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EPIDEMIOLOGY OF MONILINIA LAXA ON NECTARINE AND

PLUM: INFECTION OF FRUITS BY CONIDIA

SUMMARY

Postharvest decay of stone fruit in the Western Cape province of South Africa is

caused primarily by Botrytis cinerea (grey mould) and Monilinia laxa (brown rot). Little is

known about the relative importance and seasonal occurrence of the two pathogens in

nectarine and plum orchards, the mode of penetration of fruits by M laxa, latency and

subsequent disease expression by the latter pathogen. These aspects were investigated in this

study.

By sampling from the Unifruco Quality Evaluation Scheme and from 11 stone fruit

orchards, observations were made over a 3-year period of the occurrence of grey mould and

brown rot in the major stone fruit regions. Botrytis cinerea was found to be the most

important pathogen causing blossom blight and postharvest decay on stone fruit. The

pathogen was most prominent on early- and mid-season culti~ars. Brown rot was exclusively

caused by M laxa and no evidence was found thatM fructicoZa had been introduced into the

region. Monilina laxa was most prominent on the later maturing cultivars. Botrytis cinerea

blossom infection did not contribute directly to postharvest decay. Both surface inoculum

and latent infection consistently occurred on fruit in each orchard, although at fluctuating

levels. Disease expression on developing fruit was not governed by the amount of B. cinerea

occurring on fruit surfaces, but by the ability of fruit to resist disease expression. The amount

of B. cinerea on fruits was generally higher during spring than during summer. Monilinia

laxa occurred sporadically on the blossoms of late-maturing cultivars. Immature fruit were

generally pathogen-free and disease expression occurred on maturing fruit only. These

findings suggest that conidia of M laxa are generally produced in orchards when fruits are

approaching maturity and can penetrate and infect maturing fruit only.

The behaviour of airborne M laxa conidia was subsequently studied on nectarine

(cultivar Flamekist) and plum (cultivar Laetitia) fruit. For these studies, an inoculation

method that simulates natural infection by airborne conidia was used. Fruit at pit hardening,
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2 wk before harvest, harvest stage and after cold storage (nectarines 4 wk at -o.soC followed

by 1 wk at 23°C at ±56% RH; plums 10 days at .....().5°C,18 days at 7.5°C followed by 1 wk at

23°C at ±56% RH) were dusted with dry conidia of M laxa in a settling tower. The fruits

were incubated for periods ranging from 3 to 48 h at high relative humidity (2':93%, humid

fruit) or covered with a film of water (wet fruit). Behaviour of the solitary conidia was

examined with an epifluorescence microscope on skin segments stained in a differential stain

containing fluorescein diacetate, aniline blue and blankophor. The ability of solitary conidia

to colonise the fruit surface, penetrate fruit skins and to induce disease expression was

determined by using a differential set of tests. For these tests, fruit were surface-sterilised

(30 s in 70% ethanol) or left Unsterile. From each group, fruit were selected for isolation

(skin segment test), immersed in a 3% paraquat solution (paraquat-treated fruit test) or left

untreated (sound fruit test). 1be findings demonstrated that solitary conidia of M laxa

behaved consistently on plum and nectarine fruit surfaces: appressorium formation and direct

penetration was not observed on any of the fruit surfaces and germ tubes penetrated fruit

predominantly through stomata, lenticels and microfissures in the fruit skin. The monitoring

of airborne conidia revealed subtle effects of the fruits on the behaviour of solitary germlings,

which could not be seen when using conidial suspensions. On both fruit types, no deleterious

effect was seen on conidial and germling survival when fruit were kept humid at pit

hardening, 2 wk before harvest and harvest. However, conidial and germling survival were

drastically reduced by prolonged wet incubation of fruits. The findings on disease expression

in the skin segment, paraquat-treated fruit and sound fruit tests clearly showed that the skin of

both nectarine and plum fruits were not penetrated at the pit hardening stage, latent infections

were not established and fruitsreacted resistant to disease expression. These facets on both

fruit types were furthermore unaffected by wetness. The barrier capacity of the fruit skin of

the two stone fruit types however differed drastically later in the season. On nectarine, fruit

skins were more readily penetrated and disease expression became more pronounced when

fruit approached maturity. Penetration and disease expression on ripening nectarine fruit

were furthermore greatly influenced by wetness. Maturing plum fruit, on the other hand, did

not display the drastic change in the barrier capacity of fruit skins as observed on nectarine.

The influence of wetness on infection and disease expression was also less pronounced than

on nectarine. In fact, plum fruit remained asymptomatic in the sound fruit test after

inoculation and humid incubation at the 2 wk before harvest stage, harvest stage and after

cold storage. Plum fruit at these stages only developed disease after a prolonged period
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(~12 h) of wet incubation. The paraquat fruit test revealed that these fruits became more

susceptible to latent infection, but they were not as susceptible as nectarine. Collectively,

these findings indicate that M. laxa fruit rot epidemics on plum and nectarine are driven by

inoculum levels on fruit approaching maturity and by weather conditions prevailing during

the preharvest and harvest period. However, the barrier capacity of plum skins is

considerably more effective than that of nectarine fruit. Wounds would therefore play an

important role in the epidemiology of M. laxa on plum fruit.

Infection of fresh wounds by airborne M. laxa conidia, and by conidia and germlings

that have established on fruits, was therefore investigated. Plum fruit (cultivar Laetitia) at pit

hardening, 2 wk before harvest, harvest stage and after cold storage were dusted with dry

conidia of M. laxa in a settling tower.- Infection of rionwounded fruit and of fresh wounds by
\

the airborne conidia on dry, humid and wet plum fruit surfaces, and by conidia and germlings

that have been established on fruits under the wetness regimes was then investigated.

Nonwounded immature and mature fruit remained mostly asymptomatic, whereas

nonwounded cold stored fruit decayed readily. Wounding drastically increased infection by

airborne conidia. Immature fruits were less susceptible to wound infection by the airborne

conidia than mature fruits. Conidia dispersed freshly were more successful in infecting fresh

wounds than conidia that were deposited, or germlings that established, on fruit surfaces

4 days prior to wounding. This decrease in infectivity was especially pronounced on humid

and even more on wet incubated fruit. This study clearly showed that in order to reduce. the

incidence of brown rot, inoculum levels on fruit approaching maturity should be reduced by

sanitation practices and fungicide applications. Furthermore, it is essential to protect fruits,

especially. near-mature fruits, from being wounded.
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EPIDEMIOLOGIE VANMONILINIA LAXA OP NEKTARIEN EN

PRUIM: INFEKSIE VAN VRUGTE DEUR KONIDIA

OPSOMMING

Naoesverrotting van steenvrugte in die Wes-Kaap provinsie van Suid-Afrika word

hoofsaaklik veroorsaak deur Botrytis cinerea (vaalvrot) en Monilinia laxa (bruinvrot). Min is

bekend oor die relatiewe belang en seisoenale voorkoms van hierdie patogene in nektarien-

en pruimboorde, asook oor die infeksieweg, latensie en daaropvolgende siekte-uitdrukking

van M laxa. Hierdie aspekte is in dié studie nagevors.
\ \

Monsters IS oor 'n 3-jaar periode van die Unifruco Kwaliteitsevalueringskema, en ook

van 11 steenvrugboorde verkry. Die voorkoms van vaalvrot en bruinvrot in die hoof

steenvrugareas is so bepaal. Botrytis cinerea was die belangrikste patogeen wat betref

bloeiselversenging en naoesverrotting. Verder was hierdie patogeen ook meer prominent op

die vroeë- en middel-seisoen kultivars. Bruinvrot is uitsluitlik deur M Iaxa veroorsaak en

geen aanduiding omtrent die moontlike voorkoms van M fructicola in Suid-Afrika is

waargeneem nie. Monilinia laxa was meer prominent op die laat-seisoen kultivars. Botrytis

cinerea bloeiselinfeksie het nie direk bygedra tot naoesverrotting nie. Beide oppervlakkige

inokulum en latente infeksie het deurgaans, maar wel teen wisselende hoeveelhede, op vrugte

in die onderskeie boorde voorgekom. Siekte-uitdrukking op ontwikkelende vrugte is egter

nie beinvloed deur die hoeveelheid B. cinerea op die vrug nie, maar eerder deur die vermoë

van die vrug om siekte-uitdrukking te onderdruk. Die hoeveelheid B. cinerea op vrugte was

verder hoër gedurende lente as gedurende somer. Monilinia laxa het slegs sporadies op die

bloeisels van laat-seisoen kultivars voorgekom. Groen vrugte was in die algemeen vry van

die patogeen en siekte-uitdrukking het slegs op ryp vrugte plaasgevind. Hierdie bevindinge

dui daarop dat M laxa in boorde hoofsaaklik op ryper vrugte geproduseer word. Hierdie

swam infekteer ook net ryp vrugte.

Die gedrag van luggedraagde M laxa conidia is bestudeer op nektarien- (kultivar

Flamekist) en pruimvrugte (kultivar Laetitia). 'n Inokulasie-metode wat natuurlike infeksie

deur luggedraagde konidia simuleer, is vir hierdie studies gebruik. Vrugte van die
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pitverharding-, twee weke voor oes-, oesstadium, asook koud-opgebergde vrugte (nektariene,

4 weke by -o.soe gevolg met 1 week by 23°C en ±56% RH; pruime, 10 dae by -O.5°e, 18

dae by 7.Soe gevolg deur 1 week by 23°C en ±56% RH), is met droë konidia in 'n inokulasie-

toring geïnokuleer. Die vrugte is vir periodes wat gewissel het van 3 tot 48 h geïnkubeer by

hoë relatiewe humiditeit (~93% RH, vogtige vrugte), of dit is bedek met'n film water (nat

vrugte). Die gedrag van die enkelspore (konidia) op die vrugoppervlak is met 'n

epifluorisensiemikroskoop bestudeer. Skilsegmente is gekleur in 'n kleurstof, bevattende

fluorisein diasetaat, analien-blou en blankofor. Die vermoë van die enkelspore om die

vrugoppervlak te koloniseer, te penetreer en om siekte-uitdrukking te induseer, is met 'n

differensiële stel toetse bepaal. Vir hierdie toetse is die vrugte oppervlakkig gesteriliseer

(30 s in 70% etanol), of nie-steriel gelaat. In elke groep is vrugte geneem vir isolasie

(skilsegment-to\~ts), of gedoop in "n 3% parakwat-oplossing (parakwat vrugtoets), of\,

onbehandeld gelaat (onbehandelde vrugtoets ). Die. bevindinge het op die soortgelyke gedrag

van M laxa enkelspore op die verskillende vrugsoorte gedui: appressoria en direkte

penetrasie is nie waargeneem nie, en kiembuise het die vrugte hoofsaaklik deur

huidmondjies, lentiselle en mikro-krakies .in die vrugskil gepenetreer. Deur luggedraagde

spore te bestudeer, is sekere subtiele effekte van die vrug op die gedrag van enkelspore op die

vrugoppervlak waargeneem. Op beide vrugtipes is geen nadelige effek op konidiurn- en

kiembuisoorlewing opgemerk wanneer die vrugte onder hoë vogtoestande geïnkubeer is.

Konidiurn- en kiembuisoorlewing is egter drasties verlaag hoe langer die vrugte onder nat

toestande geïnkubeer is. Die bevindinge van die skilsegment-, parakwat en onbehandelde

vrugtoetse het duidelik daarop gewys dat die vrugskil van nektarien en pruim nie gepenetreer

is tydens die pitverhardingstadium nie, latente infeksies is nie gevorm nie, en die vrugte was

bestand teen siekte-uitdrukking. Hierdie fasette op beide vrugtipes is ook nie beinvloed deur

inkubasie-natheid nie. Die beskermingskapasiteit van die vrugskil van hierdie steenvrugtipes

het egter drasties verskil later in die seisoen. Nektarien-vrugskille is meer geredelik

gepenetreer en siekte-uitdrukking het toegeneem met rypwording. Penetrasie en siekte-

uitdrukking is verder in 'n groot mate deur inkubasie-natheid bevoordeel. Rypwordende

pruime het egter nie so In drasties verandering in die beskermingskapasiteit van die vrugskil

getoon nie. Die invloed van inkubasie-natheid op infeksie en siekte-uitdrukking was ook

minder opsigtelik as op nektarien. Pruimvrugte van die twee weke voor oes-, oesstadium, en ,

koud-opgebergde pruime, wat onder hoë vog geïnkubeer is, het simptoomloos in die

onbehandelde vrugtoets gebly. Vrugte van hierdie stadia het slegs simptome ontwikkel na
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periodes van langer as 12 h onder nat toestande. Die parakwat-behandelde vrugtoets het

egter gewys dat die pruimvrugte meer vatbaar vir latente infeksies raak, maar steeds nie so

vatbaar soos die nektarienvrugte nie. Gesamentlik dui hierdie bevindinge daarop <41tM laxa

bruinvrot epidemies op pruim en nektarien afhanklik is van inokulumvlakke op rypwordende

vrugte, asook die weerstoestande gedurende die vooroes- en oesstadia. Die

beskermingskapasiteit van pruim vrugskille was egter aansienlik meer effektief as dié van

nektarien vrugte. Wonde op vrugte sal dus 'n groter rol speel in die epidemiologic van M

laxa op pruim.

Infeksie van vars wonde deur luggedraagde M laxa konidia, en deur konidia en

kiembuise wat reeds op die vrugoppervlak gevestig is, is gevolglik bestudeer. Pruimvrugte

(kultivar Laetitia) van die pitverharding-, twee weke voor oes-, oesstadium, asook koud-
\ \

opgebergde vrugte is in 'n inokulasie-toring geïnokuleer met droë M laxa konidia. .Infeksie, ,

van nie-gewonde vrugte en van vars wonde deur luggedraagde konidia op droë, vogtige en

nat pruim vrugoppervlaktes, asook deur konidia en kiembuise wat reeds op die vrugoppervlak

onder hierdie toestande gevestig is, is bepaal. Nie-gewonde groen tot ryp vrugte het meestal

simptoomloos gebly, terwyl koud-opgebergde ryp vrugte wel verrot het. Wonde .het die

hoeveelheid infeksie deur luggedraagde spore drasties vermeerder. Konidia wat geïnokuleer

is op vrugte met vars wonde, was meer in staat om hierdie wonde te infekteer as konidia en

kiembuise wat 4 dae voor wonding gevestig is. Hierdie afname in infektiwiteit was meer

sigbaar op die vogtige, maar veral die nat vrugte. Hierdie studie het duidelik gewys dat

inokulumvlakke op rypwordende vrugte verlaag moet word deur sanitasie-praktyke en

fungisiedtoedienings. Dit is verder belangrik om vrugte, veral rypwordende vrugte, teen

wonding te beskerm.
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1. ETIOLOGY AND CONTROL OF THE BROWN ROT FUNGI

INTRODUCTION

\

Towards the end on the nineteenth century serious losses to the cherry crops of

Europe occurred, at first attributed to frost damage. However, investigation proved the

involvement of Monilia fungi, causing blossom Wilts, death to young twigs and often

branches, due to the girdling and obstruction of the xylem tissue, as well as fruit rots

(Wormald, 1919). According to Wormald (1919) the first report of Monilia was by Persoon

in 1796, finding a fungus producing tufts of moniliform chains of conidi~ on decaying fruit of
,

Pyrus communis, Prunus domestica and Amygdalus persica. He ori~ally named the fungus

Torula fructigena, but changed the name to Monilia fructigena five years later. Several

workers renamed the fungus, however, before Aderhold found the apothecial stage of M

fructigena in 1904, calling it Sclerotinia cinerea in 1905. In 1928 Honey renamed S. cinerea

toMonilinia fructicola and described M laxa andM fructigena in 1946 (Batra, 1991).

CAUSAL ORGANISMS -

Brown rot of stone fruit is caused by several species ofMonilinia. This genus belongs

to a family, Sclerotiniaceae, of the Discomycetes, a sub-division of Ascomycotina. The

genus Monilinia is characterised as forming long branched chains of lemon-shaped macro-

conidia, developing from simple conidiophores, usually occurring in cushion-like

sporodochia on the surface of infected fruit. In the event of sexual reproduction, apothecia

are formed, bearing inoperculate asci, containing ellipsoidal ascospores. The presence or

absence of disjunctors in the conidial chain divides the genus Monilinia into two groups: the

junctoriae and the disjunctoriae. The brown rot causing species are grouped in the former

group, Withconidia joined directly in the conidial chain (Byrde & Willetts, 1977; Willetts &

Bullock, 1993). Three Monilinia species can cause brown rot: Monilinia fructicola (Wint.)

Honey, Monilinia fructigena (Aderh. and Ruhl.) Honey and Monilinia laxa (Aderh. and

Ruhl.) Honey. Monilinia fructicola originated from America, but also occurs in East Asia

and Australasia. Monilinia fructigena and M laxa are essentially Old World species With a
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2

wide distribution. Monilinia fructigena attacks mainly apples, pears and occasionally stone

fruit, while M laxa and M fructicola attack mainly stone fruit (Batra, 1985; Willetts &

Bullock, 1993).

Distinction between species, in particular between M laxa and M fructicola, is of

great importance, especially since the more virulent species, M fructicola, does not occur in

Europe (Willetts & Bullock, 1993) and South Africa (Fourie & Holz, 1985a; Schlagbauer &

Holz, 1987). No clear distinction exists between morphological characters in vivo, hence the

use of cultural characteristics and molecular techniques. Cultural growth ofM /axa on potato

dextrose agar (PDA) is characteristically lobed with poor spore production, compared With

the abundant spore production and entire colony margins of M fructicola (Hewitt & Leach,

1939; Calavan & Keitt, 1948; Ogawa-et al., 1954; Jenkins, 1965a· Heyns, 1968; Penrose et

al., 1976; Ogawa et al., 1978; Sonoda et al., 1982b; Corazza et al., 1998; Leeuwen &

Kesteren, 1998). Calavan and Keitt (1948) however, observed M fructicola cultures With

similar lobed growth on PDA to M laxa at low temperatures. In vitro growth of M

fructicola was also shown to be faster than that of M laxa (Leeuwen & Kesteren, 1998).

Sonoda et al. (1982b) distinguished between M laxa and M fructicola by the characteristic

interactions between these species on oatmeal agar. Distinct black lines formed between

these colonies within 10 days of incubation, whereas light, double lines were occasionally

observed between M laxa isolates. Spore germination has also been used to distinguish

between these two species. Spores germinated quicker (75 min) in the case ofM fructicola,

compared with the 4 h it took for the conidia of M laxa to germinate. Once germinated,

germ tubes of M laxa on PDA were branched and crooked, compared With the straight,

unbranched germ tubes of M fructicola (Hewitt & Leach, 1939; Calavan & Keitt, 1948;

Ogawa et al., 1954; Jenkins, 1965a; Heyns, 1968; Leeuwen & Kesteren, 1998)_ Other criteria

used to distinguish between these species are the more frequent formation of hyphal

anastomosis by M fructicola (Ogawa & English, 1964) and electrophoretic studies (Penrose

et al., 1976). More recent techniques for the distinction between Monilinia spp. include the

use of total protein profiles (Belisario et al., 1998), a species-specific primer forM fructicola

(Corazza et al., 1998) and ELISA (Hughes et al., 1998).

Clear distinction between the brown rot fungi and the correct identification thereof, in

particular between M laxa and M fructicola, has far-reaching consequences. The latter
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fungus is a quarantine organism in Europe, thus preventing stone fruit export from M.

fructicola-inh'abiting countries to this major export destination. Heyns (1967; 1968) and

Matthee (1970) reported that brown rot of peaches in South Africa was caused by M

fructicola. Later studies however confirmed that South African brown rot is in fact caused by

M laxa and that M fructicola does not occur in this country, rendering M fructicola án

important quarantine pathogen in South Africa (Fourie & Holz, 1985a; Schlagbauer & Ho1z,

1987).

DISEASE CYCLE

\

The brown rot fungi are temperate fungi with a fairly specific host range, causing

moderate to severe amounts of disease. Reproduction is maÏJ~ly asexual and the conidia that

are formed can infect blossoms to cause blossom and twig blight, infect green fruit to cause

latent or quiescent infections and infect ripening or harvested fruit to cause the characteristic

brown rot The following section will summarize various aspects of the disease cycle, also

focusing on host and environmental factors that influence these fungi.

Environmental requirements

Germination. Optimum conidial germination occurred at 15 to 25°C under free

moisture conditions, with germ tubes visible after 2 to 4 h. In the absence of free moisture,

M laxa germinated at relative humidity of 98 to 100% (Tamm & Fluckiger, 1993; Tamm,

1994). Under laboratory conditions, Good and Zathureczky (1967) found that a small

proportion of M fructicola germlings died when a dry spell interrupted the period of high

moisture required to initiate germination. They commented on the considerable ability of the

germ1ings to tolerate severe drying and noted the possibility that successful infection in the

field might occur after several days of intermittent growth of the germ tube. Naqvi and Good

(1957) reported that fresh spores germinated after 3 to 4 h, whereas old spores that have been

stored developed a lag of 36 h, in some cases up to 60 h, before germination occurred. This

delay in germination was independent of temperature and was attributed to the metabolism of

the dormant spore, which is in part controlled by physical limitations imposed by the extreme

dehydration of the cytoplasm.
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Ascospore discharge and germination are influenced by weather conditions such as

temperature, rain, moisture, relative humidity and light. The optimal temperature for

ascospore discharge and germination forMfructicola is 15 to 16°C. Higher temperatures of

up to 25°C did not affect germination, but caused a reduction in ascospore discharge, mainly

due to the faster disintegration of the apothecia (Hong & Michailides, 1998).

Mycelial growth. The brown rot fungi are well adapted to moderate weather

conditions. In vitro mycelial growth of M laxa was observed at 2.5°e up to 31°C, with

optimum at 25°C. Diurnal cycles did not stimulate or decrease mycelial growth under these

conditions (Tarnm & Fliickiger, 1993).

Sporulation. Incubation temperature influenced the size and consequently also,
certain characters affecting the virulence of developin~ conidia. Monilinia fructicola colonies

, ,

incubated at 15°C, rather than 20 or 25°C, produced larger quantities of bigger conidia with

better germination percentages and infective ability (phillips, 1982a; Phillips, 1984;

Margosan & Phillips, 1985). Increased glucose concentration significantly influenced the

aggressiveness, spore volume, nuclear number and germination of M fructicola conidia

produced on PDA. Aggressiveness was positively correlated with spore volume and nuclear

number (phillips & Margosan, 1985; Phillips et al., 1989). Temperature affected spore

volume, nuclear number and aggressiveness considerably more when produced at lower

concentrations of glucose. Spore volume and aggressiveness were greatest when spores were

grown at 15°C with 15% glucose in the medium, and nuclear number greatest at 15°C in 30%

glucose and 25°C in 15% glucose (phillips & Margosan, 1985). A later study showed that

glucose affected spore size, but not mannose or fructose, indicating that glucose might be

more easily utilised (Margosan & Phillips, 1989). Spore production on fresh nectarine or

peach fruit in the laboratory or in the orchard was similarly influenced (Phillips, 1984).

Tarnm and Fliickiger (1993) found in vitro sporulation of M laxa enhanced by low

temperatures, producing the highest number of conidia at lOoe. Weather conditions are a

major determinant of the inoculum level reached by harvest. This was especially the case in

humid areas where desiccated infections could produce a substantial amount of inoculum

following repeated wetting (Kable, 1969a). Although high humidity was a prerequisite for

sporulation, Byrde and Willetts (1977) noted that an increase in humidity often suppressed

conidial production since it stimulated vegetative growth. The septa that separate conidia in
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the spore chains did not develop under moist conditions and relatively low humidity was

needed for fragmentation of conidial chains (Byrde& Willetts, 1977).

Blossom infection. ~emperature and wetness duration are important environmental

factors determining the infection incidence ofM laxa (Calavan & Keitt, 1948; Weaver, 1950;

Corbin, 1963; Biggs & Northover, 1988b; Northover & Biggs, 1995; Tamm et al., 1995).

Calavan and Keitt (1948) found that moderate to high temperatures were favourable for

cherry blossom blight by S. laxa, with infection and disease development most rapid at 24oe.
Infection occurred at lower temperatures (11°C), further favoured by the slower abscission of

diseased flowers. The pathogen was also greatly favoured by constant conditions of abundant

moisture, such as rain or heavy dew. Once the pathogen has rotted the pedicels, the moisture

requirements declined, mainly because dry weather advanced the abscission of diseased

flowers (Calavan & Keitt, 1948). Tamm et al. (1995) observed thatM laxa was able to cause
"

sweet cherry blossom infection at temperatures as low as 5°C with short periods of wetness

duration, .with increased infection as temperature and wetness period increased. Weaver

(1950) reported similar results forM fructicola on peach blossoms and Wilcox (1989) for M

fructicola on sour cherry blossoms. Blossom blight incidence was proportional to incubation

temperature (optimum 20°C) and wetness duration, the latter being especially important,

since it provided the requisite environment for spore germination and germ tube development

(Wilcox, 1989). High relative humidity during the post-infection incubation period increased

M fructicola blight incidence, rate of colonisation and sporulation on peach blossoms

(Weaver, 1950) and sour cherry blossoms (KobalI et al., 1997) proportionally to the number

of hours at high humidity.

Fruit infection. Infection incidence by M fructicola of peach and sweet cherry fruit

increased with an increase in temperature and wetness duration, with the incubation period

decreasing with increased wetness. Optimum temperatures for cherry fruit decay were 20 to

22.5°C and for peach 22.5 to 25°C (Biggs & Northover, 1988b). Corbin (1963) found that

post-infection humidity did not affect sporulation intensity on fruit. Abbas et al. (1981)

attributed the occurrence of M laxa in northern Iraq, as well as the absence of this fungus

from central Iraq, to the higher average rainfall in the north, especially during bloom. Ogawa

et al. (1983) supported this attribution by stating that crop loss in California in the absence of

rain during the harvesting period is negligible.
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Survival

The brown rot fungi overwinter mainly as mycelium on mummified fruit, infected
,

fruit peduncles or cankers ~n trees (Jenkins, 1965b; Sutton & Clayton, 1972; Byrde &

Willetts, 1977; Ogawa et al., 1983; Willetts & Bullock, 1993). Sutton and Clayton (1972)

furthermore isolated M fructicola from discoloured xylem tissue in peach branches within

3 cm of infected peduncles. The development of vascular discolouration and subsequent

establishment of M fructicola in peach branches was attributed to the absence of an

abscission layer, which also permitted the infected blossom or fruit to remain attached to the

branch. Cankers played an important role in the overwintering of brown rot fungi, especially

in areas where sexual reproduction occurred infrequently (Batra, 1985). Hewitt and Leach

(1939) found sporodochia of S. laxa-in abundance mostly on blighted twigs, cankers and

mummies in California and reported that S: fructicola rarely produced conidial tufts on these

twigs or cankers, but were repeatedly isolated from mummified fruit. In a study by Shepherd

in 1968 on the survival of Mfructicola conidia, it was observed that 0.1 to 6% of the spores

survive on the mummies in the trees (Byrde & Willetts, 1977). The reason for this loss in

viability was ascribed to several factors: desiccation, extremes of temperature, radiation,

starvation and competition from other microorganisms (Byrde &Willetts, 1977). !Smith et al.

(1965) observed from in vitro studies that exposure to low temperatures (10 days at -1.1 to

4.4°C) did not affect the germination of M fructicola conidia, whereas the exposure of

conidia to hot air was lethal at relative humidity of 80 or 90%, but not at 50% RH. Kable

(1969b) attributed the poor overwintering ability of M fructicola in apricot orchards in the

Murrumbidgee irrigation areas in Australia to the length of the survival time (at least 8

months), very high temperatures and low humidities during the midsummer months. Naqvi

and Good (1957) however remarked on the considerable resistance to desiccation of M

fructicola conidia during storage at temperatures ranging from 5 to 35°C and concluded that

dehydration was not a significant factor in the inactivation of these spores. They found that

very moist conditions were more detrimental to conidium survival than very dry conditions.

Melanin, associated with the cell walls of conidia and the outer rind of the stroma, is

of great importance to the survival of these structures. Rehnstrom and Free (1996) observed

that the conidia of melanin-deficient mutants of M fructicola were more readily killed by
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high temperature, desiccation, freezing, ultra-violet irradiation and digestion with hydrolytic

enzymes. The mutant stroma also had reduced tensile strength.

Sexual reproduction

In the event of sexual reproduction, ascospores are produced in apothecial ascomata

that develop from mummies that have overwintered on the orchard floor. Ascospore

discharge usually coincides with the emergence of young shoots and blossoms. The sexual

stage has rarely been reported for M fructigena and M laxa (Wormald, 1921; Calavan &

Keitt, 1948; Jenkins, 1965a; Ogawa et al., 1983), but is frequent, although production is

erratic, for M fructicola (Byrde & Willetts, 1977; Tate & Corbin, 1978; Willetts & Harada,

1984; Willetts & Bullock, 1993; Hong et al., 1996; Hong & Michailides, 1998). Willetts and

Harada (1984) divided apothecial pro?uction into four stages: stromatal development, stroma

maturation, apothecial initiation and apothecial differentiation. The vegetative hyphae of

Monilinia spp., under optimum conditions, formed a sclerotial stroma that differentiated into

an outer, melanin-pigmented rind, which protected a central tissue or medulla (Whetzel,

1945). The stroma matured under fair environmental conditions (20 to 30°C), allowing

apothecial initiation, which required low temperatures (0 to 15°C), but no light Incomplete

stroma maturation of M laxa, M fructigena and to a lesser. extent M fructicola, infecting

mainly late-ripening fruits, might be the reason why apothecial development was not often

found in the life cycles of these species. Holtz and Michailides (1994) could only induce

ascospore formation from stromatised mummies and never from non-stromatised mummies.

Apothecial differentiation occurred when temperatures rise in early spring (lO to 15°C),

either in diffused sunlight or daylight. Apothecia developed only in moist soils, protected

from desiccation by foliage or other covering (Willetts & Harada, 1984). Complete hydration

was essential for apothecial production and soaking of mature stromata probably stimulated

sexual structures to develop (Sanoamuang et al., 1995). Hong et al. (1996) found apothecia

only in orchards with either a cover crop or natural vegetation between rows. When the

relative humidity was high, the discs of mature apothecia of M fructicola were fully

expanded, giving a characteristic disc-like appearance and maximum exposure to the

atmosphere. Under dry conditions the disc became cup-shaped, preventing water loss from

the fertile elements of the fruiting body (Willetts & Harada, 1984).
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In a study on the population structure of M fructicola in nectarine tree canopies,

Sonoda et al. (1991) demonstrated the genetic variability by the variation in vegetative

compatibility groups from different lesions on the same fruit, as weil as from different fruit

and trees. Studies on the mating behaviour in field populations of M fructicola by means of

vegetative compatibility tests indicated that individual apothecia generated populations of

genetically diverse progeny. Certain apothecia segregated al: 1 ratio of benomyl resistant

and sensitive progeny, proving that M fructicola was capable of outcrossing and generating

new genotypic combinations (Free et al., 1996). Sanoamuang et al. (1995) reported similar

results.

Inoculum sources

The first rain in sprin& triggers sporulation from overwintering mycelium when

temperature, relative humidity and day-length are suitable. Tufts of conidia develop on

mummies, infected twigs, peduncles, cankers or any infected area of the host. A direct

dependence exists between the number of effective precipitations and the number of conidial

tuft generations (Karova, 1974). Macro-conidia produced on these tufts served as the primary

inoculum for infection of blossoms (Matthee, 1970; Byrde & Willetts, 1977; Tate & Corbin,

1978; Landgraf & Zehr, 1982; Ogawa et aI., 1983; Biggs & North~ver, 1985). However,

ascospores as the major source of primary inoculum for M fructicola were reported from

New Zealand (Tate & Corbin, 1978) and California (Hong et al., 1996; Hong & Michailides,

1998).

Mummies on trees were found to be a significantly greater source of overwintering

inoculum than mummies found on the orchard floor, with infected peduncles, cankers and

twigs also contributing to the primary inoculum source (Biggs & Northover, 1985). Wilcox

(1989) observed that mummified fruit in sour cherry orchards in New York state yielded only

2 to 18% as many conidia of M fructicola during the sample periods before shuck fall as

during the preharvest period; Thus, under New York conditions, mummies were often a more

important inoculum source for initiating fruit rot than blossom blight. Poor sporulation from

mummies was attributed to the lack of rainfall during the blossom period in the years studied.

Blighted blossoms in South Carolina peach orchards were not a major contributor to the

secondary inoculum source in the preharvest period, because sporulation on blighted
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blossoms declined as the season progressed and did not increase drastically during rainy

periods. Under these conditions sporulation on fruit peduncles, twig cankers and mummified

fruit were not epidemiologically important (Landgraf & Zehr, 1982). Hong et al. (1997)

observed the desiccation of blighted blossoms and non-abscised, aborted fruit and the

consequential prevention of sporulation in the dry weather conditions of California. They

therefore concluded that non-abscised, aborted fruit and blighted blossoms were unlikely to

be important sources of secondary inoculum for fruit brown rot in California orchards.

However, thinned fruit on the orchard floor were often wetted during irrigation and

consequently enhanced the sporulation of M fructicola. This resulted in an exponential

increase in decay with the increased density of thinned fruit on the orchard floor sporulating

with M fructicola, highlighting the significance óf thinned fruit as secondary inoculum
. --

source for pre- and postruu;ves-t,fruit decay (Hong et al., 1997). Biggs and Northover (Biggs

& Northover, 1985) cited thinned fruit and non-abscised, aborted fruit in the tree as the main

inoculum sources during the fruit ripening stages. Another important inoculum source was

conidia produced on early-maturing cultivars, wind-dispersed to the later maturing cultivars.

Landgraf and Zehr (1982) made similar conclusions and found that the later the fruit were

thinned, the higher the percentage sporulating fruit during the preharvest period.

Alternative hosts might also play an important role in the etiology ofbtown rot fungi.

Landgraf and Zehr (1982) reported that conidia from wild plum mummies and infected wild

plum tissue and ascospores from wild plum thickets were important primary inocula.

