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ABSTRACT 

 

This thesis presents an investigation into the internal structure of the learning potential 

construct as measured by the APIL Test Battery developed by Taylor (1989, 1992, 1994, 

1997). The measurement of learning potential, a core or fundamental ability, as opposed 

to abilities heavily influenced by exposure to previous opportunities is important in the 

South African environment. The importance of the assessment of learning potential can 

be explained partly in terms of the necessity of equalling the proverbial ‘playing field’ 

and ensuring that previously disadvantaged individuals are not becoming more 

disadvantaged by further being denied development opportunities and partly in terms of 

attempts to compensate and correct for a system that clearly oppressed the development 

of important job related skills, knowledge and abilities in certain groups. Such attempts at 

accelerated affirmative development will, however, only be effective to the extent to 

which there exists a comprehensive understanding of the factors underlying training 

performance success and the manner in which they combine to determine learning 

performance in addition to clarity on the fundamental nature of the key performance 

areas comprising the learning task. In this study the internal structure of the learning 

potential construct as measured by the APIL Test Battery was investigated through 

structural equation modelling and regression analysis.  Overall, it was found that both the 

measurement and the structural model fitted the data reasonably well. The study, 

however, was unable to corroborate a number of the central hypotheses in Taylor’s 

(1989, 1992, 1994, 1997) stance on learning potential.  Moreover, the analysis of the 

standardised residuals for the structural model, suggested that the addition of one or more 

paths to the existing structural model would probably improve the fit of the model. 

Modification indices calculated as part of the structural equation modelling could, 

however, not point out any specific additions to the existing model.  Regression analysis 

resulted in the conclusion that the inclusion of the two learning competency potential 

measures together with the two learning competencies measures in a learning potential 

selection battery is not really warranted.  The use of information processing capacity as a 

predictor on its own seems to be indicated by the results of this study.  Recommendations 

for future research are made. 



 OPSOMMING 

 
Die hoofdoel van hierdie studie was om die interne struktuur van die 

leerpotensiaalkonstruk soos gemeet met die APIL Toets Battery, ontwikkel deur Taylor 

(1989, 1992, 1994, 1997), te ondersoek. Die meting van leerpotensiaal, ‘n 

inherente/fundamentele vermoë, eerder as ‘n fokus op die meting van vermoëns afhanklik 

van blootstelling aan vorige geleenthede, is uiters belangrik, in Suid Afrika. Die belang 

van die meting van leerpotensiaal kan ten eerste verklaar word in terme van die 

noodsaaklikheid om die spreekwoordelike speelveld gelyk te maak en om te verseker dat 

voorheen benadeelde individue nie verder benadeel word omdat hulle steeds 

ontwikkelingsgeleenthede geweier word nie en tweedens, in terme van pogings om die 

effek van ‘n sisteem wat die ontwikkeling van belangrike vaardighede, kennis en 

vermoëns in sekere groepe in Suid Afrika onderdruk het, teen te werk en te korrigeer. 

Sodanige pogings tot versnelde regstellende ontwikkeling sal egter slegs slaag in die mate 

waartoe daar ’n omvattende begrip bestaan van die onderliggende redes vir sukses in 

opleiding en die wyse waarop die onderliggende redes vir sukses kombineer om 

leerprestasie te bepaal, asook die sleutelprestasieareas wat die leertaak uitmaak. In hierdie 

studie is die interne struktuur van die leerpotensiaalkonstruk, soos gemeet deur die APIL 

Toets Battery, deur middel van strukturele vergelykingsmodellering (structural equation 

modelling) en ‘n regressieontleding ondersoek. Oorkoepelend is daar gevind dat beide die 

metings- en strukturele model die data relatief goed pas. Die studie kon egter nie ‘n aantal 

van die sentrale hipoteses in Taylor (1989, 1992, 1994, 1997) se standpunt oor 

leerpotensiaal bevestig nie. Daarbenewens het ’n ondersoek van die gestandaardiseerde 

residue aangetoon dat die toevoeg van een of meer addisionele bane tot die bestaande 

strukturele model waarskynlik die passing van die model sal verbeter. Modifikasie-

indekse bereken as deel van die strukturele vergelykingsmodellering kon egter geen 

spesifieke toevoegings tot die bestaande model uitwys nie.  Regressieontleding het tot die 

slotsom gelei dat die insluiting van die twee leerbevoegdheidspotensiaalmetings saam 

met die twee leerbevoegdheidsmetings nie werklik geregverdig is nie.  Die resultate van 

hierdie studie skyn daarop te dui dat informasieverwerkingskapasiteit op sy eie as 

voorspeller gebruik behoort te word.  Aanbevelings vir verdere navorsing word gemaak. 

 



  

 
ACKNOWLEDGEMENTS 

 
 
It is both ignorant and unrealistic to expect that a study of this nature can be completed 

without the unwavering support and encouragement of others. The overwhelming 

magnitude of completing this study that often stared me in the face could have easily 

derailed my efforts, was it not for my incredible support network. 

 

Firstly, I have to acknowledge the effort and humbly thank Prof. Callie Theron from the 

University of Stellenbosch. Prof. Theron calmly and patiently guided me throughout the 

process, continuously encouraged me and gave me the answers when I had none. He is a 

great man, a true academic, an exceptional mentor and a phenomenally insightful human 

being. Without Prof. Theron’s intricate understanding of the subject matter and his subtle 

and supportive manner, I am highly doubtful of whether I would ever have gotten to the 

point of writing this acknowledgement. 

 

Secondly, I have to thank my close family; my wife Robyn, for her exceptional ability to 

support, drive and motivate me towards my goals and dreams and never doubting my 

ability, my father Steph, and especially my mother Marie. Not only did they provide me 

with the encouragement to push through to the end, but they also spent countless hours 

proof reading, listening to me expressing my frustrations and verbalising my discontent. 

 

Thirdly, I would like to thank the South African Police Service Training College in 

Philippi. Without their willingness to open their doors and allow me to gather the data 

that serves as the foundation of this study, it would almost certainly have been impossible 

to complete the research in its current form. I would also like to express my gratitude to 

Deon Meiring, from the South African Police Service, for negotiating with the South 

African Police Service decision-makers to consent to me using their new recruits to 

gather my data. 

 



  

 
I would also like to thank Dr Terry Taylor from Aprolab, South Africa for providing me 

with the APIL Test Battery materials that was required to gather the appropriate data. 

Without his assistance, the vision of the study would have stayed just that. 

 

Lastly, I would like to apologise in advance for potentially neglecting and consequently 

thank any other person who was either directly or indirectly involved in the completion of 

this study. 

 
 
 



 
-i- 

TABLE OF CONTENTS 

Page 

CHAPTER 1 ...................................................................................................................... 1 

INTRODUCTION AND OBJECTIVES OF THE STUDY .......................................... 1 

1.1 INTRODUCTION .............................................................................................. 1 

1.2 VALIDITY ......................................................................................................... 7 

1.3 FAIRNESS.......................................................................................................... 8 

1.4 UTILITY............................................................................................................. 9 

1.5 ADVERSE IMPACT ........................................................................................ 10 

1.6 SELECTION SCENARIOS.............................................................................. 11 

1.6.1. Scenario 1 ..................................................................................................... 12 

1.6.2. Scenario 2 ..................................................................................................... 13 

1.6.3. Scenario 3 ..................................................................................................... 14 

1.6.4. Scenario 4 ..................................................................................................... 16 

1.7 A NEED FOR THE ASSESSMENT OF LEARNING POTENTIAL............... 17 

1.8 RESEARCH OBJECTIVES ............................................................................. 24 

CHAPTER 2 .................................................................................................................... 26 

LITERATURE STUDY.................................................................................................. 26 

2.1 INTRODUCTION ............................................................................................ 26 

2.2 THE NEED FOR THE ANALYSIS AND CONCEPTUALISATION OF 

LEARNING PERFORMANCE....................................................................... 26 

2.3 LEARNING PERFORMANCE........................................................................ 29 

2.4 LEARNING COMPETENCIES ....................................................................... 34 

2.4.1 TRANSFER OF KNOWLEDGE.................................................................... 34 

2.4.2 AUTOMATIZATION..................................................................................... 38 

2.5 LEARNING COMPETENCY POTENTIAL ................................................... 41 

2.5.1 ABSTRACT THINKING CAPACITY............................................................. 42 

2.5.2 INFORMATION PROCESSING CAPACITY................................................ 45 

2.6 TAYLOR’S THEORETICAL POSITION ....................................................... 50 

 



  

 

-ii- 

CHAPTER 3 .................................................................................................................... 61 

RESEARCH METHODOLOGY .................................................................................. 61 

3.1 INTRODUCTION ............................................................................................ 61 

3.2 RESEARCH PROBLEMS................................................................................ 62 

3.3 MEASURING INSTRUMENTS/OPERATIONALISATION......................... 63 

3.3.1 ABSTRACT THINKING CAPACITY............................................................. 64 

3.3.2 TRANSFER OF KNOWLEDGE.................................................................... 65 

3.3.3 INFORMATION PROCESSING CAPACITY................................................ 66 

3.3.4 AUTOMATIZATION..................................................................................... 68 

3.3.5 JOB COMPETENCY POTENTIAL............................................................... 70 

3.4 SAMPLING ...................................................................................................... 72 

3.5 MISSING VALUES.......................................................................................... 73 

3.6 RESEARCH DESIGN ...................................................................................... 76 

3.7 HYPOTHESES ................................................................................................. 78 

3.8 STATISTICAL ANALYSIS TECHNIQUES AND STATISTICAL PACKAGE  

.............................................................................................................................

......................................................................................................................... 81 

3.8.1 ITEM- AND DIMENSIONALITY ANALYSIS................................................ 81 

3.8.2 STRUCTURAL EQUATION MODELLING (SEM) ...................................... 82 

3.8.2.1 Specification of the Full LISREL Model.............................................. 85 

3.8.2.2 Model Identification.............................................................................. 89 

CHAPTER 4 .................................................................................................................... 91 

RESEARCH RESULTS ................................................................................................. 91 

4.1 PARAMETER ESTIMATION METHOD ....................................................... 91 

4.2 ASSESSING THE OVERALL GOODNESS-OF-FIT OF THE 

MEASUREMENT MODEL............................................................................ 93 

4.3 EXAMINATION OF MEASUREMENT MODEL RESIDUALS ................... 99 

4.4 MEASUREMENT MODEL MODIFICATION INDICES ............................ 102 



  

 
4.5 INTERPRETATION OF THE MEASUREMENT MODEL.......................... 104 -iii- 

4.6 ASSESSING THE OVERALL GOODNESS-OF-FIT OF THE STRUCTURAL 

MODEL ......................................................................................................... 111 

4.7 EXAMINATION OF STRUCTURAL MODEL RESIDUALS ..................... 115 

4.8 FURTHER ASSESSMENT OF THE STRUCTURAL MODEL ................... 119 

4.9 STRUCTURAL MODEL MODIFICATION INDICES................................. 123 

4.10 POWER ASSESSMENT ................................................................................ 126 

4.11 REGRESSION ANALYSES .......................................................................... 128 

4.11.1 TESTING HYPOTHESIS 9 ..................................................................... 130 

4.11.1.1 Testing Hypothesis H09a...................................................................... 131

4.11.1.2Testing Hypothesis H09b 132 
4.11.2 TESTING HYPOTHESIS 10 ................................................................... 134 

4.11.2.1 Testing Hypothesis H010:..................................................................... 134 

4.11.3 TESTING HYPOTHESIS 11 ................................................................... 136 

4.12 COMPARISON OF PREDICTIVE POWER ................................................. 141 

CHAPTER 5 .................................................................................................................. 143 

CONCLUSIONS, RECOMMENDATION AND SUGGESTIONS FOR FUTURE 

RESEARCH .................................................................................................................. 143 

5.1 INTRODUCTION .......................................................................................... 143 

5.2 RESULTS ....................................................................................................... 146 

5.2.1 Evaluation of the Measurement Model .......................................................... 146 

5.2.2 Evaluation of Structural Model ..................................................................... 147 

5.2.3 Regression Analysis ....................................................................................... 150 

5.2.4 Comparing the predictive power between the structural model and regression 

model....................................................................................................................... 151 

5.3 SUGGESTIONS FOR FUTURE REASERCH .............................................. 151 

6. REFERENCES...................................................................................................... 154 

APPENDIX A................................................................................................................ 162 



  

 

APPENDIX B ................................................................................................................ 163 



-iv-  -    

LIST OF TABLES 

Page 

 

Table 3.1. Race Frequency Distribution Across The Sample Population………..75 

  

Table 3.2. Age Statistics And Frequency Distribution Across Sample 

Population………………………………………………………………..75 

 

Table 4.1. Test Of Univariate Normality For Continuous Variables Before 

Normalisation…………………………………………………………...92 

 

Table 4.2. Test Of Multivariate Normality For Continuous Variables Before 

Normalisation…………………………………………………………...92 

 

Table 4.3. Test Of Univariate Normality For Continuous Variables After 

Normalisation…………………………………………………………..92 

 

Table 4.4. Test Of Multivariate Normality For Continuous Variables After 

Normalisation………………………………………………………......93 

 

Table 4.5. Goodness-Of-Fit Statistics For The Measurement Model………….98 

 

Table 4.6. Standardized Residuals……………………………………………….99 

 

Table 4.7 Summary Statistics for Standardized Residuals……………………100 

 

Table 4.8. Lambda-X Modification Indices for Measurement Model………...103 

 

Table 4.9. Unstandardized Lambda-X Matrix………………………………….104 

 

Table 4.10. Completely Standardized LAMBDA-X Matrix…………………….106 

  



  -v- 

 

Table 4.11. Squared Multiple Correlations for X-Variables……………..........107 

 

Table 4.12. Completely Standardized Theta-Delta Matrix……………………107 

 

Table 4.13. Composite Reliability Scores For Composite Indicators…………109 

 

Table 4.14. Average Variance Extracted For Composite Indicators………….110 

 

Table 4.15. Goodness-Of-Fit Statistics For The Structural Model………........112 

 

Table 4.16. Standardized Residuals……………………………………………..115 

 

Table 4.17. Summary Statistics For Standardized Residuals…………………116 

 

Table 4.18. Unstandardized Gamma (Γ) Matrix……………………………….119 

 

Table 4.19. Unstandardized Beta (Β) Matrix…………………………………..120 

 

Table 4.20. Unstandardized Indirect Effects Of Ksi On Eta………………….122 

 

Table 4.21. Completely Standardized Gamma (Γ) and Beta (Β) 

Estimates…………………………………………………………….123 

 

Table 4.22. Modification Indices And Expected Change Calculated For The Β 

Matrix……………………………………………………..................125 
 

Table 4.23. Modification Indices And Expected Change Calculated For The Γ 

Matrix……………………………………………………..................125 

 

 



  -vi- 

Table 4.24. Guilford’s Interpretation Of The Magnitude Of Significant 

R……………………………………………………………................129 

 

Table 4.25. Learning Potential Correlation Matrix…………………………….130 

 

Table 4.26. Regression Of Job Competency Potential On Transfer Of Knowledge 

(X3) And Automatization (X4)………………………………………132 

 

Table 4.27. Regression Of Job Competency Potential On Abstract Reasoning 

Capacity (X1), Information Processing Capacity (X2) And 

Automatization (X4)…………………………………………………135 

 

Table 4.28. Regression Of Job Competency Potential On Abstract Reasoning 

Capacity (X1), Information Processing Capacity (X2) And 

Automatization (X4)…………………………………………………138 

 

Table 4.29. Squared Multiple Correlations For Structural Equations………..141 

 

Table 4.30. Regression Of Job Competency Potential On Abstract Reasoning 

Capacity (X1), Information Processing Capacity (X2) And Transfer (X3) 

and Automatization (X4)…………………………………………….142 

 

 

 

 



-vii-  -    

LIST OF FIGURES 

Page 

 
Figure 1.1. Positive Validity, Fair Selection Decisions, No Adverse 

  Impact, And Utility……………………………………………………...12     

 

Figure 1.2. Equal Validity, Unequal Predictor 

Means…………………....………...........................................................13 

 

Figure 1.3. Equal Validity, Unequal Criterion Means, With Adverse 

Impact………………………………………………………………..…15 

 

Figure 1.4. Valid Predictor With Adverse 

Impact…………………………………………………………………16 

 

Figure 2.1. Integrated Performance@Learning & Performance@Work Model 

……………………………………………………………………...…..31 

 

Figure 2.2. A Modified Radex-Based Model Of Cognitive 

Abilities………………………………………………………………...54 

 

Figure 2.3. Graphical Portrayal Of Proposed Learning Potential Structural 

Model……………………………………………………………...…...56 

 

Figure 2.4. Graphical Portrayal Of Extended Learning Potential Structural 

Model……………………………………………………………..…...59 

 

Figure 3.1. Graphical Portrayal Of Fitted Learning Potential Structural 

Model……………………………………………………………….....85 

 

Figure 4.1. Stem-And-Leaf Plot Of Standardized Residuals………………….101 

  



  
-viii- 

 

Figure 4.2. Q-Plot Of Standardized Residuals………………………………..…102 

 

Figure 4.3. Stem-And-Leaf Plot Of Standardized Residuals………………….117 

 

Figure 4.4. Q-Plot Of Standardized Residuals…………………………………118

 



  

CHAPTER 1 

INTRODUCTION AND OBJECTIVES OF THE STUDY 

 

 

1.1 INTRODUCTION 

 

To succeed in the global environment it is required of countries to show consistently high 

economic growth. By maintaining such growth a country gains a competitive advantage and 

prevents economic stagnation and poverty. Consistently high economic growth can only be 

achieved if the production of goods and delivery of services in and by a country is done 

effectively, efficiently and productively.  

 

Productivity can best be achieved if people and other resources are grouped together in 

organisations. Organisations are formed so that society may accomplish goals, which would 

be impossible, if everyone acted individually (Gibson, Ivancevich & Donnelly, 1997; Jones, 

2001). Organisations are entities that allow people to co-ordinate their actions in order to 

accomplish specific goals through the identification and realisation of opportunities to 

satisfy needs (Gibson et al., 2001). Thus, the main reason why organisations exist is to 

produce goods and deliver services in a productive manner, so that real economic value is 

added to the benefit of shareholders, the government and the broader community. 

Ultimately, organisations have to accept co-responsibility for a country’s economic 

situation and contribute to a country’s global competitiveness. 

 

In relation to our global counterparts, South Africa does not compare well in terms of 

competitiveness and is currently in the 46th position on the international competitiveness list 

(Sidirpoulus, Jeffrey, Mackay, Forgey, Chipps & Corrifan, in Cross, Marais, Steel & 

Theron, 2002). It seems, especially, the ineffective and inefficient production of goods and 

delivery of services that impact negatively on both the country’s economic growth and the 

country’s global competitiveness. 
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The way in which organisations create real economic value is through a three-cycle input-, 

conversion- and output process (Jones, 2001). The input obtained and used by organisations 

include, amongst others, human resources, information and knowledge, raw materials, and 

capital. The value that an organisation creates at the input stage is largely dependent on the 

way in which the organisation chooses and acquires its inputs. At the conversion stage, the 

extent of value created is largely dependent on the way in which the organisation uses, 

applies and manages its obtained human resources and technology. The created value at this 

stage consists of the quality of skills within the organisation, including the ability of the 

organisation to learn from and respond to the environment in which it functions. Finally, at 

the output stage, an organisation, depending on the effectiveness and efficiency of the prior 

two stages, delivers a product or service, which is sold at a profit. Profit in turn is 

distributed to the stakeholders, to the government through taxes, to the community through 

social corporate investment and re-invested back into the organisation to ensure future 

profits (Jones, 2001). 

 

The extent of success with which an organisation creates value through the three-cycle 

value creation process is largely dependent on humans who are the carriers of the 

production factor labour. It is human actions that are grouped together and co-ordinated to 

form an organisation. Combining other production factors on their own, without human 

effort would not constitute an organisation. Organisations striving towards consistently high 

economic growth have to realise that it is people, in the final analysis that makes the 

competitive difference. For this reason successful organisations are desperately seeking the 

best employees and investing in the training and development of its people. From the above 

argument, it is clear that the quality of the South African workforce will, to a large extent, 

determine our country’s future economic growth and global competitiveness.  

 

South African organisations need to realise that only if the people with the appropriate 

knowledge, skills, abilities and attitudes are in the right place at the right time, thus adding 

maximum value to the three cycle process, will the country be able to compete globally. 

The question, however, arises as to how South African organisations can ensure this? The 
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answer to this question can be found in effective and efficient human resource management 

(Carrell, Elbert, Hatfield, Grobler, Marx & van der Schyf, 1998).  

 

Effective and efficient human resource management consists of policies, practices, and 

systems that influence employees’ behaviour, attitudes and performance in such a manner 

that they are aligned with and support the business goals and objectives (Noe, Hollenbeck, 

Gerhart & Wright, 2000).  

 

The foundation of effective and efficient human resource management consists of the 

following two main categories of human resource interventions as identified by Milkovich 

and Boudreau (1994). The first category refers to the regulation of the flow of workers into, 

through and out of the organisation. This category includes interventions such as 

recruitment and selection, placement, promotion and the downsizing of the organisation’s 

human resources. The second category refers to the maintenance and development of the 

current human resource supply. This category would include interventions such as training, 

motivation, compensation and labour relations (Cross et al., 2002). If both these human 

resource categories are managed in an effective and efficient manner then they will 

contribute to an improvement in productivity and in gaining a competitive advantage. 

 

One important human resource intervention, relating to the flow of workers, is personnel 

selection (Cross et al., 2002). Selection normally implies a situation where there are more 

applicants for openings than there are positions available for jobs or even training and 

developmental opportunities.  Hence, the primary objective of selection is to fill the 

available number of vacancies with those applicants who will be most successful in the job 

or training intervention and, therefore, the subgroup of applicants has to be chosen in a 

manner that ensures that the average performance on the ultimate or final criterion is 

maximised (Austin & Villanova, 1992). The ultimate criterion is the criterion construct or 

latent variable (η) which personnel selection aspires to affect, i.e. job- or training 

performance.  The ultimate criterion should, thus, always be the focus of interest in 

selection decisions (Ghiselli, Campbell & Zedeck, 1981).  This seemingly innocent and too 
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often forgotten fact, moreover, has significant implications for the interpretation and 

evaluation of information entering the selection decision. 

 

The fact that interest in selection centres on the criterion, creates somewhat of a dilemma 

for human resource managers or others who are responsible for selection decision-making. 

The dilemma is that measurements Y of the multidimensional final criterion (η) are not 

readily available at the time when the selection decision needs to be made. The only viable 

solution to the above dilemma would be to obtain a substitute for the criterion (Ghiselli, 

Campbell & Zedeck, 1981). In other words, selection decisions have to be based on 

substitute information X, which is available at the time the selection decision needs to be 

made and which is also relevant to the decision being taken. The relevance of such 

substitute information is determined by the extent to which an accurate estimate measure of 

the multidimensional final criterion is achieved.  

 

The only information available at the time when the selection decision is being made, that 

could serve as such a substitute, would be psychological, physical, demographic or 

behavioural information on the applicants. Formally X, and therefore by implication 

E[Y|X], could be considered a substitute for Y if and to the extent that |ρ[X,Y]| > 0 [p < 

0,05] and if measures of X can be obtained at the time of or prior to the selection decision. 

The existence of a relationship, preferably one that could be articulated in statistical terms, 

between the criterion considered relevant by the decision maker and the information 

actually used by the decision maker as a substitute for the criterion, constitutes a 

fundamental and necessary, but not sufficient, prerequisite for effective and equitable 

selection decisions (Guion, 1991; Theron, 2001, 2002). An accurate understanding of this 

predictor-criterion relationship enables the selection decision-maker to predict expected 

criterion performance actuarially (or clinically) from relevant, though limited, information 

available at the time of the selection decision.  

 

There exist only two options or approaches to obtain such relevant substitute information. 

The more traditional construct-orientated approach consists of the following elements. The 

first element relates to the setting of organisational goals, under which the organisation’s 
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general hiring policy falls. The second element, job design, involves the breaking up of the 

job into its different tasks, duties and responsibilities that constitute successful job 

performance. The third element would be the identification and operationalisation of the 

person-centred constructs (ξ), i.e. knowledge and abilities that determine successful job 

performance. The necessary knowledge and abilities can be inferred from a job description 

compiled through job analysis. The presumed interrelationship between these hypothesised 

determinants and the way they collectively combine in the criterion is postulated in a 

nomological network or latent structure (Campbell, 1991; Kerlinger, 1986), as a complex 

hypothesis that explains performance on the job in question (the criterion). The predictive 

hypothesis should always be justifiable through clear, valid arguments that ξi is indeed 

relevant to η (Arvey & Faley, 1988; Gatewood & Feild, 1990; Guion, 1991; Society for 

Industrial Psychology, 1998). In its operational form the predictive hypothesis expresses the 

criterion variable to be predicted, i.e. job success, as a function of the nomological network 

of variables that serve as substitute predictors at the time of decision-making in the basic 

form Y=ƒ(Xi). The final element of the more traditional construct-orientated approach 

entails the application of selection devices or measuring instruments to measure whether a 

job candidate does indeed possess the required knowledge and abilities. Here it is the 

presence of the person-centred constructs (or lack thereof) that explains why one person 

performs better in a specific job than another (Carrell et al., 1998, Theron, 2002).  The way 

these hypothesised determinants of performance should be combined is suggested by the 

way these determinants are linked in the postulated nomological network. 

 

Regarding the second, content orientated approach, the job in question would again be 

systematically analysed via one or more of the available job analysis techniques (Gatewood 

& Feild, 1994). This is done to identify and define the behaviours that collectively denote 

job success if exhibited on the job.  Substitute information would then be obtained through 

low or high fidelity simulations of the job content.  These simulations in a selection context 

necessarily occur off the job and prior to the selection decision.  Such simulations would 

elicit behaviour that, if it would in future be exhibited on the job, would denote a specific 

level of job performance. Here, it is the ability of the person to cope with the demands of 

the job (as simulated), that gives an indication of future job performance. If the person is 
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not able to cope with the simulated demands of the job, then it is more than likely that he or 

she will also not be able to perform successfully in the job.  

 

Clearly, substantial differences exist between the logic underlying the two approaches in 

terms of which substitute criterion measures are generated.  Although both options obtain 

substitute criterion information through observable behaviour elicited by a stimulus set 

(Theron, 2001; Thorndike, 1982), the stimuli in the construct-orientated approach are 

designed in such a way that a person’s response to them is mainly a function of the specific, 

defined and originally hypothesised construct (ξ) being measured. In the content-orientated 

approach the stimuli are designed in such a way to elicit the same responses as would have 

been displayed in the real work situation. However, unlike the construct-orientated 

approach, the nature of the set of constructs shaping the responses are not known or 

specified in the content-orientated approach (Theron, 2002). 

 

Despite these differences, both arguments, however, maintain that effective, though not 

necessarily efficient, selection is contingent on the identification of a substitute (in the form 

of a differentially weighted combination of measures of the person characteristics that drive 

job or training success, or alternatively the behavioural competencies which would 

constitute job or training success) for the ultimate criterion which shows a statistically 

describable relationship with an operational measure of the ultimate criterion.  Both 

arguments, furthermore, contend that the same condition constitutes a necessary, though not 

sufficient, condition to achieve fair or equitable employee selection. 

 

Irrespective of the approach used to obtain substitute measures for the final criterion, the 

following objectives should ideally be satisfied simultaneously by a criterion referenced 

personnel selection procedure (Guion, 1991; Theron, 2001): 

 The inferences made from predictor scores should be permissible (i.e., 

the inferences should be valid); 

 The inferences on which selection decisions are based should be fair; 

 The selection procedure should add maximum value (i.e., the selection 

procedure should optimize utility); and 
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 The selection procedure should minimise adverse impact. 

 

1.2 VALIDITY 

 

The permissibleness of criterion related inferences made from predictor measures in 

personnel selection are evaluated through empirical validation studies. The main purpose of 

empirical validation investigations is to determine the extent to which relevant substitute 

criterion measures are obtained through the use of one of the two selection approaches. 

Validation is defined as follows in the Standards for Educational and Psychological 

Testing, as published by the American Educational Research Association, American 

Psychological Association and the National Council on Measurement in Education (Society 

for Industrial Psychology, 1998). 
Validity is the most important consideration in test evaluation. The concept refers to the 

appropriateness, meaningfulness, and usefulness of the specific inferences made from 

test scores. Test validation is the process of accumulating evidence to support such 

inferences. A variety of inferences may be made from scores produced by a given test, 

and there are many ways of accumulating evidence to support any particular inference. 

Validity, however, is a unitary concept. Although evidence may be accumulated in many 

ways, validity always refers to the degree to which that evidence supports the inferences 

that are made from scores. The inferences regarding specific uses of a test are validated, 

not the test itself. (p. 6) 

 

In its simplest form, validity refers to the extent to which a test or measuring instrument 

measures that which it intends to measure. In the case of criterion referenced personnel 

selection the intention is to measure either person centred constructs, which determine job- 

or training success, or to measure behavioural-/performance constructs which constitute 

job- or training success. Only if selection instruments succeed in this intention do they 

supply information relevant to the selection decision. It is crucial that selection instruments 

do supply information that is relevant to the decision being made in the aforementioned 

sense since that would determine the extent to which such predictor measures correlate with 

the criterion and, thus, would determine the extent to which accurate criterion estimates can 

be derived from them. Validity, thus, refers to the extent to which the available proof 

supports the performance inferences made from the information obtained from the selection 
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measures (Anastasi & Urbina, 1997; Arvey & Faley, 1988; Gatewood and Feild, 1990; 

Theron, 2002). 

The nature of the evidence required in justifying the use of the substitute X differs across 

the construct-orientated approach and the content-orientated approach. With the construct-

orientated approach, proof that X provides a construct valid measure of ξ and that Y 

provides a construct valid measure of η is required. Further, proof is needed that X explains 

significant variance in Y, thus by implication in η. With the content-orientated approach, 

proof that X represents a representative sample of the demands that collectively constitute 

the job and that Y provides a construct valid measure of η, is required. Proof that X 

significantly explains variance in Y and by implication η is also needed (Theron, 2001). 

 

1.3 FAIRNESS 

 

Fairness is a topic that has been widely debated, discussed and written about in the field of 

Human Resource Management and Industrial Psychology. The issue of fairness is a 

complex one. Firstly, because it is difficult to define fairness in psychometric terms, and 

secondly, because there is a number of fairness models that interpret the issue of fairness 

differently (SIP, 1998; Theron, 2002).  

 

The objective of personnel selection is to add value to the organisation by improving the 

job performance of employees by regulating the flow of employees in, through and out of 

the organisation. In other words, to get the highest performing people on the job 

irrespective of gender, race or culture.  In order to achieve this, predictive validity is a 

prerequisite.  It is, however, not a given that when a selection procedure is proven valid that 

it will also be fair. A valid procedure can still lead to a different interpretation of the 

probability of job success between different subgroups with equal probability of success or 

vice versa. (Cross et al., 2002).  This is because selection decisions are ultimately based on 

the criterion references’ interpretation of predictors (i.e., E(Y|Xi)) and not the predictor 

information per se. 

 

Arvey and Faley (1988) define unfair discrimination or predictive bias as follows: 
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Unfair discrimination or bias is said to exist when members of a minority group (or 

previously disadvantaged individuals) have lower probabilities of being selected for a 

job when, in fact, if they had been selected, their probabilities of performing 

successfully in the job would have been equal to those of non-minority group members. 
(p. 7) 

 

The regression model of test bias developed by Cleary (1968), has become the standard 

model of selection decision fairness and it is often recommended that fairness models based 

on the regression model should be used in studies investigating the fairness of assessment 

procedures (SIP, 1998). Cleary (1968) defines predictive test bias as follows: 
A test is biased for members of a subgroup of the population if, in the prediction of a 

criterion for which the test was designed, consistent non-zero errors of prediction are 

made for members of the subgroup. In other words, the test is biased if the criterion 

score predicted from the common regression line is consistently too high or too low for 

members of the subgroup. With this definition of bias, there may be a connotation of 

“unfair”, particularly if the use of the test produces a prediction that is too low. (p. 115) 

 

It follows from the regression based interpretation of selection fairness that although it is 

not a given that when a selection procedure is proven valid that it will also be fair, validity 

will deteriorate to the extent to which predictive bias exists as defined by Cleary (1968). 

 

1.4 UTILITY 

 

The objective of personnel selection is to add value to the organisation by improving the 

job performance of employees by regulating the flow of employees in, through and out of 

the organisation. This implies that the selection procedure must show high utility. 

According to Dunnette (1966) utility refers to the overall usefulness of a selection 

procedure and, therefore, contains both the accuracy and importance of decisions about 

employees. Dunnette (1966) explains further: 
Utility does not imply the necessity or even the desirability of reducing all outcomes to a 

monetary scale, or even necessarily to a common scale, but does imply a careful 

identification and listing of all possible outcomes- accompanied by a judgmental 

weighing of the values (both money and human) associated with each. (p. 182) 
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In addition Boudreau (1991) defines utility analysis as follows: 
Utility analysis refers to the process that describes, predicts, and/or explains what 

determines the usefulness or desirability of decision options and examines how that 

information affects decisions. (p. 622) 

 

Utility analysis is important, because it provides evidence to stakeholders about the 

effectiveness of the selection procedure (Hough, 2000). The reason for determining 

selection utility is to show the degree to which the use of a selection procedure improves 

the quality of individuals selected vis-à-vis if the procedure where not used (Gatewood & 

Feild, 1990). Determining the utility of a selection procedure provides a practical approach 

where the gain in performance obtained through the use of a specific selection procedure 

can be expressed in monetary terms (Gatewood & Feild, 1994; Theron, 2002). Most 

importantly, the purpose of a utility analysis is to provide substantive evidence that the 

initial investment in a selection procedure does yield substantive returns, significantly 

larger than the initial investment. 

 

1.5 ADVERSE IMPACT 

 

Adverse impact occurs when members of a group have a reduced likelihood to be selected 

for a job. Adverse impact is therefore present when there is a substantial difference in the 

rate of selection between groups that work to the disadvantage of members belonging to a 

certain group (Guion, 1991). 

