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ABSTRACT

Principal Component Analysis (PCA) biplots is a valuable means of visualising high di-

mensional data. The application of PCA biplots over a wide variety of research areas

containing multivariate data is well documented. However, the application of biplots

to financial data is limited. This is partly due to PCA being an inadequate means of di-

mension reduction for multivariate data that is subject to extremes. This implies that

its application to financial data is greatly diminished since extreme observations are

common in financial data. Hence, the purpose of this research is to develop a method

to accommodate PCA biplots for multivariate data containing extreme observations.

This is achieved by fitting an elliptical copula to the data and deriving a correlation

matrix from the copula parameters. The copula parameters are estimated from only

extreme observations and as such the derived correlation matrices contain the depen-

dencies of extreme observations. Finally, applying PCA to such an “extremal” correla-

tion matrix more efficiently preserves the relationships underlying the extremes and a

more refined PCA biplot can be constructed.
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Opsomming

Hoofkomponent Analise (HKA) bistippings is ’n nuttige metode om meer dimensionele

data te visualiseer. Die toepassing van HKA bistippings is al goed gedokumenteer

oor ’n wye verskeidenheid van navorsingsareas waar meerveranderlike data voorkom,

maar die toepassing van bistippings op finansiële data is beperk. Dit is deels te wyte

aan HKA wat ‘n onvoldoende metode is van dimensie reduksie van meerverander-

like data wat ekstreme waarnemings bevat. Dit impliseer dat die toepassing daar-

van op finansiële data aansienlik beperk is, gegee dat ekstreme waarnemings alge-

meen voorkom in finansiële data. Die doel van hierdie navorsing is om ’n metode

te ontwikkel om HKA- bistippings toe te pas op meerveranderlike data wat ekstreme

waarnemings bevat. Dit word gedoen deur ’n elliptiese copula op die data te pas en ‘n

korrelasiematriks uit die copula parameters af te lei. Die copula parameters word be-

raam deur slegs die ekstreme waarnemings te gebruik en dus dui die afgeleide korre-

lasiematrikse die afhanklikhede van slegs ekstreme waarnemings aan. Laastens, deur

HKA op so ’n “ekstreme” korrelasie matriks toe te pas, word die verwantskappe on-

derliggend aan die ekstreme waardes meer doeltreffend behou en kan ’n meer onder-

skeidende HKA bistipping gekonstrueer word.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In 1884, Abbott (1884) published a novel titled Flatland: A romance of many dimen-

sions. In his novel Abbott (1884) attempted to challenge the notion of conceptualising

higher dimensional space. To do this, he chronicles a tale of a square living in a 2-

dimensional world known as Flatland. The novel unfolds when the square encounters

a sphere living in 3-dimensional space. The sphere struggles to convince the square

that he is not a circle, but an object in a higher dimension. The story of Flatland is

an excellent thought experiment that demonstrates the difficulty of comprehending

higher dimensions. Since humans can only visualise in 3 dimensions, our abilities are

constrained when examining higher dimensional phenomena.

This limitation proves to be an obstacle in statistical analysis too, since in the words of

Everitt (1994), “There are many patterns and relationships that are easier to discern in a

graphical display than by any other data analysis method”. To overcome this hindrance,

with regards to the visualisation of multivariate data for dimensions higher than three,

Gabriel (1971) introduced the biplot. Biplots are a graphical technique constructed

using dimension reduction techniques to visualise multivariate data in 2 or 3 dimen-

sions. Note, however, that the “bi” in biplot does not refer to the dimensionality of the

display, but due to a biplot displaying both observations and variables, simultaneously.

1
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1.1. BACKGROUND AND MOTIVATION

The biplot was later extended by Gower and Hand (1996) to be used as a multivariate

analogue of a scatter plot. There are many methods to construct biplots, however for

the purpose of this study, only Principal Component Analysis (PCA) biplots are con-

sidered. PCA is a methodology used to reduce the dimensionality of a dataset through

identifying principal components, that preserve the maximum variation of the data, in

lower dimensions. However, any form of dimension reduction will inevitably lead to a

loss of information. This is true for PCA biplots too, however, the loss of information

is compensated by the convenience of visualisation. The reason for only considering

PCA in this study is twofold. Firstly, PCA is one of the simplest and widely applied

dimension reduction techniques. Secondly, PCA and its related methods, such as fac-

tor analysis, are widely applied and researched in the field of quantitative finance. In

fact, one of the earliest published application of PCA was by Stone (1947), who applied

PCA to economic time series data (Jolliffe, 2002). Since then PCA has been used in fi-

nance both directly and indirectly, from modelling stock portfolios to analysing and

constructing bond curves. Therefore, there is adequate justification that PCA biplots

can be applied to visualise multivariate financial data.

Although PCA may be suitable in general for financial data, de Carvalho (2016) argues

that PCA may be inappropriate if one’s purpose is to analyse the extremes of multi-

variate data. This poses a problem for financial data since the extremes are essential

to characterising risk, whereas the majority of the observations surrounding the mean

is of less importance. Since PCA is an inadequate dimension reduction technique for

multivariate extremes, it implies directly that PCA biplots may not be well suited for

multivariate extremes. To overcome this, Chautru et al. (2015) proposes the use of clus-

ter analysis combined with Principal Nested Spheres for dimension reduction of mul-

tivariate extremes, but this does not allow for visualisation of the multivariate dataset.

The convenience and simplicity of PCA suggests that instead of abandoning PCA alto-

gether, it may be useful to first experiment with adjusting PCA to be more appropriate

for extremes. Such an adjustment can be pursued by considering alternative meth-

ods to construct covariance and/or correlation matrices. The covariance matrix of a

dataset is a critical part of PCA since the PCA methodology is based on preserving the

maximum variation of a dataset. Similarly, if each variable in a multivariate dataset is

2
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1.1. BACKGROUND AND MOTIVATION

scaled by its standard deviation and shifted to have a mean of zero, then the covariance

and correlation matrix are the same. Hence, PCA can be executed on a correlation ma-

trix of a scaled dataset. Jolliffe (2002) endorses PCA on a correlation matrix instead of

a covariance matrix for two reasons. The first is that if variables are measured using

different units, then PCA using a covariance matrix will be biased towards preserving

the variable with the largest variation on its particular measurement scale. Secondly,

it is more difficult to compare the results of PCA for different analyses when using the

covariance matrix. However, the use of a covariance matrix does have its own advan-

tages. The first being that if inference is the goal of statistical analysis then PCA on a

covariance matrix is superior. Additionally, it is not possible to unscale PCA estimated

data to represent the original data set when using the correlation matrix. Nonetheless,

since the objective of PCA biplots is visualisation, PCA on the correlation matrix is used

throughout this study to construct PCA biplots.

Owing to the fact that correlations will be used to perform PCA, the question is then

how can the correlation matrix be adjusted to accommodate for multivariate extremes?

It is firstly important to acknowledge that correlation is not the only way to measure

dependence. Furthermore, correlation as a measure of dependence has the disadvan-

tage of only measuring linear dependence. Moreover, Klüppelberg and Stelzer (2014)

argues that in the context of risk one does not really care about correlation since the

correlation depends on the whole distribution. Whereas, it is of more value in the risk

management setting to find the dependence of extreme outcomes. Therefore a more

rigorous approach to characterising dependence and more specifically extreme de-

pendence is required. A possible solution is to consider copulas. According to Nelsen

(2007), copulas are functions that join multivariate distribution functions from uni-

variate marginal distribution functions. Given that copulas link variables, it therefore

fully describes the dependence of the underlying variables in a multivariate distribu-

tion. For this reason, this study will investigate how copulas can be used to construct

correlation matrices. More specifically, the ability to construct a correlation matrix us-

ing copulas for multivariate extreme observations. Given that multivariate extremes

are the main concern, an appropriate dimension reduction technique would aim to

preserve extremal dependencies instead of maximum variation. If a suitable adjust-

3
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1.1. BACKGROUND AND MOTIVATION

ment for PCA is found to accommodate extremes, it will as a consequence, improve

PCA biplots for multivariate extremes. An approach with this in mind was developed

by Haug et al. (2015) who used an elliptical copula that is calibrated using the tail de-

pendence function to construct a correlation matrix for multivariate extreme observa-

tions. It can then be argued that performing PCA on a correlation matrix constructed

from extremes should be more inclined to preserve extreme observations. Hence, an

investigation into the application of such an extremal correlation matrix to construct

PCA biplots is the primary objective of this study.

The study is performed by undertaking the following objectives:

1. A detailed discussion on the background and construction of PCA biplots.

2. Investigate the various PCA biplot quality measures.

3. Introduce the concept of dependence and various techniques to measure depen-

dence.

4. Study in detail the development, use and properties of several copula families.

5. Demonstrate how elliptical copulas can be used to determine a correlation ma-

trix for multivariate extremes.

6. Propose the use the derived correlation matrix for multivariate extremes, to im-

prove PCA biplots for extreme observations.

7. Implement a simulation study to evaluate whether the proposed methodology

improves PCA biplots for extreme observations.

8. Illustrate the suitability of the improved PCA biplot on real-world data that is

subject to multivariate extremes.

To achieve the above-mentioned objectives this study is presented in the following se-

quence:

In Chapter 2 the necessary background for PCA biplots is discussed in detail. The

chapter starts by firstly introducing the PCA methodology. This is followed by a demon-

stration on how PCA is used to construct PCA biplots. By way of an example, the use

4
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1.1. BACKGROUND AND MOTIVATION

and interpretation of a PCA biplots are then illustrated. The chapter ends by providing

some PCA biplot quality measures that are used to assess the overall fit of the biplot.

Chapter 3 is dedicated to exploring the idea behind measuring dependence. It starts by

introducing various dependence measures and discusses the purpose of each measure.

The main component of this chapter is a review of copulas to measure dependence.

This is done by discussing the theory underlying copulas as well as in-depth look into

two copula families namely, the Elliptical and Archimedean copula families. It ends by

reviewing a noteworthy application of copulas used to determine correlation matrices

for multivariate extreme observations.

In Chapter 4, the literature discussed in Chapter 2 and 3 is used to develop a method-

ology to improve PCA biplots for extreme observations. This constitutes a discussion

regarding the approach taken to improve PCA biplots as well as how such an improve-

ment is evaluated.

In Chapter 5, an empirical study by way of simulation is pursued, in order to deter-

mine if the improved PCA biplot for extremes performs better than the traditional PCA

biplots when assessing the fit of extreme values. This is done by simulating observa-

tions from several multivariate distributions and examining the biplot fit at extremes

for the improved and the traditional biplot methodology.

Chapter 6 is a short chapter whereby the improved biplot methodology is tested against

the traditional biplot methodology on a real-world financial dataset.

Finally, in Chapter 7, the work carried out and contributions made are summarised

and areas of further research are suggested.

5
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CHAPTER 2

A REVIEW OF PCA BIPLOTS

As stated in the previous chapter, the use of PCA biplots (subsequently referred to as

biplots) will be the focus of this chapter. The purpose of this chapter is to provide

some needed background on the derivation and interpretation of biplots. Note that,

some mathematical background required for this chapter is provided in Appendix A.

Firstly, some background on PCA is given, then the use of PCA to construct biplots

is discussed. This is followed by an explanation of how biplots can be interpreted by

way of an example. The final section presents some useful techniques to measure the

quality of a biplot display.

2.1 PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is one of the most popular dimension reduction techniques. The popularity of

PCA is due to its simplicity and due to it being widely researched and applied in many

fields of study. PCA originates from publications by Pearson (1901) and Hotelling (1933),

who independently derived PCA using differing approaches. The differences in their

approaches are owed to them having different motivations for their use of PCA. Pear-

son (1901) was concerned with finding some lines and planes that best fit observations

in a p-dimensional space. Hotelling (1933), on the other hand, wanted to determine

observations of p variables by finding some smaller set of independent variables, sim-

ilar to the idea of factor analysis (Jolliffe, 2002). For the purpose of this study, when

6
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2.1. PRINCIPAL COMPONENT ANALYSIS (PCA)

discussing PCA biplots, PCA will be viewed from the perspective of Pearson (1901).

The first step in PCA is to derive the principal components (PCs) of the underlying data

matrix. PCs are derived by minimising the sum of the squared orthogonal distances

(residuals) between the original p-variable space and the reduced r -dimensional sub-

space. Further, using the Huygens Principle, Gower and Hand (1996) proved that the

optimal r -dimensional subspace is one that passes through the centroid of points X̄

in the p-variable space. This means that in order to optimally reduce a p-dimensional

space to an r -dimensional space, the underlying observations X should be centred.

Therefore, throughout this study, the assumption is made that an underlying data ma-

trix X is preprocessed to be centred, i.e. E [X ] = [µ1, ...,µp ]′ = [0, ...,0].

Suppose X : n ×p is a centred data matrix with p variables and n observations where

the observation is denoted by the vector xi , i = 1,2, ...,n. Then X ′X is proportional to

the sample covariance matrix of X , which can be presented by applying Singular Value

Decomposition (SVD) 1 as:

X ′X =VΛV ′ (2.1)

where, Λ : p ×p is a diagonal matrix containing the ordered (from largest to smallest)

eigenvalues of X ′X , denoted λi , i = 1,2, ..., p, and V : p × p is a matrix containing the

orthonormal eigenvectors of X ′X as its column vectors, ordered accordingly. The p

column vectors of V denoted vi , i = 1,2, ..., p are termed the sample principal compo-

nents (Sample PCs). Further, the matrix of principal component scores (PC Scores),

Z : n ×p, is determined as:

Z = X V (2.2)

which are coordinates of the sample PCs in the p-dimensional space.

To reduce the dimensionality of the data matrix to r -dimensional space the first r col-

umn vectors are extracted and denoted as Vr : p × r . Thus, Vr is a matrix containing

the first r eigenvectors vi , i = 1,2, ...,r corresponding the r largest eigenvalues. It then

follows that the principal component approximation of X is given by:

Ẑ : n ×p = X Vr V ′
r (2.3)

1See Appendix A.2 for a detailed explanation of singular value decomposition (SVD)
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2.2. PCA BIPLOT CONSTRUCTION

this approximation yields the smallest sum of squared residuals between the original

observations in p-dimensional spaces and its projection in r -dimensional space, i.e.

||X − Ẑ ||2 is minimised.

Alternatively, PCA can be performed by applying SVD directly on the data matrix X .

The SVD of X is given by:

X =UΩV ′. (2.4)

Since V is an orthogonal matrix, multiplying by V on the right of (2.4) yields,

X V =UΩ= Z (2.5)

which is the PC scores as in (2.2). To find the r -dimensional subspace the largest r

singular values ofΩ is extracted and denoted asΩr . Correspondingly, let Ur and Vr be

denoted as the first r columns of U and V , respectively. Then it follows that the best

r -dimensional approximation of the data matrix X is given as:

X ≈ X Vr V ′
r =UrΩr V ′

r (2.6)

The use of the derived sample PCs and PC scores to construct PCA biplots is discussed

in the next section.

2.2 PCA BIPLOT CONSTRUCTION

As stated in Chapter 1, Gabriel (1971) introduced PCA biplots as a way to jointly repre-

sent the observations and variables of a dataset. Then Gower and Hand (1996) adjusted

the PCA biplot to represent a multivariate version of the traditional scatter plot which

is used throughout this study. The construction of the PCA biplot is the focus of this

section.

Gabriel (1971) states that the decomposition in (2.6) can also be represented as:

X ≈UrΩ
α
r Ω

1−α
r V ′

r = (UrΩ
α
r )(V ′

rΩ
1−α
r )′ =Gr Hr (2.7)

with Gr =UrΩ
α
r , H ′

r = V ′
rΩ

1−α
r , and 0 ≤α≤ 1. The purpose and use of a biplot display

is determined by the value of α. This can be explained by separately considering the

8
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2.2. PCA BIPLOT CONSTRUCTION

case for α= 0 and α= 1. If α= 0, then Gr =Ur and H ′
r =Ωr Vr since Ur is orthonormal

the following can be derived:

X ′X ≈ (Gr H ′
r )′(Gr H ′

r ) = Hr G ′
r Gr Hr = Hr Hr . (2.8)

Therefore, entries in Hr uniquely determine the covariance matrix of X . Additionally,

it can be proven that whenα= 0 the Mahalanobis distances are approximated between

observations. Alternatively, if α= 1 then Gr =UrΩr and H ′
r = V ′

r and it can be proven

in this case that the euclidean distances are approximated between observations. The

differences between Mahalanobis2 and euclidean distances is beyond the scope of this

study. However, the choice of α= 1 will result in observations being represented better

than variables on the biplot and if α = 0, it results in the variables, and as a conse-

quence correlations, being represented better than the observations on the biplot. The

PCA biplot of Gower and Hand (1996) assigns α = 1, which is the assumption for the

rest of this chapter. The biplot in the case whereα= 0 is referred to as correlation biplot

since variables are better represented.

In the previous section, it was shown that the best r -dimensional subspace to repre-

sent observations from a p-dimension space is determined by the first r eigenvectors

(Sample PCs) of X ′X denoted by Vr . The columns of Vr provide a set of orthogonal

coordinate axes in the r -dimensional space termed the principal axes. The principal

axes are used only for representing the biplot observations and is also referred to as

the scaffolding axes. The biplot observations are determined as projections from the

principal axes and are given by,

Zr = X Vr (2.9)

where, the rows of Zr represents the PC scores for the first r sample PCs and is denoted

as zi : i = 1,2, ...,n.

The next step in the biplot construction is deciding whether the biplot will be used for

interpolation or prediction. In the case of interpolation a new p-variable observation

x∗ : p×1 has to be projected to an observation in the r -dimensional space as z∗ : p×1.

2This is a generalised method to measure distance, introduced by Mahalanobis (1936). The Maha-

lanobis distance measures the number of standard deviations a point is from the mean of its distribu-

tion.

9
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2.3. PCA BIPLOT INTERPRETATION

This r -dimension projection can be obtained using (2.9) as

z∗′ = x∗′Vr (2.10)

Alternatively, in the case of prediction the original p-variable observation must be ap-

proximated as x̂∗ : p ×1 from the coordinates in the r -dimensional space z∗. This can

be found using (2.6) as

x̂∗ = z∗′Vr V ′
r (2.11)

The choice between interpolation and prediction is not trivial since the biplot axes

markers are different in both cases. Therefore, if the purpose of a biplot display is for

both prediction and interpolation the two separate biplots must be constructed. How-

ever, for the purposes of this study only predictive axes will be used.

The final step in biplot construction is plotting the axes that correspond to the p-

variables of the data. As stated, axes for prediction and interpolation will differ in terms

of the position of the axes markers. The different axes markers are determined by some

value of µ, with −∞< µ <∞. Suppose ek : r ×1 is a unit vector with the k th element

equal to one and all other elements equal to zero. Then each observation xi with coor-

dinates (xi ,1, xi ,2, ..., xi ,p ) can be written as,

xi =
p∑

k=1
xi ,k ek (2.12)

this will interpolate to the point,

z ′
i = x ′

i Vr =
p∑

k=1
xi ,k e ′

kVr (2.13)

Therefore the k th interpolation biplot axis markers is determined by µekVr . It can fur-

ther be shown that the corresponding k th prediction biplot axis markers is given by,

µekVr

ekVr V ′
r e ′

k

(2.14)

as µ varies.

