
IMPROVING THE GENERALISABILITY OF A DEEP LEARNING MODEL 

FOR GLOBAL FOREST CLASSIFICATION THROUGH IMAGE 

NORMALISATION, ENHANCEMENT AND AUGMENTATION 

By MICHAEL SWAINE 

SUPERVISOR: DR. Z MÜNCH 

Department of Geography & Environmental Studies 

Stellenbosch University 

March 2023 

DEPARTMENT OF GEOGRAPHY AND ENVIRONMENTAL STUDIES 



i 

DECLARATION 

By submitting this thesis/dissertation electronically, I declare that the entirety of the work 

contained therein is my own, original work, that I am the sole author thereof (save to the extent 

explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University 

will not infringe any third party rights and that I have not previously in its entirety or in part 

submitted it for obtaining any qualification.  

March 2023

Copyright © 2023 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za



ii 

 

SUMMARY 

 

Effectively managing global forest resources, under threat from climate change, deforestation and 

fragmentation, requires the efficient extraction of a global tree cover dataset. The purpose of this 

research was to identify image enhancement and data augmentation methods that would improve 

the generalisability of a deep learning model for the classification of global tree cover. 

In the first experiment we aimed to improve the accuracy of a deep learning model for global forest 

classification using Sentinel 2 optical data. We present several image enhancement methods 

widely used in natural image classification and biomedical imaging domains, including histogram 

equalisation (HE), contrast limited adaptive histogram equalisation (CLAHE) and global contrast 

normalisation (GCN), as pre-processing steps. The enhancement methods were compared with 

each other on a per biome basis, and both training and validation regions were selected to represent 

the heterogeneity within biomes. Selected images were captured within the local optimal foliage 

growing season and contained minimal or no clouds. A U-Net convolutional neural network model 

was trained for each enhancement per biome and used to perform inference on validation images 

for each of the corresponding biomes and enhancements. Random stratified samples were collated 

for all validation images per biome per enhancement for statistical analysis. Only GCN and 

CLAHE RGB returned higher means than the baseline dataset. The results showed that GCN most 

consistently improved classification results for tree cover across biomes, possibly due to the 

standardization of contrast levels of the training and validation images. 

In the absence of accurately annotated training data for tree segmentation, training a robust, deep 

learning model for global tree cover classification remains a challenge. As its first objective, 

experiment 2 evaluated basic data augmentation methods and prediction frameworks that might 

lead to achieving an accurate, global tree cover classification. A training dataset was artificially 

inflated using common geometric and colour data augmentation methods borrowed from the 

computer vision domain.  Their effectiveness in improving the generalisability of a U-Net model 

for tree classification was tested.  Both geometric and colour augmentations, when applied 

individually, showed improvements in model accuracy. When applied together, the combined 

augmentations showed only marginal improvements over the individually applied augmentations.  

The second objective was to test two approaches towards achieving a global tree classification. 

The first was a model per biome approach, whereby a model was trained with data derived only 

from the respective biome. The second involved training a single globally representative model 

with training data from all biomes combined. This resulted in higher MCC scores than the multi-

model approach. The diversity in training data appeared to increase model robustness. Thus, it was 
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found that training a single, globally representative model with a combination of colour and 

geometric augmentations led to an effective framework to infer a global tree classification. 

KEY WORDS 

Global tree cover, deep learning, U-Net, image enhancement, data augmentation, Sentinel-2 
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OPSOMMING  
 

Om woude regoor die wêreld, wat gebuk gaan onder die bedreiging van klimaatsverandering, 

ontbossing en fragmentasie, effektief te bestuur, vereis die doeltreffende skepping van 'n 

wêreldwye boombedekkingdatastel. Die doel van hierdie navorsing is om beeldverbetering en 

datavergrotingsmetodes te identifiseer wat die veralgemeenbaarheid van 'n diepleermodel vir die 

klassifikasie van wêreldwye boombedekking sal verbeter.  

In die eerste eksperiment het ons daarop gemik om die akkuraatheid van 'n diepleermodel vir 

wêreldwye woudklassifikasie te verbeter deur Sentinel-2 optiese data te gebruik. Ons bied verskeie 

beeldverbeteringsmetodes aan wat wyd gebruik word in natuurlike beeldklassifikasie en 

biomediese beeldingsdomeine, insluitend histogramgelykmaking (HE), kontrasbeperkte 

aanpasbare histogramgelykmaking (CLAHE) en globale kontrasnormalisering (GCN), as 

voorverwerkingstappe. Die verbeteringsmetodes is met mekaar vergelyk op 'n per-bioom basis, en 

beide opleiding- en validasiestreke is gekies om die heterogeniteit binne biome te verteenwoordig. 

Gekose beelde is binne die plaaslike groeiseisoen vasgelê en het geen of baie min wolke bevat. 'n 

U-Net konvolusionele neurale netwerkmodel is opgelei vir elke beeldverbetering per bioom en is 

gebruik om afleidings oor validasiebeelde vir elk van die ooreenstemmende biome en verbeterings 

uit te voer. Ewekansige gestratifiseerde steekproewe is vir alle validasiebeelde per bioom en per 

beeldverbetering vir statistiese analise ingesamel. Slegs GCN en CLAHE RGB het hoër 

gemiddeldes as die basislyndatastel opgelewer. Die resultate het getoon dat GCN die klassifikasie 

van boombedekking oor biome konsekwent verbeter het, moontlik as gevolg van die 

standaardisering van kontrasvlakke van die opleiding- en validasiebeelde.  

In die afwesigheid van akkuraat geannoteerde opleidingsdata vir boomsegmentering, bly die 

opleiding van 'n robuuste, diepleermodel vir wêreldwye boombedekkingklassifikasie 'n uitdaging. 

As ‘n eerste doelwit het die tweede eksperiment basiese datavergrotingsmetodes en 

voorspellingsraamwerke geëvalueer wat kan lei tot 'n akkurate, wêreldwye klassifikasie van 

boombedekking. 'n Opleidingsdatastel is kunsmatig vergroot deur gebruik te maak van algemene 

meetkundige en kleurdatavergrotingsmetodes wat van die rekenaarvisiedomein geleen is. Hulle 

doeltreffendheid in die verbetering van die veralgemeenbaarheid van 'n U-Net-model vir 

boomklassifikasie is getoets. Beide geometriese en kleurdatavergrotings het verbeterings in 

modelakkuraatheid getoon wanneer dit individueel toegepas is. Wanneer dit saam toegepas is, het 

die gekombineerde aanvullings slegs minimale verbeterings getoon teenoor die individueel 

toegepaste aanvullings. Die tweede doelwit was om twee benaderings tot die bereiking van 'n 

wêreldwye boomklassifikasie te toets. Die eerste benadering tot die probleem was een model per 
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bioom, waar  die model opgelei is met data wat slegs van die onderskeie bioom verkry is. Die 

tweede benadering behels die opleiding van 'n enkele wêreldwye verteenwoordigende model met 

opleidingsdata van alle biome gekombineer. Dit het gelei tot hoër MCC-tellings as die multi-model 

benadering. Dit blyk dat die diversiteit in opleidingsdata die robuustheid van die model verhoog 

het. Dit is daarom bevind dat die opleiding van 'n enkele, wêreldwyd-verteenwoordigende model 

met 'n kombinasie van kleur en geometriese datavergrotings gelei het tot 'n effektiewe raamwerk 

om 'n wêreldwye boomklassifikasie te skep.  

SLEUTELWOORDE  

Wêreldwye boombedekking, diepleer, U-Net, beeldverbetering, datavergroting, Sentinel-2 
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1 CHAPTER 1: INTRODUCTION 

1.1 GLOBAL FOREST CLASSIFICATION  

Remotely sensed data is required to fulfil a variety of decision-making needs. Deriving land cover 

data from satellite imagery is an application driven by natural resource management, land use 

policies, urban planning, and agricultural monitoring, among many others (DeFries, Foley & Asner 

2004) . Historically, extracting meaningful land cover data over large scales has been difficult due 

to the lack of available medium-resolution imagery. 

Global land cover is a relatively new concept. While the first land observation satellite was only 

launched in 1972 (Gong et al. 2016), multiple global land cover products have been released at 

1 km, 300 m and 30 m (Chen et al. 2015). However, the accuracy of these datasets is considered 

unsatisfactory for many applications (Chen et al. 2015; Gong et al. 2016). Recent technological 

improvements in satellite imaging sensors have resulted in a surge of freely available optical data 

at a medium spatial resolution (10 m).  

The most notably contribution has been the introduction of the European Space Agency’s (ESA) 

Copernicus programme, providing global coverage of higher resolution optically sensed data at a 

high frequency (3–5-day revisit period) via their constellation of Sentinel-2 satellites (Roy et al. 

2017).  Consequently, there has been increased interest in accurate algorithms to extract 

meaningful information from the vast amount of available satellite imagery (Buchhorn et al. 2020; 

Shendryk et al. 2019). The Copernicus Global Land Service (CGLS) Land Cover Collection 2 

dataset (Buchhorn et al. 2020) consists of a 20-class, global discrete land cover map at 100m spatial 

resolution with overall accuracy around 80% (Buchhorn et al. 2020). Despite being useful for a 

wide range of applications such as forest and crop monitoring, biodiversity, conservation and 

climate modelling, this product is more suited to deducing general global trends, where fine-

grained detail is less important. By exploiting the highest spatial resolution (10 m) available, the 

Sentinel 2 Global Land Cover (S2GLC) project (Lewinski 2017; 2019) delivers an automated 

pixelwise land cover classification using a multi-temporal test strategy at global scale, which has 

led to the release of the ESA World Cover 2020 (WC), annually updated (Zanaga et al. 2021) with 

an accuracy of 74.4% and 76.7% for WC 2020 v100 and WC 2021 v200 respectively. Both Google 

(Brown et al. 2022) and Esri (Karra et al. 2021) have also released global Sentinel-based 10 m 

landcover maps.  

Increased computational power and the decreasing cost of hardware have promoted the use of 

machine learning in remote sensing. Machine learning is an effective empirical methodology for 

classification and regression problems (Lary et al. 2016). The most used types of supervised 
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machine learning algorithms are support vector machines (SVM), decision trees (DT) and random 

forests (RF) (Lary et al. 2016). RF has proven effective in land use and land cover classification 

(Buchhorn et al. 2020) as well as forest classification (Betts et al. 2017). For example, the RF 

algorithm was used to produce the global ESA WC product (Zanaga et al. 2021) from 141000 

hand-labelled samples. RF produces higher accuracies than standard decision trees (Rodriguex-

Galiano et al. 2012) due to the RF ensemble architecture where several classification trees are 

trained on a subgroup of training data (Breiman 2001). In contrast, SVM is a supervised machine 

learning algorithm which aims to find the optimal hyperplane to cluster training data into separate, 

predefined classes. A major advantage of SVM is the ability to classify data successfully with 

minimal input data samples, which makes SVM an attractive classifier in the remote sensing 

domain (Kulkarni & Lowe 2016).  

Traditional classification approaches require expert knowledge to craft features as inputs to 

classifier models and have shown satisfactory results in local scale classification problems (Abdi 

2020; Mirończuk & Hościło 2017; Noi & Kappas 2017). However, these methods are difficult to 

generalise on a global scale due to the intra-class variance of land cover classes, both temporally 

and spatially (McDermid, Franklin & LeDrew 2005; Woodcock et al. 2001).  

Historically, land cover classification methods used the spectral value of each pixel (pixel-based 

classification), however assigning a class label to a pixel, based on spectral values only, can lead 

to noisy output classes due to intra-class variability (Tong et al. 2018). Texture metrics have been 

used in such pixel-based image analyses to gain additional spatial information (Khatami, 

Mountrakis & Stehman 2016). Object-based image analysis (OBIA) addresses the problem of 

noise by partitioning an image into segments based on pixel similarity. OBIA, therefore, allows 

richer spatial feature sets to be derived such as distance, topology and object shape (Blaschke 

2010).  

Within the last decade, deep learning (DL), a subset of machine learning, has achieved success in 

the field of Computer Vision (CV), particularly the medical imaging field, for image classification 

and segmentation tasks (Ronneberger, Fischer & Brox 2015). This has consequently led to the use 

of DL in remote sensing (Helber et al. 2019). Since DL can recognise contextual features through 

the built-in hierarchical structure of Convolutional Neural Networks (CNN), the popularity of DL, 

and more specifically, CNN for land cover classification has increased (Tong et al. 2018; Helber 

et al. 2019). In contrast to traditional classifiers, DL can automatically create and learn its own 

features (Ball, Anderson & Chan 2017). DL has therefore become more widely used in remote 

sensing for performing classification tasks, image fusion, image registration, scene classification, 

object detection and OBIA (Ma et al. 2019; Mahdianpari et al. 2018; Shendryk et al. 2019). CNNs 
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have proved effective in classifying high-resolution images into multiple land cover classes at 

accuracies over 85% (Maggiori et al. 2017; Yang, Rottensteiner & Heipke 2018).  

Despite the advantages of DL and CNNs, the adoption of this classification method for a global 

land cover classification has been limited, and only as recently as 2021, have global land cover 

datasets, developed from DL models, become available (Brown et al. 2022; Karra et al. 2021). 

Remote sensing studies have predominantly applied DL to object extraction using very high spatial 

resolution satellite imagery since objects such as buildings show similarities to objects classified 

in CV (Mahdianpari et al. 2018).  

Limitations to a global land cover classification have stemmed from intra-class heterogeneity of 

land cover classes around the world (Helber et al. 2019). In addition, satellite images are often 

affected by environmental conditions which can lead to reduction in spectral contrast, resulting in 

loss of detail. Image enhancement is the process of increasing the suitability of an image for a 

specific application (Shyam et al. 2017). Image enhancement algorithms have successfully been 

applied to imagery to improve visual representation (Demirel, Ozcinar & Anbarjafari 2010). 

Commonly used enhancement techniques include Histogram Equalisation (HE), Contrast Limited 

Adaptive Histogram Equalisation (CLAHE) and Global Contrast Normalisation (GCN) (Jadoon et 

al. 2017; Maini & Aggarwal 2010).  

DL models require very large training datasets to incorporate variability within classes (Yu et al. 

2017) and reduce overfitting, which would increase model generalisability (Shorten & 

Khoshgoftaar, 2019). Typical large DL training datasets, such as the ImageNet dataset 

(Krizhevsky, Sutskever & Hinton 2012), contain 15 million images, categorised into 22000 

classes. Such large datasets have not yet been available in the remote sensing domain (Yu et al. 

2017), however, the recently released global DynamicWorld (Brown et al. 2022) and Esri Land 

Cover (Karra et al. 2021) products were trained on over five billion Sentinel-2 pixel patches 

(Venter et al. 2022). One way to increase and enrich the training dataset for DL is to apply data 

augmentation to the initial training dataset. Several augmentation strategies have been successfully 

used to artificially increase the size of training sets, for example, geometric and colour 

transformations (Shorten & Khoshgoftaar 2019).  

1.1 PROBLEM STATEMENT 

Global land cover datasets hold immense value for many applications, including natural resource 

management, and urban and agricultural monitoring. However, they are difficult to produce at a 

very high accuracy due to variable atmospheric and environmental conditions worldwide. 
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DL has shown promise in land cover classification as it combines the computational effectiveness 

of pixel-based techniques while still capitalizing on the inherent value of neighbourhood and 

contextual information. Little research currently exists which outlines the use of DL-based 

algorithms for medium-resolution (10 m), global tree classification. Two broad strategies are 

proposed to increase the accuracy of a DL model, namely image enhancement and normalisation, 

and training data augmentation.  

Image enhancement and normalisation methods have been successfully used to improve the 

accuracies of DL models in the medical imaging domain, specifically those aiming to enhance the 

contrast of the target feature. Image normalisation techniques such as global contrast normalisation 

have shown to be effective at improving the performance and generalisability of DL models in 

natural image categorisation (Jadoon et al. 2017; Maini & Aggarwal 2010). To the best of the 

authors’ knowledge, no comparison studies were found that experimented with the application of 

basic image enhancement and normalisation techniques for the case of tree classification.  

One of the limiting factors in effectively training a DL model, is the lack of adequate training data, 

both in quantity and diversity to enable a model to generalise well on validation data. The difficulty 

is exacerbated with the task of pixelwise classification, where the production of such training data 

is very expensive. Data augmentation provides the capability of artificially inflating and increasing 

the diversity of a small training dataset (Shorten & Khoshgoftaar 2019). Data warping image 

transformations such as geometric and colour transformations are common data augmentation 

strategies. A research gap has been identified as no studies have thus far been done comparing data 

augmentation methods for a tree classification by using a DL model. 

The classification of land cover over large areas is very challenging, particularly as the effects of 

differing ecological and climatic conditions, can negatively affect the classification accuracies 

derived by using classical machine learning methods (Woodcock et al. 2001). To reduce the 

variability caused by these factors, land cover classification can be processed in regions based on 

similar climatic, vegetation and ecological traits (Souza et al. 2020). Thus far, no studies have 

evaluated whether a DL model can generalise well across biomes. From these apparent research 

gaps, the following research questions were formulated: 

1. Which image enhancement and normalisation methods will increase the accuracy of a deep 

convolutional neural network the most? 

2. Can geometric and colour transformation data augmentation methods increase the 

generalisability of a deep convolutional neural network to train a single model for a global 

application?  
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3. Does a multi-model approach (a model per biome) yield a higher classification accuracy 

than a single-model approach? 

1.2 AIMS AND OBJECTIVES 

The study aims to determine which image normalisation and enhancement algorithms or 

combinations thereof, applied to the input data of a convolutional neural network, can improve the 

accuracy of a land cover classification, and to determine whether data augmentation can be used 

to generalise a deep learning model to infer a global forest classification. 

The following research objectives have been set to achieve the research aims: 

1. Perform a literature review to cover topics surrounding forest mapping, deep learning, 

image enhancement and data augmentation.  

2. Compile a labelled training and validation dataset of trees compiled for each biome that 

contains sufficient amounts of tree cover (Tropical Rainforest, Temperate Forest, Boreal 

Forest, Grassland, Savanna) from LuxCarta’s expansive catalogue of land cover data. 

3. Determine the enhancement/normalisation and combinations thereof which improves the 

accuracy of a model the most (Experiment 1). 

4. Identify the most effective data augmentation methods and combinations to apply to the 

result from Experiment 1 as base data for improved classification accuracy (Experiment 

2). 

5. Compare and evaluate a local (model per biome) vs. global (single model) approach for 

the generalisability of forest classification to a global scale by applying enhancements 

(Experiment 1) and augmentations (Experiment 2) to training and test data (Experiment 3). 

1.3 SIGNIFICANCE AND RATIONALE 

The recent availability of free, medium spatial resolution satellite data calls for the timely 

extraction of meaningful information from the imagery on a global scale. There is still a need for 

a high-resolution (10 m), global land cover dataset for radio propagation modelling and a realistic 

terrain dataset for virtual simulation environments (LuxCarta 2022). A high-speed, accurate and 

robust deep learning model is needed. Advances in hardware technology have led to CNNs 

becoming a popular choice to solve computer vision problems. Successful completion of this study 

can improve the overall classification accuracy and generalisability of a deep learning model by 

improving the quality and quantity of input data through various normalisation, enhancement and 

augmentation techniques. In this study, the aims and objectives have been specifically designed to 

test whether image enhancement, normalisation and augmentation methodologies can be used to 
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enable the training of a robust, universally applicable forest classification model. A low cost-time 

function is an important consideration, therefore a multi-temporal approach has been ruled out as 

has the use of more than three input channels (red, green, near infrared channels). Currently, no 

studies have been conducted to determine whether image enhancement and normalisation, along 

with data augmentation, can improve the accuracy and generalisability of deep convolutional 

models for a global forest classification with a spatial resolution of 10 m. 