 

Normally a selection rate for any group, which is less than four-fifths (4/5) or 80 percent of 

the rate for the group with the highest selection rate is regarded as evidence of adverse 

impact (United States. Equal Employment Opportunity Commission, Civil Service 

Commission, Department of Labor & Department of Justice, 1978). It is important to 

understand that the comparison group here is the group with the highest proportion of 

applicants being selected, not the numerically larger group (Guion, 1991). It is moreover 

important to understand that the selection rates for the various groups are ultimately 

determined by their expected criterion performance conditional on their test performance 
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(derived fairly, without systematic prediction bias) and not the selection rates that would 

have resulted if selection would have occurred top-down on the predictor. 

Adverse impact on its own does not constitute discrimination. In employment litigation 

adverse impact is used to make a prima facie case for discrimination, which then transfers 

the burden of proof to the defendant (Arvey & Faley, 1988; Guion, 1991). If adverse impact 

is found, the burden of proof is on the employer to demonstrate the job-relatedness of the 

selection procedure and that the inferences derived from the predictor scores are fair. 

Alternatively, the employer could show that no equally valid alternative, with less adverse 

impact, exists. Even though the use of this line of defence is quite widely advocated (Arvey 

& Faley, 1988; Cook, 1998; Gatewood and Feild, 1990; Guion, 1991), it nonetheless seems 

questionable. In the final analysis, the cause of adverse impact in personnel selection 

resides in systematic differences in criterion distributions. Adverse impact in criterion 

referenced personnel selection can therefore not be avoided by the judicious choice of 

selection instruments (Schmidt & Hunter, 1981). If adverse impact occurs because of 

differences in predictor performance across groups, which cannot be justified in terms of 

differences in criterion performance, it would imply that the criterion inferences derived 

from such test scores are biased (i.e., the selection decision-making is unfair in the Cleary 

sense of the term). 

 

Personnel selection procedures should nonetheless strive to minimise adverse impact, not 

only in order to avoid litigation, but to ensure that access to job opportunities are distributed 

across groups in the labour market in proportion to the size of the various groupings and to 

optimally utilize the human resources available in the labour market. 

 

1.6 SELECTION SCENARIOS 

 

When personnel selection occurs from a diverse applicant group the ideal of simultaneously 

satisfying the foregoing four objectives is not always attainable. To explore the difficulties 

involved when selecting from a diverse applicant group, comprising of a previously 

disadvantaged (majority) group (π1) and a previously advantaged (minority) group (π2), it is 
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useful to graphically create specific selection scenarios, which differs in terms of the nature 

of predictor and criterion distribution differences across the two groups (Cascio, 1998). 

 

1.6.1. Scenario 1 

The first scenario (see Figure 1.1) depicts a situation where the predictor and criterion 

distributions1 of the two groups coincide (i.e. μ[Y⏐π1] = μ[Y⏐π2] and σ²[Y⏐π1] = 

σ²[Y⏐π2]). In such a scenario, if positive validity would be assumed to exist, people with 

high or low predictor scores also tend to have high or low criterion scores. If, in the 

investigation of differential validity, the joint distribution of minority and majority predictor 

and criterion performance scores are similar throughout the scatterplot, no problem exists 

and the use of the predictor should be continued, because it is possible to satisfy all four of 

the objectives (Cascio, 1998; Holborn, 1991).  

 

 

 

 

 

 

 

 

 

 

 
X 

Y 

Predictor Score 

Performance 
Criterion 

Figure 1.1 

Positive Validity, Fair Selection Decisions, No Adverse Impact, And Utility. 

 

If selection is done top-down, based on E[Y|X], then, in terms of the Cleary-interpretation 

of fairness, the use of a common regression line to base selection decisions on, will not 

                                                 
1 The assumption is that the criterion construct (η) is multi-dimensional and that Y thus is a weighted linear composite 
representing η.  Although it is true that specific dimensions would be more susceptible to ethnic or gender differences and 
that the dimension weights thus play an important role in determining adverse impact and validity, this aspect is not 
considered here. 
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result in systematic non-zero errors of prediction and fair selection decisions will result if 

the applicants with the highest predicted criterion scores are selected. Also, no adverse 

impact should be found. The selection procedure will further optimize utility at a fixed 

selection ratio, validity coefficient and selection cost. The utility will be positive if the 

monetary value of the performance gain affected by the selection procedure over random 

selection exceeds the investment required to affect the improvement (Cascio, 1998; 

Holborn, 1991; Petersen & Novick, 1976; Theron, 2001).  

 

1.6.2. Scenario 2 

The second scenario is when there are differences in the predictor distributions between the 

two groups, but the criterion distributions still coincide (i.e. μ[Y⏐π1] = μ[Y⏐π2] and 

σ²[Y⏐π1] = σ²[Y⏐π2]). This scenario could imply the existence of one or more additional 

determinants of criterion performance on which minority group members on average tend 

to outperform the majority group.  Alternatively the scenario could imply scale bias in the 

measurement of the underlying predictor construct.  This scenario is depicted in Figure 1.2 

below (Cascio, 1998). 
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Figure 1.2 

Equal Validity, Unequal Predictor Means. 
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In this scenario, if a single predictor cutting score would be (inappropriately) set for both 

the minority and majority group, the majority group would be less likely to be selected, 

although the probability of success on the job for both groups are the same. If a top-down 

selection approach is followed and a single regression line is used to derive E[Y|X] on 

which decisions are based, it would result in consistent non-zero errors of prediction within 

each group and selection decisions based on this single regression line would be unfair. 

Moreover, unfair adverse impact will occur although utility can still be achieved, although 

not optimized. The procedure could be justified through a criterion related validation study. 

In this scenario it is, however, also possible to satisfy the fairness and adverse impact 

objectives. By using separate cutting scores or separate regression lines for the two groups, 

or more sophisticatedly, by using an appropriate multiple regression equation, which makes 

provision for the differences in intercept, the fairness objective could still be satisfied. This 

should, in addition, eliminate adverse impact, while improving utility to its optimum value 

at a given selection ratio and selection cost. The utility of the selection procedure would be 

enhanced in that r(E[Y|X; πi],Y) will exceed r(E[Y|X],Y) to the extent to which the 

combined regression equation resulted in systematic prediction errors. The primary focus 

should therefore always be on job performance, rather than on predictor performance 

(Cascio, 1998; Holborn, 1991; Petersen & Novick, 1976; Theron, 2001). 

 

1.6.3. Scenario 3 

Scenario three, depicted in Figure 1.3, occurs when there is no significant difference in the 

predictor distributions, but the members of the minority group tend to perform better on the 

job than the members of the previously disadvantaged majority group2 (i.e. μ[Y⏐π1]< 

μ[Y⏐π2] although σ²[Y⏐π1] = σ²[Y⏐π2]). This scenario could imply the existence of one or 

more additional determinants of criterion performance on which minority group members 

on average tend to surpass the majority group. If predictions were based on a combined 

regression equation derived from the combined sample group, systematic under- and over 

prediction would occur. Through the use of a single simple regression equation, the 

criterion scores of the minority group would be systematically under predicted, while those 

                                                 
2 The assumption is that the difference in the mean of the criterion distributions of the minority and majority groups is not 
due to scale bias. 
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of the majority group would be systematically over predicted. Therefore, the use of a single 

simple regression equation would here result in consistent non-zero errors of prediction 

within each group and would result in unfair selection decisions while also lowering utility 

(Cascio, 1998; Holborn, 1991; Petersen & Novick, 1976; Theron, 2001).  No adverse 

impact would, however, occur.  This, furthermore, creates the ironical situation that 

although members of π1 are systematically disadvantaged by the selection procedure, no a 

priori evidence exists in terms of which a prima facie case for indirect discrimination could 

be made and therefore seemingly no possibility exists of remedying the situation through 

employment litigation.  Moreover, this illustrates the potential danger of trying to 

ameliorate adverse impact (Hough, Oswald & Ployhart, 2001) by focusing on strategies for 

reducing subgroup mean differences in the predictor. 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3 

Equal Validity, Unequal Criterion Means, With Adverse Impact 

 

Using separate regression lines, or using an appropriate multiple regression equation, to 

base selection decisions on and selecting those with the highest predicted criterion scores, 

would result in fair decisions. Adverse impact would, however, now be present if selection 

is done top-down, but the adverse impact would be fair. Furthermore no equally valid 

alternative selection instrument would be able to reduce the adverse impact. This is because 

there is indeed a real difference in the criterion performance between the two groups. Using 

X 

Y 

Predictor Score 
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Majority
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an appropriate multiple regression equation, which makes provision for differences in 

intercept through the inclusion of a group main effect, will also satisfy the utility objective. 

In other words, in scenario 3, three of the four objectives can be satisfied but not all four. 

When a valid predictor is used fairly in scenario 3, in a manner which optimises utility, the 

objective of minimising adverse impact would have to be sacrificed. The important point 

here is that the adverse impact would not be unfair, although the ideal would have been to 

avoid it without sacrificing any of the other objectives (Cascio, 1998; Petersen & Novick, 

1976; Theron, 2001). 

 

1.6.4. Scenario 4 

The last scenario depicts a situation where validity for the minority and majority groups is 

the same, but the majority group scores lower on the predictor and performs poorer on the 

job. This scenario, depicted in Figure 1.4, alongside scenario 3, seems to be the most likely 

scenarios to be encountered in actual personnel selection in South Africa.  
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Figure 1.4 

Valid Predictor With Adverse Impact 

 

In scenario 4 the use of a single simple regression equation would result in systematic over- 

and under prediction, as explained in scenario three, and selection decisions would be 

unfair. Using a single simple regression equation would also cause utility to suffer. If an 
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appropriate multiple regression equation would be used, a top-down approach would still 

result in adverse impact, even though the selection decisions would be fair. A top-down 

approach, based on E[Y|X, πi] derived from the appropriate multiple regression equation 

would optimise utility even though adverse impact would not be minimised. Once again it 

is important to emphasise that the adverse impact would be fair and defensible as well as 

unavoidable as long as the utility and fairness objectives have priority over the adverse 

impact objective (Cascio, 1998; Petersen & Novick, 1976; Theron, 2001).  A variation on 

scenario 43 would be to assume that the difference in criterion performance is equal to the 

difference in predictor performance times the validity of the predictor, so that a single 

regression line would result in no systematic group-related prediction errors.  The utility 

and adverse impact outcomes would, however, remain the same. 

 

1.7 A NEED FOR THE ASSESSMENT OF LEARNING POTENTIAL 

 

In all four scenarios the assumption was that the selection procedure is equally valid for 

both groups and that the selection procedure thus could be justified in terms of the 

relevance of the information provided by the predictor. Available empirical evidence 

generally supports the assumption that differential validity is not a pervasive phenomenon 

(Arvey & Faley, 1988; Schmidt & Hunter, 1981).  If the selection decisions are fair in 

scenario one and two in terms of the Cleary-interpretation of fairness, and if strict top-down 

selection is followed based on expected criterion performance, then the objectives of 

minimising adverse impact and maximising utility can subsequently also be satisfied. If no 

differences in criterion performance would exist, no need for a developmental interpretation 

of affirmative action would exist. 

 

However, in scenarios three and four all four objectives can no longer be satisfied 

simultaneously. If selection decisions are fair, in terms of the Cleary-interpretation of 

fairness, and selection occurs strictly top-down, based on E[Y|X; πi], then the objectives of 

fairness and utility can be satisfied, but the objective of minimising adverse impact can not 

                                                 
3 The four scenarios clearly represent only a limited sample from an almost infinite number of possible situations that 
could occur. 
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be satisfied. In these two cases the objective of minimising adverse impact could be 

satisfied through quotas or race norming, but only if the utility objective is sacrificed 

(Theron, 2001).  The sacrifice required by top-down hiring within each group (race 

norming) would depend on the magnitude of the difference in the criterion distributions.  

According to Schmidt and Hunter (1981): 
… selection systems based on top-down hiring within each group completely eliminates 

“adverse impact” at a much smaller price in lowered productivity.  Such systems 

typically yield 85% to 95% of the productivity gains attainable with optimal 

nonpreferential use of selection tests. (p. 1130) 

 

Meta-analytic summaries of criterion differences in the United States indicate a 0,30 

standard deviation difference in mean minority and majority group criterion performance 

(Sackett & Roth, 1996).  To the extent that similar conditions would exist in South Africa, 

race norming presents itself as a viable strategy to combat adverse impact.  Ironically this is 

no longer permissible in the United States in terms of revisions to the Civil Rights Act of 

1991 (Sackett, Schmitt, Ellingson & Kabin, 2001).  Two considerations, however, argue 

against a blind reliance on within-group top-down selection.  A drop in utility of 5% to 15% 

can be substantial when projected over number of selectees, time and successive cohorts.  

More importantly, however, to solely rely on within-group top-down selection would leave 

the root causes of the performance imbalance, which fundamentally underlies adverse 

impact, untreated. 

 

Increasing the weights of the work performance dimensions less susceptible to ethnic or 

gender differences and decreasing the weights associated with dimensions on which larger 

differences exist would also reduce adverse impact on the composite criterion (De Corte, 

1999; Hattrup, Rock & Scalia, 1997).  The weighing of performance dimensions should, 

however, only reflect the relative importance of the various competencies in achieving the 

objective for which the job exists.  The manipulation of criterion composite weights, 

therefore, does not offer a meaningful solution to the problem of adverse impact (Sackett, et 

al., 2001). 
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Although it would not be intellectually honest to attribute the problem of adverse impact on 

biased selection instruments and/or unfair selection decision-making (Schmidt & Hunter, 

1981) and although performance can be maximized fairly despite adverse impact, the 

problem of adverse impact can nonetheless not simply be ignored. How the human resource 

function should respond to the problem of adverse impact in selection would depend on 

why the systematic differences in criterion distributions exist. This is a question that is not 

raised often enough by human resource managers when contemplating the appropriate 

response to the dilemma outlined above. This question is, however, very important since 

remedial actions will only succeed if they deal with the root cause of the problem. 

 

In the South African context it does not seem unreasonable to ascribe the systematic 

differences in criterion distributions to an environment where past injustices have had a 

negative impact on the development and acquisition of the skills, knowledge and abilities of 

certain groups required to succeed. In the past, and even now in the new democratic South 

Africa, specific groups had and still have easier and more access to opportunities that allow 

them to develop an array of coping strategies, knowledge, skills and abilities. Access to 

such opportunities often has the resultant effect that such individuals perform better in 

conventional assessment situations, in the workplace and in training programmes or 

educational institutions (Boeyens, 1989; Guthke, 1993; Hamers & Resing, 1993; Taylor, 

1989; Taylor, 1992). In contrast there are underprivileged and socially disadvantaged 

groups which have been denied access to developmental opportunities at home, in school 

and because of social systems (Boeyens, 1989; Guthke, 1993; Hamers & Resing, 1993; 

Taylor, 1989). The denial of such opportunities has put these groups at a disadvantage, 

which only aggravates the adverse impact problem. Advantaged groups will consequently 

be even more advantaged, being selected for and gaining access to more opportunities, 

while disadvantaged groups will be more disadvantaged and denied opportunities to 

develop the necessary coping strategies, knowledge, skills and abilities (Boeyens, 1989).  

Tests that report standardized mean score differences between ethnic groups on especially 

measures of cognitive abilities should therefore not be characterized as villains responsible 

for the problem, but rather as unbiased messengers relatively accurately conveying the 

consequences of a tragic social system.  The solution therefore is not to be found in 
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strategies to convince the messenger to alter its message as is seemingly suggested by 

Hough et al. (2001) and Sackett et al. (2001). The difference in criterion distributions 

observed between minority and majority groups reflect bona fide differences on numerous 

critical dispositions and attainments required to succeed in the world of work, which have 

resulted from the systemic denial of access to developmental opportunities. To deny the 

predictor differences and its impact is to deny the history that caused it. 

 

If the differences in criterion performance between groups can indeed be attributed to past 

injustices, i.e. the lack of opportunities, then the question should be asked how human 

resource managers could correct the problem. The answer to this question lies in Milkovich 

and Boudreau’s (1994) second human resource management category that is, maintaining 

and developing the current human resource supply. Therefore, organisations have to 

provide individuals who have been denied opportunities in the past with the opportunities to 

develop the still lacking knowledge, skills, abilities and coping strategies. The need for a 

developmental interpretation of affirmative action fundamentally lies in the existing 

differences in criterion distributions where no differences should exist.  This argument, 

however, implies that past social injustices impacted directly on attributes required to 

perform successfully and not (so much) on psychological processes and structures that play 

a role in the development of the attributes required to succeed on the job. If past social 

injustices had the latter, more far reaching impact, rehabilitation of the psychological 

processes and structures through which critical attributes and competencies develop, would 

also be required.  

 

Developmental affirmative action opportunities depend on various resources, but these are 

limited and not everyone can have access to costly developmental opportunities. Hence the 

need to identify those individuals who show the greatest potential to acquire the deficient 

attainments and dispositions (Saville & Holdsworth, 2000; 2001), and who would therefore 

subsequently gain maximum benefit from such development opportunities (Learning 

Potential Assessment, 2003). Especially in South Africa where organisations really have to 

affirm through action, there where past social injustices has seriously impacted directly on 

the attributes required to perform successfully, while still maintaining global 
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competitiveness, is it essential to identify those that show potential and to provide them 

with developmental opportunities.  Taylor (1992) explains: 
Affirmative action, when implemented correctly, should not involve simply overlooking 

such skill and knowledge lacunae and advancing people anyway, just because of the 

colour of their skin. Real affirmative action must include a large development 

component. 
 

This argument implies a two-stage selection procedure. It actually implies two distinct but 

linked selection procedures aimed at two qualitatively different criteria.  The first selection 

stage aims to maximize the performance of a selected cohort on a learning performance 

criterion, whereas the second selection stage is aimed at maximizing performance of the 

selected cohort on a job performance criterion.  Previously disadvantaged individuals who 

should gain maximum benefit from developmental opportunities would be selected during 

stage one, and during stage two their learning performance, possibly along with other job 

related predictors, would be used to assess their, and their more privileged counterparts’, 

suitability for the job in question. Given the less than perfect predictive validity of any 

selection procedure, this seems a more prudent option than the alternative of selecting 

previously disadvantaged individuals directly into shadowing positions. This option also 

seems to have the added advantages that prediction occurs over a shorter distance and more 

relevant information is available during the job selection phase. 

 

A need thus exists in South Africa for a method to identify individuals who will gain 

maximum benefit from affirmative developmental opportunities, especially cognitively 

demanding development opportunities4. Such a method should be one that not only focuses 

on the level of job performance that the individual can reach at present, but also one that 

adequately reveals hidden, latent reserve capacities and potential future levels of job 

performance (de Beer, 2003; Guthke, 1993; Learning Potential Assessment, 2003; Taylor, 

1994). Both Taylor (1989) and de Beer (2000) agree that especially in South Africa, with its 

unique society and the continuous integration into schools, training institutions, industry 

                                                 
4 The assessment of learning potential not only has relevance for selection into affirmative development opportunities 
though, but could play a role in the admission of employees into any training or development intervention.  Learning 
potential, moreover, should be a valid predictor of performance in any position requiring a substantial amount of action 
learning 
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and society, such a fresh, more sensitive, diagnostic technique to assess the capabilities or 

potential of people from disadvantaged backgrounds, is needed. Ideally, such measures 

would assess an individual’s core or fundamental cognitive abilities and potentialities and 

not specific job skills that are strongly influenced by past opportunities (Taylor, 1997).  

This line of reasoning should, however, never lose sight of the fact that only existing 

attainments and dispositions (Saville & Holdsworth, 2000; 2001) can be assessed. In 

addition inferences regarding future learning performance and future job performance can 

only be made from measures of existing attainments and dispositions under a construct 

orientated approach to selection.  Phrased differently, neither learning performance, nor job 

performance, are random events.  Intricate nomological networks of latent variables 

complexly determine both criteria.  People will currently achieve a specific level of learning 

performance or job performance only if they currently satisfy the preconditions set by the 

nomological network. 

 

Vygotsky (1978) proposed the measurement of learning potential as a method of assessing 

an individual’s core or fundamental cognitive abilities and potentialities. Taylor (1992) 

defines learning potential as the underlying, (currently existing) fundamental aptitude or 

capacity to acquire and master novel intellectual or cognitively demanding skills, which is 

demonstrated through the improvements in performance in response to cognitive mediation, 

teaching, feedback, or repeated exposure to the stimulus material. Drawing on ideas 

developed, amongst others, by Vygotsky (1978), Sternberg (1984), Snow, Kyllonen and 

Marshalek (1984) and Ackerman (1988), Taylor (1989, 1994, 1997) developed a learning 

potential model, which explicates the latent variables collectively constituting learning 

potential.  In essence, it represents a competency model in that it clarifies the behaviours or 

learning competencies that constitute learning performance as well as the dispositions or 

competency potential that determine such performance (Saville & Holdsworth, 2000; 

2001). 

 

Based on this learning potential model, a learning potential measure, specifically assessing 

an individual’s hidden latent and reserve potential, reducing the influence of verbal 

abilities, cultural meanings and educational qualifications has been proposed and developed 
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by Taylor (1989, 1992, 1994, 1997) in the form of the APIL test battery. Taylor (1997) 

claims that this learning potential measure is especially suited for application in the 

following two practical settings. Firstly, it can serve as a useful tool in making fair 

decisions when job applicants are selected. This claim should, however, be questioned 

when interpreting fairness as defined above. Allied to this, is the fact that it can also help 

identify candidates who are likely to cope or master more demanding work roles. Secondly, 

it can be applied in the educational arena and will help identify candidates who are likely to 

master new cognitively demanding material in a formal educational or training context. 

 

Earlier it was, however, argued that effective (although not necessarily efficient) selection 

would be possible if, and only if (a) (substitute) information is available at the time of the 

selection decision that is systematically related to the ultimate/final criterion of work 

success (i.e. relevant information); and (b) the nature of the relationship is at least 

subjectively/clinically, but preferably statistically/actuarially, understood. This would imply 

that effective selection of previously disadvantaged individuals into formal educational or 

training is possible to the extent to which there exists a comprehensive understanding of the 

reasons underlying training performance and the manner in which they combine to 

determine learning performance in addition to clarity on the fundamental nature of the key 

performance areas comprising the learning task. The APIL test battery will thus result in 

effective selection to the extent to which the explanatory model on which it is based 

successfully explains variance in learning performance. 

 

The primary objectives of this research consequently are to (a) explicate the structural 

model underlying the APIL test battery and (b) evaluate the fit of the model on empirical 

data. 

 

The APIL test battery provides dynamic measures of two latent learning competencies and 

static measures of two latent dispositions, which determine the learning competencies 

(Taylor, 1989, 1994, 1997). In estimating expected learning performance, these measures 

would typically be combined in a linear multiple regression model.  Given the nature of the 

structural model underlying the APIL test battery, the question, however, arises whether the 
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static measures do not become redundant in a model that already includes the dynamic 

measures. 

 

The secondary objectives of this research consequently is to determine whether the static 

measures of the two latent learning dispositions would significantly explain variance in 

learning performance when added to a model already containing dynamic measures of the 

two latent learning competencies. If the reservation about combining the various measures 

of the APIL test battery in a linear multiple regression model would turn out to be 

unfounded, it would imply an alternative conceptualisation of the structural model 

underlying the battery than that which has been suggested above. Inspection of the 

modification indices and expected change associated with the fixed paths in the initial 

model, in conjunction with the significance of the estimated path coefficients in the initial 

model and the results of the regression analysis will then be used to adapt the model and re-

evaluate its fit. 

 

If the structural model is indeed valid, and if the APIL test battery does succeed in selecting 

those who show a greater probability of succeeding in cognitively demanding 

developmental opportunities aimed at enhancing the required knowledge, skills, and 

abilities needed to succeed on the job, and the development programmes do succeed in 

reducing the differences in the criterion distributions, then adverse impact in job selection 

should be reduced. Previously disadvantaged individuals should now be significantly less 

disadvantaged in terms of the required knowledge, skills and abilities. Theoretically, over 

time, this approach should work towards levelling the playing field so that success or 

failure in personnel selection can be attributed to previous opportunities or lack thereof to a 

lesser degree than is currently typically the case in South Africa, without even temporarily 

relinquishing on the utility objective. 

 

1.8 RESEARCH OBJECTIVES 

 
Given the introductory argument unfolded above, the specific objectives of this research 

consequently are: 
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 To explicate the underlying structural model upon which the APIL test battery was 

developed, explaining learning performance; 

 To test the model’s absolute fit; 

 To evaluate the significance of the hypothesised paths in the model; 

 To investigate the predictive ability of an observed variable linear multiple 

regression model, regressing learning performance on a weighted linear 

combination of the two learning dispositions and the two learning competencies; 

 To determine whether the static measures of the two latent learning dispositions 

would significantly explain variance in learning performance when added to a linear 

regression model already containing dynamic measures of the two latent learning 

competencies; 

 To compare the predictive power of the structural model to that of the observed 

variable multiple regression model; 

 To modify the structural model if necessary; and 

 To compare the fit of the revised structural model to that of the original model. 
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CHAPTER 2 

LITERATURE STUDY 

 

 

2.1 INTRODUCTION 

 

In this section of the thesis an attempt is made to replicate the comprehensive, systematic 

and reasoned argument that Taylor (1989, 1994, 1997) put forward in formulating his 

theory. In keeping with the logic set out in the previous paragraphs this section will start off 

by arguing the need for the analysis and conceptualisation of learning performance.  The 

learning performance construct will then be analysed and interpreted as the ultimate or final 

criterion construct in training and development selection models.  Based on Taylor’s theory 

(Taylor, 1989; 1994; 1997), the hypothesised human qualities needed by an affirmee trainee 

in order to demonstrate successful learning performance (as conceptualised), will then be 

discussed. The main aim of this section of the thesis could be summed up as an attempt to 

reconstruct Taylor’s thoughts, arguments and hypotheses in order to generate a logical 

theoretical justification of his theory on learning potential and ultimately to explicate the 

learning performance structural model implicit in his views on learning potential.  This 

would require the development of constitutive definitions for all major constructs contained 

in the model and the development of theoretical arguments justifying the proposed path 

influences between constructs. This would allow the empirical evaluation of the fit of the 

structural model, which would reflect (although not in any definitive sense) on the 

justifiability of the use of the APIL test battery as a selection instrument for affirmative 

development interventions. 

 

2.2 THE NEED FOR THE ANALYSIS AND CONCEPTUALISATION OF 

LEARNING PERFORMANCE 

 

In the introductory section of this thesis it was argued that valid predictors used fairly in 

strict top down criterion referenced selection would in all likelihood cause significant 

adverse impact against the previously disadvantaged groups in South Africa.  In the final 
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analysis this is due not to bias in the predictor, nor unfairness in the inferences made from 

predictor data, but rather due to significant differences in the criterion distributions of 

minority and majority groups.  In South Africa, it was argued, it does not seem 

unreasonable to attribute the systematic differences in criterion distributions to a socially 

engineered environment, which systematically denied members of the majority group 

access to developmental opportunities.  It was further, perhaps somewhat optimistically 

argued that these past social injustices impacted directly on the attainments and dispositions 

required to perform successfully and not [so much] on psychological processes and 

structures that play a role in the development of the attributes required to succeed on the 

job. If past social injustices had the latter, more far reaching impact, rehabilitation of the 

psychological processes and structures through which critical attributes and competencies 

develop, would also have been required. If the systematic differences in criterion 

distributions, and consequently the adverse impact caused by strict top-down criterion 

referenced selection, can in fact be attributed to artificially created deficiencies in 

competency potential, the logical remedy seems to be to provide individuals who have been 

denied opportunities in the past with opportunities to develop the still lacking attainments 

and dispositions.  The introductory argument, however, acknowledges that the resources 

needed to implement such developmental affirmative action opportunities are limited and 

that not everyone can be given access to costly developmental opportunities.  To obtain the 

optimum return on the resources invested in developmental affirmative action interventions, 

it should be restricted to those individuals who would achieve the highest possible level of 

competence in the behaviours that constitute job performance; thus those individuals whose 

relevant job competency potential could be lifted to the highest possible level.  A need thus 

exists in South Africa for a method to identify individuals who will gain maximum benefit 

from affirmative developmental opportunities, especially cognitively demanding 

development opportunities. 

 

It was further argued that when candidates are being selected for a specific educational- or 

training programme that decision-makers (i.e. human resource managers) are faced with the 

dilemma of not having information at the time of the selection-decision, on the criterion 

variable they are trying to maximize, that is, on the learning performance that each 
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candidate would have achieved at the end of the programme.  Through selection an attempt 

is made to predict the future learning success of candidates and select those with the highest 

level of predicted learning performance. This gives rise to a need for relevant substitute 

measures of the ultimate or final criterion (Ghiselli et al., 1981), which can be interpreted 

criterion referenced at the time of the selection decision, or, stated differently, a need for 

valid predictors from which criterion performance can be predicted at the time of the 

selection decision.  Finding relevant substitute measures for the criterion which can be 

interpreted criterion referenced or valid predictors from which criterion performance can be 

predicted would require (a) a comprehensive understanding of why differences in 

performance exist and (b) a sound understanding of the nature of the relationships between 

predictors and criterion latent variables (Society for Industrial Psychology, 1998). This, in 

turn, implies that a conceptualisation of the ultimate or final criterion is required so as to 

permit the building of a comprehensive learning performance structural model, which 

would explicate the aforementioned two prerequisites. 

 

The final criterion (η) in the case of an educational or training and development selection 

procedure is learning performance and success should thus be conceptualised in terms of 

that which constitutes successful learning in a training and development or educational 

programme.  This, in turn, requires an extensive analysis of the educational or training and 

development task (or “job”) facing affirmative action candidates.  Learning performance 

can only be appropriately conceptualised if it is based on a proper and correct task or job 

description, which in turn is dependent on a proper task or job analysis. It is essential that 

the fundamental nature of the key performance areas, comprising the specific task, be kept 

in mind. Keeping these in mind is important, because it is the objectives or desired training 

outcomes of a specific training programme that differentiate one programme from another. 

These differences in programme-specific objectives or outcomes would imply different 

conceptions of success, which only emphasise the importance of the initial analysis. A 

proper analysis would reveal different objectives or outcomes of different programmes, 

which would ultimately lead to appropriate programme-specific conceptions of success 

(Cross et al., 2002; Anastasi & Urbina, 1997). 

 

28 



  

These detailed, programme-specific conceptions of success are of critical importance when 

evaluating the affirmative development intervention and, more importantly in this case, 

when validating the application of a selection procedure feeding affirmees into a specific 

intervention.  This is important because affirmative development interventions are 

developed to build up specific (underdeveloped) attainments and dispositions relevant to 

success in specific jobs and because the competency potential required by different jobs 

differ. 

 

In the development of a learning performance structural model that would explain variance 

in learning performance and that would form the theoretical foundation for a generally 

applicable learning potential selection battery, a more generic conceptualisation of the 

ultimate criterion is, however, required. 

 

The effective selection of previously disadvantaged individuals into formal education, 

training and jobs would thus only be possible if there is a comprehensive understanding of 

that (the learning competencies and learning outcomes) which constitutes successful 

learning performance (including clarity about the fundamental nature of the generic key 

performance areas comprising the learning task). 

 

2.3 LEARNING PERFORMANCE 

 

The key to the conceptualisation of the final criterion in selection for affirmative 

development seems to be the foregoing argument in terms of which the need for such 

interventions has been established.  A dual competency model assists in clarifying this 

argument. 

 

Competency modelling is a contentious topic in I/O Psychology (Schippmann et al, 2000).  

Nonetheless the competency model concept can serve as a powerful conceptual framework.  

Saville & Holdsworth (2001) proposed a conceptual model of performance at work, which 

captures the relationships between competency potential, competency requirements, 

competencies and outcomes in a manner, which allows for the integration and alignment of 
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the spectrum of human resource interventions.  According to Saville & Holdsworth (2001, 

p. 6) the Performance@Work model represents: 
… a model of performance at work that defines the relationship between competency 

potential, competency requirements and competencies themselves.  “Competencies” are 

defined as desired behaviours that support the attainment of organisational objectives.  

“Competency potential” is seen to derive from individual dispositions and attainments, 

and “competency requirements” involve both facilitators of and barriers to effective 

performance in the workplace.  The framework points to ways in which people and work 

settings interact, and has implications for how performance in the workplace can be 

managed. 

 

Jobs exist so that specific objectives can be realised through specific outcomes or output for 

which specific job behaviours (job competencies) are required. A complex nomological 

network of person-centred characteristics determines the level of competence achieved on 

these job competencies, some of which are relatively easily malleable (attainments) whilst 

others are more difficult to modify (dispositions).  The legacy of Apartheid expresses itself 

in deficiencies in critical attainments and dispositions (job competency potential) that result 

in inferior job performance on the key performance areas (job competencies), which result 

in unsatisfactory outcomes and thus less than satisfactory attainment of the objectives for 

which the job exists.  Affirmative development tries to salvage the situation by building up 

the specific attainments and dispositions relevant to success in a specific job with the 

expectation that this would eventually be reflected in the quality of the outputs for which 

the job exists. 

 

In principle the same structure also applies to the affirmative training and development 

interventions.  Individuals are assigned to affirmative development treatments with the aim 

of achieving specific learning objectives through specific learning outcomes.  These 

learning outcomes are the exceedence of the minimum critical job competency potential 

(most likely, attainment) levels required to display the job competencies on a quality level 

sufficient to achieve the outcomes for which the job exists.  Specific learning competencies 

are instrumental in attaining these desired learning outcomes.  These learning behaviours, in 

turn, depend on and are expressions of a complex nomological network of person-centred 
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characteristics (learning competency potential), some of which are relatively malleable 

(attainments) and some of which are less easily altered (dispositions). A 

Performance@Learning competency model could thus be assumed, analogous to the 

Performance@Work model originally proposed by Saville & Holdsworth (2001).  

Moreover the Performance@Learning model should be sequentially linked to the 

Performance@Work competency model to provide a fertile conceptual model to explore the 

relationship between the characteristics of the learner required to exhibit the learning 

behaviours needed to develop the qualities necessary to exhibit the work behaviours that are 

instrumental in achieving the outcomes for which the job in question has been created.  

Figure 2.1 represents a schematic representation of the essence of the argument. 
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Figure 2.1 

Integrated Performance@Learning & Performance@Work Model (adapted from 

Saville & Holdsworth, 2000, p. 7). 
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Learning performance, like job performance could be conceptualised (and therefore also 

assessed) on a behavioural (i.e., learning and/or job competency) level and/or on a learning 

outcome level.  Learning performance thus should be defined in terms of the two core 

learning competencies (transfer of knowledge and automatization), in terms of the specific 

attainments and dispositions (to the extent that they could be modified through development 

interventions) required to succeed on the job in question and again on a behavioural level, 

in terms of the job competencies served by the development intervention  The logic 

underlying this position becomes apparent when considering the objective of affirmative 

training and development raised earlier.  Affirmative development programmes are 

designed to empower employees with the job competency potential and job competencies 

required to deliver the outputs for which the job in question exists.  