2.3 PCA BIPLOT INTERPRETATION

This section explores the interpretation of a biplot using an example of data from the

risk management field. The example used in this section was initially presented by
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2.3. PCA BIPLOT INTERPRETATION

Van Blerk (2000) and further discussed in the textbook by Gower et al. (2011). The data

used is daily 95% Value-at-Risk (VAR) observations for 7 financial trading desks over a

20 day period. The data used is provided in Table 2.1 and consists of 20 observations for

7 variables. Biplots are constructed throughout this study using the R package UBbipl

developed by le Roux and Lubbe (2013). The R code used to obtain the biplots and

results presented below is given in Appendix C.1. The biplot for the 95% VaR dataset

is illustrated in Figure 2.1. The axes in the biplot represent the variables which are the

95% VaR values for each of the 7 financial trading desks and the VaR observations for

the portfolio are presented by the green points each labelled corresponding to the day

of the measurement.

Table 2.1

Van Blerk (2000) 95% VaR of financial trading desks

Day CM IRD MM ALCO SE EDSA EDM

1 -1.7647 -0.2481 -0.2810 -0.2961 -0.1406 -0.2262 -0.9409

2 -0.8181 -1.3258 -0.2810 -0.2961 -0.1419 0.0123 -3.3836

3 -1.7152 -1.1400 -0.5961 -0.2961 -0.1410 -0.1825 -2.8719

4 -1.7714 -1.6412 -0.5961 -0.2961 -0.1454 -0.8900 -1.9459

5 -1.6613 -1.3016 -0.4124 -0.4755 -0.1319 -0.2153 -1.2899

6 0.0219 -1.3635 -0.6078 -0.2789 -0.2155 -0.2987 -1.3775

7 -0.8892 -1.1370 -0.4568 -0.4531 -0.1523 -0.2549 -1.1285

8 -0.9138 -1.1991 -0.4568 -0.4041 -0.1466 -0.0834 -1.1372

9 -1.1491 -1.1821 -0.4568 -0.4041 -0.1489 -0.3568 -1.1747

10 -1.2728 -0.7334 -0.4568 -0.4041 -0.1565 -0.5556 -0.8941

11 -0.8168 -0.8515 -0.4568 -0.4041 -0.1667 -0.3794 -0.8884

12 -1.2067 -1.5127 -0.4568 -0.4568 -0.1613 -0.0376 -0.8037

13 -0.8625 -1.8187 -0.4592 -0.4568 -0.1577 -0.1392 -0.9391

14 -2.5521 -1.4004 -0.4592 -0.4568 -0.1651 -0.1398 -0.9136

15 -1.4310 -1.3198 -0.4592 -0.4568 -0.1684 -0.1373 -1.0968

16 -2.8378 -1.3177 -0.4592 -0.4568 -0.1584 -0.3692 -0.1620

17 -1.0766 -1.2734 -0.7296 -0.4568 -0.2560 -0.0889 -1.1253

18 -1.0256 -1.3378 -0.7296 -0.4357 -0.2774 -0.2957 -1.0238

Continued on next page
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2.3. PCA BIPLOT INTERPRETATION

Table 2.1 – continued from previous page

Day CM IRD MM ALCO SE EDSA EDM

19 -1.0462 -1.3070 -0.0253 -0.0311 -0.1352 -0.3648 -0.6462

20 -0.6270 -2.0298 -0.0246 -0.0311 -0.1318 -0.1381 -0.6129
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Figure 2.1

Biplot for 95% VaR data.

The angles between biplot axes give an approximation of the correlation between vari-

ables, where a small angle between axes indicates that variables are highly correlated

and orthogonal axes indicate that observations have low correlation. However, the bi-

plot constructed in Figure 2.1 takes α = 1 as in (2.7), meaning that observations are

better represented than variables. Conversely, in Figure 2.2 the correlation biplot is

constructed with α= 0, which better approximates the correlations between variables

by the angles between axes since variables are better represented than observations.
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2.3. PCA BIPLOT INTERPRETATION

When comparing Figures 2.1 and 2.2 with Table 2.2 providing the correlation matrix of

the trading desk VaR values, it can be seen that neither biplot perfectly represents the

correlation of the trading desks. However, Figure 2.2 does slightly better in represent-

ing correlations, for example the angle between ALCO and EDSA is slightly larger in

Figure 2.2 to account for its low correlation.

CM

−3−3

−2

−1

0

IRD

−1.4

−1.2

−1

MM

−0.5

−0.4

−0.3

ALCO

−0.5−0.5

−0.4

−0.3

SE

−0.18

−0.16

−0.14

EDSA

−0.4

−0.3

−0.2

−0.1

EDM

−3

−2

−1

0

1 2

3

4

5

6

78

9
10

11

12

13

14

15

16

17
18

19

20

Figure 2.2

Correlation biplot for 95% VaR data.
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Table 2.2

Correlation matrix for 95% VaR of 7 financial trading desks

CM IRD MM ALCO SE EDSA EDM

CM 1.00 -0.16 0.08 0.31 -0.23 0.18 -0.14

IRD -0.16 1.00 -0.08 -0.19 0.03 -0.11 -0.01

MM 0.08 -0.08 1.00 0.69 0.68 0.15 0.17

ALCO 0.31 -0.19 0.69 1.00 0.32 -0.13 -0.09

SE -0.23 0.03 0.68 0.32 1.00 -0.07 -0.12

EDSA 0.18 -0.11 0.15 -0.13 -0.07 1.00 -0.10

EDM -0.14 -0.01 0.17 -0.09 -0.12 -0.10 1.00
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Figure 2.3

Biplot for 95% VaR data with predictions of day 16 VaR.
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Table 2.3

Actual and predicted value of the 95% VaR for day 16

CM IRD MM ALCO SE EDSA EDM

Actual -2.838 -1.318 -0.459 -0.457 -0.158 -0.369 -0.162

Predicted -2.803 -1.082 -0.447 -0.471 -0.151 -0.372 -0.156

To read off observations from the biplot, orthogonal lines are drawn from the observa-

tion to each of the axes as illustrated in Figure 2.3, for the VaR sample on day 16. Since

the biplot is a 2-dimensional approximation of observations in 7-dimensional space,

there is a disparity between the actual observation values and those approximated on

the biplot. The difference in the biplot approximation of the VaR on day 16 and its ac-

tual value is presented in Table 2.3. Further, some variables are better approximated

than others for example the discrepancy in IRD is large compared to the other instru-

ments. Thus, given that a biplot is a visual approximation, measures of how well the

biplot displays the underlying data are required and is discussed in the next section.

2.4 PCA BIPLOT QUALITY MEASURES

In the preceding sections, the construction and interpretation of a biplot were dis-

cussed. However, the biplot interpretation is meaningless if the biplot does not display

the data reasonably. Therefore, in this section, some biplot fit quality measures are ex-

plored. The quality measures considered in this section are presented in more detail in

the master’s thesis by Brand (2013).

Suppose throughout this section that X is a centred data matrix whose i th observation

is denoted as xi . Then from (2.6), X is approximated by,

X̂ = X Vr V ′
r . (2.15)

The first measure of fit will be a measure of the overall quality of the biplot represen-

tation denoted as V . The overall quality is determined as the ratio of the fitted sum of
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2.4. PCA BIPLOT QUALITY MEASURES

squares and the total sum of squares as,

V = tr ace{X̂ ′X̂ }

tr ace{X ′X }
. (2.16)

Now, (2.16) can be further simplified using (2.15) and (A.3) as:

V = tr ace{X̂ ′X̂ }

tr ace{X ′X }

= tr ace{VrΩ
2
r V ′

r }

tr ace{VΩ2V ′}

= tr ace{Ω2
r V ′

r Vr }

tr ace{Ω2V ′V }

= tr ace{Ω2
r }

tr ace{Ω2}

=
∑r

i=1λi∑p
i=1λi

(2.17)

where,λi is the i th largest eigenvalue of X ′X . Given that X ′X is positive semi-definite

it implies that λi ≥ 0,∀i thus 0 ≤ V ≤ 1. Overall quality is at its maximum if X̂ = X . It

is important to note that, even if the overall biplot quality is low, it can still be possible

that some individual observations and variables are reasonably presented.

The next quality measure assesses how well the biplot axes represent the axes of the

variables in the p-dimensional space which is termed the adequacy of the axes. The

adequacy for the axis representing the k th variable is denoted as γk and is given by

Gardner-Lubbe et al. (2008) as

γk =
r∑

j=1
v2

k j (2.18)

where, v2
k j is the k th row and j th column entry of the matrix Vr V ′

r .

Another quality measure proposed by Gardner-Lubbe et al. (2008) measures the pre-

dictive ability of a biplots axes. The overall predictability of the biplots axes is expressed

as:

Π= di ag (X̂ ′X̂ )

di ag (X ′X )
. (2.19)

Further, it can be shown that the predictivity of the k th biplot axis is given by,

πk =
∑n

i=1 x̂2
i k∑n

i=1 x2
i k

. (2.20)

It is further shown by Gardner-Lubbe et al. (2008) that the sum of the axis predictivity

weighted by the variance of the underlying variable is equal to the overall quality of the
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biplot. Thus, high overall quality does not imply that axis predictivity is high for each

of the p variables.

The final biplot quality measure is presented by Brand (2013) and is termed the sam-

ple predictivity. The sample predictivity measures the accuracy at which samples are

approximated by the biplot. This implies that, if an observation has a low sample pre-

dictivity, then relative sample positions on the biplot is questionable. The sample pre-

dictivity for the i th sample denoted as ψi is expressed as,

ψi =
x̂ ′

i x̂i

x ′
i xi

. (2.21)

Similarly, the sample predictivity can also be evaluated for the i th sample as

ψ∗
i = (x̂i −xi )2. (2.22)

The sample prediction obtained using (2.22) will provide the sample prediction error

for each variable and can be summed to find the overall sample predictivity.

All measures presented in this section are essential to the biplot display, as it presents

a way to assess whether the biplot is a reasonable visualisation of the underlying data.

Further, these measures should always be evaluated when a biplot is used since it pro-

vides assurance as to whether the biplot representation is realistic.

2.5 SUMMARY

In this chapter, some necessary background on PCA and its application to construct

biplots were provided. Further, an example of a biplot was presented accompanied

by guidance on how to interpret biplots. Finally, some noteworthy methods to as-

sess the quality of a biplot display was discussed. The next chapter will provide some

background on dependence measures and copulas which are later used to improve the

quality of a biplot.
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CHAPTER 3

A REVIEW OF COPULAS AND

DEPENDENCE

An essential part of multivariate data analysis is to identify relationships between vari-

ables, which is characterised by the underlying dependence between variables. The

importance of dependence is extended by Jogdeo (1982) who noted, “Dependence re-

lations between random variables is one of the most widely studied subject in prob-

ability and statistics. The nature of dependence can take a variety of forms and un-

less some specific assumptions are made about dependence, no meaningful statistical

model can be contemplated”. In the previous chapter, linear correlation, as a measure

of dependence, was used to perform PCA. This means that the concept of dependence

is essential to PCA biplot construction. This chapter is therefore an examination of

how to measure and interpret dependence as well as what underlying assumptions are

required to characterise dependence. This chapter starts with some background on

traditional measures of dependence. This is followed by a more modern look at de-

pendence through the use of copula functions. Finally, this chapter is concluded by

examining how to evaluate dependence for multivariate extremes.
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3.1. DEPENDENCE MEASURES

3.1 DEPENDENCE MEASURES

In order to understand what it entails for variables to be dependent it is necessary to

first define what it means for variables to be independent. Independence can be de-

fined by considering a set of d random variables X1, X2, ..., Xd . Then this set of variables

are independent if and only if,

P (X1 ≤ x1, X2 ≤ x2, ..., Xd ≤ xd ) = P (X1 ≤ x1)P (X2 ≤ x2) · · ·P (Xd ≤ xd ) (3.1)

If (3.1) does not hold it can be assumed that there exists some level of dependence

between the underlying random variables. There are, however, many ways to measure

dependence between variables and some of these dependence measures are discussed

in this section.

The most well known and widely applied dependence measure is Pearson’s correlation

coefficient (ρ), which is a measure of linear dependence between two random vari-

ables. Suppose that X ,Y is a pair of random variables with some linear relationship.

Then for these two variables, ρ(X ,Y ) can be calculated as,

ρ(X ,Y ) = cov(X ,Y )p
var (X )var (Y )

, (3.2)

with −1 ≤ ρ(X ,Y ) ≤ 1. If X and Y are independent then ρ(X ,Y ) = 0. However, the con-

verse does not hold, in other words, ρ(X ,Y ) = 0 does not imply independence. Further,

X and Y have perfect linear dependence if ρ(X ,Y ) = ±1. The popularity of Pearson’s

correlation coefficient as a measure of dependence is mainly due to it being easy to

estimate from observed data. Additionally, Pearsons correlation serves as a natural de-

pendence measure if data is distributed multivariate normally and as such, only in the

case of multivariate normally distributed data does ρ = 0 imply independence. How-

ever, there are many disadvantages of Pearson’s correlations coefficient. The biggest

disadvantage is that it only measures linear dependence and that it is not invariant

under monotone transformations.1

The next measures of dependence that overcome some of the disadvantages of Pear-

son’s correlation are measures of rank dependence or also referred to as ordinal de-

1Further, correlation disadvantages can be found in Embrechts et al. (2002).
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pendence. These dependence measures do not consider the magnitude of the obser-

vations, but only the order of the observations. The first ordinal dependence measure

discussed is Spearman’s correlation coefficient (ρS), which is sometimes also referred

to as Pearson’s correlation for ranked variables (Meissner, 2013). To define ρS , let X and

Y be continuous random variables with distribution functions F1 and F2, respectively.

Then Spearman’s correlation coefficient is given by,

ρS(X ,Y ) = ρ(F1(X ),F2(Y )) (3.3)

where ρ is Pearson’s correlation coefficient as in (3.2). Since F1(X ) and F2(Y ) are stan-

dard uniform random variables the magnitudes of X and Y are irrelevant and thus only

orders of X and Y are considered. Now, Klüppelberg and Stelzer (2014) states that ρS

can be calculated empirically as,

ρ̂S(X ,Y ) = 1

2
n(n2 −1)

n∑
i=1

[
r ank(xi )− n +1

2

][
r ank(yi )− n +1

2

]
(3.4)

where, n is the number of observations and (r ank(xi ),r ank(yi )) are the ranks of the

observations of (X ,Y ). Additionally, −1 ≤ ρS ≤ 1 with the same interpretation as for

Pearson’s correlation.

The second ordinal dependence measure discussed was derived by Kendall (1938) and

is known as Kendall’s tau (τ). Suppose that (X1,Y1) and (X2,Y2) are random vectors

with bivariate distribution function F (X ,Y ). Then Kendall’s tau is given by,

τ(X ,Y ) = P [(X1 −X2)(Y1 −Y2) > 0]−P [(X1 −X2)(Y1 −Y2) < 0]. (3.5)

However, it is easier to grasp Kendall’s tau by considering its empirical version. The

empirical formula for Kendall’s tau requires the definition of concordant and discor-

dant observation pairs. The pair of observations (Xi ,Yi ) and (X j ,Y j ) are said to be:

i. concordant, if both Xi > X j and Yi > Y j , or if both Xi < X j and Yi < Y j .

ii. discordant, if Xi > X j and Yi < Y j , or if Xi < X j and Yi > Y j .

iii. neither concordant or discordant, if Xi = X j and Yi = Y j .
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The number of concordant and discordant pairs is then counted and the empirical

Kendall’s tau is the calculated as,

τ̂= (Number of concordant pairs)− (Number of discordant pairs)

Total number of pairs

= 2

n(n −1)

∑
1≤i≤ j≤n

si g n[(Xi −X j )(Yi −Y j )]
(3.6)

with, si g n = 1 if observation pairs are concordant or si g n = −1 if observation pairs

are discordant. When τ̂ = 1 it implies that an increase in X always coincides with an

increase in Y and vice versa. The main advantage of ordinal dependence measures

over linear dependence measures is that ordinal measures are invariant to monotone

increasing transformations.

The final dependence measure discussed in this section pertains to a measure of de-

pendence at multivariate extremes. Extreme dependence is quantified through a tail

dependence function. Naturally, a tail dependence function measures the dependency

of the data in the tail. A tail dependence function distinguishes the dependency in the

tail of the data to that of the regular data. Tail dependence is measured for a pair of

random variables (X ,Y ) by determining if there is a non-zero probability that X is large

given that Y is large. Hence, random variables (X ,Y ) are said to be tail independent if

lim
t→∞P (Y > t |X > t ) → 0 (3.7)

Conversely, if the limit in (3.7) is non-zero then (X ,Y ) is said to be tail dependent. The

tail dependence function characterises the strength of the dependence in the upper-

and/or lower tail of a multivariate distribution. Therefore, it is not necessarily the case

that the tail dependence in the upper- and lower tail of the distribution is identical and

as such upper- and lower tail dependence is measured individually. The tail depen-

dence function is defined by Klüppelberg et al. (2007) as follows,

Definition 3.1 (Tail dependence function). Suppose X = (X1, ..., Xd )′ is a random vector

with distribution function F and continuous marginals F1, ...,Fd . Define the upper tail

dependence function of X as

λX
upper (u1, ..,ud ) = lim

t→∞
1

t
P

[
1−F1(X1) ≤ tu1, ...,1−Fd (Xd ) ≤ tud

]
(3.8)

with (u1, ..,ud ) ∈ [0,1]d .
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Similarly, define the lower tail dependence function of X as,

λX
lower (u1, ..,ud ) = lim

t→∞
1

t
P

[
F1(X1) ≤ tu1, ...,Fd (Xd ) ≤ tud

]
(3.9)

with (u1, ..,ud ) ∈ [0,1]d . �

Now,λX
upper (1,1, ..,1) is termed the upper tail dependence coefficient andλX

lower (0,0, ..,0)

is termed the lower tail dependence coefficient. Finally, Klüppelberg et al. (2007) de-

fines an empirical tail dependence function as follows:

Definition 3.2. Suppose X = (X1, ..., Xd )′ is a random vector containing n samples, with

xh = (xh,1, ..., xh,d )′ for h = 1, ...,n, we define and empirical tail dependence function for

x > 0 as,

λemp (x ;k) := 1

k

n∑
h=1

I
{

1−F j (xh, j ) ≤ k

n
x j

}
j = 1, ..,d (3.10)

where 1 ≤ k ≤ n and F j denotes the empirical distribution function of X j , j = 1, ...,d.

Furthermore, define the empirical bivariate marginal tail dependence function as,

λ
emp
i , j (xi , x j ;k) := 1

k

n∑
h=1

I
{

1−Fi (xh,i ) ≤ k

n
xi ,1−F j (xh, j ) ≤ k

n
x j

}
(3.11)

Since only tail events are considered k(n) →∞ and k
n → 0 as n →∞. �

There exist many more empirical tail dependence estimates for more detail see Schmidt

and Stadtmüller (2006).

The next section deals with how, instead of empirical measures, functions known as

copulas can be used to describe the dependence between random variables.