1.4 RESEARCH METHODOLOGY AND DESIGN 

A research approach following a positivistic paradigm, employing primary quantitative data was 

adopted to conduct the research. An experimental approach consisting of three experiments was 

followed as outlined in Figure 1.The research agenda informs the workflow of this thesis and the 

contents of each chapter, with this chapter (Chapter 1) describing the proposal phase. 
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The first experiment, described in Chapter 3, identifies image enhancement and normalisation 

methods which could improve classification accuracies. Experiment 2 uses the outcomes from 

Experiment 1 to improve model generalisability by testing a series of data augmentation methods 

in the model training phase. Finally, in Experiment 3, the optimum data enhancement and 

augmentation methods identified in Experiment 1 and Experiment 2, are used to train and compare 

classification accuracies of a multi-model (one model per biome) approach with a singular, all-

inclusive global model trained on all combined training data from the multi-model approach. 

Chapter 4 addresses Experiment 2 and Experiment 3, comparing the accuracies of the model per 

biome approach, with the single globally representative model trained on data from all biomes 

combined. Chapter 5 provides a synthesis of the research and draws the thesis to a close. This 

chapter also highlights limitations of the study and makes recommendations for future research.  

Figure 1 Graphical representation of the research design 
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Having concluded Chapter 1, which introduced the research problem, aim and objectives, Chapter 

2 provides background literature on remote sensing, deep learning, image enhancement and 

normalisation methods as well as data augmentation techniques. 
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

Forests provide a range of important ecosystem services including timber production, biodiversity 

protection and climate change mitigation through carbon storing (Kornatowska & Sienkiewicz 

2018). These resources are under severe pressure due to anthropogenic influences. Effective 

management of global forest resources requires the ability to efficiently extract a global tree cover 

dataset. Classifying forests accurately at a global scale and at a high resolution remains a major 

challenge (Sjöqvist, Längkvist & Javed 2020). Advances in computer vision (CV) have paved the 

way for the adoption of advanced image processing techniques, such as deep learning (DL), in 

other realms, including remote sensing (RS). 

There has been growing use of DL algorithms within the RS field as they have shown to 

outperform more traditional machine learning classifiers. Specifically, DL algorithms have shown 

to be able to better extract meaningful information for RS imagery. However, DL models require 

large amounts of data to effectively train robust models, and there is still a major lack in sufficient 

amounts of accurately annotated training data. To overcome this problem, data augmentation 

techniques adopted from the CV domain have been applied in RS to enhance the size and diversity 

of existing training datasets. Few studies however have investigated the effectiveness of these 

augmentation methods within the RS domain. 

2.2 REMOTE SENSING 

RS is the process of detecting the emitted electromagnetic radiation reflected by objects on the 

surface of the Earth. The data is typically captured at a distance, commonly from aircraft or satellite 

mounted sensors. The reflected radiation can be used to gain knowledge of the characteristics and 

spectral signatures of surface features (Campbell & Wynne 2011).    

2.2.1 ACTIVE AND PASSIVE REMOTE SENSING 

The source of the electromagnetic energy that is recorded by a sensor determines the type of RS 

taking place. Active remote sensing relies on the source energy be transmitted from the sensor 

itself, then recording the surface response of this energy. Light Detection and Ranging (LiDAR) 

is a common form of active RS. Passive remote sensing relies on the naturally occurring 

electromagnetic energy generated by the sun. The reflection of this light is subsequently captured 

and recorded by the sensor. Optical sensors rely on passive remote sensing (Campbell & Wynne 

2011).   
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2.2.2 SENSOR RESOLUTION 

Sensor resolution refers to the amount of information a sensor is designed to capture. Resolution 

can be subdivided into four variables which characterises the amount detail that can be 

distinguished from an image. These are the spatial, temporal, spectral and radiometric resolutions 

(Campbell & Wynne 2011). 

Spatial resolution refers to the size of the smallest object that is detected from a sensor (Chuvieco 

2016). This generally relates to the pixel size. Spatial resolution is often referred to as the ground 

sampling distance and is measured in kilometres for coarse resolutions down to sub meter 

resolution for very high resolution (VHR) data.  

Temporal resolution, also known as the revisit time, refers to the frequency of data acquisition of 

a given geographic point on the Earth’s surface (Campbell & Wynne 2011). The main factors 

which affect temporal resolution are swath-width, satellite orbit altitude and speed. A high 

temporal resolution is desirable for capturing data more frequently, especially in tropical regions 

of the world where cloud cover can be a hindrance. Thus, a higher temporal resolution provides 

more opportunity of capturing cloud free data. High temporal resolution is favoured for 

applications requiring constant monitoring of rapidly changing environments such as those in 

natural disaster monitoring. A daily revisit is considered a high temporal resolution, whereas revisit 

periods of once every 28 days is considered low. 

Spectral resolution generally refers to the number of bands a sensor is able to capture. The bands 

are defined by a range in specified electromagnetic wavelengths. The reflection of radiance off 

features on the Earth’s surface interact at different wavelengths. Bands at different wavelengths 

can capture complimentary information and thus can help separate more difficult to distinguish 

classes, such as characterising different tree species (Immitzer, Atzberger & Koukal 2012). 

The amount of data a sensor is able to capture with regards to luminance describes the radiometric 

resolution of the sensor. The radiometric resolution is indicated as a bit-depth level (Campbell & 

Wynne 2011). Typically, modern satellites sensors have a bit depth ranging from 8bit to 16bit. An 

image with a bit depth of 8bit can have a range of 256 different digital number (DN) values. 16bit 

data can have a range of up to 65 536 DN values.  

2.3 DATA AND GLOBAL LAND COVER 

2.3.1 SENTINEL-2 OPTICAL SENSORS 

Recent technological improvements in satellite imaging sensors have resulted in a surge of freely 

available optical data at a medium spatial resolution (ten meters). Most notably has been the 
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introduction of the European Space Agency’s (ESA) Copernicus programme. ESA provides global 

coverage of optically sensed data at a high frequency via their constellation of Sentinel-2 satellites 

(Roy et al. 2017). The Sentinel-2 mission consists of Sentinel-2A, which was the first of the two 

satellites launched on 23 June 2015, followed by an identical satellite; Sentinel-2B which was 

launched on 7 March 2017. The addition of Sentinel-2B resulted in a high temporal resolution, 

with a 5-day revisit period at the equator, and even more frequent revisit time towards further 

latitudes. The orbits are sun-synchronous at an altitude of 786 km (ESA 2014). Data is available 

as level-1-C (L1C) processed data (orthorectified with top-of-atmosphere reflectance values). ESA 

have also made all data captured from December 2018 onward available at level-2-A (L2A) 

processed data (atmospheric correction applied with bottom-of-atmosphere reflectance). The L1C 

and L2A products are made available in 100 x 100 km tiles (Phiri et al. 2020). The main objective 

of the Copernicus programme is to provide publicly available, high resolution data, for the use in 

land cover mapping, global monitoring of climatic and ecological trends, and the monitoring of 

natural disasters (ESA 2014). Table 1 details the characteristics of the spectral bands of the 

Sentinel-2 sensors. 

Table 1: Spectral bands for the Sentinel-2 sensors (source: https://sentinels.copernicus.eu/web/sentinel/technical-

guides/sentinel-2-msi/msi-instrument) 

  S2A S2B    

Band 
Number 

Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Spatial 
resolution (m) 

Band Description 

1 442.7 20 442.3 20 60 Coastal aerosol 

2 492.7 65 492.3 65 10 Blue 

3 559.8 35 558.9 35 10 Green 

4 664.6 30 664.9 31 10 Red 

5 704.1 14 703.8 15 20  

Vegetation Red Edge 

6 740.5 14 739.1 13 20 

7 782.8 19 779.7 19 20 

8 832.8 105 832.9 104 10 NIR 

8a 864.7 21 864.0 21 20 Narrow NIR 
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2.3.2 GLOBAL LAND COVER 

Global land cover is a relatively new concept, with the first land observation satellite only being 

launched in 1972 (Gong et al. 2016). Currently, multiple global land use and land cover (LULC) 

datasets exist at 1 km, 300 m and most recently 30 m (Chen et al. 2015). However, the accuracy 

of these datasets has been assessed and found to be unsatisfactory for many applications (Chen et 

al. 2015; Gong et al. 2016). One of the most challenging aspects of global land cover is the ability 

to accurately classify heterogeneous landscapes (Gong et al. 2013). 

2.3.2.1 MULTICLASS GLOBAL LAND COVER 

The Copernicus programme, recently in May 2019, has produced and released a set of global land 

cover layers, known as Collection 2 (Buchhorn et al. 2020). This dataset consists of a 20 class, 

global discrete land cover map at 100m spatial resolution with overall accuracy of approximately 

80%  (Buchhorn et al. 2020). The dataset is useful for a wide range of uses such as forest 

monitoring, crop monitoring, biodiversity and conservation and climate modelling. However, the 

uses are limited to applications where fine-grained detail is of less importance and more suited to 

deducing general global trends. Another attempt at producing a pixelwise land cover classification 

at the highest spatial resolution of the source Sentinel-2 imagery (10 m) on a large scale was 

undertaken by a joint effort between ESA, the Space Research Centre of Polish Academy of 

Science, Poland and Industrieanlagen-Betriebsgesellschaft mbH, Germany. The project, known as 

Sentinel-2 Global Land Cover (S2GLC), aimed to derive an automatic methodology based on 

scientific recommendations to infer a 13 class global land cover dataset using a multi-temporal test 

strategy (Lewinski et al. 2017).  Thus far, the whole of Europe has been classified, with an overall 

accuracy of 82.9% (Lewinski et al. 2019).  

2.3.2.2 SINGLE-CLASS GLOBAL LAND COVER 

A number of global coverage binary classification maps have been produced within recent years. 

Global Human Settlement (GHS) 2020 (Corbane et al. 2021), Forest/Non-forest (Shimada et al. 

9 945.1 19 943.2 20 60 Water Vapour 

10 1373.5 29 1376.9 29 60 SWIR (Cirrus) 

11 1613.7 90 1610.4 94 20 
 

SWIR 

12 2202.4 174 2185.7 184 20 
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2014), Forest Cover Change (Hansen et al. 2013) and Global Surface Water (Pekel et al. 2016) are 

some of these single class global land cover maps. The only map to use DL has been the more 

recent GHS, which was based on the four 10m bands from Sentinel-2, namely the red, green, blue 

and near infrared (NIR) bands (Corbane et al. 2021). The other global datasets were produced 

using a wide variety of machine learning algorithms, using multiple input data sources (Bratic, 

Vavassori & Brovelli 2021).  

2.3.3 LARGE-SCALE LAND COVER CHALLENGES 

The challenges of large-scale land cover are well known. Differences in illumination, atmospheric, 

terrain and seasonal variances can affect inter-class spectral separability negatively (McDermid, 

Franklin & LeDrew 2005; Townshend et al. 2012). Woodcock et al. (2001) found that overall 

accuracies were negatively affected by ecological and climatic differences when classifying over 

extensive geographical regions using classical machine learning methods. This was mainly due to 

variances in phenology and the structure of vegetation types (Olthof, Butson & Fraser 2005). The 

spectral separability of land cover classes generally has an inverse relationship with distance, 

whereby separability decreases with an increase in distance (Verhulp & Van Niekerk 2016). Higgs 

(2021) suggests that for forest genera mapping from Sentinel-2 data, training data should be 

collected within 500km of where a random forest (RF) classifier is applied and must be of similar 

rainfall patterns. Pax-Lenney et al. (2001) found that applying simple dark object subtraction as 

an atmospheric correction method enabled a neural network (NN) to generalize well temporarily. 

However, accuracies dropped by 8%-13% in mean accuracies when extending models spatially 

from regions where training data was derived.  

2.3.4 BIOME APPROACH 

To address the issues faced by such large scale classification, Souza et al. (2020) designed a 

mapping framework of classifying homogenous areas based on biomes. A biome is a region based 

on homogenous physical characteristic such as vegetation structure and climatic patterns (Mucina 

& Rutherford 2006). The MapBiomas mapping protocol allowed for custom feature sets and 

training data for each biome to be created (Souza et al. 2020). The MapBiomas application relies 

on a RF classifier trained for each biome. A single RF classifier was not robust enough to include 

all LULC classes. A map integration protocol is also produced as part of the MapBiomas 

application, this manages the smooth merging of data along transitional ecotone zones (Souza et 

al. 2020).   
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2.4 IMAGE CLASSIFICATION 

2.4.1 PIXEL-BASED CLASSIFICATION 

Pixel-based image classification was one of the first methodologies to be implemented to perform 

automatic, rapid land cover classification from LANDSAT imagery (Shlien & Smith 1975). A 

pixel-based classification assigns a class label to every pixel based on the input bands’ values of 

that specific pixel only. The drawback of pixel-based classification is that it is prone to produce a 

salt-and-pepper noise effect on the output classification  (Weih & Riggan 2008). This problem 

seems to be exacerbated with finer resolution imagery. This has become noticeable with VHR 

imagery becoming more available, such as Worldview, thus, there has been a paradigm change to 

an object-based approach.  

2.4.2 OBJECT-BASED IMAGE ANALYSIS 

To address some of the short comings of pixel-based classification, researchers developed an 

object-based approach, where pixels with similar spectral values are grouped together into separate 

clusters prior to classification. Classification algorithms are then applied to a whole cluster instead 

of only a single pixel. Object based image analysis (OBIA) allows for further feature sets to be 

created, encompassing spatial attributes such as shape and distance to neighbours, as well as 

texture based attributes (Blaschke 2010; Weih & Riggan 2008). OBIA has shown to outperform 

pixel-based tree classification tasks using Sentinel-2 optical imagery (Li et al. 2014; Wessel, 

Brandmeier & Tiede 2018). However, it is worth noting that OBIA approaches tend to be highly 

computationally expensive. 

2.4.3 CLASSICAL MACHINE LEARNING 

Classification algorithms can be divided into two main categories, supervised and unsupervised 

classifiers. Unsupervised algorithms separate pixels into classes based on similar spectral 

reflectance values. No prior knowledge of the image is required. After clustering the user must 

interpret the clusters and assign class labels to the clusters. An unsupervised approach is less prone 

to human biases since no user inputs in terms of training data are required (Campbell & Wynne 

2011). However, the disadvantage is that if intra-class variance is high, the model may shift away 

from the center of the class and this may lead to confusion between classes (Al-Doski et al. 2013).  

Supervised classification relies on labelled training data to inform a classifier. The inputs are class 

labels corresponding to the associated pixel information. The classifier uses this data to infer a pre-

defined class label to an unclassified pixel. The accuracy of a supervised classification is very 

dependent on the quality of the training dataset (Radoux et al. 2014; Tuia & Camps-Valls 2009). 
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A weak representation of a target class in the training data will yield detrimental results (Al-Doski 

et al. 2013).  

The increasing computational power and decreasing cost of hardware has promoted the use of 

machine learning in RS. Machine learning is an effective empirical methodology for classification 

and regression problems. This yields well for use in RS, and more specifically for land cover 

classification (Lary et al. 2016). Commonly used types of machine learning algorithms are support 

vector machines (SVM), decision trees (DT) and random forest (RF) (Lary et al. 2016).  

RF classifiers have proven effective in LULC classifications (Buchhorn et al. 2020) as well as 

specifically for forest classification (Betts et al. 2017). RF has proved to produce higher accuracies 

than that of standard decision trees (Rodriguez-Galiano et al. 2012) due to the ensemble 

architecture of RF where several classification trees are trained on a subgroup of training data 

(Breiman 2001). 

SVM is a supervised machine learning algorithm which aims to find the optimal hyperplane which 

clusters training data into separate, predefined classes. It does this by mapping features to a high 

dimensional feature space by using a simple kernel function. A major advantage of SVMs is that 

it is able to handle data successfully with minimal input data samples. This makes SVMs an 

attractive classifier in the RS domain (Kulkarni & Lowe 2016). Noi & Kappas (2017) compared 

the performances of RF, SVM and kNN classifying algorithms on land cover classifications from 

Sentinel-2 optical data. SVM yielded the highest overall accuracy. 

These traditional classifying approaches still lack very high accuracy and have a great processing 

time cost (Noi & Kappas 2017) in that each pixel in an image needs to be classified individually, 

or in the case of an object-based approach, segmentation needs to be performed first. These 

methods still require expert knowledge in developing and applying hand-crafted features sets 

(Scott et al. 2017).  An alternative methodology which addresses these issues is required. There 

has been growing popularity for the use of DL, more specifically, Convolutional Neural Networks 

(CNN) for land cover classification (Helber et al. 2019)  

2.4.4 DEEP LEARNING 

DL is a subset of machine learning. It forms part of the class of algorithms of representation 

learning. Representation learning allows the input of raw values and will automatically find and 

create abstract feature extractors (Lecun, Bengio & Hinton 2015). DL learns low to high level 

features, and, by composing a multitude of these features, are able learn very complex, non-linear 

functions (Goodfellow, Bengio & Courville 2016; Lecun, Bengio & Hinton 2015). The premise 

of deep learning is inspired by the complex structure of neurons of the human brain and tries to 

Stellenbosch University https://scholar.sun.ac.za



16 

 

mimic its learning procedure (Zhang, Zhang & Du 2016). The applications of DL are constantly 

expanding and covers a multitude of domains. Applications of DL range from speech recognition, 

visual pattern recognition, stock market analysis, sentiment analysis and security (Ball, Anderson 

& Chan 2017; Lecun, Bengio & Hinton 2015). New research in DL is constantly being published 

with ever-improving architectures and novel applications (Chen et al. 2018; Zhang et al. 2022). 

The artificial neural network (ANN) is the basic building block of deeper networks (Mohamed et 

al. 2015). A multi-layer perceptron (MLP) is a fully connected neural network with multiple layers. 

It has an input layer, a hidden layer and an output layer. Figure 2 illustrates the architecture of a 

basic hypothetical MLP with four inputs, five neurons in the hidden layer and one output neuron. 

The number of neurons in the output layer is determined by the possible number of output classes. 

The MLP is said to be fully connected, as each neuron in the input layer is connected to each 

neuron in the hidden layer, and similarly with respect to the connectedness of the hidden neurons 

with the output neuron.  As soon as this structure has more than one hidden layer, it forms part of 

the realm of deep ANNs (Lecun, Bengio & Hinton 2015). To leverage DL for complex visual 

recognition tasks, CNNs were developed.  

 

Figure 2 Illustration of a multilayer perceptron 

The inspiration for the CNN was derived from the visual cortex of mammals. It is based on the 

way the visual cortex detects light in a receptive field (Gu et al. 2018).  The basic CNN is 

comprised of three main components: the convolutional layers, pooling layers and fully-connected 

layers (Ball, Anderson & Chan 2017). CNNs learn feature representations in a hierarchical manner. 
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The hierarchical structure allows it to learn low and high level features (Zhang, Zhang & Du 2016). 

