of free radicals.  With 

the formation of peroxides, Co3+ is formed which in turn increases the number of free radicals 

(Xiao et al. 2010). 

 

 

 

 

 

 

Figure 11: Free-radical chain mechanism 

O2 O2 

T(p-Cl)PPMnCl/Co(OAc)2 

Acetic acid 
O2 

Figure 12: Oxidation of p-toluic acid reaction scheme 
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2.5.5 Terephthalic acid purification 

The filter cake produced through the two-step oxidation of p-cymene (Chapter 2.5.4) consists 

of a few products and by-product solids formed during these steps.  Two of the undesired 

products (by-products), namely p-toluic acid and 4-CBA, lower the quality and selling price of 

TPA significantly (and in turn, the quality and selling price of PET).  According to Azarpour et 

al. (2015), selective crystallization using a solvent can be used to purify TPA in the formed 

cake.  The solvent is chosen by comparing the solubility of the undesired products in the 

solvent or by choosing a solvent in which more or less only TPA is soluble.  Previous studies 

conducted by Arai et al. (1969) concluded that solvents, such as dimethyl formide and pyridine 

can be used to purify TPA but lack stability in air and can form additional unwanted products.  

Therefore, an industrial available solvent that is stable, non-corrosive and will not react with 

TPA, N-methyl-pyrrolidone (NMP), is favoured.  In order to determine the degree to which 

purification should take place, the specifications for purified terephthalic acid should be taken 

into consideration (listed in Table 11). 

Table 11: Purified terephthalic acid specifications 

 

 

 

 

 

2.6 Estimating 1G feedstock availability 

As mentioned in Chapter 1.1, sorghum and triticale can be promising first-generation 

feedstocks for the production of bio-TPA in South Africa.  It is estimated that by 2020 the total 

sorghum area in South Africa will amount to 234 000 hectares from 81 000 hectares in 2011.  

This increase is because the cultivation of this grain is more favoured above white and yellow 

maize because of a higher grain yield and ability to grow in more severe conditions (Lemmer, 

2011).  Triticale is favoured above other small grains, as it can be cultivated in more 

unhospitable land areas not suitable for common food-source grains (Du Preez & Görgens, 

2015).  This in turn evades a different version of the food versus fuel debate as land area not 

suitable for food-crops can be utilized for the cultivation of these starch sources for the 

production of bio-based TPA. 

 

Parameter Specification 

4-CBA concentration < 25 ppm 

p-Toluic acid concentration < 150 ppm 

Moisture content < 0.2% 

Metal content < 8 ppm 

Stellenbosch University  https://scholar.sun.ac.za



29 
 

2.7  Overview of TPA production pathways from 1G feedstocks 

As mentioned in Chapter 1.1, Gevo has developed a process where p-xylene is produced 

from a starch source.  p-Xylene is currently being produced on a pilot-plant scale and can be 

used to produce TPA.  Little information is known of the process itself, but intermediate 

chemical compounds have been derived.  A similar process has been developed that also 

utilises starch sources, namely the Catalysis Centre of Energy Innovation (CCEI) process.  

Table 12 shows the intermediate chemical compounds for both the Gevo and CCEI 

processes.  

 

Table 12: Gevo & CCEI process intermediates 

 

The CCEI process can be integrated into the starch-based production of bio-TPA as shown in 

Figure 13.  Oxidation of the pure p-xylene product obtained from the CCEI process produces 

crude terephthalic acid that can be purified to produce a pure TPA product with the 

appropriate specifications for PET production. 

 

 

 

 

2.9 Technologies for terephthalic acid production from 1G 

feedstocks 

2.9.1 Starch-based feedstock conversion to p-xylene 

The CCEI process involves a starch source that is depolymerised to glucose in the presence 

of water and hydrogen chloride in a biphasic reactor.  Tetrahydrofuran (THF) is then added as 

solvent together with sodium chloride to convert the formed sugars into 5-hydroxymethylfuran 

(HMF).  A Sn-beta zeolite is used as catalyst during this reaction.  Products formed (present in 

the aqueous phase) include fructose, glucose, HMF as well as levulinic and formic acid, while 

humic compounds are formed in the solid phase.  After this reaction, the liquid phase is 

flashed to recycle the THF solvent, while the rest of the organic-rich phase is sent to a 

Process Intermediate Chemical Compounds 

Gevo Starch → glucose → isobutanol → isobutene → isooctane → p-xylene 

CCEI Starch → glucose → fructose → HMF → DMF → p-xylene 

Starch Source CCEI Process p-Xylene 
Oxidation 

Crude TPA 
Purification 

Pure TPA 

Figure 13: Simplified starch-based process scheme 
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fluidised bed reactor.  Hydrogen at 6.9 bar together with a copper-ruthenium-carbon catalyst is 

used to produce 2, 5-dimethylfuran (DMF) from HMF.  Purification of DMF and recycling of 

THF and water is done within a distillation column, where separation is initiated by the 

difference in boiling points between chemical compounds.  The final reaction takes place 

within a continuous flow stirred-tank reactor where the addition of ethylene and removal of 

water produces p-xylene with a purity of 99.5 wt%.  The water removed during this step is 

separated from the product by decanting (Lin et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

2.9.2 p-Xylene conversion to terephthalic acid 

Terephthalic acid can be produced from p-xylene through oxidation using oxygen; where after 

the solid powder is subjected to a purification stage(s) to obtain a product at the required 

product specifications (specified in Table 11).  The oxidation includes the use of a μ3-oxo-

bridged cobalt/manganese cluster complex as solid catalyst.  Zeolite Y serves as solid matrix 

for the catalyst, which not only encourages the selective oxidation of p-xylene to TPA but limits 

the formation of the impurity 4-CBA.  It is suggested that the increased catalytic activity is 

promoted by the redox behaviour of CoMn2O.  At 550 psig and 200°C complete conversion of 

p-xylene can be achieved with 99.6% selectivity towards TPA.  A selectivity of 0.01% and 

0.03% is achieved for the by-products, benzoic acid and 4-CBA, respectively (Figure 15).  The 

rest of the product is comprised of p-toluic acid (Chavan et al., 2001).   

 

 

Starch Glucose 

Fructose 

+ H2O 

HMF DMF 
p-Xylene 

- H
2 O

 

+ H2 

- H2O 

+ CH2=CH2 - H2O 

Figure 14: Starch-based p-xylene production reaction scheme 
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Figure 15: Starch-based p-xylene oxidation reaction to TPA 

p-Xylene TPA  

(99.6%) 

4-CBA 

(0.03%) 
Benzoic 
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3 Research design methodology 

3.1 General methodology and envisagement 

Aspen Plus® provides a platform for process simulation based on experimental data extracted 

from appropriate literature sources.  From these simulations, mass and energy balances 

reveal technical performance indicator such as production rates, energy generation and utility 

demands that form the basis of the technical modelling results analysis.  From the mass and 

energy balances generated, the cost of acquiring and operating the prospective plant are 

included in the cash-flowsheet to determine economic indicators, such as the internal rate of 

return (IRR) and minimum selling price of TPA.  From these indicators, a decision can be 

made on the attractiveness investing in the prospective plant compared to other investment 

opportunities including financial institutions and investors.  

It is envisaged that technical modelling results analysis considering pinch point heat 

integration as well as economic (cash flow) analysis would reveal certain outcomes that would 

be comparable to each developed process.  From these analyses, the status of economic 

viability of these processes and/or integrations/combinations thereof can be deducted.   

  

3.2 Overview of processes developed for techno-economic 

investigation  

Based on the literature review of the various feedstocks and processing steps that are 

involved in the conversion of bio-based materials to TPA, the overall process descriptions 

presented in this chapter presents the flowsheets that have been derived.  These processes 

flowsheets form the basis of the mass and energy balances, and the economic evaluations 

that will be carried out. 

 

3.2.1 Process description for TPA production from Pine needles 

Figure 16 depicts the main processes selected for the Pine needle bio-resource processing 

towards purified TPA.  The bio-resource is first subjected to size reduction and hydro-

distillation to extract the major terpene, α-pinene (Chapter 2.4.3).   

To obtain a more continuous extraction of biomass, a semi-batch configuration of vessel will 

be modelled, while slurry pumps will be used to transport biomass from one vessel to the 

other.  Control over the mass flow of water within the system as well as the heat duty applied 
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to the vessels will ensure maximum extraction efficiency and prevent biomass flow 

restrictions.  Lastly, the extracted terpenes and water vapour is condensed and separated via 

decanter to produce an essential oil product stream.   

The major terpene, α-pinene, is then converted through dehydrogenation to p-cymene in the 

presence of a catalyst, FAU Y, since it is the favoured catalyst in terms of yield and selectivity 

(Chapter 2.5.1).  This catalyst requires preparation within a fired heater to remove any 

moisture contained in the matrix. This ensures optimal efficiency of the catalyst.  It is then 

loaded into the reactor and reactivated after a period when poisoning and possible active site 

compromise has occurred up to the point where a noticeable change in yield is detected.  

Complete conversion of the major terpene is achieved under the described conditions (5 bar 

and 300°C), while p-cymene is the main product formed.  The majority of the menthenes and 

menthanes formed are represented by p-menth-3-ene and p-menthane, respectively.  

Terpene isomers include terpinolene (30.5%), α-terpinene (45.4%), γ-terpinene (15.7%) and 

menthadiene (8.4%) (Linnekoski et al., 2014).   
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Figure 16: Pine process flow diagram  
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In order to purify crude p-cymene (Chapter 2.5.2), sulphuric acid is firstly used to catalyse the 

conversion of monoterpenes in the feed stream to diterpenes, such as cembrene A, 

isocupressic acid and elliotinol.  The formed diterpenes can easily be separated from p-

cymene in a distillation column due to the difference in boiling points.  

Oxidation of the pure p-cymene occurs in two steps, where the product from the first step 

consists mostly of p-toluic acid and a small amount of TPA (Chapter 2.5.4).  The products 

formed at these parameters are p-toluic acid, p-isopropyl benzoic acid (cumic acid) and 

terephthalic acid, with complete conversion of p-cymene.  Together with oxygen, Fe and Mn 

(at an atomic ratio of 3:1) form the appropriate catalyst for this reaction.   

The intermediate product (p-toluic acid) is mainly converted to TPA in the second oxidation 

step, while 4-CBA and benzoic acid form as by-products.  The catalyst added for the second 

oxidation step is tetra(p-chlorophenylporphinato)manganese/cobalt acetate (T(p-

Cl)PPMnCl/Co(OAc)2) and is required in small doses depending on the amount of p-toluic acid 

present within the reactor.    

Gas expelled during both oxidation steps need to be treated to recycle excess oxygen.  The 

main gas formed is carbon dioxide and can be extracted from the oxygen by passing it 

through calcium hydroxide to form calcium carbonate in the following reaction: 

 

 𝐶𝑎(𝑂𝐻)2 + 𝐶𝑂2 → 𝐻2𝑂 + 𝐶𝑎𝐶𝑂3 (5) 

 

Purification of TPA is necessary to bring the product up to the required specifications (Chapter 

2.5.5) by limiting the amount of by-products formed during oxidation.  A wash-filter unit is used 

where the powder will be in contact with a solvent, NMP, in which TPA has a much higher 

solubility than the by-products.  Multiple contact sessions are necessary to bring the product 

up to standard, but is also limited by the increase in capital cost.  The product stream is then 

introduced to a mixing vessel, where acetone is added to break any NMP-TPA complex salts 

formed and to remove a fraction of additional by-products.  The amount of acetone added to 

each mixing vessel is determined by the amount of TPA present within the vessel.  The solid 

product powder is dried (removing added solvents) within a drier, where approximately 80% of 

the flue gas is recycled to be used as fluidising agent.  The final step is cooling the pure 

product powder in a screw cooler for safer handling.  
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3.2.2 Process description for TPA production from Eucalyptus leaves 

Figure 17 depicts a simplified process flow of the selected processes towards the production 

of TPA from Eucalyptus leaves.  The Eucalyptus leaves are decreased in size before entering 

the extraction section through milling.  Supercritical fluid extraction using carbon dioxide will 

be used for the extraction of cineole from the biomass source (Chapter 2.4.4).  This will result 

in a higher capital cost than utilising steam- or hydro-distillation technology, but ensures 

maximum extraction of the major terpene, without the need for additional water-cineole 

separation steps (of which no literature exists for this specific separation) (Handa et al., 2008).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Purification of the major terpene, 1, 8-cineole, was chosen, rather than the purification of p-

cymene after dehydrogenation, because of the use of a reusable and cheap complex forming 

solvent (as discussed in Chapter 2.4.7).  Hydroquinone forms a complex with cineole at a low 

temperature, while the residual terpenes remain unaffected.  Separation of the complex and 

residual terpenes is done by distillation column in vacuum at 50°C. The energy intensive part 

of this purification step is supplying the low temperature of -10°C prior to separation. 
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Figure 17: Eucalyptus process flow diagram 
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Conversion of cineole to p-cymene is governed by yields calculated through the selectivities 

given in literature (as discussed in Chapter 2.5.3).  99% conversion of cineole is achieved 

under the specified conditions (1 bar and 280°C).  In order to allow for continuous catalyst 

replacement or regeneration, the reactor configuration is that of a moving be reactor with a 

palladium doped γ-Al2O3 catalyst consisting of 0.38 wt % palladium. A carrier gas, consisting 

of argon (92.7 wt %) and oxygen (7.3% wt %), is used to deliver the purified major terpene to 

the reactor.   

The pure p-cymene produced during dehydrogenation is structurally identical to the p-cymene 

produced during the Pine process, it is therefore appropriate to apply the same oxidation steps 

towards the production of TPA as described in Chapter 2.5.4.  The purification method also 

remains the same, with the only difference being the concentration of by-products formed.   

 

3.2.3 Process description for TPA production from PHR 

At the time of this study, the majority of biomass processed within Ngodwana’s pulp mill was 

Pine; therefore, the major terpene for this process is α-pinene. The pre-hydrolysate or pre-

cooking stage releases the naturally occurring terpenes and sulphurous compounds from the 

wood chips together with a large amount of water (approximately 40% of the wood chip mass 

present in the pre-cooking vessel).  Separation of the oil and water layer occurs in a decanter.  

Ideally, the next step would consist of desulphurisation, but as shown in Figure 8, the 

conversion of α-pinene produces hydrogen sulphide from naturally occurring sulphurous 

compounds.  Therefore, even a fraction of these compounds would result in the formation of 

hydrogen sulphide, which is most important to limit during this process.   

Dehydrogenation of the major terpene follows decanting and produces a crude p-cymene 

product (Chapter 2.5.1).  The product stream is treated with hydrogen peroxide, which reacts 

with the sulphurous compounds and especially with hydrogen sulphide to form elemental 

sulphur and dimethyl sulfoxide (Chapter 2.4.8).  The modelling of this specific reactor will 

make use of stoichiometry and conversions to define the desulphurisation.  The formed 

compounds can be discarded in a more environmentally friendly way and pose a decreased 

risk to the processing plant employees.  

The crude, desulphurised p-cymene product is then purified in a vessel with an acidic pH 

produced by sulphuric acid to encourage the formation of diterpenes from each monoterpene 

species present in the vessel (Chapter 2.5.2).  A large difference between the boiling points of 

the p-cymene and diterpenes allows easy separation within a distillation column.   

Stellenbosch University  https://scholar.sun.ac.za



37 
 

A two-step oxidation is used where p-toluic acid is the major intermediate product formed 

during the first oxidation, while the second step produces mainly TPA.  Oxygen at an excess 

of 20% is used as oxidising agent for both stages (Chapter 2.5.4). 

Lastly, the crude TPA product is subjected to washing and drying steps to produce a product 

at the required specifications (Chapter 2.5.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Process description for TPA production from 1G feedstocks 

Figure 19 depicts a simplified process flow of the selected processes towards the production 

of TPA from starch-based feedstocks. The CCEI process represents the processing and 

conversion of the starch-based feedstocks to p-xylene.  Depolymerisation of the starch source 

in the presence of a dehydration catalyst, HCl, produces solely glucose with a conversion rate 

of 75% (based on mass of reactant fed).  Reactor conditions for this process are at 1.9 MPa 

and 180°C.  Within the next reactor, NaCl and THF is added together with the zeolite Sn-Beta 

catalyst in order to fully isomerise the sugar content (glucose and/or fructose) within the 

reactor to produce HMF (with a selectivity of 69%).  Salt is added to encourage the HMF 

Figure 18: Pre-hydrolysis relief-gas process flow diagram  
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product into the extracting phase without the need for a solvent. It also increases the product 

yield and supresses by-product formation.  By-products of this reaction such as levulinic acid 

and formic acid leave the reactor together with HMF and unreacted sugars.  Humins are 

separated from the product stream via filter.  Excess THF is recovered and recycled within a 

flash column and separated from levulinic and formic acid within a distillation column. 

 

 

 

 

 

 

 

 

 

 

 

 

At 220 °C and 0.69 MPa HMF is fully converted to DMF (with a selectivity of 78%) in the 

presence of a Cu-Ru/C catalyst and with the addition of hydrogen.  The distillation of the 

product stream separates water and other unreacted or by-products such as 2, 5-

dihydroxymethyltetrahydrofuran from DMF.  The next conversion step takes place within a 

reactor at 300°C and 5.7 MPa and involves the addition of n-heptane and ethylene to produce 

p-xylene from purified DMF.  95% conversion is achieved during this reaction with a selectivity 

of 75.5% towards p-xylene.  Unreacted ethylene is recycled in a flash downstream from the p-

xylene reactor, while water is removed from the product stream via decanter.  The final 

purification involves distillation of the inorganic layer retrieved from the decanter.  By-products 

such as n-tridecane are removed through distillation to produce a product stream containing 

99.5% pure p-xylene. 

The oxidation of the pure p-xylene involves the utilisation of pure oxygen and an equimolar 

mixture of Co(CH3COO)2.4H2O and Mn(CH3COO)2.4H2O salts (Chapter 2.9.2).  At 200°C and 
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Figure 19: Starch-based process flow diagram 
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550 psig p-xylene is fully converted within the reactor to terephthalic acid (99.6%), p-toluic 

acid (0.36%), 4-CBA (0.03%) and benzoic acid (0.01%).  

A similar approach as described in Chapter 2.5.5 will be used to describe the purification of 

TPA.  The final product should have the specifications listed in Table 11 in order to be sold as 

purified TPA powder. 
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4 Technical modelling and analysis 

This chapter describes the modelling routes taken to utilise the chosen literature for the 

development of industrial scale simulations.  The simulations as well as the heat integration 

thereof were completed using Aspen Plus® together with the integrated Aspen Energy 

Analyser.  Finally, a comparison is drawn between the 2G models (Pine, Eucalyptus and PHR) 

in terms of TPA production rates, overall yields, power generation and utility usage. A 

technical comparison with the starch-based model is not done due to incomplete technical 

information of the CCEI process. 

 

4.1 Plant model layout 

For each of the models, a set of codes have been assigned to each section, stream and 

equipment.  Each section is chosen based on the main processes and other surrounding 

processes.  For example, the hydro-distillation process (main process) together with the 

condensation and decanting of oils (other processes) is regarded as one section.  Each 

section is coded with an ‘S’ and numbered accordingly.  Streams are named according to 

section and number, for example S1-02, which is the second stream in the first section.  

Equipment is coded using a symbol to describe the type of equipment and numbered first 

showing the section number and then the number of the equipment.  The equipment codes 

are shown in Table 13.  E-210, for example, represents the tenth heat exchanger in section 2.  

Any equipment or stream coded with an ‘X’ is placed in the section for simulation purposes 

and does not necessarily represent actual equipment in the plant.  

 

Table 13: Equipment code description 

Equipment code Description 

C Compressor/Turbine 

E Heat Exchanger 

H Fired Heater 

P Pump 

R Reactor 

T Tower 

V Vessel 

D Decanter 

M Mixing Tank 

F Filter 

Y Solids Dryer/Crusher 
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4.2 Property methods and assumptions 

The following property methods and assumptions were applied during modelling: 

- The base method chosen for all three models is the UNIQUAC (Universal Quasi-Chemical) 

method, an appropriate method in a system with liquid mixtures at relatively low pressures 

(lower than 10 bar).  Certain sections were modelled with other methods depending on the 

phase and types of components as well as the operating parameters.  For example, the super 

critical fluid extraction of the Eucalyptus biomass required the property method RK-Soave 

because of the use of super critical CO2 with a pressure above 80 bar (AspenTech Inc., 2001). 

 

 For most of the simulated equipment, such as heat exchangers, the pressure drop was 

neglected. 

 Some equipment, such as decanters and extraction vessels it is assumed to be well 

insulated; therefore the heat lost to the environment is zero.   

 To simplify calculations, some of the reactors were broken down into sections, where a 

simulated heat exchanger at the end of the section represents the heat duty of the 

actual reactor. 

 Medium pressure steam was added as utility to provide endothermic energy to 

reactors, while cooling water was added as utility where an exothermic reaction took 

place within a reactor with a COP of 7 (Bergstein, 2009). 

 It was assumed that an 80% recirculation of flue gas obtained from solids driers would 

be sufficient for fluidisation (Driscol, 2014). 

 20% excess oxygen was assumed sufficient during combustion of biomass and 

oxidation.  

 A number of minor chemical components were not available in the Aspen Plus® 

databanks and were added manually through the ‘user defined’ option.  Each 

compound’s chemical structure was uploaded in a mol file format, where after the 

‘calculate bonds’ button was selected.  Additional information such as boiling point, 

molecular weight, formation and Gibbs energy was inserted to more accurately define 

each unknown compound. 

 Pump inputs in Aspen were specified as the discharge pressure, where the efficiencies 

that Aspen calculates were lower than expected in reality. Mechanical and electrical 

efficiencies were specified between 80% and 85%. 

 Compressors were specified as isentropic together with a discharge pressure. The 

overall efficiency was averaged at 78%.   

Stellenbosch University  https://scholar.sun.ac.za



42 
 

4.3 Lignocellulosic-based (2G) Feedstock 

The Pine needle and Eucalyptus leaves biomass was defined by their proximate and ultimate 

compositions (shown in Table 14). It represents the solid portion and water moisture of the 

Pine and Eucalyptus biomass given by Janajreh et al. (2012) and Mishra et al. (2010), 

respectively.  This represents approximately 98% of the total biomass mass and placed in the 

NC (non-conventional) Solid section of the biomass feed stream.  The terpene oil contained 

within each biomass type make up approximately 2% of the total biomass and was set as 

mixed input in the same biomass feed stream. The average terpene content for each biomass 

type is given in Table 15. In addition to the liquid portion of the Eucalyptus biomass, natural 

waxes are also included and make up approximately 0.6% of the total biomass.  

Ngodwana Mill produces pulp at a rate of 410 tonnes/year of a combination of hardwood and 

softwood, while the capacity for crude sulphonated turpentine (CST) from softwood is 

approximately 180 tonnes/year.  Table 15 shows the average terpene content of CST expelled 

as a relief-gas in the pre-hydrolysate cooking stage (described in Figure 4) (Triumph Venture 

Capital, 2004).     

Table 14: Proximate and ultimate composition: P. elliottii needles and E. grandis leaves 

 Pine needles Eucalyptus leaves 

Proximate composition:   

Moisture 9% 4.4% 

Volatile matter 49% 57% 

Fixed carbon 46.5% 34.5% 

Ash 4.5% 4.1% 

Ultimate Composition:   

C 46.4% 51.1% 

H 6% 8.8% 

N 1.4% 40.1% 

S 0% 0% 

O 41.7% 0% 
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Table 15: Average biomass oil composition 

Chemical compound Pine needle oil Eucalyptus leaf oil PHR CST 

α-Pinene 43% 2.2% 51.3% 

β-Pinene 27.1% 1.3% 24.7% 

β-Phellandrene 6.1% - 11.6% 

Myrcene  2.9% - 3.6% 

Camphene 1.9% - 2.6% 

Limonene 2.9% 1.9% 2.6% 

δ-Terpineol - 1.6% 3.6% 

α-Terpineol 9.6% 7.7% - 

α-Terpinene 0.1% 1.3% - 

1,8 Cineole - 81.4% - 

Terpin-4-ol 0.1% 2.6% - 

α-Thujene 0.3% - - 

Tricyclene 2% - - 

α-Fenchol 0.5% - - 

Fenchene 1.1% - - 

β-Caryophyllene 0.6% - - 

Terpinen-4-yl Acetate 0.2% - - 

γ-Cadinene 0.3% - - 

Methyl Salicylate 0.1% - - 

Methyl Eugenol 0.1% - - 

γ-Terpinene 0.1% - - 

p-Cymene 0.2% - - 

Linalool 0.8% - - 

 

4.4 Model scenarios studied 

Each model scenario simulated was divided in sections to represent each processing section.  

Some section elements are shared between scenarios (as shown in Figure 20), where minor 

differences, such as stream composition, product and by-product concentrations as well as 

by-product treatment will be discussed. 

Figure 20 (a) shows the Pine biomass model section layout.  Each section contains the 

following: 

S1: Hydro-distillation of biomass in vessels arranged in series to extract terpenes contained 

within the biomass. 

S2: Dehydrogenation of major terpene, α-pinene, to p-cymene via a fixed bed reactor. 

S3: Acid catalysed purification of p-cymene through diterpene formation. 

S4: p-Cymene oxidation through oxygen to TPA and oxidation of p-toluic acid to TPA.  

S5: TPA purification to minimise by-products. 

S6: Biomass combustion and steam cycle power generation. 

S7: Purified TPA drying and cooling section (contained within S5). 

Stellenbosch University  https://scholar.sun.ac.za



44 
 

 

Figure 20 (b) shows the Eucalyptus biomass model section layout.  Each section contains the 

following: 

S1: Supercritical fluid extraction of Eucalyptus biomass towards the extraction of terpenes. 

S2: Purification of terpene cineole via complex formation with hydroquinone. 

S3: Dehydrogenation of major terpene to p-cymene. 

S4: Two-stage oxidation of p-cymene to p-toluic acid, TPA and 4-CBA. 

S5: TPA purification to minimise 4-CBA and p-toluic acid. 

S6: Biomass combustion and steam cycle power generation.  

S7: Purified TPA drying and cooling (contained within S5).  

 

Figure 20 (c) shows the pre-hydrolysate relief-gas (PHR) model section layout.  Each section 

contains the following: 

S1: Dehydrogenation of terpene α-pinene to p-cymene and desulphurisation of natural 

sulphurous compounds 

S2: Purification of p-cymene via diterpene formation using an acid catalysed environment. 

S3: Two-stage oxidation of p-cymene to p-toluic acid, TPA and 4-CBA. 

S4: TPA purification to minimise 4-CBA and p-toluic acid. 

S5: Purified TPA drying and cooling (contained within S4). 

Figure 20 (d) shows the starch-based model section layout.  Each section contains the 

following: 

S1-1: Single stage oxidation to TPA, 4-CBA, p-toluic acid and benzoic acid. 

S1-2: Purification of TPA solid to minimise by-products. 
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4.4.1 Size reduction 

In order to determine which size reduction block to simulate, the feed size, product size and 

capacity for each 2G feedstock was compared in Table 16 (Anwar, 2011).  In terms of the 

Pine biomass, the typical average needle size is 150mm x 3mm, which suggests that either a 

cone crusher, impact breaker or rod mill can be used.  Considering the product size, particle 

diameters should range from 0.5 mm to 2 mm, where these smaller particle sizes expose 

more terpene oils and create an opportunity for further lysis of the underlying cells (Kim et al., 

2013).  Therefore, impact breakers, rod mills can be used.  Lastly, considering the capacity of 

this unit, the equipment should be able to handle the Pine capacity range of 80 kg/hr to 150 

kg/hr.  Hammer and jet mills are able to handle this capacity, but the reduction of the particle 

Figure 20: Technical modelling process sections 
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are too severe and might cause some of the particles to escape the hydro-distillation area 

together with formed vapours.  Rod mills are therefore chosen to simulate the size reduction of 

the Pine biomass.  

