
I'

-'­
"

)

\ ,

EXPLORATORY DATA ANAL YS/S AND EMPIRICAL

MODELLING OF STATIONARY PROCESSES BY USE

OF GENETIC PROGRAMMING

by

Timothy Paul Chemaly

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Engineering

in the Department of Chemical Engineering

University of Stellenbosch

Supervised by

Prof C. Aldrich

Stellenbosch

December 1999

mseyf
Rectangle

mseyf
Rectangle

DECLARATION

I, the undersigned, declare that the work contained in this thesis is my own original work

and has not been submitted in its entirety or in part for a degree at any university.

Timothy Paul Chemaly

December 1999

Stellenbosch University https://scholar.sun.ac.za

mseyf
Rectangle

SUMMARY

Enhancing the performance of any process requires a detailed knowledge of

the unknown system, with a mathematical model being the most common means of

representing this knowledge. The most frequently used statistical techniques, assume

that any relationships between input and output variables are linear and that the data

itself is normally distributed. However, real world systems can be highly non-linear and

linear approaches can therefore fail to predict the behaviour of the system accurately.

Explicit specification of optimal structure in large non-linear models is often not practical

and as a result, non-parametric methods (kernel regression, artificial neural networks,

etc.) are usually employed. Although these models allow accurate representation of

complex systems, they can be very difficult to interpret.

This research project explores a novel approach to this problem of mathematical

modelling which attempts to evolve optimal parametric models, based on the Darwinian

mechanism of evolution. This approach, referred to as genetic programming (GP),

facilitates development of explicit or implicit models, or any mix of these two extremes,

as dictated by the problem and unlike other methods, it can handle a trade-off between

accuracy and interpretability with great ease.

During this research; a -commercial application (a-GP) was developed, since very few

commercial systems are currently available. Some techniques were developed, which

improved the performance ofthe original algorithm considerably. For instance, memory

demands were decreased by a factor of 5 by utilizing a different implementation model.

Improved convergence and robustness was obtained by using a correlation-based

fitness function in conjunction with a correction filter which reduced the sum of the

II

Stellenbosch University https://scholar.sun.ac.za

squared errors; at the expense of a more complex model. The evaluation process was

expedited by evaluating each tree-like structure as a reverse polish expression; as

opposed to a branch-node reduction technique. Additional execution speed was further

obtained by implementing the algorithm in c++ (an object oriented compiled language)

which is significantly faster than the original LISP (an interpreted language)

implementation, .

The newly improved algorithm, a-GP, was applied to four industrial data sets and the

results were compared against other methods such as standard genetic programming,

multilayer perceptron neural networks and linear regression. It was found that a-GP

outperformed standard genetic programming on all four case studies, while improving

on neural networks on half of the runs.

The evolved models tended to be complex. This could be attributed to the lack of

parameter estimation that the genetic programming algorithm tried to compensate for

by evolving complex tree structures; which it used to approximate the parameters.

As a data visualization tool, a-GP was applied to four bench marking data sets used

extensively in the literature. The results acquired with a-GP compared favourably with

those obtained by other methods with the additional benefit in that a-GP was able to

evolve simple mapping functions, which clearly indicated how the variables related to

the structure. Additionally, the algorithm was applied in the mapping of two industrial

processes. The results showed distinct clustering tendencies within the data, indicating

the different operating regimes of the processes under investigation.

iii

Stellenbosch University https://scholar.sun.ac.za

OPSOMMING

m die vermoe van 'n proses stelsel te verbeter vereis 'n gedetaileerde kennis

of model van die onderliggende proses. Die statistiese tegnieke wat meestal gebruik

word, neem aan dat enige verwantskap tussen die intree- en die uittree-veranderlikes

lineer is en dat die data self normaal versprei is. Ongelukkig is realistiese probleme

dikwels nie-linieer en linieere benaderings kan nie die gedrag van sulke stelsels

akkuraat karakteriseer nie. Die eksplisiete spesifikasie van die optimale struktuur in

groot nie-linieere modelle is nie altyd prakties moontlik nie, met die gevolg dat nie­

parametriese metodes (basisfunksie-regressie, kunsmatige neurale netwerke, ens.)

gebruik word. Alhoewel hierdie modelle akkurate voorstellings toelaat van komplekse

sisteeme is hulle baie moeilik om te interpreteer.

Hierdie tesis beskryf 'n unieke benadering tot die probleem van wiskundige modellering

deur optimale parametriese modelle te evolueer, wat op die basiese beginsels van

Darwin se evolusionere model berus. Hierdie tegniek, wat genetiese programmering

(GP) heet, kan eksplisiete, sowel as implisiete modelle ontwikkel of enige kombinasie

daarvan, soos gedikteer word deur die probleem. Anders as ander metodes, kan dit ook

maklik 'n balans tussen akkuraatheid en interpreteerbaarheid handhaaf.

Gedurende hierdie navorl?ing is_ 'n kommersiele sagteware-pakket (a-GP) ontwikkel,
- - - ._.- ~ - - - - -

aangesien baie min sulke pakkette tans beskikbaar is. Verskeie tegnieke is ontwikkel

wat die standaard algoritme aansienlik verbeter het. By voorbeeld, die aanvraag na

geheue is verminder met 'n faktor van 5 deur gebruik te maak van 'n alternatiewe

implementeringsmodel. Versnelde konvergensie en robuustheid was ook verkry deur

gebruik te maak van 'n korrelasie-gebaseerde fiksheidfunksie in samewerking met 'n

iv

Stellenbosch University https://scholar.sun.ac.za

korreksiefilter wat die som van die gekwadreerde foute geminimeer het. Die

evaluasieproses was ook versnel deur elke boomstruktuur as 'n omgekeerde Pooise

vergelyking op te los, in plaas van 'n tak-node vereenvoudigingstegniek. Die verwerking

was verder versnel deur die algoritme te implementeer in C++ ('n objek georienteerde,

gekompileerde taal) wat aansienlik vinniger is as die oorspronklike LISP

(ge"interpreteerde taal) implementering.

Die nuwe verbeterde algoritme, a-GP, is toegepas op vier realistiese probleme met die

doel om regressiemodelle te genereer en die resultate is vergelyk met die verkry deur

ander tegnieke, 5005 standaard genetiese programmering, kunsmatige neurale

netwerke en linieere regressie. Daar was gevind dat a-GP op die standaard genetiese

programmering verbeter in al vier gevalle, terwyl dit op kunsmatige neurale netwerke

verbeter het op een van die toetsstelle. Die mode lie het geneig om kompleks te wees,

wat interpretasie bemoeilik het. Dit kan toegeskryf word aan die tekortkoming van 'n

parameterbenadering, waarvoor die genetiese programmering algoritme probeer

kompenseer deur komplekse boomstukture te ontwikkel. Die algoritme gebruik die

strukture om die parameters af te skat.

a-GP is ook gebruik om data te visualiseer. Die resultate op vier datastelle het gewys

dat a-GP baie goed vergelyk met ander metodes, terwyl dit die addisionele voordeel

gehad het, dat dit eenvoudige projeksie-funksies kon evolueer wat duidelike

verwantskappe tussen die veranderlikes en die struktuur uitgewys het. Die algoritme

was ook toegepas op die projeksie van twee industrieele stelsels na twee dimensies vir

visualisering. Die resultate het duidelike trosvorming in die data uitgewys, wat 'n

indikasie was van die verskillende operasionele toestande van die-prosesse.

v

Stellenbosch University https://scholar.sun.ac.za

ACKNOWLEDGEMENTS

The author gratefully acknowledges the contributions of the following:

o Prof C. Aldrich, the supervisor of this thesis, for his guidance and insight during

the course of this work.

o De Beers, for their financial assistance.

o And of course, Jeanne .

. --.. -~-..---.--. _.- -- " -"

vi

Stellenbosch University https://scholar.sun.ac.za

TABLE OF CONTENTS

DECLARATION

SUMMARY

OPSOMMING

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION TO EXPLORATORY DATA ANALYSIS

AND EMPIRICAL MODELLING

ii

iv

vi

xiii

xvii

1

1. 1 Background to exploratory data analysis 1

1.2 The nature of empirical modelling of process systems 2

1.3 The objectives 4

CHAPTER 2 THE GENETIC PROGRAMMING PARADIGM 6

2. 1 The emergence of algorithms driven by evolution 6

2.1.1 A brief history of Darwin's evolutionary world 6

2.1.2 An overview of evolutionary strategies 7

2.1.3 An overview of genetic algorithms 7

2.2 The emergence of automated programming:

vii

Stellenbosch University https://scholar.sun.ac.za

Genetic Programming . 9

2.2.1 An introduction to genetic programming 9

2.2.2 The characterization of an evolutionary algorithm 11

2.2.2.1 Initialization 12

2.2.2.2 Evaluation 13

2.2.2.3 Selection 14

2.2.2.4 Reproduction 15

2.3 Current limitations in genetic programming 18

2.3.1 Speed and resources 18

2.3.2 Limitations with genetic programming as a global

searching algorithm 20

2.3.3 The disruptive behaviour of the crossover operation .. 21

2.3.4 Exploring large search spaces 23

2.3.5 Restraining premature convergence 24

2.3.6 Discussion of the current remedies 25

2.4 Applications of genetic programming 26

2.4.1 Robotic control 26

2.4.2 Image analysis and feature extraction 26

2.4.3 Language learning applications 27

2.4.4 Evolving controllers for systems 27

2.4.5 Process modelling 28

2.5 Objectives of this study 29

2.5.1 Motivation for this research 29

2.5.2 Outline of the chapters in this thesis 30

CHAPTI;.83 .THE. DESiGN METHODOLOGY 32

3.1 Taking an object oriented approach towards designing the

genetic programming kernel . 32

3.1.1 Designing the abstract base class 33

3.1.2 Designing the abstract evolutionary algorithm class .. 34

3.1.3 Designing the genetic programming class 35

viii

Stellenbosch University https://scholar.sun.ac.za

CHAPTER

3.1.4 Designing the feature extraction class 35

3.1.5 Graphical overview of the base class and all its

derived descendants . 36

3.2 Probing the size of the search space 37

3.3 Augmentations to improve the original genetic

programming algorithm 39

3.3.1 Changing the internal representation of an individual

in genetic programming 39

3.3.2 A different evaluation scheme 42

3.3.3 Increasing convergence and robustness in

regression models using an expanded solution space 44

3.3.3. 1 Fitness function . :~. -. ~ .. 44-

3.3.3.2 Correlation 45

3.3.3.3 Confirming the hypotheses 48

3.3.3.4

3.3.3.5

Discussion of results 51

Conclusions 54

PROCESS MODELLING USING a-GP 55

4. 1 An introduction to process modelling 55

4.2 Case studies 57

4.2.1 Approximation of multivariate functional

relationships 57

4.2.2 Obtaining regression models for four real data sets .. 60

4.2.2. 1 Modelling of transpiration in pine trees . . 61

4.2.2.2 Modelling of transpiration in poplar trees 61

4.2.2.3 Modelling of the Black Mountain base

metalflotation plant 61

4.2.2.4 Modelling of a solution preparation circuit 61

4.3 Run parameter listings 61

4.4 Investigating the effect different crossover and mutation rates

has on the overall performance of the algorithm 63

ix

r

Stellenbosch University https://scholar.sun.ac.za

4.5 Discussion of results 65

4.6 Conclusions 68

CHAPTER 5 VISUALIZATION OF PROCESS SYSTEMS USING a-GP 70

5. 1 An introduction to dimensionality reduction 70

5.1.1 An overview of data projection 71

5.1.2 Characteristics of data 73

5.2 Extending the genetic programmIng algorithm to

accommodate feature extraction 74

5.3 Case studies 75

5.3.1 Case studies on artificial and bench marking data sets 76

5.3. 1. 1 Description of each data set 76

5.3. 1.2 Results obtained. 78

5.3.2 Flotation data from an Australian base metal flotation

plant ,: 80

5.3.2. 1 A description of each data set 80

5.3.2.2 Results obtained 81

5.3.3 Three-phase oil flow data. 82

5.3.3. 1 A description of each data set 82

5.3.3.2 Results obtained 83

5.4 Results and conclusions . 85

CHAPTER 6 RECOMMENDATIONS FOR FUTURE RESEARCH 87

CHAPTER 7 CONCLUSIONS 89

REFERENCES 92

x

Stellenbosch University https://scholar.sun.ac.za

NOMENCLA TURE 103

APPENDIX

APPENDIX

EVOLVED MODELS A.1

A. 1 The unsimplified regression models of Chapter 4 A. 1

A.1.1 Regression model for data set PINE A.1

A.1.2 Regression model for data set POP A.1

A.1.3 Regression model for data set BMVANO A.1

A.1.4 Regression model for data set SOLPREP A.2

THE SOURCE CODE B.1

B.1 Abstract base classes B.1

B.1.1 Header file for abstract class Genericlndividual

and GenericAlgorithm B.1

B.1.2 Header file for abstract class GenericEvolndividual

and GenericEvolutionaryAlgorithm B.6

B.2 The GP class B.14

B.2.1 Header file for class GPlndividual and

CustomGPalgorithm B.14

B.2.2 Header file for class GPSupervised B.23

B.2.3 Header file for class GPUnsupervised B.24

B.2.4 Implementation of each class in the GP kernel B.24

B.2.4.1 Implementation of class

CustomGPAlgorithm B.24

8.2.4.2 Implementation of class

GPSupervised B.34

8.2.4.3 Implementation of class

GPUnsupervised B.39

B.2.5 Header file for class FeatureExtract B.40

xi

Stellenbosch University https://scholar.sun.ac.za

APPENDIX HELP ON THE a-GP PACKAGE C.1

C.1 Possible analysis that can be conducted using a-GP C.1

C.2 How to select a new algorithm C.1

C.3 How to select a different process C.1

C.4 How to change the properties of an algorithm C.2

C.5 How to import data C.3

C.S.1 Format of data file

C.S.2 Importing the data

C.3

C.3

C.6 Starting the algorithm C.4

C.6.1 The Start button , CA

C.6.2 The Pause button C.4

C.6.3 The Restart button C.4

C.7 Plotting the results C.S

C.7.1 Available charts C.S

C.7.2 Dragging a vector to a chart. C.S

C.7.3 Removing a specific plot from a chart C.6

C.7.4 Changing chart types C.6

xii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES

Figure 1.1 : Typical structure of a feedforward neural network 3

Figure 2.1 : According to the evolutionary theory, mankind and other primates,

share a common ancestor. 6

Figure 2.2 : An example of a chromosome in genetic algorithms. This

chromosome is comprised of four genes. Each gene is represented

by a different colour. 8

Figure 2.3 : A schematic representation of the genetic·operators: (a) crossover.

and (b) mutation. . .. 9

Figure 2.4 : A parse tree in GP consisting of two functional nodes and three

terminal nodes. 9

Figure 2.5 : The basic flowchart characterizing the behaviour of an

evolutionary algorithm. 12

Figure 2.6 : A graphical depiction of the crossover operation. Two points are

randomly selected on the two parents and their respective sub-trees

are swapped 16

Figure 2.7 : A random node is selected on the parent and rep/aced by a

randomly generated sub-tree. during mutation. 17

Figure 2.8 : An explicit mathematical function evolved by GP written in both

Polish and standard form 20

xiii

Stellenbosch University https://scholar.sun.ac.za

Figure 2.9 : An explicit computer program evolved by CGP 20

Figure 3.1 : A generic initialization algorithm. 33

Figure 3.2 : The generic DoAlgorithmO method. Note the method:

GeneticOperations is defined as pure virtual. /t's actual behaviour

depends on the class in which it is implemented. ; 34

Figure 3.3 : A graphical overview of all the classes and their decendants. 36

Figure 3.4 : A recursive procedure that generates a genetic programming

tree-like structure. This structure may be used as either an individual

or as a randomly generated sub-tree during mutation. 41

Figure 3.5 : The pseudocode for the evaluation function. 44

Figure 3.6 : An algorithm and the correction filte/~ G, acting as a hybrid model . .. 48

Figure 3.7 : The difference in average convergence, for the three data sets in

terms of R2-values vs the number of generations: (a) PINE,

(b) SOLPREP and (c) BMVANo. when an error-based fitness

function (broken line) and a correlation-based fitness function

(solid line) is used. In all three examples, the eorre/ation-based

fitness function yields a much higher convergence. 53

Figure 4.1 : A histogram plot of the frequency distnbution of the fitness of

each individuals in a sampled at a specific generation. Notice that

when the algorithm starts (generation 1) most individuals have

very low fitness values. With succeeding generations this distribution

starts moving towards the region with higher fitness. 60

Figure 4.2 : The effect of varying combinations of crossover (Pc) and mutation

(Pm) rates. emphasized the fact that a too small search rate does

not yield satisfactory results. In (a) and (b) we can see that the

algorithm got entrapped in a local optimum. when the

crossover/mutation rate was set at (20/1)%. Increasing the search

rate to (80/20)% allowed the algorithm to avoid entrapment in the

local optimum. In (c) the larger search rate did not make

xiv

Stellenbosch University https://scholar.sun.ac.za

significant difference, while in (d) a steady increase can be

observed. 64

Figure 4.2 : A comparison of R2 obtained from the four data sets. a-GP

outperforms GP on all four case studies. 66

Figure 4.3 : X-Y scatter plots of the Observed output vs Predicted output for

data sets: (a) PINE [R2=0.85], (b) POP [R2=0.67}, (c) BMVANO

[R2=0.53} and (d) SOLPREP [R2=0.48]. 67

Figure 5.1 : The q parse-trees that make up an individual for feature extraction.

