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Abstract

In this dissertation we present a novel strategy for automatic handwritten signature ver-
ification. The proposed framework employs a writer-independent approach to signature
modelling and is therefore capable of authenticating questioned signatures claimed to be-
long to any writer, provided that at least one authentic sample of said writer’s signature
is available for comparison. We investigate both the traditional off-line scenario (where
an existing pen-on-paper signature is extracted from a digitised document) as well as the
increasingly popular on-line scenario (where the signature data are automatically recorded
during the signing event by means of specialised electronic hardware). The utilised off-line
feature extraction technique involves the calculation of several discrete Radon transform
(DRT) based projections, whilst on-line signatures are represented in feature space by
several spatial and temporal function features. In order to facilitate writer-independent
signature analysis, these feature sets are subsequently converted into a dissimilarity-based
representation by means of a suitable dichotomy transformation. The classification tech-
niques utilised for signature modelling and verification include quadratic discriminant anal-
ysis (QDA) and support vector machines (SVMs). The major contributions of this study
include two novel techniques aimed towards the construction of a robust writer-independent
signature model. The first, a dynamic time warping (DTW) based dichotomy transforma-
tion for off-line signature representation, is able to compensate for reasonable intra-class
variability by non-linearly aligning DRT-based projections prior to matching. The second,
a writer-specific dissimilarity normalisation strategy, improves inter-class separability in
dissimilarity space by considering only strictly relevant dissimilarity statistics when nor-
malising the dissimilarity vectors belonging to a specific individual. This normalisation
strategy is generic in the sense that it is equally applicable to both off-line and on-line
signature model construction. The systems developed in this study are specifically aimed
towards skilled forgery detection. System proficiency estimation is conducted using a rig-
orous experimental protocol. Several large signature corpora are considered. In both the
off-line and on-line scenarios, the proposed SVM-based system outperforms the proposed
QDA-based system. We also show that the systems proposed in this study outperform
most existing systems that were evaluated on the same data sets. More importantly, when
compared to state-of-the-art techniques currently employed in the literature, we show that
the incorporation of the novel techniques proposed in this study consistently results in a
statistically significant improvement in system proficiency.
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Opsomming

In hierdie verhandeling stel ons ’n nuwe strategie vir outomatiese handtekening-verifikasie
voor. Die voorgestelde raamwerk gebruik ’n skrywer-onafhanklike benadering tot hand-
tekening-modellering en is dus in staat om bevraagtekende handtekeninge, wat aan enige
skrywer behoort, te bekragtig, op voorwaarde dat minstens een outentieke voorbeeld vir
vergelykingsdoeleindes beskikbaar is. Ons ondersoek die tradisionele statiese geval (waarin
’n bestaande pen-op-papier handtekening vanuit ’n versyferde dokument onttrek word),
asook die toenemend gewilde dinamiese geval (waarin handtekeningdata outomaties ty-
dens ondertekening m.b.v. gespesialiseerde elektroniese hardeware bekom word). Die
statiese kenmerk-onttrekkingstegniek behels die berekening van verskeie diskrete Radon-
transform (DRT) projeksies, terwyl dinamiese handtekeninge deur verskeie ruimtelike en
temporele funksie-kenmerke in die kenmerkruimte voorgestel word. Ten einde skrywer-
onafhanklike handtekening-ontleding te bewerkstellig, word hierdie kenmerkstelle na ’n
verskil-gebaseerde voorstelling d.m.v. ’n geskikte digotomie-transformasie omgeskakel.
Die klassifikasietegnieke, wat vir handtekeking-modellering en -verifikasie gebruik word,
sluit kwadratiese diskriminant-analise (KDA) en steunvektormasjiene (SVMe) in. Die
hoofbydraes van hierdie studie sluit twee nuwe tegnieke, wat op die bou van ’n robuuste
skrywer-onafhanklike handtekeningmodel gerig is, in. Die eerste, ’n dinamiese tydsverbuig-
ing digotomie-transformasie vir statiese handtekening-voorstelling, is in staat om vir rede-
like intra-klas variasie te kompenseer, deur die DRT-projeksies voor vergelyking nie-lineêr
te belyn. Die tweede, ’n skrywer-spesifieke verskil-normaliseringstrategie, is in staat om
inter-klas skeibaarheid in die verskilruimte te verbeter deur slegs streng relevante statistieke
tydens die normalisering van verskil-vektore te beskou. Die normaliseringstrategie is gener-
ies van aard in die sin dat dit ewe veel van toepassing op beide statiese en dinamiese
handtekening-modelkonstruksie is. Die stelsels wat in hierdie studie ontwikkel is, is spe-
sifiek op die opsporing van hoë-kwaliteit vervalsings gerig. Stelselvaardigheid-afskatting
word met behulp van ’n omvattende eksperimentele protokol bewerkstellig. Verskeie groot
handtekening-datastelle is oorweeg. In beide die statiese en dinamiese gevalle vaar die
voorgestelde SVM-gebaseerde stelsel beter as die voorgestelde KDA-gebaseerde stelsel.
Ons toon ook aan dat die stelsels wat in hierdie studie ontwikkel is, die meeste bestaande
stelsels wat op dieselfde datastelle geëvalueer is, oortref. Dit is selfs meer belangrik om
daarop te let dat, wanneer hierdie stelsels met bestaande tegnieke in die literatuur vergelyk
word, ons aantoon dat die gebruik van die nuwe tegnieke, soos in hierdie studie voorgestel,
konsekwent tot ’n statisties beduidende verbetering in stelselvaardigheid lei.
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pen position features x̄ and ȳ, that is the features depicted in (a) following
successful translation and scale normalisation. . . . . . . . . . . . . . . . . . 50

3.9 Conceptual comparison of the feature correspondences considered during dis-
similarity vector construction when either (a) the Euclidean distance or (b)
a DTW-algorithm is utilised. Note that, unlike the Euclidean distance-based
approach, a DTW-algorithm is able to detect (and subsequently compensate
for) non-linearly misaligned features, thereby producing a considerably more
reliable measure of dissimilarity between the feature vectors submitted for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xi

3.10 Conceptualisation of the dynamic time warping algorithm considered in this
study. The algorithm identifies similar elements contained in the reference
vector xk and questioned vector xq and subsequently constructs an optimal
path between said vectors, based on these feature similarities. The resulting
distance measure is calculated between elements matched according to the
optimal path, as opposed to simply using corresponding elements. The band-
width β restricts the search space and is used to regulate both the flexibility
and computational requirements of the alignment process. Note that when
β = 0, this algorithm is equivalent to utilising the Euclidean distance. . . . . 55

4.1 Distribution of hypothetical positive and negative training samples in a two-
dimensional feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Implementation of a linear discriminant. (a) Multivariate Gaussian PDFs
estimated from the samples depicted in Figure 4.1, using class-specific means
and a pooled covariance estimate. (b) The resulting linear decision boundary
fLDA(x) = 0. Note that, although the positive and negative classes are clearly
linearly separable, several negative samples are misclassified. . . . . . . . . . 62

4.3 Implementation of a quadratic discriminant. (a) Multivariate Gaussian PDFs
estimated from the samples depicted in Figure 4.1, using class-specific means
and class-specific covariance estimates. (b) The resulting quadratic decision
boundary fQDA(x) = 0. Note that, unlike the linear discriminant depicted in
Figure 4.2 (b), the quadratic discriminant is able to successfully separate the
positive and negative classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Conceptualisation of the maximally separating hyperplane and its associated
margin in a hypothetical two-dimensional feature space for (a) linearly sepa-
rable and (b) linearly non-separable training data. . . . . . . . . . . . . . . . 65

4.5 Conceptualisation of the kernel trick. (a) Positive and negative training sam-
ples in a hypothetical two-dimensional feature space. There clearly exists no
linear decision boundary (i.e. a straight line) capable of separating the two
classes. (b) Non-linear mapping of the training samples depicted in (a) into
a hypothetical three-dimensional kernel space, wherein it becomes possible to
obtain a separating hyperplane. The inverse mapping of the hyperplane indi-
cated in (b) corresponds to the dashed line indicated in (a), which successfully
separates the two classes in feature space. . . . . . . . . . . . . . . . . . . . . 66

4.6 Implementation of a soft-margin SVM. Decision boundaries obtained from the
training samples depicted in Figure 4.1 when (a) a linear kernel and (b) an
RBF kernel are utilised. Since the training samples are linearly separable in
feature space, both the linear and RBF kernels yield boundaries that are able
to successfully separate the two classes. Note that the orientation (and also
the curvature in the case of the RBF kernel) of each boundary is determined
by the value specified for the internal parameter C (and also γ), which is
further discussed in Section 4.4.2. . . . . . . . . . . . . . . . . . . . . . . . . 67

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xii

4.7 Significance of the regularisation parameter C. Optimal decision boundaries
for the separation of two classes in a hypothetical two-dimensional feature
space when (a) relatively large and (b) relatively small values for C are spec-
ified. Although the boundary in (a) reduces the number of margin errors on
the training set, the boundary in (b) provides a more sensible overall sepa-
ration of the two classes and is therefore expected to prove superior in the
classification of future questioned samples. . . . . . . . . . . . . . . . . . . . 69

4.8 Significance of the RBF kernel width parameter γ. Decision boundaries ob-
tained from the training samples depicted in Figure 4.1 when (a) γ = 10000
and (b) γ = 0.1. The boundary in (a) is over-smoothed to such an extent
that it resembles the boundary obtained when employing a linear kernel (see
Figure 4.6 (a)), whilst the excessive non-linear flexibility of the boundary in
(b) clearly over-fits the training set – this is easily confirmed by observing that
each of the training samples is also identified as a support vector i.e. every
training sample contributes towards the optimal solution. . . . . . . . . . . . 70

5.1 (a) Typical representation of negative samples superimposed onto positive
samples in dissimilarity space for T = 2, N = 40 and K = 10. (b) Outliers
detected (and subsequently removed) by the IOR algorithm. . . . . . . . . . 74

5.2 (a) The conventional logistic function. (b) The dissimilarity normalisation
function utilised by the systems developed in this study for c = 5. . . . . . . 76

5.3 The global dissimilarity normalisation strategy. (a) Dissimilarity values repre-
sentative of positive and negative samples obtained from five different writers.
Also included is the critical value z = µ+ σ, as obtained from all the samples.
(b) Normalised dissimilarity values obtained using the global normalisation
function η(z, µ+ σ), as well as the mapped critical value η(µ+ σ, µ+ σ) = 0.5.
Note that, although the original dissimilarity values have been successfully
rescaled, no improvement is observed in terms of class separability. . . . . . . 77

5.4 The writer-specific dissimilarity normalisation strategy. (a) Dissimilarity val-
ues as also depicted in Figure 5.3 (a). Also included are the writer-specific
critical values z = µ(ω) + σ(ω) for ω = 1, 2, . . . , 5, as obtained from the sam-
ples belonging to writer ω only. (b) Normalised dissimilarity values ob-
tained using the writer-specific normalisation function η(z, µ(ω) + σ(ω)) for
each writer separately, as well as their associated mapped critical values
η(µ(ω) + σ(ω), µ(ω) + σ(ω)) = 0.5. Note that this strategy not only successfully
rescales the original dissimilarity values, but also significantly improves overall
class separability when compared to the results illustrated in Figure 5.3 (b). 78

5.5 Comparison of (a) the global dissimilarity normalisation strategy and (b) the
writer-specific dissimilarity normalisation strategy, when applied to the re-
tained samples depicted in Figure 5.1 (b). . . . . . . . . . . . . . . . . . . . 79

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xiii

6.1 Selected samples from Dolfing’s data set. Note that all the signatures depicted
here have the same uniform stroke width. Since the original images have
been rescaled for improved representation, the aforementioned property is not
always clearly visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Examples of typical signature images contained in MCYT-75. . . . . . . . . 88
6.3 Examples of partial signature images contained in MCYT-75. These incom-

plete samples, a result of image cropping, were most likely obtained as a result
of writers who signed outside a designated signing area. . . . . . . . . . . . . 88

6.4 Example of an incorrectly extracted signature image contained in MCYT-75.
The dark region visible on the right is in all likelihood a result of incorrect
page positioning during the digitisation process. . . . . . . . . . . . . . . . . 88

6.5 Schematic representation of the experimental protocol utilised to estimate
system performance for a single run within a single trial. . . . . . . . . . . . 90

6.6 Average AUCs achieved by the QDS and SVMS, when evaluated on (a) Dolf-
ing’s data set and (b) MCYT-75, as a function of the projection angle set size
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 Comparison of the AUC-based performance metrics obtained for (a) the QDS
and (b) the SVMS, when these systems are evaluated on Dolfing’s data set
for configurations C1–C4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8 Comparison of the AUC-based performance metrics obtained for (a) the QDS
and (b) the SVMS, when these systems are evaluated on MCYT-75 for con-
figurations C1–C4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.9 Comparison of the AUC-based performance metrics obtained for (a) the QDS
and (b) the SVMS, when these systems are evaluated on the Philips database
for configurations C2 and C4. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.10 Comparison of the AUC-based performance metrics obtained for (a) the QDS
and (b) the SVMS, when these systems are evaluated on MCYT-100 for con-
figurations C2 and C4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Average feature weights reported in Swanepoel and Coetzer (2014), as de-
termined using (a) the F -score and (b) the linear support vector weighting
methods. The feature indices correspond to the columns of the feature set
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Chapter 1

Introduction

“He who seeks for methods without having a definite problem in mind, seeks in the most
part in vain.”

- David Hilbert (1862–1943)

1.1 Motivation

The purpose of this study is to develop a proficient writer-independent handwritten signa-
ture verification system, that is a system that automatically classifies a questioned hand-
written signature sample as being either authentic or fraudulent. The proposed system
should be proficient in the sense that it produces as few erroneous classifications as possi-
ble. The system should also be writer-independent in the sense that it is able to construct
a single, universal signature model and subsequently use said model to authenticate the
signature of any potential writer.

The work presented in this study is mainly inspired by, although not at all limited
to, the process of transaction authentication within a banking environment. Despite the
rise in popularity of alternative payment channels, including account purchases and online
shopping, banking institutions are still faced with a prodigious number of signed cheques
and card receipts that require processing on a daily basis.

The sole purpose of transaction authentication is to prevent fraudulent transaction
documents (such as cheques bearing forged signatures) from being accepted as valid and
consequently facilitating payment by an unauthorised party. The acceptance of fraudulent
cheques, for example, constitutes a major concern for banking institutions across the globe,
since the economic losses associated with this type of fraud accumulate to an alarming
annual amount1.

1Due to the sensitive nature thereof, it is very difficult to obtain comprehensive and accurate data
regarding global financial losses due to cheque fraud. However, according to Business Day (2009), it is
estimated that the annual financial losses in the United States of America, as a result of cheque fraud,
increased from $12.6bn to $20bn during the period 1996–2009. Also, the Cheque & Credit Clearing
Company (2014) reported that annual losses associated with cheque fraud in the United Kingdom averaged
approximately £13.2m during the period 2009–2013.

1
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Continuing with the example of cheque fraud, it is reported in Business Day (2009)
that many countries are following the current European trend of decreased cheque usage.
In South Africa, for example, the use of cheques has reportedly declined by as much as
20% annually in recent years. However, this article also notes that this trend is in stark
contrast with recent tendencies in other countries such as the United States of Amer-
ica, where increased cheque usage has resulted in increased losses due to cheque fraud.
Furthermore, a decrease in cheque usage is typically associated with the increased use of
alternative payment methods, such as cheque/credit/account cards – many of which still
require transaction authentication by means of a handwritten signature. In essence, the
problem of inadequate forgery detection is therefore not avoided, but merely shifted to a
different medium.

Within the context of a banking environment, the task of document authentication is
typically performed by an unskilled2 human operator. Due to the fact that these opera-
tors are vastly outnumbered by the documents requiring their attention, a relatively small
number of cheques and card receipts are eventually submitted for manual verification. Al-
though an automatic signature verification system is likely to function effectively without
any human intervention, it is worth mentioning that this study does not necessarily ad-
vocate the utilisation of such a system as an alternative to employing human verifiers.
Instead, we aim to enhance the existing human-centric signature verification environment
as outlined below.

Machines as an aid to human operators

According to an experiment conducted by Coetzer et al. (2006), the average human op-
erator takes approximately 3.5–4.7 seconds to authenticate a handwritten signature. In
addition, the efficiency and reliability of a human verifier’s performance may be adversely
affected by external factors such as fatigue, illness or boredom. In contrast, an efficient
automatic verification system outputs real-time decisions and does not suffer from any of
the physical constraints (and consequent inconsistencies in performance) associated with
a human operator.

In order to accommodate the above-mentioned human limitations in the banking sec-
tor, only those transactions that exceed a specific monetary value are presented for manual
authentication. This threshold amount is usually determined by the relevant banking insti-
tution, in such a manner that a manageable workload is ensured for its employees, thereby
maintaining a reasonable payment processing period for its clients. Unfortunately, this
practice is also common knowledge amongst forgers, who are able to circumvent detection
by simply submitting cheques of a sufficiently small monetary value.

It should be clear that the introduction of one or more machine-based verifiers into the
banking environment will result in a dramatic increase in document processing resources
and may therefore potentially provide an effective solution to the current shortcomings
associated with a threshold amount-based approach. Any transaction that exceeds the

2Human verifiers in the banking sector are generally considered “unskilled” in the sense that they rarely
possess professional training in forensic handwriting analysis.
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threshold amount may, for instance, still be authenticated by a human operator, whilst
those that fall below this amount are submitted for automated verification. Furthermore,
the threshold amount may be adjusted on an ad hoc basis, in order to prevent processing
backlogs or to alleviate the workload of the human workforce (should one or more of the
operators become unavailable).

Human-machine collaboration

The strategy outlined above is based on the assumption that human verifiers and automatic
verification systems operate on a mutually exclusive basis. This does not necessarily have
to be case. In a recent study by Coetzer et al. (2012), where the decisions of a workforce
of human verifiers are combined with the threshold-specific decisions of an automatic veri-
fication system, it is shown that the expected performance of the resulting hybrid verifiers
exceeds that of both the unaided humans and the unaided machine.

The aforementioned protocol for human-machine collaboration holds another important
advantage – it facilitates the dynamic selection of the most appropriate hybrid verifier,
based on the expected cost associated with misclassification. The proposed classifier se-
lection process is shown to reduce the average expected cost associated with the erroneous
acceptance/rejection of transactions, regardless of their monetary value.

The ability to perform cost-sensitive transaction authentication may prove a particu-
larly attractive prospect to financial institutions such as retail banks, where a trade-off
has to be made between security concerns and customer satisfaction. For instance, the
acceptance of a fraudulent transaction with an exceptionally large monetary value may
result in an unacceptable financial loss for the banking institution. In order to avoid this
scenario, a banking institution may be persuaded to instruct its staff to maintain a bias
towards rejecting transactions. However, the repeated rejection of legitimate transactions,
regardless of their monetary value, may eventually prove such an inconvenience to the
client, that he/she may consider terminating his/her account(s) and seek the services of a
competing institution. From the bank’s perspective, this would of course also be consid-
ered unacceptable.

The introduction of a proficient automatic verification system, into a banking environ-
ment, is therefore expected to dramatically reduce the number of undetected fraudulent
transactions, whilst the subsequent reduction in monetary losses undoubtedly warrants
an investigation into the feasibility of such a system. In this study, we perform such an
investigation.

Finally, it is worth mentioning that the motivations outlined thus far specifically per-
tains to the traditional problem of off-line signature verification. In the case of on-line
signature verification (see Section 1.2.4), where the authentication process requires no
human intervention, the motivation is more straightforward – the objective is simply to
develop a system that is as accurate as possible, whilst the number of genuine signature
samples required during writer enrolment is minimised.
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1.2 Key concepts

The development of a proficient automatic handwritten signature verification system re-
quires the successful exploitation of the synergy between various concepts throughout the
biological, social and mathematical sciences. In this section, we present brief discussions
on several of the fundamental concepts involved in such a development.

1.2.1 Personal identification systems

In a society where wealth is often difficult to acquire, it is of paramount importance for
individuals to protect their accumulated assets. The desire to ensure that only authorised
individuals should be granted access to certain resources gave rise to the development of
personal identification systems. These security systems are designed to authenticate the
claimed identity of a person, based on properties supposedly unique to said individual, in
order to determine whether or not he/she should be granted access to specific resources.

A personal identification system may be categorised as being either knowledge-based,
possession-based or biometric, as illustrated in Figure 1.1. In order to determine the most
appropriate type of identification system for any given scenario, several factors demand
consideration, since each type of system has its own set of advantages and limitations.
Generally, the most important factor is the trade-off between the level of security provided
and the practical/financial feasibility of system deployment.

A knowledge-based system grants its users access to the desired resource only upon
the presentation of predetermined information, usually a password or access code. The
deployment of such a system is relatively straightforward, since its only design requirements
are the mechanisms necessary to store and match information. This ease of implementation
has resulted in the widespread deployment of knowledge-based systems. The utilisation of
user names and associated passwords is probably the most well-known modern example of
this type of system. However, the major drawback associated with such a system is the
fact that its security is solely dependent on the assumption that all (and only) authorised
individuals possess the knowledge required to gain access to the protected resource. This is
of course an unrealistic assumption. Passwords and access codes are easily (and therefore
often) forgotten, which prevents authorised individuals from gaining access to the desired
resource. Also, unless a concerted effort is made to protect the information in question
(by means of e.g. an advanced encryption standard), tokens such as passwords and access
codes may be intercepted by unauthorised individuals, which consequently nullifies the
security system.

In order to prevent such an information-based security breach, a possession-based iden-
tification system requires the presentation of a physical token, usually a key or access
card. This type of system can also be deployed with relative ease, since the hardware
required is generally uncomplicated and inexpensive. The most well-known example of
a possession-based identification system is undoubtedly the use of a unique physical lock
with its corresponding key. The vulnerabilities of a possession-based system is, however,
fairly similar to that of its knowledge-based counterpart. Tokens such as keys or access
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Figure 1.1: Categorisation of selected personal identification systems. Categories relevant to

this study are emphasised in bold. The attributes associated with the design of a biometric

system are sub-categorised in Figure 1.2.

cards may be lost or stolen (or duplicated with relative ease). Nevertheless, in order to
circumvent a possession-based system, an unauthorised individual requires direct access to
the physical token. This type of system therefore eradicates the possibility of a remote
security breach.

It should be clear from the above discussions that the primary weakness of both
knowledge-based and possession-based systems is the fact that the entity used for identity
verification is not an attribute of the actual individual, but rather a token deemed repre-
sentative of said individual. In order to avoid this pitfall, a biometric identification system
strictly requires the physical presence of the authorised individual and performs ad hoc
identity verification by considering an attribute measured directly from his/her person.
This attribute may either be a measurable property of the person’s physique (i.e. a physio-
logical attribute) or a gestural feature that was developed/trained over time and therefore
deemed unique to the individual in question (i.e. a behavioural attribute). Selected exam-
ples of physical and behavioural biometric attributes are presented in Figure 1.2.

It is a well-known fact that biometric identification systems based on physiological at-
tributes are significantly more accurate than those based on behavioural traits and therefore
provide a much higher level of security. However, due to the specialised hardware required
to deploy a physiological biometric authentication system, the use of such systems is often
deemed too impractical for widespread use. Furthermore, the invasive nature of many phys-
iological feature acquisition devices (e.g. retinal scanners) often proves unpopular amongst
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Figure 1.2: Categorisation of selected biometric attributes. Categories relevant to this study

are emphasised in bold.

the general public. In contrast, behavioural attributes may be easily acquired with a non-
invasive device – a property that makes the use of behavioural biometric authentication
systems a particularly attractive prospect.

In this study we develop biometric authentication systems that are based on a be-
havioural attribute. The specific attribute considered here is the handwritten signature,
which is discussed in the following section.

1.2.2 Handwritten signatures

The use of handwritten signatures (henceforth referred to only as signatures), as a means
of identity verification, has long been one of the most widely implemented biometric au-
thentication techniques the world over. Since signature production constitutes the result
of a highly complex and well-trained neuromuscular process, as explained in e.g. Nguyen
(2012), it is widely believed that signatures are able to reflect personal idiosyncrasies that
are unique amongst individuals. This notion of an inherent connection between a person’s
identity and his/her signature is supported by e.g. Schmidt (1994), where it is explained
that an individual’s signature is typically composed of stroke sequences much unlike those
used in ordinary handwriting and, as a result of sustained repetition over a prolonged
period of time, tends to evolve towards a consistent, unique pattern.

Even in our present day and age, where regular quantum leaps in the field of information
technology strive towards ultimately delivering a so-called paperless society, signatures
remain a socially and legally accepted proof of identification and consent. This universally
accepted convention has stood for centuries, as illustrated by the examples of historic
documents presented in Figure 1.3.

The above-mentioned convention is especially important within the financial sector,
where transactions and other legal contracts are often subject to future disputes. In order
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(a) (b)

Figure 1.3: Examples of historic documents that were authorised by means of handwritten

signatures. (a) The Declaration of Independence of the United States of America, as signed by

56 delegates of the US Congress on July 4th 1776. (b) A document signed by members of the

Greek National Assembly in Athens (after the revolution on September 3rd 1843) that drafted a

new constitution and made Greece a constitutional monarchy.

to resolve such a dispute, one is required to verify two key aspects. Firstly, that each
party involved had given their consent at the time of the agreement and, secondly, that
the consenting individuals do in fact represent the parties involved. As mentioned earlier,
signatures are legally deemed representative of both identity and consent, and are therefore
considered ideal for the endorsement of official documentation. For this reason, a legal
document is generally only considered valid once it has been signed personally by each
party (or by an officially designated proxy).

1.2.3 Forgery categorisation

The major drawback associated with biometric authentication based on handwritten sig-
natures, as is the case with any behavioural biometric, is that the opportunity is created
for an imposter to perpetrate identity fraud by producing imitations (i.e. forgeries) of
the genuine article with relative ease. As illustrated in Figure 1.4, forged signatures may
generally be categorised, in increasing order of quality, as either random, casual or skilled.
Typical examples of these different types of forgeries are provided in Figure 1.5.

A random forgery (see Figure 1.5 (b)) is produced without any prior knowledge regard-
ing a genuine signature. This type of forgery typically bears no resemblance to a genuine
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Figure 1.4: Categorisation of forged handwritten signatures. Categories relevant to this study

are emphasised in bold.

signature and can be easily detected by a human verifier. For experimental purposes, gen-
uine signatures belonging to writers other than the writer in question are often used to
represent random forgeries.

Casual forgeries are the result of arbitrary attempts at signature reproduction, given
only the name of the signature’s owner. This type of forgery may therefore constitute a
reasonable semantic reproduction of a genuine signature, but typically differs significantly
from an authentic sample in terms of its stylistic properties. In most cases, casual forgeries
can also be easily detected by human verifiers.

Only when a forger has unrestricted access to at least one genuine signature sample,
as well as ample time to practise its reproduction, may a skilled forgery be produced.
The forger therefore has the opportunity to not only produce a forgery similar in design,
but also mimic the inherent stylistic properties of a genuine signature. In the case of
skilled forgeries, a further distinction can be made between amateur (see Figure 1.5 (c))
and professional (see Figure 1.5 (d)) forgeries, where a professional forger also possesses
a degree of forensic expertise. Skilled forgeries, especially those produced by professional
forgers, are undoubtedly the most difficult to detect. Since an untrained human verifier (e.g.
a typical bank official) is unlikely to detect such a forgery, the efforts of a forensic document
examiner, or a sophisticated automatic verification system, is generally required. It is not
reasonable to expect that a typical banking institution would employ forensic experts.

Apart from the traditional forgery types described above, a growing interest has recently
developed in the detection of so-called disguised forgeries. Unlike the name suggests, this
type of signature is actually not a forgery at all, but rather a deliberate attempt by the
legitimate signer to create reasonable doubt regarding the authenticity of his/her signature
at a later stage. The signer could, for instance, use his/her non-dominant hand to produce
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(a) (b)

(c) (d)

Figure 1.5: A typical example of (a) a genuine signature, as well as attempts at its reproduction

in the form of a (b) random, (c) amateur skilled and (d) professional skilled forgery.

the signature. The signing event is therefore considered legitimate, although future analysis
of the signature may suggest a fraudulent attempt.

The systems developed in this study are specifically aimed towards the detection of
amateur skilled forgeries. It should be clear, however, that any system developed for
the detection of skilled forgeries should also be able to easily detect casual and random
forgeries. These systems will not necessarily be proficient in the detection of professional
or disguised forgeries.

1.2.4 Signature acquisition

In order to facilitate an effective machine-based analysis, signature data must first be
captured using one of two fundamentally different modalities, namely off-line or on-line
acquisition.

The acquisition of off-line signature data involves the digitisation, usually by means of
a flatbed scanner, of an existing pen-on-paper sample. This process yields a static image,
wherein each pixel is indicative either of the foreground (i.e. a pen stroke) or the back-
ground (i.e. the document). Unfortunately, since an off-line signature may be produced
using an arbitrary writing implement on an arbitrary writing surface, a clear distinction
between foreground and background is not always achievable. Furthermore, the digitisa-
tion process itself may introduce noise into the resulting image, that is the occurrence of
actual background pixels that are erroneously digitised as apparent foreground pixels (or
vice versa). A proficient off-line signature verification system therefore typically employs
several image processing techniques, specifically aimed at addressing these potential im-
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pediments. Finally, it should be clear that, since a static signature image is completely
devoid of temporal information, the analysis of an off-line signature sample is strictly lim-
ited to the interpretation of spatial information, as indicated by the apparent pen stroke
pixels.

In contrast, an on-line signature is produced using specialised hardware, such as a digi-
tising pen and tablet (or similar electronic device). A major advantage associated with the
use of an on-line signature acquisition platform is the fact that the data capturing process
is completed accurately and automatically, during the signing event, by the device itself.
Depending on the specific device utilised (several suitable signature acquisition devices are
described in e.g. Brockly et al. (2014)), the data acquired during such a signing event is
typically related to several different descriptors, such as the pen stroke coordinates, pen
pressure and pen angle – each as a function of time. The information contained in this
initial set of descriptors may be exploited even further through the calculation of additional
temporal descriptors relating to e.g. pen trajectory, velocity and acceleration. Further-
more, unlike its off-line counterpart, the quality of on-line signature data is not adversely
affected by factors such as poor contrast or background noise. Ultimately, the wealth of
information contained in an on-line signature sample makes such instances significantly
more difficult to imitate, since the forger needs to reproduce not only the spatial proper-
ties of the genuine article, but also several writer-specific stylistic idiosyncrasies. For this
reason, the proficiency of a typical on-line signature verification system is expected to be
significantly superior to that of a typical off-line system.

In this study we are concerned with the generalised concept of handwritten signature
verification and therefore do not limit our investigation to a specific type of signature
data. Consequently, we aim to develop proficient systems for both the off-line and on-line
scenarios and show that the design of these fundamentally different systems differ only
in terms of the respective techniques employed for the conversion of the input signal (i.e.
static images or time series data) into a representation suitable for machine-based analysis.