Table 16: ASPEN Plus size reduction blocks 

Equipment Size of feed 
(mm) 

Size of 
product (mm) 

Reduction 
ratio 

Capacity 
(tons/hr) 

Power 
consumption 

(kW) 

Gyratory 
crusher 

200-2000 25-250 8 100-500 100-700 

Jaw crusher 100-1000 25-100 8 10-1000 5-200 

Cone crusher 50-300 5-50 8 10-1000 20-250 

Impact 
breakers 

50-300 1-10 40 10-1000 100-2000 

Rod mills 5-20 0.5-2 10 20-500 100-4000 

Ball mills 1-10 0.01-0.1 100 10-300 50-5000 

Hammer mills 5-30 0.01-0.1 400 0.1-5 1-100 

Jet mills 1-10 0.003-0.05 300 0.1-2 2-100 

 

Using the same deduction method for the Eucalyptus biomass and considering its capacity 

range of 660 kg/hr to 900 kg/hr and leaves with diameters less than 200 mm.  To prepare the 

biomass for supercritical fluid extraction a cone crusher can provide the correct size range. 

The bond work index is essential for size reduction calculations and depends on the type of 

biomass and is the work required to reduce 80% thereof to a size of at least 100 mm per ton 

of the fed biomass.  The range of this index for agricultural waste is 7 to 15.8 kW/ton.  For the 

Pine and Eucalyptus biomass an index of 8 and 15.8 kW/ton is used, respectively that 

correlate with each fed particle size (Serna, 2015). 

 

4.4.2 Terpene Extraction 

4.4.2.1 α-Pinene Extraction from Pine Biomass 

Size reduction equipment will not be modelled but costed according to the necessary capacity, 

which will contribute to the total estimated installation cost of equipment.  The extraction of 

terpenes through hydro-distillation is simulated by vessels operated in semi-batch (Figure 21).  

The macerated biomass (Pine needles) (S1-01) are fed to three vessels (V-101, V-102 and V-

103).  The mass flow rate of the biomass feed is determined by amount of biomass available 

calculated in Table 3.   

Water (S1-02) is fed to the same vessels at a mass flow rate four times greater than the 

biomass flow rate (calculated in CALC1), to ensure full submersion of the biomass and to 

avoid clumping and clogging in the vessels and pipes.  The biomass slurry is fed to each 
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Figure 21: Pine Model Terpene Extraction 

vessel using slurry pumps (P-101 A/B and P-102 A/B).  A/B denotes a backup pump for major 

pipelines (these symbols are omitted further but included during the costing of the plant).  

Pump P-103 A/B transports the slurry to section 6 (power generation).  A heat stream is 

connected to V-103, where the heat duty is varied in CALC2 to extract the maximum amount 

of terpene oil to S1-11.  

 Vapour from V-103 and V-102 is recycled through S1-09 and S1-10 to increase the rate of 

terpene extraction and transport the vapours to V-101 to be sent through a condenser (E-101 

via S1-11).  The vapours, which contain a large amount of steam, are condensed in E-101 up 

to the point of a zero vapour fraction (approximately 51°C).  The liquid is then decanted (D-

101) to separate the water fraction from the essential oils, where complete separation can be 

assumed, due to the negligible solubility of the oils in water.  S1-14 carries the terpene layer to 

section 2, while the water layer (floral water) is carried through S1-13 to be recycled back to 

S1-02.  

 

 

4.4.2.2 Cineole Extraction from Eucalyptus Biomass and Purification 

The Eucalyptus biomass was defined as a solid, terpene liquid and wax fraction, where the 

wax fraction was calculated in CALC1 as 0.6% of the total mass containing the solid and 

terpene fractions (shown in Figure 22).  The solid and terpene fractions (X101) and the wax 

fraction (X102) is combined in X103 to from the biomass feed stream (S1-01) to the 

supercritical fluid extraction tower (T-101).  The size decreasing equipment will not be 

modelled but added to the total installed equipment cost.  The volumetric flowrate of CO2 

needed for this extraction is calculated in CALC2 and is a ratio of the mass flow of terpenes in 

stream S1-01.  T-101 is operated at 80°C and 163 bar to ensure the complete extraction of the 

terpenes from the biomass, which also include the natural waxes (Francisco et al., 2001).  A 

slurry pump is added to the equipment costs to bring the biomass up to 163 bar. After 
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Figure 22: Eucalyptus Model SCF Terpene Extraction 

extraction, the spent solid biomass is sent to section 6 after extraction through S1-05, while 

the terpene-wax mixture is removed by the solvent through stream S1-06.  The mixture is 

heated further to 160°C to remove the solvent in T-102 and then cooled to 80°C (in E-104) to 

further remove terpenes in T-104.  The CO2 solvent in S1-17 is recycled back to S1-02. 

The terpene-wax mixture from tower T-102 is sent through stream S1-08 to a hydraulic turbine 

to lower the pressure of the system back to 1 bar.  The mixture is then heated to 180°C to 

separate the terpene liquid from the natural waxes in tower T-103.  The wax leaves the 

section through stream S1-11 and is discarded (production rates of these waxes are too small 

to contribute economically through sales but could be added to section 6 together with S1-05).  

The terpenes obtained from towers T-103 and T-104 through streams S1-12 and S1-14 are 

combined in vessel M-101 to be sent to section 2 through stream S1-13.   

 

 

Terpenes extracted in section 1 enters section 2 through stream S2-01 and is added to an 

amount of HQ in vessel M-201, calculated in CALC1 as a mass ratio of the amount of cineole 

entering M-201 (shown in Figure 23).  The mixture is then cooled to -5°C to initiate the 

formation of a cineole-hydroquinone complex in tower T-201.  The complex is removed and 

heated through E-202 to 50°C to break the complex in tower T-202 under vacuum.   

Purified cineole leaves the tower through S2-06, while the solvent (S2-07) is cooled to -5°C 

and reused to extract residual cineole retrieved from tower T-201 through S2-09.  The HQ and 

terpenes are mixed in M-202 and sent to the second extraction tower (T-203) through S2-10.  

The unreacted terpenes (with a lower boiling point than the complex) leave the tower through 

S2-11, while the complex is sent to tower T-204 through S2-12.  The complex is heated to 

40°C in E-204 and separated in tower T-204.  Purified cineole from S2-14 and S2-06 is mixed 
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Figure 23: Eucalyptus Model Cineole Purification: Section One 

in vessel M-203 before entering the conversion section.  X202 to X204 is used to remove any 

traces of HQ that might interfere with further calculations.  The final purified mixture of cineole 

with a purity of 96 wt % leaves the section through S2-16. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

4.4.3 p-Cymene Production 

4.4.3.1 Crude α-Pinene Conversion 

Due to the absence of kinetic data on this conversion, it was necessary to create mass 

balances that utilise the given selectivities to calculate the yield of the product stream (shown 

in Table 17).  Therefore, a yield reactor will be used to simulate the dehydrogenation (shown 

in Figure 25) due to the nature of data found in literature (selectivities and conversion given in 

Table 17).  To simplify calculations, the reactor was broken down into the reaction section 

where the terpenes are converted, a section where the carrier gas, nitrogen, is pressurised 

and heated and lastly a section where the catalyst and carrier gas is added to the system.  In 

reality, the terpenes could be introduced to the carrier gas through an atomizer.  QY201 

Figure 24: Eucalyptus Model Cineole Purification: Section Two 
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represents the overall heat duty resulting from the reaction as well as mixing of all 

components.   

The terpene liquid extracted in section 2 is introduced (from S2-01, S2-03 to S2-05A) to the 

reactor (R-201) after being pressurised to 5 bar by P-201A and heated to 160°C via heat 

exchanger (E-201A), according to specifications given in the discussed literature (Section 

2.5.1).  The carrier gas is compressed (C-201B) and heated (E-201B) and added to the mixing 

block of the reactor model.  The catalyst loading (S2-06) was calculated in CALC1 using a 

ratio of the terpene feed (mass flow rate of terpenes to catalyst mass over an active catalyst 

period).  Moisture is removed within a fired heater (H-201) at 500°C.   

Together with the p-cymene product (X201), carrier gas (S2-05B) and catalyst (X206), the 

heat of reaction (QR201) from R-201 was added to X204 to determine the total heat of the 

reactor system (QY201).  X210 simulates the separation of the solid catalyst from the vapour 

product and carrier gas.  The vapour stream is then de-pressurised in a turbine (C-202) and 

cooled (E-202) to 60°C to separate the gaseous nitrogen from the liquid products in a flash 

column (T-201).  The liquid products (S2-13) from the column are then sent to section 3.  

Complete recycling of the nitrogen is achieved (so that S2-12 is joined at S2-02) because of 

the absence of sulphurous compounds in the Pine needles that cause the formation of H2S, 

CH4 and (CH3)2S under these conditions.     

It would then be necessary to simulate the catalyst as a continuous stream, where the 

activated period is divided by the mass of the catalyst to determine the mass flow rate.  The 

composition of the catalyst will be defined by the chemical compounds that it comprises of, 

where the distribution of these components is given in Table 18.   

Table 17: α-Pinene Dehydrogenation Conversion and Selectivities 

 α-Pinene p-Cymene o-Cymene m-Cymene Terpene 
Isomers 

Menthenes Menthanes 

Conversion 100%       

Selectivity  20% 0.31% 7.7% 11% 16% 3.8% 

 

Table 18: Faujasite Y Composition 

Component Mass Percentage (%) 

H2O 27.30 

Na2O 0.20 

CaO 2.70 

MgO 0.60 

Al2O3 16.92 

SiO2 52.28 
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Figure 25: Pine Model Alpha-Pinene Conversion       

The conversion of α-pinene in the PHR model shares similarities to that of the Pine model.   

Section 1 of the PHR model (described in Figure 20 (c)) receives CST from the pre-

hydrolysate cooking stage (entering stream S1-01 shown in Figure 26) at a rate of 180 

tonnes/year.  The terpene portion of the CST enters in X114, while the steam enters in X115.  

The mass flow of steam is approximately four times the mass of the original biomass in the 

pre-cooking stage and is calculated in CALC3.  The CST is cooled to 30°C to allow easy 

separation of the oil layer (containing terpenes) from the water in D-101.  The oil layer leaves 

the decanter through S1-04 and is heated to 300°C before entering reactor R-101.  The 

dehydrogenation steps are approached the same as for the Pine model, where conversion of 

the major terpene takes place in yield reactor R-101.  The carrier gas is introduced through 

S1-06, while the catalyst (characterised in Table 18) is introduced through S1-09.  X106 

represents the total heat duty from reaction and mixing.    

The product stream is brought back to atmospheric pressure from 5 bar through C-102 and 

cooled to 25°C in E-103 before desulphurisation.  Hydrogen peroxide (S1-14) is added 

according to the stoichiometric ratios for each natural sulphurous species described in Section 

2.4.8.  Desulphurisation takes place within R-102 (shown in Figure 27) and relies on 

stoichiometric equations to determine the product composition exiting the reactor (S1-15).  
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4.4.3.2 Purified Cineole Conversion 

Purified cineole from section 2 enters section 3 through stream S3-01 and enters the 

dehydrogenation reactor (R-301) for conversion.  Ideally, a tubular reactor should be used to 

model this reaction, but due to the limitation of kinetic data in literature, a yield reactor will be 

modelled.  The carrier gas, a mixture of argon and oxygen (entering S3-02), is brought to 1 

bar through C-301 and heated to 280°C.  Full conversion of the pure cineole is achieved at 

these conditions, where the selectivity of p-cymene is 99% (Leita et al., 2011). The volumetric 

flow rate of the carrier gas is calculated in CALC2 as a fraction of the volumetric flow of the 

major terpene entering stream S3-01.  In reality, the carrier gas would introduce the pure 

cineole to the conversion reactor.    

The catalyst is introduced in S3-05, where the mass flow rate is calculated in CALC2 as a 

fraction of the volumetric flow rate of cineole in the feed stream to the reactor.  The catalyst is 

added as a continuous stream due to the selected reactor’s restriction to accommodate fixed 

catalyst packing.  The mass flow rate of which is determined by the period up until the catalyst 

should be replaced, divided by the mass of the catalyst.  The product from the reactor (stream 

S3-06) is cooled (through E-302) to 60°C after any solids in the stream were removed in X308 

Figure 26: PHR Model α-Pinene Conversion Section One 

Figure 27: PHR Model α-Pinene Conversion Section Two 
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Figure 28: Eucalyptus Model Cineole Conversion 

(in reality the catalyst would not exit the reactor as a product).  The product stream is then 

sent to tower T-301 to remove any gases through S3-09.  The final p-cymene product (with a 

purity of approximately 98 wt %) is then sent to section 4 for oxidation through stream S3-08 

(shown in Figure 28). To simplify the calculations surrounding the reactor, the modelling will 

be broken down into three different sections: a reacting section dependent on product yields, 

pressurising and heating of the carrier gas as well as the introduction of the catalyst. 

 

4.4.4 p-Cymene Purification 

The terpene liquid product (stream S3-01 shown in Figure 29) obtained in section 3 is added 

to 95 w/w% sulfuric acid (S3-02) and heated to 75°C (the temperature at which the acidic 

environment promotes the production of diterpenes from the monoterpenes present in the 

feed).  CALC 1 calculates the amount of sulphuric acid needed, which is 25% of the terpene 

mass flow in stream S3-01.  R-301 simulates the formation of diterpenes by using the yields of 

the products determined through mass balances (Brücher et al., 2013).  The reactor product is 

cooled to 70°C by E-302 to be distilled in tower T-301.  The higher boiling point diterpenes and 

sulfuric acid are easily separated in the tower and leaves through stream S3-07, while the 

purified p-cymene (98% w/w) leaves at the top of the tower through S3-06 to section 4.  X304 

is used to remove excess traces of sulphuric acid.   
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Figure 29: Pine Model p-Cymene Purification 

Figure 30: PHR Model p-Cymene Purification 

 

The PHR model p-cymene purification (shown in Figure 30) was modelled in the same 

manner as for the Pine model, with minor differences resulting from section 1.   

 

 

 

 

 

 

 

 

 

 

4.4.5 Crude Terephthalic Acid Production 

Purified p-cymene obtained from section 3 is introduced to yield reactor R-401 through stream 

S4-01 (shown in Figure 31).  Selectivities given in literature were used to determine the 

product composition through mass balances in Excel (given in Table 19) (Neatu et al., 2016).  

CALC 1 calculates the mole flow of oxygen (entering in stream S4-02) needed for the 

oxidation of p-cymene, which is six times the mole flow of p-cymene present in the feed 

stream to R-401.  20% excess oxygen is added to the calculated mole flow.  Before oxidation, 

the oxygen is pressurised to 20 bar in C-401 and heated to 140°C in E-401 before entering the 

reactor.  The product stream exiting the reactor (S4-05) enters a vessel (V-401) that serves as 

a blow-off for build-up gasses and separates any excess oxygen from the product.  
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Table 19: Two-Step Oxidation Conversions and Selectivities 

 p-Cymene TPA p-Toluic Acid Cumic Acid 4-CBA 

1
st

 Conversion 100%     

1
st

 Selectivity  38% 56% 5%  

2
nd

 Conversion   62.9%   

2
nd

 Selectivity  96.8%   3.4% 

 

p-Toluic acid is the intermediate product to the production of terephthalic acid and is the major 

product from R-401.  The second oxidation step’s conversion and selectivities are given in 

Table 19 and was used to determine the product composition (Xiao et al. 2010).  To increase 

the amount of the desired product (TPA), another oxidation step is added, which requires 

different conditions (190°C and 1.2 MPa) to convert p-toluic acid to TPA (in R-402).  The 

required mass flow of oxygen is calculated in CALC2 and is determined by a ratio defined by 

literature as equal to approximately 2.28 times the mass flow of p-toluic acid present within the 

reactor.  The oxygen is pressurised (C-402) and heated (E-402) before entering the reactor.  

The product stream is sent to a vessel (V-402) where excess gas is expelled to stream S4-13.  

Medium utility steam at 12 bar was specified to provide the endothermic energy required 

during the oxidation reactions.   

The gases expelled from both reactors are treated within R-403 using CaOH to remove any 

carbon dioxide formed during oxidation (due to the contact of oxygen with the reacting carbon-

based species).  The mole flow of calcium hydroxide necessary in R-403 is calculated in 

CALC3 and is equal to the mole flow of carbon dioxide in S4-06 and S4-13.  The calcium 

hydroxide is suspended in an aqueous solution, where the amount of water entering in S4-17 

is also calculated in CALC3 as a fraction of the mole flow of calcium hydroxide (Han et al., 

2011). 

The crude TPA solid is dried (in Y-401) before purification to increase the efficiency of the 

purification steps that follow oxidation.  To provide fluidisation in the drier, 80% of the flue gas 

leaving the drier (through S-14) is recycled to S4-21.  The dried product powder exits the drier 

through S4-15 for purification.   
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Figure 31: Pine and Eucalyptus Model p-Cymene Conversion 

 

The p-cymene conversion sections for the Eucalyptus and PHR models (section 4 and section 

3, respectively) were modelled in the same manner as the Pine model and is represented by 

Figure 31 and Figure 32, respectively.  Differences in the feed composition (S4-01 and S3-01) 

causes differences in the product streams compositions from each oxidation step, while the 

reactions within both reactors (R-401, R-402 and R-301, R-302, respectively) are dictated by 

the conversions and selectivities in Table 19. 

 

 

4.4.6 Crude Terephthalic Acid Purification 

The TPA purification section (section 5 shown in Figure 33) involves two extraction stages, 

where the purity of the TPA product is dependent on the initial TPA weight fraction of the feed 

stream as well as the amount of NMP added to the system (Lee et al., 1999).  These stages 

Figure 32: PHR Model p-Cymene Conversion 
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aid in removing a portion of 4-CBA (that poisons the product) and ensures that the TPA 

product is of adequate purity for either medium or high-quality terephthalic acid.  The amount 

of solvent introduced to each filter as well as the product stream yields are determined by the 

concentration range of the TPA and by-products.  Due to the high solubility of TPA in NMP, 

the NMP is added to the filter vessel, where contact with the solid cake allows the TPA to 

dissolve into the liquid.  The liquid then passes through a static filter (Guo et al., 2008) 

The solid product from section 4 enters in stream S5-01 and is mixed with NMP (entering 

stream S5-02) at a mass flow rate three times the amount of TPA entering stream S5-01 

(calculated by CALC1).  The mixture is then heated to 160°C (in E-501) to allow the TPA to 

dissolve into the solvent in reactor R-501.  The NMP-rich fraction is then cooled down to 45°C 

(in E-502) to allow crystallisation to take place in vessel M-502, where acetone is slowly added 

to break any NMP-TPA salt complexes that will affect the quality of the end product.  The 

amount of acetone added is calculated by CALC2 and is added at the same ratio as the NMP 

solvent.  The mixture is then sent to section 7.  The solid returns through S5-33 and is sent for 

an additional extraction in R-503.   

The mass flow of NMP for the extraction in R-503 (calculated in CALC1 and entering stream 

S5-36) is 3.5 times the amount of TPA in stream S5-33.  The solvent is heated to 105°C in E-

503 before entering the complex-forming reactor.  A portion of the solid (not dissolved in R-

503) leaves in stream S5-34 with a purity equivalent to medium-quality TPA.  The dissolved 

solid is cooled to 40°C to initiate crystallisation in vessel M-503.  Acetone is added to the 

vessel at a mass rate 3.6 times greater than the mass rate of the TPA present in stream S5-

32.  The mixture is then sent to section 7 to remove the used solvents.  S5-29 contains TPA 

with a purity equivalent to high-quality TPA.     

Stellenbosch University  https://scholar.sun.ac.za



58 
 

Figure 33: Pine Model TPA Purification 

 

The purification sections for the Eucalyptus and PHR models (section 5 and section 4, 

respectively) were modelled in the same manner as the Pine model and is depicted in Figure 

34 and Figure 35, respectively.  

 

Figure 34: Eucalyptus Model TPA Purification 

 

Stellenbosch University  https://scholar.sun.ac.za



59 
 

Figure 35: PHR Model TPA Purification 

 

 

The solvents extracted (S5-28 and S5-26) from the drier section is cooled to 90°C in E-505 

and separated in T-501.  The tower’s reflux rate and boil-up ratio was varied to achieve the 

best separation efficiency between the two solvents.  A fraction of the NMP obtained from the 

tower bottom is allowed to flow from vessel M-504 to the second section of extractions.  This 

fraction was calculated in CALC3 by determining the amount of NMP necessary for the 

extraction in R-502 and relating the amount to a fraction contained within M-504.  The 

undissolved solids from reactor R-501 is sent to R-502.  S5-10 can be added back to reactor 

R-501 (it is not at the required purity for medium-quality TPA).  The mixture in stream S5-11 is 

cooled to 45°C to allow crystallisation in vessel M-505.  The separated acetone from tower T-

501 is added to the vessel to break any TPA-NMP salt formations.  From M-505, the mixture is 

sent to section 7.  The solid product (returning through stream S5-16) is cooled to 105°C and 

mixed with another fraction of NMP present in vessel M-506.  The mass flow rate of NMP is 

3.6 times the mass flow of the TPA available in stream S5-16 and was used to calculate the 

second fraction obtained from M-504 (calculated in CALC3).  After a portion of solid is 

dissolved in R-504, the solvent mixture is then cooled to 40°C (in E-508).  CALC2 calculates 

the amount of acetone added to vessel M-506 and is 3.6 times the mass flow rate of the TPA 

present in stream S5-21.  The mixture is then sent to section 7.  The solid product obtained in 

S5-24 has a purity equivalent to high-quality TPA.  
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Figure 37: Eucalyptus Model TPA Drying and Cooling 

Crystallised solids produced through reactors R-501 to R-504 are separated from NMP and 

acetone through driers (Y-701 to Y-704) operated at 210°C (shown in Figure 36).  80% of the 

flue gas produced in each drier is recycled (S7-04, S7-10, S7-15 and S7-20) back to complete 

the drying process and lower energy consumption. 

High quality TPA received through Y-702 and Y-704 is collected within M-701, where after it is 

cooled in E-701 to 33°C for safer handling.  Medium quality TPA retrieved from R-503 and R-

504 is collected within M-702 and cooled to 33°C within E-702. 

 

Figure 36: Pine Model TPA Powder Drying and Cooling 

The drying and cooling sections for the Eucalyptus and PHR models (section 7 and section 5, 

respectively) were modelled in the same manner as the Pine model and is depicted in Figure 

37 and Figure 38, respectively.  
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Figure 38: PHR Model TPA Drying and Cooling 

 

 

4.4.7 Biomass Power Generation 

The basis for the design of the biomass power generation sections was taken from Petersen 

(2015).  The Pine biomass obtained from section 1 enters section 6 through S6-01 (shown in 

Figure 39) and is separated from a portion of water in filter F-601.  The fraction of water 

filtered off is calculated by CALC1, this ensures that the biomass exiting the press filter has a 

moisture content of 50%.  A moisture content of approximately 50% ensures that fine particles 

in the boiler do not cause an explosion.  X601 is a separation unit to simplify combustion 

calculations by removing the small fraction of terpenes present in stream S6-03, which will not 

affect the energy balance in any significant manner.  X604 recognises the composition of the 

solid portion (defined by its ultimate attribute) of the biomass and converts it to atomic 

components (carbon, hydrogen, nitrogen and oxygen) in CALC2.  R-601 was simulated to 

identify possible products, while the amount of oxygen needed to produce these is calculated 

by CALC3 by a molar balance using air.  20% excess oxygen was specified to ensure 

complete combustion and to avoid the formation of carbon monoxide.  The flue gas obtained 

from the boiler is utilised to heat up a pumped water stream (using P-601) in E-601.  The 

amount of water (mwater) needed for the cycle was calculated by CALC4 that utilises the 

Equation 6. 

 �̇�𝑤𝑎𝑡𝑒𝑟 = �̇�𝑋607/[𝑐𝑝𝑙(𝑇𝑠𝑎𝑡 − 𝑇𝑆6−08) + 𝐻𝑣𝑎𝑝 + 𝑐𝑝𝑣(𝑇𝑆6−09 − 𝑇𝑠𝑎𝑡)] 

 

(6) 

QX607 is the amount of heat transferred from the flue gas to the water, while the heat capacities 

of the vapour and liquid forms of water is denoted by cpv and cpl, respectively.  Tsat, TS6-08, TS6-

09 and Hvap represents the saturation temperature, temperature of the water entering and 

exiting the heat exchanger and heat of evaporation of water, respectively.   
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Figure 39: Pine Model Biomass Power Generation 

The steam cycle is sectioned off in Figure 39 by dashed lines.  The superheated steam 

obtained from E-601 is sent through a turbine (C-601), where the pressure drop (41 bar to 10 

bar) is equivalent to a high-pressure turbine in a common biomass power generation steam-

cycle.  A low-pressure turbine follows that lowers the pressure from 10 bar to 1 bar.  From 

each turbine, the power generated can be observed with work streams X608 and X609.  The 

steam cycle closes with a cooling unit (E-602) to bring the steam back to ambient temperature 

water before being pumped again through P-601. 

Oxygen needed during combustion, supplied by an air stream (S6-04), consumes energy from 

the flue gas (in E-602B and X-602A) after heating supplying energy to the steam cycle.  This 

reduces the heat lost to the environment through S6-14.  The mole flow of oxygen was 

calculated using a mole balance of the atomic components entering R-602 to create carbon 

dioxide and water (calculated in CALC3).  The mole amount of oxygen present in the feed 

towards the reactor was subtracted from the oxygen supply in S6-04.  The mole flow 

calculated was divided by 0.21 to determine the mole amount of air required and 20% was 

added as excess.   

The modelling of flue gas purification as well as the gas stack was not included in this section, 

but is included in the cost of the boiler in Section 5.7.1. 

 

 

 

 

 

 

 

 

 

The Eucalyptus biomass power generation (Figure 40) was modelled in the same manner as 

the Pine model, but differs in the sense that water is added through S6-01 to ensure 50% 

moisture content in stream S6-03.  The biomass entering in S6-02, that was subjected to 

supercritical fluid extraction in section 1, has a moisture content less than 10%, therefore 
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Figure 40: Eucalyptus Model Biomass Power Generation 

water is added in this section to avoid a particle explosion within the boiler.  Streams X605 

and X606 reveals the amount of energy generated through the steam cycle. The amount of 

water needed in stream S6-09 is calculated in Equation 7. 

 

 �̇�𝑤𝑎𝑡𝑒𝑟 = �̇�𝑋604/[𝑐𝑝𝑙(𝑇𝑠𝑎𝑡 − 𝑇𝑆6−09) + 𝐻𝑣𝑎𝑝 + 𝑐𝑝𝑣(𝑇𝑆6−10 − 𝑇𝑠𝑎𝑡)] 

 

(7) 

 

 

 

 

 

 

 

 

4.4.8 p-Xylene Conversion and Purification of TPA 

Figure 41 and Figure 42 depict the oxidation of the p-xylene product obtained from the CCEI 

process.  The capacity of this process is 16 870 tonnes/annum of TPA, which requires 51 800 

tonnes of starch per annum. The feed has a purity of 99.5% p-xylene (per mass) and 

approximately 0.5% n-tridecane. 

p-Xylene enters the system at 300°C and 5.7 MPa (through stream S1-01) and is cooled to 

200°C (in E-101) before entering the fluidised bed reactor (R-101).  The amount of catalyst 

necessary for this reaction is determined by the turnover number, which is defined as the amount 

of p-xylene that is converted per mole of the catalyst.  For the optimum selectivity of 99.6% for 

TPA, the turnover number is 33.  Therefore, the mole flow of catalyst that enters S1-03 is 

calculated as the mole amount of p-xylene that enters S1-01 divided by 33 (calculated in 

CALC1).  Aspen Plus® does not recognise the molecular complex form of the catalyst 

(Co(CH3COO)2.4H2O and Mn(CH3COO)2.4H2O), therefore the metal and water fraction of the 

catalyst were calculated as separate mole flow values and added to form stream X102.  Air is 

introduced in stream S1-05, compressed to 550 psig (by C-101), and heated to 200°C (in E-102) 

before entering the reactor. 
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Figure 41: Starch-Based Model: Section One 

R-101 is a RYield type reactor, where the product composition was determined through mass 

balance calculations and utilising the given product selectivities.  It is important to take note of the 

product composition as well as the types of chemical compounds present in the feed as it 

influences the product composition and purity of the final product.  It is also important to include 

possible oxidation/decomposition of the feed compounds.  For this specific reaction the formation 

of intermediates through oxidation is important, because it can directly affect the quality of your 

TPA powder and therefore also the final PET fibre, film or packaging.     