 

This would, however, hopefully mean more than simply retrieving previously transferred 

and automated (i.e., learned) responses to now familiar stimuli (although the application of 

newly acquired skills should not be dismissed altogether).  The expectation rather would be 

that the affirmee would be able to apply the newly derived knowledge to novel stimuli not 

explicitly covered in the affirmative action development programme.  The application of 

newly acquired knowledge in solving new work related problems is, however, again 

transfer at work and thus dependent on (a) fluid intelligence and, since fluid intelligence 

can not operate in a vacuum, (b) the extent to which previous relevant learning (transfer) 

has been successfully internalised (automated). No sharp division exists between learning 

and application.  Class room learning occurs for the sake of world of work action learning.  

Learning performance should thus ultimately be (sequentially) assessed in terms of 

competence during training, in terms of the consequences or outcomes of learning (i.e., 

crystallized attainments/knowledge), and in terms of the ability to creatively utilise the 

newly derived knowledge in solving novel problems that could realistically be encountered 

in the work environment.  This seems to have significant implications for the manner in 

which the criterion construct should be defined and operationalised in this validation study. 
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Taylor (1994) seems to focus his interpretation on the consequences or outcomes of 

learning.  He, in addition, makes a very important distinction between learning performance 

and learning potential. Taylor (1994) writes: 
Learning performance is demonstrated when an individual acquires specialized skill 

through transfer from other fairly specialized skills or abilities. The more elaborated and 

developed a person’s skill repertoire, the more effectively and swiftly he or she is likely 

to acquire the new skill. Learning potential is shown when a person comes to grips with 

a novel learning task involving unfamiliar stimulus material; in this case previously 

developed specific skills are of relatively little help to him or her, and the learner has to 

use very general transfer and skill acquisition strategies. (p. 190) 

 

The distinction Taylor (1994) makes between learning potential and learning performance 

makes sense, and is especially important in understanding the underlying structural model. 

Learning performance should be understood as crystallised learning potential (acquired job 

competency potential) in action. Learning performance is the final criterion (η), not 

available at the time of the selection decision, which the selector is attempting to predict in 

a training and development scenario, while, according to Taylor’s theory, learning potential 

should be understood as the substitute predictor construct (ξ) of learning performance. 

 

Learning performance can be interpreted as the extent to which an individual has acquired a 

specific skill, knowledge or ability (job competency) and is the manifestation of that 

specific skill, ability or knowledge in action in a situation corresponding to the job for 

which the affirmative development is initiated. Learning potential, the individual’s capacity 

to be modified and the capacity to acquire novel skills, is what needs to be assessed in 

disadvantaged individuals. It is learning potential that is crystallised through remedial 

intervention, and which allows an individual to demonstrate successful learning 

performance (Taylor, 1989). 

 

The question subsequently arises as to what the learning competencies are that allow one 

individual to be more successful than another in acquiring a novel intellectually demanding 

skill (job competency). In other words, what learning competencies contribute to 

differences in learning performance between individuals? 

33 



  

To find an answer to these questions, Taylor (1994) reviewed the learning or dynamic 

approach to cognitive assessment, which focus on learning and modifiability, and found (a) 

transfer of knowledge and (b) automatization of information processes to be the two 

dimensions of learning (or learning competencies) to which successful learning 

performance could be attributed.  Taylor (1994) makes the following comment: 
…it is clear that in the learning domain it is potential rather than achievement that 

should be assessed. The critical learning aspects to measure appear to be the 

implementation of general transfer strategies in dealing with novel material, and the 

early stages of proceduralization and automatization. (p. 190) 

 

These two fundamental learning competencies that form the core of Taylor’s (1989; 1994; 

1997) theory on learning potential, will subsequently be discussed. 

 

2.4 LEARNING COMPETENCIES 

 

2.4.1 TRANSFER OF KNOWLEDGE 

 

The acquisition of new job-specific knowledge, abilities and insight (job competency 

potential) can be described as a process during which new attainments have to be built on 

older ones and these have to be integrated into conceptual frameworks that subsequently 

become more general and elaborated (Taylor, 1994).  According to Ferguson (1954; 1956), 

who attempts to relate learning and human abilities, and Taylor (1994), transfer forms the 

basis of this process of elaboration.  Ferguson (1956) makes the following general 

formulation regarding transfer of knowledge:  
At any given point in time the organism may be said to be in a particular state. The 

concept of the state of a system is of importance in physics. It has a role in psychology 

also. This state undergoes continuous change because of a large number of 

circumstances both inside and outside the organism. One set of factors leading to a 

change in state is the behaviour of the organism in response to specific environmental 

circumstances, e.g. the performance of a task. Any change of state leads, theoretically, to 

changes in an indefinitely large number of other possible forms of performance. Any 

covariation which can be identified between any two or more forms of performance is 

conceptualised as a transfer function. (p. 126) 
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Ferguson (1954; 1956) clearly argues that the abilities of man emerge through a process of 

differential transfer. Taylor (1992; 1994) concurs with Ferguson (1954; 1956) and states 

that the abilities, which an individual already possesses, contribute to the development of 

new abilities.  Transfer is the process through which crystallized abilities develop from the 

confrontation between fluid intelligence (Cattell, 1971) and novel stimuli (Taylor, 1994). 

Transfer is the application of that which an individual already knows to novel problems 

(McGeoch, 1946).  Transfer can also be described as the effect previously learned 

behaviour has on the performance of new learning tasks (Gouws, Louw, Meyer & Plug, 

1979).  By implication it means that a task that is already learned or an ability that is 

already acquired makes it easier or more difficult to learn a new task or acquire a new 

ability (positive and negative transfer).  Many learning theorists consider transfer as the 

most fundamental learning competency.  Neither Ferguson (1954; 1956), nor Taylor, say 

anything about the psychological nature of transfer or why or how it occurs, instead, both of 

them rather try to clarify the concept. Taylor (1992) gives the following example to help 

clarify the concept of transfer:  
An example would be learning to program a computer in one’s twenties or thirties (or 

even later in life). This ability may develop through transfer from verbal, numerical and 

reasoning skills, which in turn may have developed from the cognitive “engine” of fluid 

intelligence. (p. 6) 
 

Ferguson (1956) tries to clarify the concept even further, by comparing it to the 

mathematical concept of a function. Ferguson (1956) writes: 
When two variables are so related that the values of one are dependent on the values of 

the other, they may be said to be functions of each other. It is customary to distinguish 

between dependent and independent variables, the value of the dependent variable being 

dependent on variation in the independent variable. The idea of function is descriptive of 

change in something with change in something else. 

The essence of the idea of transfer, also, is concomitant change, and in the simplest case 

implies change in performance on one task with change resulting from practice on 

another. (p. 124) 

 

Ferguson (1954, 1956) believes that transfer is the more general phenomenon and learning 

is a particular formal case (Ferguson, 1954). An implicit condition for transfer to occur 
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seems to be that the prior task must differ in some respect from the subsequent task 

(Ferguson, 1956). In fact, Ferguson (1954; 1956) argues that if two tasks are presumed 

similar, based on superficial inspection, then the changes that occur in the “ability” of an 

individual to perform the specific task is functionally dependent on, or assignable to, 

repetition and not transfer per se.  

 

In support of Ferguson (1954) Cook (1944) also argues that learning is a particular formal 

case of the general phenomenon of transfer. Cook (1944) writes: 
There is no separate problem of transfer of training. Or conversely, all learning (unless 

there exists a limiting case in which successive trials are identical on all counts) involves 

the problem posited in the transfer of training experiments: What identities and 

differences in successive trials affect what sort of learning? (p. 27) 

 

It would seem as if a mass of prior experience is brought to bear on the learning of any task 

(Ferguson, 1954). McGeoch (1946, pp. 445-446) writes in support: 
After small amounts of learning early in the life of the individual every instance of 

learning is a function of the already learned organisation of the subject; that is all 

learning is influenced by transfer… The learning of complex, abstract, meaningful 

materials and the solution of problems by means of ideas (reasoning) are to a great 

extent a function of transfer. Where the subject “sees into” the fundamental relations of a 

problem or has insight, transfer seems to be a major contributing condition. It is, 

likewise, a basic factor in originality, the original and creative person having, among 

other things, unusual sensitivity to the applicability of the already known to new 

problem situations. Perceiving, at whatever complex level, is probably never free of its 

influence, and there is no complex psychological event which is not a function of it.  

 

In discussing the same point Hebb (1949) writes: 
If the learning we know and can study, in the mature animal, is heavily loaded with 

transfer effects, what are the properties of the original learning from which those effects 

came? How can it be possible even to consider making a theory of learning in general 

from the data of maturity only? There must be a serious risk that what seems to be 

learning is really half transfer. We cannot assume that we know what learning transfers 

and what does not: for our knowledge of the extent of transfer is also derived from 

behavior at maturity, and the transfer from infant experiences may be much greater and 

more generalised. (p. 110) 
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Clearly, Cook (1944), Ferguson (1954, 1956), Hebb (1949), McGeoch (1946) and Taylor 

(1994) believe that transfer is a fundamental aspect of learning and cognitive development. 

It would seem as if they argue that individuals who are able to show superior learning 

performance would be those who are able to transfer better. In studies conducted by 

Campione, Brown, Ferrara, Jones and Steinberg (1985) and Ferretti and Butterfield (1992) 

it was found that slower students have the greatest difficulty with transfer. In other words, 

there is a definite difference in the ability to transfer between above average students and 

slower or lower ability students. These findings clearly support the arguments made by 

Cook (1944), Ferguson (1954, 1956), Hebb (1949), McGeoch (1946) and Taylor (1994). 

 

Relating knowledge transfer to an educational and training situation, Taylor (1997) believes 

that a good student is one who is able to apply the knowledge that he or she has acquired 

from prior learning to other similar or related problems. Taylor (1997, p. 10) writes: 
In the work situation, the effective job incumbent is able to apply experience gained in 

one context to other related situations. Individuals low in this capacity are poor problem 

solvers and frequently have to refer to superiors or more competent peers for guidance. 

 

In conclusion Taylor (1992) writes: 
Transfer is a phenomenon which is expressed when an individual comes to terms with 

novel or partially novel problems. Each subsequent set of problems in a transfer test 

differs from those that have come before, and is usually more complex than those that 

have come before. Therefore, the subject is continuously challenged, and the attainment 

of full understanding and correct answers is the pursuit of a shifting target. The stimulus 

material is “open-ended” in that new material is continuously being added. The 

educational process, as well as the process of acquiring new job skills, tends to be like 

this: new competencies are built on older ones and have to be integrated into conceptual 

frameworks that become more general and elaborate. Transfer lies at the heart of this 

process of elaboration. (p. 6) 

 

Following the arguments put forward by the authors quoted in the previous paragraphs, it 

seems reasonable to argue that an individual would have to be able to transfer if he/she is to 

function successfully in a job (in the sense of solving novel problems via transfer from 

newly learned competency potential) and in a educational or training and development 
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environment. More so, it would make sense to include transfer of knowledge as a construct 

in a learning potential theory aiming to predict learning performance.  Specifically, it 

should be viewed as a critical learning competency. 

 
2.4.2 AUTOMATIZATION 

 

Transfer of knowledge undoubtedly plays a role when learning tasks involve material that 

continuously change, but what about those situations where stimuli do not change 

dramatically over time? In such circumstances the challenge for the learner is rather to 

become more effective and efficient at what he or she is doing (Taylor, 1992).  Moreover, 

learning tasks are not concluded once sense has been made out of novel stimuli.  Unless an 

efficient cognitive algorithm can be written (Taylor, 1994) and stored for later retrieval that 

captures the insight/problem solving derived through transfer, the stimulus will remain a 

novel problem to be solved via transfer every time it is encountered.  This would have 

greatly reduced the adaptive value of learning.  Moreover, transfer would have been 

severely inhibited if newly derived insights did not accumulate in knowledge stations 

(Sternberg, 1984) to serve as the cognitive platforms from which subsequent problem 

solving/transfer occurs. 

 

The only way in which an individual can become more effective and efficient in the 

execution of a task is if the individual automate many of the operations involved in 

performing the task. Sternberg (1984) agrees and argues that it is the automatization of a 

substantial proportion of the operations required to perform complex tasks that allows an 

individual to perform the task with minimal mental effort. 
 

Sternberg’s (1984) proposed model of automatization of information processes suggests 

that controlled information processing is under the conscious direction of the individual and 

that it is hierarchical in nature.  Here he distinguishes between executive processes, which 

direct non-executive processes. Executive processes would be those that are used to plan, 

monitor, and revise strategies of information processing, while non-executive processes are 
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those used to actually carry out the strategies that the executive processes select, monitor, 

and revise (Sternberg, 1984). 

 

On the other hand, Sternberg (1984) proposes that automatic information processing is pre-

conscious, thus, not under the conscious direction of the individual and not hierarchical in 

nature. Here it is not possible to make the same functional distinction between executive 

and non-executive processes. Sternberg (1984) writes: 
Instead, production is in the mode of a production system, where all kinds of processes 

function at a single level of analysis.  (p. 278) 

 

When an individual is processing information from old domains or domains that are 

entrenched by nature, he or she primarily rely upon automatic, local processing (Sternberg, 

1984). With regards to the processing of information from old domains or domains 

entrenched by nature, Sternberg (1984) writes: 
A central executive initially activates a system consisting of locally applicable processes 

and a locally applicable knowledge base. Multiple local systems can operate in parallel. 

Performance in these systems is automatic and of almost unlimited capacity; attention is 

not focussed upon the task at hand. Only knowledge that has been transferred to the 

local knowledge base is available for access by the processes utilized in a given task and 

situation. A critical point is that activation is by executive processes in the global system 

to the local system as a whole. The executive processes can instantiate themselves as 

part of this local system; when used in this instantiation, they do not differ functionally 

from processes of any other kind. (p. 278) 

 

It would seem as if control is passed unto an already existing local system once an 

executive process has recognised a given situation as one for which a local system might be 

relevant. The local system would then act upon the given problem as a production system 

with a set of readily available productions. Functions in the production systems are both 

executive and non-executive in nature and integrated into a single non-hierarchical system 

(Sternberg, 1984). 

When none of the productions in a system is able to satisfy a given present condition, the 

control is passed back to the global processing system. Sternberg (1984) writes: 
When the bottom of the production list is reached and no given condition is satisfied, 

global processing is necessary to decide how to handle the new task or situation. (p. 278) 
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Here, it would seem as if Sternberg (1984) acknowledges the role of transfer as the 

expression of an individual’s fluid intelligence or abstract reasoning capacity operating on 

the content of a local processing system in solving novel problems. In addition, Sternberg 

(1984) writes: 
Once this task or situation is successfully handled, it is possible to pack what has been 

learned from global processing of the new experience into a given local processing 

system, so that the next time such a situation is encountered, there will be no need to exit 

from the local processing system. According to this view, the extent to which one 

develops expertise in a given domain largely depends on the ability of the individual to 

pack new information, in a useable way, into a given local processing system and on the 

ability to gain access to this information as needed. (p. 278) 

 

In other words, when an individual faces a novel learning task he or she would first attempt 

to find a way of coping with the problem by “scanning” the already existing skills, 

knowledge and abilities. If a way of coping with a similar problem has been automated 

before then, the individual would use a learned response, as per Ferguson's (1954, 1956) 

theory, to deal with the new problem in a similar manner. However, if no directly 

applicable skills, knowledge or abilities exist, the individual would make use of fluid 

intelligence or abstract reasoning capacity to cope with the task by transferring existing 

relevant, but not directly applicable skills, knowledge and abilities onto a solution of the 

novel problem. Once the task is mastered the individual can add what has been learned to 

his or her already existing pool of skills, knowledge and abilities, thus, elaborating it. Once 

an individual is then again faced with a novel task he or she can now apply learned 

knowledge from a more elaborate pool of skills, knowledge and abilities, because of the 

addition of what has been learned, to master the new task.  

 

Sternberg (1984) seem to have a similar understanding: 
In essence, a loop is set up whereby packing more information and processes into the 

local system enables them to automate more processing, and thus, to have global 

resources more available for what is new in a given task or situation. (p. 278) 
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Sternberg (1984) summarises his view on the ability to automate information processing as 

follows: 
… the present view  essentially combines hierarchical and nonhierarchical viewpoints 

by suggesting that information processing is hierarchical and controlled in a global 

processing mode, and nonhierarchical and automatic in local processing modes. 

Expertise develops largely from the successively greater assumption of information 

processing by local resources. When these local resources are engaged, parallel 

processing of multiple kinds of tasks becomes possible. Global resources however, are 

serial and of very limited capacity in their problem-solving capabilities. (p. 278) 

 

Following the arguments thus far, automatization seems to be an important dimension of 

learning and, therefore, Taylor includes automatization as a second learning competency in 

his theory of learning potential. Taylor (1997) writes: 
From both a practical (manpower utilisation) and ethical (fairness of opportunity) view it 

becomes important to assess dynamic aspects of the individual’s cognitive endowment, 

especially his or her capacity to learn and acquire new competencies and ultimately to 

automize them. (p. 8) 

 

2.5 LEARNING COMPETENCY POTENTIAL 

 

In the formulation of his learning potential theory, Taylor (1992) also reviewed the 

conventional psychometric approach and the information processing approach to cognitive 

assessment.  Taylor (1992) concluded that the capacity to form abstract concepts and 

information processing efficiency (speed, accuracy, flexibility) make up constituent parts of 

cognitive ability or intelligence.  Moreover, Taylor seems to argue that these two facets of 

intelligence constitute the nucleus of the learning competency potential that drives the two 

learning competencies that constitute learning (transfer and automatization). 
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2.5.1 ABSTRACT THINKING CAPACITY 

 

For many years there have been two paradigms present in psychology regarding 

intelligence. The first is that of Sir Francis Galton, who posited a unitary general cognitive 

ability as underlying all learning, problem solving, and other cognitive processing 

(Eysenck, 1986). Then there was Binet, who thought of intelligence as merely the average 

of a number of independent or semi-independent abilities. He argued that intelligence has 

no real existence, but that it is rather a statistical artefact (Eysenck, 1986). This dispute has 

now pretty much been resolved by psychometric studies, as Eysenck (1986) writes: 
…there clearly is a need for a general factor of intelligence to account for the “positive 

manifold” usually produced when IQ tests are intercorrelated and for the low rank of the 

matrices constituted of these intercorrelations. (p. 3) 

 

Eysenck’s (1986) quote links very well with the work of Spearman (1904, 1927) who 

proposed that the base of human intelligence lies in a unitary, general intelligence factor, 

which he dubbed the g-factor (g).  However, Binet was not completely wrong in his theory 

of separate abilities either. Eysenck (1986) explains: 
…the evidence is now strong that in addition to general intelligence (g), we have a 

number of what English psychologists usually refer to as “group factors” and American 

psychologists as “primary abilities”, independent of g and adding a certain amount to the 

total variance in cognitive testing. (p. 3) 

 

But, commenting on the superior importance of g, Eysenck continues (1986):  
In the total variance, however, g is clearly much more important than any primary ability 

or even than all primary abilities taken together. (p. 4) 

 

In 1971 Cattell proposed a theory in line with the above statements made by Eysenck 

(1986) in which he hypothesised that Spearman's (1904, 1927) general intelligence factor 

(g) is in fact not a unitary factor, but that it is made up of two distinct factors. He termed 

these fluid- (Gf) and crystallised (Gc) intelligence (Jensen, 1998). Here it could be argued 

that Cattell’s Gf is probably very similar to Spearman’s (1904, 1927) g, while Gc is the 

same as the “group factors” or “primary abilities” of which Eysenck (1986) speaks. 
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The two-factor model of fluid- and crystallised intelligence as proposed by Cattell (1971), 

taken in conjunction with the learning competency of transfer, offers an interesting 

explanation of why differences in abilities between individuals exist. 

 

According to Cattell (1971) Gf is a fundamental, innate intelligence and can be related to all 

kinds of problem solving. Gf is related to how well an individual perceives complex 

relations, forms concepts and engages in abstract reasoning. It is the fundamental abstract 

reasoning and concept formation capacity or ability that an individual applies to novel 

problems (Cattell, 1971, Jensen, 1998). Furthermore, Gf is also applied in the development 

of new abilities and in the acquisition of new knowledge (Cattell, 1971). A very important 

point here is that Gf is relatively formless and appears independent of experience and 

education. Therefore, it is Gf that is demonstrated in mental tests (e.g. Ravens Progressive 

Matrices or abstract reasoning tests) in which prior learned knowledge, skills, algorithms, 

or strategies offer little or no advantage (Jensen, 1998).  

 

On the other hand, Gc refers to the acquired abilities and knowledge which arise from 

schooling, becoming competent with one's culture and mastering one's specific 

circumstances and could be called consolidated knowledge (Cattell, 1971; Jensen, 1998). 

Acquired abilities such as verbal and numerical comprehension could be categorised under 

Gc.  Gc thus seem to have a scholastic and cultural foundation (Jensen, 1998). 

 

The learning competency of transfer seems to link Gf with Gc in as far as transfer in 

essence is Gf in action in the solution of novel problems.  Existing Gc is elaborated via 

transfer by Gf utilizing existing Gc.  Moreover, the view that Gf operates on existing Gc in 

solving novel problems through transfer seems to have important practical implications for 

selection into affirmative development interventions.  It seems to suggest that, apart from 

the static learning competency potential (Gf and information processing capacity), Gc also 

needs to be explicitly taken into account in a prediction model in as far as the ability to cope 

with novel, cognitively demanding learning material (i.e. transfer) will depend on the 

interaction between crystallized knowledge and abilities and the ability to transfer.  

Somehow it seems naive to assume that candidates for affirmative development will be able 
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to cope with novel, cognitively demanding learning material if a high Gf is present, 

irrespective of the extensiveness and level of crystallized knowledge and abilities in the 

domain on which the development intervention is focussed.  In as far as Gc constitutes 

consolidated knowledge (Cattell, 1971, Jensen, 1998), it thus seemingly corresponds to 

what Sternberg (1984) refers to as the content of local processing systems or what is termed 

an attained (rather than dispositional) learning competency potential in the integrated 

Performance@Learning & Performance@Work model depicted in Figure 2.1.  Gf, by 

contrast would correspond to a dispositional learning competency potential in the integrated 

Performance@Learning & Performance@Work model depicted in Figure 2.1. 

 

There are quite a number of theorists arguing along the same lines as Cattell (1971), in that 

they also believe the core of intelligence to be fluid or abstract in nature. In fact, Snow, et 

al. (1984) represented cognitive abilities as points on a radex and found fluid intelligence to 

be right in the centre, while more specific abilities where situated at the periphery.  

Guttman (1965), as cited in Taylor (1994), represented test scores on a circumplex and also 

identified test scores at the centre as analytic or rule inferring and those further from the 

centre as more rule applying in nature. 

 

Clearly, the ability to think abstractly and form concepts as described in Taylor’s theory 

(Taylor, 1994), is the same as fluid intelligence proposed in the Cattell (1971) theory. As 

Taylor (1994) explains: 
The potentiality to think abstractly and form concepts develops as fluid intelligence. It 

consists of a set of general cognitive tools and strategies for application to novel 

problems. (p. 190) 

 

Taylor (1992) further writes: 
Fluid intelligence is thus abstract thinking capacity, and it is best measured by 

confronting the testee with novel stimuli and asking him or her to find underlying 

concepts. (p. 5) 

 

It would certainly seem as if an individual’s abstract reasoning capacity plays an important 

role in both dealing with novel kinds of problems and learning. Therefore, an individual’s 
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level of fluid intelligence or abstract reasoning capacity would (as a dispositional learning 

competency potential) either contribute or inhibit the individual’s capacity to make sense of 

the learning task allowing the learning and acquisition of new knowledge, skills and 

abilities (via transfer), especially when the learning task becomes more complex in nature. 

 
2.5.2 INFORMATION PROCESSING CAPACITY 

 

The information processing approach towards the conceptualization of intelligence started 

to develop in the second half of the previous century and received a great deal of attention 

because of its more scientific approach to cognition. Psychometrics and cognition had a 

long alliance before the information processing approach came along, but during this period 

it was especially the development of theory that seemed to stagnate. The rise of a link 

between computer-systems and the understanding of human perception, thinking, and 

problem solving further fuelled the information processing approach. Thus, it was mainly 

the fact that man came to be seen primarily as an information-processor and the more 

scientific and theoretical nature of the information processing approach that contributed to 

its popularity (Estes, 1978; Taylor, 1992, 1994). 

 

There exists a real danger that the constructs introduced thus far (transfer, automatization 

and abstract reasoning ability) can become conceptually confounded with the concept of 

information processing capacity.  An unambiguous grasp of what is meant by information 

processing is thus first required.  A clear understanding of what is meant by information 

processing is provided in the work of Jensen (1998). Jensen (1998) describes information 

processing, or more specifically information processes, as follows:  
Information processes are essentially hypothetical constructs used by cognitive theorists 

to describe how persons apprehend, discriminate, select, and attend to certain aspects of 

the vast welter of stimuli that impinge on the sensorium to form internal representations 

that can be mentally manipulated, transformed, stored in memory (short-term or long-

term), and later retrieved from storage to govern the person’s decisions and behaviour in 

a particular situation. (p. 205) 

 

In the Concise Dictionary of Psychology information processing is defined as (Statt, 1998): 
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A key term in cognitive psychology used to denote what happens mentally between 

stimulus and response including perception, memory, thinking, problem-solving and 

decision-making. Information is usually taken to be any stimulus with a mental content-

an image, idea, fact, opinion, etc. (p. 71) 
 

First of all, it is important to clearly understand what is meant by the term information in 

this context. In the Concise Dictionary of Psychology definition, information is “taken to be 

any stimulus with a mental content (p. 71)”. Jensen (1998) throws caution to the wind and 

conceives of “information” to have a more generalised and non-specific meaning than when 

it is commonly used. He goes on to write: 
“Information” here does not refer to any specific fact or a particular item of acquired 

knowledge. It refers generally to any stimulus that reduces uncertainty in a given 

situation (p. 206). 

 

Jensen (1998) subsequently concludes: 
We use the term “information processing” here to describe the hypothetical processes 

that depend, presumably, on the structural and physiological properties of the brain that 

are activated whenever uncertainty is perceived and we work to reduce it. (p. 206) 

 

Taylor (1994) believes that information processing does make up one of the constituent 

parts of cognitive ability. However, according to Taylor (1992), it would be “unwise” to 

conclude that information processing as widely measured with chronometric measures, 

which tap behaviour in very simple tasks, adequately accounts for human intelligence.  

 

Hunt (1980) also goes on to write.  
…it is unreasonable to expect that any one information-processing procedure would 

provide “the answer” to our questions about the nature of intelligence. … but the search 

for a “true” single information-processing function underlying intelligence is likely to be 

as successful as the search for the Holy Grail. (pp. 456-457) 
 

In a learning context the learner is often faced with novel, intellectually challenging tasks. 

Such tasks cause the individual to experience a lot of uncertainty; thus, he or she would 

naturally try and reduce it. In order to reduce the uncertainty the individual has to firstly use 

executive processes (Sternberg, 1984) to process the bits of information or stimuli provided 
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in the task and select a strategy to follow and secondly, use non-executive processes 

(Sternberg, 1984) to actually carry out the strategy. The processing of bits of information 

through cognitive processes (executive and non-executive), which are activated in an 

uncertain situation in order to reduce the amount of uncertainty, could be termed 

information processing. 

 

In an attempt to get to the core difference between information processing and information 

processing capacity Taylor (1992) writes: 
It is true that the information processing approach is more “dynamic” than the 

conventional structural approach. It does, after all, address itself to processes rather than 

merely to the resultant of these processes. But the information processing approach does 

not concern itself much with change over time. (p. 4) 
 

Also, argues Underwood (1978): 
When information is presented to an individual the sequence of processing is not pre-

determined, but the individual is able to select certain processes and reject others. The 

traditional flowchart of information processing suggests that once sensory data are 

entered into the system, then the response is structually determined. The view here is 

that the response may be structually limited, but that the strategies used by the 

processor- the individual- play a vital role. (p. 2) 

 

The fact that differences exist in the choice of a problem-solving strategy is one of the 

reasons why cognitive psychologists often fail to relate information processing to 

intelligence scores. In fact, writes Hunt (1980): 
… it is shown that information-processing and psychometric measures are in much 

closer correspondence when account is taken of one’s problem solving strategy. (p. 449) 

 

The importance of distinguishing between information processing and information 

processing capacity now becomes clearer.  

In clarifying the difference Taylor (1992) asks whether the elemental tasks in measures of 

information processing account for the “richness of more complex cognitive behaviours?” 

He also poses the question of whether they can “adequately account for the phenomena of 

learning?” 
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…in more complex behaviours, the person has to string together a large number of these 

processes. And as he or she becomes more adept with experience, he or she develops 

new and more efficient ways of assembling and employing the processes… 

 
Information processing psychology as it is presently practised pays relatively little 

attention to individual differences in processing – “styles” of processing- and also 

ignores changes in styles with experience or learning… Various types of processing 

capacity, such as the rate and accuracy with which the stimuli of a problem can be taken 

in, the number of pieces of information that can be thought about at the same time, and 

the efficiency with which needed information can be retrieved from long-term memory 

would appear to have an impact on learning, particularly the rate of learning. (p. 4) 
 

The strategy an individual selects to solve a given problem is one of the factors, which 

either contributes or impinges the capacity to solve the problem (Hunt, 1980; Underwood, 

1978). Strategy, however, seems not to be the only factor that puts a boundary on an 

individual’s capacity to process information (Taylor, 1992; Underwood, 1978). Underwood 

(1978) also writes: 
Thus, our limitations in solving problems, given any one strategy, will be a composite of 

the speed of comprehension and assimilation of the information comprising the problem, 

of the storage limits of working memory, of the forgetting characteristics of the memory 

systems used, of the efficiency of the access code for retrieving information stored in 

permanent memory and which maybe relevant to the problem, and of the speed and 

efficiency of any other system used in the total activity. (p. 2) 

 

Consequently, Taylor (1997) identifies three broad information processing capacity 

parameters. These are (a) the speed or quickness with which information of a moderate 

difficulty level is processed (processing speed). Taylor (1997) states that individuals who 

are slow information processors might fall behind in learning situations. The reason being, 

that they might not have enough time to investigate all the reasonable solution options to 

problems. (b) The accuracy with which information of a moderate difficulty level is 

processed (processing accuracy). Taylor (1997) argues that a person who is inaccurate in 

processing information often suffers from lapses in concentration accompanied by a failure 

to monitor and “quality control” processing performance.  
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Taylor (1997) clarifies: 
Information processing which is both quick and accurate is called efficient; that which is 

slow and accurate is called thorough; that which is quick and inaccurate is called 

impulsive; and that which is slow and inaccurate is called inefficient. (p. 7) 
 

(c) The cognitive flexibility with which a problem-solving approach, which is appropriate 

to the problem, is selected. Cognitive flexibility, with which an individual selects a 

problem-solving approach, appropriate to the problem from a personal “toolkit” of 

cognitive strategies is a fundamental characteristic of intelligent behaviour (Hunt, 1980, 

Taylor, 1997). Individuals who keep on following an inappropriate strategy would be 

regarded as having a lesser capacity to process information. 

 

At this stage it is very important to emphasise a point, which Taylor (1994) raises- that is 

that, just as with an individual’s abstract reasoning capacity, an individual’s capacity to 

process information is mostly genetically endowed, implying that an individual’s capacity 

to process information is fairly free from the influence of culture and opportunities, but also 

that a certain capacity sets an upper limit to performance (Taylor, 1994).  This might serve 

as another reason why attempts to relate information processing to intelligence scores in 

normal subjects, have not had much success, while it has been very successful in showing 

differences between extreme groups in information processing capacity (Hunt, 1980). 

 

An individual’s capacity to process information should play an important role in cognition 

and learning by which people become aware of and gain knowledge about the world. The 

argument would be that if one individual has a relatively better capacity to process 

information than another does, then that individual could be described as having relatively 

better cognitive ability. Thus, in a learning context it would seem as if the individual who 

can more efficiently and effectively (quickly, accurately and flexibly) process information 

would be the one who is able to acquire more, learn faster and perform better. For this 

reason Taylor (1994) includes information processing capacity as a (dispositional learning 

competency potential) construct in his theory. 
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2.6 TAYLOR’S THEORETICAL POSITION 

 

In this section an attempt is made to clearly describe how Taylor (1992, 1989, 1994, 1997) 

integrates the ability, information processing, and learning traditions of cognitive 

psychology into a theory that accommodates all three traditions. Many of the points relating 

to such an integration most probably would have been discussed in the previous section but 

will nonetheless, for the sake of completeness, be repeated in this section which will serve 

as a final threading together of any loose ends. 

 

The reason why Taylor wants to integrate all three approaches stems from an observation 

that the psychological tests that are widely available for use in industry and education are 

mostly designed to measure broad-based static psychological constructs such as abilities. 

Furthermore, it seems as if the two new independent approaches of information processing 

and learning and modifiability tend not to be widely used in industry, despite a need for 

assessment techniques of a more dynamic nature.  

 

One of the reasons that could be contributing to this lack of usage might be the fact that the 

information processing and learning and modifiability approaches do not offer much in the 

form of practical measurement instruments, which can be used for selection or vocational 

guidance (Taylor, 1994). Thus, through his work Taylor (1992, 1994) attempts to relate his 

theoretical concepts to the mainstream of cognitive psychology while developing an 

assessment instrument that is suitable for practical application in an industrial or 

educational context.  

 

Taylor (1992, 1994) believes that Ackerman’s (1988) cylindrical cognitive model, an 

elaboration of Snow, et al. (1984) circular cognitive model, best accommodates his 

theoretical position of integrating all three traditions and explaining individual differences 

in skill acquisition (i.e. learning performance). 