In general the inoculum dose is of great importance for successful infection and

several studies have shown increased infection with an increase in inoculum dose (Roberts &

Dunegan, 1926; Corbin, 1963; Hall, 1971; Fourie & Holz, 1985b; Biggs & Northover, 1988a;

Brown & Wilcox, 1989; Wilcox, 1989; Northover & Biggs, 1990; Northover & Biggs, 1995;

Hong et al., 1998). An increase in the inoculum dose would increase the likelihood of the

increased number of germ tubes encountering sites susceptible to penetration. However,

conidia act independently and synergism might only occur at high doses (Hall, 1971).

Northover and Biggs (1990) found in a study on sweet and sour cherries that host resistance

against M fructicola was-overcome when inoculum dose was increased. In a similar study on

mature sweet and sour cherries, Nortbover and Biggs (1995) found that increasing the

inoculum dose of M fructicola advanced initial lesion appearance, increased infection
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incidence and increased the percentage of fruit with sporodochia. Hong et al. (1998)

inoculated peaches, nectarines and plums with different conidial concentrations of M

fructicola and observed decay of wounded fruit at spore loads as low as two spores per

wound and even in some cases infection of nonwounded nectarines and peaches with this low

inoculum dose. However, the increase in lesion diameter and decay incidence was substantial

when the spore load was increased. Incubation periods were furthermore decreased with

increase in spore concentration.

Spore dispersal

Primary inocula, macro-conidia and/or ascospores, are wind or rain dispersed (Byrde

& Willetts, 1977; Ogawa et al., 1983). Conidiophores are short and unspecialised, but still

elevate the spore chains 'well above the infected host surface, exposing it to wind currents

(Byrde & Willetts, 1977).' Infected blossoms, twigs, peduncles or mummies in the tree with

sporulating lesions are ideally positioned for optimum dispersal of conidia by air currents or

by water splash from rain or overhead irrigation. Batra (1985) also listed birds and humans

as potential dispersing agents of the brown rot fungi ..

According to Byrde and Willetts (1977), P.F. Kable used the Hirst automatic

volumetric spore trap to study conidial dispersal of M fructicoia in a peach orchard in the

Murrumbidgee irrigation areas of Australia, The author reported one major dispersal period

each year that started about 4 wk before harvest and peaked at the harvest stage. Dispersal

continued up to 8 wk after the fruit were harvested and declined to relatively low levels for

the remainder of the year. Dispersal was favoured by low humidity and. high wind speeds,

conditions frequently experienced during early afternoons (Byrde & Willetts, 1977). Ogawa

et al. (1983) however reported that wind speeds as low as 2 mph were sufficient to dislodge

and spread conidia from mummies and blighted blossoms. After a period of optimum

dispersal, inoculum levels depleted, but renewed spore production occurred following rain

showers (Byrde & Willetts, 1977). Similar results were obtained by Jenkins (1965b) on the

conidial dispersal of M fructicoia in a peach orchard in Victoria, Australia, and by Corbin et

al. (1968) of M laxa in an apricot orchard in California. Phillips and Harvey (1975) washed

stone fruit and plated the wash water on a selective medium for Monilinia spp.. The authors

reported spore densities of 0 to 170 000 spores per fruit and noted a detectable increase in the
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amount of inoculum present on the fruit late in the harvest period. Since conidia on the fruit

surface might not remain viable for extended periods (Corbin et aZ., 1968), it was

hypothesised that these spore densities were not the result of long-term inoculum build-up

but rather from current sporulation from infected fruit in the orchard (phillips & Harvey,

1975).

Although wind dispersal allowed the spread of conidia over a large area, it was

believed that splash dispersal was more effective. Splash dispersal not only liberated the

conidia from the sporulating colony, but also supplied moisture essential for germination and

subsequent mycelial development. Conidia were spread in the presence of free moisture to

other parts of the tree, in some cases adjacent trees, and were not subjected to the extreme

environmental conditions associated with wind dispersal (Jenkins, 1965b; Byrde & Willetts,
\ \

1977; Tate & Corbin, 1978). Due to this efficient inoculation of fruit, Tate and Corbin (1978)
\ . \

ruled splash dispersal as the main mechanism of spore dispersal for quiescent infections early

in the season.

Insect ve,ctors. Several insect species that mayor may not be considered as pests

might act as vectors for plant pathogenic propagules. Louis et al. (1996) reported the

persistence of Botrytis cinerea in the vinegar fly, Drosophila melanogaster. Conidia

adhering externally to the fly cuticle (heads or legs)' were eliminated within 2 days by

mechanical loss and the cleaning behaviour of the flies. Microscopic examination

immediately after dissection of flies that fed on sporulating fungal cultures however showed

rectums filled with non-germinated conidia that germinated in situ after 24 h at 20°C under a

cover slip. Cultivation of isolated faeces resulted in B. cinerea development. A long-term

relationship between vector and fungus was obtained in the fly life cycle when B. cinerea

conidia germinated, produced mycelium and differentiated into microsclerotia.

Dissemination of brown rot spores by the dried fruit beetle (Carpophilus hemipterus)

was first reported by Ogawa (1957). Vinegar flies (D. meZanogaster) and nitidulid beetles (c.

hemipterus and C. freeman i) captured in Californian nectarine and peach orchards were

contaminated with Mucor piriformis, Rhizopus stoZonifer, Cladosporium spp., Penicillium

spp. and M fructicola, but transmitted mainly the fast-growing M piriformis to wounded or

nonwounded fruit (Michailides & Spotts, 1990). It is possible that M fructicoZa was also
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transmitted to healthy fruit and subsequent brown rot decay contaminated by Mucor decay.

Tate and Ogawa (1975) demonstrated the vectoring capabilities of nutidulid beetles in late-

maturing.peach and nectarine orchards in California. Carpophilus mutilatus and Haptonchus

luteolus were the most impertant vectors of M fructicola conidia, since they were active

visitors of oriental fruit moth exit holes in healthy fruit and when contaminated, transmitted

viable conidia to fungicide-treated or untreated fruit. Other nutidulid species, C. freemani

and C. hemipterus, were less important vectors, since they preferred decaying fruit and rarely

visited injured, healthy fruit (Tate & Ogawa, 1975). Kable (1969a) observed the vectoring

capabilities of C. hemipterus and C. davidsoni in Australian peach orchards, with or without

association with the oriental fruit moth, but concluded that the relative roles of the various

Carpophilus species were essentially the same. Lack (1989) accentuated the role of insect

vectors in the spread of M fructigena in apple orchards, especially under conditions.
, , ,

unsuitable for wind or splash dispersal. He noted that insects had clear advantages over wind

dispersal, since they acted selectively when picking up and depositing inoculum at suitable

sites, also reducing the passage time from source to new substrate and in some cases afforded

physical protection to spores being carried. Garic et al. {l990) demonstrated the effect .of
. {

Cydia molesta on the incidence of Monilinia spp. on quince fruit. The first and second

generations of this important pest of peach and quince in Yugoslavia develop on peach, while

the third and fourth generations develop on quince. Of the total number of brown rot decayed

quince fruit in 1987 and 1988, more than 80% had been injured by C. molesta. The authors

concluded that timely control of C. molesta was the most effective measure against the

incidence ofMonilinia spp. on quince fruit.

Batra and Batra (1985) reported the fascinating floral mimicry induced by Monilinia

spp. in order to exploit pollinators of blueberries and huckleberries as vectors. Leaves and

shoots of the host, when infected, became ultraviolet reflective, fragrant and also secreted

sugars at their lesions, thus attracting insect pollinators to the discoloured leaves. The insects

digested the sugars and also transmitted the conidia from the lesions to the host's flowers,

depositing the conidia on stigmas or other flower parts, which resulted in infected ovaries and

consequently mummy-berry disease.

Despite vectoring inoculum, insects also play an important role in the brown rot

disease cycle by causing wounds on healthy fruit that might act as penetration sites for
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inoculum dispersed by wind, water splash or by other insects (Croxall et al., 1951; Poulos &

Heuberger, 1952; Kable, 1969a; Tate & Ogawa, 1975; Michailides & Spotts, 1990). Ogawa

et al- (1983) described this scenario for nitidulid beetles vectoring M fructicola conidia from

diseased fruit to healthy fruit wounded by oriental fruit moth or twig borer larvae. Kable

(1969a) reported a similar association in Australian peach orchards with dried fruit beetles

vectoring spores to wounds caused by the oriental fruit moth.

Ascospore dispersal. Ascocarp initials are phototropic, producing discs orie~tated at

right angles to the light source. Ascospores are discharged in the general direction ~f the

light and-are picked up by the air currents. Apothecia are mostly produced from the stroma of

mummified fruit lying beneath the tree, resulting in ascospore discharge in close vicinity of

susceptible host tissue in early spring: Ascospores are discharged in large numbers following
\ \

a turgor build-up in the fruiting bodies, usually associated with an increase in temperature and
\ ' \ '

air movement (Byrde & Willetts, 1977). '

Infection and colonisation

Monilinia fructicola and M laxa are the brown rot species mostly associated with

brown rot of stone fruit. Both species oC9ur in Australasia and America, resulting in several

studies on their relative pathogenicity. Monilinia laxa is mostly associated with blossom and

twig blight, whereas M fructicola causes extensive fruit rot (Hewitt & Leach, 1939; Ogawa

et al., 1954; Ogawa & English, 1960; Ogawa et al., 1975; Byrde & Willetts, 1977; Ogawa et

al.,1983). Despite this observation, Mfructicola was found to be more virulent on blossoms

than M laxa (Ogawa & English, 1960). In a later report, Ogawa et al. (1983) stated that

blossom blight of peaches and nectarines was caused almost exclusively by M fructicola.

Penrose et al. (1976) inoculated apricot and peach fruit with S. fructicola and S. laxa and

found that after 3 days the rot caused by S. fructicola was more extensive than that caused by

S. laxa. Sc/erotinia fructicola sporulated profusely, while the lesion caused by S. laxa only

showed signs of sporulation after 4 days. Hewitt and Leach (1939) reported similar results.

Host resistance. On all hosts, successful infection and colonisation by brown rot

fungi became more eminent with increasing fruit maturity (Corbin, 1963; Hall, 1971; Jones,

1983; Ogawa et al., 1983; Biggs & Northover, 1988a; Northover & Biggs, 1990; Emery et

al., 2000). Long lag phases on green fruit existed before establishment of infection, lessening
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the possibility of epiphytotics during the green fruit stages. Lag phases shortened as fruit

matured, thus increasing the possibility of epiphytotics. Low incidences of brown rot in

green fruit could thus be attributed to host resistance as well as low spor~ loads (Corbin,

1963). Ogawa et ai. (1983) reported that M fructicola required a wetting period of 30 h on

green almond fruit, whereas ripe fruit could be infected with 2 to 4 h wetness at 20°e.

Northover and Biggs (1990) found host resistance of sweet and sour cherries against M

fructicoia to rise at the onset of pit hardening, but it declined 3 weeks before harvest. In, ,

another study on peach fruit, the authors found fruit before pit hardening as susceptible as

mature fruit (Biggs & Northover, 1988a). Hall (1971) found infection of ripe peach fruit by

M fructicoia to be more rapid than infection of unripe fruit.

Cuticle thickness was an important characteristic of host resistance (Adaskaveg et al.,
\ \

1991J. The behaviour of these fungi on different hosts was also influenced by' pther fruit

sMace characteristics such as pubescence, epidermal cell wall thickness, pre~ence and

distribution of stomata and also certain physiological differences like the presence of

germination inhibitors or phytoalexins (Byrde & Willetts, 1977). Biggs and. Northover

(1989) found that thicker epidermal cell walls of sweet cherries caused delayed infection by

M fructicoia, therefore increasing host resistance. Higher levels of nitrogen fertilisation in

nectarine orchards resulted in higher levels of M fructicoia 'fruit decay. This was partially

ascribed to the consequential reduction in cuticle thickness (Michailides et ai., 1992).

Gradziel (1994) reported the epidermis to be the site of brown rot resistance in peach, the

resistance of green fruit to infection and the decline thereof with ripening, which was initiated

at colouring. Pioneering work by Curtis (1928) demonstrated the morphological aspects of

brown rot resistance in a variety of plum, nectarine, peach and apricot cultivars. The author

concluded that several factors attributed to host resistance: stoma morphology, number of

stomata, cuticle thickness, presence of pubescence and the resistance of the hypoderm.

Bostock et al. (1999) associated the suppressive action of surface phenolics on

cutinase production with host resistance of peach fruit to M fructicola. The concentration of

these phenolics, in particular chlorogenic. and caffeic acids, was especially high in resistant

peach genotypes and declined with fruit maturity, resulting in increased susceptibility. Direct

toxicity to M fructicoia was not observed, but cutinase activity was reduced at low levels of

either phenolic acid. An earlier report by Ogawa (1958) stated that green peach :fruit

----
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produced inhibitory effects on spore germination of M fructicola, whereas ripe peach, apricot

and cherry fruit produced stimulatory effects on spore germination of M laxa and M

fructicola. The author furthermore observed less germination and shorter germ tubes on the

surface of green fruit compared with that on ripe fruit.

Host resistance varies amongst different fruit types. The infection incidence of two

M fructicola conidia per inoculation droplet on nonwounded peaches an~ nectarines was 30

and 25% respectively, whereas no decay was observed on nonwounded plums. On wounded

fruit, M fructicola infected 54% of the plums and 100% of the peaches and nectarines (Hong

et al., 1998).

Blossom and twig blight. Germ tubes from conidia of M laxa and M fructicola are

\ capable of penetrating any part of the blossom. Entry occurred mainly through the stigma

and also the stamens or petals, thus more frequently through open flowers (Roberts &

"Dunegan, 1926; Ogawa & English, 1960; Byrde& Willetts, 1977; Willetts & Bullock, 1993).

Calavan and Keitt (1948) noted stigma infection, but found S. laxa penetrated cherry

blossoms more readily through the anthers, which were found in greater numbers in each

flower. Weaver (1950) observed the germination of dry conidia on anthers at 96% RH and on

the stigma at as low as 80% RH. Floral parts were moist and. abundant in exudates providing

exogenous nutrients for growth of conidial germ tubes. External exudates on the host surface

were necessary as conidia of the brown rot fungi contained insufficient reserves for germ tube

differentiation and penetration of the host surface. Spore germination and germ tube length

were greater in water exposed to leachates from stigmas, anthers or the insides of floral tubes,

than in water drops exposed to other floral parts (Ogawa & English, 1960). Ogawa and

English (1960) monitored natural blossom infection and concluded that most infections

occurred through the stigma. The pathogen grew through the stigma and penetrated the ovary

before it moved into the peduncle, followed by the sudden withering of blossoms, associated"

with blossom blight (Calavan & Keitt, 1948; Ogawa & English, 1960). Weaver (1950)

reported a similar pathway of infection, but noted that the fungus did not spread into the

peach fruit or peduncle after a period of 24 h at 15°C in saturated atmosphere because of the

abscission of the calyx from the peduncle and desiccation of the floral organs. The author did

however observe peduncle rot on small green fruits 9 and 12 days after pollination when the

incubation period at saturated atmosphere was increased to 40 h and the temperature to 19°C.
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Shinners and Olson (1996) followed the infection of lowbush blueberry gynoecia by M

vaccinii-corymbosi after penetration of the stigma through the stylar canal and adjacent tissue

down to the ovules (similar to pollen tube growth), colonising the entire fruit wall.

Following successful infection of the flower, browning of tissue and blossom blight

developed, the infected blossoms hanging, with gumming at the point of attachment (Weaver,

1950; Jenkins, 1965a). The presence of mycelium in the flower prevented the formation of

an abscission layer and infected blossoms and young fruits remain on the tree (Willetts &

Bullock, 1993). Calavan and Keitt (1948) reported the abscission of cherry blossoms infected

by s. taxa. Less abscission occurred at lower temperatures (11°C), resulting in higher levels

of spur blight. The fungus grew into the woody tissue and the infection might develop into a

sunken, elliptical canker and the consequent death of the spur (Jenkins, 1965a; Heyns, 1967;, ,
Heyns, 1968; Matthee, 1970; Batra, 1985). The fungus might also grow from killed spurs

\

into larger branches, where its invasion often led to the formation of elliptical, gumming

cankers. These branches might furthermore be girdled, the xylem tissue blocked, facilitating

the death of the distal portions within weeks (Wormald, 1919; Calavan & Keitt, 1948). These

cankers could predispose trees to infection by certain wood-rotting fungi, as these incipient

lesions might serve as p~netration sites (Batra, 1985). Mycelium from infected blossoms

could also spread to fruit peduncles and young fruit (Heyns, °1968; Byrde & Willetts, 1977;

Willetts & Bullock, 1993). Mycelium of M fructicola remained latent or quiescent in unripe

fruit until ripening (Wade, 1956a; Jenkins & Reinganum, 1965; Kable, 1969a; Kable, 1969b;

Tate & Corbin, 1978; Wade & Cruickshank, 1992a; Wade & Cruickshank, 1992b; Willetts &

Bullock, 1993).

Latent and quiescent infections. Infection of undamaged fruit at a stage not

susceptible to decay might lead to the establishment of latent or quiescent infections.

Quiescent infections are arrested, visible infections, while latent infections are not

macroscopically visible (Jenkins & Reinganum, 1965; Byrde & Willetts, 1977; Swinburne,

1978). Tate and Corbin (1978) described quiescent infections by S. fructicola on peach,

apricot and plum fruit as "small, superficial, halo-shaped blemishes, quite distinct from other

fungal infections". Northover and Cerkauskas (1994) noted that latent infections had

considerable epidemiological significance and were not completely inactivated by host

response or fungicide treatment. On plums grown in Ontario, latent infections of M
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fructicola were presumed to be the ongm of many vigorously sporulating lesions that

developed on maturing plums and served as inoculum source for potential infection of

susceptible maturing fruit (Northover & Cerkauskas, 1994). Quiescent infections were

considered to be the main origin of decay during dry harvest periods (Jenkins & Reinganum,

1965) and might also explain inconsistency of fungicidal sprays (Wade, 1956a; Jenkins &

Reinganum, 1965; Kable, 1971). Kable (1971) reported short-term latent infections (i.e.

latent infections initiated during ripening prior to fungicide applications) as the cause for this

inconsistency. However, in an earlier study, Kable (1969a; 1969b) observed latent and

quiescent infections of peaches and apricots by M fructicola in the Murrumbidgee irrigation

areas of Australia, but concluded that it did not cause the loss of large quantities of fruit.

Emery et al. (2000) found significant correlations between the incidence of blossom blight

and latent infections on immature fruit and also between brown rot at harvest and the
,

incidence of latent infections earlier in the growing season, The authors thereby

demonstrated the importance of latent infections in the etiology of M fructicola in peach

orchards, especially as carry-over inoculum from spring to the ripening stages.

Latency might be the result of nutritional insufficiency! in the. infected cells through

competition of the actively metabolising neighbouring cells. Additionally, oxidised phenolic,
compounds present in green fruit might also inhibit enzymes secreted by the fungus or reduce

fungus growth through direct toxicity (Swinburne, 1978; Wade & Cruickshank, 1992b).

Swinburne (1978) also reported that fungistatic compounds, formed by the host after

infection, mediated latency by providing temporary resistance. The toxicity of these

compounds was reduced by the physiological changes in the ripening host or was degraded

by the host or pathogen, allowing further infection development.

Early-season latent infection of peach, apricot and plum by M fructicola was initiated

in the period between full bloom and shuck fall (Wade, 1956a; Jenkins & Reinganum, 1965;

Tate & Corbin, 1978). Earlier infections resulted in the total destruction of the flower so that

no fruit was set (Wade, 1956a). Lesions of quiescent infections on peaches were mostly

confined to the stylar end of the fruit, indicating infection between petal fall and shuck fall

(Jenkins & Reinganum, 1965). Latent infection was initiated by inoculating fruit with spore

suspensions of M fructicola at fuil bloom and at shuck fall, but not when the fruit were half

grown. Monilinia fructicola penetrated the immature fruit through stomata and latent
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infections of apricots were confmed to the epidermis (Wade, 1956a). Wade and Cruickshank

(1992b) also reported stomatal penetration after inoculation of green apricot fruit with M

fructicola at shuck fall and 43 and 63 days after shuck fall. Host response occurred: cells

around the infection site died, walls of surrounding cells suberised and cells up to 20 cells

distant accumulated phenolic compounds. Periderm formed at shuck fall, but was absent

from fruit inoculated 65 days later. Jenkins and Reinganum (1965) also found periderm

formation in peaches, although not as extensive as in apricots, Suberisation around latent

infections on apricots functioned as a barrier to further fungal decay and impeded diffusion of

nutrients to the infected cells (Wade & Cruickshank, 1992b). The authors showed that at fruit

ripening, 100 days after shuck fall, viable hyphae in latent infections escaped from lesions by

forcibly growing out through the sub-epidermal cell layers or between the cuticle and

epidermis. These hyphae now utilised nutrients from tissue ·lacking active host defence

mechanisms due to ripening. The outbreak of latent infections was more efficient when the

infection occurred later in the growing season (Wade & Cruickshank, 1992b). Latent

infections were activated at ripening by the presence of the fruit volatiles, acetaldehyde and

ethanol, produced by the ripening apricot fruit. Production of volatiles was first detected after
!

chlorophyll breakdown during the development of orange colouration in the fruit. Artificial

activation of latent infections on green apricots by exposure to acetaldehyde and/or ethanol

vapours resulted in outbreak and limited growth by the fungus, but general invasion of the

fruit was prevented by host defence reactions and/or by insufficient inoculum potential of the

outbreaking hyphae (Wade & Cruickshank, 1992a). Northover and Cerkauskas (1994) used

ethephon to generate ethylene, a volatile hormone associated with fruit ripening, to advance

ripening in order to effect the development of latent infections in plum fruit. Tate and Corbin

(1978) however attributed the reactivation of quiescent infections of peaches, apricots and

plums from any maturity stage to the occurrence of warm, wet periods.

Schlagbauer and Holz (1989a) did not observe any quiescent M laxa infections on

peaches, plums and apricots. However, latent M /axa infections of peaches and apricots

occurred frequently, while plums were highly resistant throughout the growing season. Light

and scanning electron microscopy (SEM) oflatent infections on immature plum fruit revealed

extensive periderm formation in the cortex beneath the necrotic tissue, with evidence of gum

deposits and the presence of suberin or lignin. The inability of these lesions to yield M laxa

indicated that necrotic lesions on plums were due to host defence reactions leading to loss of
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pathogen viability. Consequently the authors concluded that long-term latent infections of

plum fruit byM laxa were unimportant.

Jerome (1958) reported a different perspective on latency from field investigations on

stone fruits in Canberra, Australia. She ascribed resistance to M fructicola of green peach

fruit to the mechanical resistance of the epidermis to penetration and suggested that resistance

of fruit to penetration reduced with ripening, enabling spores on the fruit surface to infect the

fruit. Viable spores on the fruit surface invaded ~ounds rapidly, irrespective of the fruit

maturity, thus adding to the spore population. Consequently she attributed the rotting of ripe

fruit to latent contamination, rather than latent infections. Studies by Powell (1951) and

Phillips and Harvey (1975) also attributed brown rot epidemics on ripening fruit to the

presence of conidia on the fruit surfaces. The ability of.conidia to survive for long periods on
\

fruit surfaces in the orchard, as well as its ability to remain dormant during wet periods was

however questioned (Naqvi & Good, 1957; Je~'s &. Reinganum, 1965; Kable, I969b;

Byrde & Willetts, 1977).

Fruit infection. According to Ogawa et al. q983) and Emery et al. (2000) there was

a direct correlation between the severity of blossom blight and the subsequent fruit rot.

Powell ('1951) also reported that effective blossom blight control retarded the development of

preharvest brown rot. Green fruit rot and subsequent mummification has been observed in

the case ofM fructicola (Ogawa et al., 1983). The author furthermore attributed shoot blight

subsequent to mummification to toxins produced by the fungus-fruit interaction. The green

fruit stages were however fairly resistant to infection by Monilinia spp. and the brown rot

fungi must therefore bridge the period between blossom and fruit ripening. It accomplished

this by surviving as conidia or mycelium on infected blossoms or twigs, as well as mummies

still hanging in the trees. Conidia produced from these infections act as secondary inoculum

that infects the ripening fruit. Kable (1969a) concluded from studies on the etiology ofM

fructicola in canning peach orchards, that blighted blossoms were not major contributors of

inoculum during the fruit ripening stage, but were important links in the infection chain, since

they provided inoculum for the first infections of injured fruit. Latent infections of M

fructicola on green peach fruit also acted as links in the inoculum chain from the blossom to

ripening stages (Emery et al., 2000).
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Penetration occurs through stomata, lenticels, micro-cracks, hair sockets or directly

through the cuticle, but successful infection mostly occurs through mechanical or insect

wounds (Curtis, 1928; Smith, 1936; Hall, 1971; Byrde & Willetts, 1977; Willetts & Bullock,

1993). Although stomata were mentioned as a possible penetration site by various authors

(Curtis, 1928; Smith, 1936; Hall, 1971; Byrde & Willetts, 1977; Willetts & Bullock, 1993),

very little has been reported on the actual dynamics surrounding stomatal penetration.

Concluding from an ultrastructural study of nectarine surfaces, Fogle and Faust (1975)

deemed it unlikely that stomata were primary infection sites for brown rot spores. They noted

that stomatal penetration would lead to infection of immature fruit and might not be the

penetration site during the infection boom occurring on maturing fruit since these stomata

appeared suberised and were probably less receptive.

\

The ability of M fructicola to form appressoria was demonstrated by Adams et al.
\ '.

(1962) on Ginkgo biloba leaves. Local swellings in the epidermal cell wall directly beneath

the appressoria were however induced and the formation of infection pegs was not observed.

Hall (1971) found that the proportion direct penetrations of peach leaves declined with an

increase in thickness and hardness of epidermal cell wall and cuticle, therefore concluding

that direct penetration of peach leaves by M fruetieola was largely a mechanical process.

However, appressoria or other specialised forms of attachment were not observed. The

production of thin-walled, hyaline, multinucleate appressoria by M fructicola on green and

ripe apricot fruit as well as plum petals was however observed by Cruickshank and Wade

(1992b). They also observed the simultaneous incidence of anastomoses, which would

increase the inoculum potential and lead to a synergistic effect in pathogenesis. This

synergism was even more increased when spore concentration and sugar content in the

suspension droplet increased.

Smith (1936) observed conidia of S. fructicola suspended above the fruit surface by

hairs on peach fruit, germinating in no particular direction. The germ tubes infected the fruit

via the side of the hair into the V-shaped depression at the base of the hair socket. On

brushed peaches, infection occurred mainly through the broken hair stubs.

Micro-cracks occurring naturally with fruit swelling of nectarines might be an

important site for infection (Fogle & Faust, 1975; Fogle & Faust, 1976). Nguyen-The et al.
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(1989) found micro-cracks on the nectarine surface to be the main natural penetration site for

M laxa and observed no lenticel penetration or direct penetration through the intact cuticle.

However, mycelium frequently grew over micro-cracks without any visible attraction or

penetration, hence their conclusion that micro-cracks on nectarine fruit could not be

considered as wounds and its frequency on fruit was insufficient explanation for susceptibility

or resistance. Nguyen-The and Chamel (1991) observed a marked deterioration of the

epidermis of nectarine fruit when subjected to culture filtrates of M laxa, indicating probable

pectinolytic enzyme action aiding penetration at cuticular micro-cracks. They furthermore

concluded that cuticle degradation was not involved in the infection of nectarine fruit by M

laxa. In general, intact fruit surfaces were fairly resistant to direct penetration by the brown

rot fungi. Light microscopy and SEM by Schlagbauer and Holz (1989b) revealed no

successful penetrations of urrinjured plum fruit by M laxa after drop-inoculation with a spore

density that would normally ensure inf~CtiO~l (Fourie & Holz, 1985b), neither did they

observe stomatal penetration on immature or mature fruit. Monilinia laxa entered mature

fruit through cracks present in the cuticle next to stomata of hard- and full-ripe plums.

Fruit-to-fruit contact surfaces predisposed prune fruit to infection by M fructicola.

Michailides and Morgan (1997) found that these surfaces had cracked and thin cuticles with

larger micro-cracks surrounding the lenticels, less epicuticular wax, a higher carbohydrate

content in the exudates allowing better conidial germination and consequently higher rates of

infection. Additionally, fruit-to-fruit contact surfaces dried off much slower than single fruit

surfaces with a thicker hydrophobic wax layer.

Bruised cherry fruit were more susceptible to Monilinia and other fungal decay

pathogens (Ogawa et al., 1962). Most successful infections by brown rot fungi occurred at

mechanical or insect wounds (poulos & Heuberger, 1952). Infection of injured fruit did not

necessarily require free water, since the injured tissue or gum produced by the wound reaction

provided the moisture needed for germination. Sound, immature fruit were highly resistant to

infection, but once injured it became more susceptible (Kable, 1969a). Wounds of immature

tissue produced metabolites associated with ripening and senescence (Williamson, 1950). It

has been shown that volatiles produced by ripening apricots contributed to the activation of

latent infections (Wade & Cruickshank, I 992b ) and might thus also contribute to the

susceptibility of wounds on green fruit. Wade and Cruickshank (1992a) found :fresh wounds
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on the surface of green apricot fruit were susceptible to infection by M fructico/a, but rapidly

became resistant within 6 h. This increase in wound resistance was strongly correlated to the

depleting concentration of free nutrients on the surface due to diffusion and absorption by

underlying living cells. This effect was not observed when ripe fruit were wounded.

Periderm, suberin and phenolic compounds were formed after the wounds on green apricots

became resistant. It was concluded that readily available carbon sources, such as glucose,

were most important for successful. infection (Wade & Cruickshank, 1992a). Successful

infection at a wound site could be achieved with lower inoculum doses and shorter incubation

periods than required for the penetration of intact fruit (Corbin, 1963; Hong et al., 1998).

Once an infection was established, hyphae colonised the host tissue. Hyphae of M

laxa grew mainly in intercellular spaces, between cells, often forming conspicuous tunnels.
\,

Hyphae were also observed growing intr~cellularly in cells with collapsed protoplasts .. In the
\

latter case, hyphae frequently ruptured and then penetrated the wall, with thin intracellular

hyphae growing from thick, vacuolated intercellular hyphae, which occurred mainly in

heavily colonised tissue (Schlagbauer & Holz, 1989b). Extracellular enzymes that degrade

host cell walls play an important role in the pathogenesis of brown rot fungi (Byrde &

Willetts, 1977). Nguyen-The et al. (1989) observed an enzymatic breakdown of nectarine

epidermis, but concluded that it more likely involved cell wall degradation than hydrolysis of

the cuticle. Schlagbauer and Holz (1989b) found no clear evidence of host tissue

degenerating in advance of penetrating hyphae. Monilinia /axa usually colonised the

epidermal tissue and only colonised the hypodermis via vascular tissue in the vicinity of the

pedicel (Schlagbauer & Holz, 1989b). Browning of the host tissue occurred around the

infection site, spreading circularly outward. As the disease progressed, conidiophores

ruptured the epidermis and formed small tufts on the fruit surface. Sporogenous hyphae

produced macro-conidia in chains. Sporodochia were often arranged in concentric circles

around the infection site, but with the development of colonisation, the total surface could be

enveloped by a mass of brown spore-bearing sporodochia. In the event of adverse conditions,

or unripe fruit, the infection would not spread as radically as on soft, ripe fruit during moist

conditions and considerably less sporodochia would be observed. Once the fruit was

colonised, water loss occurred, resulting in discolouration, shrivelling and eventual

mummification of the fruit (Wormald, 1919). Most of these mummies remained hanging

from the tree, since the formation of an abscission layer was prevented by the presence of
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fungal mycelium (Byrde & Willetts, 1977; Willetts & Bullock, 1993). These infected fruit

and mummies facilitated an inoculum boom at fruit ripening reported by several researchers

(Jerome, 1958; Jenkins, 1965b; Corbin et al., 1968; Byrde & Willetts, 1977). Conidia were

wind and splash dispersed to ripening fruit. These fruits were either infected in the orchard or

during the postharvest stage.

INTEGRATED CONTROL

When conditions are favourable for disease development, control of brown rot

requires an integration of all control measures (Mappes, 1990). It is obvious from the disease

cycle of brown rot fungi that several diverse factors might playa role in the establishment of

the disease. Integrated control measures should target these factors and manage it in such a
\

way that conditions unfavourable for brown rot development are created. The following

section gives a brief account of the various cultural, chemical, biological and postharvest

control measures that can be implemented to control this disease.

Cultural practices

Brown rot development and epiphytotics on more resistant cultivars would be slower

than on more susceptible cultivars. Fruit genotypes have been evaluated for brown rot

resistance in order to determine the genotypes and morphological characteristics needed for

long term breeding programmes (Curtis, 1928; Biggs & Northover, 1989; Brown & Wilcox,

1989). Differences in host susceptibility were observed,. but resistant cultivars have not been

bred and given the etiology of this disease, it would seem to be unlikely.

Ogawa et al. (1983) reported that cultural practices like sanitation and cultivation of

the orchard floor do not appear to have much impact on disease control. Cultivation of the

orchard floor to hasten decomposition of fruit and mummies would however reduce the

chance for apothecial development. No apothecia were found in orchards that were disked or

rototilled (Hong et al., 1996). Hong and Michailides (1998) suggested the possible

suppressive effect of herbicides on apothecium formation, after observations that no

apothecia of M fructicola developed in the herbicide-treated zones in plum orchards in'

California.
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Several other authors however have stated that sanitation constitutes a major element

of brown rot control, since it effects the reduction of inoculum sources and consequently

inoculum potential (Hewitt & Leach, 1939; Heyns, 1967; Matthee, 1970; Zehr, 1982; Zehr,

1983; Mappes, 1990; Bigga-er al., 1997). Blighted shoots and spurs should be removed

before blossoming and newly blighted spurs after blossoming. Mummified fruit from trees

and orchard floor- should be removed as soon as possible after harvest (Heyns, 1967).

Infected, thinned fruit is an important inoculum source and thinning should be done as early

as possible to minimize the attribution from this inoculum source (Landgraf & Zehr, 1982;

Zehr, 1982).

Removal of alternative hosts of brown rot fungi in close vicinity of stone fruit

orchards was also identifiedas a notable control measure (Ogawa et al., 1983). Wild plums
\

(Prunus angustifolia and, other Prunus spp.) were identified as continuous reservoirs for
.~ t

brown rot inoculum to nearby stone fruit orchards (Landgraf & Zebr, 1982; Zehr, 1982).