The product exists R-101 through S1-08, where after the catalyst is separated from the liquid 

product in X103.  In reality, the packing that contains the catalyst would remain within the reactor, 

which would be reactivated after a noticeable drop in conversion is detected.  The liquid product 

is then dried in Y-101 and sent to the TPA purification stage.  Similar impurities are present in the 

product liquid mentioned in Section 2.5.5, therefore washing steps with NMP is appropriate for 

the purification of the TPA powder.  The amount of NMP necessary for each washing step is 

determined by the mass amount of TPA present in the feed stream before each filter (R-102 and 

R-103) and is calculated by CALC2.  The amount of acetone, necessary to break any formed 

complexes and remove a small fraction of the impurities, depends on the amount of TPA present 

in each mixer feed (S1-13 and S1-24).  The mole flow of acetone for each mixer (M-101 and M-

103) is calculated by CALC2.  After washing, the high quality TPA powder is dried (in Y-102 and 

Y-103) to remove any solvent. 

Tower T-101 is integrated to recycle a portion of the solvents used in the first cycle for use in the 

second cycle.  CALC3 calculates the amount of NMP that is necessary for the second cycle of 

washing, by bypassing the remaining solvent present in M-102.  
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4.5 Heat Integration 

The purpose of applying heat integration to a design process is to ensure maximum energy 

efficiency within the boundary of thermodynamics.  Cost is also taken into account during the 

energy analysis, where the number of heat exchangers needs to be minimised together with the 

cost of utility addition.  Utilities can include high or low-pressure steam, cooling water, air, flue 

gas or a refrigeration medium.  Hot and cold utilities provides/consumes any additional energy to 

ensure that a stream reaches the set target temperature after the majority of heat was 

provided/consumed by another stream in the process.   

Heat integration was applied to each modelled process through Aspen Energy Analyser.  This 

tool utilises pinch analysis and requires some parameters, such as the approach temperature, to 

calculate the maximum energy saving potential.  The approach temperature was chosen as 

15°C, which is the average pinch temperature for chemical processing plants (Seider et al., 

2010).  The sections of the process that is analysed can be defined; for the three base models 

(Pine, Eucalyptus and PHR), all sections were selected, excluding the power cycle sections.  The 

energy analyser could not calculate energy solutions for the power cycle because of the manner 

in which it was modelled, by first breaking down the biomass into its atomic elements and then 

including the boiler and steam cycle.  The option of only including the boiler and steam cycle was 

not given.  Activating the energy analyser by selecting “Find Design Changes” gives solutions 

where heat exchangers can be added, modified or placed in a different location.  After changes 

are made, the Energy Analysis Environment can be entered to view each process grid and to 

view the updated heat exchanger areas, which is used to define the cost of heat exchangers. 

Figure 42: Starch-Based Model: Section Two 
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4.6 2G model results 

Table 20 shows the production rate of TPA for the three 2G models.  As mentioned in Chapter 

2.1.3, the Pine and Eucalyptus biomass available varies annually, therefore a minimum, 

average and maximum was calculated from future biomass data.  This resulted in a range of 

TPA production rates.  In Chapter 4.3 an average value for the relief-gas feed was given, 

therefore the production rate of TPA is listed as an average.  

Table 20: Base model TPA production rate 

 Minimum Average Maximum 

Pine model:    

Biomass available 710 ton/year 1030 ton/year 1350 ton/year 

Biomass flow rate 80 kg/hr 120 kg/hr 150 kg/hr 

Medium quality TPA 99 g/hr 119 g/hr 139 g/hr 

High quality TPA 89 g/hr 108 g/hr 126 g/hr 

PHR model:    

CST flow rate  20.5 kg/hr  

Medium quality TPA  730 g/hr  

High quality TPA  660 g/hr  

Eucalyptus Model:    

Biomass available 5900 ton/year 6800 ton/year 8000 ton/year 

Biomass flow rate 660 kg/hr 760 kg/hr 900 kg/hr 

Medium quality TPA 890 g/hr 1100 g/hr 1370 g/hr 

High quality TPA 800 g/hr 1000 g/hr 1240 g/hr 

 

From Table 20 it can be seen that there is on average 7 times more Eucalyptus biomass 

available than Pine biomass.  Therefore, it is expected that the terpene capacity 

(approximately 3 wt% of the biomass) for Eucalyptus biomass should be larger.  The PHR 

process has the highest terpene capacity, 20.5 kg/hr, compared to an average of 15.2 kg/hr 

and 2.4 kg/hr for the Eucalyptus and Pine processes, respectively.   

Table 21: Pine model product composition 

Product component Mass flowrate (kg/hr) Mass % Limitation 

Medium quality:    

Terephthalic acid 0.119 99.87% 99.9% 

p-Toluic acid 4.39E-05 0.036% (360 ppm) N/A 

Cumic acid 3.65E-05 0.031% (310 ppm) N/A 

4-CBA 7.59E-05 0.063% (630 ppm) < 400 ppm 

High quality    

Terephthalic acid 0.108 99.99(35)% 99.9% 

p-Toluic acid 2E-06 0.0019% (19 ppm) < 150 ppm 

Cumic acid 2.4E-06 0.0022% (22 ppm) N/A 

4-CBA 2.6E-06 0.0024% (24 ppm) < 25 ppm 
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Table 21 shows the product composition of the Pine model.  Due to the various washing 

steps, both medium and high quality TPA was produced.  It can be seen that the medium 

quality TPA has a lower quality than conventional medium quality TPA.  This particular product 

can still be sold for fibre production as dyes can be added to counter the colour produced by 

4-CBA but the selling price will be reduced.  The high quality TPA is well within the 

specification range and does not need further refining for liquid packaging production.  Further 

investigation and optimisation is needed to lower the ppm value of 4-CBA in the medium 

quality TPA and to decrease TPA solid losses.  

Table 22: Eucalyptus model product composition 

Product component Mass flowrate (kg/hr) Mass % Limitation 

Medium quality:    

Terephthalic acid 1.103 99.85% 99.9% 

p-Toluic acid 4.07E-04 0.036% (368 ppm) N/A 

Cumic acid 3.85E-04 0.034% (348 ppm) N/A 

4-CBA 9.12E-04 0.082% (826 ppm) < 400 ppm 

High quality    

Terephthalic acid 0.998 99.99% 99.9% 

p-Toluic acid 1.9E-05 0.0019% (19 ppm) < 150 ppm 

Cumic acid 2.3E-05 0.0023% (23 ppm) N/A 

4-CBA 2.5E-05 0.0025% (25 ppm) < 25 ppm 

 

Table 23: PHR model product composition 

Product component Mass flowrate (kg/hr) Mass % Limitation 

Medium quality:    

Terephthalic acid 0.732 99.87% 99.9% 

p-Toluic acid 2.71E-04 0.037% (370 ppm) N/A 

Cumic acid 2.25E-04 0.030% (306 ppm) N/A 

4-CBA 4.68E-04 0.063% (638 ppm) < 400 ppm 

High quality    

Terephthalic acid 0.663 99.99% 99.9% 

p-Toluic acid 1.26E-05 0.0019% (19 ppm) < 150 ppm 

Cumic acid 1.52E-05 0.0023% (23 ppm) N/A 

4-CBA 1.66E-05 0.0025% (25 ppm) < 25 ppm 

 

Table 22 and Table 23 show the product composition of the Eucalyptus and PHR model 

product compositions, respectively.  As with the Pine model, both these models produce 

medium quality TPA that is not up to standard when comparing the 4-CBA concentrations.  

The high quality TPA for both models is within specifications, because the concentrations of 

the by-products are less than the limitations given.  
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5 Process economics 

5.1 General 

The purpose for the development of these processing schemes through simulation and 

costing reveals the economics surrounding the production of TPA.  The evaluation of process 

economics through costing of equipment, determination of fixed and variable costs as well as 

calculating certain economic parameters were performed, based on the methodological 

approach described by Humbird et al. (2011).  This approach includes a discounted cash flow 

rate of return (DCFROR) analysis to determine the economic viability of the designed process 

schemes.  This chapter focuses on the development and analysis of the process economics of 

the lignocellulosic and starch-based processes. 

 

5.2 Sizing and costing of equipment 

5.2.1 Total installed cost 

The sizing and costing of the equipment chosen for each process was done with the aid of 

Aspen Plus® by retrieving certain outputs from the mass and energy balances, such as heat 

duty and volume, which defines the size of the specific equipment.  These size factors are 

then applied cost formulae to determine the estimated purchase cost (PC).  The total installed 

cost (TIC) for each piece of equipment was calculated by using the following: 

 𝑇𝐼𝐶 = 𝑃𝐶 𝑥 𝑀𝐹 

 

(8) 

MF is the multiplying factor for each specific piece of equipment specified for each process 

(Peters & Timmerhaus, 2003).  The value for these multipliers can be found in Appendix 8.3.1. 

The biomass combustion and combined heat and power (CHP) unit purchased cost was 

estimated as a combined unit as opposed to costing individual pieces of equipment.  The size 

of the unit is defined by the net power output of the unit and the purchased cost estimated at $ 

4 260/kW (IRENA, 2012).  

 

5.2.2 Economy-of-scale 

Certain specialised equipment cost was determined through literature by obtaining the cost of 

a similar piece of equipment and scaling to the appropriate size by using (Seider et al., 2010): 
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 𝑁𝑒𝑤 𝐶𝑜𝑠𝑡

𝐵𝑎𝑠𝑒 𝐶𝑜𝑠𝑡
= (

𝑁𝑒𝑤 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐵𝑎𝑠𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)

𝑚

 

 

(9) 

The exponent m has an average value of 0.6, which is used in scaling-up sections of the 

chemical processing plant. For individual equipment costs, especially those obtained from 

quotes, the scaling exponents in Table 36 were utilised (Towler et al., 2008). 

 

5.2.3 Chemical Engineering Plant Cost Index 

It is important to obtain cost estimates that relate to the current costing year (for this project 

the costing year was taken as 2016).  Costs obtained relating to other costing years can be 

updated to the costing year by utilising the Chemical Engineering Plant Cost Index (CEPCI) 

(Equation 10). 

 

 
2016 𝐶𝑜𝑠𝑡 = 𝐵𝑎𝑠𝑒 𝐶𝑜𝑠𝑡 (

2016 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒

𝐵𝑎𝑠𝑒 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒
) 

 

(10) 

The average CEPCI value can be applied to all chemical processing industries and factors in 

fabrication, delivery and installation.  Figure 43 shows how the average index value has varied 

annually since 2008.  The index value for November 2016 was chosen as CEPCI value for the 

costing year and has a value of 533.9 (Chemical Engineering Online, 2016).   

 

 

Figure 43: Annual average CEPCI values 
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5.3 Total capital investment 

The costs associated with the design up to the installation and start-up of a new plant (or 

additional section of an existing plant) is included in the fixed capital investment (FCI).  The 

total capital investment (TCI) is then calculated by adding the cost of land as well as working 

capital to the FCI.  The value for the TCI was calculated in the manner shown in Table 24 

(Humbird et al., 2011).   

Table 24: Total capital investment outline 

 Installed cost 

Total Equipment Installed Cost (TEIC) TEIC 

Warehouse 4% of ISBL 

Site Development 9% of ISBL 

Additional Piping 4.5% of ISBL 

Total Direct Cost (TDC) TEIC + 17.5% of ISBL 

Prorateable Expenses 10% of TDC 

Field Expenses 10% of TDC 

Home Office & Construction 20% of TDC 

Project Contingency 10% of TDC 

Other Costs 10% of TDC 

Total Indirect Cost (TIC) 70% of TDC 

Fixed Capital Investment (FCI) TDC+TIC 

Location Factor 1 

Corrected Fixed Capital Investment (CFCI) 1 x FCI 

Working Capital (WC) 5% of CFCI 

Total Capital Investment (TCI) CFCI+WC 

 

The total equipment installed cost is equal to the total installation cost of all equipment 

calculated in Chapter 5.2, while the inside battery limits (ISBL) investment accounts for all 

major equipment/sections of the designed process.  The total direct cost consists of the total 

installed cost of all of the equipment as well as other costs relating to the preparation of the 

plant site, housing for process equipment as well as additional piping.  The total indirect cost 

consists of employee fringe benefits, insurance relating to construction, construction tool, 

vehicle or facility purchase/rentals, construction of offices, permits, etc.  The total indirect cost 

is calculated as a fraction of the total direct cost, while the FCI is the sum of the TIC and TDC.  

To correct the fixed capital investment figure according to the location of the retrieved cost 

data, a location factor is applied to the FCI.  It is assumed that the majority of the cost data is 

of North American origin, where the location factor is one.  To obtain the total capital 

investment, working capital (which is 5% of the CFCI) is added to the corrected fixed capital 

investment (Towler et al., 2008).  
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5.4 Variable cost of production 

The variable cost of production depends strongly on the rate of plant operations and includes 

the cost of raw materials, chemicals utilised during production, utilities such as pressurised 

steam and electricity and waste disposal.   

The cost of the feedstock and chemicals used during production (given Appendix 8.3) were 

calculated by multiplying the cost of each type of feedstock or chemical with the mass flow 

rate given by Aspen Plus®.  For each process there are certain chemicals that are recycled 

(marked as an asterisk in Table 40, Table 43 and Table 46 and costed as a base cost (mass 

flow times chemical cost) plus a 5% continuous chemical makeup cost.  

As time progresses, the cost of these raw materials will vary.  The inorganic chemical indices 

(ICI) can be used to give an estimation of how the cost will vary over the plant’s lifetime (given 

in Figure 56).  The trend-line obtained from the ICI data was used to estimate future raw 

material costs.   

Cold Utilities are converted to electricity and subtracted from the electricity yield.   

Waste disposal costs depend on the type of waste depending on the environmental hazard 

level or level of processing for safe discard.  Categories include domestic, commercial, 

sanitary, construction, hazardous and non-hazardous industrial waste.  The average cost of 

non-hazardous waste and hazardous waste disposal is $11.6/tonne and $46.4/tonne, 

respectively (Nahman et al., 2014).  

 

5.5 Fixed cost of production 

The fixed cost of production does not depend on the production rate.  Labour and supervision 

costs during operation as well as the labour burden for each employee are included in this 

calculation.  The labour burden is approximated as 90% of the total labour and supervision 

cost, which was calculated using annual salaries (adjusted to 2016 costs using Figure 57) as 

well as the number of employees assigned to each position (shown in Table 39, Table 42, 

Table 45 and Table 48) (Humbird et al., 2011).     

The total labour and supervision cost is the sum of the product of the annual salary and the 

number of employees in the specific position.  The number of employees was chosen by 

considering the size and number of sections of each process. The variation of the labour cost 

throughout the lifetime of the plant was estimated using the South African labour index given 

in Figure 57. 
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Other overhead costs include maintenance as well as property insurance and tax, which is 3% 

and 0.7% of the fixed capital investment, respectively.  Adding this value to the labour and 

supervision cost and labour burden gives the total fixed operating cost. 

 

5.6 Discounted Cash Flow Analysis 

The calculation of the total capital investment as well as variable and fixed operating costs 

leads to the development of cash flow sheets, which is used during the discounted cash flow 

rate of return analysis.  Table 25 shows the basic outline of the cash flow sheet that was 

created in Excel for each of the process schemes, which shares its structure with the cash 

flow sheet design done by (Humbird et al., 2011).  After completion of the cash flow sheets, 

the goal seek function is used to set the value of the net present value to zero by manipulating 

the selling price of TPA.  The manipulated output value represents the minimum selling price 

of TPA.   

It is assumed that two years will be sufficient for the construction of the plant, while the plant 

life was chosen as 25 years on an 8040 hours/year basis, with an economic analysis period of 

20 years.  Within the cost sheet, the year row had negative numbers to zero to indicate the 

construction period, where year one indicated the first year of operation.  It is assumed that 

50% of the production capacity is achieved in the first year to account for plant start-up and 

adjustments, while 75% of the variable operating cost is included for the same period.  Fixed 

operating costs are not reliant on the production capacity of the plant, therefore 100% of this 

cost was included for year one.  Full capacity is assumed after year two onwards (Humbird et 

al., 2011).     

This type of economic analysis requires a discount factor (DF) was calculated using:  

 
𝐷𝐹 =

1

(1 + 𝐷𝑅)𝑌𝑒𝑎𝑟
 

(11) 

The discount factor was calculated for each specific year with a discount rate (DR) of 10% 

(Luehrman, 1997). 

Financial support through a loan is taken as 60% of the fixed capital investment, which is paid 

over ten years at an interest rate of 7% (News24Wire, 2016), while 40% of the plant cost 

would be supplied through equity.  The annual loan payment with interest was calculated 

using the PMT function in Excel, assuming that the interest rate remains constant during the 

10-year payment period. The loan principal represents the outstanding loan balance, from 

which the interest of the following year is calculated. 
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Table 25: Discounted cash flow sheet outline 

  

Year Current operating/construction year 

Discount factor (DF) Assures present value of annual cash income 

Fixed capital investment Calculated in Table 24 

Working capital Calculated in Table 24 

Loan interest payment (LIP) Annual interest payment 

Loan principal Outstanding loan balance 

TPA price ($/tonne) Forecasted bio-TPA market price  

TPA sales (TAS) Annual TPA sales income 

Feedstock price ($/tonne) Purchasing and transport of biomass price 

Feedstock cost Feedstock price x available biomass 

Other Variable cost Costs included in Chapter 5.4  

Fixed Operating cost Costs included in Chapter 5.5 

Total Production cost (TPC) Total of feedstock, variable and fixed cost 

Annual depreciation (zero salvage value at end of economic evaluation period) 

Plant write-down 4% 
a
 

Depreciation charge (DC) Plant write-down x FCI 

Remaining value FCI – total DC 

Net revenue TAS-LIP-TPC-DC 

Income tax (IT) 28% on positive net revenue 
b
 

Annual cash income (ACI) TAS-TPC-IT 

Annual present value (APV) ACI*DF 

Total capital investment (including interest) (FCI+WC+LIP) x DF 

Net present value Total APV - Total TCI (including interest) 
a
 Straight-line depreciation of industrial buildings and equipment (Crundwell, 2008)  

b
 South African income tax for companies (SARS, 2017)  

 

Little information is given to the public on the market price and trend of fossil-based TPA. 

Figure 44 shows a few data points of the given/suggested prices of fossil-based TPA from 

January 2014 to November 2016.  It can be seen that there has been a decline in the market 

price, which was initiated by the decline in the crude oil price and in turn affecting the price of 

fossil-derived p-xylene (the precursor for modern TPA production) (Velson, 2014). Since 

March 2017 there has been a slight stabilisation of the crude oil price ($54.94 compared to 

$29.78 in Jan 2016), but there is still uncertainty regarding future prices and complete 

stabilisation from the experienced decline (Knoema, 2017).  

Due to the novelty of bio-TPA (no commercialisation at this time), it is uncertain whether fossil-

based TPA prices will have any effect on bio-TPA prices.  There is also uncertainty regarding 

the value of a green premium placed on the bio-based product.  It is suggested that 

consumers are more likely to buy a more sustainable product when it is followed by a 

simplified backstory (Hermes, 2013).  This should definitely be considered for the final bio-
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PET product with a green premium of 125% predicted by Gevo (Lane, 2014).  Green premium 

is defined as: “the additional price a market actor is willing to pay for the additional 

performance and/or the strategic performance of the intermediate or end product the buyer 

expects to get when choosing the bio-based alternative compared to the price of the 

conventional counterpart with the same technical performance” (Thielen, 2014).  If an equal 

green premium is assumed for bio-TPA, then the expected market price for 2016 is 

$1 575/tonne. 

 

 

 

 

 

 

 

 

 

The total production cost consists of the feedstock cost, variable operating cost as well as the 

fixed operating cost.  The feedstock cost for both Pine needles and Eucalyptus leaves include 

transport cost that include the 300km radius discussed in Chapters 2.1.3.1 and 2.1.3.2.  This 

cost is not available directly; therefore, an estimation was made based on the type and weight 

of the biomass, its moisture content and the average length of transport.  This was done by 

using an application developed by the U.S. Forest Service (Extension, 2014).  Pine needle 

and Eucalyptus leaf costs were estimated at $7.5/tonne and $5.1/tonne, respectively.  The 

moisture content of Pine needles is approximately twice that of Eucalyptus leaves, which 

contribute to its higher price per tonne.  There was no price assigned to the CST obtained 

from Ngodwana as it is assumed that the process will be integrated with the existing mill. 

In the following sections (Chapters 5.7.1 to 5.7.3) the total capital investment results are given, 

that was used to construct cash flow sheets for each process scheme (Pine, Eucalyptus and 

PHR).  The cash flow sheets were used to calculate indicators such as DCFROR and NPV 

that is used to compare each process scheme and to determine economic viability.  

Figure 44: Fossil-based TPA market price: Jan 2014 - Nov 2016 
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5.7 Scenario one: 2G process economics 

This section looks at the economics of 2G feedstocks based on the amount of these 

feedstocks available in South Africa.  A comparison of each 2G process per ton of TPA 

product can be found in Chapter 5.7.4.  

5.7.1 Pine process economics 

Table 26 shows a summary of the (rounded-off) costs associated with calculation of the total 

capital investment.   

Table 26: Pine process total capital investment 

 
Installed cost ($) 

Installed cost 
(M$/ton TPA)

a
 

Total equipment installed cost (TEIC) $ 4 772 000 2.61 

Warehouse $ 191 000 0.10 

Site development $ 429 500 0.23 

Additional piping $ 214 800 0.12 

Total direct cost (TDC) $ 5 607 300 3.06 

Prorateable expenses $560 800 0.31 

Field expenses $560 800 0.31 

Home office & construction $1 121 600 0.62 

Project contingency $560 800 0.31 

Other costs $560 800 0.31 

Total indirect cost (TIC) $ 3 364 800 1.86 

Fixed capital investment (FCI) $8 972 100 4.9 

Location factor 1.00  

Corrected fixed capital investment (CFCI) $8 972 100  

Working capital (WC) $449 000 0.25 

Total capital investment (TCI) $9 421 100 5.15 
a
 Annual TPA production: (0.119+0.108)*8.04 = 1.83 tonnes/annum 

 

Table 27 depicts the variable and fixed operating costs of the Pine process, where the 

biomass includes the purchase and transport of Pine needles to the plant.  The raw materials 

consist of all chemicals used during production.  One reason for the high chemical cost is the 

use of pure oxygen in two major sections of the plant (oxidation of p-cymene and p-toluic 

acid).  Air was supplied for the combustion of the biomass instead of pure oxygen because it 

is a minor section not contributing to the production of TPA and is commonly used in biomass 

combustion.  This resulted in a lower chemical cost.  The cost calculations for the feedstock 

and operating chemicals can be found in Table 40 (Appendix 8.3).  

The total salaries were calculated in Table 39, by multiplying the number of employees with 

each specific salary, while the labour burden is 90% of the total salaries cost.  
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Maintenance is calculated as 3% of the ISBL, which includes all of the main sections of the 

plant and excluding the power generation section.  Property insurance and tax is calculated as 

0.7% of the fixed capital investment.  

Table 27: Pine process variable and fixed operating costs 

 
Annual cost ($) 

Annual cost 
(M$/ton TPA) 

Variable operating cost:   

Biomass (including transport) $ 7 200 0.004 

Operating chemicals $ 1 963 000 1.08 

Waste disposal $ 27 000 0.01 

Total variable operating cost $ 1 997 200 1.09 

Fixed operating cost:   

Total salaries  $ 1 019 000 0.56 

Labour burden $ 917 000 0.50 

Maintenance $ 603 000 0.33 

Property insurance & tax $ 141 000 0.08 

Total fixed operating cost $ 2 680 000 1.47 

 

The total variable and fixed operating costs make up the total production cost, which is added 

to the discounted cash flow sheet as shown in Appendix 8.4.   

After completing the cash flow sheet, the DCFROR could not be calculated because of the 

absence of a positive cash flow during the plant lifetime when assuming a selling price 

equivalent to the current fossil-based price of $700/tonne. Using the expected green premium 

of 125% ($1575/tonne) as selling price also revealed an incalculable DCFROR.  At this small 

scale the cost of running the plant, including the purchase and maintenance of the plant, could 

not be overcome by the income generated by TPA sales.  Small scale production usually 

leads to very high average production costs especially when considering specialised 

equipment.  It is important to note that there is no short-term solution to increase this capacity.  

Pine species take years to mature (Chapter 2.1.3.1) and there are no growth-period 

commercial harvesting methods.  In addition, new plantations will lead to the destruction of 

natural forests or other natural habitats, while changes in the genetics of Pine species to 

produce more terpenes will require years of research and defeats the main purpose of the 

plantation (wood harvesting for the manufacturing of packaging, paper, etc.). 
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5.7.2 Eucalyptus process economics 

Table 28 shows a summary of the costs that were used to calculate the total capital 

investment for the Eucalyptus process.   

The biomass cost includes the purchase and transport of the Eucalyptus leaves to the plant 

site, while the raw materials include all chemicals used during the production of the final 

product.   

Table 28: Eucalyptus process total capital investment 

 
Installed cost ($) 

Installed cost 
(M$/ton TPA)

a
 

Total equipment installed cost (TEIC) $ 15 303 700 0.91 

Warehouse $ 612 200 0.04 

Site development $ 1 377 400 0.08 

Additional piping $ 688 700 0.04 

Total direct cost (TDC) $ 17 982 000 1.06 

Prorateable expenses $ 1 798 200 0.11 

Field expenses $ 1 798 200 0.11 

Home office & construction $ 3 596 400 0.21 

Project contingency $ 1 798 200 0.11 

Other costs $ 1 798 200 0.11 

Total indirect cost (TIC) $ 10 789 200 0.64 

Fixed capital investment (FCI) $ 28 771 200 1.70 

Location factor 1  

Corrected fixed capital investment (CFCI) $ 28 771 200  

Working capital (WC) $ 1 438 500 0.09 

Total capital investment (TCI) $ 30 209 700 1.79 
a Annual TPA production: (1.103+0.998)*8.04= 16.89  tonnes/annum 

 

The total salaries and labour burden was calculated in Table 42.  Maintenance is calculated as 

3% of the ISBL, which includes the supercritical fluid extraction, purifications and conversion 

sections towards the production of TPA.  0.7% of the fixed capital investment, listed in Table 

28, equals the cost of property insurance and tax. 

The total production cost included in the discounted cash flow sheet comprises of the total 

variable and fixed operating costs calculated in Table 29. 
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Table 29: Eucalyptus process variable and fixed operating costs 

 
Annual cost ($) 

Annual cost 
(M$/ton TPA) 

Variable operating cost:   

Biomass (including transport) $ 31 000 0.002 

Operating chemicals $ 21 007 000 1.2 

Waste disposal $ 50 000 0.003 

Total variable operating cost $ 21 088 000 1.2 

Fixed operating cost:   

Total salaries  $ 1 227 000 0.07 

Labour burden $ 1 104 000 0.06 

Maintenance $ 863 000 0.05 

Property insurance & tax $ 201 000 0.01 

Total fixed operating cost $ 4 802 000 0.2 

 

The cash flow sheet for this process can be found in Appendix 8.4.  The goal seek function in 

Excel was used to determine the DCFROR value at net present value of zero.  Due to the 

absence in positive cash flows, the DCFROR could not be determined and the process is 

deemed economically unviable at this scale.  Similar to the Pine process, a Eucalyptus 

feedstock capacity increase has no short-term solution.  

5.7.3 PHR process economics 

Table 30 shows the costs associated with calculating the total capital investment for the PHR 

process.   

Table 30: PHR process total capital investment 

 Installed cost ($) 
Installed cost 

(M$/ton TPA)
a
 

Total equipment installed cost (TEIC) $ 13 021 000 1.16 

Warehouse $ 520 900 0.05 

Site development $ 1 172 000 0.02 

Additional piping $ 586 000 0.05 

Total direct cost (TDC) $ 15 300 000 1.36 

Prorateable expenses $ 1 530 000 0.14 

Field expenses $ 1 530 000 0.14 

Home office & construction $ 3 060 000 0.27 

Project contingency $ 1 530 000 0.14 

Other costs $ 1 530 000 0.14 

Total indirect cost (TIC) $ 9 180 000 0.82 

Fixed capital investment (FCI) $ 24 480 000 2.18 

Location factor 1  

Corrected fixed capital investment (CFCI) $ 24 480 000  

Working capital (WC) $ 1 224 000 0.11 

Total capital investment (TCI) $ 25 704 000 2.29 
a Annual TPA production: (0.732+0.663)*8.04= 11.22 
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No feedstock cost was included in the calculation of the variable operating cost as it was 

assumed that the terpene oil and its source would be obtained from the existing mill through 

plant integration.  The raw materials include all chemicals used during the production of TPA, 

while the utilities include mainly cooling water and low to medium pressure steam. 