The convolutional layers extract feature maps from the input layer by performing a dot product on 

two arrays. The first array being learnable parameters (weights and biases) and the other being a 

kernel filter within the receptive field. The kernel acts as a sliding window across the width and 

height of the input image. The output of the filter produces a 2-D activation map (feature map) 

which is the response of the kernel at each stride of the image. 

A convolutional block of a layer is normally proceeded by a pooling layer. The pooling layer 

reduces the size dimensions of the feature maps thus reducing the number of dot product 

computations at each convolution layer (Ball, Anderson & Chan 2017). Pooling introduces shift 

invariance, meaning that objects can be recognised in any part of the image (Gu et al. 2018). Max 

pooling is a common pooling strategy which selects the maximum value to proceed with (Ball, 

Anderson & Chan 2017).  

Activation functions are vital for the ability of a model to learn complex, non-linear features which 

are present in images (Zhang, Zhang & Du 2016). Several activation functions exist, including 

rectified linear unit (ReLU), sigmoid, tanh and softmax functions. The choice of activation 

function is normally driven by case specific application. Softmax is normally used as the output 

activation function for the final layer in a multiclass problem (Ball, Anderson & Chan 2017). 

Sigmoid is suited as the output activation to a binary classification task where only two possible 

outcomes are possible (Zhang, Zhang & Du 2016). ReLU is a very popular activation function for 

use within the convolutional blocks (Lu et al. 2020). ReLU sets negative neurons to zero and 

retains the positive. Due to the simplicity of ReLU, it allows a deep network to train very efficiently 

(Gu et al. 2018). The basic architecture of a CNN is shown in Figure 3. 

 

Figure 3 Visualising the architecture of a CNN (Sarker 2021) 
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CNNs are widely used for image categorisation tasks (assigning a label to an image) (Bar et al. 

2015; Stivaktakis, Tsagkatakis & Tsakalides 2019). In frequent cases in remote sensing, such as 

with land cover classifications, scene classifications or other such image segmentation tasks, it is 

required to assign a class label to every pixel in an image. To achieve this, networks such as fully 

convolutional networks (FCN) and U-Net architectures have been developed. U-Net has shown to 

consistently outperform FCN for segmentation tasks (He, Fang & Plaza 2020; Ozturk, Sariturk & 

Seker 2020; Ronneberger, Fischer & Brox 2015). 

A U-Net is split into two halves, the first half being a convolutional encoder which learns 

hierarchical feature maps and the second half being a deconvolutional decoder. Skip connections 

are used to map feature maps in the encoder to the deconvolutional layers in the decoder 

(Ronneberger, Fischer & Brox 2015). The up-sampling step enables a semantic segmentation of 

an image whereby all pixels are classified into target classes. Figure 4 shows the U-shaped 

structure of a U-Net. 

 

Figure 4 Visual depiction of a U-Net architecture 

2.4.4.1 APPLICATIONS OF U-NET IN REMOTE SENSING 

The use of U-Nets in RS has been applied with much success. Ozturk et al. (2020) achieved 96.33% 

overall accuracy (OA) on validation data for road segmentation tasks from VHR imagery. In the 

same study, a comparison using the same data was performed against FCN but could only achieve 

90.23% OA on the validation data. A U-Net produced impressive results for palm tree detection 
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from 40 cm pan-sharpened Worldview3 imagery (Freudenberg et al. 2019). It achieved an F1-

score of 95.7%, outperforming previous methods by 10-13% (Freudenberg et al. 2019). Comparing 

U-Nets with traditional classifiers such as RF, Solórzano et al. (2021) found that deriving LULC 

using the four 10m resolution bands from Sentinel-2 (R,G,B,NIR) with Sentinel-1 synthetic 

aperture radar (SAR) data as an additional input, yielded a superior result compared to a RF 

classifier for all classes. Flood, Watson & Collett (2019) trained a U-Net model for the prediction 

of trees and shrub over an 827km² study site, based on 1m spatial resolution, RGB imagery. An 

OA of 89.91% was achieved. Pan et al. (2020) proposed a U-Net-based approach for accurately 

segmenting individual buildings in unplanned urban settlements located in Guangzhou City, 

China. The results of this study were compared against those obtained from RF and OBIA 

methods. The U-Net model demonstrated superior performance, with an overall accuracy of 

87.2%. This result was significantly higher than the accuracy scores of 77.7% and 58.1% achieved 

by the RF and OBIA methods, respectively. Li et al. (2016) conducted a study to compare the 

performance of a Stacked Autoencoder (DL method) with traditional machine learning classifiers, 

including RF, SVM and ANN, for large scale land cover mapping of the African continent. The 

results showed that the Stacked Autoencoder outperformed the other classifiers, with an overall 

accuracy of 78.99%, compared to 76.03%, 77.74%, and 77.86% for RF, SVM, and ANN, 

respectively. All these studies attribute the contextual features learnt by a U-Net for their success. 

Most of the reviewed studies all had localised study areas, with Li et al. (2016) classifying on a 

continental scale; none have attempted global scale classifications.  

2.5 IMAGE ENHANCEMENTS 

RS images are often polluted with undesirable environmental conditions which leads to the 

reduction in their contrast, which in turn causes loss of detail. Image enhancement is the process 

of making an image more suitable to a specific application than the original image (Shyam et al. 

2017). To improve the quality of such images, enhancement algorithms can be applied to RS 

images with the aim to improve their visual representation (Demirel, Ozcinar & Anbarjafari 2010). 

There is a plethora of literature which exist on image enhancements, however, very few studies 

have been done on improving image enhancements in the RS domain (Lee et al. 2013; Lisani et 

al. 2016; Liu et al. 2014). The literature discussed here will focus on commonly used enhancement 

techniques in natural image processing. The following image enhancements will be discussed 

further: histogram equalisation (HE), contrast limited adaptive histogram equalisation (CLAHE) 

and global contrast normalisation (GCN) (Jadoon et al. 2017; Maini & Aggarwal 2010; Malvika 

2017). 
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HE is one of the most frequently used image enhancement methods which aim to improve contrast 

in images. This is due to its simplicity in implementation (Fu et al. 2015). HE is a global contrast 

enhancement method used to spread out the most frequent intensity values across the available bit 

range. To compute HE a cumulative distribution function is calculated, based on the bit depth of 

the image and the width and height dimension of the image. The image is then scaled using the 

cumulative distribution function, resulting in an equalised histogram (Gupta & Kaur 2014). 

Outlying peaks in the histogram can lead to over enhancement which can cause saturation artifacts 

in the processed image, thus making HE unsuitable for some applications (Fu et al. 2015). HE has 

been shown to improve a CNN trained to detect and classify emotions via facial expressions with 

an accuracy of 89.18% versus the baseline accuracy of 61.81% when using raw data (Pitaloka et 

al. 2017). 

CLAHE is a variation of histogram equalisation which reduces the over-enhancement and 

saturation artifacts caused by a basic histogram equalisation process. CLAHE utilizes a user-

specified maximum contrast limit and tile size which prevents over-enhancement. The histogram 

for each user-defined tile is calculated independently, unlike HE which looks at the full image, and 

the pixel value is updated against the calculated histogram. CLAHE is a common enhancement 

technique used in medical imaging, particularly in the pre-processing of digital mammogram 

imagery (Jadoon et al. 2017; Maitra, Nag & Bandyopadhyay 2012), dermoscopy (Premaladha & 

Ravichandran 2016) and to improve CNN performance for the detection of COVID-19 in chest X-

rays (Umri, Wafa Akhyari & Kusrini 2020). 

The use of CLAHE in RS has been much less popular and little research exists concerning this 

topic. Ganesh & Ramesh (2017) tested the effectiveness CLAHE by applying it to both Landsat-8 

and Sentinel-2 data. They concluded that CLAHE, when applied to the NIR and SWIR bands 

enhance the interpretability of an image well enough to identify wetland delineations without the 

need for calculating a normalised difference water index. The same study suggests that applying 

CLAHE in the NIR bands can enhance the boundaries of water bodies and improve contrast 

between changes in reflectance due to sediment content (Ganesh & Ramesh 2017). Although this 

study focused on improving image legibility for human data capturers, the results suggest that it 

may aid in improved scene understanding for DL models too.  

Another simple yet effective normalisation technique is GCN. The purpose of GCN is to centre 

the image data around zero. Calculating GCN is comprised of two steps. Firstly, the data needs to 

be mean normalised and then it is standardised. Mean normalisation involves calculating the mean 

value across the feature vector and subtracting this value from each pixel (Pal & Sudeep 2016). 

The standard deviation of the feature vector is calculated after which the mean normalisation is 
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divided by the standard deviation (Coates, Lee & Ng 2011). This ensures the data is mean and 

variance normalised. GCN was successful in improving the results of facial emotion recognition 

from 61.81% on raw unprocessed images to 88.31% (Pitaloka et al. 2017). GCN has also been 

applied as a preprocess to DL training for the segmentation of retinal blood vessels (Liskowski & 

Krawiec 2016). Gudi (2015) found that using GCN as a preprocess model yielded an improvement 

in accuracy of 3% for semantic facial feature recognition by DL.  

Image enhancements, specifically for improving the performance of DL models, are widely used 

in the CV and medical image analysis domains, however, less emphasis has been placed on the 

potential impacts of image enhancements in the RS domain. The possible reasoning or the lack of 

adoption of enhancements in RS could be that the spectral integrity of data in remote sensing is 

very important for downstream applications such differentiating land cover classes, especially 

when using traditional classification methodologies. By applying image enhancements, the 

spectral integrity is altered, and this could further increase intra-class spectral variation. Due to the 

nature of CNN based models, where contextual information is also learnt, image enhancements 

may prove beneficial in improving classification accuracies when combined with DL technologies. 

2.6 DATA AUGMENTATION 

DL models require very large training datasets in order to incorporate variability within classes 

(Weinstein et al. 2020; Yu et al. 2017a). Although the problem of overfitting can be addressed by 

adding dropout functions and batch normalization layers in the network architecture (Zheng et al. 

2018), it is important to address the root cause, namely the lack of a large enough dataset. The 

production of datasets is very costly and time consuming (Townshend et al. 2012). Consequently, 

the availability of image-level training datasets in the RS domain is limited, and even more so in 

the case of pixel-level datasets (Townshend et al. 2012). Large image-level datasets, such as the 

ImageNet dataset, contain 15 million images categorised into 22000 classes. Such large datasets 

are not yet available in the RS domain (Yu et al. 2017a). One method for introducing and 

increasing diversity in the training dataset is to enlarge the training dataset artificially by applying 

data augmentation to the existing training dataset (Shorten & Khoshgoftaar 2019). Data 

augmentation can be categorised into two main types: data warping augmentation and 

oversampling augmentation (Shorten & Khoshgoftaar 2019). 

Oversampling refers to the generation of a completely new, synthetic image. Image mixing is an 

example of oversampling. It involves combining multiple images into one by taking the average 

pixel value for each image stack over N number of images. An example of oversampling that has 

been applied successfully is a Generative Adversarial Network (GAN) used to create additional 
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training images (Loey, Smarandache & Khalifa 2020). GAN-based data augmentation techniques 

have been especially useful in the medical imaging domain, for which there is also a scarcity of 

training datasets. In the case of training a robust model for liver lesion identification, GAN-based 

data augmentations outperformed models trained with basic data warping, with model 

performance increasing from 88.4% using data warping, to 92.4% using GAN-based 

augmentations (Frid-Adar et al. 2018). Data augmentation via adversarial training has been applied 

in the RS domain by training a U-Net model for building detection (Lv et al. 2021). The dataset 

used was the Mnih Massachusetts building  dataset (Mnih 2013). All accuracy metrics including 

F1-score, OA and intersection over union (IoU) showed improvements (Lv et al. 2021). 

Oversampling and data warping are not mutually exclusive as data warping can be applied to 

synthetically created images from GAN’s to further enhance and diversify the relevant datasets 

(Shorten & Khoshgoftaar 2019). Geometric and colour transformation fall into the broad category 

of data warping. Geometric transformation modifies the geometric properties of an image. This 

type of augmentation is suitable for satellite data as semantic features are orientation invariant 

(Scott et al. 2017). Colour transformation changes the pixel intensity values, thereby mimicking 

different illuminating conditions and atmospheric differences, but retain the geometric properties 

of images. 

Geometric transformations refer to changes to the affine transformation matrix of the pixel data. 

Popular geometric transformations include flip, rotation and translation (Yu et al. 2017a). A flip 

can be performed on the X or Y axis of an image, or both. Rotations involve rotating an image 

anywhere between zero and 360 degrees. Shear translation performs a shift in both X and Y 

directions. These methods increase the diversity in the training dataset without changing the 

spectral or topological properties in the data (Yu et al. 2017a). Yu et al. (2017) evaluated the 

effectiveness of basic flip, rotation and translation augmentations on scene classification using 

four datasets. Applying augmentations improved the Kappa index of the models of all four 

datasets, with the UC Merced Land Use dataset (Yang & Newsam 2010) seeing the greatest 

improvement in Kappa index (0.48 to 0.87) (Yu et al. 2017a)  

Colour transformation is another method which has seen success in the CV realm (French & 

Mackiewicz 2022). Applying gamma and contrast variation to augment training data has been 

successfully used to improve the accuracy of DL models, both in self-portrait segmentations (Shen 

et al. 2016) and melanoma classification (Perez et al. 2018). Colour transformations preserve the 

geometric characteristics of objects, therefore in some cases it would be more useful to apply 

augmentations which vary pixel intensity than geometric augmentations as in a text/number 

recognition task since a value six (6) when flipped in the vertical axis can be interpreted as a value 
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nine (9) which would destroy the integrity of the training dataset. Conversely in cases where the 

colour property is a distinctive feature, it would be desirable to only apply geometric 

augmentations so as to preserve spectral and topological properties as in the case of optical satellite 

imagery. However, Robinson et al. (2019) found that although colour was a very predictive feature 

within a small geographic region, this became less consistent across larger regions where intra-

class colour variability was high. Thus, introducing colour augmentation to account for image 

variability across geographical regions may be useful. Liu et al. (2020) applied image brightness 

augmentation to increase the dataset size for training a maize plant detection DL model from VHR, 

RGB data. However, no analysis was done on the effect that this augmentation had on the 

performance of the model.  

Data augmentation, including both data warping and oversampling methodologies, have shown to 

be very effective in training DL models. From the literature, the improvements observed from data 

augmentation are generally amplified in cases where the original training dataset size is limited. 

Geometric augmentations are the preferred augmentations applied in the RS domain, with little 

literature available regarding the use of colour augmentations. 

2.7 SAMPLING METHODOLOGY 

In order to infer metrics from an experiment, a subset of the population data is used to create 

statistical inferences. The design of the sampling method is dependent on the data characteristics 

of the of the population dataset. Two main sampling methodologies exist; probability sampling 

and non-probability sampling (Showkat & Parveen 2017).  Probability sampling is a method where 

each member of a population has an equal opportunity of being sampled. It is based on a theory of 

probability that the sample is representative of the population (Showkat & Parveen 2017). Non-

probability sampling is not based on random sampling. Samples are chosen with some form of 

bias, thus, not all members of a population have an equal chance of being chosen (Showkat & 

Parveen 2017).  

Simple random sampling is an example of a probability sampling method. As the name suggests, 

this form of sampling is very simple whereby every member of the population has an equal chance 

of being selected. However in the case of land cover classification, population datasets are not 

always balanced (Ottosen et al. 2020; Ramezan, Warner & Maxwell 2019). To overcome the 

problem with simple random sampling, stratified random sampling is suggested (Ramezan, 

Warner & Maxwell 2019). Rather than selecting a sample at complete random to the population,  

stratified random sampling randomly selects a proportionate number of samples from each stratum 

in the population (Ramezan, Warner & Maxwell 2019; Showkat & Parveen 2017).  
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Ramezan, Warner & Maxwell (2019) suggest that non-probability sampling must be avoided for 

large scale classifications. The majority of studies involving land cover classification reviewed in 

the literature has employed a stratified random sampling methodology for drawing samples to infer 

statistics (Abdi 2020; Karra et al. 2021; Noi & Kappas 2017; Sekertekin, Marangoz & Akcin 2017; 

Souza et al. 2020). 

Training a DL model requires a training/test split in the input dataset. The test data is separated 

from the training data and is used solely for calculating a validation score at the end of each epoch 

of training. Karra et al. (2021) used a training/test split of 85/15 for their model evaluation of 

global land cover. Abdi (2020) utilised a 70/30 split in their data for comparing land cover data 

derived from different classification algorithms.  

2.8 ACCURACY ASSESSMENT 

The statistical analysis of a confusion matrix is often done using the F1 score and overall accuracy 

(OA) to infer results, depending on the goal of the research. However, these metrics can overstate 

results in unbalanced datasets (Chicco & Jurman 2020). The Matthews Correlation Coefficient 

(MCC) score is a well-suited performance metric in analysing results from binary classifications 

(Chicco & Jurman 2020), particularly for unbalanced datasets. MCC considers True Positives 

(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) results and will only 

generate a high score if the majority of both positive and negative test cases were correctly 

predicted. MCC ranges between from -1.0 to 1.0, with -1.0 indicating complete misclassification, 

0.0 no better than random, and +1.0 a perfect classification.  

MCC is defined in Equation 1 as: 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 

Equation 1 

 

Where TP True positive: correct prediction of the positive class; 

 TN True negative: correct prediction of the negative class;  

 FP False positive: incorrect prediction of the positive class; and 

 FN False negative: incorrect prediction of the negative class. 

 

Precision and recall are two metric which can also be used to measure the effectiveness of model 

performance. Precision is the fraction of TP cases over the sum of all positive predictions and is 

often referred to as confidence (Powers 2007). It measures the probability that a positive test case 

is truly positive.  Recall, also known as the true positive rate or sensitivity of a model, measures 
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the proportion of positive cases which have been correctly classified as positive. Precision and 

recall should always be analysed inclusively of each other since a high recall can be achieved even 

with a low precision and vice versa. F1 score attempts to combine these scores to produce a single 

measure to represent how well a model has performed. F1 score is the harmonic mean of precision 

and recall (Powers 2007).   

The F1 score can be misleading in that the true negative cases are not considered. This can be seen 

from the F1 score equation (Equation 2): 

 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

Equation 2 

 

Where TP True positive: correct prediction of the positive class; 

 FP False positive: incorrect prediction of the positive class; and 

 FN False negative: incorrect prediction of the negative class. 

 

The F1 score can give false truth values when the target class is in the minority and gets used as 

the TP case. Thus, in the case when the target class is the minority class, it is preferred to switch 

the positive and negative labels such that the target class presents the TN case in the error matrix 

(Chicco & Jurman 2020). F1 score is thus useful when class labels are balanced.  

Cohens kappa statistic is a commonly used metric for evaluating performance metric. It is widely 

used in RS for multiclass land cover classification (Jin et al. 2019; Mellor et al. 2013; Sekertekin, 

Marangoz & Akcin 2017; Sharma, Hara & Tateishi 2017). However, the kappa index is very 

sensitive to the distribution of marginal totals, and this can cause misleading outcomes (Flight & 

Julious 2015).   