General orchard practices should be aimed at creating conditions unsuitable for

disease development. Dense tree foliage should be prevented by summer pruning and

avoiding excessive irrigation and nitrogen fertilising. This would promote good aeration,

quicker drying of fruit and would minimize humidity (Heyns, 1967). Close spacing of trees

induced environmental conditions favourable for infections and should be avoided (Ogawa et

al., 1983). Excessive nitrogen fertilisation of nectarine trees resulted in fruit more susceptible

to decay by Mfructicola (Michailides et al., 1992). Other orchard management programmes

directed at altering the environment in the orchard, include reduction of weeds during bloom

to minimize apothecial development, avoiding sprinkler irrigation and planting orchards in

areas conducive to good air movement that would facilitate quicker drying and lower

humidity (Ogawa et al., 1983).

Insect pests that cause wounds on the fruit should be controlled (Heyns, 1967). The

use of effective insecticides in conjunction with a regular brown rot control programme will

aid significantly in controlling the fruit rot phase of this disease (Poulos & Heuberger, 1952).

It would furthermore minimize the possibility of insects vectoring inoculum of the brown rot

fungi (Kable, 1969a; Lack, 1989; Michailides & Spotts, 1990). Kable (1969a) noted that

effective control of oriental fruit moth and dried fruit beetles in Australian orchards would
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reduce brown rot decay and might even break the infection chain in seasons when no blossom

blight or quiescent infection occurred.

Orchards where culru:al practices were implemented in order to reduce pesticide use

required regular scouting for emerging disease or insect problems. When problems were

observed, producers could either spray corrective to remedy the problem or protective before

harvest (Zehr, 1983).

Chemical control

Chemical control is the most relied upon measure for brown rot control. Ogawa et al.

(1983) estimated a total of US$ 43 million spent annually on chemical brown rot control

during the 1982 season ~ California. .

Method of application. Fungicides to control blossom blight and brown rot were \

mostly applied as sprays or dusts by means of ground spray rigs, but some producers reverted

to aerial sprays during very wet periods without much success (Ogawa et al., 1972; Ogawa et

al., 1983). Earlier reports recommended the application of benzimidazole fungicides during

blossom and before harvest by means of overhead sprinklers (Ogawa et al., 1975). Mappes
I

(1990) reported no systemic effect of fungicides in petals, and highlighted the general

importance of good spray coverage. Good control (99%) was achieved when using 550 lIha

water, whereas only 73% control was achieved with 45 1/hawater.

Timing of applications. Proper timing of fungicide applications is very important.

Full-season, reduced or minimum fungicide schedules were proposed for stone fruit orchards

in South Carolina, depending on the history of brown rot decay, inoculum sources in and

around orchards and fungicide resistance (Zehr, 1982). The author highlighted the

importance of good cultural practices (orchard sanitation and weed control), as well as careful

monitoring for the disease in reduced and minimum schedule orchards.

Ogawa et al. (1983) attributed extensive blossom blight and quiescent infections to

improper timing of blossom applications during a wet blossom period. However, based on a

monograph on systemicity by Shephard in 1985, Osorio et al. (1994b) concluded that the

translocation of certain fungicides could be enhanced under prolonged wetness periods. La et

al. (1998) attributed brown rot problems inNew Zealand orchards to growers not heeding to
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early bloom infection warnings, poor spray timing, not countering twig blight by pruning or

applying mid-season brown rot sprays and by not applying sufficient sprays during the

preharvest period.

Chemical control of blossom and twig blight was most successful when applying

proteetant fungicides during flowering (powell, 1951; Matthee, 1970; Ogawa et al., 1983;

Mappes, 1990). Fungicide treatment during blossom must protect the anthers and could be

achieved by applying proteetant fungicides during full bloom or systemic fungicides before

full bloom (Ogawa et al., 1983). Mappes (1990) advised application of fungicides as early as

the pink bud stage, reasoning that infection might occur at this stage and once the fungus has

penetrated the stigma the fungicide cannot affect it. Matthee (1970) also advised benomyl or

dichlofluanid application when 10% 'of the blossoms were in pink to balloon stage, with
\

follow-up applications every 3 to 5 days until the petal-fall stage. This would assure. good,

spray coverage" of all new blossoms.
,

Wilcox (1990) tested vinc1ozolin, iprodione, \

tebuconazole, propiconazole; myclobutanil, flusilazole, triforine, fenarimol and captan for the

ability to prevent infection 1 to 3 days after inoculation of sour cherry blossoms with different

inoculum doses ofM fructicola. At relatively low inoculum dosages, all fungicides provided I

good control (86 to 100%) when applied 24 h after inoculation. By increasing the dosage and,
incubation period before application of the fungicides, decay increased proportionally.

Mappes (1990) also advised a second application at full bloom and possible further

applications when flowering was prolonged due to weather conditions or the presence of

different varieties in an orchard. In Michigan, M fructicola brown rot was a serious disease

and therefore an extensive spray programme was advised during bloom with sprays at white

bud, bloom, petal fall and shuck split, using the conventional proteetant fungicides like

sulphur to also control other diseases. Less applications were however needed when using

the modem brown rot fungicides (Jones, 1983). In almond, a pink bud and full bloom spray

of non-systemic fungicides provided protection of petals and internal floral tissue, whereas

one application of a systemic fungicide, like benomyl, at pink bud stage resulted in the

translocation of the chemical to the non-exposed blossom parts, providing effective protection

(Osorio et al., 1994b).

In the South-Eastern United States, where brown rot was not often severe, test plots

were not sprayed for blossom blight. Severe blossom blight infection that affected fruit yield
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occurred only once in 14 years. Despite the low occurrence of blossom blight, producers still

applied two to four blossom applications regardless of weather conditions. In order to reduce

pesticide use, minimize production costs and reduce fungicide resistance build-up, a spray

prediction system must be implemented (Zehr, 1983). Hogmire and Biggs (1994) proposed a

variable reduced-rate pesticide programme based on tree phenology, with early-season

applications made at 25% normal rate, mid-season 50%, and late-season at full rate. This

programme utilised the contribution of spray drift to produce a more uniform pesticide

deposit as the tree grows, in stead of excessive deposits early in the season that typify

application of the same rate throughout the year. The control of brown rot in this programme

did not differ significantly from the full-rate programme, although there was an increase in

fruit rot and postharvest brown rot in the second year tested. This increase was attributed to

possible disease carry-over and more favourable weather conditions for infection in the

second seasonfffogmire & Biggs, 1994). ,. , ,

Peach fruit became more resistant to infection by M fructicola at the pit hardening

stage and increasingly susceptible about two weeks before full ripeness. A post-shuck fall

application would protect the fruit against brown rot infection and also limit sporulation on

non-abscised, aborted fruit (Biggs & Northover, 1988a).

Fungicide application on maturing fruit was not recommended until about 4 weeks

before harvest (Ogawa et al., 1983). Ogawa et al. (1983) proposed one application 3 to 4

weeks before harvest, a follow-up application 1 to 2 weeks before harvest and a proteetant

spray a few days from harvest. Similar recommendations were made by Heyns (1967) to

control brown rot of peaches with compounds such as captan, wettable sulphur or dichloran.

In South Africa iprodione is registered for use in brown rot control 10 and 3 days before

harvest (Combrink et al., 1996). A single application of iprodione, 12 or 5 days before

harvest reduced brown rot of stored sweet cherries (Spotts et al., 1998).

A dormant or "presporodochial" spray of benomyl and oil reduced the numbers and

size ofM laxa sporodochia formed on almond twigs (Ramsdell & Ogawa, 1973a). Ogawa et

al. (1983) proposed dormant sprays to reduce or eradicate the fungus from blighted blossom,

twigs and mummies on the trees, as a feasible practice when the only source of inoculum was
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on the tree. Sporulation during late winter could be suppressed by the application of

monocalcium arsenite, lime sulphur or carboxin (Matthee, 1970).

The best method to ~anage stone fruit diseases with minimal fungicides was to target

applications according to infection period forecasts. Protective sprays should be applied

before infection periods and if these were missed, infections eradicated immediately with

fungicides with post-infection activity (Lo et al., 1998). Northover and Cerkauskas (1998)
. .

demonstrated the comparable eradicative efficacy of several sterol inhibiting (tebuconazole,

flusilazole, myclobutanil, fenbuconazole and triforine) and dicarboximide (iprodione) by

doing postharvest dip treatments with harvest ripe plum fruit with a high incidence of latent

M fructicola infections. Multi-site proteetant fungicides, captan, chlorothalonil and dichlone,

gave temporary suppression of latent infection development in soft-ripe, but not finn-ripe
\ \

fruit.' Orchard. application in general was less effective in eradicating latent infections than
. , .
, I, I. \

post harvest dip treatment (Northover & Cerkauskas, 1998). .

Multi-site protectant fungicides. Effective control of blossom blight can be

obtait;1edwith properly timed captan applications when anthers start to show an~ at 80%

bloom (Ogawa et al., 1983). Copper compounds can be applied before full bloom (Ogawa et

al., 1983). Poulos and Heuberger (1949) demonstrated the inefficacy of various

dithiocarbamates to control peach brown rot in the orchard. In a later study, the authors

concluded from three years' data that preharvest sprays with wettable sulphur were not

effective in controlling brown rot by M fructicola on late-maturing varieties (Poulos &

Heuberger, 1952).

.Benzimidazole fungicides. Ogawa et al. (1968) reported on the efficacy of a new

benzimidazole fungicide in 1968 (1-(butylcarbamoyl)-2-benzimidazole carbamic acid),

showing very effective mycelial inhibition of M fructicola, M laxa and B. cinerea and

inhibition of spore germination of M. laxa. This compound was also effective in controlling

brown rot blossom blight and fruit rot (Ogawa et al., 1968). Methyl 2-

benzimidazolecarbamate (MBC), a derivative of benomyl, was translocated into internal

almond blossom tissue when the fungicide was applied at green and pink bud stages

(Ramsdell & Ogawa, 1973b). The authors furthermore showed that benomyl was broken

down to MBC under field conditions and that these compounds displayed similar degrees of
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fungitoxicity to M laxa. Benomyl has been very effective in blossom blight and brown rot

control, mainly due to its systemic and eradicative action. Osorio et al. (1994b; 1994a)

demonstrated the eradicative action of benomyl by achieving effective suppression of

infection of almond blossoms following application 24 h after inoculation with M laxa orM

fructicola. A single application of a systemic benzimidazole fungicide, like benomyl or

thiophanate-methyI, at pink bud stage provided control equal to two applications of a

proteetant fungicide.

Dicarboximide fungicides. In general, the dicarboximide (DC) fungicides inhibit

spore germination and mycelial growth. A specific mechanism of action has not been

identified, but Ellner (1996) provided evidence of a possible dual mechanism of action of the

dicarboximides in B. cinerea: initiation of lipid peroxidation by the generation of reactive
\ .

I oxygen and the reduction of glutathione concentration by reducing equivalents and co-
, ',
substrate of membrane-protecting and other glutathione-dependent enzymes. Ellner (1996)

also noted that enhanced levels of glutathione synthetase with reduced sensitivity in resistant

strains of B. cinerea might be a mechanism of resistance to the DC fungicides.

Iprodione exhibited some systemic activity when applied to blossoms or fruit. It

showed better systemic activity in almond blossoms when applied to sepals rather than petals

and when applied to closed blossoms, provided stamen protection similar to the systemic

fungicide, benomyl (Osorio et al., 1989; Osorio et al., I994b; Osorio et al., 1994a).

Iprodione effectively suppressed infection up to 24 h after inoculation with benomyl sensitive

or resistant strains of M laxa or M fructicola (Osorio et al., 1994a). Wilcox (1990)

remarked on the pronounced post-infection and anti-sporulant infection of iprodione and

vinclozolin. Ritchie (1983a) observed no sporulation by dicarboximide resistant or sensitive

strains of M fructicola inoculated on iprodione treated peach fruit. Elmer and Gaunt (1988)

also reported significantly reduced spore production of a dicarboximide resistant strain

inoculated on iprodione sprayed peach blossoms, despite the evident decay of the sprayed

blossoms.

Iprodione effectively controlled B. cinerea and M /axa on peaches, but is less

effective against brown rot on plums (Fourie, 1984). Combrink et al. (1996) reported the

high stability of iprodione residues on nectarine and plum fruit. Preharvest iprodione sprays
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on plums never realised residue levels above 0.85 mg/kg, whereas on nectarines it was as

high as 2.5 mg/kg. The low residue levels on plums were attributed to the hydrophobic wax

layer on plum surfaces, resulting in quicker run-off and drying (Combrink et al., 1996).

Osorio et al. (1993) reported that sufficient amounts of iprodione penetrated the mesocarp

tissue of peach fruit to reduce internal decay caused by M fructicola when conidia were

injected 1 cm deep into the mesocarp. Adaskaveg and Ogawa (1994) also attributed the

effective prevention or suppression of M fructicola and B. cinerea decay by iprodione to the

penetration of the fungicide into the mesocarp tissue of sweet cherry fruit. Iprodione

furthermore suppressed M fructicola or B. cinerea infections established 24 h prior to

application and provided complete control over a 9-day period (Adaskaveg & Ogawa, 1994).

Ergosterol biosynthesis inhibitor fungicides. Ergosterol biosynthesis inhibitor
\

(EBn fungicides are a diverse class of modem systemic fungicides. The fungicides in this

class have a similar mode of action, which involves the inhibition of C-14 demethylation, a

biosynthetic step occurring during the conversion of lanosterol to ergosterol, the final product

of fungal sterol synthesis (Koller & Scheinpflug, 1987). These fungicides gave good control

of brown rot and were also effective against leaf spot and powdery mildew (Jones, 1983). A

single pink-bud spray with prochloraz effectively controlled M fructicola blossom blight in
j

an orchard with benomyl-sensitive and -resistant populations (Dijkhuizen et al., 1982).

Wilcox (1990) tested nine fungicides (captan, fenarimol, flusilazole, iprodione, myclobutanil,

propiconazole, tebuconazole, triforine, and vinclozolin) for post-infection and anti-sporulant

activities when applied 1 to 3 days after inoculation of sour cherry blossoms with different

inoculum doses of M fructicola. At the dosage rate tested, the dicarboximides, vinclozolin

and iprodione, and the EBI fungicides, tebuconazole and propiconazole, were the most

effective in post-infection and anti-sporulant modes, with captan the least effective.

However, the EBls provided poor control when applied more than 48 h after inoculation.

Szkolnik (1981) however demonstrated excellent post-infection activity of prochloraz,

fenarimol and triforine on sour cherry blossoms and fruit when applied 24 h after inoculation

with M fructicola. Intraspecific variation in EBI sensitivity ainongst isolates of M laxa and

M fructigena has been reported, with EC50-values 3 to 10 times lower for cyproconazole and

difenoconazole than those of myclobutanil and triadimenol (Zhang et al., 1991). Triforine

effectively controlled M laxa on stone fruit and is registered in South Africa for use until

3 days before harvest (Fourie, 1984). Hildebrand and McRae (1995) tested the proteetant and
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post-infection activity of triforine against ascospore infections of M vaccinii-corymbosi in

lowbush blueberries. Very effective post-infection activity was observed when applied up to

96 h after inoculation, but triforine did however not provide very good protection when

applied to plants 4 days before inoculation. They furthermore observed a larger reduction in

conidial production in the post-infection treatments compared with the proteetant treatments.

Triforine however penetrated plant tissue relatively quickly, thus providing good protection

and eradication when applied shortly before simulated rain. Given these characteristics of

triforine, a post-infection spray strategy using this fungicide was proposed to producers

(Hildebrand & McRae, 1995).

\

Other fungicide classes. An experimental fungicide E-0858 in a new class, pyridyl

fungicides, was translocated in almond blossoms similar to translocation reported for
\

benomyl (Ramsdell & Ogawa, 1973b) and provided similar protection against blossom blight

when applied to closed blossoms (Osorio et al., 1994b; Osorio et al., 1994a). E-0858

effectively suppressed infection up to 24 h after inoculation with benomyl sensitive or

resistant strains of M laxa or M fructicola, and gave consistently better control than

iprodione (Osorio et al., 1994a). In an associated study on peach fruit Osorio et al. (1993)

found E-0858 consistently more effective than iprodione and benemyl. This efficacy was
I

attributed to its high activity against M fructicola, penetration into mesocarp tissue of peach

fruit and longer residual activity under field conditions.

Non-fungicidal chemicals .. Adaskaveg et al. (1992) compared the efficacy of

nutritional materials (calcium formate and calcium silicate) and film-forming anti-transpirants

(di-l-p-menthene and an acrylic resin) to control brown rot caused by M fructicola with that

of iprodione. None of the afore-mentioned chemicals showed in vitro fungitoxicity, except

di-l-p-methene, which inhibited conidial germination. Preharvest applications significantly

reduced the severity and incidence of brown rot compared with the untreated fruit, while only

calcium formate provided control similar to that of iprodione, The authors concluded that

materials that may strengthen epidermal tissue or enhance the cuticular layer might

supplement or provide alternatives to fungicides (Adaskaveg et al., 1992).
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Fungicide resistance

Benzimidazole fungicides. Tate et al. (1974) found no benomyl resistant isolates in

California two years after benomyl was first used. Whan (1976) reported the presence of

benomyl tolerant strains in cherry orchards where benomyl was ineffective. In the same year,

Jones and Ehret (1976) reported total crop loss in a Michigan sweet cherry orchard, despite

several benomyl applications as the only brown rot fungicide applied. Monilinia fructicola

strains tolerant to benomyl were isolated from these orchards where this compound was used

exclusively for 3 years. The authors demonstrated cross-resistance to other benzimidazoles,

resistance stability and in vitro fitness comparable to sensitive strains. In 1977, Szkolnik and

Gilpatrick (1977) reported that benomyl failed to control M fructicola in two commercial
--

sweet cherry orchards in western New York State. Following in vitro laboratory and in vivo

glasshouse trials, control failure was attributed to M fructicola strains tolerant to benomy!.

Zehr (1982) found resistance build-up after routine applications with benomyl-captan

mixtures. In a later study Ogawa et al. (1983) demonstrated practical resistance in M laxa

and M fructicola to benomyl in Californian stone fruit orchards after severe blossom blight

following continuous rain showers throughout the blossom stage. With the onset of

resistance development, control failure was observed (Jones, 1983; Ogawa et al., 1983;

Ritchie, 1983b) and producers started using proteetant fungicides, like triforine, iprodione and

chlorothalonil, to provide good blossom blight control. More applications were however

required (Ogawa et al., 1983). Poor control of brown rot by benomyl was reported from the

Murrumbidgee Irrigation Areas in Australia during disease favourable weather conditions and

was attributed to the high frequency (93% of isolates tested) ofbenomyl resistance (Watson

et al., 1992).

Resistance to benzimidazole fungicides is governed by a single dominant gene that is

inherited in Mendelian fashion in meiotic progeny, resulting in a 1:1 segregation ratio of

sensitive and resistant ascospore progeny. This relationship between a single dominant

resistant gene and heterokaryosis is important for the evolution of resistance in populations of

M fructicola, but will also maintain the sensitive genotype in heterokaryotic populations

exposed to benzimidazole fungicides (Sanoamuang et al., 1995). Sonoda et al. (1982a) drew

similar conclusions from an earlier study, providing evidence for heterothallism and

monogenic resistance to benomyl inM fructicola.
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Distribution studies on M fructicola in peach and nectarine orchards showed that

resistant brown rot isolates were most likely to develop within an orchard, rather than be

carried in from adjacent orchards (Penrose et al., 1979). Michailides et al. (1987) observed

an increase of benomyl resistance in California prune and apricot orchards, despite the low

number of benamyl applications per season. The authors attributed this increase in resistance

frequency to the possible movement of benomyl resistant M fructicola strains from adjacent

peach or nectarine orchards. This brought about a shift in the brown rot populations to

predominantly more M fructicola than M laxa, since the M laxa isolates were mostly

sensitive to benomyl, which was the main fungicide used to control brown rot. Benomyl

resistance in M fructicola was very stable (Adaskaveg et al., 1987) and resistant isolates did

not have any competitive disadvantage compared with the sensitive strains, as was seen in

.equal virulence on peach fruit, and equal growth, sporulation and germination percentage in

vitro (Jones & Ehret, 1976; Penrose et al., 1979). Sonoda et al. (1983) also observed equal

competitiveness of benomyl-resistant and -sensitive M fructicola as incitants of blossom

blight on peach. In a later study, Penrose (1990) concluded from the prolonged field

persistence of benomyl resistant M fructicola strains that once benomyl resistance has been

detected in an orchard, it may never be possible to resume the effective use of benzimidazole

fungicides. Adaskaveg et a/. (1987) however used benomyl and iprodione to control blossom

blight in an orchard with 82% incidence of benomyl resistant isolates and found similar

control by both these compounds. Reduced efficacy of the benzimidazole can however be

anticipated, since it controlled M laxa blossom blight markedly better than iprodione in

orchards where benomyl resistance was absent. The superior efficacy of benomylover

iprodione in sensitive orchards was also observed by Osorio et a/. (1989). Resistant isolates

of M fructicola exhibiting a significantly reduced growth rate on peach fruit compared with

sensitive strains (Sonoda & Ogawa, 1982) and low-level benomyl resistant isolates ofM laxa

with reduced ability to infect almond and prune blossoms (Canez & Ogawa, 1982; Ogawa et

al., 1984) were also reported.

Osorio et al. (1994a) found that benomyl resistant isolates of M laxa and M

fructicola were sensitive to iprodione and E-0858, thus proving no cross-resistance between

these compounds. The authors furthermore confirmed that benomyl reduced twig blight in

almond orchards with benomyl resistant populations, but did not find the reduction

economically sufficient, compared with the control obtained by iprodione.
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Dicarboximide fungicides. Demonstrating the potential for fungicide resistance in

M fructicola, Jones (1983) reported high frequencies of spontaneous dicarboximide resistant

mutant strains with no apparent cross-resistance to benomyl resistant isolates. Dual

resistance in certain isolates to both dicarboximides and benzimidazoles were however

observed (Jones, 1983; Ritchie, 1983b; Elmer & Gaunt, 1986; Braithwaite et al., 1991). As

can be expected, cross-resistance between dicarboximide compounds were observed (Ritchie,

1982; Jones, 1983; Ritchie, 1983a; Penrose et al., 1985; Elmer & Gaunt, 1986), with

resistance to both groups proven to be stable through several generations grown in the

absence of fungicides (Jones, 1983; Elmer & Gaunt, 1994). Elmer and Gaunt (1994) did

however find a resistant strain that produced a mixture of sensitive and resistant conidia on

fungicide-amended media, which also showed a significant increase in sensitivity after 9

generations. Dicarboximide resistant strains of M ')'Jucticola produced darker pigmented

mycelium, compared with the brown mycelium of sensitive strains (Ritchie, 1982; Jones,

1983; Penrose et al., 1985).

Strains of M fructicola resistant to dicarboximide fungicides were isolated from a

New South Wales nectarine orchard where dicarboximides were used for four consecutive

seasons. Severe losses from this orchard were reported in the fourth season, despite five
r

vinclozolin sprays to control brown rot (Penrose et al., 1985). Dicarboximide resistant

isolates of M fructicola were detected in New Zealand stone fruit orchards in 1985, but in

contrast to benzimidazole resistance, no control failure was observed at that time. The

resistant isolates were classified as sensitive (EC50-value <0.7 ug a.i. iprodione/ml), low-level

resistant (EC50-value 0.7 to 10 ug/ml), or high-level resistant (EC50-value >70 ug/ml), with

the majority of resistant isolates classified as high-level resistant (Elmer & Gaunt, 1994).

Jones (1983) also found that resistant strains were highly resistant, with in vitro growth on

PDA amended with up to 1000 ug/ml of fungicide. This differs from dicarboximide

resistance inB. cinerea populations invineyards, where the majority of resistant isolates were

classified as low-level resistant (Pommer & Lorenz, 1987; Beever et al., 1989; Fourie, 1996).

This can be attributed to increased reduction in fitness with increased level of resistance

(Fourie, 1996), which was also substantiated by a gradual shift in dicarboximide resistant B.

cinerea sub-populations in New Zealand kiwi fruit orchards from low-level to ultra-low-level

resistant isolates (pak et al., 1995). A decline in resistance incidence was observed when

dicarboximide applications were reduced or absent, suggesting a reduction in fitness of the
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resistant M. fructicola isolates (Elmer & Gaunt, 1993). Elmer and Gaunt (1990) furthermore

observed a reduction in the level of resistance over time in the absence of dicarboximides.

The reduced fitness of resistant isolates on nectarine fruit, but not on peach blossoms,

emphasised the need for investigation on all relevant tissue in epidemiological studies of

resistance (Elmer & Gaunt, 1990; Elmer & Gaunt, 1994). Elmer and Gaunt (1988) reported

that a proportion of resistant strains were unable to colonize wounded nectarine fruit and

attributed it to abnormal osmotic sensitivity.. which in preliminary tests was found in one

strain. Beever (1983) reported that the inability of resistant strains to rot fruit might be

related to abnormal sensitivity, since high osmotic pressures are commonly associated with

ripening fruit. Resistant isolates were furthermore significantly less competitive than

sensitive isolates when mixed inocula were applied to flowers or fruit (Ritchie, 1983a; Elmer

& Gaunt, 1988; Elmer & Gaunt, 1990; Elmer & Gaunt, 1994). Ritchie (1983a) found that

dicarboximide resistant strains of M fructicola produced smaller lesions and/or sporulated

less than sensitive strains on fungicide-treated or untreated peach fruit. Resistant strains

caused decay on treated fruit, although the onset of decay was delayed by 1 to 2 days

compared with decay on untreated fruit (Jones, 1983). By studying the spatial and temporal

characteristics of dicarboximide resistant strains of M fructicola in New Zealand stone fruit

orchards, Elmer et al. (1998) observed only slight spatial distribution and no temporal

distribution. In other words, spread of resistant strains was mostly restricted to the vicinity of

the original focus and there was no carry-over of inoculum from resistant strains from

previous seasons. The lack of significant spatia-temporal correlation between seasons

suggested that selection of resistant sub-populations occurred within each growing season.

Hence the authors concluded that the resistant strains have not acquired the necessary

characteristics to remain in, or dominate field populations.

Ergosterol biosynthesis inhibitor fungicides. EBI fungicides have a high risk of

resistance development, mainly due to its single-site mode of action and extensive use as

broad-spectrum fungicides. Resistant laboratory mutants have also been obtained easily.

Contrary to the disruptive selection of a resistant sub-population, as is the case with

benzimidazoles and dicarboximides, continuous selection pressure by EBls causes a

directional selection pattern in the pathogen population (Koller & Scheinpflug, 1987). Zehr

et al. (1999) demonstrated a shift in the propiconazole sensitivity of M fructicola isolates in

an experimental peach orchard after three season's use (29 applications). A broader range of
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EC50-values was observed in the third season (0.02 to 2.16 ug/ml) compared with that of the

initial population (0.02 to 0.15 ug/ml). Effective disease control was however maintained. In

a survey of New Zealand orchards in .1989/90, resistance to triforine and bitertanol was not

detected (Braithwaite et al., 1·991). However, upon investigation of disease control failures in

certain New Zealand orchards, Elmer et al. (1992) reported significant reduced triforine

sensitivity in these M fructicola populations. The resistant isolates were less virulent than

the sensitive isolates on untreated nectarines, but were pathogenic on triforine treated

segments.

Fungicide resistance management. The basic objective of fungicide resistance

management is to prevent unexpected crop losses and to prolong the efficacy and lifetime of a

fungicide (Koller & Scheinpflug, 1-987). According to Ritchie (1983b) strategies for
\,

resistance management should adhere to three general premises: (a) adequate control of the
\ '

sensitive wild-type population must be provided., (b) development or increase of a resistant

sub-population must be prevented or delayed, and (c) adequate protection to prevent crop loss

in case of fungicide resistance must be provided. The number of fungicide applications

should be minimised in order to reduce the selection pressure on the fungus population

(Elmer & Gaunt, 1990; 1993). This can be achieved by applying fungicides with different,
modes of action in alternation and/or mixtures with multi-site proteetant fungicides (Jones,

1983; Ogawa et al., 1983; Skylakakis, 1983; Koller & Scheinpflug, 1987; Elmer & Gaunt,

1990). Several models have been developed to predict the effect of alternations or mixtures

on the resistant sub-population (Kable & Jeffery, 1980; Skylakakis, 1981; Levy et al., 1983).

These models all predict the risk of resistance development to highly active fungicides. The

use of mixtures are considered to be more effective in reducing resistance build-up than using

the at-risk fungicide in alternation or alone. At-risk fungicides should be applied protectively

to prevent the onset of an epidemic, rather than be applied eradicatively when disease

pressure is high and therewith the risk of increased resistance development. In this case a

multi-site proteetant fungicide should rather be used in an attempt to slow down the epidemic

by protecting uninfected tissue (Ritchie, 1983b).

Reduced ecological competence of resistant strains would provide additional

strategies that can be implemented to manage fungicide resistance. This was found to be the

case with dicarboximide resistant isolates of B. cinerea in South African table grape
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vineyards. Due to reduced fitness of the resistant strains, resistance incidences in the Botrytis

population declined in the absence of the selection pressure from dicarboximide applications,

especially over the winter period, resulting in low resistance incidences at the flowering stage

when Botrytis control is initiated (Fourie, 1996; Fourie & Holz, 1998). Elmer and Gaunt

(1990; 1993) and Elmer et al. (1998) reported a similar decline in the incidence of

dicarboximide resistant M fructicola in New Zealand stone fruit orchards.

Cultural practices aimed at reducing blossom blight and brown rot should be

optimised, in order to facilitate the reduction of fungicide applications. In these cases at-risk

fungicides should be applied at critical periods for disease control (Ritchie, 1983b).

Improved orchard hygiene would reduce the brown rot population and also the risk of

resistant strains carrying over from one season to another (Elmer & Gaunt, 1986; 1993).
I.

Biological control

Successful biological control depends on the use of an organism exhibiting some form

of antagonism or competition to the pathogen while being able to flourish in the pathogen's

environment. Brief accounts of various organisms studied for the biological control of brown

rot fungi follows.

Naturally occurring epiphytic fungi from apple leaves were screened for their efficacy

in controlling M fructigena, B. cinerea and Penicillium expansum. Isolates of

Aureobasidium pullulans, Epicoccum purpuraseens, Sordaria fimieola and Trichoderma

polysporum provided good protection of wounded apples, with efficacy increased when

mixtures of these antagonists were applied (Falconi & Mendgen, 1994). Conidia of A.

pullulans, E. purpurascens and Gliocladium roseum were applied to sweet cherry blossom

that were subsequently inoculated with conidia of M fructicola. Aureobasidium pullulans

and E. purpuraseens significantly reduced blossom blight and latent infections, although

control with iprodione proved to be significantly better (Wittig et al., 1991; Wittig et al.,

1997).

Stevens et al. (1998) reported more rapid progress of brown rot in thoroughly washed

peaches than in non-washed peaches. The predominant yeast species from the washings was

Debaryomyees hansenii,which proved to be antagonistic to M fructicola. They ventured that
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the removal of an antagonistic yeast may playa role in the host peripheral defence system.

Hong et al. (1996) made a survey of the resident fungi of peach, nectarine, plum and prune

fruit mummified by M fructicola, and found that Trichoderma spp., Trichothecium roseum,

Penicillium spp. and Epicoccum nigrum suppressed the brown rot pathogen in vitro,

indicating the occurrence of natural biocontrol, and the possibility of utilising these

antagonists as biocontrol agents.

Epicoccum nigrum, a natural epiphyte of peach twigs, produces an antibiotic, flavipin,

which inhibits mycelial growth of M laxa and has the potential for biological control of

brown rot (Madrigal et al., 1991; Madrigal & Melgarejo, 1995). Various preparations of

spores or mycelium of E. nigrum, alone or in combination with captan, reduced twig blight

caused by M laxa, although incomplete control was obtained in some years. Discrepancies

in control can be attributed to climatic conditions and to the timing of applications (Madrigal
\ '

et al., 1994). The effect of flavipin was visible as hyphal coilings, swellings, deformations

and frequent branching. Hyphae, germ tubes and spores treated with flavipin furthermore

showed intense cytoplasmic vacuolisation, disorganisation and coagulation (Madrigal &

Melgarejo, 1995). Madrigal and Melgarejo (1994) studied the mechanism of action of

flavipin in M laxa and concluded that flavipin inhibited ATP and protein synthesis

independently, but did not primarily affect the cellular membrane. Flavipin furthermore has a

highly reactive chemical structure, and could thus act as a multisite inhibitor with pleiotropic

effects on fungus cells. Monilinia laxa was however able to metabolise flavipin within a

relative short incubation time (6 h), resulting in its degradation to a metabolite of lower

toxicity (Madrigal et al., 1993).

The efficacy of Penicillium frequentans, a component of mycoflora frequently

isolated from peach twigs, to control M laxa was attributed to the production of two

antibiotic substances with EDso values for germ tube growth ranging from 0.02 to 0.13 mg/ml

(De Cal et al., 1988). Application of spore and/or mycelium preparations of the antagonist P.

frequentans, alone, in alternation or combination with captan, gave similar control of peach

twig blight (M taxa) compared with that of the chemical alone. The efficacy of the

biocontrol agent was enhanced by the addition of nutrients in some form (bran, malt, yeast

extracts or nutrient agar) to the application. It was furthermore concluded that control could

be more effective when the antagonist is applied before blossom infection occurs (De Cal et
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al., 1990). Pascual et al. (2000) attempted to increase the efficacy of this biocontrol agent by

growing it at reduced water potential, thus reducing the imbalance in water potential with the

phyllosphere compared with inoculum produced at high water availability. Similar

reductions in lesion length were however observed, leading the authors to conclude that P.

frequentans is xerotolerant, rapidly adapting to the dry environment in the phyllosphere.

Trichoderma atroviride and T. viride reduced infections of peach, nectarine and plum

fruit by M fructicola and also suppressed sporulation on plum fruit. This is an important

aspect of disease control and implies that Trichoderma spp. could also suppress secondary

infections (Hong et al., 1998). From the same study the authors reported the biocontrol

potential of an antagonistic yeast from the Rhodotorula species.