What follows is a brief account of the work done by Ackerman (1988). At the start of his 

article Ackerman (1988) states that what he is presenting is:  
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An integrative theory that links general models of skill acquisition with ability 

determinants of individual differences in performance…(p. 288) 

 

Ackerman (1988) proposes that when an individual is initially faced with a skill-acquisition 

task (assuming that the information processing requirements are relatively novel) he or she 

places strong demand on the cognitive-attentional system. Ackerman (1988) writes: 
During this phase performance is slow and error prone, as strategies (productions) are 

formulated and tested, and attention is primarily given to understanding and performing 

the task in question. (p. 289) 

 

However, with consistent practice, performance speed and accuracy increase with a 

reduction in attentional demands (Ackerman, 1988). Here, the productions that are needed 

to perform the task become fully formulated. Ackerman (1988) explains: 
During this second stage (Phase 2) the stimulus-response connections of the skill are 

refined and strengthened. (p. 290) 

 

Lastly, the ultimate stage (Phase 3) of performance can best be characterised as autonomous 

or automatic. Ackerman (1988) writes: 
Consistent practice results in fast and accurate performance; the task can often be 

completed competently even when attention is simultaneously devoted to other tasks. (p. 

290) 

 

Ackerman (1988) also draws a link between three major ability factors and the three skill 

acquisition phases. The three ability factors are (a) general intelligence, (b) perceptual 

speed, and (c) psychomotor ability. 

 

One point of concern that needs to be raised at this stage is the domain of the theory 

presented by Ackerman (1988).  Ackerman (1988) explains: 
In accordance with the definition of skills presented in the early part of this article, each 

experiment made use of tasks that depended to a substantial degree on motor behavior. 

… Skills such as chess mastery or physics problem solving do not depend to any 

significant degree on motor behavior and as such are not expected to follow the ability-

performance transitions outlined in this theory. (p. 311) 
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From the above quotation it would seem as if Ackerman (1988) intended his theory to be 

more applicable to the acquisition of motor skills such as operating simple machinery, 

driving a car, playing musical instruments, and so forth. Even though this might be the case, 

Taylor (1992, 1994) obviously believes that Ackerman’s (1988) theory is also relevant as a 

basis for understanding the acquisition of more cognitively oriented skills, such as playing 

chess. In a learning context where psychomotor ability would not play a significant role in 

final criterion performance (i.e. a university) the argument would, thus, be that it is, 

especially, the general ability- and perceptual speed factors that would cause variance in 

final performance. Therefore, the inclusion of general intelligence and perceptual speed in a 

theory pertaining to the described scenario would still make sense.  

 

Ackerman (1988) regards general intelligence (general ability) as a broad construct that 

underlies non-specific information processing efficacy. Ackerman (1988) also states that 

the reasoning processes that account for individual differences across different content 

domains represent one component of a general intellectual ability. Clearly, Ackerman 

(1988) is a great supporter of the information processing approach to intelligence. 

 

Taylor (1992, 1994) agrees with Ackerman (1988) in that information processing makes up 

one of the constituent parts of cognitive ability or general intelligence. However, in also 

reviewing the conventional psychometric approach to cognitive assessment, Taylor (1992, 

1994) concludes that another constituent part of cognitive ability or general intelligence is 

the capacity to form abstract concepts. As Taylor (1992) explains:  
I would rather adopt a two-factor model of intelligence, the two factors being abstract 

thinking capacity and information processing capacity. The two factors are probably not 

totally separate: processing efficiency no doubt assists in success in forming abstract 

concepts, and abstract thinking no doubt helps in the formation of effective strategies to 

process information in the most economical way. (p. 5) 

 

Taylor also writes (1994).  
Information processing speed and capacity are not the complete foundation of 

intelligence, although these form one of two main fundamentals. The other is the 

potential to infer concepts and thus think abstractly. This potentiality is not independent 
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of processing speed and capacity-the two factors are related; but processing variables do 

not fully account for the individual’s potential to think abstractly. (p. 190) 

 

The other ability factor that is mentioned in Ackerman’s (1988) theory is perceptual speed. 

The core of this concept appears to involve speed of consistent encoding and comparing 

symbols.  Ackerman (1988) goes on to represent the structure of human abilities as a 

cylinder. Ackerman (1988) explains why: 
Problems exist in locating perceptual speed or psychomotor abilities in the Marshalek et 

al. (1983) model. Representation of these abilities can be rectified by explicitly 

segregating the complexity-specificity dimension from one of level-speed. With this 

modification a third dimension allows for both perceptual speed and psychomotor 

abilities. By using the basic two-dimensional surface at the extreme on the power 

(level)-speed dimension (i.e., a zero value for speed of information processing demands) 

and an arbitrary value for the extreme in speed (with the absence of cognitive 

processing, i.e., non cognitive motor speed), the structure of human abilities can be 

presented as a cylinder… Theoretically, as one moves down the cylinder, concentric 

sections represent the basic cognitive ability groups, with increasing demands on speed. 

(p. 291) 

 

Figure 2.2 is a depiction of Ackerman’s (1988) representation of human abilities as a 

cylinder.  Taylor (1994) understands and explains Ackerman’s (1988) cylindrical 

representation as follows: 
Competencies near the core of the cylinder are more general and closely related to the 

genotypic potential. Progressively larger concentric rings contain skills which are ever 

more specific and remote from fundamental potential. These rings also reflect the 

process of transfer in development and learning (Ferguson, 1954; 1956). The vertical 

dimension of the cylinder is a speed dimension. Starting from the top, each successive 

‘slice’ through the cylinder contains skills which are of an increasingly speeded nature. 

As development proceeds, skills and knowledge accumulated in prior learning have a 

growing impact on the emergence of new skills. 

Several authors (e.g. Anderson, 1983; Shiffrin & Schneider, 1977) have distinguished 

three phases of learning: conceptual understanding of the task, compilation of execution 

procedures, and automatization of processing. The boundary between the second and 

third phase is not distinct and the second phase merges into the third. It seems likely that 

the abstract thinking factor will play the major role in the first phase, whereas the 

processing speed and capacity factor will play an increasingly important role as learning 
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progresses to the phase of automatization. As automatization progresses, skills shift 

outwards and downwards in the cognitive cylinder. 

Measures in the core of the cylinder provide the best estimate of the individual’s 

fundamental potentiality. Those skills at the periphery are the product of a longer 

process of learning and transfer. (p. 190) 
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Figure 2.2 

A Modified Radex-Based Model Of Cognitive Abilities (Ackerman, 1988, p. 291) 

 

Ackerman (1988) explains individual differences in skill acquisition by providing three 

principles. Principle one, or phase one (refer to figure 2.2), corresponds to demands on 

general abilities. Here, individual differences in performance will be moderately to highly 

associated with general ability. In other words, abstract reasoning capacity and information 

processing capacity as in Taylor’s theory. Ackerman (1988) writes: 
With practice, once production systems are formulated to accomplish the consistent 

components of the task, the influence of general and content abilities will diminish. (p. 

293) 

 

In other words, now the individual has started, through application of abstract reasoning, 

general information processing and the process of transferring bits and pieces of knowledge 

(relevant to the specific task or problem) from already existing local processing systems, to 

design a local processing station “written” specifically to deal with the type of task or 

problem at hand (refer back to automatization discussed earlier). 
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Ackerman’s (1988) second principle states that skill acquisition phase two correspond to 

perceptual speed ability. Here it is important to remember that we are moving down- and 

outward, through practice, in the cylinder, thus, towards transfer from the new station and 

automatization. Ackerman (1988) explains this process: 
Early in practice the productions are still being formulated and tested; thus compilation 

and tuning are involved only to the degree that previously learned productions can be 

readily adapted for successful performance of the current task. Therefore, once the 

productions are formulated, there is an initially increasing association between 

perceptual speed ability and performance. Perceptual speed ability, that is, the facility 

and speed compilation of production systems that determine performance efficiency, is 

the essence of Phase 2. (p. 293) 

 

Relating this back to Taylor’s theory, at this stage, it is especially the learning dimensions 

of transfer of knowledge (now from the formulated production system) and automatization 

that will cause differences in individual performance i.e. the individual with a better 

capacity to transfer and automate will be the one who can better acquire or learn a new 

skill. Also, another way of understanding this is to refer back to Cattell’s (1971) theory, in 

other words, the fluid abilities are now becoming crystallised abilities. 

 

The third principle in Ackerman’s (1988) theory relates more to individual differences 

stemming from motor abilities and will, thus, not be discussed here. 

 

The argument thus far, seems to suggest that differences in skill acquisition (i.e. learning 

performance) between individuals could be explained in terms of four constructs, namely: 

abstract reasoning capacity, information processing capacity (speed, accuracy, flexibility), 

transfer of knowledge and automatization. But, the question still remains as to what the 

specific causal linkages between these constructs are, if indeed there are such causal 

linkages. 

 

The preceding argument seems to suggest that information processing capacity and 

automatization should be causally linked, because it is the task- or role specific information 

processes that have to be automated.  The individual’s ability to store what has been learned 
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from global processing of a novel experience into a given local processing system 

(automatization), so that the next time such a situation is encountered, there will be no need 

to exit from the local processing system (Sternberg, 1984), depends on the speed, accuracy 

and flexibility with which information can be processed.  But what about abstract reasoning 

capacity and transfer of knowledge? 

 

Taylor (1992) argues that there is a direct causal link between abstract reasoning and 

transfer of knowledge: 
… the concept of fluid intelligence, which is seen by many cognitive psychologists as 

the fundamental or core ability, is related to the concept of transfer, which is seen by 

many learning theorists as the fundamental characteristic of learning. (p. 6) 

 

In other words Taylor’s theoretical argument is that an individual’s capacity to transfer 

knowledge is causally linked to the individual’s abstract reasoning capacity. Also, that an 

individual’s ability to automate is causally linked to the individual’s capacity to process 

information. Furthermore, that transfer of knowledge and automization is causally linked to 

learning performance. This theoretical argument culminates in a structural model 

(illustrated in Figure 2.3) that depicts the specific paths or hypothesised causal linkages 

between the constructs. 
ζ1

ζ3

ζ2

ξ1

ξ2

η1

η2

η3φ 

 

 

 

 

 

 

 
 
 
 
Where: 
 ξ1 = Abstract thinking capacity  η1 = Transfer of knowledge 
 ξ2 = Information processing capacity η2 = Automatization 
      η3 = Learning performance 

Figure 2.3 

Graphical Portrayal Of Proposed Learning Potential Structural Model 
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The proposed structural model, which serves as the basis for this study, can be expressed as 

a set of structural equations (see equations one to three), representing the research problems 

that will be investigated: 

η1 = γ  + ζ11ξ1 1------------------------------------------------------------------------------------(1) 

η2 = γ  + ζ22ξ2 2------------------------------------------------------------------------------------(2) 

η3 = β  + β31η1 32η2 + ζ --------------------------------------------------------------------------(3) 3

 

The structural model depicted in Figure 2.3 can also be portrayed mathematically in terms 

of a series of matrices. The structural model is defined by the following four matrices and 

three vectors: 

 A 3 x 2 Γ (gamma)- matrix of path/regression coefficients γ describing the 

strength of the regression of η  on ξ  in the structural model; i i

  A 3 x 3 square Β (beta)-matrix of regression/path coefficients (β) describing 

the strength of the regression of ηi  on η  in the structural model; i

 A 2 x 2 symmetrical Φ (phi)-matrix of variance and covariance terms 

describing the variance in (φii) and covariance between (φij) the exogenous 

latent variables ξ  and ξi j (it is assumed that the exogenous latent variables are 

correlated and thus all off diagonal elements in Φ will be set free to be 

estimated);  

 A 3x3 symmetrical Ψ (psi) matrix of variance and covariance terms 

describing the variance in (ψii) and covariance between (ψij) the structural 

error terms ζ  and ζi j (it is assumed that the structural error terms are 

uncorrelated and thus that Ψ is a diagonal matrix); 

 A 2 x 1 ξ (ksi) column vector of exogenous latent variables; 

 A 3 x 1 η (eta) column vector of endogenous latent variables; 

 A 3 x 1 ζ (zeta) column vector of residual error terms. 

 

More specifically, the hypothesised causal relationships depicted in Figure 2.3 can be 

expressed in matrix form as equations 4 and 5. 
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0     0     0     ηη1  1   γ11  0       ξ ζ1  1

= 0     0     0     ηη2  2 + 0      γ22      ξ       + ζ2 2 --------------(4)  

η3  β31  β32   0     η3  0      0   ζ3 

 

η = Βη + Γξ + ζ------------------------------------------------------------------------------------(5) 

 

The structural model depicted as Figure 2.3 and Equation 4 could possibly be extended by 

freeing the parameter β12, thus making provision for a causal linkage between 

automatization and transfer.  Automatization of the operations required to perform complex 

tasks allows an individual to perform the tasks with minimal mental effort (Sternberg, 

1984), thus freeing cognitive capacity, specifically Gf, for novel problem solving (i.e., 

transfer) (Taylor, 1994).  In addition the possibility should be considered to split the 

endogenous latent variable learning performance into a job competency potential latent 

variable (η ) and a job competency latent variable (η3 4) so as to align the structural model 

more closely with the argument underlying the competency model depicted in Figure 2.1.   

 

If the endogenous latent variable learning performance would be interpreted to refer to the 

creative use of newly acquired knowledge (rather than the level to which job relevant 

knowledge and abilities have been developed), then the freeing of the parameter γ31 (in 

equation 4) should also be considered.  Development programmes are designed to empower 

employees with the job competency potential and job competencies required to deliver the 

outputs for which the job in question exists.  This should refer to more than simply the 

retrieving of previously transferred and automated (i.e. learned) responses to now familiar 

stimuli (again the application of newly acquired skills should not be dismissed altogether).  

The expectation rather would be that the affirmee would be able to apply the newly derived 

knowledge to novel stimuli not explicitly covered in the affirmative action development 

programme.  The application of newly acquired knowledge in solving new work related 

problems is, however, again transfer at work and thus dependent on (a) fluid intelligence 

and, since fluid intelligence can not operate in a vacuum, (b) the extent to which previous 

relevant learning (transfer) has been successfully internalised (automated).  By the same 

token information processing capacity should also affect the ability to apply newly derived 
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knowledge to novel stimuli not explicitly covered in the affirmative action development 

programme. The extended structural model can be depicted as Figure 2.4 
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Where: 
 ξ1 = Abstract thinking capacity  η1 = Transfer of knowledge 
 ξ2 = Information processing capacity η2 = Automatization 
      η3 = Job competency potential 
      η4 = Job competency 
 

Figure 2.4 

Graphical Portrayal Of Extended Learning Potential Structural Model 

 

The revised structural model can again be expressed as a set of structural equations 

representing the research problems that will be investigated: 

η1 = γ  + β11ξ1 12η2 + ζ --------------------------------------------------------------------------(6) 1

η2 = γ  + ζ22ξ2 2------------------------------------------------------------------------------------(7) 

η3 = β  + β31η1 32η2 + ζ --------------------------------------------------------------------------(8) 3

η4 = β  + γ  + γ  + ζ ------------------------------------------------------------------(9) 43η3 41ξ1 42ξ2 4

 

The revised structural model can again be portrayed mathematically in terms of a series of 

matrices: 
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 A 4 x 2 Γ (gamma)- matrix of path/regression coefficients γ describing the 

strength of the regression of η  on ξ  in the structural model; i i

  A 4 x 4 square Β (beta)-matrix of regression/path coefficients (β) describing 

the strength of the regression of ηi  on η  in the structural model; i

 A 2 x 2 symmetrical Φ (phi)-matrix of variance and covariance terms 

describing the variance in (Φii) and covariance between (Φij) the exogenous 

latent variables ξ  and ξi j (it is again assumed that the exogenous latent 

variables are correlated and thus all off diagonal elements in Φ will be set 

free to be estimated);  

 A 4x4 symmetrical Ψ (psi) matrix of variance and covariance terms 

describing the variance in (ψii) and covariance between (ψij) the structural 

error terms ζ  and ζi j it is assumed that the structural error terms are 

uncorrelated and thus that Ψ is a diagonal matrix); 

 A 2 x 1 ξ (ksi) column vector of exogenous latent variables; 

 A 4 x 1 η (eta) column vector of endogenous latent variables; 

 A 4 x 1 ζ (zeta) column vector of residual error terms. 

 

More specifically, the hypothesised causal relationships depicted in Figure 2.4 can be 

expressed in matrix form as equations 10 and 11. 

 

0     βη1  12     0    η1   γ11  0  ζ  1

= 0     0     0       ηη2  2 + 0      γ22      ξ       + ζ1 2 -------------(10)  

η3  β31  β32   0       η3  0      0       ξ ζ2  3 

0     0     βη4  43     η4  γ41    γ42 ζ 4

 

η = Βη + Γξ + ζ-----------------------------------------------------------------------------------(11) 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

The literature study has culminated in a basic learning potential structural model in which 

learning performance has been treated as a job competency potential latent variable.  The 

basic model has subsequently been expanded by making a distinction in the definition of 

learning performance between a job competency potential latent variable and a job 

competency latent variable.  The expanded model introduces an additional latent variable 

and consequently the basic model is not nestled in the expanded model in a manner, which 

would allow one to statistically evaluate the merits of adding additional paths to the model.   

 

The ideal, thus, would be to fit the expanded model since it corresponds more closely with 

the argument underlying the Performance@Learning competency model depicted in Figure 

2.1.  The ability to evaluate the fit of the expanded model is, however, contingent on the 

availability of suitable operational measures of the job competency latent variable.   

 

Unfortunately, the only data set that could be obtained for this study did not include both 

job competency potential and job competency as facets of learning performance. Only the 

basic model was consequently fitted in which learning performance is equated with the 

level of competence achieved in the job competency potential targeted by the affirmative 

training intervention.  One modification was, however, made to Figure 2.3 in that 

automatization was permitted to exert a causal influence on transfer of knowledge as in the 

expanded model. Equation 4 thus can be expressed as equation 12. 

 

0     βη1  12    0     η1   γ11  0       ξ ζ1  1

= 0     0     0     ηη2  2 + 0      γ22      ξ       + ζ2 2 -------------(12)  

η3  β31  β32   0     η3  0      0   ζ3 
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The validity and credibility of the implicit claim of the study to have come to the 

correct/true verdict on the fit of the structural model depends on the methodology used to 

arrive at the verdict.  Methodology is meant to serve the epistemic ideal of science. If very 

little of the methodology used is made explicit, there is no way of evaluating the merits of 

the researcher’s conclusions, and the verdict therefore simply has to be accepted at face 

value (whilst the verdict might be inappropriate due to an inappropriate or wrong procedure 

for investigating the merits of the structural model).  The rationality of science thereby 

suffers, as does ultimately the epistemic ideal of science (Babbie & Mouton, 2001).  A 

comprehensive description of the research methodology is consequently presented below. 

 

3.2 RESEARCH PROBLEMS 

 

In determining the fit of the basic learning potential structural model the following 

questions will be investigated in this study: 

 

 Does the basic learning potential structural model provide an adequate 

explanation of the covariance observed between the measures of learning 

performance, the learning competencies and learning potential? 

 Is the extent to which transfer of knowledge occurs determined by the level of 

abstract thinking capacity? 

 Is the extent to which automatization occurs determined by the level of 

information processing capacity? 

 Is the extent to which transfer of knowledge occurs determined by the extent to 

which automatization occurs? 

 Does transfer of knowledge determine job competency potential targeted by the 

affirmative training intervention? 

 Does automatization determine job competency potential targeted by the 

affirmative training intervention? 

 Is the influence of abstract thinking capacity on the job competencies targeted 

by the training intervention mediated by transfer of knowledge? 
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 Is the influence of information processing capacity on the job competencies 

targeted by the training intervention mediated by automatization? 

 

The APIL test Battery provides dynamic measures of two latent learning competencies and 

static measures of two latent dispositions, which determine the learning competencies 

(Taylor, 1989, 1994, 1997). In estimating expected learning performance, these measures 

would typically be combined in a linear multiple regression model.  Given the nature of the 

structural model underlying the APIL battery, the question, however, arises whether the 

static measures do not become redundant in a model that already includes the dynamic 

measures.  The following research questions are thereby implied: 

 

 Do the dynamic measures of the two latent learning competencies each explain 

unique variance in a composite measure of the job competency potential 

targeted by the affirmative training intervention?; 

 Do the static measures of the two latent learning dispositions explain variance in 

a composite measure of the job competency potential targeted by the affirmative 

training intervention when added to a model already containing dynamic 

measures of the two latent learning competencies?; and 

 Do the dynamic measures of the two latent learning competencies and the static 

measures of the two latent learning dispositions each explain unique variance in 

a composite measure of the job competency potential targeted by the affirmative 

training intervention? 

 

3.3 MEASURING INSTRUMENTS/OPERATIONALISATION 

 

To obtain empirical proof that the relationships postulated by the expanded learning 

potential structural model provides a plausible explanation for differences observed in 

learning performance, measures of the various exogenous and endogenous latent variables 

comprising the model are needed. In other words, the research hypothesis expressed as 

equation 12 should be operationalised by creating an exogenous and an endogenous 

measurement model.  
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The two measurement models describe how the exogenous and endogenous latent variables 

reflect themselves in manifest variables. However, to come to valid and credible 

conclusions on the ability of the expanded learning potential structural model to explain 

variance in learning performance, evidence is needed that the manifest indicators are indeed 

valid and reliable measures of the latent variables they are linked to in accordance with the 

measurement models.  Diamantopoulos and Siguaw (2000) clarifies: 
Clearly, unless we can trust the quality of our measures, then any assessment of the 

substantive relations of interest (i.e., the links among the latent variables themselves) 

will be problematic.  Thus an evaluation of the measurement part of the model should 

precede the detailed evaluation of the structural part of the model. (p. 89) 
 

Viewed from the perspective of a traditional validation study more than a practically and 

statistically significant validity coefficient would be needed to justify the use of the APIL 

Test Battery for selection into affirmative development interventions. To justify the claim 

that inferences on learning performance (η) can be made from the observed scores obtained 

from the APIL test battery it needs to be shown that (a) Y is a valid and reliable measure of 

learning performance (η), (b) Xj are valid and reliable measures of the latent learning 

competencies and competency potential measured by the APIL test battery (ξj) (c) the valid 

and reliable measures (Y) of the conceptualised final criterion (η) is systematically related 

to valid and reliable substitute measures (Xi) of the latent variables measured by the APIL 

test battery (ξ ), to ensure criterion-related validity (Guion, 1991; Theron 2002). j

 

Part of the evidence needed to establish the psychometric integrity of the indicator 

variables, used to operationalise the latent variables comprising the expanded learning 

potential structural model, is presented below.  The evaluation of the fit of the respective 

measurement models will, in addition, also reflect the extent of the success with which the 

indicator variables represent the latent variables to which they were linked. 

 

3.3.1 ABSTRACT THINKING CAPACITY 

 

Abstract thinking capacity (ξ1) was measured with the Concept Formation Test, which is a 

sub-test of the test battery. This is a test that measures the individual’s ability to form 
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abstract concepts, reason hypothetically, theorise, build scenarios and trace causes (Taylor, 

1997). 

 

The Concept Formation Test is a classificatory task where the testee is presented with sets 

of geometrical diagrams and then has to identify a diagram, which does not share a 

characteristic that all the others share (Taylor, 2006). 

 

The reliability of the Concept Formation Test scores was calculated with Kuder-

Richardson-type estimates. KR-20 coefficients (with correction applied under the 

assumption that the item difficulties are normally distributed) ranging between 0,78 and 

0,87 were obtained for the Concept Formation Test (Taylor, 2006). 

 

The nature of the APIL test battery allowed assigning each of the thirty items in the 

Concept Formation Test with either a 0 or 1 value. A score of 0 was assigned to each 

incorrect answer, while a score of 1 was assigned to each correct answer.  

 

In order to fit the model through structural equation modelling (see paragraph 3.8.2.1) two 

operational measurement scores for abstract reasoning capacity were needed. Therefore, 

two parcels were made by assigning all the items with equal numbering (i.e. 2, 4, 6 etc.) to 

one parcel and assigning all items with unequal numbering (i.e. 1, 3, 5 etc.) to the other 

parcel. The total number of correct answers (i.e. answers assigned 1) in each individual 

parcel of items were then used as operational measurement scores (X1 & X2). 

 

For the regression analysis (see paragraph 3.8.2.1) the total number of items correct was 

used as the measurement score for abstract thinking capacity. 

 

3.3.2 TRANSFER OF KNOWLEDGE 

 

Transfer of knowledge was measured with the Knowledge Transfer Test, which is a sub-test 

of the APIL test battery. The Knowledge Transfer Test measures knowledge transfer by 

exposing the testee to a number of related but increasingly complex problems. The 
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individual is given answers and feedback to example problems after he or she has 

completed each problem (Taylor, 2006). 

 

Reliabilities for the Knowledge Transfer Test were estimated through the split-half method. 

Taylor (2006) explains: 
… the scores for problems 1 and 3 are summed and the scores for problems 2 and 4 are 

summed and the totals for these two halves are correlated and corrected for test 

shortening. (p. 63) 

 

Split-half reliability coefficients ranging between 0,71 and 0,84 were obtained for the 

Knowledge Transfer Test (Taylor, 2006). 

 

Each candidate completed four individual sub-tests in the Knowledge Transfer Test. The 

total number of items correct obtained by each candidate in each individual sub-test was 

used as operational measurement scores (Y1, Y2, Y3 and Y4). In other words, four 

operational measurement scores, expressing transfer of knowledge, were used to fit the 

model through structural equation modelling. 

 

For the regression analysis the total number of items correct, across the four sub-tests, was 

used as the measurement score for transfer of knowledge. 

 

3.3.3 INFORMATION PROCESSING CAPACITY 

 

Information processing capacity was measured with the Flexibility-Accuracy-Speed-Tests. 

The Flexibility-Accuracy-Speed-Tests is a battery of four sub-tests within the APIL test 

battery that provides measures of the speed (quickness), the accuracy and the cognitive 

flexibility of information processing (Taylor, 2006). 

 

Three scores obtained for speed (X3), accuracy (X4) and flexibility (X5) were used as 

operational measures for information processing capacity to fit the model through structural 

equation modelling.  
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The Processing Speed score was calculated by adding the total number of items attempted 

(whether correct or incorrect) over the first three sub-tests (the forth sub-test requires the 

testee to work with all three problem types presented in the first three subtests) (Taylor, 

2006).  

 

Taylor (2006) states that the reliability of the Information Processing Speed variable cannot 

be directly determined. He does, however, go on to say that some indication of the 

reliability can be obtained by inspecting the correlations between the three components that 

are added together to derive the speed score. These are the Series Number Attempted, 

Mirror Number Attempted and Transformations Number attempted. Correlation 

coefficients ranging between 0,45 and 0,72, with a mean of 0,61, have been obtained 

between the three sub-test scores across six samples (Taylor, 2006). Taylor (2006) states 

that, given the correlations, it is expected that the Processing Speed score comprising all 

three scores will have a reliability in the 0,80’s. 

 

The Accuracy score is a logarithmically transformed and inverted score of error rate. The 

formula that was used to calculate the Accuracy score is as follows (Taylor, 2006): 

 
5 Accuracy = 100-30log10[(Number of Errors/Number Attempted) x 200]  

 

The reliability of the Accuracy score was estimated by combining sub-tests 1 and 3 and also 

sub-tests 2 and 4 (Taylor, 2006). Separate accuracy indices for each of the two combined 

scores were calculated and corrections were made for test shortening. Reliability 

coefficients ranging between 0,70 and 0,86 were obtained across six samples (Taylor, 

2006). 

 

The Flexibility score is a function of the amount of work correctly done in the first three 

sub-tests in comparison with the amount of work correctly done in the final sub-test 

(Taylor, 2006). The following formula was used to calculate the Flexibility score: 
2/(correct output in sub-test 1, 2 & 3)  Flexibility = (correct output in sub-test 4)

                                                 
5 All four sub-tests were taken into account in calculating the number of errors and number attempted as per the formula. 
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Taylor (2006) argues that it is not possible to calculate the reliability of the Flexibility 

score. This is due to the fact that the learning/familiarity effect would corrupt the scores, 

unless the test-retest exercise is conducted many months apart. He does, however, go on to 

argue that the Flexibility score typically has large variance, which is a pre-requisite (but no 

guarantee) for good reliability (Taylor, 2006). 

 

Once again the total sum of all three scores (speed, accuracy and flexibility) was used in 

combination as one measurement score for information processing capacity in the 

regression analysis. 

 

3.3.4 AUTOMATIZATION 

 

An indication of automatization would be if an individual becomes ever more adept and 

efficient at what he or she is doing. Such mastery is often expressed as a learning curve 

reflecting the number of units of work correctly done in successive time segments. The 

steeper the learning curve, the more rapid the process of automatization (Taylor, 1992). 

 

Automatization was assessed with the Curve of Learning test, a sub-test of the APIL test 

battery, as the increase of work output over four sessions (Taylor, 2006). 

 

Two operational measurement scores for automatization, a total output score and a memory 

and understanding score was used to fit the structural model. The output score was 

calculated as follows: 

 
6  COL1 + 1,75COL2 + 2,33COL3 + 2,8COL4  

 

                                                 
6 The adjustment factors applied to COL2, COL3 and COL4 is to correct for time shortening  
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Reliability for the total output score was estimated by computing COL1 + COL3 and also 

COL2 + COL4 and then correlating these two scores and correcting for test shortening 

(Taylor, 2006). Reliability estimates, across six samples, ranging between 0,88 and 0,97 

were obtained across six samples (Taylor, 2006). Correlations ranging between 0,43 and 

0,91 were obtained between the four Curve of Learning sessions across the six samples 

(Taylor, 2006). 

 

Taylor (2006) explains the memory test as follows: 
Immediately after they have finished the COL, testees are administered a Memory and 

Understanding Test based on COL material. COL problems involve transformations of 

symbols and determining the meaning of these symbols. While doing COL, testees have 

access to a Dictionary of this information, but are encouraged to learn as much of the 

meanings and transformations and are told that they will shortly have to do a test on the 

content of the Dictionary. 

 

Testees who internalise more of the information while doing the COL (as opposed to 

simply looking the material up in the Dictionary) will do better on the Memory and 

Understanding Test. 

 

From the explanation above, it is clear that the Memory and Understanding score displays 

an individual’s ability to automate responses. The reliabilities of the Memory and 

Understanding scores were calculated with KR-type estimates. The KR-20 coefficients 

(with correction applied under the assumption that the item difficulties are normally 

distributed) ranged between 0,70 and 0,82 over six samples (Taylor, 2006). The total 

number of items correct in the Memory and Understanding test was used in fitting the 

structural model. 

 

The total number of all items correct, across all four Curve of Learning sub-tests were used 

as the operational measurement score in the regression analysis. 
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3.3.5 JOB COMPETENCY POTENTIAL 

 

Job competency potential was determined by two measures as being used by the South 

African Police Service (SAPS) in the basic training learning programme. Scores obtained 

by entry level constables in the Specific Crimes (Y1) and Statutory Law (Y2) modules were 

used as an indication of the level of job competency potential, with the basic premises that a 

higher score obtained by a candidate indicates a higher level of job competency potential.  

 

The two modules were selected because of the fairly broad distribution and variance in 

scores and seem to require the creative use of newly obtained knowledge in applied 

problem solving and also because performance on the examinations set in these two 

modules to a greater degree than the other modules.  

 

Another concern, purely based on prima facie evidence and not on an in-depth investigation 

into the matter, is that the training institution in question seems to have fallen into the trap 

of designing evaluations or measurement instruments (i.e. examinations and tests) to merely 

measure the extent to which students are able to recollect information from memory rather 

than their ability to creatively use the newly obtained knowledge in problem solving. 

Differences in scores are, thus, not primarily determined by the extent to which real 

learning has taken place i.e. the ability of the student to automate responses, through 

automation of information processing procedures, given familiar problems (maybe 

previously dealt with or covered in training) and the extent to which a student can transfer 

knowledge obtained through training to solve similar (but not exactly the same) unique 

problems, previously dealt with or covered in training.  

 

The argument that it is often impractical or not always possible to design measures in such 

a, maybe more complicated, but definitely more valid and credible manner, will always be 

posed. However, such an argument only serves as an ‘easy way out’-type of argument and 

only aggravates the problem that the extent to which real learning took place is not 

effectively determined in many training institutions, where the main aim should be to 

ensure that students who qualify through the system are in fact truly competent and ready to 
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face the action learning challenges posed by the specific job, role or function that the 

training is aimed at.  

 

Many students who qualify through training institutions are presented to the market as 

potentially ready, but in fact, if the measures used in the training institution are not valid 

and credible measures of the competencies needed to eventually perform successfully in the 

job, then training institutions are presenting candidates to the market who have no or very 

little real potential to perform in the job. Maybe, this is exactly part of the problem that lies 

at the core of the inability of South Africa to be a competitive global player as presented in 

the opening argument of this paper. However, even though this issue is a critical one that 

needs to be urgently addressed, it is not the purpose of this paper to address it. 

 

However, the validity and credibility of conclusions on the ability of the expanded learning 

potential structural model to explain variance in learning performance, is highly dependant 

on evidence that the manifest indicators, in this case the measures used by the SAPS, are 

indeed valid and reliable measures of job competency potential.  Such evidence could not 

be obtained from the SAPS and it is, therefore, acknowledged that the credibility of 

conclusions made in this study are severely crippled by this. 

 

In this specific study, and in any study making use of data obtained from training 

institutions, given the foregoing argument, the measures used by these institutions to 

measure (Y) the conceptualised final criterion (job competency potential), should be 

approached with a fair degree of caution. Ideally, valid and reliable measures (Y) of the 

conceptualised final criterion should rather be designed and applied by the researcher him-

or herself.  However, given the already formidable magnitude of the study and due to 

various practical, and financial reasons, this was not possible. 

 

71 



  

3.4 SAMPLING 

 

It is not always practical or possible to obtain measurements from every subject in a target 

population (N). The more practical and viable option is to focus on a representative sample 

(n) of the target population. The extent to which observations can or may be generalised to 

the target population is a function of the number of subjects in the chosen sample and the 

representativeness of the sample (SIP, 1998), while the power of inferential statistical tests 

also depends on sample size (Elmes, Kantowitz & Roediger, 1999; Theron, 2002). Given 

the nature of the study, the question of sample size should primarily be considered from the 

perspective of Structural Equation Modelling (SEM). Kelloway (1998) argues that SEM is 

very much a large sample technique and that tests of model fit are based on the assumption 

of large samples.  

 

Determining the correct sample size is critical for power analysis purposes, especially the 

determination of both Type I and Type II errors. The detail concerning power analysis will, 

however, be discussed at a later stage (refer to section 4.10). 