1.2.5 Pattern recognition

The human brain performs numerous tasks relating to pattern recognition during every
conscious moment. Our innate ability to recognise and interpret patterns (e.g. faces, voices,
gestures, etc.) governs nearly every concept that allows modern society to function. For
example, without the pattern recognition process, the concept of communication would be
inconceivable. Furthermore, it should come as no surprise that this ability to (practically
instantaneously) recognise a specific scenario, based on past experiences, inherently forms
the basis of any type of intelligent decision-making.

From a machine-based perspective, the pattern recognition process involves the auto-
matic classification of a questioned entity, or pattern, as belonging to a specific category of
predefined entity types, or pattern classes, based on properties that are considered histor-
ically representative of the classes in question. A comprehensive review of this process, as
conceptualised in Figure 1.6, may be found in e.g. Jain et al. (2000).

The pattern recognition process is generally subdivided into two key phases, namely
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Figure 1.6: Schematic representation of the pattern recognition process. The additional data

processing stages (indicated with dashed lines/borders) are considered optional, but are often

included in order to improve system performance.

learning and testing. We now present a generalised discussion of the aforementioned phases,
whilst the specific design elements relating to the systems developed in this study are
discussed in Section 1.4.1.

Learning

The learning phase is concerned with the construction of a mechanism that is able to
interpret and analyse historic patterns (typically of known origin), in such a way that
it should be equally adept at a similar interpretation and analysis of future patterns (of
unknown origin). As seen in Figure 1.6, the learning phase is characterised by two primary
processes, namely feature extraction and modelling.

Feature extraction. From a mathematical perspective, a pattern (e.g. a signature)
may be represented by an observation sequence, or feature set X = {x1,x2, . . . ,xT}. A
feature set is constructed from a collection of T , d-dimensional observations, or feature
vectors xi = {x(1)

i , x
(2)
i , . . . , x

(d)
i }. Each feature vector element x

(j)
i constitutes an arbitrary

measurable quantity, or feature. The process of converting a pattern from its original state
into a suitable representation in feature space, that is the multidimensional Cartesian space
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Figure 1.7: Categorisation of selected feature extraction techniques associated with off-line

signature verification. Categories relevant to this study are emphasised in bold.

where each dimension corresponds to a specific feature, is known as feature extraction.
Although the descriptors utilised for pattern representation may be chosen arbitrarily,

the selection of an effective feature extraction technique remains an issue that demands
serious consideration, since the ultimate goal is to construct a feature-based pattern rep-
resentation that maximally discriminates between the pattern classes in question. In an
ideal scenario, each pattern class would occupy a compact, disjoint region in feature space.
Several popular features utilised in the fields of off-line and on-line signature verification
are categorised in Figures 1.7 and 1.8 respectively.

Depending on the application, it may be advisable to also include several data process-
ing techniques into the feature extraction process, in order to maximise the efficacy of the
resulting pattern representation. These techniques are generally concerned with improving
the quality of the data presented for feature calculation, as well as compensating for the
potential variability observed in different patterns belonging to the same pattern class.
Within the context of signature representation, for instance, it is reasonable to expect that
different signature samples, belonging to the same writer, may exhibit variations in terms
of position, scale and/or rotation.

Modelling. Once a technique has been identified that is able to effectively construct
a feature-based pattern representation, the efforts of a classifier are required, in order
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Figure 1.8: Categorisation of selected feature extraction techniques associated with on-line

signature verification. Categories relevant to this study are emphasised in bold. Note that the

arrow notation indicates that velocity and acceleration may be derived from position data.

to distinguish between the different pattern classes represented in feature space. The
construction of such a classifier may be based on techniques as simple as the calculation
of class-specific descriptive statistics, but more frequently involves the training of a more
sophisticated statistical construct. Several popular classification techniques are categorised
in Figure 1.9.

The successful training of any classifier requires a sufficiently large collection of histor-
ical patterns, referred to as a training set. The minimum amount of training data required
is entirely dependent on the type of classification technique under consideration, although
an increase in the size of the training set almost invariably results in a superior classifier.
Furthermore, if the class label associated with each training sample is known beforehand,
the process is referred to as supervised learning. In contrast, unsupervised learning oc-
curs when the pattern classes need to be identified automatically, based on their relative
measures of location and dispersion in feature space (i.e. clustering).

It should be noted that, since the systems developed in this study perform signature
verification rather than recognition, the classification task is effectively reduced to a two-
class problem. Specifically, a pattern is said to belong to either the positive class (i.e. the
set of genuine signatures) or the negative class (i.e. the set of forgeries). As a result, certain
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Figure 1.9: Categorisation of selected classification techniques associated with handwritten

signature verification. Categories relevant to this study are emphasised in bold.

terminology is occasionally used interchangeably. For instance, when reference is made to
a classifier (or classification) in this study, a verifier (or verification) is often implied.

A classifier typically receives as input the feature set extracted from a raw pattern and
subsequently emits a numeric score. Depending on the specific type of classifier utilised,
this score is typically representative of either:

• the similarity between the questioned pattern and a reference pattern,

• a likelihood based on the similarity between the questioned pattern and those used
to train a probabilistic model, or

• an inverse distance measure relative to a decision boundary in feature space.

However, using a suitable transformation technique, any of the aforementioned scores may
be expressed as a measure of confidence s ∈ [0, 1], where a confidence of 1 denotes a perfect
match, whilst a confidence of 0 indicates a complete mismatch. For the purposes of this
discussion, we may assume, without loss of generality, that any classification event yields
such a confidence measure.

In essence, the classifier training process therefore entails the analysis of feature sets
extracted from training data, in order to uncover as much information as possible regarding
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Figure 1.10: (a) Idealised confidence distributions for the positive class G and the negative class

F . Note that the degree of overlap between P (G|s) and P (F |s) is proportional to the quality of

the forgeries considered. (b) Class membership prediction by means of confidence thresholding,

where a confidence score above (or below) the chosen threshold τ is considered indicative of a

genuine (or forged) signature. It should be clear that, in a scenario where P (G|s) and P (F |s)
are non-separable (as is often the case with skilled forgery detection), any value for τ inevitably

results in a number of erroneous class membership predictions (i.e. misclassifications). Several

suitable methods commonly utilised to quantify system performance are discussed in Section 1.2.7.

the confidence distributions associated with the pattern classes in question, as conceptu-
alised in Figure 1.10 (a) within the context of signature verification. It is this empirical
prior knowledge that enables a classifier to accurately predict the class membership of
questioned patterns in the future.

The systems developed in this study utilise either a quadratic discriminant or a support
vector machine (SVM) for classification purposes. Said classifiers are trained by means of
supervised learning. It should be noted that each one of the proposed systems also utilises
a dynamic time warping (DTW) algorithm. However, this algorithm is not employed in
its traditional role as classifier, but rather as a dichotomy transformation for the purpose
of obtaining a writer-independent signature representation, as explained in Section 1.2.6.

Testing

Assuming the successful completion of the preceding learning phase, the testing phase
is concerned with the automatic assignment of a class label to any questioned pattern
subsequently submitted for classification.

When a pattern of unknown origin is submitted for evaluation by a trained classifier,
the evaluation process either produces a decision (i.e. a class label) or a confidence score,
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depending on the specific type of classifier utilised. The former and latter classifiers are
respectively referred to as discrete and continuous classifiers. In the case of a continuous
classifier, an appropriate confidence threshold is imposed in order to ultimately obtain a
decision, as conceptualised in Figure 1.10 (b).

Although the discriminative classifiers utilised in this study are typically associated
with discrete outputs, we have opted for a modified approach that converts the initial
classifier output, that is a distance measure relative to a predetermined decision boundary
in feature space, into a confidence score. This conversion process is further discussed in
Section 1.4.1. In other words, each system developed in this study employs a continuous
classifier for the purposes of signature modelling and verification.

1.2.6 Writer-independent signature modelling

The majority of systems presented in the literature make use of a writer-dependent ap-
proach to signature modelling and verification, as conceptualised in Figure 1.11 (a). When
this strategy is utilised, each writer ω enrolled into the system submits a set of K genuine
training samples, in order to construct a model λ(ω) in feature space that is specific to
said writer. Any questioned sample X(q) and claim of ownership ω subsequently presented
to the system for verification, is then matched to λ(ω) in order to obtain a class label
y ∈ {1,−1}, such that

y = λ(ω)(X(q)), (1.1)

where y = 1 (or y = −1) corresponds to the acceptance (or rejection) of the claim of own-
ership. This popular approach, however, has two notable disadvantages:

• A relatively large training set, which is not realistically obtainable in practical sce-
narios, is required to produce a sufficiently representative writer model.

• When a discriminative classifier (such as an SVM) is utilised for classification, only
random forgeries may be used for model training, since it is not reasonable to assume
that skilled forgeries will be available for every new writer enrolled into the system.

In contrast, a writer-independent approach (see Figure 1.11 (b)) aims to construct a single
signature model λ that discriminates between two classes only, that is a positive and
negative class that represents genuine and forged instances respectively. Most importantly,
said instances may belong to any writer. A writer-independent system therefore attempts
to model differences between positive and negative instances in a generic sense. It should
be clear from Figure 1.11 (a) that a standard feature space representation is not suitable
for such a modelling objective. Instead, a writer-independent model is constructed in
dissimilarity space (Pekalska et al. (2002)).

The required dissimilarity representation is obtained by means of a dichotomy transfor-
mation, that is a process that compares a writer-specific positive or negative sample X to
a writer-specific positive reference sample X(k) in order to produce a dissimilarity vector
z, such that

z = D(X(k),X), (1.2)
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Figure 1.11: Conceptual comparison of the (a) writer-dependent and (b) writer-independent

approaches to signature representation in feature space and dissimilarity space respectively, when

three writers are considered. Positive and negative instances are indicated with “+” and “−”

respectively.

where D(·) denotes any suitable distance measure. During system deployment, any newly
enrolled writer ω submits a set ofK genuine reference samples. Any questioned sampleX(q)

and claim of ownership ω presented to the system for verification, is first subjected to the
dichotomy transformation, in order to produce the dissimilarity vector z(q). Subsequently,
z(q) is matched to λ, in order to accept or reject the claim of ownership, such that

y = λ(z(q)). (1.3)

This approach therefore provides effective solutions to the problems of data scarcity and a
lack of skilled forgeries for training purposes.

The systems developed in this study utilise a writer-independent approach to signature
modelling and verification.

1.2.7 Performance metrics

A wide variety of quality performance measures (i.e. metrics that aim to quantify system
proficiency) are considered throughout the literature. The most commonly used metrics
include the false rejection rate (FRR), false acceptance rate (FAR), average error rate
(AER), equal error rate (EER) and accuracy α.

In order to define the aforementioned performance measures, let us first consider the
four possible outcomes of any verification experiment. If the instance submitted for ver-
ification is positive (i.e. a genuine signature), its correct classification constitutes a true
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positive event, whilst its incorrect classification results in a false negative event. Conversely,
if the instance is negative (i.e. a forged signature), its correct classification constitutes a
true negative event, whilst its incorrect classification results in a false positive event. Given
N instances, we denote the total number of true positive, false negative, true negative and
false positive events with T+, F−, T− and F+, respectively. Furthermore, let n+ and n− de-
note the number of positive and negative instances considered for verification, respectively,
such that n+ + n− = N .

The FRR quantifies the number of false negative events in relation to the number of
positive instances submitted for verification, or

FRR =
F−

n+
. (1.4)

Similarly, the FAR quantifies the number of false positive events in relation to the number
of negative instances submitted for verification, or

FAR =
F+

n−
. (1.5)

The average of the FRR and FAR is referred to as the AER. In contrast, the accuracy
metric does not attempt to identify potential system weaknesses, but rather quantifies the
system’s overall ability to make a correct classification, such that

α =
T+ + T−

N
. (1.6)

It should be clear that each of the aforementioned performance metrics is inherently suited
for the evaluation of discrete classifiers only. For continuous classifiers, the verification
threshold τ is allowed to vary arbitrarily, where each unique threshold results in a unique
discrete classifier. It should also be clear that an increased value of τ would invariably
increase the FRR and decrease the FAR, as conceptualised in Figure 1.12 (a). It is therefore
expected that, for some specific value of the verification threshold, the values of the FRR
and FAR must coincide. This common value is known as the EER and its corresponding
threshold value is denoted by τEER (see Figure 1.12 (a)).

Another popular platform for proficiency testing involves the depiction of system per-
formance in receiver operating characteristic (ROC) space, that is the two-dimensional
Cartesian space wherein the true positive rate (TPR) is plotted as a function of the false
positive rate (FPR). Whilst the FPR is synonymous to the previously defined FAR, the
TPR quantifies the number of true positive events in relation to the number of positive
instances submitted for verification, or

TPR =
T+

n+

= 1− FRR. (1.7)

The corresponding pair of FPR and TPR values, resulting from the evaluation of a dis-
crete classifier, is consequently depicted by a single point in ROC space. The performance
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Figure 1.12: Conceptualisation of the system performance metrics considered in this study.

(a) The FRR and FAR as functions of the verification threshold τ . Also indicated is the EER

of the underlying continuous classifier. (b) Performance evaluation of a hypothetical classifier in

ROC space. The continuous classifier C is depicted by a ROC curve, whilst each threshold-specific

discrete classifier C(τ) is depicted by a single point in ROC space. Also indicated are the optimal

α-based and EER-based discrete classifiers, denoted by C(τα) and C(τEER) respectively.

of a continuous classifier is therefore represented by several threshold-specific ROC points
that collectively form a so-called ROC curve. Such a ROC-based representation also allows
one to determine the area under curve (AUC) metric for any given classifier, that is the area
spanned by the convex hull of its resulting ROC point(s), as well as the points (0,0), (1,0)
and (1,1), as illustrated in Figure 1.12 (b). Unlike the previously discussed performance
measures, the AUC therefore facilitates system performance estimation for all possible ver-
ification thresholds. The AUC may also intuitively be interpreted as the probability that
the system will rank a randomly chosen positive instance higher than a randomly chosen
negative instance. For a comprehensive discussion on ROC-based performance analysis,
the reader is referred to Fawcett (2006).

The systems developed in this study are evaluated both in terms of the AUC and
EER performance measures. We are primarily concerned with the AUC, since this metric
provides a stable and comprehensive indication of continuous classifier performance. We
also consider the EER, however, since it remains the most commonly reported metric
found in the literature. The EERs reported in this study therefore place the performance
of each proposed system into a familiar context, whilst also providing a sensible platform
for performance comparison with prior work.
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1.3 Objectives

During the course of this study, we aim to achieve two primary objectives, namely the
successful design and implementation of:

• a novel strategy for writer-independent off-line signature representation. We specifi-
cally aim to investigate the use of the discrete Radon transform (DRT) in conjunction
with a DTW-algorithm for the respective purposes of feature extraction and the sub-
sequent dichotomy transformation; and

• a novel strategy for the incorporation of writer-specific information into a writer-
independent off-line or on-line signature modelling framework. We specifically aim
to investigate the feasibility of a writer-specific dissimilarity normalisation function.

Furthermore, we aim to incorporate the above-mentioned concepts into the design of novel
and proficient off-line and on-line signature verification systems.

1.4 Overview of this study

In this study we develop a set of four writer-independent handwritten signature verification
systems, that is two off-line verification systems and two on-line verification systems. In
both the off-line and on-line cases, each system employs either quadratic discriminant
analysis (QDA) or an SVM for signature modelling and verification. As a result, each one
of the aforementioned systems may be considered unique.

In this section we provide a condensed review regarding the design of these systems.
We also briefly discuss the experimental protocol considered for system evaluation and
highlight selected results achieved by the proposed systems.

An initial conceptualisation of the proposed QDA-based off-line signature verification
system is presented in Swanepoel and Coetzer (2012), whilst the proposed SVM-based
off-line signature verification system is introduced in Swanepoel and Coetzer (2013). An
initial conceptualisation of the proposed SVM-based on-line signature verification system
can be found in Swanepoel and Coetzer (2014).

1.4.1 System design

The design of a typical signature verification system developed in this study is conceptu-
alised in Figure 1.13.

The proposed design framework adheres to the basic principles of the pattern recog-
nition process illustrated in Figure 1.6 (see Section 1.2.5). It is clear from this concep-
tualisation that the development of each system may be divided into three key stages,
namely signature representation, signature modelling and signature verification. We now
provide an abridged overview of these key stages, whilst comprehensive discussions on said
processes are reserved for Chapters 3–5.
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Figure 1.13: Schematic representation of a typical system developed in this study. Detailed

schematics of the signature representation, signature modelling and signature verification pro-

cesses are presented in Figures 1.14–1.17.

Signature representation

As mentioned earlier, the systems developed in this study are concerned with two funda-
mentally different types of signature data, that is off-line and on-line signatures. Therefore,
in order to successfully convert raw signature data into a suitable representation in feature
space, fundamentally different approaches to feature extraction are required. Furthermore,
since we employ a writer-independent framework for signature modelling and verification,
the initial feature space representation is subjected to a dichotomy transformation that
yields the final signature representation in dissimilarity space.

Off-line signatures. The signature representation process utilised by a typical off-line
system developed in this study is conceptualised in Figure 1.14.

Since the source data associated with an off-line sample is represented by a digitised
image of the original pen-on-paper signature, several image processing techniques are first
required in order to ensure efficient feature extraction. These techniques are concerned
with image binarisation, noise reduction and signature segmentation. The issues of im-
age binarisation and noise reduction are addressed using two tried and tested techniques,
namely Otsu’s method and the median filter respectively. In order to improve upon the
traditional method of signature segmentation, namely signature extraction by means of
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Figure 1.14: Schematic representation of the off-line signature representation process utilised

in this study.

its bounding box, we propose that the signature images are extracted from the document
background by removing all zero-valued image rows and/or columns. In Section 3.2.1 we
show that this method is less sensitive to the presence of any residual noise, when compared
to the bounding box method. The proposed method also ensures that any subsequently
extracted features are invariant with respect to translation.

Once a suitable binary signature image has been obtained, the DRT is used to extract
a set of projection profiles – each associated with one of T predetermined angles. These
projection profiles are subsequently normalised in such a manner that each profile has the
same predefined dimension d, whilst the feature set as a whole has a unit variance, thereby
ensuring a feature set that is also invariant with respect to scale.

The off-line feature extraction technique utilised in this study therefore converts any
raw signature image into a feature set consisting of T , d-dimensional feature vectors.

On-line signatures. The signature representation process utilised by a typical on-line
verification system developed in this study is conceptualised in Figure 1.15.

Both of the on-line data sets considered in this study are captured using devices capable
of recording the pen stroke coordinates, pen pressure, as well as pen angle relative to the
writing surface. As is the case in the off-line scenario, the source data is first pre-processed
in order to maximise the efficacy of the subsequent feature extraction process. Firstly,
the pen stroke coordinates are normalised, in order to obtain spatial descriptors that are
invariant with respect to scale and translation. Also, the set of pen pressure values are
normalised with respect to the point of maximum pressure.
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Figure 1.15: Schematic representation of the on-line signature representation process utilised

in this study.

This initial set of normalised function features is used to derive several additional
function features. Specifically, the first and second derivatives of each normalised function
feature is calculated, in order to maximally exploit the temporal information associated
with signature production. Finally, the signature duration, as described by the number
of measurements captured for any given function feature, is also considered as a global
descriptor.

The on-line feature extraction technique utilised in this study therefore converts any
raw signature data into a feature set consisting of eighteen feature vectors with arbitrary
dimension, as well as a single scalar feature.

Dichotomy transformation. The off-line and on-line feature extraction processes de-
scribed above may be used to obtain an initial signature representation in feature space,
which would be suitable for consideration within a writer-dependent signature modelling
framework.

In order to convert this initial feature-based representation into a writer-independent
signature representation in dissimilarity space, any feature set extracted from a training or
questioned signature sample is compared to that extracted from a writer-specific genuine
reference sample. In this manner, the systems developed in this study convert a specific
feature set, composed of T feature vectors, into a single T -dimensional dissimilarity vector.
Each element of this dissimilarity vector, in turn, represents the distance between a pair of
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Figure 1.16: Schematic representation of the signature modelling process utilised in this study.

corresponding3 feature vectors. A DTW-algorithm is used to perform the aforementioned
distance calculation.

Signature modelling

The signature modelling process utilised by a typical system developed in this study is
conceptualised in Figure 1.16.

A collection of both positive and negative signature samples, that is required for the
training of a writer-independent signature model, is obtained from a number of so-called
guinea-pig writers in a controlled environment. These writers are considered representative
of the general public and their signatures are used only for training purposes. Each writer
submits a set of genuine reference samples, as well as a set of genuine training samples. A
set of amateur skilled forgeries is also obtained for each writer.

For every guinea-pig writer considered, each positive and negative sample is compared to
each reference sample, in order to produce a set of positive and negative dissimilarity vectors
for training purposes. Every reference sample is also compared to every other reference
sample, in order to obtain a set of positive dissimilarity vectors, which is subsequently used
to determine dissimilarity statistics for said individual. These statistics, that include the
feature-specific mean and standard deviation metrics, aim to quantify the acceptable level
of variability expected for different genuine samples belonging to a specific writer and are
retained for future use.

The entire collection of positive (or negative) dissimilarity vectors, obtained from all

3In the scenario where two off-line feature sets are presented for comparison, the corresponding feature
vectors represent two projection profiles, that is one from the training or questioned sample and one from
the reference sample, that were calculated from the same projection angle. In the on-line scenario, these
feature vectors each contains the entire set of measurements recorded for the same descriptor.
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Figure 1.17: Schematic representation of the signature verification process utilised in this study.

the guinea-pig writers, is pooled into a positive (or negative) dissimilarity set. These dis-
similarity sets are subsequently subjected to an iterative outlier-pair removal algorithm, in
order to discard any training samples that are deemed misrepresentative of the positive and
negative classes, whilst also ensuring that the training data remain balanced. Furthermore,
in order to optimise the representation potential of the remaining samples in the training
set, each dissimilarity vector undergoes appropriate normalisation. The systems developed
in this study perform said normalisation on a writer-specific level, where the dissimilarity
statistics computed earlier are used to rescale a logistic function, thereby yielding a sep-
arate normalisation function for each individual writer. The set of positive and negative
dissimilarity vectors, belonging to a specific writer only, are subsequently normalised using
his/her tailored normalisation function.

Finally, the normalised dissimilarity sets are used to train a universal classifier, that is
either a quadratic discriminant or an SVM, which is retained for verification purposes.

Signature verification

The signature verification process utilised by a typical system developed in this study is
conceptualised in Figure 1.17.

In order to qualify for consideration by the now functional verification system, any
newly enrolled writer is required to submit a set of K genuine reference samples. When
presented with an off-line or on-line signature sample (of unknown origin), as well as an
associated claim of ownership, the system first compares the questioned sample to the
entire set of reference samples belonging to the claimed owner. This process yields a set of
K dissimilarity vectors. Each dissimilarity vector is subsequently normalised, using only
the writer-specific dissimilarity statistics associated with the claimed owner.

Each of the normalised dissimilarity vectors is then individually presented to the trained
model, in order to obtain a set of distance measures relative to the corresponding decision
boundary in dissimilarity space. Each distance measure is converted, by means of a con-
ventional logistic function, into a partial confidence score. A final confidence score, that
represents the average of the set of K partial confidence scores, is then determined.
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Finally, an appropriate threshold is applied to the final confidence score, in order to
predict class membership.

1.4.2 Experimental results

The systems developed in this study are subjected to a rigorous experimental evaluation
protocol, in order to ascertain their proficiency in the detection of amateur skilled forgeries.
Several large signature databases are considered, whilst the experimental protocol ensures
comprehensive and unbiased system performance estimates by employing both k-fold cross-
validation and n-fold data randomisation.

The off-line systems are evaluated using Dolfing’s data set (4530 samples from 51
writers) and the MCYT-SignatureOff-75 subcorpus (2250 samples from 75 writers). When
the number of reference signatures available for each writer in Dolfing’s data set is varied
between five and fifteen, the optimal QDA-based system achieves an average AUC and EER
of 99.39% and 3.43% respectively. When five and ten reference signatures are available for
each writer in the MCYT-SignatureOff-75 subcorpus, these metrics deteriorate to 96.03%
and 10.39% respectively. The optimal SVM-based system proves superior in terms of
performance, yielding an average AUC (EER) of 99.43% (3.31%) on Dolfing’s data set and
96.29% (9.93%) on the MCYT-SignatureOff-75 subcorpus. It should be noted that the
discrepancy in terms of the system performance estimates obtained from these two data
sets is largely explained by the fact that, unlike the MCYT-SignatureOff-75 subcorpus,
Dolfing’s data set contains ideal off-line signature samples i.e. samples that possess uniform
stroke width and are completely free of background noise.

The on-line systems are evaluated using the Philips database (4530 samples from 51
writers) and the MCYT-Signature-100 subcorpus (5000 samples from 100 writers). When
5–15 reference signatures are available per writer, the QDA-based system achieves an
average AUC (EER) of 99.66% (1.96%) on the Philips database and 99.38% (3.32%) on
the MCYT-Signature-100 subcorpus. The SVM-based system again proves more proficient,
yielding metrics of 99.87% (0.89%) on the Philips database and 99.49% (2.82%) on the
MCYT-Signature-100 subcorpus.

In Chapter 6 we show that the results reported in this study compare favourably with
previous results reported in the literature.

1.5 Contribution of this study

In this study we propose and develop several techniques that are novel within the context
of automatic handwritten signature verification. These techniques include:

• A DTW-based dichotomy transformation for writer-independent off-line
signature representation.
By matching the descriptors contained in DRT-based feature vectors according to
similarity, rather than location, the proposed approach is able to minimise the ad-
verse effects of intra-class variability and therefore aids in the construction of a su-
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perior signature model. When compared to the traditional Euclidean distance-based
dichotomy transformation, the DTW-based technique proposed in this study is shown
to result in a statistically significant improvement in terms of system proficiency.

• A writer-specific dissimilarity normalisation strategy for writer-indepen-
dent handwritten signature modelling.
By incorporating writer-specific information into the writer-independent signature
modelling framework, the proposed approach is able to improve inter-class separa-
bility and therefore aids in the construction of a superior signature model. When
compared to the traditional global normalisation strategy, the writer-specific strategy
proposed in this study is shown to result in a statistically significant improvement
in terms of system proficiency – when either the off-line or on-line scenarios are
considered.

• A writer-independent off-line signature verification system that is both
novel and proficient.
When compared to existing systems that were also evaluated on Dolfing’s data set and
the MCYT-SignatureOff-75 subcorpus, the systems developed in this study are shown
to outperform several of the most proficient systems documented in the literature.

• A writer-independent on-line signature verification system that is both
novel and proficient.
When compared to existing systems that were also evaluated on the Philips database
and the MCYT-Signature-100 subcorpus, the systems developed in this study are
shown to outperform several of the most proficient systems documented in the liter-
ature.

Detailed discussions on the above-mentioned contributive components of the systems devel-
oped in this study are presented in Chapters 3–5, whilst a rigorous experimental validation
of their impact on system proficiency is presented in Chapter 6.

In conclusion, since each of the novel techniques proposed in this study constitutes
an improvement to the current state of the art, we assert that the work presented herein
constitutes a significant contribution to the field of automatic handwritten signature veri-
fication.

1.6 Outline

The remainder of this dissertation is organised as follows:

Chapter 2: Literature Study presents concise discussions on selected previous works
pertaining to handwritten signature verification, thereby providing the reader with a con-
textual perspective regarding the wide range of available techniques and associated levels
of success achieved.
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Chapter 3: Signature Representation discusses how the systems developed in this
study convert raw signature data, associated with either off-line or on-line samples, into
dissimilarity vectors that are suitable for consideration within a writer-independent signa-
ture modelling framework. This chapter also introduces the novel DTW-based dichotomy
transformation for the purpose of off-line signature representation.
Chapter 4: Classifiers introduces and concisely describes the generative and discrimi-
native classification techniques considered in this study.
Chapter 5: Signature Modelling and Verification presents additional data process-
ing techniques performed on the initial dissimilarity sets and explains how the resulting
sets are utilised, in conjunction with a suitable classification technique, to construct a ro-
bust writer-independent signature model. The verification protocol utilised by a trained
model is also discussed in detail. This chapter also introduces the novel writer-specific
dissimilarity normalisation strategy.
Chapter 6: Experiments describes the data sets and experimental protocol considered
to evaluate the proficiency of the off-line and on-line systems developed in this study. A
detailed system performance analysis is provided, as well as a performance comparison with
previous systems proposed in the literature. We also empirically verify the contribution of
the novel concepts proposed in this study.
Chapter 7: Conclusion and Future Work provides concluding remarks regarding the
work presented in this study, whilst introducing several additional topics, deemed poten-
tially beneficial to the systems developed herein, as part of a potential continuation of this
study.
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Chapter 2

Literature Study

“If I have seen further it is by standing on the shoulders of giants.”
- Isaac Newton (1642–1727)

2.1 Introduction

The field of automatic signature verification has enjoyed sustained interest over the past few
decades. Over the years, numerous systems have been proposed in the literature. These
systems utilise a wide variety of fundamentally different image processing and pattern
recognition techniques for signature representation and modelling. In order to gain a
historical perspective regarding advances in the field, the reader is referred to such surveys
as Plamondon and Lorette (1989), Sabourin et al. (1992), Leclerc and Plamondon (1994),
Hou et al. (2004), and Impedovo and Pirlo (2008). For an updated state of the art, as well
as discussions on recent advances and open issues, the reader is referred to such surveys as
Pal et al. (2011), Impedovo et al. (2012), and El-Henawy et al. (2013).

In this chapter we present concise discussions on selected works pertaining to off-line
(Section 2.2) as well as on-line (Section 2.3) signature verification that are deemed rele-
vant1 to this study. These discussions are presented in chronological order and contain the
following information: (i) the associated author(s) and year of publication; (ii) the fea-
ture extraction technique(s) and, where applicable, the dichotomy transformation utilised
for signature representation; (iii) the classification technique(s) utilised for signature mod-
elling and verification; (iv) the nature and composition of the data set(s) considered for
experimental evaluation and (v) the experimental results reported by the author(s). The
reader is reminded that, since the systems discussed in this chapter were evaluated on
different data sets (using different experimental protocols), the results reported here may
not necessarily be compared directly, but rather serve as a general indication of system
proficiency.

1Studies on handwritten signature verification documented in the literature are considered relevant to
this study if they have similar objectives, utilise similar pattern recognition techniques or consider a similar
data set for experimental evaluation.

29
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2.2 Off-line signature verification

For our discussion of off-line signature verification systems, a distinction is made between
those systems that utilise writer-dependent (Section 2.2.1) and writer-independent (Sec-
tion 2.2.2) frameworks for signature modelling and verification. A hybrid system, that is a
system that utilises a combination of writer-dependent and writer-independent approaches,
is also discussed in Section 2.2.3.

2.2.1 Writer-dependent systems

During the early years of research into the development of automatic off-line signature
verification systems, researchers focussed exclusively on the writer-dependent approach
to signature model construction. We now present a concise survey of selected writer-
dependent off-line signature verification systems.