The total salaries and labour burden costs were calculated in Table 45.  Maintenance costs 

were calculated as 3% of the ISBL, which included all sections of this process, while property 

insurance & tax were calculated as 0.7% of the fixed capital investment (Table 30).  

Table 31: PHR process variable and fixed operating costs 

 
Annual cost ($) 

Annual cost 
(M$/ton TPA) 

Variable operating cost:   

Operating chemicals $ 22 070 000 1.98 

Waste disposal $ 110 000 0.01 

Total utilities $ 1 030 000 0.09 

Total variable operating cost $ 23 210 000 2.08 

Fixed operating cost:   

Total salaries  $ 1 322 300 0.12 

Labour burden $ 1 190 100 0.11 

Maintenance $ 734 400 0.07 

Property insurance & tax $ 171 400 0.02 

Total fixed operating cost $ 3 418 200 0.30 

 

The complete discounted cash flow sheet (Appendix 8.4) revealed negative cash flows 

throughout the lifespan of the plant.  The DCFROR could therefore not be calculated and the 

process is deemed economically unviable at this scale. 

The terpene feed to this process is dependent on an established process, where the mass 

flow of the biomass in the pre-cooking stage is dependent on the demands of that process.  

Scaling this TPA production process would be mill specific and would also rely on the type of 

pulping methods that may affect the composition of the CST.  This process could be viable if 

alternative methods for cooling the water/terpene feed can be found that does not result in the 

loss of the volatile major terpene, together with funding and heat integration with the specific 

mill. Alternatively, these mills can investigate the possibility of TPA production from C5/C6 

sugars from their feedstocks.  This can prove advantageous when these mills replace their 

Pine feedstocks with Eucalyptus, because separation of cineole from the large amount of 

‘cooking water’ in the CST will be impossible.   
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5.7.4 Scenario one economic comparison  

Figure 45 shows the cost comparison of each 2G process in terms of the total equipment 

installed cost (TEIC), total capital investment (TCI) as well as the operating chemicals used 

during production.  The Pine process shows the highest equipment cost and total capital 

investment.  Some of the equipment had smaller size factors than the range suggested in the 

cost equation, for these the lowest figure in the range was chosen to determine the cost, 

which lead to higher equipment costs.  In the cases where APEA could not determine the cost, 

the size factor was taken from the other tabs available in this section, such as TEMA HEX. 

Comparing the Eucalyptus and PHR processes, it can be seen that the PHR process had the 

larger equipment cost and total capital investment.  This means that the selection of the 

supercritical fluid extraction had a smaller impact on the TEIC than the cooling and separation 

of the terpene/water mixture together with desulphurisation used in the PHR process.     

 

Figure 45: Scenario one annual cost comparison 

 

As discussed in Chapters 5.7.1 to 5.7.3, these processes were deemed economically unviable 

due to the negative cash flows that prevented DCFROR calculations.  The small production 

scale is limited by the amount of available feedstock in South Africa.  Inclusion of branches 

and bark raised the capacity by a few percent, but was still considered a very small scale with 

a large average production cost (<0.01% PET market share).   

High variable costs were due to the utilisation of pure oxygen, palladium-based catalysts and 

carbon dioxide.   
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Also comparing terpene-based feedstocks to starch-based feedstocks, it is important to note 

that terpene oils make up to a maximum of 3% of any section of conifers and eucalyptus 

species, where a maximum of 85% and 60% of the terpene oils contain either cineole or α-

pinene, respectively.  C5/C6 sugars are easier to access, through for example fermentation, 

and lead to a higher concentration of the TPA precursors (Panda, 2004). 

It should also be considered that the selected processes have not yet been optimised 

specifically for the production of TPA through proper experimentation.  Literature only provides 

efficiencies of conversions through selectivities and yields, which results in a larger probability 

of error in terms of the simulations.  To more properly define the conversion sections, reaction 

kinetic data needs to be gathered together with all possible interactions from the multiple other 

terpenes and by-products present in the feed to each reactor.  This problem inevitably echoes 

into the economics and minimum selling price, which further urges better defining of the 

conversion and purification of terpenes to TPA.  During this project, a large amount of time 

was spent finding literature for each individual section and reviewing it further through 

simulation.  Unfortunately, companies that are currently investigating a similar approach, 

withhold research information, due to the ‘up and coming’ nature of the bio-PET market.  This 

also leads to less thorough comparisons of the simulated process. 

 

5.8 Scenario two: 1G and 2G process economics 

5.8.1 South African market share 

With the introduction and rise of the “carbohydrate economy”, it is important to determine a 

realistic figure of the market share of bio-plastics in South Africa.  As the concern for the 

environment and awareness of wastes and pollutant emissions increases, so does the 

possibility of a larger market share in the global plastic consumption (Coles & Kirwan, 2011).  

For this analysis, a market share of 10% of the local PET market is assumed.  Figure 46 

shows the annual consumption of PET in South Africa, where an average annual growth of 

approximately 12 200 tonnes is experienced (Plastics SA, 2015).  The estimated PET 

consumption for 2016 is 241 000 tonnes (Green Africa Directory, 2017).  This equates to a 

bio-TPA production scale of 16 870 tonnes per annum, which will be used as scale during the 

following comparison between first and second-generation feedstock processes. 
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5.8.2 Starch-based process economic results 

Table 32 shows the total capital investment of the starch-based process, which includes the 

costs associated with converting the starch source to p-xylene given in literature (Lin et al., 

2014). It also accounts for the costs calculated through the modelling of the conversion of p-

xylene to TPA and the purification thereof. The total equipment cost for the starch-based bio-

TPA production process is just over $ 16 million for a production scale of 16 870 tonnes of bio-

TPA per annum. 

Table 32: Starch-based process total capital investment 

 Installed cost ($) 

Total equipment installed cost (TEIC) $ 16 284 000 

Warehouse $ 3 122 000 

Site development $ 7 024 000 

Additional piping $ 3 512 000 

Total direct cost (TDC) $ 29 942 000 

Prorateable expenses $ 2 994 000 

Field expenses $ 2 994 000 

Home office & construction $ 5 988 000 

Project contingency $ 2 994 000 

Other costs $ 2 994 000 

Total indirect cost (TIC) $ 17 964 000 

Fixed capital investment (FCI) $ 47 906 000 

Location factor 1 

Corrected fixed capital investment (CFCI) $ 47 906 000 

Working capital (WC) $ 2 395 000 

Total capital investment (TCI) $ 50 301 000 

 

Figure 46: South African PET consumption 

Stellenbosch University  https://scholar.sun.ac.za



83 
 

Table 33 shows the variable and fixed operating costs of the starch-based process, where the 

starch feed cost is estimated at $310 per tonne (Esterhuizen, 2017).   

Raw material costs include hydrogen (1500 tonnes/annum), ethylene (6200 tonnes/annum) 

and other catalysts (Sn-beta zeolite and Cu-Ru/C catalysts) and solvents, such as THF and 

NaCl.  Waste disposal does not include all by-products and effluent streams, some un-purified 

by-products are sold for bioethanol fuel or natural gas equivalent, such as levulinic acid and 

hydrogen. Wastes include solid humins, which has no value for further processing. 

The total salaries were calculated by multiplying the number of employees with the specific 

position salary (shown in Table 48).  The number of employees in each position was 

determined by the size of the plant.  The labour burden is 90% of the total salaries cost.   

The maintenance cost is calculated as 3% of the ISBL, which includes all sections of the 

starch-based process, while property insurance and tax is calculated as 0.7% of the fixed 

capital investment calculated in Table 32. 

Table 33: Starch-based variable and fixed operating costs 

 Annual cost ($) 

Variable operating cost:  

Starch feed $ 1 508 000 

Operating chemicals $ 19 311 000 

Waste disposal $  200 000 

Total variable operating cost $ 21 019 000 

Fixed operating cost:  

Total salaries  $ 2 083 000 

Labour burden $ 1 875 000 

Maintenance $1 437 000 

Property insurance & tax $ 335 000 

Total fixed operating cost $ 5 730 000 

 

With the assessment of the discounted cash flowsheet (found in Appendix 8.5), it was found 

that the minimum TPA selling price at a minimum hurdle rate (for nominal values) of 16% was 

$1953/tonne.  If the expected price for fossil-derived TPA in 2016 is $700/tonne (Figure 44), 

then the green premium for this product would be 179%, which is 54% higher than the 

proposed green premium of 125% for bio-TPA.  There is, however, potential for improvement 

on this process in terms of selecting optimal catalysts that will ensure maximum yield of an 

intermediate of product and lowering catalyst costs. There is also potential in improving 

processing and purification of the product and its intermediates to lower energy consumption, 

lower solvent consumption and maximise yield.   
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5.8.3 Scenario two economic comparison 

This section draws a comparison between the 1G and 2G processes based on their minimum 

selling prices at a 10% South African PET market share.  This comparison is done regardless 

of the feedstock limitations of the lignocellulosic-based processes and assumes that a 

sufficient supply can be provided (through importing or other).  Each process was scaled using 

a scaling size, which is the size correlation between the original scale (used for simulation) 

and the new scale of 16 870 tonnes/annum. Using a scaling factor of 0.6 together with 

Equation 9, the equipment and variable cost at the new scale was calculated. 

Table 34 depicts the individual minimum TPA selling price (MTSP) of each 1G and 2G 

process with their corresponding green premium percentage.  A hurdle rate of 16% (for 

nominal values) was set as goal, while the minimum selling price was varied (an example can 

be seen in Appendix 8.5).  It can be seen that the starch-based process has the lowest MTSP 

at $1953/tonnes with a premium of 179%, while the 2G processes have much larger MTSP’s.  

With the use of pure oxygen for two stages of oxidation, complex purifications, low 

concentrations of the major terpenes within the feedstock, multiple terpenes that affect 

conversion and contribute to by-product concentrations, a lower yield of biomass per hectare 

compared to starch-based feedstocks as well as high selling prices, the 2G processes are 

deemed economically unviable.   

Table 34: Minimum selling price comparison 

Process Minimum selling price Green premium 

Pine $5 227/tonne 647% 

Eucalyptus $22 443/tonne 3106% 

PHR $38 114/tonne 5345% 

Starch-based $1953/tonne 179% 

FDCA $2130/tonne 204% 

 

As previously mentioned, there are no comparable bio-TPA processes.  There is, however a 

TPA alternative, called 2,5-Furandicarboxylic acid (FDCA), that is produced from starch-based 

feedstocks.  This chemical is used to produce polyethylene furanoate (PEF), the 

biodegradable equivalent of PET, with a stronger O2, CO2 and liquid barrier than conventional 

PET.  In recent years, VTT Finland has replaced their terpene research (Linnekoski et al., 

2014) to FDCA and has developed a process in which it can be produced at a selling price of 

$2 130/tonne.  They revealed that this selling price is promising and they will continue further 

research towards commercialisation after 2025 (Linnekoski et al., 2017).  This gives an 

indication that the starch-based process is worthwhile for further research, especially when 

considering triticale as feedstock in South Africa. 
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Figure 47 shows the sensitivity of the MTSP for the starch process. The effects of -30% to 

30% on the fixed capital investment, CCEI equipment cost as well as the total catalyst and 

feedstock cost were analysed.  The minimum selling price is represented by 0%.  

 

Figure 47: Starch process sensitivity analysis 

 

The fixed capital investment has the largest effect on the MTSP, with a large contribution from 

the CCEI section (as can be seen from the second data bar).  This is to be expected because 

the majority of the processing and purification is attributed to the CCEI section. Overall, the 

equipment cost of this process has the largest effect on the MTSP.  The total catalyst cost has 

an average change of 3.7% on the MTSP, while the feedstock cost has the smallest effect on 

the MTSP (on average 1.36%).  

The triticale cultivation growth might include a decrease in the feedstock price and would 

lower the green premium to a more realistic percentage. An advantage of using triticale rather 

than Pine and Eucalyptus components is that a larger amount of extractable starch exists in 

triticale (on average a starch content of 65.3%) than the amount of major terpene within any 

part of these species (Eudes, 2015).  Further investigation on optimal catalysts might reveal 

less expensive catalysts that would perform similarly to the Sn-beta zeolite and copper-

ruthenium-carbon catalysts used during the isomerisation of glucose and conversion of HMF 

to DMF.  Lastly, improvements on the fixed capital investment can include an alternative to the 

purification of TPA that would require less washing equipment.  Due to the nature of literature 

describing the CCEI process, heat integration could not be implemented and will have an 

effect on the utility cost, heat exchanger size and number. 
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6 Main conclusions 

Processes towards the production of terephthalic acid from 1G and 2G feedstocks were 

successfully derived using available literature.  Two scenarios were used to compare these 

processes in order to address the aim; firstly considering the amount of 2G feedstocks 

available in South Africa, and secondly considering a reasonable market share for novel 

chemicals in the short term using 1G and 2G feedstocks. 

Through the determination of the 2G feedstock capacity in South Africa and the selection of 

appropriate literature, the simulation of the developed processes could be performed.  It was 

determined that each 2G feedstock could produce high quality TPA at the correct 

specifications.  Medium quality TPA was produced at a slightly lower quality, which will result 

in a lower selling price and application for fibre products rather than liquid containers.  It was 

noted that the small production scale lead to high average costs of production, where the Pine 

process had the largest TEIC (M$2.6/tonne TPA produced) and effectively also the largest TIC 

(M$5.2/tonne).  More comparable TEIC’s were noted from the Eucalyptus and PHR processes 

(M$0.9/tonne and M$1.2/tonne, respectively). Ultimately, scenario one’s approach delivered 

processes that are economically unviable (incalculable DCFROR’s) with large feedstock 

capacity restrictions. 

Scenario two was approached by literature review and modelling of the 1G process as well as 

the scale-up of the 2G processes in order to cost and analyse each process at a scale of 10% 

PET market share.  The 2G processes were deemed economically unviable due to the high 

green premiums calculated for each process.  In comparison with a TPA equivalent minimum 

selling price (FDCA) of $2130/tonne, the starch process (MTSP of $1953/tonne) has the 

potential to be economically viable when considering a starch-based source from where 

C5/C6 sugars can be obtained.  A more realistic green premium can be reached through 

further research and optimisation, especially considering triticale as feedstock in South Africa.  

Fewer processing steps, more effective purification methods, optimal and less expensive 

catalysts and the introduction of by-product conversion for additional revenue will eventually 

lead to an MTSP that is closer to the expected green premium of 125%.   

Lastly, considering the conventional steps from research to optimisation (recently seen 

through companies such as Coca-Cola and Virent aiming to produce fully bio-based 

TPA/PEF) several years are usually needed before commercialisation is possible.  Therefore, 

an appropriate amount of time will be needed in order to optimise and eventually 

commercialise the production of fully bio-based TPA from starch-based feedstocks. 
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7 Recommendations for future work 

The following recommendations apply to the developed processes for the production of TPA 

from 1G feedstocks: 

- Determine potential for sweet sorghum and triticale as starch-based process 

feedstock. 

- Identify the optimal parameters for each section of the processes through thorough 

experimentation. 

- Investigate configurations for the production of bioethanol from certain by-product 

streams for additional sales. 

- Investigate alternative catalysts that are less expensive but yield the same or improved 

selectivity to the appropriate intermediate/product.  

- Perform heat integration on each optimised sections to increase energy efficiency. 

- Perform market research analyses to determine consumer interest, acceptable green 

premium, etc.  

- Perform a life-cycle assessment on the optimised processes to identify their full 

environmental impact. 

- Determine international potential of the developed processes. 
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Figure 48: Two-dimensional structure of alpha-pinene 

8.1 Appendix A: Introduction to terephthalic acid precursors  

8.1.1 2G process scheme intermediate chemical compounds  

This section introduces the intermediate chemical compounds involved in the production of 

TPA from lignocellulosic-based feedstocks (Figure 5).  The major terpenes extracted from 

these feedstocks are alpha-pinene, the major terpene in Pine species, as well as cineole, the 

major terpene within Eucalyptus species. Both of these terpenes are categorised under the 

term oleoresins.  Dehydrogenation of these terpenes under different reactor conditions using 

different catalysts produces the alkyl benzene p-cymene, which in turn can be oxidised to 

TPA. 

Oleoresins 

Oleoresins are liquids with very specific scents and are produced by organs within conifers.  

These liquids include terpenes, terpenoids (terpenes containing one or more oxygen 

molecule) and resinous acids.  They are stored within the secretory and epidermis cells, resin 

channels and glandular trichomes of the wood.  Approximately 90% of the essential oils found 

in conifers are made up of aromatic compounds.  The main aromatic compounds are 

monoterpenes (terpenes with two isoprene units) and sesquiterpenes (terpenes with three 

isoprene units).  α-Pinene and β-pinene are the most abundant monoterpenes, while 1, 8 –

cineole is an abundant monoterpenoid in some essential oils (Flores, 2013).  These 

compounds are further investigated in this study as possible precursors in the production of 

terephthalic acid.  

Alpha-Pinene 

Pinene is a primary terpene extracted from Pine trees and it has two isomers, alpha- and beta- 

pinene.  α -pinene, also known as 2, 6, 6-trimethylbicyclo [3.1.1] hept-2-ene by its IUPAC 

name, is a colourless liquid solvent that is insoluble in water and has a boiling point of 156°C 

(National Centre for Biotechnology Information, 2009).  Figure 48 shows the two dimensional 

structure of α-pinene.   
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Studies have shown that alpha-pinene exhibits pharmaceutical properties, such as anti-

inflammatory, anti-microbial, antioxidant and bronchodilator effects (Colbert, 2014).  It has also 

exhibited anti-carcinogenic properties as it was shown to inhibit the growth of cancerous cells 

in mice by 40% (Kusuhara, et al., 2012), which suggests that alpha-pinene can also be used 

as an antineoplastic drug.  Monoterpenes, such as alpha-pinene, can also inhibit 

acetylcholinesterase activity.  This discovery lead to new research regarding memory retention 

increases during the enzyme inhibition (Miyazawa & Yamafuji, 2005).  

Alpha-pinene can be a precursor for TPA production because of the yield potential in 

commercial forest species and pulp mill residues in South Africa.  Extraction methods from 

these sources are explained in more detail in Section 2.4.   

 

1, 8-Cineole 

Cineole (eucalyptol) is identified as a monoterpenoid and contributes to a large percentage of 

Eucalyptus oil content.  It may have pharmaceutical importance as it exhibits analgesic, anti-

inflammatory, decongestive, antioxidant and hepatoprotective properties (Lima et al., 2013).  

Figure 49 shows the two-dimensional structure of cineole.     

 

Figure 49: Two-dimensional structure of cineole 

 

p-Cymene 

p-Cymene is a secondary metabolite, and is found in foods, such as carrots, raspberries and 

spices and is used during the production of fungicides and pesticides.  It can be used as a 

flavouring agent and possesses some pharmaceutical properties (analgesic and anti-

inflammatory) (Quintans, et al., 2013).  Figure 50 shows the two dimensional structure of p-

cymene. 
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Figure 50: Two-dimensional structure of p-cymene 

 

8.1.2 1G process scheme intermediate chemical compounds  

This chapter provides an introduction to the intermediate chemical compounds involved in the 

production of TPA from starch-based feedstocks (Figure 13).  Starch-based feedstocks can be 

utilised to extract starch and produce glucose from its polymers.  The production of HMF from 

glucose leads to the production of a heterocyclic molecule called DMF, which is a precursor to 

the production of p-xylene. Lastly, p-xylene can be oxidised to form the desired product, TPA. 

 

Starch 

Starch polymers are produced within plants through photosynthesis and serves as 

carbohydrate reserves within sources such as wheat, barley, rice and other vegetables.  Each 

polymer can contain up to 20 000 glucose molecules, which is used to sustain the plant and 

aid in reproduction.  Extraction of starch and separation from the protein, oil and other 

insoluble portions of the plant involve manual refining, centrifuging, hydrolysis and/or drying 

(Fortescue, 2012).  Figure 51 shows the structure of a starch molecule, where n represents 

the number of glucose molecules, which vary per polymer. 

 

 

 

 

 

 

 

 

Figure 51: Starch molecular structure 
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Glucose 

Glucose is classified as a monosaccharide, which means that it contains only one “sugar 

molecule”.  The molecule can be either a chain (Fischer projection) or a ring and consists of 

five hydroxyl groups and one aldehyde group (Figure 52).  In the human body, it is stored as 

glycogen in a similar manner as to which plants store starch polymers for energy reserves.  

Through glycolysis and the oxidation of glucose, energy in the form of adenosine triphosphate 

(ATP) is produced, while CO2 and water form as by-products.  Glucose is also used to 

manage hypoglycaemia, while the inability to regulate levels of glucose in the blood is 

experienced by patients with diabetes (Dunford & Doyle, 2012).  

 

 

 

 

 

 

 

5-Hydroxymethylfurfural 

5-Hydroxymethylfurfural (HMF) is an organic compound commonly produced in powder or 

crystalline form through the dehydration of glucose. It consists of a furan ring containing 

alcohol and aldehyde groups (Figure 53).  HMF is highly soluble in water and has an average 

boiling point of 115°C. Various chemical compounds can be produced from HMF such as 

adipic acid, levulinic acid, DMF and caprolactam (which is used during the manufacturing of 

surgical sutures).  HMF is also a natural component found coffee and honey and can be used 

as flavouring in certain beverages (Fischer, 2017).  

 

 

 

 

 

 

Figure 52: Glucose molecular structure 

Figure 53: HMF molecular structure 
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2, 5-Dimethylfuran 

2, 5-Dimethylfuran (DMF) is a heterocyclic molecule that is insoluble in water and has an 

average boiling point of 93°C (Figure 54).  Recently it has gained attention because of its 

biofuel potential; it has a 40% greater energy density than ethanol and may consume only two 

thirds of the energy required to evaporate. There is also a lowered risk of explosion due to 

volatile gases but does require 20% more air than ethanol biofuel (Salazar, 2011).  

 

 

 

 

p-Xylene 

The current industrial method for producing terephthalic acid, the Mid-Century process, utilises 

p-xylene (Figure 55) produced from crude oil in catalytic reformers.  The product obtained 

from these reformers is called BTX, which is a mixture of benzene, toluene and isomers of the 

xylene group (ortho-, para- and meta-xylene).  p-Xylene can also be used to produce benzoic 

acid, dimethyl esters and rubber products.  The bio-based equivalent of p-xylene is identical in 

structure and characteristics to fossil-derived p-xylene and can therefore be used as precursor 

towards the production of bio-TPA (Abraham, 2017).  

 

 

 

 

 

 

 

 

 

 

Figure 54: 2, 5-Dimethylfuran molecular structure 

Figure 55: p-Xylene molecular structure 
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8.2 Appendix B: ASPEN Plus equipment models and flowsheets  

ASPEN Plus block selection 

Block type Specifications Block icon 

Biomass mill Type: rod mill 
Distribution function: Gates Gaudin 
Schuhmann 
Maximum particle diameter specified 
Power specification (process specific) 

 

Terpene extraction vessel, 
flash vessel, minute 
component removal, fired 
heater, carrier gas removal  

Duty: 0 kW /utility connection  

Centrifugal pump, slurry 
pump 

Discharge pressure (process specific) 
Pump and driver efficiencies: 0.85 

 

Heat exchanger, condenser Pressure change: 0 atm 
Vapour fraction: 0 (condenser) 
Temperature (process specific) 

 

Decanter (terpene/water 
separation) 

Key component in 2nd liquid phase: 
water 
Pressure change: 0 atm 

 

Compressor, turbine Isentropic 
Discharger pressure (process 
specific) 

 

Conversion reactor Temperature, pressure, inert 
components defined (process 
specific) 
Yields determined from selectivities 
 

 

Mixing vessel, liquid rerouting 
(via valves) 

Pressure change: 0 atm  

Stoichiometric reactor (CO2 
treatment) 

Pressure change: 0 atm 
Reaction: Ca(OH)2 + CO2 -> CaCO3 + 
H2O 
Fractional conversion: 0.99 CO2 

 

Solids dryer Shortcut dryer 
Pressure change: 0 atm 
TPA powder dryer temperature: 
210°C (due to NMP) 
80% recycle of flue gas 
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 Pine model 

a) Pine hydro-distillation  

Section 1 Units S1-01 S1-02 S1-03 S1-08 S1-11 S1-12 S1-13 S1-14 

From    V-101 P-103AB V-101 E-101 D-101 D-101 

To  V-101 V-101 P-101AB $C-1 E-101 D-101  $C-3 

Temperature C 25 25 77.2 94.1 77.2 40.7 49.7 49.7 

Pressure bar 1 1 0.47 1 0.47 0.47 0.47 0.47 

Mass Liquid 
Fraction 

 0.02 1 0.82 0.80 0 1 1 1 

Mass Solid 
Fraction 

 0.98 0 0.18 0.20 0 0 0 0 

Mass Flows kg/hr 119.820 469.88 637.60 584.66 5.03 5.03 2.72 2.315 

A-THUJEN kg/hr 0.012 0 1.01E-04 2.20E-11 0.0121 0.0121 6.56E-07 0.012 

TRICYCLE kg/hr 0.056 0 4.12E-04 6.68E-11 0.0557 0.0557 3.35E-06 0.056 

ALPHA-01 kg/hr 1.053 0 1.03E-02 2.93E-09 1.0528 1.0528 6.03E-05 1.053 

A-FENCHO kg/hr 0.015 0 3.09E-02 0.000298 0.0142 0.0142 5.74E-05 0.014 

CARYOPH kg/hr 0.017 0 8.30E-05 4.78E-12 0.0169 0.0169 5.84E-09 0.017 

CAMPHENE kg/hr 0.002 0 2.35E-05 6.50E-12 0.0024 0.0024 1.27E-07 0.002 

TERP-4-O kg/hr 0.010 0 3.24E-02 0.000857 0.0088 0.0088 3.08E-05 0.009 

BETA-PIN kg/hr 0.670 0 9.15E-03 5.05E-09 0.6704 0.6704 3.66E-05 0.670 

TERP-4-Y kg/hr 0.007 0 1.79E-03 2.89E-07 0.0073 0.0073 5.80E-07 0.007 

A-TERPIN kg/hr 0.191 0 8.09E-01 0.031362 0.1598 0.1598 5.32E-04 0.159 

B-MYRCE kg/hr 0.063 0 1.00E-03 8.41E-10 0.0629 0.0629 2.38E-06 0.063 

CADINENE kg/hr 0.012 0 4.33E-05 1.41E-12 0.0121 0.0121 3.70E-09 0.012 

TERPINEN kg/hr 0.002 0 4.99E-05 6.25E-11 0.0024 0.0024 1.23E-07 0.002 

MSALICYL kg/hr 0.005 0 5.17E-03 0.004826 0.0000 0.0000 9.45E-06 5.11E-06 

D-LIM-01 kg/hr 0.077 0 1.62E-03 2.14E-09 0.0774 0.0774 3.32E-06 0.0774 

PCYMENE kg/hr 0.007 0 1.85E-02 0.006217 0.0010 0.0010 2.79E-05 0.0010 

MUUROLOL kg/hr 0.010 0 1.46E-02 6.79E-05 0.0096 0.0096 2.21E-07 0.0096 

TERPI-01 kg/hr 0.039 0 1.48E-03 5.88E-09 0.0387 0.0387 2.29E-06 0.0387 

T-CADINO kg/hr 0.002 0 3.51E-03 1.52E-05 0.0024 0.0024 5.53E-08 0.0024 

3-HEX-01 kg/hr 0.005 0 3.38E-03 4.06E-06 0.0048 0.0048 1.53E-05 0.0048 

A-CADINO kg/hr 0.034 0 4.91E-02 2.13E-04 0.0337 0.0337 7.76E-07 0.0337 

WATER kg/hr 0 469.88 519.1396 467.151 2.7287 2.7287 2.719 0.0097 

NCPSD Sub          

BIOMASS kg/hr 117.47 0 117.47 117.47 0 0 0 0 

Block Function 

CALC1 Sets water (S1-02) feed to four times the mass of the 
biomass feed (S1-01) 

CALC2 Vary heat duty (QH101) to maximise mixed liquid from S1-
01 to S1-11 
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b) Dehydrogenation of α-pinene  