Pusey and Wilson (1983) demonstrated the potential of a Bacillus spp. to control M
1

fructicola on peaches, nectarines, apricots and plums. Antibiotic substances, extracted from \

Bacillus subtilis cultures, proved to be fungistatic and not fungicidal to M fructicola conidia,

but provided almost complete suppression of this pathogen on peach fruit at 1 mg/ml

(McKeen et al., 1986). Pusey et al. (1988) proved the potential of B. subtilis as postharvest

biocontrol agent for M fructicola in commercial pilot trials. Brown rot control on spray- or

dip-inoculated peaches by the bacterium was equal to that obtained by benomyl (1 to 2 ug/ml

residue in fruit).

Antibiotic-producing Pseudomonas corrugata and P. cepacia significantly reduced

decay of nectarines and peaches when applied up to 12 h after wound-inoculation with M

fructicola. Both bacteria controlled wound-decay better than thiabendazole and similar to

triforine. However, decay control on commercial fruit, not artificially inoculated, was poor,

indicating that field-infection was not accurately simulated by the inoculation methods used.

Latent and quiescent infections might furthermore have been protected from the antagonistic

bacteria by the host tissue (Smilanick et al., 1993).

Endophytic bacteria, isolated from the sub-epidermis of various vegetables and fruits,

were tested for antagonistic activity against M laxa and R. stolonifer in stone fruit. Monilinia

laxa was more susceptible to control than R. stolonifer, with some of the tested isolates

affording complete protection against M laxa for up to 6 days at 20°e. The mam

antagonistic action is thought to be competition for nutrients (Pratella et al., 1993).
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Hong et al. (2000) recorded the mycoflora occurring on stone fruit mummies in

California orchards. The relative recovery of M fructicola from the inner carpo-

stromasphere tissues of Prunus mummies was negatively correlated with Botrytis,

Penicillium and Rhizopus. The mechanisms by which these fungi suppress M fructicola

were thought to be through substrate competition, niche exclusion and/or antibiosis. The

authors concluded that it might be possible to promote naturally occurring colonising fungi

by modifying cultural practices to favour biological control of brown rot. Pesticides applied

in orchards affect the quantity as well as the quality of mycoflora. Populations of non-target

epiphytic microorganisms were reduced by the application of fungicides. However,

Penicillium spp., including the antagonistic P. frequentans, although sensitive to the

fungicides applied, were stable in field populations under fungicide regimes. This stability

was attributed to thein highly competitive nature and ability to exploit any ecological niche \
\

left vacant as a result of the fungicide application (De Cal & Melgarejo, 1992). \

Postharvest

Latent or quiescent infections established during the green fruit stages or shortly

before harvest caused a significant proportion of the amount of postharvest decay by M.

fructicola (Swinburne, 1978; Northover & Cerkauskas, 199.4;Northover & Biggs, 1995).

Ogawa et al. (1983) reported that postharvest decay in California caused by M. fructicola is

of greater concern than that caused byM taxa.

Injuries that occur during harvesting, processing, packaging or transport are often the

origin of postharvest decay. Propagules of decay bacteria or fungi are abundant on fruit

surfaces and free moisture and nutrients exuding from wounds provide an ideal environment

for pathogen propagule germination, germ tube growth and penetration. Successful

penetration and infection through wounds depend on many factors, such as the physiological

changes that occur at the site of injury which affect susceptibility to infection. Eldon Brown

(1989) reviewed the instances where physiological changes in injured tissue influenced host

susceptibility and discussed how it can be manipulated through the use of cultural and

handling practices. Phenylpropanoid metabolism was initiated in unbroken cells adjacent to

the injury site. This led to the formation of certain phenolic compounds (quinones, melanin,

chiorogenic and caffeic acid, isocoumarins, related chromones, coumarins, lignin and

Stellenbosch University http://scholar.sun.ac.za



41

suberin) that play a role in protecting the injury from invasion by decay pathogens. These

compounds might be involved with wound healing and/or might be toxic to the postharvest

pathogen. Temperature and relative humidity are very important factors affecting the wound

healing process. Optimum-temperature for the relevant metabolic processes involved in

wound healing is higher than lOoC, and adequate moisture (RH > 85%) must prevent

desiccation and death of the tissue surrounding the damaged cells. However, optimum

temperatures for wound healing might also favour the pathogen and infection might occur

before healing can convey resistance. Free water at the wound site would also favour the

pathogen. Various chemicals such as sanitising agents, bactericides and fungicides are often

applied to harvested fruit. Several of these chemicals might inhibit the wound healing

process (resorcinol, cyc1ohexamide, dichlorophen, ferbam, sulphur, mercuric chloride,

. phenylmercury acetate, streptomycin and captan-rhodamine), whereas others might be

beneficial (chlorogenic acid, catechol, metiram, hydrated lime, chloranil and chlorine h
Growth regulators such as ethylene, abscisic acid and traumatic acid stimulated phenolic

compound accumulation, lignification and/or suberisation. Lower oxygen and higher carbon

dioxide levels, during storage progressively inhibited suberin and periderm formation.

Effective management of all the factors that influence wound healing should be combined

with other postharvest control measures to assure good keeping quality of harvested crops

(Eldon Brown, 1989).

Fruit should be harvested when mature, but not yet soft-ripe, since it extends shelflife

and lessens decay (Ogawa et al., 1983). Careful handling of fruit during harvesting,

packaging and transport would minimize the amount of wounds. During the packing process,

overmature, bruised or wounded fruit and fruit with insect punctures should be discarded

(Heyns, 1967). Ogawa et al. (1963) demonstrated that mechanical harvesting of peaches and

apricots resulted in more fruit decay compared with hand harvesting. Fruit should also be

cold stored within 24 h of packing (Heyns, 1967). The removal of pubescence of peaches by

means of brushing machines predisposed the peach fruit to quicker infection by M fructicola

(Smith, 1936).

During the postharvest stage fruit can be treated with fungicides alone or in mixtures.

Successful control has been achieved with benomyl alone or with captan in mixture (Ogawa

et al., 1983). Ethanol at relatively low concentrations (30%) improved the efficacy of a
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benomyl-DCNA mixture for control of postharvest decay caused by M fructicola. High

concentrations were more effective in reducing decay, but dehydration and consequent

shrivelling of fruit increased. This increase was ascribed to the fungitoxicity of ethanol and

the increased solubility of benomyl (Feliciano et al., 1992). Iprodione can be applied by

atomiser on the packing line or in a drenching system before fruit are graded and sorted

(Combrink: et al., 1996). After obtaining effective control with phosphonic acid in different

host-pathogen systems, Heaton and Dullahide (l990) tested this compound for the control of

postharvest M fructicola of peaches. They observed good fungistatic control up to 4 days,

but it broke down rapidly after 6 days.

Peracetic acid and chlorine dioxide was effective in reducing M laxa decay of

nectarines and plums. The efficacy of these compounds was related to concentration of the
\

product used and duration of treatment (Mari et al., 1999). Calcium salts, in particular
\ \ "

calcium propionate, calcium hydroxide, calcium oxide, calcium silicate and calcium

pyrophosphate, reduced in vitro growth of M fructicola significantly compared with the

control. Incidence and severity of decay after spray-inoculation on peach fruit, which were

dipped in calcium salts, were reduced and were least when the fruit were dipped in solutions

of calcium phosphate or calcium silicate. Calcium oxide and calcium hydroxide were the

.most effective in reducing brown rot severity on wound-inoculated peaches. The efficacy of

calcium salts in inhibiting M fructicola was attributed to the inhibition of polygalacturonase

activity, thus effecting reduced virulence. An additional value of calcium salts is that it has

no activity against yeasts and can therefore be used to supplement biological control by yeasts

(Biggs et al., 1997).

Natural substances have been utilised in postharvest pathology. The glucosinolatesin

plant cells are hydrolysed under catalysis of the myrosinase enzyme to a series of fungitoxic

compounds. Isothlocyanates produced from the hydrolysis of the glucosinolates,

glucoraphenin and sinalbin, showed consistent antifungal activity against M laxa and B.

cinerea. High concentrations of' glucoraphenin-isothiocyanates (3.6 mg/ml) afforded

pathogen control at high inoculum levels (106 conidia/ml) after 6 days at 20°C and had

curative effect up to 40 h after inoculation. This compound proved to be stable at room

temperature and active on pears against M taxa at O°C, therefore warranting further

investigations into its possible use in postharvest control (Mari et al., 1996). Several sugar
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analogs were also tested for potential fungicides for postharvest decay of apples (B. cinerea

and Penicillium expansum) and pears (M fructico/a) (EI Ghaouth et a/., 1995). Only 2-

deoxy-D-glucose was effective in controlling decay in inoculated apple and peach fruit.

Results from in vitro studies suggested that the observed inhibition was due to direct

antifungal properties of the sugar analog.

The proven fungistatic activity of several fruit aroma compounds associated with

natural ripening, like benzaldehyde vapours, against M /axa and Rhizopus stolonifer,

increased the possibility of the use of naturally occurring chemicals for postharvest decay

control (Caccioni et al., 1995). Acetic acid is an effective postharvest fumigant. Fumigation

with 1.4 mg/l acetic acid reduced postharvest decay by M fructicola compared with the

untreated control, without any deleterious effect on the internal quality of the fruit. Higher
\ \

concentrations (2.7 mg/l) however controlled decay by Rhizopus stolonifer, but, slight
\ ' \

indications of phytotoxicity was observed (Sholberg & Gaunce, 1996). In a later study,

Sholberg (1998) also reported the effective control of M fructicola, Penicillium expansum

and R. stolonifer on sweet cherry by fumigation with short-chain organic acids, acetic, formic

and propionic acid.

Storage of packaged sweet cherries wound-inoculated with M fructicola in increased

carbon dioxide levels reduced the onset of decay development and overall fruit decay. De

Vries-Paterson et al. (1991) showed that at 50% CO2 brown rot development was completely

inhibited for the 7-day storage period at 20°C. Fruit did however develop decay within 2 to 4

days when returned to normal air at 25°C, indicating that CO2-treatments are fungistatic and

not fungicidal.

Low hormetic doses of radiation with ultraviolet light (254 nm, UV -C) reduced

postharvest diseases, including brown rot. Pretreatment of fruit with low doses of UV-C,

followed by artificial inoculation, reduced postharvest decay, indicating induced resistance of

the fruit to decay (Stevens et al., 1996). In a later study Stevens et al. (1998) re-affirmed the

beneficial effect of low doses ofUV-C on host resistance after this treatment controlled latent

brown rot infection. Their results showed a negative relationship between UV -C doses,

colony forming units and the number of brown rot lesions. UV-C light thus has a germicidal

and hormetic effect on reducing brown rot, and furthermore increased phenylalanine
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ammonia-lyase activity, delayed npemng and suppressed ethylene production. The

population of an epiphytic yeast, Debaryomyces hansenii, proven antagonistic against M.

fructicola was also increased.

Thermotherapy is also a successful means of preventing postharvest decay. Moist air

treatment at 52°C for 15 min prevented decay in nectarine fruit puncture-inoculated with M.

. fructicola. Each fruit is individually wrapped in plastic to reduce or elimi~ate undesirable

skin browning associated with heat treatment. Although shorter treatments controlled decay

of naked fruit, it only slowed decay development of wrapped nectarines and eventually

resulted in increased decay. The combined effect of heat treatment and wrapping resulted in

better quality fruit, not only because of reduced decay, but also slower softening and reduced

ethylene production and respiration (Anthony et al., 1989).

Brown rot and Rhizopus rot of inoculated peaches was significantly reduced when the

fruit were treated with hot water (Smith, 1962) and/or hot suspensions of 2,6-dichloro-4-

nitroanaline (DCNA) or benomyl (Wells & Harvey, 1970; Smith, 1971; Jones & Burton,

,1973). Phillips (I982b) however examined the injuries to peaches that were immersed in hot

water. The author observed increased weight loss, surface browning and increased staining

with fast green dye of the hot-water treated fruit.

In other early attempts to control postharvest peach brown rot, Ogawa and Lyda

(1960) found propanol to be the most toxic alcohol against M fructicola spores, followed by

isopropanol, ethanol and methanol. Fifty percent ethanol inactivated M fructicola spores on

the fruit surface within 5 s and spores on the flesh within 2 minutes. The authors concluded

.that when fruit were rinsed immediately after a 1 min immersion in 60% ethanol, no

phytotoxicity was observed and the treatment also produced firmer fruit with more intense

colour.

Hydrocooling of fruit in chlorinated water before fungicide treatment cleaned the

fruit, reduced viable inoculum of micro-organisms on fruit surfaces and removed latent heat,

thereby slowing the ripening process and growth of decay organisms (Osorio et al., 1993).

Chlorine at relatively low concentrations (5 to 10 ppm ClO-) was fungicidal to M fructicola

conidia when suspended in water, but low temperature treatments reduced this effect (phillips

& Grendahl, 1973). Hydrocooling similarly reduced the efficacy of iprodione and benomyl,
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but not ofE-0858. This was attributed to the better systemicity ofE-0858, which resulted in

less wash-off of fungicidal residue (Osorio et al., 1993).

Postharvest decay control is most effective when several control measures are

integrated in one programme. Spotts et al. (1998) reported the more effective control of M

fructicola brown rot of sweet cherry by preharvest treatment with iprodione, postharvest

treatment with the antagonistic yeast, Cryptococcus infirmo-miniatus, followed by modified

atmosphere packaging (initial in-package atmosphere of 50% CO2 and 50% N2), compared

with these treatments alone. Although iprodione residues on harvested fruit were sufficient to

control M fructicola, it did not inhibit the antagonistic yeast. Synergism was furthermore

observed between the yeast and modified atmosphere treatment (Spotts et al., 1998). Pusey

et al. (1986) demonstrated the compatibility of Bacillus subtilis with commercial fruit waxes,
\

postharvest dichloran treatment and cold storage conditions and the retained efficacy of the
\

biocontrol agent against M fructicola.

CONCLUSION

Unpublished research reports from South Africa (Dept. of Plant Pathology, University

of Stellenbosch) have shown that due to the similarity of brown rot and grey mould

symptoms shortly after cold storage, a significant proportion of M laxa postharvest decay is

misidentified as grey mould, caused by B. cinerea. The relevance of M laxa as an important

pre- and postharvest pathogen in South Africa might consequently be underestimated. Little

is also known about the etiology of M laxa. Most research on the brown rot fungi involved

the more virulent species, M fructicola (Wormald, 1919; Curtis, 1928; Smith, 1936; Hewitt

& Leach, 1939; Weaver, 1950; Wade, 1956a; Wade, 1956b; Ogawa & English, 1960; Corbin,

1963; Jenkins & Reinganum, 1965; Corbin et al., 1968; Kable, 1969a; Kable, 1969b; Hall,

1971; Kable, 1971; Byrde & Willetts, 1977; Tate & Corbin, 1978; Ritchie, 1983a; Biggs &

Northover, 1988a; Biggs & Northover, 1988b; Biggs & Northover, 1989; Brown & Wilcox,

1989; Northover & Biggs, 1990; Adaskaveg et al., 1991; Cruickshank & Wade, 1992a; Wade

& Cruickshank, 1992a; Cruickshank & Wade, 1992b; Wade & Cruickshank, 1992b; Willetts

& Bullock, 1993; Elmer & Gaunt, 1994; Northover & Cerkauskas, 1994; Northover & Biggs,

1995; Biggs et al., 1997; Hong et al., 1998; Bostock et al., 1999). Monilinia laxa rarely

forms apothecia (Willetts & Harada, 1984). The fungus overwinters on mummified fruits, the
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fruit stalks and scars and on buds, as well as in cankerous lesions (Batra, 1985). Monilinia

/axa infects by means of conidia, which may be produced throughout the year. There is

however only limited quantitative information on the importance of the different inoculum

sources and infection of blossoms and fruit by this pathogen. In stone fruit orchards of the

Western Cape province of South Africa, brown rot, and not blossom and spur blight, is the

most destructive phase of the M laxa disease syndrome (Fourie & Holz, 1985a; 1985b;

1987a; 1987b; Schlagbauer & Holz, 1989a; 1989b). Botrytis cinerea has, on the other hand,

been associated with blossom blight of stone fruit (Ogawa & Lyda, 1960; Fourie & Holz,

1994) and pistachio (Michailides, 1991). Information about the relative occurrence of M

/axa and B. cinerea from the flower to the fruit stages of different stone fruit types is

therefore lacking. Research concerning the etiology and epidemiology of M taxa on stone

fruit is furthermore needed in order to facilitate the recommendation of scientifically based

control ~leas~lfes.
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2. OCCURRENCE OF BOTRYTIS CINEREA ANDMONILlNIA LAXA

ON NECTARINE AND PLUM IN WESTERN CAPE ORCHARDS

ABSTRACT

Observations were made over a 3-year period of the occurrence of grey mould

(Botrytis cinerea) and brown rot (Monilinia spp.) in the major stone fruit regions in the

Western Cape province by sampling from the Unifruco Quality Evaluation Scheme and from

11 stone fruit orchards. Unifruco subjected fruit that were delivered by growers for export to

storage conditions simulating overseas shipment. Isolations were made from fruit designated

as defective by Unifruco personnel at the end of the storage period. Flowers and fruit from
\ .

the different orchards were subjected to conditions that facilitated disease expression by

surface inoculum and latent infection (unsterile vs. surface-sterilised; untreated vs. paraquat-

treated). Botrytis cinerea was found to be the most important pathogen causing blossom

blight and postharvest decay on stone fruit. The pathogen was most prominent on early- and

mid-season cultivars. Brown rot was exclusively caused by M. /axa and no evidence was

found that M fructicola had been introduced into South Africa. M /axa was most prominent

on the later maturing cultivars. In the case of B. cinerea, blossom infection did not contribute

directly to postharvest decay. Both surface inoculum and latent infection consistently

occurred on fruit in each orchard, although at fluctuating levels. Disease expression on

developing fruit was not governed by the amount of B. cinerea occurring on fruit surfaces,

but by the ability of fruit to resist disease expression. This was shown by the finding that

paraquat-treated fruit yielded substantially higher levels of decay than non-treated fruit. The

amount of B. cinerea on fruits was generally higher during spring than summer. Monilinia

laxa occurred sporadically on the blossoms of late-maturing cultivars. Immature fruit were

generally pathogen-free and disease expression only occurred on maturing fruit. Long-term

latency therefore does not seem to play a prominent role inM /axa fruit rot. These findings

suggest that conidia of M laxa are generally produced in orchards when fruits are

approaching maturity and can only penetrate and infect maturing fruit.
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INTRODUCTION

A survey of postharvest decay of stone fruit in the Western Cape province of South

Africa (Fourie & Holz, 1985a) attributed 73% of decay to Botrytis cinerea (grey mould) and

12 % to Monilinia laxa (brown rot). This finding is in contrast with reports from other parts

of the world where M fructicola, M laxa or Rhizopus stolonifer are more important (Smith,

1971; Wells, 1972; Wells & Bennett, 1975; French, 1976; Phillips & Harris, 1979). In

America and Australasia M fructicola is considered the main causal agent of brown rot, and

M laxa is primarily associated with the blossom and spur blight phase of the Monilinia

disease syndrome (Hewitt & Leach, 1939; Ogawa et al., 1954; Ogawa & English, 1960;

Ogawa et al., 1975; Byrde & Willetts, 1977; Ogawa et al., 1983; Jones & Sutton, 1996).

Monilinia fructicola is absent in South Africa, and all stages of this disease is caused by M

laxa (Fourie & Holz, 1985a; 1985b; 1987a; 1987b; Schlagbauer & Holz, 1989a; 1989b).

Inoculation studies on plum and nectarine flowers on shoots in the laboratory and orchard

showed that B. cinerea infections resembled Monilinia blossom blight (Fourie & Holz, 1995).

These findings suggest that B. cinerea, and not M laxa, may be the principal pathogen

responsible for blossom blight in South African stone fruit orchards.,

The significance of different inoculum sources of M fructicola to brown rot

development is well known. Ascospores produced from mummies on/in the soil (Roberts &

Dunegan, 1926; Tate & Corbin, 1978; Hong et al., 1996; Hong & Michailides, 1998) and

conidia shed from infected areas remaining on the tree from a previous year (Byrde &

Willetts, 1977; Tate & Corbin, 1978; Landgraf & Zebr, 1982; Ogawa et al., 1983; Biggs &

Northover, 1985) provide inoculum for infection of flowers, which has been associated with

latent infection (Wade, 1956; Jenkins & Reinganum, 1965; Tate & Corbin, 1978). Latent

infections appear to be of great significance under humid temperature conditions because

many develop into vigorously sporulating lesions that envelop maturing stone fruits (Jenkins

& Reinganum, 1965; Wade & Cruickshank, 1992; Northover & Cerkauskas, 1994; Emery et

al.,2000). Nonabscised, aborted fruits in the tree and thinned fruits on the ground are other

important sources of conidia as fruits are approaching maturity (Landgraf & Zebr, 1982;

Biggs & Northover, 1985; Hong et al., 1997). However, little is known of inoculum sources

of M laxa and B. cinerea. It has been suggested that B. cinerea flower infection may
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contribute indirectly to grey mould fruit decay (Fourie & Holz, 1995). Locally, different

types and cultivars of stone fruit with different blossoming periods are cultivated in adjacent

and nearby orchards. The production of secondary inoculum on colonised floral parts may

contribute to the total infection pressure, supplying the required inoculum for infection of

different stone fruit types as their fruit ripen. Considerable reinfection will therefore be

caused by infected floral parts that land on healthy tissue (Ogawa & English, 1960). Data on

inoculum behaviour of both M laxa and B. cinerea are needed to contribute to a better

understanding of the two diseases and will provide a basis for more effective management of

grey mould and brown rot. The aim of, this study was to determine the relative importance

and seasonal occurrence of B. cinerea and M laxa in nectarine and plum orchards and to

ascertain the ecology of their inocula on stone fruit at various phenological stages inWestern

Cape orchards.

MATERIALS AND METHODS

General survey. In the past, Unifruco (Pty.) Ltd., an export marketing company,

controlled the export and marketing of a large proportion of stone fruit from South Africa. In

order to regulate the quality of export fruit, the company enforced a Quality Evaluation

Scheme, which requires that each producer's fruit be sampled prior to overseas shipment.

Sample sizes were statistically determined according to the number of cartons in each

consignment. After sampling, the fruit were subjected to storage conditions simulating

overseas shipment (4 wk storage at -O.5°C). Following cold storage, Unifruco personnel

determined the different categories of fruit defects. Symptomatic fruit were collected on a

regular basis during the 1996/97, 1997/98 and 1998/99 seasons from Unifruco. The

symptomatic fruit were placed in separate plastic bags and incubated on a laboratory bench at

22°C to induce sporulation. The causal organism was identified with a dissecting

microscope, and in the case of brown rot isolated onto potato dextrose agar (PDA) for cultural

identification to species-level (Hewitt & Leach, 1939; Calavan & Keitt, 1948; Ogawa et al.,

1954; Jenkins, 1965; Heyns, 1968; Penrose et al., 1976; Sonoda et al., 1982; Corazza et al.,

1998; Leeuwen & Kesteren, 1998). Reference cultures from California (R.M. Sonoda),

Australia (H.J. Willetts), and the United Kingdom (R.J.W. Byrde) were included. When

isolates differed from the reference cultures in appearance on PDA, their identity was verified
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by comparing their germ tube morphology (Hewitt & Leach, 1939; Calavan & Keitt, 1948;

Ogawa et al., 1954; Jenkins, 1965; Heyns, 1968; Leeuwen & Kesteren, 1998), the extent of

hypha! anastomosis between germ tubes (Ogawa & English, 1964; Hoffinann, 1972; 1974)

and their interactions with reference cultures on oatmeal agar (Sonoda et al., 1982).

Orchards. The investigation was conducted on flowers and fruit obtained over a

period of 3 years (1996-1999) from 11 orchards located in the main stone fruit producing.

regions of the Western Cape province. Three nectarine and two plum cultivars with differing
,

ripening periods were selected for the study: Mayglo (nectarine), early-season cultivar

harvested early November; Sunlite' (nectarine) and Santa Rosa (plum), mid-season cultivars

harvested early December; and Flamekist (nectarine) and Casselman (plum), late-season

cultivars harvested early February.' Mayglo and Sunlite orchards were selected in

Simondiurn, Wellington and Klein-Drakenstein, and Flamekist orchards in Prince Alfred
\

Hamlet, Koue Bokkeveld and Vyeboom (Fig. I). A Santa Rosa and a Casselman orchard

were selected in the Blaauwklippen valley, Stellenbosch (Fig. I). All orchards were well

established with tree age of at least 5 years. Orchards were micro-irrigated and orchard

practices for the production of first grade export fruit, as prescribed by the Unifruco Producer

Guide (Unifruco (Pty.) Ltd., Pare du Cap, Mispel Road, Bellville, 7550), were maintained.

Different programmes for the control of B. cinerea and M laxa were followed in the

orchards. Sprays against B cinerea were applied at blossom, after shuck fall and 1wk before

harvest. Fungicides used were benomyl (Benlate, 500 WP, Du Pont) and iprodione (Rovral,

255 SC, Aventis). Sprays against M laxa were applied at blossom, 10 and 3 days before

harvest. Fungicides used were benomyl, iprodione, bitertanol (Baycor, 300 EC, Bayer),

triforine (Denarin, 190EC, Cyanamid) and fenbuconazole (Indar, 50 EC, Algro-Chem).

Disease expression on moist incubated flowers. Sound unblemished flowers (400

per orchard) were sampled at full bloom, placed on sterile epoxy-coated steel mesh screens

(53 x 28 x 2 cm) and used for determining the ecology of B. cinerea andM laxa inoculum on

flowers. For these studies, half the number of flowers had been sterilised (30 s in 70%

ethanol and air-dried), whereas the other half was left unsterile. The screens were placed in

ethanol-disinfected perspex (Cape Plastics, Cape Town, South Africa) chambers (60 x 30 x

60 cm) lined with a sheet of chromatography paper (45 x 57 cm) with the base resting in

deionised water to establish high relative humidity (~93% RH), and were incubated at 23°C
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under a 12h light schedule to induce the development of B. cinerea and M laxa. These

treatments provided conditions that facilitated the development of symptom expression by

different inocula during the period of moist incubation. On untreated flowers, disease

expression was the result of natural infection by surface inoculum and the development of

latent infections. Surface sterilisation completely eliminated the pathogens from the flower

surface. This treatment prevented natural infection and promoted the development of only

latent infection. The flowers were regularly monitored for disease expression and the primary

site of pathogen development was recorded. The causal organism was identified using a

dissecting microscope. Percentages flowers yielding B. cinerea or M laxa were calculated

after 14 days. All the Monilinia isolates were identified to species-level as described

previously.

Disease expression on moist incubated fruit. Sound unblemished fruit were
\

collected at shuck fall (400 fruit per orchard), pit hardening (200 fruit per orchard), 2 wk

before harvest (200 fruit per orchard) and at harvest (200 fruit per orchard), placed on sterile

epoxy-coated steel mesh screens (53 x 28 x 2 cm) and used for determining the ecology of B.

cinerea andM laxa inoculum on fruit For these studies, fruit on the screens were divided in

four groups. One group on each screen was sterilised (30 sin 70% ethanol, 2 min in 0.35%

sodium hypochlorite, 30 s in 70% ethanol) and air-dried. The second group was sterilised as

above, immersed in a 3% paraquat (wpK Paraquat, 200 gil (bipyridyl), WPK Agricultural)

solution for 30 seconds, rinsed in sterile deionised water and air-dried. The third group was

left unsterile and received no paraquat, whereas the fourth group was left unsterile but was

treated with paraquat. The screens were placed in ethanol-disinfected moist chambers and

were incubated under laboratory conditions (23°C under a 12 h light schedule) to induce the

development of B. cinerea andM laxa. These treatments provided conditions that facilitated

disease expression by different inocula during the period of moist incubation. On untreated

fruit, decay was the result of natural infection by surface inoculum and the development of

latent infection, as influenced by host resistance. Surface sterilisation completely eliminated

the pathogens from the fruit surface. This treatment prevented natural infection and promoted

the development of latent infections only. Paraquat terminated host resistance in the outer

cell layers and consequently promoted the development of surface inoculum and latent

infection (Baur et al., 1969; Cerkauskas & Sinclair, 1980; Pscheidt & Pearson, 1989). This

treatment therefore enhanced the development of latent infection on surface-sterilised fruit.
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On unsterile fruit, both natural infection by surface inoculum and development of latent

infection was promoted. The fruits were regularly monitored for disease expression and the

primary site of pathogen development was recorded. The causal microorganisms were

identified using a dissecting microscope. Percentages fruit yielding B. cinerea or M taxa

were calculated after 14 days. All the Monilinia isolates were identified to species-level as

described previously.

Postharvest decay on cold stored fruit. An additional 200 fruit per orchard were

sampled at harvest, packed in packing cartons and kept under conditions simulating overseas

shipment and marketing (nectarines 4 wk at -O.5°C followed by 1wk at 23°C at ±56% RH;

plums 2 wk at -O.5°C, 2 wk at 1Q°C followed by 1 wk at 23°C at ±56% RH). The

development of brown rot and grey mould was monitored and the percentage fruit yielding B.

cinerea or M taxa calculated. All the Monilinia isolates were identified to species-level as

described before.

RESULTS

General survey. A total of 286 plum and 181 symptomatic nectarine and peach fruit

were obtained during the investigation period from the Unifruco Quality Evaluation Scheme

(Tables 1 and 2). Botrytis cinerea was the most frequently isolated decay pathogen. Brown

rot decay was exclusively caused by M laxa. Botrytis cinerea was generally the major

pathogen on the early and mid-season ripening cultivars of both stone fruit types, with M

taxa becoming the major pathogen on the later maturing cultivars.

Disease expression on moist incubated flowers. Mean percentages of flowers of

each cultivar yielding either B. cinerea or M laxa are given in Table 3. The sites on flowers

where the organisms were primarily recorded are given in Table 4. On unsterile flowers

nearly a third of the flowers of each cultivar yielded B. cinerea (Table 3). The pathogen was

generally less common on flowers of the early-season nectarine, Mayglo (22.8%), than on the

late-season cultivars, Flamekist (37.9%) and Casselman (36.8%). Levels of B. cinerea

yielding flowers were generally lower in the sterile treatment, ranging between 5.2% for the

plum cultivar, Santa Rosa, to 20.1% for the nectarine cultivar, Sunlite. The pathogen

developed primarily from the calyx and to a lesser extent from the petals and stamens of the
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symptomatic nectarine flowers (Table 4). On. plum, calyx and petal infection were

predominant. Monilinia laxa, on the other hand, was virtually absent from flowers of both

the unsterile and sterile regimes and was associated only with the late-season nectarine

cultivar, Flamekist, but at' a low level. On these flowers the pathogen developed

predominantly from the calyx and from petals.

Trends followed by the two pathogens in each of the different orchards are given in

Figs. 2 to 9. The occurrence of B. cinerea on flowers varied greatly between orchards of a

specific cultivar and between seasons. On unsterile flowers, levels of pathogen-yielding

flowers were generally relatively low in the early-season ~ectarine, Mayglo (Fig. 2), and the

mid-season plum, Santa Rosa (Fig. 4). Levels were generally higher in flowers of the mid-

season nectarine, Sunlite (Fig. 3), thelate-season nectarine, Flamekist (Fig. 4), and the late-

season plum, Casselman (Fig. 5). Levels of sterile pathogen-yielding flowers in orchards of '

Mayglo (Fig. 2), Sunlite (Fig. 3) and Casselman (Fig. 5) generally corresponded to those

recorded on the unsterile flowers. Therefore, in most of these orchards levels in a specific

season were mostly either high in both the unsterile and the sterile sample, or low. This was

not the case in Flamekist (Fig. 4) orchards, which in certain seasons yielded flowers showing

high levels of B. cinerea in the unsterile sample, but low levels in the sterile sample.

Monilinia laxa followed a different pattern compared with B. cinerea. Of all the

samplings only the one collected in the 1996/97 season from the Flamekist orchard at Koue

Bokkeveld yielded M laxa at approximately 40% under both sterility regimes (Fig. 8).

Flowers from the other nectarine orchards and both the plum cultivars were free from M laxa

in each season or showed less than 1% infection (Figs. 6, 7 and 9).

Disease expression on moist incubated fruit. Mean percentages of fruit of each

cultivar yielding B. cinerea are given in Table 5. In the case of the non-paraquat treatment,

fruit from all the developmental stages were highly resistant to disease expression, with very

low levels (0-2.7%) of pathogen-yielding fruit recorded. The level of sporulating fruit was

furthermore unaffected by the sterility regime, which indicated that fruits were not infected

by surface inoculum during the period of moist incubation. Exceptions were the early- and

mid-season nectarine cultivars Mayglo and Sunlite, which were markedly less susceptible to

disease expression at harvest and yielded the pathogen at higherlevels in the unsterile regime.
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Resistance to decay was markedly reduced on fruit of all the cultivars by the paraquat

treatment Paraquat-treated fruit at each phenological stage therefore yielded higher levels of

pathogen-yielding fruit than the non-paraquat treated fruit. Frequencies of sporulating fruit

were furthermore markedly 1nfluenced by the sterility regime, showing consistently higher

levels on fruit subjected to the unsterile than the sterile regime. This indicated that surface

inoculum occurred on fruit causing new infections during the period of moist incubation.

Levels of sporulating fruit under the sterile and unsterile regimes differed drastically for some

of the cultivars. On Mayglo and Sunlite high levels of sporulating fruit were recorded for the

unsterile treatment at pit hardening, 2 wk before harvest and at harvest, whereas high levels

were recorded in the unsterile regime for the pit hardening and 2 wk before harvest samplings

on Flamekist. On Santa Rosa decay levels were high on the unsterile fruit sampled at shuck

fall.

The primary sites of B. cinerea disease expression on fruits (mean values of all

cultivars for sterile fruit of both paraquat regimes) are given in Table 6. Decay originated at

shuck fall and pit hardening in approximately 50% of the symptomatic fruit from either the

cheek or peduncle-end. The proportion of cheek-associated infections increased with

ripening, reaching 65% at harvest. Peduncle-associated infections, on the other hand,

decreased to 35% at harvest. The proportion of tip-associated infections were between 10 and

20% from shuck fall to 2 wk before harvest and increased to 28% at harvest.