2.9 SUMMARY OF LITERATURE 

Chapter 2 provided a review of the literature on the use of deep learning applied in remote sensing 

for the classification of trees on a global scale. The main findings suggest that DL algorithms 

consistently outperform traditional classifiers for LULC tasks. This is true for both VHR and 

medium (10m to 30m) resolution imagery. The unsupervised feature learning ability of DL reduces 

the need for constructing complicated, handcrafted features. The U-Net architecture is well suited 

to a pixelwise classification due to the upscaling of feature maps in the decoder, by using skip 
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connections to link the feature maps in the encoder to features in the decoder. Basic image 

enhancements have shown positive results when training DL models outside in other domains. HE, 

CLAHE and GCN have been identified as enhancements worth testing for a tree classification 

using a U-Net. Large, accurate and annotated training datasets remain a limitation within the RS 

domain, however basic data augmentation methods including geometric and colour augmentations 

have shown to improve the performance of DL models in other applications. Geometric 

augmentations have been successfully used in the RS domain, however, colour augmentations 

have been less studied in this domain. Random stratified sampling has been identified as a reliable 

sampling methodology for inferring statistics for land cover classification. MCC is suggested to 

be a reliable metric to compare model performances, specifically for binary classification tasks as 

it takes into account the prediction of both positive and negative test cases and will only produce 

a high score if both these cases have scored well. 

 

  

Stellenbosch University https://scholar.sun.ac.za



27 

 

3 CHAPTER 3: IMAGE ENHANCEMENT METHODS FOR 

IMPROVING THE RESULTS YIELDED BY A CNN BASED GLOBAL 

FOREST CLASSIFICATION MODEL USING SENTINEL-2 OPTICAL 

DATA 

3.1 ABSTRACT 

Effectively managing global forest resources, under threat from climate change, deforestation and 

fragmentation, requires the efficient extraction of a global tree cover dataset. In this chapter we 

aim to improve the accuracy of a deep learning model for global forest classification using Sentinel 

2 optical data. We present several image enhancement methods widely used in natural image 

classification and biomedical imaging domains, including histogram equalisation (HE), contrast 

limited adaptive histogram equalisation (CLAHE) and global contrast normalisation (GCN), as 

pre-processing steps. The enhancement methods were compared with each other on a per biome 

basis, and both training and validation regions were selected to represent the heterogeneity within 

biomes. Selected images were captured within the local optimal foliage growing season and 

contained minimal or no clouds. A UNet convolutional neural network model was trained for each 

enhancement per biome and used to perform inference on validation images for each of the 

corresponding biomes and enhancements. Random stratified samples were collated for all 

validation images per biome per enhancement for statistical analysis. Only GCN and CLAHE RGB 

returned higher means than the baseline dataset. The results showed that GCN most consistently 

improved classification results for tree cover across biomes, possibly due to the standardization of 

contrast levels of the training and validation images. 

3.2 INTRODUCTION 

Forests provide a range of important ecosystem resources, including timber production, 

biodiversity protection and climate change mitigation through carbon storing (Kornatowska & 

Sienkiewicz 2018; Schulze, Katharina; Malek, Ziga; Verberg 2019; Timothy R.H. Pearson Sandra 

L. Brown Richard A. Birdsey 2007). These resources are under severe pressure due to 

anthropogenic influences. The effective management of global forest resources requires extracting 

an efficient global tree cover dataset. Accurately classifying land cover, such as forests, on a global 

scale and at a high resolution, remains a major challenge (Sjöqvist, Längkvist & Javed 2020). 

Recent technological advancements in satellite imaging sensors, as well as developments in the 

field of artificial intelligence, offer opportunities for further research on accurate and efficient 

methods of classification on a global scale. 
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3.2.1 GLOBAL FOREST MAPPING 

Global land cover is a relatively new concept, with the first land observation satellite being 

launched only in 1972 (Gong et al. 2016). Currently, there are multiple global datasets at spatial 

resolutions of 1 km, 300m, 30m and most recently 10m (Chen et al. 2015). However, assessments 

have shown the accuracy of these datasets to be unsatisfactory for many applications (Chen et al. 

2015; Gong et al. 2016).  

Recent improvements in satellite imaging sensors have yielded a wealth of freely available optical 

data at a high spatial resolution (10m). Of particular note has been the recent introduction of the 

European Space Agency (ESA) Copernicus programme. ESA provides global coverage of 

optically sensed data at a high frequency (3–5 day revisit period) via their constellation of Sentinel-

2 satellites (Roy et al. 2017). Consequently, there has been an increased need for accurate 

algorithms to extract meaningful data from the vast amount of available satellite imagery 

(Shendryk et al. 2019). 

The Copernicus programme has released a set of global land cover layers known as Collection 2 

(Buchhorn et al. 2020). The dataset consists of a 20-class global discrete land cover map at 100m 

spatial resolution with overall accuracy reaching around 80% (Buchhorn et al. 2020). The dataset 

benefits a wide range of services, such as climate modelling, forest and crop monitoring, 

biodiversity and conservation and natural resource management (Bratic, Vavassori & Brovelli 

2021; Buchhorn et al. 2020). However, as these applications are less reliant on fine-grained detail, 

this dataset is more suited to informing general global trends. In contrast, Sentinel 2 Global Land 

Cover (S2GLC) (Lewinski 2017), delivers a 10m resolution 13-class global land cover dataset by 

means of an automatic pixel-wise land cover classification methodology using a multi-temporal 

test strategy. To date, the whole of Europe has been classified, with an overall accuracy of 82.9% 

(Lewinski 2019). More recently, ESA produced a global land cover layer (WorldCover) at 10m 

spatial resolution but with a minimum overall accuracy of only 74.4%. The data layer was derived 

from both the Sentinel-1 Synthetic Aperture Radar (SAR) and the Sentinel-2 multispectral data 

with a minimum of 10 land cover classes (ESA 2021). 

The most notable previous work on global forest classification and measurement of forest gains 

and losses was produced by Hansen et al. (2013), at a spatial resolution of 30m. The data was 

based on a time-series approach using data derived from a range of Landsat missions on multiple 

dates (Hansen et al. 2013). However, there is still a gap in available literature for the classification 

of trees at 10m resolution from a single date image. The single date aspect is important in that it 

enables an operationally efficient classification. Increasing the accuracy of forest classification 

through a multi-temporal approach is limited (Wittke et al. 2019). In some cases, such as 
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vegetation height regression from Sentinel-2 (Lang, Schindler & Wegner 2019), a multi-temporal 

approach was found to have reduced accuracy compared with a single date regression. A critical 

aspect for effective tree cover classification is that the source imagery is acquired in the middle of 

the leaf-on vegetation season, when leaf coverage is at its most dense. (Mirończuk & Hościło 

2017). 

Land cover classification utilising traditional machine learning classifiers, such as random forest 

decision trees, are more prone to the “salt and pepper” effect, or speckling, caused by dissimilar 

pixels within close proximity. Deep learning (DL) based classification has been shown to out-

perform traditional machine learning methods for tree classification at high resolution this is 

because a convolutional neural network (CNN), a subclass of deep learning, learns contextual 

information about a pixel and does not classify each pixel based purely on its spectral data, but 

rather a combination of spectral features and contextual information (Flood, Watson & Collett 

2019; Freudenberg et al. 2019; Korznikov et al. 2021) 

3.2.2 MACHINE AND DEEP LEARNING 

Increased computational power and lower hardware costs have facilitated the use of machine 

learning for remote sensing. Machine learning is an effective empirical methodology for dealing 

with classification and regression, and thus lends itself to remote sensing, and more specifically to 

land cover classification (Lary et al. 2016). The most commonly used types of machine learning 

algorithms are Support Vector Machine (SVM), Decision Trees (DT) and Random Forest (RF) 

(Lary et al. 2016)   

RF has proven effective for land use and land cover classifications (Buchhorn et al. 2020, Kulkarni 

& Lowe. 2016, Rodriguez-Galiano et al. 2012) as well as for forest classification (Akar & Güngör 

2012; Betts et al. 2017; Mellor et al. 2013). RF produced higher accuracies than those of standard 

decision trees (Rodriguez-Galiano et al. 2012) due to the ensemble architecture of RF whereby 

several classification trees are trained on a subgroup of training data (Breiman 2001).  

Gong et al, 2013 evaluated four different machine learning classifiers for producing a global land 

cover classification at a spatial resolution of 30m using Landsat multispectral imagery. Maximum 

likelihood classifier (MLC), J4.8 DT, RF and SVM were tested for performance. MLC returned 

the lowest overall accuracy (53.88%), followed by J4.8 decision trees (57.88%). Random forests 

and SVM returned the highest OA with 59.83% and 64.89% respectively (Gong et al, 2013). These 

results align with the Noi & Kappas (2017) findings that SVMs’ and RFs’ perform well for land 

cover classification tasks. The overall accuracies, however, leave room for improvement, 
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particularly in respect of a global land cover dataset. This leaves a gap for significant improvement 

that DL could fill because of its ability to learn complex, non-linear features. 

Advances in computing technology have accelerated the use of advanced DL algorithms. DL 

achievements in the field of visual recognition (Krizhevsky, Sutskever & Hinton 2012) have paved 

the way for image categorisation and segmentation tasks in the remote sensing domain (Korznikov 

et al. 2021; Neupane, Horanont & Aryal 2021; Yang, Rottensteiner & Heipke 2018). There has 

been growing popularity for using DL, specifically CNN, for land cover classification, as it has 

been shown to outperform non-deep learning classification algorithms (Castelluccio et al. 2015; 

Marmanis et al. 2016). Semantic segmentation using deep learning has achieved success in precise 

tree recognition from very high-resolution imagery (Korznikov et al. 2021) as well as for multi-

class land cover mapping from Sentinel-2 data (Karra et al. 2021). 

Despite the successes of DL, and specifically CNN, the adoption of this classification method for 

global land cover has been limited. Most studies have looked at very high spatial resolution 

satellite imagery due to objects, such as buildings, having similarities to objects classified using 

traditional computer vision tasks (Mahdianpari et al. 2018). To improve the delineation of 

buildings using CNN, Xu (2018) edge enhancements were applied as a pre-processing step for the 

imagery. Adding edge enhancements improved the overall accuracy compared to no enhancement 

(Xu  2018).  Biological diversity patterns vary across the world and are generally driven by climatic 

conditions (Silva-Flores, Pérez-Verdín & Wehenkel 2014). The limitations of current global land 

cover classification methodologies stem from intraclass heterogeneity of land cover classes around 

the world (Helber et al. 2019). For example, a forest in a boreal biome is not as clearly defined as 

a forest in a temperate forest biome. Thus, it follows that it may be useful to use a biome-based 

approach within which foliage patterns and species are more homogenous. This approach in 

conjunction with image enhancement as a pre-process could potentially reduce the negative effect 

of intraclass variability for global tree classification.        

3.2.3 IMAGE ENHANCEMENT 

Remote sensing images are often polluted by artefacts from undesirable environmental conditions, 

leading to a reduction in their contrast and consequent loss of detail (Fu et al. 2015). The goal of 

image enhancement is to process an image in a way that the resulting image emphasizes the objects 

of interest, suppresses information of lesser importance, and increases interpretability by humans 

(Demirel et al. 2010; Maini & Aggarwal 2010). 

Enhancement techniques that have been used to improve image data successfully include 

histogram equalisation (HE), contrast limited adaptive histogram equalisation (CLAHE) (in both 
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the red, green and blue colour space as well as on the value channel in the hue, saturation and value 

colour space), and global contrast normalisation (GCN) (Jadoon et al. 2017; Maini and Aggarwal 

2010). These enhancements and normalisation techniques have proved to be effective in various 

digital imaging domains, specifically in digital medical image processing (segmentation tasks) 

(Premaladha & Ravichandran 2016), and computer vision problems, such as automatic emotion 

recognition (categorisation tasks) (Pitaloka et al. 2017).  To date there has been limited 

investigation of the use of these image enhancement methods in the remote sensing field. It appears 

they could be utilized as pre-processing steps to input data for training a CNN-based forest 

classification from optical satellite imagery. 

Image enhancement used as a pre-processing step of inputs for a CNN has proved to be effective 

for facial emotion classification, natural image classification and biomedical imaging 

classification (Koo & Cha 2017; Lu et al. 2020; Pontalba et al. 2019; Umri, Wafa Akhyari & 

Kusrini 2020). GCN was successful in improving the results of facial emotion recognition from 

61.81% on raw unprocessed images to 88.31% (Pitaloka et al. 2017), HE too improved results to 

89.18% (Pitaloka et al. 2017).  CLAHE has been used as an enhancement on greyscale training 

and validation images from chest X-rays where a CNN was trained to detect automatically whether 

a patient had been infected with the Covid-19 virus (Umri, Wafa Akhyari & Kusrini 2020). 

CLAHE as a pre-process has been shown to improve the effectiveness of a CNN to detect subtle 

features and micro aneurysms in funduscopic images for early-stage detection of diabetic 

retinopathy, whereas a CNN fed raw images were unable to detect these subtle features (Lam et 

al. 2018). Similarly, these enhancements may be useful for a remote sensing application by 

exposing subtle differences in vegetation (for example where the border of trees and grasses are 

less pronounced) thereby potentially improving the ability of a deep learning model to learn these 

exposed features and improve the model performance.  

Basic image enhancement techniques, commonly used in the medical imaging domain and 

photography, have not been adopted widely for use in satellite image pre-processing for image 

classification. However, CLAHE has shown to be more useful than global HE by improving the 

legibility of an interpreter to delineate water bodies, shorelines and wetlands (Ganesh & Ramesh 

2017). 

This chapter demonstrates the effectiveness of applying image enhancement and normalisation as 

pre-processing steps for improving deep learning models for the global classification of trees 

within different biomes. The enhancements, CLAHE, HE and GCN, which have successfully been 

used in the medical research and computer vision domains, are applied to Sentinel-2 optical 
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imagery. To reduce the influence of differing environmental conditions, enhancements are applied 

for five different biomes with models trained for each enhancement per biome.  

The remainder of the paper is organized as follows. Section 2 details data characteristics, the 

selection of training data, and the work environment. Experimental flows, brief reviews of each of 

the enhancements and normalisations applied as pre-processing to deep learning models, and 

accuracy measures are described in Section 3. Section 4 details results achieved and compares the 

impact of the enhancements on the performance of the DL model. Variations per biome are 

discussed in this section followed by the conclusion of the paper in Section 5. 

3.3 DATA AND PROCESSING CHARACTERISTICS 

3.3.1 SENTINEL-2 MULTI-SPECTRAL DATA 

Sentinel-2 data provides 13 optical bands with spatial resolutions ranging from 10m to 60m, 

wavelengths ranging from 442.2nm to 2185nm across the electromagnetic spectrum, and covering 

visible, near infrared and shortwave infrared ranges. Sentinel-2 optical data were retrieved from 

the open access AWS S3 bucket.  Only bands four (red), three (green) and eight (near infrared) 

were used in this study. The blue band was excluded because it is very sensitive to atmospheric 

changes, making it less useful for any large-scale mapping of trees. 

Image data is provided at two processing levels, Level-1-C (L1C) and Level-2-A (L2A). L1C is 

atmospherically corrected to Top of Atmosphere (TOA) reflectance values and L2A is further 

processed to Bottom of Atmosphere (BOA) reflectance. This methodology should be operationally 

efficient as the application is based on the classification of trees on a global scale. In order to 

reduce inefficiencies, ESA data already atmospherically corrected in the form of L2A processed 

data was used.  

3.3.2 BASE IMAGE 

The base image, used as the reference image to which enhancements were applied, was derived 

from LuxCarta’s BrightEarth global Sentinel-2 L2A (https://brightearth.ai/) cloud-free mosaic 

(Swaine et al. 2020) at an 8-bit depth. 

3.3.3 TRAINING AND VALIDATION DATA SOURCING 

LuxCarta (https://www.luxcarta.com/) houses land cover data with coverage across all continents 

with the exception of Antarctica. Training and validation datasets were derived from LuxCarta’s 

archive datasets for each of the following biomes: Tropical Rainforest, Temperate Forest, Boreal 

Forest, Grassland and Savanna as determined by the World Wildlife Foundation (Olson et al. 2001) 
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2001). Desert and Tundra were not considered for the experiment since trees are not a common 

feature in these biomes (UCMP 1996). 

The ground truth and training labels for our model were derived from LuxCarta's extensive archive 

of global land cover data. To ensure the highest level of accuracy, this data was manually refined 

to align with the corresponding multispectral images. We made every effort to maintain the 

integrity of the data in relation to the images used for training. Despite these efforts, it is possible 

that some errors may exist in certain areas due to the limited time constraints to perform rigorous 

quality checks on such a large volume of data. A total of four training regions were selected for 

each biome. As far as possible, the regions were selected for global representative coverage to 

include heterogeneity within biomes. The image selection criteria applied were to select images 

that were captured within the local optimal foliage growing season and which contained minimal 

or no clouds.  

Sentinel-2 images were projected in their native Universal Transverse Mercator (UTM) projection. 

The near infrared, red and green bands all had a ground sampling distance of 10 metres. To ensure 

the compilation of balanced training data, all training images were clipped to 3000 by 3000 pixels. 

This equates to 900 square kilometres per training image. 

Six validation datasets were selected for each biome, and were also globally representative. Similar 

climatic conditions and vintage as the respective training datasets were used for the validation 

dataset to ensure standardization across training and validation datasets. Validation images were 

2000 by 2000 pixels in size, which equated to a validation area of 400 square kilometres per 

validation image. Considering the time limitations for dataset creation, it was decided to focus on 

smaller regions for the validation dataset, but with an increased number of geographic locations to 

ensure broader coverage. The compromise of having broader geographic coverage with more 

validation images was preferred as it was a way in which to reduce data creation time and to have 

a globally representative result. Figure 5 shows the global distribution of training and validation 

datasets for all five selected biomes.  
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Figure 5 Global distribution of training and validation locations 

As training a CNN model requires image patches of 512 by 512 pixels, with three colour channels 

and a corresponding label with a matching extent of 512 by 512 pixels, all images and labels were 

clipped into the respective patches. All patches had overlaps of 100 pixels on all sides. Training 

patches were split into an 80/20 training/validation split for model training.  It is important to note 

the difference between validation patches (training patches used directly in model training to 

evaluate model accuracy after each epoch of training), and validation data (image and 

corresponding ground truth from which the results would be analysed, and predictions would be 

run). Validation patches (for model training purposes) were derived from the training image 

dataset, whereas validation data (for testing our trained models) were located in entirely different 

regions of the world from the training data, and specifically used to measure model performance. 

A stratified random sampling method was used to choose 40 000 sampling points per validation 

image, equating to 0.25% of the total number of pixels in each image.  

3.3.4 COMPUTING RESOURCES 

Data processing was run on a CPU and model training was run on a GPU. The system comprised 

an Intel i9 9900K, 16 core CPU, and an Nvidia GTX1080Ti GPU with 11Gb of memory and 

system memory of 64Gb RAM. The Python libraries used were OpenCV, Numpy and GDAL for 

data pre-processing, and Keras and Tensorflow DL libraries for training and inference. Numpy, 

SciPy, Matplotlib and Pandas libraries were used for validation sampling and statistical analyses.  
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3.4 METHODS 

Figure 6 illustrates the general steps taken to classify tree cover using the DL model. Data selection 

and sourcing of training data were discussed in the previous section, while details of 

enhancements, a deep learning model and accuracy assessment will be provided in subsequent 

sections.  