3.2 COPULA THEORY

A crucial element of multivariate statistics is describing the probability distribution of

some random vector (X1, ..., Xd )′. The probability distribution function of (X1, .., Xd )′ is

characterised as follows:

F (x1, ..., xd ) := P (X1 ≤ x1, ..., Xd ≤ xd ), x1, ..., xd ∈R (3.12)
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However, barring some well known multivariate distributions, expressing F (x1, ..., xd )

in (3.12) mathematically can be complex and be very specific to data with particu-

lar attributes. A more convenient approach may be to consider the probability dis-

tribution or marginal distribution Fi (x) := P(Xi < x) of each of the random variables

Xi , i = 1,2, ...,d individually. Then once each random variable can be described by

some known marginal distribution, combining these marginals to a multivariate dis-

tribution can then be pursued. Thus in addition to the description of the marginal

distribution for each variable, a function is required to combine these marginals in a

mathematically sound manner. Furthermore, such a function would not only combine

these marginal distributions but as a consequence also fully describe the dependence

between the random variables. A function that constructs a multivariate distribution

from underlying marginal distributions is known as a copula. The word copula origi-

nates from Latin to mean “a link, tie or bond”(Nelsen, 2007).

Copulas was first described by Sklar (1959) as a function that joins one-dimensional

probability distributions to form multivariate probability distributions. Further, he de-

tailed a theorem which is now considered to be the fundamental theorem in the field

of copulas and as such it is termed Sklar’s Theorem.

Theorem 3.1 (Sklar’s Theorem). A function F : Rd → [0,1] is the distribution function

of some random vector (X1, ..., Xd )′ if and only if there is a copula C : [0,1]d → [0,1] and

univariate distribution functions F1, ...,Fd :R→ [0,1] such that

C (F1(x), ...,Fd (x)) = F (x1, ..., xd ), x1, ..., xd ∈R (3.13)

If marginals F1, ...,Fd are continuous, then C is unique. Conversely, if C is a copula and

F1, ...,Fd are univariate distribution functions, then the function F defined in (3.13) is a

joint distribution function with margins F1, ...,Fd . �

Similarly, Sklar’s Theorem can be applied to construct multivariate survival functions.

A survival function of a random vector (X1, ..., Xd )′ is defined as

F̄ (x1, ..., xd ) = P (X1 > x1, ..., Xd > xd ), x1, ..., xd ∈R (3.14)

Each random variable is specified by its marginal survival function F̄ j (x) := P (X j >
x) = 1−F j (x), x ∈ R, j = 1,2, ...,d . To construct a multivariate survival function from
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the marginal survival functions a survival copula Ĉ is employed. Furthermore, Sklar’s

Theorem can be reformulated for survival copulas as follows.

Theorem 3.2 (Sklar’s Theorem for Survival Functions). A function F̄ : Rd → [0,1] is the

distribution function of some random vector (X1, ..., Xd )′ if and only if there is a survival

copula Ĉ : [0,1]d → [0,1] and univariate survival functions F̄1, ..., F̄d : R → [0,1] such

that

Ĉ (F1(x), ...,Fd (x)) = F̄ (x1, ..., xd ), x1, ..., xd ∈R (3.15)

If marginals F̄1, ..., F̄d are continuous, then Ĉ is unique. Conversely, if Ĉ is a survival

copula and F̄1, ..., F̄d are univariate survival functions, then the function F̄ defined in

(3.15) is a joint survival function with margins F̄1, ..., F̄d . �

Since the publication of Sklar’s Theorem, copulas have been applied over a wide variety

of fields. Copulas was especially applied in the field of finance and according to Salmon

(2012) is partly to blame for the 2008/9 credit crises. A more thorough mathematical

examination of copulas can be found in Nelsen (2007).

As stated earlier, since a copula combines the marginals of all random variables it,

as a consequence, also fully describes the dependence between all random variables.

Therefore, copulas can be used not only to construct multivariate distributions, but

also to analyse the dependence in a multivariate dataset. Given that the topic of this

study is to apply alternative dependence measures to biplots, copulas will be studied

for its ability to characterise dependence. If a copula fully characterises dependence

then it is obvious that a copula should, to an extent, be associated with alternative de-

pendence measures such as Kendall’s tau and Spearman’s rho, which is described by

Nelsen (2007) in the following theorems.

Theorem 3.3 (Kendall’s tau Copula Specification). Let X and Y be continuous ran-

dom variables whose copula is C . Further, let FX and FY be the respective marginal

distribution functions and define a random vector of uniform variables by (U ,V ) :=
[FX (X ),FY (Y )]. Then Kendall’s tau for X and Y is given by

τX ,Y = τC := 4
∫ 1

0

∫ 1

0
C (u, v)dC (u, v)−1 = 4E[C (U ,V )]−1 (3.16)

�
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Theorem 3.4 (Spearmans rho Copula Specification). Let X and Y be continuous ran-

dom variables whose copula is C . Further, let FX and FY be the respective marginal

distribution functions and define a random vector of uniform variables by (U ,V ) :=
[FX (X ),FY (Y )]. Then Kendall’s tau for X and Y is given by

ρX ,Y = ρC := 12
∫ 1

0

∫ 1

0
C (u, v)dudv −3 (3.17)

�

The relationships described in Theorems 3.3 and 3.4 are useful when fitting a copula

to a dataset. Given that Kendall’s tau and Spearmans rho are easy to estimate from ob-

servations, the relationships above can be used to estimate the parameters for a para-

metric copula.

Finally, it is further shown by Nelsen (2007) that the tail dependence coefficient de-

pends solely on the underlying copula of a multivariate distribution. This is conveyed

by the following theorem.

Theorem 3.5. Let X and Y be continuous random variables whose copula is C . Further,

let FX and FY be the respective marginal distribution functions and define a random

vector of uniform variables by (U ,V ) := [FX (X ),FY (Y )]. Then the upper- and lower-tail

dependence coefficients for X and Y is given by

λupper (U ,V ) := lim
t→1

C (t , t )−2t +1

1− t
(3.18)

and

λlower (U ,V ) := lim
t→0

C (t , t )

t
(3.19)

�

Given that estimating the tail dependence coefficients is challenging since is entails

estimating a property in a limit from finite observations, it is simpler to first fit a copula

to the data and then use the relationship in Theorem 3.5 to determine the upper- and

lower-tail dependence coefficients.

In the subsequent section, some popular copula families and their properties are ex-

amined.
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3.2.1 Elliptical copulas

One of the central themes of this study is to find a method to characterise extreme de-

pendence. To achieve this, properties from an elliptical copula will be applied. There-

fore, this section is devoted to presenting the necessary background on elliptical cop-

ulas.

Before elliptical copulas can be discussed it is first necessary to ask: What is an ellip-

tical distribution ? The family of elliptical distributions consists of distributions that

generalise the multivariate normal distribution, for example the multivariate Student-

t distribution. An elliptical distribution is constructed by combining elliptical marginal

distributions through an elliptical copula. More generally, an elliptical distribution can

be obtained through a linear transformation of a spherical distribution. A spherical

distribution is defined as follows:

Definition 3.3 (Spherical distribution). Suppose that O : d ×d is an orthogonal matrix

such that O′O = I . Then a d-dimensional random vector X = (X1, ..., Xd )′ has a spherical

distribution if for every matrix O one has

OX
d= X (3.20)

Equivalently, there exists a random variable R ≥ 0 and ,independently, a d-dimensional

random vector S with a uniform distribution on an unit sphere, such that

X
d= RS. (3.21)

�

Furthermore, a spherical distribution is fully described through a function φ : [0,∞) →
R, referred to as a characteristic or generator function of X . Hence, the distribution of

a d-dimensional spherical random variable is denoted as X v Sd (φ). Since an elliptical

distribution is merely a linear transformation of a spherical distribution the following

theorem holds.

Theorem 3.6. A d-dimensional random vector Z is said to have an elliptical distribu-

tion, if and only if, there exists a non-negative random variable R independently of S, a
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d-dimensional random vector on a unit hypersphere, and a d×k matrix A with A A′ =Σ,

such that

Z
d=µ+ A′X d=µ+R A′S (3.22)

with X v Sd (φ). �

From Theorem 3.6 the definition of an elliptical distribution follows directly.

Definition 3.4 (Elliptical distribution). If Z is a d-dimensional random vector and, for

some vector µ ∈ Rd , some d ×d non-negative definite symmetric matrix Σ, and some

functionφ : [0,∞) →R, the characteristic functionϕZ−µ of Z−µ is of the formϕZ−µ(t ) =
φ(t ′Σt ), we say that Z has an elliptical distribution with parameters µ, Σ and φ, and

we write Z v Ed (µ,Σ,φ). �

Further, Klüppelberg and Kuhn (2009) proves that if Z v Ed (µ,Σ,φ) is transformed as,

Z ∗ := di ag (σ11, ...,σdd )
1
2 Z (3.23)

then Z ∗v Ed (µ,R,φ) with R := (σi j /
p
σi iσ j j )i≤ j , j≤d the correlation matrix of Z . Hence

under a suitable transformation an elliptical copula can be specified via its correlation

matrix and characteristic function φ.

The correlation matrix from an elliptical distribution has a useful relationship with

Kendall’s tau, which is presented in Theorem 3.7.

Theorem 3.7. Let Z v Ed (µ,R,φ), where for i , j ∈ 1,2, ...,d, Zi and Z j are continuous

with correlation coefficient ρi j . Then,

τ(Zi , Z j ) = 2

π
arcsinρi j . (3.24)

�

This relationship can be used to find for the correlation coefficient ρi j by estimating

τ(Zi , Z j ) and inverting (3.24).

Before the extremal dependence properties of an elliptical distribution can be exam-

ined, it is first necessary to define the concept of a regularly varying random variable.

A regularly varying random variable is defined as follows:
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Definition 3.5 (Regular variation). A random variable R is said to be regularly varying

with index α> 0 if for all x > 0,

lim
t→∞

P (R > t x)

P (R > t )
= x−α (3.25)

A regularly varying random variable is merely a random variable whose tail behaviour

is similar to that of a power law function. According to Hult and Lindskog (2002) the

concept of regular variation is connected to the tail dependence function of an ellipti-

cal distribution in the following theorem.

Theorem 3.8. Let Z
d=µ+R A′S v Ed (µ,Σ,φ) with Σi i > 0 for i = 1,2, ...,d, |ρi j | < 1 for

all i 6= j , and where µ, R, A and S are as in Theorem 3.6. Then the following statements

are equivalent:

i. R is regularly varying with index α> 0.

ii. Z is regularly varying with index α> 0.

iii. For all i 6= j , (Zi , Z j ) has tail dependence coefficient

λU (Zi , Z j ) =λ`(Zi , Z j ) =
∫ π/2

(π/2−arcsinρi j )/2 cosα (t )dt∫ π/2
0 cosα (t )dt

. (3.26)

Hult and Lindskog (2002) concludes from Theorem 3.8 that an elliptically distributed

random vector Z will only have tail dependence if the random variable R in Z
d= µ+

R A′S is regularly varying. Moreover, the correlation coefficient ρi j only affects the

magnitude of the tail dependence. This consequently implies that a bivariate obser-

vation (Zi , Z j ) can have a large tail dependence coefficient even if its correlation coef-

ficient is zero.

A more generalised approach to characterise the dependence for an elliptical distribu-

tion is through an elliptical copula which is defined as follows.

Definition 3.6 (Elliptical copula). An elliptical copula is defined as the copula related to

an elliptical distribution F , and is obtained using Sklar’s theorem as,

C (u1, ...,ud ) = F
[
F−1

1 (u1), ...,F−1
d (ud )

]
, u1, ...,ud ∈ [0,1]d (3.27)

where F−1
k , k = 1,2, ...,d are univariate quantile functions. �
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Two of the most well known elliptical distributions is the multivariate- normal and

Student-t distributions, both having corresponding elliptical copulas defined as fol-

lows:

Definition 3.7 (Gaussian copula). The Gaussian copula CGuass
R

is the copula of X v

Nd (0,R), where R is the correlation matrix of X . The analytical form is given by

CGuass
R :=ΦR

[
Φ−1(u1), ...,Φ−1(ud )

]
(3.28)

where (u1, ...,ud ) ∈ [0,1]d ,ΦR is the joint distribution function of X , andΦ−1 is the quan-

tile function of the standard normal distribution. �

Definition 3.8 (t-Copula). The t-Copula C t
R,ν is the copula of X v td (0,R,ν), where R

is the correlation matrix of X . The analytical form is given by

C t
R,ν := tν,R

[
t−1
ν (u1), ..., t−1

ν (ud )
]

(3.29)

where (u1, ...,ud ) ∈ [0,1]d ,tν,R is the joint distribution function of X , and t−1
ν is the quan-

tile function of the Student-t distribution with ν degrees of freedom. �

Further, the upper and lower tail dependence of the Gaussian copula is zero, i.e the

Gaussian copula is tail independent. However, for the t-Copula the upper and lower

tail dependence is identical and is expressed as

λU (Xi , X j ) =λ`(Xi , X j ) = 2tν+1

(
−

√
(ν+1)(1−ρi j )

1+ρi j

)
(3.30)

with ν the degrees of freedom.

Algorithms 3.1 and 3.2, as given by Embrechts et al. (2002), provides the steps to gen-

erate multivariate samples using the Gaussian and t-Copula, respectively.

Algorithm 3.1 (Simulating n multivariate samples from the Gaussian copula). In order

to generate n observations from a d-variate distribution with marginal distributions

F1,F2, ...,Fd and quantile functions F−1
1 ,F−1

2 , ...,F−1
d that is specified and known. Addi-

tionally, suppose that dependence structure is characterised by a Gaussian copula with

correlation matrix R. Then perform the following steps:
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1. Compute the Cholesky decomposition of R by computing the lower triangular

matrix L : d ×d, with LL′ =R.

2. Simulate a vector of d independent standard normal random variables z = (z1, ..., zd )v

Nd (0, I ).

3. Compute y = (y1, .., yd ) := Lz vNd (0,LI L′) = Nd (0,R).

4. Return the vector u = (u1, ...,ud ) = (Φ(y1), ...,Φ(yd )).

5. Use the Probability Inverse Transformation to generate the sample as (x1, ..., xd ) =[
F−1

1 (u1), ...,F−1
d (ud )

]
.

6. Repeat steps 1 to 6 n times to generate n samples.

Algorithm 3.2 (Simulating n multivariate samples from the t-Copula). In order to gen-

erate n observations from a d-variate distribution with marginal distributions F1,F2, ...,Fd

and quantile functions F−1
1 ,F−1

2 , ...,F−1
d that is specified and known. Additionally, sup-

pose that dependence structure is characterised by a t-Copula with correlation matrix

R and ν degrees of freedom. Then perform the following steps:

1. Compute the Cholesky decomposition of R by computing the lower triangular

matrix L : d ×d, with LL′ =R.

2. Simulate a vector of d independent standard normal random variables z = (z1, ..., zd )v

Nd (0, I ).

3. Simulate random variable W from χ2(ν).

4. Compute y = (y1, .., yd ) :=
√

ν
W Lz .

5. Return the vector u = (u1, ...,ud ) = (tν(y1), ..., tν(yd )).

6. Use the Probability Inverse Transformation to generate the sample as (x1, ..., xd ) =[
F−1

1 (u1), ...,F−1
d (ud )

]
.

7. Repeat steps 1 to 6 n times to generate n samples.
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The differences in the Gaussian and t-Copula is illustrated in Figure 3.1, with 10,000

simulations from a: (A) bivariate normal distribution, (B) bivariate t4 distribution, (C)

bivariate random variables with normal marginals and a t4-Copula, and (D) bivari-

ate random variables with t4 marginals and a Gaussian copula. The corresponding

Gaussian and t-Copula with parameter ρ = 0.9 is presented in Figure 3.2(A) and 3.2(B),

respectively.

Figure 3.1

Simulation of 10000 bivariate normal and t4 distributed random variables

Source: Klüppelberg and Stelzer (2014)
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Figure 3.2

Scatter plot of univariate marginals corresponding to the Gaussian and t4-Copula

Source: Klüppelberg and Stelzer (2014)

When comparing Figure 3.1(A) and (B), both with normal marginals, it is clear that

the t4-Copula in (B) produces more observations in the upper-right and lower-left

quadrants as compared to the Gaussian copula in (A). Furthermore, considering the

t4 marginals in Figure 3.1(C) and (D) with t-Copula and Gaussian copula, respectively.

The first noticeable difference is that the t4 marginals have heavier tails. Additionally,

the observation with t4 marginals and Gaussian copula in (D) is more dispersed in the

lower-right and upper-left quadrants. The difference in (B) and (D) illustrates the tail

independence of the Gaussian copula. Finally, Figure 3.2(A) and (B) presents scatter

plots of marginals under the Gaussian and t-Copula. As can be seen, the Gaussian cop-

ula (A) has fewer observations in the upper right and lower left corners as compared to

the t-Copula in (B).

3.2.2 Archimedean copulas

The popularity of multivariate elliptical distribution has directly lead to elliptical cop-

ulas, such as the Gaussian copula, being widely used in finance. Unfortunately, the

Gaussian copula is not always well suited for modelling financial data, as was seen

during the 2008/09 financial crises when it was found that the Gaussian copula was

ill-suited to model CDO losses (see Salmon, 2012).

Mai and Scherer (2014) states that elliptical copulas have the drawback of not only hav-

ing a complicated algebraic expression but it is also subject to a great level of symme-
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try. The family of Archimedean copulas addresses these drawbacks by having a con-

venient algebraic form and having the ability to account for asymmetries. To define

Archimedean copulas it is first necessary to describe a mathematical result known as

the Laplace Transformation (LT). The LT of a non-negative random variable X with

distribution function FX is defined as:

ϕX (s) := E[e−sX ]= ∫ ∞

0
e−sxdFX (x), s > 0 (3.31)

The intuition behind Archimedean copulas is explained by Matthias and Jan-frederik

(2017) as follows.

Consider a vector of i .i .d . Exponential random variables E1,E2, ...,Ed v E xp(1). Fur-

thermore, independent of this let M be a positive random variable. Define a vector of

random variables by

(X1, .., Xd )′ :=
(E1

M
, ...,

Ed

M

)′
(3.32)

Then it can be shown that the survival function of the k th ,k = 1,2, ..,d , random variable

can be expressed as

F̄k (x) = E[e−xM ] =
∫ ∞

0
e−mxdFM (m) =:ϕ(x), x ≥ 0 (3.33)

where ϕ is the LT of M . Then as long as M is not deterministic, the random variables

(X1, .., Xd )′ are dependent since each is affected by M . For this reason, it can be proven

that the survival copula of the random variables (X1, .., Xd )′ is parameterised by the LT

of M , and is given by

Ĉϕ(u1, ...,ud ) :=ϕ(ϕ−1(u1)+·· ·+ϕ−1(ud )) (3.34)

where u1, ...,ud ∈ [0,1] and ϕ is the LT of M . Thus the survival function for (X1, ..., Xd )′

can be expressed as,

P (X1 > x1, ..., Xd > xd ) = Ĉϕ(ϕ(x1), ...,ϕ(xd )) (3.35)

where x1, ..., xd > 0.