Trends followed by B. cinerea in each of the different orchards are given in Figs. 2 to

5 and are summarised below. In each of the seasons, fruit from nearly all the orchards under

both sterility regimes in the non-paraquat treatment remained asymptomatic during moist

incubation at the shuck fall to 2 wk before harvest samplings. Disease expression only

occurred on non-paraquated fruits when sampled at harvest and only on fruits of the early-

and mid-season nectarine cultivars, Mayglo and Sunlite. For these cultivars disease

expression was recorded on fruit from each orchard, but the levels in an orchard fluctuated

between seasons. In the case of Mayglo (Fig. 2), six of the nine samplings yielded fruit of

which approximately 20% developed B. cinerea decay. On Sunlite (Fig. 3) only one

sampling made from the Wellington orchard in 1996/97 yielded fruit with a relatively high

level (40%) of disease expression. Decay levels in the other samplings ranged between 1 and

10%. Disease expression on paraquat-treated fruit followed a different trend and was largely
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regulated by the cultivar. On both Mayglo and Sunlite, high (60%) to very high (80%) levels

of symptomatic fruit were found on samplings made at pit hardening and 2 wk before harvest.

High levels were occasionally found at shuck fall and harvest. Levels were furthermore

generally markedly higher on fruit under the unsterile than the sterile regime. On Flamekist

(Fig. 4) high levels of symptomatic fruit were only recorded in the 1996/1997 season and

then predominantly at pit hardening and 2 wk before harvest. Disease expression was mostly

at a low level in the two plum cultivars, Santa Rosa and Casselman (Fig. 5).

The mean percentages of fruit of each cultivar yielding M laxa are given in T~ble 7.

The primary site of disease expression on fruits (mean values of all cultivars for sterile fruit

of both paraquat regimes) is given in Table 6. The pathogen was recorded only on ripening

Sunlite and Flamekist fruit. On these fruits disease expression was not influenced by

paraquat treatment or sterility regime. Cheek-associated infections were predominant on

ripening fruit, comprising 80% or more of the infections at 2 wk before harvest and at harvest

(Table 6). The proportion tip-associated infections decreased with fruit development.

.Trends followed by M laxa in each of the different orchards are given in Figs. 6 to 9

and are summarised below. In each season fruit from all the Mayglo, Santa Rosa and

Casselman 'orchards remained mostly asymptomatic, irrespective of sterility or paraquat

regime. Disease expression was only found on SunIite and Flamekist and was dependant on

orchard and season for both cultivars. In all these samplings fruit generally remained

asymptomatic at the shuck fall and pit hardening stages and developed symptoms when

sampled 2 wk before harvest and at harvest. Furthermore, no distinct pattern of disease

expression was observed between the different treatments.

Postharvest decay of cold stored fruit. Overall, two distinct patterns of postharvest

decay were noted (Table 8). Botrytis cinerea decay was pronounced on the early- and mid-

season nectarine cultivars Mayglo and Sunlite, but caused a very low level of decay on the

late-season nectarine Flamekist. Monilinia laxa, on the other hand, was recorded at a very

low level on Mayglo, but was pronounced on Sunlite. The level of decay was, however, very

high on Flamekist. Both pathogens were of minor importance on the two plum cultivars

Santa Rosa and Casselman.
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DISCUSSION

By sampling from the Unifruco Quality Evaluation Scheme and from 11 stone fruit

orchards in the major stone fruit regions, isolates were obtained over a 3-year period from a

large geographical area, comprising many producers and a wide variety of cultivars. Data

from this investigation showed that B. cinerea is the most important pathogen causing decay

on stone fruit in the Western Cape province. This study therefore confirmed the findings of

Fourie and Holz (1985a) and found no evidence indicating a shift in the prevalence of B.

cinerea and M laxa in local stone fruit orchards. Furthermore, no evidence was found that

M fructicoZa had been introduced into the region. This confirmed previous reports, which

sta~ed that brown rot in South Africa is caused by M Zaxa (Fourie & H~lz, 1985a;

Schlagbauer & Holz, 1987).

In this study flowers and fruit of different cultivars of two stone fruit types were kept

under conditions facilitating disease expression by both new and established infections of B.

cinerea and M laxa. In the case of B. cinerea, both infection types consistently occurred on

flowers and fruit in each orchard, although at fluctuating levels. By comparing the levels of

sporulating flowers in the two sterility regimes, it became apparent that moist incubation of

these flowers gave a good indication of the amount of B. cinerea occurring on flower

surfaces, Disease expression on developing fruit was however not governed by the amount of

B. cinerea occurring on fruit surfaces, but by the ability of fruit to resist disease expression.

This is shown by the finding that paraquat-treated fruit yielded substantially higher levels of

decayed fruit than non-treated fruit. Paraquat is known for its terminating effect on natural

host resistance of harvested fruit, thereby facilitating development of established infections

on sterile fruit and infection by surface inoculum on unsterile fruit (Baur et al., 1969;

Cerkauskas & Sinclair, 1980; Pscheidt & Pearson, 1989). The occasional occurrence of high

levels of sporulating fruit in both the unsterile and sterile paraquat treatments thus indicated

the presence of high amounts of B. cinerea on fruit surfaces and high incidences of latent

infected fruit, respectively. Generally, conidia of B. cinerea are regarded as short-lived

propagules, but there is evidence to suggest they possess considerable survival abilities

(Blakeman, 1980; Coley-Smith, 1980). In this regard it was recently shown that conidia of

this pathogen were able to survive on fruit surfaces of kiwifruit, remaining viable and
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infectious throughout the growing season (Walter et al., 1999). The role of predisposing

factors, such as wounding, resulting from injuries sustained during or after harvest, may

therefore be underestimated in symptom expression and the epidemiology of B. cinerea on

stone fruit.

Losses from postharvest decay have been ascribed to direct penetration of ripening

fruit and not to flower or early fruit infections (Fourie & Holz, 1994; 1995). Trends followed

by the pathogen during natural infection in the different orchards substantiate these findings

on artificially inoculated material. Decay of sterile fruit developed in a scattered pattern and

was style-associated in the minority of cases. The amount of B. cinerea on:developing fruit

. and disease expression were not governed by the level of flower infection. This trend is

clearly shown when levels of disease"expression on paraquat-treated fruit are compared with

\those on flowers. These comparisons indicated that in each orchard drastic seasonal

fluctuations occurred between levels of disease expression on flowers and on fruit at shuck

fall and pit hardening stages. In spite of these fluctuations, levels of decayed fruit of early,

mid- and late-season nectarine cultivars were generally relatively high during the period pit

hardening to the beginning of ripening. Decay levels were furthermore mostly high at harvest

on the Mayglo and Sunlite, but low on Flamekist. These differences in the amount of B.,

cinerea occurring on ripening fruit may be partially responsible for the higher levels of

postharvest decay recorded on early- and mid-season cultivars.

No evidence was found for the assumption that B. Cinerea-infected floral parts

contribute indirectly to grey mould fruit decay by supplying the required inoculum for

infection of different stone fruit types as their fruit ripen (Fourie & Holz, 1994). On the other

hand, inoculum for infection was readily available in orchards as infection occurred

throughout the growing season under natural orchard conditions. Infection levels on fruit,

and therefore the amount of B. cinerea in orchards, were however higher during spring than

summer. Botrytis cinerea is among the fungi of which the conidia are most frequently

trapped in air (Pady & Kelly, 1954; Richards, 1956) and it occurs worldwide on a variety of

plants (Jarvis, 1980). Kobayashi (1984) observed conidial masses of the organism

throughout the year on fallen petals of 28 plant species from in 19 genera of 14 families. The

Western Cape province, a winter rainfall area, is well known for its diversity of plant species.

During spring (late August to early November), which is traditionally a wet period, B. cinerea
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was observed sporulating on senescing weed tissue in drainage ditches between the tree rows

in the orchard and on weeds beneath the trees that were killed by herbicides (Data not

shown). Weeds colonised were mostly Oxalis pes-caprae (yellow sorrel), Anagallis arrenis

(bird's eye weed), Taraxacum officinale (common dandelion), Sonchus oleracens (milk

thistle), and Conyza bonariensis (horseweed). These weeds may directly contribute to the

high B. cinerea inoculum levels occurring during the early season in local stone fruit orchards

and consequently to the prominence of grey mould on the early maturing cultivars.

Blossom and spur blight are considered the principal features and the most destructive

phase of theM laxa disease syndrome (Hewitt & Leach, 1939; Ogawa et al., 1954; Ogawa &

English, 1960; Ogawa et al., 1975; Byrde & Willetts, 1977; Ogawa et al., 1983; Jones &

Sutton, 1996). However, in a study on the occurrence of latent infections on different stone

fruit types in South Africa,M laxa was never seen on stigmas or styles of plum blossoms, as

these parts were usually heavily colonised by Cladosporium cladosporioides or Alternaria

alternata (Schlagbauer & Holz, 1989a). In a subsequent study on M laxa blossom blight, B.

cinerea was commonly found on attached and abscised Reubennel plum flowers

(Schlagbauer & Holz, 1990). Fourie and Holz (1994) artificially inoculated Harry Piekstone

plum and Sunlite nectarine flowers with B. cinerea on shoots in the laboratory and orchard

and showed that the infections resembled Monilinia blossom blight. During this 3-year

investigation period typical blossom blight was observed only once, namely in the 1996/97

season in the Sunlite orchard at Wellington. Orchard observations and isolations from

symptomatic and asymptomatic flowers from this orchard ascribed the disease to B. cinerea.

These findings, and the fact that asymptomatic flowers from the 11 stone fruit orchards

consistently yielded B. cinerea and not M laxa, suggest that B. cinerea is the principal

pathogen responsible for blossom blight in South African stone fruit orchards. Botrytis

cinerea blossom blight has previously been reported on other stone fruit types (Ogawa &

Lyda, 1960; Fourie & Holz, 1994) and pistachio (Michailides, 1991).

Monilinia fructicola brown rot of ripe fruits may develop from different types of

infection. Latent infections may be initiated in young fruits (Wade, 1956; Northover &

Cerkauskas, 1994), sometimes as early as blossom (Wittig et al., 1997) and shuck fall (Wade

& Cruickshank, 1992). Short-term latent infections may be formed as late as a few weeks

before harvest (Wade & Cruickshank, 1992). Latent infections can serve as a source of
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inoculum for subsequent fruit rot of maturing stone fruits (Jenkins & Reinganum, 1965;

Phillips & Harvey, 1975; Wade & Cruickshank, 1992; Northover & Cerkauskas, 1994;

Emery et al., 2000). In M laxa, short-term latent infections initiated shortly before fruit are

harvest-ripe, rather than long-term latent infections, are considered the main cause of fruit

losses (Kable, 1971; Schlagbauer & Holz, 1989a; 1989b). In this study fruit in both the

unsterile and sterile paraquat treatments were virtually free of M laxa from shuck fall until

2 wk before harvest. Only ripening fruit yielded the pathogen and decay primarily developed

in a scattered pattern on the cheek and in a minority of cases from the style end of fruits.

Furthermore, no distinct pattern of symptom expression emerged on ripening fruit subjected

to different paraquat regimes. Events of high inoculum loads on fruit surfaces and

establishment of latent infection seems therefore not to occur in the orchards during the early

stages of fruit development. On the other hand, if such events di,d occur, conidial viability

might decrease rapidly due to bacterial antagonism, effects of UV light or the presence of

substances in fruit exudates deleterious to germinating conidia and germlings of M laxa.

Latent contamination (Jerome, 1958) of fruit approaching maturity should however be

considered of major importance when handling and storing harvested fruit. Disease

management strategies should therefore focus on the eradication of inoculum sources that

contribute to latent contamination, eradication of latent conidia on highly susceptible mature

fruit and disease prediction during the preharvest period.
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Table 1. Percentage plum fruit showing grey mould (Botrytis cinerea) or brown rot
iMonilinia laxa) in samples classified as defective by the Unifruco Quality Evaluation
Scheme"

Number of fruit Incidence (%)
Sample date .per sampleb

B. cinerea M.laxa

December 1996 40 92.5 7.5
January 1997 100 71.0 29.0
February 1997 79 45.6 54.4
March 1997 3 0 100
Total (1996/97 season) -222 65.0 35.0

November 1997 8 87.5 12.5
December 1997 -A 75.0 25.0
January 1998 13 69.2 30.8
February 1998 6 0 100
Total (1997/98 season) -..24-' 62.5 37.5

January 1999 35 97.1 2.9
February 1999 '5 40.0 60.0
Total (1998/99 season) 40 90.0 10.0

a Fruit of various plum cultivars, grown in the main stone fruit regions of the Western Cape
province, were sampled for quality control by Unifruco. Sample sizes were statistically
determined in accordance with the number of cartons in each consignment.

b Isolations were made from fruit classified as defective due to grey mould or brown rot by
personnel ofUnifruco after a cold storage period simulating overseas shipment.
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Table 2. Percentage nectarine and peach fruit showing grey mould (Botrytis cinerea) or
brown rot (Monilinia laxa) in samples classified as defective by the Unifruco Quality
Evaluation Scheme"

Number of fruit Incidence (%)
Sample date .per sampleb

B. cinerea M.laxa

November 1996 55 96.4 3.6
December 1996 43 67.4 32.6
January 1997 1 0 100
February 1997 19 10.5 89.5
March 1997 1 0 100
Total (1996/97 season) 119 70.6 29.4

October 1997 5 100 0
November 1997 23 95.6 4.4
December 1997 1 100 0
Total (1997/98 season) 29-- 96.6 3.4

December 1998 22 95.5 4.5
January 1999 8 62.5 37.5
February 1999 3 0 100
Total (1998/99 season) 33 78.8 21.2

Fruit of various peach and nectarine cultivars, grown in the main stone fruit regions of the
Western Cape province, were sampled for quality control by Unifruco. Sample sizes were
statistically determined in accordance with the number of cartons in each consignment.

blsolations were made from fruit classified as defective due to grey mould or brown rot by
<

personnel ofUnifruco after a cold storage period simulating-overseas shipment.
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Table 3. Mean percentage flowers a of different plum and nectarine cultivars yielding
Botrytis cinerea or Monilinia laxa after 14 days incubation at high relative humidity
(2::93%RH)

Symptomatic flowers (%)

B. cinerea M.laxa

Cultivars" Unsterile Sterile Unsterile Sterile

Early-season
Mayglo 22.8 8.8 0.1 0.1

Mid-season
Sunlite 30.3 20.1 0.1 0
Santa Rosa 24.2 5.2 0 0

Late-season
Casselman 36.8 18.8 0 0
Flamekist 37.9 8.3 5.4 5.0

aBased on the total number of flowers obtained for three consecutive seasons.
bNectarine cultivars: Mayglo and Sunlite orchards located in Simondium, Klein-Drakenstein
and Wellington; Flamekist orchards located in Koue Bokkeveld, Prince Alfred Hamlet and
Vyeboom.
Plum cultivars: Santa Rosa and Casselman orchards located in the Blaauwklippen valley,
Stellenbosch.

Table 4. Development of Botrytis cinerea and Monilinia laxa in parts of surface-sterilised
nectarine" and plumb :flowers after incubation at high relative humidity G~93%RH)

Flowers (Ufo) yielding B. cinerea from: Flowers (Ufo) yielding M. lax« from:

Fruit type Calyx Petal Stamen Calyx Petal Stamen

Nectarine
Plum

67.1
92.4

44.8
79.2

48.3
53.5

58.2
o

55.1
o

16.3
o

a Based on 681 and 98 nectarine flowers infected with B. cinerea and M laxa, respectively.
bBased on 144 and 0 plum flowers infected with B. cinerea and M laxa, respectively.
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Table 5. Mean percentage plum and nectarine fruit at different growth stages yielding Botrytis cinerea after being subjected to a differential set
oftreatmentsb and 14 days incubation at high humidity (~93% RH)

Untreated Paraquat-treated

Pit 2 wk before Pit 2 wk before
Shuck faU hardening harvest Harvest Shuck fail hardening harvest Harvest

Cultlvarsc S NS S NS S NS S NS S NS S NS S NS S NS
--
Early-season
Mayglo 0 0.1 0 0.2 1.1 0.9 9.6 22.0 5.9 10.0 14.7 31.1 20.2 44.9 10.9 27.1

Mid-season
Sunlite 0 0.2 0 0 1.8 2.7 4.7 8.4 14.8 12.7 6.9 24.0 29.6 54.2 17.6 35.3
Santa Rosa 0.7 0.7 1.3 1.3 0.7 0.7 2.7 0 10.7 25.7 0.7 11.3 3.3 8.7 3.3 7.3

Late-season
Casselman 0 0 0 0 0 0 0 0 2.3 8.3 0.7 5.3 5.3 5.3 0.7 2.7
Flamekist 0.4 0 0 0 0 0.2 0.9 0.9 7.6 5.2 8.4 14.7 22.9 13.6 5.1 7.1

a Based on the total number of fruITsampled at different growth stages for three consecutive seasons.
bFruit were divided in four groups. One group was sterilised (S) (30 s in 70% ethanol, 2 min in 0.35% sodium hypochlorite, 30 s in 70%
ethanol) and air-dried. The second group was sterilised, immersed in a 3% paraquat solution for 30 seconds, rinsed in sterile deionised water
and air-dried. The third group was left unsterile (NS) and received no paraquat, whereas the fourth group was left unsterile but was treated with
paraquat. The screens were placed in ethanol-disinfected moist chambers and were incubated at 23°C under a 12 h light schedule to induce the
development of B. cinerea.
"Nectarine cultivars: Mayglo and Sunlite orchards located in Simondium, Klein-Drakenstein and Wellington; Flamekist orchards located in
Koue Bokkeveld, Prince Alfred Hamlet and Vyeboom.
Plum cultivars: Santa Rosa and Casselman orchards located in the Blaauwklippen valley, Stellenbosch.

00
\0
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Table 6. Development of Botrytis cinerea and Moni/inia taxa from sites on surface-sterilised
nectarine and plum fruit at different growth stages after incubation at high relative humidity
(~93%RH)

Fru~t ("lo) yieldingB. cinerea from: a Fruit ("lo) yieldingM. laxa from: b

Growth stage Peduncle Tip Cheek Peduncle Tip Cheek

Shuck fall 47.0 11.4 51.9 42.9 28.6 42.9
Pit hardening 44.5 19.0 51.1 60.0 10.0 50.0
2 wk before harvest 40.2 12.5 62.6 20.6 9.5 86.5
Harvest 35.6 28.4 65.3 24.9 14.2 79.1

aBased on the infection of 264, 137, 353 and 225 nectarine and plum fruits from the shuck
fall, pit hardening, 2 wk before harvest and harvest stages, respectively.

bBased on the infection of 7, 10, 126 and 225 nectarine and plum fruits from the shuck fall,
pit hardening, 2 wk before harvest and harvest stages, respectively.
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Table 7. Mean percentage plum and nectarine fruit" at different growth stages yielding Monilinia laxa after being subjected to a differential set
oftreatmentsb and 14 days incubation at high humidity (;:::93%RH) "

Untreated Paraquat-treated

Pit 2 wk before Pit 2 wk before
Shuck fall hardening harvest .Harvest Shuck fall hardening harvest Harvest

Cultivars' S NS S NS S NS S NS S NS S NS S NS S NS

Early-season
Mayglo 0 0 0 0 0 0 0.2 0 0.2 0 0 0.2 0.2 0.2 0 0.2

Mid-season
Sunlite 0.2 0.1 0 0 4A 7.3 7.6 12A 0.3 0.6 0 0 9.1 8.7 5.6 11.1
Santa Rosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Late-season
Casselman 0 0 0 0 0 0 0 0 0 0 1.3 1.3 1.3 2.0 1.2 0
Flamekist 0 0 0.9 0.2 1.1 4.9 18.2 19.8 0 0.1 0.7 0.2 lOA 13.6 14.5 24.0

aBased on the total number of fruit sampled at different growth stages for three consecutive seasons.
bFruit were divided in four groups. One group was sterilised (S) (30 s in 70% ethanol, 2 min in 0.35% sodium hypochlorite, 30 s in 70%
ethanol) and air-dried. The second group was sterilised, immersed in a 3% paraquat solution for 30 seconds, rinsed in sterile deionised water
and air-dried. The third group was left unsterile (NS) and received no paraquat, whereas the fourth group was left unsterile hut was treated with
paraquat. The screens were placed in ethanol-disinfected moist chambers and were incubated at 23°C under a 12 h light schedule to induce the
development of M laxa.
"Nectarine cultivars: Mayglo and Sunlite orchards located in Simondium, Klein-Drakenstein and Wellington; Flamekist orchards located in
Koue Bokkeveld, Prince Alfred Hamlet and Vyeboom.
Plum cultivars: Santa Rosa and Casselman orchards located in the Blaauwklippen valley, Stellenbosch.
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Table 8. Mean percentage fruit" of different plum and nectarine cultivars developing
postharvest" grey mould (Botrytis cinerea) or brown rot (Monilinia laxa)

Symptomatic fruit (%)

B. cinerea M.laxa

3.1 0.1

4.2 3.7
0.7 0

0 0
0.4 8.9

Early-season
Mayglo

Mid-season
Sunlite
Santa Rosa

Late-season
Casselman
Flamekist

aBased on the total number of fruit examined in three consecutive seasons.
bl~ruit were sampled at harvest (200--per orchard per season for three consecutive seasons

I [1996-1999]), packed in packing cartons and kept at conditions simulating overseas
.. shipment and marketing (nectarines 4 wk at -D.5°C followed by 1 wk at 23°C at ±56% RH;
plums 2 wk at -O.5°e, 2 wk at 10°C followed by 1 wk at 23 oe at ±56% RH).

"Nectarine cultivars: Mayglo and Sunlite orchards located in Simondium, Klein-Drakenstein
and Wellington; Flamekist orchards located in Koue Bokkeveld, Prince Alfred Hamlet and
Vyeboom.
Plum cultivars: Santa Rosa and Casselman orchards located in the Blaauwklippen valley,
Stellenbosch.
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WESTERN CAPE

• Koue Bokkeveld
• Prince Alfred Hamlet

• Wellington
• Klein-Drakenstein
• Simondium

• Stellenbosch

• Vyeboom

60km

Figure 1. Localities in the Western Cape province where flowers and fruit were collected
from different nectarine and plum orchards.
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Figure 2. Percentage flowers or fruit obtained' at different growth stages from three
nectarine (cultivar Mayglo) orchards yielding Botrytis cinerea after being subjected to a
differential set of treatments (see legend) and 14 days incubation at high relative humidity
(>93%RH).
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Figure 3. Percentage flowers or fiuit obtained at different growth stages from three
nectarine (cultivar Sunlite) orchards yielding Botrytis cinerea after being subjected to a
differential set of treatments (see legend) and 14 days incubation at high relative humidity
(>93% RH).
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Figure 4. Percentage flowers or fruit obtained at different growth stages from three
nectarine (cultivar Flamekist) orchards yielding Botrytis cinerea after being subjected to a
differential set of treatments (see' legend) and 14 days incubation at high relative humidity
(>93%RH).
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Figure 5. Percentage flowers or fruit obtained at different growth stages from two plum
(cultivars Santa Rosa and Casselman) orchards yielding Botrytis cinerea after being
subjected to a differential set of treatments (see legend) and 14 days incubation at high
relative humidity (>93% RH).
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Figure 7. Percentage flowers or fruit obtained at different growth stages from three
nectarine (cultivar Sunlite) orchards yielding Monilinia taxa after being subjected to a
differential set of treatments (see legend) and 14 days incubation at high relative humidity
(>93%RH).
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Figure 8. Percentage flowers or fruit obtained at different growth stages from three
nectarine (cultivar Flamekist) orchards yielding Monilinia laxa after being subjected to a
differential set of treatments (see legend) and 14 days incubation at high relative humidity
(>93%RR).
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Figure 9. Percentage flowers or fruit obtained at different growth stages from two plum
(cultivars Santa Rosa and Casselman) orchards yielding Monilinia /axa after being subjected
to a differential set of treatments (see legend) and 14 days incubation at high relative humidity
(>93%RH).
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3. BEHAVIOUR OF SOLITARY CONIDIA OF MONILINIA LAXA AND

DISEASE EXPRESSION ON NECTARINE FRUIT

ABSTRACT

Nectarine fruit (cultivar Flamekist) at pit hardening, 2 wk before harvest, harvest stage

and after cold storage (4 wk at -O.5°C followed by 1wk at 23°C at ±56% RH) were dusted

with dry conidia of Monilinia laxa in a settling tower. The fruits were incubated for periods

ranging from 3 to 48 h at high relative humidity (~93%, humid fruit) or covered with a film

afwater (wet fruit). Behaviour of the solitary conidia was examined with an epifluorescence

microscope on skin segments stained in a differential stain containing fluorescein diacetate,

aniline blue and blankophor. The ability of solitary conidia to colonise the fruit surface,

penetrate fruit skins and to induce disease expression was determined by using a differential

set of tests. For these tests, fruit were surface-sterilised (30 s in 70% ethanol) or left unsterile.

From each group, fruit were selected for isolation (skin segment test), immersed in a 3%

paraquat solution (paraquat fruit test) or left untreated (sound fruit test). The tests showed

that at the pit hardening stage, fruit skins were not penetrated under both wetness regimes,

latent infections were not established and fruits reacted resistant to disease expression.

However, the barrier capacity of fruit skins decreased as fruits ripened. The disease reaction

on ripening fruit was furthermore influenced by wetness. The change in fruit susceptibility

on maturing fruit could be ascribed to changes of components of the fruit skin. The

behaviour of inoculum on fruit surfaces complemented these findings. On humid fruit germ

tube growth was invariably restricted on all fruits, but germ tubes grew slightly longer on

mature than on immature fruit. Germination rates were higher on wet fruit, but were not

affected by host phenology. However, germ tubes grew more restricted on immature fruit,

compared with the extensive growth on mature fruit. Appressorium formation and direct

penetration were not observed on any of the fruits. Germ tubes penetrated fruit

predominantly through stomata, lenticels and microfissures in the fruit skin. The tendency to

grow towards a specific site and to penetrate was also influenced by fruit phenology. On fruit

at pit hardening and 2 wk before harvest, germlings were inclined to grow primarily towards
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stomata, and predominantly entered these sites. This tendency changed when fruit were

inoculated at harvest. On these fruits germlings were attracted in nearly equal proportions-by

stomata, lenticels and _microfissures and had entered them in nearly equal proportions. The

findings indicate that short-term latency and latent contamination are important factors

contributing to M taxa decay of nectarine fruit.

INTRODUCTION

Blossom blight and brown rot of stone fruit can be caused by Monilinia fruetieola

(Wint.) Honey or M laxa (Aderh. & Ruhl.) Honey. In America and Australasia M fruetieola

. is mostly associated with the fruit rot phase, and M laxa with the blossom and spur blight

phase of the Monilinia disease syndrome (Hewitt & Leach, 1939; Ogawa et al., 1954; Ogawa

& English, 1960; Ogawa et al., 1975; Byrde & Willetts, 1977; Ogawa et al., 1983; Jones &

Sutton, 1996). Monilinia fruetieola, considered to be the more virulent of the brown rot fungi

(Hewitt & Leach, 1939; Ogawa & English, 1960; Penrose et al., 1976) is absent in Europe

(Byrde & Willetts, 1977; Willetts & Bullock, 1993) and South Africa (Fourie & Holz, 1985a;

Schlagbauer & Holz, 1987; Part 2), and in these countries all stages of this disease are caused

by M laxa (Byrde & Willetts, 1977; Fourie & Holz, 1985a; 1985b; 1987a; 1987b;

Schlagbauer & Holz, 19893.; 1989b; Tamm & Fluckiger, 1993; Willetts & Bullock, 1993;

Tamm, 1994; Tamm et al., 1995; Part 2).

With M fruetieola, ascospores are considered as an important part of the primary

inoculum (Roberts & Dunegan, 1926; Byrde & Willetts, 1977; Tate & Corbin, 1978; Hong et

al., 1996; Hong & Michailides, 1998). Ascospores produced from mummies on/in the soil

and conidia shed from infected areas remaining on the tree from a previous year, provide

inoculum for infection of flowers, which has been associated with latent infection (Wade,

1956a; Jenkins & Reinganum, 1965; Tate & Corbin, 1978). Latent infections appear to be of

great significance under humid temperature conditions because many develop into vigorously

sporulating lesions that envelop maturing stone fruits (Jenkins & Reinganum, 1965; Wade &

Cruickshank, 1992b; Northover & Cerkauskas, 1994; Emery et al., 2000). Nonabscised,

aborted fruits in the tree and thinned fruits on the ground are other important sources of

conidia as fruits approach maturity (Landgraf & Zehr, 1982; Biggs & Northover, 1985; Hong

et al., 1997). Fruits that rot before harvest and are covered by sporodochia, serve as a source
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of inoculum for the potential infection of the very susceptible mature fruits. Propagules ofM

fructicola were found covering sound fruit only in orchards where sporulation had occurred

on nearby infected fruit (phillips & Harvey, 1975). Infection of blossoms and fruits by this

fungus is well recorded (Wormald, 1919; Curtis, 1928; Smith, 1936; Hewitt & Leach, 1939;

Weaver, 1950; Wade, 1956a; Wade, 1956b; Ogawa & English, 1960; Corbin, 1963; Jenkins

& Reinganum, 1965; Corbin et al., 1968; Kable, 1969a; Kable, 1969b; Hall, 1971; Kable,

1971; Byrde & Willetts, 1977; Tate & Corbin, 1978; Ritchie, 1983a; Biggs & Northover,

1988a; Biggs & Northover, 1988b; Biggs & Northover, 1989; Brown & Wilcox, 1989;

Northover & Biggs, 1990; Adaskaveg et al., 1991; Cruickshank & Wade, 1992a; Wade &

Cruickshank, 1992a; Cruickshank & Wade, 1992b; Wade & Cruickshank, 1992b; Willetts &

Bullock, 1993; Elmer & Gaunt, 1994; Northover & Cerkauskas, 1994; Northover & Biggs,

1995; Biggs et al., 1997; Hong et al., 1998; Bostock et al., 1999).

Monilinia laxa, on the other hand, rarely forms apothecia (Willetts & Harada, 1984).

The fungus overwinters on mummified fruits, fruit stalks, scars, buds, as well as in cankerous

lesions (Batra, 1985). Monilinia laxa infects by means of conidia that may be produced

throughout the year. There is however only limited quantitative information on the

importance of the different inoculum sources and infection of blossoms and fruit by this

pathogen. In stone fruit orchards of the Western Cape province of South Africa, brown rot,

and not blossom and spur blight, is the most destructive phase of the M laxa disease

syndrome. A recent study (part 2), which investigated symptom expression by both new and

established M laxa infections in different stone fruit orchards over a three-year period,

showed that the pathogen was virtually absent from flowers and occurred only sporadically.

Immature fruit were generally pathogen free and symptom expression only occurred on

maturing fruit. Contrary to M fructicola, long-term latency does not seem to play a

prominent role in M laxa fruit rot (Kable, 1971; Schlagbauer & Holz, 1989a; 1989b; Part 2).

These findings suggest that conidia of M laxa are generally produced in orchards when fruits

are approaching maturity and can only penetrate and infect maturing fruit.

Conidia of Monilinia spp. are primarily dispersed by air currents, splashing water

droplets (Byrde & Willetts, 1977; Ogawa et al., 1983) and by insects (Ogawa, 1957; Kable,

1969a; Tate & Ogawa, 1975). Conidia are therefore carried either in groups, or as single

cells. Studies with Botrytis cinerea showed that of those conidia dispersed by rain drops,
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very few become wet enough to enter the droplets and that the majority are carried on the

droplet surface as a dry coating. Raindrops may therefore deposit conidia carried on their

surfaces as single units onto fruit during runoff (G. Holz, pers. comm.). These findings imply

that in the field, infection may not always be caused by clusters of conidia, but more often by

solitary conidia. Relatively little information has been published on the interactions between

solitary conidia, temperature, and wetting duration for M laxa on stone fruit. The aims of

this study were to use an inoculation method that simulates natural infection by airborne

conidia, to study germination and germ tube behaviour on the surface of humid or wet

nectarine fruit at different phenological stages, and to record infection and the host response.

Preliminary reports of this study have been published (Fourie & Holz, 1999a; 1999b).

MATERIALS AND METHODS

Fruit. A nectarine orchard (cultivar Flamekist) with a history of low levels of brown

rot incidence was selected in the Witzenberg valley (Koue Bokkeveld). Four weeks prior to

the pit hardening stage, a section of the orchard was demarcated and no fungicides were

applied. Sound, unblemished fruit were selected at pit hardening, 2 wk before harvest, and at

the harvest stage from the latter trees. Fruit obtained at harvest stage were either used, or kept

under conditions simulating overseas shipment and marketing before being used (4 wk at -

0.5°C followed by I wk at 23°C at ±56% RH). Before usage, fruits were surface sterilised

(30 s in 70% ethanol, 2 min in 2% sodium hypochlorite, 30 s in 70% ethanol), packed on

sterile, epoxy-coated steel mesh screens (53 x 28 x 2 cm) and allowed to air-dry. Picking

wounds at or near the pedunc1e-end were covered with petroleum jelly. In order to recognize

the inoculated cheek of the fruit at a later stage, a 0.5 cm mark was made near the peduncle-

end with a soft-tipped koki pen. Preliminary studies showed no phytotoxic effect. Before

inoculation, surface sterilised fruit were kept for 24 h in ethanol-disinfected perspex (Cape

Plastics) chambers (60 x 30 x 60 cm) at 22°C and ±56% RH to allow re-establishment of

surface nutrients.

Inoculation. A virulent M laxa isolate, sensitive to iprodione and benomyl and

obtained from a naturally-infected nectarine fruit, was maintained in the laboratory at 22°C

on a synthetic agar medium amended with sugars, minerals and malic acid at concentrations

occurring in grape berry exudates (1.85 g glucose; 1,95 g fructose; 0.25 g sucrose; 0.15 g
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malic acid; 5 g peptone; 5 g sodium chloride; 15 g agar; and 2 g yeast extract per litre

deionised water), or was kept on malt extract agar (MEA) slopes at 5°C in the dark.