 

The MacCallum, Browne and Sugawara (1996) tables indicate that a sample size of 221 

subjects is required to ensure a 0,80 probability of correctly rejecting an incorrect model  

with 597 degrees of freedom when actual model fit is close (i.e., εa=0,05), if the probability 

of a Type I error in testing the null hypothesis of exact fit (i.e., εa=0,0) is fixed at 0,05 [i.e., 

P(reject H : RMSEA=0|RMSEA=0,05)]. 0

 

The tables further indicate that a sample size of 190 subjects is required to ensure a 0,80 

probability of correctly rejecting an incorrect model with 59 degrees of freedom when 

actual model fit is mediocre (i.e., εa=0,08), if the probability of a Type I error in testing the 

null hypothesis of close fit is fixed at 0,05 (MacCullum et al., 1996) [i.e., P(reject H0: 

RMSEA=0,05|RMSEA=0,08)]. 

                                                 
7 The proposed learning potential structural model has 35 free parameters.  However, only 32 parameters are effectively 
estimated since the Lisrel fixes one lambda-Y element for each of the three endogenous latent variables to unity (Personal 
communication, Gerhard Mels, 17 July 2006). The degrees of freedom are therefore the number of unique elements in the 
observed covariance matrix minus the number of model parameters to be estimated.  In this case therefore 91-32=59. 
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For this study a non-probability sample of 434 new recruits from the South African Police 

Service Training College in Philippi, Cape Town was used. Even though the size of the 

selected sample is quite satisfactory, as in any study making use of a non-probability 

sample of the target population, caution should be taken when making generalisations of 

findings to the target population. Moreover caution should also be exercised when 

considering the generalizability of the study findings to other populations of learners. 

 

3.5 MISSING VALUES 

 

Multivariate data sets more often than not contain missing values, which may result from 

non-responses or absenteeism. (Mels, 2003). The issue of missing values had to be 

addressed in this study before the data could be analysed.  

 

The missing data values were in part dealt with in the traditional way through a method of 

list wise deletion by only including cases in the analysis that had values on the two criterion 

measures Specific Crimes (Y ) and Statutory Law (Y1 2). The problem, however, as Mels 

(2003) warns, is that the dataset tends to be substantially reduced.  In this case list-wise 

deletion resulted in an effective sample size of 130 subjects. Moreover the subset of 130 

cases still included a limited number of missing values on the predictor variables. 

 

To solve the remaining missing values problem the Multiple Imputation (MI) and Full 

Information Maximum Likelihood (FIML) procedures available in LISREL 8.54 (Jöreskog 

& Sörbom, 2003), could have been used.  

 

Even though the Full Information Maximum Likelihood (FIML) estimation procedure is the 

more efficient method of the two (Du Toit & Mels, 2002; Mels, 2003), no separate imputed 

data set is created which thus would have prevented item and dimensionality analyses and 

the formation of item parcels (Du Toit & Du Toit, 2001; Mels, 2003), which is a 

requirement in this study. Another reason for not using the Full Information Maximum 

Likelihood (FIML) estimation procedure is the fact that FIML assume that the values are 

missing at random and that the observed variables are continuous and follow a multivariate 
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normal distribution (Du Toit & Du Toit, 2001). However, the variables most probably do 

not follow a multivariate normal distribution.  Moreover, due to the missing value problem 

it is not possible to test the multivariate normality assumption.  In addition the individual 

items could probably not legitimately be considered continuous variables but rather should 

be regarded as ordinal variables. 

 

The most satisfactory solution of the two would thus have been to use a multiple imputation 

procedure (Du Toit & Du Toit, 2001; Mels, 2003).  The biggest advantage of both the two 

multiple imputation procedures available in LISREL 8.54 is that estimates of missing 

values are derived for all cases in the initial sample (i.e., no cases with missing values are 

deleted) and the full data set is available for subsequent item and dimensionality analyses, 

and the formation of item parcels (Du Toit & Du Toit, 2001; Mels, 2003).   

 

The problem, however, was that the multiple imputation procedures available in LISREL 

8.54, assume that the values are missing at random and that the observed variables are 

continuous and follow a multivariate normal distribution (Du Toit & Du Toit, 2001).  

Especially the latter two prerequisites were seen as problematic in this case. 

 

Therefore, to solve the remaining missing value problem, imputation by matching was 

used, specifically because the assumption of multivariate normality was not met. 

 

Imputation by matching refers to a process of substituting real values for missing values. 

The substitute values replaced for a case are derived from one or more other cases that have 

a similar response pattern over a set of matching variables (Jöreskog & Sörbom, 1996a).  

 

The ideal is to use matching variables that will not be utilized in the confirmatory factor 

analysis. This, however, was not possible in this case. Four variables, Speed and Flexibility 

(two measures of information processing capacity) and Curve of Learning Total and Curve 

of Learning Adjusted (two measures of Automatization) were identified, through statistics 

output options in PRELIS, as being least plagued by missing values and, thus, served as 
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matching variables. PRELIS succeeded in successfully imputing missing values for 119 

cases.  

 

The race and age frequency distributions across the final effective sample of 119 

respondents are displayed in Table 3.1 and Table 3.2 below:  

 

Table 3.1 

Race Frequency Distribution Across The Sample Population. 

Race

5 4.2 4.2 4.2
61 51.3 51.3 55.5
50 42.0 42.0 97.5

3 2.5 2.5 100.0
119 100.0 100.0

 
African
Coloured
European
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
 

Table 3.2 

Age Statistics And Frequency Distribution Across Sample Population. 

Age

1 .8 .8 .8
2 1.7 1.7 2.5
6 5.0 5.0 7.6
9 7.6 7.6 15.1

13 10.9 10.9 26.1
10 8.4 8.4 34.5
14 11.8 11.8 46.2

8 6.7 6.7 52.9
17 14.3 14.3 67.2
14 11.8 11.8 79.0
10 8.4 8.4 87.4
11 9.2 9.2 96.6

1 .8 .8 97.5
2 1.7 1.7 99.2
1 .8 .8 100.0

119 100.0 100.0

18
19
20
21
22
23
24
25
26
27
28
29
30
31
33
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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3.6 RESEARCH DESIGN 

 

To empirically investigate the hypothesis that variance in learning performance can be 

explained in terms of the learning competencies and learning competency potential as 

measured by the APIL test battery, a strategy was required that will provide unambiguous 

empirical evidence in terms of which to evaluate the operational hypotheses. This empirical 

evidence providing strategy is known as the research design (Kerlinger, 1973; Theron, 

2002).  

 

The research design is the plan and structure of the investigation which is set up to firstly, 

procure answers to the research question and secondly, to control variance (Kerlinger, 

1973).  The ability of the research design to maximise systematic variance, minimise error 

variance and control extraneous variance (Kerlinger, 1973; Kerlinger & Lee, 2000) will 

determine the unambiguousness with which the empirical evidence can be interpreted for or 

against the learning potential hypothesis. 

 

An ex post facto correlational design was used in this study. Ex post facto research is a 

form of systematic empirical enquiry in which the researcher does not have direct control 

over the independent variables. Their manifestations have, thus, either already occurred or 

they are not inherently manipulable (Kerlinger & Lee, 2000). Inferences about the 

hypothesised relation between the latent variables ξ  and ηj i are made from concomitant 

variation in independent and dependent variables (Kerlinger & Lee, 2000). 

 

Kerlinger and Lee (2000) mention the following three major limitations regarding ex post 

facto research. The limitations are: 

 The inability to manipulate independent variables; 

 The lack of power to randomise; and 

 The risk of improper interpretation. 
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Ex post facto research lacks control (especially when compared to experimental designs) 

and erroneous interpretations may originate due to the possibility of more than one 

explanation for the obtained difference or correlation (Kerlinger & Lee, 2000). Thus, 

Kerlinger and Lee (2000) warn that results obtained from ex post facto research should be 

treated with caution.  Although it is possible to enhance the degree of control achieved in 

any given ex post facto design (Kerlinger & Lee, 2000), these extensions to the basic 

correlational design could not be practically utilized in this particular study. 

 

The objective of this study was to establish whether specific causal linkages exist between 

learning competency potential, the learning competencies and learning performance as 

proposed by the expanded learning potential structural model(Equation 12). The ex post 

facto nature of the research design, however, precluded the drawing of causal inferences 

from significant path coefficients. 

 

If unsatisfactory absolute model fit would be found (Byrne, 1989; Kelloway, 1998) the 

conclusion would inevitably follow that the comprehensive model does not provide an 

acceptable explanation for the observed covariance matrix and thus that the structural 

model expressed as equation 12 does not satisfactorily explain variance in learning 

performance (assuming acceptable measurement model fit).  

 

The converse, however, is not true. If the covariance matrix derived from the estimated 

model parameters closely correspond to the observed covariance matrix it would not imply 

that the processes postulated by the structural model necessarily must have produced the 

observed covariance matrix and that the theory underlying the APIL test battery must be 

valid. A high degree of fit between the observed and estimated covariance matrices would 

only imply that the processes portrayed in the structural model provide one plausible 

explanation for the observed covariance/correlation matrix. The structural model could, 

under such an outcome, be considered corroborated in the sense that it survived an 

opportunity to be refuted (Popper, 1972).  

 

77 



  

3.7 HYPOTHESES 

 

In accordance with the literature study, the proposed research problems and the derived 

structural model (expressed as equation 12) the following substantive research hypotheses 

and associated statistical hypotheses are formulated (See Appendices A and B). 

 

Hypothesis 1a: 

The structural model expressed as equation 12 exactly fits the data in the parameter.  There 

is therefore no significant discrepancy between the reproduced covariance matrix implied 

by the model (Σ(Θ); see Figure 3.1) and the observed population covariance matrix (Σ). 

H01a: Σ = Σ(Θ) 

Ha1a: Σ ≠ Σ(Θ) 

The exact fit hypothesis could alternatively be formulated as: 

H01a: RMSEA=0 

Ha1a: RMSEA>0 

 

Hypothesis 1b: 

The structural model expressed as equation 12 fits the data in the parameter closely.  The 

reproduced covariance matrix implied by the model (Σ(Θ)) closely approximates the 

observed population covariance matrix (Σ). 

H01b: RMSEA≤0,05 

H : RMSEA>0,05 a1b

 

Hypothesis 2: 

Abstract thinking capacity (ξ1) has a statistically significant positive effect on transfer of 

knowledge (η1). 

H02: γ11 = 0 

H : γa2 11 > 0 
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Hypotheses 3: 

Information processing capacity (ξ2) has a statistically significant positive effect on 

automatization (η ). 2

H03: γ22 = 0  

H : γa3 22 > 0 

 

Hypotheses 4: 

The extent to which transfer of knowledge (η1) occurs is positively determined by the 

extent to which automatization occurs (η ). 2

H04: β12 = 0 

H : βa4 12 > 0 

 

Hypotheses 5: 

Transfer of knowledge (η1) has a statistically significant positive effect on job competency 

potential targeted by the affirmative training intervention (η3). 

H05: β31 = 0 

H : βa5 31 > 0 

 

Hypotheses 6: 

Automatization (η2) has a statistically significant positive effect on job competency 

potential targeted by the affirmative training intervention (η3). 

H06: β32 = 0 

H : βa6 32 > 0 

 

Hypothesis 7: 

The influence of abstract thinking capacity (ξ1) on the job competencies targeted by the 

training intervention (η3) is mediated by transfer of knowledge (η ). 1

H07: γ11β31 = 0 

: γHa7 11β31 > 0 
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Hypothesis 8: 

The influence of information processing capacity (ξ2) on the job competencies targeted by 

the training intervention (η ) is mediated by automatization (η3 2). 

H08: γ22β32 = 0 

H : γa8 22β32 > 0 

 

Hypothesis 9: 

The dynamic measures of the two latent learning competencies, transfer of knowledge (X3) 

and automatization (X4), each explain unique variance in a composite measure of the job 

competency potential targeted by the affirmative training intervention (Y). 

H09a: β[X ] = 0|β[X3 4] ≠ 0 

Ha9a: β[X ] > 0|β[X3 4] ≠ 0 

H09b: β[X ] = 0|β[X4 3] ≠ 0 

H : β[X ] > 0|β[Xa9b 4 3] ≠ 0 

 
8Hypothesis10 : 

The static measures of the two latent learning dispositions (X  & X1 2) explain variance in a 

composite measure of the job competency potential targeted by the affirmative training 

intervention (Y) when added to a model already containing dynamic measures of the two 

latent learning competencies (X  & X ). 3 4

H010: β[X ] = β[X ] = 0|β[X ] ≠ 0, β[X ] ≠ 0 1 2 3 4

H : β[X ] ≠ β[X ] ≠ 0|β[X ] ≠ 0, β[X ] ≠ 0 a10 1 2 3 4

 
9: Hypothesis 11a

Abstract reasoning capacity (X1) produces unique variance in job competency potential 

targeted by the affirmative training intervention (Y) not attributable to transfer of 

knowledge (X ), automatization (X ) or information processing capacity (X ). 3 4 2

H011a: β[X ] = 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 1 2 3 4

                                                 
8 H010 will only be tested if either H09a or H09b or both are rejected. If only H09a or H09b would be rejected H010 would be 
amended accordingly. 
9 The family of null hypotheses under hypothesis 11 will only be tested if H010 is rejected.  Hypotheses might be amended 
depending on the results obtained in the preceding hypothesis tests. 
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Ha11a: β[X ] ≠ 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 1 2 3 4

 

Hypothesis 11b: 

Transfer of knowledge (X3) produces unique variance in job competency potential targeted 

by the affirmative training intervention (Y) not attributable to abstract reasoning capacity 

(X ) automatization (X1 4) or information processing capacity (X ). 2

H011b: β[X ] = 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 3 1 2 4

Ha11b: β[X ] ≠ 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 3 1 2 4

 

Hypothesis 11c: 

Information processing capacity (X2) produces unique variance in learning performance (Y) 

not attributable to transfer of knowledge (X ), abstract reasoning capacity (X3 1) or 

automatization (X ). 4

H011c: β[X ] = 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 2 1 3 4

Ha11c: β[X ] ≠ 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 2 1 3 4

 

Hypothesis 11d: 

Automatization (X4) produces unique variance in learning performance (Y) not attributable 

to transfer of knowledge (X3), abstract reasoning capacity (X1) or information processing 

capacity (X ). 2

H011d: β[X ] = 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 4 1 2 3

Ha11d: β[X ] ≠ 0│ β[X ] ≠ 0, β[X ] ≠ 0, β[X ] ≠ 0 4 1 2 3

 

3.8 STATISTICAL ANALYSIS TECHNIQUES AND STATISTICAL PACKAGE 

 

3.8.1 ITEM- AND DIMENSIONALITY ANALYSIS 

 

Item analysis is a technique that is generally used to identify and eliminate items from a 

measure that do not contribute to an internally consistent description of the sub-scale in 

question. Therefore, high validity and reliability can be built into tests in advance through 
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item analysis, thus, improving tests through the selection, substitution, or revision of items 

(Anastasi & Urbina, 1997). 

 

The architecture of the APIL test battery reflects the intention to construct essentially one-

dimensional sets of items to reflect variance in each of the latent variables collectively 

comprising learning potential.  The items are meant to function as homogenous stimulus 

sets to which raters respond with behaviour, which is primarily a relatively uncontaminated 

expression of a specific underlying latent variable.  The same argument would apply to 

multiple indicator learning performance measures.  The objective of dimensionality 

analysis is to confirm the uni-dimensionality of each sub-scale and to remove items with 

inadequate factor loadings or to split heterogeneous sub-scales into two or more 

homogeneous subsets of items (and revise the structural model). 

 

Unfortunately the nature of most of the individual items of the measures used in this study 

did not allow item- and dimensionality analysis to be done. It is, nonetheless, believed that 

Taylor (1989, 1994, 1997) did conduct item- and dimensionality analysis when he 

originally developed the APIL test battery although no detailed account of the results could 

be traced. For the purpose of this study, only the individual items as obtained through the 

Concept Formation Test allowed for item- and dimensionality analysis.  

 

3.8.2 STRUCTURAL EQUATION MODELLING (SEM) 

 

Structural equation modelling (SEM) was used as the statistical analysis technique to test 

the proposed model’s absolute fit. Kelloway (1998) gives three arguments in favour of 

SEM as an analysis technique  

 

Firstly, Kelloway (1998) argues that in the social sciences, measures are often used to 

represent constructs. SEM allows the researcher to determine how well these measures 

reflect the intended constructs. Kelloway (1998, p. 2) argues: 
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Confirmatory factor analysis, an application of structural equation modelling, is both 

more rigorous and more parsimonious than the “more traditional” techniques of 

exploratory factor analysis. 

 

Furthermore, factor analysis as per SEM is based on the testing of hypotheses, with explicit 

tests of both the overall quality of the factor solution and the specific parameters (e.g. factor 

loadings) composing the model (Kelloway, 1998). 

 

Secondly, Kelloway (1998) argues that social scientists are mostly interested in the question 

of prediction. He argues that predictive models have become very complex and that SEM 

allows the testing and specification of these more complex “path” models as an entity in 

addition to testing the components comprising the model. 

 

Lastly, Kelloway (1998) argues that SEM provides a flexible, yet powerful, method by 

which the quality of measurement can be taken into account when evaluating the predictive 

relationships existing amongst the underlying latent variables.  Unlike more traditional 

analysis techniques, SEM permits estimates of the strength of the relationship existing 

between latent variables unattenuated by measurement error. 

 

Also in favour of SEM Bollen and Long (1993) writes: 
Structural equation models (SEMs) are a well-known component of the methodological 

arsenal of social sciences. Much of their attractiveness stems from their generality. Like 

econometric methods, SEMs allow consideration of simultaneous equations with many 

endogenous variables. Unlike most econometric methods, SEMs allow measurement 

error in the exogenous and endogenous variables. As with factor analysis developed in 

psychometrics and related procedures in sociometrics, SEMs permit multiple indicators 

of latent constructs and estimation of reliability and validity. In addition, SEMs allow 

more general measurement models than traditional factor-analytic structures and enable 

the researcher to specify structural relationships among the latent variables. Thus 

structural equation models are a synthesis of procedures developed in econometrics, 

sociometrics, and psychometrics. (p. 1) 
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The arguments provided by Kelloway (1998) and Bollen and Long (1993) serve as the 

reason behind the selection of SEM as the statistical analysis technique used in this study. 

The following five distinct but interrelated steps, which characterise most applications of 

SEM, were adhered to (Bollen and Long, 1993; Diamantopoulos & Siguaw, 2000): 

 Model specification; 

 Evaluation of model identification; 

 Estimation of model parameters; 

 Testing model fit; and 

 Model respecification. 

 

Model specification involves describing the nature and number of model parameters to be 

estimated in the initial comprehensive model.  It would also include the construction of a 

comprehensive path diagram depicting the substantive hypotheses and measurement 

system. Evaluation of model identification involves an examination of the data to determine 

whether it is possible to find unique values for the freed parameters of the specified model. 

Once a model is identified the researcher has to select an estimation technique. This process 

is often determined by the nature and distributional properties of the variables that are being 

analysed. After parameter estimates are obtained, the researcher has to test whether the 

model is consistent with the data, in other words, does the model fit the data. If the model 

does indeed fit the data, the process can stop. However, the fit of the model can more than 

often be improved through respesification of the model either by fixing currently free 

parameters, constraining parameters or freeing additional parameters, whereupon steps 2-5 

can be repeated (Bollen & Long, 1993). 

 

Ideally, should satisfactory model fit be achieved, the model should be cross-validated by 

fitting the model with parameters constrained to the estimated values found during the 

initial study on a fresh data set from the same population.  This aspect is especially 

important if the initial data set has been used to modify the original model (Diamantopoulos 

& Siguaw, 2000).  Cross-validation did not form part of this study.  Another, independent 

study will investigate the stability of the model parameter estimates by fitting the model to 

a validation sample. 
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The statistical package that was used in the analysis is LISREL 8.54 for Windows (Du Toit 

& Du Toit, 2001; Jöreskog & Sörbom, 2003; Mels, 2003).  

 

3.8.2.1 Specification of the Full LISREL Model 

In its most general form, the LISREL model consists of a set of linear structural and 

measurement equations. The variables in the model are either directly observed or latent 

(theoretical) variables. The general assumption is that there is a causal structure among the 

latent variables and that the observed variables are indicators of the latent variables 

(Jöreskog, 2003).The comprehensive model is made up of two parts, the measurement 

model and the structural model. The measurement model specifies how latent variables are 

indicated by the observed variables; in other words it describes the reliabilities and 

validities (measurement properties) of the observed variables. The structural equation 

model, on the other hand, specifies the causal relationships among the latent variables, 

describes the causal effects, and assigns the explained variance (Jöreskog, 2003). 

 

Structural model 

The revised basic learning potential structural model is schematically depicted in Figure 

3.1. 
γ11 

 

 

 

 

 

 
Where: 
ξ1 = Abstract reasoning capacity η1 = Transfer of knowledge 
ξ2 = Information processing capacity η2 = Automatization 
 η3 = Job competency potential targeted by the   

affirmative training intervention 
 

Figure 3.1 

Graphical Portrayal Of Fitted Learning Potential Structural Model 
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The proposed structural model, which serves as the basis of this study, can be expressed as 

a set of structural equations representing the research hypotheses that will be investigated. 

η1 = γ  + β11ξ1 12η2 + ζ --------------------------------------------- ----------------------------(13) 1

η2 = γ  + ζ22ξ2 2----------------------------------------------------------------------------------- (14) 

η3 = β  + β31η1 32η2 + ζ --------------------------------------------------------------------------(15) 3

 

The structural model can also be portrayed mathematically in terms of a series of matrices. 

The structural model is defined by the following three matrices and three vectors: 

 A 3 x 2 Γ (gamma)- matrix of path/ regression coefficients γij describing the 

strength of the regression of η  on  ξ ) in the structural model; i j

  A 3 x 3 square Β (beta)-matrix of regression/ path coefficients (βij) 

describing the strength of the regression of ηi  on η  in the structural model; j

 A 2 x 2 symmetrical matrix Φ (phi)-matrix of variance and covariance terms 

describing the variance in (Φii) and covariance between (Φij) the exogenous 

latent variables ξ  and ξi j  (it is again assumed that the exogenous latent 

variables are correlated and thus all off diagonal elements in Φ will be set 

free to be estimated);;  

 A 3x3 symmetrical Ψ (psi) matrix of variance and covariance terms 

describing the variance in (ψii) and covariance between (ψij) the structural 

error terms ζ  and ζi j it is assumed that the structural error terms are 

uncorrelated and thus that Ψ is a diagonal matrix); 

 A 2 x 1 ξ (ksi) column vector of exogenous latent variables; 

 A 3 x 1 η (eta) column vector of endogenous latent variables; 

 A 3 x 1 ζ (zeta) column vector of residual error terms. 

 

More specifically, the hypothesised causal relationships depicted in Figure 3.1 can again be 

expressed in matrix form as equation 12 and more succinctly as equation16.  

0     βη1  12  0     η1   γ11  0       ξ ζ1  1

= 0     0     0     ηη2  2 + 0      γ22      ξ       + ζ2 2  ------------------(12)  

η3  β31  β32   0     η3  0      0   ζ3 
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η = Βη + Γξ + ζ-----------------------------------------------------------------------------------(16) 
 

Endogenous measurement model 

The endogenous measurement model (depicted in Appendix A) can be expressed in terms 

of the following set of measurement equations: 
yy1 = λ 11η  + ε -------------------------------------------------------------------------------------(17) 1 1

yy2 = λ 21η  + ε -------------------------------------------------------------------------------------(18) 1 2

yy3 = λ 31η  + ε -------------------------------------------------------------------------------------(19) 1 3

yy4 = λ 41η  + ε -------------------------------------------------------------------------------------(20) 1 4

yy5 = λ 52η  + ε -------------------------------------------------------------------------------------(21) 2 5

yy6 = λ 62η  + ε -------------------------------------------------------------------------------------(22) 2 6

yy7 = λ 73η  + ε -------------------------------------------------------------------------------------(23) 3 7

yy8 = λ 83η  + ε -------------------------------------------------------------------------------------(24) 3 8

 

More specifically, the set of endogenous measurement equations can be summarized as 

matrix equations 25 and 26.  The loadings (λy
ji) of the observed Yj variables on the 

endogenous latent variables (η ), as depicted in Appendix A are reflected in Λi y. 

 
yy λ 0 0   ε1  11 1 

yy λ 0 0   ε2  21   2 

yy λ3  31 0 0   η  ε     1 3

y= λy4  41 0  0   η + ε2  4     --------------------------(25) 
yy 0     λ 0  η5  52 3  ε5

yy 0 λ 0   ε6  62 6 

yy 0 0 λ7   73   ε7 

yy 0 0 λ8   83   ε8 

 

Y=Λyη + ε ………………………………………………………………………………(26) 
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Exogenous measurement model 

The exogenous measurement model (schematically depicted in Appendix A) can be 

expressed as the following set of equations: 
xx1 = λ 11ξ  + δ -------------------------------------------------------------------------------------(27) 1 1

xx2 = λ 21ξ  + δ -------------------------------------------------------------------------------------(28) 1 2

xx3 = λ 32ξ  + δ -------------------------------------------------------------------------------------(29) 2 3

xx4 = λ 42ξ  + δ -------------------------------------------------------------------------------------(30) 2 4

xx5 = λ 52ξ  + δ -------------------------------------------------------------------------------------(31) 2 5

 

More specifically, the set of exogenous measurement equations can be summarized as 

matrix equation 32 and 33.  The loadings (λx
ji) of the observed Xj variables on the 

exogenous latent variables (ξ ), as depicted in Appendix A are reflected in Λ .  i x

 
xx λ 0   δ1  11 1 

xx λ 0   ξ δ2  21 1  2 

xx 0 λ3  32   ξ +  δ    --------------------------------------------(32) 2 3

yx = 0 λ4  42   δ4

xx 0     λ   δ5  52 5

 

X=Λ  ξ + δ ………………………………………………………………………….…(33) x

 

Full LISREL model 

The full LISREL model for single samples, for deviations about the means, can be 

expressed mathematically as the following three equations (Jöreskog, 2003): 

 The structural model: 

η = Βη + Γξ + ζ---------------------------------------------------------------------(16) 

 The measurement model for y: 

Y = Λyη + ε---------------------------------------------------------------------------(26) 

 The measurement model for x: 

X= Λ ξ + δ----------------------------------------------------------------------------(33) x
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The terms in these models can be defined as follows (Jöreskog, 2003): 

 η (eta) is a 3 x 1 random vector of latent dependant or endogenous variables;  

 ξ (ksi) is a 2 x 1 random vector of latent independent or exogenous variables; 

 Y is a 8 x 1 vector of observed indicators of the dependent latent variables η; 

 X is a 5x 1 vector of observed indicators of the independent latent variables ξ; 

 ε is a 8 x 1 vector of measurement errors in y; 

 δ is a 5 x 1 vector of measurement errors in x; 

 Λ is a 8 x 3 matrix of regression coefficients of the regression of y on η; y 

 Λx is a 5 x 2 matrix of regression coefficients of the regression of x on ξ; 

 Γ (gamma) is a 2 x 2 matrix of path/regression coefficients γ describing the 

strength of the regression of η  on ξ  in the structural model; i i

  Β (beta) is a 3 x 3 symmetrical matrix of regression/path coefficients (β) 

describing the strength of the regression of ηi  on η  in the structural model; i

 3 x 1 ζ (zeta) vector of equation errors (random disturbances) in the structural 

relationship between η and ξ; 

 Φ (phi) is a 2 x 2 symmetrical matrix of variance and covariance terms 

describing the variance in (Φii) and covariance between (Φij) the exogenous 

latent variables ξ  and ξ [Cov (ξ) = Φ(2x2)]. i j  

 

Jöreskog (2003) suggests that the random components in the LISREL model are assumed to 

satisfy the following minimum assumptions: 

 ε is uncorrelated with η; 

 δ is uncorrelated with ξ; 

 ζ is uncorrelated with ξ; and 

 ζ is uncorrelated with ε and δ. 

 

3.8.2.2 Model Identification 

Model identification is an important but difficult question that needs to be examined prior 

to confronting the structural model with data (MacCallum, 1995).  The essential issue is 

whether the nature of the model and the data would permit the determination of unique 

estimates for the freed parameters in the model.  This would be possible if for each free 
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parameter there would exist at least one algebraic function that expresses that parameter as 

a function of sample variances/covariance terms (MacCallum, 1995).   

 

Unfortunately, there is no uncomplicated set of necessary and sufficient conditions that if 

satisfied, would ensure that the model is identified (Diamantopoulos & Siguaw., 2000; 

MacCallum, 1995).  There are, however, two critical and necessary conditions that have to 

be met.  It is firstly essential that a definite scale should be established for each latent 

variable.  The second requirement is that the number of model parameters to be estimated 

should not exceed the number of unique variance/covariance terms in the observed sample 

covariance matrix (Diamantopoulos & Siguaw., 2000; MacCallum, 1995).  The model 

depicted in Appendix A satisfies both these necessary conditions for identification.  The 

first requirement will be met by treating each latent variable as a (0; 1) standardized 

variable (MacCallum, 1995). The number of model parameters that are set free to be 

estimated (t = 35) are less than the number of non-redundant elements in the observed 

sample covariance matrix ([(p+q)(p+q+1)]/2=91)10 (Diamantopoulos & Siguaw., 2000). 

The degrees of freedom for the structural model are therefore 91-35=56. 

 

 

                                                 
10 p=the number of y-variables; q=the number of x-variables. 
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CHAPTER 4 

RESEARCH RESULTS 

 

The theoretical model derived from the literature study hypothesizes specific structural 

relationships between the latent variables.  In accordance with the proposed relationships 

among the latent variables as depicted in Figure 3.1 specific statistical hypotheses were 

formulated.  The purpose of this chapter is to report the results of the statistical analyses 

aimed at testing the stated null hypotheses.   

 

4.1 PARAMETER ESTIMATION METHOD 

 

The purpose of parameter estimation is to find numerical values for the freed parameters of 

the structural model that would minimize the difference between the observed and 

estimated/reproduced sample variance/covariance matrices (Diamantopoulos & Siguaw., 

2000).  LISREL 8.54 offers a number of different estimation methods (Jöreskog & Sörbom, 

1996a; Mels, 2003).  The appropriate method to use depends on the nature of the variables 

to be analysed and the distributional properties of the data. 

 

The composite indicator variables were treated as continuous variables.  The analysis of the 

covariance matrix instead of the polychoric correlation matrix was therefore permissible 

(Jöreskog & Sörbom, 1996a; Mels, 2003). The default method of estimation when fitting 

models to continuous data (maximum likelihood), however, requires multivariate normality 

(Kaplan, 2000). This is also true for the generalized least squares (GLS) and full 

information maximum likelihood (FIML) methods for structural equation modeling (Mels, 

2003).  The analysis of continuous non-normal variables in structural equation models can 

result in incorrect standard errors and chi-square estimates (Du Toit et al., 2001; Mels, 

2003).  The univariate and multivariate normality of the composite indicator variables was 

consequently evaluated via PRELIS (Jöreskog & Sörbom, 1996b). 
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Table 4.1 

Test Of Univariate Normality For Continuous Variables Before Normalisation 
              Skewness         Kurtosis      Skewness and Kurtosis 
 
 Variable Z-Score P-Value   Z-Score P-Value   Chi-Square P-Value 
 
  ZABSTR1   2.186   0.029     0.290   0.772        4.865   0.088 
  ZABSTR2   1.919   0.055    -0.621   0.535        4.067   0.131 
   ZSPEED  -0.983   0.326    -4.112   0.000       17.872   0.000 
    ZACCU   1.771   0.077     0.121   0.904        3.150   0.207 
    ZFLEX   5.470   0.000     3.704   0.000       43.636   0.000 
  ZTRANS1   2.043   0.041   -10.784   0.000      120.470   0.000 
  ZTRANS2   3.754   0.000    -0.954   0.340       15.004   0.001 
  ZTRANS3   4.061   0.000     1.454   0.146       18.608   0.000 
  ZTRANS4   5.256   0.000     2.421   0.015       33.491   0.000 
   ZAUTO1   4.171   0.000     3.309   0.001       28.346   0.000 
   ZAUTO2   0.701   0.484    -1.054   0.292        1.601   0.449 
 ZSPECCRI   1.332   0.183     1.127   0.260        3.044   0.218 
  ZSTATUT  -4.405   0.000     4.130   0.000       36.466   0.000 
 
 Relative Multivariate Kurtosis = 1.132 

 

Table 4.2 

Test Of Multivariate Normality For Continuous Variables Before Normalisation 
             Skewness                   Kurtosis           Skewness and Kurtosis 
 
      Value  Z-Score P-Value     Value  Z-Score P-Value      Chi-Square P-Value 
     ------  ------- -------   -------  ------- -------      ---------- ------- 
     46.152   11.895   0.000   220.663    5.487   0.000         171.594   0.000 

 

Table 4.1 indicates that eight of the indicator variables failed the test of univariate 

normality (p < 0,05) . Table 4.2 indicates that the null hypothesis that the data follows a 

multivariate normal distribution also had to be rejected (χ² = 171,598; p < 0,05). The data 

was subsequently normalised through PRELIS. 

 

Table 4.3 

Test Of Univariate Normality For Continuous Variables After Normalisation 
 
              Skewness         Kurtosis      Skewness and Kurtosis 
 
 Variable Z-Score P-Value   Z-Score P-Value   Chi-Square P-Value 
 
  ZABSTR1   0.027   0.978    -0.009   0.993        0.001   1.000 
  ZABSTR2  -0.012   0.991    -0.094   0.925        0.009   0.996 
   ZSPEED   0.008   0.994     0.105   0.917        0.011   0.994 
    ZACCU   0.000   1.000     0.116   0.907        0.014   0.993 
    ZFLEX   0.000   1.000     0.116   0.907        0.014   0.993 
  ZTRANS1   0.238   0.812    -8.710   0.000       75.913   0.000 
  ZTRANS2   0.934   0.351    -3.055   0.002       10.204   0.006 
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  ZTRANS3   0.710   0.478    -1.041   0.298        1.588   0.452 
  ZTRANS4   1.844   0.065    -3.028   0.002       12.568   0.002 
   ZAUTO1   0.000   1.000     0.117   0.907        0.014   0.993 
   ZAUTO2   0.043   0.966     0.039   0.969        0.003   0.998 
 ZSPECCRI   0.153   0.878     0.030   0.976        0.024   0.988 
  ZSTATUT   0.277   0.781     0.111   0.912        0.089   0.956 
 
 Relative Multivariate Kurtosis = 0.985 
 
 Test of Multivariate Normality for Continuous Variables 

 

Table 4.4 

Test Of Multivariate Normality For Continuous Variables After Normalisation 
             Skewness                   Kurtosis           Skewness and Kurtosis 
 
      Value  Z-Score P-Value     Value  Z-Score P-Value      Chi-Square P-Value 
     ------  ------- -------   -------  ------- -------      ---------- ------- 
     23.413    0.330   0.741   192.002    0.134   0.894           0.127   0.939 

 

Table 4.3 indicates that the normalisation procedure succeeded in rectifying the univariate 

normality problem on most indicator variables and Table 4.4 indicates that the normalized 

data now also pass the test of multivariate normality (χ² = 0,127; p > 0,05). 