Fierrez-Aguilar et al. (2004) illustrate the potential benefits of information fusion by
developing three separate verification systems. The first system, referred to as the global
expert, considers a set of 32 slant features (extracted by means of morphological operators)
for the purpose of signature representation. These features are extracted from the entire
signature image and are therefore considered to be global signature descriptors. The second
system, referred to as the local expert, considers the same set of slant features. However,
these local slant features are extracted from sub-images of the original signature image,
that are obtained by means of a grid-based segmentation strategy. The global and local
experts perform similarity computation using two fundamentally different techniques. The
former utilises an inverse Mahalanobis distance, whilst the latter employs a left-to-right
hidden Markov model (HMM). Both systems are evaluated on the MCYT-SignatureOff-75
subcorpus (henceforth referred to as MCYT-75). This subcorpus is discussed in more detail
in Section 6.2.1. When five and ten genuine samples are available for model training, the
global expert achieves equal error rates (EERs) of 21.84% and 18.93% respectively, whilst
the more proficient local expert achieves EERs of 14.51% and 12.22% respectively. The
third system, referred to as the combined expert, is obtained through fusion of the global
and local experts. The employed fusion strategy involves a linear mapping of the similarity
scores yielded by the two individual systems to the range [0, 1], followed by the averaging of
the mapped scores. When also evaluated on MCYT-75, the combined expert outperforms
both the global and local experts by achieving EERs of 11.00% (for five training samples)
and 9.28% (for ten training samples).

In Coetzer (2005), two fundamentally different verification systems are proposed. Both
systems utilise the discrete Radon transform (DRT) for the purpose of global feature ex-
traction. Signature modelling and verification are achieved using either a dynamic time
warping (DTW) algorithm or a continuous HMM. A novel ring-structured HMM topology
is also proposed. Unlike the traditional left-to-right HMM configuration (as utilised in
e.g. Fierrez-Aguilar et al. (2004)), the proposed ring-structured HMM is able to facilitate
rotation invariant signature modelling. Both the DTW-based system and the HMM-based
system are evaluated on the Stellenbosch data set, which contains 660 genuine signatures,
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132 amateur skilled forgeries and 132 casual forgeries obtained from 22 writers. In addi-
tion, the HMM-based system is also evaluated on Dolfing’s data set (see Section 6.2.1).
When only skilled forgeries and only casual forgeries from the Stellenbosch data set are
considered, the DTW-based system achieves EERs of 18% and 4% respectively, whilst the
HMM-based system achieves EERs of 17.7% and 4.5% respectively. When only skilled
forgeries and only professional forgeries from Dolfing’s data set are considered, the HMM-
based system achieves EERs of 12.2% and 15% respectively. The results reported here are
based on the assumption that fifteen genuine samples are available for model training.

The global and local experts proposed by Alonso-Fernandez et al. (2007) are similar in
design to those previously proposed by Fierrez-Aguilar et al. (2004), in the sense that they
also consider slant-based features for the construction of Mahalanobis distance-based and
left-to-right HMM-based signature models. However, in addition to the 32 slant features
detailed in Fierrez-Aguilar et al. (2004), the proposed systems also extract a further 30
slant features from the signature envelope. The resulting set of 62 features is utilised
during signature modelling and verification. The proposed systems are also evaluated on
MCYT-75 under similar experimental conditions to those considered in Fierrez-Aguilar
et al. (2004). When five and ten genuine samples are available for model training, the
global expert achieves EERs of 23.78% and 22.13% respectively. Again, the local expert
proves superior and achieves EERs of 17.76% and 14.44% respectively. The fact that
both of these systems are outperformed by those previously proposed in Fierrez-Aguilar
et al. (2004) emphasises the importance of designing an effective feature extraction process.
Specifically, the reported results confirm that the utilisation of an increased number of
pattern descriptors does not necessarily improve the proficiency of the associated pattern
recognition system. Furthermore, the fact that both the global and local experts employ a
generative classification technique (see Section 4.2) for the purpose of signature modelling
would suggest that their decreased performance, as a direct result of utilising an expanded
feature set, may in all likelihood be due to the adverse effects of the ugly duckling theorem
(see Section 3.5) and/or the curse of dimensionality (see Section 4.3.2).

The system proposed by Gilperez et al. (2008) examines binary signature images in
terms of their apparent stroke contours – both internal and external. Signature represen-
tation is achieved by determining several histograms from local contour directions, contour
hinges and directional co-occurrence angles (both horizontal and vertical) from a set of
training samples, whereafter each histogram is normalised to a feature-specific probability
density function (PDF). The authors note that this contour-based signature representation
successfully circumvents any potential adverse effects related to variations in stroke width.
During the subsequent verification stage, similarity calculation is performed by means of
the chi-squared distance measure. Skilled forgeries from MCYT-75 are considered for sys-
tem evaluation. When five genuine samples are available for model training (i.e. PDF
estimation), the set of four feature-specific verification systems achieve EERs in the range
10.18%–12.71%. When the number of training samples is increased to ten, the system
performance improves and EERs of 6.44%–10.00% are reported. Additional experiments
reveal that no improvement in performance is witnessed when the feature-specific verifi-
cation systems are combined into a single multi-feature verification system. The authors
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suggest that this is most likely due to an existing correlation between the specific features
utilised.

The systems proposed by Wen et al. (2009) are primarily aimed towards the construc-
tion of a rotation invariant signature representation in feature space. A binarised signature
image is first segmented by means of a circular frame, so that the frame fully encloses the
signature, whilst its center of gravity coincides with that of the signature. This is followed
by the extraction of two ring-peripheral features, specifically the ring-external-feature (that
is the background area between the segmentation frame and its closest pen strokes) and
the ring-internal-feature (that is the background area between the center of gravity and
its closest pen strokes). These ring-peripheral features are computed for several equally
spaced segments within the circular frame, whereafter the entire set of computed feature
values is combined to form a single feature vector. The authors note that, in order to
ensure rotation invariance during signature modelling, a sufficiently large number of seg-
ments is required (from their experiments it appears that the use of 72 segments yields
optimal system performance). Signature modelling and verification is achieved by using
either an inverse Mahalanobis distance model or a ring-structured HMM. Both systems
are evaluated on MCYT-75 using five genuine signature samples for writer-specific model
construction. The optimal distance model and HMM-based systems achieve comparable
EERs of 15.3% and 15.02% respectively.

Swanepoel and Coetzer (2010) propose an ensemble-based system that consists of eight
so-called base classifiers. Each individual base classifier utilises one of four graphometric
features, that is the pixel density, the gravity center distance, the baseline orientation, and
the predominant slant. These features are extracted locally using a flexible grid segmen-
tation scheme, that is a grid-based segmentation technique that allows adjacent grid cells
to overlap by a predetermined factor. Each base classifier utilises either a DTW-algorithm
or a left-to-right discrete HMM for signature model construction. When skilled forgeries
from Dolfing’s data set are considered for system evaluation, the individual base classi-
fiers achieve EERs in the range 13.60%–18.55%. Furthermore, when the entire ensemble
is combined using either score averaging or majority voting, the achieved EERs improve
to 11.21% and 10.23% respectively. In each case, fifteen genuine samples are reserved for
training purposes. The authors also show that the flexible grid-based signature segmen-
tation strategy consistently and significantly outperforms the traditional rigid grid-based
approach.

A novel extension of the HMM-based system previously proposed by Coetzer (2005) is
investigated in Panton and Coetzer (2010). The proposed system also employs the DRT
for feature extraction. However, where the systems proposed in Coetzer (2005) utilise
the DRT to extract global shape descriptors, Panton and Coetzer (2010) utilise this algo-
rithm to locally extract projection profiles from a set of overlapping circular retinae. The
aforementioned signature representation is subsequently used to construct an ensemble of
ring-structured HMMs – one associated with each retina. Finally, the verification of a
questioned signature sample is performed through a majority vote of the region-specific
HMMs in the trained ensemble. When skilled forgeries from Dolfing’s data set are con-
sidered for system evaluation, the proposed system achieves an EER of 8.6% when fifteen
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genuine samples are available for model training. The reported results indicate a significant
improvement in proficiency when compared to those reported for the previously proposed
global DRT-based system. Furthermore, this study makes an important observation re-
garding the impact of the experimental protocol on the reliability of system performance
evaluation. In their initial experimental setup, which incorporates k-fold cross-validation
– a technique commonly utilised in the literature for the purpose of avoiding an over-fitted
system performance estimation – it is found that the achieved results remain sensitive to
the ordering of the writers considered for training and evaluation. In order to address this
issue, the ordering of the writers is randomised prior to cross-validation, thereby nullifying
the influence of writers associated with atypically proficient or poor system performance.
The authors suggest that this process of so-called data shuffling should be repeated several
times in order to obtain reliable system performance estimates.

In contrast to the predominantly employed strategy for off-line signature representation,
that is the extraction of global and/or local descriptors from a binarised signature image,
Vargas et al. (2011) propose a feature extraction technique that is rooted in statistical
texture analysis of grey-level images. The proposed method involves the computation
of the grey-level co-occurrence matrix together with histograms of several local binary
patterns (LBPs) as pseudo-dynamic global signature descriptors. In order to maximise the
efficacy of the aforementioned feature extraction technique, any signature image presented
for analysis first undergoes several pre-processing stages, including histogram displacement
and background removal2. Those feature sets extracted from positive and negative3 samples
associated with a specific writer are used to construct a support vector machine (SVM)
classifier with a radial basis function (RBF) kernel (see Section 4.4). The proposed system
is evaluated using skilled forgeries from both the MCYT-75 and GPDS-100 subcorpora.
When five and ten genuine samples are available for model training, the system achieves
EERs of 12.02% and 8.80% respectively on the former data set. When evaluated on the
latter data set, EERs of 12.06% (for five training samples) and 9.02% (for ten training
samples) are reported.

A further study into the potential benefits associated with the consideration of grey-
level information during signature image analysis is presented in Ferrer et al. (2012),
with special focus on the investigation of the robustness of grey-level features when con-
fronted with a complex document background. To this end, MCYT-75 and the well-known

2It is worth mentioning that a clear distinction should be made between the processes of image bi-
narisation and image background removal. Binarisation algorithms are aimed towards the categorisation
of image pixels as belonging either to the foreground or background. In the resulting binarised image,
foreground pixels are typically represented by ones, whilst background pixels are typically represented
by zeros. A background removal algorithm also aims to detect the image background and subsequently
represents the identified background pixels with zero-values. However, following successful background
removal, the remaining pixels with non-zero values not only indicate the location of foreground pixels
(that are indicative of the apparent pen strokes), but also their associated grey-level intensities (that are
indicative of the associated pen pressure).

3The reader is reminded that, within the context of writer-dependent signature modelling by means
of a discriminative classification technique, the negative samples associated with a specific writer are
represented by positive samples belonging to other writers (i.e. random forgeries).
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GPDS960GraySignature corpus are considered for the purpose of system evaluation, as well
as several artificially generated signature databases. The samples contained in the artificial
databases are obtained by blending the original signature images from the aforementioned
signature corpora with real-world document images that possess varying levels of distor-
tion. Following a background removal process, histograms of the LBPs, local derivative
patterns and local directional patterns are extracted and subsequently used to construct
either a nearest neighbour classifier or an SVM (several SVM kernels are investigated). Nu-
merous experimental results are reported in order to investigate not only the discriminative
potential of each feature-classifier pair, but also the influence of different document distor-
tion levels on system proficiency. Ultimately, the SVM with a positive definite chi-square
kernel is found to be the most robust classifier, whilst the local derivative pattern is found
to be the most discriminating feature. Under optimal operating conditions (i.e. when
no distortion of the document background occurs), the aforementioned feature-classifier
pair achieves EERs of 10.97% and 16.85% on MCYT-75 and the GPDS960GraySignature
corpus, respectively, when five training samples are available for model construction. Fur-
thermore, the authors show that the expected level of success achievable by each system is
inversely proportional to the level of distortion present in the document image background.

2.2.2 Writer-independent systems

Although the development of writer-dependent signature verification systems remains a
very active field of research, the use of writer-independent frameworks for signature mod-
elling has gained increased popularity in recent years. We now present a concise survey of
selected writer-independent off-line signature verification systems.

The system proposed by Santos et al. (2004) employs the so-called questioned document
expert’s approach to signature verification. In the expert’s approach, any questioned sig-
nature is first individually compared to each one of the genuine samples contained within
the appropriate writer-specific reference set, where each such comparison yields a partial
decision. The final decision regarding the authenticity of the questioned sample is subse-
quently obtained by means of decision fusion, usually a majority vote of the set of partial
decisions. Following the segmentation of the signature image, by means of a rigid grid
composed of 8× 20 square grid cells, the proposed system extracts four different grapho-
metric features from each grid cell. Similar descriptors extracted from different grid cells
are subsequently concatenated, which produces a set of four 160-dimensional feature vec-
tors. An Euclidean distance-based dichotomy transformation is subsequently performed, in
order to obtain a 4-dimensional dissimilarity vector for the purpose of writer-independent
signature representation in dissimilarity space. Signature modelling is achieved by means
of a multilayer perceptron (MLP). The system is evaluated on an unspecified signature
corpus that contains 9600 samples obtained from 240 writers. When only skilled forgeries
are considered, this evaluation results in a false rejection rate (FRR) of 10.33% and a false
acceptance rate (FAR) of 15.67%. Furthermore, the authors conclude that the utilisation
of a writer-independent approach to signature model construction is able to successfully
reduce the number of genuine signatures required per writer for the purposes of train-
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ing and validation, whilst their proposed writer-independent verification system is able to
efficiently absorb new writers without the need to generate additional personal models.

In Batista et al. (2010), a two-stage verification system is proposed that employs a novel
approach to dissimilarity calculation. In the first stage, a grid-based segmentation scheme is
used to extract local pixel density information from a grey-level signature image. However,
where a typical writer-independent system would compare the feature sets obtained from
writer-specific training and reference samples by means of a suitable distance measure, the
proposed system uses the feature sets extracted from positive and negative training samples
to construct several writer-dependent discrete left-to-right HMMs – each with a different
number of states and/or codebook sizes, and each associated with either the genuine class
or the imposter class. The combination of the likelihood scores emitted by these HMMs
serves as a writer-independent signature representation in dissimilarity space, as opposed
to (for example) the dissimilarity measures yielded by an Euclidean distance method. In
the second stage, the aforementioned HMM-based dissimilarity representation is used to
train two fundamentally different writer-independent classifiers, that is either a Gentle
AdaBoost classifier or an SVM ensemble of which the decisions are combined through
majority voting. Random, casual and skilled forgeries from the Brazilian database, that
contains 7920 samples obtained from 168 writers (108 writers provided 40 samples each,
whilst 60 writers provided 60 samples each), are considered for system evaluation. When
twenty genuine signatures and twenty random forgeries are available per writer for training
purposes, the AdaBoost-based system and the SVM-based system achieve average error
rates (AERs) of 6.54% and 6.21% respectively.

In Kumar et al. (2011), a novel feature extraction technique is proposed that is based
on the so-called surroundedness property of each pixel in a binary signature image and
is said to capture both shape and texture information. The absolute difference between
corresponding feature vector elements is used as a dichotomy transformation, whereafter an
appropriate feature selection technique (several candidate techniques are investigated) is
applied. Two discriminative classifiers, an MLP and an SVM, are subsequently constructed
for the purposes of signature modelling and verification. When evaluated on the well-
known CEDAR and GPDS300 signature corpora, the authors report that their MLP-based
verification system proves superior in terms of classification accuracy – achieving 91.67%
and 86.24% success on CEDAR and GPDS300 respectively.

2.2.3 Hybrid systems

When designing a signature verification system, one generally decides beforehand to utilise
either a writer-dependent or a writer-independent approach to signature model construc-
tion. However, in a recent paper by Eskander et al. (2012) it is suggested that the simulta-
neous utilisation of both of these fundamentally different signature representation platforms
may in fact prove complimentary, resulting in a so-called hybrid approach.

The hybrid system proposed in Eskander et al. (2012) is constructed in two separate
stages. In the first stage, an initial universal signature representation is obtained in dis-
similarity space. This is achieved through the subtraction of writer-specific feature vectors,
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each composed of several features based on extended-shadow-codes and directional PDFs.
This initial representation is subsequently used for writer-independent feature selection by
means of a boosting feature selection algorithm. In the second stage, the same boosting
process is applied to construct a unique model for each writer in feature space, but using
only the features that proved maximally discriminant in the preceding feature selection
stage. The authors report that this hybrid system achieves verification performance which
is comparable to that of existing writer-independent systems, whilst computational com-
plexity is significantly improved. When five genuine training samples are available per
writer, an AER of 5.38% is achieved on the Brazilian database.

To the best of our knowledge, the signature verification system detailed above represents
the only system in the current literature that utilises such a hybrid architecture.

2.3 On-line signature verification

For our discussion of on-line signature verification systems, once again a distinction is made
between those systems that utilise writer-dependent (Section 2.3.1) and writer-independent
(Section 2.3.2) frameworks for signature modelling and verification.

2.3.1 Writer-dependent systems

An exhaustive search of the literature reveals that practically all previously proposed on-
line signature verification systems utilise a writer-dependent approach to signature model
construction. We now present a concise survey of selected writer-dependent on-line signa-
ture verification systems.

The system proposed by Dolfing et al. (1998) constructs a unique left-to-right con-
tinuous HMM for each enrolled writer. Each HMM is constructed using fifteen genuine
training signatures, where each training sample is represented by a combination of 32 dif-
ferent spatial, temporal and contextual features. These features are extracted at the stroke
level, which requires a pre-processing stage that segments a signature sample according to
its velocity profile. The collection of the Philips signature database (see Section 6.2.1) is
also facilitated in this study. When the proposed system is evaluated on the subset of 24
writers for whom professional forgeries are available, the authors report EERs of 2.33%,
2.88% and 2.33% when only home-improved, only over-the-shoulder and only professional
forgeries are respectively considered. When skilled forgeries (that includes both home-
improved and over-the-shoulder forgeries) from the entire set of 51 writers are considered
for evaluation, an improved EER of 1.90% is achieved. Furthermore, this study also com-
pares the discriminative potential of spatial features with that of temporal features. This
comparison, performed by means of linear discriminant analysis (LDA), clearly shows that
the discriminative potential of temporal features is substantially superior to that of spa-
tial features. This disparity between the discriminative potential of spatial and temporal
features also explains why said system achieves comparable EERs for home-improved and
professional forgeries (i.e. instances where the forger only has access to an off-line sam-
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ple and can therefore not infer reliable temporal information), whilst over-the-shoulder
forgeries (i.e. instances where the forger witnesses an authentic signing event and is there-
fore able to mimic several temporal properties during signature reproduction) prove more
difficult to detect.

Le Riche (2000) also investigates an HMM-based approach to on-line signature mod-
elling. The proposed system first normalises the input signals in order to obtain an initial
feature set that is invariant with respect to translation, scale and rotation. Several addi-
tional features relating to pen velocity and acceleration are also derived from the initial
feature set, which completes the feature extraction stage. Signature modelling is achieved
by means of first order left-to-right HMMs with duration modelling. When evaluated on
skilled forgeries from the Philips signature database, the proposed system achieves an EER
of 1.02% when fifteen training samples are available per writer. The fact that this HMM-
based system outperforms the HMM-based system proposed by Dolfing et al. (1998), when
evaluated on the same data set, supports the author’s suspicions that the segmentation of
handwriting samples into individual strokes may be redundant (or even detrimental) within
the context of on-line signature verification. According to the author, this pre-processing
stage was most likely inherited from existing systems that were originally aimed towards
handwriting recognition (as is the case for the system proposed in Dolfing et al. (1998)).

Many signature verification systems documented in the literature utilise HMMs to con-
struct writer-specific signature models and subsequently employ the efforts of the Viterbi
algorithm to compute a likelihood score from a questioned signature for the purpose of
verification. However, the study documented in Van et al. (2004) and Van et al. (2007)
suggests that the signature modelling capabilities of an HMM may be exploited even fur-
ther by considering not only the likelihood yielded by the Viterbi algorithm, but also the
corresponding Viterbi path produced during likelihood computation. Their proposed sys-
tem extracts sixteen gesture related features and nine local shape related features from the
original input signal. Following appropriate normalisation, these 25 features are used to
construct a continuous left-to-right HMM from five genuine training samples. As mentioned
earlier, the verification of a subsequently presented questioned sample involves the com-
putation (by means of the Viterbi algorithm) of the likelihood that the questioned sample
was generated by the model belonging to the claimed writer. In addition to the resulting
likelihood score, the system also converts the Viterbi path into a so-called segmentation
score. The final similarity score is calculated as the average of the likelihood score and the
segmentation score. System performance evaluation is conducted using skilled forgeries
from the BIOMET, Philips, SVC2004 and MCYT-Signature-100 (henceforth referred to as
MCYT-100) signature corpora, which yields optimal EERs of 2.33%, 3.25%, 4.83%, and
3.37% respectively.

Lumini and Nanni (2009) propose a novel ensemble-based approach to on-line signature
modelling and verification. Several candidate ensembles are presented – each constructed
by training a collection of classifiers on different subsets of the larger training set. The
set of classifiers within a specific ensemble employ the same classification technique (seven
techniques are considered in total). The pool of training data is constructed by merging
the results obtained from employing two fundamentally different techniques, that is the
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random subspace method (as detailed in e.g. Ho (1998)) applied to a set of 100 so-called
original features (as described in Fierrez-Aguilar et al. (2005) and Nanni and Lumini
(2005)), as well as sequential forward floating selection (as detailed in e.g. Pudil et al.
(1994)) applied to a set of 1000 artificial features. The artificial features are generated by
means of over-complete feature combination, that is the iterative application of a random
number of randomly selected mathematical operators (seventeen operators are considered
in total) on the original feature set. When a questioned signature sample is subsequently
presented for verification, said sample is evaluated by each individual classifier belonging
to a specific ensemble, whereafter the final similarity score yielded by the entire ensemble
is obtained by means of the max rule. The entire set of seven classifier-specific ensembles
is evaluated separately on MCYT-100. When five genuine training samples per writer
are available for model construction, the proposed single-ensemble systems achieve EERs
in the range 5.4%–9.4%. Furthermore, it is shown that an improvement in verification
proficiency is possible when the different ensembles are fused by means of the sum rule.
Under similar experimental conditions, the optimal multi-ensemble system outperforms all
of the single-ensemble systems and achieves an EER of 4.4%.

Montalvão et al. (2010) investigate the impact of data scarcity on the success of a
generative signature modelling strategy, that is a technique that requires the estimation
of (typically multivariate) PDFs for model construction. The proposed system uses a
relatively small set of five training samples to obtain a Gaussian mixture model (GMM)
for each enrolled writer. Signature samples are represented by a set of four features that
are indicative of pen position (both horizontal and vertical), pen pressure and time. In
order to ascertain the influence of the training set size on the reliability of the resulting
covariance estimate, five different levels of model regularisation are also considered, such
that data variability is modelled using either full, diagonal, multi-scalar, single-scalar or
Parzen covariance estimates. System evaluation is performed on MCYT-100. The authors
report that increased regularisation of their GMM-based model (i.e. a reduction in the
complexity of the feature correlations to be estimated) consistently results in improved
system performance. In fact, the optimal average EER of 4.5% is achieved when employing
single-scalar covariance estimation, that is when the same scalar covariance is considered
for each Gaussian in the mixture. This paper therefore serves as a caution against overly
complex covariance estimation when working with limited training data, since this is likely
to invoke the curse of dimensionality (see Section 4.3.2). As explained in Section 1.2.6, the
systems developed in this study attempt to address the issue of data scarcity (and thereby
avoid the curse of dimensionality) by adopting a writer-independent approach to signature
modelling, and in so doing pool the training samples associated with many different writers
into a single (and substantially larger) universal training set.

The system design proposed in Sae-Bae and Memon (2013) is focussed on computational
efficiency and information security. Feature extraction is achieved by first decomposing the
original time-series signature data into Cartesian vectors, from which several higher-order
derivatives are subsequently computed. The vector sequences obtained in the first stage are
then converted into a polar coordinate representation, whereafter several histogram-based
features are derived from the aforementioned polar representation. The authors note that
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this histogram-based feature set is irreversible and therefore ensures the protection of a
writer’s privacy in the event that his/her stored template is somehow uncovered. The final
signature representation is obtained by means of a writer-specific uniform quantisation of
each feature component. Any questioned signature that is presented for verification is first
appropriately quantised, after which the Manhattan distance between the questioned and
template quantised vectors is used to determine its authenticity. The proposed system is
evaluated using skilled forgeries from MCYT-100 and consequently achieves EERs in the
range 5.74%–2.72% when 3–20 genuine samples are available per writer for model training.
When only random forgeries from the aforementioned corpus are considered, the system
performance improves and EERs of 1.43%–0.35% are achieved.

2.3.2 Writer-independent systems

Unlike the paradigm shift witnessed in the field of off-line signature verification, the de-
velopment of writer-independent on-line signature verification systems has received little
to no attention. In fact, to the best of our knowledge, only Ibrahim et al. (2007) and
Muramatsu and Matsumoto (2009) have previously investigated this topic.

The system proposed in Ibrahim et al. (2007) first obtains an initial feature set that
describes the pen trajectory (which is decomposed into horizontal and vertical compo-
nents), pen speed (i.e. the magnitude of pen velocity), as well as pen pressure. Several
pre-processing techniques are performed in order to achieve a feature-based signature rep-
resentation that is invariant with respect to translation, scale and rotation. The pen
trajectory information is then used to compute the absolute angle associated with each
individual trajectory point, that is the angle between the position of said point and the
center of gravity. The set of absolute angles is subsequently used to partition the original
features into so-called low-angle and high-angle subsets, which yields a total of eight feature
vectors. Only the most stable pair of features, that is the two features with the smallest
standard deviation, is retained for signature representation. The retained feature set is
transformed into a dissimilarity-based representation by means of the Euclidean distance,
whereafter a linear decision boundary is determined in dissimilarity space. An unspecified
signature database, that contains 21250 samples (15000 genuine signatures and 6250 skilled
forgeries) from 25 writers, is considered for system evaluation, which consequently yields
an EER of 1.3%. The number of training signatures per writer is also not specified.

In Muramatsu and Matsumoto (2009), a writer-independent system is proposed that
also takes user individuality into account, by employing a so-called user-specific global-
parameter fusion model. Following the translation and scale normalisation of the captured
pen coordinates, the magnitude and directional components of the pen velocity are also
calculated. A DTW-algorithm is used to convert each feature set into a writer-independent
dissimilarity vector. In addition, a user-dependent mean vector is calculated for each writer,
that is a vector which depicts the average dissimilarity between the reference signatures
belonging to a specific writer. The final signature representation is obtained through
concatenation of the dissimilarity vector and the appropriate mean vector. The authors
assert that this concatenation process is able to personalise each dissimilarity vector with
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respect to its owner (or claimed owner) prior to signature modelling (or verification). Model
construction is achieved through the application of an AdaBoost algorithm to a set of initial
simple perceptrons. Signature samples obtained from the BIOMET multimodal database
are used for training purposes, whilst several different signature corpora are considered for
system performance estimation. When evaluated separately on the MCYT-100, SVC2004
and MyIdea signature corpora, the proposed system achieves EERs of 4.0%, 8.6%, and
6.1% respectively.

2.4 Concluding remarks

In this chapter we presented condensed discussions on a wide variety of off-line and on-line
signature verification systems considered relevant to this study.

Several of the works discussed here are of particular interest to this study, since these
works have directly led to, or indirectly served as inspiration for, the development of the
novel techniques proposed in this study. For instance, the combined use of the DRT and
a DTW-algorithm as a feature-classifier pair (as proposed in Coetzer (2005)) inspired the
development of the novel writer-independent off-line signature representation strategy pro-
posed in this study (see Sections 3.2.2 and 3.4). Also, the dissimilarity normalisation
function proposed in this study (see Section 5.2.2), that incorporates dissimilarity statis-
tics inferred from the reference set belonging to a specific writer, is an adaptation of the
normalisation function proposed in Swanepoel and Coetzer (2010). Furthermore, the veri-
fication protocol utilised by the systems developed in this study (see Section 5.3) is based
on the questioned document expert’s approach outlined in Santos et al. (2004). Finally, the
scientifically rigorous experimental protocol considered for the evaluation of the systems
developed in this study (see Section 6.2.2) is similar to the protocol proposed in Panton
and Coetzer (2010).

At present, there is no single standard, internationally accepted handwritten signature
corpus or evaluation protocol for the purpose of performance benchmarking. For the most
part we have consequently limited our literature survey to the discussion of systems that
were evaluated on a data set that is also considered in this study. Although many other
groundbreaking signature verification systems have been proposed in the literature (see
e.g. Impedovo and Pirlo (2008)), only those systems evaluated on similar data sets provide
a realistic platform for comparison. This comparison is presented in Chapter 6. However,
the reader is reminded that even subtle differences in the experimental protocol utilised for
system evaluation prevents one from being able to directly compare reported results – even
when the same data set is considered. Nevertheless, such a comparison aids in placing the
system performance estimates reported in this study into perspective.

In the next chapter we initiate our discussions on the design and implementation of the
handwritten signature verification systems developed in this study.
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Chapter 3

Signature Representation

“Measure what is measurable, and make measurable what is not so.”
- Galileo Galilei (1564–1642)

3.1 Introduction

The process of signature representation constitutes one of the three fundamental stages in
the successful development of a signature verification system, as discussed in Section 1.2.5.
In fact, the ability (or lack thereof) of any pattern recognition system to successfully quan-
tify the difference between multiple pattern classes is entirely dependent on the level of
separability of these classes in feature space. It is therefore of critical importance to obtain
a feature-based pattern representation that maximally discriminates between the classes in
question. Furthermore, in order to utilise a writer-independent signature modelling strat-
egy, it is required that the initial feature-based signature representation be converted into
a dissimilarity-based representation by means of an appropriate dichotomy transformation.

In this chapter we discuss how the systems developed in this study obtain a writer-
independent dissimilarity-based representation from raw signature data. Two fundamen-
tally different signature acquisition methods are considered, namely those associated with
off-line signatures (Section 3.2) and on-line signatures (Section 3.3). In each case, we pro-
vide a brief overview of the acquisition process and the nature of the captured raw data.
We also discuss the need to incorporate suitable data pre-processing techniques that aim
to maximise the efficacy of the subsequent feature extraction processes. Several algorithms
are presented in order to fulfil these pre-processing requirements.

Most notably, in Section 3.4 we propose the utilisation of a DTW-based dichotomy
transformation for the purposes of both off-line and on-line signature representation. The
use of such a dichotomy transformation is novel within the context of off-line signature
representation. We discuss how this approach is able to produce dissimilarity vectors in a
more robust manner than the traditional approaches documented in the literature, thereby
completing the writer-independent signature representation process.

41
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Figure 3.1: Example of a grey-level intensity image that contains an off-line signature sample.

3.2 Off-line signatures

In this section we discuss how the systems developed in this study convert the raw data
extracted from an off-line signature into a suitable representation in feature space.

3.2.1 Signature acquisition and pre-processing

The acquisition of an off-line signature sample typically involves its extraction from a
digitised document image. The task of signature detection and extraction is, however,
by no means a trivial endeavour. Several suitable techniques have been documented in
the literature, such as the methods proposed by Zhu et al. (2007), Mandal et al. (2011),
and Ahmed et al. (2012). In this study we assume the successful completion of such an
extraction process. The raw off-line signature data therefore consists of the m × n grey-
level intensity image I, that is an image with mn pixel values Ii ∈ [0, 255], that contains
no machine-printed nor handwritten data other than the signature itself. An example of
such an image is provided in Figure 3.1.