Inoculum was prepared by inoculating ripe surface-sterilised nectarines with mycelium discs,

or conidia, obtained from fresh cultures growing on potato dextrose agar (PDA). Inoculated

fruit were incubated for IOta 14 days at 22°C on screens in moist perspex chambers (see

below) to allow infection, colonisation and profuse sporulation by M laxa. The mummified

fruit were then kept in dry chambers at ±56% RH. For inoculation, a mummified fruit was

placed on a shelf 10 cm below the ceiling of a spore settling tower (1.5 x 1.0 x 1.5 m [length

x width x height]). Conidia were blown for 1 s from the mummy with a pressure pump

(Rietchle VTE 3 [3.5-4.2 rn3Jh]) and the lid in the ceiling closed. The conidia were allowed

10 min to settle onto the fruit that were positioned on three screens on the floor of the tower.

Petri dishes with PDA were placed among the fruit on the floor of the settling tower at each

inoculation and percentage germination of conidia was determined after 6 h incubation at

22°C (100 conidia per Petri dish, three replicates). Following inoculation, the screens were

placed in 6 ethanol-disinfected perspex chambers lined with a sheet of chromatography paper

(45 x 57 cm), with the base resting in deionised water to establish high relative humidity

(~93% RH). Each chamber contained five screens carrying 31 fruits, and each screen in a

chamber was randomly assigned one of five incubation periods (first incubation cycle).

These were 3, 6, 12, 24 and 48 h post inoculation (hpi). Each chamber was considered as a

block and the screens were randomised within each chamber. In nature, frequent runoff of

raindrops and a half-day or more of sunny weather may lead to different durations of

continuous fruit wetness, or of high humidity on the fruit surface. Therefore, in three of the

chambers, fruits were overlaid with sterile paper towels wetted with sterile deionised water.

Fruits in the other three chambers were left dry. These conditions provided two different

wetness regimes with different durations for the pathogen; dry conidia on dry fruit under high

relative humidity (humid fruit), and conidia exposed to a film of water on the fruit surface

(wet fruit). The chambers containing the fruit were incubated at 22°C with a 12 h

photoperiod daily. After a set incubation period, the appropriate screens with fruit were

removed from the chambers, the paper towels removed and the fruits air-dried before they

were used for histological studies, and for the determination of surface colonisation, skin

penetration and disease expression.
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Histology. One fruit (i.e. 3 fruit per wetness regime per incubation period) was

randomly selected from each screen per chamber. Thin hand-sectioned pieces (5 x 5 mm) of

skin consisting of the cuticle, epidermis, and a few cell layers, were cut with a razor blade

from the inoculated cheek of the fruit. The sections were stained for 5 min in a differential

stain containing fluorescein diacetate ([FDA] Sigma Chemical Co., St. Louis, MO), aniline

blue ([AB] B.D.H. Laboratory Chemicals Division, Poole, England) and blankophor ([BP]

Bayer), mounted on a glass slide in 0.1 M KHZP04 buffer (pH 5.0) and covered with a cover

slip. FDA (2 mg/ml acetone) and AB (0.1% in KHZP04 buffer, pH 5.0) were prepared as

stock solutions and stored at -20°C and 5°C, respectively. Before a histology session, BP

(0.5%) was added to the AB solution and a fresh stain prepared by mixing 25 JlI of FDA

stock solution with 1 ml of ABIBP stock solution in a 1.5 ml polypropylene Eppendorf tube,

which was then kept on crushed ice. Conidial germination, germ tube and hyphal growth,

apressorium formation, penetration sites, host responses and viability of fungal structures

were examined with the aid of a Zeiss Axioskop microscope equipped with an

epifluorescence condenser, a high-pressure mercury lamp, Neofluar objectives and Zeiss

filters 02, 06 and 18. These sets include excitation filters G 365, BP 436/8 and BP 395-425,

respectively. With this set-up, protoplasts of viable fungal structures fluoresced brilliant

yellow-green with filter No. 02, 06 and 18. Protoplasts of <lead cells were blue-black (filter

No. 06, 18), whereas cells without protoplasts fluoresced white (filter No. 02) or yellow (filter

No. 18) (O'Brien & McCully, 1981). Formation of phenolic substances became visible by

irradiation with ultra-violet light (filter No. 02) resulting in a bright bluish fluorescence

(Langcake, 1981). Suberised cell walls showed a light blue or bright. yellow fluorescence

(Hill, 1985). Microfissures and -cracks in the skin became visible due to accumulation of

phenolic substances, lignification and suberisation of surrounding cell walls. Lenticels were

brown with yellow fluorescence of suberised cells.

Surface colonisation, skin penetration and disease expression. The ability of the

solitary conidia to colonise the fruit surface, to penetrate the fruit skins, and to induce disease

expression during each incubation period was determined by using a differential set of tests.

For these tests, fruit on the screens from each chamber were divided into two groups. One

group on each screen was surface-sterilised (30 s in 70% ethanol), while the second group

was left unsterile. Five fruit from each group on each screen were selected for isolation (skin

segment test). Nine epidermal tissue segments (5 x 7 mm) (45 segments per treatment) were
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cut from the inoculated cheek of each fruit, placed with the cuticle upward on PDA amended

with 40 mg/l streptomycin sulfate (PDAS) and incubated at 23°C (second incubation cycle).

Another 15 fruit from each group on each sereen were left untreated (sound fruit test), The

remainder of the fruit on tire screens were immersed in a 3.1% paraquat (WPK Paraquat,

WPK Agricultural) solution for 30 seconds, rinsed in sterile deionised water and air-dried

(paraquat fruit test). Fruit were replaced on the screens, and the screens were transferred to

dry perspex chambers (~56% RH) and kept under laboratory conditions (23°C under a 12 h

light schedule) (second incubation cycle). These treatments provided conditions that

facilitated disease expression during the second incubation cycle by different inocula on the

test materiaL In-the non-sterilised treatment, disease expression on segments, or fruit, was the

result of penetration by gerrnlings that had penetrated the cuticle under natural host resistance

during .the two incubation periods. Surface sterilisation after the first incubation cycle

completely 'eliminated the pathogen from the fruit surface, and allowed the development, of',

only germlings that had penetrated the cuticle during this incubation period. Paraquat

terminated host resistance in the outer cell layers and consequently promoted the

development of epiphytic inoculum, and endophytic inoculum (Baur et al., 1969; Cerkauskas

& Sinclair, 1980; Pscheidt & Pearson, 1989). This treatment therefore enhanced the

development of latent infection on surface-sterilised fruit. . The segments and fruits were '

regularly monitored for the development of M laxa, and numbers yielding the pathogen were

recorded after 14 days. The number of sporulating segments or fruit recorded in each

experiment were used to quantify surface colonisation, skin penetration and disease

expression.

Statistical analyses. Experimental design of experiments, each of which was

repeated twice, was a completely randomised split-plot design and analyses of variance were

done using SAS. Regression analyses were performed to investigate possible significant

trends in interactions or main effects. Slopes and intercepts of regression lines were

compared using Student's t-LSD (P < 0.05) (Snedecor & Cochran, 1980). Significance

values of the regression line slopes were calculated, with P < 0.05 providing strong evidence

against the Ho-hypothesis that no change occurred over time. Analysis of variance of the

percentage germination and germ tube length were done using SAS. A non-linear natural

growth function [y =A x exp(B / x)] (Hoeri, 1954) was fitted to the data and trends

(coefficients) compared using Student's t-LSD (P < 0.05).
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RESULTS

Conidial behaviour. Analyses of variance were done on the germination fercentages

and germ tube lengths measured during the histological study of the fruit subjected to the

various treatments (Table 1 and 2). Non-linear growth curves were fitted to the data and the

various trends for percentage germination and germ tube length over incubation time plotted

in Fig. lA-F. Based on fluorescence microscopy of the stained segments, it was obvious that

the airborne inoculum consisted of conidia only, since no hyphal fragments were obs~rved.

Conidia were consistently deposited on fruit surfaces as single cells, and not in pairs or

groups. The average number of conidia recorded per segment for successive inoculations

. ranged from 50 to 249, with an average conidial density of 5.3 (SD = 2.47) conidia per mm'

fruit surface. Although depositions were regulated by counts on PDA plates, it ,,yaried

markedly \between successive inoculations. Conidia used at each inoculation were m\ghly

viable and germinated freely on PDA. Germination on PDA usually reached 98 to 100% at

6 hpi. Germination proceeded at a lower rate on fruit than on PDA and followed distinct

trends, which were regulated by fruit phenology and wetness regime. Germ tubes protruded

at 3 hpi on fruit. under both wetness regimes (Fig. lA-C), but germination rate was

significantly (P < 0.05) slower on humid than wet fruit. On humid fruit, germination rates

tended to be low during the 3 to 6 hpi period, but then increased to approximately 60% at

24 hpi, .after which it levelled off. An exception was found at the 2 wk before harvest (Fig.

IB) stage, when rates were exceptionally low during the 3-12 hpi period and tended to remain

low for the duration of the incubation period. Germination generally proceeded rapidly on

wet fruit. Germination however peaked earlier (12 hpi) on ripening fruit (Fig. IB,C) than on

fruit at pit hardening (Fig. lA).

Wetness had no influence on the number of germ tubes formed and germ tube

branching (Table 3). Conidia germinated forming predominantly one unbranched germ tube.

However, on ripening fruit a tendency for the formation of more than one germ tube and

branches was noted. Germ tube growth, on the other hand; was markedly affected by wetness

regime and fruit phenology. Growth was consistently more restricted on humid than on wet

fruit (Fig. lA-C). This phenomenon was most pronounced at pit hardening stage where gerni

tube lengths on humid fruit did not exceed 15 J.1m.Germ tubes however grew slightly longer

on humid, ripening fruit, especially on those inoculated at harvest, where predicted lengths

Stellenbosch University http://scholar.sun.ac.za



110

were 49.5 )lID at 24 hpi. Growth proceeded fast on wet fruit and followed a similar trend on

the different fruits during the first 6 hpi. Thereafter it slowed down on fruit of the pit

hardening stage, but was rapid on ripening fruit, showing extensive growth on harvest ripe

fruit (178.7 )lID predicted at 24 hpi).

Appressorium formation and direct penetration were not observed on any of the

nectarine fruits. Germ tubes penetrated fruit predominantly through stomata, lenticels and

microfissures in the fruit skin, although conidia seldom landed on these structures. The

tendency to grow towards these sites, and to enter them, was influenced by host phenology

and wetness regime (Table 4). Firstly, as the fruit reached maturity, proportionally more

germlings grew in close proximity of these sites. The proportion of germ tubes that grew

towards them, and those that had entered them, also increased with maturity. The tendency to
\ \

grow towards a specific site and to penetrate was also influenced by fruit phenology. On fruit
\. \ \ '.
at pit hardening and the 2 wk before harvest stages, germlings were inclined to grow

primarily towards stomata, and predominantly entered these sites. This tendency changed

when fruit were inoculated at harvest. On these fruits, germlings were attracted in nearly

equal proportions by stomata, lenticels and microfissures and had entered them in nearly

equal proportions. Secondly, at each phenological stage, proportionally more germlings grew

in close proximity of these sites and more entered them on wet than on humid fruit.

Different patterns of conidium and germling dieback were observed amongst

individuals on a given fruit. On humid fruit some conidia or germlings died or only certain

sections of the germ tube died. A similar pattern of germling dieback was observed on wet

fruit. Trends followed in dieback were regulated by fruit phenology and wetness regime.

Conidium and germling dieback were more pronounced on immature than on mature fruit,

and occurred at a considerably higher rate on wet fruit. Data on dieback were however

inconclusive and were not analysed.

Bright bluish fluorescence zones, indicative of phenol accumulation, or yellow

fluorescence, indicative of suberisation, were not observed in host cells immediately

surrounding infection sites. Fluorescence was however observed in cells surrounding ageing

stomata, microfissures, old wounds and lenticels.
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Surface colonisation. Analyses of variance were done on the data obtained from the

skin segment, paraquat fruit and sound fruit tests (Tables 5-8). Significant (P < 0.05)

treatment vs. incubation period interaction was observed at all stages and the main effects

could therefore not be compared. According to the different tests conducted on fruit in the

unsterile treatment, surface colonisation during incubation was differentially influenced by

wetness at each developmental stage. Trends followed at each stage are summarised below.

\

Pit hardening stage. The majority of segments removed from humid fruit during the

3 to 24 hpi period supported growth of the pathogen, indicating high levels of germling

viability on fruit surfaces during this period (Fig. 2A). The proportion of segments

supporting growth then declined, indicating gradual germling dieback during the 24 to 48 hpi

.period (P = 0.0005). Free water, on the other hand, had a constant negative effect on

"colonisation and germling viability (P = 0.0269). Therefore, at each sampling; significantly

'less segments removed from wet than humid fruit were colonised by Ai:· lcJa. The drastic

decline in the frequency of colonised segments obtained from wet fruit furthermore indicated

rapid death of germlings. Fruits in the sound fruit test (Fig. 3A) and the paraquat fruit test

(Fig. 4A) remained asymptomatic during dry incubation, notwithstanding the duration of the

initial incubation period or wetness regime. Germlings were therefore unable to penetrate
I

and infect the sound fruit or fruit of which active host defence was terminated by paraquat.

Two weeks before harvest stage. The skin segment test (Fig. 2B) showed a gradual

decline in the frequency of M laxa-yielding segments removed during the 3 to 24 hpi period

from both humid and wet fruit (P = 0.0796 and 0.0043, respectively). Germlings therefore

gradually succumbed during the 24 hpi incubation period, but dieback proceeded at a

significantly faster rate on wet than humid fruit. The minority of humid fruit in the sound

fruit test developed lesions during dry incubation (Fig. 3B). Predicted values on fruit

removed 24 and 48 hpi were 5.2% and 10.3%, respectively. Nearly similar values were

predicted for the 3 to 24 hpi period on wet fruit. The proportion symptomatic fruit, however,

drastically increased to 92.9% on fruit kept wet for 48 hpi before dry incubation. Disease

expression occurred on a relative large proportion of fruits where active host responses were

terminated by paraquat 3 hpi (Fig. 4B). The frequency then gradually declined on fruits that

were initially kept humid (P = 0.0003), but gradually increased on fruits kept wet (P =
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0.0265). Germlings were therefore, notwithstanding their viability levels on humid fruit, less

successful in penetrating these fruits.

Harvest stage. In ili:e skin segment test (Fig. 2C), segments constantly yielded the

pathogen irrespective of wetness regime or period. In the sound fruit test (Fig. 3C) symptom

expression was enhanced by longer incubation, but was significantly higher on wet than

humid fruit (P < 0.05). Corresponding trends were observed on fruit in the paraquat fruit test

(Fig. 4C). According to trends showed by the different tests, germlings remained viable on

fruit during the 48 hpi period, but were more successful in penetrating wet than humid fruit.

Cold stored fruit. Data from the three tests (Figs. 2D, 3D, 4D) clearly indicated high

germling viability and penetration of fruit inoculated after cold storage. Proportions M laxa-

yielding segments or symptomatic fruit were not significantly affected by wetness regime.

\
Skin penetration. Tests conducted on fruit in the sterile treatment showed that skin

penetration was influenced by both fruit phenology and wetness. Trends followed at each

developmental stage are summarised below.

Pit hardening stage. Trends displayed by segments yielding M laxa (Fig. 2A)

showed that, irrespective of wetness regime or period, less than 5% of segments were

penetrated by M laxa. The high level of host resistance to penetration shown by the skin

segment test was confirmed by the lack of symptom expression on fruit in the sound fruit test

(Fig. 3A) and paraquat fruit test (Fig. 4A). This showed that although fruit surfaces were

differentially colonised by germlings during the 48 hpi period, germlings were unable to

establish infection.

Two weeks before harvest stage. Data of the skin segment test (Fig 2B) showed that

penetration was unrelated to surface colonisation. Segments removed from humid fruit

yielded M /axa at a nearly constant low level (P = 0.5329). However, the proportion

increased at a significant rate when segments were obtained from wet fruit (P = 0.0043). A

similar trend was found on fruit in the two other tests. On fruit in the sound fruit test (Fig.

3B), levels of disease expression remained low on fruit removed during the 3-24 hpi. Levels

on fruit kept wet for 48 hpi increased drastically to 79.7% (P= 0.0253), but levels increased

to only 11.3% on fruit kept humid (P = 0.3599). On fruit in the paraquat fruit test (Fig. 4B),
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disease expression levels on humid fruit were constantly low and did not exceeded 25% (P =

0.3747). Wet fruit, however, already showed high levels of disease expression during the

second incubation cycle when they were incubated for 3 hpi in the first cycle. The proportion

symptomatic fruit drastically increased when the duration of the first incubation cycle was

increased (P = 0.0008).

Harvest stage. The three tests showed nearly similar n:~Jldsin disease expression. In

the case of humid fruit, expression levels started from a low base-"(0-2%) in both 'the skin

segment test (Fig 2C) and the sound fruit test (Fig. 3C) on fruit kept for 3-6 hpi in the first

incubation cycle. Levels then gradually increased to reach approximately 40% for the 48 hpi .

sampling. Disease expression was slightly more pronounced on fruit in the paraquat fruit

test, with 10.1% and 57.8% fruit 'showing symptoms for the 3 and 48 hpi sampling,

respectively. In the case of wet fruit, on the other hand, the level of disease expression

increased dramatically with incubation (P = 0.0001). In both the skin segment and paraquat

fruit test, nearly all the segments or fruit expressed symptoms for the 24 hpi sampling. In the

sound fruit test, 100% disease expression was recorded in the 48 hpi sampling.

Cold stored fruit. Data from the three tests showed that resistance to infection and

disease expression was markedly reduced by cold storage. Although segments (Fig. 2D) only

yielded the pathogen when removed at the 6 hpi sampling, levels increased drastically at later

samplings. These increases were furthermore significantly higher on wet than humid fruit (P

< 0.05). Trends displayed in the two fruit tests were however similar. For both tests, high

levels of disease expression were already shown by the 3 hpi sampling, with rapid increases

at later samplings. Disease expression was furthermore not significantly affected by wetness

regime (P> 0.05).

DISCUSSION

The mode of penetration of fruits by the brown rot fungi, M fructicola, M laxa and

M fructigena, and subsequent disease expression, have not been well documented. Infection

by these pathogens is mainly associated with wounds on fruit (Byrde & Willetts, 1977;

Fourie & Holz, 1985b; Xu & Robinson, 2000). Entry of fruits inoculated with conidial

suspensions has however been observed through undamaged surfaces, including direct
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penetration of the cuticle by appressoria ~fM fructicola (Cruickshank & Wade, 1992b) and

structures such as hair sockets, lenticels and stomata (Curtis, 1928; Smith, 1936; Hall, 1971;

Byrde & Willetts, 1977; Willetts & Bullock, 1993). The inoculation technique used in this

study simulated natural infection of nectarine fruit at different phenological stages under

humid and wet conditions and facilitated studies on the behaviour of airborne conidia on the

fruit surface, penetration and of disease expression. The findings of the skin segment,

paraquat-treated fruit and sound fruit tests clearly showed that nectarine fruits. reacted

resistant to disease expression at the pit hardening stage. Wetness had no effect on disease

expression at the pit hardening stage, but the disease reaction was markedly influenced by
./. ~

wetness on ripening fruit. The fmdings furthermore suggest that the change -in fruit

susceptibility on maturing fruit could ?e ascribed to changes of components of the fruit skin.

The behaviour of the airborne inoculum, based on fluorescence microscopy of the

stained segments, complemented these findings. On humid fruit, both germination and germ

rube growth were markedly affected by fruit phenology. Germination was poor on fruit at the

2 wk before harvest stage, but was not meaningfully influenced at pit hardening or the harvest

stage. Germ tube growth was invariably restricted on all fruits, but germ tubes grew slightly

longer on mature than on immature fruit. Germination was not affected by host phenology on

wet fruit. However, germ tube elongation was markedly -influenced by fruit phenology.

Germ tubes grew more restricted on immature fruit, but extensively on mature fruit.

Appressorium formation and direct penetration was not observed on any of the fruits. Germ

tubes penetrated fruit predominantly through stomata, lenticels and microfissures in the fruit

skin. This confirmed earlier findings made with conidial suspensions of M laxa, which

described microfissures in the fruit skin (Nguyen-The et al., 1989; Schlagbauer & Holz,

1989b), stomata and lenticels (Den Breeyen, 1993) as primary sites for penetration.

Fluorescence microscopy further revealed that the tendency to grow towards these sites, and

to enter them, was regulated by host phenology and wetness regime. Firstly, it was found that

the airborne conidia seldom landed on== structures. Secondly, as.the fruit reach maturity,

proportionally more germlings grew in close proximity of these sites. The proportion that

grew towards and penetrated them increased with maturity. The tendency to grow towards a

specific site and to penetrate was also influenced by fruit phenology. On fruit at pit

hardening and the 2 wk before harvest stages, germlings were inclined to grow primarily
-

towards stomata, and predominantly entered these sites. This tendency changed when fruit
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were inoculated at harvest. On these fruits, germlings were attracted in nearly equal

proportions by stomata, lenticels and microfissures and entered them in nearly equal

proportions. Secondly, at each phenological stage proportionally more germlings grew in

close proximity of these sites, and entered more of them on wet than on humid fruit. Counts

(data not included) furthermore showed that the number of stomata and lenticels on fruits

increased from 1.89 per mm' (SD :; 0.356) at the 2 wk before harvest stage to 2.37 per mm'

(Sn =0.594) at the harvest stage, thereby offering more sites for penetration on the latter

fruits.

It has been shown that temperature and nutrients can affect volume, nuclear number,

germination and aggressiveness of conidia of Monilinia spp. (phillips, 1982; Phillips, 1984;

Margosan & Phillips, 1985; Phillips & Margosan, 1985; Margosan & Phillips, 1989; Phillips

et al., 1989; Tamm & Fluckiger, 1993). The conidia used itf'this study were produced on
"'~ ""

fresh, harvest-ripe nectarine fruit kept at a constant temperature of 22°C, therefore optimising

the viability and virulence of the conidia. Conidial production was furthermore optimised by

incubating infected fruits at relatively low humidity, which allowed fragmentation of conidial

chains (Byrde & Willetts, 1977) and the even dispersal of conidia on fruit surfaces. The

viability of the conidia was at a constant high level, as proved by the fact that nearly all the

conidia germinated within 6 hpi on PDA. It can thus be assurned that the conidia dispersed

onto the fruit surface at each inoculation were all viable, and that lack of germination or

vitality could be ascribed to the effects of substances in fruit exudates, wax layers or other

skin components.

The marked effect of fruit phenology and wetness regrme on germination,

morphogenesis of germ tubes and germling viability can partially be attributed to the

influence of fruit exudates on solitary conidia. Phenols, in particular chIorogenic and caffeic

acids, are high in resistant immature peach genotypes, and decline with fruit maturity

(Bostock et al., 1999). Bostock et al. (1999) associated the suppressive action of surface

phenolics on the production of cutinase with host resistance of peach fruit to M fructicola.

Working with Botrytis cinerea, Fourie and Holz (1998b) showed that prior to the period of

rapid cell enlargement, growth of this fungus on raised slides was inhibited by nectarine

exudates. Germlings of M laxa need an external supply "of nutrients for germ tube

differentiation and penetration of host surfaces since conidia of the brown rot fungi contain
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insufficient reserves (Willetts & Bullock, 1993). Sugar concentrations in the exudates of

nectarine fruit are low prior to pit hardening (Fourie & Holz, 1998b), but increase rapidly in

the last 2 wk prior to harvest. It was shown with B. cinerea that at concentrations

corresponding to those found in exudates, glucose, fructose and sucrose did not influence

fungal growth in a mineral medium. Fungal growth was only enhanced when either of the

reducing sugars or sucrose was supplied in excess ofO.27 and 0.14 mM, respectively. During

the last two weeks prior to harvest, total sugar in nectarine exudates was far in excess of these

values. Substances in fruit exudates inhibitory or stimulatory to growth will not be readily

available to the fungus when an individual conidium germinates under high humidity on the

dry fruit surface. On the other hand, exudates will easily dissolve in the film of water on wet

fruit and rapidly be taken up by the _solitary conidium growing on the fruit. Furthermore,

ordinary diffusion should ensure a constant supply of these substances to the germ tube and

hyphae of individual conidia. These effects were shown by the solitary conidia grown on

humid and wet fruit.

Inoculum dose is of great importance for successful infection and several studies have

shown increased infection with an increase in inoculum dose (Roberts & Dunegan, 1926;

Corbin, 1963; Hall, 1971; Fourie & Holz, 1985b; Biggs & Northover, 1988a; Brown &

Wilcox, 1989; Wilcox, 1989; Northover & Biggs, 1990; Notthover & Biggs, 1995; Hong et

al., 1998). An increase in the inoculum dose would increase the likelihood of the increased

number of germ tubes encountering sites susceptible to penetration. Conidia act

independently however, and synergism may only occur at high doses (Hall, 1971). Northover

and Biggs (1990) found in a study on sweet and sour cherries that host resistance against M

fructicola was overcome when inoculum doses were increased. In a similar study, Northover

and Biggs (1995) found that by increasing the inoculum dose of M fructicola, the initial

lesion appearance was advanced and infection incidence and the percentage of fruit with

sporodochia were increased. Fluorescence microscopy revealed that conidia of M laxa

behaved differently when they grew solitary on fruit surfaces, compared with growth in a

cluster. Histological studies with M laxa on stone fruit (Schlagbauer & Holz, 1989b; Den

Breeyen, 1993) showed that conidia suspended in droplets were inclined to settle in the centre

of the droplet, which caused an agglomeration of conidia. This action forced conidia to settle

around or on stomata, and to enter there. Germ tubes grew extensively and hyphal mats
_/

formed on the fruit surface in most droplets. It was also noted that micro fissures, which acted
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as avenues for penetration by hyphal mats, developed with time in the cuticle under the

droplet. In these studies synergistic effects of numerous conidia growing in a cluster on a

single site on the host surface possibly masked the effects of fruit exudates and skin

components described here. By inoculating with conidia in spore suspensions, the synergistic

effects of numerous conidia germinating at a single site on the fruit surface masks the effects

of host resistance and the behaviour of single germ tubes on the surface is difficult to study.

Resistance to M taxa of stone fruit prior to the pit hardening stage has been reported

(Kable, 1971; Fourie & Holz, 1987a; Schlagbauer & Holz, 1989a; 1989b). Several workers

concluded that short-term latent infections initiated shortly before fruit are harvest-ripe, rather

than long-term latent infections, are the main cause of M /axa fruit losses (Kable, 1971;

Schlagbauer & Holz, 1989a; 1989b). -A recent study (Part 2) on natural infection, conducted

over a 3-year period on plum and nectarine fruit from 11 stone fruit orchards, indicated that

fruit generally remained free of latent infection at the shuck fall and pit hardening stages and

only developed symptoms when sampled 2 wk before harvest and at harvest. Data obtained

in this study on the surface growth and survival of germlings, skin segment penetration and

disease expression on sound and paraquat treated fruit provide additional evidence for the

unimportance of long-term latency ofM taxa on nectarine. Collectively the findings indicate
..... 1 ,..

that M taxa fruit rot epidemics on stone fruit are driven by inoculum levels on fruit

approaching maturity, and humid temperature conditions prevailing during the preharvest and

harvest period. The role of short-term latency and latent contamination (Jerome, 1958) may

thus be underestimated in the epidemiology of M /axa on stone fruit. Disease management

strategies should therefore focus on the eradication of inoculum sources that contribute to

latent contamination, eradication of latent conidia on the very susceptible mature fruits, and

disease prediction during the preharvest period. However, information describing inoculum

sources and fruit rot epidemics of stone fruit by M taxa is lacking. More information is

therefore needed on these aspects of M taxa to fully understand its biology, epidemiology

and control on stone fruit.
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Table 1. Analysis of variance for effects of growth stage (G), wetness regime
(humid[H]/wet[W]) and incubation period (T) on germination (%) of airborne conidia of
Monilinia taxa on surfaces of Flamekist nectarine fruit .

Source of variation Df SS MS SL
Model 29 92501 3190 0.0001
G 2 1193 596 0.0697
W/H 1 23120 23120 0.0001
T 4 45335 11334 0.0001
GxWIH 2 8401 4201 0.0001
GxT 8 4564 571 0.0143
WlHxT 4 6636 1659 0.0001
GxWlHxT 8 3252 406 0.0769
Error 60 12850 214
Corrected total 89 105351

Table 2. Analysis of variance for effects of growth stage (G), wetness regime
(humid[H]/wet[W]) and incubation period (T) on the growth. (average length in urn) of
Monilinia laxa germ tubes on surfaces of Flarnekist nectarine fruit _.

Source of variation Df SS MS SL
Model 29 250751 8647 0.0001
G 2 37239 18619 0.0001
W/H 1 49731 49731 0.0001
T 4 73711 18428 0.0001
G x WIH . 2 12501 6251 0.0001
OxT 8 31776 3972 0.0001
W/HxT 4 28110 7028 0.0001
GxWlHxT 8 17683 2210 0.0001
Error 60 19341 322
Corrected total 89 270091
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Table 3. Germination pattern of airborne Monilinia laxa conidia on surfaces of humida or
wet'' Flamekist nectarine fruit

Germination pattern
Germ

One germ tube formed (%) Two germ tubes formed (%)tubes
Growth stages observed Total Unbranched Branched Total Unbranched Branched

Humid fruit
Pit hardening 688 98.3 92.6 5.7 1.6 1.2 0.4
2 wk before harvest 375 99.2 96.3 2.9 0.8 0.8 0
Harvest 446 97.5 88.5 9.0 2.5 2.5 0

Wet fruit
Pit hardening 529 98.8 96.1 2.7 1.3 1.1 0.2
2 wk before harvest 587 93.8 88.4 5.4 6.2 5.2 1.0
Harvest 389 97.5 88.0 9.5 2.6 2.3 0.3

aFruit incubated at high relative humidity (~93% RH).
bFruit overlaid with wet paper towels.