Each tree represent a mapping function ranging from P1 to Pq. 74

Figure 5.2 : During feature extraction, crossover only occurs between parse-trees

with similar indices. In this example two individuals, I; and Ij are

randomly selected from the mating pool. A parse-tree, P3' is

randomly selected from both trees for crossover 75

Figure 5.3 : Typical Sammon map of the BITET data set, generated by the

Genetic Programming algorithm, S = 0.0472, F1 = x 1 and F2 :::: x1 + x2·

The clusters are indicated by different labels, as shown in the

legend . .. 79

Figure 5.4: The Sammon map of the SPHERESHELL data set,generated by

the Genetic Programming algorithm, S = 0.0531, F1 = x2 and F2 = x1 79

Figure 5.5 : Typical Sammon map of the IRIS data set generated by the

Genetic Programming algorithm. S = 0.00657, F1 = X3 + x/[1+exp(x1)};

F2 = x2· ..•.•.•••.•••....•...•.•.•...•.••.•..•.•.•.•.... 79

Figure 5.6 : Typical Sammon map of the SPIRAL data set. generated by the

Genetic Programming algorithm, S = 0.00403, F1 = X3 and F2 = x2 . .. 79

Figure 5.7 : Principal component map of 13 plant variables on a base metal

flotation plant. The first two principal components (pe1 and PC:)

explained 55.9% and 14.1% ofthe variation in the data respectively.

The discretized values of the concentration of the valuable metal

(not part of the mapped data set) is superimposed on the map. 80

xv

Stellenbosch University https://scholar.sun.ac.za

Figure 5.8 : Sammon map of the base metal flotation data generated by the

Genetic Programming algorithm with S = 0.00473, F1 = xs - X 12 and

F2 = 1 + x1 + x4 - x7 + x11 - XIX11 81

Figure 5.9 : Sammon map of the base metal flotation data generated by the

multilayer perceptron neural network, with a Sammon stress of

S = 0.02473 . . -... 82

Figure 5.10 : Three-phase flow with S = 0.05270,F1 = v2- V3 + v10 + 1/(1+exp(v1J

andF2 = v/[1+exp(v1vj] + v7- 1/{1+exp[1/(1+exp(v1vj)]J - v4 . .•.... 83

Figure 5.11 : Three-phase flow with S = 0.05293,F1 = v2 + V6 + v10 and

F2 = v7 + 2vs' ... 84

Figure 5.12: Three-phase flow with S = 0.04943,F1 = 2sin(vj + v.JO and

F2 = sin(sin(v7) + Vs + v7· 84

Figure 5.13 : The results obtained using a multilayer-perceptron neural network.

The Sammon stress, S = 0.0324. The stratified flows appear more

distinct but also more clustered, from the homogeneous and

annular clusters. 85

Figure C.2 : The drop down list of the available processes. To activate one

of the processes move the mouse cursor to the process and click. . C.2

Figure C.3 : The property box with al/ the available properties of the active

process. The box is divided into two regions: a Name field and a

Value field. .. C.2

Figure C.4 : The contents of the data file is displayed in the Data Import Wizard.

If the first rows have labels click on "Labels in first row". The data

type of each column can be specified by right clicking on the Type

row of the corresponding column. Click on "»" to continue. C.3

Figure C.5 : If the contents of al/ the columns contain valid numeric values,

the variables may be send to any of the processes listed in the

process list box. Click on the down arrow and select a different

process you wish to send the variables to C.4

Figure C.S : The available plots are displayed on the panel. Clicking on any of

the variables will remove it from the current chart. C.6

xvi

Stellenbosch University https://scholar.sun.ac.za

LIST OF TABLES

Table 3.1 : Illustrating the difference between Standard, Polish and reverse

Polish notation. .. 43

Table 3.2 : Parameters used for each data set during regression. 50

Table 3.3 : Measured results obtained for each data set after using an

error-based fitness function and a correlation-based fitness function . . 52

Table 4.1 : Results obtained for the identification of a multivariate

functional relationship. 20 runs were conducted of which 10

used a correlation-based fitness criterion and the remainder, an

error-based fitness criterion 58

Table 4.2 : Results obtained for the evaluation of the algorithm with and without

a priori know/edge in the function set. 20 rLlns were conducted of which

10 used a function set that had the a priori information included or

F = {+, -, *,;; sin}. In the remaining ten runs, this information was

excluded, therefore F = (+, -, *, I). 58

Table 4.3 : Run parameters used for each data set during regression. 63

Table 4.4 : Results obtained for each of the fOllr data set after testing. A

comparison of R2 and MSE is made amongst the four different

regression techniques. These are a-GP, GP, linear regression and

ANN's 65

Table 4.5 : Significance of the difference between the correlation

xvii

Stellenbosch University https://scholar.sun.ac.za

coefficients of the four different regression techniques. Here, the

null hypothesis, Ho, is tested to see whether the results obtained

with a-GP, on the four data sets, are significantly different than

those obtained via GP, linear regression and neural networks.

The values inside the table are the test statistic (z) values. The

values that are labelled with (a) imply that the results obtained

via a-GP, are significantly different when compared to

the corresponding algorithm in that row. 66

Table 5.1 : Essential characteristics of the four data sets 77

Table 5.2 : Parameters used for each data set during feature extraction. 77

Table 5.3 : A comparison of stress values (Sammon stress) obtained from six

different projection algorithms for the fOLir data sets. 78

xviii

Stellenbosch University https://scholar.sun.ac.za

INTRODUCTION TO EXPLORATORY DATA
ANALYSIS AND EMPIRICAL MODELLING

1.1 Background to exploratory data analysis

he tremendous acceleration in computer technology, which was accompanied

by a reduction in hardware size and an increase in computational speed; and the

emergence of the internet and especially the World Wide Web (WWW) has led to an

increase in data traffic and especially data processing. Chemical and metallurgical

process industries have likewise experienced a continued growth in large data systems.

This has precipitated intense efforts to develop more efficient methods for the

exploration and interpretation of large volumes of data. It is therefore not uncommon

for the individual analyst to have to interpret many hundreds or even thousands of

variables and hundreds of thousands of observations off-line, while in automated

monitoring and control systems, data volumes of an order of magnitude higher may

have to be accommodated.

Exploratory data analysis, therefore, aims to find interesting structures in data for

visualization purposes. These structures may ultimately lead to an increased

understanding of the unknown process and may be used for empirical modelling. As

such, data-are usually -pre-processed via 'exploratory data analysis before the actual

modelling occurs.

Principal component analysis (PCA) is the most widely used tool for exploratory data

analysis (Kendall, 1975; Jolliffe, 1986; Piovoso et a/., 1992; MacGregor, 1989;

Stephanopoulos and Guterman, 1989). However, principal component analysis is a

linear technique. This has lead to several attempts to extend the technique to deal with

1

Stellenbosch University https://scholar.sun.ac.za

1- Introduction to Exploratory Data Analysis and Empirical Modelling

non-linearities arising from complex data. In this regard, artificial neural networks have

been used extensively (Lampinen and Oja, 1995), (Mao and Jain, 1995), (Pal and Eluri,

1998), (Kraaiveld et a/., 1995). Also, major advances have been made with methods

such as cluster analysis, which try to group individuals or objects that are more

homogeneous than objects that reside in other groups; factor analysis, which reduces

the dimensions of a problem, similar to principle component analysis, except that the

effect of noise is taken into account and projection pursuit analysis which tries to find

directions such that the projection of the data in that direction has an "interesting"

distribution.

One of the main problems with the non-linear techniques is their inability to generate

simple non-linear functions which can transform the higher dimensional data to a lower

dimensional space. The lack of transformation functions can lead to an inability (eg.

Sammon mapping) to generalize which results in the retraining of the system should

new data arrive. Also the transformations obtained via non-parametric solutions are

restricted in the sense that the models are difficult to interpret.

Therefore, the idea is then to construct explicit and simple, non-linear transformation

functions, using genetic programming. This will not only allow generalization (within the

range of the data used for model development and avert exhaustive retraining) but also

facilitate the development of interpretability transformation functions.

1.2 The nature of empirical modelling of process systems

Processing plants require periodical adjustments of their operating conditions to

maximize profits or minimize costs (Seborg et a/., 1989). For example, instrumentation

has to be recalibrated and the plant units need to be adjusted to accommodate

variations in ore feed; blending operations in the petrochemical industry may have to

be modified in response to changes in crude oil feedstocks, etc. These modifications

require some form of representation or modelling of the processes, without which

adjustments could result in significant inefficiency in overall operations (Greeff and

Aldrich, 1998).

2

Stellenbosch University https://scholar.sun.ac.za

1- Introduction to Exploratory Data Analysis and Empirical Modelling

The advantage of having a process model is that it can be analysed to increase

understanding of the underlying physical phenomena inherent to the system. Although

possible, the development of a model requires a detailed knowledge of the physics and

chemistry of a system. This is not always viable, owing to the complex and non-linear

nature of industrial process systems. Also, it may require a considerable amount of time

and resources to develop a realistic model. Nonetheless, an accurate process model

can improve process operability. Empirical models are often based on regression

analysis, aimed at minimizing a least square criterion.

A regression analysis tries to model an input-output description of the system using

historic data. The most widely used and well understood regression model is the linear

model as depicted in Eq. 1.1.

n

F(x) = 8 0 + 8 1X 1 + 8 2 X 2 +···+8n X n = 8 0 + L 8 i X i (1.1)
i =1

Although simple, linear models try to make a linear approximation of the process while

in practice most systems are non-linear. This has lead to the development of non-linear

methods using various techniques, some of which generate solutions using a simulated

form of evolution, viz. evolutionary

algorithms (EA), other, such as

inductive systems, try to build decision

trees that are equivalent to IF-THEN

rules , while packages like CART

construct regression trees that are

similar to decision trees, except that the

nodes do not represent classes, but

continuous values. Additionally,

polynomial regression, breakpoint

regression and piece-wise regression

are also used. Perhaps the most

important and widely used are Figure 1.1 : Typical structure of a feedforward
neural network.

3

Stellenbosch University https://scholar.sun.ac.za

1- Introduction to Exploratory Data Analysis and Empirical Modelling

algorithms that try to model solutions which mimic the workings of the brain, viz. artificial

neural networks (ANN). Non-linear methods are typically based on iterative procedures

for estimation of the parameters, such as Gauss-Newton, Levenberg-Marquardt or

Powell algorithms, which are normally extremely computationally intensive and thus

slow; whilst in linear methods the parameters are calculated directly.

Usually no a priori information is available regarding the structure of the model. This

results in considerable effort to find an adequate model to which parameters may be

fitted. For non-parametric techniques, such as artificial neural networks, no explicit

structure specification is required1 but the derived mathematical models are extremely

complex and very difficult to analyse. Figure 1.1 illustrates the ~tructure of a typical

feedforward neural network.

As explained in more detail in Chapter 2, evolutionary methods (specifically genetic

programming) facilitate the automatic construction of explicit models. This can lead to

considerable cost savings over manual efforts. In fact it can provide a feasible approach

to the development of explicit models, where other methods may not be viable at all.

1.3 The objectives

As mentioned previously, in this thesis it is shown that by making use of genetic

programming, interpretable empirical models and transformation functions can be

constructed without any need to specify explicit model structures. This technique is also

more cost effective in the sense that it does not need any encoding schemes as

required by other evolutionary algorithms.

Owing to the novelty of this algorithm, very few commercial tools are available that

employ the genetic programming algorithm. Consequently, this· necessitated the

development of a commercial application which could perform all of these tasks, i.e.

1Although artificial neural networks do not need any information regarding the structure of
the model, the neural network architecture still need to be specified, i.e. the number of hidden layers
and nodes, type of activation function, etc.

4

Stellenbosch University https://scholar.sun.ac.za

1- Introduction to Exploratory Data Analysis and Empirical Modelling

perform exploratory data analysis and generate empirical models, using this algorithm.

o One of the main objectives of this thesis was the design of a commercial

package that incorporates the genetic programming algorithm, and the creation

of a simple and intuitive graphical user interface (GUI).

Specifically, genetic programming algorithms will therefore be used

o for data visualisation purposes, to find explicit symbolic mapping functions which

allows the visualisation of data residing in a high dimensional space (d > 3), to

be viewed in a lower (d = 2) dimension.

o to obtain explicit symbolic functions to describe the input-output relationships

within processes, especially in the chemical and metallurgical industries.

o for comparison with other methods, such as neural networks and linear

regression techniques.

Additionally, some improvements will be made to the original algorithm to

o improve the convergence speed and robustness of regression models.

o reduce memory usage and increase processing speed.

Included in this thesis is the fully functional software package, a-GP, which the reader

may install and evaluate on his/her own computer. The reader is advised to consult

Appendix C to gain understanding on how to use this software.

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2
THE GENETIC PROGRAMMING PARADIGM

2.1 The emergence of algorithms driven by evolution

2.1.1 A brief history of Darwin's evolutionary world

In 1859, Charles Darwin published his controversial "The Origin of Species". In

this book he claimed that life itself was compelled by evolution and that the main driving

force behind evolution was natural selection. In short, natural selection implied that the

strongest, or fittest, individuals within species would have a better chance of surviving

and being selected for mating. They would therefore be more likely to pass there genes

Figure 2.1 : According to the evolutionary
theory, mankind and other primates, share a
common ancestor.

adapted completely to its environment.

on to the next generation, than the

weaker members of the species.

Subsequently, the offsprings of these fit

individuals would therefore possess

traits from both parents. Given the

environment in which the species live,

the offspring would be better adapted

to it than the parents. With increasing

generations the species would have

changed to the point where it has

Although this notion of evolution is not without its discrepancies, some very exciting

work has been done since the early 1960's, by applying the concept of evolution and

natural selection to optimize real world problems.

6

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

2.1,2 An overview of evolutionary strategies

In 1963, two students at the Technical University of Berlin met and collaborated

on experiments which used the wind tunnel of the Institute of Flow Engineering. During

the search for the optimal shapes of bodies in a flow, which was then a matter of

labourious intuitive experimentation, the idea was conceived of proceeding strategically.

However, attempts with coordinate and simple gradient strategies were unsuccessful.

One of the students, Ingo Rechenberg, now Professor of Bionics and Evolutionary

Engineering at the Technical University of Berlin, hit upon the idea of trying random

changes in the parameters defining the shape, following the example of natural

mutations. In this way the evolutionary strategy (ES) was born. A third student, Peter

Bienert, joined them and started the construction of an automatic experimenter, which

would work according to the simple rules of mutation and selection. Evolution strategies

were invented to solve technical optimization problems like constructing an optimal

flashing nozzle, the design of truss bridges and more recently to the design of partially

recurrent neural networks. Until recently the evolutionary strategy was only known to

civil engineers, as an alternative to standard solutions. Although genetic algorithms

(GA), (Holland, 1992) which were developed in the ·1960's, are closely linked to

evolutionary strategies, genetic algorithms use crossover as the main searching

operator whereas evolutionary strategies use mutation. Crossover is a stochastic

process which allows two parents to exchange some of their traits (or genes) during

mating and hence produce offspring which resemble both of them. Both genetic

algorithms and evolutionary strategies are referred to as evolutionary algorithms (EA).

At present evolutionary algorithm is an umbrella term for all population based

algorithms that employ the basic principles of evolution, viz. natural selection, crossover

and/or mutation to evolve new and fitter individuals during successive generations.

2.1.3 An overview of genetic algorithms

The genetic algorithm (GA) developed by Holland (1992) in the early 1960's is

a model of machine learning which derives its behaviour from a metaphor of some of

the mechanisms of evolution in nature, i.e. the natural selection, mutation and

crossover of genetic material. This is done by the creation of a population of individuals

7

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

represented by chromosomes. In essence a set of character strings that are analogous

to the base-4 chromosomes that can be seen in our human DNA. The individuals in the

population then go through a process of simulated evolution until a good or optimal

solution is found.

Genetic algorithms are used in a number of different application areas. These

applications are typically multidimensional optimization problems in which the character

string of the chromosome can be used to encode the values for the different

parameters being optimized.

In practice, one can implement this genetic model of computation by having arrays of

bits or characters to represent the chromosomes as shown in Figure 2.2.

Figure 2.2 : An example of a chromosome in genetic algorithms. This
chromosome is comprised of four genes. Each gene is represented by a
different colour.

Simple bit manipulation allows the implementation of cros~over, mutation and other

operations, as indicated in Figure 2.3. The crossover operation, between two

individuals, results in genetic material being selected from both parents. This material

is then swapped (Figure 2.3.a) and the resulting individuals are the offspring of the two

parents. The offspring become members of the next generation. Mutation results in one

of the bits being randomly flipped to either 1 or 0, as indicated in Figure 2.3.b. This new

individual becomes a member of the next generation.