Copulas derived in this manner are termed Archimedean copulas and has the func-

tional form as presented in (3.34). Hence, the definition of Archimedean copulas is as

follows:
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Definition 3.9 (Archimedean copula). A d-dimensional copula is called Archimedean

if it admits to the functional form

Cϕ(u1, ...,ud ) :=ϕ(ϕ−1(u1)+·· ·+ϕ−1(ud )) (3.36)

where u1, ...,ud ∈ [0,1] and the function ϕ : [0,∞) → [0,1] with inverse ϕ−1 is termed the

generator of Cϕ. �

Each copula within the family of Archimedean copulas possesses a distinct genera-

tor function parameterised by θ that determines the level of dependence for the cop-

ula. Three of the most well studied Archimedean copulas, each with their own distinct

properties, are the Gumbel (CGu
θ

), Clayton (CC l
θ

), and Frank (C F r
θ

) copulas. These cop-

ulas with their corresponding properties are presented in Table 3.1.

Table 3.1

Popular families of Archimedean copulas

Copula Parameter (θ) Generator (ϕθ(x)) Independence Comonotonicity Kendall’s tau (τθ)

Gumbel (CGu
θ

) θ ∈ [1,∞) (1+x)−
1
θ θ→ 1 θ→∞ θ−1

θ

Clayton (CC l
θ

) θ ∈ (0,∞) exp(−x
1
θ ) θ→ 0 θ→∞ θ

2+θ
Frank (C F r

θ
) θ ∈ (0,∞) − 1

θ
ln[e−x(e−θ−1)+1] θ→ 0 θ→∞ 1+4

∫ θ
0 t (e t−θ)−1d t−1

θ

Algorithm 3.3 can be used to simulate observations from an Archimedean copula.

Algorithm 3.3 (Simulating from Archimedean copulas). In order to generate n observa-

tions from a d-variate distribution with marginal distributions F1,F2, ...,Fd and quan-

tile functions F−1
1 ,F−1

2 , ...,F−1
d that is specified and known. Additionally, suppose that

the dependence structure is characterised by an Archimedean copula with parameter θ.

Then perform the following steps:

1. Specify parameter θ such that:

(a) θ > 1 for the Gumbel Copula.

(b) θ > 0 for the Clayton Copula.
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(c) θ > 0 for the Frank Copula.

2. Generate a

(a) Stable variate V v St (1/θ,1,γ,0), where γ = [cos(π/θ)]θ with the Laplace-

Transform of its distribution function given by ϕθ(t ) = exp(−t
1
θ ).

(b) Gamma variate V vGa(1/θ,1) with θ > 0, with the Laplace-Transform of its

distribution function is given by ϕθ(t ) = (1+ t )−1/θ.

(c) Discrete variate V with probability mass function p(k) = P(V = k) = (1 −
exp(−θ))k /(kθ) for k = 1,2, ... and θ > 0 withϕθ(t ) =− 1

θ ln
[
e−x(e−θ−1)+1

]
.

3. Generate independent Uniform variables Y1, ..., ,Yd vU (0,1).

4. Return (u1, ..,ud ) =
[
ϕ−1
θ

(− ln(y1)
V

)
, ...,ϕ−1

θ

(− ln(y1)
V

)]
.

5. Use the Probability Inverse Transform to generate the sample (x1, ..., xd ) = [F−1
1 (u1), ...,F−1

d (ud )].

6. Repeat steps 1 to 5 n times to generate n samples.

�

The Gumbel copula (CGu
θ

) has no lower tail dependence, only upper tail dependence of

2−2
1
θ . Furthermore, CGu

θ
is the only Archimedean copula that is also an extreme value

copula. A copula C is said to be an extreme value copula if it satisfies the property

C (u1, ...,ud )t =C (ut
1, ..,ut

d ), ∀t ≥ 0 and u1, ...,ud ∈ [0,1] (3.37)

Such copulas play an important role in extreme value theory but are beyond the scope

of this study.

Simulations for a bivariate Gumbel copula is illustrated in Figure 3.3 where it can be

seen that the dependence increases as θ increases. Additionally, it can be seen that

observations appear to be more correlated in the upper right corner of the scatter plot,

illustrating the upper tail dependence present in the Gumbel copula.
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Figure 3.3

Scatter plots of univariate marginals corresponding to a Gumbel copula

Source: Matthias and Jan-frederik (2017)

The Clayton copula (CC l
θ

), in contrast to the Gumbel copula, has no upper tail depen-

dence, but a lower tail dependence of 2− 1
θ . The bivariate Clayton copula is illustrated

in Figure 3.4 and, in a similar manner, dependence increases as θ becomes larger. Fur-

thermore, since the Clayton copula is subject to lower tail dependence, one observes

greater dependence in the lower left corner of the scatter plot.

Figure 3.4

Scatter plots of univariate marginals corresponding to a Clayton copula

Source: Matthias and Jan-frederik (2017)

Finally, the Frank copula (C F r
θ

) is tail independent and has the useful property in the bi-

variate case whereby its copula for the distribution and survival function are the same.

36

Stellenbosch University  https://scholar.sun.ac.za



3.3. MULTIVARIATE EXTREME DEPENDENCE ANALYSIS

The scatter plot for the Frank copula is presented in Figure 3.5 whereby it is clear that

no tail dependence is present.

Figure 3.5

Scatter plots of univariate marginals corresponding to a Frank copula

Source: Matthias and Jan-frederik (2017)

3.3 MULTIVARIATE EXTREME DEPENDENCE ANALYSIS

It is well established in the financial world that dependence between asset returns

drastically changes during volatile markets and in extreme economic circumstances

(see Longin and Solnik, 2001). This implies that special attention should be given to

the dependence of extreme observations, given that by Theorem 3.5, a relationship ex-

ists between copulas and extremal dependence measures such as the tail dependence

coefficient. This suggests that copulas can be used as a tool to analyse extreme de-

pendence. Therefore, if a copula structure is assumed to determine the dependence

of extreme observations, inferences can be made about the overall strength of such

an extreme dependence. More specifically, by assuming that extreme observations are

obtained from an elliptical distribution with its dependence described by an elliptical

copula, a correlation matrix for extreme observations can be determined. Such an ap-

proach was studied by Haug et al. (2015) with the goal of deriving a correlation matrix

from extreme observations.

37

Stellenbosch University  https://scholar.sun.ac.za



3.3. MULTIVARIATE EXTREME DEPENDENCE ANALYSIS

This is done by making the assumption that a random vector X = (X1, .., Xd )′ is gener-

ated from an elliptical distribution with regularly varying generating function φ with

index ν. Further, Klüppelberg et al. (2007) shows that the bivariate marginal tail de-

pendence coefficient for a regularly varying elliptical distribution can be determined

using the following theorem.

Theorem 3.9. Let X = (X1, .., Xd )′ be a random vector with elliptical copula Cd (R,φ).

Then the bivariate marginal tail dependence function of X is given by

λ(xi , x j ,ν,ρi j ) : =
[

xi

∫ π/2

φi j [(xi /x j )1/ν]

[
cos(θ)

]ν
dθ+x j

∫ π/2

φi j [(x j /xi )−1/ν]

[
cos(θ)

]ν
dθ

][∫ π/2

π/2

[
cos(θ)

]ν
dθ

]−1

= xi

[
1− tν+1

( (xi /x j )1/ν−ρi j
p
ν+1√

1−ρ2
i j

)]
+x j

[
1− tν+1

( (x j /xi )1/ν−ρi j
p
ν+1√

1−ρ2
i j

)]

(3.38)

where xi and x j are the respective i th and j th components of X . Moreover, φi j (t ) :=
ar ct an

[
(t −ρi j )/

√
1−ρ2

i j

]
and tν+1 denotes the t-distribution function with ν+1 de-

grees of freedom.

The above theorem is a generalisation of the tail dependence coefficient given in Theo-

rem 3.8. This is because the tail dependence coefficient in Theorem 3.8 only considers

points at [1,1] whereas the above considers points [
p

2cos(θ),
p

2sin(θ)] for θ ∈ [0,π/2],

which includes the point (1,1).

Now Haug et al. (2015) gives an algorithm to estimate ρi , j for each pair of variables

(xi , x j ), calibrated from extreme observations by using the relationship provided in

Theorem 3.9. The tail dependence function in (3.38) is a function of two parameters ν

and ρi j and can hence be denoted as the function λ(xi , x j ;ν;ρi j ). Now, estimating two

parameters ν and ρi j from one function is not straight forward and requires a two step

procedure. Since the end goal is to find pi j the function in (3.38) needs to be inverted

with respect to ρi j := ρi j (xi , x j ;ν;λ) implying that estimates for ν andλmust be found.

Finding an estimator for λ is straightforward by using the empirical bivariate marginal

tail dependence coefficient given in definition 3.2 as

λ̂
emp
i , j (xi , x j ;k) := 1

k

n∑
h=1

I
{

1−Fi (xh,i ) ≤ k

n
xi ,1−F j (xh, j ) ≤ k

n
x j

}
(3.39)
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with k the number of tail samples. Hence the estimator for the bivariate marginal tail

dependence coefficient is taken to be λ̂emp
i , j .

Then in order to estimate the second parameter ν, (3.38) is inverted as a function of ν

denoted as ν(λ̂emp
i , j ;ρi j ) with λ̂emp

i , j substituted as an estimate for the bivariate marginal

tail dependence coefficient. Note that, in order to estimate ν requires an estimate of

ρi j , in spite of it being the parameter that is suppose to be determined at the end. To

overcome this Haug et al. (2015) suggest using an initial estimator of ρi j that is only

used to determine ν. This initial estimator of ρi j is found be estimating Kendall’s tau

τ̂i j for random variables and using the relationship in Theorem 3.7 to solve for ρi j as,

ρ̂τi j := sin
(π

2
τ̂i j

)
(3.40)

As a result, ν can be estimated using the above estimator as ν̂ := ν(λ̂emp
i , j ; ρ̂τi j ). Finally,

both estimators ν̂ and λ̂
emp
i , j are now employed to estimate the correlation coefficient

for random variables Xi and X j as ˆρi j = pi j (xi , x j ; ν̂; λ̂emp
i , j ). As a result, ˆρi j is the ex-

tremal correlation coefficient for Xi , X j determined from extreme observations. This is

then repeated to find extremal correlation coefficient for all combinations of i , j which

are then combined into an extremal correlation matrix denoted R̂extr eme .

3.4 SUMMARY

In this chapter, an in-depth look was taken at the concept and measurement of depen-

dence. Initially, some background on traditional dependence measures was provided

such as Pearson’s correlation, Kendall’s tau and Spearman’s rho. Subsequently, copulas

were introduced as a functional approach to characterise dependence. This was fol-

lowed by an examination of various families of copulas which will be applied in later

chapters to simulate multivariate data with various properties. Finally, a methodology

to analyse multivariate extreme dependence was presented. This methodology yields

a correlation matrix calibrated from extremes that will be applied in the next chapter

to construct PCA biplots more suited to extremes.
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CHAPTER 4

METHODOLOGY

In Chapter 2 background regarding the development and application of PCA biplots

were discussed. Then in Chapter 3, concepts related to dependence and the measure-

ment of dependence was discussed. Further, a methodology to determine a correlation

matrix calibrated from extreme observations was presented in section 3.2. With these

topics in mind the purpose of this chapter is to combine key ideas from Chapter 3 to

the PCA biplot methodology discussed in Chapter 2. The intention of this new PCA

biplot methodology is to improve the sample prediction of multivariate extreme ob-

servations. Additionally, a methodology for testing whether this biplot refinement for

extremes improves over the traditional biplot is proposed by way of a simulation study.

4.1 THE REFINED PCA BIPLOT

As stated in Chapter 1, the primary objective of this study is to refine the Traditional

PCA biplot methodology to be better suited for multivariate extreme observations. This

will be achieved by incorporating the approach described in Section 3.5, by determin-

ing an extremal correlation matrix from extreme observations and applying it to the

PCA biplot construction methodology. The refinement is obtained for a data matrix X

with n observations and p variables as follows:

1. Standardise the data matrix X .
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4.1. THE REFINED PCA BIPLOT

2. Select k < n as the number of tail samples that is used to identify extreme obser-

vations.

3. Store the identified extreme observations as X ∗.

4. Use procedure discussed in Section 3.3 to construct a correlation matrix for k tail

samples, termed the extremal correlation matrix and denoted as Rextr eme .

5. Determine the Singular Value Decomposition of Rextr eme as,

Rextr eme =VΛV ′ (4.1)

with,

• Λ a diagonal matrix containing the eigenvalues of Rextr eme , sorted in de-

scending order.

• V a matrix with columns the corresponding eigenvectors, ordered corre-

sponding to its eigenvalues.

6. Using the matrix of eigenvaluesΛ, find the corresponding diagonal matrix of sin-

gular values D as1 as,

D = [(n −1)Λ]
1
2

7. Then apply the PCA biplot construction methodology described in Section 2.2

using the derived singular value matrix D and eigenvector matrix V obtained in

the preceding steps. This will yield the Refined PCA biplot for extreme observa-

tions.

8. Finally, use a different marker or colour to denote extreme observations on the

biplot corresponding to observations in X ∗

The biplot obtained through the above methodology is termed the Refined biplot and

a biplot obtained through the generic biplot construction methodology is termed the

Traditional biplot. The Refined biplot is implemented by modifying the PCAbipl

1Refer to Appendix A.2 for further details.

41

Stellenbosch University  https://scholar.sun.ac.za



4.2. SIMULATION DESIGN

function in the R package UBbipl developed by le Roux and Lubbe (2013). The func-

tions used to obtain the extremal correlation matrix was derived from code published

by Haug et al. (2015). The R code to construct the Refined PCA biplot is exhibited in

Appendix D. Given that the Refined PCA biplot is constructed based on an extreme

correlation matrix, it can be argued that extreme observations are better preserved

when performing dimension reduction through PCA and as such extreme observations

should better represented by the Refined biplot. However, this would also imply that

non-extreme observations will be represented worse. Therefore, a trade-off exists be-

tween overall biplot fit and fit for extreme observations. Hence, to investigate if the

Refined biplot consistently improves the sample predictivity for extreme observations

a simulation study is carried out. The set-up of such a simulation study is described in

the subsequent section.

4.2 SIMULATION DESIGN

In this section, a test as to whether the Refined biplot methodology consistently yields

better sample predictions for extreme observations compared to the Traditional biplot

is presented. This test essentially compares the average sample prediction error for

extremes, determined through several simulations of multivariate data, for both ap-

proaches. An outline of such a simulation procedure is illustrated by a flowchart in

Figure 4.1 on page 47. The flowchart is divided into three subsections or blocks (A),

(B), and (C). Each of these subsections will be explained separately as part of the sim-

ulation design. Subsection (A) corresponds to the data generating process. Then in

subsection (B) the Traditional and Refined biplots are constructed using the generated

data. Furthermore, after each of the biplots is constructed the sample prediction er-

ror corresponding to extreme observations is measured for both biplots and stored.

Finally, in subsection (C) it is tested whether the extreme sample prediction error is

significantly lower on average for the Refined biplot than in the case of the Traditional

biplot.
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4.2.1 Data generation

The first part of the simulation study denoted (A) in Figure 4.1 is the process of gener-

ating data. The simulation study is performed over various independent multivariate

datasets. The multivariate distributions the data is generated from use a copula to

combine known marginal distributions. Specifically, the Gaussian and Gumbel copu-

las are applied to couple the marginals. The use of the Gaussian copula is motivated

by the fact that the Gaussian copula is known to be tail independent. This would imply

that under the Gaussian copula the correlation matrix derived from the observations

in the tail is similar to that of the majority of the data. This further implies that the

Refined approach would perform poorly since there is no difference in the overall and

extreme correlation. Therefore, the data generated using a Gaussian copula will serve

as the benchmark case. However, when the Gumbel copula is used to construct a mul-

tivariate distribution it has the feature of exhibiting upper tail dependence. The upper

tail dependence exhibited by the Gumbel copula would imply that a correlation struc-

ture derived from the tails of the data should vary from the correlation of the entire

data set. For this case, it is expected that the Refined approach is superior in terms of

extreme sample predictivity as compared to the Traditional approach. Algorithms 3.1

and 3.3, as given by Embrechts et al. (2002), provide the steps to generate multivariate

samples using the Gaussian and Gumbel copulas, respectively.

Using algorithms 3.1 and 3.3, the data generating process is considered for three dis-

tinct cases:

i Multivariate distribution with identical Gamma(2,2) marginals and dependence

characterised by a Gaussian copula with correlation ρi j = 0.5 for all i 6= j .

ii Multivariate distribution with identical Gamma(2,2) marginals and dependence

characterised by a Gumbel copula with parameter θ = 1.5.

iii Multivariate distribution with heterogeneous marginal distributions and depen-

dence characterised by a Gumbel copula with parameter θ = 1.5.

Case (i) is taken as the benchmark case since the Gaussian copula is tail independent.
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This implies that the correlation structure in the tails is similar to that of the entire

distribution and such Refined methodology is expected to perform poorly. Case (ii) is

considered to examine whether the existence of tail dependence, due to the use of a

Gumbel copula, yields better results than Case (i). Furthermore, in Case (iii) different

marginals are used with various characteristics coupled with a Gumbel copula. In this

case, the performance of the Refined methodology is tested for multivariate data with

non-homogeneous marginals.

4.2.2 Traditional and Refined PCA biplot quality measures

In all three of the above cases, the generated multivariate data scaled by its standard

deviation and mean, and is used to construct a Traditional biplot and a Refined bi-

plot. Each of the two biplots is constructed for 4-, 5- and 7-variables for cases (i) and

(ii), and in case (iii) only 5 variables are considered, with n = 500 & n = 5000 samples

using k = 20 & k = 80 tail samples. This yields 12 separate datasets to consider and

to compare the Traditional and Refined biplots. Hence, a measure is required to test

the quality of extreme observations on each of these datasets under the Refined and

Traditional biplots. Since only extreme observations are considered the measure of

extreme sample prediction error is used to asses the quality of extreme observations

under each biplot. Suppose that X ∗ is a d-variate matrix of h identified extreme ob-

servations. These observations are identified as the observations that hold true for the

identity function in (3.39). Further, let x∗
i be the i th original extreme sample and x̂∗

i is

the i th extreme sample as predicted by the biplot then,

Ψ∗
i = [

x̂∗
i −x∗

i

]2 (4.2)

is the extreme sample prediction error for the i th extreme observation. The overall

extreme sample error used to compare the respective biplots is determined as the sum

over all extreme observations as,

Ψ∗ =
h∑

i=1

d∑
j=1
Ψ∗

i , j (4.3)

This is denoted asΨ∗
T andΨ∗

R for the Traditional and Refined biplot, respectively.