 

Figure 6 Experiment workflow 

The entire workflow was applied for each enhancement method, per biome; thus, the workflow 

was repeated 20 times, and 20 models were trained. Each model was used to perform inference on 

six validation images for each of the corresponding biomes and enhancements. Random stratified 

sampling was performed on each validation image. Samples were collated for all six validation 

images per biome per enhancement and statistics were derived from these results. 

3.4.1 IMAGE ENHANCEMENTS 

3.4.1.1 HISTOGRAM EQUALISATION 

Histogram equalisation (HE) is a common contrast enhancement method used for basic images 

such as human portrait images (Ma et al. 2018) as well as in medical image analysis. HE is a global 

contrast enhancement method which distributes the most frequent intensity values across the bit 

range. To visualise the effect of HE on a histogram, Figure 7 a) Histogram of image with no 

enhancement applied b) Histogram equalisation applied. HE is prone to over amplification and 
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distortion in some areas of the image, particularly in areas of homogenous intensities (Ma et al. 

2019). 

 

To calculate the HE, a probability function (Equation 3) first needs to be defined. 

For an image f of size i by j, forming a matrix (N) of integer pixel intensities with values in the 

range 0 to L – 1, where L is the bit depth of values (256 for 8bit), let p represent the normalized 

histogram of f with a bin for each possible intensity. 

  𝑝𝑛 =
𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑁
 

Equation 3 

Where 𝑝𝑛 Probability that a pixel has an intensity value n 

 𝑛 Number of pixels with intensity n 

 𝑁 Total number of pixels 

Following from this, the equalized histogram (Figure 7 b) can thus be defined by g as: 

𝑔𝑖,𝑗 = 𝑓𝑙𝑜𝑜𝑟 ((𝐿 − 1) ∑

𝑓𝑖,𝑗

𝑛=0

𝑝𝑛) 

Equation 4 

Where 𝑔𝑖,𝑗 Equalized histogram 

 𝐿 Bit depth (256 for 8bit) 

Figure 7 a) Histogram of image with no enhancement applied b) Histogram equalisation applied 
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 𝑝𝑛  Probability that a pixel has an intensity value n 

 𝑓𝑖,𝑗 Pixel intensity at position i, j 

3.4.1.2 GLOBAL CONTRAST NORMALISATION 

GCN is a method that endeavours to normalise the contrast of an image based on the statistics of 

the entire training image stack. GCN is calculated by subtracting the mean pixel value of each 

colour band in the image stack from each pixel value in its corresponding colour band and dividing 

it by the standard deviation calculated across the full training image stack (Coates, Lee & Ng 2011; 

Pitaloka et al. 2017).  GCN is calculated using the following equation:   

𝑥′ =
 𝑥 − 𝜇

𝜎
 Equation 5 

Where 𝑥 Input pixel intensity value 

 𝜇 Mean intensity value across full training image stack per band 

 
   σ 

Standard deviation of pixel values in full training image stack 

per band 

 

When comparing the histograms of the base image and the GCN image, it is clear that the 

differences are very subtle (Figure 8). The aim of GCN is to reduce the amount of contrast within 

a set of images and to have the same intensity range across all images. This is beneficial when 

training a deep learning model as in the training process weights and biases are multiplied and 

summed respectively to the input data in order to produce activations that are then back propagated 

with gradients to train the model. Ideally the input data should all have a similar range which in 

turn reduces the possibility of an exploding or vanishing gradient during model training. 
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3.4.1.3 CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALISATION 

To overcome the over-amplification caused by a global histogram stretch, CLAHE is proposed. 

CLAHE is processed on smaller tiles of the image, therefore localizing the HE process. Multiple 

histograms are computed for the full image, each referring to a different subsection of the image. 

These are all used to redistribute values across the full image using the cumulative distribution 

function (Ma et al. 2018). Two colour spaces were tested for the implementation of CLAHE, 

namely the red, green and blue (RGB), and the hue, saturation and value (HSV).  

A colour space is an abstract model to describe colours in terms of intensity. The most common 

colour space to represent colours through digital media is the RGB colour space, which describes 

colours with linear intensity values for the red, green and blue channels. A mixture of these 

intensities on each colour channel displays the desired colour.  

A popular colour space to perform image enhancement is the HSV colour space, which relies on 

hue, saturation and intensity values/ Hue is an angle that directly describes colour, saturation 

measures how close the hue is in relation to a white reference. (Saturation values are described as 

the radial distance from a central axis to the outer perimeter.) The value channel describes the 

illumination of the colour. (The higher the value, the brighter the corresponding pixel when viewed 

in RGB.) Since digital images are all displayed using the RGB colour space, images need to be 

transformed into the desired colour space first, processed, and then converted back to the RGB 

colour space to be interpreted in their true colour (Bora 2017). 

Figure 8 a) Histogram of image with no enhancement applied b) Histogram of image with global contrast 

normalization applied. 
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3.4.1.3.1 CLAHE RGB 

Applying CLAHE in the RGB colour space uses a scalar technique whereby CLAHE is processed 

independently on each colour channel, thereafter each processed channel is concatenated. A 

notable drawback is that the chroma of the image deviates from the original input. As seen in 

Figure 9, the histogram has a shift to the right, indicating a brighter image. The histogram with 

CLAHE applied in RGB is far more stratified showing less normalization within each colour band. 

 

Figure 9 a) Histogram of image with no enhancement applied b) Histogram of image with CLAHE applied on each 

channel in the RGB colour space 

3.4.1.3.2 CLAHE HSV 

To retain the original chroma properties of an image, the image is first transformed into the HSV 

colour space. CLAHE is applied only to the V channel, thereby preserving the hue and saturation 

characteristics of the image. The image is then transformed back into the RGB colour space. This 

is a more efficient method of applying CLAHE, as it is applied only to a single channel in contrast 

with applying CLAHE in the RGB colour space where the number of processes depends on the 

number of channels in the image. As can be seen in Figure 10 b, the histogram is stretched across 

the full bit range whilst still maintaining a similarity in the shape of the peaks with those of the 

original histogram (Figure 10 a). This leads to a larger contrast between the dark and bright areas 

within the image. 
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Figure 10 a) Histogram of image with no enhancement applied b) Histogram of image with CLAHE applied on V 

channel in HSV colour space 

3.4.2 DEEP LEARNING 

A UNet (Ronneberger, Fischer & Brox 2015)was the preferred architecture (Figure 11) because it 

uses skip connections between the convolutional layers in the encoder and the corresponding 

deconvolutional layers in the decoder. This enables the network to up-sample results at the same 

spatial resolution as the input data. The naming of the architecture is derived from the U-shaped 

symmetry of the architecture with a convolutional encoder and a corresponding deconvolution 

decoder (Figure 11).  
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Training a CNN can be difficult, and at times unstable, due to the initialization of random weights 

in the model. After each batch, the differences between inputs change when the weights are 

updated, thereby always changing the target. To counter this, batch normalisation was applied 

before each pooling layer to stabilise the learning process and reduce the number of epochs 

required to train the model effectively (Ioffe & Szegedy 2015). Dropout was applied at the end of 

the fourth and fifth convolutional blocks to reduce the chances of overfitting the model and to 

improve model generalisation. A probability of 0.5 was set for dropout for each batch processed 

by the model. Error! Reference source not found. outlines the hyper parameters used for this 

study.  

Table 2 Hyper parameters used by the UNet used in this study 

Hyper parameter Type 

Activation function ReLu 

Optimizer Adam 

Learning rate 0.0001 

Loss function Binary cross-entropy 

Batch size 4 

Figure 11 Graphical representation of the UNet architecture  
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Epoch 100 

The Rectified Linear Unit (ReLu) was used as the activation function for each convolutional layer 

in the encoder and decoder. The activation function allowed the model to learn more complex 

features by introducing non-linearity to the model and thereby improve its performance  (Agarap 

2018). ReLu also helps solve the issue of vanishing gradients where the gradients become too 

small to effectively update the model parameters during training (He et al. 2015). The final output 

layer was a sigmoid function with output probability values between zero and one.  

Binary cross-entropy was employed as the loss function. It measures the difference between the 

predicted probability and the true binary label. Binary cross-entropy punishes the model heavily 

for predictions that are far from the target, making it a good choice for binary classification tasks 

like image segmentation, where the objective is to accurately classify pixels in a target class 

background. (Jadon 2020). 

The Adam optimizer was chosen based on its ability to adaptively adjust the learning rate for each 

parameter based on the previous gradient information. This can lead to faster model convergence 

and improved performance compared to other optimization algorithms (Ronneberger, Fischer & 

Brox 2015; Xie et al. 2017). 

The batch size has a significant effect on the training of DL models. It influences the trade-off 

between the stability of the learning process and the computational cost. A smaller batch size 

results in more frequent weight updates and can create a noise-like fluctuation in the gradients that 

can help the model escape from suboptimal solutions and converge to a better optimum. However, 

the computation is more expensive, and the convergence is slower. A larger batch size leads to 

smoother gradients and faster convergence, as the weight updates are based on a more accurate 

estimate of the gradients. However, the optimization may be less likely to escape from a local 

minimum (Keskar et al. 2017). A batch size of four was selected due to the computational resource 

limitations, however, it was still small enough to prevent the model from falling into a sub-optimal 

minima. 
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3.4.3 ACCURACY AND STATISTICS 

To quantify the differences achieved by applying an enhancement to an image, the mean absolute 

difference (MAD) across the near-infrared, red and green bands in all training and validation 

images were calculated. The MAD evaluates whether the quantitative difference between an 

enhanced image and a base image may be indicative of the performance of a DL model. The MAD 

was calculated for each validation and training image by subtracting the enhanced image from the 

base image and then calculating the absolute mean value per image. The smaller the MAD, the 

better the matching of the baseline and the enhanced image. 

The chosen metric for describing model performance was Matthews Correlation Coefficient 

(MCC), defined as (Matthews 1975): 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 

Equation 6 

Where T

P 

True positive: correct prediction of 

the positive class 

 T

N 

True negative: correct prediction of 

the negative class 

 
FP 

False positive: incorrect prediction 

of the positive class 

 F

N 

False negative: incorrect prediction 

of the negative class 

 

MCC considers true positives (TP), true negatives (TN), false positives (FP) and false negatives 

(FN). The MCC metric is specifically designed for binary classification, and it will generate a high 

score only if most of both positive and negative test cases are correctly predicted. Furthermore, 

MCC is especially useful for unbalanced datasets (Chicco & Jurman 2020). MCC ranges from -1 

to 1, with -1 being a complete misclassification, 0 being no better than random and +1 being a 

perfect classification.  

The overall accuracy (OA) is the proportion of true results measuring the degree of reliability of a 

classification where OA = (TP+TN) / (TP+FP+TN+FN). OA’s were calculated for each 

classification as an affirmation of the results achieved. OA cannot be used as a standalone statistic 

as it may not represent the true performance of a model due to the dataset being unbalanced. 
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The results were based on 40 000 sampling points per validation image, equating to 1% of the total 

number of pixels in each image. A stratified random sampling method was used to choose samples. 

3.5 RESULTS & DISCUSSION 

3.5.1 EXAMPLE OF ENHANCEMENTS 

Table 3 illustrates the enhancements applied to an image of a temperate forest biome. The images 

are in a false colour view with a band order of near-infrared, red and green as this was the 

combination passed through the DL model. 

Table 3  Example of enhancements applied to a false colour composite 

 
Base Image Enhanced Image 

CLAHE RGB 

  

CLAHE HSV 

  

GCN 
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HE 

  

 

Visually the GCN and CLAHE HSV outputs have almost unnoticeable differences (Table 3) 

between the base images and the enhanced images. The histograms of GCN (Figure 8) and CLAHE 

HSV (Figure 10) agree with the visual representations. GCN reduced the contrast of all images in 

a training set by subtracting the global mean value for each band in the stack and dividing that by 

the global standard deviation. Whereas the visual differences of the images may be subtle, the 

model’s ability to learn features tended to improve when inputs were normalized mean centred. 

The same mean and standard deviation factors were applied to all validation data prior to 

prediction. Visually the CLAHE RGB and HE outputs showed significant differences from the 

base images, with vegetation being accentuated. CLAHE HSV increased contrast whilst 

preserving the hue and saturation of the base images. The HE outputs indicated a risk of over 

exposing images. In the example in Table 3, HE enhanced the contrast, especially over vegetated 

areas, resulting in vegetation being identified more easily by the naked eye. The differences 

between the HE images, and the base images were much more prominent, whereas CLAHE in 

HSV and GCN displayed very subtle differences. 

3.5.2 EFFECT OF ENHANCEMENT (MAD) 

Figure 12 Mean absolute residual difference (MAD) for each test and training image illustrates the 

MAD of each baseline training/validation image compared with the respective enhanced training/ 

validation image. The MAD results across all images per enhancement, along with their respective 

standard deviations, are further outlined in Table 4.  
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Figure 12 Mean absolute residual difference (MAD) for each test and training image 

Table 4 Overall MAD score and standard deviation across all training and test images per enhancement 

 Mean Absolute Difference Standard Deviation 

CLAHE RGB 0.1020 0.0205 

GCN 0.0162 0.0125 

HE 0.2304 0.0546 

CLAHE HSV 0.0345 0.0094 

 

GCN had the lowest MAD measure and the lowest standard deviation. HE had the highest MAD 

measure, namely the largest differences between the baseline and enhanced images. HE also had 

the largest variation across images. The resultant accuracy for each UNet prediction was 

determined based on the MCC score. The mean MCC scores for each enhancement technique per 

biome are shown in Figure 13. 
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Figure 13 Mean MCC score per enhancement per biome 

Stellenbosch University https://scholar.sun.ac.za



48 

 

Among all enhancement techniques, GCN demonstrated the most consistent performance across 

various biomes, with the exception of Tropical Rainforests. GCN also had improved MCC scores 

when measured against imagery with no enhancement technique in three of the five biomes. Most 

notably, in the Boreal biome, GCN outperformed base imagery by more than 26%, with GCN 

producing an MCC (expressed as a percentage) of 68.51% and no enhancement producing an MCC 

of 42.25%. GCN was least effective when applied to images in the Tropical Rainforest biome. 

This was possibly due to the similarities of the histograms for images in Tropical Rainforests. 

GCN showed the highest MCC of all the enhancements in three of five biomes. 

CLAHE applied in the RGB colour space showed mixed results across biomes. It was the best 

performing enhancement in the Savanna biome with an MCC of 64.78%. HE was the second best 

enhancement in this biome with a meagre MCC of 58.99%. CLAHE in RGB was the worst 

performing enhancement in the Boreal biome with an MCC of 40.37%. CLAHE in RGB did not 

outperform any enhancement in three of five biomes. CLAHE in RGB performed better than 

CLAHE in HSV in three of five biomes. However, of all the enhancements, CLAHE in HSV did 

not rank highest in any biome. CLAHE in HSV outperformed no enhancement in only two of the 

five biomes CLAHE in HSV had the lowest MCC score of all enhancements in the Tropical 

Rainforest biome. Along with GCN, CLAHE in the HSV was the only other enhancement to have 

a higher MCC than no enhancement in the Boreal biome.  

HE had mixed results across biomes. HE had higher MCC scores in three of the five biomes 

compared with no enhancements. HE was the best enhancement in the Tropical Rainforest biome 

with an MCC score of 69.60 compared with the second highest MCC being CLAHE in RGB with 

an MCC of 62.06%. HE also did well in the Temperate Forest biome with an MCC of 80.37%. In 

the Grassland biome, HE was by far the worst performing enhancement, with the difference 

between the highest MCC scoring enhancement (GCN) and the lowest scoring enhancement (HE) 

being more than 20%. The biomes in which HE did well, specifically the Temperate Forest and 

Tropical Rainforest biomes, were predominantly covered with vegetation. As HE aims to spread 

the most frequent intensities across the full bit range, and if the majority of intensity values 

represent forests, those pixels would be centred in the histogram. Conversely, for Grassland where 

HE performed the worst, the most frequently occurring intensity values were higher in the bit range 

bearing in mind that much of the land area was covered by crops and grassland as opposed to 

darker forests. 

It is interesting to note that in the Tropical Rainforest biome, the two worst performing 

enhancements; GCN and CLAHE in HSV, were also the two enhancements with the least residual 

differences when compared with their baseline images. Conversely, in the Boreal biome, these two 
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enhancements produced the highest MCC scores of all the enhancements as well as against no 

enhancement.  

GCN had the highest mean MCC across all biomes with an MCC rating of 0.67. CLAHE applied 

in the HSV colour space had the lowest mean MCC of 0.59. Only GCN and CLAHE RGB had 

higher means than the baseline dataset. Table 5 highlights the MCC and OA scores of the 

enhancements which outperformed no enhancement in bold.  

Table 5  Mean MCC and OA per biome per enhancement, bold indicating cases outperforming no enhancement 

 

No 
Enhancement GCN CLAHE RGB CLAHE HSV HE MCC OA 

 MCC OA MCC OA MCC OA MCC OA MCC OA Mean STD Mean STD 

Boreal 0.42 0.71 0.69 0.84 0.40 0.70 0.51 0.76 0.41 0.69 0.49 0.12 0.70 0.06 

Grassland 0.73 0.90 0.74 0.90 0.71 0.89 0.65 0.86 0.53 0.84 0.67 0.08 0.84 0.03 

Savanna 0.58 0.79 0.56 0.79 0.65 0.83 0.56 0.75 0.59 0.80 0.59 0.04 0.76 0.03 

Temperate 
Forest 0.78 0.89 0.82 0.91 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.01 0.88 0.01 

Tropical 
Rainforest 0.61 0.82 0.53 0.79 0.62 0.83 0.44 0.75 0.70 0.86 0.58 0.10 0.77 0.04 

Mean 0.62 0.82 0.67 0.85 0.64 0.83 0.59 0.80 0.61 0.82     

STD 0.14 0.08 0.12 0.06 0.15 0.08 0.14 0.07 0.15 0.08     

 

Temperate Forest was the only biome in which all enhancements outperformed the baseline 

dataset. This may suggest that enhancements are useful in cases of the objects of interest having 

well delineated boundaries, as is the case of trees in the Temperate Forest biome. This finding 

mimics the results found of a previous study in which the classification of melanoma and benign 

skin lesions was improved (Özbay & Özbay 2021). In that case, the objects of interest also had 

clear delineated boundaries (Özbay & Özbay 2021). There was high variability in the performance 

of enhancements in the Boreal biome, with standard deviations of 0.12 and 0.06 in the MCC and 

OA scores respectively.   