Although a substantial amount of research has been performed on variable-length

strings (Nordin and- Banthaf,-1995) ana Other structures (Iba and Sato, 1992), the vast

majority of work [with genetic algorithms] has focussed on fixed-length character

strings. In this regard genetic algorithms differ substantially from genetic programming

(GP) (Koza, 1992) that does not have a fixed length representation and does not need

any encoding scheme.

8

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

Parent individual 1 Parent individual 2

1 0 11 11 I 0 1 it411 1 0 1 0 1 10111010111111111
I I : - . . :

········--...·····:::f ······· ····· ···· ·

Offspring 1 Offspring 2

(a) Crossover operation

Original individual New individual

(b) Mutation operation

Figure 2.3 : A schematic representation of the genetic operators: (a)
crossover and (b) mutation.

2.2 The emergence of automated programming: Genetic Programming

2.2.1 An introduction to genetic programming

The notion of instructing a computer what to do as opposed to how to do

something has stimulated the human mind since the early stages of the development

K

Figure 2.4 : A parse tree in
GP conSisting of two
functional nodes and three
terminal nodes.

of the computer. This dream came a step closer to reality

when John Koza (Koza, 1992) introduced a form of a self­

modifying code generator, which he called Genetic

Programming or GP. Using the LISP programming

language as an implementation platform, and the ideas of

natural selection (i .e. survival of the fittest and genetic

manipulation) as the main driving force behind his

algorithm, he was able to generate (or evolve) complete

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

and syntactically correct computer programs which could be used in virtually any field

or application. Genetic programming did not require any a priori knowledge regarding

a model structure which is required in virtually all other algorithms such as evolution

strategies, genetic algorithms, artificial neural networks (ANN)1, mUltivariate linear

regression, etc. Since no encoding and no structure was required, the algorithm could

be seen as a "black box" approach to solving problems. Essentially genetic

programming was a new paradigm in the sense that any solution to a problem could be

expressed in a parse tree-like structure as shown in Figure 2.4.

Genetic programming is a programming variant of genetic algorithms. Unlike genetic

algorithms_ the objects tbat constitute the population are not fixed-length character­

strings (see Figure 2.2) that encode possible solutions of the problem at hand, but

programs that are the possible solutions to the problem. Genetic programming assumes

no a priori information regarding inputs, structure or parameters.

In genetic programming every individual is represented as a tree-like structure of

variable length. This representation can be seen as a phenotypic depiction of the

individual. For example the simple program "x2+ x 1 ~ K" would be represented as in

Figure 2.4.

As one can see, the parse tree consists of nodes and leaves. A node acts as a function

or operator and a leave as a terminal. A function can be any known mathematical

function or operator, such as " +", "-", "*", "sin", ... , etc. The terminals are usually the

input variables of the process under investigation or any other known2 constants. In

Figure 2.4 there are two function nodes {+, *} and three terminal nodes {X11 X 21 K}. The

sets of all possible functions and terminals, which can be used to construct an

individual, are termed the function set, F, and terminal set, T, respectively. Each

element in the function and terminal set is referred to as an allele, which is derived from

biological terminology.

1 For an artificial neural network, the network architecture has to be specified.

2Actually the term known is a little misleading since one generally does not know anything
about the process.

10

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

The advantages of using a parse tree is that (1) it can be rewritten in Polish notation,

(2) it lends itself to easy manipulation and (3) it is very easy and fast to evaluate when

expressed in Polish notation. In Polish notation the tree in Figure 2.4 can be expressed

as

(2.1)

Which equals

(2.2)

in standard notation.

2.2.2 The characterization of an evolutionary algorithm

All evolutionary based algorithms' implementations can be characterized by the

following sequence of events:

1. First construct an initial random population of N individuals.

2. Evaluate each individual against its objective and assign it a fitness value. Check

for the termination criteria using the fitness value.

3. Select individuals for reproduction based on their fitness, i.e. those individuals

who exhibit a high degree of fitness have a better chance for reproduction than

. dtners-with -a lower fitne·ss. These individuals are placed in a mating pool. The

mating pool is an intermediate container which the selected individuals enter

before one applies the genetic operators to create the offspring.

4. Apply genetic operations, such as crossover and mutation, on randomly selected

individuals in the mating pool.

11

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

5. Repeat step 2.

One iteration of this loop is referred to as a generation. There is no theoretical reason

for this as an implementation model. Indeed, this punctuated behaviour is not seen in

populations in nature as a whole, but it is a convenient implementation model. The first

generation [generation 0] of this process operates on a population of randomly

generated individuals. From there on, the genetic operations, in concert with the fitness

measure, operate to improve the population. Figure 2.4 presents a flowchart of an

evolutionary algorithm.

2.2.2.1

Figure 2.5: The basic flowchart characterizing the behaviour of an
evolutionary algorithm.

Initialization

When the algorithm is initialized, N individuals are randomly generated. Every individual

12

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

is constructed as a parse tree (see Figure 2.4) from alleles of the function set and

terminal set. These individuals can range from less than ten to several thousands. It is

extremely important that the initial population be as diverse as possible to reduce

premature convergence.

2.2.2.2 Evaluation

After this process of initialization, the fitness values, fi , of all N individuals are computed.

The fitness is a measure of the individual's ability to survive in its environment, while

the fitness function itself characterizes the behaviour of the population. That is, if the

fitness function assigns a high fitness to individuals who can approximate a desired

state as accurately as possible, then after numerous generations all members of the

population will start behaving in such a way that they can approximate the desired state.

For regression, the environment will typically be the output data of the process under

investigation. If y = F(x 1'X 2' .. . ,x k)' where x 1 ' . .. , X k represents the input vectors

of the process, y the output and F the functional representation of the process, the

values of vector y will represent the environment. Every individual will represent a

possible solution to the process. The difference between the actual output, y, and the

predicted, y, is here defined as the fitness. This kind of fitness criterion is referred to

as an error-based fitness. In regression one can among other use an error-based

fitness function or a correlation-based fitness function. In a correlation-based fitness

function the correlation between the actual output, y, and the predicted, y, is used as

a measure of fitness.

The fitness (f;).of tl"let'th individual, using an error-based fitness, can be expressed as

follows:

(2.3)

Where Y k is the k'th value of the process output and Yi
k

is the k'th value of individual

13

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

i. For a correlation-based fitness, (2.3) changes to

(2.4)

COV(Y'Yi) represents the covariance betwe'en the process output, Y, and the tth

individual, Y i' cry and cry; are there respective standard deviations. The absolute

value of the correlation is used to bound it between 0 and 1.

In (2.3) the fitness will decrease as the individual becomes fitter in its environment. For

convenience, the fitness is expressed as a value between 0 and 1, where 1 represents

a 100% accurate description of the process and values close to 0 a very poor

description. (2.3) can now be rewritten as:

(2.5)

to invert the relationship between the individual's fitness and the error-based criterion

in (2.3). Note that in an error-based fitness function, either the sum of the squared

errors (SSE) or the mean of the squared errors (MSE) is used as a means of error

measurement.

2.2.2.3 Selection

Selection is the phase driven by natural selection, i.e. survival of the fittest. Those

individuals who exhibit the greatest fitness are selected for mating and to contribute

some of their traits (sub-trees) which will be passed on to the next generation. During

selection a selection scheme is used to select N individuals to enter the mating pool.

Three selection schemes are typically employed in GP:

o Fitness proportionate: The fitness of the individual is an indication of its probability

14

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

to be selected for reproduction. The [selection] probability of each individual is

f.
defined as Pi = -'- where fT is the total fitness of the current generation. Those

fT

individuals who have a higher fitness than others will constitute a larger part of the

mating pool as opposed to less fit members, therefore the average population

fitness increases.

D Tournament selection: Two or more individuals are randomly selected from the

current population to compete against one another. The fittest individual is

selected to enter the mating pool for reproduction. Normally more than two

individuals will be selected to compete against one another. Too few competitors

will eventually cause slow convergence while too many will facilitate premature

convergence and a rapid decay in diversity. Usually three competitors are

sufficient for this selection scheme.

D Rank selection: The M fittest individuals have a probability of, say, 70% for

reproduction, while the remaining, N-M, only have a probability of 30%.

Fitness proportionate and Tournament selection are the two selection schemes

normally used. There is no evidence as to which is the better of the two. Tournament

selection, however is favoured by most researchers, since it appears to be a more

natural scheme.

One of the major problems with selection is that, with increasing generations, the

diversity within the population decreases. This normally leads to premature

convergence.

2.2.2.4

After the selection phase, the selected members (after entering the mating pool) are

subjected to genetic operations. A percentage, Pc, (between 50% and 90%) are

selected for crossover. To maintain diversity, a small percentage Pm (between 0% and

10%) are selected for mutation. The remaining members are reproduced without

change.

15

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

o Crossover: During crossover, two individuals are randomly selected from the

mating pool. These individuals are the parents. A random node is chosen from the

first parent's tree. This node represents the crossover point of the first parent. The

same is done for the second parent. The two nodes and there respective sub­

trees are the genetic material that is swapped between the two parents. After

swapping their respective genetic material, these new members are termed the

progeny or offspring of the two parents. As depicted in Figure 2.6, crossover is

representative of the analogous sexual process observed in biological

populations, since two individuals are involved. By swapping genetic material in

this way, the vicinity of the two parents in the search space can be explored.

Parent Individual 1 Parent Individual 2

Offspring 1 Offspring 2

Figure 2.6 : A graphical depiction of the crossover operation. Two points are
randomly selected on the two parents and their respective sub-trees are
swapped.

o Mutation: Mutation is mainly used to restore some lost diversity in the population

16

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

and acts as a random search mechanism. It proceeds as follows: one individual

is selected at random from the mating pool. A node is randomly selected for

mutation. Everything from the node downwards is removed and replaced with a

randomly generated sub-tree. Mutation is representative of an asexual process

associated with biological populations, since only one parent is involved. Figure

2.7 illustrates the mutation operation.

Original Individual

Randomly generated

X, ~~ subtree

X1 0.6

New Individual

Figure 2.7: A random node is selected on the parent and replaced by a
randomly generated sub-tree, during mutation.

Note, however, that crossover, which is a stochastic searching operator, is the main

17

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

genetic operator. Mutation plays a very small (if any!) role in GP. Both crossover and

mutation are search operators, in that they allow the exploration of different parts of the

search space. Increasing the search rate will automatically result in a faster search, but

at an increased risk of entrapment in a local optimum. Specifying too Iowa rate will

avoid entrapment. Unfortunately one does not have unlimited time and selecting a low

search rate will be too time consuming.

2.3 Current limitations in genetic programming

There are several drawbacks in the way genetic programming algorithms are

normally implemented. In the following paragraphs each weakness is considered and

possible remedies are proposed.

2.3.1 Speed and resources

Since genetic programming is a population-based searching algorithm, it

requires an enormous amount of resources, to the detriment of computational speed.

Previous research conducted by Greeff and Aldrich (1998) confirmed this when even

a PC equipped with 128MB of RAM eventually ran out of memory even though only

small computational problems were considered. The wayan individual is represented

in the system's memory is critical in this regard. The conventional way of representing

an individual (Koza, 1992), is to implement every node as a pointer in memory, hence

creating a tree-like structure (in memory) or S-expression containing nodes and leaves

(see Figure 2.4). Since the original algorithm was implemented in the LISP

programming language3
, this implementation made sense because a LISP program is

written as an S-expression. Eachnode is usuallycomprised of the following information:

o the type of node, functional or terminal (1 byte).

o a pointer (if it is a terminal) to the value of the appropriate vector in the terminal

3USP is an interpreted language like BASIC. These languages are much slower than
compiled languages such as C and C++, because each instruction has to be interpreted during
runtime to execute the appropriate machine code.

18

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

list (4 bytes).

o a variable (if it is a function) to indicate which function is being called (1 byte).

o pointers to the previous, left and right node in the tree structure (12 bytes).

o other information the programmer may deem pertinent (4 bytes).

Adding all these memory requirements yield at least 22 bytes of memory per node. This

technique lends itself to severe restrictions:

o memory is squandered on irrelevant information concerning a node, such as the

pointer to the vector in the terminal list if the node is functional or the value ofthe

function if the node is a terminal.

o the left, right and back pointers require additional memory storage.

o should a function node be required that uses more than two arguments, the

code will need to be rewritten to accommodate this change. Instead of having

only a left and right pointer, the structure will require new pointers which will

eventually only confuse the programmer and increase the memory requirements.

Vast amounts of memory are required this way which degrades the performance of the

algorithm.

Nordin and Banzhaf (1995) implemented the GP algorithm in pure machine code which

they referred to as Compiling Genetic Programming or CGP. That is, every individual

was comprised of a linear set of machine code instructions. Since each instruction was

exactly 32 bits, this approach was more analogous to a genetic algorithm which

consisted ofchrOl)losomes of varying lengths and genes which were made up of 32 bits

each. The normal searching or genetic operators, i.e. crossover and mutation, could be

applied to produce new [and valid!] machine code instructions. The main advantage to

this approach was that the individuals did not need to be interpreted by the virtual

machine (which one requires for the other techniques) since they are already in

machine code. Nordin et 81. (1995) reported a speed improvement by a factor 1500 -

2000 after comparing their algorithm against the traditional S-expression

19

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

implementation in LISP. Tacket (1994) presented a system written in the C

programming language which was about 25 times faster when compared against the

LISP implementation. Suffice to say that Nordin's implementation outperforms any of

the other at present (which is to be expected since it was implemented in assembler!).

It should be stressed, however, that the main difference between genetic programming

and compiling genetic programming is that in the former an explicit mathematical

function is obtained, while the latter yields an explicit computer program as shown in

Figures 2.8 and 2.9. The drawback in compiling genetic programming is that no explicit

mathematical model structure is obtained and therefore the way in which each variable

relates to the structure is not obvious.

Polish notation:
f (X) = - * sin * + X 2 Xl - 5

Xl cos + Xl X 2 Xl

Standard form:
f (X) = sin (5x2+5xl -X2X 1-X/) *

cos (X l +X2) -Xl

Figure 2.8 : An explicit mathematical
function evolved by GP written in both
Polish and standard form.

Funcl (X)
begin

end;

Xl sin (x 2) ;

Xl xl +5;

x2 4;
i = 0;
while (L < 5)
begin

end

X3 = x3+ i *xl ;

Inc (i) ;

Figure 2.9 : An explicit computer program
evolved by CGP.

2.3.2 Limitations with-genetic programming as a global searching algorithm

It has been maintained by numerous researchers that the main obstacle is not

the development of a model structure, but the simultaneous fitting of parameters to this

structure. Genetic programming is a global optimizing algorithm, owing to the fact that

it evolves its own model structures and searches through the discrete tree-like search

space for the optimal structure. It can only optimize these structures by evolving

20

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

complex structures to estimate any parameters.

Koza (1992) introduced his so-called ephemeral random constants. These were random

numbers that were included in the terminal set and changed every generation. When

the mutation operator was applied, it would select a new random number from the

terminal set and hopefully improve the newly mutated solution. The problem here was

that it was completely random and could not be optimized. To solve this problem

various other searching algorithms, such as genetic algorithms (Howard and D'Angelo,

1995) and simulated annealing (Sharman et aI., 1995; Gray et aI., 1996) were used to

accelerate the identification of optimal model parameters.

Searching the discrete tree-like structures and continuous parameters concurrently

seemed to be embraced by researchers as a solution to this problem. However, this

approach consumed a vast amount of resources, since there were two searching

algorithms operating concurrently. Even though Howard and D'Angelo (1995) claimed

that using this hybrid genetic algorithm-program (GA-P) actually improves on the

original algorithm, careful analysis of their results proves the contrary. Of the fifteen

different simulation runs they conducted only seven outperformed genetic programming

by a slight margin! The problem is aggravated by the fact that the search space for the

parameters can be very large. Consider for example a model with six parameters, each

considered at 10 levels (as a gross simplification). This means 106 possible parameter

combinations. By comparison, the number of model structures to be searched could be

significantly smaller

2.3.3 The disruptive behavior of the crossover operation

Genetic programming blindly combines sub-trees when applying the crossover

operation. This can often lead to a disruption of beneficial sub-functions in the trees.

Watson and Parmee (199r) introduced the concept of constrained complexity

crossover or CCC to minimize the disruptive behaviour of crossover. Using this

technique they assigned a weight factor to each node in the tree-like structure. All

terminal nodes were assigned a value of 1.0 while function weights varied from 1.1 to

21

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

1.x, where x is directly related to the complexity of the node. The more complex the

function the higher its weight.

To compute the complexity of a specific node (the so-called node complexity or NC)

each node complexity is expressed as a function of the node complexity values below

it and the weighting of that node. The complexity of the tree therefore decreases with

tree depth, while the root node has the highest node complexity. When the crossover

operator is applied, it is constrained by only applying it to sub-trees with node

complexity values that fall within a similar range. This ensures that the crossover

operation is not overly disruptive when it swaps sub-trees between individuals. Watson

and Parmee found that by using this technique, smaller population sizes were needed

than with the traditional GP implementation, which greatly reduced memory

requirements. However, the crossover operator required extra administration to find

sub-trees with node complexity values within the required range.