44

Stellenbosch University  https://scholar.sun.ac.za



4.3. SUMMARY

4.2.3 Testing procedure

The procedure in (A) and (B) of Figure 4.1 are repeated 100 times, which yield 100 ex-

treme sample prediction errors for each biplot. Next, the average sample prediction

error for the Traditional and Refined biplot is determined and denoted as Ψ̄∗
T and Ψ̄∗

R ,

respectively. However, it is not acceptable to just compare whether Ψ̄∗
T > Ψ̄∗

R to con-

clude that the Refined biplot has a lower average extreme sample error and hence is a

better display for extreme observations. In order to make such a conclusion, simula-

tion variation must be taken into account. Hence, the standard error of the simulated

extreme sample prediction error is computed and denoted as S.E .(Ψ∗
T ) and S.E .(Ψ∗

R )

for the Traditional and Refined biplot, respectively. Then to determine whether the

average extreme sample prediction error is lower for the Refined biplot than for the

Traditional biplot at a 10% significance level, consider the following hypothesis test:

H0 : E [ψ∗
R ]−E [ψ∗

T ] ≥ 0 v s H1 : E [ψ∗
R ]−E [ψ∗

T ] < 0 (4.4)

The above hypothesis is tested against a significance of α= 10%. The Student-T distri-

bution is used as a test statistic with the p-value calculated as

p − value = P

T < ψ̄∗
R − ψ̄∗

T√
S.E(ψ∗

R )2 +S.E(ψ∗
T )2

 wi th T v t (n −1)

The null hypothesis H0 is rejected if it is found that p − value < 0.1. Then it can be

said that there is sufficient evidence to conclude that the average extreme sample pre-

diction error under the Refined approach is lower than in the Traditional approach.

This means that the Refined biplot methodology provides a superior sample predic-

tion than the Traditional biplot for extreme observations.

4.3 SUMMARY

In this chapter a methodology to construct a biplot that yields superior extreme sam-

ple predictions over the traditional biplot methodology was proposed. This new biplot

is termed the Refined biplot and is constructed by assuming extreme observations are

determined by an elliptical distribution. Furthermore, a procedure was then discussed
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to test the prediction accuracy of the Refined biplot for extreme observations through a

simulation study. The results of this simulation are presented in the subsequent chap-

ter.
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CHAPTER 5

SIMULATION RESULTS

As discussed in the preceding chapter, the capability of the Refined biplot to improve

extreme sample predictivity over the Traditional biplot is tested by way of a simula-

tion study. This chapter is devoted to presenting and explaining the results from the

simulation study. The simulation of both biplots’ performances is repeated over the

following three distinct multivariate distributions:

i Observations from a multivariate distribution with Gamma(2,2) underlying marginals

which is combined using a Gaussian copula with correlation parameter ρi , j = 0.5

for all i 6= j .

ii Observations from a multivariate distribution with Gamma(2,2) underlying marginals

which is combined using a Gumbel copula with parameter θ = 1.5.

iii Observations from a multivariate distribution consisting of various marginals

which is combined using a Gumbel copula with parameter θ = 1.5.

Each section in this chapter consists of illustrations of both the Traditional and Refined

biplot, with accompanied quality measures, constructed from observations simulated

from each above-mentioned distributions for the 5-variate case. Additionally, as men-

tioned in section 4.2.2, all generated data is scaled for each variable by its mean and

standard deviation. Further, simulation results for the average extreme sample predic-

tion error for both biplots are given for each of the above distributions under various
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dimensions using a varying number of observations and tail samples.

5.1 GAUSSIAN COPULA WITH GAMMA MARGINALS

In this section, the application of the Refined biplot is presented for a distribution

termed from here on as the Gamma-Gaussian distribution. The Gamma-Gaussian dis-

tribution is constructed from homogeneous Gamma(2,2) distributed marginals which

are coupled using a Gaussian copula with correlation parameter ρ = 0.5 for all vari-

ables. In Figure 5.1 a pairs plot consisting histograms for each variable on the diagonal

and scatter plots for each pair of variables on the off-diagonal is presented for 5000 ob-

servations generated from a 5-variate Gamma-Gaussian distribution. It is clear from

the scatter plots that all variables have a positive relationship since the correlation pa-

rameter is 0.5 for all variables. Further, from the histograms, all variables are positively

skewed. Additionally, as mentioned in section 3.2.1, the Gaussian copula is tail inde-

pendent which can be observed in the scatter plots since observations in the upper

right quadrant of each scatter plot is more sparse indicating a weaker relationship be-

tween extreme observations.
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Figure 5.1

Pairs scatter plot of a 5-variate Gamma-Gaussian distribution

Now using the 5000 observations generated from a 5-variate Gamma-Gaussian distri-

bution a Traditional biplot is constructed and is illustrated in Figure 5.2a. Then by

arbitrarily choosing the number of tail samples as k = 80 the Refined biplot is con-

structed and is illustrated in Figure 5.2b. The observations depicted as red blocks are

the extreme observations used to obtain an extremal correlation matrix which is then

used to construct the Refined biplot.
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Figure 5.2

Traditional (a) and Refined (b) biplots for 5000 observations from a 5-variate

Gamma-Gaussian distribution.

Further, the overall PCA quality for the Traditional biplot is 68.66% and for the Re-

fined biplot is 73.91%. However, it is not enough to compare the PCA quality and

further quality measures such as the biplot Predictivity and Adequacy must be consid-

ered and are presented in Table 5.1 for each underlying variable. Recall that Adequacy

measure asses how well the biplot axes in 2-dimensional space represent the axes in

5-dimensional space whereas, the measure of predictivity reveals how well each axis

predicts the true observations. From Table 5.1 it is clear that the Traditional biplot es-

timates variables 1, 2 and 4 well owing to it having a higher adequacy and predictivity

and for the same reason the Refined biplot estimates variables 3 and 5 better.
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Table 5.1

Predictivity and Adequacy measures for biplots constructed from 5000 observations

from a 5-variate Gamma-Gaussian distribution.

Predictivity 1 2 3 4 5

Traditional 0.749 0.898 0.585 0.627 0.581

Refined 0.602 0.695 0.898 0.625 0.876

Adequacy 1 2 3 4 5

Traditional 0.521 0.805 0.203 0.270 0.202

Refined 0.244 0.328 0.507 0.206 0.715

The above measures are important, but for the purpose of this study it is meaning-

less since only the fit of extreme observations are of interest. Thus, to determine this,

the sample prediction error is measured for each variable over all observations and its

averages are given in Table 5.2. Subsequently, the observations used to construct the

Refined biplot are taken as the extremes for which the extreme sample prediction er-

ror is presented for each variable in Table 5.3. Now examining the total overall sample

error is Table 5.2 it is clear that the Traditional biplot is superior in sample prediction

for all observations. However, when considering only the total extreme sample error in

Table 5.3 it appears that the Refined biplot better estimates extreme observations.

Table 5.2

Overall sample error for biplots constructed from 5000 observations from a 5-variate

Gamma-Gaussian distribution.

Variable 1 2 3 4 5 Total

Traditional 0.250 0.102 0.415 0.380 0.419 1.567

Refined 0.400 0.359 0.257 0.415 0.151 1.581
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Table 5.3

Extreme sample error for biplots constructed from 5000 observations from a 5-variate

Gamma-Gaussian distribution.

Variable 1 2 3 4 5 Total

Traditional 1.687 0.626 2.430 2.438 2.619 9.799

Refined 2.633 2.147 1.465 2.559 0.915 9.721

However the above results are only obtained for one generated dataset and only con-

siders the 5-variate case and in order to ensure that the Refined biplot does improve

extreme sample predictions a simulation study must be persued. The simulation re-

sults are presented in Table 5.4 and presents the average extreme and overall sample

error for various variable dimensions and under a different choice of n observations

and tail samples k. Accompanying, the average sample errors is the standard error of

the simulation with p-values for each of the 4, 5, and 7 dimensional cases. It is clear

by looking at the p-values in Table 5.4 that in no case does the Refined biplot improve

extreme sample predictions over the Traditional biplot. This implies that the extreme

sample prediction error given in Table 5.3 is an anomaly and on average the Refined

biplot yields worse overall and extreme sample predictions than the Traditional bi-

plot. The reason that the Refined biplot yields worse extreme sample prediction can

be attributed to fact that the Gaussian copula is tail independent, meaning there is

no difference in the correlation between the extreme observations and that of all the

observations. This in part implies that the extremal correlation matrix obtained in the

Refined biplot methodology was a substandard estimation of the correlation matrix for

all observations.
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Table 5.4

Overall and extreme sample error simulation results for biplots from a

Gamma-Gaussian distribution. Each table consists of the average sample error,

standard error and p-values for 4, 5 and 7 variables using 500 and 5000 observations

for 20 and 80 tail samples.

4 Variables 5 Variables 7 Variables

n=5000 k=20 Overall Extreme Overall Extreme Overall Extreme

Traditional 1.954 4.138 2.717 5.617 4.175 7.861

(Std.Err) 0.011 0.056 0.009 0.055 0.015 0.092

Refined 1.985 4.252 2.762 5.690 4.235 8.085

(Std.Err) 0.011 0.077 0.010 0.045 0.016 0.089

p-value 0.920 0.804 0.989 0.766 0.972 0.891

n=5000 k=80

Traditional 1.951 2.669 2.711 3.631 4.171 5.345

(Std.Err) 0.014 0.026 0.008 0.016 0.016 0.037

Refined 1.956 2.675 2.742 3.693 4.197 5.388

(Std.Err) 0.013 0.027 0.009 0.021 0.019 0.041

p-value 0.578 0.543 0.962 0.952 0.771 0.710

n=500 k=20

Traditional 1.945 4.180 2.714 5.598 4.213 8.193

(Std.Err) 0.015 0.081 0.009 0.060 0.021 0.106

Refined 1.991 4.270 2.765 5.760 4.276 8.408

(Std.Err) 0.013 0.075 0.009 0.063 0.024 0.158

p-value 0.950 0.718 0.997 0.905 0.916 0.790

n=500 k=80

Traditional 1.943 2.648 2.713 3.612 4.233 5.467

(Std.Err) 0.015 0.028 0.008 0.018 0.023 0.075

Refined 1.962 2.660 2.744 3.671 4.253 5.546

(Std.Err) 0.011 0.025 0.008 0.019 0.023 0.091

p-value 0.769 0.586 0.973 0.946 0.667 0.683
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5.2 GUMBEL COPULA WITH GAMMA MARGINALS

In this section, the application of the Refined biplot is presented for a distribution

termed from here on out as the Gamma-Gumbel distribution. The Gamma-Gumbel

distribution is constructed from homogeneous Gamma(2,2) distributed marginals which

are coupled using a Gumbel copula with parameter θ = 1.5. This means that, as men-

tioned in section 3.2.2., the upper tail dependence coefficient of the distribution is

λupper = 2−2
1

1.5 = 0.851. This implies that the dependence in the tail is stronger and dif-

ferent to that of the remaining observations not in the tail. A pairs plots are illustrated

in Figure 5.3 consisting of a histogram of each underlying variable in the diagonal and

in the off-diagonal scatter plots of each pairs of variables is given. This pairs plot is

constructed from 5000 observations generated from a 5-variate Gamma-Gumbel dis-

tribution. Once again, all variables have a positive relationship. However, in contrast

to the Gamma-Gaussian distribution presented in Figure 5.1, extreme observations in

the upper right quadrant of each scatter plot are more correlated due to the non-zero

upper tail dependence coefficient.
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Figure 5.3

Pairs scatter plot of a 5-variate Gamma-Gumbel distribution

Now using the 5000 generated observations from the above 5-variate Gamma-Gumbel

distribution a Traditional biplot is constructed and illustrated in Figure 5.4a. Further,

by choosing k = 80 as the number of tail samples a Refined biplot is constructed and

illustrated in Figure 5.4b. Similarly, observations depicted as red blocks are extreme

observations used to determine an extremal correlation matrix. Now comparing the

biplots in Figure 5.4 with those presented in Figure 5.2, both having the same identical

marginals and only differing in copulas, it is clear that the extreme observations in

Figure 5.4 are subject to greater dependency due the non-zero tail dependence. This

means that extreme observations may yield a vastly different correlation matrix than

that of a correlation matrix on all observations.
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Figure 5.4

Traditional (a) and Refined (b) biplots for 5000 observations from a 5-variate

Gamma-Gumbel distribution.

Furthermore, the PCA quality for the Traditional and Refined biplots are 75.25% and

77.22%, respectively. Moreover, the Adequacy and Predictivity measures is reported

in Table 5.5, which shows that the Refined biplot better represents variables 1 to 4,

whereas the Traditional biplot is superior in representing variable 5.

Table 5.5

Predictivity and Adequacy measures for biplots constructed from 5000 observations

from a 5-variate Gamma-Gumbel distribution.

Predictivity 1 2 3 4 5

Traditional 0.904 0.681 0.670 0.713 0.808

Refined 0.962 0.751 0.714 0.745 0.688

Adequacy 1 2 3 4 5

Traditional 0.766 0.215 0.201 0.296 0.522

Refined 0.922 0.246 0.327 0.283 0.222
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Consider now the average overall and extreme sample prediction error in Table 5.6 and

5.7. It is noted that, although the Refined biplot yield a poorer overall sample predic-

tion, it does provide improved extreme sample prediction given that its total average

extreme sample error is 3.427 which is lower than 3.598 for the Traditional biplot. This

provides some evidences that the Refined biplot may better present extreme samples

than the Traditional biplot. However simulation is required to test whether this asser-

tion holds consistently over various dimensions.

Table 5.6

Overall sample error for biplots constructed from 5000 observations from a 5-variate

Gamma-Gumbel distribution.

Variable 1 2 3 4 5 Total

Traditional 0.096 0.318 0.330 0.287 0.192 1.224

Refined 0.033 0.309 0.283 0.295 0.323 1.244

Table 5.7

Extreme sample error for biplots constructed from 5000 observations from a 5-variate

Gamma-Gumbel distribution.

Variable 1 2 3 4 5 Total

Traditional 0.319 0.947 1.000 0.775 0.558 3.598

Refined 0.094 0.926 0.811 0.820 0.777 3.427

The results of the simulated average overall and extreme sample prediction error are

presented with standard errors and p-values in Table 5.8. Considering that the p-values

are tested at a 10% significance level. It is immediately clear that the Refined biplot

improves extreme sample prediction in the 4- and 5-variate case for n = 5000 obser-

vations with k = 80 tail samples. However, this does not hold in the 7-variate case.

Conversely, if the choice of k = 80 is used with n = 5000 observations then it can not

be said at a 10% significance level that the Refined biplot is superior to the Traditional
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biplot in representing extreme samples. In the final two tables of Table 5.8, n = 500 ob-

servations is used in the simulation of biplot extreme sample prediction error. When

k = 20 tail samples is considered then the Refined biplot only improves the extreme

sample prediction over the Traditional biplot in the 4-variate case. Finally, the Refined

biplot fails to improve extreme sample prediction error in all dimensions when k = 80

tail samples is considered.

59

Stellenbosch University  https://scholar.sun.ac.za



5.2. GUMBEL COPULA WITH GAMMA MARGINALS

Table 5.8

Overall and extreme sample error simulation results for biplots from a

Gamma-Gumbel distribution. Each table consists of the average sample error,

standard error and p-values for 4, 5 and 7 variables using 500 and 5000 observations

for 20 and 80 tail samples.

4 Variables 5 Variables 7 Variables

n=5000 k=20 Overall Extreme Overall Extreme Overall Extreme

Traditional 1.732 2.600 2.458 3.406 3.828 5.010

(Std.Err) 0.020 0.056 0.009 0.043 0.026 0.040

Refined 1.716 2.401 2.457 3.293 3.894 5.196

(Std.Err) 0.016 0.062 0.008 0.044 0.026 0.035

p-value 0.323 0.048 0.476 0.097 0.893 0.993

n=5000 k=80

Traditional 1.774 1.969 2.473 2.667 3.866 3.981

(Std.Err) 0.013 0.030 0.014 0.025 0.028 0.058

Refined 1.777 1.912 2.472 2.616 3.891 4.049

(Std.Err) 0.026 0.026 0.012 0.028 0.034 0.062

p-value 0.535 0.159 0.495 0.170 0.654 0.715

n=500 k=20

Traditional 1.797 2.539 2.452 3.435 3.814 4.959

(Std.Err) 0.024 0.065 0.013 0.067 0.038 0.218

Refined 1.813 2.362 2.503 3.403 3.906 5.178

(Std.Err) 0.016 0.051 0.012 0.069 0.039 0.211

p-value 0.653 0.065 0.977 0.409 0.883 0.695

n=500 k=80

Traditional 1.814 2.021 2.465 2.649 3.835 3.927

(Std.Err) 0.026 0.053 0.014 0.028 0.032 0.068

Refined 1.831 2.037 2.495 2.618 3.869 3.973

(Std.Err) 0.022 0.052 0.014 0.027 0.026 0.074

p-value 0.642 0.558 0.853 0.286 0.719 0.628
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From the simulation results presented in Table 5.8 it can be concluded that the Re-

fined biplot methodology improves the extreme sample predictivity, only if the under-

lying multivariate distribution has non-zero tail dependence. Further, if a large num-

ber of observations is combined with a small number of tail samples, as considered

in the case with n = 5000 and k = 20, then the Refined methodology yields superior

extreme sample predictions for up to 5 dimensional datasets. However, the Refined bi-

plot methodology is inferior to the Traditional biplot methodology when a smaller set

of observations is used with the number of tail samples constituting a large fraction of

the total observations, as in the case with n = 500 and k = 80.

5.3 GUMBEL COPULA WITH HETEROGENEOUS

MARGINALS

In this final section the application of the Refined biplot is presented for a multivari-

ate distribution termed the Heterogeneous-Gumbel distribution. The Heterogeneous-

Gumbel distribution is a 4-variate distribution consisting of arbitrary marginals dis-

tributions Gamma(2,2), Bet a(1,2), Student − t (5), and Gumbel (0,2). The marginals

are combined using a Gumbel copula with parameter θ = 1.5. As in the preceding sec-

tion, this implies that the Heterogeneous-Gumbel distribution has a non-zero upper

tail dependence coefficient of λupper = 0.851. The goal in this section is to determine

whether the Refined biplot yield better extreme sample prediction even if underlying

variables have different marginals, while still being subject to upper tail dependence.

Once again a pairs plot is illustrated in Figure 5.5, which is constructed from 5000 ob-

servations generated from the 4-variate Heterogeneous-Gumbel distribution. Further,

the histograms indicates that each variable originates from a different marginal distri-

bution. Additionally, since the distribution has non-zero upper tail dependence, the

upper right quadrant of each scatter plot exhibits a stronger dependence.
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Figure 5.5

Pairs scatter plot of a 4-variate Heterogeneous-Gumbel distribution

Using the generated 5000 observations from the 4-variate Heterogeneous-Gumbel dis-

tribution a Traditional biplot is constructed and presented in Figure 5.6a. Furthermore,

by selecting the tail sample to be k = 80, a Refined biplot can be constructed and is pre-

sented in Figure 5.6b. Similarly, observations depicted by red blocks are the extreme

observations used to construct the Refined biplot. Due to the observations being gen-

erated by a distribution constructed from a variety of marginals the shape of the data

on the biplot is somewhat skewed. Lastly, the orientations of the axes are different for

the two biplots, showing that different correlation matrices are used to construct the

respective biplots.
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Figure 5.6

Traditional (a) and Refined (b) biplots for 5000 observations from a 4-variate

Heterogeneous-Gumbel distribution.