 

A covariance matrix was subsequently computed from the transformed data set to serve as 

input for the LISREL analysis. Maximum likelihood estimation was used to estimate the 

parameters set free in the model. Instead of defining the origin and unit of the latent 

variable scales in terms of observable reference variables, the latent variables were 

standardised (Jöreskog & Sörbom, 1996a). All factor loadings of each latent unit 

performance variable were set free to be estimated, but only with regard to its designated 

observed variables. All remaining elements of Λx were fixed at zero loadings to reflect the 

assumed factorial simplicity of the indicator variables (Tabachnick and Fidell, 1989). The 

elements of the covariance/correlation matrix (Φ) and the diagonal elements of the 

variance/covariance matrix (θ ) were treated by default as free. δ

 

4.2 ASSESSING THE OVERALL GOODNESS-OF-FIT OF THE 

MEASUREMENT MODEL 

 
The main aim of SEM is to explain the patterns of covariances observed amongst the 

observed variables in terms of the relationships hypothesized by the measurement and 
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structural models.  The two measurement models describe how the exogenous and 

endogenous latent variables reflect themselves in manifest variables. To come to valid and 

credible conclusions on the ability of the structural model to explain the pattern of 

covariance in learning performance, evidence is needed that the manifest indicators are 

indeed valid and reliable measures of the latent variables they are linked to.  Unless the 

operational measures can be trusted to validly represent the latent variables they have been 

tasked to reflect, any assessment of the substantive relations of interest  will be problematic 

in as far as the meaning of poor or good structural model fit would become ambiguous.  

Therefore the evaluation of the measurement part of the model should precede the detailed 

evaluation of the structural part of the model (Diamantopoulos & Siguaw, 2000).  Instead of 

fitting the endogenous and exogenous measurement models separately a single 

measurement model had been fitted to evaluate the success with which the learning 

potential latent variables had been operationalised. 

 

An admissible final solution of parameter estimates for the APIL measurement model was 

obtained after 10 iterations. 

 

The χ² test statistic is the measure that is traditionally used to test the hypothesis that there 

is no significant discrepancy between the reproduced covariance matrix implied by the 

model (Σ(Θ) and the observed population covariance matrix (Σ).  The exceedence 

probability reported by LISREL is the probability of obtaining a χ² value larger than the 

calculated value, given that the exact fit null hypothesis is true.  Jöreskog and Sörbom 

(1993, p. 122) writes: 
Chi-square is a badness of fit measure in the sense that a small chi-square corresponds to 

good fit and a large chi-square to bad fit. Zero chi-square corresponds to perfect fit. 

 

Thus, contrary to traditional hypothesis testing, a non-significant χ2 would imply that there 

is no significant discrepancy between the covariance matrix implied by the measurement 

model and the observed covariance matrix. Therefore, a non-significant χ2 would indicate 

that the model fits the data in that the model can exactly reproduce the population 

covariance matrix (Kelloway, 1998).  
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The p-value associated with the Normal Theory χ² value in Table 4.5 [0,0029] indicates a 

significant test statistic (p < 0,05). This suggests that there is a significant discrepancy 

between the covariance matrix implied by the measurement model and the observed 

covariance matrix, thus rejecting the exact fit null hypothesis (Kelloway, 1998). The 

measurement model is, therefore, not able to reproduce the observed covariance matrix 

(Kelloway, 1998).  

 

The problem; however is that the χ² measure is distributed asymptotically as a χ² 

distribution. This causes the frustrating dilemma that just at the point where the 

distributional assumptions of the test statistic become tenable the statistical power of the 

test also becomes extremely high. It thus becomes extremely unlikely to obtain the desired 

insignificant χ² statistic in a large sample even when the model fits the empirical data quite 

well (Hu et al., 1995).  In addition Browne and Cudeck (1993) argue: 
In applications of the analysis of covariance structures in the social sciences it is 

implausible that any model that we use is anything more than an approximation to 

reality.  Since a null hypothesis that a model fits exactly in some population is known a 

priori to be false, it seems pointless even to try to test whether it is true. (p. 137) 

 

The evaluation of the fit on the basis of the normed chi-square statistic χ²/df (χ²/df  = 1,606) 

for the measurement model suggests that the model fits the data well. Ratios less than 2 

have, however, been interpreted as indicating over-fitting. Judged by these standards the 

model could, when viewed optimistically, be seen to fit the data well, or, when viewed 

somewhat pessimistically, be seen to have been over-fitted. Kelloway (1998), however, 

comments that the guidelines indicative of good fit (ratios between 2 and 5) have very little 

justification other than the researcher’s personal modelling experience, and does not advise 

a strong reliance on the normed chi-square.    

 

Numerous alternative descriptive goodness-of-fit measures of model fit have been 

developed and should be interpreted as well.  The version of LISREL used in this study 

reports 18 indices of model fit, of which four address the question of absolute fit 

(Kelloway, 1998). A verdict on model fit would be more credible if derived from a 

synthesis of a variety of measures of fit.  A problem complicating the evaluation of model 
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fit is that quite often the multitude of fit measures are not in agreement thus introducing a 

certain degree of ambiguity (Byrne, 1989; Diamantopoulos & Siguaw, 2000)  

 

The simplest fix index provided by LISREL is Root Mean Squared Residual (RMR). 

Kelloway (1998) writes: 
This is the square root of the mean of the squared discrepancies between the implied and 

observed covariance matrices. The lower bound of the index is 0, and low values are 

taken to indicate good fit. (p. 27) 

 

The RMR (0,058) value indicates that the measurement model fits the data reasonably well. 

 

A problem with interpreting this index is the fact that it is sensitive to the scale of 

measurement of the model variables and as a result it is difficult to determine what a low 

value actually is (Diamantopoulos & Siguaw, 2000; Kelloway, 1998). Therefore, LISREL 

also provides the standardised RMR, which has a lower bound of 0 and an upper bound of 

1. Values less than 0,05 are generally regarded as indicating good fit to the data (Kelloway, 

1998; Diamantopoulos & Siguaw, 2000). 

 

The standardized RMR (0,058), as per table 4.5, also indicates that the measurement model 

fits the data reasonably well. 

 

LISREL also reports the root mean squared error of approximation (RMSEA), which is also 

based on the analysis of residuals, with smaller values indicating a better fit to the data. The 

RMSEA is generally regarded as one of the most informative fit indices (Diamantopoulos 

& Siguaw, 2000). Kelloway (1998) writes: 
Unlike all other fit indices discussed in this chapter, the RMSEA has the important 

advantage of going beyond the point estimates to the provision of 90% confidence 

intervals for the point estimate. Moreover, LISREL also provides a test of the 

significance of the RMSEA by testing whether the value obtained is significantly 

different from 0,05. (p. 27) 

 

Diamantopoulos & Siguaw (2000) and MacCallum et al. (1996) suggest that values <0,05 

are indicative of good fit and values of between 0,05 and under 0,08 indicates reasonable 
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fit, while values between 0,08 and 0,1 indicates mediocre fit and values >0,1 indicates poor 

fit. 

 

Therefore, according to Diamantopoulos & Siguaw (2000) and MacCallum et al. (1996), 

the RMSEA (0,072) value indicates reasonably good fit. The 90% confidence interval for 

RMSEA shown in table 4.5 (0.042 - 0.099) contains the critical 0,05 value.  A test of the 

significance of the obtained value is performed by LISREL by testing H0: RMSEA ≤ 0,05 

against Ha: RMSEA > 0,05. Table 4.5 indicates that the obtained RMSEA value of 0,072 is 

not significantly different from the target value of 0,05 (i.e. the close fit null hypothesis is 

not rejected; p > 0,05) and since the confidence interval does include the target value of 

0,05, a good fit seems to have been achieved.  

 

The goodness-of-fit index (GFI) measures are ‘based on a ratio of the sum of the squared 

discrepancies to the observed variances (for generalised least squares, the maximum 

likelihood version is somewhat more complicated)’ (Kelloway, 1998, p. 27). The GFI 

ranges from 0 to 1, with values exceeding 0,9 indicating good fit to the data (Kelloway, 

1998). However, Kelloway (1998) warns: 
It should be noted that this guideline is based on experience. Like many of the fit indices 

that will be presented, the GFI has no known sampling distribution. As a result, “rules” 

about when an index indicates a good fit to the data are highly arbitrary and should be 

treated with caution. (p. 27) 

 

The Goodness of Fit Index (GFI) = 0.90 indicates that the measurement model fits the data 

reasonably well. 

 

The adjusted GFI (AGFI), adjusts the GFI for degrees of freedom in the model 

(Diamantopoulos & Siguaw, 2000; Kelloway, 1998). The AGFI also ranges from 0 to 1, 

with values above 0,9 indicating a good fit to the data (Kelloway, 1998). Therefore, the 

Adjusted Goodness of Fit Index (AGFI) = 0.83 indicates reasonable, but not good fit. 

 

After interpreting all the fit indices, the conclusion would have to be drawn that the 

measurement model fit the data reasonably well, but not perfectly.  
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To ensure a thorough assessment of fit and especially because the overall measures of fit 

indicates that the measurement model fits the data only reasonably well, it is necessary to 

investigate the standardised residuals and modification indices to further determine the 

success with which the model explains the observed covariances amongst the manifest 

variables (Jöreskog & Sörbom, 1993). 

 

Table 4.5 
Goodness-Of-Fit Statistics For The Measurement Model 

Degrees of Freedom  55 
Minimum Fit Function Chi-Square =  92.10 (P = 0.0013) 
Normal Theory Weighted Least Squares Chi-Square = 88.34 (P = 0.0029) 
Estimated Non-centrality Parameter (NCP)  33.34 
90 Percent Confidence Interval for NCP  (11.56 ; 63.04) 
Minimum Fit Function Value  0.78 
Population Discrepancy Function Value (F0)  0.28 
90 Percent Confidence Interval for F0  (0.098 ; 0.53) 
Root Mean Square Error of Approximation (RMSEA)  0.072 
90 Percent Confidence Interval for RMSEA  (0.042 ; 0.099) 
P-Value for Test of Close Fit (RMSEA < 0.05)  0.10 
Expected Cross-Validation Index (ECVI)  1.36 
90 Percent Confidence Interval for ECVI  (1.17 ; 1.61) 
ECVI for Saturated Model  1.54 
ECVI for Independence Model  12.97 
Chi-Square for Independence Model with 78 Degrees of 
Freedom  

1505.02 

Independence AIC  1531.02 
Model AIC  160.34 
Saturated AIC  182.00 
Independence CAIC  1580.15 
Model CAIC 296.39 
Saturated CAIC 525.90 
Normed Fit Index (NFI)  0.94 
Non-Normed Fit Index (NNFI)   0.96 
Parsimony Normed Fit Index (PNFI)  0.66 
Comparative Fit Index (CFI)  0.97 
Incremental Fit Index (IFI)  0.97 
Relative Fit Index (RFI)  0.91 
Critical N (CN) 106.44 
Root Mean Square Residual (RMR)  0.058 
Standardized RMR  0.058 
Goodness of Fit Index (GFI)  0.90 
Adjusted Goodness of Fit Index (AGFI)  0.83 
Parsimony Goodness of Fit Index (PGFI)  0.54 
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4.3 EXAMINATION OF MEASUREMENT MODEL RESIDUALS 

 

Residuals refer to the differences between corresponding cells in the observed and fitted 

covariance/correlation matrices (Jöreskog & Sörbom, 1993). Residuals, and especially 

standardised residuals, provide diagnostic information on sources of lack of fit in models 

(Jöreskog & Sörbom, 1993; Kelloway, 1998). Jöreskog & Sörbom (1993) explain that a 

standardised residual refers to a residual that is divided by its estimated standard error.  The 

standardized residuals are depicted in Table 4.6. 

 

Table 4.6 

Standardized Residuals 
           ZABSTR1    ZABSTR2     ZSPEED      ZACCU      ZFLEX    ZTRANS1    
            --------   --------   --------   --------   --------   -------- 
  ZABSTR1        - - 
  ZABSTR2        - -        - - 
   ZSPEED       1.17       1.05        - - 
    ZACCU       1.00      -0.74      -2.87        - - 
    ZFLEX       1.05      -1.34      -1.42       4.26        - - 
  ZTRANS1       0.39      -1.43       1.69       0.34      -1.08        - - 
  ZTRANS2       0.77      -0.26       1.10      -1.26      -2.33       1.55 
  ZTRANS3       0.44       0.55       2.06      -0.30      -1.30      -1.20 
  ZTRANS4       0.57       0.95       2.25       1.62       2.21      -1.66 
   ZAUTO1      -0.55       0.18       5.58      -2.58      -1.22       0.30 
   ZAUTO2      -2.97       1.36       0.52       0.68      -1.68       1.05 
 ZSPECCRI      -0.03       0.75       0.37       0.22      -0.65       1.27 
  ZSTATUT      -0.14      -0.98      -0.06       0.15       0.08      -0.49 
 
         Standardized Residuals   
 
             ZTRANS2    ZTRANS3    ZTRANS4     ZAUTO1     ZAUTO2   ZSPECCRI    
            --------   --------   --------   --------   --------   -------- 
  ZTRANS2        - - 
  ZTRANS3       0.67        - - 
  ZTRANS4      -0.07      -0.17        - - 
   ZAUTO1      -1.69       0.17       2.34        - - 
   ZAUTO2      -1.30       0.06       1.36        - -        - - 
 ZSPECCRI      -1.22       0.89      -1.45      -0.70       0.43        - - 
  ZSTATUT       0.07      -0.26       0.72       0.86      -0.14        - - 
 
         Standardized Residuals   
 
             ZSTATUT    
            -------- 
  ZSTATUT        - - 

 

Standardised residuals can be interpreted as z-scores (i.e. number of standard deviations 

above or below the mean). Standardised residuals are considered to be large if they exceed 

+2.58 or –2.58 (Diamantopoulos & Siguaw, 2000).  The specific covariance terms that were 
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poorly estimated as judged by this criterion are listed in Table 4.7.  A large positive residual 

would indicate that the model underestimates the covariance between two variables, while a 

large negative residual would indicate that the model overestimates the covariance between 

variables. Underestimation indicates that the model needs to be modified by adding 

additional explanatory paths, which could better account for the covariance between the 

variables. On the other hand, if the model overestimates the covariance between the 

variables, the model should be modified by trimming paths that are associated with the 

particular covariance term (Jöreskog & Sörbom, 1993). 

 

Table 4.7 
Summary Statistics for Standardized Residuals 

Smallest Standardized Residual =   -2.97 
Median Standardized Residual =    0.00 
Largest Standardized Residual =    5.58 

Largest Negative Standardized Residuals 
Residual for    ZACCU and   ZSPEED  -2.87 
Residual for   ZAUTO1 and    ZACCU  -2.58 
Residual for   ZAUTO2 and  ZABSTR1  -2.97 

Largest Positive Standardized Residuals 
Residual for    ZFLEX and    ZACCU   4.26 

 Residual for   ZAUTO1 and   ZSPEED   5.58 
 

 

The two large positive residuals (> 2,58) and three large negative residuals (< -2,58) in 

Table 4.7 indicates five observed covariance terms in the observed sample covariance 

matrix (out of 78 covariance terms) being poorly estimated by the derived model parameter 

estimates.  This would indicate reasonable model fit. 

 

Jöreskog & Sörbom (1993) state that all the standardised residuals may be examined 

collectively in a stem-and-leaf plot and a Q-plot. The stem-and-leaf plot is depicted in 

Figure 4.1.  A good model would be characterised by a stem-and-leaf plot in which the 

residuals are distributed approximately symmetrical around zero. An excess of residuals on 

the positive or negative side would indicate that the covariance terms are systematically 

under- or overestimated.   
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Figure 4.1 

Stem-And-Leaf Plot Of Standardized Residuals 

 

From the stem-and-leaf plot depicted in Figure 4.1, the distribution of standardised 

residuals appears only slightly positively skewed, but not overly so. This indicates that 

there is a slightly stronger tendency for the model to overestimate the observed covariance 

terms. 

 

The Q-plot is depicted in Figure 4.2.  When interpreting the Q-plot it is important to note 

whether the data points fall on the 45-degree reference line or not. If the points fall on the 

45-degree reference line, it would be indicative of a good model fit. (Jöreskog & Sörbom, 

1993). To the extent that the data points swivel away from the 45-degree reference line the 

model fit is less than satisfactory. 

 

The Q-plot in Figure 4.2 clearly indicates less than perfect model fit because the 

standardised residuals for all pairs of observed variables tend to deviate from the 450- 

reference line in both the lower- and upper region of the X-axis. Subsequently, given the 

examination of the residuals, it is important to also evaluate the model modification indices. 
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Figure 4.2 

Q-plot of Standardized Residuals 
 

4.4 MEASUREMENT MODEL MODIFICATION INDICES  

 

Model modification indices are aimed at answering the question whether any of the 

currently fixed parameters, when freed in the model, would significantly improve the 

parsimonious fit of the model.  Modification indices (MI) indicate the extent to which the χ2 

fit statistic will decrease if a currently fixed parameter in the model is freed and the model 

re-estimated (Jöreskog & Sörbom, 1993). Large modification index values (> 6,6349) 
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would be indicative of parameters that, if set free, would improve the fit of the model 

significantly (p<0,01) (Diamantopoulos & Siguaw, 2000; Jöreskog & Sörbom, 1993). It is 

important to note that parameters with high MI values should only be freed if it makes 

substantive sense to do so (Kelloway, 1998). The expected change for the parameter is the 

expected value of the parameter if it were freed. The standardised and completed 

standardised expected changes are the expected values in the standardised and completely 

standardised solution if the parameter were freed.  

 

Jöreskog & Sörbom (1993) argue that modification indices should be used in the following 

way in the process of model evaluation and modification: 
If chi-square is large relative to the degrees of freedom, one examines the modification 

indices and relaxes the parameter with the largest modification index if this parameter 

can be interpreted substantively. If it does not make sense to relax the parameter with 

the largest modification index, one considers the second largest modification index etc. 

If the signs of certain parameters are specified a priori, positive or negative, the expected 

parameter changes associated with the modification indices for these parameters can be 

used to exclude models with parameters having the wrong sign. (p. 127) 

 
Table 4.8 

Lambda-X Modification Indices for Measurement Model 
            ABSTRACT   INFOPROC   TRANSFOR    AUTOMAT   LEARNPER    
            --------   --------   --------   --------   -------- 
  ZABSTR1        - -       2.40       0.65       7.96       0.04 
  ZABSTR2        - -       2.40       0.65       7.96       0.04 
   ZSPEED       3.08        - -      10.10      18.47       0.18 
    ZACCU       0.19        - -       0.32       2.53       0.07 
    ZFLEX       1.34        - -       5.31       5.91       0.45 
  ZTRANS1       0.90       0.23        - -       0.45       1.12 
  ZTRANS2       0.12       3.52        - -       4.91       1.69 
  ZTRANS3       0.35       0.03        - -       0.05       0.50 
  ZTRANS4       1.90       5.99        - -       6.57       0.56 
   ZAUTO1       0.00       0.02       0.07        - -       0.12 
   ZAUTO2       0.00       0.02       0.07        - -       0.12 
 ZSPECCRI       0.67       0.00       0.05       0.04        - - 
  ZSTATUT       0.67       0.00       0.05       0.04        - - 

 

Examination of the modification values calculated for the ΛX matrix (see Table 4.8 above) 

indicates that the Speed measure of Information Processing also load on the automatization 

and transfer of knowledge latent variables.  The fact that only two additional paths would 
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significantly improve the fit of the model should be interpreted as a positive and favourable 

comment on the merits of the measurement model. 

 

4.5 INTERPRETATION OF THE MEASUREMENT MODEL 

 

Through the examination of the magnitude and the significance of the slope of the 

regression of the observed variables on their respective latent variables an indication of the 

validity of the measures is obtained. In other words, if a measure is designed to provide a 

valid reflection of a specific latent variable, then the slope of the regression of X  on ξi j in 

the fitted measurement model has to be substantial and significant (Diamantopoulos & 

Siguaw, 2000).   

 

The unstandardized Λx (see Table 4.9 below) matrix contains the regression coefficients of 

the regression of the manifest variables on the latent variables they were linked to. The 

regression coefficients/loadings of the manifest variables on the latent variables are 

significant (p < 0,05) if the t-values, as indicated in the matrices, exceed |1,96|. Significant 

indicator loadings provide validity evidence in favour of the indicators (Diamantopoulos & 

Siguaw, 2000). 

 

Table 4.9 

Unstandardized Lambda-X Matrix 
          ABSTRACT   INFOPROC   TRANSFOR    AUTOMAT   LEARNPER    
            --------   --------   --------   --------   -------- 
  ZABSTR1       0.68        - -        - -        - -        - - 
              (0.09) 
                7.70 
  
  ZABSTR2       0.91        - -        - -        - -        - - 
              (0.09) 
               10.57 
  
   ZSPEED        - -       0.71        - -        - -        - - 
                         (0.08) 
                           8.51 
  
    ZACCU        - -       0.87        - -        - -        - - 
                         (0.08) 
                          11.23 
  
    ZFLEX        - -       0.76        - -        - -        - - 
                         (0.08) 
                           9.32 
  
  ZTRANS1        - -        - -       0.73        - -        - - 
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                                    (0.09) 
                                      8.37 
  
  ZTRANS2        - -        - -       0.77        - -        - - 
                                    (0.09) 
                                      9.07 
  
  ZTRANS3        - -        - -       0.72        - -        - - 
                                    (0.09) 
                                      8.23 
  
  ZTRANS4        - -        - -       0.41        - -        - - 
                                    (0.10) 
                                      4.24 
  
   ZAUTO1        - -        - -        - -       0.81        - - 
                                               (0.08) 
                                                 9.95 
  
   ZAUTO2        - -        - -        - -       0.83        - - 
                                               (0.08) 
                                                10.37 
  
 ZSPECCRI        - -        - -        - -        - -       0.83 
                                                          (0.15) 
                                                            5.70 
  
  ZSTATUT        - -        - -        - -        - -       0.46 
                                                          (0.11) 
                                                            4.16 

 

All the factor loadings, indicated in the Lambda-X matrix, are significant with t > 1,96. 

ruct may be measured on very 

antopoulos & Siguaw (2000) recommend that the magnitudes of the 

However, Diamantopoulos & Siguaw (2000) warn that there is indeed a problem with 

relying on unstandardised loadings and their associated t-values. The problem is that it 

might be hard to compare the validity of different indicators measuring a particular 

construct. Diamantopoulos & Siguaw (2000) explains: 
This problem arises because indicators of the same const

different scales; if this is the case, then direct comparisons of the magnitudes of the 

loadings are clearly inappropriate. In addition, bearing in mind that each latent variable 

has to be assigned a scale by fixing the loading of one of its indicators to unity, the 

loadings of the other indicators for the latent variable are only interpretable relative to 

the unit of the reference indicator. Clearly, if a different indicator is used as the reference 

variable, the magnitudes of the loadings will change. (p. 89) 

 

As a result, Diam

standardised loadings should also be investigated. This is done by examining the 

Completely Standardised Solution, in which both latent and manifest variables have been 

standardized, available as part of the LISREL output. The completely standardized factor 

loading matrix is presented in Table 4.10.  The values shown in Table 4.10 could be 
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interpreted as the regression slopes of the regression of the standardized indicator variables 

on the standardized latent variables.  The completely standardized factor loadings therefore 

indicate the average change expressed in standard deviation units in the indicator variable 

associated with one standard deviation change in the latent variable.  Interpreted in this 

sense, the loading of the first abstract reasoning indicator variable on the abstract reasoning 

latent variable, the fourth transfer indicator variable on the transfer latent variable and the 

second learning performance indicator variable on the learning performance indicator 

variable could be regarded as somewhat problematic.  The square of the completely 

standardized factor loadings indicate the proportion of indicator variance explained in terms 

of the latent variable it is meant to express (Diamantopoulos & Siguaw, 2000).  Since each 

indicator only loads on a single latent variable the squared completely standardized 

loadings equal the R² values shown below in Table 4.11. 

 

Table 4.10 

Completely Stan mbda-X Matrix 
         ABSTRACT   INFOPROC   TRANSFOR    AUTOMAT   LEARNPER    

dardized La

            --------   --------   --------   --------   -------- 
   ZABSTR1       0.68        - -        - -        - -        - -
   ZABSTR2       0.91        - -        - -        - -        - -

   ZSPEED        - -       0.71        - -        - -        - - 
     ZACCU        - -       0.87        - -        - -        - -
     ZFLEX        - -       0.76        - -        - -        - -

  ZTRANS1        - -        - -       0.73        - -        - - 
   ZTRANS2        - -        - -       0.77        - -        - -
   ZTRANS3        - -        - -       0.72        - -        - -

  ZTRANS4        - -        - -       0.41        - -        - - 
    ZAUTO1        - -        - -        - -       0.81        - -
    ZAUTO2        - -        - -        - -       0.83        - -

 ZSPECCRI        - -        - -        - -        - -       0.83 
  ZSTATUT        - -        - -        - -        - -       0.46 

 

he squared multiple correlations (R2) of the indicators depicted in Table 4.11 show the 

able 4.11 

T

proportion of variance in an indicator that is explained by its underlying latent variable. A 

high R2 value would indicate that variance in the indicator in question to a large degree 

reflects variance in the latent variable to which it has been linked. The rest of the variance, 

not explained by the latent variable can be ascribed to systematic and random measurement 

error (Diamantopoulos & Siguaw, 2000). 

T
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Squared Multiple Correlations for X – Variables 
             ZABSTR1    ZABSTR2     ZSPEED      ZACCU      ZFLEX    ZTRANS1    
            --------   --------   --------   --------   --------   -------- 
                0.46       0.82       0.51       0.76       0.58       0.53 
 
             ZTRANS2    ZTRANS3    ZTRANS4     ZAUTO1     ZAUTO2   ZSPECCRI    
            --------   --------   --------   --------   --------   -------- 
                0.60       0.51       0.17       0.65       0.70       0.68 
 
             ZSTATUT    
            -------- 
                0.21 

 

 

he total variance in the ith indicator variable (Xi) could be decomposed into variance due 

Table 4.12 

Completely Stand eta-Delta Matrix 
             ZABSTR1    ZABSTR2     ZSPEED      ZACCU      ZFLEX    ZTRANS1 

T

to variance in the latent variable the indicator variable was meant to reflect (ξj), variance 

due to variance in other systematic latent effects the indicator variable was not designed to 

reflect and random measurement error.  The latter two sources of variance in the indicator 

variable are acknowledged in equations 26 and 33 through the measurement error terms εi 

and δi.  The measurement error terms ε and δ thus do not differentiate between systematic 

and random sources of error or non-relevant variance.  The square of the completely 

standardized factor loading λ (see Table 4.10) could be interpreted as the proportion 

systematic-relevant indicator variable variance.  This corresponds to the information 

provided in Table 4.11.  The diagonal of the completely standardized theta-delta (θδ) matrix 

(shown as Table 4.12) reflect the proportion of non-relevant item parcel variance.   

 

ardized Th

            --------   --------   --------   --------   --------   -------- 
                0.54       0.18       0.49       0.24       0.42       0.47 
 
             ZTRANS2    ZTRANS3    ZTRANS4     ZAUTO1     ZAUTO2   ZSPECCRI 
            --------   --------   --------   --------   --------   -------- 
                0.40       0.49       0.83       0.35       0.30       0.32 
 
             ZSTATUT 
            -------- 
                0.79 
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The completely standardized error variance of the ith indicator variable (θδii) in Table 4.12 

thus consists of systematic non-relevant variance and random error variance. The values 

shown in Table 4.11 could therefore be interpreted as indicator variable validity 

coefficients, ρ(X ,ξ ).  Since (λi j ij² + θδii) are equal to unity in the completely standardized 

solution, the validity coefficients, ρ(X ,ξ ) can be defined as follows: i j

ρ(X ,ξ ) = σ²i j systematic-relevant/(σ²  + σ²systematic-relevant non-relevant) 

              = λij²/[λij² + θ ] δii

             = 1 - (θ /[λδi ij² + θ ]) δii

             = 1 - θδii

             = λij² -----------------------------------------------------------------------------------34 

Since reliability could be defined as the extent to which variance in indicator variables can 

be attributed to systematic sources, irrespective of whether the source of variance is 

relevant to the measurement intention or not, the values shown in Table 4.11 could 

simultaneously be interpreted as lower bound estimates of the item reliabilities ρii 

(Diamantopoulos & Siguaw, 2000; Jöreskog & Sörbom, 1996a).  The extent to which the 

true item reliabilities would be under-estimated would be determined by the extent to which 

δii contains the effect of the systematic non-relevant latent influences.   

 

In terms of the foregoing argument the values of the squared multiple correlations for the 

indicator variables shown in Table 4.11 cause some concern as there are various indicators 

(as highlighted) that fail to adequately reflect variance in the latent variables they are meant 

to reflect. Especially the TRANS4 measure and the STATUT measure seem to have failed 

to represent the transfer of knowledge and job competency potential latent variables 

respectively. Only 17% of the variance in TRANS4 and 21% of the variance in STATUT 

can be explained in terms of their respective underlying latent variables.  ABSTRA1 to a 

somewhat lesser extent (46%) fails to represent the abstract reasoning latent variable 

successfully.  But for ABSTRA2 and AUTO2, the underlying latent variables at best only 

explain modest proportions of the variance in the indicator variables in which they are 

meant to express themselves. This tends to erode the confidence with which any definite 

conclusion on the merits of the learning potential structural model will be possible. 
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Diamantopoulos & Siguaw (2000) further suggest that it is useful to also calculate a 

composite reliability value for each latent variable. This can be done by using the 

information on the indicator loadings end error variances from the Completely Standardised 

Solution (Tables 4.11 and 4.12). The following formula will be used to calculate composite 

reliability values (Diamantopoulos & Siguaw, 2000, p. 90): 

 
2 2ρc = (Σλ) /[(Σλ)  + Σ(θ)]-------------------------------------------------------------------------(35) 

 

Where: 

 ρc = composite reliability; 

 λ = completely standardized indicator loadings; 

 θ = completely standardized indicator error variances (i.e. variances of the δ’s and 

ε’s); 

 Σ = summation over the indicators of the latent variable. 

 

Diamantopoulos & Siguaw (2000) report that ρc > 0,6 would be indicative that the 

composite indicators linked to a given latent variable provides a satisfactory reliable 

measurement of the construct. The composite reliability scores for the composite indicators 

linked to the latent variables are displayed in Table 4.13 below: 

 

Table 4.13 

Composite Reliability Scores For Composite Indicators 

Composite Reliability Score Latent Variable 
  

0,778 Abstract reasoning capacity 

0,826 Information processing capacity 

0,760 Transfer of knowledge 

0,805 Automatization 

Job competency potential 0,600 

 

As indicated in Table 4.13, the two indicator variables, Specific Crimes and Statutory Law, 

designed to represent the job competency potential latent variable, collectively failed to 
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successfully achieve this since the composite reliability score is equal to 0,60. Tables 4.10 

and 4.11 suggest this is primarily due to the failure of the STATUT indicator variable. 

Table 4.13 further indicates that the composite reliability score calculated for the composite 

indicators of transfer of knowledge is also somewhat less favourable, but still exceeding the 

desired composite reliability score of 0,60. This again suggests that a question mark hangs 

over the success with which at least some of the latent variables comprising the learning 

potential structural model had been operationalized, thereby jeopardizing an unambiguous 

verdict on the merits of the learning potential structural model. 

 

Another measure, complementary to the composite reliability measure, is the average 

variance extracted (ρv). This measure indicates the amount of variance ascribed to the 

construct in relation to the amount of variance due to measurement error. ρv values less than 

0,5 would indicate that the measurement error accounts for a greater amount of variance in 

the indicators than the underlying variable does. If this is indeed the case then serious 

doubts arise regarding the soundness of the indicators and/or the latent variable itself 

(Diamantopoulos & Siguaw, 2000).  The following formula was used to calculate the 

average variance extracted (Diamantopoulos & Siguaw, 2000, p. 91): 

 
2 2Ρv = (Σλ )/[(Σλ ) + Σ(θ)]--------------------------------------------------------------------------(36) 

 

Where λ, θ and Σ are defined as in equation 35. 

 

The results achieved by solving equation 36 for each of the latent variable indicator variable 

sets are displayed in Table 4.14. 

Table 4.14 

Average Variance Extracted For Composite Indicators 

Average variance extracted Latent Variable: 
  

0,642 Abstract reasoning capacity 

0,615 Information processing capacity 

Transfer of knowledge 0,453 
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0,674 Automatization 

Job competency potential 0,450 

 

Table 4.14 essentially corroborates the conclusion that emerged from the results presented 

thus far.  

 

The measurement model fit could be described as reasonable.  The claim that specific 

indicator variables reflect specific latent variables and not others does therefore, not seem 

unreasonable.  However, the success with which at least two of the indicator variables 

represent the latent variables they were meant to reflect seems limited.  As such, the 

integrity of the analysis of the hypothesized structural relations is threatened.  As was 

argued earlier, unless there is evidence to suggest that the operational measures do in fact 

reflect the latent variables of interest, the usefulness of using such data to investigate 

hypotheses on the assumed nature of relationships between the latent variables becomes 

contentious.  If poor structural model fit would be obtained it would not be possible to 

unequivocally rule out the possibility that it was not due to inherent structural flaws but 

rather to shortcomings in the operationalization of specific latent variables (specifically the 

focal job competency potential latent variable and the transfer of knowledge latent 

variable). 