Angeline (1997) introduced two forms of macro mutation, originally conceived by Jones

(1995) that were mechanically identical to sub-tree crossover, viz. strong headless

chicken crossover (SHCC) and weak headless chicken crossover (WHCC). When

SHCC was applied,two parents were randomly selected from the population. For each

parent a random tree was constructed to mate with. Once the random parent was

constructed, standard crossover was performed on the given parent and its

corresponding randomly generated counterpart. The operation was then repeated for

the second parent and its corresponding random counterpart. After this operation both

modified parent trees were returned as the offspring. The modified random trees were

discarded. The redeeming feature of the offspring stemmed from the fact that they

contained some rand~mly generated material.

WHCC proceeds exactly like SHCC, except that it has an even probability of returning

either the modified parent or the modified random tree. This operation was considered

weak, since for half of the offspring, a small amount of non-random material was

returned to the population.

Angeline compared strong headless chicken crossover and weak headless chicken

22

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

crossover against standard crossover on three data sets, as described in Koza (1992).

The first data set consisted of an intertwined spiral and the aim was to separate the two

spirals. The second data set consisted of data collected from the average number of

sunspots observed for each month since the year 1700. Here the aim was to predict

when the next sunspot would occur. The third data set was the Boolean 6-bit even

parity problem. The objective ofthe problem was to induce a function that returns TRUE

when an even number of terminals are TRUE and FALSE otherwise. Angeline's results

indicated that standard crossover outperformed both SHCC and WHCC by a slight

margin on the spiral and the 6-bit even parity problem. However, it did significantly

worse on the sunspot modelling problem.

2.3.4 Exploring large search spaces

A key concern in genetic programming is (1) the size of the search space which

must be searched and (2) the number of invalid programs (due to type mixing) that are

produced during initialization and the application of the genetic operators. Even for

small terminal sets, function sets -and tree depths, search spaces of the order 1030
- 1040

is not uncommon (Montana, 1994). One method to reduce the size of the search space

is to use strongly typed genetic programming (STGP) (Montana, 1994). Montana

maintained a table giving the types of all available terminals and functions. If a function

requires its arguments to be of type X, then this implicitly constrained its offspring to

produce a value of type X. A second table provides type constraints (or type

possibilities) according to the depth in the tree where type matching occurs. This extra

.information constrains the choice offunctions to create nodes in the tree to ensure that

the tree can grow to its maximum depth. During the initialization phase of the population

(and during crossover and mutation), each parse tree is grown top-down by choosing

functions and terminalsat random within the constraints of the types in the table. In this

way the initial and subsequent populations only consists of parse trees that are type

correct. Strongly typed genetic programming utilizes the structuring of the genetic

programming S-expressions to reduce the search space. Haynes et 81. (1995) used this

technique to develop a multiple cooperating agent system where numerous agents

23

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

cooperated to hunt and track down prey. Their results indicated that strongly typed

genetic programming was able to evolve programs with a higher success rate than

genetic programming. Also solutions were generated in a fewer number of generations

than those obtained by genetic programming.

2.3.5 Restraining premature convergence

Like all other searching algorithms, genetic programming tends to converge too

fast. The reason for this is that with selection the diversity decreases, because the next

generation will have duplicates of the best individuals. Selection is a necessity in order

to improve the overall fitness of the population. Selecting individuals by only looking at

their fitness is a sure way of guaranteeing entrapment in local optima. It has been

proposed (De Jong, 1975) that to ensure diversity in a genetic algorithm, the Hamming

distance between chromosomes be used. Since a GA consists of a fixed length

chromosome consisting of genes, each gene can be visualized as a vector in a n­

dimensional hyper-space; where n equals the number of genes. By selecting individuals

with Hamming distances (that fall within a similar range) for mating, one is ensured of

diversity. Another possibility is to distribute several populations (the so-called distributed

genetic algorithm) over several processors and assign each population to a separate

processor (Tanese, 1989). However, this approach requires an enormous amount of

expensive hardware which is not economically viable.

Although the concept of using a Hamming distance will work [in GA's] the problem

arises when one tries to express the distance between two individuals in genetic

programming. Because each individual is a tree-like structure it becomes impossible

to determine the interspatial distance between them. Also an individual is not unique

in the sense that there is more than one way of representing a simplified tree. Therefore

even though one may have two trees that appear dissimilar, when simplified, they are

exactly the same and occupy the same position in the search space. Koza (1992),

Langdon (1995) and Winkeler and Manjurath (1997) made use of a parallel genetic

program which consists of several populations running in series. These populations or

24

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

demes reduced premature convergence considerably. During crossover, genetic

material is only shared amongst members of the same deme. This kept the code from

becoming too tightly focussed in a particular area of the search space and subsequently

reduced premature convergence.

2.3.6 Discussion of the current remedies

From sections 2.4.1 to 2.4.5 the reader was introduced to several of the

limitations facing genetic programming and some of the suggested remedies.

Implementing any algorithm, especially a population based algorithm, in an interpreted

language such as LISP is not advisable. Interpreted languages are simply too slow and

cannot handle extensive usage of floating point arithmetic. Although fast, machine

language implementations tend to be restricted to specific hardware platforms. Also

from a design point of view, machine language programs do not have the scalable

properties of an object oriented programming (OOP) language, such as C++, SmallTalk

or Object Pascal. Therefore future extensions to the algorithm becomes a formidable

task.

Although several suggestions have been proposed to create some form of local

optimization in genetic programming, none of these attempts have been wholly

successful. Using two population based searching algorithms concurrently does not

yield any significant improvement; it only degrades the available resources.

Although several suggestions have been proposed to minimize the disruptive behaviour .
of the crossover operation, none of these solutions have been successful. Enforcing

strict type checking via strongly typed genetic programming, forces the algorithm to

evolve syntactical and type correct programs. This in effect shrinks the search space

which results in higher convergence.

By using sub-populations and allowing only interaction amongst members of the same

sub-population, one is ensured of a means to reduce premature convergence.

Unfortunately, genetic programming does not allow simple (Hamming) distance

25

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

calculation between individuals, therefore one does not have the advantages of a GA

to allow individuals who are in close proximity, to mate.

2.4 Applications of genetic programming

2.4.1 Robotic control

Koza (1992) further proposed usage of automatically defined functions (ADF).

These are subtrees of a genetic program which are randomly selected and incorporated

into the function set for reuse. These functions form a library of possible useful utilities

which then may be selected during the mutation operation. Hondo et a/. (1997) used

this technique to generate programs for robotic control. Andre (1995) used

automatically defined functions to create an intelligent agent which could collect gold

placed on random locations on an n x n grid of squares. Langdon (1995) used

automatically defined functions to create simple abstract data structures, namely a

circular data queue and an integer stack via genetic programming. Each data structure

was implemented by five independent, cooperating. procedures. Each procedure was

represented as an independent tree within the same individual. Thus each individual

was comprised of five parse trees or S-expressions. Langdon showed that the abstract

data structures could be successfully evolved. When the data primitives, such as the

appropriate increment and decrement operations were omitted, automatically defined

functions could successfully evolve these routines, although it took much more effort

than when the primitives were included.

2.4.2 Image analysis and feature extraction

Recently work has been conducted on employing feature extraction and image

analysis via genetic programming. One of the main obstacles in image analysis is the

size of the data sets (up to 1024 x 1024) and the fact that genetic programming is a

population based searching algorithm. As such, this implies vast amounts of processing

26

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

power and memory demands, which tend to make population based algorithms

unfavourable for these tasks. One way of overcoming this obstacle is to process only

a small portion of the image (say 32 x 32). Daida et al. (1996) used genetic

programming to extract pressure-ridge and rubble features from multiyear-ice

signatures. There results showed that the algorithm performed well with a low-resolution

European remote sensing satellite (ERS) synthetic aperture radar (SAR) data products.

Teller and Velosa (1995) utilized genetic programming for image recognition in which

they classified various human faces. They demonstrated that genetic programming can

generate programs which can correctly recognize different faces. Genetic programming

has also been used for object detection (Winkeler and Manjunath, 1997) by first

performing an experiment which extracted statistical features from images to ascertain

whether the image was a face and then processing gray-scale images to locate faces.

Although the training was expensive, the first experiment (classifying images by

extracting features) did well at locating a specific scale offace (i.e. faces of more or less

the same size), while the second experiment (classifying faces from gray-scale images)

could locate faces at all scales based solely on intensity, but exhibited an undesirable

number of misclassifications.

2.4.3 Language learning applications

In the field of grammatically-based learning systems, Whigham (1995) used

genetic programming to map each sentence to a fitness value. Each individual tree

structure was associated with these sentences to define the structure of the schemata.

The simple genetic operators, crossover and mutation, were then applied to evolve new

and grammatically correct sentences.

2.4.4 Evolving controllers for systems

Several researches have used genetic programming to evolve controllers for

systems. Gritz and Hahn (1997) used genetic programming to evolve controllers for 3-D

27

Stellenbosch University https://scholar.sun.ac.za

• 2- The Genetic Programming Paradigm

character animation. Although the initial training was extremely time consuming, the

resulting motion was fluid, physically and biologically believable; and often appeared

to be very organic. Dracopoulos (1997) applied genetic programming to a highly

nonlinear control problem, the attitude control problem for satellites. The satellite was

detumbled and controlled by a control law evolved by genetic programming.

Simulations seemed to show that the control law could stabilize the system for different

initial conditions. Dracopoulos proved the theoretical stability of the control algorithm

found by genetic programming by utilizing the classical theory of Lyapunov functions.

2.4.5 Process modelling

During the past few years some work had been conducted in the modelling of

industrial processes via evolutionary computations (Watson and Parmee, 1997a
;

Watson and Parmee, 1997b
; Greeff and Aldrich, 1998; Mackay et al., 1997; Kulkarni et

al. 1999). Genetic programming, however, is capable of finding solutions to relatively

small problems only, or alternatively, it has to be compromised to allow. it to deal with

large problems. Mackay et al. (1997) used genetic programming to develop (1) a model

to infer the bottom product composition of a binary vacuum distillation column and (2)

a model of a continuous stirred tank reactor system. They used the standard genetic

programming algorithm [as proposed by Koza] combined with a Levenberg-Marquardt

method of least squares optimisation to optimise the model constants. There results

revealed that in each case genetic programming was able to generate an accurate

input-output model based solely on observed data. The identified structures, however,

did not provide detailed phenomenological information regarding the system being

modelled.

Greeff and Aldrich (1998) attempted to model the acid pressure leaching of

nickeliferous chromites. This process has previously been investigated by Das et al.

(1995) for which they derived quadratic regression equations for nickel, cobalt and iron

dissolutions. The evolved model for nickel and cobalt had an accuracy similar to the

regression models of Das et al. (1995). The evolved models were significantly more

28

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

accurate in the case of the leaching of iron.

Hiden et al. (1997) extended the genetic programming algorithm to model dynamic

systems. By using the input data, U and approximating the objective function F(u) by

k

F(u) = L b j gj(u) (2.6)
j=1

a linear combination of functions g,{u), j = 1 ... k, such that

gj(U) was then evolved via genetic programming. The process dynamics was

approximated by a simple first order Laplace transform. In order to model non-linear

process dynamics, (2.6) was augmented with the Laplace transform to give the

following non-linear dynamic model.

~ b· g.(u)
F'(u) =.i...J J J

j=1 't jS + 1
(2.7)

where Lj are the model time constants and's' the Laplace operator. Here the genetic

programming algorithm was used to determine the non-linearfunctions gl(U), g2(U), ... ,

gk(U) and the values of the time constants LI' L2' .•. , Lk while the coefficients b1, b2, ... , bk

were determined using batch least squares. Hiden et al. (1997) applied their algorithm

to the modelling of a plasticating extruder. Their results indicated that models obtained

with genetic programming are as accurate as those using a neural network with the

additional benefit of being easy to analyse and interpret.

2.5 Objectives of this study

2.5.1 Motivation for this research

Genetic programming is a very new and rapidly expanding field in computational

29

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

intelligence. It's main advantage is its ability to evolve symbolic structures which makes

it ideally suited for virtually any application. The very fact that it does not require any

encoding schemes or structural information means that it truly takes a "black box"

approach towards problem solving. From section 2.5 it is apparent that genetic

programming is a very versatile tool. It is this author's opinion that genetic programming

will eventually be seen as a viable alternative for artificial neural networks and as such

more extensive research needs to be. done.

This research is concerned with finding solutions to overcome some of the obstacles

in genetic programming. That is

o looking at ways of speeding up the algorithm.

o improving memory management and hence reduce the substantial amount of

resources required by the current implementation of the genetic programming

algorithm.

o and increasing convergence and robustness for improved performance.

Additionally this technique is applied to mineral processing for process modelling

(Chapter 4) and symbolic feature extraction or dimensionality reduction (Chapter 5).

Both of these fields have been investigated extensively via other techniques such as

neural networks, linear regression, gradient descent, etc. Also, the results obtained are

compared with the abovementioned algorithms which are used as benchmarks.

2.5.2 Outline of the chapters in this thesis

Chapter--r infroduces the reader to explorative data analysis and empirical

modelling and its importance in today's world. Some of the major obstacles

encountered within these disciplines are highlighted. The objectives regarding this

research are also presented.

Chapter 2 provides an introduction to the concepts of evolutionary algorithms and looks

at the development of genetic programming and the limitations [and current remedies]

30

Stellenbosch University https://scholar.sun.ac.za

2 - The Genetic Programming Paradigm

facing this novel algorithm. Additionally the reader is presented with a wide range of

applications that use the genetic programming algorithm.

Chapter 3 focusses on new augmentations incorporated in the genetic programming

algorithm to improve efficacy in terms, memory demand, execution speed and improved

convergence and robustness of regression models. The reader is also introduced to

some object oriented programming (OOP) terminology and why it was used to develop

the genetic programming kernel.

In Chapter 4 the augmented algorithm, a-GP, is used to model industrial processes via

steady-state modelling and the results are compared against those obtained with

standard genetic programming, linear regression and a multilayer perceptron neural

network.

In Chapter 5, a-GP is used for feature extraction or dimensionality reduction on several

bench marking data sets and two industrial processes. The results obtained from the

bench marking data sets are compared against those obtained via artificial neural

networks and other algorithms.

Chapter 6 presents the reader with ideas for future research while the results and

conclusions are discussed in Chapter 7.

31

Stellenbosch University https://scholar.sun.ac.za

THE DESIGN METHODOLOGY

3.1 Taking an object oriented approach towards designing the genetic
programming kernel

Object oriented programming (OOP) is a design philosophy in its own right.

The main difference between OOP and structured programming is that the former tries

to represent any solution as a closed object which encapsulates the states (variables)

and methods (functions) through which we alter the behaviour of an object, while the

latter takes a top-down approach towards solving problems. Object oriented

programming, however, has the ability to inherit the properties of an object and derive

a new object which can have new implementations and ultimately change the behaviour

of the derived object. This ability to inherit and override previous implementations by

using the same interfaces presents tremendous benefits for programmers. For one, it

reduces the amount of code writing and debugging considerably. Secondly, a properly

designed class (or blueprint of an object) is highly scalable; something which cannot be

readily achieved with structured programming. Some of the terminology used here may

seem foreign to readers who are not familiar with object oriented programming.

Although the author has gone to great lengths to explain the terminology, this thesis is
. . ~- ,....-_._---_ ----_ ...

not an introduction to object oriented programming. That is beyond the scope of this

thesis. The interested reader is referred to Tom Swan's: Using Borland C++ 4.5 and

other books on C++ to help him/her come to grips with object oriented programming.

32

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

3.1.1 . Designing the abstract base class

In designing the base class we start off by looking for common properties in our

algorithm. This process is called abstraction. Any population-based algorithm has:

o A solution. How the solution is implemented varies from algorithm to algorithm.

For instance: an artificial neural network's solution consists of neurons, weights

and activation functions; a linear regression model has parameters, ai' while a

genetic programming individual is a tree-like structure comprised of nodes and

leaves. We therefore opt for an open implementation, which we will specify in

another derived class.

o A fitness. The solution's ability to solve the problem at hand is rated by this

floating point value.

o A population of solutions. We simply use a vector (of unspecified length) to store

each solution.

o A method to initialize the population. All population-based algorithms have the

same initialization procedure which is summarized in Figure 3.1. Note that the

function itself is very generic in the sense that both the CreateSolution and

Procedure Initialize (Population, PopulationSize)

Begin

End.

For i=O to PopulationSize-l

Begin

CreateSolution(Dummy);

ComputeFitness(Dummy);

Add'I'oPopulation(Population, Dummy);

End;

ComputeTotalFitness(Population) ;

CurrentStep = 0;

Figure 3.1 : A generic initialization algorithm.

33

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

ComputeFitness methods are pure virtual1 methods. They are implemented

in the final derived class for each respective algorithm, and

o A variable CurrentStep keeping track of the current iteration number, because

population-based algorithms depend on some form of iteration.

The reader is referred to Appendix B. 1 for a complete listing of the abstract base class

GenericAlgorithm.

3.1.2 Designing the abstract evolutionary algorithm class

All evolutionary algorithms undergo natural selection and have the ability to

evolve via mutation and/or crossover. To incorporate these methods into the algorithm

one first have to derive a new class from the base class in section 3.1.1 and define new

methods. Once again some of these methods will be pure virtual because it depends

on the particular algorithm2 how they will be implemented.