Section 2 Units S2-01 S2-02 S2-06 S2-09 S2-10 S2-11 S2-12 

From 
 

$C-4 
  

X204 C-202 E-202 T-201 

To 
 

P-201A C-201B H-201 X210 E-202 T-201 $C-5 

Temperature C 60 60 25 275.5 186.5 60 60 

Pressure bar 0.47 1 1 5 1 1 1 

Mass Vapour Frac 
 

0 1 0 0.957 1 0.747 0 

Mass Liquid Frac 
 

1 0 1 0.043 0 0.253 1 

Mass Flows kg/hr 2.30 5.06 0.34 7.61 7.36 7.36 2.30 

A-THUJEN kg/hr 1.21E-02 0 0 0 0 0 0 

TRICYCLE kg/hr 5.57E-02 0 0 0 0 0 0 

ALPHA-01 kg/hr 1.05 0 0 0 0 0 0 

A-FENCHO kg/hr 1.40E-02 0 0 1.47E-02 1.47E-02 1.47E-02 1.47E-02 

CARYOPH kg/hr 1.69E-02 0 0 1.77E-02 1.77E-02 1.77E-02 1.77E-02 

CAMPHENE kg/hr 2.42E-03 0 0 4.95E-02 4.95E-02 4.95E-02 4.95E-02 

TERP-4-O kg/hr 8.46E-03 0 0 0 0 0 0 

BETA-PIN kg/hr 6.70E-01 0 0 3.46E-01 3.46E-01 3.46E-01 3.46E-01 

TERP-4-Y kg/hr 7.26E-03 0 0 7.60E-03 7.60E-03 7.60E-03 7.60E-03 

A-TERPIN kg/hr 1.48E-01 0 0 1.54E-01 1.54E-01 1.54E-01 1.54E-01 

B-MYRCE kg/hr 6.29E-02 0 0 6.61E-02 6.61E-02 6.61E-02 6.61E-02 

CADINENE kg/hr 1.21E-02 0 0 0 0 0 0 

PCYMENE kg/hr 7.54E-04 0 0 7.95E-01 7.95E-01 7.95E-01 7.95E-01 

MUUROLOL kg/hr 9.58E-03 0 0 1.01E-02 1.01E-02 1.01E-02 1.01E-02 

T-CADINO kg/hr 2.40E-03 0 0 2.53E-03 2.53E-03 2.53E-03 2.53E-03 

3-HEX-01 kg/hr 4.82E-03 0 0 5.07E-03 5.07E-03 5.07E-03 5.07E-03 

A-CADINO kg/hr 3.36E-02 0 0 3.52E-02 3.52E-02 3.52E-02 3.52E-02 

WATER kg/hr 0.01 0 0.09 0.01 0.01 0.01 0.01 

NITROGEN kg/hr 0 5.06 0 5.06 5.06 5.06 0 

1-MET-02 kg/hr 0 0 0 0.0032 0.0032 0.0032 0.0032 

1-MET-03 kg/hr 0 0 0 0.0839 0.0839 0.0839 0.0839 

GUAIE-01 kg/hr 0 0 0 0.2419 0.2419 0.2419 0.2419 

P-MEN-01 kg/hr 0 0 0 0.1792 0.1792 0.1792 0.1792 

P-MEN-02 kg/hr 0 0 0 0.0412 0.0412 0.0412 0.0412 

SODIU-01 kg/hr 0 0 0.0007 0.0007 0 0 0 

CALCI-01 kg/hr 0 0 0.0093 0.0093 0 0 0 

MAGNE-01 kg/hr 0 0 0.0021 0.0021 0 0 0 

ALUMI-01 kg/hr 0 0 0.0585 0.0585 0 0 0 

SILIC-01 kg/hr 0 0 0.1807 0.1807 0 0 0 

Block Function 

CALC1 Sets carrier gas volumetric feed (S2-02) as a function of 
terpene liquid mass feed (S2-01) 

CALC2 Sets catalyst mass feed (S2-06) as a function of terpene 
liquid mass feed (S2-01) 
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b) p-Cymene purification 

 Units S3-01 S3-02 S3-03 S3-04 S3-05 S3-06 

From 
 

$C-6 
 

E-301 R-301 E-302 X304 

To 
 

X301 X301 R-301 E-302 T-301 $C-8 

Temperature C 60 25 110 110 80 140 

Pressure bar 1 1 1 1 1 0.9 

Mass Vapour Fraction 
 

0 0 0 0 0 0.014 

Mass Liquid Fraction 
 

1 1 1 1 1 0.986 

Mass Flows kg/hr 2.304 0.576 2.880 2.880 2.880 0.565 

A-FENCHO kg/hr 0.015 0 0.015 0 0 0 

2-NOR-01 kg/hr 0.042 0 0.042 0 0 0 

CARYOPH kg/hr 0.018 0 0.018 0 0 0 

CAMPHENE kg/hr 0.050 0 0.050 0 0 0 

BETA-PIN kg/hr 0.346 0 0.346 0 0 0 

TERP-4-Y kg/hr 0.008 0 0.008 0 0 0 

A-TERPIN kg/hr 0.154 0 0.154 0 0 0 

B-MYRCE kg/hr 0.066 0 0.066 0 0 0 

TERPINEN kg/hr 0.058 0 0.058 0 0 0 

BPHELLAN kg/hr 0.041 0 0.041 0 0 0 

GTERPINE kg/hr 0.045 0 0.045 0 0 0 

PCYMENE kg/hr 0.795 0 0.795 0.56 0.56 0.56 

MUUROLOL kg/hr 0.010 0 0.010 0 0 0 

TERPI-01 kg/hr 0.055 0 0.055 0 0 0 

T-CADINO kg/hr 0.003 0 0.003 0 0 0 

3-HEX-01 kg/hr 0.005 0 0.005 0 0 0 

A-CADINO kg/hr 0.035 0 0.035 0 0 0 

WATER kg/hr 0.011 0.029 0.040 1.73E-03 1.73E-03 1.73E-03 

1-MET-02 kg/hr 0.003 0 0.003 0 0 0 

1-MET-03 kg/hr 0.084 0 0.084 0 0 0 

GUAIE-01 kg/hr 0.242 0 0.242 0 0 0 

P-MEN-01 kg/hr 1.79E-01 0 1.79E-01 2.59E-03 2.59E-03 2.59E-03 

P-MEN-02 kg/hr 4.12E-02 0 4.12E-02 5.76E-04 5.76E-04 5.76E-04 

SULFU-01 kg/hr 0 0.547145 0.547145 1.265 1.265 0 

ISOPRESS kg/hr 0 0 0 0.548 0.548 0 

CEMBRENE kg/hr 0 0 0 0.014 0.014 0 

ELLIOTIN kg/hr 0 0 0 0.488 0.488 0 

Volume Flow l/min 0.045 0.006 0.052 0.036 0.035 0.091 

Block Function 

CALC1 Sets sulphuric acid mass feed (S3-02) as 25% of 
terpene liquid mass feed (S3-01) 
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c) p-Cymene oxidation  

 
Units S4-01 S4-02 S4-05 S4-06 S4-07 S4-08 S4-11 S4-12 S4-13 S4-14 S4-15 S4-18 S4-19 S4-20 S4-21 

From 
 

$C-9 
 

R-401 V-401 V-401 
 

R-402 V-402 V-402 Y-401 Y-401 V-403 R-403 M-401 M-401 

To 
 

R-401 C-401 V-401 R-403 R-402 C402 V-402 Y-401 R-403 M-401 $C-7 R-403 
  

Y-401 

Stream 
Class  

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

MCINCP
SD 

Temperat
ure 

C 140 25 140 140 140 25 190 190 190 90 90 25 25 90 90 

Pressure bar 0.9 1 20 20 20 1 12 12 12 12 12 1 1 12 12 

Mass Vap 
Fraction  

0.014 1 0.421 1 0 1 0.567 0.210 1 0 0 0 0.132 0 0 

Mass Liq 
Fraction  

0.986 0 0.130 0 0.224 0 0 0 0 1 0 1 0.729 1 1 

Mass Solid 
Fraction  

0 0 0.449 0 0.776 0 0.434 0.790 0 0 1 0 0.139 0 0 

Mass 
Flows 

kg/hr 0.565 0.639 1.204 0.507 0.697 0.600 1.297 0.712 0.585 0.747 0.562 4.345 5.437 0.149 0.598 

PCYMENE kg/hr 0.560 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WATER kg/hr 0.002 0 0.191 0.045 0.146 0 0.142 0.142 0 0.708 0 3.786 3.966 0.142 0.566 

OXYGE-01 kg/hr 0 0.639 0.132 0.131 6.74E-04 0.6 0.581 0 0.581 0 0 0 0.712 0 0 

CARBO-01 kg/hr 0 0 0.332 0.327 4.99E-03 0 4.80E-03 0 0.005 0 0 0 0 0 0 

P-MEN-01 kg/hr 2.59E-03 0 6.50E-03 2.75E-03 3.75E-03 0 6.36E-03 6.36E-03 0 3.18E-02 0 0 2.75E-03 6.36E-03 2.54E-02 

P-MEN-02 kg/hr 5.76E-04 0 1.56E-03 6.70E-04 8.95E-04 0 1.56E-03 1.56E-03 0 7.78E-03 0 0 6.70E-04 1.56E-03 6.23E-03 

TEREP-02 kg/hr 0 0 0.231 0 0.231 0 0.426 0.426 0 0 0.426 0 0 0 0 

P-TOL-02 kg/hr 0 0 0.279 0 0.279 0 0.101 0.101 0 0 0.101 0 0 0 0 

CUMIC-01 kg/hr 0 0 0.030 0 0.030 0 0.029 0.029 0 0 0.029 0 0 0 0 

4-CAR-01 kg/hr 0 0 0 0 0 0 0.006 0.006 0 0 0.006 0 0 0 0 

CALCI-02 kg/hr 0 0 0 0 0 0 0 0 0 0 0 0.559 0 0 0 

CACO3 kg/hr 0 0 0 0 0 0 0 0 0 0 0 0 0.755 0 0 

Volume 
Flow 

l/min 0.091 8.247 0.411 0.402 0.009 7.747 1.405 0.429 0.976 0.014 0.006 0.091 9.475 0.003 0.011 

 

 

 

 

 

Block Function 

CALC1 Sets oxygen mole feed (S4-02) as 6 times the terpene 
liquid mole feed (S4-01) (includes 20% excess) 

CALC2 Sets oxygen mass feed (S4-08) as 30% of the toluene 
mass in S4-07 (includes 20% excess) 

CALC3 Adds CO2 mole rate from S4-06 and S4-13 to determine 
Ca(OH)2 (S4-16) needed in terms of stoichiometry  
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d) TPA purification and drying 

 

 

 

Block Function 

CALC1 Sets NMP mass feed (S5-02) as 3 times the TPA mass 
feed (S5-01) (2

nd
 wash stage R-502: 3.6 times) 

CALC2 Sets acetone mass feed (S5-08 and S5-30) as 3 and 3.6 
times the TPA mass in S5-07 and S5-32, respectively 

CALC3 Calculates fraction bypass in M-504 for correct amount 
of NMP to R-504  

  Units S5-01 S5-02 S5-03 S5-04 S5-05 S5-06 S5-07 S5-08 S5-09 S5-10 S5-11 S5-12 

From  $C-10  M-501 E-501 R-501 R-501 E-502  M-502 R-502 R-502 M-504 

To  M-501 M-501 E-501 R-501 R-502 E-502 M-502 M-502 $C-3  E-506 R-502 

Temperature C 90 25 40.21 160 160 160 45 25 39.57 189.38 189.38 199.18 

Pressure bar 12 1 1 1 1 1 1 1 1 0.9 0.9 0.9 

Mass Vap Frac  0 0 0 0 0 0 0 0 0 0 0 0 

Mass Liq Frac  0 1 0.694 0.694 0 0.905 0.905 1 0.926 0 0.905 1 

Mass Sol Frac  1 0 0.306 0.306 1 0.095 0.095 0 0.074 1 0.095 0 

Mass Flows kg/hr 0.562 1.278 1.840 1.840 0.428 1.412 1.412 0.403 1.815 0.336 0.967 0.875 

N-MET-01 kg/hr 0 1.278 1.278 1.278 0 1.278 1.278 0 1.278 0 0.875 0.875 

ACETO-01 kg/hr 0 0 0 0 0 0 0 0.403 0.403 0 0 0 

Volume Flow l/min 0.006 0.021 0.027 0.030 0.005 0.025 0.023 0.009 0.031 0.004 0.018 0.017 

CIPSD Sub              

Temperature C 90 
 

40.21 160 160 160 45 
 

39.57 189.38 189.38  

Pressure bar 12 
 

1 1 1 1 1 
 

1 0.9 0.9  

Molar Liq Fraction  0 
 

0 0 0 0 0 
 

0 0 0  

Molar Sol Fraction  1 
 

1 1 1 1 1 
 

1 1 1  

Mass Liq Fraction  0 
 

0 0 0 0 0 
 

0 0 0  

Mass Sol Fraction  1 
 

1 1 1 1 1 
 

1 1 1  

Average MW  159.55 
 

159.55 159.55 157.60 166.12 166.12 
 

166.12 155.42 166.12  

Mass Flows kg/hr 0.562 
 

0.562 0.562 0.428 0.134 0.134 
 

0.134 0.336 0.092  

TEREP-02 kg/hr 0.426 
 

0.426 0.426 0.292 0.134 0.134 
 

0.134 0.200 0.092  

P-TOL-02 kg/hr 0.101 
 

0.101 0.101 0.101 2.73E-05 2.73E-05 
 

2.73E-05 0.100602 1.87E-05  

CUMIC-01 kg/hr 0.029 
 

0.029 0.029 0.029 2.03E-05 2.03E-05 
 

2.03E-05 0.029273 1.87E-05  

4-CAR-01 kg/hr 6.36E-03   6.36E-03 6.36E-03 6.30E-03 5.99E-05 5.99E-05   5.99E-05 6.28E-03 1.87E-05  

  Units S5-13 S5-14 S5-15 S5-16 S5-17 S5-18 S5-19 S5-20 S5-21 S5-22 S5-23 S5-24 

From  M-504 M-504 T-501 $C-5 E-507 R-504 R-504 E-506 E-508 T-501  M-506 

To   E-507 M-504 E-507 R-504 $C-10 E-508 M-505 M-506 M-505 M-506 $C-9 

Temperature C 199.18 199.18 199.18 210 105 105 105 45 40 124.43 25 34.64 

Pressure bar 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 0.9 
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Mass Vap Fraction  0 0 0 0 0 0 0 0 0 1 0 0 

Mass Liq Fraction  1 1 1 0 0.783 0 0.883 0.905 0.883 0 1 0.918 

Mass Sol Fraction  0 0 0 1 0.217 1 0.117 0.095 0.117 0 0 0.082 

Mass Flows kg/hr 0.437 0.331 1.643 0.092 0.423 0.048 0.375 0.967 0.375 0.736 0.157 0.532 

N-MET-01 kg/hr 0.437 0.331 1.643 0 0.331 0 0.331 0.875 0.331 0.104 0 0.331 

ACETO-01 kg/hr 0 0 0 0 0 0 0 0 0 0.632 0.157 0.157 

Vol Flow l/min 0.008 0.006 0.032 0.001 0.007 0.001 0.006 0.015 0.006 7.305 0.003 0.009 

CIPSD Sub              

Temperature C    210 105 105 105 45 40   34.64 

Pressure bar    0.9 0.9 0.9 0.9 0.9 0.9   0.9 

Molar Liq Fraction     0 0 0 0 0 0   0 

Molar Sol Fraction     1 1 1 1 1 1   1 

Mass Liq Fraction     0 0 0 0 0 0   0 

Mass Sol Fraction     1 1 1 1 1 1   1 

Average MW     166.1218 166.1218 166.1125 166.1321 166.1218 166.1321   166.1321 

Mass Flows kg/hr    9.20E-02 9.20E-02 4.83E-02 4.37E-02 9.20E-02 4.37E-02   4.37E-02 

TEREP-02 kg/hr    9.19E-02 9.19E-02 4.83E-02 4.37E-02 9.19E-02 4.37E-02   4.37E-02 

P-TOL-02 kg/hr    1.87E-05 1.87E-05 1.79E-05 8.31E-07 1.87E-05 8.31E-07   8.31E-07 

CUMIC-01 kg/hr    1.87E-05 1.87E-05 1.77E-05 1.00E-06 1.87E-05 1.00E-06   1.00E-06 

4-CAR-01 kg/hr    1.87E-05 1.87E-05 1.76E-05 1.09E-06 1.87E-05 1.09E-06   1.09E-06 

  Units S5-25 S5-26 S5-27 S5-28 S5-29 S5-30 S5-31 S5-32 S5-33 S5-34 S5-35 S5-36 

From  M-505 $C-7 E-505 $C-1 M-503  E-504 R-503 $C-2 R-503  E-503 

To  $C-6 E-505 T-501 E-505 $C-8 E-504 M-503 M-503 R-503 $C-4 E-503 R-503 

Temperature C 108.54 210 90 210 83.38 25 40 123.64 210 123.64 25 105 

Pressure bar 0.9 1 1 1 1 1 1 1 1 1 1 1 

Mass Vap Fraction  0.320 1 0.041 1 0.045 0 0 0 0 0 0 0 

Mass Liq Fraction  0.626 0 0.959 0 0.872 1 1 0.880 0 0 1 1 

Mass Sol Fraction  0.054 0 0 0 0.084 0 0 0.120 1 1 0 0 

Mass Flows kg/hr 1.704 0.699 2.379 1.680 0.763 0.229 0.229 0.533 0.134 0.071 0.470 0.470 

N-MET-01 kg/hr 0.980 0.470 1.747 1.278 0.470 0 0 0.470 0 0 0.470 0.470 

ACETO-01 kg/hr 0.632 0.229 0.632 0.403 0.229 0.229 0.229 0 0 0 0 0 

Volume Flow l/min 5.377 5.816 0.881 13.270 0.300 0.005 0.005 0.009 0.001 0.001 0.008 0.008 

CIPSD Subs              

Temperature C 108.54    83.38   123.64 210 123.64   

Pressure bar 0.9    1   1 1 1   

Molar Liq Fraction  0    0   0 0 0   

Molar Sol Fraction  1    1   1 1 1   

Mass Liq Fraction  0    0   0 0 0   

Mass Sol Fraction  1    1   1 1 1   

Average MW  166.1218    166.1321   166.1321 166.1176 166.1046   

Mass Flows kg/hr 9.20E-02    6.37E-02   6.37E-02 1.34E-01 7.05E-02   

TEREP-02 kg/hr 9.19E-02    6.37E-02   6.37E-02 1.34E-01 7.04E-02   

P-TOL-02 kg/hr 1.87E-05    1.21E-06   1.21E-06 2.73E-05 2.61E-05   

CUMIC-01 kg/hr 1.87E-05    1.47E-06   1.47E-06 2.03E-05 1.88E-05   

4-CAR-01 kg/hr 1.87E-05    1.59E-06   1.59E-06 5.99E-05 5.83E-05   
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Units S7-01 S7-02 S7-03 S7-04 S7-05 S7-06 S7-07 S7-08 S7-09 S7-10 S7-11 S7-12 S7-13 

From 
 

TPA.$C-3 Y-701 Y-701 X701 X701 TPA.$C-8 Y-702 Y-702 X702 X702 TPA.$C-6 Y-703 Y-703 

To 
 

Y-701 TPA.$C-2 X701 Y-701 
TPA.$C-

1 
Y-702 M7-01 X702 

TPA.$C-
7 

Y-702 Y-703 TPA.$C-5 X-703 

Temperature C 39.6 210 210 210 210 83.4 210 210 210 210 108.5 210 210 

Pressure bar 1 1 1 1 1 1 1 1 1 1 0.9 0.9 0.9 

Mass Vap Frac 
 

0 0 1 1 1 0.045 0 1 1 1 0.320 0 1 

Mass Liq Frac 
 

0.926 0 0 0 0 0.872 0 0 0 0 0.626 0 0 

Mass Sol Frac 
 

0.074 1 0 0 0 0.084 1 0 0 0 0.054 1 0 

Mass Flows kg/hr 1.815 0.134 8.402 6.721 1.680 0.763 0.064 3.495 0.699 2.796 1.704 0.092 8.058 

N-MET-01 kg/hr 1.278 0 6.389 5.111 1.278 0.470 0 2.348 0.470 1.878 0.980 0 4.898 

ACETO-01 kg/hr 0.403 0 2.013 1.610 0.403 0.229 0 1.147 0.229 0.918 0.632 0 3.160 

Vol Flow l/min 3.09E-02 1.48E-03 66.35 53.08 13.27 0.300 7.03E-04 29.08 5.82 23.27 5.38 1.01E-03 77.23 

CIPSD Sub 
              

Mass Flows kg/hr 0.134278 0.134278 
   

6.37E-02 6.37E-02 
   

9.20E-02 9.20E-02 
 

TEREP-02 kg/hr 0.13417 0.13417 
   

6.37E-02 6.37E-02 
   

9.19E-02 9.19E-02 
 

P-TOL-02 kg/hr 2.73E-05 2.73E-05 
   

1.21E-06 1.21E-06 
   

1.87E-05 1.87E-05 
 

CUMIC-01 kg/hr 2.03E-05 2.03E-05 
   

1.47E-06 1.47E-06 
   

1.87E-05 1.87E-05 
 

4-CAR-01 kg/hr 5.99E-05 5.99E-05 
   

1.59E-06 1.59E-06 
   

1.87E-05 1.87E-05 
 

 
Units S7-14 S7-15 S7-16 S7-17 S7-18 S7-19 S7-20 S7-21 S7-22 S7-23 S7-24 S7-25 S7-26 

From 
 

X-703 X-703 TPA.$C-9 Y-704 Y-704 X704 X704 M7-01 E-701 
TPA.$C-

10 
TPA.$C-4 M-702 E-702 

To 
  

Y-703 Y-704 M7-01 X704 
 

Y-704 E-701 
 

M-702 M-702 E-702 
 

Temperature C 210 210 34.6 210 210 210 210 210 33 105 123.6 116.2 33 

Pressure bar 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 0.9 0.9 

Mass Vap Frac 
 

1 1 0 0 1 1 1 0 0 0 0 0 0 

Mass Liq Frac 
 

0 0 0.917886 0 0 0 0 0 0 0 0 0 0 

Mass Sol Frac 
 

0 0 0.082114 1 0 0 0 1 1 1 1 1 1 

Mass Flows kg/hr 1.612 6.446 0.532 0.044 2.440 0.488 1.952 0.107 0.107 0.048 0.071 0.119 0.119 

N-MET-01 kg/hr 0.980 3.919 0.331 0 1.654 0.331 1.323 0 0 0 0 0 0 

ACETO-01 kg/hr 0.632 2.528 0.157 0 0.786 0.157 0.629 0 0 0 0 0 0 

Vol Flow l/min 15.45 61.78 9.17E-03 4.82E-04 22.48 4.50 17.98 1.1E-03 1.1E-03 5.33E-04 7.78E-04 1.31E-03 1.3E-03 

CIPSD Sub 
              

Mass Flows kg/hr 
  

0.0437 0.0437 
   

0.1074 0.1074 0.0483 0.0705 0.1188 0.1188 

TEREP-02 kg/hr 
  

0.0437 0.0437 
   

0.1074 0.1074 0.0483 0.0704 0.1187 0.1187 

P-TOL-02 kg/hr 
  

8.31E-07 8.31E-07 
   

2.0E-06 2.0E-06 1.79E-05 2.61E-05 4.39E-05 4.3E-05 

CUMIC-01 kg/hr 
  

1.00E-06 1.00E-06 
   

2.4E-06 2.4E-06 1.77E-05 1.88E-05 3.65E-05 3.6E-05 

4-CAR-01 kg/hr 
  

1.09E-06 1.09E-06 
   

2.6E-06 2.6E-06 1.76E-05 5.83E-05 7.59E-05 7.5E-05 
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e) Biomass power and heat 

generation 

 

 
Units S6-01 S6-02 S6-03 S6-05 S6-06 S6-07 S6-08 S6-09 S6-10 S6-11 S6-12 

From 
 

$C-2 F-601 F-601 X-602A R601 E-601A 
 

P-601 E-601B C-601 C-602 

To 
 

F-601 
 

X601 R601 E-601A E-602B P-601 E-601B C-601 C-602 E-602 

Stream Class 
 

MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD MCINCPSD 

Temperature C 94.2 94.2 94.2 222.8 1007.7 230.0 40.0 43.3 512.5 332.8 116.0 

Pressure bar 1 1 1 1 1 1 1 41 41 10 1 

Mass Vap Frac 
 

0 0 0 1 0.99 0.99 0 0 1 1 1 

Mass Liq Frac 
 

0.80 1 0.40 0 0 0 1 1 0 0 0 

Mass Sol Frac 
 

0.20 0 0.60 0 0.006 0.006 0 0 0 0 0 

Density gm/cc 0.98 0.92 1.11 7.00E-04 2.58E-04 6.56E-04 0.98 0.98 0.01 0.00 0.00 

Enthalpy cal/sec -582274 -402393 -179880 7624.77 -172254 -225968 -254602 -254380 -200666 -206686 -213516 

Mass Flows kg/hr 585.43 389.64 195.79 569.02 764.80 764.80 242.85 242.85 242.85 242.85 242.85 

A-THUJEN kg/hr 3.17E-11 2.64E-11 5.30E-12 0 0 0 0 0 0 0 0 

TRICYCLE kg/hr 9.63E-11 8.02E-11 1.61E-11 0 0 0 0 0 0 0 0 

ALPHA-01 kg/hr 4.22E-09 3.52E-09 7.07E-10 0 0 0 0 0 0 0 0 

A-FENCHO kg/hr 4.29E-04 3.57E-04 7.18E-05 0 0 0 0 0 0 0 0 

2-NOR-01 kg/hr 1.87E-09 1.56E-09 3.14E-10 0 0 0 0 0 0 0 0 

CARYOPH kg/hr 6.98E-12 5.81E-12 1.17E-12 0 0 0 0 0 0 0 0 

CAMPHENE kg/hr 9.38E-12 7.81E-12 1.57E-12 0 0 0 0 0 0 0 0 

TERP-4-O kg/hr 1.20E-03 9.95E-04 2.00E-04 0 0 0 0 0 0 0 0 

BETA-PIN kg/hr 7.29E-09 6.07E-09 1.22E-09 0 0 0 0 0 0 0 0 

B-MYRCE kg/hr 1.21E-09 1.01E-09 2.03E-10 0 0 0 0 0 0 0 0 

D-LIM-01 kg/hr 3.08E-09 2.57E-09 5.16E-10 0 0 0 0 0 0 0 0 

PCYMENE kg/hr 6.49E-03 5.40E-03 1.09E-03 0 0 0 0 0 0 0 0 

MUUROLOL kg/hr 9.89E-05 8.24E-05 1.66E-05 0 0 0 0 0 0 0 0 

TERPI-01 kg/hr 8.52E-09 7.09E-09 1.43E-09 0 0 0 0 0 0 0 0 

T-CADINO kg/hr 2.22E-05 1.85E-05 3.72E-06 0 0 0 0 0 0 0 0 

3-HEX-01 kg/hr 5.88E-06 4.90E-06 9.85E-07 0 0 0 0 0 0 0 0 

WATER kg/hr 467.90 389.59 78.31 0.00 149.47 149.47 242.85 242.85 242.85 242.85 242.85 

BIOMASS kg/hr 117.47 0 117.47 0 0 0 0 0 0 0 0 

OXYGE-01 kg/hr 0 0 0 132.53 3.19 3.19 0 0 0 0 0 

CARBO-01 kg/hr 0 0 0 0.00 169.76 169.76 0 0 0 0 0 

NITROGEN kg/hr 0 0 0 436.49 437.88 437.88 0 0 0 0 0 

HYDROGEN kg/hr 0 0 0 0 1.73E-05 1.73E-05 0 0 0 0 0 

SIO2 kg/hr 0 0 0 0 4.49 4.49 0 0 0 0 0 

Volume Flow l/min 9.96 7.02 2.93 13555.93 49495.01 19442.29 4.13 4.15 357.93 1131.87 7269.26 

Average MW 
 

18.02 18.02 18.02 28.85 27.27 27.27 18.02 18.02 18.02 18.02 18.02 

Mole Flows kmol/hr 25.97 21.63 4.35 19.72 27.89 27.89 13.48 13.48 13.48 13.48 13.48 

Mass Flows kg/hr 467.96 389.64 78.32 569.02 760.31 760.31 242.85 242.85 242.85 242.85 242.85 

Volume Flow l/min 8.44 7.02 1.41 13555.93 49494.99 19442.26 4.13 4.15 357.93 1131.87 7269.26 