Unlike the raw data associated with on-line signatures, as discussed later in this chapter,
an off-line signature sample is completely devoid of temporal information. The task of
feature extraction therefore entails the derivation of maximally discriminant descriptors,
using only the spatial information supplied by the apparent1 pen stroke coordinates. As a
result, the problem of efficient off-line signature representation constitutes a considerably
more difficult task than that of its on-line counterpart.

In order to optimally prepare the raw data for feature extraction, it is advisable to
include several pre-processing stages. The image processing techniques utilised during
these stages are typically concerned with image binarisation, noise reduction and signature
segmentation.

Image binarisation

The first stage in pre-processing involves the binarisation of the original grey-level image.
This process aims to yield an image representation that distinguishes between only two

1Since the only data available in a digitised document image consists of unlabelled pixel intensity values,
an automated system can never be truly certain about which pixels undoubtedly represent pen strokes.
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pixel types, namely those pixels that indicate the foreground (i.e. pen strokes) and those
that indicate the background (i.e. the writing surface). The successful completion of such
an image binarisation process therefore nullifies the influence of the writing instruments
used to produce the signature and consequently allows for efficient signature shape analysis.
Furthermore, the binarisation process also aids in the successful completion of the signature
segmentation stage, as we shall discuss later in this section.

As mentioned earlier, the original input image I consists of pixels that indicate grey-
level intensities in the range [0, 255], where a value of 0 corresponds to a black pixel, whilst
a value of 255 denotes a white pixel. The simplest method for obtaining a binary image
I(B) from the grey-level image I is the application of a global threshold ρ ∈ [0, 255], such
that

I
(B)
i =

{
1 if Ii ≤ ρ

0 if Ii > ρ.
(3.1)

In the resulting binary image, a value of 1 is associated with a foreground pixel, whilst a
value of 0 indicates a background pixel. The success of such a global thresholding strategy
is therefore dependent on a sensible value for ρ. The systems developed in this study
determine ρ through the well-known Otsu method. According to this strategy, the optimal
value of the global threshold maximises the inter-class variance between foreground and
background pixels, as outlined in Otsu (1979). A typical result yielded by this method is
illustrated in Figure 3.2 (a).

Noise reduction

As discussed earlier, the primary objective of the binarisation stage is to produce an im-
age that clearly distinguishes between pixels indicative of pen strokes as opposed to the
document background.

It is, however, entirely possible (and in fact an all too regular occurrence) that several of
the pixel values obtained during the binarisation stage are misrepresentative. For instance,
foreign objects such as dust or ink residue may be erroneously binarised as foreground
pixels. In contrast, pen strokes produced with relatively little pressure (and therefore
represented by pixels with a relatively low intensity) may be erroneously binarised as
background pixels.

These erroneously binarised pixels, or noise, may potentially have a negative influence
on both the signature segmentation and feature extraction processes, since they constitute
inaccurate pen stroke information and are therefore not optimally descriptive of the sig-
nature in question. It is therefore of paramount importance that these pixel anomalies be
corrected prior to further analysis.

The systems developed in this study utilise the well-known median filter for noise
reduction. This method uses a 3× 3 pixel window to iteratively pass through a binary
image, subsequently replacing the value of the center pixel with the median value of its
neighbouring pixels. The median filter has been shown to be especially well suited for the
reduction of impulse noise, although it may be less effective in dealing with relatively larger
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(a) (b)

Figure 3.2: Image binarisation and noise reduction. Images obtained after (a) Otsu’s binarisa-

tion method and (b) the median filter are successively applied to the image depicted in Figure 3.1.

The dashed borders indicate the boundary of the original grey-level image. Note that the me-

dian filter successfully removes several traces of impulse noise (encircled in red) and also partially

repairs selected pen stroke segments that were decimated during the preceding binarisation stage.

noise regions. A comprehensive discussion of the median filter is found in Gonzales and
Woods (2002), whilst a typical result yielded by this method is illustrated in Figure 3.2 (b).

Signature segmentation

The final stage in pre-processing is concerned with the segmentation of the signature sub-
image from the document background. This process discards any remaining background
pixels surrounding the signature region, thereby ensuring translation invariance prior to
feature extraction2.

The simplest method for determining the sub-image that isolates the signature region
involves obtaining the bounding box of all non-zero pixels. The resulting segmented sub-
image consists of all pixels within this bounding box. The implementation of this method
is quite straightforward and the obtained results may prove accurate in many instances.
However, the efficacy of this method may be severely impeded by the presence of any
remaining noise not corrected during the noise reduction stage, especially if this noise is
located near the boundary regions of the image, as illustrated in Figure 3.3 (c).

In order to minimise the adverse effects of any remaining noise, the systems developed
in this study segment the signature region by discarding all the rows and/or columns
that contain only zero-values. This method therefore effectively attaches any remaining
noise to the actual signature sub-image, thereby yielding a significantly more accurate
representation of the signature in question, as illustrated in Figure 3.3 (d). It should be
clear that this method also inherently ensures translation invariance.

2The motivation for including a signature segmentation stage is entirely dependent on the feature
extraction technique utilised. For example, if one were to consider local binary patterns (LBPs) for
signature representation (see e.g. Nicolaou et al. (2013)), a segmentation stage would prove redundant,
since LBP-based features are inherently translation invariant. The projection-based feature extraction
technique considered in this study (see Section 3.2.2) does, however, require the efforts of a segmentation
stage in order to achieve a translation invariant feature set.
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(a) (b)

(c) (d)

Figure 3.3: Signature segmentation. (a) Grey-level image of a signature sample surrounded by

traces of ink residue and (b) its resulting binary representation obtained after noise reduction.

Although the pre-processing stages effectively dealt with most of the document degradation, a

small portion of noise is still present near the image boundary (encircled in red). (c)-(d) Signature

segmentation results, where the solid border indicates the sub-image extracted using (c) the

traditional bounding box method and (d) the proposed method of discarding all zero-valued rows

and/or columns. This example clearly illustrates the shortcomings of the bounding box method,

as well as the ability of the proposed segmentation technique to minimise the adverse affects

associated with sub-optimal noise reduction.

The pre-processing stages discussed in this section therefore convert any grey-level
document image, that contains a signature sample, into a binary image that represents the
signature region only, and contains minimal noise.

3.2.2 Feature extraction and normalisation

Once a suitable binary image representation has been obtained, a practically countless
number of suitable local and/or global feature extraction techniques are available for con-
sideration (see e.g. Impedovo and Pirlo (2008)).

In particular, the use of projection profiles for off-line signature feature extraction has
proven a popular technique and is commonly utilised in the literature, since this method
successfully captures global shape information. However, many systems proposed in the
literature (e.g. Fang et al. (2003); Piyush Shanker and Rajagopalan (2007); Jayadevan
et al. (2009)) rely solely on the horizontal and vertical projection profiles for signature
description.
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Figure 3.4: Geometric interpretation of the Radon transform. Each projection Rθ(f(x, y))

constitutes the line integral of f(x, y) parallel to the yθ-axis.

The off-line systems developed in this study extract pen stroke projection profiles by
means of the discrete Radon transform (DRT), that is a discrete approximation of the
transform originally proposed in Radon (1917)3, since it enables the use of an expanded
projection angle set and therefore constitutes a natural progression of the projection-based
method. The DRT has been shown to be well suited for signature representation in e.g.
Coetzer et al. (2004).

The Radon transform of a function f(x, y) is defined as the line integral of f parallel
to the yθ-axis, that is the y-axis rotated by an angle θ, such that

Rθ (xθ) =

∫ ∞
−∞

f(xθ cos θ − yθ sin θ, xθ sin θ + yθ cos θ)dyθ, (3.2)

where [
xθ
yθ

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
, (3.3)

as conceptualised in Figure 3.4.
A DRT-based projection profile is calculated using a set of non-overlapping, equidistant

projection beams, as conceptualised in Figure 3.5. The DRT of an m × n image I is
calculated for T angles using Nϕ projection beams per angle. The cumulative intensity of
the pixels that lie within the jth beam, referred to as the jth beam-sum Rj, is calculated
as follows,

Rj =
mn∑
i=1

αijIi, for j = 1, 2, . . . , NϕT, (3.4)

3An English translation of the original paper by Radon (1917), published in German, may be found in
Radon (1986).
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Figure 3.5: Conceptualisation of the method used to calculate the discrete Radon transform for

a specific angle θ with αij ≈ 0.6. This implies that the jth beam overlaps approximately 60% of

the ith pixel, as indicated by the dark grey shaded region.

where Ii denotes the intensity of the ith pixel, whilst αij denotes the contribution of the ith

pixel to the jth beam-sum. Each element of the resulting projection profile associated with
a specific angle θ therefore corresponds to a specific beam-sum calculated at an angle θ. The
value of αij is obtained using two-dimensional interpolation. The overall accuracy of the
resulting DRT is therefore determined by the number of projection angles considered, the
number of projection beams utilised per angle, as well as the accuracy of the interpolation
method. More detailed discussions of the DRT-based method can be found in e.g. Beylkin
(1987) and Toft (1996).

When presented with a binary signature image, the systems developed in this study
utilise the DRT in order to obtain a projection profile Rθ for each angle in the projec-
tion angle set θ = {θ1, θ2, . . . , θT}, that contains T equally distributed angles in the range
[0, π)4. However, since the number of beams required to obtain a complete projection, as
well as the intensity of each resulting beam-sum, is proportional to the dimensions of the
input image, each profile is subsequently converted into a normalised projection profile R̄θ

by employing two separate techniques. Firstly, the projection profile is linearly interpo-
lated to possess a fixed, predetermined dimension d. This process ensures scale invariance

4Initially, T + 1 equally distributed angles in the range [0, π] are considered. The projection associated
with an angle of π is then discarded, since it is essentially equivalent to the projection associated with an
angle of 0.
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Figure 3.6: Example of (a) a binarised signature image and (b) its resulting DRT-based rep-

resentation for T = 180. Each column of the DRT constitutes a feature vector R̄θ, that is the

normalised projection profile associated with a specific projection angle θ.

in the direction perpendicular to the projection beams. The entire set of interpolated
projections is subsequently normalised to possess unit variance, in order to ensure scale
invariance in the direction parallel to the projection beams. The aforementioned normali-
sation techniques therefore produce a scale invariant feature set X = {R̄θ1 ,R̄θ2 , . . . , R̄θT },
as illustrated in Figure 3.6.

The systems developed in this study therefore consider a total of T projection-based
features for off-line signature representation in feature space, where T may be chosen arbi-
trarily. In Section 3.4 we discuss how this feature-based representation may be converted
into a dissimilarity-based representation, which is suitable for incorporation into a writer-
independent signature modelling framework.

3.3 On-line signatures

In this section we discuss how the systems developed in this study convert the raw data
extracted from an on-line signature into a suitable representation in feature space.

3.3.1 Signature acquisition and pre-processing

On-line signature samples are produced using specialised hardware, typically a tablet and
electronic pen. As a result, several key descriptors are already recorded during the signa-
ture acquisition process. However, since the wide variety of electronic devices currently
available on the market vary greatly in terms of price (and therefore also in their level of
sophistication), the type of descriptors extracted are entirely dependent on the hardware
considered. For instance, the pen stroke coordinates are captured by all devices. In addi-
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Figure 3.7: Conceptualisation of the measurements recorded during on-line signature acquisition

at time i. These signature descriptors may include the pen stroke coordinates (xi, yi), the pen

pressure pi, as well as the pen orientation, as described in terms of the azimuth angle θi and the

altitude angle ϕi.

tion, many devices are also able to capture the pen pressure, whilst selected devices also
measure the pen orientation relative to the writing surface.

The on-line signature databases considered in this study were captured using devices
able to capture all of the above-mentioned descriptors. These data sets are discussed in
detail in Section 6.2.1. Consequently, following the successful recording of a signing event,
each point sampled at time i is represented by the 5-tuple (xi, yi, pi, θi, ϕi), whilst the
entire signature is represented by the feature vectors x and y (horizontal and vertical pen
positions respectively), p (axial pen pressure), as well as θ and ϕ (azimuth and altitude
angles, respectively, relative to the writing surface), as illustrated in Figure 3.7. The feature
vector dimension d corresponds to the number of points sampled during acquisition. We
henceforth use f to denote an arbitrary d-dimensional feature vector.

In order to ensure a sensible analysis, several of the aforementioned feature vectors
require normalisation. For example, although the relative pen trajectories associated with
different signature samples belonging to the same writer should remain fairly consistent, it
is reasonable to expect that the raw pen strokes captured during acquisition may vary in
terms of both position and scale, since the physical dimensions of the utilised device may
vary arbitrarily. Furthermore, different applications may require the user to sign within
differently demarcated areas. A person generally adapts his/her signature to fit into such
a specified area. The consequent variation in terms of translation and scale is illustrated
in Figure 3.8 (a).

In order to address this issue, the pen stroke coordinates x and y are first shifted in

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. SIGNATURE REPRESENTATION 50

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000
Feature Space

x

y

(a)

−3 −2 −1 0 1 2 3
−2

−1

0

1

2
Feature Space

x̄

ȳ
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Figure 3.8: Translation and scale normalisation. (a) Superposition of the pen position features x

and y associated with three signature samples belonging to the same writer. Since their positions

and sizes differ significantly, these samples are not yet fit for direct comparison. (b) Superposition

of the normalised pen position features x̄ and ȳ, that is the features depicted in (a) following

successful translation and scale normalisation.

such a way that the center of gravity of the entire signature is relocated to the origin.
This process ensures translation invariance. Furthermore, each coordinate value is divided
by the average magnitude of all the translated pen stroke coordinates, as prescribed in
Le Riche (2000). This process, which is equivalent to signature rescaling by a factor equal
to the standard deviation in the xy-plane, ensures scale invariance. The normalised pen
stroke coordinates, denoted by x̄ and ȳ, are therefore determined such that

x̄i =
d (xi − µ(x))√

(xi − µ(x))2 + (yi − µ(y))2
, (3.5)

ȳi =
d (yi − µ(y))√

(xi − µ(x))2 + (yi − µ(y))2
, (3.6)

where µ(f) denotes the mean of f . The effect of this pen stroke normalisation strategy is
illustrated in Figure 3.8 (b).

It is also advisable to normalise the pressure signal p, since it may be dependent on
the sensitivity of the device. We therefore consider the relative pen pressure p̄ ∈ [0, 1] such
that

p̄i =
pi

max(p)
. (3.7)

The azimuth and altitude angles remain unchanged, since they are measured from the
point of contact between the pen and writing surface, and are therefore already scale and
translation invariant. Following the successful completion of the feature normalisation
processes discussed above, an initial feature set is obtained, as presented in Table 3.1.
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Table 3.1: The initial set of five function features in <d, that is the signature data captured

during the acquisition process after appropriate normalisation.

Feature Description
x̄ Normalised horizontal pen position
ȳ Normalised vertical pen position
p̄ Relative pen pressure
θ Azimuth angle of the pen relative to the writing surface
ϕ Altitude angle of the pen relative to the writing surface

3.3.2 Feature extraction

Although the initial feature set may suffice for basic model construction, various additional
descriptors may be calculated in order to further exploit the discriminative potential of the
initial features recorded.

Consider, for example, the spatial features x̄ and ȳ. Whilst each of these features
indicates pen position in a specific direction, one may obtain additional information relating
to the pen trajectory by calculating the path tangent angle ϑ as follows,

ϑi = arctan

(
ȳi − ȳi−1

x̄i − x̄i−1

)
. (3.8)

Even more valuable than this additional spatial feature, however, is the temporal infor-
mation inherently contained in each of the initial feature vectors, since each such feature
vector represents a descriptor sequence.

In order to quantify the aforementioned temporal information, let ḟ and f̈ respectively
denote the first and second derivatives of f . Note that ˙̄x and ¨̄x for instance represent
the velocity and acceleration, respectively, in the horizontal direction. A similar argument
follows for the remainder of the initial feature vectors. These temporal features are consid-
ered invaluable throughout the literature, since they have proven to be considerably more
difficult to mimic than spatial signature characteristics, even when the forger possesses
forensic expertise (Dolfing et al. (1998); Houmani et al. (2012)). It is of course reasonable
to expect that the typical forger would be unable to mimic the temporal properties of a
signature, given the fact that they are, unlike its spatial properties, near impossible to
derive from an off-line5 sample. The final set of function features is presented in Table 3.2.
Finally, it is important to realise that the length of the function features listed in Table 3.2
may in itself be considered a global signature descriptor, since this value is proportional to
the length of the signature. Let γ denote the sampling frequency of the device utilised for
signature acquisition. The feature vector dimension d may consequently be used to obtain
the signature duration d̄ as follows,

d̄ =
d

γ
. (3.9)

5Although this discussion focuses on the problem of on-line signature analysis, a forger typically only
has access to off-line samples for the purpose of practising signature reproduction.
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Table 3.2: The final set of eighteen function features. Each vector f ∈ <d is obtained from the

initial feature set listed in Table 3.1.

Feature Description
p̄ Relative pen pressure
˙̄p First derivative of relative pen pressure
¨̄p Second derivative of relative pen pressure
x̄ Horizontal pen position
˙̄x Horizontal pen velocity
¨̄x Horizontal pen acceleration
ȳ Vertical pen position
˙̄y Vertical pen velocity
¨̄y Vertical pen acceleration
ϑ Path tangent angle

ϑ̇ Path tangent angular velocity

ϑ̈ Path tangent angular acceleration
θ Azimuth angle

θ̇ Azimuth angular velocity

θ̈ Azimuth angular acceleration
ϕ Altitude angle
ϕ̇ Altitude angular velocity
ϕ̈ Altitude angular acceleration

The systems developed in this study therefore consider a total of eighteen function
features and one global feature for on-line signature representation in feature space. In
the next section we discuss how this feature-based representation may be converted into
a dissimilarity-based representation, which is suitable for incorporation into a writer-
independent signature modelling framework.

3.4 Dichotomy transformation

Although the raw data associated with off-line and on-line signature samples are fundamen-
tally different, both of the feature extraction techniques discussed in Sections 3.2.2 and 3.3.2
yield a feature set that contains T , d-dimensional feature vectors6 (see Table 3.3) for every
signature sample enrolled into the system. In a writer-dependent verification scenario, one
would use the collection of feature sets associated with a specific writer to construct a
signature model unique to this individual. However, in order to facilitate the construction
of a sensible writer-independent signature model, the efforts of a dichotomy transformation
are required. This process converts the entire collection of feature sets, belonging to all the

6For the purposes of this discussion, we also treat the scalar feature associated with on-line signatures,
that is the signature duration, as a trivial, one-dimensional feature vector.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. SIGNATURE REPRESENTATION 53

Table 3.3: Interpretation of the feature set dimensions associated with off-line and on-line

signatures.

Feature set dimension Off-line signature On-line signature
Feature set length (T ) Number of projection angles Number of features

Feature vector dimension (d) Projection profile length Number of sample points

writers considered, from feature space into a universal dissimilarity-based representation
in dissimilarity space.

Given a feature set X(k), extracted from a positive reference signature belonging to a
specific writer, any other feature set X(q) that is claimed to belong to this writer can be
converted into a dissimilarity vector z(q,k) by calculating the dissimilarity between each
pair of corresponding feature vectors contained in X(q) and X(k). It is proposed in Santos
et al. (2004) that, for the development of an off-line verification system that considers
graphometric features, this conversion can be achieved using the Euclidean distance, such
that

z(q,k) = DEucl

(
X(k),X(q)

)
=

T⋃
t=1

√(
x

(k)
t − x

(q)
t

)′ (
x

(k)
t − x

(q)
t

)
, (3.10)

where
⋃

and ′ denote the vector concatenation and transpose operators, respectively, whilst

x
(q)
t ∈X(q) and x

(k)
t ∈X(k) denote the tth pair of corresponding feature vectors.

Although this Euclidean distance-based dichotomy transformation successfully quanti-
fies the dissimilarity between two feature vectors, its element-based vector matching ap-
proach may be sensitive to slight variations in genuine signatures belonging to a specific
writer (see e.g. Figure 3.8 (b)). This phenomenon, known as intra-class variability, is
a common occurrence in signature modelling and may impede system proficiency if not
addressed properly.

Consider, for example, the dichotomisation of the DRT-based feature sets yielded by
the feature extraction process discussed in Section 3.2.2. When utilising a projection-based
feature extraction technique, intra-class variability is generally manifested in the form of
lateral shifting of the local minima and/or maxima within a specific projection profile, as
conceptualised in Figure 3.9. It should be clear from Figure 3.9 (a) that, even when only
minor shifting occurs, the use of an Euclidean-based approach may produce a significant
misrepresentation of the dissimilarity between two projection profiles.

In order to address this issue, we propose that the dissimilarity between two DRT-based
feature vectors be obtained by means of a dynamic time warping (DTW) algorithm. A
similar dichotomy transformation is proposed in Muramatsu and Matsumoto (2009), where
it is successfully utilised for the construction of dissimilarity vectors from on-line feature
sets (similar to those yielded by the feature extraction process discussed in Section 3.3.2).
When compared to the Euclidean distance, a DTW-based approach offers two notable
advantages:
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(a) (b)

Figure 3.9: Conceptual comparison of the feature correspondences considered during dissim-

ilarity vector construction when either (a) the Euclidean distance or (b) a DTW-algorithm is

utilised. Note that, unlike the Euclidean distance-based approach, a DTW-algorithm is able to

detect (and subsequently compensate for) non-linearly misaligned features, thereby producing

a considerably more reliable measure of dissimilarity between the feature vectors submitted for

comparison.

1. It enables a dissimilarity calculation between two vectors with different dimensions.

This algorithm is therefore able to obtain dissimilarity vectors from the on-line fea-
ture sets, which contain feature vectors that are all but guaranteed to have different
dimensions, without any additional data processing in terms of length normalisation.

Since the off-line feature sets contain DRT-based feature vectors with a standardised
dimension, this property is not exploited by the off-line systems developed in this
study.

2. Prior to matching, it non-linearly aligns vector elements based on similarity, as il-
lustrated in Figure 3.9 (b). The resulting dissimilarity measure corresponds to the
Euclidean distance between the aligned vectors.

This property is of critical importance to both the on-line and off-line systems devel-
oped in this study. By matching features according to similarity rather than location,
a DTW-based approach to dissimilarity calculation is able to compensate for reason-
able intra-class variability i.e. signatures may be compared according to relative pen
stroke shape as opposed to absolute pen stroke position.

Using the proposed DTW-based approach, the dissimilarity between X(q) and X(k) is
calculated as follows,

z(q,k) = DDTW

(
X(k),X(q)

)
=

T⋃
t=1

D
(
x

(k)
t ,x

(q)
t

)
, (3.11)
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Figure 3.10: Conceptualisation of the dynamic time warping algorithm considered in this study.

The algorithm identifies similar elements contained in the reference vector xk and questioned vec-

tor xq and subsequently constructs an optimal path between said vectors, based on these feature

similarities. The resulting distance measure is calculated between elements matched according to

the optimal path, as opposed to simply using corresponding elements. The bandwidth β restricts

the search space and is used to regulate both the flexibility and computational requirements of the

alignment process. Note that when β = 0, this algorithm is equivalent to utilising the Euclidean

distance.

where D (f , g) denotes the DTW-based distance between two arbitrary vectors f and
g. A wide variety of DTW-algorithms are documented in the literature (Rabiner and
Schmidt (1980); Keogh and Pazzani (2001); Henniger and Muller (2007); Jayadevan et al.
(2009)). A detailed discussion of the specific DTW-algorithm considered in this study is
presented in Appendix A, whilst a graphical conceptualisation of the algorithm is provided
in Figure 3.10.

The DTW-based dichotomy transformation discussed in this section is therefore able
to convert any two sets of T feature vectors into a single T -dimensional dissimilarity
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vector, which is suitable for consideration within a writer-independent signature modelling
framework.

3.5 Concluding remarks

In this chapter we discussed how the systems developed in this study convert raw signature
data associated with two fundamentally different signature acquisition methods, namely
off-line and on-line methods, into a dissimilarity-based representation suitable for writer-
independent signature modelling.

In the off-line case we discussed how the expected quality of features extracted from a
typical signature sample is in fact largely dependent on the successful completion of several
image pre-processing techniques. Such techniques include those concerned with image bi-
narisation, noise reduction and signature segmentation. Suitable methods were presented
in order to address these issues. We also explained how the DRT may subsequently be
used to extract a set of projection profiles from any given binary signature image, thereby
yielding a writer-dependent feature set. It is worth mentioning that the image processing
techniques discussed in this chapter are considered to be tried and tested, and therefore
commonly utilised throughout the literature. However, none of these techniques are nec-
essarily considered optimal for their respective tasks. Advancements are continually being
made in the field of document processing and state-of-the-art techniques are proposed on
a regular basis. An in-depth investigation into such advanced image processing techniques
is, however, deemed outside the scope of this study.

In the on-line case we discussed how relatively little pre-processing of the raw data is
required, whilst a wide variety of additional function and/or global features may easily
be calculated from the initial feature set yielded by the acquisition process. It is worth
noting that a great many additional features may also be calculated using the originally
captured signature data, as detailed in e.g. Dolfing et al. (1998), Ketabdar et al. (2005),
and Van et al. (2007). One should, however, be cautious not to include too many features
in the final signature representation, in order to avoid the adverse effects of the so-called
ugly duckling theorem postulated in Watanabe (1985), which states that it is possible to
make two arbitrary patterns similar by encoding them with a sufficiently large number of
redundant features.

Following the completion of appropriate feature normalisation techniques, we showed
that both the off-line and on-line signature feature extraction strategies are able to produce
feature sets that are invariant with respect to translation and scale. We do not address
the issue of rotation invariance in this study. The assumption of a relatively consistent
signature orientation is considered reasonable within the context of this study, since the
signing area of e.g. a cheque is generally bounded and has a fixed orientation. Conse-
quently, the writer has very limited freedom regarding the orientation of his/her signature.
Nevertheless, several methods for achieving rotation invariance are documented in the lit-
erature. One such method, proposed in Panton and Coetzer (2010), employs the efforts
of a ring-structured HMM and Viterbi alignment in order to estimate the most probable
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angle of rotation of a questioned signature, relative to a known reference sample. The ro-
tation of the questioned signature is subsequently corrected for prior to feature extraction.
The development of such an advanced classifier for the sole purpose of achieving rotation
invariance is, however, also deemed outside the scope of this study.

After successful completion of the feature extraction process, the efforts of a dichotomy
transformation are required in order to obtain a writer-independent signature representa-
tion in dissimilarity space. In order to improve upon the traditional Euclidean distance
based method, we proposed the use of a DTW-based dichotomy transformation for ob-
taining both an off-line and on-line dissimilarity representation. By employing a DTW-
algorithm, the proposed technique is able to non-linearly align feature vectors prior to
matching and therefore improves the robustness of the dissimilarity vectors generated, and
in so doing compensate for reasonable intra-class variability. The contribution of the pro-
posed off-line dissimilarity representation technique to the field of handwritten signature
analysis is experimentally verified in Chapter 6.

In the next chapter, we introduce the classification techniques employed in this study,
namely discriminant analysis and support vector machines.
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Chapter 4

Classifiers

“It is far better to foresee, even without certainty, than not to foresee at all.”
- Henri Poincaré (1854–1912)

4.1 Introduction

The signature representation techniques discussed in the previous chapter provide an ef-
fective platform for distinguishing between the positive and negative classes (i.e. authentic
signatures and forgeries) in dissimilarity space, thereby completing the feature extraction
stage within the larger learning process. During the next stage of the learning (or testing)
process, namely signature modelling (or verification), the efforts of a suitable mathematical
mechanism, or classifier, are required in order to interpret the aforementioned signature
representation.

In this chapter we discuss two fundamentally different classification techniques, namely
discriminant analysis (DA) and support vector machines (SVMs). In Section 4.2 we first
discuss the fundamental differences between generative and discriminative models for pat-
tern recognition. We then present abridged discussions on the specific classification tech-
niques considered in this study, that is a DA-based method (Section 4.3) and an SVM-based
method (Section 4.4), and illustrate how these techniques may be utilised for distinguishing
between positive and negative patterns.

4.2 Overview

As explained in Bishop (2006), any classification technique that is rooted in probability
theory (and is primarily aimed towards minimising its misclassification rate) typically
assigns a questioned pattern x to the pattern class yi that maximises the class-specific
posterior probability P (yi|x). Furthermore, any statistical classification technique may be
broadly categorised as either a generative or a discriminative approach to pattern modelling
and recognition.

58
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The generative approach is aimed towards estimating each class prior probability and
class-conditional density from a set of labelled training samples, in order to ultimately
infer the posterior probability associated with each class by employing Bayes’ theorem. A
generative classifier therefore models the joint distribution of pattern descriptor variables
(i.e. classifier input) and target variables (i.e. classifier output). Popular generative
classifiers include hidden Markov models (HMMs), Gaussian mixture models (GMMs) and
naive Bayes classifiers.

In contrast, a discriminative classifier constructs a parametric model for the posterior
probabilities and subsequently infers optimal values for said parameters from a set of la-
belled training samples, in order to obtain a maximally discriminant decision boundary in
feature space. Popular discriminative classifiers include discriminant functions, multilayer
perceptrons (MLPs) and SVMs.

The most appropriate modelling approach for any given application is generally depen-
dent on its deployment environment, since both generative and discriminative classifiers
have specific advantages and limitations. A detailed comparison between the generative
and discriminative approaches to pattern modelling, within the context of object recogni-
tion, can be found in Ulusoy and Bishop (2005).

Within the context of signature verification, the majority of systems proposed in the
literature employ either a template matching technique or a generative classifier for the
purposes of signature modelling and verification, whilst a relatively small percentage of
existing systems employ the efforts of a discriminative classification technique. This is
mainly due to the fact that, prior to the advent of writer-independent signature modelling
strategies, the utilisation of discriminative classifiers was generally considered inappropriate
for the purpose of skilled1 forgery detection. It is therefore reasonable to expect that the
utilisation of discriminative classifiers for the purpose of signature model construction will
become more popular in future, when the writer-independent approach is more commonly
adopted. In this study we investigate both generative and discriminative approaches to
signature modelling and verification.

Traditionally, the respective outputs of generative and discriminative classifiers are
expected to be continuous (i.e. a similarity score) and discrete (i.e. a class label). However,
one can easily augment a discriminative method of classification to produce a continuous
confidence score. This may be achieved by not only considering the location of a questioned
pattern relative to the decision boundary, but also its distance from said boundary. It
should be clear that the confidence associated with a discriminative classification event is

1In order to facilitate the successful training of a discriminative classifier, the availability of both positive
and negative training samples is strictly required. Within the context of the traditional writer-dependent
approach, it is not reasonable to expect that samples of skilled forgeries would be available for every
new writer enrolled into the system and one is therefore forced to consider random forgeries for training
purposes. However, since the writer-independent approach involves a once-off training process that yields
one universal signature model, the availability of samples of skilled forgeries is only required during training
of the initial model, whilst any newly enrolled writers only need to submit positive reference samples. A
discriminative classification technique is therefore appropriate within the context of a writer-independent
signature modelling framework.
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Figure 4.1: Distribution of hypothetical positive and negative training samples in a two-dimen-

sional feature space.

directly proportional to the aforementioned distance measure. The systems developed in
this study employ such an augmented approach to discriminative classification.