Figure 3.2 shows the DoAlgori thm function. Reproduction is implemented in this

Procedure DoAlgorithm()

Begin

End ...

while(NOT(Paused))

Begin

Reproduction (PopulationSize, SelectionMethod,
TournamentMembers) ;

End;

GeneticOperations(Pc, Pm, PopulationSize);

CurrentStep = CurrentStep+l;

Figure 3.2.: The generic DoAlgorithm() method. Note the method: GeneticOperations is
defined as pure virtual. It's actual behaviour depends on the class in which it is implemented.

1A virtual method is a function which has the same name and takes the same arguments in
all classes derived from the class where the method was defined. Their implementations, however,
differ. A pure virtual method has no implementation.

2Crossover and mutation in genetic programming is implemented different than in genetic
algorithms.

34

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

class because it is not related to any specific evolutionary algorithm. All this function

does is to fill the mating pool (or gene pool for a genetic algorithm) with the fittest

members of the current generation by using a predefined selection scheme (Fitness

proportionate, Tournament or Rank selection). GeneticOperations is defined as

pure virtual. The reader is referred to Appendix B.1 for a complete listing of the abstract

class GenericEvolutionaryAlgori thrn.

3.1.3 Designing the genetic programming class

To start dE3signing the final genetic programming class we-first need to derive a

class from the abstract class GenericEvolutionaryAlgori thrn. This class will have

an open implementation for both the CreateSolution and ComputeFitness

methods. The reason for this will become apparent shortly. Finally an implementation

is provided here for GeneticOperations. This new abstract class is called

CustomGPAlgori thrn. From this parent class we derive two important classes. The

one is GPSupervised, which will be used for supervised training, i.e. for algorithms

which have variables which we can denote as outputs. The other is a pseudo-abstract

class GPUnsupervised which will be used for unsupervised training, Le. for algorithms

where there are no variables which we can denote as outputs. Both of these classes

have their own implementation for the CreateSolution and ComputeFi tness

methods. The reader is referred to Appendix B.2 for a complete listing of these classes.

3.1.4 Designing the feature extraction class

Thrs--trassisderived from the GPUnsupervised class, since feature extraction

is essentially an unsupervised training problem (see Chapter 5). The Compu te Fi tne s s

method needs to be overridden and given a new implementation. The reader is referred

to Appendix B.2 for a complete listing of the class FeatureExtract.

35

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

3.1.5 Graphical overview of the base class and all its derived descendants

Figure 3.3 presents a graphical overview of the abstract base class and its

derived descendants. Note how the hierarchy splits in two after the

CustomGPAl g or i thIn class. GPSupe r vised is used for regression , since it is the

final class in this hierarchy for supervised training. Fea tureEx tract is derived from

G PUns upe rvi s ed because it uses a different implementation for evaluating the fitness

SupervisedGP

GenericAlgorithm

Evolutionary
GenericAlgorith m

CustomGP
Algorithm

UnsupervisedGP

FeatureExtract

Figure 3.3 : A graphical overview of a/l the classes and their decedents.

of a solution. One can clearly see that by using an object oriented programming

methodology very complex behaviour can be programmed in the minimum time. Also,

to maintain an algorithm such as this is much easier than one that is written in a

structured programming language.

36

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

3.2 Probing the size of the search space

By definition, the search space is the set of all possible individuals that can be

constructed of the elements in the function set and terminal set while the solution

space (which is a sub-set of the search space) is the set of all good or perfect solutions

to the problem at hand (McKay ef 81., 1997). The search space is constrained by the

limit imposed on the maximum number of levels an individual can assume. To

determine the effective size of the search space one proceeds as follows:

Let the terminal set be represented by T and the function set by F. The terminal set can

be expressed as

T = { Tj I i = 1 .. k} (3.1)

Similarly, for the function set

F={Fj I j= 1 .. m} (3.2)

The size (5) of the search space, at a levell, is given by 5(1). Clearly for 1=1

5(1) = k (3.3)

where k equals the number of terminals in the terminal set.

For I = 2, we consider the case where the function set consists of the following

functions, F = {+, /, sin} and the terminal set has two terminals, T = {f1' t:J If the root

node consists of the function '+' then the total number of individuals, r(~), that can

be constructed with two terminals and function Fj> are

37

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

(F -' ') - ~1 (k _ ') _ k(k + 1) _ 2(3) - 3 Y 1-+ -L..J 1- --
i=O 2 2

(3.4)

However, if the root node is "/" then (3.4) becomes

(3,5)

and using a root node of "sin"

r (F3 =' si n') = k = 2 (3.6)

The reason why equations 3.4 and 3.5 differ is that

(3.7)

but

(3.8)

Likewise, (3.4) and (3.5) are also applicable to the functions u*" and "_", respectively.

For an arbitrary number of levels (3.4) changes to

S(l-1)-1 5(1-1)(5(1-1) + 1)
y(F1 ='+') = L (5(1- 1) - i) = ,--"'---------'-

i=O 2

While (3,5) becomes

y(F2 ='/') = 5(1-1)2

and (3.6)

y(F3 =' sin') = 5(1 -1)

(3.9)

(3.10)

(3.11)

Where 5(1- 1) refers to the effective size of the search space of the previous level.

Taken together

38

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

2 I J E +,
y(Fj) = 8(1- 1)2 if Fj E {-,I} (3.12)

{

5(1-1)(5(1-1)+1) ·f F. { *}

8(1-1) if Fj E {all single argument functions}

For I = 1

S(I) = S(1) ,= k (3.13)

and for I > 1

m

S(I) = I y (Fj) + k (3.14)
j=1

3.3 Augmentations to improve the original genetic programming

algorithm

3.3.1 Changing the internal representation of an individual, in genetic

programming

Genetic programming consumes a vast amount of resources. In this investigation

a novel approach was pursued to minimize the memory requirements of an individual.

A different representation was used to store the individual in memory. The individual

was stored as a Polish expression, as in (2.1). This enabled the storage of the whole

expression as an array of characters which, in effect, is equivalent to encapsulate a

node in one byte or character. This constituted a significant improvement on a previous

implementation (Greeff'and Aldrich, 1998), that used about 22 bytes of memory per

node. This new implementation requires only 1 byte per node resulting in a 95%

reduction in memory usage, which eventually allows faster computation time.

To represent terminals and functions via a single byte requires some new approaches

in designing the genetic programming kernel. Since a byte can address 256 unique

values, i.e. 0 to 255, it has to be divided to represent either a function or a terminal. To

39

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

accomplish this the first half (0 to 127) of the byte, is allocated for terminals, while the

second half (128 to 255) is used for functions. That is, each value of the byte in the

range 1 to 127 uniquely identifies a terminal3. One drawback to this approach is that

one is only permitted to have a maximum of 127 terminals! Similarly, the remaining 128

positions, from 128 to 255, uniquely map to 128 possible functions. Each terminal and

function is stored in a terminal list and a function list. The terminal list contains

information regarding each terminal. These are

o The terminallD, which ranges from 1 to 127.

o The pointer to the memory block where the values of the terminal is stored in

memory. The terminal has to be a column vector, i.e. an (n x 1) matrix. This

pointer is called the terminal pointer.

o An indicator to specify whether the terminal acts as an input or an output of a

process4
.

The function list contains

o The function 10, which ranges from 128 to 255.

o The number of arguments the function requires.

Once all the functions and terminals have been selected, the process of constructing

an individual commences. To avoid complexity and constrain the size of the search

space, a limit has to be set to the number of levels each individual can have. This limit

is usually set to thirteen. Using a limit of thirteen allows each individual to have a

maximum of 213_1 or 8191 nodes. Each level adds an exponential increase in the

maximum number of nodes and size of the search space. Increasing the search space

results in slower convergence. Assuming a function set of F = {+, -, *, sigmoidal} and

a terminal set of T = {X1' x2} and using (3.14), the effective size (for a thirteen level

parse tree) of the search space is calculated as

3The value 0 is not used to represent a terminal. Instead it is used by C++ to signify the end
of an array of characters.

4This feature is only used for regreSSion and not feature extraction.

40

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

5(13) = 9.4 x 102996 (3.15)

Needless to say the search space gets very large and grows exponentially for every

function included in the function set!

To understand how an individual is constructed, the following piece (see Figure 3.4) of

pseudocode is used to illustrates the process. Two parameters are passed to the

Procedure CreateIndividual(Individual, CurrentLevel)

Begin

TotalArguments=O;

TypeOfNode=random(l) ; {A value of either 1 or O}

CurrentLevel = CurrentLevel+l;

If(CurrentLevel == MaximumLevel) Then

{Select a random terminal from the terminal list}

NewNode=SelectedRandom_TerminalID();

Else

Begin

1f(TypeOfNode == 1) Then

{Select a random function from the function list}

NewNode=SelectedRandom_FunctionID()i

{Get the number of arguments required for this function}

TotalArguments= GetArgumentCount(NewNode);

Else

{Select a random terminal from the terminal list.}

NewNode=SelectedRandom_TerminalID();

End;

Append (Individual, NewNode) {Add the new node to the current
expression}

For 1=0 To TotalArguments-l

Begin

{each argument of the function}

Create Individual (Individual, CurrentLevel);

End;

Figure 3.4 : A recursive procedure that generates a genetic programming tree-like structure.
This structure may be used as either an individual or as a randomly generated sub-tree during
mutation.

41

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

function. The one parameter is a reference to the individual that is to be constructed

and the other is a variable that keeps track of the number of levels the individual has

at its current insertion point. First the current level is incremented and then compared

against the maximum number of levels the individual can assume; to ascertain whether

it equals this value. If the result true, a terminal is randomly selected and appended

to the individual. At this stage the algorithm exits the function and returns to the caller

function (which happens to be itself), if false a random number between 0 and 1 is

generated. If the result is 1, the new node will be a random member of the, function set,

else it is a randomly selected terminal. If a function was selected, the number of

arguments the function needs is obtained from the terminal list by using the appropriate

function 10. A loop is constructed, which ranges from zero to the number of arguments

minus one. Each time the loop is executed the function is called again with the new

individual and the current level as arguments. This recursive process continues until

each branch in the individual has been terminated by a terminal.

3.3.2 A different evaluation scheme

Evaluating a tree hierarchically from top to bottom is a very slow process. To

evaluate a tree, one starts at the root node and traverses along the left most branch of

the tree until a terminal is reached. If the corresponding right branch also has a terminal

on the same level as the current terminal an operation is executed on the two terminals

and the result is placed in a temporary storage facility. This process of node-branch

simplification continues until the whole tree has been reduced to a single node which

yields the final answer. Needless to say that this is the part of the algorithm that

consumes most of the resources. Also, extensive use is being made of floating point

arithmetic that generally degrades performance even further. The evaluation can be

accelerated and simplified if the individual is evaluated as a reverse Polish expression.

In Polish notation, expressions are characterized by a function followed by its

~he creation process uses recursion which means that the algorithm calls itself until some
termination criterion is reached. Although this may seem unnecessarily complicated, recursion
actually makes the whole creation process very simple!

42

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

arguments. In reverse Polish notation6 the arguments are followed by the function. In

evaluating a reverse Polish expressions as in Table 3.1, we make use of a stack7. We

Table 3.1 : Illustrating the difference between Standard, Polish and reverse Polish notation.

first start by pushing 7 onto the stack. This is followed by pushing 6. When we arrive

at the u*" sign we pop two8 values from the stack, i.e. 6 and 7, apply the corresponding

function (we multiply 6 by 7) and push the result onto the stack. Note, there is now only

one value on the stack, 42.

Proceeding, the value 5 is pushed onto the stack followed by two pops when the next

function, u+", is reached. Adding the two recently popped values, 5 and 42, we obtain

47. This is the final result and is returned by the evaluation function. The following piece

of pseudocode illustrates this operation:

6The HP Scientific calculators use RPN (reverse Polish notation) to evaluate an expression.

7 A stack is an array of values. To insert a value in the stack we push it. To retrieve the most
recent value we pushed on the stack we pop it from the stack.

8We need to pop two values from the stack because the multiplication function requires two
arguments.

43

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

Function Evaluate{Individual)

Begin

End.

K=Total number of nodes in the individual

For i=K DownTo 0 {Start at the back and move to the front}

Begin

{If the current node isa terminal}

If {Individual [i)<=127)

Begin

End

Else

TerminalID=Individual[i);

{now push the appropriate Terminal pointer on the stack}

push{GetTerminalPointer{TerminalID));

{the current node is a function}

Begin

End;

End;

FunctionID=Individual[i);

{Do the appropriate function specified by FunctionID}

{And push the result on the stack}

push {ApplyFunction (FunctionID));

{And finally pop the last value off the stack and return it}

Return pop{);

Figure 3.5 : The pseudocode for the evaluation function.

3.3.3 increasing convergence and robustness in regression models using an

expanded solution space

3.3.3.1 Fitness function

A solution's fitness is a measure of how accurately it approximates the desired state or

optimum solution. An error-based fitness function's measure is usually based on the

sum of the squared errors (SSE) or mean of the squared errors (MSE) between the

desired state and the solution's approximation to that state. Error-based fitness

44

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

functions such as these are used widely in regression problems (Iba et aI., 1995; Koza,

1992; Tang et al., 1996; Watson and Parmee, 1997).

South et al. (1995) noted that using a correlation-based fitness function improves

convergence speed. A correlation-based fitness describes the fitness as the correlation

between the desired state and the solution's approximation. Pearson's correlation

coefficient is used as the actual fitness. The correlation ranges from -1 to 1, where -1

implies [perfect] negative correlation, 0 indicates no correlation and 1 perfect

correlation. If the absolute value of the correlation is used to bound it between 0 and

1, it can serve as the fitness value.

3.3.3.2 Correlation

Correlation is a measure of the linear association between two random variables X and

Yand is given by the population correlation coefficient, p, where

cov(x, Y)
p Xy = ----'----'- (3.16)

Since J..l x "..L y , cr xandcr yare usually unknown, PXy can be estimated by the sample

correlation coefficient9 r xy , where

n

L (Xi - E[X])(y - E[Y])
i=1 rXY = -n--'------n----- (3.17)

L (Xi - E[X]). L (Yi - E[y])
i=1 i=1

Each variable consists of n observations. E[X] and E[Y] denote the estimated or mean

of variables X and Y respectively. The sum of the squared errors or SSE between two

random variables X and Y is

9 Also referred to as the Pearson correlation coefficient.

45

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

n

SSExy = I (x; - y;)2
;=1

(3.18)

Consider a variable Y, as a linear function of X, such that

y= aX + b (3.19)

and a, b E m. If a = 1 then b is simply a bias added to X which transforms it by a

constant value of b. If b = 0 then a is a scale which expands or shrinks X. Substituting

(3.18) in (3.16) and (3.17) yields

rXY = 1

and

n

SSEXY = I (x; - (ax; + b»2
;=1

(3.20)

(3.21)

One can clearly see that if a correlation-based fitness function is used, a misleadingly

high fitness of 1 (regardless of a or b) is obtained. If the value for an error-based fitness

function is defined as f= 1/(1+SSE)#then the fitness using (3.20) can range from either

-00 to 00, depending on the actual values of a and b.

Consequently, a correlation-based fitness as in (3.16), can result in solutions having

large SSEs, while not being able to appro>,<imate the desired state, which in this case

is X, even though the fitness is 1.

The idea now is to remove the scale and bias (a and b) introduced in (3.18), from Y. To

accomplish this we must first standardize the variable Y, i.e. subtract the mean and

divide by the standard deviation and then scale it to have the same standard deviation

and the same mean as the desired state, X. The following correction filter does just that

tt-ro bound it between 0 and 1

46

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

(3.22)

Here Xd represents the desired state, Xa the approximation, 0Xd and 0Xa the respective

standard deviations of Xd and Xa and E[Xdl and E[Xal the respective means of Xd and

Xa· Since the correlation between Xd and Xa can be less than 0 we need to invert the

sign of Xa to compensate for negative correlation. This is done via sign(rxy) which is

either 1 or -1. Now substituting Y for Xa and X for Xd yields

G(X, Y) = sign(rXY >(:: (Y - E[Yj) + E[XD) (3.23)

It can be shown that

cry = acr x (3.24)

and

G(X,y) = X (3.25)

Therefore (3.22) simplifies to

Y - E[Y] = a(X - E[X]) (3.26)

That is, after passing through G(X, y), Y can approximate the desired state, X, exactly

if it is a linear function of X. Therefore the SSE between X and Y remains 0, regardless

of a or b. This implies that sol~tiqn~ which would have been previously discarded by an
-- - --" -- --~ - ~. _ .. --

error-based fitness function will now be accepted as valid solutions by a correlation­

based fitness function after it has passed through the correction filter, G(Xd,Xa), which

removes any bias, scale or inversion; i.e. an expansion of the solution space. This

process can be visualized in Figure 3.6.

47

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

o ~I Algorithm

Figure 3.6 : An algorithm and the correction filter, G, acting as a hybrid model.

Since the algorithm is connected to another stage, G(Xd,Xa)' this process is effectively

a hybrid model. Also the algorithm can be any algorithm and is not limited to genetic

programming.