Block Function 

CALC1 Varies F-601 frac for 40% liquid (mixed) in S6-03 

CALC2 Combines water from proximate and ultimate, breaks down 
ultimate composition into individual fractions: 
YH=U(2)/100*(1-YW); H-atoms (the 2

nd
 entry of ultimate 

composition) fraction times all other atoms excluding H in water 
fraction  

CALC3 Calculates air mole flow: AIRC=((C)+(H*0.5)+(N*2)-(O))/0.21 

CALC4 Energy balance to determine water flow in steam cycle: WFLOW 
= QP/((4.535*(251.71-TIN))+1706.7+(3.268*(455.8-251.71))) 
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Eucalyptus model 

a) SCF extraction 

 

 

 
Units S1-01 S1-02 S1-03 S1-04 S1-05 S1-06 S1-07 S1-08 S1-09 

From 
 

X103 
 

C-101 E-101 T-101 T-101 E-102 T-102 P-101 

To 
 

T-101 C-101 E-101 T-101 $C-1 E-102 T-102 P-101 E-103 

Temperature C 25.0 80 80.1 80 80 80 160 160 156.9 

Pressure bar 1 163.9 164 164 164 164 164 164 1 

MIXED Substream 
          

Phase 
 

Liquid Vapour Vapour Vapour  Vapour Mixed Liquid Liquid 

Temperature C 25.0 80 80.1 80 
 

80 160 160 156.9 

Pressure bar 1 163.9 164 164 
 

164 164 164 1 

Molar Vap Frac 
 

0 1 1 1 
 

1 0.974 0 0 

Molar Liq Frac 
 

1 0 0 0 
 

0 0.026 1 1 

Molar Sol Frac 
 

0 0 0 0 
 

0 0 0 0 

Mass Vap Frac 
 

0 1 1 1 
 

1 0.935 0 0 

Mass Liq Frac 
 

1 0 0 0 
 

0 0.065 1 1 

Average MW 
 

178.75 44.01 44.01 44.01 
 

46.07 46.07 117.35 117.35 

Mass Flows kg/hr 19.90 315.75 315.75 315.75 
 

335.65 335.65 21.92 21.92 

ALPHA-01 kg/hr 1.274 0 0 0 
 

1.274 1.274 1.015 1.015 

BETA--01 kg/hr 0.198 0 0 0 
 

0.198 0.198 0.165 0.165 

BETA-01 kg/hr 0.275 0 0 0 
 

0.275 0.275 0.233 0.233 

1-MET-01 kg/hr 0.924 0 0 0 
 

0.924 0.924 0.803 0.803 

D-LIM-01 kg/hr 2.169 0 0 0 
 

2.169 2.169 1.891 1.891 

GAMMA-01 kg/hr 0.415 0 0 0 
 

0.415 0.415 0.369 0.369 

TERPI-01 kg/hr 0.461 0 0 0 
 

0.461 0.461 0.415 0.415 

ALPHA-02 kg/hr 0.184 0 0 0 
 

0.184 0.184 0.178 0.178 

SPATHULE kg/hr 1.147 0 0 0 
 

1.147 1.147 1.143 1.143 

A-EUDESM kg/hr 0.215 0 0 0 
 

0.215 0.215 0.215 0.215 

CADINEDI kg/hr 0.292 0 0 0 
 

0.292 0.292 0.291 0.291 

1:8-C-01 kg/hr 7.667 0 0 0 
 

7.667 7.667 6.651 6.651 

3-CAR-01 kg/hr 0.015 0 0 0 
 

0.015 0.015 0.013 0.013 

CAMPH-01 kg/hr 0.026 0 0 0 
 

0.026 0.026 0.025 0.025 

SABINYLA kg/hr 0.015 0 0 0 
 

1.54E-02 1.54E-02 1.04E-02 1.04E-02 

ALLOAROM kg/hr 0.015 0 0 0 
 

0.015 0.015 0.015 0.015 

AMITEOL kg/hr 0.077 0 0 0 
 

0.077 0.077 0.077 0.077 

CARBO-01 kg/hr 0 315.74 315.74 315.74 
 

315.74 315.74 3.884 3.884 

N-NON-01 kg/hr 1.484 0 0 0 
 

1.484 1.484 1.484 1.484 

N-DOT-01 kg/hr 1.291 0 0 0 
 

1.291 1.291 1.291 1.291 

N-PEN-01 kg/hr 0.614 0 0 0 
 

0.614 0.614 0.614 0.614 

N-HEX-01 kg/hr 1.140 0 0 0 
 

1.140 1.140 1.140 1.140 

NCPSD Substream 
          

Block Function 

CALC1 Sets CO2 volume feed (S1-02) as 25 times the biomass 
mass feed (S1-01) 

Stellenbosch University  https://scholar.sun.ac.za



116 
 

BIOMASS kg/hr 755.03 
   

755.03 
    

 
Units S1-10 S1-11 S1-12 S1-13 S1-14 S1-15 S1-16  

 
From 

 
E-103 T-103 T-103 M-101 T-104 T-102 E-104  

 
To 

 
T-103 

 
M-101 $C-5 M-101 E-104 T-104  

 
Temperature C 200 200 200 157.4848 80 160 80  

 
Pressure bar 1 1 1 1 163.9 164 164  

 
MIXED Substream 

        
 

 
Phase 

 
Mixed Liquid Vapour Mixed Liquid Vapour Mixed  

 
Temperature C 200 200 200 157.5 80 160 80  

 
Pressure bar 1 1 1 1 163.9 164 164  

 
Molar Vap Frac 

 
0.877 0 1 0.996 0 1 0.983  

 
Molar Liq Frac 

 
0.123 1 0 0.004 1 0 0.017  

 
Molar Sol Frac 

 
0 0 0 0 0 0 0  

 
Mass Vap Frac 

 
0.689 0 1 0.991 0 1 0.979  

 
Mass Liq Frac 

 
0.311 1 0 0.009 1 0 0.021  

 
Average MW 

 
117.35 297.03 92.20 76.56 54.91 44.19 44.19  

 
Mass Flows kg/hr 21.923 6.814 15.109 21.606 6.497 313.725 313.725  

 
ALPHA-01 kg/hr 1.015 0.065 0.949 1.205 0.255 0.260 0.260  

 
BETA--01 kg/hr 0.165 0.013 0.152 0.185 0.033 0.033 0.033  

 
BETA-01 kg/hr 0.233 0.017 0.216 0.258 0.042 0.043 0.043  

 
1-MET-01 kg/hr 0.803 0.076 0.727 0.847 0.120 0.121 0.121  

 
D-LIM-01 kg/hr 1.891 0.184 1.707 1.983 0.276 0.278 0.278  

 
GAMMA-01 kg/hr 0.369 0.040 0.330 0.375 0.046 0.046 0.046  

 
TERPI-01 kg/hr 0.415 0.048 0.367 0.413 0.046 0.046 0.046  

 
ALPHA-02 kg/hr 0.178 0.039 0.139 0.146 6.79E-03 6.79E-03 0.007  

 
SPATHULE kg/hr 1.143 0.798 0.346 0.349 3.16E-03 3.16E-03 3.16E-03  

 
A-EUDESM kg/hr 0.215 0.151 0.064 0.065 5.48E-04 5.48E-04 5.48E-04  

 
CADINEDI kg/hr 0.291 0.183 0.107 0.109 1.35E-03 1.35E-03 1.35E-03  

 
1:8-C-01 kg/hr 6.651 0.588 6.064 7.073 1.009 1.015 1.015  

 
3-CAR-01 kg/hr 0.013 0.001 0.012 0.014 2.25E-03 2.27E-03 2.27E-03  

 
CAMPH-01 kg/hr 0.025 4.22E-03 2.03E-02 2.19E-02 1.62E-03 1.62E-03 1.62E-03  

 
SABINYLA kg/hr 1.04E-02 2.89E-04 1.01E-02 1.50E-02 4.89E-03 4.97E-03 4.97E-03  

 
ALLOAROM kg/hr 0.015 5.33E-03 9.78E-03 1.00E-02 2.61E-04 2.61E-04 2.61E-04  

 
AMITEOL kg/hr 0.077 7.36E-02 3.27E-03 3.28E-03 1.66E-05 1.66E-05 1.66E-05  

 
CARBO-01 kg/hr 3.884 2.43E-03 3.882 8.531 4.649 311.864 311.864  

 
N-NON-01 kg/hr 1.484 1.481 2.97E-03 2.97E-03 1.37E-06 1.37E-06 1.37E-06  

 
N-DOT-01 kg/hr 1.291 1.291 7.21E-04 7.21E-04 1.85E-07 1.85E-07 1.85E-07  

 
N-PEN-01 kg/hr 0.614 0.614 8.49E-05 8.49E-05 1.66E-08 1.66E-08 1.66E-08  

 
N-HEX-01 kg/hr 1.140 1.140 1.18E-08 1.18E-08 1.18E-08 1.18E-08 1.18E-08  
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b) Cineole purification 

 

 
Units S2-01 S2-02 S2-03 S2-04 S2-05 S2-06 S2-07 S2-08 

From 
 

$C-3 
 

E-201 T-201 E-202 T-202 T-202 E-203 

To 
 

M-201 M-201 T-201 E-202 T-202 M-203 E-203 M-202 

MIXED Substream 
         

Phase 
 

Mixed Liquid Mixed Liquid Liquid Liquid Liquid Liquid 

Temperature C 157.5 25 -5 -5 50 171.5 286.6 -5 

Pressure bar 1 1 1 1 1 0.9 1.1 1.1 

Molar Vap Frac 
 

0.996 0 0.616 0 0 0 0 0 

Molar Liq Frac 
 

0.004 1 0.384 1 1 1 1 1 

Molar Sol Frac 
 

0 0 0 0 0 0 0 0 

Mass Vap Frac 
 

0.991 0 0.343 0 0 0 0 0 

Mass Liq Frac 
 

0.009 1 0.657 1 1 1 1 1 

Average MW 
 

76.56 110.11 79.01 133.05 133.05 153.24 110.59 110.59 

Mass Flows kg/hr 21.606 2.439 24.045 6.287 6.287 3.813 2.474 2.474 

ALPHA-01 kg/hr 1.205 0 1.205 0.060 0.060 0.060 0.000 0.000 

BETA--01 kg/hr 0.185 0 0.185 0 0 0 0 0 

BETA-01 kg/hr 0.258 0 0.258 0 0 0 0 0 

1-MET-01 kg/hr 0.847 0 0.847 0.110 0.110 0.109 9.49E-04 9.49E-04 

D-LIM-01 kg/hr 1.983 0 1.983 0 0 0 0 0 

GAMMA-01 kg/hr 0.375 0 0.375 0 0 0 0 0 

TERPI-01 kg/hr 0.413 0 0.413 0 0 0 0 0 

ALPHA-02 kg/hr 0.146 0 0.146 0 0 0 0 0 

SPATHULE kg/hr 0.349 0 0.349 0 0 0 0 0 

A-EUDESM kg/hr 0.065 0 0.065 0 0 0 0 0 

CADINEDI kg/hr 0.109 0 0.109 0 0 0 0 0 

1:8-C-01 kg/hr 7.073 0 7.073 3.678 3.678 3.641 0.037 0.037 

3-CAR-01 kg/hr 0.014 0 0.014 0 0 0 0 0 

CAMPH-01 kg/hr 0.022 0 0.022 0 0 0 0 0 

SABINYLA kg/hr 0.015 0 0.015 0 0 0 0 0 

ALLOAROM kg/hr 0.010 0 0.010 0 0 0 0 0 

AMITEOL kg/hr 3.28E-03 0 3.28E-03 0 0 0 0 0 

CARBO-01 kg/hr 8.531 0 8.531 0 0 0 0 0 

N-NON-01 kg/hr 2.98E-03 0 2.98E-03 0 0 0 0 0 

N-DOT-01 kg/hr 7.21E-04 0 7.21E-04 0 0 0 0 0 

N-PEN-01 kg/hr 8.49E-05 0 8.49E-05 0 0 0 0 0 

N-HEX-01 kg/hr 1.10E-04 0 1.10E-04 0 0 0 0 0 

P-HYD-01 kg/hr 0 2.439 2.439 2.439 2.439 0.002 2.436 2.436 

 
Units S2-09 S2-10 S2-11 S2-12 S2-13 S2-14 S2-16 

 
From 

 
T-201 M-202 T-203 T-203 E-204 T-204 X203 

 
To 

 
M-202 T-203 

 
E-204 T-204 M-203 $C-4 

 
Phase 

 
Mixed Mixed Mixed Liquid Liquid Liquid Mixed 

 
Temperature C -5 -4.8 -4.8 -4.8 40 171.8 171.6 

 
Pressure bar 1 1 1 1 1 0.9 0.9 

 
Molar Vap Frac 

 
0.739 0.676 0.777 0 0 0 0.290 

 
Molar Liq Frac 

 
0.261 0.324 0.223 1 1 1 0.710 

 
Molar Sol Frac 

 
0 0 0 0 0 0 0 

 

Block Function 

CALC1 Sets HQ mass feed (S2-02) as 34.5% of the terpene 
mass feed (S2-01) 
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Mass Vap Frac 
 

0.471 0.411 0.526 0 0 0 0.290 
 

Mass Liq Frac 
 

0.529 0.589 0.474 1 1 1 0.710 
 

Average MW 
 

69.07 72.40 65.05 125.37 125.37 153.58 153.40 
 

Mass Flows kg/hr 17.758 20.232 15.963 4.269 4.269 1.817 5.625 
 

ALPHA-01 kg/hr 1.145 1.145 1.133 0.011 0.011 0.011 0.072 
 

BETA--01 kg/hr 0.185 0.185 0.185 0 0 0 0 
 

BETA-01 kg/hr 0.258 0.258 0.258 0 0 0 0 
 

1-MET-01 kg/hr 0.737 0.738 0.701 0.037 0.037 0.037 0.146 
 

D-LIM-01 kg/hr 1.983 1.983 1.983 0 0 0 0 
 

GAMMA-01 kg/hr 0.375 0.375 0.375 0 0 0 0 
 

TERPI-01 kg/hr 0.413 0.413 0.413 0 0 0 0 
 

ALPHA-02 kg/hr 0.146 0.146 0.146 0 0 0 0 
 

SPATHULE kg/hr 0.349 0.349 0.349 0 0 0 0 
 

A-EUDESM kg/hr 0.065 0.065 0.065 0 0 0 0 
 

CADINEDI kg/hr 0.109 0.109 0.109 0 0 0 0 
 

1:8-C-01 kg/hr 3.395 3.432 1.647 1.784 1.784 1.767 5.408 
 

3-CAR-01 kg/hr 0.014 0.014 0.014 0 0 0 0 
 

CAMPH-01 kg/hr 0.022 0.022 0.022 0 0 0 0 
 

SABINYLA kg/hr 0.015 0.015 0.015 0 0 0 0 
 

ALLOAROM kg/hr 0.010 0.010 0.010 0 0 0 0 
 

AMITEOL kg/hr 3.28E-03 3.28E-03 3.28E-03 0 0 0 0 
 

CARBO-01 kg/hr 8.531 8.531 8.531 0 0 0 0 
 

N-NON-01 kg/hr 2.98E-03 2.98E-03 2.98E-03 0 0 0 0 
 

N-DOT-01 kg/hr 7.21E-04 7.21E-04 7.21E-04 0 0 0 0 
 

N-PEN-01 kg/hr 8.49E-05 8.49E-05 8.49E-05 0 0 0 0 
 

N-HEX-01 kg/hr 1.10E-04 1.10E-04 1.10E-04 0 0 0 0 
 

P-HYD-01 kg/hr 0 2.436 0 2.436 2.436 0.002 0 
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c) Cineole dehydrogenation 

 

 Units S3-01 S3-02 S3-03 S3-04 S3-05 S3-06 S3-07 S3-08 

From 
 

$C-6 
 

C-301 E-301 
 

X303 E-302 T-301 

To 
 

R-301 C-301 E-301 X306 X306 X308 T-301 $C-7 

Temperature C 171.6 25 26.4 280 25 276.6 60 60 

Pressure bar 0.9 1 1.01 1.01 1 1 1 1 

Mass Vapour Fraction 
 

0.290 1 1 1 0 0.980 0.691 0 

Mass Liquid Fraction 
 

0.710 0 0 0 1 0.020 0.309 1 

Mass Flows kg/hr 5.625 10.657 10.657 10.657 0.445 16.727 16.282 5.038 

ALPHA-01 kg/hr 0.072 0 0 0 0 0.067 0.067 0.054 

1-MET-01 kg/hr 0.146 0 0 0 0 5.509 5.509 4.939 

1:8-C-01 kg/hr 5.408 0 0 0 0 0.049 0.049 0.043 

HYDROGEN kg/hr 0 0 0 0 0 5.62E-05 5.62E-05 2.03E-09 

OXYGEN kg/hr 0 0.778 0.778 0.778 0 0.778 0.778 2.25E-04 

ALUMI-01 kg/hr 0 0 0 0 0.322 0.322 0 0 

PALLA-01 kg/hr 0 0 0 0 1.23E-01 1.23E-01 0 0 

ARGON kg/hr 0 9.879 9.879 9.879 0 9.879 9.879 0.003 

 

 

 

 

 

 

 

 

 

 

 

Block Function 

CALC1 Sets carrier gas volume flow (S3-02) as 2.5 times the 
cineole volume feed flowrate (S3-01) 

CALC2 Sets catalyst mass flow (S3-05) as 5% of the terpene 
mass flowrate (S3-01) 
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d) p-Cymene oxidation 

 
Units S4-01 S4-02 S4-03 S4-04 S4-05 S4-06 S4-07 S4-08 S4-09 

From 
 

$C-8 
 

C-401 E-401 R-401 E-402 T-401 T-401 
 

To 
 

X401 C-401 E-401 R-401 E-402 T-401 R-402 R-403 C-402 

MIXED Substream 
          

Phase 
 

Liquid Vapour Vapour Vapour Mixed Vapour 
 

Vapour Vapour 

Temperature C 60 25 474.3 140 140 210 
 

210 25 

Pressure bar 1 1 20 20 20 20 
 

10 1 

Molar Vap Frac 
 

0 1 1 1 0.628 1 
 

1 1 

Molar Liq Frac 
 

1 0 0 0 0.372 0 
 

0 0 

Molar Sol Frac 
 

0 0 0 0 0 0 
 

0 0 

Mass Vap Frac 
 

0 1 1 1 0.761 1. 
 

1 1 

Mass Liq Frac 
 

1 0 0 0 0.239 0 
 

0 0 

Mass Flows kg/hr 5.038 7.064 7.064 7.064 6.672 6.672 
 

6.672 6.392 

ALPHA-01 kg/hr 0.054 0 0 0 0 0 
 

0 0 

1-MET-01 kg/hr 4.939 0 0 0 0 0 
 

0 0 

1:8-C-01 kg/hr 0.043 0 0 0 0.044 0.044 
 

0.044 0.000 

WATER kg/hr 0 0 0.000 0.000 1.912 1.912 
 

1.912 0 

OXYGEN kg/hr 2.25E-04 7.064 7.064 7.064 1.324 1.324 
 

1.324 6.392 

CARBO-01 kg/hr 0 0 0 0 3.326 3.326 
 

3.326 0 

ARGON kg/hr 2.56E-03 0 0 0 0 0 
 

0 0 

A-PINOX kg/hr 0 0 0 0 0.040 0.040 
 

0.040 0 

(S)-C-01 kg/hr 0 0 0 0 0.027 0.027 
 

0.027 0 

CALCI-01 kg/hr 0 0 0 0 0 0 
 

0 0 

CALCI-02 kg/hr 0 0 0 0 0 0 
 

0 0 

CIPSD Substream 
          

Temperature C 
    

140 210 210 
  

Pressure bar 
    

20 20 10 
  

Molar Liq Frac 
     

0 0 0 
  

Molar Sol Frac 
     

1 1 1 
  

Mass Liq Frac 
     

0 0 0 
  

Mass Sol Frac 
     

1 1 1 
  

Mass Flows kg/hr 
    

5.428 5.428 5.428 
  

TEREP-02 kg/hr 
    

2.322 2.322 2.322 
  

4-CAR-01 kg/hr 
    

0 0 0 
  

CUMIC-02 kg/hr 
    

0.302 0.302 0.302 
  

P-TOL-02 kg/hr 
    

2.804 2.804 2.804 
  

 
Units S4-10 S4-11 S4-12 S4-13 S4-14 S4-15 S4-16 S4-17 S4-18 

From 
 

C-402 E-403 R-402 T-402 T-402 
  

M-401 R-403 

To 
 

E-403 R-402 T-402 $C-9 R-403 M-401 M-401 R-403 
 

MIXED Substream 
          

Phase 
 

Vapour Vapour Vapour 
 

Vapour Liquid Liquid Liquid Mixed 

Temperature C 375.5 190 190 
 

190 25 25 25 25 

Pressure bar 12 12 12 
 

1 1 1 1 1 
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Molar Vap Frac 
 

1 1 1 
 

1 0 0 0 0.022 

Molar Liq Frac 
 

0 0 0 
 

0 1 1 1 0.978 

Molar Sol Frac 
 

0 0 0 
 

0 0 0 0 0 

Mass Vap Frac 
 

1 1 1 
 

1 0 0 0 0.034 

Mass Liq Frac 
 

0 0 0 
 

0 1 1 1 0.966 

Mass Flows kg/hr 6.392 6.392 6.227 
 

6.227 25.617 173.489 199.107 212.005 

ALPHA-01 kg/hr 0 0 0 
 

0 0 0 0 0 

1-MET-01 kg/hr 0 0 0 
 

0 0 0 0 0 

1:8-C-01 kg/hr 0 0 0 
 

0 0 0 0 0.044 

WATER kg/hr 0 0 0.119 
 

0.119 0 173.489 173.489 176.882 

OXYGEN kg/hr 6.392 6.392 6.107 
 

6.107 0 0 0 7.431 

CARBO-01 kg/hr 0 0 0 
 

0 0 0 0 0 

ARGON kg/hr 0 0 0 
 

0 0 0 0 0 

A-PINOX kg/hr 0 0 0 
 

0 0 0 0 0.040 

(S)-C-01 kg/hr 0 0 0 
 

0 0 0 0 0.027 

CALCI-01 kg/hr 0 0 0 
 

0 5.600 0 5.600 0 

CALCI-02 kg/hr 0 0 0 
 

0 20.017 0 20.017 27.582 

CIPSD Substream 
          

Temperature C 
  

190 190 
     

Pressure bar 
  

12 1 
     

Molar Liq Frac 
   

0 0 
     

Molar Sol Frac 
   

1 1 
     

Mass Liq Frac 
   

0 0 
     

Mass Sol Frac 
   

1 1 
     

Mass Flows kg/hr 
  

5.593 5.593 
     

TEREP-02 kg/hr 
  

3.960 3.960 
     

4-CAR-01 kg/hr 
  

0.074 0.074 
     

CUMIC-02 kg/hr 
  

0.306 0.306 
     

P-TOL-02 kg/hr 
  

1.253 1.253 
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e) TPA purification and drying  

 Units S5-01 S5-02 S5-03 S5-04 S5-05 S5-06 S5-07 S5-08 S5-09 S5-10 S5-11 

From 
 

$C-10 
 

M-501 E-501 R-501 R-501 E-502 
 

M-502 R-502 R-502 

To 
 

M-501 M-501 E-501 R-501 R-502 E-502 M-502 M-502 Y-501 
 

E-506 

MIXED Sub 
            

Phase 
  

Liquid Liquid Vapour 
 

Vapour Liquid Liquid Liquid Vapour Liquid 

Temperature C 
 

25 67.5 160 
 

160 45 25 39.9 75.3 75.3 

Pressure bar 
 

1 1 1 
 

1 1 1 1 0.9 0.9 

Mass Flows kg/hr 
 

11.879 11.879 11.879 
 

11.879 11.879 3.742 15.621 0.013 8.124 

ACETO-01 kg/hr 
 

0 0 0 
 

0 0 3.742 3.742 0.013 0 

N-MET-01 kg/hr 
 

11.879 11.879 11.879 
 

11.879 11.879 0 11.879 0 8.124 

CIPSD Sub 
            

Mass Flows kg/hr 5.593 
 

5.593 5.593 4.345 1.248 1.248 
 

1.248 3.490 0.855 

TEREP-02 kg/hr 3.960 
 

3.960 3.960 2.712 1.247 1.247 
 

1.247 1.858 0.854 

4-CAR-01 kg/hr 0.074 
 

0.074 0.074 0.074 5.56E-04 5.56E-04 
 

5.56E-04 0.074 3.81E-04 

CUMIC-02 kg/hr 0.306 
 

0.306 0.306 0.306 2.42E-04 2.42E-04 
 

2.42E-04 0.306 1.66E-04 

P-TOL-02 kg/hr 1.253 
 

1.253 1.253 1.253 2.53E-04 2.53E-04 
 

2.53E-04 1.253 1.73E-04 

 Units S5-12 S5-13 S5-14 S5-15 S5-16 S5-17 S5-18 S5-19 S5-20 S5-21 S5-22 

From 
 

M-504 M-504 M-504 T-501 Y-503 E-507 R-504 R-504 E-506 E-508 T-501 

To 
 

R-502 
 

E-507 M-504 E-507 R-504 
 

E-508 M-505 M-506 M-505 

MIXED Sub 
            

Phase 
 

Liquid Liquid Liquid Liquid 
 

Vapour Vapour Vapour Liquid Liquid Vapour 

Temperature C 75.3 75.3 75.3 75.3 
 

105 105 105 45 40 53.2 

Pressure bar 0.9 0.9 0.9 0.9 
 

0.9 0.9 0.9 0.9 0.9 0.9 

Mass Flows kg/hr 8.137 4.907 3.076 16.120 
 

3.076 4.92E-03 3.071 8.124 3.071 6 

ACETO-01 kg/hr 0.013 7.85E-03 4.92E-03 0.025797 
 

4.92E-03 4.92E-03 0 0 0 5.849 

N-MET-01 kg/hr 8.124 4.899 3.071 16.094 
 

3.071 0 3.071 8.124 3.071 0.151 

CIPSD Sub 
            

Mass Flows kg/hr 
    

0.855 0.855 0.449 0.406 0.855 0.406 
 

TEREP-02 kg/hr 
    

0.854 0.854 0.449 0.406 0.854 0.406 
 

4-CAR-01 kg/hr 
    

3.81E-04 3.81E-04 3.71E-04 1.01E-05 3.81E-04 1.01E-05 
 

CUMIC-02 kg/hr 
    

1.66E-04 1.66E-04 1.56E-04 9.33E-06 1.66E-04 9.33E-06 
 

P-TOL-02 kg/hr 
    

1.73E-04 1.73E-04 1.65E-04 7.71E-06 1.73E-04 7.71E-06 
 

 Units S5-25 S5-27 S5-28 S5-29 S5-30 S5-31 S5-32 S5-33 S5-34 S5-35 S5-36 

From 
 

M-505 E-505 Y-502 M-503 
 

E-504 R-503 Y-501 R-503 
 

E-503 

To 
 

Y-503 T-501 E-505 Y-502 E-504 M-503 M-503 R-503 
 

E-503 R-503 

MIXED Sub 
            

Temperature C 62.8 90 210 69.4 25 40 126.6 
  

25 105 

Pressure bar 0.9 1 1 1 1 1 1 
  

1 1 

Mass Flows kg/hr 14.124 22.120 6.499 6.499 2.133 2.133 4.366 
  

4.366 4.366 

ACETO-01 kg/hr 5.849 5.875 2.133 2.133 2.133 2.133 0 
  

0 0 

N-MET-01 kg/hr 8.275 16.245 4.366 4.366 0 0 4.366 
  

4.366 4.366 

CIPSD Sub 
            

Mass Flows kg/hr 0.855 
  

0.593 
  

0.593 1.248 0.656 
  

TEREP-02 kg/hr 0.854 
  

0.592 
  

0.592 1.247 0.655 
  

4-CAR-01 kg/hr 3.81E-04 
  

1.48E-05 
  

1.48E-05 5.56E-04 5.42E-04 
  

CUMIC-02 kg/hr 1.66E-04 
  

1.36E-05 
  

1.36E-05 2.42E-04 2.28E-04 
  

P-TOL-02 kg/hr 1.73E-04 
  

1.13E-05 
  

1.13E-05 2.53E-04 2.42E-04 
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f) Biomass power and heat generation  

 

 