In order to aid in our discussions of the DA-based and SVM-based methods considered
in this study, we also illustrate the implementation of these techniques on an artificially
generated set of positive and negative training samples, as shown in Figure 4.1.

Finally, it should be noted that, although the systems developed in this study convert
raw signature data into a pattern representation in dissimilarity space, we may, without
loss of generality, present our discussions and/or demonstrations in this chapter within the
traditional context of feature space.

4.3 Discriminant analysis

Discriminant classifiers employ a generative approach to pattern modelling. Specifically, a
discriminant classifier uses a collection of training patterns to model each relevant pattern
class as a Gaussian probability density function (PDF) and subsequently relies on the
measure of similarity computed between a questioned pattern and each estimated PDF in
order to predict class membership.

4.3.1 Overview

For comprehensive discussions on the DA-based classification method, the reader is referred
to such works as Klecka (1980), Friedman (1989), and McLachlan (2004).

As mentioned in Section 4.2, a generative classifier is aimed towards the inference of
class posterior probabilities P (yi|x) by means of Bayes’ theorem, which is defined for
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multi-class classification scenarios as

P (yi|x) =
P (x|yi)P (yi)∑
j P (x|yj)P (yj)

, (4.1)

where P (yi) and P (x|yi) denote the prior probability and class-conditional density asso-
ciated with class yi respectively. The systems developed in this study are only concerned
with two classes, that is a positive class G and a negative class F . We also assume equal
prior probabilities, that is P (G) = P (F ) = 0.5, in order to ensure unbiased2 classifiers.
These application-specific assumptions lead to the following simplification of the posterior
probability estimates,

P (G|x) =
P (x|G)

P (x|G) + P (x|F )
, (4.2)

P (F |x) =
P (x|F )

P (x|G) + P (x|F )
. (4.3)

It is clear from (4.2) and (4.3) that the posterior probabilities of the positive and nega-
tive classes are entirely dependent on the class-conditional densities of said classes. As
mentioned earlier, the class-conditional density of class yi is represented by a multivariate
Gaussian PDF, defined for x ∈ <d as

N (x,µi,Σi) =
1

(2π)
d
2 |Σi|

1
2

e−
1
2

(x−µi)
′Σ−1

i (x−µi), (4.4)

where µi and Σi denote the mean vector and covariance matrix respectively. The class
statistics µi and Σi therefore uniquely define yi. Given a set of Ni training samples,
known to belong to yi and denoted by Xi = {x1,x2, . . . ,xNi

}, these class statistics may
be determined as follows,

µi =
1

Ni

Ni∑
j=1

xj, (4.5)

Σi =
1

Ni − 1

Ni∑
j=1

(xj − µi)(xj − µi)′. (4.6)

Since the systems developed in this study are only concerned with the positive class (defined
by µ+ and Σ+ estimated fromX+) and the negative class (defined by µ− and Σ− estimated

2In most deployment scenarios, the likelihood of encountering an authentic or a fraudulent signature
is not equal. In a banking environment, for example, one would expect P (G) ≈ 1 and P (F ) ≈ 0. In such
a scenario, one may achieve near-optimal performance by simply accepting every questioned signature as
authentic. However, such a strategy of blind acceptance would obviate the need for any human and/or
machine-based signature verification and consequently render the task of forgery detection obsolete. Fur-
thermore, in order to arrive at a truly objective conclusion regarding the authenticity of a questioned
signature, one has to assume that any sample in question is equally likely to be authentic or fraudulent.
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Figure 4.2: Implementation of a linear discriminant. (a) Multivariate Gaussian PDFs estimated

from the samples depicted in Figure 4.1, using class-specific means and a pooled covariance esti-

mate. (b) The resulting linear decision boundary fLDA(x) = 0. Note that, although the positive

and negative classes are clearly linearly separable, several negative samples are misclassified.

from X−), a convenient formulation for the DA-based class membership function fDA(x)
can be obtained as follows,

fDA(x) = N (x,µ+,Σ+)−N (x,µ−,Σ−). (4.7)

Using the formulation in (4.7), x is classified as belonging to G if fDA(x) ≥ 0. Similarly, x
is classified as belonging to F if fDA(x) < 0.

Depending on how the variability of each class is modelled, the above method may
be used to perform either linear discriminant analysis3 (LDA) or quadratic discriminant
analysis (QDA).

An LDA-based classifier models the positive and negative classes with a pooled covari-
ance estimate, that is Σ+ = Σ− = Σ, where Σ is estimated from the entire set of training
samples. This assumption of homoscedasticity does therefore not address the variability of
the data in any way and consequently yields a linear decision boundary, as illustrated in
Figure 4.2. As a result, when utilising a linear discriminant for pattern class modelling,
the similarity between a questioned sample and each class-specific PDF is based on the
Euclidean distance measure.

In contrast, a QDA-based classifier models the two classes G and F using class-specific
covariance estimates. Since this method is able to quantify both the location and variability
of the pattern classes in feature space, a non-linear decision boundary is produced, as
illustrated in Figure 4.3. As a result, when utilising a quadratic discriminant for pattern
class modelling, the similarity between a questioned sample and each class-specific PDF is
based on the Mahalanobis distance measure.

3LDA is also commonly referred to as Fisher’s discriminant, since this approach to pattern classification
was originally proposed in Fisher (1936).
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Figure 4.3: Implementation of a quadratic discriminant. (a) Multivariate Gaussian PDFs es-

timated from the samples depicted in Figure 4.1, using class-specific means and class-specific

covariance estimates. (b) The resulting quadratic decision boundary fQDA(x) = 0. Note that,

unlike the linear discriminant depicted in Figure 4.2 (b), the quadratic discriminant is able to

successfully separate the positive and negative classes.

4.3.2 The curse of dimensionality

It is evident from the examples presented in Figures 4.2–4.3 that the ability to address
class-specific variability lends much needed flexibility to the resulting model. One may
therefore expect that the utilisation of a QDA-based approach will always result in supe-
rior classification performance, when compared to its linear counterpart. The flexibility
provided by the quadratic discriminant is, however, offered at a premium.

It should be clear from (4.4) that, in order to model each pattern class with a Gaussian
PDF, each class-specific covariance matrix needs to be invertible. However, when limited
data are available for covariance estimation, the resulting covariance matrices may become
unreliable (in which case the predictive ability of the resulting classifier may decrease
substantially), or even singular (in which case it is not possible to construct a classifier
at all). Furthermore, as the feature space dimension (and therefore also the number of
feature correlations that need to be estimated) increases, the number of training samples
required for reliable covariance estimation also increases dramatically. This phenomenon
is commonly referred to as the curse of dimensionality. In order to avoid this potentially
serious impediment to successful pattern class modelling, one is therefore required to either
maximise the number of training samples or, alternatively, minimise the number of features
considered.

The systems developed in this study do not employ any techniques aimed towards
dimension reduction. We consequently examine (in Section 6.3) whether or not the DA-
based systems developed in this study are susceptible to the curse of dimensionality.
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4.4 Support vector machines

SVMs employ a discriminative approach to pattern modelling. Specifically, the decision
boundary yielded by an SVM classifier represents the separating hyperplane in feature
space that maximises the classification margin, that is the Euclidean distance between
said hyperplane and its closest (positive or negative) training sample. The structural risk
minimisation principle (Guyon et al. (1992)) guarantees that only one such maximally
separating hyperplane exists.

4.4.1 Overview

For a comprehensive discussion on the SVM-based classification method, the reader is
referred to such works as Vapnik (1995) and Cortes and Vapnik (1995), whilst a practical
guide to SVM design and implementation can be found in e.g. Burges (1998), Hsu et al.
(2003), and Ben-Hur and Weston (2010).

Given a set of N training samples xi ∈ <d, each associated with a known class label
yi ∈ {1,−1} (i.e. each sample xi belongs either to the positive class G or the negative
class F ), the objective of an SVM classifier is to find the optimal solution to the following
minimisation problem,

min
w,b

1

2
w′w

subject to yi(w
′xi + b) ≤ 1

i = 1, . . . , N.

(4.8)

Solving (4.8) yields the weight vector w and bias b, which in turn determines the orientation
and location, respectively, of the hyperplane f(x) ∈ <d−1 that maximally separates G and
F in feature space. Furthermore, the dual formulation of (4.8) reveals that the optimal
weight vector is determined from a specific subset of training samples, that is those samples
located on the margin of the separating hyperplane. These training samples are referred
to as the support vectors (see Figure 4.4 (a)). The successful training of an SVM classifier
ultimately yields a linear membership function in feature space, such that

f(x) = w′x+ b. (4.9)

Using the so-called hard-margin SVM formulation in (4.9), x is classified as belonging to
G if f(x) ≥ 0. Similarly, x is classified as belonging to F if f(x) < 0.

The hard-margin formulation described above inherently makes the assumption that
the training data is linearly separable in feature space, as conceptualised in Figure 4.4 (a).
In most practical applications, this is a naive assumption. It is therefore often desirable to
utilise a soft-margin SVM formulation. This is achieved by modifying (4.8) to include a
set of N slack variables ξi ≥ 0, thereby allowing for margin errors (where 0 ≤ ξi ≤ 1) and
misclassifications (where ξi > 1), as conceptualised in Figure 4.4 (b). The introduction of

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. CLASSIFIERS 65

Feature Space

support vector

(a)

Feature Space

margin error

misclassification

(b)

Figure 4.4: Conceptualisation of the maximally separating hyperplane and its associated mar-

gin in a hypothetical two-dimensional feature space for (a) linearly separable and (b) linearly

non-separable training data.

these additional variables also results in a modified minimisation objective as follows,

min
w,b

1

2
w′w + C

N∑
i=1

ξi

subject to yi(w
′xi + b) ≤ 1− ξi

ξi ≥ 0

i = 1, . . . , N,

(4.10)

which in turn also results in a modified membership function,

f(x) = w′x+ b+ C

N∑
i=1

ξi. (4.11)

The soft-margin approach therefore introduces an additional internal parameter, namely
the regularisation parameter C > 0, which is used to quantify the penalty associated with
potential margin errors and misclassifications. The significance of C is further discussed
in the next section.

Although it should be clear that an SVM classifier invariably aims to construct a maxi-
mally separating linear decision boundary, one may easily adapt (4.11) in order to perform
non-linear classification. This is achieved by employing the so-called kernel trick, where
the original data in feature space is mapped into a (potentially higher dimensional) ker-
nel space, wherein the mapped data may be linearly separated. This data transformation,
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Figure 4.5: Conceptualisation of the kernel trick. (a) Positive and negative training samples in

a hypothetical two-dimensional feature space. There clearly exists no linear decision boundary

(i.e. a straight line) capable of separating the two classes. (b) Non-linear mapping of the training

samples depicted in (a) into a hypothetical three-dimensional kernel space, wherein it becomes

possible to obtain a separating hyperplane. The inverse mapping of the hyperplane indicated in

(b) corresponds to the dashed line indicated in (a), which successfully separates the two classes

in feature space.

conceptualised in Figure 4.5, is performed using a kernel function, defined for xi,xj ∈ <d
as

K(xi,xj) = φ(xi)
′φ(xj), (4.12)

where φ(x) denotes any suitable mapping function. The maximally separating hyperplane
in kernel space effectively translates into a non-linear decision boundary in the original
feature space, where the resulting SVM-based membership function may be expressed as
follows,

fSVM(x) = w′φ(x) + b+ C
N∑
i=1

ξi. (4.13)

In a scenario where a suitable hyperplane can be found in the original feature space, a
linear kernel is used, such that

KLIN(xi,xj) = x′ixj. (4.14)

It is evident from (4.12) and (4.14) that the use of a linear kernel corresponds to a trivial
mapping wherein the kernel space is equivalent to the original feature space.
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Figure 4.6: Implementation of a soft-margin SVM. Decision boundaries obtained from the

training samples depicted in Figure 4.1 when (a) a linear kernel and (b) an RBF kernel are

utilised. Since the training samples are linearly separable in feature space, both the linear and

RBF kernels yield boundaries that are able to successfully separate the two classes. Note that the

orientation (and also the curvature in the case of the RBF kernel) of each boundary is determined

by the value specified for the internal parameter C (and also γ), which is further discussed in

Section 4.4.2.

A variety of popular non-linear kernel functions are documented in the literature,
including the polynomial, radial basis function (RBF) and sigmoid kernels. Although
the selection of the most suitable kernel function is often a process of trial and error,
Hsu et al. (2003) suggest that the RBF kernel generally provides an effective non-linear
decision boundary and should therefore prove a sound first choice in most instances. The
RBF kernel is defined as

KRBF(xi,xj) = exp

(
−‖xi − xj‖

2

2γ2

)
, (4.15)

where the internal parameter γ > 0 determines the kernel width and controls the non-linear
flexibility of the resulting classifier. The significance of γ is further discussed in the next
section.

Popular algorithms for SVM training include least squares approximation (Suykens
and Vandewalle (1999)) and the sequential minimal optimisation (SMO) algorithm (Platt
(1998)). Graphical examples of the decision boundary obtained by implementing a linear
kernel and an RBF kernel soft-margin SVM are presented in Figure 4.6.

4.4.2 SVM parameter selection

The level of success achievable by an SVM classifier is entirely dependent on the optimality
of the parameters that describe its separating hyperplane. As explained in the previous
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section, appropriate values for the weight vector w and bias b are determined automat-
ically by means of a suitable SVM training algorithm. Prior to training, however, it is
required that predetermined values be specified for the internal SVM parameters, that
is the regularisation parameter C and, if applicable, the RBF kernel width γ. Although
the values of C and γ may be chosen arbitrarily, these parameters may potentially have a
significant impact on the optimality of the resulting decision boundary, as we now discuss
in more detail.

The regularisation parameter C specifies the penalty associated with margin errors
and/or misclassifications. For instance, when C →∞, the optimal solution to (4.10) yields
values forw and b that shift the separating hyperplane in such a way that these errors are (if
possible) totally avoided. Conversely, when C → 0, those samples closest to the hyperplane
are effectively ignored, in which case the optimal solution maximises the margin in terms
of the remaining training samples. The parameter C is therefore said to control both
the orientation and margin width associated with the resulting SVM decision boundary.
One may therefore be tempted to always specify a relatively large value for C, thereby
ensuring optimal classifier performance during the training phase. However, Ben-Hur and
Weston (2010) explain that it is often advisable to diminish the importance associated with
misclassifications (and especially margin errors) on training data, in order to improve the
generalisation potential of the resulting classifier, as conceptualised in Figure 4.7.

The kernel width parameter γ essentially determines the non-linear flexibility of the
decision boundary. It should be clear from (4.15) that, for any two data points xi and xj,
the value of the RBF kernel function KRBF(xi,xj) is proportional to γ, whilst it is inversely
proportional to the distance between xi and xj. The parameter γ therefore determines
the region of influence of each data sample, that is the region in feature space for which xi
yields a non-zero kernel value. The regions of influence associated with the support vectors,
in turn, determine the curvature of the resulting SVM decision boundary, as explained in
Ben-Hur and Weston (2010). When γ →∞, the decision boundary is smoothed to such an
extent that it approaches linearity, whilst a value of γ ≈ 0 results in an excessively curved
decision boundary that over-fits the training data, as illustrated in Figure 4.8.

Since both C and γ have such a significant influence on the decision boundary yielded
by an SVM, it is of the utmost importance that every effort is made to assign sensible
values to these internal parameters. Unfortunately, no analytical method capable of iden-
tifying the optimal values for C and γ currently exists. The majority of works found in
the literature (e.g. Min and Lee (2005); Kumar et al. (2011)) therefore perform SVM
parameter selection by means of a grid search, that is a brute force search for the best
combination of values for C and γ, as indicated by an appropriate performance metric
which is estimated for each resulting classifier candidate. Provided that a sufficiently fine
grid, i.e. an adequately comprehensive set of possible parameter value combinations, is
considered during the search, this method guarantees the optimality of the parameter val-
ues identified. However, as is generally the case with brute force methods, such a grid
search is computationally exhaustive. Furthermore, when used within a highly repetitive
experimental protocol, as is the case in this study (see Section 6.2.2), the utilisation of a
fine grid search for the purpose of parameter selection is not computationally feasible.
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Figure 4.7: Significance of the regularisation parameter C. Optimal decision boundaries for the

separation of two classes in a hypothetical two-dimensional feature space when (a) relatively large

and (b) relatively small values for C are specified. Although the boundary in (a) reduces the

number of margin errors on the training set, the boundary in (b) provides a more sensible overall

separation of the two classes and is therefore expected to prove superior in the classification of

future questioned samples.

Various alternative strategies, aimed towards alleviating the computational overhead
typically associated with SVM parameter selection, are documented in the literature. No-
table variations of the traditional grid search include the pattern search (Momma and
Bennett (2002)) and the self-tuning grid search (Staelin (2003)). Several strategies have
also been proposed that utilise a fundamentally different approach to that of a grid-based
search, including genetic algorithms (Huang and Wang (2006)), particle swarm optimisa-
tion (Guo et al. (2008)), as well as simulated annealing (Lin et al. (2008)). The fact that
such a wide variety of methods have been proposed in the literature confirms that SVM
parameter selection is by no means a trivial endeavour.

The SVM-based systems developed in this study estimate suitable values for C and γ
by means of the heuristic approach outlined in Mattera and Haykin (1999). Firstly, every
training sample (which may be a positive or negative sample) is compared to every other
training sample, in order to obtain the complete set XD of pairwise Euclidean distances
between all the training samples, such that

XD =
⋃
xi,xj

i>j

‖xi − xj‖. (4.16)

The parameters C and γ are subsequently assigned the maximum and median values of the
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Figure 4.8: Significance of the RBF kernel width parameter γ. Decision boundaries obtained

from the training samples depicted in Figure 4.1 when (a) γ = 10000 and (b) γ = 0.1. The

boundary in (a) is over-smoothed to such an extent that it resembles the boundary obtained

when employing a linear kernel (see Figure 4.6 (a)), whilst the excessive non-linear flexibility

of the boundary in (b) clearly over-fits the training set – this is easily confirmed by observing

that each of the training samples is also identified as a support vector i.e. every training sample

contributes towards the optimal solution.

setXD respectively. Although this method does not guarantee that the obtained parameter
values are optimal, it does reduce the computational overhead substantially. This heuristic
approach to SVM parameter selection is also utilised successfully in e.g. Kan and Shelton
(2008).

Since both parameter values are estimated directly from the training data, Cherkassky
and Ma (2004) caution that the success of this parameter selection strategy may be ad-
versely affected by outliers in the training data. The issue of outlier detection and removal
is addressed in the next chapter.

4.5 Concluding remarks

In this chapter we introduced two fundamentally different classification techniques as can-
didates for incorporation into the systems developed in this study. For each of these
classifiers, both linear and non-linear configurations were discussed. We also illustrated
the nature of the decision boundaries yielded by these different classifiers on an artificially
generated data set that contains samples representative of two pattern classes.

It should be noted that, in order to simplify the illustrations presented in this chapter,
a small data set that contains linearly separable, two-dimensional samples was used for
demonstration purposes. However, in the next chapter we will show that, within the con-
text of the systems developed in this study, a typical training set is expected to contain a
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large number of non-separable positive and negative samples. Furthermore, typical train-
ing samples are not limited to a two-dimensional pattern representation. As explained
in the previous chapter, the dimension of the dissimilarity vectors utilised for signature
modelling may vary in accordance with the value specified for the system parameter T (see
Section 3.4).

It is also important to recall from the previous chapter that, when a dissimilarity-based
approach to pattern representation is utilised, a dissimilarity vector obtained from a typi-
cal positive sample is expected to comprise elements located relatively close to the origin
in dissimilarity space, whilst the dissimilarity values representative of a typical negative
sample are expected to be located further from the origin – in one or more dimensions
(depending on the number of features). For this reason, the non-linear classifier configura-
tions discussed in this chapter, that is the quadratic discriminant and the RBF-kernel SVM
(or R-SVM), are deemed most appropriate for incorporation into the systems developed in
this study.

In the next chapter we explain how the efforts of the non-linear classifiers (discussed in
this chapter) may be used in conjunction with a dissimilarity-based signature representation
strategy (discussed in the previous chapter) to construct a framework for successful writer-
independent signature modelling and verification.
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Signature Modelling and Verification

“The oldest, shortest words - ‘yes’ and ‘no’ - are those which require the most thought.”
- Pythagoras (582BC–497BC)

5.1 Introduction

In Chapter 3 we explained how raw signature data may be converted into a dissimilarity
vector that is suitable for consideration within a writer-independent verification frame-
work. In the previous chapter we discussed quadratic discriminant analysis (QDA) and
radial basis function kernel support vector machines (R-SVMs) and demonstrated how
these classification techniques may be used for the purpose of discriminating between two
pattern classes.

In this chapter we discuss how sets of dissimilarity vectors may be used in conjunction
with the previously discussed classification techniques, in order to construct an efficient
framework for writer-independent signature modelling and verification. We also introduce
two post-processing techniques, namely an iterative outlier removal (IOR) algorithm (Sec-
tion 5.2.1) and a novel writer-specific dissimilarity normalisation strategy (Section 5.2.2).
These algorithms are implemented prior to model training (Section 5.2.3), in order to
improve the robustness of the resulting signature model.

Finally, in Section 5.3 we discuss the verification protocol associated with a trained
model, thereby completing the design of the writer-independent handwritten signature
verification system.

5.2 Signature modelling

The systems developed in this study use a collection of dissimilarity vectors, obtained from
samples of genuine signatures and skilled forgeries belonging to several different writers,
for signature modelling. In order to produce these dissimilarity vectors, each writer is
required to submit K genuine signatures during enrolment, that serve as a writer-specific
reference set.

72
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Prior to model construction, signature samples are obtained from a set of so-called
guinea pig writers in a controlled environment. These writers are considered representa-
tive of the general public, and their signatures are used for training purposes only. Given
K reference signatures and N labelled training signatures (that include an equal number
of positive and negative samples) for each of the Ω guinea pig writers, a set of dissimi-
larity vectors is generated for each writer by computing z(n,k) for n = {1, 2, . . . , N} and
k = {1, 2, . . . , K}.

We henceforth use the simplified notation z(i) to denote an arbitrary dissimilarity vector
and refer to dissimilarity vectors that represent genuine signatures and forgeries as being
positive and negative respectively. Furthermore, let Z+ = {z(1), z(2), . . . ,z(N+)} denote the
set that contains the N+ = NKΩ

2
positive dissimilarity vectors obtained from all the guinea

pig writers. Similarly, Z− contains the negative dissimilarity vectors obtained from said
writers.

5.2.1 Outlier removal

The sets Z+ and Z− provide a sufficient platform from which a decision boundary may be
obtained for verification purposes. However, the potential inclusion of outliers, that is the
inclusion of positive and negative samples that differ substantially from their respective
class means, may yield a sub-optimal decision boundary as a result of model over-fitting.
Furthermore, as mentioned in Section 4.4.2, the efficacy of the method considered for
SVM parameter estimation may be severely compromised by the presence of outliers in
the training data.

In order to address this issue, we propose the incorporation of an IOR algorithm prior
to model training. This process ensures that only those samples that are sufficiently rep-
resentative of positive and negative instances across all prospective writers are used for
model construction. The IOR algorithm for samples in Z+ proceeds as follows:

1. Determine the composite mean µ+ and standard deviation σ+ from the feature-
specific means and standard deviations as follows,

µ+ =
{
µ(Z+

1 ), µ(Z+
2 ), . . . , µ(Z+

T )
}
, (5.1)

σ+ =
{
σ(Z+

1 ), σ(Z+
2 ), . . . , σ(Z+

T )
}
, (5.2)

where, µ(f) and σ(f) respectively denote the mean and standard deviation of an
arbitrary vector f , whilst

Z+
t =

{
z

(1)
t , z

(2)
t , . . . , z

(N+)
t

}
(5.3)

denotes the vector that contains all the tth feature values of all the positive dissimi-
larity vectors.

2. Locate z(⊕) ∈ Z+, that is the positive dissimilarity vector which is furthest from µ+

based on the Euclidean distance ‖z(i) − µ+‖ for i = 1, 2, . . . , N+.
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Figure 5.1: (a) Typical representation of negative samples superimposed onto positive samples

in dissimilarity space for T = 2, N = 40 and K = 10. (b) Outliers detected (and subsequently

removed) by the IOR algorithm.

If ‖z(⊕) − µ+‖ ≤ 3‖σ+‖, terminate the algorithm. Otherwise, remove z(⊕) from Z+.
Similarly, also locate and remove the least representative negative dissimilarity vector
z(	) from Z−, regardless of its distance to µ−, and return to Step 1.

A similar algorithm is implemented for samples in Z−. Note that upon the detection
and subsequent removal of an outlier, the least representative sample from the opposite
class is also removed without question. This ensures that the sets Z+ and Z− remain
balanced. Also note that only one such outlier-pair is removed during a single iteration,
after which the class statistics µ and σ are recalculated. This is to prevent excessive outliers
from yielding misrepresentative class statistics and therefore ensures that no samples are
removed unnecessarily. A graphical illustration of the IOR algorithm, after being applied
to typical examples of Z+ and Z−, is presented in Figure 5.1.

Apart from improving the reliability of the SVM parameter estimation process by re-
moving potentially misrepresentative training samples, the rationale behind this outlier
removal strategy is as follows:

• The inclusion of positive samples that differ very little from their associated reference
signatures would cause the trained system to be biased toward rejection.

• Similarly, the inclusion of negative samples that differ substantially from their asso-
ciated reference signatures would yield a model biased toward acceptance.

By discarding these extreme samples prior to training, a decision boundary may be found
that optimally discriminates between positive and negative instances located in the re-
gion of uncertainty i.e. the region in dissimilarity space where Z+ and Z− become non-
separable.
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5.2.2 Dissimilarity normalisation

Despite the IOR algorithm’s efforts to improve class separability, a significant degree of
overlap between the positive and negative classes is still expected in dissimilarity space
(see Figure 5.1 (b)), since the dissimilarity vectors in Z− represent skilled forgeries that
are not easily distinguishable from the genuine signature samples represented in Z+. In
order to maximally separate these sets, each vector in Z+ and Z− requires appropriate
normalisation.

A wide variety of suitable normalisation techniques are documented in e.g. Snelick et al.
(2005) and Jain et al. (2005). Popular strategies include the min-max, z-score and sigmoid
normalisation functions. One such sigmoid function is the well-known logistic function,
defined for x ∈ < as

L(x) = [1 + exp(−x)]−1 . (5.4)

This monotonically increasing scalar function maps any value in the domain x ∈ (−∞, 0)
to a value in the range L(x) ∈ (0, 0.5), whilst x ∈ (0,∞) is mapped to L(x) ∈ (0.5, 1)
and L(0) = 0.5. Note that, although L(x) is defined for all x ∈ <, it is generally deemed
sufficient to consider the diminished domain x ∈ [−6, 6] for numerical applications, as il-
lustrated in Figure 5.2 (a). We henceforth refer to the value of x for which L(x) = 0.5 as
the critical value.

Since the dissimilarity values yielded by the DTW-based dichotomy transformation (see
Section 3.4) are restricted to the domain x ∈ [0,∞), the systems developed in this study
perform dissimilarity normalisation using a modified logistic function, defined as

η(x, c) =

[
1 + exp

(
c− 6x

c

)]−1

, (5.5)

where c ∈ < denotes a predefined scaling factor. This modification shifts and rescales
the numerically significant domain of the conventional logistic function from x ∈ [−6, 6]
to x ∈ [0, 2c]. Consequently, the critical value is also relocated from x = 0 to x = c, as
illustrated in Figure 5.2 (b).

The normalisation function defined in (5.5) may subsequently be used to convert any T -
dimensional dissimilarity vector z = {z1, z2, . . . , zT} into a normalised dissimilarity vector
z̄ as follows,

z̄ =
T⋃
t=1

η (zt, µt + σt) , (5.6)

µt =
1

N+

N+∑
i=1

z
(i)
t , (5.7)

σt =

√√√√ 1

N+ − 1

N+∑
i=1

(
z

(i)
t − µt

)2

. (5.8)
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Figure 5.2: (a) The conventional logistic function. (b) The dissimilarity normalisation function

utilised by the systems developed in this study for c = 5.

This global dissimilarity normalisation strategy is illustrated in Figure 5.3, whilst a
typical result yielded by this method (for a scenario where T = 2) is presented in Fig-
ure 5.5 (a). It is clear that this strategy successfully rescales any arbitrary dissimilarity
value to the interval [0, 1]. However, since the normalisation function is monotonic, it is
unable to successfully address the overlap of Z+ and Z−.

In order to address this shortcoming of the global normalisation strategy, we propose the
incorporation of dissimilarity statistics into the normalisation function on a writer-specific
level. For every writer ω, the statistics µ(ω) and σ(ω) are estimated by considering only
the N (ω) = K2−K

2
unique dissimilarity vectors generated when every reference signature

belonging to writer ω is compared to every other reference signature belonging to the same
writer. Any dissimilarity vector, that is obtained by using a reference sample belonging
to writer ω, is subsequently normalised using a writer-specific normalisation function as
follows,

z̄ =
T⋃
t=1

η(zt, µ
(ω)
t + σ

(ω)
t ), (5.9)

µ
(ω)
t =

1

N (ω)

K∑
i=1
j>i

z
(i,j)
t , (5.10)

σ
(ω)
t =

√√√√√ 1

N (ω) − 1

K∑
i=1
j>i

(
z

(i,j)
t − µ(ω)

t

)2

. (5.11)

This novel writer-specific dissimilarity normalisation strategy is illustrated in Figure 5.4,
whilst a typical result yielded by this method (for a scenario where T = 2) is presented in
Figure 5.5 (b).
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Figure 5.3: The global dissimilarity normalisation strategy. (a) Dissimilarity values represen-

tative of positive and negative samples obtained from five different writers. Also included is the

critical value z = µ+ σ, as obtained from all the samples. (b) Normalised dissimilarity values

obtained using the global normalisation function η(z, µ+ σ), as well as the mapped critical value

η(µ+ σ, µ+ σ) = 0.5. Note that, although the original dissimilarity values have been successfully

rescaled, no improvement is observed in terms of class separability.
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Figure 5.4: The writer-specific dissimilarity normalisation strategy. (a) Dissimilarity val-

ues as also depicted in Figure 5.3 (a). Also included are the writer-specific critical values

z = µ(ω) + σ(ω) for ω = 1, 2, . . . , 5, as obtained from the samples belonging to writer ω only.

(b) Normalised dissimilarity values obtained using the writer-specific normalisation function

η(z, µ(ω) + σ(ω)) for each writer separately, as well as their associated mapped critical values

η(µ(ω) + σ(ω), µ(ω) + σ(ω)) = 0.5. Note that this strategy not only successfully rescales the origi-

nal dissimilarity values, but also significantly improves overall class separability when compared

to the results illustrated in Figure 5.3 (b).
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Figure 5.5: Comparison of (a) the global dissimilarity normalisation strategy and (b) the

writer-specific dissimilarity normalisation strategy, when applied to the retained samples depicted

in Figure 5.1 (b).