Note

All the parameters O'Xd' 0')(8' E[Xd], E[Xa] and sign(r xy) are computed during training and are
left unchanged during testing or valiGfation!

Note, that the values O'Xd ' O'Xa , E[Xdl, E[Xal and sign(r xy) are computed during training

and are left unchanged during testing or validation.

From these results we can deduce three hypotheses:

1. Since more potentially good solutions are retained in each generation , there is an

increase in convergence.

2. The more stringent the fitness criterion becomes, the more specialized the solutions

will be as they try to abide by the criterion. A correlation-based fitness is not as

stringent a criterion as an error-based fitness, therefore the final solutions have

better generalizing abilities.

3. They are thus simpler (Occam's razor!)2.

3.3.3.3 Confirming the hypotheses

20ccam's razor states that, all things being equal , the simplest solution is always the best.

48

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

To confirm the hypotheses, several runs were conducted on each of the three data sets

described below and a statistical analysis was performed on the measured results. The

results that were measured were

o Convergence speed or fitness over generations

o Standard deviations in the differences of the R2 obtained during training and testing

o The length (in terms at-the number of nodes in the parse tree) of the best individual

after each run.

Ten runs were conducted on each data set by first using a correlation-based fitness

function and then repeating it using an error-based fitness function.

The following data sets were used:

o Data set, PINE, consists of 6612 exemplars measured from the Pinus patula of

the form [AGE, TREE, DATE, TIME, TEMP, RH, VPD, PAR, WSPEED,

LEAFMASS, HEIGHT, DBH,XPP, WOODDENS, SAPFLO] , whereAGEdenotes

the age of the tree in years, TREE denoted the specific individual from which

samples were taken, DATE the date of the observations (yymmdd), TIME the

time of day during which measurements were taken, TEMP the temperature

(OC), RH the relative humidity, VPD the vapour pressure deficit (kPa), PAR the

photo synthetically active radiation Cumollm2/s), WSPEEDthe wind speed (m/s),

LEAFMASS the estimated leaf mass of the tree (kg), HEIGHT the height of the

tree (m), DBH the diameter of the tree at breast height (m), XPP the xylem

pressure potential (kPa), WOODDENSthe density of the tree (kg/m3), as well as

SAPFLO, the rate at which water was transported through the tree by means of

transpiration (I/tree/h). The objective is to predict the hourly sapflow rates per

tree.

o Data set, BMVANO, is comprised of 1234 observations measured from the Black

Mountain base metal flotation plant. It consists of eight variables. AvrGrayCuSc

. is the average grey scale value of the digitized froth image, indicative of the

average loading of solids on the bubble, AvrRedCuSc the average level of red

49

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

colour in the froth appearance, AvrGreenCuSc the average level of green colour
, . -

in the froth appearance, AvrBlueCuSc the average level of blue colour in the

froth appearance, SNECuSc is a statistical parameter indicative of the number

of small bubbles in an image, 8.MCuSc is an indicator of the image darkness,

MobilifCuSc the ~ositional change of froth elements in consecutive images,

FlowCuSc and CuSc%Pb the percentage lead in the final concentrate. Here

CuSc%Pb is used as the output variable, i.e. t~e %Pb in the concentrate;

o Data set, SOLPREP, consists of set of plant data of a solution preparation circuit

,that were collected on a daily basis. There are eight variables x1, x2 , .:., X8 that

describe the behaviour of the circuit.

Thefollowingparameters listed in Table 3.2, were used for each run. Two populations

Table 3.2 : Parameters used for each data set during regression.

Number of
popu/ations(demes)

'2 2 - , ',2 '

50

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

(demes) were used, each containing 50 individuals. Each run's function set included the

basic arithmetic functions F = {+, -, *, I} and the natural logarithm, In, as well as the

exponential function, expo The terminal set for data set PINE included all fourteen

variables except TIME. For data set SOLPREP seven variables were included in the

terminal set, while Mn063am was used as the target variable, while data set BMVANO

had eight variables in the terminal set and CuSc%Pb as target.

Crossover and mutation rates were set at 60% and 4% respectively, while tournament

selection was used with a tournament size of 3. An elitist strategy was followed in that

the best individual after each generation was passed on, unchanged, to the next

generation. Each run was terminated after 200 generations. 2000 pbservations were

randomly selected from the original 6612 exemplars of the PINE data set. Of these,

1000 observations were used as training data and the remaining 1000 as testing data.

864 randomly selected observations were used as training data for the BMVANO data

set and the remaining 370 as testing data. 235 exemplars were used as training data

for the SOLPREP data set and the remaining 100 as testing data.

3.3.3.4 Discussion of results

The results obtained from the 20 runs3 for each data set are listed in Figures 3.7 (a) -

(c) and summarized in Table 3.2.

To measure the robustness of the final model after 200 generations, the difference in

the R2 between the training data and the testing data was obtained for each run. The

standard deviation is computed from these differences and is denoted by 0T_T (see

Table 3.2). From the results we can deduce that a correlation-based fitness initially

starts at a much higher average fitness (for all three case studies) as opposed to an

error-based fitness. The final average fitness is also significantly higher for all three

data sets. Because a correlation-based fitness is a less stringent fitness criterion than

an error-based fitness, specialization is reduced, as one can see from the 0T-T for data

set PINE ranging from 0.024 for an error-based fitness, down to 0.011 for a correlation­

based fitness.

310 runs for an error-based fitness and 10 for a correlation-based fitness.

51

rr

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

Table 3.3 : Measured results obtained for each data set after using an error-based fitness
function and a correlation-based fitness function.

However, the specialization increased for data set SOLPREP, from 0.016 to 0.022. This

was owing to the fact that the'error-based fitness runs got continuously entrapped in a

local optimum. This kept the convergence line horizontal (see Figure 3.7.(b» for most

part of the simulation. In contrast, the models obtained via a correlation-based fitness

were significantly more complex than those obtained using an error-based fitness, as

shown by the average number of nodes for all three case studies.

------------.--

52

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

Average convergence using tvvo different fltn ••• schemes 'for PINE data

o.~L
O.6~

&: -' -

:: [""':"'''''''''''''''''''''''1'''1''''''''''''''''''''''''''''''"'''''''''1'''1'''''''''''''''''''''''''''...1 22 84 108 148 190
'27 '69

(a)

Average convergence using ~o different fltna •• achern •• f'or SOLPREP data

o ... ~~::::::~~~~~

&:¥;-
0 .2 r
0 .' ------<

o -rT1TTTTII"' iL~'I ""' i 'ili ' l i "II"ITTl1lTtTTTTl1I~i'l ll llll i'li i i liilIIliill" II'~TTT1T1TT1TTnllilllli' iilili~~ iiiljill l tilil llll jj~~rrm~
'27 H ...

Gan-ratlon

Error baaed ftm Correlation b ••• d 'I1m_ ..

(b)

Average convergence ualng t\No dlfYerent fllne .. achern •• f"or BMVANO data
0 ."

F 0 . 5

o.~

&: 0 . 3 ---
_ oJ ------.-----------1

0 . 2

0 . 1 -!-
-1

I

o -tnnnnll'-ml ~rr;;llllllililll.lllli!'i,:nnmm~~t'rrrn1TTTTTTnTTrmrrnnr.TTn~~rmnnTTf11"ill't"lil"'ii~:;,"fTTTTTTmllm1trrTMT1T11lTT7~trTl:~

1 43 85 127 188
aaneratlOon

Error ba.ad #ltn ••• Correlation b_._d fltn •••

(c)

Figure 3.7 : The difference in average convergence, for the three data sets in
terms of R2-values vs the number of generations: (a) PINE, (b) SOLPREP and
(c) BMVANO, when an error-based fitness function (broken line) and a
correlation-based fitness function (solid line) is used. In all three examples,
the correlation-based fitness function yields a much higher convergence.

53

Stellenbosch University https://scholar.sun.ac.za

3-The Design Methodology

3.3.3.5 Conclusions

Form the results we can deduce that a correlation-based fitness allows much faster

convergence than an error-based fitness (using the same run parameters). This can be

seen as an expansion of the solution space, since solutions which would have been

discarded previously by an error-based fitness function are now deemed valid. Second,

the final results are more robust and can generalize better, owing to the smaller

standard deviations in the fitness, obtained from the training sets and the test sets.

Third, the average fitness of the models are higher, since an error-based fitness is a

more critical way (as opposed to a correlation-based fitness) of looking at a solution.

It only makes sense that the solution itself will start to specialize and take longer to

converge. Finally, contrary to prior believe, the solutions (model structures) are on

average, more complex4 than those obtained using an error-based fitness. This

phenomenon may be specific to genetic programming, because it evolves structures.

A correlation based fitness forces any algorithm to act as a hybrid model, because it

has to be connected to a correction filter, G(Xd,Xa) to reduce the SSE. In theory one

would be able to achieve even higher convergence by expressing the fitness as a n-th

order polynomial association between the actual state and the desired state and then

using the correction-filter to remove the higher order parameters.

4 'n terms of the number of nodes. This number was obtained from models which were not
simplified.

54

Stellenbosch University https://scholar.sun.ac.za

PROCESS MODELLING USING a-GP

4.1 An introduction to process modelling

rocess modelling strives to find-functional representations between inputs

and outputs of unknown processes. That is, given a set on n inputs and m outputs, the

idea is to construct some kind of mathematical function to relate the inputs and the

outputs and thus to identify the underlying trend in the data and predict the outputs as

accurately as possible.

Consider the simplest case of a linear model of the form

y = xb+e (4.1)

where y isan m x 1 response, x is an m x n matrix of data, with rank(x) = n, b is an n

x 1 vector of parameters and e is an m x 1 random vector with independent, identically

and normally distributed elements, i.e. ei - m(O, 0 2
) for i = 1, 2, ... m.

A linear relationship between a continuous variable (assumed to have normal

distribution) and a single explanatory variable, is modelled by

(4.2)

This is equivalent to the model E(y) = xb, with

55

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

Y1 1 X 1

Y2 1 x 2
and b ~ [::J Y= X= (4.3) ,

Yn 1 xn

The simplest models are based on the premise that any relationship between the input

and output variables are linear and that the data themselves are normally distributed

(McKay et al., 1997). However, real world systems are highly non-linear and these

linear approximations fail to discover the functional relationships in the data.

Subsequently systems are often modelled using non-parametric techniques (such as

neural networks (Del Giudice and Amabile, 1997), regression trees (Breiman et al.,

1984), kernel regression (Herrmann, 1994) and fuzzy regression (Shakouri et al., 1997).

It has been proven (Hornik et al., 1989) that neural networks, with one hidden layer of

sigmoidal units, are capable of approximating any continuous function. However, the

main drawback with neural networks and other non-parametric techniques is that the

mathematical models are extremely complex and very difficult to analyse. Also, no

insight is gained as to how the inputs relate to the structure:,

Genetic programming, on the other hand, can easily handle a trade-off between

interpretability and accuracy. In effect, genetic programming applies symbolic

regression to discover the underlying trend in the data, which allows it to operate as a

non-parametric algorithm, whilst having the interpretabilities of a linear approximation.

The final solution can be represented as a parametric model. Also the way in which the

input variables relate to the structure becomes immediately apparent from the

symbolically evolved functions. There is thus, no need for any a priori knowledge

regarding the inputs (or structure) of the process.

56

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

4.2 Case studies

4.2.1 Approximation of multivariate functional relationships

To evaluate the performance of the genetic programming algorithm, a

multivariate functional relationship of two independent variables, as represented by

(4.4) was considered.

(4.4)

200 exemplars were uniformly sampled over the appropriate ranges by means of (4.4).

Twenty runs were conducted. In the first ten runs, an error-based fitness criterion was

used while the last ten employed a correlation-based fitness criterion. For each run, two

demes were used, each consisting of 50 individuals. The terminal and function sets

consisted of the following, F = {+, -, *, I} and T = {X1' x2}. Crossover and mutation rates

were set at 60% and 4% respectively, while tournament selection was used with a

tournament size of 3. An elitist strategy was followed in that the best individual after

each generation was passed on, unchanged, to successive generations. Each run was

terminated when the fitness of the best individual after each generation was equal to

1.

In each of the runs the desired relationship was attained, regardless of the fitness

criterion. The equations in (4.5) are representative of a typical result obtained during

one of the runs.

As shown in Table 4.1, the algorithm (using both fitness criteria) was able to correctly

identify the functional relationship from the given data; which resulted in a fitness of 1.

57

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

Using a correlation-based fitness criterion, the average number of generations

(averaged over 10 generations) needed for convergen'ce, was 79.7. In comparison, an

error-based fitness criterion required 139.2 generations. A 43% improvement in

performance,

To investigate the effect "a priori knowledge" has,on t~e al~orithm the foUowing functio~'

Table 4.1 : Results obtained for the identification of the multivariate functional relationship in
eq. 4.4. 20 runs were conducted of which 10 used a correlation-based fitness criterion and
the remainder, an error-based fitness criterion.

Average number of
generations needed for
cO,nvergence

79.7 139.2

, of two independent variables was consider~d

. (') X 1 X 2 'th [4 4]' d' [4 4] Y = Sl~ X 1X 2 + -,-5-" WI x 1 E - 7t, 7t an. ~2 E - 7t, 7t (4.6)

500 exemplars were uniformly sampled over the appropriate ranges by means of (4.6).

Once again, 20 runs were conducted. The same parameter criteria were used as
, ' '

Table 4.2 : Results obtained for the evaluation of the algorithm with and without a priori
knowledge in the function set. 20 runs were conducted of which 10 used a function set that
had the a priori information included or F = (+, -, *, I, sin). In the remaining ten runs, this
information was excluded, therefore F = {+, -, *, /}. . ,

Best fitness 1 " 0.925

* i.e., finding the exact relationship

58

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

described in the previous example. A correlation-based fitness function was employed.

For the first ten runs, the function set consisted of F = {+, -, *, /, sin} while in the

remaining ten runs the "sin" function was excluded from the function set to evaluate the

performance of the algorithm without this "a priori knowledge". The terminal set,

consisted of T = {x1 , x2}. Each run was terminated after either the desired functional

relationship was discovered or after the 200th generation, whichever came first. The

results obtained are presented in Table 4.2.

A run was considered successful if the algorithm was able to correctly identify the exact

functional relationship from the given data. From Table 4.2 one finds that when the "sin"

function is included in the function set, the algorithm identifies the correct function 80%

of the time. When the "sin" function is excluded from the function set, the algorithm is

unable to find the correct function. However, it consistently produces reliable

approximations in the sense that the worst fitness and the best fitness over ten runs are

not significantly different. The equation in (4.7) is representative of a typical result

(4.7)

obtained during runs, using the functional set F = {+, -, *, I}.

Figure 4.1 presents the fitness distribution within a population sampled at specific

generations. During the first few generations most individuals have very low fitness

values. With increasing generations there occurs a shift in the distribution towards the

region with a higher fitness (i.e. towards a fitness of 1). One should also bear in mind

that natural selection decreases the diversity and therefore the final generations are

primarily composed of copies of the best of individual.

The lack of "a priori knowledge" results in a complex parametric approximation of the

desired functional relationship.

59

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

Histogram of the fitness distribution at various generations

80

70

60

>. 50
u
c
~ 40
D'
II)

.t 30

20

10

o 0.1 0 .20.30.40.60.60.70.80.9 1

Fitness

Generation

11 1
• 10

o 40

• 100

Figure 4.1 : A histogram plot of the frequency distribution of the
fitness of each individuals in a sampled at a specific generation.
Notice that when the algorithm starts (generation 1) most
individuals have very low fitness values. With succeeding
generations this distribution starts moving towards the region
with higher fitness.

4.2.2 Obtaining regression models for four real data sets

A regression analysis was conducted on four data sets as described in the following

case studies. The augmented genetic programming algorithm (a-GP) was compared

against standard genetic programming, linear regression and a multilayer perceptron

(MLP) neural network in all four case studies. For standard genetic programming an

error-based fitness function was used while a-GP employed a correlation based fitness

function in conjunction with a correction filter1
, G(Xd,Xa), to correct the SSE. A multilayer

perceptron neural network architecture was used consisting of one hidden layer which

was comprised of sixteen hidden nodes. Each node contained a sigmoidal activation

function. Training for the neural network was completed after 10000 epochs. These four

techniques were compared against one another by using their MSE and R2, averaged

over three runs.

'See Chapter 3.4.3.

60

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

4.2.2.1 Modelling of transpiration in pine trees

Refer to Chapter 3.4.3.3 for a description of the PINE data set.

4.2.2.2 Modelling of transpiration in poplar trees

This data set, referred to as POP, consists of 1130 exemplars measured from the

Populus deltoides of the same form [AGE, TREE, DATE, SEASON_NO, HOUR, VPD,

PAR, LEAVE_AREA, ETLA] , where AGE denotes the age of the tree in years, TREE

denoted the specific individual from which samples were taken, DA TE the date of the

observations (yymmdd), SEASON_NO a dummy variable for the seasons (Autumn= 1,

Spring=2 and Summer=3), HOUR the hour of day during which measurements were

taken, VPD the vapour pressure deficit (kPa), PAR the photo-synthetically active

radiation (,umollm2/s), LEAVE_AREA the leave area (m2) and ETLA, the rate at which

water was transported through the tree by means of transpiration (IIm2/h). Here the

objective is to predict the hourly sapflow rates per square metre.