The PCA quality of the Traditional and Refined biplot is 74.87% and 78.67%, respec-

tively. Moreover, the Adequacy and Predictivity measures is reported in Table 5.9 which

shows that the Traditional biplot perfectly predicts variable 2 and yield superior pre-

dictivity for variable 4. The Refined biplot on the other hand yield superior predictivity

for variables 1 and 3.

Table 5.9

Predictivity and Adequacy measures for biplots constructed from 5000 observations

from a 4-variate Heterogeneous-Gumbel distribution.

Predictivity 1 2 3 4

Traditional 0.682 1 0.641 0.672

Refined 0.746 0.859 0.896 0.645

Adequacy 1 2 3 4

Traditional 0.338 1 0.328 0.334

Refined 0.31 0.675 0.742 0.273
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Considering the average overall and extreme sample prediction error in Table 5.10 and

5.11. It can be seen that the Traditional biplot performs slightly better in overall predic-

tions. However, the Refined biplot significantly reduces the extreme sample error from

3.542 in the Traditional biplot to 3.117. Hence, there is some evidence showing that the

Refined biplot may yield better extreme sample predictions than the Traditional biplot.

In order to show that this improvement generally holds the above process in simulated

100 times for 5000 observations generated from the 4-variate Heterogeneous-Gumbel

distribution.

Table 5.10

Overall sample error for biplots constructed from 5000 observations from a 4-variate

Heterogeneous-Gumbel distribution.

Variable 1 2 3 4 Total

Traditional 0.318 0.000 0.359 0.328 1.005

Refined 0.339 0.177 0.140 0.362 1.017

Table 5.11

Extreme sample error for biplots constructed from 5000 observations from a 4-variate

Heterogeneous-Gumbel distribution.

Variable 1 2 3 4 Total

Traditional 1.165 0.000 1.199 1.178 3.542

Refined 1.079 0.452 0.351 1.235 3.117
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Table 5.12

Overall sample error simulation results for biplots from a 4-variate

Heterogeneous-Gumbel distribution. The table constitutes the average sample error,

standard error and p-values using 5000 observations and 80 tail samples.

Variable 1 2 3 4 Total

Traditional 0.528 0.256 0.486 0.540 1.810

(Std.Err) 0.005 0.016 0.013 0.004 0.008

Refined 0.470 0.483 0.475 0.476 1.904

(Std.Err) 0.012 0.015 0.013 0.012 0.007

p-value 0.000 1.000 0.344 0.000 1.000

Table 5.13

Extreme sample error simulation results for biplots from a 4-variate

Heterogeneous-Gumbel distribution. The table constitutes the average sample error,

standard error and p-values using 5000 observations and 80 tail samples.

Variable 1 2 3 4 Total

Traditional 0.786 0.174 0.538 0.773 2.272

(Std.Err) 0.021 0.018 0.025 0.018 0.036

Refined 0.623 0.440 0.481 0.581 2.125

(Std.Err) 0.030 0.027 0.021 0.027 0.034

p-value 0.001 1.000 0.108 0.000 0.019

The Table 5.12 the simulated average overall prediction error is reported and Table 5.13

provides the results for the simulated average extreme prediction error. It is clear that

the Refined biplot is inferior in the overall prediction since the p-value is found to be 1

in Table 5.12. Conversely, for extreme sample predictions the p-value is determined to
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be 0.019 meaning that even at a 5% significance level there is sufficient evidence to say

that the Refined biplot better predicts extreme samples than the Traditional biplot.

5.4 SUMMARY

The aim of this chapter was to test whether the Refined biplot methodology improves

sample predictivity over the Traditional biplot for extreme observations. To test this

assertion, a simulation procedure was implemented and results of this procedure were

reported in this chapter. This procedure was reported for three constructed multivari-

ate distributions termed the Gamma-Gaussian, Gamma-Gumbel and Heterogeneous-

Gumbel distributions. For the Gamma-Gaussian distribution it is concluded that the

Refined biplot fails to improve on the Traditional biplot when predicting extreme ob-

servations. This lack of improvement was attributed to the tail independence property

of the Gaussian copula. This was affirmed when the results for Gamma-Gumbel dis-

tribution, which is not tail independent, was studied which showed that the Refined

biplot does improve extreme sample predictivity. However, this improvement was only

when moderate dimensional data was considered such as 4- or 5-variate distributions.

Furthermore, an improvement is yielded only when the ratio of tail samples to number

of observations was small. Finally, the Refined biplot was applied to data generated

from a multivariate distribution with heterogeneous marginals combined through a

Gumbel copula. The reason for considering such a distribution was to test whether the

Refined biplot improves extreme sample predictivity when tail dependence is assumed

but marginals differ. Under these circumstances it was determined that the Refined

methodology was superior to the Traditional methodology in the 4-variate case.
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CHAPTER 6

FINANCIAL APPLICATION

The credibility of the Refined biplot was proved on simulated data in the previous

chapter. In this chapter, however, the Refined biplot is examined on real-world finan-

cial data. The fact that financial returns are known to be fat-tailed would imply that

the Refined biplot should improve the prediction of extreme observations of a series of

financial returns.

6.1 FOREIGN EXCHANGE APPLICATION

More specifically, the Refined biplot is applied to Rand foreign currency exchange rate

monthly returns for the period July 2013 to June 2018. The original observations are

given in Table B.1 with the corresponding standardised observations presented in Ta-

ble B.2. The foreign currencies considered are the Euro, Yen, UK Sterling, US dollar,

Australian dollar, Rupee and Swiss Franc. Thus the dataset used contains 7 variables

and 60 observations.

Similar to the previous chapter, a pairs plot of returns is presented in Figure 6.1. Since

only 60 observations are considered, no conclusions of upper tail dependencies can

be seen on the scatter plots, other than the variables appear to have a positive rela-

tionship. Furthermore, the histograms on the diagonals show that each variable has a

somewhat symmetric distribution.
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Figure 6.1

Pairs scatter plot for Rand/Foreign currency exchange rate monthly returns

Choosing the number of tail samples to be k = 10, then a Refined biplot is constructed

and presented in Figure 6.3 with the corresponding Traditional biplot in Figure 6.2. In

a similar fashion, the observations denoted by red blocks in the Refined biplot, corre-

spond to the extreme observations used to construct the Refined biplot. Once again

the change in the orientations of the axes indicate that different correlation matrices

are used to construct each the respective biplots.

The PCA quality is determined to be 94.55% and 86.73% for the Refined and Traditional

biplots, respectively. Similar to the previous chapter, the Predictivity and Adequacy are

reported in Table 6.1. However the Predictivity and Adequacy are of less importance

since the only measure of interest is the extreme sample predictivity.
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Figure 6.2

Traditional biplot for Rand/Foreign currency exchange rate monthly returns
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Figure 6.3

Refined biplot for Rand/Foreign currency exchange rate monthly returns
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6.1. FOREIGN EXCHANGE APPLICATION

Table 6.1

Predicitivity and Adequacy measures for biplots constructed using Rand/Foreign

currency exchange rate monthly returns

Predictivity R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

Traditional biplot 0.870 0.821 0.925 0.892 0.868 0.821 0.875

Refined biplot 0.949 0.981 0.973 0.945 0.942 0.899 0.931

Adequecy

Traditional biplot 0.191 0.290 0.500 0.164 0.539 0.146 0.170

Refined biplot 0.196 0.283 0.184 0.230 0.646 0.189 0.273

In Table 6.2 and 6.3 the average overall and extreme sample prediction errors are re-

ported. It is clear to see that for overall predictions the Traditional biplot is superior

since it yields a lower sample prediction error of 0.913 compared to 1.024 for the Re-

fined biplot. However, the Refined biplot significantly reduces the extreme sample

sample error from 1.281 to 1.197. This implies that the Refined biplot is more suited

to extreme observations than the Traditional biplot.

Table 6.2

Average overall sample prediction error for Rand/Foreign currency exchange rate

monthly returns

Variable R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc Total

Traditional biplot 0.128 0.176 0.073 0.107 0.130 0.176 0.123 0.913

Refined biplot 0.123 0.222 0.208 0.110 0.105 0.153 0.102 1.024
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Table 6.3

Average extreme sample prediction error for Rand/Foreign currency exchange rate

monthly returns

Variable R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc Total

Traditional biplot 0.267 0.194 0.082 0.080 0.177 0.240 0.242 1.281

Refined biplot 0.262 0.115 0.220 0.108 0.099 0.209 0.184 1.197

Lastly, the predictive accuracy of a single observation is considered corresponding to

the return during January 2019. As discussed in section 2.3, observations can be esti-

mated from the biplot by drawing orthogonal lines between each of the axes and the

observation. This is done and illustrated in Figures 6.4 and 6.5, with the original values

and those obtained from each biplot reported in Table 6.4. Upon further inspection

of Table 6.4, it is clear that the Refined biplot yields better estimates for the exchange

rate returns of the R\Eur o, R\ASD , R\Rupee, R\F r anc, with the Traditional biplot

yielding better estimates for the other currencies.
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Figure 6.4

Traditional biplot prediction Rand/Foreign currency exchange rate monthly return on

January 2016
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Figure 6.5

Traditional biplot prediction Rand/Foreign currency exchange rate monthly return on

January 2016

Table 6.4

Prediction of Rand/Foreign currency exchange rate monthly return on January 2016

Prediction R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

Original sample 2.818 3.391 1.409 2.698 2.127 2.572 2.780

Traditional biplot estimate 2.457 2.784 2.000 2.611 2.879 2.594 2.539

Refined biplot estimate 2.681 2.652 2.725 2.568 1.946 2.549 2.579

6.2 SUMMARY

The purpose of this chapter was to investigate whether the Refined biplot can be ap-

plied to real-world financial data. The data considered is monthly returns of seven

Rand foreign currency exchange rates. The Refined biplot demonstrated superior pre-

diction accuracy for extreme observations. The results in this chapter provide some
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6.2. SUMMARY

evidence that the Refined biplot can be used together with the Traditional biplot as a

tool that provides superior visualisation of financial data that is subject to extremes.
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CHAPTER 7

CONCLUSION AND OPEN QUESTIONS

As stated in Chapter 1, one of the objectives of this study was to review the theoretical

background of Principal Component Analysis (PCA) biplots and highlight its practical

application. This was done in the first part of the literature review, in Chapter 2, where

PCA biplots were the focus of the discussion. At the outset of Chapter 2, the develop-

ment of the biplot methodology to visualise multivariate data was briefly discussed.

The mathematical background of PCA was then discussed in detail with its application

to construct biplots. Furthermore, an illustration of a biplot was presented and the

interpretation of biplots was then explained by way of an example. The chapter was

concluded with a discussion of various approaches to evaluate the fit of a biplot.

A proxy method for constructing a biplot is to standardise the underlying dataset and

apply PCA to the correlation matrix. This implies that a further investigation of meth-

ods to characterise dependence may be beneficial. This was done in Chapter 3, which

started by presenting various empirical dependence measures that can be used as al-

ternatives to correlation. The focus of this chapter was mainly on the application of

copulas to characterise dependence. In addition to the background regarding cop-

ulas, a detailed examination of various copula families and their underlying prop-

erties was done. In particular, the background and properties of the Elliptical and

Archimedean copula families were discussed. Ultimately, Chapter 3 was concluded by

further analysing copula-based methods to analyse dependence for multivariate ex-

tremes. A proposed method was to fit an Elliptical copula to extremes and then derive
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a correlation matrix characterised by extreme observations. This same methodology

was later applied to adjust biplots in order to accommodate multivariate extremes.

The main objective of this study was to propose a methodology to adjust biplots in or-

der to improve prediction accuracy for multivariate extreme observations. To achieve

this a correlation matrix for extreme observations was first estimated using the ap-

proach presented at the end of Chapter 3. Then by applying PCA to this correlation

matrix, a biplot can be constructed that was proposed to be more suited for extreme

observations. The biplot derived through this methodology was termed the Refined

biplot and the original biplot methodology was termed the Traditional biplot. The sec-

ond part of Chapter 4 presented a methodology to test whether the Refined biplot im-

proved extreme sample prediction error over the Traditional biplot. This procedure

was executed through a simulation of both biplots on the same generated dataset from

which the extreme sample prediction error was measured. The aim of the simulation

procedure was to test whether the average extreme sample prediction error was signif-

icantly lower for the Refined biplot than for the Traditional biplot.

The results from the simulation procedure discussed in Chapter 4 was then reported

in Chapter 5. The multivariate data used for the simulation procedure were generated

from three constructed multivariate distributions. The first distribution was termed

the Gamma-Gaussian distribution and composed of homogeneous Gamma(2,2) marginals

combined by way of a Gaussian copula. The results yielded from this distribution

showed no improvement for the Refined biplot methodology. This was mainly at-

tributed to the Gaussian copula being tail independent. The second distribution was

termed the Gamma-Gumbel distribution which composes of homogeneous Gamma(2,2)

marginals combined using a Gumbel copula. The use of the Gumbel copula means that

the assumption is made of non-zero upper tail dependence. As a result, the Refined bi-

plot was found to improve extreme sample prediction accuracy over the Traditional

biplot. However, improvement was only found for datasets of up to 5 dimensions and

only in cases where the proportion of tail samples compared to the number of obser-

vations was small. The final distribution was termed the Heterogeneous-Gumbel dis-

tribution and was comprised of the following heterogeneous marginals, namely, the
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Gamma(2,2),Bet a(1,2), Student − t with 5 degrees of freedom, and the Gumbel (0,2)

distributions. These distributions were combined through a Gumbel copula which

again leads to non-zero upper tail dependence. Since various marginals were spec-

ified, for comparison’s sake, only the 4-variate case was considered. That being the

case, it was shown that the Refined biplot does significantly improve the extreme sam-

ple prediction accuracy.

Finally, the application of the Refined biplot was evaluated on real-world financial

data. The data considered were monthly returns on seven Rand/Foreign currency ex-

change rates. The foreign currencies considered were the Euro, Yen, UK Sterling, US

dollar, Australian dollar, Rupee and Swiss franc which were observed over the period

July 2013 to June 2018. This yielded a dataset containing 7 variables and 60 observa-

tions. It was then shown that the Refined biplot does yield superior extreme sample

prediction accuracy than the Traditional biplot. Hence, there is some evidence that

the Refined biplot methodology can be applied to financial data that is subject to ex-

tremes.

The main contribution of this study is the proposed Refined biplot methodology. The

aim of the development of this methodology is to improve extreme sample predic-

tion accuracy in biplots. It is shown in the study that under suitable conditions the

Refined biplot does improve extreme sample prediction accuracy over the Traditional

biplot. These conditions are that the underlying dataset should have non-zero tail de-

pendence and the proportion of tail samples to total observations should be small.

Additionally, since the Refined biplot always decreases the overall sample prediction

accuracy, it is proposed to be used as an addition to the Traditional biplot if conditions

are suitable. Thus, both the Refined and Traditional biplot should be used together as

a visualisation tool.

This study serves only as a proof of concept for the Refined biplot methodology and,

as such, opens many further research areas. Regarding this study, further research

is required to determine which characteristics, other than tail dependence, a dataset

should have in order for the Refined biplot to be useful. Furthermore, an investiga-

tion is required for optimally choosing the number of tail samples that yields the best
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extreme sample prediction accuracy. Admittedly, the use of a correlation matrix is ar-

bitrary due to the fact that it is a mere product of a covariance matrix estimated from

data scaled by its standard deviation. This implies that if some other scaling param-

eter can be used that is related to the extreme value characteristic of the underlying

dataset it may yield better extreme sample prediction accuracy using the Traditional

biplot methodology.

78

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A

REQUIRED LINEAR ALGEBRA RESULTS

A.1 Spectral decomposition

Given a symmetric matrix A : n ×n, with r ank(A) = r ≤ n, its spectral decomposition

is given by:

A =V DV ′ =
n∑

i=1
λi vi v ′

i (A.1)

where,

i. V : n ×n is a orthogonal matrix , with column vectors vi the normalised eigen-

vectors of A.

ii. D : n × n is a diagonal matrix, with non-zero diagonal elements equal to the

eigenvalues of A, i.e. [Di i ] =λi .

Since r ank(A) = r the last n − r diagonal elements of D equals zero. Further, it is as-

sumed throughout this study that the diagonal elements in D is ordered from largest

to smallest i.e. λ1 ≥λ2 ≥ ·· · ≥λr with corresponding eigenvectors of V ordered accord-

ingly.
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A.2. SINGULAR VALUE DECOMPOSITION (SVD) ADDENDA

A.2 Singular value decomposition (SVD)

Given a centred data matrix X : n ×p, with r ank(X ) = r ≤ p ≤ n, consisting of n obser-

vations and p variables. The singular value decomposition (SVD) of X is given by:

X =UΩV ′ (A.2)

with,

i. U : n×r and V : p×r are orthonormal matrices such that U ′U = Ir and V ′V = Ir .

ii. Ω : r × r is a diagonal matrix.

Further, the SVD of X ′X : p ×p is given by:

X ′X =VΛV ′ (A.3)

with,

i. Λ : r × r =Ω′Ω=Ω2.

The sample covariance matrix is derived as S2 = 1
n−1 X ′X with its SVD given by:

S2 =VΛ∗V ′ (A.4)

with,

i. Λ∗ : r × r = 1
n−1Λ

This implies from (A.2) that D = [(n −1)Λ∗]
1
2 .

The non-zero entries in the diagonal matrix D are referred as the singular values of

X , denoted as di , i = 1, ...,r . Similarly, columns vectors of the matrix V are termed the

singular vectors of X . Singular vectors are uniquely defined up to a multiplication of

−1. Finally, spectral decomposition is a special case of SVD such that the spectral de-

composition of S2 yields the same eigenvector matrix V and singular values are related

to eigenvalues as λi = (n −1)d 2
i .
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APPENDIX B

DATA SETS

This appendix lists all the data sets used in this study.

Table B.1

Rand foreign currency exchange rate monthly returns for period July 2013 to June

2018.