It is clear from Figures 5.3–5.5 that when the proposed writer-specific dissimilarity nor-
malisation strategy is employed, the resulting separation of positive and negative samples
for each individual writer leads to improved global separation of positive and negative sam-
ples across the entire set of writers, since only strictly relevant information is used during
the normalisation process.

5.2.3 Model training

Following the successful completion of the IOR and dissimilarity normalisation algorithms,
the sets Z̄+ and Z̄− are deemed fit for consideration as training data for the construction
of a writer-independent signature model.

In this section we explain how the efforts of the QDA-based and R-SVM-based classifi-
cation techniques (discussed in the previous chapter) may be harnessed in order to deter-
mine an optimal decision boundary between Z̄+ and Z̄−. This decision boundary, which
in essence constitutes the signature model λ, is retained for the subsequent verification of
questioned signatures.

QDA-based systems

The QDA-based class membership function is completely described by the mean vectors
and covariance matrices that are representative of the positive and negative classes. The
estimation of these class statistics from the training data, using (4.5) and (4.6), therefore
constitutes the entire model construction process.

Consequently, the statistics µ+ and µ− are estimated from Z̄+ and Z̄− respectively.
Furthermore, since the QDA-based approach incorporates class specific covariances, the
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statistics Σ+ and Σ− are also separately estimated from Z̄+ and Z̄− respectively. This
process yields the QDA-based model parameter set

λQDA = {µ+,µ−,Σ+,Σ−}, (5.12)

which is retained for the future verification of a questioned signature sample, as discussed
in Section 5.3.

R-SVM-based systems

The R-SVM-based class membership function is described by several parameters. Whilst
the weight vector and bias are estimated from the training data by means of an appropriate
training algorithm, the specification of a predetermined regularisation parameter and kernel
width is required prior to training.

In the previous chapter we discussed a heuristic method for the estimation of suitable
values for the internal parameters C and γ. After calculating the pairwise distances be-
tween all the samples in Z̄+

⋃
Z̄−, we set C and γ equal to the maximum and median,

respectively, of these calculated distances. The sequential minimal optimisation (SMO)
algorithm is subsequently used to find optimal values for the weight vector w and bias b.
This process yields the R-SVM-based model parameter set

λR-SVM = {w, b, C, γ}, (5.13)

which is retained for the future verification of a questioned signature sample, as discussed
in the next section.

5.3 Verification

Following the successful completion of the model training process, the resulting writer-
independent signature model may be used to verify the authenticity of any subsequent
questioned signature sample.

When presented with such a questioned signature sample S
(ω)
q , that is a sample of

unknown origin and claimed to belong to writer ω, the systems developed in this study
perform the task of signature verification as follows:

1. The raw data obtained from S
(ω)
q is first converted into the appropriate feature set.

2. This feature set is subsequently compared to those extracted from each of the K
reference signatures belonging to writer ω, in order to produce a set of dissimilarity
vectors z

(i)
q for i = 1, 2, . . . , K. This reference set is also used to obtain the dis-

similarity statistics µ(ω) and σ(ω). These statistics are then used to convert each
dissimilarity vector into a normalised dissimilarity vector z̄

(i)
q , which is suitable for

consideration by the trained model.
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3. Each normalised dissimilarity vector is presented to the model individually, in order
to obtain a signed distance measure D(i) ∈ < relative to the corresponding decision
boundary in dissimilarity space, such that

D(i) = f(z̄(i), λ), (5.14)

where f(·, λ) denotes the QDA-based or R-SVM-based class membership function,
as described by the parameter set associated with the trained model λ.

4. Each distance measure is then converted into a partial confidence score s(i) ∈ [0, 1],
using the conventional logistic function, such that

s(i) =
[
1 + exp

(
−D(i)

)]−1
. (5.15)

The entire set of partial confidence scores is then averaged, which produces the final
confidence score s∗ ∈ [0, 1], such that

s∗ =
1

K

K∑
i=1

s(i). (5.16)

5. Finally, a global1 threshold τ ∈ [0, 1] is imposed on s∗ to predict class membership,

such that S
(ω)
q is accepted as genuine if and only if s∗ ≥ τ .

The verification protocol described above is an adaptation of the questioned document
expert’s approach, as discussed in Santos et al. (2004). This approach requires any ques-
tioned signature sample to be compared to multiple known genuine reference samples,
whereafter the resulting dissimilarity vectors are presented to a trained signature model.
This is of course identical to the approach considered in this study. Notably, however,
the traditional expert’s approach subsequently uses the model output (in this case a dis-
tance measure relative to the decision boundary) to obtain partial decisions. The final
decision regarding the authenticity of the questioned sample is obtained through fusion of
the partial decisions, usually by means of a majority vote.

In this study we elect to use the distance measures yielded by the model to obtain
confidence scores instead of decisions, which in turn facilitates the use of score-level fusion
instead of decision-level fusion. The rationale behind this approach is as follows:

• Firstly, this strategy produces continuous classifier output, which adds to the ro-
bustness of the resulting verification system in that the system may easily adapt to
different operating conditions (Coetzer et al. (2012)).

1Although the same threshold value is considered for all questioned samples, claimed to belong to
any writer, this value is imposed on distance measures calculated from normalised dissimilarity vectors.
When utilising the writer-specific dissimilarity normalisation strategy, the threshold value effectively also
becomes writer-specific.
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• More importantly, however, the use of partial confidence scores also enables the final
decision-making process to take into consideration the level of certainty associated
with each individual classification.

We illustrate this maximal exploitation of the model output in the following example.

Example

Consider a hypothetical scenario where a questioned signature sample, claimed to belong to
a specific client who provided three genuine reference samples during an initial enrolment
phase, is presented for authentication. Suppose that, following the presentation of the
corresponding dissimilarity vectors to the trained model, the following set of partial confi-
dence scores {0.48, 0.49, 0.86} is obtained. By imposing a threshold of 0.50, the traditional
expert’s approach will yield the following partial decisions {0, 0, 1}, which will result in a
final (majority vote) decision of 0, which constitutes a rejection. In contrast, the approach
proposed in this study will first determine the final confidence score 0.48+0.49+0.86

3
= 0.61. By

again imposing a threshold of 0.50, this will result in a final decision of 1, which constitutes
an acceptance.

In the scenario described above, the acceptance of the hypothetical questioned sample
is considered the more sensible result, since only the partial acceptance is made with any
degree of certainty, whilst the confidence scores associated with the two partial rejections
are approximately equal to 0.50, which indicates total ambiguity. It is furthermore very
unlikely that an amateur forger would be able to produce a sample associated with a (very
high) partial confidence score of 0.86.

5.4 Concluding remarks

In this chapter we discussed how the efforts of a dissimilarity-based signature representation
protocol and an appropriate classifier may be combined, in order to construct a writer-
independent signature model, which may be used to verify the authenticity of subsequently
presented questioned signature samples. We also introduced an algorithm for efficient
outlier detection and removal, which aids in the construction of a robust model.

Most notably, we proposed a novel dissimilarity normalisation strategy, that incorpo-
rates writer-specific information into the writer-independent modelling framework, and
showed that this technique is capable of significantly improving class separability prior
to model construction. It is worth noting that, despite the fact that the proposed strat-
egy utilises writer-dependent information to improve the separability of the positive and
negative classes, the resulting model constructed from these classes remains completely
writer-independent. Only the set of K positive reference samples is considered when the
writer-specific normalisation statistics are determined. It should also be noted that the
proposed approach to dissimilarity normalisation is only feasible if K > 1. For K = 1, sen-
sible values for µ(ω) and σ(ω) can not be obtained and one is forced to employ the global
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normalisation strategy. The contribution of this novel technique to the field of handwritten
signature analysis is verified experimentally in the next chapter.

Finally, in this chapter we also discussed a suitable verification protocol for questioned
signature authentication, thereby completing the design of the systems developed in this
study. From this discussion it should be clear that, although the QDA-based and R-
SVM-based methods for obtaining the optimal decision boundary in dissimilarity space are
fundamentally different, the underlying verification protocols utilised by the QDA-based
and R-SVM-based systems are identical.

In the next chapter we present a rigorous experimental evaluation of the verification
proficiency expected from each of the systems developed in this study.
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Chapter 6

Experiments

“Reasoning draws a conclusion, but does not make the conclusion certain, unless the mind
discovers it by the path of experience.”

- Roger Bacon (1214–1294)

6.1 Introduction

In Chapters 3–5 we presented several pattern recognition techniques, that included a novel
dynamic time warping (DTW) based dichotomy transformation for writer-independent off-
line signature representation and a novel writer-specific dissimilarity normalisation strat-
egy, which are geared towards the proficient writer-independent verification of handwritten
signatures. In this chapter, we investigate the merits of these techniques by means of a
rigorous experimental evaluation protocol.

This protocol is implemented by considering four different signature corpora that con-
tain two fundamentally different types of signature data, that is those containing off-line
and on-line signature samples. In Section 6.2 we discuss the experimental setup, which
includes the data sets and experimental protocol considered for system evaluation. In Sec-
tion 6.3 we report and discuss the experimental results. In Section 6.4 we compare the
results reported in this chapter with those reported in the literature, in order to place the
performance of the systems developed in this study into perspective.

Finally, in Section 6.5 we ascertain the significance of the novel techniques proposed in
this study, in order to determine their contribution to the current state of the art.

6.2 Experimental setup

Unfortunately, there exists at present no single, universally accepted signature data corpus
nor an associated experimental protocol for the purpose of global system performance
benchmarking. As a result, system performance metrics reported in the literature only
serve as a general indication of expected proficiency and should therefore not be considered
absolute. Even when the same data set is considered for system evaluation, a direct

84

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. EXPERIMENTS 85

comparison of the performance reported for different systems proposed in the literature may
not be sensible, unless the experimental protocols considered to obtain these performance
estimations are also identical.

Furthermore, since experimental conditions associated with system performance esti-
mation may vary arbitrarily, it becomes of the utmost importance that researchers devise
their experimental setups in such a way that credible performance estimations are ob-
tained. In this section we discuss the experimental setup considered for the evaluation of
the systems developed in this study.

6.2.1 Data

In order to ensure the credibility of the results reported in this chapter, system evaluations
are performed using four separate data sets. Two of these data sets are used for proficiency
testing of the off-line verification systems developed in this study, whilst the other two data
sets are considered for the evaluation of the on-line systems.

Experiments relating to off-line signature verification are conducted using Dolfing’s
data set (Coetzer (2005)) and the MCYT-SignatureOff-75 subcorpus, whilst experiments
relating to on-line signature verification are conducted using the Philips database (Dolfing
et al. (1998)) and the MCYT-Signature-100 subcorpus. Both MCYT subcorpora were
obtained from the MCYT bimodal baseline corpus (Ortega-Garcia et al. (2003)).

It is worth noting that the data sets considered in this study represent only a small sub-
set of the wide variety of well-known signature databases documented in the literature. No-
table examples include the CEDAR signature database (Kalera et al. (2004)), the SVC2004
Task 2 data set (Yeung et al. (2004)), the BIOMET signature subcorpus (Garcia-Salicetti
et al. (2007)), as well as the MyIdea signature subcorpus (Dumas et al. (2005)). Countless
other data sets are also documented in the literature, although these (generally smaller)
signature databases are not necessarily made available to the research community. Per-
haps the largest, most well-known signature database, however, is the GPDS960signature
database (Vargas et al. (2007)), which contains 51840 off-line samples obtained from 960
writers. This database has been considered extensively by countless researchers the world
over and is therefore well-suited for performance benchmarking. However, due to privacy
concerns, the GPDS960 corpus is no longer available to the research community and has
recently been replaced by the GPDSsyntheticSignature database (Ferrer et al. (2012)).

We now present detailed discussions on the nature and composition of the data sets
considered in this study.

Philips database / Dolfing’s data set

The Philips database contains 4800 on-line signature samples from 51 writers and com-
prises 1530 genuine signatures, 3000 amateur skilled forgeries and 270 professional skilled
forgeries. The amateur skilled forgeries may further be sub-categorised into so-called
home-improved (1530 samples) and over-the-shoulder (1470 samples) forgeries. The home-
improved forgeries were produced by forgers who had in their possession an off-line sample

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. EXPERIMENTS 86

Figure 6.1: Selected samples from Dolfing’s data set. Note that all the signatures depicted here

have the same uniform stroke width. Since the original images have been rescaled for improved

representation, the aforementioned property is not always clearly visible.

of an authentic signature, as well as ample time to practice its reproduction. The over-
the-shoulder forgeries were produced by forgers who witnessed a legitimate signing event
and then attempted to reproduce the signature immediately afterwards. Since we do not
consider professional forgeries in this study, 30 genuine signatures and 60 forgeries are
therefore available per writer, with the exception of two writers, for whom only 30 forg-
eries are available for experimental purposes.

The signature samples were acquired by means of a Philips Advanced Interactive Dis-
play with a sampling frequency of 160Hz. At each sample point, this device measures
the horizontal and vertical pen tip position, the axial pen pressure, as well as the pen
orientation (in terms of the azimuth and altitude angles) relative to the writing surface.

The composition of Dolfing’s data set is identical to that of the Philips database, since
the off-line samples represented in Dolfing’s data set have in fact been artificially con-
structed from the on-line signature data contained in the Philips database. Although these
signatures were originally captured on-line, it is shown in Coetzer (2005) that each sample
may easily be converted into a suitable off-line1 representation. A detailed discussion of the
conversion algorithm can be found in Coetzer (2005), whilst Figure 6.1 illustrates typical
images yielded by the conversion process.

Despite the fact that this data set has not been obtained through the traditional off-line
acquisition method, namely the digitisation of pen-on-paper signatures by means of a scan-

1An off-line signature sample yielded by this conversion process is said to be ideal, since the image is
completely free of background noise, whilst a uniform pen stroke width is also guaranteed.
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ning device, it remains suitable for the evaluation of the systems developed in this study.
Furthermore, there is a sound argument that the use of ideal data for such an evaluation is
in fact optimal, since document image pre-processing is not considered a primary objective
of this study. The use of ideal off-line signature data circumvents the issue of inadequate
document image pre-processing and therefore allows one to independently investigate the
significance of the signature modelling techniques proposed in this study under optimal
operating conditions.

Nevertheless, in order to ascertain the system performance expected in a realistic de-
ployment scenario, we also consider an off-line data set that was obtained through tradi-
tional acquisition methods, as is discussed in the next section.

MCYT subcorpora

As previously mentioned, both the MCYT-Signature-100 and MCYT-SignatureOff-75 sub-
corpora constitute randomly selected subsets of the much larger MCYT bimodal baseline
corpus – a biometric database that contains fingerprint and signature data from 330 contrib-
utors across 4 different Spanish sites. Note that, in the interest of brevity, we henceforth
refer to the MCYT-Signature-100 subcorpus and the MCYT-SignatureOff-75 subcorpus
simply as MCYT-100 and MCYT-75 respectively.

In order to construct these signature databases, a set of genuine and forged samples was
collected for each contributing writer over several sessions. During each session, each writer
was instructed to produce five samples of his/her own signature, as well as five imitations
of another writer’s signature. In order to produce these imitations, the writer was supplied
with several off-line samples of a genuine signature, as well as ample time to practise the
forgery thereof. As a result, 5Ns genuine signatures and 5Ns forgeries (produced by Ns

different forgers) were collected for each writer, where Ns denotes the number of sessions
considered. MCYT-100 and MCYT-75 contain samples that were captured over five and
three sessions respectively. As a result, MCYT-100 contains 5000 samples (2500 genuine
signatures and 2500 amateur skilled forgeries) from 100 writers, whilst MCYT-75 contains
2250 samples (1125 genuine signatures and 1125 amateur skilled forgeries) from 75 writers.

The data collection protocol considered in the MCYT project facilitated the simulta-
neous acquisition of on-line and off-line signature samples. This was achieved by placing a
paper template over a pen tablet and subsequently capturing the signature by means of an
inking pen. The device, a WACOM Intous A6 USB pen tablet with a sampling frequency
of 100Hz, measured the horizontal and vertical pen tip positions, the axial pen pressure,
as well as the pen orientation relative to the writing surface. The on-line signature acqui-
sition process was completed automatically by the capturing device. In order to complete
the off-line signature acquisition process, the paper template was digitised using a flatbed
scanner with a resolution of 600dpi. Several examples of signature images yielded by this
process are presented in Figures 6.2–6.4.

Unlike the ideal off-line samples contained in Dolfing’s data set (see Figure 6.1), these
images have therefore been obtained using the traditional off-line signature acquisition
method. As a result, in order to maximise the efficacy of the signature modelling and ver-
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Figure 6.2: Examples of typical signature images contained in MCYT-75.

Figure 6.3: Examples of partial signature images contained in MCYT-75. These incomplete

samples, a result of image cropping, were most likely obtained as a result of writers who signed

outside a designated signing area.

Figure 6.4: Example of an incorrectly extracted signature image contained in MCYT-75. The

dark region visible on the right is in all likelihood a result of incorrect page positioning during

the digitisation process.

ification processes, the samples contained in MCYT-75 require the efforts of several image
pre-processing techniques prior to model construction and authentication. As mentioned
in Section 3.2.1, these pre-processing stages are primarily concerned with image binari-
sation, noise reduction and signature segmentation. The successful completion of these
image processing techniques results in enhancements that compensate for variations in ink
intensity and the presence of ink residue, as is evident in Figures 6.2–6.4.

However, the digitisation process described earlier also yields several partial signature
images (see Figure 6.3), as well as incorrectly extracted signature images (see Figure 6.4).
Since the systems developed in this study do not currently employ any pre-processing tech-
niques capable of addressing these issues, it is reasonable to expect that these problematic
samples will hinder the successful completion of the signature image analysis stage and
consequently impede system performance. Although the incorporation of such additional
image processing techniques is considered outside the scope of this study, all the samples
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contained in MCYT-75 are considered during system performance evaluation.

6.2.2 Protocol

In order to ensure that the results reported in this study represent a comprehensive and
unbiased estimation of system performance, the experimental protocol incorporates both
k-fold cross-validation and n-fold data randomisation, and proceeds as follows:

• k-fold cross-validation:

Given a data set that contains samples from Ω writers, the data set is first partitioned
into k equal subsets. Each subset, in turn, is used as an evaluation set representative
of Ω

k
writers, whilst the samples from the remaining Ω(k−1)

k
writers constitute the

training set. Each of these individual evaluations is referred to as a single run, whilst
the entire set of k runs constitutes a single trial.

This process ensures that signature samples from different writers are used for the
purposes of model training and evaluation, thereby avoiding a potentially over-fitted2

performance estimate, whilst still ensuring that all the writers represented in the data
set are considered for evaluation.

Each system evaluation reported in this chapter involves k = 3 runs per trial.

• n-fold data randomisation:

The cross-validation process described above is repeated n times. For each trial, the
order of the writers is randomised prior to data set partitioning.

It should be clear that each run yields a performance estimate that is obtained by
considering a relatively small subset of the signature corpus. It is therefore entirely
possible that any discrepancy in terms of the quality of the forgeries contained in
the evaluation set, as compared to those contained in the training set, may poten-
tially result in misrepresentative performance estimates. Consider, for example, the
scenario where a model is trained using predominantly high-quality forgeries and is
subsequently evaluated using predominantly low-quality forgeries. Such an evalua-
tion would yield an optimistically biased performance estimate. In contrast, a model
trained using low-quality forgeries and evaluated using high-quality forgeries would
indicate unrealistically poor performance.

When repeated a sufficient number of times, this randomised allocation of writers to
the training and evaluation sets therefore nullifies the influence of outliers – in this
case writers whose inclusion into the evaluation set results in atypically high or low
performance estimates.

Each system evaluation reported in this chapter involves n = 100 trials.

2An over-fitted model may indicate promising performance during system development, but lack gen-
eralisation potential during system deployment.
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Table 6.1: Summary of the data set partitioning considered in this study, including the number

of writers in the data set (Ω), the number of writers in the training set (ΩT ), the number of

writers in the evaluation set (ΩE), the number of genuine samples per writer (N+
ω ), as well as the

number of forged samples per writer (N−ω ).

Data set Ω ΩT ΩE N+
ω N−ω

Dolfing’s data set / Philips database 51 34 17 30 60
MCYT-SignatureOff-75 subcorpus 75 50 25 15 15
MCYT-Signature-100 subcorpus 100 67 33 25 25

Training Model Evaluation
Performance 

estimation

SE

RE

ST

RT

Figure 6.5: Schematic representation of the experimental protocol utilised to estimate system

performance for a single run within a single trial.

We now present a detailed discussion of the experimental protocol associated with
a single run within a single trial. Note that, prior to experimentation, the data set is
first partitioned into two disjoint subsets, namely a training set and an evaluation set, as
summarised in Table 6.1.

During model training, only the training set is used. For every writer, K genuine
signatures are reserved for inclusion in the reference set RT , whilst N+

ω −K genuine sig-
natures and N+

ω −K forgeries constitute the set ST considered for training. As a re-
sult, N−ω −N+

ω +K forgeries per writer remain unused, in order to ensure balanced train-
ing data. The set of K reference signatures is used to obtain K(N+

ω −K) positive and
K(N+

ω −K) negative dissimilarity vectors. The entire set of normalised positive and neg-
ative dissimilarity vectors, obtained from all ΩT writers in the training set, is used to
determine the optimal decision boundary, which is retained for subsequent verification.

During model evaluation, only the evaluation set is used. For every writer, K genuine
signatures are once again reserved for the reference set RE, whilst N+

ω −K genuine sig-
natures and N−ω forgeries constitute the set SE considered for verification. The entire set
of genuine signatures and forgeries, obtained from all ΩE writers in the evaluation set, is
used to gauge system performance. This protocol is conceptualised in Figure 6.5.
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Table 6.2: The set of experimental parameter values considered for off-line system evaluation.

Parameter Value(s)
d 128
T {2, 4, 8, 16, 32, 64 ,128, 256}
K {5, 10, 15}

6.3 Results

Since the experimental protocol discussed in the previous section involves k = 3 runs per
trial and n = 100 trials, the resulting performance estimates reported in this chapter are
obtained from kn = 300 separate system evaluations. During each one of these evaluations,
system performance is gauged using the area under curve (AUC) and equal error rate
(EER) performance metrics, as discussed in Section 1.2.7.

In the interest of brevity, we henceforth use the acronyms QDS and SVMS to denote
a quadratic discriminant analysis (QDA) based system and a radial basis function (RBF)
kernel support vector machine (SVM) based system, respectively.

6.3.1 Off-line verification systems

In Section 3.2.2 we explained that, in order for the off-line systems developed in this study
to convert a signature image into a discrete Radon transform (DRT) based feature set, it
is required that predetermined values be specified for two system hyperparameters, namely
the projection profile length d and the projection angle set size T . In addition to this, we
also wish to investigate the relationship between system proficiency and the reference set
size K, although it should be clear that this value does not technically represent a system
hyperparameter, but rather a deployment parameter3. System performance estimates are
therefore obtained for each possible combination of the experimental parameter values
listed in Table 6.2.

In order to avoid an excessively verbose report on system performance, the optimal value
for d was predetermined experimentally and consequently remains fixed at d = 128. For
d > 128, we found that no significant increase in system proficiency is witnessed, whilst
computational cost increases dramatically. Also note the manner in which the values
considered for T are increased, namely T = 2n for n = 1, 2, . . . , 8. This systematic increase
is an important property of the experimental setup, since it ensures that each higher
resolution projection angle set includes at least all of the angles considered in any of the
lower resolution sets. If this is not the case, e.g. when the values of T are increased
incrementally, it is entirely possible that several significant projection angles, specifically
those associated with highly discriminative projection profiles, may be included into (or

3The number of reference signatures required for successful writer enrolment may be specified arbitrarily
by the deployment entity (e.g. a banking institution). A set of K = 5 reference signatures is deemed
reasonable for a realistic deployment scenario, whilst larger reference set sizes are also considered for the
purpose of performance comparisons with previously developed systems.
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excluded from) certain projection angle sets purely by coincidence.

Let µ
(K,T )
AUC denote the mean AUC, achieved for the entire set of 300 system evaluations,

for specific values of K and T . Also, let µ
(K)
AUC (or µ

(T )
AUC) denote the mean AUC for a

specific value of K (or T ) that is averaged over all possible values of T (or K), as listed in
Table 6.2. Finally, let µAUC denote the overall mean AUC, which represents the average
system performance for all possible values of K and T . The performance metrics µ

(K,T )
EER ,

µ
(K)
EER, µ

(T )
EER and µEER are similarly defined in terms of the mean EER.

The mean AUC-based and mean EER-based performance estimates obtained for the
QDS and SVMS, when evaluated on Dolfing’s data set and MCYT-75, are presented in
Tables 6.3–6.6. From these results it is clear that, under optimal operating conditions, the
SVMS outperforms the QDS. This is the case for both of the data sets considered. It is also
clear that the system evaluations performed on Dolfing’s data set indicate a much higher
level of system proficiency than those performed on MCYT-75. This is an expected result,
since the former contains ideal signature images, as explained in Section 6.2.1. Since these
two corpora contain very different types of off-line signature data, the system performance
estimates obtained for Dolfing’s data set and MCYT-75 should not be analysed from the
same perspective, but rather be seen as indicative of an ideally attainable and a realistically
expected performance, respectively.

Furthermore, the performance metrics reported in Tables 6.3–6.6 also reveal several
insights into the influence of the system parameters K and T . When either the QDS or
the SVMS is considered, a strong correlation is evident between the reference set size K
and the verification proficiency of the resulting system. This is a sensible result, since K
determines both the representation potential of the writer-specific normalisation statistics
(see Section 5.2.2), as well as the size of the partial scoring pool (see Section 5.3) – two key
aspects of the signature modelling and authentication processes. However, the impact of
the projection angle set size T on verification proficiency is not so straightforward, as is il-
lustrated in Figure 6.6. For relatively small projection angle set sizes, that is for T ∈ [2, 16],
an increase in the number of projection angles consistently results in an improved system
performance. This is the case for both the QDS and SVMS. As the projection angle set
size is increased further, that is when T > 16, this upward trend in system performance
continues for the SVMS, although the magnitude of the observed improvement gradually
diminishes. In the case of the QDS, however, a notable increase in T results in a substantial
decrease in verification proficiency.

It is suggested in Swanepoel and Coetzer (2012) that this decrease in the performance
of the QDS is most likely due to data redundancy, since the influence of maximally dis-
criminant projection profiles is reduced when a relatively expansive projection angle set
is utilised. This paper was, however, published during the early stages of this study and,
more importantly, prior to the development of the SVMS. Since we now find that only the
QDS is severely impeded by notably increasing T , coupled with the fact that the utilisa-
tion of a larger projection angle set consistently improves the performance of the SVMS,
this suggests that it is not the inclusion of non-essential projection profiles that impedes
system performance, but rather an inherent high-dimensional modelling deficiency of the
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Table 6.3: Average AUCs and EERs achieved by the QDS when evaluated on Dolfing’s data

set. The system performance estimates associated with the optimal number of projection angles,

as indicated by µ
(T )
AUC, are emphasised in bold.

µ
(K,T )
AUC (%)

K
µ

(T )
AUC5 10 15

T

2 97.67 98.64 98.80 98.37
4 98.51 99.29 99.41 99.07
8 98.81 99.43 99.50 99.25

16 98.98 99.57 99.61 99.39
32 98.91 99.58 99.62 99.37
64 98.68 99.49 99.60 99.26
128 97.44 98.94 99.20 98.53
256 94.28 96.92 97.55 96.25

µ
(K)
AUC 97.91 98.98 99.16 98.69

µ
(K,T )
EER (%)

K
µ

(T )
EER5 10 15

T

2 8.05 5.81 5.50 6.45
4 6.53 4.01 3.48 4.67
8 5.55 3.45 3.19 4.06

16 4.71 2.86 2.72 3.43
32 5.12 2.88 2.76 3.58
64 5.58 3.47 2.94 3.99
128 7.95 5.03 4.18 5.72
256 12.50 9.08 7.94 9.84

µ
(K)
EER 7.00 4.57 4.09 5.22

Table 6.4: Average AUCs and EERs achieved by the SVMS when evaluated on Dolfing’s data

set. The system performance estimates associated with the optimal number of projection angles,

as indicated by µ
(T )
AUC, are emphasised in bold.

µ
(K,T )
AUC (%)

K
µ

(T )
AUC5 10 15

T

2 97.25 98.50 98.65 98.14
4 98.06 99.15 99.30 98.84
8 98.23 99.28 99.42 98.98
16 98.61 99.50 99.59 99.23
32 98.72 99.52 99.61 99.28
64 98.89 99.58 99.66 99.38
128 98.99 99.61 99.66 99.42
256 99.02 99.59 99.66 99.42

µ
(K)
AUC 98.47 99.34 99.44 99.09

µ
(K,T )
EER (%)

K
µ

(T )
EER5 10 15

T

2 8.47 6.11 5.78 6.79
4 6.87 4.31 3.73 4.97
8 6.06 3.65 3.39 4.36
16 5.41 3.13 2.83 3.79
32 5.08 3.00 2.65 3.58
64 4.86 2.95 2.61 3.47
128 4.52 2.89 2.52 3.31
256 4.41 2.95 2.56 3.31

µ
(K)
EER 5.71 3.62 3.26 4.20
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Table 6.5: Average AUCs and EERs achieved by the QDS when evaluated on MCYT-75. The

system performance estimates associated with the optimal number of projection angles, as indi-

cated by µ
(T )
AUC, are emphasised in bold.

µ
(K,T )
AUC (%)

K
µ

(T )
AUC5 10

T

2 90.63 92.74 91.68
4 93.57 95.29 94.43
8 94.85 96.46 95.65

16 95.45 96.60 96.03
32 95.39 96.24 95.81
64 94.22 95.70 94.96
128 92.08 94.68 93.38
256 88.27 92.76 90.51

µ
(K)
AUC 93.06 95.06 94.06

µ
(K,T )
EER (%)

K
µ

(T )
EER5 10

T

2 16.76 15.18 15.97
4 13.96 11.58 12.77
8 11.81 9.50 10.65

16 11.09 9.68 10.39
32 11.36 10.41 10.88
64 12.97 11.34 12.15
128 14.36 12.44 13.40
256 18.25 13.90 16.08

µ
(K)
EER 13.82 11.75 12.79

Table 6.6: Average AUCs and EERs achieved by the SVMS when evaluated on MCYT-75.

The system performance estimates associated with the optimal number of projection angles, as

indicated by µ
(T )
AUC, are emphasised in bold.

µ
(K,T )
AUC (%)

K
µ

(T )
AUC5 10

T

2 89.70 92.15 90.93
4 92.27 94.25 93.26
8 94.00 95.76 94.88
16 95.01 96.52 95.77
32 95.43 96.68 96.05
64 95.59 96.77 96.18
128 95.73 96.69 96.21
256 95.85 96.73 96.29

µ
(K)
AUC 94.20 95.69 94.95

µ
(K,T )
EER (%)

K
µ

(T )
EER5 10

T

2 17.54 15.66 16.60
4 14.07 12.41 13.24
8 12.45 10.26 11.35
16 11.35 9.62 10.49
32 10.97 9.54 10.26
64 10.80 9.56 10.18
128 10.54 9.42 9.98
256 10.37 9.48 9.93

µ
(K)
EER 12.26 10.75 11.50
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Figure 6.6: Average AUCs achieved by the QDS and SVMS, when evaluated on (a) Dolfing’s

data set and (b) MCYT-75, as a function of the projection angle set size T .