Table 6 illustrates examples of results for each enhancement in the biome in which an enhancement 

performed the best in relation to the others. It's important to keep in mind that these results are 

specific to the image presented in the table and may not necessarily align with the findings 

presented in Table 5.  Precision and recall for each of the images were calculated. Precision is the 

ratio of true positives to the sum of true positive and false positive cases. A higher precision score 
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indicates a lower rate of false positive cases. Recall is the ratio of true positives to the sum of true 

positives and false negative cases. A higher recall rating indicates a lower rate of false negative 

cases. GCN in the Boreal biome achieved much higher precision and recall metrics of 0.99 and 

0.84 respectively, compared with the baseline prediction which had a high precision of 0.95. But 

a high number of false negative tests led to a low recall of 0.42. This is reflected in the MCC score 

with GCN attaining an MCC of 0.79 and no enhancement scoring an MCC of 0.20. The overall 

accuracy aligns with these results, but the high number of false positive test cases are not reflected 

in this metric. Although the table below is not indicative of the results trends for each enhancement 

and biome, it nonetheless illustrates the importance of using the MCC score as a metric for 

evaluating model performance. For example, CLAHE in HSV and no enhancement in the 

Temperate Forest biome exhibits recalls of 0.99 and 1.0 respectively, however they have low 

precision ratings of 0.59 and 0.5, with a deceivingly high OA recording 0.8 and 0.72.  
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Table 6 Example result of best performing enhancement for each biome 

 
Image Ground Truth Prediction No Enhancement 

Prediction 
Precision & Recall 

GCN 

(Boreal) 

    

 No enhancement GCN 

Precision 0.95 0.99 

Recall 0.42 0.84 

MCC 0.20 0.79 

OA 0.69 0.88 
 

CLAHE RGB 

(Savanna) 

    

 No enhancement 
CLAHE 
RGB 

Precision 0.81 0.83 

Recall 0.97 0.97 

MCC 0.81 0.83 

OA 0.91 0.92 
 

CLAHE HSV 

(Temperate 
Forest) 

    

 No enhancement 
CLAHE 
HSV 

Precision 0.50 0.59 

Recall 1.00 0.99 

MCC 0.55 0.65 

OA 0.72 0.80 
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HE 

(Tropical 
Rainforest) 

   
 

 

 

 No enhancement HE 

Precision 0.67 0.75 

Recall 0.99 0.99 

MCC 0.47 0.62 

OA 0.72 0.80 
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Mean MCC scores for all the enhancements across all biomes (Figure 14) were calculated and can 

be directly compared with one another as the same validation images for all biomes were used for 

each of the enhancements. GCN and CLAHE in RGB were the only enhancements to have higher 

mean MCC’s than no enhancement. The application of GCN as a normalisation technique has been 

shown to improve classification accuracies of deep learning models outside the remote sensing 

domain (Pitaloka et al. 2017). The accuracy of classifying emotion based on facial expression 

improved from 61.81% to 89.18% after using GCN as a pre-processing step in a CNN (Pitaloka et 

al. 2017). Although the study was focused on image categorization, not segmentation 

classification.  

 

Image enhancements have been shown to improve the accuracy of natural image classifications 

when the object of interest is clearly defined, such as the segmentation of motor vehicles, 

pedestrians and street signs in the case of self-driving cars. The segmentation model is less 

dependent on the spectral values and ratios between colour channels than the geometric 

characteristics of the objects. The objects in these cases have clear edges. In contrast, in the context 

of tree segmentation from medium resolution satellite imagery, some trees may be smaller than 

the size of the relevant pixel. It is difficult to characterize the texture of a single tree from 10m 

resolution images thus the more important characteristics are the spectral values and the ratios 

between spectral values of pixels as well as between signal bands. This could be why contrast 

Figure 14 Mean MCC across all biomes 
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enhancements such as CLAHE and HE, had minor impacts (Table 5) on the performance of the 

DL model. Enhancement methods may be useful for problem-specific cases, as an enhancement 

may work well for one case but yield poor performance for another case. A more suitable use case 

for image enhancements in remote sensing may be for the segmentation of buildings and/or trees 

in very high-resolution imagery (0.5m). This will result in the object of interest being much larger 

in relation to the pixel size, and will enhance the available semantic information (i.e. regular shapes 

of footprints, roof shapes, driveways, yards etc). GCN aims to normalise the contrast of all images 

in a training stack and subsequent image predictions. The normalisation results in all images 

having similar contrast level. It might be possible that the model has learned pixel ratio features 

more effectively with GCN as the ratios between bands are normalised. Trees in the Boreal biome 

are more difficult to delineate visually in comparison to other biomes, such as Savanna or 

Temperate Forests, in which the boundaries between trees and no trees are quite clearly defined, 

thus assisting the model to learn the geometric and semantic properties of trees more effectively.  

This could explain why enhancements such as CLAHE and HE, which promote the learning of 

geometric features, are more effective than other enhancements in biomes where trees are more 

easily delineated, such as in Savanna and Tropical Rainforest (Table 5). 

3.6 CONCLUSION 

This chapter outlines how various image enhancement techniques were tested in order to determine 

which would perform best for global forest classification from Sentinel-2 imagery using a CNN. 

Testing was done per biome to reduce intraclass variability and improve model performance. GCN, 

HE, CLAHE, both in the RGB and HSV colour spaces, were tested against a baseline image to 

which no enhancement had been applied. On the basis of MCC scores, GCN performed the best 

against the baseline images used in most of the biomes. GCN was especially effective for the 

Boreal biome with a MCC score 0.1725 higher than the next best performing enhancement. GCN 

was also one of the more consistent techniques, outperforming the baseline prediction in three of 

the five biomes, and having the highest mean MCC (0.67) across all the biomes. The next best 

performing technique was CLAHE applied in the RGB colour space with a mean MCC of 0.64. 

CLAHE in the RGB colour space was the only other technique that outperformed baseline 

predictions on average. Given that only two of the tested enhancements improved model MCC 

scores, it is recommended that image enhancements are critically evaluated for their suitability to 

the context of their application. 

A limitation of the study was the exclusive use of LuxCarta’s proprietary 8bit scaled data, which 

is not openly accessible. Although best efforts were taken to limit any inherent biases in the 

training and validation labels datasets, these do still exist. Images were selected on summer 
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imagery of the locale of each image; however, some seasonal variations still exist in both training 

and validation datasets.  

To the best of the author’s knowledge, this is the first paper critically comparing enhancement 

techniques specifically for the improvement of a CNN for global forest classification. The paper 

serves as an important link with results obtained in other computer vision and medical research 

fields and demonstrates that some of the techniques examined have potential in the remote sensing 

domain. It is intended that this work be further developed by assessing image normalization via 

DL domain adaptation techniques, and by the use of state-of-the-art pre-trained networks with the 

aid of transfer learning. There is potential for these activities to yield further improved results and 

pave the way to training a more accurate, global forests model.  
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4 CHAPTER 4: DATA AUGMENTATION METHODS FOR IMPROVING 

THE RESULT OF A CNN BASED GLOBAL FOREST 

CLASSIFICATION MODEL FROM SENTINEL-2 OPTICAL DATA 

4.1 ABSTRACT 

In the absence of accurately annotated training data for remote sensing, training a robust, deep 

learning model for global tree cover classification remains a challenge. As its first objective, this 

study evaluated basic data augmentation methods and prediction frameworks that might lead to 

achieving an accurate, global tree cover classification. A training dataset was artificially inflated 

using common geometric and colour data augmentation methods borrowed from the computer 

vision domain.  Their effectiveness in improving the generalisability of a U-Net model for tree 

classification was tested.  Both geometric and colour augmentations, when applied individually, 

showed improvements in model accuracy. When applied together, the combined augmentations 

showed only marginal improvements over the individually applied augmentations.  The second 

objective was to test two approaches towards achieving a global tree classification. The first was 

a model per biome approach, whereby a model was trained with data derived only from the 

respective biome. The second involved training a single globally representative model with 

training data from all biomes combined. This resulted in higher MCC scores than the multi-model 

approach. The diversity in training data appeared to increase model robustness. Thus, it was found 

that training a single, globally representative model with a combination of colour and geometric 

augmentations led to an effective framework to infer a global tree classification. 

4.2 INTRODUCTION 

Information about the spatial distribution of global forests is important for commercial purposes, 

ecological monitoring and also indirectly impacts on human and environmental health (Ottosen et 

al. 2020). Due to anthropogenic influences, these resources are under severe pressure (Drummond 

& Loveland 2010; Kouassi et al. 2021). The effective management of global forest resources 

requires an efficient and robust classification method to extract a global tree cover dataset. 

Achieving this remains a major challenge, due to the computational cost of processing a global 

dataset at a high spatial resolution. There has been a proliferation of open access to medium 

resolution (10m), multispectral imagery from the Sentinel-2 constellation of satellites, as well as 

technical advancements in the field of artificial intelligence, particularly the use of deep learning 

(DL) for medical imaging analyses and computer vision tasks (Krizhevsky, Sutskever & Hinton 

2012; Ronneberger, Fischer & Brox 2015). The combination of these advances offers an 

opportunity for further research on the transferability of concepts from computer vision to remote 

sensing as potentially efficient methods for tree classification on a global scale.  
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4.2.1 CLASSIFICATION APPROACHES 

Common image classification categories in the computer vision domain rely on image-level 

classification, whereby a single label is assigned to describe a full image. For remote sensing, 

image level classification is susceptible to a loss in spatial resolution and patch-based classification 

is preferred. Pixel based classification is a common classification category for remote sensing 

(Sekertekin, Marangoz & Akcin 2017), with each pixel being assigned a class. Pixelwise 

classification can be achieved by DL within convolutional neural networks (CNN) through the use 

of fully convolutional architectures (Maggiori et al., 2017).  Remote sensing imagery can be noisy 

and result in visually unpleasing classification maps (Boonprong et al. 2018). Object based image 

analysis (OBIA) is a form of image classification that  overcomes this problem by grouping pixels 

into homogenous zones based on colour and shape, and then assigning a class label to each pixel 

within the segment (Lu & Weng 2007). However, OBIA is a computationally expensive process 

as the segments need to be computed prior to classification. Image segmentation in DL, in the form 

of semantic segmentation, provides the benefits of pixel-based classification with the smoothness 

of OBIA. Pixels are assigned a class using both spectral values and contextual information to group 

them into classes based on semantic features. A pixelwise classification approach is preferred as 

the spatial resolution is retained.  

4.2.2 DEEP LEARNING 

DL models, especially when trained with relatively small datasets, are prone to overfitting, 

meaning the model does not generalise well in respect of unseen data (Cogswell et al. 2016). To 

reduce overfitting, DL models require very large training datasets in order to incorporate 

variability within classes (Weinstein et al. 2020; Yu et al. 2017b). Although the problem of 

overfitting can be addressed by adding dropout functions and batch normalization layers in the 

network architecture (Zheng et al. 2018), it is important to address the root cause, namely the lack 

of a large dataset. The production of datasets is very costly and time consuming (Townshend et al. 

2012). Consequently, the availability of image-level training datasets in the remote sensing domain 

is limited, and even more so in the case of pixel-level datasets (Townshend et al. 2012). Large 

image-level datasets, such as the ImageNet dataset, contain 15 million images categorised into 

22000 classes. Such large datasets are not yet available in the remote sensing domain (Yu et al., 

2017b).  One method for introducing and increasing diversity in the training dataset is to enlarge 

the training dataset artificially by applying data augmentation to the existing training dataset 

(Shorten & Khoshgoftaar, 2019). Data augmentation can be categorised into two main types: data 

warping augmentation and oversampling augmentation (Shorten & Khoshgoftaar, 2019). 
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4.2.2.1 OVERSAMPLING 

Oversampling refers to the generation of a completely new, synthetic image (Shorten & 

Khoshgoftaar, 2019). Image mixing is an example of oversampling which involves combining 

multiple real images into one by taking the average pixel value for each image stack over N number 

of images. An example of oversampling that has been applied successfully is a Generative 

Adversarial Network (GAN) used to create additional training images (Loey, Smarandache & 

Khalifa 2020). GAN-based data augmentation techniques have been especially useful in the 

medical imaging domain, for which there is also a scarcity of training datasets. In the case of 

training a robust model for liver lesion identification, GAN-based data augmentations 

outperformed models trained with basic data warping, with model performance increasing from 

88.4% using data warping, to 92.4% using GAN-based augmentations (Frid-Adar et al. 2018).  

4.2.2.2 DATA WARPING 

Oversampling and data warping are not mutually exclusive as data warping can be applied to 

synthetically created images from GAN’s to further enhance and diversify the relevant datasets 

(Shorten & Khoshgoftaar, 2019). Geometric and colour transformation fall into the broad category 

of data warping. Geometric transformation modifies the geometric properties of an image. This 

type of augmentation is suitable for satellite data as semantic features are orientation invariant 

(Scott et al., 2017). Colour transformation changes the pixel intensity values, thereby mimicking 

different illuminating conditions and atmospheric differences, but retain the geometric properties 

of images. This study will focus on data warping augmentation.   

4.2.2.2.1 GEOMETRIC TRANSFORMATIONS 

Geometric transformation refers to changes to the affine transformation matrix of the pixel data. 

Popular geometric transformation applications include flip, rotation and transposition (Yu et al., 

2017a). A flip can be performed on the X or Y axis of an image, or both. Rotations involve rotating 

an image anywhere between zero and 360 degrees. Shear translation performs shifts in both the X 

and Y axes and thus distorts the shapes of objects in an image. Geometric transformations are very 

useful in classification tasks where images are rotation invariant. These methods increase diversity 

in the training dataset without changing the spectral or topological properties of the data (Yu et al. 

2017a). 

4.2.2.2.2 COLOUR TRANSFORMATIONS 

Colour transformation is another method that has been successful in computer vision (French & 

Mackiewicz 2022). Applying gamma and contrast variations to augment training data has been 
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used to improve the accuracy of DL models, both in self-portrait segmentations (Shen et al. 2016) 

and melanoma classifications (Perez et al. 2018).Colour transformation preserves the geometric 

characteristics of objects. In some cases it is therefore more useful to apply augmentations that 

vary pixel intensity (colour) than using geometric augmentations, as in a text/number recognition 

task. This is because a value six (6) when flipped in the vertical axis can be interpreted as a value 

nine (9) and this would destroy the integrity of the training dataset. The nature of land cover 

classification is rotation-invariant, meaning that a satellite image can be interpreted correctly 

regardless of its orientation. Conversely in cases when colour properties are distinctive features, it 

would be desirable to apply only geometric augmentations so as to preserve spectral and 

topological properties, as in the case of optical satellite imagery. However, Robinson et al. (2019) 

found that although colour was a very predictive feature within a small geographic region, it 

became less consistent across larger regions with high intra-class colour variability. Thus, using 

colour augmentation to illustrate image variability across geographical regions may be useful. The 

relationship between the colour input bands can be a distinctive feature. Chatfield et al. (2014) 

showed that when all input RGB images were converted to grayscale and trained again, model 

accuracy reduced by 3% in the case of image labelling tasks.  Pixel intensity and basic geometric 

augmentations have been shown to be effective in increasing the size and improving the robustness 

of CNN’s in domains with very limited raining dataset sizes, as in the case of brain tumour 

detection in the medical imaging domain (Khan et al. 2020). 

Despite the abundance of research papers on refining model architectures to improve model 

performance, there has been less focus on how data augmentation methods affect and may improve 

model performance (Lei et al. 2019). This constitutes a significant gap in literature, despite the 

existing limited studies comparing the effects of different data augmentation methods on the 

performance and robustness of a deep learning model, specifically in the remote sensing domain. 

4.2.3 BIOME BASED CLASSIFICATION 

Currently, there is no research on directly comparing the performance of a DL model trained 

exclusively with training data derived from a single biome, with that of a model trained with data 

derived from multiple biomes. However, it should be noted that the effects of differing ecological 

and climatic conditions on classification via classical machine learning, has been studied. 

Woodcock et al. (2001) found that overall accuracies were negatively affected by ecological and 

climatic differences, when classifying over extensive geographical regions using classical machine 

learning methods. This was mainly due to variances in phenology and the structure of vegetation 

types (Olthof et al., 2005). In addition, temporal and illuminating conditions can cause differences 

of spectral signatures of the same land cover class (McDermid, Franklin & LeDrew 2005). The 
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spectral separability of land cover classes generally has an inverse relationship with distance, 

whereby separability decreases with an increase in distance (Verhulp & Van Niekerk, 2016). Higgs 

(2021) suggest that for forest genera mapping from Sentinel-2 data, training data should be 

collected within 500km of where a RF model is applied and must be of similar rainfall patterns. 

Pax-Lenney et al. 2001 found that applying simple dark object subtraction as an atmospheric 

correction method enabled a neural network to generalize well temporarily. However, accuracies 

dropped by 8%-13% in mean accuracies when extending models spatially from regions where 

training data was derived. Thus, the hypothesis is that a model trained with data from one biome 

will increase accuracy when applied to the same biome on a different continent, However, the lack 

of diversity in the training set of a single biome, may limit the model's ability to detect all trees, 

particularly in areas close to transition zones between different biomes, where phenology, rainfall 

patterns and vegetation structure are less similar to the training data derived for the respective 

biome. 

For use in an operational environment, a targeted model trained per biome may cause unwanted 

edge matching artefacts in bordering biomes in which a different model is applied. In contrast, a 

single model trained using a balanced training dataset derived from all biomes, would not display 

edge matching issues when applied to bordering areas of biomes. However, it is not known whether 

a single model trained with data from all biomes, with data augmentation applied, would be 

sufficiently robust to outperform a targeted model.    

4.2.4 OVERVIEW 

This study aims to determine whether the application of geometric or colour augmentation (or a 

combination of both) to training data, would improve the generalisability of a deep convolutional 

neural network (U-Net model) in respect of a pixel level tree classification. The secondary aim is 

to determine whether a single globally trained model (hereinafter referred to as single model) is 

sufficiently robust to outperform a targeted biome-specific model (hereinafter referred to as a 

multi-model).   

The remainder of the paper is organized as follows: Section 2 details the experimental flow and 

data characteristics, reviews geometric augmentations and colour augmentations, provides details 

of the deep learning model used, and the approach taken to test multi-model versus a singular 

global model application. Sampling methodology, accuracy metrics and computing resources are 

also covered. Section 3 discusses the results of the models trained with colour augmentation only, 

geometric augmentation only and a combination of both geometric and colour augmentations. 

Section 3.3 highlights the results of a multi-model approach versus a single model approach. 
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Section 4 outlines the limitations of the experiment and provides recommendations for future 

work, followed by concluding remarks. 

 

4.3 METHODS 

This research paper is framed by a positivistic research paradigm using primarily quantitative data 

to determine whether data augmentation can improve the performance of a U-Net DL model to 

infer a global tree classification, and whether a multi-model approach or single model yields higher 

classification accuracies. The experiment is thus in two parts. The first focuses on identifying and 

analysing performance increases by applying geometric, colour and a combination of geometric 

and colour augmentations. The second part focuses on developing an optimal strategy to infer a 

global tree classification. It does this by comparing the performance of a model trained only with 

data derived from the specific biome with data augmentation, with the performance of a model 

trained with data derived from multiple biomes with data augmentation applied. 

4.3.1 DATA 

Multi-spectral data was derived from Sentinel-2 Level-2A processed data via LuxCarta’s 

BrightEarth Mosaic (https://brightearth.ai/), which is a global, eight bit, cloud free base map with 

four available bands (Red, Green, Blue, Near Infrared) at a spatial resolution of 10m(Swaine et al. 