Date R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

2013/07/31 -2.14% -3.36% -3.23% -1.36% -4.07% -3.82% -2.44%

2013/08/31 3.59% 3.56% 3.87% 1.89% 0.27% -3.40% 3.84%

2013/09/30 -0.77% -2.36% 1.26% -1.00% 1.74% -2.23% -0.87%

2013/10/31 1.55% 0.89% 0.90% -0.69% 1.87% 2.87% 1.85%

2013/11/30 1.73% 0.49% 2.80% 2.81% 0.85% 1.24% 1.66%

2013/12/31 3.13% -1.78% 3.41% 1.62% -2.07% 2.83% 3.64%

2014/01/31 4.23% 4.30% 5.26% 4.78% 3.22% 4.45% 3.66%

2014/02/28 1.22% 2.92% 1.52% 1.02% 2.34% 0.72% 2.19%

2014/03/31 -0.94% -2.44% -1.75% -2.20% -0.98% -0.12% -0.73%

2014/04/30 -1.99% -2.21% -1.22% -1.88% 0.78% -0.84% -2.05%

2014/05/31 -2.00% -0.59% -0.75% -1.42% -1.56% 0.37% -2.13%

2014/06/30 1.67% 2.32% 2.96% 2.64% 3.25% 1.87% 1.89%

2014/07/31 -0.49% 0.19% 0.92% -0.12% 0.10% -0.66% -0.24%

2014/08/31 -1.66% -1.15% -2.17% 0.03% -0.80% -1.33% -1.42%

Continued on next page
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Table B.1 – continued from previous page

Date R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

2014/09/30 -0.42% -1.36% 0.27% 2.68% 0.00% 2.66% -0.12%

2014/10/31 -0.83% 0.29% -0.48% 1.01% -2.16% 0.20% -0.82%

2014/11/30 -1.30% -6.97% -1.50% 0.29% -1.26% -0.24% -0.92%

2014/12/31 1.98% 0.42% 2.28% 3.24% -1.33% 1.65% 1.98%

2015/01/31 -4.79% 1.76% -2.23% 0.88% -1.32% 1.81% 4.07%

2015/02/28 -2.37% 0.00% 1.15% 0.09% -3.58% 0.16% 1.23%

2015/03/31 -0.60% 2.53% 1.92% 4.16% 3.39% 3.48% -0.49%

2015/04/30 -1.00% 0.20% -0.78% -0.47% -0.47% -0.81% 1.24%

2015/05/31 3.13% -1.30% 3.15% -0.36% 1.69% -2.09% 2.91%

2015/06/30 3.29% 0.40% 3.35% 2.74% 0.47% 2.67% 2.86%

2015/07/31 -0.69% 1.50% 1.24% 1.21% -2.71% 1.52% -1.05%

2015/08/31 4.96% 3.79% 3.91% 3.64% 1.96% 1.29% 2.11%

2015/09/30 6.04% 7.70% 3.62% 5.25% 2.09% 3.60% 4.79%

2015/10/31 -0.83% -0.62% -0.91% -0.79% 1.26% 0.96% -0.42%

2015/11/30 0.03% 2.37% 3.64% 4.50% 3.67% 2.88% 0.42%

2015/12/31 6.80% 6.22% 4.18% 5.58% 7.01% 4.93% 6.66%

2016/01/31 9.17% 12.33% 5.29% 9.28% 5.80% 8.09% 8.43%

2016/02/29 -1.67% -1.01% -4.45% -3.82% -2.05% -5.15% -2.57%

2016/03/31 -2.31% -0.66% -2.99% -2.23% 2.51% -0.43% -1.42%

2016/04/30 -3.06% -2.07% -4.70% -5.25% -2.73% -4.41% -3.08%

2016/05/31 4.54% 5.25% 6.57% 4.87% -0.11% 4.15% 3.40%

2016/06/30 -2.56% 1.34% -4.09% -2.01% -0.56% -2.52% -1.09%

2016/07/31 -5.84% -2.91% -12.19% -4.32% -2.64% -4.17% -5.59%

2016/08/31 -3.50% -2.11% -5.16% -4.83% -3.52% -4.48% -3.61%

2016/09/30 2.14% 1.46% 2.55% 2.17% 1.69% 2.47% 1.71%

2016/10/31 -2.37% -2.50% -7.09% -0.72% -0.32% -0.66% -2.00%

2016/11/30 -2.19% -4.26% 0.49% -0.17% -1.27% -1.51% -0.98%

2016/12/31 -2.92% -7.58% -0.03% -0.61% -3.00% -0.95% -2.89%

2017/01/31 -1.33% -1.18% -3.39% -2.00% -0.61% -2.32% -0.95%

2017/02/28 -2.62% -1.11% -1.43% -2.73% -0.10% -1.20% -2.13%

Continued on next page
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Table B.1 – continued from previous page

Date R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

2017/03/31 -1.59% -1.90% -3.21% -1.95% -2.59% -0.24% -2.09%

2017/04/30 4.28% 6.51% 6.29% 4.00% 3.00% 6.04% 4.22%

2017/05/31 1.61% -3.33% 0.92% -1.51% -2.90% -1.27% 0.00%

2017/06/30 -1.20% -1.62% -3.88% -2.86% -1.18% -2.88% -0.94%

2017/07/31 4.25% 0.40% 3.33% 1.87% 4.92% 1.83% 2.57%

2017/08/31 3.35% 3.10% 0.52% 0.69% 2.31% 1.44% 0.24%

2017/09/30 0.15% -1.39% 1.74% -0.71% -0.03% -1.40% -0.41%

2017/10/31 2.67% 1.96% 3.38% 4.04% 1.67% 3.00% 2.02%

2017/11/30 2.74% 2.96% 3.07% 2.89% 0.76% 3.25% 1.83%

2017/12/31 -5.71% -6.59% -5.16% -6.54% -6.38% -5.72% -6.17%

2018/01/31 -4.85% -6.03% -4.89% -7.75% -3.75% -6.67% -5.04%

2018/02/28 -1.75% -0.39% -1.80% -3.18% -4.00% -4.35% -0.24%

2018/03/31 -0.05% 1.90% -0.09% 0.10% -1.33% -0.88% -1.21%

2018/04/30 1.69% 0.65% 3.03% 2.09% 1.12% 1.17% -0.03%

2018/05/31 -0.31% 1.61% -0.95% 3.61% 1.41% 0.70% 0.50%

2018/06/30 4.73% 5.67% 4.59% 5.95% 5.47% 5.53% 6.65%

Table B.2

Standardised Rand foreign currency exchange rate monthly returns for period July

2013 to June 2018.

Index Date R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

1 2013/07/31 -0.763 -1.022 -0.956 -0.560 -1.550 -1.318 -0.970

2 2013/08/31 1.051 0.924 1.015 0.436 0.069 -1.183 1.197

3 2013/09/30 -0.327 -0.739 0.291 -0.449 0.617 -0.799 -0.428

4 2013/10/31 0.407 0.175 0.190 -0.354 0.664 0.866 0.510

5 2013/11/30 0.463 0.062 0.719 0.717 0.285 0.334 0.445

6 2013/12/31 0.907 -0.577 0.888 0.354 -0.804 0.852 1.128

7 2014/01/31 1.254 1.132 1.401 1.319 1.167 1.383 1.134

8 2014/02/28 0.302 0.745 0.363 0.167 0.838 0.165 0.626

Continued on next page
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Table B.2 – continued from previous page

Index Date R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

9 2014/03/31 -0.381 -0.763 -0.546 -0.818 -0.398 -0.110 -0.382

10 2014/04/30 -0.715 -0.698 -0.398 -0.720 0.259 -0.346 -0.837

11 2014/05/31 -0.718 -0.240 -0.269 -0.578 -0.614 0.050 -0.863

12 2014/06/30 0.444 0.577 0.761 0.663 1.177 0.540 0.523

13 2014/07/31 -0.241 -0.022 0.197 -0.181 0.005 -0.286 -0.211

14 2014/08/31 -0.609 -0.400 -0.661 -0.136 -0.330 -0.506 -0.618

15 2014/09/30 -0.217 -0.458 0.015 0.678 -0.033 0.798 -0.169

16 2014/10/31 -0.348 0.007 -0.192 0.166 -0.838 -0.007 -0.411

17 2014/11/30 -0.496 -2.035 -0.476 -0.056 -0.500 -0.149 -0.448

18 2014/12/31 0.542 0.041 0.574 0.847 -0.530 0.467 0.553

19 2015/01/31 -1.601 0.418 -0.678 0.127 -0.523 0.521 1.276

20 2015/02/28 -0.833 -0.076 0.259 -0.115 -1.366 -0.018 0.296

21 2015/03/31 -0.276 0.634 0.473 1.128 1.231 1.064 -0.299

22 2015/04/30 -0.402 -0.020 -0.277 -0.286 -0.206 -0.336 0.299

23 2015/05/31 0.905 -0.442 0.813 -0.253 0.595 -0.755 0.875

24 2015/06/30 0.957 0.037 0.872 0.696 0.144 0.800 0.860

25 2015/07/31 -0.302 0.345 0.285 0.226 -1.044 0.427 -0.492

26 2015/08/31 1.486 0.989 1.027 0.971 0.697 0.351 0.600

27 2015/09/30 1.827 2.090 0.947 1.464 0.747 1.104 1.523

28 2015/10/31 -0.347 -0.250 -0.312 -0.384 0.436 0.242 -0.274

29 2015/11/30 -0.073 0.590 0.951 1.233 1.334 0.871 0.016

30 2015/12/31 2.067 1.673 1.100 1.564 2.578 1.539 2.169

31 2016/01/31 2.818 3.391 1.409 2.698 2.127 2.572 2.780

32 2016/02/29 -0.613 -0.361 -1.294 -1.313 -0.795 -1.754 -1.017

33 2016/03/31 -0.815 -0.261 -0.889 -0.827 0.901 -0.213 -0.619

34 2016/04/30 -1.053 -0.659 -1.365 -1.751 -1.050 -1.511 -1.193

35 2016/05/31 1.351 1.399 1.764 1.347 -0.074 1.285 1.043

36 2016/06/30 -0.896 0.301 -1.195 -0.759 -0.241 -0.894 -0.506

37 2016/07/31 -1.934 -0.895 -3.443 -1.465 -1.016 -1.433 -2.057

38 2016/08/31 -1.191 -0.670 -1.493 -1.622 -1.344 -1.535 -1.373

Continued on next page
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ADDENDA

Table B.2 – continued from previous page

Index Date R\Euro R\Yen R\Sterling R\USD R\ASD R\Rupee R\Sfranc

39 2016/09/30 0.592 0.335 0.649 0.521 0.597 0.737 0.463

40 2016/10/31 -0.834 -0.778 -2.028 -0.363 -0.152 -0.289 -0.818

41 2016/11/30 -0.777 -1.273 0.076 -0.195 -0.505 -0.565 -0.469

42 2016/12/31 -1.009 -2.207 -0.067 -0.332 -1.149 -0.381 -1.128

43 2017/01/31 -0.506 -0.408 -1.001 -0.757 -0.260 -0.829 -0.456

44 2017/02/28 -0.912 -0.387 -0.456 -0.980 -0.070 -0.464 -0.864

45 2017/03/31 -0.588 -0.611 -0.951 -0.740 -0.999 -0.149 -0.849

46 2017/04/30 1.271 1.754 1.687 1.082 1.085 1.903 1.326

47 2017/05/31 0.426 -1.012 0.195 -0.605 -1.114 -0.485 -0.129

48 2017/06/30 -0.466 -0.532 -1.137 -1.019 -0.471 -1.012 -0.453

49 2017/07/31 1.259 0.038 0.866 0.429 1.799 0.527 0.757

50 2017/08/31 0.974 0.795 0.085 0.068 0.828 0.399 -0.047

51 2017/09/30 -0.037 -0.466 0.423 -0.360 -0.044 -0.528 -0.270

52 2017/10/31 0.762 0.475 0.879 1.093 0.591 0.909 0.569

53 2017/11/30 0.783 0.757 0.794 0.742 0.252 0.990 0.502

54 2017/12/31 -1.892 -1.930 -1.493 -2.145 -2.409 -1.941 -2.258

55 2018/01/31 -1.620 -1.772 -1.416 -2.515 -1.429 -2.252 -1.869

56 2018/02/28 -0.637 -0.187 -0.561 -1.119 -1.522 -1.492 -0.213

57 2018/03/31 -0.102 0.459 -0.085 -0.113 -0.527 -0.358 -0.548

58 2018/04/30 0.450 0.108 0.782 0.496 0.385 0.312 -0.140

59 2018/05/31 -0.183 0.377 -0.323 0.961 0.494 0.158 0.044

60 2018/06/30 1.414 1.519 1.215 1.677 2.004 1.734 2.167
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APPENDIX C

R-CODE

This appendix lists all the program code used in the study. The programming language

used in R.

C.1 Code for 95% VaR example

The following block of code is used to obtain biplots provided in section 2.3.

###############################################################

# PCA biplot construction for 95% VaR data

###############################################################

library(UBbipl)

library(readxl)

#Function for traditional PCA biplot

PCAbipl(X = VAR95.data[,-1], colours = "green",

offset = c(0.3, 0.3,0.3, 0.3),

offset.m = c(-0.25, -0.25, -0.25, -0.25,

-0.25,-0.25, -0.25),
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C.1. CODE FOR 95% VAR EXAMPLE ADDENDA

pch.samples = 15, pch.sample.size = 1.1,

pos = "Hor", pos.m = c(4,4,2,2,4,1,1),

side.label = c("right","right","left",

"left","right","right","left"),

reflect = "x", ax.name.size = 0.7,

n.int = c(3,10,10,5,10,10,3))

#Function for correlation PCA biplot

PCAbipl(X = VAR95.data[,-1], colours = "green",

offset = c(0.3, 0.3,0.3, 0.3),

offset.m = c(-0.25, -0.25, -0.25, -0.25,

-0.25,-0.25, -0.25),

pch.samples = 15, pch.sample.size = 1.1,

pos = "Hor", pos.m = c(4,4,2,2,4,1,1),

side.label = c("right","right","left",

"left","right","right","left"),

reflect = "x",ax.name.size = 0.7,

n.int = c(3,10,10,5,10,10,3),

correlation.biplot = TRUE)

#Function for traditional PCA biplot with prediction for sample 16

PCApredict16 <- PCAbipl(X = VAR95.data[,-1], colours = "green",

offset = c(0.3, 0.3,0.3, 0.3),

offset.m = c(-0.25, -0.25, -0.25, -0.25,

-0.25,-0.25, -0.25),

pch.samples = 15, pch.sample.size = 1.1,

pos = "Hor", pos.m = c(4,4,2,2,4,1,1),

side.label = c("right","right",

"left","left",
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C.2. CODE TO CONSTRUCT REFINED BIPLOT ADJUSTED FROM UBBIPLADDENDA

"right","right","left"),

reflect = "x", ax.name.size = 0.7,

n.int = c(3,10,10,5,10,10,3),

predictions.sample = 16, ort.lty = 2)

#Print prediction estimate

PCApredict16$predictions

#Determine correlation matrix

VaRcorrelation<-cov2cor(cov(VAR95.data[,-1]))

VaRcorrelation

C.2 Code to construct Refined biplot adjusted from

UBbipl

The following block of code is inserted in line 266 of the PCAbipl function in the R

package UBbipl devloped by le Roux and Lubbe (2013) to construct Refined biplots.

##################################################

# Code to find eigen-values and

# -vectors from extreme correlation matrix

##################################################

# If dec==0 then construct Traditional biplot

if(dec==0){

svd.out <- svd(X)
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C.2. CODE TO CONSTRUCT REFINED BIPLOT ADJUSTED FROM UBBIPLADDENDA

V.mat <- svd.out$v

U.mat <- svd.out$u

Sigma.mat <- diag(svd.out$d)

eigval <- (svd.out$d)^2

cl<<-cor(X)

print(cor(X))

}

# If dec==2 then construct Refined biplot

if(dec==2){

#Function finds extremal correlation matrix

h<-copstruc(X,method = "tail",k=up.stats)

# Find SVD of extremal correlaton matrix

cl<<-as.matrix(h$R)

svd.out <- svd(cl)

V.mat <- -svd.out$v

D.vals<-sqrt((n-1)*svd.out$d)

Sigma.mat <- diag(D.vals)

eigval <- (D.vals)^2

print(cl)

# Identify extreme observations

Identify_tails<-function(Xmult,k,prec){

Xmult<-scale(Xmult)

89

Stellenbosch University  https://scholar.sun.ac.za



C.2. CODE TO CONSTRUCT REFINED BIPLOT ADJUSTED FROM UBBIPLADDENDA

n <- dim(Xmult)[1]

d <- dim(Xmult)[2]

# number of pairs

dL <- d * (d - 1) / 2

dInd <- subsets(d)

RANKM <- apply(Xmult, 2, rank)

Rtau <- sin(rho_tau_est(Xmult)$tau * pi / 2)

thetavec <- theta_function(seq(0.05, pi /

2 - .05,

length = prec), 2.5)

thetavec[round(prec/2, 0)] <- pi / 4

x <- sqrt(2) * cos(thetavec)

y <- sqrt(2) * sin(thetavec)

track <- 0

temp<-matrix(rep(0,n*d*d*d*prec),

ncol=d,nrow=n*d*d*prec)

for(p in 1:prec){

for ( dim1 in 1:d ){

for (dim2 in dim1:(d-1) ){
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C.2. CODE TO CONSTRUCT REFINED BIPLOT ADJUSTED FROM UBBIPLADDENDA

for (nc in 1:n){

if((RANKM[nc, dim1] > n - k * x[p]) &

(RANKM[nc, dim2] > n - k * y[p])){

track <<- track+1

temp[nc*dim2*dim1*p,]<-RANKM[nc,]

} else {

track <<- track+0

}

}

}

}

}

ext<-unique(temp)

ext<-ext[2:dim(ext)[1],]

store<-rep(0,dim(ext)[1])

for(i in 1:dim(ext)[1]){

store[i]<-match(ext[i,],RANKM)[1]

}

Vals<- list(index=store,coords=Xmult[store,])
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C.3. CODE FOR BIPLOT SIMULATION ENGINE ADDENDA

return(Vals)

}

# Store extreme samples and change marker type

values<-Identify_tails(X,up.stats,31)

X.new.samples<-X[values$index,]

Extreme.vals<<-X[values$index,]

Extreme.index<<-as.vector(values$index)

}

C.3 Code for biplot simulation engine

The following block of code represents the function for the biplot simulation engine.