 

4.6 ASSESSING THE OVERALL GOODNESS-OF-FIT OF THE STRUCTURAL 

MODEL 

 

An admissible final solution of parameter estimates for the expanded Learning Potential 

structural model was obtained after 14 iterations. The full spectrum of fit indices provided 

by LISREL to assess the absolute fit of the model is presented in Table 4.15. 
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Table 4.15 

Goodness-Of-Fit Statistics For The Structural Model 

Degrees of Freedom 59 
Minimum Fit Function Chi-Square 101.24 (P = 0.00052) 
Normal Theory Weighted Least Squares Chi-Square 97.97 (P = 0.0011) 
Estimated Non-centrality Parameter (NCP) 38.97 
90 Percent Confidence Interval for NCP (15.62 ; 70.21) 
Minimum Fit Function Value 0.86 
Population Discrepancy Function Value (F0) 0.33 
90 Percent Confidence Interval for F0 (0.13 ; 0.60) 
Root Mean Square Error of Approximation (RMSEA) 0.075 
90 Percent Confidence Interval for RMSEA (0.047 ; 0.10) 
P-Value for Test of Close Fit (RMSEA < 0.05) 0.066 
Expected Cross-Validation Index (ECVI) 1.37 
90 Percent Confidence Interval for ECVI (1.17 ; 1.64) 
ECVI for Saturated Model 1.54 
ECVI for Independence Model 12.97 
Chi-Square for Independence Model with 78 Degrees of Freedom 1505.02 
Independence AIC 1531.02 
Model AIC 161.97 
Saturated AIC 182.00 
Independence CAIC 1580.15 
Model CAIC 282.90 
Saturated CAIC 525.90 
Normed Fit Index (NFI) 0.93 
Non-Normed Fit Index (NNFI) 0.96 
Parsimony Normed Fit Index (PNFI) 0.71 
Comparative Fit Index (CFI) 0.97 
Incremental Fit Index (IFI) 0.97 
Relative Fit Index (RFI) 0.91 
Critical N (CN) 102.60 
Root Mean Square Residual (RMR) 0.057 
Standardized RMR 0.057 
Goodness of Fit Index (GFI) 0.89 
Adjusted Goodness of Fit Index (AGFI) 0.83 
Parsimony Goodness of Fit Index (PGFI) 0.57 

 

The p-value associated with the χ² value in Table 4.15 clearly indicates significant test 

statistics. A non-significant χ² indicates model fit in that the model can reproduce the 

observed covariance matrix. (Bollen and Long, 1993; Kelloway, 1998). In this case, the 

model is not able to reproduce the observed covariance matrix to a degree of accuracy that 

can be attributed to sampling error only, in other words, H01a: Σ = Σ(Θ) is rejected in favour 

of Ha1a: Σ ≠ Σ(Θ) (Kelloway, 1998). By implication H01a: RMSEA=0 is also rejected in 

favour of Ha1a: RMSEA>0. 
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The evaluation of fit on the basis of the normed chi-square statistic χ²/df (χ²/df = 1,66) for 

the structural model suggest that the model fits the data well (refer to paragraph 4.2. for a 

more in-depth interpretation of this ratio).  

 

The RMSEA value of 0,075 indicates reasonable, but not good fit, as values less than 0,05 

indicates good fit. The RMR (0,057) and standardised RMR (0,057) also indicate 

reasonable, but not good fit. Values of less than 0,05 on the latter indices are regarded as 

indicative of a model that fits the data well (Kelloway, 1998). The 90% confidence interval 

for RMSEA shown in Table 4.15 (0.047 ; 0.10) includes the critical 0,05 value, indicating 

reasonable to good fit. A test of the significance of the obtained value is performed by 

LISREL by testing H01b: RMSEA ≤ 0,05 against Ha1b: RMSEA > 0,05. Table 4.15 indicates 

that the obtained RMSEA value of 0,075 is not significantly different from the target value 

of 0,05 (i.e. H01b is not rejected; p > 0,05) and since the confidence interval does include the 

target value of 0,05, a close fit seems to have been achieved.  

 

The goodness-of-fit index (GFI) and the adjusted GFI (AGFI) both indicate reasonable, but 

not good fit. Values exceeding 0,9 indicates good fit to the data (Jöreskog & Sörbom, 1993; 

Kelloway, 1998). 

 

The assessment of parsimonious fit acknowledges that model fit can always be improved by 

adding more paths to the model and estimating more parameters until perfect fit is achieved 

in the form of a saturated or just-identified model with no degrees of freedom (Kelloway, 

1998). The objective in model building is, however, to achieve satisfactory fit with as few 

model parameters as possible (Jöreskog & Sörbom, 1993). The objective is therefore to 

find, in this sense, the most parsimonious model.   

 

Indices of parsimonious fit relate the benefit that accrues in terms of improved fit to the cost 

incurred (in terms of degrees of freedom lost) to affect the improvement in fit (Jöreskog & 

Sörbom, 1993). The values for the Aiken information criterion (AIC = 161,97) shown in 

Table 4.15 suggest that the fitted structural model provides a more parsimonious fit than the 

independent/null model (1531,02) as well as the saturated model (182.00) since smaller 
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values on these indices indicate a more parsimonious model (Kelloway, 1998).  The values 

for the consistent Aiken information criterion (CAIC = 282.90) also suggest that the fitted 

structural model provides a more parsimonious fit than both the independent/null model 

(1580.15) and the saturated model (525.90).   

 

The expected cross-validation index (ECVI) expresses the difference between the 

reproduced sample covariance matrix ( Σ̂) derived from fitting the model on the sample at 

hand and the expected covariance matrix that would be obtained in an independent sample 

of the same size from the same population (Byrne, 1989; Diamantopoulos & Siguaw, 

2000).   Since the model ECVI (1.37) is smaller than the value obtained for the 

independence model (12.97) and smaller than the ECVI value associated with the saturated 

model (1.54), a model resembling the fitted model seems to have a better chance of being 

replicated in a cross-validation sample than the independence model or the saturated model.  

This finding is echoed by the Aiken information criterion and the consistent Aiken 

information criterion results.  The proposed learning potential structural model therefore 

does not seem to be overly elaborate in how it conceptualizes the causal processes amongst 

the learning potential latent variables, nor does the proposed model seem to under-represent 

the causal processes. 

 

After interpreting all the fit indices, the conclusion would have to be drawn that the 

structural model fit the data reasonably well. Integrating the results obtained on the full 

spectrum of fit statistics depicted in Table 4.15 seems to suggest a reasonable fitting model 

that clearly outperforms the independence model and that seems to acknowledge the true 

complexity of the processes underlying the APIL test battery. 

 

However, to ensure a thorough assessment of the fit of the structural model and especially 

because the structural model only fits the data reasonably well, it is necessary to also 

investigate the standardised residuals and modification indices to determine the extent of 

success with which the model explains the observed covariances amongst the manifest 

variables (Jöreskog & Sörbom, 1993). 
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4.7 EXAMINATION OF STRUCTURAL MODEL RESIDUALS 

 

Residuals refer to the differences between corresponding cells in the observed and fitted 

covariance/correlation matrices (Jöreskog & Sörbom, 1993). Residuals, and especially 

standardised residuals, provide diagnostic information on sources of lack of fit in models 

(Jöreskog & Sörbom., 1993; Kelloway, 1998). Jöreskog & Sörbom (1993) explain that a 

standardised residual refers to a residual that is divided by its estimated standard error. 

 

Standardised residuals can be interpreted as z-scores (i.e. number of standard deviations 

above or below the mean). Standardised residuals are considered to be large if they exceed 

+2.58 or –2.58 (Diamantopoulos & Siguaw, 2000).  A large positive residual would 

indicate that the model underestimates the covariance between two variables, while a large 

negative residual would indicate that the model overestimates the covariance between 

variables. Underestimation indicates that the model needs to be modified by adding 

additional explanatory paths, which could better account for the covariance between the 

variables. On the other hand, if the model overestimates the covariance between the 

variables, the model should be modified by trimming paths that are associated with the 

particular covariance term (Jöreskog & Sörbom, 1993).  The standardized residuals 

resulting from the covariance estimates derived from the estimated comprehensive model 

parameters are shown in Table 4.16 and summarized in Table 4.17. 

 

Table 4.16 

Standardized Residuals 
             ZTRANS1    ZTRANS2    ZTRANS3    ZTRANS4     ZAUTO1     ZAUTO2    
            --------   --------   --------   --------   --------   -------- 
  ZTRANS1       1.59 
  ZTRANS2       1.68       1.59 
  ZTRANS3      -1.09       0.79       1.59 
  ZTRANS4      -1.64      -0.05      -0.16       1.59 
   ZAUTO1       0.29      -1.63       0.15       2.32        - - 
   ZAUTO2       1.19      -0.93       0.26       1.41       1.40        - - 
 ZSPECCRI       1.29      -1.19       0.91      -1.45      -1.70      -0.50 
  ZSTATUT      -0.56       0.03      -0.31       0.71       0.55      -0.61 
  ZABSTR1       0.14       0.49       0.20       0.46      -0.23      -1.87 
  ZABSTR2      -1.08       0.08       0.77       1.01       1.44       2.44 
   ZSPEED       1.19       0.52       1.57       2.07       4.93      -0.88 
    ZACCU       0.29      -1.04      -0.27       1.57      -3.47       0.22 
    ZFLEX      -1.02      -2.13      -1.23       2.17      -1.89      -1.98 
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         Standardized Residuals   
 
            ZSPECCRI    ZSTATUT    ZABSTR1    ZABSTR2     ZSPEED      ZACCU    
            --------   --------   --------   --------   --------   -------- 
 ZSPECCRI       1.59 
  ZSTATUT       1.59       1.59 
  ZABSTR1      -0.13      -0.22        - - 
  ZABSTR2       0.43      -0.82       0.33        - - 
   ZSPEED       1.20       0.34       0.01      -0.05        - - 
    ZACCU       1.94       0.93       0.00      -0.80      -2.17        - - 
    ZFLEX       0.84       0.69       0.39      -1.44      -1.37       4.86 
 
         Standardized Residuals   
 
               ZFLEX    
            -------- 
    ZFLEX        - - 
 

 

Table 4.17 

Summary Statistics For Standardized Residuals 

Smallest Standardized Residual =   -3.47 
Median Standardized Residual =    0.15 
Largest Standardized Residual =    4.93 

Largest Negative Standardized Residuals 
Residual for    ZACCU and   ZAUTO1  -3.47 

Largest Positive Standardized Residuals 
Residual for   ZSPEED and   ZAUTO1   4.93 
Residual for    ZFLEX and    ZACCU   4.86 

 

Two large positive residuals and one large negative residual indicate three observed 

covariance terms in the observed sample covariance matrix being poorly estimated by the 

derived model parameter estimates. Inspection of the variables associated with these 

standardised residuals reveals no clear specific suggestions for possible model 

modification.  The small number of covariance terms poorly reproduced by the fitted model 

parameter corroborates the earlier conclusion that the model succeeds reasonably well in 

explaining the observed data. 

 

Jöreskog & Sörbom (1993) states that all the standardised residuals may be examined 

collectively in a stem-and-leaf plot and a Q-plot. A good model would be characterised by a 

stem-and-leaf plot in which the residuals are distributed approximately symmetrical around 

zero. An excess of residuals on the positive or negative side would indicate that the 
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residuals are systematically under- or overestimated.  The stem-and-leaf plot of the 

structural model standardized residuals is depicted in Figure 4.3. 

 
- 3|5  
 - 2|210  
 - 1|99766544221100  
 - 0|9988665332221110000000000  
   0|11222333334455557788899  
   1|0222344466666666679  
   2|1234  
   3|  
   4|99 

Figure 4.3 

Stem-And-Leaf Plot Of Standardized Residuals 

 

From the stem-and-leaf plot depicted in Figure 4.3, the distribution of the standardised 

residuals appears to be slightly positively skewed.  This is supported by the fact that the 

median standardized residual is 0,15.  The estimated model parameters therefore, on 

average, tend to under-estimate the observed covariance terms.  This would suggest that the 

model fails to account for one or more influential paths. Moreover the distribution of the 

standarized residuals seem to be somewhat less leptokurtic than would be typical of good 

model fit. 
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The Q-plot is depicted in Figure 4.4.  
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Figure 4.4 

Q-Plot Of Standardized Residuals 
 

When interpreting the Q-plot it is important to note whether the data points fall on the 45-

degree reference line or not. If the points fall on the 45-degree reference line, it would be 

indicative of a good model fit (Jöreskog & Sörbom, 1993). The model fit would be less than 

satisfactory if the data points swivel away from the 45-degree reference line. 
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Less than perfect model fit is indicated by the fact that the standardised residuals for all 

pairs of observed variables tend to deviate slightly from the 450 – reference line in the Q-

plot in both the lower and upper region of the X-axis.  The deviation is, however, not 

pronounced and less severe than in the case of the measurement model. 

 

4.8 FURTHER ASSESSMENT OF THE STRUCTURAL MODEL 

 

Since the structural model adequately fits the data as judged by the overall goodness-of-fit 

measures, the structural model will be evaluated further.  The aim of further assessing the 

structural model is to determine whether each of the hypothesized theoretical relationships 

is supported by the data (Diamantopoulos & Siguaw, 2000).  

 

Diamantopoulos & Siguaw (2000) identify four issues relevant to assessing the structural 

model. First, it is important to assess whether the signs of the parameters representing the 

paths between latent variables are in agreement with the nature of the causal effect 

hypothesised to exist between the latent variables. Secondly, it is important to assess 

whether the parameter estimates are significant (p<0,05). Thirdly (assuming significance), 

it is important to assess the magnitude of the parameter estimates indicating the strength of 

the hypothesized relationships. Lastly, it is important to evaluate the squared multiple 

correlations (R2), indicating the amount of variance in each endogenous latent variable that 

is explained by the latent variables linked to it in terms of the hypothesized structural 

model.  

 

The parameters of interest in assessing the structural model are the freed elements of the 

gamma (Γ) and beta (Β) matrices. 

 

The unstandardised Γ matrix (Table 4.18) is used to assess the significance of the estimated 

path coefficients γij, expressing the strength of the influence of ξ  on ηj i. These parameters 

are significant (p<0,05) if t >│1,96│(Diamantopoulos & Siguaw, 2000). A significant γ 

estimate would imply that the corresponding H -hypothesis will be rejected in favour of the 0
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relevant Ha-hypothesis. The hypotheses which are relevant to the Γ matrix in this study are 

H02 and H03. 

 

Table 4.18 

Unstandardized Gamma (Г) Matrix 
            ABSTRACT   INFORMAT    
            --------   -------- 
TRANSFER       0.27        - - 
              (0.15) 
               1.72 
  
 AUTOMAT        - -       0.89 
                         (0.10) 
                          8.64 
  
 LEARNPER        - -        - - 

 

The values in the matrix (Table 4.18) indicate that, the null hypothesis, that information 

processing capacity (ξ2) has no statistically significant effect on automatization (η2) 

(hypothesis 3, H03: γ22 = 0), can be rejected in favour of Ha3 (p < 0,05). Thus, the 

relationship postulated between information processing capacity (ξ2) and automatization 

(η2) in the structural model, is corroborated. In addition, the sign associated with this 

significant γ parameter estimate is consistent with the nature of the relationship 

hypothesised to exist between these latent unit performance dimensions.  

 

Table 4.18 further indicates that the null hypothesis, that abstract thinking capacity (ξ1) has 

no statistically significant positive effect on transfer of knowledge (η1) (hypothesis 2, H02: 

γ11 = 0), cannot be rejected. An insignificant (p > 0,05) relationship is, therefore, evident 

between abstract thinking capacity and transfer of knowledge. The causal relationship 

hypothesized between abstract thinking capacity (ξ ) and transfer of knowledge (η1 1) is 

therefore not corroborated.  The question invariably arises to what extent this is due to the 

inability to successfully operationalize the transfer of knowledge latent variable. 

 

The unstandardised Β matrix (Table 4.19) is used to assess the significance of the estimated 

path coefficients βij, expressing the strength of the influence of η  on η .  Unstandardised βj i ij 

estimates are also significant (p<0,05) if t > │1,96│(Diamantopoulos & Siguaw, 2000). A 

120 



  

significant β estimate would imply that the corresponding H0-hypothesis will be rejected in 

favour of the relevant Ha-hypothesis.  The hypotheses which are relevant to the Β matrix in 

this study are H04, H05 and H06. 

Table 4.19 

Unstandardized Beta (Β) Matrix 
            TRANSFER    AUTOMAT   LEARNPER  
            --------   --------   -------- 
TRANSFER        - -       0.54        - - 
                         (0.16) 
                           3.29 
  
AUTOMAT        - -        - -        - - 
  
LEARNPER       0.26       0.33        - - 
              (0.19)     (0.19) 
                1.33       1.75 

 
 

The values in Table 4.19 indicate that the null hypothesis, that the extent to which transfer 

of knowledge (η1) occurs is not determined by the extent to which automatization occurs 

(η ), H2 04: β12 = 0, can be rejected in favour of Ha4 (p < 0,05). Thus, the relationship 

postulated between transfer of knowledge (η ) and automatization (η1 2) in the structural 

model are corroborated. In addition, the sign associated with this significant β parameter 

estimate is consistent with the nature of the relationship hypothesised to exist between these 

latent unit performance dimensions.  

 

Table 4.19 further indicates that the null hypothesis, that transfer of knowledge (η1) has no 

statistically significant effect on job competency potential targeted by the affirmative 

training intervention (η ), H3 05: β31 = 0, cannot be rejected. Table 4.19 moreover indicates 

that the null hypothesis, that automatization (η2) has no statistically significant effect on job 

competency potential targeted by the affirmative training intervention (η ), H3 06:β32 = 0, also 

cannot be rejected. An insignificant (p>0,05) relationship is, therefore, evident between 

transfer of knowledge and job competency potential and between automatization and job 

competency potential.  The causal relationships hypothesized between transfer of 

knowledge and learning performance and between automatization and learning 

performance are therefore not corroborated.  Again the question invariably arises whether 
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these finding is due to a conceptual flaw in Taylor’s original theorizing or whether it is due 

to the inability of this study to successfully operationalize the job competency potential 

latent variable. 

 

LISREL has the ability to decompose total effects between latent variables into direct and 

indirect effects.  Indirect effects refer to the influence of ξ  or η  on η  as mediated by ηj i j k.  

Indirect effects are derived by multiplying the unstandardized parameter estimates of the 

paths comprising the indirect effect.  LISREL also computes an estimated standard error 

and an accompanying t-value for each indirect effect in the model (Diamantopoulos & 

Siguaw, 2000; Kaplan, 2000).  The matrix of indirect effects of ksi on eta (Table 4.20) will 

be used to test the mediation null hypotheses H07 and H08.  Diamantopoulos & Siguaw 

(2000) however warns that the indirect effect statistics need to be interpreted with caution 

when any of contributing parameter estimates is insignificant. 

Table 4.20 

Unstandardized Indirect Effects Of Ksi On Eta 
              ABSTRACT  INFOPROC 
            --------   -------- 
 TRANSFER        - -       0.48 
                         (0.15) 
                           3.22 
  
  AUTOMAT        - -        - - 
  
 LEARNPER       0.07       0.42 
              (0.07)     (0.12) 
                1.04       3.55 

 

Table 4.20 indicates that the null hypothesis, that the influence of abstract thinking capacity 

(ξ ) on the job competencies targeted by the training intervention (η1 3) is not mediated by 

transfer of knowledge (η ), H1 07: γ11β31 = 0, can not be rejected (p>0,05).  Table 4.20 

moreover indicates that the null hypothesis, that the influence of information processing 

capacity (ξ2) on the job competencies targeted by the training intervention (η3) is not 

mediated by automatization (η ), H2 08: γ22β32 = 0, can be rejected (p<0,05). Table 4.20 in 

addition indicates that the indirect effect of Information Processing on Transfer is 

significant (p<0,05).  No formal mediation hypothesis was formulated in this regard. 
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Diamantopoulos & Siguaw (2000) suggest that additional insights can be obtained by 

looking at the completely standardised Β and Γ parameter estimates. The completely 

standardised Β and Γ parameter estimates are not affected by differences in the unit of 

measurement of the independent variables and can, thus, be compared across equations. 

The completely standardised Β and Γ parameter estimates reflect the average change, 

expressed in standard deviation units, in the endogenous latent variable directly resulting 

from a one standard deviation change in an endogenous or exogenous latent variable to 

which it has been linked, holding the effect of all other variables constant (Diamantopoulos 

& Siguaw, 2000).  The completely standardised Β and Γ parameter estimates are depicted 

in Table 4.21. 

 

Table 4.21 

Completely Standardized Gamma (Γ) and Beta (Β) Estimates 
GAMMA 
 
            ABSTRACT   INFOPROC    
            --------   -------- 
 TRANSFER       0.27        - - 
  AUTOMAT        - -       0.89 
 LEARNPER        - -        - - 

 
BETA 
 
            TRANSFER    AUTOMAT   LEARNPER    
            --------   --------   -------- 
 TRANSFER        - -       0.54        - - 
  AUTOMAT        - -        - -        - - 
 LEARNPER       0.26       0.33        - - 

 

Table 4.21 indicates that of the two significant effects, the effect of information processing 

on automatization is more pronounced than the effect of automatization on transfer of 

knowledge. 

 

4.9 STRUCTURAL MODEL MODIFICATION INDICES  

 

Model modification indices are aimed at answering the question whether any of the 

currently fixed parameters, when freed in the model, would significantly improve the 

parsimonious fit of the model.  Modification indices (MI) indicate the extent to which the χ2 

fit statistic will decrease if a currently fixed parameter in the model is freed and the model 
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re-estimated (Jöreskog & Sörbom, 1993). Large modification index values (> 6,6349) 

would be indicative of parameters that, if set free, would improve the fit of the model 

significantly (p<0,01) (Diamantopoulos & Siguaw, 2000; Jöreskog & Sörbom, 1993). It is 

important to note that parameters with high MI values should only be freed if it makes 

substantive sense to do so (Kelloway, 1998). The expected change for the parameter is the 

expected value of the parameter if it were freed (i.e., the extent to which it would change 

from its currently fixed value of zero). The standardised and completed standardised 

expected changes are the expected values in the standardised and completely standardised 

solution if the parameter were freed.  

 

Jöreskog & Sörbom (1993) argue that modification indices should be used in the following 

way in the process of model evaluation and modification: 
If chi-square is large relative to the degrees of freedom, one examines the modification 

indices and relaxes the parameter with the largest modification index if this parameter 

can be interpreted substantively. If it does not make sense to relax the parameter with 

the largest modification index, one considers the second largest modification index etc. 

If the signs of certain parameters are specified a priori, positive or negative, the expected 

parameter changes associated with the modification indices for these parameters can be 

used to exclude models with parameters having the wrong sign. (p. 127) 

 

The proposed structural model depicted in Figure 3.1 seems to fit the data reasonably well. 

The foregoing analysis of the standardised residuals, however, suggests that the addition of 

one or more paths would probably improve the fit of the model. Examination of the 

modification indices calculated for the Β matrix, depicted in Table 4.22 suggest that there 

exists no additional paths between any endogenous latent variables that would significantly 

improve the fit of the proposed learning potential structural model. 
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Table 4.22 

Modification Indices And Expected Change Calculated For The Β Matrix 
Modification Indices for BETA            
 
            TRANSFER    AUTOMAT   LEARNPER    
            --------   --------   -------- 
 TRANSFER        - -        - -       0.07 
  AUTOMAT       0.03        - -       3.95 
 LEARNPER        - -        - -        - - 
 
         Expected Change for BETA         
 
            TRANSFER    AUTOMAT   LEARNPER    
            --------   --------   -------- 
 TRANSFER        - -        - -      -0.12 
  AUTOMAT       0.03        - -      -0.24 
 LEARNPER        - -        - -        - - 
 
         Standardized Expected Change for BETA          
 
            TRANSFER    AUTOMAT   LEARNPER    
            --------   --------   -------- 
 TRANSFER        - -        - -      -0.12 
  AUTOMAT       0.03        - -      -0.24 
 LEARNPER        - -        - -        - - 

 

Examination of the modification indices calculated for the Γ matrix indicates depicted in 

Table 4.23 suggest that there also exists no additional paths between any exogenous latent 

variable and any endogenous latent variable that would significantly improve the fit of the 

proposed learning potential structural model. 

 

Table 4.23 

Modification Indices And Expected Change Calculated For The Γ Matrix 
          ABSTRACT   INFOPROC    
            --------   -------- 
 TRANSFER        - -       0.11 
  AUTOMAT       2.52        - - 
 LEARNPER       0.07       4.17 

 

The inability of this study to successfully operationalize the job competency potential latent 

variable should, however, be taken into account when considering the modification index 

findings with regards to the Γ matrix. 
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4.10 POWER ASSESSMENT 

 

When evaluating the findings on the fit of a model it is very important to investigate the 

statistical power associated with testing the model. Statistical power refers to the 

conditional probability of rejecting the null hypothesis given that it is false (P[reject H0: 

Σ=Σ(Θ)|H0 false]).  In the context of SEM statistical power therefore refers to the 

probability of rejecting an incorrect model.  Diamantopoulos & Siguaw (2000) explain: 
When we test a model’s fit by, say, the chi-square test, we emphasize the probability of 

making a Type I error, i.e. rejecting a correct model; this probability is captured by the 

significance level, α which is usually set at 0,05. A significant chi-square result 

indicates that if the null hypothesis is true (i.e. the model is correct in the population), 

then the probability of incorrectly rejecting it is low (i.e. less than five times out of 100 

if α= 0,05). However, another error that can occur is not to reject an incorrect model. 

This type of error is known as Type II error and the probability associated with it is 

denoted as β. The probability of avoiding a Type II error is, therefore, 1-β and it is this 

probability that indicates the power of our test; thus the power of the test tells us how 

likely it is that a false null hypothesis (i.e. incorrect model) will be rejected. (p. 93) 

 

Unfortunately, this issue is more often than not neglected, but it is important to understand 

that any model evaluation would be incomplete if power considerations were ignored. The 

importance of conducting a power analysis stems from the critical role that sample size 

plays in the decisions made in model testing (Diamantopoulos & Siguaw, 2000).  

Specifically in large samples (i.e., high power) the decision to reject a null hypothesis of 

exact fit (or a null hypothesis of close fit) becomes problematic because it is not clear 

whether the model was rejected because of severe misspecifications in the model or to the 

(too) high sensitivity of the test to detect even minor flaws in the model.  Conversely in 

small samples (i.e., low power) the decision not to reject the null hypothesis of exact/close 

fit results in ambiguity because it is not clear whether the decision was due to the accuracy 

of the model or to the insensitivity of the test to detect specification errors in the model. 

When the chi-square test is applied only Type I errors are explicitly taken into account, 

thus, a power analysis must be undertaken to also account for the probability of Type II 

errors (Diamantopoulos & Siguaw, 2000). 
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Two types of power calculations were performed. First, the power associated with a test of 

exact fit [i.e. testing the null hypothesis that the model fits perfectly in the population (as 

done by the conventional chi-square test)] was estimated. However, as argued earlier, this 

test is very limited since models are only approximations of reality and, therefore, rarely do 

they fit exactly in the population. The power associated with a test of close fit was 

consequently also estimated.  Here the null hypothesis states that the model has a close, but 

imperfect fit in the population. The stated null hypothesis takes the error of approximation 

[i.e. the discrepancy between Σ and Σ(θ)] into account and is, therefore, more realistic 

(Diamantopoulos & Siguaw, 2000). 

 

Both the test of exact fit and the test of close fit make use of the RMSEA statistic. If a 

model fits perfectly in the population the error due to approximation is set at 0 and the null 

hypothesis formulated earlier as H01a is consequently tested against Ha1a (Diamantopoulos & 

Siguaw, 2000). 
 

To determine the power of a test of the exact fit hypothesis, a specific value for the 

parameter needs to be assumed under Ha, because there are as many power estimates, as 

there are possible values for the parameter under Ha.  A value that makes good sense to use 

in this instance is RMSEA = 0,05, as RMSEA < 0,05 is indicative of good fit.  If a model 

achieves close fit in the population the error due to approximation will be set equal to or 

less than 0,05 (Diamantopoulos & Siguaw, 2000). 

 
If a model fits only approximately in the population the error due to approximation is set at 

0,05 and the null hypothesis formulated earlier as H01b is consequently tested against Ha1b 

(Diamantopoulos & Siguaw, 2000). To determine the power of a test of the close fit 

hypothesis a specific value for the parameter again needs to be assumed. A reasonable 

value to assume is RMSEA = 0,08, since RMSEA = 0,08 is the upper limit of reasonable 

fit. Diamantopoulos & Siguaw (2000) explains: 
The choice of the values for ε0 and ε0 (ε represents RMSEA) reflect the 

recommendations in the literature regarding RMSEA thresholds for close and mediocre 

fit respectively. Here we are asking the question: if the true fit of the model was 
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 is correct), what is the power of the test that Hmediocre (i.e. if Ha1b 014: RMSEA ≤ 0,05 

(i.e. that fit is close)? (p. 95) 

 
With the information on H  and H0 a and given a significance level (α) of 0,05 and a sample 

size N, the power of the test becomes a function of the degrees of freedom (ν) in the model 

(v=½[(p+q][p+q+1]-t)=91-35=5611). All other things being equal, the higher the degrees of 

freedom, the greater the power of the test (Diamantopoulos & Siguaw, 2000).  Power tables 

compiled by MacCallum et al. (1996) only make provision for degrees of freedom ≤ 100 

and N ≤ 500.   A SPSS translation of the SAS syntax provided by MacCallum et al. (1996) 

was consequently used to derive power estimates for the tests of exact and close fit, given 

the effect sizes assumed above, a significance level (α) of 0,05 and a sample size of 119. 

The degrees of freedom (ν) in the model is (½[(p+q][p+q+1]-t)=91-35=56. 

 

Power values of 0,433 were obtained for the test of exact fit.  The probability of rejecting 

the null hypothesis of exact fit under the true condition of close fit are thus low enough to 

have provided reason for concern at the outset of the study.  However, since the null 

hypothesis of exact fit has been rejected this need no longer be a reason for concern.  The 

probability of rejecting the null hypothesis of close fit if the true model fit was mediocre at 

0,558.  The latter power estimate, taken in conjunction with the decision not to reject the 

null hypotheses of close fit, suggest that the conclusion of close model fit could be 

somewhat contentious in that the tests were not highly sensitive to misspecifications in the 

model. 

 

4.11 REGRESSION ANALYSES 

 

The APIL test battery provides dynamic measures of two latent learning competencies and 

static measures of two latent dispositions, which determine the learning competencies 

(Taylor, 1989, 1994, 1997). In estimating expected learning performance, these measures 

would typically be combined in a linear multiple regression model.  Given the nature of the 

structural model underlying the APIL battery, the question however arises, whether the 

                                                 
11 t represents the number of parameters to be estimated in the fitted model. 
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static measures do not become redundant in a regression model that already includes the 

dynamic measures.  To a certain extent the inability of the preceding analysis to corroborate 

all of the hypothesized causal linkages in the learning potential structural model makes this 

somewhat of a less pressing question.   

 

The matrix of zero-order Pearson correlation coefficients between the five learning 

potential measures and the corresponding conditional probabilities is portrayed in Table 

4.25.  The convention proposed by Guilford (cited in Tredoux & Durrheim, 2002, p. 184) 

and depicted in Table 4.24 was used to interpret sample correlation coefficients.  Although 

somewhat arbitrary and although it ignores the normative question about the magnitude of 

values typically encountered in a particular context, it nonetheless fosters consistency in 

interpretation. 

 

Table 4.24 

Guilford’s Interpretation Of The Magnitude Of Significant r 

Absolute value of r Interpretation 
< 0,19 Slight; almost no relationship 

0,20 – 0,39 Low correlation; definite but small relationship 
0,40 – 0,69 Moderate correlation; substantial relationship 
0,70 – 0,89 High correlation; strong relationship 
0,90 – 1,00 Very high correlation; very dependable 

relationship 
 

Table 4.25 indicates that the two learning competencies measures (transfer of knowledge 

and automatization) as well as the two latent learning competency potential measures 

(abstract reasoning capacity and information processing capacity) correlate low but 

statistically significantly (p<0,05) with the learning performance measures (job competency 

potential).  Of concern, however, is the fact that the learning competencies measures and 

the learning competency potential measures correlate moderately and statistically 

significantly (p<0,05) amongst themselves. 
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Table 4.25 

Learning Potential Correlation Matrix 

Correlations

1 .615** .542** .510** .266**
.000 .000 .000 .002

119 119 119 119 119
.615** 1 .618** .680** .385**
.000 .000 .000 .000
119 119 119 119 119
.542** .618** 1 .512** .303**
.000 .000 .000 .000
119 119 119 119 119
.510** .680** .512** 1 .328**
.000 .000 .000 .000
119 119 119 119 119
.266** .385** .303** .328** 1
.002 .000 .000 .000
119 119 119 119 119

Pearson Correlation
Sig. (1-tailed)
N
Pearson Correlation
Sig. (1-tailed)
N
Pearson Correlation
Sig. (1-tailed)
N
Pearson Correlation
Sig. (1-tailed)
N
Pearson Correlation
Sig. (1-tailed)
N

Abstract Reasoning
Capacity

Information
Processing Capacity

Transfer of Knowledge

Automatization

Job Competency
Potential

Abstract
Reasoning
Capacity

Information
Processing
Capacity

Transfer of
Knowledge

Automatiz
ation

Job
Competency

Potential

Correlation is significant at the 0.01 level (1-tailed).**. 
 

 

4.11.1 TESTING HYPOTHESIS 9 

 

Standard linear multiple regression analysis was used to determine whether the dynamic 

measures of the two latent learning competencies (X  & X3 4) each explain unique variance 

in a composite measure of the job competency potential targeted by the affirmative training 

intervention (Y).  More specifically to test H09a: β[X ] = 0|β[X ] ≠ 0 and H 3 4 09b: β[X 4] = 

0|β[X3] ≠ 0 against directional alternative hypotheses the following linear regression model 

was fitted to the data using standard multiple regression. 

 

Ε[Y│X ] = α+ β [X ]+ βi 1 3 2[X ]-------------------------------------------------------------------(37) 4

Where: 

 Ε[Y│X ]  = Expected learning performance; i

 α = Y intercept 

 β1 = slope of Y with variable X3, holding variables X  constant; 4

 β2 = slope of Y with variable X4, holding variables X  constant; 3

 X3 = Transfer of knowledge 

 X4 = Automatization 
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4.11.1.1 Testing Hypothesis H09a

 

Evaluating the contribution of each independent variable to the multiple regression model is 

important because only those independent variables that are useful in predicting the value 

of the dependent variable should be included in the regression model (Berenson, Levine & 

Goldstein, 1983).   