 Units S6-01 S6-02 S6-04 S6-05 S6-07 S6-08 S6-09 S6-10 S6-11 S6-12 S6-13 S6-15 

From   $C-2  X608 R-601 E-601A  P-601 E-601B C-601 C-602 E-603 

To  M-601 M-601 X608 R-601 E-601A E-603 P-601 E-601B C-601 C-602 E-602  

Temperature C 25 80 25 161.1 320.1 230 40 43.2 512.3 332.7 170.9 105 

Pressure bar 1 1 1 1 1 1 2 41 41 10 2 1 

Mass Vap Frac  0 0 1 1 1 1 0 0 1 1 1 1 

Mass Liq Frac  1 0 0 0 0 0 1 1 0 0 0 0 

Mass Sol Frac  0 1 0 0 0 0 0 0 0 0 0 0 

Mass Flows kg/hr 302.01 755.03 19588.58 19588.58 20645.63 20645.63 603.96 603.96 603.96 603.96 603.96 20645.63 

WATER kg/hr 302.01 0 0 0 895.79 895.79 603.96 603.96 603.96 603.96 603.96 895.79 

BIOMASS kg/hr 0 755.03 0 0 0 0 0 0 0 0 0 0 

NITROGEN kg/hr 0 0 15026.07 15026.07 14012.46 14012.46 0 0 0 0 0 14012.46 

OXYGEN kg/hr 0 0 4562.51 4562.51 0 0 0 0 0 0 0 0 

NO2 kg/hr 0 0 0 0 4323.69 4323.69 0 0 0 0 0 4323.69 

CARBO-01 kg/hr 0 0 0 0 1413.69 1413.69 0 0 0 0 0 1413.69 

 

 

 

 

 

 

 

 

 

Block Function 

CALC1 Vary water mass flow (S6-01) for 40% MIXED (liquid) 
mass flowrate in S6-03 
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PHR Model 

a) Dehydrogenation and desulphurisation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Units S1-01 S1-02 S1-03 S1-04 S1-05 S1-06 S1-07 S1-08 S1-09 

From 
 

X116 E-101 D-101 D-101 E-102 
 

C-101 H-101 
 

To 
 

E-101 D-101 
 

E-102 R-101 C-101 X110 
 

H-101 

MIXED Substream 
          

Phase 
 

Vapour Liquid Liquid Liquid Vapour Vapour Vapour Vapour Liquid 

Temperature C 175 30 30 30 300 60 345.5 500 25 

Pressure bar 1 1 1 1 1 1 5.5 1 5.5 

Molar Vap Frac 
 

1 0 0 0 1 1 1 1 0 

Molar Liq Frac 
 

0 1 1 1 0 0 0 0 1 

Molar Sol Frac 
 

0 0 0 0 0 0 0 0 0 

Mass Vap Frac 
 

1 0 0 0 1 1 1 1 0 

Mass Liq Frac 
 

0 1 1 1 0 0 0 0 1 

Mass Flows kg/hr 4120.5 4120.5 4104.0 16.5 16.5 450.35 450.35 8.5 30.8 

ALPHA-01 kg/hr 8.508 8.508 0.069 8.438 8.438 0 0 0 0 

CAMPHENE kg/hr 0.267 0.267 0.002 0.265 0.265 0 0 0 0 

BETA-PIN kg/hr 4.1 4.1 0.031 4.069 4.069 0 0 0 0 

TERP-4-Y kg/hr 0 0 0 0 0 0 0 0 0 

A-TERPIN kg/hr 0.267 0.267 0.118 0.148 0.148 0 0 0 0 

B-MYRCE kg/hr 0.267 0.267 1.21E-03 0.265 0.265 0 0 0 0 

D-LIM-01 kg/hr 0.267 0.267 1.34E-03 0.265 0.265 0 0 0 0 

BPHELLAN kg/hr 2.932 2.932 0.015 2.916 2.916 0 0 0 0 

GTERPINE kg/hr 0 0 0 0 0 0 0 0 0 

PCYMENE kg/hr 0 0 0 0 0 0 0 0 0 

TERPI-01 kg/hr 0 0 0 0 0 0 0 0 0 

WATER kg/hr 4100 4100 4099.96 0.037 0.037 0 0 8.390 8.395 

NITROGEN kg/hr 0 0 0 0 0 450.347 450.347 0 0 

GUAIE-01 kg/hr 0 0 0 0 0 0 0 0 0 

SODIU-01 kg/hr 0 0 0 0 0 0 0 0 0.062 

CALCI-01 kg/hr 0 0 0 0 0 0 0 0 0.830 

MAGNE-01 kg/hr 0 0 0 0 0 0 0 0 0.185 

Block Function 

CALC3 Sets hydrogen peroxide mass flow (S1-14) as 1.5 times 
the H2S and  C2H6S2 mass flowrates (S1-13) 
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ALUMI-01 kg/hr 0 0 0 0 0 0 0 0 5.203 

SILIC-01 kg/hr 0 0 0 0 0 0 0 0 16.076 

MERCAPTA kg/hr 0.82 0.82 0.818 1.62E-03 1.62E-03 0 0 0 0 

DIMETS kg/hr 1.989 1.989 1.983 5.13E-03 5.13E-03 0 0 0 0 

DIMDIS kg/hr 1.087 1.087 0.951 0.136 0.136 0 0 0 0 

 
Units S1-10 S1-11 S1-12 S1-13 S1-14 S1-15 S1-16 S1-17 S1-18 

From 
 

H-101 X108 C-102 E-103 
 

M-101 X118 T-101 T-101 

To 
 

X110 X111 E-103 M-101 M-101 R-102 T-101 
 

$C-5 

MIXED Substream 
          

Phase 
 

Liquid Mixed Vapour Mixed Liquid Mixed Mixed Mixed Liquid 

Temperature C 500 352.5 137.2 25 25 24.5 25 25 25 

Pressure bar 1 5 1 1 1 1 1 1 1 

Molar Vap Frac 
 

0 0.998 1 1 0 1 1 1 0 

Molar Liq Frac 
 

1 2.08E-03 0 1.47E-04 1 1.98E-04 4.41E-04 2.19E-04 1 

Molar Sol Frac 
 

0 0 0 0 0 0 0 0 0 

Mass Vap Frac 
 

0 0.995 1 0.999 0 0.999 0.998 1.000 0 

Mass Liq Frac 
 

1 4.89E-03 0 9.99E-04 1 1.12E-03 1.61E-03 2.73E-04 1 

Mass Flows kg/hr 22.3 489.177 466.877 466.877 1.8 468.677 468.677 452.677 15.9 

ALPHA-01 kg/hr 0 0 0 0 0 0 0 0 0 

CAMPHENE kg/hr 0 0.215 0.215 0.215 0 0.215 0.215 0 0.215 

BETA-PIN kg/hr 0 3.309 3.304 3.304 0 3.304 3.304 0 3.304 

TERP-4-Y kg/hr 0 0.579 0.571 0.571 0 0.571 0.571 0 0.571 

A-TERPIN kg/hr 0 0.215 0.214 0.214 0 0.214 0.214 0 0.214 

B-MYRCE kg/hr 0 0.215 0.215 0.215 0 0.215 0.215 0 0.215 

D-LIM-01 kg/hr 0 0.215 0.215 0.215 0 0.215 0.215 0 0.215 

BPHELLAN kg/hr 0 2.366 2.361 2.361 0 2.361 2.361 0 2.361 

GTERPINE kg/hr 0 0.116 0.116 0.116 0 0.116 0.116 0 0.116 

PCYMENE kg/hr 0 1.357 1.354 1.354 0 1.354 1.354 0 1.354 

TERPI-01 kg/hr 0 0.298 0.297 0.297 0 0.297 0.297 0 0.297 

WATER kg/hr 5.16E-03 5.16E-03 5.16E-03 5.16E-03 0 5.16E-03 1.288 0 1.288 

NITROGEN kg/hr 0 450.347 450.345 450.345 0 450.345 450.345 450.345 0 

GUAIE-01 kg/hr 0 3.905 3.874 3.874 0 3.874 3.874 0 3.874 

SODIU-01 kg/hr 0.062 0.061 0 0 0 0 0 0 0 

CALCI-01 kg/hr 0.830 0.830 0 0 0 0 0 0 0 

MAGNE-01 kg/hr 0.185 0.185 0 0 0 0 0 0 0 

ALUMI-01 kg/hr 5.203 5.203 0 0 0 0 0 0 0 

SILIC-01 kg/hr 16.076 16.076 0 0 0 0 0 0 0 

MERCAPTA kg/hr 0 0 0 0 0 0 0 0 0 

DIMETS kg/hr 0 0.430 0.430 0.430 0 0.430 0 0 0 

DIMDIS kg/hr 0 0 0 0 0 0 0 0 0 

M-CYMENE kg/hr 0 0.017 0.017 0.017 0 0.017 0.017 0 0.017 

O-CYMENE kg/hr 0 0.529 0.529 0.529 0 0.529 0.529 0 0.529 

MENTHENE kg/hr 0 1.109 1.107 1.107 0 1.107 1.107 0 1.107 

MENTHANE kg/hr 0 0.265 0.264 0.264 0 0.264 0.264 0 0.264 

H2S kg/hr 0 1.191 1.191 1.191 0 1.191 0.095 0.095 0 

CH4 kg/hr 0 0.215 0.215 0.215 0 0.215 0.215 0.215 0 

H2O2 kg/hr 0 0 0 0 1.787 1.787 0.458 0.458 0 

S kg/hr 0 0 0 0 0 0 1.031 1.031 0 

DIMETSO kg/hr 0 0 0 0 0 0 0.541 0.541 0 
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b) p-Cymene purification 

 

 Units S2-01 S2-02 S2-03 S2-04 S2-05 S2-06 S2-07 S2-08 

From 
 

$C-6 E-201 
 

E-202 X201 R-201 E-203 T-201 

To 
 

E-201 X201 E-202 X201 R-201 E-203 T-201 $C-8 

Temperature C 25 70 25 70 70.4 110 150 180.9 

Pressure bar 1 1 1 1 1 1 1 0.9 

Mass Vapour Fraction 
 

0 0 0 0 0 0 0 0 

Mass Liquid Fraction 
 

1 1 1 1 1 1 1 1 

Mass Solid Fraction 
 

0 0 0 0 0 0 0 0 

Mass Flows kg/hr 15.94 15.94 3.98 3.98 19.92 19.92 19.92 6 

CAMPHENE kg/hr 0.215 0.215 0 0 0.215 0 0 0 

BETA-PIN kg/hr 3.304 3.304 0 0 3.304 0 0 0 

TERP-4-Y kg/hr 0.571 0.571 0 0 0.571 0 0 0 

A-TERPIN kg/hr 0.214 0.214 0 0 0.214 0 0 0 

B-MYRCE kg/hr 0.215 0.215 0 0 0.215 0 0 0 

D-LIM-01 kg/hr 0.215 0.215 0 0 0.215 0 0 0 

BPHELLAN kg/hr 2.361 2.361 0 0 2.361 0 0 0 

GTERPINE kg/hr 0.116 0.116 0 0 0.116 0 0 0 

PCYMENE kg/hr 1.354 1.354 0 0 1.354 3.875 3.875 3.873 

TERPI-01 kg/hr 0.297 0.297 0 0 0.297 0 0 0 

WATER kg/hr 1.288 1.288 0.199 0.199 1.488 0.012 0.012 0.012 

GUAIE-01 kg/hr 3.874 3.874 0 0 3.874 0 0 0 

P-MEN-01 kg/hr 0 0 0 0 0 0.018 0.018 0.018 

P-MEN-02 kg/hr 0 0 0 0 0 0.004 0.004 0.004 

H2SO4 kg/hr 0 0 3.786 3.786 3.786 8.755 8.755 1.480 

ISOPRESS kg/hr 0 0 0 0 0 3.790 3.790 1.23E-39 

CEMBRENE kg/hr 0 0 0 0 0 0.096 0.096 4.66E-20 

ELLIOTIN kg/hr 0 0 0 0 0 3.375 3.375 0.612 

M-CYMENE kg/hr 0.017 0.017 0 0 0.017 0 0 0 

O-CYMENE kg/hr 0.529 0.529 0 0 0.529 0 0 0 

MENTHENE kg/hr 1.107 1.107 0 0 1.107 0 0 0 

MENTHANE kg/hr 0.264 0.264 0 0 0.264 0 0 0 
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c) p-Cymene oxidation 

 

 Units S3-01 S3-02 S3-03 S3-04 S3-05 S3-06 S3-07 S3-08 S3-09 S3-10 S3-11 

From  $C-9  C-301 E-401 -301 V-301 V-301  C302 E-402 R-302 

To  R-301 C-301 E-401 R-301 V-301 R-303 R-302 C302 E-402 R-302 V-302 

MIXED Sub             

Phase  Liquid Vapour Vapour Vapour Mixed Vapour Liquid Vapour Vapour Vapour Vapour 

Temperature C 166.2 25 532.5 140 140 140 140 25 420.9 190 190 

Pressure bar 0.9 1 20 20 20 20 20 1 12 12 12 

Molar Vap Frac  0 1 1 1 0.630 1 0 1 1 1 1 

Molar Liq Frac  1 0 0 0 0.370 0 1 0 0 0 0 

Mass Vap Frac  0 1 1 1 0.764 1 0 1 1 1 1 

Mass Liq Frac  1 0 0 0 0.236 0 1 0 0 0 0 

Mass Flows kg/hr 6 6.784 6.784 6.784 7.039 5.381 1.658 0.6 0.6 0.6 4.534 

PCYMENE kg/hr 4.796 0 0 0 0 0 0 0 0 0 0 

WATER kg/hr 0.015 0 0 0 2.024 0.475 1.548 0 0 0 0.873 

OXYGE-01 kg/hr 0 6.784 6.784 6.784 1.401 1.394 0.007 0.6 0.6 0.6 3.582 

CARBO-01 kg/hr 0 0 0 0 3.528 3.476 0.053 0 0 0 0.030 

P-MEN-01 kg/hr 0.022 0 0 0 0.069 0.029 0.040 0 0 0 0.039 

P-MEN-02 kg/hr 4.93E-03 0 0 0 0.017 7.11E-03 9.51E-03 0 0 0 9.60E-03 

H2SO4 kg/hr 0.774 0 0 0 0 0 0 0 0 0 0 

ISOPRESS kg/hr 2.37E-40 0 0 0 0 0 0 0 0 0 0 

CEMBRENE kg/hr 1.74E-20 0 0 0 0 0 0 0 0 0 0 

ELLIOTIN kg/hr 0.388 0 0 0 0 0 0 0 0 0 0 

CA(OH)2 kg/hr 0 0 0 0 0 0 0 0 0 0 0 

CALCI-02 kg/hr 0 0 0 0 0 0 0 0 0 0 0 

CIPSD Sub             

Mass Flows kg/hr     5.745  5.745    3.469 

TPA kg/hr     2.457  2.457    2.628 

P-TOLUIC kg/hr     2.967  2.967    0.621 

CUMIC-A kg/hr     0.321  0.321    0.181 

4-CBA kg/hr     0  0    0.039 

 Units S3-12 S3-13 S3-14 S3-15 S3-16 S3-17 S3-18 S3-19 S3-20 S3-21  

From  V-302 V-302 Y-301 Y-301   M-303 R-303 M-302 M-302  

To  Y-301 R-303 M-302 $C-7 M-303 M-303 R-303   Y-301  

MIXED Sub             

Phase  Vapor Vapor Liquid  Liquid Liquid Liquid Mixed Liquid Liquid  

Temperature C 190 190 90  25 25 25 25 90 90  

Pressure bar 12 12 12  1 1 1 1 12 12  

Molar Vap Frac  1 1 0  0 0 0 0.026 0 0  

Molar Liq Frac  0 0 1  1 1 1 0.974 1 1  

Mass Vap Frac  1 1 0  0 0 0 0.042 0 0  

Mass Liq Frac  0 0 1  1 1 1 0.958 1 1  

Mass Flows kg/hr 0.922 3.612 4.610  5.901 100.356 106.257 115.250 0.922 3.688  

PCYMENE kg/hr 0 0 0  0 0 0 0 0 0  

WATER kg/hr 0.873 0 4.366  0 100.356 100.356 102.266 0.873 3.493  

OXYGE-01 kg/hr 0 3.582 0  0 0 0 4.976 0 0  

CARBO-01 kg/hr 0 0.030 0  0 0 0 0 0 0  

P-MEN-01 kg/hr 0.039 0 0.196  0 0 0 0.029 0.039 0.157  

P-MEN-02 kg/hr 9.60E-03 0 0.048  0 0 0 7.11E-03 9.60E-03 0.038415  

H2SO4 kg/hr 0 0 0  0 0 0 0 0 0  

ISOPRESS kg/hr 0 0 0  0 0 0 0 0 0  
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CEMBRENE kg/hr 0 0 0  0 0 0 0 0 0  

ELLIOTIN kg/hr 0 0 0  0 0 0 0 0 0  

CA(OH)2 kg/hr 0 0 0  5.901 0 5.901 0 0 0  

CALCI-02 kg/hr 0 0 0  0 0 0 7.971 0 0  

CIPSD Sub             

Mass Flows kg/hr 3.469   3.469        

TPA kg/hr 2.628   2.628        

P-TOLUIC kg/hr 0.621   0.621        

CUMIC-A kg/hr 0.181   0.181        

4-CBA kg/hr 0.039   0.039        
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d) TPA purification and drying 

 

 

 Units S4-01 S4-02 S4-03 S4-04 S4-05 S4-06 S4-07 S4-08 

From  $C-10  M-401 E-401 R-401 R-401 E-402  

To  M-401 M-401 E-401 R-401 R-402 E-402 M-402 M-402 

MIXED Sub          

Phase   Liquid Liquid Liquid  Liquid Liquid Liquid 

Temperature C  25 40.2 160  160 45 25 

Pressure bar  1 1 1  1 1 1 

Molar Vap Frac   0 0 0  0 0 0 

Molar Liq Frac   1 1 1  1 1 1 

Mass Vap Frac   0 0 0  0 0 0 

Mass Liq Frac   1 1 1  1 1 1 

Mass Flows kg/hr  7.885 7.885 7.885  7.885 7.885 2.484 

NMP kg/hr  7.885 7.885 7.885  7.885 7.885 0 

ACETONE kg/hr  0 0 0  0 0 2.484 

CIPSD Sub          

Mass Flows kg/hr 3.469  3.469 3.469 2.641 0.829 0.829  

TPA kg/hr 2.628  2.628 2.628 1.800 0.828 0.828  

P-TOLUIC kg/hr 0.621  0.621 0.621 0.621 1.68E-04 1.68E-04  

CUMIC-A kg/hr 0.181  0.181 0.181 0.181 1.25E-04 1.25E-04  

4-CBA kg/hr 0.039  0.039 0.039 0.039 3.70E-04 3.70E-04  

 Units S4-09 S4-10 S4-11 S4-12 S4-13 S4-14 S4-15 S4-16 

From  M-402 R-402 R-402 M-404 M-404 M-404 T-401 Y-403 

To  Y-401  E-406 R-402  E-407 M-404 E-407 

MIXED Sub          

Phase  Liquid  Liquid Liquid Liquid Liquid Liquid  

Temperature C 39.6  189.4 199.2 199.2 199.2 199.2  

Pressure bar 1  0.9 0.9 0.9 0.9 0.9  

Molar Vap Frac  0  0 0 0 0 0  

Molar Liq Frac  1  1 1 1 1 1  

Mass Vap Frac  0  0 0 0 0 0  

Mass Liq Frac  1  1 1 1 1 1  

Mass Flows kg/hr 10.368  5.401 5.401 1.908 2.042 9.351  

NMP kg/hr 7.885  5.401 5.401 1.908 2.042 9.351  

ACETONE kg/hr 2.484  0 8.23E-43 2.91E-43 3.11E-43 1.43E-42  

CIPSD Sub          

Mass Flows kg/hr 0.829 2.073 0.567     0.567 

TPA kg/hr 0.828 1.233 0.567     0.567 

P-TOLUIC kg/hr 1.68E-04 0.621 1.15E-04     1.15E-04 

CUMIC-A kg/hr 1.25E-04 0.181 1.15E-04     1.15E-04 
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4-CBA kg/hr 3.70E-04 0.039 1.15E-04     1.15E-04 

 Units S4-17 S4-18 S4-19 S4-20 S4-21 S4-22 S4-25 S4-27 

From  E-407 R-404 R-404 E-406 E-408 T-401 M-405 E-405 

To  R-404  E-408 M-405 M-406 M-405 Y-403 T-401 

MIXED Sub          

Phase  Liquid  Liquid Liquid Liquid Vapor Mixed Mixed 

Temperature C 105  105 45 40 142.4 123.4 90 

Pressure bar 0.9  0.9 0.9 0.9 0.9 0.9 1 

Molar Vap Frac  0  0 0 0 1 0.466 0.058 

Molar Liq Frac  1  1 1 1 0 0.534 0.942 

Mass Vap Frac  0  0 0 0 1 0.364 0.041 

Mass Liq Frac  1  1 1 1 0 0.636 0.959 

Mass Flows kg/hr 2.042  2.042 5.401 2.042 5.331 10.732 14.682 

NMP kg/hr 2.042  2.042 5.401 2.042 1.431 6.832 10.782 

ACETONE kg/hr 3.11E-43  0 0 0 3.899 3.899 3.899 

CIPSD Sub          

Mass Flows kg/hr 0.567 0.298 0.269 0.567 0.269  0.567  

TPA kg/hr 0.567 0.298 0.269 0.567 0.269  0.567  

P-TOLUIC kg/hr 1.15E-04 1.10E-04 5.13E-06 1.15E-04 5.13E-06  1.15E-04  

CUMIC-A kg/hr 1.15E-04 1.09E-04 6.19E-06 1.15E-04 6.19E-06  1.15E-04  

4-CBA kg/hr 1.15E-04 1.08E-04 6.73E-06 1.15E-04 6.73E-06  1.15E-04  

 Units S4-28 S4-29 S4-30 S4-31 S4-32 S4-33 S4-35 S4-36 

From  Y-402 M-403  E-404 R-403 Y-401  E-403 

To  E-405 Y-402 M-403 M-403 E-404 E-403 R-403 R-403 

MIXED Sub          

Phase  Vapor Liquid Liquid Liquid Liquid  Liquid  

Temperature C 210 34.6 25 40 38.2  25  

Pressure bar 1 1 1 1 1  1  

Molar Vap Frac  1 0 0 0 0  0  

Molar Liq Frac  0 1 1 1 1  1  

Mass Vap Frac  1 0 0 0 0  0  

Mass Liq Frac  0 1 1 1 1  1  

Mass Flows kg/hr 4.313 4.313 1.416 2.898 2.898  2.898  

NMP kg/hr 2.898 2.898 0 2.898 2.898  2.898  

ACETONE kg/hr 1.416 1.416 1.416 0 0  0  

CIPSD Sub          

Mass Flows kg/hr  0.393  0.393 0.393 0.829  0.829 

TPA kg/hr  0.393  0.393 0.393 0.828  0.828 

P-TOLUIC kg/hr  7.48E-06  7.48E-06 7.48E-06 1.68E-04  1.68E-04 

CUMIC-A kg/hr  9.05E-06  9.05E-06 9.05E-06 1.25E-04  1.25E-04 

4-CBA kg/hr  9.83E-06  9.83E-06 9.83E-06 3.70E-04  3.70E-04 
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Starch Model 

p-Xylene conversion 

 

 Units S1-01 S1-02 S1-03 S1-04 S1-05 S1-06 S1-07 S1-08 S1-09 S1-10 S1-11 S1-12 S1-13 

Description               

From   E-101    C-101 E-102 R-101 Y-101 Y-101  E-103 R-102 

To  E-101 R-101 X101 X101 C-101 E-102 R-101 X103  R-102 E-103 R-102 M-101 

MIXED Sub               

Phase  Liquid Vapor Liquid Liquid Vapor Vapor Vapor Mixed Vapor  Liquid Vapor Vapor 

Temperature C 300 200 25 25 25 696.5 200 200 200  25 105 124.3 

Pressure bar 57 1 1 1 1 38.93 38.93 38.93 38.93  1 1 1 

Molar Vap Frac  0 1 0 0 1 1 1 0.53 1  0 1 1 

Molar Liq Frac  1 0 1 1 0 0 0 0.47 0  1 0 0 

Mass Vap Frac  0 1 0 0 1 1 1 0.41 1  0 1 1 

Mass Liq Frac  1 0 1 1 0 0 0 0.59 0  1 0 0 

Molar Enthalpy kcal/mol 11.1 10.8 -165.1 -68.3 -8.90E-16 5.2 1.3 -48.5 1.1  -10 3.47E-01 9.90E-
01 

Mass Enthalpy kcal/kg 104.2 102.0 -943.1 -3789.1 -2.78E-14 161.5 39.2 -1409.8 35.0  -116 4.08 11.62 

Molar Entropy cal/mol-K -70.5 -65.8 -191.8 -39.0 2.61E-02 1.7 -3.9 -28.2 -4.4  -145 -115.88 -114.22 

Mass Entropy cal/gm-K -0.7 -0.6 -1.1 -2.2 8.17E-04 0.1 -0.1 -0.8 -0.1  -2 -1.36 -1.34 

Enthalpy Flow Gcal/hr 2.3 2.3 -11.4 -37.8557 -4.49E-16 2.6 0.6 -45.1 0.3  -12 0.41 1.17 

Mass Flows kg/hr 22413.8 22413.8 12132.8 9990.6 16132.2 16132.2 16132.2 31969.7 9886.1  100855 100855 100855 

P-XYLENE kg/hr 22301.7 22301.7 0 0 0 0 0 0 0  0 0 0 

OXYGEN kg/hr 0 0 0 0 16132.2 16132.16 16132.16 9773.84 9773.84  0 0 0 

CO(CH-01 kg/hr 0 0 6135.64 0 0 0 0 6121.542 0  0 0 0 

MN(CH-01 kg/hr 0 0 5997.167 0 0 0 0 5988.07 0  0 0 0 

WATER kg/hr 0 0 0 9990.622 0 0 0 9974.049 0  0 0 0 

BENZO-01 kg/hr 0 0 0 0 0 0 0 3.03347 3.03347  0 0 0 

N-TRI-01 kg/hr 112.0691 112.0691 0 0 0 0 0 109.2049 109.2049  0 0 0 

N-MET-01 kg/hr 0 0 0 0 0 0 0 0 0  100855 100855 100855 

ACETO-01 kg/hr 0 0 0 0 0 0 0 0 0  0 0 0 

CISOLID Sub               

Mass Sol Frac         1  1   1 

Molar Enthalpy kcal/mol        -208.90  -208.90   -193.13 

Mass Enthalpy kcal/kg        -1258.43  -1258.43   -
1162.52 

Molar Entropy cal/mol-K        -707.48  -707.48   -649.95 

Mass Entropy cal/gm-K        -4.26  -4.26   -3.91 

Enthalpy Flow Gcal/hr        -36.12  -36.12   -15.79 

Mass Flows kg/hr        28700  28700   13582 

P-XYLENE kg/hr        0  0   0 

P-TOLUIC kg/hr        103.14  103.14   0.883 

4-CBA kg/hr        6.067  6.067   0.340 

TEREP-01 kg/hr        28590.45  28590.45   13580 

 Units S1-14 S1-15 S1-16 S1-17 S1-18 S1-19 S1-20 S1-21 S1-22 S1-23 S1-24 S1-25 S1-26 

Description               

From   E-104 M-101 Y-102 Y-102 T-101 M-102 M-102 R-102 R-103 R-103 T-101 E-105 

To  E-104 M-101 Y-102 M-104 X107 M-102  R-103 R-103 E-106 M-103 E-105 M-103 

MIXED Sub               

Phase  Liquid Liquid Mixed  Vapor Liquid Liquid Liquid   Mixed Liquid Liquid 

Temperature C 25 40 69.5  150 75.4 75.4 75.4   75.4 52.9 40 
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Pressure bar 1 1 1  1 0.9 0.9 0.9   0.9 0.9 0.9 

Molar Vap Frac  0 0 0.71  1 0 0 0   0.05 0 0 

Molar Liq Frac  1 1 0.29  0 1 1 1   0.95 1 1 

Mass Vap Frac  0 0 0.69  1 0 0 0   0.05 0 0 

Mass Liq Frac  1 1 0.31  0 1 1 1   0.95 1 1 

Molar Enthalpy kcal/mol -58.96 -58.52 -23.62  -19.24 -7.88 -7.88 -7.88   -7.54 -57.36 -57.75 

Mass Enthalpy kcal/kg -1015.20 -1007.57 -319.66  -260.28 -92.60 -92.60 -92.60   -88.52 -980.43 -987.25 