2020). Only three input bands were selected, the near infrared, the red and the green bands. Adding 

in the blue band as a fourth input was tested beforehand, but the results showed a deterioration in 

model performance.  

Training and test images were normalised using Global Contrast Enhancement (GCN). When 

applied across the training set, CGN produced the highest Matthews correlation coefficient (MCC) 

scores for tree classification using the same DL architecture (Chapter 3). GCN applied as a 

normalisation method has been shown to improve DL models in natural image recognition tasks 

such as emotion recognition (Pitaloka et al. 2017). Labelled datasets were derived from LuxCarta’s 

expansive archive of highly accurate data and were further manually corrected to match the 

corresponding Sentinel-2 images. 

All major biomes (Grassland, Savanna, Temperate Forest, Tropical Rainforest and Boreal Forest) 

which contain trees or forests, were included in the training and test datasets to ensure globally 

representative data. A total of 20 images of size 3 000x3 000 pixels (900 square kilometres per 

image) were used as training images (five biomes with four images per biome). The images were 

clipped into smaller 512x512 image patches with 100pixel overlaps on all edges. The same clips 
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were applied to the corresponding binary raster labels. This combination of patch size and overlap 

resulted in a baseline dataset of 1 280 patches, which were split into an 80:20 ratio between training 

and test data in the DL model. 

The unseen validation dataset was derived using the same method as for creating the training 

dataset.  Each validation region covered an area of 2 000x2 000 pixels (400 square kilometres).  

The number of validation regions was increased to six test regions per biome to include more 

diverse representations of each biome, to test the robustness of the trained models. Thus, in total, 

30 validation areas were produced to test the models. Validation images were chosen with global 

representation in mind. A minimum of one image per biome was chosen for each continent where 

the biome occurs, and at minimum, validation images were more than 500km apart geographically 

from any training images. 

4.3.2 EXPERIMENTAL FLOW 

The experiment design in Figure 15 details the steps for which each augmentation strategy was 

applied. To test which type of data augmentation most improves the performance of a deep 

learning model, a baseline model was trained. The baseline dataset comprised all training patches 

from the different biomes based on the training dataset from Chapter 3, with GCN applied as an 

enhancement. For the baseline model, a DL model was trained over 100 epochs on the dataset with 

no data augmentation applied. This baseline model was used to predict trees in each of the 30 

validation images (Chapter 3). Four scenarios were developed for comparing the effects of the 

various augmentation strategies with the baseline model, namely: geometric only transformation, 

colour-only transformation, geometric-with-shear, and geometric and colour combined 

augmentations. The training process was repeated for each of the four data augmentation scenarios. 

Each model was compared with the baseline results. Consistency in the base training/test patches 

was maintained to ensure that a direct comparison between trained models could be made. A global 

MCC score was calculated for all images as well as for a local MCC per validation image.  
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4.3.3 DATA AUGMENTATION 

4.3.3.1 SCENARIO 1 – GEOMETRIC TRANSFORMATIONS ONLY 

For scenario one, geometric transformations including vertical flip, horizontal flip, rotation and 

transpose, were applied to each training and validation image patch. The resulting number of 

training patches for the DL model was 6 400 patches. A vertical flip flips an input image vertically 

around the x-axis (Figure 16 b) (Khalifa, Loey & Mirjalili 2022). Similarly, a horizontal flip, flips 

an input image horizontally around the y-axis (Figure 16 c). A transpose performs a swap of the X 

and Y axes (Figure 16 d). A rotation can be performed by a specified degree (0-360) from the 

centre of the image. The angle of rotation was randomly assigned using only multiples of 90 

degrees to retain the image aspect ratios (Figure 16 e, f).  

 

Figure 15 Experiment flow, part one 
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(a) No Augmentation (b) Vertical Flip (c) Horizontal Flip 

   

(d) Transpose (e) Rotate 90 degrees around 

centre 

(f) Rotate 270 degrees around 

centre 

Figure 16 Geometric transformations 

4.3.3.2 SCENARIO 2 – COLOUR TRANSFORMATION ONLY 

Colour transformations include changes in brightness, contrast, gamma and contrast limited 

adaptive histogram equalization applied in the hue, saturation, value colour space (CLAHE) and 

were applied to the training patches in scenario two. Random changes in image brightness were 

applied by multiplying a random gain/loss of between -0.2 and +0.2 to each image patch (Figure 

17 b, c). A random contrast with an adjustment limit of 0.2 was applied.  (Figure 17 g illustrates a 

random contrast adjustment of 0.11). Random gamma changes ranging from 80 (Figure 17 e) and 

120 (Figure 17 h) were applied to image patches (100 being no change). CLAHE (Figure 17 f, i) 

with a random clip limit of between 0 and 2.5 and a grid size of 8x8 was applied to each image 

patch. The resulting number of training patches for colour augmentations was 6 400, to serve as 

input for the DL model. Manual testing was conducted to determine the range limits for parameters 

based on random values. Results outside the selected range produced unrealistic images unlikely 

to occur in reality. 
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(a) No Augmentation (b) Random Brightness loss of  

-0.169 

(c) Random brightness gain of 

+0.18 

   

(d) Random contrast clip limit  

-0.15 

(e) Random gamma 80 (f) CLAHE CL 2.25 

   

(g) Random contrast clip limit 

0.11 

(h) Random gamma 120 (i) CLAHE CL 1.13 

Figure 17 Colour transformations 

4.3.3.3 SCENARIO 3 – SHEAR TRANSFORMATION 

Scenario three involved adding random shear as an additional transformation to the geometric 

transformations for each image patch. As opposed to naive augmentation, such as random flips, 

rotations and mirroring which change the orientations of features in an image, shear warps the 
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shapes of features. A random value of between -30 and +30 was applied in both the X and Y planes 

to perform the shear transformations of each training patch (Figure 18). This resulted in a total of 

7 680 image patches used to train the model. 

   

(a) No Augmentation (b) Shear X (c) Shear Y 

Figure 18 Shear transformation 

4.3.3.4 SCENARIO 4 – COMBINATION OF COLOUR AND GEOMETRIC 

TRANSFORMATIONS 

A combination of both colour and geometric transformations was used to train a DL model to 

determine whether adding combined augmentation types would improve performance. Combining 

all augmentation types effectively doubled the number of augmented training patches (11 520 

patches). Additionally, the scenario tested whether the increase in the number of training patches 

would result in a more robust model compared with applying one method of augmentation. 

4.3.4 DEEP LEARNING MODEL 

A vanilla U-Net architecture was preferred because it uses skip connections between the 

convolutional layers in the encoder and the corresponding deconvolutional layers in the decoder 

(Ronneberger, Fischer & Brox 2015). This enables the network to up-sample results at the same 

spatial resolution as the input data. The naming of the architecture is derived from the U-shaped 

symmetry of the architecture with a convolutional encoder and a corresponding deconvolution 

decoder (Figure 4).  

Batch normalisation was applied before each pooling layer to stabilize the learning process and 

thus reduce the number of epochs required to train a model effectively (Ioffe & Szegedy 2015). 

Dropout was applied at the end of the fourth and fifth convolutional blocks to reduce the chances 

of overfitting the model and to improve model generalisation. A probability of 0.5 was set for 

dropout to occur for each batch passed through the model. The Rectified Linear Unit (ReLu) was 

used as an activation function for each convolutional layer in the encoder and the decoder. This 
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activation function enabled the model to learn more complex features such as non-linearity to 

improve model performance (Agarap 2018). The final output layer implemented a sigmoid 

function with output probability values between zero and one. Binary cross-entropy was employed 

as the loss function. Binary cross-entropy measures the difference between the output prediction 

and the label and is very effective for binary segmentation tasks and pixel level classification 

(Jadon 2020). 

4.3.5 MULTI-MODEL VS. SINGULAR GLOBALLY TRAINED MODEL 

A significant challenge in producing a global tree dataset relates to the vast variations in the 

world’s atmospheric and geophysical environments. Two approaches were followed to test which 

would be more suitable for achieving an accurate, global forest classification. Whereas a multi-

model approach requires training a separate model for each biome with training data derived from 

the respective biome, a global, singular model is trained on all training data from all biomes (Figure 

19). The Savanna and Temperate Forest biomes were chosen for the multi-model approach, 

respectively having the lowest (0.56) and the highest (0.82) MCC scores in Experiment 1 (Chapter 

3) where GCN was applied as an enhancement. This experiment measured the extent to which data 

augmentation could increase the performance of a model trained with data from a biome (Savanna) 

in which trees are less distinguishable in an image, compared with a model trained with data from 

the Temperate Forest biome in which trees are more pronounced in an image. This approach was 

then compared with the alternative, which was to train one model, with training data compiled 

from a globally representative dataset covering all biomes. 

 

 
Figure 19 Experiment flow, inference strategy 
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For the baseline results, no data augmentation was applied to the training data (Chapter 3). Each 

training dataset contained 256 image/label training pairs and were trained over 100 epochs. 

Following the multi-model approach, models for both Savanna and Temperate Forest biomes were 

trained with geometric and colour augmentations applied to the training dataset, thereby inflating 

the training set of each biome to 2 304 image/label training pairs. The singe model was trained by 

combining all training data from all biomes and applying geometric and colour augmentations to 

enhance and diversify the dataset, thus inflating the dataset to 11 520 image/label pairs. The biome-

specific models were used to predict trees from test images derived only from the respective 

biomes. The singular global model was used to detect forests in both Savanna and Temperate 

Forests test data for comparison. A random stratified sampling strategy (Section 2.6) was 

employed to produce a confusion matrix to infer the MCC score for direct model performance 

comparisons. 

4.3.6 ACCURACY AND STATISTICS 

A random stratified sampling methodology was followed to generate sample points. With 

validation image dimensions of 2 000x2 000 pixels (total of 4 000 000 pixels), 1% of the pixels of 

each validation image were sampled. Therefore 40 000 points were selected for each image. The 

number of positive test samples were based on the proportion of pixels labelled as tree in the 

corresponding ground truth dataset. For example, if 10% of pixels of the ground truth dataset were 

trees, then 4 000 of the 40 000 samples extracted were trees. A confusion matrix of the samples 

was created for each predicted image. To analyse the confusion matrix statistically, researchers 

often utilise the F1 score and overall accuracy (OA) to infer results, depending on the goal of the 

research. However, these metrics can overstate results in unbalanced datasets (Chicco & Jurman, 

2020). To ensure a more accurate representation of the results, the Matthews Correlation 

Coefficient (MCC) was chosen as the comparison metric. MCC is a well-suited performance 

metric in analysing results from binary classifications (Chicco & Jurman, 2020), particularly for 

unbalanced datasets. MCC considers True Positives (TP), True Negatives (TN), False Positives 

(FP) and False Negatives (FN) results and will generate a high score only if the majority of both 

positive and negative test cases were correctly predicted. MCC ranges from -1 to 1, with -1 

indicating complete misclassification, 0.0 no better than random, and +1.0 a perfect classification. 
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MCC is defined in Equation 7 as:  

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 

Equation 7 

 

Where TP True positive: correct prediction of the positive class; 

 TN True negative: correct prediction of the negative class;  

 FP False positive: incorrect prediction of the positive class; and 

 FN False negative: incorrect prediction of the negative class. 

 

Precision and Recall are two metrics that can also be used to measure the effectiveness of model 

performance. Precision is the fraction of TP cases over the sum of all positive predictions and is 

often referred to as confidence (Powers, 2007). It measures the probability that a positive test case 

is truly positive.  Recall, also known as the true positive rate or sensitivity of a model, measures 

the proportion of positive cases that have been correctly classified as positive. Precision and Recall 

should always be analysed inclusively of each other as a high Recall may be achieved even with a 

low precision, and vice versa. The F1 score attempts to combine those scores to produce a single 

measure to represent how a well a model has performed. The F1 score is the harmonic mean of 

Precision and Recall (Powers, 2007). 

The F1 score can be misleading in that the true negative cases are not considered. This can be seen 

from the F1 score equation (Equation 8): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

Equation 8 

 

Where TP True positive: correct prediction of the positive class; 

 FP False positive: incorrect prediction of the positive class; and 

 FN False negative: incorrect prediction of the negative class. 

 

The F1 score can give false truth values when the target class is in the minority and is used as the 

TP case. Therefore, when the target class is the minority class, it is preferable to switch the positive 

and negative labels so that the target class presents the TN case in the error matrix (Chicco & 

Jurman, 2020). Thus, the F1 score is useful when class labels are balanced.  

The advantage of using MCC over the F1 score in this study, was that the test datasets were 

unbalanced. In the case of tree classification, the tree class was likely be the majority class in an 

image of tropical rainforests. However, it was almost certain to be the minority class in an image 
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of the Savanna biome. Hence, it was not a certainty that the tree class would be the minority class 

in all test cases. Taking these factors into account, inverting the labels could have resulted in the 

F1 score giving truthful results. MCC was thus the chosen metric for this study as it gave a better 

representation of the result regardless of the data being unbalanced.  

4.3.7 COMPUTING RESOURCES AND SOFTWARE LIBRARIES 

The system used for processing consisted of an Intel i9 9900K, 16 core CPU, and an Nvidia 

GTX1080Ti GPU with 11Gb of memory and system memory of 64Gb RAM. Data processing was 

run on a Central Processing Unit (CPU) while model training was run on a Graphical Processing 

Unit (GPU). OpenCV, Numpy and GDAL Python libraries were used for data pre-processing, 

Keras and Tensorflow DL libraries for training and inference, and Albumentations for data 

augmentation. Numpy, SciPy, Matplotlib and Pandas libraries were used for test sampling and 

statistical analyses.  

The Albumentations (Buslaev et al., 2019) (https://albumentations.ai/) Python library was used to 

apply all colour, geometric and affine transformations to the training patches. The advantage of 

Albumentation is that the transformation is applied to the image patch while preserving the label 

by applying the same transformation to the corresponding label patch. This was applicable only in 

the case of geometric and affine transformations, as the label remained unchanged for colour 

augmentations. 

4.4 RESULTS & DISCUSSION 

4.4.1 EFFECTS OF AUGMENTATION 

Results from the model trained with no augmentation were the least robust with an MCC score of 

0.668 (Figure 20). The MCC from this base model served as the baseline data against which all 

augmented models were compared. The low MCC score was an expected result as the model was 

trained on only 1 280 training patches, the least number of training image/label pairs of all the 

scenarios.   
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Figure 20 Global MCC by augmentation method 

The individual application of geometric and colour augmentations increased the MCC to 0.736 

(Figure 20), which equates to a 7% increase on the baseline model MCC. The augmentation 

scenario that produced the highest MCC score of 0.738, was the combination of geometric and 

colour augmentation. Although this represents a significant increase in performance compared 

with the baseline model, it is only slightly better than only geometric or only colour augmentation. 

However, the combined geometric and colour augmentation comes at a much greater 

computational cost in terms of training time, in relation to the gain in MCC. The latter model was 

trained on 11 520 patches whereas the colour and geometric models individually were trained on 

only 6 400 image patches. This result aligns with the findings of Lei et al. (2019) that the addition 

of multiple augmentation methods did not equate to a linear increase in model accuracy.  

The model trained with geometric augmentation with shear recorded an MCC of 0.694. It 

performed only marginally better than the baseline with no augmentation. For geometric 

transformation the addition of shear as an augmentation resulted in a reduced MCC score, 

compared with a model trained with geometric transformations without shear (Figure 20).  

The MCC was calculated for each of the 30 test images to give insight into the effects of different 

augmentation strategies on a per-tile basis (Figure 21). 
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Figure 21 MCC of each test image per augmentation method 

The worst performing scenario was that of no augmentation applied during model training (15 

images). Nine images showed that geometric with shear applied was the worst performing 

augmentation scenario. Colour-only augmentation performed the worst in five images while 

geometric-only augmentation was the worst in only one image. When considering the individual 

results on a per image basis, the combination of geometric and colour augmentations was the only 

scenario that consistently scored higher than the other augmentation types in the 30 test images.   

Figure 22 visually depicts the difference between a model trained with colour augmentation (c) 

compared with a RGB image (a), the ground truth (b) and the result from the baseline model with 

no augmentation applied (d). The associated Precision and Recall statistics are provided below the 

model output. 
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(a) Image: 39KUB (b) Ground truth (c) Colour (d) No Augmentations 

   
 

MCC  0.70 0.37 

Precision  0.72 0.47 

Recall  0.96 0.99 

Figure 22 Visual effect of model applied with colour augmentations (c) vs. no augmentations (d) 

It is very clear that the baseline model (Figure 22 d) was not sufficiently robust to learn clear 

features for trees, as the model resulted in excessive false positive cases. This was confirmed by a 

precision of only 0.47 and an MCC score of 0.37 for the specific image. The colour augmented 

model (Figure 22 c) achieved a higher MCC of 0.70, which was the highest recorded for this 

specific image when comparing it with other augmentation strategies. 

Figure 23 shows the difference in performance between training on a colour augmented model (c), 

compared with a model involving geometric augmentation with shear transformation being applied 

to the datasheet (d). Geometric-with-shear was the worst performing strategy, particularly for the 

image in Figure 23 d. As was the case for colour augmentations against no augmentation (Figure 

22), colour augmentations (Figure 23 c) produced both a high Precision and Recall, as well as the 

high MCC Figure 23 c. 

(a) Image: 21JWF (b) Ground truth (c) Colour (d) Geometric with 

shear 

   
 

MCC  0.87 0.74 

Precision  0.89 0.72 
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Recall  0.94 0.99 

Figure 23 Visualising the difference in model trained with colour augmentations (c) vs. geometric-with-shear 

augmentations (d) 

A comparison of test images between a model trained with basic geometric augmentations (Figure 

24 c) and a model trained with the same augmentations with shear added (Figure 24 d), showed a 

tendency by the latter model to give false negative predictions. This is evident by the lack of trees 

classified in the north-east quadrant of the image. 

(a) Image: 55GDP (b) Ground truth (c) Geometric (d) Geometric-with-

shear 

   
 

MCC  0.79 0.66 

Precision  0.95 0.94 

Recall  0.95 0.89 

Figure 24 Visualising the difference between model trained with basic geometric augmentations (c) and shear with 

geometric augmentations (d) 

The false negative tendency was substantiated by the higher Precision over Recall values recorded. 

It appears that applying shear to the training data pool may have skewed the model into learning 

semantics that are not realistically found in satellite data.   

The MCC produced for each augmented scenario was reported relative to the MCC of the baseline 

MCC, thus normalising the scale of the results The difference (normalisation) between the MCC 

scores of the predictions of the each of the augmented models and the baseline predictions were 

calculated for each of the 30 test images (Figure 25). 
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Figure 25 Normalised difference in MCC between no augmentation and applied augmentations 

For most augmentation scenarios, predictions performed better with augmentation than for the 

baseline. All data points above zero (black line) indicate a positive increase in MCC against the 

baseline, while all data points below the zero line, performed worse than the baseline. In only one 

image (35VNL), all augmentation scenarios performed worse than the baseline. This could be an 

indication that the ground truth data for that particular test image may not have been up to standard. 

Of all the augmentation scenarios, the geometric augmentation means line (yellow) showed the 

highest mean difference from the baseline.  Adding shear to geometric augmentation resulted in a 

large drop in performance and was only marginally better than no augmentation. 