 

The partial F test criterion was used for determining the contribution of each independent 

variable. This method involves determining the contribution to the regression sum of 

squares (SSR) made by each independent variable after all other independent variables have 

been included in the model. The new independent variable will only be included if it 

significantly improves the model (Berenson et al., 1983).   

 

To test H09a a univariate analysis of variance was done through general linear modelling 

(GLM) on SPSS (2006). The GLM Univariate procedure allows you to model the value of a 

dependent scale variable based on its relationship to categorical and scale predictors (SPSS, 

2006). The GLM Univariate procedure is based on the General Linear Model procedure, in 

which factors and covariates are assumed to have a linear relationship to the dependent 

variable (SPSS, 2006). 

 

H09a: β[X ] = 0|β[X3 4] ≠ 0 was tested by calculating the following test statistic from Table 

4.26: 

 

F = {(SSR[b3,b4] – SSR[b4]/[p-1]}/MSE[b3,b4]--------------------------------------------(38) 

   = {(803,084 – 654.541/[2-1]}/45,408 

   = 3,27 

Where: 

F~F[p-1, n-p-1] 

 
Using a 0,05 level of significance, H09a may be rejected if F ≥ F . 1-α; p-1, n-p-1

F = 3,27 <  F(1;116) = 3,9201  
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Table 4.26 

Regression Of Job Competency Potential On Transfer Of Knowledge (X3) And 

Automatization (X ) 4

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

803.084a 2 401.542 8.843 .000

58784.767 1 58784.767 1294.602 .000

148.543 1 148.543 3.271 .073

247.367 1 247.367 5.448 .021

5267.281 116 45.408

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X3

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .132 (Adjusted R Squared = .117)a. 

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

654.541a 1 654.541 14.140 .000

59152.436 1 59152.436 1277.891 .000

654.541 1 654.541 14.140 .000

5415.824 117 46.289

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .108 (Adjusted R Squared = .100)a. 

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

555.717a 1 555.717 11.790 .001

161895.867 1 161895.867 3434.818 .000

555.717 1 555.717 11.790 .001

5514.648 117 47.134

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X3

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .092 (Adjusted R Squared = .084)a. 

 
 

 

H09a: β[X ] = 0|β[X 3 4] ≠ 0 is, therefore, not rejected, implying that transfer of knowledge 

(X3) does not significantly (p>0,05) explain unique variance in job competency potential 

when included in a model already containing automatization (X4).  The observed 

exceedence probability associated with the calculated F statistic (0,073) does, however, not 

exceed the critical value of 0,05 by a great margin. 
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4.11.1.2 Testing Hypothesis H : 09b

 

H09b: β[X ] = 0|β[X4 3] ≠ 0 was tested by calculating the following test statistic from Table 

4.26: 

 

F = {(SSR[b3,b4] – SSR[b3]/[p-1]}/MSE[b3,b4]--------------------------------------------(39) 

   = {(803.084 – 555.717)/[2-1]}/45.408 

   = 5,448 

Where: 

F~F[p-1, n-p-1] 

 

Using a 0,05 level of significance, H09b may be rejected if F ≥ F . 1-α; p-1, n-p-1

 

F = 5,54 > F(1;116) = 3,9201  

 

H09b: β[X ] = 0|β[X 4 3] ≠ 0 is, therefore, rejected, implying that automatization (X4) does 

significantly (p<0,05) explain unique variance in job competency potential when included 

in a model already containing transfer of knowledge (X3). 

 

The regression equation, Ε[Y│X ] = α+ β [X ]+ βi 1 3 2[X ], is, thus, reduced to: 4

 

] = α+ β [X ] Ε[Y│Xi 2 4

Where: 

 Ε[Y│X ]  = Expected learning performance; i

 α = Y intercept 

 β2 = slope of Y with variable X4; 

 X4 = Automatization 
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4.11.2 TESTING HYPOTHESIS 10 

 

Hierarchical multiple regression analysis was used to determine whether the static measures 

of the two learning dispositions (X1 & X2) would significantly explain variance in learning 

performance when added to a linear regression model already containing automatization 

(X ).  More specifically to test H4 010: β[X ] = β[X ] = 0|β[X 1 2 4] ≠ 0 the following two observed 

variable linear multiple regression models will be fitted to the data using standard multiple 

regression: 

 

Ε[Y│X ] = α+ β [X ]+ βi 1 1 2[X ]+ β [X ]----------------------------------------------(40) 2 4 4

Ε[Y│X ] = α βi 4[X ]--------------------------------------------------------------------(41) 4

Where: 

 Ε[Y│X ]  = Expected learning performance; i

 α = Y intercept 

 β1 = slope of Y with variable X1, holding variables X  and X  constant; 2 4

 β2 = slope of Y with variable X2, holding variables X  and X  constant; 1 4

 β4 = slope of Y with variable X1, holding variables X  and X  constant; 1 2

 X1 = Abstract reasoning capacity  

 X2 = Information processing capacity 

 X4 = Automatization 

 

4.11.2.1 Testing Hypothesis H : 010

 

Evaluating the contribution of each independent variable to the multiple regression model is 

important because only those independent variables that are useful in predicting the value 

of the dependent variable should be included in the regression model (Berenson et al., 

1983).  The partial F test criterion will be used for determining the contribution of each 

independent variable. This method involves determining the contribution to the regression 

sum of squares (SSR) made by each independent variable after all other independent 

variables have been included in the model. The new independent variable will only be 

included if it significantly improves the model (Berenson et al., 1983).  To test H010 a 
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univariate analysis of variance was done through general linear modelling (GLM) on SPSS 

(2006). The GLM Univariate procedure allows you to model the value of a dependent scale 

variable based on its relationship to categorical and scale predictors (SPSS, 2006). The 

GLM Univariate procedure is based on the General Linear Model procedure, in which 

factors and covariates are assumed to have a linear relationship to the dependent variable 

(SPSS, 2006). 

 

H010: β[X ] = β[X ] = 0| β[X 1 2 4] ≠ 0 was tested by calculating the following test statistic from 

Table 4.27: 

 

Table 4.27 

Regression Of Job Competency Potential On Abstract Reasoning Capacity (X1), 

Information Processing Capacity (X ) And Automatization (X ) 2 4

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

953.884a 3 317.961 7.147 .000

27503.653 1 27503.653 618.183 .000

3.093 1 3.093 .070 .793

219.913 1 219.913 4.943 .028

44.804 1 44.804 1.007 .318

5116.482 115 44.491

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X1

X2

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .157 (Adjusted R Squared = .135)a. 

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

654.541a 1 654.541 14.140 .000

59152.436 1 59152.436 1277.891 .000

654.541 1 654.541 14.140 .000

5415.824 117 46.289

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .108 (Adjusted R Squared = .100)a. 

 
 

F = {(SSR[b1,b2,b4] – SSR[b4]/[p-1]}/MSE[b1,b2,b4]-------------------------(42) 
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   = {(953,884 – 654,541)/[3-1]}/44,491 

   = 3,36 

Where: 

F~F[p-1, n-p-1] 

 

Using a 0,05 level of significance, H010 may be rejected if F ≥ F . 1-α; p-1, n-p-1

 

F = 3,36 > F(2;115) = 3.0718  

 

In other words, H010 is rejected (p<0,05), indicating that X1 (abstract reasoning capacity) 

and/or X2 (information processing capacity) should be included in a model already 

containing automatization.  This finding that at least one or both static measures of learning 

potential do add incremental validity to a regression model already containing a dynamic 

measure of learning potential challenges the earlier argument that the inclusion of the 

person-centred drivers of the learning competencies in a prediction model that already 

contains measures of the learning competencies will be redundant.  Logically the 

redundancy argument would imply that the information processing capacity (X2) variable 

should be redundant but that X1 (abstract reasoning capacity) should explain unique 

variance in learning performance when included in a model already containing 

automatization (X ). 4

 

The results of testing H011a: β[X ] = 0│ β[X ] ≠ 0, β[X ] ≠ 0 and H 1 2 4 011b: β[X ] = 0│ β[X 2 1] ≠ 

0, β[X4] ≠ 0 will determine whether both static learning potential measures should be added 

to a model already containing automatization (X4). 

 

4.11.3 TESTING HYPOTHESIS 11 

 

Standard multiple regression analysis was used to investigate the predictive ability of an 

observed variable linear multiple regression model, regressing learning performance on a 

weighted linear combination of the two learning dispositions and automatization (X4). 

More specifically to test H011a: β[X ] = 0│ β[X ] ≠ 0,  β[X ] ≠ 0, H 1 2 4 011b: β[X ] = 0│ β[X ] ≠  2 1

136 



  

0, β[X4] ≠ 0 and H011c: β[X4] = 0│ β[X1] ≠ 0, β[X ] ≠ 012
2  the following observed variable 

linear multiple regression models was fitted to the data using standard multiple regression: 

 

Ε[Y│X ] = α+ β [X ]+ βi 1 1 2[X ]+ β [X ]----------------------------------------------(43) 2 4 4

Ε[Y│X ] = α+ β [X ]+ βi 1 2 4[X ]--------------------------------------------------------(44) 4

Ε[Y│X ] = α+ β [X ]+ βi 1 1 4[X ]--------------------------------------------------------(45) 4

Where: 

]  = Expected learning performance;  Ε[Y│Xi

 α = Y intercept 

 β1 = slope of Y with variable X1, holding variables X , X , and X  constant; 2 3 4

 β2 = slope of Y with variable X2, holding variables X , X , and X  constant; 1 3 4

 β3 = slope of Y with variable X3, holding variables X , X , and X  constant; 1 3 4

 β4 = slope of Y with variable X1, holding variables X , X , and X  constant; 1 2 3

 X1 = Abstract reasoning capacity  

 X2 = Information processing capacity 

 X3 = Transfer of knowledge 

 X4 = Automatization 

 

Evaluating the contribution of each independent variable to the multiple regression model is 

important because only those independent variables that are useful in predicting the value 

of the dependent variable should be included in the regression model (Berenson, Levine & 

Goldstein, 1983).  The partial F test criterion will be used for determining the contribution 

of each independent variable. This method involves determining the contribution to the 

regression sum of squares (SSR) made by each independent variable after all other 

independent variables have been included in the model. The new independent variable will 

only be included if it significantly improves the model (Berenson et al., 1983).  

 

To test H011I a univariate analysis of variance was done through general linear modelling 

(GLM) on SPSS (2006). The GLM Univariate procedure allows you to model the value of a 

dependent scale variable based on its relationship to categorical and scale predictors (SPSS, 

                                                 
12 These statistical hypotheses may have to be revised depending on the outcome of the analyses. 
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2006). The GLM Univariate procedure is based on the General Linear Model procedure, in 

which factors and covariates are assumed to have a linear relationship to the dependent 

variable (SPSS, 2006). 

H011a: β[X ] = 0│ β[X ] ≠ 0,  β[X 1 2 4] ≠ 0 was tested by calculating the following test statistic 

from Table 4.28: 

 

Table 4.28 

Regression Of Job Competency Potential On Abstract Reasoning Capacity (X1), 

Information Processing Capacity (X ) And Automatization (X ) 2 4

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

953.884a 3 317.961 7.147 .000

27503.653 1 27503.653 618.183 .000

3.093 1 3.093 .070 .793

219.913 1 219.913 4.943 .028

44.804 1 44.804 1.007 .318

5116.482 115 44.491

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X1

X2

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .157 (Adjusted R Squared = .135)a. 

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

950.791a 2 475.395 10.772 .000

27959.627 1 27959.627 633.513 .000

296.249 1 296.249 6.712 .011

49.897 1 49.897 1.131 .290

5119.575 116 44.134

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X2

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .157 (Adjusted R Squared = .142)a. 

 
 

F = {(SSR[b1,b2,b4] – SSR[b2,b4]/[p-2]}/MSE[b1,b2,b4]------------------(46) 

   = {(953,884 – 950.791)/[3-2]}/44,491 

   = 0,07 
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Where: 

F~F[p-2, n-p-1] 

 

Using a 0,05 level of significance, H010 may be rejected if F ≥ F . 1-α; p-2, n-p-1

 

F = 0,07 < F(1;115) =  3,9201 

 

In other words, H011a is not rejected (p>0,05), implying that X1 (abstract reasoning capacity) 

should not be included in a model already containing automatization and information 

processing capacity. The model is, thus, reduced to: 

 

Ε[Y│X ] = α+ β [X ]+ βi 2 2 4[X ]---------------------------------------------------------------------(47) 4

 

The revised hypothesis H011b: β[X ] = 0│β[X 2 4] ≠ 0, was subsequently tested by calculating 

the following test statistic from Table 4.28: 

 

F = {(SSR[b2,b4] – SSR[ b4]/[p-1]}/MSE[b2,b4]----------------------------------------------(48) 

= {(950.791- 654,541)/[2-1]}/44,134 

 = 6,71 

 

Where: 

F~F[p-1, n-p-1] 

 

Using a 0,05 level of significance, H011b may be rejected if F ≥ F . 1-α; p-1, n-p-1

 

F = 6,71 > F(1;116) =  3,9201 

 

Thus, H011b is rejected (p<0,05), and information processing capacity (X )2  significantly 

explains unique variance in learning performance in a model already containing 

automatization. 
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The question, however, now arises whether automatization (X4) still significantly explains 

variance in learning performance when retained in a model already including information 

processing capacity (X )?  To investigate this question, the revised hypothesis H2 011c: β[X 4] 

= 0│ β[X24] ≠ 0, was subsequently tested by calculating the following test statistic from 

Table 4.28 

 

F = {(SSR[b2,b4] – SSR[b2]/[p-1]}/MSE[b2,b4]----------------------------------------------(49) 

= {(950.791- 900,894)/ [2-1]}/44,134 

 = 1,13 

Where: 

F~F[p-1, n-p-1] 

 

Using a 0,05 level of significance, H011c may be rejected if F ≥ F . 1-α; p-1, n-p-1

 

F=1,13 < F(1;116) =  3,9201 

 

H011C is not rejected (p>0,05), implying that X4 (automatization) does not significantly 

explain unique variance in learning performance when included in a model already 

containing information processing capacity (X2). Automatization should therefore be 

eliminated from the regression model and the model consequently is, reduced to: 

 

] = α+ β [X ] -------------------------------------------------------------------------------(50) Ε[Y│Xi 2 2

 

The finding that the addition of a measure of abstract reasoning capacity (X1) does not add 

incremental validity to a model already including a measure of automatization (X4) is rather 

surprising.  Based on the logic of the proposed learning potential structural model one 

would have expected abstract reasoning capacity to have served as a substitute for transfer 

of knowledge and to significantly explain unique variance in learning performance in a 

model that already includes the dynamic automatization measure.  The finding that the 

inclusion of both information processing capacity (X2) and automatization (X4) in the same 

prediction model serves little purpose does agree with the proposed learning potential 
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structural model (Figure 3.1).  Logically one would, however, have expected that the more 

direct causal determinant of learning performance should have been the more influential 

predictor.  This line of reasoning, however, does ignore the reliability and validity of the 

operational measures. 

 

4.12 COMPARISON OF PREDICTIVE POWER 

 

To compare the predictive power of the structural model to that of the observed variable 

multiple regression model, the R² of the regression model will be contrasted to the 

proportion of the variance in job competency potential targeted by the affirmative training 

intervention (η ) explained by the structural model linked to it.   3

 

The squared multiple correlations for the endogenous latent variables in the learning 

potential structural model are shown in Table 4.29. 

 

TABLE 4.29 

Squared Multiple Correlations For Structural Equations 
            TRANSFER    AUTOMAT   LEARNPER 
            --------   --------   -------- 
                0.56       0.79       0.30 

 

The proposed structural model satisfactorily explains variance in the endogenous latent 

variable automatization.  The proposed structural model, moreover, succeeds modestly in 

explaining variance in transfer of knowledge.  The proposed structural model, however 

does not really succeed in explaining variance in learning performance. The model’s failure 

to account for the variance in the primary endogenous latent variable, Learning 

Performance, creates some reason for concern. 

 

Table 4.25 indicates that information processing capacity (X2) explains 14,8% of the 

variance in learning performance in the observed variable regression model.  Inclusion of 

all four predictor variables in the regression model explains 16,1% of the variance in 

learning performance (See Table 4.30). 
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TABLE 4.30 

Regression Of Job Competency Potential On Abstract Reasoning Capacity (X1), 

Information Processing Capacity (X ) And Transfer (X ) and Automatization (X ) 2 3 4

Tests of Between-Subjects Effects

Dependent Variable: Job Competency Potential

979.520a 4 244.880 5.484 .000

25419.822 1 25419.822 569.230 .000

.231 1 .231 .005 .943

155.021 1 155.021 3.471 .065

25.636 1 25.636 .574 .450

36.137 1 36.137 .809 .370

5090.846 114 44.657

521600.250 119

6070.366 118

Source
Corrected Model

Intercept

X1

X2

X3

X4

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .161 (Adjusted R Squared = .132)a. 

 
 

The structural model therefore outperformed the regression model in terms of its ability to 

explain variance in learning performance. 

 

It could, however be argued that the comparison should rather be made between the 

structural model with all insignificant paths pruned away and the regression model with 

only effects included that significantly explain unique variance in learning performance.  

When fitting the structural model without the abstract reasoning exogenous latent variable 

and its associated indicator variables the fit of the model deteriorates (RMSEA=,087) 

although the proportion of variance in learning performance increases marginally to 0,31. 
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CHAPTER 5 

CONCLUSIONS, RECOMMENDATION AND SUGGESTIONS FOR FUTURE 

RESEARCH 

 

5.1 INTRODUCTION 

In South Africa, specific groups had and still have easier and more access to opportunities 

that allow them to develop an array of coping strategies, knowledge, skills and abilities. 

Access to such opportunities often has the resultant effect that such individuals perform 

better in conventional assessment situations, in the workplace and in training programmes 

or educational institutions (Boeyens, 1989; Guthke, 1993; Hamers & Resing, 1993; Taylor, 

1989; Taylor, 1992). It is clear that a need exists in South Africa for a method to identify 

individuals who will gain maximum benefit from affirmative developmental opportunities, 

especially cognitively demanding development opportunities. 

 

Ideally, such measures would assess an individual’s core or fundamental cognitive abilities 

and potentialities and not specific job skills that are strongly influenced by past 

opportunities (Taylor, 1997).   

 

Vygotsky (1978) originally proposed the measurement of learning potential as a method of 

assessing an individual’s core or fundamental cognitive abilities and potentialities. Drawing 

on ideas developed, amongst others, by Vygotsky (1978), Sternberg (1984), Snow, et al. 

(1984) and Ackerman (1988), Taylor (1989, 1994, 1997) developed a learning potential 

model, which explicates the latent variables collectively constituting learning potential.  

 

Based on this learning potential model, a learning potential measure, specifically assessing 

an individual’s hidden latent and reserve potential, reducing the influence of verbal 

abilities, cultural meanings and educational qualifications has been proposed and developed 

by Taylor (1989, 1992, 1994, 1997) in the form of the APIL test battery. Taylor (1997) 

claims that this learning potential measure is especially suited for application in the 

following two practical settings. Firstly, it can serve as a useful tool in making fair 

decisions when job applicants are selected. Allied to this, is the fact that it can also help 
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identify candidates who are likely to cope or master more demanding work roles. Secondly, 

it can be applied in the educational arena and will help identify candidates who are likely to 

master new cognitively demanding material in a formal educational or training context. 

 

However, such an approach would imply that effective selection of previously 

disadvantaged individuals into formal educational or training is possible to the extent to 

which there exists a comprehensive understanding of the reasons underlying training 

performance and the manner in which they combine to determine learning performance in 

addition to clarity on the fundamental nature of the key performance areas comprising the 

learning task. The APIL test battery will thus result in effective selection to the extent to 

which the explanatory model on which it is based successfully explains variance in learning 

performance. 

 

The primary objectives of this research were to (a) explicate the structural model 

underlying the APIL test battery and (b) evaluate the fit of the model on empirical data. 

 

The APIL test battery provides dynamic measures of two latent learning competencies and 

static measures of two latent dispositions, which determine the learning competencies 

(Taylor, 1989, 1994, 1997). In estimating expected learning performance, these measures 

would typically be combined in a linear multiple regression model.  Given the nature of the 

structural model underlying the APIL test battery, the question, however, arises whether the 

static measures do not become redundant in a model that already includes the dynamic 

measures. 

 

The secondary objectives of this research consequently were to determine whether the static 

measures of the two latent learning dispositions would significantly explain variance in 

learning performance when added to a model already containing dynamic measures of the 

two latent learning competencies.  

 

If the structural model was indeed found to be valid, and if the APIL test battery does 

succeed in selecting those who show a greater probability of succeeding in cognitively 
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demanding developmental opportunities aimed at enhancing the required knowledge, skills, 

and abilities needed to succeed on the job, and the development programmes do succeed in 

reducing the differences in the criterion distributions, then adverse impact in job selection 

should be reduced. Previously disadvantaged individuals should now be significantly less 

disadvantaged in terms of the required knowledge, skills and abilities. Theoretically, over 

time, this approach should work towards levelling the playing field so that success or 

failure in personnel selection can be attributed to previous opportunities or lack thereof to a 

lesser degree than is currently typically the case in South Africa, without even temporarily 

relinquishing on the utility objective. 

 

The specific objectives of this research were: 

• To explicate the underlying structural model upon which the APIL test battery was 

developed, explaining learning performance; 

• To test the model’s absolute fit; 

• To evaluate the significance of the hypothesised paths in the model; 

• To investigate the predictive ability of an observed variable linear multiple 

regression model, regressing learning performance on a weighted linear 

combination of the two learning dispositions and the two learning competencies; 

• To determine whether the static measures of the two latent learning dispositions 

would significantly explain variance in learning performance when added to a linear 

regression model already containing dynamic measures of the two latent learning 

competencies; 

• To compare the predictive power of the structural model to that of the observed 

variable multiple regression model; 

• To modify the structural model if necessary; and 

• To compare the fit of the revised structural model to that of the original model. 

 

Overall, It was expected that the structural model would fit the data reasonably well 

although it was expected that the null hypothesis of exact fit would be rejected.  It was 

furthermore expected that all paths hypothesized in the model would be significant.  
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It was also expected that the dynamic measures of learning potential will each explain 

unique variance in a composite measure of the job competency potential targeted by the 

affirmative training intervention.  It was, however, expected that the static measures of the 

two latent learning dispositions would not significantly explain variance in learning 

performance when added to a linear regression model already containing dynamic measures 

of the two latent learning competencies.   

 

5.2 RESULTS 

 

5.2.1 Evaluation of the Measurement Model 

 
The overall goodness-of-fit of the measurement model was tested through structural 

equation modelling. Various indices were interpreted to assess the goodness-of-fit of the 

measurement model and it was found that the measurement model fits the data reasonably 

well, but not perfectly. After examination of the measurement model residuals it was found 

that five observed covariance terms in the observed sample covariance matrix (out of 78 

covariance terms) was being poorly estimated by the derived model parameter estimates, 

which is also indicative of reasonable model fit. By examining the stem-and-leaf plot, the 

distribution of standardised residuals appeared only slightly positively skewed, but not 

overly so. This indicated that there was a slightly stronger tendency for the model to 

overestimate the observed covariance terms. However, the Q-plot clearly indicated less than 

perfect model fit.  Subsequently, given the examination of the residuals, it was also 

important to evaluate the model modification indices. After examining the modification 

indices it was found that only two additional paths would significantly improve the fit of 

the measurement model, which was interpreted as a positive and favourable comment on 

the merits of the measurement model. The values of the squared multiple correlations for 

the indicators and the calculated composite reliability values for each latent variable caused 

concern and left a question mark hanging over the success with which at least some of the 

latent variables comprising the learning potential structural model had been operationalized, 

thereby jeopardizing an unambiguous verdict on the merits of the learning potential 

structural model. Overall, the measurement model fit could be described as reasonable.  The 
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claim that specific indicator variables reflect specific latent variables and not others did 

therefore, not seem unreasonable.  However, the success with which at least two of the 

indicator variables represented the latent variables they were meant to reflect seemed 

limited.  As such, the integrity of the analysis of the hypothesized structural relations was 

threatened.   

 

5.2.2 Evaluation of Structural Model 

 
After interpreting all the fit indices, the conclusion was drawn that the structural model also 

fit the data reasonably well. Integrating the results obtained on the full spectrum of fit 

statistics seemed to suggest a reasonable fitting model that clearly outperforms the 

independence model and that seemed to acknowledge the true complexity of the processes 

underlying the APIL test battery. However, to ensure that a thorough assessment of the fit 

of the structural model was done and especially because it was found that the structural 

model only fits the data reasonably well, it was necessary to investigate the standardised 

residuals and modification indices to determine the extent of success with which the model 

explained the observed covariances amongst the manifest variables. Two large positive 

residuals and one large negative residual indicated three observed covariance terms in the 

observed sample covariance matrix being poorly estimated by the derived model parameter 

estimates. Inspection of the variables associated with these standardised residuals revealed 

no clear specific suggestions for possible model modification.  The small number of 

covariance terms poorly reproduced by the fitted model parameter corroborated the earlier 

conclusion that the model succeeded reasonably well in explaining the observed data. From 

the stem-and-leaf plot the distribution of the standardised residuals appeared to be slightly 

positively skewed.  The estimated model parameters therefore, on average, tend to under-

estimate the observed covariance terms.  This would suggest that the model failed to 

account for one or more influential paths. Moreover, the distribution of the standarized 

residuals seemed to be somewhat less leptokurtic than would be typical of good model fit. 

Less than perfect model fit was indicated by the fact that the standardised residuals for all 

pairs of observed variables tended to deviate slightly from the 450 – reference line in the Q-
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plot in both the lower and upper region of the X-axis.  The deviation was, however, not 

pronounced and less severe than in the case of the measurement model.  

 

Upon further examination, the null hypothesis, that information processing capacity has no 

statistically significant positive effect on automatization was rejected. Thus, the relationship 

postulated between information processing capacity (ξ2) and automatization (η2) in the 

structural model, was corroborated. In addition, the sign associated with this significant γ 

parameter estimate was consistent with the nature of the relationship hypothesised to exist 

between these latent unit performance dimensions. The null hypothesis, that abstract 

thinking capacity (ξ1) has no statistically significant positive effect on transfer of 

knowledge (η1) was not rejected. An insignificant relationship was, therefore, evident 

between abstract thinking capacity and transfer of knowledge. The causal relationship 

hypothesized between abstract thinking capacity (ξ1) and transfer of knowledge (η1) was 

therefore not corroborated.  The question invariably arose as to what extent this was due to 

the inability to successfully operationalize the transfer of knowledge latent variable. The 

null hypothesis, that the extent to which transfer of knowledge (η1) occurs is not positively 

determined by the extent to which automatization occurs was also rejected. Thus, the 

relationship postulated between transfer of knowledge (η ) and automatization (η1 2) in the 

structural model was corroborated. In addition, the sign associated with this significant β 

parameter estimate was consistent with the nature of the relationship hypothesised to exist 

between these latent unit performance dimensions. The null hypothesis, that transfer of 

knowledge (η1) has no statistically significant positive effect on job competency potential 

targeted by the affirmative training intervention (η3), was not rejected. The null hypothesis, 

that automatization (η2) has no statistically significant positive effect on job competency 

potential targeted by the affirmative training intervention was also not rejected. An 

insignificant relationship was, therefore, evident between transfer of knowledge and job 

competency potential and between automatization and job competency potential.  The 

causal relationships hypothesized between transfer of knowledge and learning performance 

and between automatization and learning performance were not corroborated.  Again the 

question invariably arose as to whether these finding was due to a conceptual flaw in 
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Taylors’s original theorizing or whether it was due to the inability of this study to 

successfully operationalize the job competency potential latent variable.  

 

The null hypothesis, that the influence of abstract thinking capacity (ξ1) on the job 

competencies targeted by the training intervention (η3) is not mediated by transfer of 

knowledge was not rejected.  The null hypothesis, that the influence of information 

processing capacity (ξ ) on the job competencies targeted by the training intervention (η2 3) 

is not mediated by automatization was on the other hand rejected. It was further found that 

the indirect effect of information processing on transfer was significant. The effect of 

information processing on automatization was found to be more pronounced than the effect 

of automatization on transfer of knowledge.  

 

Overall, it was found that the proposed structural model fit the data reasonably well. 

However, the analysis of the standardised residuals, suggested that the addition of one or 

more paths would probably improve the fit of the model. Examination of the modification 

indices suggested that there exist no additional paths between any endogenous latent 

variables or any exogenous latent variables that would significantly improve the fit of the 

proposed learning potential structural model. However, the inability of this study to 

successfully operationalize the job competency potential latent variable should be taken 

into account when considering the modification index findings. The probability of rejecting 

the null hypothesis of exact fit under the true condition of close fit was low enough to have 

provided reason for concern at the outset of the study.  However, since the null hypothesis 

of exact fit was rejected, this no longer was a reason for concern.  The probability of 

rejecting the null hypothesis of close fit if the true model fit was mediocre was also low 

enough to provide reason for concern.  The latter power estimate, taken in conjunction with 

the decision not to reject the null hypotheses of close fit, suggested that the conclusion of 

close model fit could be somewhat contentious in that the tests were not highly sensitive to 

misspecifications in the model. 
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5.2.3 Regression Analysis 

 

Further analysis were performed in the form of a correlation analysis, simple linear 

regression analysis and standard multiple linear regression analyses. It was found that the 

two learning competency measures (transfer of knowledge and automatization) as well as 

the two latent learning competencies potential measures (abstract reasoning capacity and 

information processing capacity) correlate low but statistically significantly with the 

learning performance measures (job competency potential).  Of concern, however, was the 

fact that the learning competencies measures and the learning competency potential 

measures correlated moderately and statistically significantly amongst themselves. 

 

The following was found through the regression analysis: 

• Transfer of knowledge does not significantly explain unique variance in job 

competency potential when included in a model already containing automatization.  

The observed exceedence probability associated with the calculated F statistic did, 

however, not exceed the critical value of 0,05 by a great margin  The problem seems 

to be the relatively high correlation existing between the two learning competency 

measures.; 

• Automatization does significantly explain unique variance in job competency 

potential when included in a model already containing transfer of knowledge; 

• Abstract reasoning capacity and/or information processing capacity should be 

included in a model already containing automatization.  This finding that at least 

one or both static measures of learning potential do add incremental validity to a 

regression model already containing a dynamic measure of learning potential 

challenged the earlier argument that the inclusion of the person-centred drivers of 

the learning competencies in a prediction model that already contains measures of 

the learning competencies will be redundant. ;  

• Abstract reasoning capacity should not be included in a model already containing 

automatization and information processing capacity; 

• Information processing capacity significantly explains unique variance in learning 

performance in a model already containing automatization.  
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• Automatization does not significantly explain unique variance in learning 

performance when included in a model already containing information processing 

capacity.  

 

The finding that the addition of a measure of abstract reasoning capacity does not add 

incremental validity to a model already including a measure of automatization was rather 

surprising.  Based on the logic of the proposed learning potential structural model one 

would have expected abstract reasoning capacity to have served as a substitute for transfer 

of knowledge and to significantly explain unique variance in learning performance in a 

model that already includes the dynamic automatization measure.  The finding that the 

inclusion of both information processing capacity and automatization in the same prediction 

model serves little purpose, does agree with the proposed learning potential structural 

model.  It was, however, expected that the more direct causal determinant of learning 

performance should have been the more influential predictor.  This line of reasoning, 

however, does ignore the reliability and validity of the operational measures. 

 

5.2.4 Comparing the predictive power between the structural model and regression 

model 

 

In comparing the predictive power of the structural model versus the regression model, it 

was found that the structural model outperformed the regression model in terms of its 

ability to explain variance in learning performance. However it could be argued that the 

comparison should rather have been made between the structural model with all 

insignificant paths pruned away and the regression model with only effects included that 

significantly explain unique variance in learning performance.   

 

5.3 SUGGESTIONS FOR FUTURE RESEARCH 

 

The results of this study partially justify the use of the APIL battery for affirmative 

development selection.  Evidence on the fairness and the utility of the procedure would 

have to be examined to come to a definitive verdict on the usefulness of the battery.  The 

151 



  

results would suggest that all the scores of the APIL need not be considered when 

estimating future training performance. 

 

The stability of the model needs to be examined in a cross-validation study on a fresh 

sample of respondents taken from the same population.  In addition, future research should 

investigate the possibility of expanding the model by formally incorporating latent variables 

like existing knowledge level, conscientiousness, tenacity, learning motivation, and 

learning support/infrastructure to explain additional variance in job competency potential 

targeted by the affirmative training intervention.  It is extremely unlikely that differences in 

learning performance can be attributed to differences in intellectual ability only.  It is 

furthermore unlikely that a mastery of learning material will necessarily mean that the 

newly acquired insights will be used in finding solutions to novel problems on the job.  

Incorporating latent variables like self-efficacy, performance motivation and 

mentoring/perceived support should therefore also be considered. 

 

The degree of measurement model fit achieved could be described as reasonable.  The 

claim that the specific indicator variables used to reflect the specific latent variables 

comprising the learning potential structural model does therefore, not seem altogether 

unreasonable.  However, the success with which at least two of the indicator variables 

represent the latent variables they were meant to reflect seems limited.  As such, the 

integrity of the analysis of the hypothesized structural relations is threatened.  Especially 

the validity of the job competency potential and transfer of knowledge measures seems to 

have been questionable.  To do something about the transfer of knowledge measures is not 

that easy since it forms an integral part of the APIL battery.  The job competency potential 

measure could, however, be improved and the study repeated. 

 

Earlier (paragraph 3.3.5) the concern was raised that the job competency potential measure 

did not really reflect the ability to creatively use newly obtained knowledge in problem 

solving (i.e. did not reflect action learning).  The fact that information processing capacity 

turned out to be the best predictor of learning performance reinforces this concern.  To the 

extent that this was the case the need to replicate this study with a learning performance 

152 



  

measure that does reflect problem solving based on newly acquired knowledge becomes 

even more important.   
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Appendix A 

Path diagram for full LISREL model 
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ξ2 Information processing capacity 
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Appendix B 

Path diagram for observed variable regression model 
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