Molar Entropy cal/mol-K -74.19 -72.76 -94.71  -82.61 -139.11 -139.11 -139.11   -138.11 -72.49 -73.70 

Mass Entropy cal/gm-K -1.28 -1.25 -1.28  -1.12 -1.63 -1.63 -1.63   -1.62 -1.24 -1.26 

Enthalpy Flow Gcal/hr -49.63 -49.26 -47.87  -194.87 -9.24 -4.23 -5.00   -4.78 -49.02 -49.36 

Mass Flows kg/hr 48890 48890 149745   99744.88 45708.93 54035.96   54035 50000 50000 

P-XYLENE kg/hr 0 0 0  0 0 0 0   0 0 0 

OXYGEN kg/hr 0 0 0  0 0 0 0   0 0 0 

CO(CH-01 kg/hr 0 0 0  0 0 0 0   0 0 0 

MN(CH-01 kg/hr 0 0 0  0 0 0 0   0 0 0 

WATER kg/hr 0 0 0  0 0 0 0   0 0 0 

BENZO-01 kg/hr 0 0 0  0 0 0 0   0 0 0 

N-TRI-01 kg/hr 0 0 0  0 0 0 0   0 0 0 

N-MET-01 kg/hr 0 0 100855.2  504276.1 99724.43 45699.55 54024.88   54024.88 1130.75 1130 

ACETO-01 kg/hr 48889.68 48889.68 48889.68  244448.4 20.45352 9.372994 11.08052   11.08 48869.25 48869 

CISOLID Sub               

Mass Sol Frac    1 1     1 1 1   

Molar Enthalpy kcal/mol   -195.82 -191.73     -231.39 -267.86 -195.55   

Mass Enthalpy kcal/kg   -1178.71 -1154.08     -1394.93 -1616.99 -1177.07   

Molar Entropy cal/mol-K   -657.22 -646.53     -778.27 -898.98 -656.43   

Mass Entropy cal/gm-K   -3.96 -3.89     -4.69 -5.43 -3.95   

Enthalpy Flow Gcal/hr   -16.01 -15.67     -21.09 -12.92 -8.39   

Mass Flows kg/hr   13582 13582     15118 7988 7130   

P-XYLENE kg/hr   0 0     0 0 0   

P-TOLUIC kg/hr   0.883 0.883     102.26 101.79 0.463   

4-CBA kg/hr   0.340 0.340     5.727 5.549 0.178   

TEREP-01 kg/hr   13580.47 13580.47     15009.99 7880.24 7129.74   

 Units S1-27 S1-28 S1-29 S1-30 S1-31 S1-32 S1-33 S1-34 S1-35     

Description               

From  M-103 Y-103 Y-103 M-104 E-106 X107 X107 X106 X106     

To  Y-103 X106 M-104 E-106  Y-102 T-101 Y-103      

MIXED Sub               

Phase  Mixed Vapor    Vapor Vapor Vapor Vapor     

Temperature C 59.9 150    150 150 150 150     

Pressure bar 0.9 0.9    1 1 0.9 0.9     

Molar Vap Frac  0.01 1    1 1 1 1     

Molar Liq Frac  0.99 0    0 0 0 0     

Mass Vap Frac  0.01 1    1 1 1 1     

Mass Liq Frac  0.99 0    0 0 0 0     

Molar Enthalpy kcal/mol -36.34 -26.85    -19.24 -19.24 -26.85 -26.85     

Mass Enthalpy kcal/kg -520.16 -384.34    -260.28 -260.28 -384.34 -384.34     

Molar Entropy cal/mol-K -99.80 -72.28    -82.61 -82.61 -72.28 -72.28     

Mass Entropy cal/gm-K -1.43 -1.03    -1.12 -1.12 -1.03 -1.03     

Enthalpy Flow Gcal/hr -54.12 -199.93    -155.90 -38.97 -159.94 -39.99     

Mass Flows kg/hr 104036 520179.8    598979.6 149744.9 416143.8 104036     

P-XYLENE kg/hr 0 0    0 0 0 0     

OXYGEN kg/hr 0 0    0 0 0 0     

CO(CH-01 kg/hr 0 0    0 0 0 0     

MN(CH-01 kg/hr 0 0    0 0 0 0     

WATER kg/hr 0 0    0 0 0 0     

BENZO-01 kg/hr 0 0    0 0 0 0     

N-TRI-01 kg/hr 0 0    0 0 0 0     

N-MET-01 kg/hr 55155.63 275778.2    403420.9 100855.2 220622.5 55155.63     

ACETO-01 kg/hr 48880.33 244401.6    195558.7 48889.68 195521.3 48880.33     

CISOLID Sub               

Mass Sol Frac  1  1  1         

Molar Enthalpy kcal/mol -196.24  -191.73 -23.90 -217.66         

Mass Enthalpy kcal/kg -1181.26  -1154.08 166.13 -1311.22         

Molar Entropy cal/mol-K -658.47  -646.53 124.67 -730.04         

Mass Entropy cal/gm-K -3.96  -3.89  -4.40         

Enthalpy Flow Gcal/hr -8.42  -8.23  -37.63         

Mass Flows kg/hr 7130  7130 20712.1 28700         

P-XYLENE kg/hr 0  0 0 0         

P-TOLUIC kg/hr 0.463  0.463 1.346179 103.14         

4-CBA kg/hr 0.178  0.178 0.517755 6.067         

TEREP-01 kg/hr 7129.74  7129.74 20710.21 28590.45         
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8.3 Appendix C: Scenario one economic calculations  

8.3.1 General Indexes and multipliers 

8.3.1.1 Installation cost multipliers 

Table 35: Installation cost multipliers 

Equipment Type MF 

Boiler  1.8 

Compressors, motor driven  1.6 

Cooling tower  1.5 

Distillation columns, stainless steel  2.4 

Heat exchangers, shell & tube, stainless steel  2.2 

Heat exchangers, air‐cooled  2.8 

Skidded equipment  1.8 

Solids handling equipment (incl. filters)  1.7 

Pressure vessels, carbon steel  3.1 

Pressure vessels, stainless steel  2 

Pre-treatment reactor system  1.5 

Pumps, stainless steel  2.3 

Pumps, carbon steel  3.1 

Tanks, field‐erected, carbon steel  1.7 

Tanks, storage, plastic  3 

Tanks, storage, carbon steel  2.6 

Turbogenerator  1.8 

 

8.3.1.2 Scaling Exponents for Individual Equipment 

Table 36: Scaling exponents 

Equipment Exponent 

Agitators 0.5 

Compressors, Motor Driven 0.6 

Distillation Columns 0.6 

Heat Exchangers 0.7 

Inline Mixers 0.5 

Package Quotes/ Skidded Equipment 0.6 

Pressure Vessels 0.7 

Pumps 0.8 

Tanks, Atmospheric 0.7 

Solids Handling Equipment 0.8 

 

8.3.1.3 Heat transfer area calculation 

Table 37: Heat transfer area calculation 

A = Q/(U.TM)  

A Heat exchanger area (ft 
2
) 

Q Heat transfer rate (Btu/hr): retrieved from ASPEN 

U Overall heat transfer coefficient (Btu/lb.°F) 

TM 
Log mean temperature difference (°F): shell and tube temperatures retrieved from 
ASPEN 
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8.3.1.4 Inorganic chemical index 

  

 

 

 

 

 

 

 

 

8.3.1.5 South African Labour Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Inorganic chemical index 

Figure 57: South African labour index 
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8.3.1.6 Raw material costs 

Table 38: Variable costs of raw materials 

Chemical Price ($/kg) Reference 

Sulphuric Acid 79.55 Sigma Aldrich 

Calcium Hydroxide 5.57 Sigma Aldrich 

Nitrogen 179.60 BOC Online 

Na-Based Zeolite Y 800 Riogen Inc. (Enquiry) 

Water 0.00157 Ethekwini Municipality 

NMP 163.38 Sigma Aldrich 

Acetone 52.95 Science Company 

Oxygen 147.00 BOC Online 

Carbon Dioxide 116.70 BOC Online 

Hydroquinone 107.20 Sigma Aldrich 

Argon 273.13 BOC Online 

Pd Alumina (0.38% Pd) 1300 Riogen Inc. (Enquiry) 

T(p-Cl)PPMnCl 29 850 PorphyChem (Enquiry) 

Hydrogen Peroxide 26.36 Science Company 
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8.3.2 Pine process 

Table 39: Pine process: total annual salary cost 

Position Salary 2015 Salary (R/y) Salary ($/y) 
Number of 
Employees 

Total Annual 
Salary (2016) 

Plant Manager  981 000 71 345 1 $68 411 

Plant Engineer  958 000 69 673 2 $133 614 

Maintenance Supervisor  679 000 49 382 1 $47 351 

Maintenance Technician 195 000 14 182 6 $81 591 

Laboratory Manager 679 000 49 382 1 $47 351 

Laboratory Technician 195 000 14 182 5 $67 993 

Shift Supervisor  679 000 49 382 4 $189 403 

Shift Operators  195 000 14 182 12 $163 183 

Yard Employees  460 000 33 455 3 $96 236 

Clerks & Secretaries  592 000 43 055 3 $123 851 

 (Alimandegari, 2017)  Total $1 020 000 

   Labour Burden (90%) $918 000 

 

Table 40: Pine process: feedstock and chemical cost 

Feedstock/chemical 
Flowrate 
(kg/hr) 

Density 
(kg/m³) 

Volume (m³) 
Mass (per Cylinder) 

(kg) 
Cost 

($/kg) 
$/annum 

Biomass 120    0.0075 $964 800 

Sulphuric Acid* 0.55 1480 0.0001 0.148 79.55 $17 541 

Oxygen  1.2 2210 0.0001 0.221 147 $1 464 349 

Nitrogen * 5.1 1.251 0.1316 0.16 179.64 $366 367 

Na Zeolite Y * 4.1    800 $3 317 

Calcium Hydroxide 0.56 1.429 0.075 0.10 5.57 $4 045 

Water * 570.4    0.001567 $360 

NMP * 1.28 1047 0.0005 0.52 163.38 $84 129 

Acetone * 1.03  0.0037  52.95 $22 075 

    Total  $2 930 000 
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Table 41: Pine process: equipment purchase cost 

Equipment code Equipment type Size factor Cost formula Purchase cost ($) Reference 

Section 1      

V-101 
Stainless steel 

vessel 
V = 250 gal C = 1 980 V 

0.58
 $135 200 

 

V-102  

V-103  

P-101 Slurry pump 
(costed as 

centrifugal) 

S = QH 
0.5

  
Q = 4.1 gal/min 

H = 4.6 ft 

C = exp[9.7171 - 
0.6019ln(S) + 
0.0519ln(S2)] 

$28 100 

 

P-102  

P-103  

E-101 

Shell and tube 
heat exchanger 

(U-tube/stainless 
steel) 

A = 6.9 ft 
2 

(heat transfer 
area) 

C = exp[11.147 - 
0.9186ln(A) + 
0.0979ln(A2)] 

$84 000 

 

 

 

D-101    $100 000 Alibaba (enquiry) 

Size reduction Rod mill W = 120 kg/hr  $155 800 APEA 

    Total $830 000 

Section 2      

R-201    $ 155 000 APEA 

H-201 
Fired heater 

(stainless steel 
  $108 000 APEA 

C-201 
Compressor 

(screw/stainless 
steel) 

P = 15.6 Hp 
C = exp[8.1238 + 

0.7243ln(P)] 
$182 000 

 

E-201 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 2.8 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$45 500 
 

E-202 A = 2.3 ft 
2
 $98 400 

 

C-202 Gas expander 
P = 20 Hp 

(power 
extracted) 

C = 530 P 
0.81

 $11 500 
 

T-201    $110 500 APEA 

    Total $711 000 

Section 3      

R-301    $150 200 APEA 

E-301 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 2.9 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$45 000 
 

E-302 A = 1.9 ft 
2
 $34 000  

T-301    $ 171 400 APEA 

    Total $400 600 

Section 4      

R-401    $190 000 

APEA R-402    $111 000 

R-403    $160 000 

E-401 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 1.2 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$ 46 000 
 

E-402 A = 1.5 ft 
2
 $ 38 000  

C-401    $235 500 
APEA 

C-402    $192 000 

V-401 
Stainless steel 

vessel 

V = 6.5 gal 

C = 1 980 V 
0.58

 

$ 16 300  

V-402 V = 22.4 gal $33 400  

V-403 V = 27.1 gal $37 300  

Y-401    $23 200 APEA 

    Total $1 083 000 

Section 5      

R-501    $117 300 APEA 
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R-502    $120 800 

R-503    $115 700 

R-504    $121 900 

M-501 

Stainless steel 
vessel 

V = 0.43 gal 

C = 1 980 V 
0.58

 

$3 400  

M-502 V = 0.49 gal $3 600  

M-503 V = 4.76 gal $13 600  

M-504 V = 0.5 gal $3 700  

M-505 V = 15.2 gal $26 700  

M-506 V = 0.15 gal $1 800  

E-501 

Shell and tube 
heat exchanger 

(U-tube/stainless 
steel) 

A = 4.7 ft 
2
 

C = exp[11.147 - 
0.9186ln(A) + 
0.0979ln(A2)] 

$ 79 500  

E-502 A = 3.7 ft 
2
 $71 100  

E-503 A = 2.7 ft 
2
 $43 100  

E-504 A = 3.0 ft 
2
 $53 100  

E-505 A = 3.5 ft 
2
 $67 400  

E-506 A = 2.9 ft 
2
 $45 900  

E-507 A = 4.3 ft 
2
 $74 700  

E-508 A = 8.3 ft 
2
 $83 300  

T-501    $183 200  

    Total $1 230 000 

Section 6      

Power 
generation 

 W = 45.73 kW C = 4 264/W $340 200 
 

    Total $340 200 

Section 7      

Y-701    

$17 600 Alibaba (enquiry) 
Y-702    

Y-703    

Y-704    

E-701 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 5.7 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$54 200 
 

E-702 A = 5.7 ft 
2
 $54 200 

 

    Total $179 000 

    Grand total $ 4 774 000 
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8.3.3 Eucalyptus process 

Table 42: Eucalyptus process: total annual salary cost 

Position Salary 2015 Salary (R/y) 
Salary 
($/y) 

Number of 
Employees 

Total Annual 
Salary (2016) 

Plant Manager  981 000 71 345 1 $68 411 

Plant Engineer  958 000 69 673 3 $200 422 

Maintenance Supervisor  679 000 49 382 1 $47 351 

Maintenance Technician 195 000 14 182 8 $108 788 

Laboratory Manager 679 000 49 382 1 $47 351 

Laboratory Technician 195 000 14 182 5 $67 993 

Shift Supervisor  679 000 49 382 4 $189 403 

Shift Operators  195 000 14 182 15 $203 978 

Yard Employees  460 000 33 455 4 $128 315 

Clerks & Secretaries  592 000 43 055 4 $165 135 

 (Alimandegari, 2017)  Total $1 230 000 

   Labour Burden (90%) $1 107 000 

 

Table 43: Eucalyptus process: feedstock and chemical cost 

       
Feedstock/chemical 

Flowrate 
(kg/hr) 

Density 
(kg/m³) 

Volume (m³) 
Mass (per 

Cylinder) (kg) 
Cost ($/kg) $/annum 

Biomass 755.03    0.0051 $30 959 

Carbon Dioxide * 315.75 1.98 0.07 0.14 116.70 $36 849 

Hydroquinone * 2.44    107.2 $105 351 

Argon * 9.88 1.784 0.1316 0.23 273.13 $1 087 329 

Oxygen * 14.23 1.429 0.075 0.11 146.96 $16 817 714 

Pd Alumina * 3.88    1300 $5 042 

Water* 1041.54    0.001567 $13 124 

Calcium Hydroxide 5.60    5.57 $250 300 

Mn/Fe * 5.50    2.03 $89 620 

PPCl * 0.09    298500 $28 143 

NMP * 16.24 1047 0.0005 0.52 163.38 $1 069 449 

Acetone * 70.49  0.0038  52.95 $1 504 189 

      $21 100 000 
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Table 44: Eucalyptus process: equipment purchase cost 

Equipment code Equipment type Size factor Cost formula 
Purchase cost 

($) 
Reference 

Section 1      

T-101    $757 600 

APEA 
T-102    $630 000 

T-103    $108 100 

T-104    $460 000 

M-101 Stainless steel vessel V = 2700 gal C = 1 980 V 
0.58

 $533 000  

P-101 Liquid expander P = 150 Hp C = 1 400 P 0.70 $1 021 000  

E-101 
Shell and tube heat 

exchanger (U-
tube/stainless steel) 

A = 4.0 ft 
2 

C = exp[11.147 - 
0.9186ln(A) + 
0.0979ln(A2)] 

$411 000  

E-102 A = 6.6 ft 
2 

$282 600  

E-103 A = 4.0 ft 
2 

$140 600  

E-104 A = 10.8 ft 
2 

$89 700  

C-101 
Compressor 

(centrifugal/stainless 
steel) 

P = 200 Hp C = exp[7.58 + 0.8ln(P)] $725 000 

 

Size reduction Rod mill W = 760 kg/hr  $ 393 000 APEA 

    Total $5 552 000 

Section 2      

E-201 

Shell and tube heat 
exchanger (U-

tube/stainless steel) 

A = 8.1 ft 
2
 

C = exp[11.147 - 
0.9186ln(A) + 
0.0979ln(A2)] 

$34 000  

E-202 A = 5.8 ft 
2
 $52 500  

E-203 A = 2.7 ft 
2
 $128 500  

E-204 A = 5.5 ft 
2
 $55 500 

 

T-201    $102 700 

APEA 
T-202    $87 200 

T-203    $101 000 

T-204    $76 400 

M-202 
Stainless steel vessel 

V = 1200 gal 
C = 1 980 V 

0.58
 

$129 000  

M-203 V = 120 gal $88 300  

    Total $855 100 

Section 3      

R-301    $648 700 APEA 

E-301 Shell and tube heat 
exchanger (U-

tube/stainless steel) 

A = 1.9 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$180 300 
 

E-302 A = 5.5 ft 
2
 $56 000  

T-301    $201 000 APEA 

C-301    $1 086 000 APEA 

    Total $2 172 000 

Section 4      

R-401    $289 000 

APEA R-402    $300 900 

R-403    $270 000 

E-401 Shell and tube heat 
exchanger (U-

tube/stainless steel) 

A = 6.7 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$59 000 
 

E-402 A = 3.8 ft 
2
 $75 300  

E-403 A = 6.4 ft 
2
 $36 700  

C-401    $1 006 400 
APEA 

C-402    $936 100 

M-401 

Stainless steel vessel 

V = 52 gal 

C = 1 980 V 
0.58

 

$ 54 400  

T-401 V = 120 gal $88 300  

T-402 V = 168 gal $107 400  

    Total $3 224 000 

Section 5      

R-501    $180 300 APEA 
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R-502    $330 500 

R-503    $213 000 

R-504    $159 500 

M-501 

Stainless steel vessel 

V = 5.1 gal 

C = 1 980 V 
0.58

 

$14 200  

M-502 V = 5.2 gal $16 100  

M-503 V = 470.8 gal $213 200  

M-504 V = 5.3 gal $15 500  

M-505 V = 719 gal $204 400  

M-506 V = 1.6 gal $7 700  

E-501 

Shell and tube heat 
exchanger (U-

tube/stainless steel) 

A = 5.6 ft 
2
 

C = exp[11.147 - 
0.9186ln(A) + 
0.0979ln(A2)] 

$69 100  

E-502 A = 5.8 ft 
2
 $42 600  

E-503 A = 9.2 ft 
2
 $22 200  

E-504 A = 5.6 ft 
2
 $75 700  

E-505 A = 5.1 ft 
2
 $56 600  

E-506 A = 5.8 ft 
2
 $34 600  

E-507 A = 6.3 ft 
2
 $48 600  

E-508 A = 2.6 ft 
2
 $182 800  

T-501    $762 500 APEA 

    Total $2 650 000 

Section 6      

Power 
generation 

 W = 98.74 kW C = 4 264/W $408 200 
 

    Total $408 200 

Section 7      

Y-701    

$35 500 Alibaba (enquiry) 
Y-702    

Y-703    

Y-704    

E-701 
Shell and tube heat 

exchanger (U-
tube/stainless steel) 

A = 2.5 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$106 600 
 

E-702 A = 2.4 ft 
2
 $196 600  

    Total $445 200 

    Grand total $ 15 306 500 
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8.3.4 PHR process 

Table 45: PHR process: total annual salary cost 

Position Salary 2015 Salary (R/y) Salary ($/y) Number of Employees 
Total Annual 
Salary (2016) 

Plant Manager  981 000 71 345 1 $71 345 

Plant Engineer  958 000 69 673 3 $209 018 

Maintenance Supervisor  679 000 49 382 1 $49 382 

Maintenance Technician 195 000 14 182 8 $113 455 

Laboratory Manager 679 000 49 382 1 $49 382 

Laboratory Technician 195 000 14 182 5 $70 909 

Shift Supervisor  679 000 49 382 4 $197 527 

Shift Operators  195 000 14 182 18 $255 273 

Yard Employees  460 000 33 455 4 $133 818 

Clerks & Secretaries  592 000 43 055 4 $172 218 

 (Alimandegari, 2017)  Total $1 323 000 

   Labour Burden (90%) $1 191 000 

 

Table 46: PHR process: feedstock and chemical cost 

Feedstock/chemical 
Flowrate 
(kg/hr) 

Density 
(kg/m³) 

Volume (m³) 
Mass (per Cylinder) 

(kg) 
Cost 

($/kg) 
$/annum 

Sulphuric Acid* 3.79 1480 0.0001 0.148 79.55 $1 211 000 

Calcium hydroxide 5.90 2210 0.0001 0.221 5.57 $264 200 

Nitrogen * 450.35 1.251 0.1316 0.16 179.64 $5 935 000 

Na Zeolite Y * 30.75    800 $2 002 400 

Oxygen 7.38 1.429 0.075 0.10 147 $4 365 000 

NMP * 10.78 1047 0.0005 0.52 163.38 $7 083 000 

Acetone * 3.90  0.0037  52.95 $830 200 

Hydrogen peroxide 1.79    26.36 $379 000 

     Total $22 070 000 
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Table 47: PHR process: equipment purchase cost 

Equipment code Equipment type Size factor Cost formula Purchase cost ($) Reference 

Section 1      

R-101    $365 000 

APEA 

R-102    $167 000 

H-101 
Fired heater 

(stainless steel 
  $321 000 

C-101    $1 145 000 

E-101 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

  $605 500 

E-102   $196 300 

C-102    $91 600 

M-101 
Stainless steel 

vessel 
V = 1053 gal C = 1 980 V 

0.58
 $311 400 

 

D-101 
Oil/water 
decanter 

  $687 000 Alibaba (enquiry) 

T-101    $128 300 APEA 

    Total $4 018 100 

Section 2      

R-201    $150 700   APEA 

E-201 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 2.1 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$240 600 
 

E-202 A = 1.8 ft 
2
 $269 900  

T-201    $170 000 APEA 

    Total $831 200 

Section 3      

R-301    $325 600 

APEA R-302    $367 800 

R-303    $317 000 

E-301 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 2.1 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$429 800 
 

E-302 A = 2.7 ft 
2
 $209 900  

C-301    $1 527 000 
APEA 

C-302    $1 099 800 

V-301 
Stainless steel 

vessel 

V = 38.6 gal 

C = 1 980 V 
0.58

 

$31 700  

V-302 V = 83.6 gal $49 600  

V-303 V = 84 gal $49 700  

Y-301    $57 000 Alibaba (enquiry) 

    Total $4 464 900 

Section 4      

R-401    $301 100 

APEA 
R-402    $307 200 

R-403    $299 800 

R-404    $306 000 

M-401 

Stainless steel 
vessel 

V = 3.4 gal 

C = 1 980 V 
0.58

 

$10 400  

M-402 V = 4.4 gal $12 200  

M-403 V = 8.3 gal $17 600  

M-404 V = 3.9 gal $11 500  

M-405 V =  31.7 gal $38 200  

M-406 V = 2.9 gal $9 700  

E-401 Shell and tube 
heat exchanger 

(U-tube/stainless 
steel) 

A = 5.1 ft 
2
 

C = exp[11.147 - 
0.9186ln(A) + 
0.0979ln(A2)] 

$124 900  

E-402 A = 4.2 ft 
2
 $100 200  

E-403 A = 2.9 ft 
2
 $144 700  

E-404 A = 3.3 ft 
2
 $228 200  
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E-405 A = 3.8 ft 
2
 $125 100  

E-406 A =  3.1 ft 
2
 $118 500  

E-407 A = 4.4 ft 
2
 $121 000  

E-408 A = 9.3 ft 
2
 $63 300  

T-401    $979 000 APEA 

    Total $3 318 600 

Section 5      

Y-501    

$57 000 Alibaba (enquiry) 
Y-502    

Y-503    

Y-504    

E-501 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

A = 6.2 ft 
2
 C = exp[11.147 - 

0.9186ln(A) + 
0.0979ln(A2)] 

$97 000 
 

E-502 A = 6.1 ft 
2
 $63 600 

 

    Total $388 600 

    Grand total $13 021 400 
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8.3.5 Starch process 

Table 48: Starch process: total annual salary cost 

Position Salary 2015 Salary (R/y) Salary ($/y) 
Number of 
Employees 

Total Annual Salary ($/y) 

Plant Manager  981 000 71 345 2 $142 691 

Plant Engineer  958 000 69 673 4 $278 691 

Maintenance Supervisor  679 000 49 382 2 $98 764 

Maintenance Technician 195 000 14 182 8 $113 455 

Laboratory Manager 679 000 49 382 2 $98 764 

Laboratory Technician 195 000 14 182 10 $141 818 

Shift Supervisor  679 000 49 382 8 $395 055 

Shift Operators  195 000 14 182 25 $354 545 

Yard Employees  460 000 33 455 6 $200 727 

Clerks & Secretaries  592 000 43 055 6 $258 327 

 (Alimandegari, 2017)  Total $2 083 000 

   Labour Burden (90%) $1 875 000 

 

Table 49: Starch process CCEI costs 

 Annual costs 
($/tonne p-xylene) 

Feedstock  $310/tonne 

Catalysts  $1425/tonne 

Purchased equipment $185/tonne 

Equipment setting $26/tonne 
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Table 50: Starch process: equipment purchase cost 

Equipment code Equipment type Size factor Cost formula Purchase cost ($) Reference 

Section 1      

R-101    $254 400 

APEA 

R-102    $259 700 

R-103    $185 400 

E-101 
Shell and tube 

heat exchanger 
(U-tube/stainless 

steel) 

  $198 000 

E-102   $156 900 

E-103   $174 300 

E-104   $62 300 

E-105   $85 700 

C-101    $3 117 300 

M-101 

Stainless steel 
vessel 

  $105 200 

M-102   $99 800 

M-103   $95 700 

M-104   $113 300 

Y-101    $652 900 

Y-102    $310 900 

Y-103    $155 400 

T-101    $10 256 000 

    Total $16 283 200 
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8.4 Appendix D: Scenario one Discounted Cash Flow Analysis 

sheets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
c
e

n
a

ri
o
 o

n
e

: 
P

in
e
 p

ro
c
e

s
s
 (

1
) 

Stellenbosch University  https://scholar.sun.ac.za



148 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
c
e

n
a

ri
o
 o

n
e

: 
P

in
e
 p

ro
c
e

s
s
 (

2
) 

Stellenbosch University  https://scholar.sun.ac.za



149 
 

 

S
c
e

n
a

ri
o
 o

n
e

: 
E

u
c
a
ly

p
tu

s
 p

ro
c
e
s
s
 (

1
) 

Stellenbosch University  https://scholar.sun.ac.za



150 
 

 

S
c
e

n
a

ri
o
 o

n
e

: 
E

u
c
a
ly

p
tu

s
  

p
ro

c
e
s
s
 (

2
) 

Stellenbosch University  https://scholar.sun.ac.za



151 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
c
e

n
a

ri
o
 o

n
e

: 
P

H
R

 p
ro

c
e

s
s
 (

1
) 

Stellenbosch University  https://scholar.sun.ac.za



152 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
c
e

n
a

ri
o
 o

n
e

: 
P

H
R

 p
ro

c
e

s
s
 (

2
) 

Stellenbosch University  https://scholar.sun.ac.za



153 
 

8.5 Appendix E: Scenario two Discounted Cash Flow Analysis 

sheets  
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