4.2.2.3 Modelling of the Black Mountain base metal flotation plant

Refer to Chapter 3.4.3.3 for a description of the BMVANO data set.

4.2.2.4 Modelling of a solution preparation circuit

Refer to Chapter 3.4.3.3 for a description of the SOLPREP data set.

4.3 Run parameter listings

The following parameters listed in Table 4.3, were used for each run. Two

populations (demes) were used, each containing 50 individuals. Each run's function set

61

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

included the basic arithmetic functions F = {+, -, *, I} and the natural logarithm, In, as

well as the exponential function, expo The terminal set for data set PINE included

thirteen variables with TIME and SAPFLO excluded. SAPFLO was used as the target

variable. In data set POP, eight variables were included in the terminal set except ETLA

which was used as the target variable. For data set SOLPREP, seven variables were

included in the terminal set while Mn063am was used as the target variable, while data

set BMVANO had seven variables in the terminal set and FlowCuSc as target.

Crossover and mutation rates were set at 60% and 4% respectively, while tournament

selection was used with a tournament size of 3. An elitist strategy was followed in that

- the best individual after each generation was passed on; unchanged, to successive

generations. Each run was terminated after 300 generations. 2000 observations were

randomly selected from the original 6612 exemplars of the PINE data set. 1000

observations were used as training data and the remaining 1000 as testing data, while

791 observations were randomly selected from the POP data set as training data and

the remaining 339 were used as test data. 864 randomly selected observations were

used as training data for the BMVANO data set and the remaining 370 as testing data.

235 exemplars were used as training data forthe SOLPREP data set and the remaining

100 as testing data.

A correlation-based fitness function was used for a-GPo For standard genetic

programming, the fitness function was changed to an error-based fitness function. The

remaining parameters were left unchanged. Table 4.3 presents a run parameter

description.

62

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

Table 4'.3 : Run parameters used for each data set during regression.

Terminal set (T) , AGE, TREE, : . AGE, TREE, AvrGrayCuSc,
• DATE, TEMP, ! DATE, AvrRedCuSc, . e,
. RH, VPD, PAR; : SEASON_NO, AvrGreenCuSc; [H2SOJ_after,

WSPEED, : HOUR, VPD, : ,AvrBlueCuSc, ; H2S04-additio
_~ LEAFMASS,-~- •• PAR, ~-~ .~--~~~,; 'SNECuSc;-·-,"",,~-..r~' n;~ ~'~'~"~' C' ._C~-~, - ~~-~.

HEIGHT,DBH, LEAVE_AREA SMCuSc, .NH40H_additi
XPP, MobilitCuSc on,
WOODDENS LeachFlow,.

[Mn21~solidT
093, Mn093am·

4.4 . Investigating the effect different crossover and mutation rates has

on the overall performance of the algorithm

To understand'how the crossover rate (Pc) and m~tation rate (P~-) affect~ the

performance of the genetic programming algorithm, tWo different runs were performed

on each of the data sets described above using different crossover/mutation rate

combinations. For the first run, all the parameters in Table 4.3 were left unchanged.

63

Stellenbosch University https://scholar.sun.ac.za

The effect of varylng PcJPm combinations on data set PINE

o .• ~~~~=======l

0.8 -¥----::::i-z---2-------"~---=-____:=__---_i

0.4 -t----'-----:':-c,..........-"----=;;-:-:-.,---------.-;--:;--_i

~ ~ ~ m ~ m m ~ m
Generation

Pc/Pm (80/10)% Pc/Pm (20/1)%

(a)

The effect of varying Pc/Pm combinations on

data set BMVANO

&:: 0.3 +---------.,.--.".---'--- -':----1

0.2 -+-------~---'---.,,------j

0.1 +---------,..---------1

32 63 94 125 156 187 218 249 280

Generation

Pc/Pm (80/10)"10 Pc/Pm (20/1)"10

(c)

4-Process Modelling using a-GP

The affect of varying Pc/Pm combinations on data sat POP
0.8 ,------.,------:r--;--------~

32 63 94 125 156 187 218 249 280

GeneratJon

Pc/Pm (80/10)"10 Pc/Pm (20/1)"10

(b)

The affect of varying Pc/Pm combinations on

data sat SOLPREP

&:: 0 .3 +--".---'--- --;-:----::----;---'--------1

0.1 -1-----"---'----=.'-------------1

32 63 94 125 156 187 218 249 280

Generation

Pc/Pm (80/10)"10 Pc/Pm (20/1)"10

(d)

Figure 4.2 : The effect of varying combinations of crossover (Pc) and mutation (Pm) rates,
emphasized the fact that a too small search rate does not yield satisfactory results. In (a) and
(b) we can see that the algorithm got entrapped in a local optimum, when the
crossover/mutation rate was set at (20/1)%. Increasing the search rate to (80/20)% allowed the
algorithm to avoid entrapment in the local optimum. In (c) the larger search rate did not make
significant difference, while in (d) a steady increase can be observed.

Crossover and mutation rates were set at 20% and 1 % respectively. For the second

run, all the parameters in Table 4.3 were also left unchanged. Crossover and mutation

rates, however, were set at 80% and 10% respectively. The results are depicted in

Figure 4.2.

64

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

4.5 Discussion of results

Judging from Figure 4.3 and Table 4.3 one can clearly differentiate amongst the

performance of the four different algorithms, i.e. a-GP, genetic programming (GP),

linear regression and the multilayer perceptron neural network. Clearly, a-GP

outperforms standard genetic programming as proposed by Koza (1992) on all four

case studies. Of particular interest is the fact that a-GP improves on the multilayer

perceptron neural networks on one of the four case studies. For data sets POP,

BMVANO and SOLPREP, the neural network outperformed a-GP by a small margin.

Interestingly, linear regression outperformed both a-GP and the neural network, when

Table 4.4 : Results obtained for each of the four data set after testing. A comparison of ~ and
MSE is made amongst the four different regression techniques. These are a-GP, GP, linear
regression and ANN's.

SOLPREP 0.48 0.50 ' 0.37, 0.74 0.31 0.31

applied to data set SOLPREP, by a slight margin. A two-tailed test of significance

revealed that the results obtained [for data set SOLPREP] using linear regression were

not significant at the 0.05 level when compared to any of the other techniques. This

could imply that the data is linear. Unfortunately the evolved models were too complex

to simplify and are included in Appendix A.

65

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

Table 4.5 presents the significance of the difference between the correlation

coefficients of the four regression techniques. The null hypothesis, He, was tested to

see whether the results obtained via a-GP was significantly different at the 0.05 level.

A two-tailed test of the normal distribution was used. He would only be rejected if the

Table 4.5 : Significance of the difference between the correlation coefficients of the four
different regression techniques. Here, the null hypothesis, Ho' is tested to see whether the
results obtained with a-GP, on the four data sets, are significantly different than those
obtained via GP, linear regression and neural networks. The values inside the table are the
test statistic (z) values. The values that are labelled with (a) imply that the results obtained via
a-GP, are significantly different when compared to the corresponding algorithm in that row.

(a)Significantly different from a-GP at the 0.05 level.

test statistic, z> 1.96 or z < -1.96. From the test statistics in Table 4.5 we can conclude

that the results obtained for data set PINE were significantly different when compared

against the other techniques. Like wise, for data set POP, the difference was significant,

A comparison of R2 using four different regression techniques

0.8 +--~'I--------"----'-'-:;;:----;-::--l

0.6

0.4

0.2

PINE POP BMVANO SOL PREP

Data sets

a-GP

• GP o Linear Regression

• ANN

Figure 4.3 : A comparison of R2 obtained from the four data sets.
a-GP outperforms GP on all four case studies.

66

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

except when compared to the neural network.

Figure 4.2 illustrates the effect different crossover/mutation rate combinations has on

the overall performance of the a-GP algorithm. Clearly, when the crossover/mutation

rate is too low (20/1) the algorithm gets entrapped in a local optimum (see Figures

4.2.(a) and 4.2.(b)). Increasing the search rate to (80/20) alleviates this problem. The

effect of varying rates was least significant in Figure 4.2.(c), while in Figure 4.2.(d) a

steady increase in convergence is noticed.

Figures 4.4 (a)-(d) are scatter plots of the observed output vs the predicted output of

Observed output vs PredIcted output for

data set PINE. R2 - 0.85

15.8

.1 ~~--,-----,-----,-----,----~

- 1 3 .2 1.4 11 .6 15.8

Predicted output

(a)

Observed output vs PredIcted output for

data set BMVANO. R" - 0.53

20

100 -r----,----------::--------;-:----,

82.5

"$ 65

~
o
~ 47.5

~ 30

12. 5

10 20 30 40 SO 60 70 80

Predicted output

(c)

Observed output vs PredIcted output for

data set POP. R" -= 0.67
1.2 ..,.....,----___ ---,----,., _________ -,

"$ 0.8

~
o
-a 0.& -

! 0.4

0 . 2

o 0.2 0.4 0.6 0 .8

Predicted output

(b)

Observed output vs PredIcted output for

data set SOLPREP. R 2 .. 0 .48

30 +---.-~--_r~-_,---~---~

30 31 32 33 34 35

Predicted output

(d)

Figure 4.4 : X- Y scatter plots of the Observed output vs Predicted output for data sets: (a)
PINE [R2=O.85}, (b) POP [R2=O.67}, (c) BMVANO [R 2=O.53} and (d) SOLPREP [R2:0.48J.

67

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

the best individual obtained for each data set. There is less scatter in the model

obtained for data set SOLPREP as opposed to data set BMVANO, even though the

evolved model for BMVANO explains 5% more variation.

4.6 Conclusions

The results clearly indicate how a vital tool a-GP can be for steady-state process

modelling and that it can be seen as a viable alternative for artificial neural networks.

When applied to a the identification of a multivariate functional relationship of two

independent variables, the algorithm was able to obtain the correct function from the

given data. Using a correlation-based fitness criterion, the correct solution was found

in 43% less generations than when an error-based fitness criterion was employed.

Using a correlation-based fitness function allows much faster convergence than using

an error-based fitness function.

The effect of "a priori knowledge" was investigated in that a multivariate functional

relationship (that incorporated a "sin" function) of two independent variables was

generated. In this instance, the "sin" function represented the "a priori knowledge".

When this "a priori knowledge" was included in the function set, the algorithm was able

to correctly identify the function from the given data. However, when the "sin" function

was excluded from the function set, the algorithm was unable to correctly identify the

function. The approximations, however, were extremely consistent in the sense that the

best of fitness and the worst of fitness over ten runs were very similar. Incorporating" a

priori knowledge" in the function- and/or terminal set does benefit the genetic

programmtog algorithm. Excluding this information from the algorithm results in complex

parameterized approximations of the desired functional relationship.

Although a-GP failed against the multilayer perceptron neural network on three of the

four case studies, the results obtained [using the neural network] were not significantly

different at the 0.05 level. Allowing possible longer evolution time or by using a larger

population could also improve results. Given the complexity of the evolved models, one

68

Stellenbosch University https://scholar.sun.ac.za

4-Process Modelling using a-GP

can conclude that the underlying relationships within the data are extremely complex

and that very little "a priori knowledge" was available, which resulted in highly

parametric models. Owing to the fact that the genetic programming algorithm lacks

parameter estimation, it evolves complex tree structures; which it uses to approximate

the parameters. This demonstrates he need for a local optimization procedure to

generate and optimize parameters in the genetic programming algorithm. The result

obtained via a-GP were significantly different at the 0.05 level, on half of the data sets,

when compared to standard genetic programming.

By varying the crossover/mutation rate combinations the results (as expected) clearly

indicate that high search rates are favoured. A too small crossover/mutation rate does

not allow sufficient exploration of the search space in the allotted time (300

generations). Also the low mutation rate (1 %) was not sufficient to avoid entrapment in

local optima. This would seem to imply that the search rates used in this thesis, viz.

60% for crossover and 4% for mutation, are sufficient.

69

Stellenbosch University https://scholar.sun.ac.za

VISUALIZATION OF PROCESS SYSTEMS USING
a .. GP.

5.1 An introduction to dimensionality reduction

he continued growth in large data systems in the chemical and metallurgical

process industries has precipitated intense efforts to develop. more efficient methods

for the exploration and interpretation of large volumes of data. It is not uncommon for

the individual analyst to have to interpret many hundreds or even thousands of

variables and hundreds of thousands of observations off-line, while in automated

monitoring and control systems, data volumes of an order of magnitude higher may

have to be accommodated. The extraction of features and the reduction of

dimensionality are two vitally important ways of dealing with these problems. Feature

extraction and dimensionality reduction provides an antidote to the "curse of dimensio­

nality" and can improve the generalizability of process models and classifiers, allow us

to visualize high dimensional data to better understand the underlying structure, explore

the intrinsic dimensionality and analyse the clustering tendency of multivariate data

(Mao and Jain, 1995).

Dimensionality reduction can generally be achieved in two ways, viz. by selecting a

small but important subset of variables prior to analysis, or by extracting a lower­

dimensional set of features that preserve the essential characteristics of the original

data (Pal and Eluri, 1998).

A large number of approaches for the dimensionality reduction of data (i.e. feature

extraction and multivariate data projection) has been reported in the literature dealing

70

Stellenbosch University https://scholar.sun.ac.za

5-VisuaJization of Process Systems using a-GP

with pattern recognition (Sammon, 1969; Biswas et a/., 1981; Mao and Jain, 1995;

Kraaijveld et al., 1995). The differences in these approaches are based on the

characteristics of the mapping function ~ (linear or non-linear), the way ~ is learned

(supervised or unsupervised), the nature of the optimization criterion, etc. (Mao and

Jain, 1995). Although non-linear techniques are more suitable for complex (non-linear)

process systems, these mapping functions (such as represented by artificial neural

networks) tend to be non-parametric, among other, and may also be difficult to optimize

in the presence of a large number of local minima in the error surface of the

optimization criterion associated with the mapping.

During this research a novel strategy, based on the use of genetic programming (GP)

to visualize and explore industrial mineral process data, is proposed. This approach has

the advantage that an explicit non-linear mapping function, ~, is generated which gives

an indication of the structure of the data as well as the way the original variables are

related to this structure, as will be shown by way of a few case studies.

5.1.1 An overview of data projection

During feature extraction and data projection, data residing in a higher

dimensional space, 9{P, is mapped to a lower dimensional space, 9{q (where q < p),

while the essential characteristics of the original data are preserved (Pal and Eluri,

1998). Usually q (for exploratory data analysis purposes) is set to either 2 or 3 in order

to visualize the mapped data. In order to map the data some criterion C, is optimized.

However, unlike regression where the mapping function is estimated from input-output

pairs (known outputs), in feature extraction or data projection the outputs are often not

available.---- -

The Sammon measure (Sammon, 1969) is the most widely used criterion which tries

to preserve all the inter-pattern distances between the data in 9{P and the mapped data

in 9{q. Euclidian distance is used in this projection. Sammon's method is an intuitively

simple, but powerful way of preserving the structure of the data, and can be

summarized as follows:

71

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

Define the similarities in the input space ~ E mp as F(i,}) and in the output.(t E mq as

G(u, v), where q ~ p and i andj are points in the input space, ~, while u and vare points

in the output space, (t.Assuming that there are n points or patterns to be mapped, and

that p is a one-to-one mapping of points from the input space to the output space,

yielding n points or patterns in the output space, so that the following objective function

can be defined:

(5.1)

S is also referred to as the Sammon stress. This objective function assumes that both

F and G are Euclidean distances in the two spaces, with a unity distance between

neighbouring points in each space. Alternatively (5.1) can be rewritten as

(5.2)

i.e. d/ is the [Euclidian] distance between points i and j in the input space, ~, and dij is

the [Euclidian] distance between the corresponding projected points u and v in the

output space, (t.

Sammon used the method of steepest descent for the approximate minimization of S,

that is, if y,{t) is the estimate of y; at the fth iteration, then y;(t+1) is given by

Y ij (t + 1) = Y ij (t) - a[A / B] (5.3)

where

(5.4)

with a the step size for the gradient search, i.e. a nonnegative scalar constant with a

recommended value of between 0.3 and 0.4.

72

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

With the approach originally formulated by Sammon, as well as other optimization

strategies, such as proposed by Chen et a/. (1999), it is not possible to obtain an

explicit mapping function, p, relating patterns in the input space, ~, with patterns in the

output space, ~. This means that if new points are to be projected, the optimization

procedure has to be repeated. This is a major disadvantage, given that the optimization

is computationally intensive, as every step within an iteration requires the calculation

of n(n-1)/2 distances. In addition, the error surface is riddled with local minima, and the

algorithm is likely to get stuck in one of these.

Various approaches based on cluster analysis (Chang and Lee, 1973; Schachter, 1978;

Pykett, 1980) have been proposed to alleviate the computational burden associated

with the optimization, but these were only partially successful. More recently, methods

based on the use of neural networks (Mao and Jain, 1995; Pal and Eluri, 1998) to

model the mapping function have removed the need for re-optimization prior to the

mapping of new data.