QDS. This assertion is supported by e.g. Bouveyron et al. (2007), where it is explained
that it becomes increasingly difficult to obtain reliable class-specific covariance estimates
when the number of training samples becomes small relative to the modelling dimension.
In other words, the QDS falls prey to the curse of dimensionality (see Section 4.3.2).

It should of course be clear that, since the deterioration in performance of the QDS
is in all likelihood due to the curse of dimensionality, the optimal size of the projection
angle set reported in this section, that is T ≈ 16, should not be considered absolute. If a
significantly greater number of training samples were available for model construction, it
is entirely reasonable to expect that the QDS would become more adept at constructing a
successful model from higher-dimensional dissimilarity vectors. In contrast, if the number
of available training samples were to decrease, one may reasonably expect that the curse
of dimensionality will impede the performance of the QDS for T < 16.

Since the SVMS is not affected by this phenomenon, the optimal value of T = 256
may also be considered reliable for other deployment environments. However, if limited
computational resources were to become relevant during deployment, the results reported
in this section indicate that T ≈ 64 should provide a satisfactory trade-off between system
accuracy and system overhead. As T increases from 64 to 256, the improvement in system
performance becomes less pronounced, whilst the computational requirements increase
significantly.

6.3.2 On-line verification systems

Unlike the off-line systems evaluated in the previous section, the on-line verification systems
developed in this study do not require the specification of any predetermined values prior
to model construction. As explained in Section 3.3.2, the on-line signature representation
process utilised in this study converts any feature set, comprising nineteen feature vectors
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Table 6.7: Average AUCs and EERs achieved by the QDS and SVMS when evaluated on the

Philips database.

µ
(K,19)
AUC (%)

K
µAUC5 10 15

QDS 99.52 99.70 99.84 99.66
SVMS 99.83 99.89 99.91 99.87

µ
(K,19)
EER (%)

K
µEER5 10 15

QDS 2.18 2.04 1.65 1.96
SVMS 1.19 0.85 0.65 0.89

Table 6.8: Average AUCs and EERs achieved by the QDS and SVMS when evaluated on

MCYT-100.

µ
(K,19)
AUC (%)

K
µAUC5 10 15

QDS 99.14 99.47 99.53 99.38
SVMS 99.34 99.55 99.58 99.49

µ
(K,19)
EER (%)

K
µEER5 10 15

QDS 4.12 3.33 2.51 3.32
SVMS 3.24 2.72 2.49 2.82

of the same arbitrary dimension d, into a dissimilarity vector with fixed dimension T = 19.
The resulting verification systems are therefore free of hyperparameters. Nevertheless,
several reference set sizes (i.e. different values for K) are considered, in order to investigate
its significance in terms of system proficiency.

The performance estimates obtained for the on-line systems developed in this study,
when evaluated on the Philips database and MCYT-100, are presented in Tables 6.7 and 6.8
respectively.

From these tables it is clear that both the QDS and SVMS prove highly effective,
when either data set is considered. As expected, an increase in system proficiency is
witnessed (for both systems on both data sets) when the number of reference signatures is
increased. Furthermore, there is no evidence to suggest that the QDS is impeded by the
curse of dimensionality. This is a sensible result, since the on-line systems always utilise
nineteen-dimensional dissimilarity vectors, whilst we showed in the previous section that
the off-line QDS performed optimally for T ≈ 16 on data sets of similar size. Nevertheless,
as is the case for the off-line systems, the SVMS consistently outperforms the QDS. The
superiority of the SVMS is especially pronounced when the Philips database is considered
for performance estimation.

6.4 Comparison with previous work

From the performance estimates reported in the previous section, it is clear that, when
either static or dynamic signatures are considered, both the QDS and the SVMS provide
effective solutions to the problem of handwritten signature verification.

In order to place the performance of these systems into perspective, we now compare
the results reported in this study with various historic and recent results reported in the
literature. The comparisons presented in this section are of course limited to those systems
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Table 6.9: Comparison of the EERs for several existing writer-dependent (WD) and/or writer-in-

dependent (WI) systems when evaluated on Dolfing’s data set, with those reported in this study.

System
Modelling EER (%)
strategy K = 5 K = 10 K = 15

Coetzer et al. (2004) WD - - 12.20
Swanepoel and Coetzer (2010) WD - - 10.23

Panton and Coetzer (2010) WD - - 8.89
QDS (This study) WI 4.71 2.86 2.72

SVMS (This study) WI 4.41 2.95 2.56

in the literature that have also been evaluated on the data sets considered in this study.
Each of the systems that are considered here for the purpose of performance comparison
is discussed in detail in Chapter 2.

It is worth noting that these existing systems predominantly utilise a writer-dependent
approach to signature modelling and verification. However, recall from Section 1.2.6 that a
writer-dependent system requires K genuine training signatures per writer, prior to model
construction. When a writer-independent approach is employed, this is analogous to the
requirement of K genuine reference signatures per writer, prior to model training. The
writer-independent systems developed in this study are therefore deemed fit for comparison
with writer-dependent systems proposed in the literature.

Although we explained earlier that the AUC represents a more comprehensive and
reliable measure of system proficiency, we consider the EER for the purpose of performance
comparison in this section, since the EER remains the most commonly reported metric in
the literature.

6.4.1 Off-line verification systems

Dolfing’s data set

To the best of our knowledge, only the writer-dependent HMM-based systems proposed in
Coetzer et al. (2004) and Panton and Coetzer (2010), as well as the ensemble-based system
proposed in Swanepoel and Coetzer (2010), have previously been evaluated using Dolfing’s
data set. A comparison of the EERs reported for these systems with the EERs reported
in this study is presented in Table 6.9.

It is clear from Table 6.9 that, under similar operating conditions, the systems developed
in this study outperform the systems proposed in Coetzer et al. (2004), Swanepoel and
Coetzer (2010), as well as Panton and Coetzer (2010). Furthermore, the improvement
witnessed in verification proficiency is substantial.

As previously mentioned, however, it is not considered reasonable to assume that as
many as fifteen genuine reference signatures would be available per writer in a practical
deployment scenario. It is therefore most promising to note that, even when the reference
set size is reduced to K = 5, both the QDS and SVMS still significantly outperform all the
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Table 6.10: Comparison of the EERs for several existing writer-dependent (WD) and/or

writer-independent (WI) systems when evaluated on MCYT-75, with those reported in this study.

System
Modelling EER (%)
strategy K = 5 K = 10

Fierrez-Aguilar et al. (2004) WD 14.51 12.22
Alonso-Fernandez et al. (2007) WD 17.76 14.44

Gilperez et al. (2008) WD 10.18 6.44
Wen et al. (2009) WD 15.02 -

Vargas et al. (2011) WD 12.02 8.80
Ferrer et al. (2012) WD 10.97 8.16

QDS (This study) WI 11.09 9.68
SVMS (This study) WI 10.37 9.48

existing systems listed in Table 6.9, despite the fact that they utilise a drastically reduced
number of labelled positive samples. For K = 5, one does not expect a generative classifier
(e.g. an HMM) to be able to construct a sufficiently representative writer-dependent
signature model.

It is also interesting to note that the HMM-based systems proposed in Coetzer et al.
(2004) and Panton and Coetzer (2010) both utilise the DRT for signature representation.
In fact, the feature extraction process considered in Coetzer et al. (2004) is practically
identical to the DRT-based feature extraction process utilised by the systems developed in
this study. The fact that these sophisticated HMM-based systems are significantly outper-
formed by the systems developed in this study, even when a comparatively rudimentary
classification technique such as QDA is utilised, suggests that the writer-independent ap-
proach to signature representation, when compared to its writer-dependent counterpart,
provides a superior platform for signature modelling and verification.

MCYT-75

Unlike Dolfing’s data set, MCYT-75 is both well-known and easily accessible to the global
research community. As a result, this data set has been utilised for performance testing
by numerous researchers the world over. Table 6.10 presents a performance comparison
between several systems proposed in the literature and the systems developed in this study.

We conclude from Table 6.10 that both the QDS and SVMS developed in this study
compare favourably with existing systems proposed in the literature. In fact, when only
K = 5 genuine samples are available for model construction (i.e. in a realistic deployment
scenario), the SVMS is marginally outperformed only by the system proposed in Gilperez
et al. (2008).

However, as the number of available reference samples increases to K = 10, several
existing systems outperform the systems developed in this study. The fact that the im-
provement in verification proficiency, resulting from the availability of additional reference
samples, is relatively insignificant for both the QDS and SVMS when compared to those
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reported for existing systems, suggests that the systems developed in this study may not
optimally exploit the additional information provided by these extra samples. This possible
deficiency in our proposed system design is probably associated with the model construc-
tion and/or verification stages and warrants further investigation. In the next chapter we
discuss several proposed extensions to the system design presented in this study. These
additional techniques, that have been identified as potential future work, are aimed to-
wards improving the signature representation, model construction and verification stages.
Once these proposed extensions are implemented, it should prove interesting to ascertain
whether they are able to improve the proficiency of the QDS and SVMS to such an extent
that their performance compares favourably with those of existing systems for all possible
deployment scenarios.

It should be noted that the EERs reported in Table 6.10 for Fierrez-Aguilar et al.
(2004) refer to the most proficient individual system proposed in their paper, that is the
so-called local expert. As discussed in Section 2.2.1, this system may be fused with a global
expert (which achieves EERs of 21.84% and 18.93% for K = 5 and K = 10 respectively),
in order to obtain a superior combined system (which achieves EERs of 11.00% and 9.28%
for K = 5 and K = 10 respectively). However, the local expert system is deemed most
suitable for comparison with the systems developed in this study, since it is reasonable to
expect that a similar fusion of the QDS and SVMS would also result in superior combined
performance.

It is also worth mentioning that the existing systems listed in Table 6.10 represent only
a small subset of published works that consider MCYT-75 for performance estimation.
However, many of the works found in the literature (e.g. Prakash and Guru (2009); Azmi
and Nasien (2014); Singh and Kaur (2014)) do not report an EER measure, but rather
a combination of the false acceptance rate (FAR), false rejection rate (FRR) and average
error rate (AER) metrics, as discussed in Section 1.2.7. Although these performance
measures are inherently related to one another, it does not make sense to directly compare
any of these metrics.

6.4.2 On-line verification systems

Philips database

An exhaustive search of the literature revealed that, to date, relatively few systems have
been evaluated using the Philips signature database. In fact, only four works were found
that report results which are deemed fit for comparison with those reported for the QDS and
SVMS developed in this study. This performance comparison is presented in Table 6.11.

It is clear from Table 6.11 that, in a scenario where K = 5 reference samples are avail-
able per writer, the QDS outperforms existing systems that consider a similar number of
training signatures. In contrast, when the number of available positive samples is increased
to K = 15, the QDS still compares favourably with existing systems, but is ultimately out-
performed by the systems proposed in Le Riche (2000) and Van et al. (2004). A most
promising result, however, is the fact that the SVMS significantly outperforms all of the
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Table 6.11: Comparison of the EERs for several existing writer-dependent (WD) and/or

writer-independent (WI) systems when evaluated on the Philips database, with those reported

in this study.

System
Modelling EER (%)
strategy K = 5 K = 10 K = 15

Dolfing et al. (1998) WD - - 1.90
Le Riche (2000) WD - - 1.02
Van et al. (2004) WD 3.54 - 0.95
Van et al. (2007) WD 3.25 - -

QDS (This study) WI 2.18 2.04 1.65
SVMS (This study) WI 1.19 0.85 0.65

existing systems listed in Table 6.11, regardless of the number of reference signatures avail-
able per writer.

Other works that consider the Philips database for performance estimation, but which
are deemed not fit for comparison with the systems developed in this study, include the
writer-dependent systems proposed in Fuentes et al. (2002) and Sindle (2003). The former
evaluate their system using a combination of skilled and professional forgeries, which re-
portedly yields an FAR and FRR of 4.62% and 8.25% respectively. The latter reports EERs
of 5.0% and 3.9% respectively when either over-the-shoulder or home-improved forgeries
are considered for system evaluation. Both of the aforementioned systems require fifteen
genuine training samples for model construction.

MCYT-100

Similar to its off-line counterpart, MCYT-100 has been considered extensively by a large
cohort of researchers over a prolonged period of time for the purpose of system performance
estimation. The results reported for several systems proposed in the literature are listed
in Table 6.12, along with the results reported for the QDS and SVMS developed in this
study.

It should be emphasised that the systems of which the performances are listed in Ta-
ble 6.12 constitute a small subset of a much larger collection of works that also consider
MCYT-100 for system evaluation. However, it is important to note that the works tab-
ulated here constitute the most proficient systems currently found in the literature. Al-
though numerous other works have also reported results for this data set, the systems
proposed in e.g. Kahn et al. (2006), Nanni and Lumini (2008), Yanikoglu and Kholmatov
(2009), Galbally et al. (2009), and Wibowo et al. (2013) achieve EERs in the range 7.2%–
15.98% when five genuine samples are available for model construction, whereas the least
proficient system listed in Table 6.12 achieves an EER of 5.4% under similar operating
conditions.

When compared to previous systems also evaluated on MCYT-100, both of the systems
developed in study compare favourably. The QDS outperforms several existing systems,
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Table 6.12: Comparison of the EERs for several existing writer-dependent (WD) and/or

writer-independent (WI) systems when evaluated on MCYT-100, with those reported in this

study.

System
Modelling EER (%)
strategy K = 5 K = 10 K = 15

Van et al. (2007) WD 3.37 - -
Lumini and Nanni (2009) WD 5.4 - -

Muramatsu and Matsumoto (2009) WI 4.0 - -
Montalvão et al. (2010) WD 4.5 - -

Sae-Bae and Memon (2013) WD 4.02 2.72 -
QDS (This study) WI 4.12 3.33 2.51

SVMS (This study) WI 3.24 2.72 2.49

whilst the more proficient SVMS outperforms all previous systems (except for the system
proposed in Sae-Bae and Memon (2013), for which there is no distinction in terms of the
reported EER for K = 10).

It is worth noting that the system proposed in Muramatsu and Matsumoto (2009)
considers the BIOMET and MCYT-100 databases (in their entirety) for the respective
purposes of training and evaluation. It is unclear whether this protocol constitutes an
advantage or a disadvantage in terms of system performance estimation. On the one hand,
the data set considered for training is completely different to the data set considered for
evaluation, which may result in an atypically poor system performance. On the other
hand, this system considers a significantly larger number of training samples than would
be possible within a protocol that incorporates cross-validation on a single data set. In
addition, since the system utilises a writer-independent signature model, it should be
able to generalise well and the availability of additional training samples may result in a
superior model. It should therefore prove interesting to re-evaluate the systems developed
in this study under similar experimental conditions to those considered in Muramatsu and
Matsumoto (2009). Such a re-evaluation is, however, reserved for future work.

6.5 Contribution of this study

In order to ascertain whether or not the novel modelling techniques proposed in this study
constitute significant contributions to the current state of the art, we re-evaluate each
system for the set of different system configurations listed in Table 6.13. It should be
clear from Table 6.13 that configuration C1 represents the current state of the art within
the context of writer-independent off-line signature verification, whilst configuration C2
represents the current state of the art within the context of writer-independent on-line
signature verification. Configuration C4 represents the system design proposed in this
study.

Apart from the dichotomy transformation and/or dissimilarity normalisation strategy
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Table 6.13: The set of system configurations considered for system re-evaluation.

Configuration
Dichotomy Normalisation

transformation strategy
C1 Euclidean Global
C2 DTW Global
C3 Euclidean Writer-specific
C4 DTW Writer-specific

utilised, the system design associated with each configuration is identical. Furthermore,
the experimental protocol considered for each re-evaluation is also identical. By comparing
the system performance estimates obtained for these different configurations, we are there-
fore able to quantify the impact on system proficiency resulting from the incorporation
of the modelling techniques proposed in this study, namely the DTW-based dichotomy
transformation for off-line signature representation and the writer-specific dissimilarity
normalisation strategy.

In Section 6.3 we estimated system proficiency using two fundamentally different per-
formance metrics, namely the AUC and EER measures. As mentioned in Section 1.2.7,
however, the AUC is considered a more stable and comprehensive measure of system pro-
ficiency. For this reason, we only consider the AUC-based performance metric associated
with each configuration-specific evaluation for comparison.

In order to gain an initial insight into configuration-specific system performance, graph-
ical performance comparisons are presented in Figures 6.7–6.10. Each notched box plot rep-
resented in these figures is constructed from the entire set of AUC-based metrics obtained
for all values of the system hyperparameters K and T (see Table 6.2).

In the case of the off-line verification systems, we note from Figures 6.7–6.8 that the
inclusion of either the DTW-based dichotomy transformation or the writer-specific dis-
similarity normalisation strategy leads to a significant increase in verification proficiency.
It is also clear from these figures that the improvement in system proficiency is especially
pronounced when these two techniques are incorporated simultaneously. When the system
design proposed in this study (C4) is compared to the current state of the art (C1), we
observe a notable improvement in terms of both accuracy (in the sense that the median
AUC associated with C4 exceeds that of C1) and consistency (in the sense that the vari-
ability of the AUC-values, as indicated by the length of the box whiskers, is much smaller
for C4 than for C1). In fact, both Figures 6.7 and 6.8 indicate that the worst expected
performance associated with configuration C4 surpasses the best expected performance as-
sociated with configuration C1. Finally, the fact that the notches associated with boxes C4
and C1 do not overlap (in any of the four off-line system comparisons presented) suggests
that the improvement witnessed is statistically significant. We formally address the issue
of statistical significance later in this section.

In the case of the on-line verification systems, we note from Figures 6.9–6.10 that the
inclusion of the writer-specific dissimilarity normalisation strategy leads to an increase
in verification proficiency. When MCYT-100 is considered, the improvement witnessed
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Figure 6.7: Comparison of the AUC-based performance metrics obtained for (a) the QDS and

(b) the SVMS, when these systems are evaluated on Dolfing’s data set for configurations C1–C4.
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Figure 6.8: Comparison of the AUC-based performance metrics obtained for (a) the QDS and

(b) the SVMS, when these systems are evaluated on MCYT-75 for configurations C1–C4.
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Figure 6.9: Comparison of the AUC-based performance metrics obtained for (a) the QDS and

(b) the SVMS, when these systems are evaluated on the Philips database for configurations C2

and C4.
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Figure 6.10: Comparison of the AUC-based performance metrics obtained for (a) the QDS and

(b) the SVMS, when these systems are evaluated on MCYT-100 for configurations C2 and C4.
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in terms of both accuracy and consistency is substantial. When the Philips database is
considered, however, the improvement in proficiency is somewhat marginal. Nevertheless, it
should be clear from Figure 6.9 that the state-of-the-art system performance on the Philips
database is already exceptionally high, thereby rendering any improvement noteworthy.
Furthermore, both Figures 6.9 and 6.10 indicate that a statistically significant improvement
in verification proficiency is expected when the on-line system design proposed in this study
is compared to that of the current state of the art.

Statistical significance

Although the graphical performance comparisons in Figures 6.7–6.10 indicate that the
incorporation of the novel techniques proposed in this study leads to a significant improve-
ment in system proficiency, it is advisable to confirm this assertion by means of a formal
statistical test. The evidence resulting from such a statistical hypothesis test may be used
to support or reject assertions made from experimental observations, by quantifying the
likelihood that these observations are misleading due to sampling error.

In this study we employ the two-sample t-test for an α = 0.01 level of significance4, as
outlined in e.g. Cressie and Whitford (1986). This test compares the location parameters
of two independent, normally distributed data samples A and B, in order to ascertain the
likelihood that these samples are representative of populations with unequal means, and
proceeds as follows:

1. Definitions

Let samples A and B refer to the sets of AUC-based performance metrics obtained
by evaluating a system for two different configurations. The improvement expected
in terms of system proficiency, as a result of utilising configuration A instead of
configuration B, may be quantified by the performance gradient ∆A

B, such that

∆A
B = µ(A)− µ(B). (6.1)

The performance gradient therefore represents the difference between the sample
means. Furthermore, let µ

(P )
A and µ

(P )
B denote the population means associated with

samples A and B respectively.

2. Hypothesis statement

Given the parameter definitions stated above, we wish to investigate the following
hypotheses:

• Null Hypothesis H0: µ
(P )
A − µ

(P )
B ≤ 0

• Alternative Hypothesis HA: µ
(P )
A − µ

(P )
B > 0

4The level of significance may be interpreted as the probability of rejecting the null hypothesis given
that it is true.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. EXPERIMENTS 106

Since we specifically wish to ascertain whether µ
(P )
A > µ

(P )
B , that is whether the util-

isation of system configuration A will in all likelihood result in superior proficiency
when compared to system configuration B, the statistical test performed here is
referred to as a right-tailed test.

3. Computations

The test statistic tstat is determined as follows:

tstat =
∆A
B

S
, (6.2)

S =

√(
(nA − 1)σ2

A + (nB − 1)σ2
B

nA + nB − 2

)(
1

nA
+

1

nB

)
, (6.3)

where σ2
X and nX denote the variance and size, respectively, of sample X.

Note that, in contrast to the pooled performance comparisons presented in Fig-
ures 6.7–6.10, we wish to conduct a separate hypothesis test for each combination of
the system hyperparameter values considered, in order to determine whether or not
the improvement witnessed in system proficiency is dependent on said values. Since
each sample X therefore contains the set of kn = 300 performance metrics associated
with specific values for K and T , we consequently also have nA = nB = 300.

4. Decision

At an α = 0.01 level of significance, there is sufficient evidence to reject the null
hypothesis if the test statistic tstat exceeds the associated critical value tcrit, such
that

tstat > tcrit (6.4)

= t(α,nA+nB−2)

= t(0.01,598)

= 2.33

Consequently, if (and only if) ∆A
B > 0 and tstat > 2.33, we can assert with 99% confi-

dence that the utilisation of configuration A instead of configuration B should result
in a superior verification system.

We now subject each of the novel concepts presented in this study to the above-
mentioned statistical analysis, in order to confirm (or refute) our claim that each of these
concepts may be considered a noteworthy contribution to the current state of the art.
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6.5.1 A DTW-based dichotomy transformation for
writer-independent off-line signature representation

As discussed in Chapter 2, a wide variety of writer-independent off-line signature veri-
fication systems have been proposed in recent years. In order to achieve the required
dissimilarity-based signature representation, the systems proposed in the literature primar-
ily utilise the Euclidean distance (or simple vector subtraction) to quantify the difference
between a reference sample and any given training/questioned sample.

In this study we proposed that a fundamentally different distance measure, namely
the DTW-based distance, be utilised for the aforementioned dissimilarity calculation. Al-
though this method has proved successful within the context of on-line signature represen-
tation, where its use is necessitated by the inevitable variations in length of the time series
data extracted from on-line signature samples, no off-line signature verification system cur-
rently found in the literature makes use of a DTW-based dichotomy transformation. We
postulate that a DTW-based algorithm’s ability to non-linearly align two feature vectors,
prior to matching, allows for the construction of more robust dissimilarity vectors, since
the adverse effects of intra-class variability are minimised. The strategy proposed in this
study, for the purpose of obtaining a writer-independent off-line signature representation,
may therefore be considered novel.

The impact on system proficiency, as a direct result of utilising a DTW-based dis-
tance measure instead of the Euclidean distance for the purpose of dissimilarity vector
construction (that is a comparison between the performance estimates associated with sys-
tem configurations C2 and C1), is presented in Tables 6.14–6.15. These results clearly
indicate that the proposed DTW-based approach consistently results in superior perfor-
mance, regardless of the classification technique, system hyperparameter values or data set
considered. In the case where MCYT-75 is considered for system evaluation, this improve-
ment in performance is especially pronounced. More importantly, however, the associated
t-statistics indicate that there is sufficient evidence to assert, with 99% confidence, that
the aforementioned improvement is statistically significant - for all cases investigated.

It should be clear that the results presented in Tables 6.14–6.15 confirm the superiority
of the DTW-based approach, but only when utilised in conjunction with a DRT-based
feature extraction process. Nevertheless, it is reasonable to expect that this approach
should also prove effective when coupled with several other feature extraction techniques.
However, it is important to realise that, in certain instances, the use of a DTW-based
dichotomy transformation may in fact be entirely inappropriate. For example, if one were
to utilise local binary pattern (LBP) histograms for the initial signature representation
(see e.g. Nicolaou et al. (2013)), it would not be sensible to consider non-linear feature
correspondences during dissimilarity calculation.

Ultimately, given the results presented in this section, we assert that the DTW-based
dichotomy transformation proposed in this study constitutes a notable contribution to the
field of writer-independent off-line signature verification.
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Table 6.14: Performance gradients (and corresponding test statistics) obtained between config-

urations C2 and C1 when the QDS and SVMS are evaluated on Dolfing’s data set.

QDS
∆C2
C1 K

(tstat) 5 10 15

T

2 6.11 (43.13) 7.15 (50.88) 7.27 (51.35)
4 3.57 (26.27) 4.30 (31.35) 4.50 (32.35)
8 4.71 (34.09) 5.30 (38.97) 5.49 (39.69)
16 5.86 (42.11) 6.74 (49.91) 6.98 (50.96)
32 4.92 (31.59) 5.45 (36.33) 5.58 (37.72)
64 5.20 (23.37) 5.47 (24.96) 5.42 (24.90)
128 8.76 (31.49) 9.59 (33.94) 9.93 (34.55)
256 7.83 (27.17) 8.99 (30.27) 9.32 (30.79)

SVMS
∆C2
C1 K

(tstat) 5 10 15

T

2 6.63 (39.88) 7.37 (45.78) 7.63 (47.19)
4 3.05 (18.67) 4.00 (25.50) 4.36 (27.29)
8 2.50 (14.81) 2.82 (17.25) 3.22 (19.73)
16 2.18 (14.37) 2.68 (18.02) 2.83 (18.91)
32 2.03 (13.49) 2.50 (17.40) 2.65 (18.19)
64 2.13 (14.35) 2.58 (18.14) 2.71 (18.94)
128 2.57 (17.51) 2.79 (19.84) 2.88 (20.20)
256 2.67 (18.51) 2.83 (20.33) 2.89 (20.51)

Table 6.15: Performance gradients (and corresponding test statistics) obtained between config-

urations C2 and C1 when the QDS and SVMS are evaluated on MCYT-75.

QDS
∆C2
C1 K

(tstat) 5 10

T

2 12.01 (66.57) 11.89 (60.75)
4 8.48 (45.05) 8.35 (41.34)
8 9.62 (51.63) 10.04 (50.90)
16 12.19 (64.05) 12.84 (66.16)
32 12.11 (57.77) 13.01 (62.77)
64 12.51 (58.51) 12.72 (56.98)
128 14.91 (61.18) 15.70 (60.09)
256 19.20 (70.71) 19.28 (66.94)

SVMS
∆C2
C1 K

(tstat) 5 10

T

2 11.78 (61.22) 10.72 (53.49)
4 8.78 (45.17) 8.05 (39.72)
8 9.58 (50.51) 9.11 (46.66)
16 9.68 (54.80) 9.53 (51.68)
32 10.44 (57.81) 10.49 (56.36)
64 10.61 (60.09) 10.25 (55.60)
128 10.54 (60.77) 10.15 (56.31)
256 10.64 (60.44) 10.17 (55.60)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. EXPERIMENTS 109

6.5.2 A writer-specific dissimilarity normalisation strategy for
writer-independent handwritten signature modelling

In this study we proposed the utilisation of a novel dissimilarity normalisation technique
that exploits writer-specific information within a writer-independent signature modelling
framework. In Section 5.2.2 we showed that, as opposed to the traditional global nor-
malisation strategy, the proposed writer-specific approach is able to significantly improve
inter-class separability in dissimilarity space and therefore also improve the efficacy of the
resulting writer-independent signature model.

It should be clear from the literature survey presented in Chapter 2 that the incorpora-
tion of writer-specific information into a writer-independent signature modelling framework
does not in itself constitute a novel concept, since the benefits of such an approach was pre-
viously investigated by Muramatsu and Matsumoto (2009). Recall from Section 2.3.2 that
the aforementioned system first estimates a mean dissimilarity vector from the entire set of
reference signatures associated with a specific writer. This is of course similar to the writer-
specific mean dissimilarity vector µ(ω) estimated by the systems developed in this study, as
explained in Section 5.2.2. However, Muramatsu and Matsumoto (2009) propose that this
mean vector should subsequently be concatenated to any dissimilarity vector belonging to
(or claimed to belong to) said writer, prior to model construction (or verification), in or-
der to personalise the dissimilarity vector. The utilisation of a writer-specific dissimilarity
normalisation function, as proposed in this study, is fundamentally different from this pre-
viously proposed strategy and may therefore be considered novel. Furthermore, we assert
that the dissimilarity normalisation strategy proposed in this study is (from a statistical
perspective) more elegant and intuitive than the existing dissimilarity vector concatenation-
based strategy. Finally, it is worth noting that the aforementioned concatenation process
invariably doubles the dimension of any dissimilarity vector submitted for personalisation.
In Section 6.3.1 we showed that a substantial increase in the model dimension may have a
severely detrimental effect on the proficiency of a system that utilises a generative classifier
for signature modelling and verification. The concatenation-based approach is therefore
only fit for incorporation into verification systems that either consider a relatively small
feature set for signature representation or employ a classification technique that is adept at
constructing high-dimensional signature models. In contrast, the strategy proposed in this
study does not alter the dimension of any dissimilarity vector submitted for normalisation
and is therefore fit for incorporation into any writer-independent verification system.

Although our proposed approach to incorporating writer-specific information into the
writer-independent signature modelling framework is certainly novel, it is equally important
to ascertain whether or not this approach is in fact effective. Since the utilisation of this
dissimilarity normalisation function is equally applicable to off-line and on-line signature
modelling, we investigate its impact on system proficiency for both of these scenarios.

The impact on system proficiency, as a direct result of utilising the proposed writer-
specific dissimilarity normalisation strategy instead of a global normalisation strategy,
within the context of off-line signature modelling (that is a comparison between the per-
formance estimates associated with system configurations C3 and C1), is presented in
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Tables 6.16–6.17. A similar analysis is performed within the context of on-line signature
modelling (that is a comparison between the performance estimates associated with system
configurations C4 and C2) and is presented in Tables 6.18–6.19.

We find that, for both the off-line and on-line scenarios, the utilisation of a writer-
specific approach to dissimilarity normalisation consistently results in superior perfor-
mance, regardless of the classification technique, system hyperparameter values or data
set considered. The observed improvement in terms of verification proficiency is substan-
tial when MCYT-75 is considered for system evaluation, whilst the results achieved on the
Philips database indicate a somewhat marginal improvement. Ultimately, although the
magnitude of the resulting performance improvement appears to be dependent on the data
set considered, there is no denying that an improvement is consistently observed. More
importantly, there is sufficient evidence to assert (with 99% confidence) that the witnessed
improvement is statistically significant - for all cases investigated.

The results presented in this section, coupled with the fact that the strategy proposed in
this study is generic (in the sense that it may easily be incorporated into any existing writer-
independent verification system), leads us to assert that the writer-specific dissimilarity
normalisation strategy proposed in this study constitutes a significant contribution to the
field of writer-independent handwritten signature verification – that is for both the off-line
and on-line scenarios.