Table 4. Behaviour of germ tubes of solitary Monilinia laxa germlings growing in proximity
of natural openings" on humid" or wet" Flamekist nectarine fruit

Germ tubes
Germ tubes (%) in proximity of natural openings

Growth stages observed Total Missing Towards Penetrating

Humid fruit
Pit hardening 688 4.0 1.9 1.6 0.5
2 wk before harvest 375 13.1 4.8 5.1 3.2
Harvest 446 18.7 5.4 8.4 4.9

Wet fruit
Pit hardening 529 19.9 4.5 6.8 8.6
2 wk before harvest 587 27.4 4.8 9.9 12.7
Harvest 389 34.0 8.2 7.4 16.4

Stomata, lenticels or microfissures.
bFruit incubated at high relative humidity (~93% RH).
C Fruit overlaid with wet paper towels:
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Table 5. Analysis of variance for effects of test method (M), wetness regime
(humid[H]/wet[W]), sterility regime (sterile[S]/unsterile[NS]) and incubation period (T) on
disease expression by solitary Monilinia laxa germlings growing on Flamekist nectarine fruit
at the pit hardening stage

Source of variatieu Dr SL
Model
M
WIH
SINS
T
MxWIH
MxSINS
MxT
WIH x SINS
WlHxT
SINS x T
Mx WlHxSINS
Mx W/Hx T
Mx SINS x T
WlHxSINSxT
Mx WIH x SINS x T
Error
Corrected total

59
2
I
I
4
2
2
8
1
4
4
2
8
8 -
4
8

120
179

SS MS
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0103
0.0001
0.0001
0.0013
0.0001
0.0302
0.0075

155325
55478
1567

23729
2648
3134

47458
5296
1459
702

2613
2918
140

5226
563

1127
6095

161420

2633
27739
1567

23729
662

1567
23729

662
1459
176
653

1459
176
653
141
141
51

Table 6. Analysis of variance for effects of test method (M), wetness regune
(humid[H]/wet[W]), sterility regime (sterile[S]/unsterile(NS]) and incubation period (T) on
disease expression by solitary Monilinia laxa germlings growing on Flamekist nectarine fruit
at the 2 wk before harvest stage

Source of variatien DC SS MS SL
Model 59 222085 ..3764 0.0001
M 2 49898 24949 0.0001
W/H 1 8431 8431 0.0005
SINS 1 38647 38647 0.0001
T 4 27203 6801 0.0001
MxWIH 2 5741 2870 0.0001
Mx SINS 2 37233 18617 0.0001
MxT 8 12447 1556 0.0001
WIH x SINS 1 4521 4521 0.0001
WlHxT 4 13197 3299 0.0001
SINS x T 4 4423 1106 0.0028
Mx W/H x SINS 2 3070 1535 0.0034
MxWlHxT 8 8311 1039 0.0003
Mx SINS x T 8 4319 540 0.0417
WlHx SINS xT 4 1354 339 0.2695
M x WIH x SINS x T 8 3290 411 0.1338
Error 120 30974 258
Corrected total 179 253059
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Table 7. Analysis of variance for effects of test method (M), wetness regime
(humid[H]/wet[W]), sterility regime (sterile[S]/unsterile[NS]) and incubation period (T) on
disease expression by solitary Monilinia laxa gerrnlings growing on Flamekist nectarine fruit
at the harvest stage

Source of variation Df SS MS SL
Model 59 248974 4220 0.0001
M 2 14629 7314 0.0001
W/H 1 65696 65696 0.0001
SINS I 34274 34274 0.0001
T 4 64918 !6229 0.0001
MxWIH 2 9254 4627 0.0001
Mx SINS 2 19742 9871 0.0001
MxT 8 2908 363 0.1975
W/H x SINS I 1021 1021 0.0485
W/HxT 4 11887 2972 0.0001
SINS x T 4 4648 1162 0.0019
Mx W/H x SINS 2 3806 1903 0.0009
MxW/HxT 8 5505 688 0.0097
Mx SINS x T 8 7042 880 0.0014
W/Hx SINS xT 4 2663 666 0.0401
M x WIH x SINS x T 8 981 123 0.8703
Error 120 30850 257
Corrected total 179 279823

Table 8. Analysis of variance for effects of test method (M), wetness regrme
(humid[H]/wet[W]), sterility regime (sterile[S]/unsterile[NS]) and incubation period (T) on
disease expression by solitary Monilinia laxa gerrnlings growing on cold stored Flamekist
nectarine fruit

Source of variation Dr SS MS SL
ModeJ 59 190733 3233 0.0001
M 2 21115 10555 0.0001
W/H 1 2712 2712 0.0003
SINS 1 18461 18461 0.0001
T 4 105882 26471 0.0001
MxWIH 2 221 110 0.5616
Mx SINS 2 11563 5781 0.0001
MxT 8 8808 1101 0.0001
WIH x SINS 1 519 519 0.1017
W/HxT 4 452 1I3 0.6679
SINS x T 4 8046 2012 0.0001
Mx W/Hx SINS 2 2956 1478 0.0007
MxWlHxT 8 5585 698 0.0007
Mx SINS x T 8 2655 332 0.0956
WIH x SINS x T 4 1030 258 0.2550
Mx WlHxSINSxT 8 727 91 0.8706
Error 120 22867 191
Corrected total 179 213600
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Figure 1. Effect of wetness regime and incubation period on germination rate and germ tube
growth of airborne conidia of Monilinia laxa on Flamekist nectarine fruit at pit hardening (A,D), 2
wk before harvest (B,E) and harvest (C,F) stage. Points represent actual means of germination
percentages or germ tube lengths (J..1m)of three experiments, whereas lines represent predicted
values based on a non-linear growth curve [y=Aexp(B/ x)] fitted to the point data to observe and
compare trends.
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Figure 2. Effect of wetness regime and incubation period on the surface colonising ability and
infectivity of solitary Monilinia /axa germlings on Flamekist nectarine fruit at pit hardening (A),
2 wk before harvest (B), harvest stage (C) and after cold storage (D). Surface colonising ability .
is represented by the percentage segments removed from unsterile fruit at each incubation period
that yielded the pathogen after 14 days incubation. Infectivity is represented by the percentage
segments removed from surface-sterilised fruit that yielded the pathogen. Points represent actual
means from three experiments, whereas lines represent predicted values based on linear or
quadratic regression equations derived from the point data.
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Figure 3. Effect of wetness regime and incubation period on disease expression by solitary
Monilinia taxa germlings on Flamekist nectarine fruit at pit hardening (A), 2 wk before harvest
(B), harvest stage (C) and after cold storage (D). Fruits were incubated at a specific wetness
regime, then kept dry. Points represent mean percentages decayed fruit recorded in three
experiments, whereas lines represent predicted values based on linear or quadratic regression
equations derived from the point data.
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Figure 4. Effect of wetness regime and incubation period on disease expression by solitary
Monilinia laxa germlings on Flamekist nectarine fruit at pit hardening (A), 2 wk before harvest
(B), harvest stage (C) and after cold storage (D). Fruits were removed after each incubation
period at a given wetness regime, immersed in 3% paraquat and rinsed in water, then kept dry.
Points represent mean percentages decayed fruit recorded in three experiments, whereas lines
represent predicted values based on linear or quadratic regression equations derived from the
point data.
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4. BEHAVIOUR OF SOLITARy CONIDIA OF MONILINIA LAXA AND

DISEASE EXPRESSION ON PLUM FRillT

ABSTRACT

Plum fruit (cultivar Laetitia) at pit hardening, 2 wk before harvest, harvest stage and

after cold storage were dusted with dry conidia of Monilinia laxa in a settling tower. The

fruits were incubated for periods ranging from 3 to 48 h at high relative humidity (;~93%,

humid fruit), or were covered with a film of water (wet fruit). Behaviour of the solitary

conidia was examined with an epifluorescence microscope on skin segments stained in a

differential stain containing fluorescein diacetate, aniline blue and blankophor. The ability of

the solitary conidia to colonise the fruit surface, to penetrate the fruit skins and to induce

disease expression was determined by using a differential set of tests. For these tests, fruit

were surface-sterilised or left unsterile. From each group, fruit were selected for isolation

(skin segment test), immersed in a 3% paraquat solution (paraquat fruit test) or left untreated

(sound fruit test). The tests showed that at the pit hardening stage, fruit skins were not

penetrated under both wetness regimes, latent infections were not established and fruits

reacted resistant to disease expression. Humid fruit at the 2 wk before harvest stage, harvest

stage and after cold storage remained asymptomatic in the sound fruit test. Fruit at these

stages only developed disease after a prolonged period (~12 h) of wet incubation. The

paraquat fruit test revealed that these fruits became more susceptible to latent infection as the

fruit ripened. However, maturing fruit did not display a drastic change in the barrier capacity

of fruit skins. The behaviour of the inoculum on fruit surfaces complemented these findings.

Germination was not affected by fruit phenology, but was markedly affected by wetness. The

number of conidia that germinated after 48 h on wet and humid fruit was similar, but most

germination on wet fruit occurred during the first 12 h, whereas a lag phase of 12 to 24 h was

observed on humid fruit. Germ tube elongation on humid fruit was unaffected by fruit

phenology and was slightly more restricted than on wet fruit. However, on wet harvest-ripe

fruit, germ tube growth was markedly more extensive. Appressorium formation and direct

penetration was not observed.on any of the fruits. Germ tubes penetrated fruit predominantly
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through stomata, lenticels and microfissures in the fruit skin. Conidium and gennling

survival was drastically reduced by prolonged wet incubation of fruits. These findings

indicate that on plum, M laxa fruit infection is influenced by inoculum levels on fruit

approaching maturity and by weather conditions prevailing during the preharvest and harvest

period.

INTRODUCTION

Two Monilinia species, namely M fructicola (Wint.) Honey and M laxa (Aderh. &

Ruhl.) Honey, are associated with blossom blight and brown rot of stone fruit. Monilinia

fructicola is absent in Europe (Byrde & Willetts, 1977; Willett~_&Bullock, 1993) and South

Africa (Fourie & Holz, 1985; Schlagbauer & Holz, 1987; Part 2) and in these countries all

stages of this disease are caused by M /axa (Byrde & Willetts, 1977; Fourie & Holz, 1985;

Schlagbauer & Holz, 1987; Willetts & Bullock, 1993; Part 2). A recent study (Part 2), which

investigated disease expression by both new and established M /axa infections in different

nectarine and plum orchards over a three-year period, showed that the pathogen was virtually

absent from flowers and occurred only sporadically. Immature fruit were generally pathogen-

free and disease expression only occurred on fruit approaching maturity. Contrary to M

fructicola, long-term latency does not seem to playa prominent role in M laxa fruit rot of

plum and nectarine (Kable, 1971; Schlagbauer & Holz, 1989a; Schlagbauer & Holz, 1989b;

Part 2; Part 3). A recent study (Part 3) with airborne conidia simulating natural infection of

fruit at different phenological stages under humid and wet conditions, confirmed this

conclusion on nectarine. The findings clearly showed that nectarine fruits reacted resistant to

disease expression at the pit hardening stage. Wetness had no effect on disease expression at

the pit hardening stage, but the disease reaction was markedly influenced by. wetness on

ripening fruit. The findings furthermore indicated that the change in fruit susceptibility on

maturing fruit could be ascribed to changes in the components of the skin. Collectively, the

findings indicate that M /axa fruit rot epidemics on nectarine. fruit are driven by inoculum

levels on fruit approaching maturity and climatic conditions prevailing during the preharvest

and harvest period: The role of short-term latent infection and latent contamination (Jerome,

1958) may thus be underestimated in the epidemiology of M laxa on stone fruit. However,

information describing inoculum sources and fruit rot epidemics of stone fruit by M /axa is
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lacking and more information is needed on these aspects of M laxa to fully understand its

biology, epidemiology and control on stone fruit.

The mode of pene~ation of plum fruits by M. laxa, and subsequent disease

expression, have not been well documented. Studies made with conidial suspensions of M

laxa described microfissures in the fruit skin (Nguyen-The et al., 1989; Schlagbauer & Holz,

1989b) stomata and lenticels (Den Breeyen, 1993) as primary sites for penetration. The aims

of this investigation were to study the behaviour of airborne conidia and to record penetration

and disease expression under conditions simulating natural infection. To compare the

behaviour of the pathogen on different stone fruit types, similar experimental procedures were

used as those reported for a previous study with airborne conidia of M laxa on nectarine (Part

3).

MATERIALS AND METHODS

Fruit. A plum orchard (cultivar Laetitia) with a history of .!QW levels of brown rot
.- .. - - ., .

incidence was selected in the Blaauwklippen valley, Stellenbosch. Four weeks prior to the pit

hardening stage, a section of this orchard was demarcated and no fungicides were applied.

Sound, unblemished fruit were selected at pit hardening, 2 wk before harvest, and at the

harvest stage from these trees. Fruit obtained at harvest stage were either used, or kept under

conditions simulating overseas shipment and marketing before being used (10 days at -O.5°e,

18 days at 7.s°C followed by 1 wk at 23°C at ±56% RH). Before usage, fruits were surface

sterilised (30 s in 70% ethanol, 2 min in 2% sodium hypochlorite, 30 s in 70% ethanol),

packed on sterile, epoxy-coated steel mesh screens (53 x 28 x 2 em) and allowed to air-dry.

Picking wounds at or near the peduncle-end were covered with petroleum jelly. In order to

recognize the inoculated cheek of the fruit at a later stage, a 0.5 em mark was made near the

peduncle-end with a soft-tipped kaki pen. Preliminary studies showed no phytotoxic effect.

Before inoculation, surface sterilised fruit were kept for at least 24 h in ethanol-disinfected

perspex (Cape Plastics) chambers (60 x 30 x 60 em) at 22°C at ±56% RH to allow re-

establishment of surface nutrients.

Inoculation. A virulent M Zaxa isolate, sensitive to iprodione and benomyl and

obtained :from a naturally-infected nectarine fruit, was maintained in the laboratory at 22°e
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on a synthetic agar medium amended with sugars, minerals and malic acid at concentrations
~

occurring in grape berry exudates (1.85 g glucose; 1,95 g fructose; 0.25 g sucrose; 0.15 g

malic acid; 5 g peptone; 5 g sodium chloride; 15 g agar; and 2 g yeast extract per liter

deionised water), or was kept on malt extract agar (MEA) slopes at SOC in the dark.

Inoculum was prepared by inoculating ripe surface-sterilised nectarines with mycelium discs,

or conidia, obtained from fresh cultures growing on potato dextrose agar (PDA). Inoculated

fruit were incubated for 10 to 14 days at 22°C on screens in moist perspex chambers (see

below) to allow infection, colonisation and profuse sporulation by M laxa. The mummified

fruit were then kept in dry chambers at ±S6% RH. For inoculation, a mummified fruit was

placed on a shelf 10 cm below the ceiling of a spore settling tower (1.5 x 1.0 x 1.5m [length

x width x height]). Conidia were blown for 1 s from the mummy with a pressure pump

(Rietchle VTE 3 [3.5-4.2 m3fh]) and the lid in the ceiling closed. The conidia were allowed

10min to settle onto the fruit that were positioned on three screens on the floor of the tower.

Petri dishes with PDA were placed among the fruit on the floor of the settling tower at each

inoculation and percentage germination of conidia was determined after 6 h incubation at

22°C (100 conidia per Petri dish, three replicates). Following inoculation, the screens were

placed in 6 ethanol-disinfected perspex chambers lined with a sheet of chromatography paper

(45 x 57 em) with the base resting in deionised water to establish high relative humidity

(~93% RH). Each chamber contained five screens carrying 31 fruits, and each screen in a

chamber was randomly assigned one of five incubation periods (first incubation cycle).

These were 3, 6, 12, 24 and 48 h post inoculation (hpi). Each chamber was considered as a

block and the screens were randomised within each chamber. In nature, frequent runoff of

raindrops and a half-day or more of sunny weather may lead to different durations of

continuous fruit wetness, or of high humidity on the fruit surface. Therefore, in three of the

chambers, fruits were overlaid with sterile paper towels wetted with sterile deionised water.

Fruits in the other three chambers were left dry. These conditions provided two different

wetness regimes with different durations for the pathogen; dry conidia on dry fruit under high

relative humidity (humid fruit), and conidia exposed to a film of water on the fruit surface

(wet fruit). The chambers containing the fruit were incubated at 22°C with a 12 h

photoperiod daily. After a set incubation period, the appropriate screens with fruit were

removed from the chambers, the paper towels were removed and the fruits air-dried before

.>
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they were used for histological studies and for the determination of surface colonisation, skin

penetration and disease expression.

Histology. One frui~ (i.e. 3 fruit per wetness regime per 'incubation period) was

randomly selected from each screen per chamber. Thin hand-sectioned pieces (5 x 5 mm) of

skin consisting of the cuticle, epidermis, and a few cell layers, were cut with a razor blade

from the inoculated cheek of the fruit. The sections were stained for 5 min in a differential

stain containing fluorescein diacetate ([FDA] Sigma Chemical Co., St. Louis, MO), aniline

blue ([AB] B.D.H. Laboratory Chemicals Division, Poole, England) and blankophor ([BP]

Bayer), mounted on a glass slide in 0.1 M KH2P04 buffer (pH 5.0) and covered with a cover

slip. FDA (2 mg/ml acetone) and AB (0.1% in KH2P04 buffer, pH 5.0) were prepared as

stock solutions and stored at -20°C and 5°C, respectively. Before a histology session, BP

(0.5%) was added to the AB solution and a fresh stain prepared by mixing 25 ul of FDA

stock solution with 1 ml of ABIBP stock solution in a 1.5 ml polypropylene Eppendorf tube,

which was then kept on crushed ice. Conidial germination, germ tube and hyphal growth,

apressorium formation, penetration sites, host responses and viability of fungal structures

were examined with the' aid of a Zeiss Axioskop microscope equipped with an

epifluorescence condenser, a high-pressure mercury lamp, Neofluar objectives and Zeiss

filters 02, 06 and 18. These sets include excitation filters G 365, BP 436/8 and BP 395-425,

respectively. With this set-up, protoplasts of viable fungal structures fluoresced brilliant

yellow-green with filter No. 02, 06 and 18. Protoplasts of dead cells were blue-black (filter

No. 06, 18), whereas cells without protoplasts fluoresced white (filter No. 02) or yellow (filter

No. 18) (O'Brien & McCully, 1981). Formation of phenolic substances became visible by

irradiation with ultra-violet light (filter No. 02) resulting in a bright bluish fluorescence

(Langcake, 1981). Suberised cell walls showed a light blue or bright yellow fluorescence

(Hill, 1985). Microfissures and -cracks in the skin became visible due to accumulation of

phenolic substances, lignification and suberisation of surrounding cell walls. Lenticels were

brown with yellow fluorescence of suberised cells.

Surface colonisation, skin penetration and disease expression. The ability ofthe

solitary conidia to colonise the fruit surface, to penetrate the fruit skins and to induce disease

expression during each incubation period was determined by using a differential set of tests.

For these tests, fruit on the screens from each chamber were divided into two groups. One
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group on each screen was surface-sterilised (30 s in 70% ethanol), while the second group

was left unsterile. Five fruit from each group on each screen were selected for isolation (skin

segment test). Nine epidermal tissue segments (5 x 7 mm) (45 segments per treatment) were

cut from the inoculated cheek of each fruit, placed with the cuticle upward on PDA amended

with 40 mg/l streptomycin sulfate (PDAS) and incubated at 2~oC (second incubation cycle).. . '- ".

Another 15 fruit from each group on each screen were left untreated (sound-fruit test). The

remainder of the fruit on the screens were immersed in a 3.1% paraquat (WPK Paraquat,

WPK Agricultural) solution for 30 seconds, rinsed in sterile deionised water and air-dried

(paraquat fruit test). Fruit were replaced on the screens and the screens were transferred to

dry perspex chambers ($56% RH) and kept under laboratory conditions (23°C under a 12h

light schedule) (second incubation cycle). These treatments provided conditions that

facilitated disease expression during the second incubation cycle by different inocula on the

test material. In the non-sterilised treatment disease expression on segments or fruit was the

result of penetration by germlings that had penetrated the cuticle under natural host resistance

during the two incubation periods. Surface sterilisation after the first incubation cycle

completely eliminated the pathogen from the fruit surface and allowed the development of

only germlings that had penetrated the cuticle during this incubation period. Paraquat

terminated host resistance in the outer cell layers and consequently promoted the

development of epiphytic inoculum, and endophytic inoculum (Baur et al., 1969; Cerkauskas

& Sinclair, 1980; Pscheidt & Pearson, 1989). This treatment therefore enhanced the

development of latent infection on surface-sterilised fruit. The segments and fruits were

regularly monitored for the development ofM laxa and numbers yielding the pathogen were

recorded after 14 days. The number of sporulating segments or fruit recorded in each

experiment was used to quantify surface colonisation, skin penetration and disease

expression.

Statistical analyses. Experimental design of experiments, each of which was

repeated twice, was a completely randomised split-plot design and analyses of variance were

done using SAS. Regression analyses were performed to investigate possible significant

trends in interactions or main effects. Slopes and intercepts of regression lines were

compared using Student's t-LSD (P < 0:05) (Snedecor & Cochran, 1980). Significance

values of the regression line slopes were calculated, with P < 0.05 providing strong evidence

against the Ho-hypothesis that no change occurred over time. Analysis of variance of the

Stellenbosch University http://scholar.sun.ac.za



140

percentage germination and germ tube length were done using SAS. A non-linear natural

growth function [y = A X exp(B / x)] (HoerI, 1954) was fitted to the data and trends

(coefficients) compared using Student's t-LSD (P < 0.05).

RESULTS

Conidial behaviour. Analyses of variance were done on the germination percentages

and germ tube lengths measured during the histological study of the fruit subjected to the

various treatments (Table 1 and 2). Non-linear growth curves were fitted to the data and the

various trends for percentage germination and germ tube length over incubation time plotted

in Figure lA-F. Based on fluorescence microscopy of the stained segments, it. ~as obvi~us

that the airborne inoculum consiste-d of conidia only, since no hyphal fragments were

observed. Conidia were consistently deposited on fruit surfaces as single cells and not in

pairs or groups. The average number of conidia recorded per segment for successive

inoculations ranged from 117 to 429, with an average conidial density of 8.97 (SD = 3.284)

conidia per mm' fruit surface. Although depositions were regulated by counts on PDA plates,

it varied markedly between successive inoculations. Conidia used at each inoculation were

highly viable and germinated freely on PDA. Germination on PDA usually reached 98 to

100% at 6 hpi. Germination rate on fruit was markedly lower than on PDA and was

significantly (P < 0.05) lower on humid than on wet fruit (Fig. lA-C). On humid fruit rates

tended to be very low during the 3 to 6 hpi period (0-4%), but then increased reaching

approximately 63-72% at 48 hpi. Germination generally proceeded rapidly on wet fruit, but

peaked at 24 hpi (51-60%) when it levelled off to 56-67% at 48 hpi.

Wetness did not markedly influence the number of germ tubes formed (Table 3), but a

higher proportion of germ tube branching was observed on humid fruit, with the proportion

increasing with fruit ripeness (4 to 12% compared with I to 3%). Germ tube growth, on the

other hand, was markedly affected by wetness regime and fruit phenology. Growth was more

restricted on humid than on wet fruit (Fig. 2D-F). At the pit hardening stage germ tube

lengths on humid fruit did not exceed 50 urn compared with germ tubes longer than 100 11m

measured at 48 hpi on wet fruit. Despite slower germ tube growth observed in the initial

incubation phases on humid fruit at 2 wk before harvest, little difference was observed in the

germ tube lengths on humid or wet fruit at 24 and 48 hpi. On harvest stage fruit, however,
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germ tube growth was proportionally longer on wet fruit compared with humid fruit (197 urn
and 52!lm predicted at 48 hpi, respectively). Growth proceeded fast on wet fruit, but

progressively slowed down from 12 to 48 hpi.

Appressorium formation and direct penetration were not observed on any of the plum

fruits. Germ tubes penetrated fruit predominantly through stomata, lenticels and

microfissures in the fruit skin (Fig. 2A-C). Conidia however seldom landed on these

structures. The tendency to grow towards these sites, and to enter them, was influenced by

host phenology and wetness regime (Table 4). Firstly, the highest proportion of germ tubes

growing in the vicinity of these sites was recorded on fruit from the pit hardening stage. The

highest density of stomata was also recorded at this stage. (0.8 [SD=0.399] stomata/mm'),

which was markedly more than on fruit from the 2 wk before harvest (0.19 [SD=O.l.s4]
...... "'\.

stomata/mm') and harvest stage (0.16 [SD=0.081] stomata/mnr'), Consequently a smaller

proportion of germlings grew in the vicinity of these sites on ripening fruit. The highest

proportion of stoma and lenticel penetration was nonetheless recorded on wet harvest ripe

fruit, corresponding with the more extensive surface colonisation observed on these fruit.

Similar trends were observed on humid fruit, but a smaller proportion of germ tubes grew in

the vicinity of penetration sites. On the humid plum fruit, _only one successful penetration

was observed at 2 wk before harvest, and none at pit hardening and harvest.

Different patterns of conidium and germling dieback were observed amongst

individuals on a given fruit. On humid fruit some conidia or germlings died or only certain

sections of the germ tube died. A similar pattern of germling dieback was observed on wet

fruit. Trends followed in dieback were regulated by fruit phenology and wetness regime.

Conidium and germling dieback were more pronounced on immature than on mature fruit and

occurred at a considerably higher rate on wet fruit. Data on dieback were however

inconclusive and were not analysed.

Bright bluish fluorescence zones, indicative of phenol accumulation, or yellow

fluorescence, indicative of suberisation, were not observed in host cells immediately

surrounding infection sites. Fluorescence was however observ~~ in .eells surrounding ageing

stomata, microfissures, old wounds and lenticels.
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Surface colonisation. Analyses of variance were done on the data obtained from the

skin segment, paraquat fruit and sound fruit tests (Tables 5 to 8). Significant (P < 0.05)

treatment vs. incubation period interaction was observed at all stages and the main effects

could therefore not be compared. According to the different tests conducted on fruit in the

unsterile treatment, surface colonisation during incubation was differentially influenced by

wetness at each developmental stage. Trends followed at each stage are summarised below.

Pit hardening stage. Segments removed from humid fruit during the 3 to 48 hpi

period consistently supported growth of the pathogen, indicating high levels of conidium and

germling viability on fruit surfaces during this period (Fig. 3A). Free water, on the other

hand, had a constant negative effect on colonisation and germling viability (P=0.0001).

Therefore, at each sampling, significantly less segments removed from wet than humid fruit

were colonised by M taxa. The drastic decline in the frequency of colonised segments

obtained from wet fruit furthermore indicated rapid death of germlings. Fruits in the sound

fruit test (Fig. 4A) and the paraquat fruit test (Fig. SA) remained asymptomatic during dry

incubation notwithstanding the initial wetness duration period or wetness regime, Gl(rmli·~gs·

were therefore unable to penetrate and to infect the sound fruit or fruit on ~hich active host

defence was terminated by paraquat.

Two weeks before harvest stage. According to the skin segment test (Fig. 3B)

colonisation on humid fruit surfaces was constantly high during incubation (P=0.9684). The

decline in percentage segments from wet fruit yielding M taxa was however significant

(P=0.0064), indicating that conidia and germlings gradually succumbed during the 24 hpi

incubation period. Higher percentages of segments yielded M laxa when isolated from wet

fruit at 48 hpi compared with 24 hpi and a quadratic regression line was fitted to the data.

Almost no humid fruit in the sound fruit test developed lesions during dry incubation (Fig.

4B). The predicted decay values on humid fruit removed 3 to 48 hpi were below 2%.

Slightly higher decay values were observed on wet fruit with 5% and 12% predicted after 24

and 48 hpi, respectively. Symptom expression occurred more frequently on fruit where

active host responses were terminated by paraquat at 3 hpi (Fig. SB). The predicted decay

levels on humid fruit increased slowly with 10% fruit decay predicted at 48 hpi (P=0.378).

Significantly higher decay levels were observed on wet fruit (P<0.05) and decay incidence

increased linearly from 12% at 3 hpi to 98% at 48 hpi (P=O.OOOI). Germlings were therefore,
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notwithstanding their viability levels on humid fruit, markedly less successful in penetrating

these fruits.

Harvest stage. Resu~ts from the skin segment test (Fig. 3C) indicated no decline in

the viability of conidia or germlings on humid fruit (P==O.8808).A significant decline was

however observed in the 3-24 hpi period on wet fruit (P=O.008l). Similar to the 2 wk before

harvest fruit, higher percentages of segments yielded the pathogen at 48 hpi, allowing a

quadratic line to be fitted to the data. Predicted decay levels on humid sound fruit (Fig. 4C)

remained below 2% with only one fruit each from the 12,24 and 48 hpi expressing brown rot

symptoms. Symptom expression on wet fruit however increased from 5% at 6 hpi to 44% at

24 hpi, and then declined slightly to 34% at 48 hpi (P==O.OOI).Corresponding trends were

observed on wet fruit in the paraquat fruit test (Fig. 5C), but decay levels increased faster and

higher levels of decay were recorded (86% and 68% at 24 and 48 hpi, respectively)

(P==O.OOOl).Low levels of decay on humid fruit were also observed with maximum decay

predicted at 24 hpi (25.7%) and less at 48 hpi (14.1%) (P=O.0247). According to trends

showed by the different tests, germlings remained viable on fruit during the 48 hpi period, but

were more successful in penetrating wet than humid fruit. A decline in disease expression
. ~ .

from 24 to 48 hpi on wet sound fruit and paraquat-treated fruit was furthermore observed,

whereas the skin segment test showed more segments yielded M taxa at 48 hpi on wet fruit

(Figs. 3C, 4C, 5C).

Cold stored fruit. Data of the skin segment test (Fig. 3D) clearly indicated high

conidium and germling viability on humid fruit (P==O.93I), but a similar decline in viability to

that observed at 2 wk before harvest was observed on wet fruit (P=O.OOOl). Disease

expression on humid sound fruit increased slightly to 6% at 48 hpi (P=O.5108), whereas

decay levels increased linearly to 73% at 48 hpi on wet fruit (P=O.OOOl)(Fig. 4D). Similar

observations were made in the paraquat fruit test (Fig. 5D). Data from the three tests clearly

showed that wetness regime significantly affected conidium and germling viability on cold

stored plum fruit.

Skin penetration. Tests conducted on fruit in the sterile treatment showed that skin

penetration was influenced by both fruit phenology and wetness. Trends followed at each

developmental stage are summarised below.
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Pit hardening stage. Trends displayed by segments yielding M laxa (Fig. 3A)

showed that irrespective of wetness regime, or period, less than 4% of segments were

penetrated by M laxa. The high level of host resistance to penetration shown by the skin
\

segment test was confirmed 'by the lack of disease expression on fruit in the sound fruit test

(Fig. 4A) and paraquat fruit test (Fig. SA). This showed that although fruit surfaces were

differentially colonised by germlings during the 48 hpi period, germlings were unable to

establish infection.

Two weeks before harvest stage. Data from the skin segment test (Fig 3B) showed

that wetness significantly influenced penetration. Very few segments «3%) from humid fruit

were penetrated by M laxa, whereas successful penetration of wet fruit increased linearly to

40% at 48 hpi. Similar trends were observed in the sound fruit test (Fig. 4B). Data from the

paraquat fruit test (Fig. SB) indicated however that successful penetration of humid fruit did

occur with decay levels at a near-constant level ranging from 23% to 19% (P=0.704).

Markedly more wet fruit were infected and decay levels were constant from 3 to 12 hpi (24.0

to 22.9%) and increased to 34% and 98% at 24 hpi and 48 hpi, respectively (P=O.OOOl).The

proportion symptomatic fruit drastically increased when the duration of the first wet

incubation cycle was increased.

Harvest stage. Data from the skin segment test (Fig. 3C) followed similar trends to

that observed at 2 wk before harvest. Data from the sound fruit test (Fig. 4C), on the other

hand, followed similar trends to that observed on the unsterile harvest fruit, indicating that

fruit were not penetrated during the second incubation period. The same conclusion could be

drawn from the trends observed in the paraquat fruit test (Fig. SC).

Cold stored fruit. Surprisingly more successful penetrations of humid fruit compared

with that observed on wet fruit during the 12-24 hpi period was observed in the skin segment

test (Fig. 3D). Decay levels were however similar at 48 hpi. None of the humid fruit in the

sound fruit test (Fig. 4D) showed brown rot symptoms, whereas 59% decay was predicted on

wet fruit at 48 hpi after a lag phase during the 3-24 hpi period «5% decay) (P=O.0053).

Decay levels were however markedly lower than that observed on the unsterile fruit,

indicating additional infection during the second incubation period. Despite the successful

penetration of humid fruit predicted by the skin segment test, low levels of decay (>5%) was
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observed in the paraquat fruit test (P=O.7574). Penetration of wet fruit however increased

linearly to 66% at 48 hpi (P=O.OOOI). Disease expression was therefore significantly affected

by wetness regime.

DISCUSSION

This study, which simulates natural infection of plum fruit under humid _and 'wet~ ~. \

conditions, demonstrated that solitary conidia of M /axa behaved consistently on plum and

nectarine (part 3) fruit surfaces. Appressorium formation and direct penetration was not

observed on any of the fruits. Germ tubes penetrated fruit predominantly through stomata,

lenticels and microfissures in the fruit skin. This confirmed earlier findings made with

conidial suspensions of M taxa, which described microfissures in the fruit skin (Nguyen-The

et al., 1989; Schlagbauer & Holz, 1989b), stomata and lenticels (Den Breeyen, 1993) as

primary sites for penetration. As was found on nectarine (Part 3), the monitoring of airborne

conidia revealed subtle effects of plum fruit on the behaviour of solitary germlings, which

could not be seen when using conidial suspensions. On both fruit types, no deleterious effect

was seen on conidial and germling survival when fruit were kept humid at pit hardening,

2 wk before harvest and harvest. However, conidial and germling survival were drastically
-

reduced by prolonged wet incubation of fruits. The findings on disease expression in the skin

segment, paraquat-treated fruit and sound fruit tests clearly showed that the skin -of both

nectarine and plum fruits were not penetrated at the pit hardening stage, latent infections were

not established and fruits reacted resistant to disease expression. These facets on both fruit

types were furthermore unaffected by wetness. The barrier capacity of the fruit skin of the

two stone fruit types however differed drastically later in the season. On nectarine, fruit skins

were more readily penetrated and disease expression became more-pronounced when fruit

approached maturity (part 3). Penetration and disease expression on ripening nectarine fruit

were furthermore greatly influenced by wetness. The segment and paraquat-treated fruit tests

showed that at the 2 wk before harvest stage, more skins were penetrated and more latent

infections were established on wet than humid fruit. The levels of skin penetration and latent

infection increased on fruit inoculated at harvest stage and were even higher on fruit

inoculated after cold storage. Levels were furthermore consistently higher on wet than on

humid fruit. Maturing plum fruit, on the other hand, did not display the drastic change in the
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barrier capacity of fruit skins as observed on nectarine. The influence of wetness on infection

and disease expression was also less pronounced than on nectarine. In fact, fruit remained

asymptomatic in the sound fruit test after inoculation and humid incubation at the 2 wk before

harvest stage, harvest stage- and after cold storage. Fruit at these stages only developed

disease after a prolonged period (~12 h) of wet incubation. The paraquat fruit test revealed

that these fruits became more susceptible to latent infection, but they were not as susceptible

as nectarine.

The behaviour of airborne inoculum, based on fluorescence microscopy of the stained

segments, complemented these findings. Germination generally proceeded at a much lower

rate on plum than on nectarine fruit. This effect was most pronounced on humid fruit, where
/~ .........

germ tubes were usually first recorded at 12 hpi, contrary to 3 hpi on nectarine. Unlike the

behaviour on nectarine fruit, where it was found that as the fruit reached maturity,

proportionally more germlings grew in close proximity of penetration sites, and penetrated

them (Part 3), proportionally less germlings grew in the vicinity of these sites on ripening

plum fruit. This was partly ascribed to the fact that four to five times less stomata or lenticels

occurred on ripening Laetitia plums compared With the Q.8 stomata/mm' counted at pit

hardening. The tendency to grow towards a specific site, and to enter, was also influenced by

fruit wetness. Markedly less germlings grew in the vicinity of penetration sites on humid

fruit, and penetration was observed only once. Fruit phenology also influenced germling

behaviour. On plum fruit at pit hardening stage germlings were inclined to grow primarily

towards stomata, and predominantly entered stomata. This tendency changed when fruit were

inoculated at 2 wk before harvest and at harvest. On these fruits, germlings were attracted

predominantly by lenticels and entered proportionally more of these structures than stomata

or microfissures.

The marked effect of fruit phenology and wetness regime on germination,

morphogenesis of germ tubes and germling viability on nectarine fruit was partially attributed

to the effects of substances in fruit exudates, wax layers or other skin components on the~ ,.,,'~

solitary conidia and germlings (part 3). Phenolic compounds in the epidermal cell layer,

which are associated with host resistance, decline With fruit maturity (Bostock et al., 1999),

whereas sugar concentrations in the exudates of plum fruit are low prior to pit hardening, but

increase rapidly in the 2 weeks prior to harvest (Fourie & Holz, 1998). Substances in fruit
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exudates inhibitory or stimulatory to growth will not be readily available to the fungus when

an individual conidium germinates under high humidity on the dry fruit surface. On the other

hand, exudates will easily dissolve in the film of water on wet fruit and rapidly be taken up by

solitary conidia on the fruit surface. Diffusion would furthermore ensure a constant supply of

these substances to the germ tube and hyphae of individual germlings. Since the viability of

the inoculum used in this study was proven on PDA, the lack of germination and decline in

viability on plum fruit must also be ascribed to the effects of substances in fruit exudates, wax

layers or other skin components. Increased wax buildup during cold storage, and therewith

the increas~d accumulation of substances inhibitory to the fungus, might also be partially

responsible for the more pronounced dieback and reduced symptom expression on wet cold

stored fruit compared with the harvest stage fruit. Epicuticular waxes have been shown to

protect apple leaves against Sphaerotheca pannosa (Martin et al., 1957), Ginkgo bi/oba

against M fructicola and other fungi (Major et al., 1960; Adams et al., 1962), cherry leaves~ . .

against Stemphylium sarcinaeforme (Johnston & Sproston, 1965)-arid beetroot leaves against

Botrytis cinerea (Blakeman & Sztejnberg, 1973).