#############################################################

# Biplot simulation engine

#############################################################

source("PCAbipl.R")

Simulate_bipl <- function(sims,n,dims,dist,Sigma,mu,myMvd,k){

qual.norm<-rep(0,sims)

qual.tail<-rep(0,sims)
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C.3. CODE FOR BIPLOT SIMULATION ENGINE ADDENDA

pred.norm<-matrix(rep(0,sims*dims),nrow=sims,ncol=dims)

pred.tail<-matrix(rep(0,sims*dims),nrow=sims,ncol=dims)

ad.norm<-matrix(rep(0,sims*dims),nrow=sims,ncol=dims)

ad.tail<-matrix(rep(0,sims*dims),nrow=sims,ncol=dims)

Avg.samp.err.N<-matrix(rep(0,sims*dims),nrow=sims,

ncol=dims)

Avg.samp.err.T<-matrix(rep(0,sims*dims),nrow=sims,

ncol=dims)

Total.samp.err.N<-rep(0,sims)

Total.samp.err.T<-rep(0,sims)

Avg.Extsamp.err.N<-matrix(rep(0,sims*dims),nrow=sims,

ncol=dims)

Avg.Extsamp.err.T<-matrix(rep(0,sims*dims),nrow=sims,

ncol=dims)

Tot.Extsamp.err.N<-rep(0,sims)

Tot.Extsamp.err.T<-rep(0,sims)

for(i in 1:sims){

if(dist=="norm"){

Xmult <- mvrnorm(n, mu, Sigma)

x <- scale(Xmult)

}
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C.3. CODE FOR BIPLOT SIMULATION ENGINE ADDENDA

if(dist=="cop"){

Xmult<-rMvdc(1000,myMvd)

x <- scale(Xmult)

}

pcan<-NewBipl(x,dec=0,Title = paste("Normal ",i),

label=FALSE)

pcaT<-NewBipl(x,dec=2,up.stats=k,

Title = paste("tail ",i),label=FALSE)

estN.x<-x%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estT.x<-x%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.samp.err.N[i,1:dims]<-sqrt(apply((x-estN.x)^2,

2,mean))

Avg.samp.err.T[i,1:dims]<-sqrt(apply((x-estT.x)^2,

2,mean))

Total.samp.err.N[i]<-sum(Avg.samp.err.N[i,1:dims])

Total.samp.err.T[i]<-sum(Avg.samp.err.T[i,1:dims])

estEN.x<-x[Extreme.index,]%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estET.x<-x[Extreme.index,]%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.Extsamp.err.N[i,1:dims]<-apply((Extreme.vals-estEN.x)^2

,2,mean)

Avg.Extsamp.err.T[i,1:dims]<-apply((Extreme.vals-estET.x)^2
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C.3. CODE FOR BIPLOT SIMULATION ENGINE ADDENDA

,2,mean)

Tot.Extsamp.err.N[i]<-sum(Avg.Extsamp.err.N[i,1:dims])

Tot.Extsamp.err.T[i]<-sum(Avg.Extsamp.err.T[i,1:dims])

qual.norm[i]<-pcan$PCA.quality

qual.tail[i]<-pcaT$PCA.quality

pred.norm[i,1:dims]<-as.vector(pcan$predictivity)

pred.tail[i,1:dims]<-as.vector(pcaT$predictivity)

ad.norm[i,1:dims]<-as.vector(pcan$adequacy)

ad.tail[i,1:dims]<-as.vector(pcaT$adequacy)

}

Mean.overall.error.N <- apply(Avg.samp.err.N,2,mean)

SE.overall.error.N <- apply(Avg.samp.err.N,2,sd)/sqrt(sims)

Mean.overall.error.T <- apply(Avg.samp.err.T,2,mean)

SE.overall.error.T <- apply(Avg.samp.err.T,2,sd)/sqrt(sims)

Mean.Extreme.error.N <- apply(Avg.Extsamp.err.N,2,mean)

SE.Extreme.error.N <- apply(Avg.Extsamp.err.N,2,sd)/sqrt(sims)

Mean.Extreme.error.T <- apply(Avg.Extsamp.err.T,2,mean)

SE.Extreme.error.T <- apply(Avg.Extsamp.err.T,2,sd)/sqrt(sims)

output<-list("Mean normal PCA sample residual"=
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C.4. CODE FOR APPLICATION OF REFINED BIPLOTS ADDENDA

c(Mean.overall.error.N,mean(Total.samp.err.N,

na.rm = TRUE)),

"SE normal PCA sample residual"=

c(SE.overall.error.N,sd(Total.samp.err.N,

na.rm = TRUE)/sqrt(sims)),

"Mean tail PCA sample residual"=

c(Mean.overall.error.T,mean(Total.samp.err.T,

na.rm = TRUE)),

"SE tail PCA sample residual"=

c(SE.overall.error.T,sd(Total.samp.err.T,

na.rm = TRUE)/sqrt(sims)),

"Mean Extreme normal PCA sample residual"=

c(Mean.Extreme.error.N,mean(Tot.Extsamp.err.N,

na.rm = TRUE)),

"SE Extreme normal PCA sample residual"=

c(SE.Extreme.error.N,sd(Tot.Extsamp.err.N,

na.rm = TRUE)/sqrt(sims)),

"Average Extreme tail PCA sample residual"=

c(Mean.Extreme.error.T,mean(Tot.Extsamp.err.T,

na.rm = TRUE)),

"SE Extreme tail PCA sample residual"=

c(SE.Extreme.error.T,sd(Tot.Extsamp.err.T,

na.rm = TRUE)/sqrt(sims)))

}

C.4 Code for application of Refined biplots

The following block of code is used to obtain results in Chapter 5 and 6.

96

Stellenbosch University  https://scholar.sun.ac.za



C.4. CODE FOR APPLICATION OF REFINED BIPLOTS ADDENDA

#############################################################

# Simulation results

#############################################################

#############################################################

# Guassian copual with gamma marginals

#############################################################

myCop<-normalCopula(param = 0.5, dim = 5)

myMvd <- mvdc(copula=myCop, margins=c("gamma",

"gamma", "gamma","gamma",

"gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

x<-rMvdc(5000,myMvd)

x<-scale(x,center = TRUE,scale=TRUE)

pairs.panels(x,cor=FALSE)

pcan<-NewBipl(x,dec=0,label=FALSE,pos="Hor")

pcaT<-NewBipl(x,dec=2,up.stats=20,label=FALSE,

pos="Hor")

estN.x<-x%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estT.x<-x%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])
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Avg.samp.err.N<-apply((x-estN.x)^2,2,mean)

Avg.samp.err.T<-apply((x-estT.x)^2,2,mean)

Avg.samp.err.N

Avg.samp.err.T

c(Avg.samp.err.N,sum(Avg.samp.err.N))

c(Avg.samp.err.T,sum(Avg.samp.err.T))

estEN.x<-x[Extreme.index,]%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estET.x<-x[Extreme.index,]%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.Extsamp.err.N<-apply((Extreme.vals-estEN.x)^2,2,mean)

Avg.Extsamp.err.T<-apply((Extreme.vals-estET.x)^2,2,mean)

Avg.Extsamp.err.N

Avg.Extsamp.err.T

c(Avg.Extsamp.err.N,sum(Avg.Extsamp.err.N))

c(Avg.Extsamp.err.T,sum(Avg.Extsamp.err.T))

pcan$PCA.quality

pcaT$PCA.quality

pcan$predictivity

pcaT$predictivity

pcan$adequacy

pcaT$adequacy
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#############################################################

# Gaussian copual with gamma marginals p=5 Simulation

#############################################################

myCop<-normalCopula(param = 0.5, dim = 5)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma",

"gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

Extresults1<-Simulate_bipl(sims=100,n=500,dims=5,dist="cop",

myMvd = myMvd ,k=80)

Extresults1

#############################################################

# Gaussian copual with gamma marginals p=4 Simulation

#############################################################

myCop<-normalCopula(param = 0.5, dim = 4)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),
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C.4. CODE FOR APPLICATION OF REFINED BIPLOTS ADDENDA

list(shape=2, scale=2),

list(shape=2, scale=2)))

Extresults1<-Simulate_bipl(sims=100,n=500,dims=4,dist="cop",

myMvd = myMvd ,k=80)

Extresults1

#############################################################

# Gaussian copual with gamma marginals p=7 Simulation

#############################################################

myCop<-normalCopula(param = 0.5, dim = 7)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma","gamma",

"gamma","gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

Extresults1<-Simulate_bipl(sims=100,n=500,dims=7,

dist="cop",myMvd = myMvd ,k=80)

Extresults1

#############################################################

# Gumbel copual with gamma marginals p=5

#############################################################

myCop<-gumbelCopula(param = 1.5, dim = 5)
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myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma",

"gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

x<-rMvdc(5000,myMvd)

x<-scale(x,center = TRUE,scale=TRUE)

pairs.panels(x,cor=FALSE)

pcan<-NewBipl(x,dec=0,label=FALSE,pos="Hor")

pcaT<-NewBipl(x,dec=2,up.stats=20,label=FALSE,

pos="Hor")

estN.x<-x%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estT.x<-x%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.samp.err.N<-apply((x-estN.x)^2,2,mean)

Avg.samp.err.T<-apply((x-estT.x)^2,2,mean)

Avg.samp.err.N

Avg.samp.err.T

c(Avg.samp.err.N,sum(Avg.samp.err.N))

c(Avg.samp.err.T,sum(Avg.samp.err.T))

estEN.x<-x[Extreme.index,]%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])
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estET.x<-x[Extreme.index,]%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.Extsamp.err.N<-apply((Extreme.vals-estEN.x)^2,2,mean)

Avg.Extsamp.err.T<-apply((Extreme.vals-estET.x)^2,2,mean)

Avg.Extsamp.err.N

Avg.Extsamp.err.T

c(Avg.Extsamp.err.N,sum(Avg.Extsamp.err.N))

c(Avg.Extsamp.err.T,sum(Avg.Extsamp.err.T))

pcan$PCA.quality

pcaT$PCA.quality

pcan$predictivity

pcaT$predictivity

pcan$adequacy

pcaT$adequacy

#############################################################

# Gumbel copual with gamma marginals p=5 Simulation

#############################################################

myCop<-gumbelCopula(param = 1.5, dim = 5)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma",

"gamma"),
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paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

Extresults2<-Simulate_bipl(sims=100,n=500,dims=5,

dist="cop",myMvd = myMvd ,k=80)

Extresults2

#############################################################

# Gumbel copual with gamma marginals p=4 Simulation

#############################################################

myCop<-gumbelCopula(param = 1.5, dim = 4)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

Extresults2<-Simulate_bipl(sims=100,n=500,dims=4,dist="cop",

myMvd = myMvd ,k=80)

Extresults2

#############################################################

# Gumbel copual with gamma marginals p=7 Simulation

#############################################################
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myCop<-gumbelCopula(param = 1.5, dim = 7)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "gamma",

"gamma","gamma",

"gamma", "gamma",

"gamma"),

paramMargins=list(list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2),

list(shape=2, scale=2)))

Extresults2<-Simulate_bipl(sims=100,n=500,dims=7,dist="cop",

myMvd = myMvd ,k=80)

Extresults2

#############################################################

# 4 variate gumbel copula with marginals

# gamma(2,1);beta(2,2);t(5);gumbel(0,2)

#############################################################

myCop<-gumbelCopula(param = 1.5, dim = 4)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "beta",

"t","gumbel"),

paramMargins=list(list(shape=2, scale=2),

list(shape1=2, shape2=2),

list(df=5),

list(alpha=0,scale=2)))
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x<-rMvdc(500,myMvd)

x<-scale(x)

pairs.panels(x,cor=FALSE)

pcan<-NewBipl(x,dec=0,label=FALSE,pos="Hor")

pcaT<-NewBipl(x,dec=2,up.stats=20,label=FALSE,

pos="Hor",reflect="y")

estN.x<-x%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estT.x<-x%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.samp.err.N<-apply((x-estN.x)^2,2,mean)

Avg.samp.err.T<-apply((x-estT.x)^2,2,mean)

Avg.samp.err.N

Avg.samp.err.T

c(Avg.samp.err.N,sum(Avg.samp.err.N))

c(Avg.samp.err.T,sum(Avg.samp.err.T))

estEN.x<-x[Extreme.index,]%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estET.x<-x[Extreme.index,]%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.Extsamp.err.N<-apply((Extreme.vals-estEN.x)^2,2,mean)

Avg.Extsamp.err.T<-apply((Extreme.vals-estET.x)^2,2,mean)

Avg.Extsamp.err.N

Avg.Extsamp.err.T
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c(Avg.Extsamp.err.N,sum(Avg.Extsamp.err.N))

c(Avg.Extsamp.err.T,sum(Avg.Extsamp.err.T))

pcan$PCA.quality

pcaT$PCA.quality

pcan$predictivity

pcaT$predictivity

pcan$adequacy

pcaT$adequacy

#############################################################

# 4 variate gumbel copula with marginals Simulation

# gamma(2,1);beta(2,2);t(5);gumbel(0,2)

#############################################################

myCop<-gumbelCopula(param = 1.5, dim = 4)

myMvd <- mvdc(copula=myCop, margins=c("gamma", "beta",

"t","gumbel"),

paramMargins=list(list(shape=2, scale=2),

list(shape1=2, shape2=2),

list(df=5),list(alpha=0,scale=2)))

Extresults3<-Simulate_bipl(sims=100,n=5000,dims=4,dist="cop",

myMvd = myMvd ,k=20)

Extresults3
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#############################################################

# Financial Application Exchange rates

#############################################################

Exchange_rates <- read_excel("D:/Work/2nd year/

M thesis/Extreme value biplots/

Exchange rates.xlsx")

rates<-as.data.frame(Exchange_rates)

x<-scale(rates[,-1])

pairs.panels(x,cor=FALSE)

pcan<-NewBipl(x,dec=0,ax.type="predictive",

offset = c(0.3, 0.3,0.3, 0.3),

side.label =c("right","right","left",

"left","right","right","left"),

pos="Hor")

pcaT<-NewBipl(x,dec=2,up.stats = 10,ax.type="predictive",

pos="Hor",offset = c(0.1, 0.3,0.3, 0.3),

pos.m=c(4,4,3,4,4,4,1),

offset.m = c(0.05,0.05,-0.1,0.05,0.05,0.05,-0.7),

reflect="y")

pcan<-NewBipl(x,dec=0,predictions.sample = 31,ax.type="predictive",

offset = c(0.3, 0.3,0.3, 0.3),

side.label =c("right","right","left",

"left","right","right","left"),

pos="Hor",ort.lty = 2)

pcaT<-NewBipl(x,dec=2,predictions.sample = 31,up.stats = 10,
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ax.type="predictive",pos="Hor",

offset = c(0.1, 0.3,0.3, 0.3),

pos.m=c(4,4,3,4,4,4,1),

offset.m = c(0.05,0.05,-0.1,0.05,0.05,0.05,-0.7),

reflect="y",ort.lty = 2)

estN.x<-x%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estT.x<-x%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.samp.err.N<-apply((x-estN.x)^2,2,mean)

Avg.samp.err.T<-apply((x-estT.x)^2,2,mean)

c(Avg.samp.err.N,sum(Avg.samp.err.N))

c(Avg.samp.err.T,sum(Avg.samp.err.T))

estEN.x<-x[Extreme.index,]%*%pcan$V[,1:2]%*%t(pcan$V[,1:2])

estET.x<-x[Extreme.index,]%*%pcaT$V[,1:2]%*%t(pcaT$V[,1:2])

Avg.Extsamp.err.N<-apply((Extreme.vals-estEN.x)^2,2,mean)

Avg.Extsamp.err.T<-apply((Extreme.vals-estET.x)^2,2,mean)

c(Avg.Extsamp.err.N,sum(Avg.Extsamp.err.N))

c(Avg.Extsamp.err.T,sum(Avg.Extsamp.err.T))

pcan$PCA.quality

pcaT$PCA.quality
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pcan$predictions

pcaT$predictions

t(x[31,])

pcan$predictivity

pcaT$predictivity

pcan$adequacy

pcaT$adequacy

109

Stellenbosch University  https://scholar.sun.ac.za



LIST OF REFERENCES

Abbott, E.A. (1884). Flatland: a Romance of many Dimensions. Seeley & Co, London.

Brand, H. (2013). PCA and CVA biplots: A study of their underlying theory and quality

measures. Master’s thesis, Department of Statistics and Actuarial Science, University

of Stellenbosch, Stellenbosch, South Africa.

Available at: http://hdl.handle.net/10019.1/80363

Chautru, E. et al. (2015). Dimension reduction in multivariate extreme value analysis.

Electronic Journal of Statistics, vol. 9, no. 1, pp. 383–418.

de Carvalho, M. (2016). Statistics of extremes: Challenges and opportunities. Hand-

book of Extreme Value Theory and its Applications to Finance and Insurance.

Embrechts, P., McNeil, A. and Straumann, D. (2002). Correlation and dependence in

risk management: properties and pitfalls. Risk management: value at risk and be-

yond, vol. 1, pp. 176–223.

Everitt, B. (1994). Exploring multivariate data graphically: a brief review with examples.

Journal of Applied Statistics, vol. 21, no. 3, pp. 63–94.

Gabriel, K.R. (1971). The biplot graphic display of matrices with application to princi-

pal component analysis. Biometrika, vol. 58, no. 3, pp. 453–467.

Gardner-Lubbe, S., Le Roux, N.J. and Gowers, J.C. (2008). Measures of fit in princi-

pal component and canonical variate analyses. Journal of Applied Statistics, vol. 35,

no. 9, pp. 947–965.

Gower, J. and Hand, D. (1996). Biplots. 1st edn. Chapman and Hall, London.

110

Stellenbosch University  https://scholar.sun.ac.za



LIST OF REFERENCES ADDENDA

Gower, J.C., Lubbe, S.G. and Le Roux, N.J. (2011). Understanding biplots. John Wiley &

Sons.

Haug, S., Klüppelberg, C. and Kuhn, G. (2015). Copula structure analysis based on

extreme dependence. Statistics and Its Interface, vol. 8, no. 1, pp. 93–107.

Hotelling, H. (1933). Analysis of a complex of statistical variables into Principal Com-

ponents. The Journal of Educational Psychology, vol. 24, pp. 417–441.

Hult, H. and Lindskog, F. (2002). Multivariate extremes, aggregation and dependence

in elliptical distributions. Advances in Applied probability, vol. 34, no. 3, pp. 587–608.

Jogdeo, K. (1982). Concepts of dependence. Encyclopedia of Statistical Sciences, vol. 1,

pp. 324–334.

Jolliffe, I.T. (2002). Principal Component Analysis. 2nd edn. Springer-Verlag, New York.

ISBN 0387954422.

Kendall, M.G. (1938). A new measure of rank correlation. Biometrika, vol. 30, no. 1/2,

pp. 81–93.

Klüppelberg, C. and Kuhn, G. (2009). Copula structure analysis. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), vol. 71, no. 3, pp. 737–753.

Klüppelberg, C., Kuhn, G., Peng, L. et al. (2007). Estimating the tail dependence func-

tion of an elliptical distribution. Bernoulli, vol. 13, no. 1, pp. 229–251.

Klüppelberg, C. and Stelzer, R. (2014). Dealing with dependent risks. In: Risk-A Multi-

disciplinary Introduction, pp. 241–277. Springer.

le Roux, N. and Lubbe, S. (2013). UBbipl: UNDERSTANDING BIPLOTS: DATA SETS AND

FUNCTIONS. R package version 3.0.4.

Available at: http://www.wiley.com/go/biplots

Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets.

The Journal of Finance, vol. 56, no. 2, pp. 649–676.

111

Stellenbosch University  https://scholar.sun.ac.za



LIST OF REFERENCES ADDENDA

Mahalanobis, P.C. (1936). On the generalized distance in statistics. National Institute

of Science of India.

Mai, J. and Scherer, M. (2014). Financial engineering with copulas explained. Springer.

Matthias, S. and Jan-frederik, M. (2017). Simulating copulas: stochastic models, sam-

pling algorithms, and applications, vol. 6. Imperial College Press, London.

Meissner, G. (2013). Correlation Risk Modeling and Management: An Applied Guide

including the Basel III Correlation Framework-With Interactive Models in Excel/VBA.

John Wiley & Sons.

Nelsen, R.B. (2007). An introduction to copulas. Springer Science & Business Media.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, vol. 2, no. 11, pp. 559–572. ISSN 1941-5982.

Salmon, F. (2012). The formula that killed wall street. Significance, vol. 9, no. 1, pp.

16–20.

Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence.

Scandinavian Journal of Statistics, vol. 33, no. 2, pp. 307–335.

Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. Inst.

Statist. Univ. Paris, vol. 8, pp. 229–231.

Stone, R. (1947). On the interdependence of blocks of transactions. Supplement to the

Journal of the Royal Statistical Society, vol. 9, no. 1, pp. 1–45.

Van Blerk, S. (2000). Generalising biplots and its application in S-Plus. Master’s thesis,

Department of Statistics and Actuarial Science, University of Stellenbosch, Stellen-

bosch, South Africa.

112

Stellenbosch University  https://scholar.sun.ac.za