6.5.3 A writer-independent off-line signature verification
system that is both novel and proficient

The off-line systems developed in this study utilise two novel signature modelling tech-
niques, namely the DTW-based dichotomy transformation and the writer-specific dissimi-
larity normalisation strategy proposed in this study. The off-line QDS and SVMS developed
in this study may therefore also be considered novel.

In Sections 6.5.1–6.5.2 we showed that, within the context of off-line signature mod-
elling, the incorporation of either of the aforementioned techniques leads to a statistically
significant improvement in verification proficiency. It is therefore not strictly necessary
to perform a similar analysis for the simultaneous incorporation of these two techniques.
Nevertheless, we provide such an analysis (that is a comparison between the performance
estimates associated with system configurations C4 and C1) in Tables 6.20–6.21, in order
to emphasise the extent of the resulting improvement in performance.

It is clear from Tables 6.20–6.21 that, regardless of the classification technique, system
hyperparameter values or data set considered, the simultaneous incorporation of the novel
techniques proposed in this study leads to a substantial increase in system proficiency. As
expected, the associated t-statistics confirm that there is overwhelming evidence to assert
that this improvement is statistically significant – for all cases considered. Furthermore,
in Section 6.4.1 we showed that, when system performance estimation is conducted under
similar experimental conditions, both the QDS and SVMS proposed in this study either
outperform or compare favourably with existing systems proposed in the literature.
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Table 6.16: Performance gradients (and corresponding test statistics) obtained between config-

urations C3 and C1 when the QDS and SVMS are evaluated on Dolfing’s data set.

QDS
∆C3
C1 K

(tstat) 5 10 15

T

2 6.83 (50.10) 7.93 (59.29) 8.21 (65.13)
4 6.25 (52.63) 7.17 (60.41) 7.59 (64.57)
8 7.54 (64.94) 8.27 (73.00) 8.68 (76.98)
16 7.57 (61.57) 8.60 (73.20) 9.09 (79.75)
32 6.70 (49.07) 7.87 (61.55) 8.16 (66.67)
64 6.71 (34.30) 7.84 (39.76) 7.84 (39.94)
128 6.30 (24.76) 8.86 (33.10) 9.12 (33.16)
256 1.52 (6.14) 4.79 (18.55) 4.86 (17.93)

SVMS
∆C3
C1 K

(tstat) 5 10 15

T

2 5.99 (37.56) 6.63 (42.24) 6.75 (43.71)
4 5.90 (44.86) 6.40 (48.66) 6.73 (51.10)
8 5.97 (44.21) 6.16 (47.56) 6.42 (48.71)
16 4.74 (37.93) 5.25 (42.11) 5.75 (46.49)
32 4.18 (33.95) 4.72 (39.27) 5.35 (45.16)
64 4.01 (33.04) 4.64 (39.26) 5.28 (45.56)
128 3.90 (32.06) 4.63 (39.90) 5.17 (45.38)
256 3.86 (31.82) 4.61 (40.03) 5.11 (45.35)

Table 6.17: Performance gradients (and corresponding test statistics) obtained between config-

urations C3 and C1 when the QDS and SVMS are evaluated on MCYT-75.

QDS
∆C3
C1 K

(tstat) 5 10

T

2 10.63 (57.28) 12.42 (62.92)
4 10.42 (59.90) 11.84 (65.80)
8 11.29 (69.93) 13.08 (77.95)
16 12.38 (73.02) 14.98 (90.03)
32 12.67 (70.68) 15.38 (89.92)
64 13.10 (76.43) 16.07 (90.94)
128 11.13 (56.27) 15.45 (73.85)
256 7.02 (30.68) 10.01 (38.42)

SVMS
∆C3
C1 K

(tstat) 5 10

T

2 8.18 (42.88) 8.22 (39.96)
4 9.22 (54.57) 9.36 (54.04)
8 10.24 (65.93) 11.28 (73.02)
16 9.58 (62.93) 12.12 (84.66)
32 9.54 (59.29) 11.58 (75.86)
64 9.47 (60.04) 11.01 (73.12)
128 9.39 (59.43) 10.85 (71.60)
256 9.16 (58.08) 10.67 (70.33)
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Table 6.18: Performance gradients (and corresponding test statistics) obtained between config-

urations C4 and C2 when the QDS and SVMS are evaluated on the Philips database.

∆C4
C2 K

(tstat) 5 10 15
QDS 0.31 (8.81) 0.48 (14.40) 0.68 (19.85)

SVMS 0.07 (4.67) 0.07 (5.45) 0.10 (7.71)

Table 6.19: Performance gradients (and corresponding test statistics) obtained between config-

urations C4 and C2 when the QDS and SVMS are evaluated on MCYT-100.

∆C4
C2 K

(tstat) 5 10 15
QDS 6.37 (49.30) 6.42 (48.22) 6.37 (48.68)

SVMS 1.80 (36.53) 1.74 (36.35) 1.70 (36.38)

Consequently, we assert that the off-line system design proposed in this study consti-
tutes a notable contribution to the field of off-line signature verification.

6.5.4 A writer-independent on-line signature verification
system that is both novel and proficient

As is the case with the off-line systems discussed in the previous section, both the on-line
QDS and SVMS developed in this study employ the proposed writer-specific dissimilarity
normalisation strategy, thereby also ensuring their novelty.

In Section 6.5.2 we showed that, within the context of on-line signature modelling, the
incorporation of this normalisation strategy leads to a statistically significant improvement
in verification proficiency and, since this is the only novel technique incorporated into the
on-line verification systems developed in this study, no further analysis is required. We
also showed in Section 6.4.2 that both the QDS and SVMS proposed in this study either
outperform or compare favourably with existing systems proposed in the literature. In
fact, it appears to be entirely plausible that, for realistic deployment scenarios, where
limited genuine reference samples are available for each writer en rolled into the system,
the SVMS represents one of the most proficient signature verification system evaluated to
date on both the Philips database and MCYT-100.

We therefore assert that the on-line system design proposed in this study constitutes a
notable contribution to the field of on-line signature verification.

6.6 Concluding remarks

In this chapter we conducted a rigorous experimental evaluation of the off-line and on-line
signature verification systems developed in this study. Several large, well-known signature
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Table 6.20: Performance gradients (and corresponding test statistics) obtained between config-

urations C4 and C1 when the QDS and SVMS are evaluated on Dolfing’s data set.

QDS
∆C4
C1 K

(tstat) 5 10 15

T

2 12.19 (107.45) 13.37 (120.91) 13.48 (124.09)
4 10.13 (99.71) 10.80 (105.67) 10.92 (106.20)
8 11.26 (112.11) 11.70 (118.16) 11.72 (118.26)
16 11.65 (110.37) 12.24 (120.25) 12.25 (120.95)
32 11.44 (94.12) 11.73 (102.00) 11.59 (104.70)
64 14.25 (82.95) 14.20 (83.04) 13.88 (82.58)
128 20.58 (105.21) 21.66 (107.71) 21.83 (105.18)
256 20.45 (99.48) 23.07 (114.76) 23.63 (114.95)

SVMS
∆C4
C1 K

(tstat) 5 10 15

T

2 11.79 (85.71) 12.79 (96.77) 12.89 (97.47)
4 9.60 (83.55) 10.36 (92.31) 10.47 (91.39)
8 9.66 (80.49) 10.07 (87.85) 10.19 (89.37)
16 8.91 (81.06) 9.20 (85.14) 9.18 (85.10)
32 8.42 (78.68) 8.71 (86.09) 8.66 (84.80)
64 8.44 (81.20) 8.57 (85.63) 8.46 (84.28)
128 8.55 (83.62) 8.57 (87.67) 8.37 (85.28)
256 8.52 (83.77) 8.48 (87.27) 8.27 (84.85)

Table 6.21: Performance gradients (and corresponding test statistics) obtained between config-

urations C4 and C1 when the QDS and SVMS are evaluated on MCYT-75.

QDS
∆C4
C1 K

(tstat) 5 10

T

2 20.50 (121.67) 21.31 (126.85)
4 18.95 (122.66) 19.31 (122.92)
8 18.98 (127.97) 19.57 (130.02)
16 20.56 (135.05) 20.90 (137.59)
32 22.09 (138.77) 22.09 (141.33)
64 23.76 (158.61) 24.17 (155.47)
128 26.32 (158.04) 28.22 (157.85)
256 26.81 (140.34) 30.19 (146.95)

SVMS
∆C4
C1 K

(tstat) 5 10

T

2 17.29 (97.10) 17.08 (97.97)
4 17.01 (110.73) 16.60 (109.77)
8 18.61 (127.63) 18.09 (127.03)
16 18.98 (141.61) 18.77 (142.59)
32 18.90 (135.33) 18.70 (137.38)
64 18.57 (137.40) 18.28 (135.83)
128 18.57 (137.93) 18.04 (133.87)
256 18.42 (137.12) 17.92 (132.95)
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corpora were considered for system proficiency testing, whilst the experimental protocol
ensured that the performance estimates reported in this chapter are both comprehensive
and unbiased.

The results reported in this chapter indicate that, under optimal operating conditions,
the SVMS consistently outperforms the QDS. This is the case for both the off-line and
on-line verification scenarios investigated. Furthermore, the proficiency of the systems
developed in this study were placed into context by means of a performance comparison
with existing systems proposed in the literature. When compared to existing systems that
were also evaluated on Dolfing’s data set, the Philips database and the MCYT-Signature-
100 subcorpus, we found that the SVMS outperforms (to the best of our knowledge) all
previously proposed systems, whilst it outperforms most existing systems also evaluated
on the MCYT-SignatureOff-75 subcorpus. The QDS compares favourably with previously
proposed systems and outperforms several existing systems, although we find that this
system is, unlike the SVMS, susceptible to the curse of dimensionality.

Finally, we presented an extensive analysis of the contributions made by the novel tech-
niques proposed in this study. We showed that the utilisation of a DTW-based dichotomy
transformation or a writer-specific dissimilarity normalisation strategy consistently leads
to a substantial improvement in system proficiency, especially when both methods are
incorporated simultaneously. Most importantly, a formal statistical significance test con-
firmed that both of the novel techniques proposed in this study constitute noteworthy
contributions to the current state of the art.

In the next chapter, we conclude this study by highlighting selected key aspects in a
concise overview. We also present brief discussions on a selection of strategies for poten-
tially improving the proposed systems in the future.
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Chapter 7

Conclusion and Future Work

“The important thing is to not stop questioning.”
- Albert Einstein (1879–1955)

7.1 Conclusion

The purpose of this study was to design and develop an effective, writer-independent hand-
written signature verification system. Two fundamentally different verification scenarios,
namely those concerned with off-line and on-line signatures, were investigated.

The systems developed in this study utilise various existing techniques documented in
the literature, as well as several novel techniques as proposed in this study. The most no-
table of these novel techniques include a dynamic time warping (DTW) based dichotomy
transformation for the purpose of off-line signature representation, specifically proposed
for the conversion of writer-dependent discrete Radon transform (DRT) based feature vec-
tors into writer-independent dissimilarity vectors, as well as a writer-specific dissimilarity
normalisation strategy, which is considered generic in the sense that it is equally applicable
to both off-line and on-line signature modelling.

The DTW-based dichotomy transformation provides an effective solution to the prob-
lem of intra-class variability, whilst the writer-specific dissimilarity normalisation strategy
considerably improves inter-class separability in dissimilarity space. Both of these issues
are of critical importance to the successful development of any writer-independent signature
verification system. Furthermore, when compared to state-of-the-art writer-independent
signature verification systems, the novel techniques proposed in this study make no addi-
tional assumptions regarding potential deployment conditions, and may therefore be easily
incorporated into any existing system documented in the literature.

In order to quantify the significance of the proposed techniques, the systems developed
in this study were subjected to a rigorous experimental evaluation protocol using several
large signature corpora. The results obtained during this evaluation indicate that both
the off-line and on-line verification systems developed in this study provide highly effective
solutions to the problem of automated handwritten signature verification. However, we
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also found that the SVMS, that is the system that utilises a support vector machine
with a radial basis function kernel, unquestionably represents the most proficient system
developed in this study. This is the case when either off-line or on-line signature verification
is performed.

A comparison between the results reported here with those reported in the literature
(i.e. existing systems evaluated on the same data sets) confirm the efficacy the systems
proposed in this study. In addition, it is shown that the novel techniques proposed in this
study are able to substantially improve system proficiency, especially when implemented
simultaneously. Furthermore, we confirmed that this improvement in system performance
is statistically significant. The proposed techniques may therefore not only be considered
novel, but also constitute noteworthy contributions to the field of handwritten signature
verification.

In terms of the primary objectives stated in Section 1.3, this study is therefore deemed
successful. Furthermore, the success of this study is confirmed by the fact that it has
resulted in several peer-reviewed publications (Swanepoel and Coetzer (2012, 2013, 2014)),
whilst the initial proof of concept (Swanepoel and Coetzer (2012)) also received the In-
ternational Graphonomics Society Best Student Paper Award at the 2012 International
Conference on Frontiers in Handwriting Recognition. However, despite these successes,
there remains considerable room for potential improvement regarding various stages of the
proposed system design. In the next section, we present several possible avenues for future
research that may prove beneficial to the systems developed in this study.

7.2 Future work

During the course of this study, several concepts were encountered that may warrant further
investigation. These concepts are, however, not included in this dissertation – either due
to being considered outside the scope of this study, or simply due to time constraints. In
this section, several of these concepts are briefly discussed as a possible continuation of
this research.

7.2.1 Improved image processing for off-line signature
representation

In Section 3.2.1 we discussed the importance of incorporating effective image pre-processing
techniques prior to off-line signature feature extraction. We also discussed several tech-
niques aimed specifically towards image binarisation, noise reduction and signature seg-
mentation. As mentioned in Section 3.5, however, none of the image processing methods
utilised by the systems developed in this study are necessarily deemed optimal for their
respective tasks, since document image processing is not considered a primary objective
of this study. It should therefore prove useful to investigate existing state-of-the-art tech-
niques (and possibly develop novel algorithms), in order to optimally address the various
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issues related to document image processing, and in so doing maximise the efficacy of the
off-line feature extraction process.

Consider, for example, the issue of document image binarisation. In this study we im-
plemented Otsu’s method, due to its ease of use and the fact that it has proven generally
effective throughout the literature (see e.g. Freire et al. (2007); Alonso-Fernandez et al.
(2007); Prakash and Guru (2009)). However, since this method employs global thresh-
olding, its success may be severely impeded when confronted with a degraded1 document
image. A variety of state-of-the-art adaptive image binarisation algorithms are detailed in
e.g. Singh et al. (2011), Zhang and Wu (2011), as well as Lazzara and Thierry (2014). Since
these algorithms perform local thresholding within a dynamically adjustable window, they
are able to produce significantly more accurate pen stroke information within the resulting
binary image representation.

Another key issue in document image analysis is that of noise reduction. Again, due to
its straightforward implementation and historic success, we implemented the median filter
in this study. However, alternative algorithms such as the adaptive median filter (AMF)
or other morphological operators may prove superior, especially when the erroneous pixels
represented in the binary image are not limited to impulse noise. The AMF, for instance,
is particularly adept at removing relatively high density noise, whilst also preserving the
shape of the handwriting.

Various additional issues may also be addressed in potential future research, such as
stroke repair 2 and stroke width normalisation, so that the resulting binary image represen-
tation may resemble an ideal off-line representation (similar to the samples from Dolfing’s
data set as presented in Figure 6.1).

The incorporation of these specialised image pre-processing algorithms, into the sys-
tems developed in this study, should undoubtedly improve the quality of the features
subsequently extracted from static signature images and therefore also improve overall
modelling and verification proficiency.

7.2.2 Feature weighted signature modelling

The on-line verification systems developed in this study consider several different spa-
tial and temporal features for signature representation. Since each one of these features
measures a different aspect of signature production, it is reasonable to expect that not
all the features considered would provide an equally discriminative platform for signature
modelling. For instance, we noted in Section 3.3.2 that the discriminative superiority of
temporal features, when compared to their spatial counterparts, is a well-established fact.

1Within the context of document image processing, document degradation may refer to e.g. the presence
of relatively large areas of ink residue, dust and/or other foreign materials captured during the digitisation
process. Other issues that may impede document image analysis include poorly contrasted images, as well
as relatively poorly defined pen strokes due to e.g. an excessive variation in pen pressure during signature
production.

2It should be clear that optimal performance of the preceding algorithms, aimed at image binarisation
and noise reduction, would obviate the need for an additional technique aimed toward pen stroke repair.
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Figure 7.1: Average feature weights reported in Swanepoel and Coetzer (2014), as determined

using (a) the F -score and (b) the linear support vector weighting methods. The feature indices

correspond to the columns of the feature set considered, that is X = [p, x, y, ẋ, ẏ, ẍ, ÿ, θx, θy].

Although both strategies clearly identify the vertical position y, horizontal velocity ẋ and vertical

velocity ẏ (indices 3–5) as highly discriminative, it should be noted that substantially different

weights are associated with the horizontal position x and the vertical acceleration ÿ (indices 2

and 7).

This expected variability in the discriminative potential associated with different features
is, however, not exploited by the systems developed in this study.

This potential shortcoming in the signature modelling framework proposed in this study
may of course be addressed through the incorporation of feature weighting into the model
construction process. An investigation into the potential gain in system proficiency, as a
result of utilising a feature weighted signature modelling framework, is therefore deemed
warranted. Furthermore, the concept of feature weighting may easily be incorporated into
the systems developed in this study. For instance, when an SVM is employed for signature
modelling, Chang and Lin (2008) explain that feature weighting may be achieved by simply
introducing a weight factor into the associated kernel function.

An initial investigation into the feasibility and significance of feature weighted on-line
signature modelling was launched during the latter stages of this study and may be found in
Swanepoel and Coetzer (2014). In this paper, a set of 9 features is considered for signature
representation, whilst two fundamentally different weighting strategies, namely the F -
score (Duda et al. (1999)) and the linear support vector weighting method (Chang and Lin
(2008)), are investigated. The impact of incorporating the feature weights yielded by these
two strategies, into an SVM-based on-line signature model, is determined experimentally
and these initial findings are presented as a proof of concept.

The findings presented in Swanepoel and Coetzer (2014) yields two notable results.
Firstly, it is shown that the utilisation of different weighting strategies may lead to sub-
stantially different feature weight values, as is evident from Figure 7.1. This result confirms
that the selection of a suitable weighting strategy is not a trivial task, but in fact demands
serious consideration. More importantly, however, it is shown that the proposed feature
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weighted SVM-based model consistently outperforms its conventional SVM-based coun-
terpart. This result confirms that the concept of feature weighting, within the context
of writer-independent signature modelling, represents an avenue of research worth further
investigation.

Although consistent, the improvement in verification proficiency reported in Swanepoel
and Coetzer (2014) is relatively modest. This paper does, however, identify several topics
deemed warranted for continued investigation. For instance, in order to maximally exploit
the potential of the proposed feature weighted approach, the utilisation of an expanded3

feature set is suggested. In addition, an investigation into alternative, more sophisticated
feature weighting strategies is also suggested. Candidate strategies include, amongst oth-
ers, the FSDD feature ranking algorithm proposed in Liang et al. (2008), as well as the
receiver operating characteristic (ROC) based approach proposed in Zhang et al. (2009).
A continuation of the initial investigation presented in Swanepoel and Coetzer (2014) is
currently underway.

It should be clear from the discussion above that, within the context of this study,
the incorporation of feature weighting into the modelling framework is only applicable to
the on-line verification systems, since only these systems consider a set of independent,
fundamentally different features for signature representation. This is not the case for the
off-line systems, where each feature represents a DRT-based projection profile associated
with a different projection angle. It is not reasonable to expect that, specifically within
a writer-independent framework, the projection profiles associated with a specific set of
predetermined angles will always prove more discriminative than others. It is of course not
impossible, nor inadvisable, to incorporate the concept of feature weighting into an off-line
signature modelling framework. Such an endeavour will, however, necessitate the use of
an alternative feature extraction technique, since the DRT-based method utilised in this
study is not deemed suitable for this purpose.

7.2.3 Confidence weighted score fusion

In the previous section we discussed the expected benefits of incorporating feature weight-
ing into the signature modelling framework. This concept of assigning varying levels of
importance to different data sources is, however, by no means limited to features.

Consider, for example, the signature verification protocol utilised by the systems de-
veloped in this study. In Section 5.3 we explained that, when presented with a questioned
signature sample, a trained model yields as output a set of signed distance measures relative
to the corresponding decision boundary, where each measure is obtained from a compar-
ison between the questioned sample and a known genuine reference sample. In addition,
we explained how such a distance measure may subsequently be converted into a confi-
dence score s ∈ [0, 1], where confidence values of 1, 0 and 0.5 are associated with certain

3The set of nineteen features considered by the on-line signature verification systems developed in this
dissertation already constitutes a noteworthy feature set expansion, when compared to the set of nine
features considered in Swanepoel and Coetzer (2014). Of course, many additional features are available
for potential incorporation into an even further expanded feature set.
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acceptance, certain rejection and total ambiguity, respectively.
Furthermore, we explained that the systems developed in this study combine the set

of model outputs by means of score averaging, as opposed to the more commonly used
majority voting strategy (Santos et al. (2004)). This approach is able to incorporate
additional information relating to classifier certainty, into the decision-making process,
thereby yielding a more comprehensive and reliable result. The available information
regarding classifier certainty may, however, be exploited even further if fusion is achieved
by employing weighted score averaging, where the weight associated with each classification
event is related to the confidence score obtained from said classification.

The concept of confidence weighted information fusion has previously been proposed
in the literature, predominantly in the field of multi-sensor fusion (Elmenreich (2007);
Apartsin (2012)), that is the fusion of measurement samples from multiple sensors, in
order to obtain a dependable estimation of the variable/entity considered for measurement.
However, to the best of our knowledge, confidence weighted classifier score fusion has not
been investigated within the context of pattern authentication.

It is therefore our intention to develop a novel confidence weighted score fusion protocol.
Furthermore, we propose that the weight associated with each classification be determined
directly from its corresponding confidence score s, by means of a confidence weighting
function f(s) ∈ [0, 1]. To the best of our knowledge, the utilisation of such a function, for
the purpose of determining a suitable confidence weighting value, has not yet been proposed
in the literature. Although the weighting function may be chosen arbitrarily, any suitable
function would in all likelihood possess the following important properties: (1) In order to
remain unbiased toward either acceptance or rejection, the proposed function should be
symmetric with respect to the line s = 0.5; (2) In order to yield sensible weight values, f(s)
should be monotonically decreasing in the interval s ∈ [0, 0.5] and monotonically increasing
in the interval s ∈ [0.5, 1]. Such a function would therefore maximise the contribution of
any classification made with relatively high certainty, whilst classifications associated with
total ambiguity would, in essence, be discarded.

Several functions that possess these desired properties are presented in Figure 7.2.
Although countless other functions may exist that also satisfy the aforementioned require-
ments, the candidate functions illustrated in Figure 7.2 are deemed fit for investigation
within an initial study.

It is clear from the discussion presented in this section that the implementation of the
proposed classifier score fusion strategy, that is the substitution of the currently utilised
score averaging strategy with a weighted average that incorporates a weighting function,
does not represent a particularly daunting research challenge. However, it should also be
clear that the success of the proposed strategy is entirely dependent on the optimality
of the confidence scores yielded by each classification. As explained in Section 5.3, the
systems developed in this study convert model outputs into confidence scores by means
of the conventional logistic function. Although this method has proved successful in this
study, it is by no means considered optimal. Furthermore, the identification of an optimal
weighting function remains a problem that demands further investigation.

An initial investigation into the feasibility and significance of an efficient confidence
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Figure 7.2: Confidence weighting function candidates. It should be clear that these functions

may intuitively be associated with a (a) conservative, (b) neutral, and (c) liberal approach to

weight assignment, respectively.

weighted classifier score fusion protocol, within the context of handwritten signature veri-
fication, is currently underway.

7.2.4 Other applications

Although we demonstrated that the pattern representation, modelling and verification
techniques presented in this study are well suited for the development of a proficient hand-
written signature verification system, the application of these methods is in no way limited
to this specific field of research. It is in fact entirely reasonable to expect that the systems
developed in this study may, subject to relatively minor modifications, provide effective
solutions to a variety of other problems in the wider field of pattern recognition.

Consider, for example, the problem of text-dependent speaker verification, that is the au-
tomatic authentication of a person’s claimed identity from an audio sample representative
of a specific vocal utterance. Although the acoustic information represented in an audio
sample differs significantly from the pen stroke information associated with a handwritten
signature sample, the underlying pattern recognition problem is similar to that of on-line
signature verification4. The on-line systems developed in this study may therefore, subject
to the development of a modified feature extraction process aimed toward acoustic signal
analysis, provide an effective tool for the modelling and verification of speaker-independent
vocal utterances. Furthermore, if several independent features are considered for pattern
representation, the utilisation of a weighted SVM may prove particularly effective.

Another potential field of application is that of handwritten word spotting, that is the
automatic retrieval of a specific target word within a digitised handwritten manuscript.
Following the successful segmentation of each word represented within a given manuscript,
the problem of either accepting or rejecting each of these questioned words as the target
word constitutes a verification task similar to that of off-line signature verification. Fur-

4Despite the fact that the source data associated with text-dependent speaker verification and on-line
signature verification represent fundamentally different information, both types of data comprise time
series information of variable length, and both are associated with a specific predefined gesture.
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thermore, in order to construct a suitable model for the target word, one or more known
samples of said word is required. The modelling of a specific target word, produced by
a specific writer, may therefore be considered analogous to the construction of a writer-
dependent handwritten signature model. It may therefore prove interesting to deploy the
off-line systems developed in this study, without any system design modifications, within
the context of target-independent handwritten word spotting. It should be clear, however,
that if no design modifications whatsoever are made to the off-line signature verification
systems developed in this study, the resulting word spotting systems may prove proficient
in either the retrieval of arbitrary words produced by a specific writer, or the retrieval of
a specific word produced by arbitrary writers, but not both. If a word spotting system
is to be developed that is both writer-independent and target-independent, it is entirely
possible that the model construction process proposed in this study may require several
modifications, specifically aimed toward addressing the shape variations expected for a
specific word – when this word may be produced by one of several potential writers.

Finally, we are confident that the applications described above represent only a small
portion of a wide variety of additional applications that will undoubtedly be identified in
the future.
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Appendix A

Dynamic Time Warping

As mentioned in Section 3.4, there are currently several variants of the DTW-algorithm
described in the literature. In this appendix, we discuss the specific algorithm utilised by
the systems developed in this study. For a graphical conceptualisation of this algorithm,
the reader is referred to Figure 3.10 in Section 3.4.

A.1 Algorithm

In order to obtain a DTW-based distance between two vectors xq and xk, which is denoted
by D(xk,xq), a distance grid is first constructed where each node (i, j) relates element i
of xq to element j of xk. For each such node, the distance

Dnode(i, j) = (xq(i)− xk(j))2 (A.1)

is computed, which is said to reflect the node-based cost associated with the elements xq(i)
and xk(j). The optimal path through this distance grid, that terminates at node (i, j), is
subsequently defined as the path (i0, j0), (i1, j1), . . . , (iK , jK) for which the total node-based
cost

D
(compl)
node (i, j) =

K∑
k=0

Dnode(ik, jk) (A.2)

is minimised. Furthermore, several constraints are imposed on the solution space, in order
to ensure that the resulting optimal path is in fact a valid path.

Firstly, it is required that the optimal path is complete. In other words, for two feature
vectors xq ∈ <m and xk ∈ <n, xq(1) must always be related to xk(1), whilst xq(m) must
always be related to xk(n). This is achieved by the requirement

(i0, j0) = (1, 1), (A.3)

(iK , jK) = (m,n). (A.4)

Note that it is clearly not required that xq and xk have the same dimension.
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Secondly, it is required that the optimal path be monotonically increasing. In other
words, a node (i, j) may therefore only be considered for inclusion into the optimal path if
it is preceded by the node (i− 1, j− 1), (i, j− 1) or (i− 1, j). Consequently, it follows that

ik ≥ ik−1, k = 2, 3, . . . , K, (A.5)

jk ≥ jk−1, k = 2, 3, . . . , K. (A.6)

As a result, any node that fails to satisfy (A.5) and (A.6) does not form part of a valid path
and can therefore not form part of the optimal path. Note that, since it is not demanded
that the optimal path be strictly increasing, but simply non-decreasing, this constraint
facilitates the consideration of one-to-many element correspondences.

Finally, when constructing the optimal path, it is required that each included node is
located within a predetermined bandwidth β around the diagonal, such that

|jk − ik| ≤ β, k = 0, 1, . . . , K. (A.7)

This bandwidth may be chosen arbitrarily. However, since this value has a major influence
on the practicality of the obtained solution, careful consideration is required in selecting a
sensible value. Firstly, it ensures that components with exceedingly different indices are not
related, which would of course not be sensible. Secondly, it limits the computational cost
associated with the DTW-algorithm. It should be clear that, for feature vectors of a very
high dimension, the construction of a complete cost grid could become computationally
exhaustive. Note that when β = 0, the optimal path is restricted to the diagonal i = j,
which is equivalent to computing the Euclidean distance between xk and xq.

Before we discuss the DTW-based algorithm for obtaining the complete optimal path
and its associated complete optimal cost, it is necessary to define two key concepts. Let
D

(part)
node (i, j) denote the partial optimal path that terminates at node (i, j). Also, let← (i, j)

denote the optimal preceding node for node (i, j). A preceding node is deemed optimal if
the partial optimal path that passes through it and terminates at (i, j) minimises the
partial optimal cost.

The complete procedure for finding the optimal path and corresponding DTW-based
distance by means of the DTW-algorithm can now be stated as follows:

• Initialisation:

D
(part)
node (1, 1) = Dnode(1, 1). (A.8)

• Recursion:

All nodes within the allotted bandwidth are considered in a left-to-right, bottom-to-
top fashion. For each node considered, ← (i, j) is computed as

D1 = D
(part)
node (i− 1, j − 1), (A.9)

D2 = D
(part)
node (i, j − 1), (A.10)

D3 = D
(part)
node (i− 1, j), (A.11)

← (i, j) = argmin{D1, D2, D3}. (A.12)
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If the minimum value for Di is shared by more than one of the preceding nodes,
← (i, j) is selected in the following order of preference: (i− 1, j − 1), then (i, j − 1),

else (i− 1, j). Subsequently, D
(part)
node (i, j) is computed as

D
(part)
node (i, j) = Dnode(i, j) +D

(part)
node (← (i, j)). (A.13)

• Path backtracking:

As ensured by (A.3) and (A.4), nodes (i0, j0) and (iK , jK) of the optimal path are
reserved by (1, 1) and (m,n) respectively. The remainder of the optimal path may
be obtained through backtracking from node (iK , jK) by iteratively letting

(ik, jk) =← (ik+1, jk+1). (A.14)

• Termination:

D(xk,xq) = D
(compl)
node (xq,xk) (A.15)

= D
(part)
node (m,n). (A.16)

In short, the DTW-algorithm therefore computes the Euclidean distance between two
vectors whose elements are first non-linearly and optimally aligned through the use of
dynamic programming.
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