Schlagbauer and Holz (1989b) studied the penetration of plum by M laxa and the

histology of small pinpoint necrotic lesions observed on immature fruit approximately 5 wk

after inoculation with spore suspensions. The authors described plum fruit as highly resistant

throughout the growing season. Light and scanning electron microscopy of latent infections

on immature plum fruit revealed extensive periderm formation in the cortex beneath the

necrotic tissue, with evidence of gum deposits and the presence of suberin or lignin. The

inability of these lesions to yield M laxa indicated that necrotic lesions on plums were due to

host defence reactions leading to loss of pathogen viability. Consequently Schlagbauer and

Holz (1989b) concluded that long-term latent infections of plum fruit by M laxa were

unimportant. Resistance of stone fruit to M laxa prior to the pit hardening stage has also

been reported by other workers (Kable, 1971; Fourie & Holz, 1987). A recent study (Part 2)

on natural infection, conducted over a 3-year period on plum and nectarine fruit from 11

stone fruit orchards, indicated that fruit generally remained free of latent infection at the
.

shuck fall and pit hardening stages and only developed symptoms when sampled 2 wk before

harvest and at harvest. Data obtained with solitary M laxa..conidia on nectarine (Part 3)

provide additional evidence for the unimportance of long-term Tatency, but stress the

importance of short-term latency in disease outbreaks on nectarine. Collectively, these
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findings indicate that M laxa fruit rot epidemics on plum -and nectarine are driven by

inoculum levels on fruit approaching maturity and by weather conditions prevailing during

the preharvest and harvest period. However, the barrier capacity of plum skins is

considerably more effective fhan that of nectarine fruit. Unlike nectarine fruit, infection of

intact plum fruit during humid conditions is negligible and relatively low levels of successful

penetration would almost exclusively occur following precipitation during the ripening

stages. No decline in the viability of surface inocula was however observed on humid fruit,

emphasising the importance of latent contamination (Jerome, 1958) on this fruit type.

Wounds would therefore play an important role in the epidemiology of M laxa on plum fruit.

Disease management strategies should therefore focus on the eradication of inoculum sources

that contribute to latent contamination, eradication of latent conidia on the more susceptible

mature fruits and disease prediction during the preharvest period. Furthermore, as the skin of

plum acts as an effective barrier to M laxa, more emphasis should be placed on the careful

handling of fruit and the prevention of injury during harvest and handling practices.

However, information describing inoculum sources, wounding and fruit rot epidemics of

stone fruit by M laxa is lacking. More information is therefore needed on these aspects of M

laxa to fully understand its biology, epidemiology and control on stone fruit.
._",."<',
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Table 1. Analysis of variance for effects of growth stage (G), wetness regime
(humid[H]/wet[W]) and incubation period (T) on germination (%) of airborne conidia of
Monilinia laxa on surfaces of Laetitia plum fruit

Source of variation Df SS MS SL
Model 29 52946 1826 0.0001
G 2 380 190 0.4460
WIH 1 16268 16268 0.0001
T 4 22609 5652 0.0001
GxWIH 2 678 339 0.2407
GxT 8 3504 438 0.0791
WlHxT 4 8244 2061 0.0001
GxWlHxT 8 1264 158 0.7072
Error 60 13940 232
Corrected total 89 66886

Table 2. Analysis of variance for effects of growth stage (G), wetness regime
(htimid[H]/wet[W]) and incubation period (T) on the growth (average length in urn) of
Monilinia laxa germ tubes on surfaces of Laetitia plum fruit

Source of variation Df SS MS SL

Model 29 141093 4865 0.0001
G 2 21691 10846 0.0012
WIH 1 18523 18523 0.0007
T 4 41179 10295 0.0001
GxWIH 2 18279 9140 0.0032
GxT 8 15535 1942 0.2410
W/HxT 4 9627 2407 0.1704
GxWlHxT 8 16259 2032 0.2133
Error 60 86830 1447
Corrected total 89 227923
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Table 3. Germination pattern of airborne Monilinia taxa conidia on surfaces of humida or
wet'' Laetitia plum fruit

Germination pattern
Germ

One germ tube formed (%)tubes Two germ tubes formed (%)

Growth stages observed Total Unbranched Branched Total Unbranched Branched

Humid fruit
Pit hardening 397 98.0 93.5 4.5 2.0 2.0 0
2 wk before harvest 186 100 95.2 4.8 0 0 0
Harvest 154 100 88.2 11.8 0 0 0

Wet fruit
Pit hardening 508 98.6 97.6 1.0 1.4 1.4 0
2 wk before harvest 498 99.6 99.0 0.6 0.4 0.4 0
Harvest 367 97.3 94.3 3.0 2.7 2.4 0.3

a Fruit incubated at high relative humidity (~93% RH).
bFruit overlaid with wet paper towels. .

Table 4. Behaviour of germ tubes of solitary Monilinia laxa germlings growing in proximity
of natural openings" on humid" or wet" Laetitia plum fruit

Germ tubes
Germ tubes (%) in proximity of natural openings

Growth stages observed Total Missing Towards Penetrating

Humid fruit
Pit hardening 397 7.5 3.5 4.0 0
2 wk before harvest 186 2.0 1.0 0.5 0.5
Harvest 154 2.5 0.6 1.9 0

Wet fruit
Pit hardening 508 11.5 1.4 6.9 3.2
2 wk before harvest 498 5.4 0.4 3.8 1.2
Harvest 367 7.0 0.8 1.6 4.6

Stomata, lenticels ormicrofissures.
bFruit incubated at high relative humidity (~93% RH).
C Fruit overlaid with wet paper towels.
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Table 5. Analysis of variance for effects of test method (M), wetness regime
(humid[H]/wet[W]), sterility regime (sterile[S]/unsterile[NS]) and incubation period (T) on
disease expression by solitary Moni/inia taxa germlings growing on Laetitia plum fruit at the
pit hardening stage

Source of variation Df SS MS SL
Model 59 163678 2774 0.0001
M 2 56203 28102 0.0001
WIH 1 2687 2687 0.0001
SINS 1 26728 26728 0.0001
T 4 1661 415 0.0001
MxWIH 2 4499 2250 0.0001
Mx SINS 2 53456 26728 0.0001
MxT 8 2437 305 0.0001
WIH x SINS 1 2046 2046 0.0001
WlHxT 4 697 174 0.0012
SINS x T 4 1162 290 0.0001
Mx WIH x SINS 2 4091 2046 0.0001
MxWlHxT 8 2180 272 0.0001
Mx SINSxT 8 2323 290 0.0001
W/Hx SINS x T 4 1170 292 0.0001
M x W/H x SINS x T 8 2339 292 0.0001
Error 120 4332 36
Corrected total 179 168010

Table 6. Analysis of variance for effects of test method (M), wetness regime
(humid[H]/wet[W]), sterility regime (sterile[S]/unsterile[NSJ) and incubation period (T) on
disease expression by solitary Monilinia taxa germlings growing on Laetitia plum fruit at the
2 wk before harvest stage

Source of variation Df SS MS SL
Model 59 1987838 3368 0.0001
M 2 50274 25137 0.0001
WIH 1 2036 2036 0.0005
SINS 1 19043 19043 0.0001
T 4 15534 3884 0.0001
MxW/H 2 8555 4277 0.0001
Mx SINS 2 67624 33812 0.0001
MxT 8 7393 924 0.0001
WIH x SINS 1 1703 1703 0.0015
W/HxT 4 9905 2476 0.0001
SINS x T 4 1419 355 0.0731
Mx W/HxSINS 2 5522 2761 0.0001
MxW/HxT 8 3231 404 0.0150
Mx SINS x T 8 2205 276 0.1032
WlHxSINSx T 4 2873 718 0.0022
Mx W/HxSINS x T 8 1422 178 0.3668
Error 120 19365 161
Corrected total 179 218103
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Table 7. Analysis of variance for effects of test method (M), wetness regime
(humid[H]/wet(W]), sterility regime (sterile(S]/unsterile[NS]) and incubation period (T) on
disease expression by solitary Monilinia taxa germlings growing on Laetitia plum fruit at the
harvest stage

Source of variation Df SS MS SL
Model 59 219433 3719 0.0001
M 2 37361 18681 0.0001
WIH I 7363 7363 0.0001
SINS 1 34661 34661 0.0001
T 4 26174 6544 0.0001
MxWfH 2 8286 4143 0.0001
Mx SINS 2 66045 33023 0.0001
MxT 8 18815 2352 0.0001
W/H x SINS 1 991 991 0.0177
W/HxT 4 8528 2132 0.0001
SINS x T 4 1111 278 0.1737
Mx WlHxSINS 2 3482 1741 0.0001
MxWlHxT 8 3202 400 0.0229
Mx SINS x T 8 - 930 116 0.7103
W/H x SINS x T 4 472 118 0.6020
M x WIH x SINS x T 8 2011 251 0.1766
Error 120 20578 171
Corrected total 179 240011

Table 8. Analysis of variance for effects- of test method (M), wetness regune
(humid[H]/wet(W]), sterility regime (sterile(S]/unsterile[NS)) and incubation period (T) on
disease expression by solitary Monilinia taxa germlings growing on cold stored Laetitia plum
fruit

Source of variation Df SS MS SL
Model 59 202631 3434 0.0001
M 2 63357 31679 0.0001
WIH 1 3319 3319 0.0001
SINS 1 23295 23295 0.0001
T 4 16857 4214 0.0001
MxWIH 2 14269 7135 0.0001
Mx SINS 2 45985 22992 0.0001
MxT 8 3963 495 0.0008
W/H x SINS 1 590 590 0.0396
W/HxT 4 10440 2610 0.0001
SINSxT 4 703 176 0.2776
Mx W/H x SINS 2 1536 768 0_0046
Mx W/HxT 8 8623 1078 0.0001
Mx SINS x T 8 8046 1006 0.0001
W/Hx SINS xT 4 904 226 0.1640
MxW/HxSINSxT 8 743 93 0.7071
Error 120 16350 136
Corrected total 179 218981
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Figure 1. Effect of wetness regime and incubation period on germination rate and germ tube
growth of airborne conidia of Monilinia laxa on Laetitia plum fruit at pit hardening (A,D), 2 wk
before harvest (B,E) and harvest (C,F) stage. Points represent actual means of germination
percentages or germ tube lengths (J.1m)of three experiments, whereas lines represent predicted
values based on a non-linear growth curve [y=Aexp(B/ x)] fitted to the point data to observe and
compare trends.
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Figure 2. Effect of wetness regime and incubation period on the surface colonising ability and
infectivity of solitary Monilinia laxa germlings on Laetitia plum fruit at pit hardening (A), 2 wk
before harvest (B), harvest stage (C) and after cold storage (D) .. Surface colonising ability is
represented by the percentage segments removed from unsterile fruit at each incubation period
that yielded the pathogen after 14 days incubation. Infectivity is represented by the percentage
segments removed from surface-sterilised fruit that yielded the pathogen. Points represent actual
means from three experiments, whereas lines represent predicted values based on linear or
quadratic regression equations derived from the point data.
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Figure 3. Effect of wetness regime and incubation period on disease expression by solitary
Monilinia laxa germlings on Laetitia plum fruit at pit hardening (A), 2 wk before harvest (B),
harvest stage (C) and after cold storage (D). Fruits were incubated at a specific wetness regime,
then kept dry. Points represent mean percentages decayed fruit recorded in three experiments,
whereas lines represent predicted values based on linear or quadratic regression equations derived
from the point data.

Stellenbosch University http://scholar.sun.ac.za



100

--

0- Wet sterile
• - Wet unsterile

0- Humid sterile
• - Humid unsterile

A

80

;? 60
0

=~
GI 40S-...'S.= 20
"Cl
GI...~
GI 0100-I-""=cr
""100!JDD
"Cl
GI;;.-.
=il 80
~

60

40

20

0
0

-.-----------------------------

c
--------------~----------------

30 4010 20

158

B

-------.-------------------

-------.-------------

'n
- - - - - - - - - - - - --~- - - - - - --" - - -' - - - - - ..-
- - - - - - - - - - - - - - - .~- - -- - - - - - - - - _.- --0-

50 0 5010 20 30 40

Incubation period (h)

Figure 4. Effect of wetness regime and incubation period on disease expression by solitary
Monilinia laxa germlings on Laetitia plum fruit at pit hardening (A), 2 wk before harvest (B),
harvest stage (C) and after cold storage (D). Fruits were removed after each incubation period at
a given wetness regime, immersed in 3% paraquat and rinsed in water, then kept dry. Points
represent mean percentages decayed fruit recorded in three experiments, whereas lines represent
predicted values based on linear or quadratic regression equations derived from the point data.
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5. WOUND INFECTION OF PLUM FRUIT BY AIRBORNE CONIDIA

OF MONILINIA LAXA

ABSTRACT

Plum fruit (cultivar Laetitia) at pit hardening, 2 wk before harvest, harvest stage and

after cold storage were dusted with dry conidia of Monilinia laxa in a settling tower.

Infection of nonwounded and freshly wounded fruit by the airborne conidia on dry, humid

and wet plum fruit surfaces, and by conidia and germlings that had been established on fruits

under these wetness regimes, was then investigated. Nonwounded immature and mature fruit

remained mostly asymptomatic, wherea~ nonwounded cold stored fruit decayed readily.

Wounding drastically increased infection by airborne conidia. Immature fruits were less

susceptible to wound infection by the airborne conidia than mature fruits. Conidia that were

dispersed freshly were more successful in infecting fresh wounds than conidia that were

deposited, on germlings that established, on fruits 4 days prior to wounding. This decrease in

infectivity was especially pronounced on humid- and even more on wet incubated fruit. This

study clearly showed that in order to reduce the incidence of brown rot, inoculum levels on

fruit approaching maturity should be reduced by sanitary practices and fungicides.

Furthermore, it is essential to protect fruit, especially near-mature fruit, from being wounded.

INTRODUCTION

In the stone fruit producing regions of the Western Cape province of South Africa,

brown rot of nectarine and plum is considered the most destructive phase of the Monilinia

laxa disease syndrome (Fourie & Holz, 1985a; Schlagbauer & Holz, 1987; Part 2). Several

reports indicated that on both fruit types, infection is established when fruits are approaching

maturity (Kable, 1971; Schlagbauer & Holz, 1989a; 1989b; Part 2; Part 3; Part 4). Fruit

generally remained free of latent infection at the shuck fall and pit hardening stages and only

developed symptoms on mature fruit. Infection studies with solitary conidia provided

evidence for the importance of short-term latency of M. laxa on nectarine (Part 3), but not on

plum (Part 4). The studies furthermore showed that the barrier capacity of skins of the two
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fruit types differed drastically later in the season. On nectarine, fruits skins were more readily

penetrated and disease expression became more pronounced when fruit approached maturity.

Maturing plum fruit, on the other hand, did not display this drastic change in the barrier

capacity of fruit skins observed on nectarine. Collectively, the findings indicate that M /axa

fruit rot epidemics on plum and nectarine may be driven by inoculum levels on fruit

approaching maturity and by weather conditions prevailing during the preharvest and harvest

period. The role of latent contamination (Jerome, 1958) may thus be underestimated in the

epidemiology of M /axa on plum and nectarine fruit.

The mode of penetration of fruits by the brown rot fungi M fructicola, M laxa and M

fructigena, and subsequent disease expression, have not been well documented. Infection by

these pathogens is mainly associated with wounds on fruit (Byrde & Willetts, 1977; Fourie &

Holz, 1985b; Xu & Robinson, 2000). However, in the laboratory, entry of fruits inoculated

with conidial suspensions has been observed through undamaged surfaces, including direct

penetration of the cuticle by appressoria of M fructicola (Cruickshank & Wade, 1992b) and

structures such as hair sockets, lenticels and stomata (Curtis, 1928; Smith, 1936; Hall, 1971;

Byrde & Willetts, 1977; Willetts & Bullock, 1993). By working with airborne conidia of M

laxa, it was demonstrated that germ lings do not penetrate nectarine (Part 3) or plum (Part 4)

fruit directly, but entered through stomata, lenticels and microfissures in the fruit skin. It was

furthermore suggested that as the skin of plum acts as an effective barrier to M laxa, more

emphasis should be placed on the careful handling of fruit and the pwvention of injury duririg

harvest and handling practises. However, information describing wounding and fruit rot.

epidemics of stone fruit by M Zaxa is lacking. The aim of this study was (i) to determine the

infection of fresh wounds by airborne M laxa conidia on dry, humid and wet plum surfaces,

and (ii) to investigate whether conidia and germlings that have ?een established on fruits

under this range of wetness regimes can infect fresh wounds. The inoculation, incubation and

wounding techniques used simulate infection under natural conditions.

MATERIALS AND l\IIETHODS

Fruit. A plum orchard (cultivar Laetitia) with a history of low levels of brown rot

incidence was selected in the Blaauwklippen valley, Stellenbosch. Four weeks prior to the pit

hardening stage, a section of this orchard was demarcated and no fungicides were applied.
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Sound, unblemished fruit were selected at pit hardening, 2 wk before harvest, and at the

harvest stage from these trees. Fruit obtained at harvest stage were either used, or kept under

conditions simulating overseas shipment and marketing before being used (10 days at-0.5°C,

18 days at 7.5°C followed by 1 wk at 23°C at ±56% RH). Before usage, fruits were surface

sterilised (30 s in 70% ethanol, 2 min in 2% sodium hypochlorite, 30 s in 70% ethanol),

packed on sterile, epoxy-coated steel mesh screens (53 x 28 x 2 cm) and allowed tÓ air-dry.

Picking wounds at or near the peduncle-end were covered with petroleum jelly. In order to

recognize the inoculated cheek of the fruit at a later stage, a 0.5 em mark was made near the

peduncle-end with a soft-tipped koki pen. Preliminary studies showed no phytotoxic effect.

Before inoculation, surface sterilised fruit were kept for at least 24 h in ethanol-disinfected

perspex (Cape Plastics) chambers (60 x 30 x 60 cm) at 22°C at ±56% RH to allow re-

establishment of surface nutrients.

Inoculation. A virulent M laxa isolate, sensitive to triforine, iprodione and benomyl

and obtained from a: naturally-infected nectarine fruit, was maintained in the laboratory at

22°C on a synthetic agar medium amended with sugars, minerals and malic acid at

concentrations occurring in grape berry exudates (1.85 g glucose; 1,95 g fructose; 0.25 g

sucrose; 0.15 g malic acid; 5 g peptone; 5 g sodium chloride; 15 g agar; and 2 g yeast extract

per liter deionised water), or was kept on malt extract agar (MEA) slopes at 5°C in the dark.

Inoculum was prepared by inoculating ripe surface-sterilised nectarines with mycelium discs

or conidia obtained from fresh cultures growing on potato dextrose agar (PDA). Inoculated

fruit were incubated for 10 to 14 days at 22°C on screens in humid perspex chambers (see

below) to allow infection, colonisation and profuse sporulation by M laxa. The mummified

fruit were then kept in dry chambers at ±56% RH. For inoculation, a mummified fruit was

placed on a shelf 10 em below the ceiling of a spore settling tower (1.5 x 1.0 x 1.5 m [length

x width x height]). Conidia were blown for 1 s from the mummy with a pressure pump

(Rietchle VTE 3 [3.5-4.2 m3th]) and the lid in the ceiling closed. The conidia were allowed

10 min to settle onto the fruit, which were positioned on three screens on the floor of the

tower. Petri dishes with PDA were placed on the floor of the settling tower at each

inoculation and percentage germination of conidia was determined after 6 h incubation at

22°C (100 conidia per Petri dish, three replicates).
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Infection of fresh wounds by fresh conidia. Wounds (10 wounds per fruit, 30 fruits

per sampling) were made on the marked side of fruit with a wound maker, consisting of a

cork stopper, dome shaped to fit onto the fruit cheek, through which five insect needles

protruded in a criss-cross pattern. The needles were 5 mm apart and inflicted wounds 1.5 mm

deep. After each wounding, the wound maker was sterilised by pressing it for five seconds

onto an ethanol drenched cotton wool swab. After wounding, the fruit were kept for 1 h at

low humidity (±65% RH). Preliminary microscopic examinations showed that within this 1 h

period exudates exuded from the wound onto a small fringe of the surrounding skin and then

retracted. Control fruit (30 fruit per sampling) were left nonwounded. The wounded and

nonwounded fruit were then inoculated and incubat~d at 22"C under dry, humid or wet

conditions. For dry incubation, perspex chambers were kept dry (±65% RH). For humid

incubation, perspex chambers were lined with a sheet of chromatography paper with the base

resting in deionised water to establish high relative humidity (;;::93% RH). For wet

incubation, perspex chambers were lined with a sheet of chromatography paper as described

before, and fruit were overlaid with sterile paper towels soaked with sterile deionised water.

These conditions provided three different moisture regimes for the pathogen; i.e. dry conidia

on dry fruit at low humidity (dry), dry conidia on dry fruit at high humidity (humid), and dry

conidia on fruit covered in a film afwater (wet). After 24 hthe fruit were removed from the

chambers and the wet paper towels carefully removed from the wet incubated fruit. The fruit

were packed into cartons and kept for a further 10 days at 23°C under dry conditions

(±56%RH).

Infection of fresh wounds by established inocula. Sound unblemished fruit (30 per

sampling) were inoculated and incubated in the perspex chambers under the set of wetness

regimes described above. After 24 h the fruit were removed from the chambers, the wet

paper towels carefully removed from the wet incubated fruit and the fruit air-dried. The air-

dried fruit were packed into cartons, incubated for an additieaal 72 h at 23°C under dry

conditions (±56% RH) to establish germling growth and penetration and then wounded as

described above. Control fruit (30 per sampling) were left nonwounded. The wounded and

nonwounded fruit were kept for a further 10 days before decay was assessed.

Decay assessment and statistical analyses. Inoculated fruit were inspected daily, the

number of infected wounds recorded and the percentage decayed wounds per fruit (decay
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severity) was calculated. The incidence of decay (percentage of decayed fruit) was recorded

for the nonwounded fruit. The trials were repeated twice. Analysis of variance of a

completely randomised split-plot design was done using SAS. Least significant difference

values were obtained and the-means compared using Student's t-test.

RESULTS

Analyses of variance were done on the mean decay incidence on nonwounded and

wounded fruit (Table 1) and on the percentage wounds that developed decay (Table 2).

Three-factor interactions were observed between stage, wound and incubation treatment for

decay incidence and percentage decaying wounds.

Conidia used at each inoculation were highly viable and germinated freely on PDA.

Germination usually varied between 98-100% at 6 hpi. Decay "incidences and percentage

wounds infected are given in Tables 3 and 4, respectively. On thé-n~~woundéd fruit no decay

developed at any growth stage, irrespective of incubation conditions. An exception was

found at the harvest stage, where 6.7% of fruit decayed after wet incubation. Cold stored

fruit, on the other hand, were susceptible and a minority of the fruit decayed in both the dry

and humid treatments. Wet incubation markedly increased decay incidence.

The ability of fresh conidia to infect fresh wounds was influenced by fruit phenology

and wetness (Tables 3 and 4). On immature fruit, decay at the wound sites became visible at

approximately 48 hpi and on mature fruit at 24 hpi. Lesions on immature fruit were restricted

and leathery, but soft and expanded fast on mature fruit. At pit hardening none of the fruits

decayed when incubated in the dry regime. Incubation under high humidity or wet conditions

facilitated decay at the wound sites. Decay levels were however relatively low under both

wetness regimes and decay developed at a minority of the wound sites. Wounding drastically

affected decay levels when fruits were wounded 2 wk before harvest or at harvest stage.

Incidences were unaffected by wetness regime and nearly all the fruit incubated under the

dry, humid and wet conditions developed decay. Wetness had no effect on the percentage

wound sites that developed decay on fruit inoculated 2 wk before harvest, but the percentage

was significantly increased on fruit inoculated at harvest by incubation under wet conditions.

A similar trend was found on cold stored fruit.
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The ability of established inocula to infect fresh wounds differed from the trend

described for fresh inoculum. Firstly, on immature fruit decay at the wound sites became

visible approximately 72 hpi and on mature fruit 60 hpi. Secondly, at pit hardening a

relatively high proportion of fruits that were dry incubated decayed and decay levels were

significantly lower on fruit that were humid- or wet incubated. Furthermore, significantly

more wound sites on fruits kept dry, than on humid or wet fruit, developed decay. Thirdly, a

similar behaviour was found on fruit inoculated at the other ripening stages and on cold

stored fruit. However, significantly more fruit developed decay at the latter stages than at pit

hardening and significantly more wound sites became infected.

DISCUSSION

The inoculation technique used in the present study simulates natural dispersal of

airborne conidia, and allows for the deposition of separate, dry conidia on fruit surfaces.

Approximately 9 conidia per mnr' were deposited on the upward facing cheeks

(approximately 400 mnr') of plum fruits. The fruits were either nonwounded, or had 10

minute, artificially inflicted wounds. Ample opportunity for direct penetration or contact.........
,~

between wounds and solitary conidia or germlings was therefore prcvided on dry, humid or- ...~....
wet plum fruit, conditions which normally prevail in the orchard, fruit bins or storage cartons.

Under the conditions provided in the study nonwounded immature and mature fruit mostly

remained asymptomatic, whereas nonwounded cold stored fruit decayed readily. Wounding

drastically increased infection by airborne conidia of M laxa, which confirmed previous

observations (Fourie & Holz, 1985b; 1987a) on the necessity of wounds for infection made

with spore suspensions in the laboratory. Although it was shown that airborne conidia (Part .

4) and conidia suspended in droplets (Curtis, 1928; Smith, 1936; Hall, 1971; Byrde &

Willetts, 1977; Willetts & Bullock, 1993) penetrate plum fruits directly through natural

openings, it was found that these infections not always led to fruit decay.

Immature fruits were less susceptible to wound infection by airborne M laxa conidia

than mature fruits. There are several possible explanations for this. Firstly, the inability of

solitary M laxa conidia to infect immature plum fruits has been correlated with poor growth

caused by substances in exudates, wax layers or other skin components (Part 4). Phenols,

particularly chlorogenic and caffeic acids, are high in resistant immature peach genotypes and
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decline with fruit maturity (Bostock et al., 1999). Working with Botrytis cinerea, Fourie and

Holz (1998) showed that prior to the period of rapid cell enlargement, growth of this fungus

on raised slides was inhibited by plum exudates. Secondly, ~gérmlings of M laxa need an
.",,; .~ "

external supply of nutrients' for germ tube differentiation arid' penetration' of host surfaces

since conidia of the brown rot fungi contain insufficient reserves (Willetts & Bullock, 1993).

Sugar concentrations in the exudates of plum fruit are low prior to pit hardening (Fourie &

Holz, 1998). At corresponding concentration, glucose, fructose and sucrose did not influence

growth of B. cinerea in a mineral medium. Fungal growth was only enhanced when either of

the reducing sugars or sucrose was supplied in excess of 0.27 and 0.14 mM, respectively.

During the last 2 wk prior to harvest, total sugar in plum exudates was near these values.

These effects were shown by solitary M /axa conidia grown on humid and wet fruit (Part 4).

Conidia dispersed freshly were more successful in infecting fresh wounds than

conidia that were deposited, or germlings that had established on fruits 4 days prior to

wounding. This decrease in infectivity was especially pronounced on humid- and even more

on wet incubated fruit. Fluorescence microscopy studies of the behaviour of M /axa on

nonwounded nectarine (Part 3) and plum (Part 4) surfaces showed that solitary conidia

formed germ tubes within 3 hpi on both humid and wet fruit. Germination rates were higher

and germ tube growth was more extensive on wet fruit. Wetness, however, had a negative

effect on survival of the pathogen. Different criteria showed that free water on the fruit

surface drastically reduced the viability of conidia and germliugs, The deleterious effect of~ . '.

increased wetness on the survival of conidia therefore resulted"In lower decay levels on fruit

that were wounded 72 h after wet- or humid incubation. Decay levels on dry incubated fruit

that were wounded after incubation were comparable to that observed on fruit wounded prior

to inoculation, except on plum fruit from the pit hardening stage. These results therefore

agree with conclusions by Naqvi and Good (1957) that very humid conditions were more

detrimental to conidium survival than very dry conditions.

Germination and germ tube growth on fruit incubated under relatively dry conditions

(±65% RH) were not microscopically studied. Previous studies with nectarine (Part 3) and

plum fruits (Part 4) have shown that airborne M Zaxa conidia seldom land on stomata,

lenticels or micro-fissures. Germlings usually entered these structures when they grew in

close proximity to them. The tendency to grow towards a specific site and to penetrate was
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furthermore enhanced by fruit wetness. Given the fact that wounded fruits that were kept dry

decayed, the event of germination and germ tube growth at the wound site on these fruits

must be accepted. Preliminary microscopic examinations showed that exudates exuded from

the wound onto a small fringe of the surrounding skin and then withdrew within an hour.

Wound infection on dry fruit indicates that the microclimate around the wound site may be

conducive to germination. In the event of conidia deposited prior to wounding, exudate

withdrawal may also carry the ungerminated conidia into the wound site, thereby enhancing

infection. Wound exudates may therefore negate the need for fr~-e water an'd the readily

available carbon sources, such as glucose, which are most important for successful infection

(Wade & Cruickshank, 1992; Xu & Robinson, 2000).

It has been suggested (Parts L,3,4) that M laxa fruit rot epidemics on plum and

nectarine are driven by inoculum levels on fruit approaching maturity and by weather

conditions prevailing during the preharvest and harvest period. Latent contamination

(Jerome, 1958) may therefore be of major importance in the epidemiology of M laxa on

plum fruit. This study clearly showed that in order to reduce the incidence of brown rot,

inoculum levels on fruit approaching maturity should be reduced by sanitation practices and

fungicide applications. Furthermore, it is essential to protect fruits, especially near-mature

fruits, from being wounded. Careful handling during harvest and postharvest practices is

therefore needed to prevent fruit from being damaged and infected.
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Table 1. Analysis of variance for effects of growth stage CG), wounding (l) and' wetness
regime (wet[W]/humid[H]/dry[D]) on decay (%) caused by airborne conidia of Monilinia
laxa on surfaces of Laetitia plum fruit

Source of variation Df SS MS SL
Model 35 196166 5605 0.0001
G 3 53203 17734 0.0001
I 2 98941 49470 0.0001
WIH/D 2 2941 1470 0.0002
GxI 6 23511 3919 0.0001
GxWlH1D 6 1533 256 0.1275
Ix WIHID 4 9426 2356 0.0001
Gx I x WIHID 12 6611 551 0.0002
Error 72 10667 148
Corrected total 107 206832

Table 2. Analysis of variance for effects of growth stage (G), wounding (I) and wetness
regime (wet[W]/humid[H]/dry[D]) on wound infection (%) caused by airborne conidia of
Monilinia laxa on surfaces of Laetitia plum fruit

Source of variation Df SS MS SL

Model 23 23906 1039 0.0001
G 3 9603 3201 0.0001
I 1 7565 7565 0.0001
WIH/D 2 172 86 0.1573
GxI 3 2567 856 0.0001
Gx WIH/D 6 542 ,/ 90 0.0809
I x WIHID 2 2248. 1124 0.0001
G xl x WIH/D 6 1211 202 0.0010
Error 48 2143 45
Corrected total 71 26049
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Table 3. Percentage plum fruit (cultivar Laetitia) at different growth stages that developed
Monilinia laxa decay after being subjected to a differential set of inoculation, wounding and
incubation treatments

2 wk before
Treatment ><'Y Pit hardening" harvest Rarvest Cold stored fruit

Nonwounded
Dry O.OaA O.OaA 3.3 aA 6.7 aA
Humid O.OaA O.OaA 0.0 aA 3.3 aA
Wet O.OaA O.OaA 6.7 aA 23.3 abAB

Fresh wounds and fresh conidia
Dry 26.7 abA 90.0 eB 100.0 eB 96.7 dB
Humid 6.7 aA 93.3 eB 100.0 eB 96.7 dB
Wet 13.3 aA 100.0 eB 100.0 eB 100.0 dB

Fresh wounds and established inocula
Dry 0.0 aA 96.7 eB 83.3 eB 93.3 dB
Humid 3.3 aA 60.0 bB 93.3 cC 66.7 eB
Wet 0.0 aA 10.0 aA 56.7 bC 33.3 bB

XNonwounded = unblemished fruit were dusted with conidia in a spore settling tower and
incubated; fresh wounds and fresh conidia = fruits were wounded, dusted with conidia and
incubated; fresh wounds and established inocula = fruits were dusted with conidia,
incubated and freshly wounded.

YDry = fruit incubated dry (±65% RH); humid = fruit incubated at high humidity (~93% RH);
wet = fruit overlaid with wet paper towels.

Z Means (%) followed by different small letters indicate significant difference between
treatments (within columns), whereas capital letters indicate differences between stages
(within rows). Least significant difference (P = 0.05) = 19.78.
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Table 4. Percentage wounds infected by Monilinia laxa on plum fruit (cultivar Laetitia) at
different growth stages after being subjected to a differential set of inoculation, wounding and
incubations treatments

2 wk before
Treatment X.Y Pit hard')ningZ harvest Harvest Cold stored fruit

Fresh wounds and fresh conidia
Dry 4.3 aA 27.3 bB 40.3 cBC 31.3 bB
Humid 0.7 aA 31.0 ss "t.3 cBC 28.3 bB
Wet 1.7 aA 34.0 bcB 68.3 se 52.0 cC

Fresh wounds and established inocula
Dry O.OaA 22.3 bB 17.0 aB 23.7 bB
Humid 0.3 aA 8.3 aA 19.7 abB 11.3aAB
Wet O.OaA I.OaA 7.6 aA 3.3 aA

XFresh wounds and fresh conidia = fruits were wounded, dusted with conidia in a spore
settling tower and incubated; fresh wounds and established inocula = fruits were dusted with
conidia, incubated and freshly wounded.

YDry = fruit incubated dry (±65% RH); humid = fruit incubated at high humidity (~93% RH);
wet = fruit overlaid with wet paper towels.

zMeans (%) followed. by different small letters indicate significant difference between
treatments (within columns), whereas capital letters indicate differences between stages
(within rows). Least significant difference (P = 0.05) = 10.97.

Stellenbosch University http://scholar.sun.ac.za