This indicates that shear may not be a suitable augmentation method for tree classification at a 

10m resolution. However, shear as a data augmentation method, has successfully been used in 

many other DL domains, including other binary categorisation problems such as skin lesion 

analyses for melanoma classification (Perez et al, 2018). Applying shear as a data augmentation 

to one of the most widely used datasets for machine learning research, the CIFAR-10 dataset 

(Canadian Institute for Advanced Research), outperformed some other commonly used 

augmentations, such as rotations and colour augmentations (Lei et al., 2019). In contrast, however, 

geometric augmentations outperformed models applied with colour augmentations when trained 

on the Caltech101 dataset (Li et al. 2022) for image label classification (Taylor & Nitschke 2017). 

Any decision to use shear as an augmentation method should thus be carefully considered, and 

take into account the domain application. Notably, using shear in a medical application for 

Boreal Grassland Savanna Temperate Tropical 
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diagnosing Covid-19 from lung X-rays was possibly detrimental, in that the transformed images 

would probably be images that cannot clinically exist (Elgendi et al. 2021). Similarly, the impact 

shear may have on Sentinel-2 images is the distortion of the original images to such a degree that 

the DL model cannot effectively learn the semantic features of trees. 

Of the 30 test images (Figure 25), the geometric only and the combined colour and geometric 

augmentation scenarios each returned 26 images that outperformed the baseline scenario, while 

the colour only and geometric with shear augmentations respectively returned 22 and 19 test 

images with positive MCC differences from the baseline.  

4.4.2 COMPUTATIONAL COST 

When training deep learning models, it is useful to know the threshold at which  additional training 

data will not increase performance. This reduces training time, which increases linearly with the 

increase in the number of training patches (Lei et al, 2019). Figure 26 graphically shows training 

time vs. performance as measured by MCC scoring. 

 

Figure 26 Computation cost vs MCC 

The baseline scenario, which had no augmentation, had the smallest number of training patches 

and trained the quickest, but had the lowest MCC score. The geometric only and colour only 

scenarios had augmentation rates five times that of the baseline and with 6 400 training/label pairs 

both augmentation methods improved the MCC’s of the respective models by 10.2%. Training 
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time increased by about 400% from 8 564 seconds to 42 760 and 42 771 seconds for the colour 

and geometric augmentation models respectively. Combining the geometric and the colour 

augmentations and thereby effectively doubling the training dataset size and the training time, 

resulted in an increase in MCC of only 0.002 (+0.3%). Other additional training data did not 

guarantee any increase in model performance. It was shown that while the addition of shear as an 

added geometric augmentation increased the number of training patches, the outcome was an MCC 

of only 0.694 (+3.9%). This was in line with experimental results from a range of state-of-the-art 

deep learning models trained on CIFAR-10 and Fashion-MNIST (Xiao, Rasul & Vollgraf 2017) 

datasets that showed that higher augmentation rates did not always translate into higher model 

accuracies after two to three times augmentation rates (Lei et al., 2019). Furthermore, data 

augmentation had the greatest positive effect in cases when the number of training samples was 

limited (Lei et al., 2019). 

4.4.3 MULTI-MODEL VS. SINGULAR GLOBAL MODEL 

Part two of this experiment compared two approaches for inferring a global tree classification: a 

model trained per biome approach and a single, global model approach. Comparisons were made 

with the baseline models which had no augmentation applied. Baseline MCC scores of 0.56 and 

0.82 were produced for Savanna and Temperate Forests respectively (Figure 27).  

 

Figure 27 MCC of biome-specific model approach vs globally-trained model approach 
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Applying data augmentation to the biome-specific models improved results for both the biomes. 

However, the increase in performance was less for the Temperate Forest biome (3.7%) than for 

the Savanna biome (16%). This was expected as the potential for improvement from an MCC score 

of 0.82 is lower than the potential for improvement on a model with a baseline MCC of only 0.56. 

In both biomes, the singular, global model outperformed the biome-specific models by 10.8% in 

the Savanna biome and by and 2.4% in the Temperate Forest biome. The diversity of training 

patches with augmentations applied in the global model seemed to offer more robustness in 

recognising trees, even when the biome-specific models could not perform as accurately. Figure 

28 shows an example of a typical image of the Savanna biome in which the global model 

outperformed the biome-specific model. Precision and Recall values confirmed the visual 

depiction of a higher number of false positive cases occurring in the Savanna-specific model, 

whereas the global model performed better in all metrics. 

Image: 21JWF Ground truth Global model Savanna only model 

   
 

MCC  0.80 0.64 

Precision  0.78 0.66 

Recall  0.98 0.94 

Figure 28 Visual prediction of globally trained model on Savanna biome vs Savanna-specific model prediction 

It was expected that the biome-specific model would outperform the globally trained model as the 

intraclass variability within each biome was expected to be lower. It was assumed the biome-

specific model would learn the finer features of trees specific to each biome more effectively.  

From an operational viewpoint, a single, globally representative model is more desirable for the 

production of a global tree dataset as it may alleviate the impact of artefacts near the ecotone zones 

from one biome to another. The additional variability introduced in the training data of a globally 

representative model is more robust to variations in features within specific biomes, whereas a 

model trained with biome-specific data did not perform well in areas where geographical, 

ecological and contextual information diverge from the training dataset. 
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It is well known that data augmentation for DL generally improves model robustness. Often such 

data augmentations are applied with little regard of the effects each augmentation type may have 

on the trained model. Whereas a few studies in the medical imaging domain have analysed the 

effects augmentation types may have on the performance of a DL model (Chlap et al. 2021; 

Elgendi et al. 2021), these studies have not yet been expanded to remote sensing for tree 

classification. For some tasks it is obvious which augmentations should be avoided, for example, 

it would be detrimental to apply image rotations for numeric character recognition tasks. In the 

case of tree classification from Sentinel 2 data, applying basic geometric augmentations, which 

change image orientations, showed significant improvement in model performance (Section 3.1). 

Adding shear transformations into the pool of geometric augmentations reduced the performance 

of the DL model (Figure 20). Applying basic geometric and colour augmentation methods to a 

limited training dataset, to enhance the size and complexity of the data, may increase model 

robustness and be an effective way of mitigating the risk of overfitting. The results suggest that it 

is not always necessary to apply both geometric and colour augmentations as the marginal gain in 

MCC may not be worth the increased computational cost of training using double the amount of 

data. However, if model training time were not a limiting factor, the combination of both geometric 

and colour augmentation would lead to an improvement in MCC by 0.2% and would be a 

recommended step as the computational cost of inference is independent of the size of the training 

data. 

4.5 CONCLUSION 

Achieving a global tree classification at 10m spatial resolution is a challenging task. Atmospheric 

and landscape conditions vary greatly globally, and thus training a one-size-fits-all model would 

be a big challenge. To achieve a global tree classification, two possible approaches were tested. 

The first was a multi model approach, whereby a model was trained with data specific to each 

biome. The premise was that this would lead to a refinement of learned biome-specific features. 

The second approach relied on a single, globally trained model for which all training data from all 

biomes was combined. When assessing the performance of the DL models trained per biome, 

performance as measured through the MCC score was reduced, whereas training a model on the 

global dataset resulted in more accurate outputs. Thus, a globally trained model, essentially has 

been given representation of more intra class variation and diversity and performed better across 

the validation images. 

Inherent data biases exist in the training and test datasets, stemming from the way in which the 

datasets were produced. As these biases carry over into the trained models, their impact needs to 

be considered when interpreting results. Improvements to the input dataset could be made by using 
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Sentinel 2 L2A image data in its original bit depth of 12bit instead of the reduced bit depth of 8bit 

as was used in this study. Although best attempts were made to acquire imagery based on similar 

seasonality, this aspect could not be guaranteed. There is scope for further experiments using 

oversampling augmentation methods, specifically artificially inflating, and adding diversity into 

training datasets using GAN’s. Furthermore, tests could be done to analyse the effects of data 

augmentation when applied during the prediction phase, by running multiple predictions per patch, 

and merging output probability. This may lead to improved overall model performance as features 

associated with specific orientations could be activated using slightly different visual input. 

Further pursuing a model per biome approach would entail training a global model with all 

combined data, and thereafter fine-tuning the model for each biome, thus learning both global 

features and refined features from the fine-tuned data for each model. These optimizations could 

help achieve a very accurate, global, 10m resolution, tree classification. 
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5 CHAPTER 5: DISCUSSION & CONCLUSION 

This chapter summarises the primary findings of the research. Section 1 recaps the aims and 

objectives. Section 2 examines the main findings and the value of the research. Section 3 highlights 

the limitations of this study, and the potential and scope for further relevant research. The final 

section draws conclusions from this study. 

5.1 REVISITING THE AIMS AND OBJECTIVES 

The aims of the research were to investigate which image normalisation and enhancement 

algorithms, or combinations thereof, applied to the input data of a convolutional neural network 

could improve the accuracy of a land cover classification, as well as to evaluate whether data 

augmentation could be used to generalise a deep learning model and thereby infer a global forest 

classification. Accurate mapping of global tree resources is vital for effectively managing 

ecosystem services. Timber production, biodiversity protection and climate change mitigation 

through carbon sequestration, are some of the main functions, ecosystems provide. This research 

was thus conducted in the context of developing an operationally efficient and accurate 

methodology for intercontinental tree classification in support of global forest monitoring. 

The literature review (Objective 1) provided a plethora of research extending across existing global 

land cover, Sentinel-2 data, image classification, ML, DL, image enhancement and image 

augmentation. Existing research shows that image enhancements can improve DL model 

accuracies, but that these have not been applied in the remote sensing domain. Data augmentation 

has been commonly used in studies for which the size of the training dataset is limited, and models 

are prone to overfitting. Despite the abundance of research papers focusing on improving model 

architectures to increase model performance, there has been less focus on investigating the 

suitability and effects of various enhancement and augmentation methods. 

The collection of training and validation data (Objective 2) was derived from LuxCarta’s 

BrightEarth (https://brightearth.ai/) product; a global, cloud-free mosaic at a bit depth of 8bits. 

Training labels and ground truth validation data were derived from LuxCarta’s expansive archive 

of accurate, global land cover data, and further refined via desktop edits to match the training and 

validation data with the imagery.  

Chapter 3 dealt with determining the suitability of common image enhancement and normalisation 

techniques for improving a DL model for tree classification. This was done to satisfy Objective 3. 

The image enhancements tested were HE, GCN, CLAHE in RGB and HSV colour spaces. The 

enhancements were applied and trained for each biome. GCN was the most effective enhancement 

overall, with CLAHE in the RGB colour space being the only other enhancement that 
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outperformed the baseline. It was thus determined that GCN was an effective enhancement for 

improving tree classification accuracies using a DL model for segmentation tasks. All the other 

enhancements were disregarded subsequent to Chapter 3. 

Chapter 4 addressed Objective 4, which was to determine the most effective data augmentation 

methods for improving a CNN for a global forest classification. Five models were trained, each 

with a different augmentation strategy, namely: 1. no augmentation, 2. geometric augmentations 

(rotations, translations, horizontal and vertical flips), 3. colour augmentations (brightness, contrast, 

gamma, CLAHE), 4. geometric augmentations with shear included, and 5. combinations of 

geometric and colour augmentations. All the augmentation techniques improved model 

generalisability against the baseline, and the combination of geometric and colour augmentations 

showing the biggest improvement in MCC score (+ 9.2%). 

The high variability of climatic, phenological and geographical conditions around the world make 

it difficult to produce a global tree map. Objective 5 sought to find the most operationally effective 

manner in which to infer a global tree classification (in both time and accuracy). Two approaches 

were tested in this experiment. Firstly, a model per biome approach, for which training, and 

validation data were derived from the respective biomes. The Savanna and Temperate Forest 

biomes were chosen to assess the effectiveness of this approach. The second approach was to train 

a globally representative model that included training data from all biomes. The global model was 

validated against the Savanna and Temperate Forest biomes. The global model achieved the 

highest MCC scores in both biomes, with 0.72 in the Savanna biome and 0.87 in the Temperate 

Forest biome. Thus, it was shown that a single, globally representative model was more robust 

than a model trained with less data, specific to a biome.   

5.2 SYNTHESIS: MAIN FINDINGS AND VALUE OF RESEARCH 

The main findings of this research are as follows: 

• Applying GCN as an image enhancement prior to training a DL model for tree 

segmentation was an effective way of improving model accuracy.  

• There were no significant trends in respect of image enhancement methods and the biomes 

to which they are applied.  

• Both colour and geometric data augmentations were effective for improving the 

generalisability of DL models for tree segmentation. Combining the augmentation methods 

used resulted in the highest accuracies achieved. 
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• The addition of shear as a geometric augmentation had a negative impact on model MCC 

score compared with excluding shear from geometric augmentations. 

• Training a single, globally representative DL model resulted in a more robust model than 

training a model specific to each biome.   

The experiment in Chapter 3 showed that GCN was the most consistent enhancement across all 

biomes, scoring higher than the baseline in three of the five biomes tested. The MCC score 

calculated across all biomes showed that GCN gave the highest improvement of all the 

enhancements tested, with an increase in MCC from 0.61 (baseline) to 0.67. Although there are no 

studies comparing how image enhancements affect the accuracy of a DL model in a remote sensing 

context, image enhancements have been utilised in the natural image processing domain. Available 

literature has shown that GCN improves the accuracy of deep learning models when used as a pre-

process for image categorisation tasks (Goodfellow et al. 2013), face detection tasks (Gudi et al. 

2015) and emotion recognition (Pitakola et al. 2017). GCN aims to improve accuracy by 

decreasing contrast differences in training images. The contrast difference is subtracted from 

validation images as well. In the experiments, histogram equalisation and CLAHE in the HSV 

colour space, led to a reduction in model performance compared with the baseline. CLAHE in the 

RGB colour space was the only other test enhancement that resulted in an MCC score higher than 

the baseline. While each enhancement was applied to data from the selected biomes, to determine 

whether any of the enhancements had a predisposition to improve models trained on specific 

biomes, no trends were detected regarding enhancement methods and biomes.   

Data augmentations are often applied to data for training DL models, but without regard for any 

unintended consequences. Limited research is available on the effects different data augmentation 

methods have on the performance of DL models in the remote sensing domain, especially for 

segmentation tasks relating to tree cover from Sentinel-2 data. Chapter 4 focused on testing 

different data augmentation methods to improve the generalisability of a DL model for tree 

classification. Data augmentation is a commonly used method for artificially increasing the size 

and diversity of training datasets. It is applied particularly in domains for which training datasets 

are limited (Shorten & Khoshgoftaar, 2019). GCN was image enhancement of choice to apply to 

the input data for Objective 4. Basic colour and geometric augmentations, applied either 

individually or combined, improved the MCC score of models from 0.668 (no augmentations) to 

0.736 for both geometric and colour augmentations applied individually, and to 0.738 when 

geometric and colour augmentations were combined. The combination of colour and geometric 

augmentations was the most consistent augmentation method that improved model 

generalisability.  
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Adding shear as an additional geometric augmentation, led to a reduced model performance 

(0.694) compared with applying only basic geometric augmentations.  Nonetheless, it still 

performed better than applying no augmentation. The model trained with shear added displayed 

apparent confusion relating to the learning process. Shear applies an affine warp to an image, and 

this can skew the image features to the extent that they represent features in an unrealistic way that 

does not exist in the real world. It is not recommended that shear be utilised as a data augmentation 

method for training a DL model for tree segmentation.  

In Chapter 4 it was shown that training a single, globally representative model, combining training 

data from all biomes, produced a higher MCC score than a targeted model trained per biome. The 

experiment was run on two biomes, the Savanna biome and Temperate Forest biome. A 

combination of both colour and basic geometric augmentations were applied during training of all 

the models in this experiment. In both cases, the single model outperformed the biome specific 

model with the MCC improving from 0.65 to 0.72 in the Savanna biome and from 0.85 to 0.87 in 

the Temperate Forest biome. The results demonstrated that a single model trained on a very diverse 

training dataset stemming from different climatic and environmental conditions, had the ability to 

generalise well across multiple biomes with different climatic and environmental conditions. The 

findings contrasted with those of Pax-Lenney et al. (2001) that the generalisability of a neural 

network could only be extended in a temporal dimension when dark object subtraction was applied 

as a pre-process. However, when attempting to generalise across geographic regions, a decrease 

of 8%-13% was found in mean accuracy (Pax-Lenney et al. 2001).  There is currently no research 

comparing results of a DL model trained per biome or ecoregion with those of a model trained 

with very diverse training data.   

In summary, the findings from Chapter 3 and Chapter 4 provide strong evidence that an 

operationally efficient pipeline to infer a global tree classification at 10m resolution is achievable. 

By applying GCN as an image enhancement process on training and validation data sampled with 

globally representative data, and further applying basic geometric and colour data augmentations, 

it is possible to train a single deep learning model that is able to generalise across geographic 

regions and infer an accurate global tree cover classification at 10m spatial resolution.  

5.3 STUDY LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Several limitations were identified in this research. The source data was derived from LuxCarta 

cloud-free mosaic. The data type of the imagery was already reduced to a bit depth of 8bits from 

the original 12bit information from Sentinel-2 L2A data. Although care was taken to choose 
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summer imagery of the locales of all training and validation images, there were still some seasonal 

variations in the datasets. Furthermore, the creation of training data for DL models was prone to 

inherent biases stemming from the technician’s ability to interpret features in imagery. The data 

used in this research was thus not indifferent to those biases, and careful scrutiny of the data indeed 

revealed some errors.  

Only a few commonly used image enhancement and augmentation techniques were tested. It is 

recommended that future studies should test more sophisticated image normalisation methods, 

including DL based methods such as GAN’s targeting domain adaptation. Over-sampling methods 

for data augmentation have shown promise in artificially inflating the size of a limited training 

dataset. Applying this method could produce completely unique training patches by creating fake, 

but plausible image / label pairs. Furthermore, future studies should test the effects of applying 

data augmentation at the prediction phase, by performing an inference on a few variations of the 

image patch, and then combining the probability maps. The final recommendation is to test the 

concept of transfer learning. Transfer learning inherits the well-trained weights from models 

trained on large datasets. This concept could be used to transfer the weights of a model trained 

with globally representative data, and thereafter fine-tuning the model for each biome, thus 

learning global features as well as refined features are also learnt for each model with the fine-

tuned data.  

5.4 CONCLUSION 

The mapping of global forests plays an important role in managing the ecosystem services these 

forests provide. Open access to high spatial and temporal resolution data provided by the Sentinel-

2 constellation of satellites has underscored the need for an operationally efficient and accurate 

tree cover classifier.   

This study assessed the effectiveness of various image enhancement and augmentation methods 

borrowed from the computer vision and medical imaging domain of DL to train U-Net models for 

tree classification. The combination of GCN as an image enhancement with basic geometric and 

colour data augmentation techniques, was identified as the most effective method to improve the 

performance of a U-Net model for tree classification. A single, globally representative model 

trained with data derived from all biomes generalises better over large areas, than models trained 

with more homogenous data derived from a single biome and applied to the respective biome. 

The improvements identified in this study lay a framework for an operationally efficient, global 

forest classification. Up-to-date global forest maps serve as useful tools for identifying de-

forestation shift and re-forestation efforts in support of global forest monitoring. 
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