5.1.2 Characteristics of data

During feature extraction the data that are used for projection can be described

by the following characteristics (Mao and Jain, 1995).

o Data source (source): Specifies whether the data is real or artificially generated.

o Dimensionality of pattern vectors (d): Specifies the number of input vectors.

o Intrinsic dimensionality (d,): The intrinsic dimensionality of the data is measured

by the number of significant eigenvalues (more than 97% of the total variance

is retained by the first d, principal components) of the covariance matrix of the
- -- - .~- - ---

data.

o Number of classes/clusters (c): Indicates how many known classes or clusters

there are in the data.

o Number of patterns (n): Specifies the dimensions of the input vectors.

73

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

o Linear separability (/\) : This is defined as the largest eigenvalue of the

covariance matrix. A.s is restricted to the range [0.0, 1.0]. As A.s increases from 0.0

to 1.0 the data set becomes more and more linearly separable.

o Sparseness: This is measured by the ratio of the dimensionality to the number

of patterns (din) in the data set; the larger this ratio , the sparser the data.

5.2 Extending the genetic programming algorithm to accommodate

feature extraction

During this research, genetic programming was used to construct the mapping

functions. Since the mapped data resides in a q-dimensional space, q mapping

functions are needed. An individual in the genetic programming algorithm is extended

to have q parse trees representing q mapping functions , tJ1 .. tJq, as shown in Figure 5.1.

Figure 5.1 : The q parse-trees that make up an individual for feature
extraction. Each tree represent a mapping function ranging from P1 to Pq•

Crossover is limited to a single tree at a time in the expectation that this will reduce the

extent to which it disrupts "building blocks" of useful code. Therefore, one mapping

function (with the same index), tJk' is randomly selected from two [randomly] selected

individuals Ij and Ij" The actual crossover only occurs between the two parse trees Ij:tJk

and li tJk' as depicted in Figure 5.2.

Since the [Sammon] stress has to be minimized and the fitness, f, is always expressed

as a value between 0 and 1, the fitness can be expressed as

74

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

f=_1_
1+8

Figure 5.2 : During feature extraction, crossover only occurs between parse­
trees with similar indices. In this example two individuals, I, and IJ are
randomly selected from the mating pool. A parse-tree, P3' is randomly
selected from both trees for crossover.

5.3 Case studies

(5.5)

A dafa dimensionality reduction analysis was conducted on five data sets to

increase understanding into the underlying relationship amongst the data. During all of

these cases the reduced space dimensions, q, was set to two (for visualization

purposes).

In order to illustrate the characteristics of the evolutionary computation algorithm used

for the projection of multivariate data, the following simple data sets were considered.

75

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

5.3.1 Case studies on artificial and bench marking data sets

5.3.1.1 Description of each data set

Four data sets were investigated in this analysis. These data sets are widely used as

bench marking sets in the literature and are described below:

o Data set BITET consisted of an asymmetrically arranged set offour 3-dimensio­

nal clusters (A, B, C and D) is considered. The clusters are arranged along the

vertices of two tetrahedra joined at their bases and with apices pointing in

opposite directions. Clusters A, Band C are roughly spherical and arranged

along the vertices of the common basis of this bi-tetrahedron. Cluster D is an

elongated ellipsoidal cluster that joins the fourth and fifth vertices (apices) of the

bi-tetrahedron.

o The SPIRAL data set has been investigated previously by (Mao and Jain, 1995)

and (Pal and Eluri, 1998). It is an artificially generated data set describing two

spirals (500 data points each) in 3D-space, so that x1 = %cos e + G, x2 = %sin e +

G and X3 = sin2e + cos2e + G, with e E {-nI2, nI2}, and G a randomly generated

noise factor, G E {O, 0.25}.

o The third data set, SPHERESHELL (Pal and Eluri, 1998) was likewise comprised

of three coordinates, and described a hemisphere with radius 0.6 (500 data

points) enclosed in a shell (also of 500 data points) with an inner radius of 2 and

and outer radius of 2.013. The hemisphere, as well as the shell each contained

500 randomly generated data points. This data set was also artificially

generated.

o Although the IRIS data set is neither artificial, nor related to chemical process

systems, it has been investigated extensively elsewhere, and serves as a useful

benchmark for data mapping algorithms. It consists of 150 data points describing

three species of Iris (setosa, virginica and versicolor) in terms of sepal length (x1)

and width (X2) , and petal length (x3) and width (x4).

The essential characteristics of each data set are summarized by Table 5.1. The

terminal set of the genetic programming algorithm, for each run, contained all the

76

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

variables of the corresponding data set, T = {X1' x 2, ... , X n}, while the function set.

contained the four basic arithmetic operators and the sigmoidal function, cr, that is F =
{+, -, *, I, cr}.

Table 5.1 : Essential characteristics of the four data sets

The size ofthe population for each data set was 100, and the reproduction, crossover

and mutation probabilities were 36%; 60% and 4% respectively. An elitist strategy was, ,

followed, . in that. the best individual was automatically retained in successive

generations. The trees were constrained to a'maximum depth of 7, which is not·

particularly ~estrictive, given the simplicity of the data sets. Individuals were selected

by means of a 3-way tournament method, while the fitness of each individual was

defined as the inverse of the Sammon stress (Eq. 5.5). Three runs were conducted for

each data set and the average stress was recorded. Table 5.2 outlines the parameters

used for each run.

Table 5.2 : Parameters used (or each d~ta set during feature extraction .

Population size i 100 100 . 100 100

Mutation rate (Pm) 4%

77

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

5.3.1.2 Results obtained

Since the algorithm had to extract more than one feature, the trees in the population

had composite structures, as shown in Figure 5.1. This meant that for each feature (in

this case two), the exchange of genetic material was confined to trees with similar

indices, representing a specific feature (Figure 5.2). The co-ordinates of the individual

points in each data set were presented to the genetic programming algorithm, which

projected the data to a two-dimensional feature spaces with coordinates Y1 and Y2' The

results visualized in Figures 5.3-5.6 and are summarized in Table 5.3, were they are

also compared with those obtained by other researchers making use of other methods

Table 5.3 : A comparison of stress values (Sammon stress) obtained from six different
projection algorithms for the four data sets.

Average stress for three runs for each of the data sets (b) - (e) below
(b) C91' 6'2) = (Xl' X1+X2); (X2' X3-X1) and (X3-X2, Xl)'

(c) (6'1' 6'2) = (X2' X3); (X3' x2) and (x/lx/, X3)'

(d) (6'1' 6'2) = (Xl' X2); (X2' Xl) and (Xl' X2).
(e) (6'1' 6'2) = (X1-X2, x/lx4+X2X3); (X2' X1+X4) and (-X1-X4, x2).

to map the data. Specifically, SAM refers to the original algorithm proposed by Sammon

(1969), based on the use of Eq. 5.2. SNN1 refers to a multilayer perceptron-type neural

network described by Tattersall and Limb (1994). SNN2 refers to the same type of

network as SNN1, except that a peA network (Rubner and Schulten, 1990), (Rubner

and Tavin, 1989) was first used to project the data, and the weights from this network

were consequently used to initialize the Sammon neural network (Mao and Jain, 1995;

Pal and Eluri, 1998). SNN3 refers to alternative strategies proposed by Pal and Eluri

(1998), making use of statistical sampling and subsets to reduce the n(n-1)/2 number

of calculations involved in the computation of the quality of the maps (Sammon stress).

With SNN4 (Pal and Eluri, 1998) the idea is the same, except that a Kohonen map is

78

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

used to extract a small, but adequate representation of the data set prior to generating

a Sammon map with a multilayer perceptron.

TYPical Sammon map of the BITET data .. t
.. ~ l~ ;"a+ •••

't. ". .,: ,Ii,. '4 • • '" +
• -.... ..~... + + • +
••••••••••••• + ++ ++~

I • ~ •• +., ••• + + + ... + + + ++ + . +. +++++ =t- +
• • .+ + +

• .+ .~. • + .ti + + +
-;. .- + ••).+ + + :
~: .•. q.:..~ + ...

: • • + ••••
• - ••• + :1

OA

"1

' A ' B ' C . 0

Figure 5.3 : Typical Sammon map of the
BITET data set, generated by the Genetic
Programming algorithm, S = 0.0472, F1 = x 1

and F2 = x 1 + x2• The clusters are indicated
by different labels, as shown in the legend

Typical Sammon map of the SPHERESHEU. data •• L

Typical Sammon map of the IRIS d.t. .et

+

"
• Setosa . Versicolor VlrrI/n/ca

Figure 5.5 : Typical Sammon map of the
IRIS data set generated by the Genetic
Programming algorithm, S = 0.00657, F1 = X 3

+ x/[1+exp(x1)]; F2 = x 2•

Typical Sammon map of the SPIRAL data •• t

.u +---.....,..~-'------r-'-~---'-T--"--~~------l ., . "
"

Figure 5.4 : The Sammon map of the
SPHERESHELL data set,generated by the
Genetic Programming algorithm, S =
0.0531, F1 = x 2 and F2 = x 1•

SpItal 1 Sp/ra12

Figure 5.6 : Typical Sammon map of the
SPIRAL data set, generated by the Genetic
Programming algorithm, S = 0.00403, F1 = X3

and F2 = Xz'

79

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

5.3.2 Flotation data from an Australian base metal flotation plant

5.3.2. 1 A description of each data set

The following data set was collected from a base metal flotation plant. It consisted of

approximately 1500 observations, 13 variables that described the ore and reagent feed

rates to the plant, as well as other operating conditions. The variables were denoted as

PCA map of the Australian base metal flotation data set

lE+Ol x<

SE+OO

6E+OO

OE~l

-2E+OO +l- •
-4E+OO --l---'--'---=-r-"'-'--"--r----~~~---r----"-__'____,_~~"____I

-3E+02 -2.SE+02

Low

-2E+02 -1 .SE+02
peAl (55.9%)

Medium

-lE+02 ~E+Ol OE~l

High

Figure 5.7 : Principal component map of 13 plant variables on a
base metal flotation plant. The first two principal components (PC1

and PC-,J explained 55.9% and 14.1 % of the variation in the data
respectively. The discretized values of the concentration of the
valuable metal (not part of the mapped data set) is superimposed
on the map.

As before, the terminal set of the genetic programming algorithm contained the

variables, T= {x1, x2 , .. . , X13}' while the function set contained the four basic arithmetic

operators, that is F = {+, -, *,1}. The same default values, i.e. a population size of 100,

80

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

a maximum tree depth of 7 and reproduction , crossover and mutation probabilities of

respectively 36%,60% and 4% were used to map the data.

5.3.2.2 Results obtained

The plant data exhibited a clustered structure, owing to the way in which the plant was

operated. This is shown in a principal component map of the data in Figure 5.7. Here

the concentration of one of the valuable metals have been superimposed on the data,

in a discretized form as "high", "medium" and "low".

By mapping these thirteen features, three large clusters can be discerned, that is

indicative of the different operating regimes on the plant, as shown in Figure 5.8.

350

300

250

200

N
"-

150

100

50

0

100

Typical Sammon map of the Australian base metal flotation data set

X

++ ++
+ ++

150

Low

200 250
F1

Medium

300 350

High

400

Figure 5.8 : Sammon map of the base metal flotation data generated by the
Genetic Programming algorithm with S = 0.00473, F1 = X6 - X 12 and F2 = 1 + x 1 +
x4 - x7 + X 11 - x/x11•

Although the first principle component only explains 55.9% of the variation, some

degree of separation is possible using principle component analysis. Genetic

programming, on the other hand, allows greater separation (see Figures 5.8) .

Unfortunately, it is not known how much variation is explained via the genetic

programming mapping because the two algorithms use different mapping objectives.

81

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

.... ...

Typical Sammon map of the Australian base metal flotation data set
0.27

0.2S57143

0.2814288

0.2571.29

0.2528571

+
0.2485714

0.2442857

0.24

0.144 0.148 0.148

. High

0.15
F1

Medium

:r

0.152

Low

. ,

0.154 0.158

Figure 5,9 : Sammon map of the base metal flotation data generated by the
multilayer perceptron neural network, with a Sammon stress of S = 0.02473.

A multilayer perceptron neural network as proposed by Tattersall and Limb (1994) was

also used for comparative purposes. After using various parameter combinations (i.e.

changing the learning rate, number of hidden nodes, number of epochs, etc.), the

mappings obtained appeared consistent over the range of runs, as shown by way of

Figure 5.9. Two clusters, representing the "high" and "low" concentration can be

discerned, although they are not well separated. The "medium" concentration appears

also more clustered around the "high" concentrate. A Sammon stress of 0.02473 was

attained, compared to a value of 0.00473 that was obtained via genetic programming.

Very little separation was obtained through the neural network.

5.3.3 Three-phase oil flow data.

5.3.3.1 A description of each data set

The flow of oil and water emulsions in pipes can be classified as homogeneous, annular

and stratified. 1000 measurements were made on twelve variables v1, v2 , ... , V 12 . These

data were mapped to two dimensions (F1 and F2) using genetic programming with T =
{V1 ' v2 , . . . , V 12} and F = {+, -, *, /, sin, cos, tan, exp, log, cr}. For comparative purposes,

82

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

the runs were repeated using a multilayer perceptron-type neural network as described

by Tattersall and Limb (1994).

5.3.3.2 Results obtained

The results from different runs, using genetic programming, can be seen in Figures

5.10, 5.11 and 5.12. Figure 5.13 presents the results obtained using the technique

proposed by Tattersall and Limb (1994). Although all the first three maps shown in

these figures have more or less the same Sammon stress value, the appearances of

the projections are different. From Figure 5.10 the stratified flow is manifested in four

relatively small elongated clusters, surrounding two larger clusters representing the

annular and the homogeneous flows.

These two clusters appear to be rather spherical and not very distinct. In Figure 5.11

the clusters representing the annular and homogeneous flows are more distinct, while

the clusters representing the stratified flows appear to be less elongated. Figure 5.11

Typical Sammon map of the Three Phase all flow

0.5

~ -0.5

-1

-l .S

A •
-2 +-----,,----r---,---~----r----''---_I

·2 -1

• Homogeneous

1
F1

Annular

3

Stratified

Figure 5.10 : Three-phase flow with S = O.05270,F1 = vz- V 3 + v10 +
1/(1+exp(v1"}J andF2 = vIl1+exp(v1v-JJ + vr 1/{1+exp[1/(1+exp(v1v-JJ]J - v4 •

is similar to Figure 5.12 in appearance, despite the simpler model relating the measured

variables, v1, v2 , .. . , V 12 ' with the features F 1 and F 2. In Figure 5.13 the appearance of

83

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

the clusters are very similarto those obtained in Figures 5.11 and 5.12 but the Sammon

stress is lower (0.0324). The stratified flows , however, are better separated than in the

previous two figures but it is also more clustered. The two larger clusters, representing

the annular and the homogeneous flows, are still not as distinct.

'"

Typical Sammon map of the Three Phase 011 flow

·1 +----,---.-----,-----,--'-'--"-T-'--~-___1

·1

• Homogeneous

2
F1

Annular Stratified

Figure 5.11 : Three-phase flow with S = O.052931 F1 = v2 + V 6 + v10 and F2 = vr +
2v5•

Since the Sammon stress criterion is not uniquely related to a specific projection, the

Typical Sammon map of the Three Phase all flow

~ 2

o

• Homogeneous Annular Stratified

Figure 5.12 : Three-phase flow with S = O.04943,F1 = 2s in(v.J + V10 and F2 =
sin(sin(vr) + Vs + vr-

84

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

generation of different maps is an advantage that can enhance the interpretation of the

structure of process systems. Genetic programming provides a natural way of

generating different types of maps, which could not readily be duplicated by use of

neural networks, for example.

N ...

F1

Homogeneous Annular

Stratlfted

Figure 5.13 : The results obtained using a mUltilayer-perceptron neural
network. The Sammon stress. S = 0.0324. The stratified flows appear more
distinct but also more clustered. from the homogeneous and annular
clusters.

5.4 Results and conclusions

By comparing the results obtained using genetic programming and those using

a multilayer-perceptron neural network, one can see that the results appear very similar.

The neural network approach offered better separation of the individual clusters in the

three phase oil data set, whereas the neural network approach was not able to separate

the Australian base metal flotation data set sufficiently compared to the results obtained

via genetic programming. This demonstrates the powerful capabilities of this novel

approach toward data visualization. By making use of evolutionary computation to

project high-dimensional data sets to lower-dimensional spaces, a population of

projections is generated. Evolutionary computation is a natural way of generating

multiple projections of a data set, which collectively can be more revealing than single

85

Stellenbosch University https://scholar.sun.ac.za

5-Visualization of Process Systems using a-GP

projections, such as those generated by neural networks. The quality of the maps was

influenced mainly by the composition of the function set. Reliable maps could be

generated consistently by inclusion of the basic arithmetic functions {+, -, *, I} only,

which also tended to yield relatively simple, linear models for most of the cases

considered in this investigation.

Perhaps the most important advantage is that by use of genetic programming, relatively

simple and explicit models relating the original variables and the projected variables or

features can be formed. This is not the case when neural networks or other methods

__ of optimization is used, and ~an be potentially useful where tbese types of maps are

used in the monitoring of multivariate processes, since process variables, giving rise

to deviations from the norm can be more readily identified. Also, the importance of each

variable become immediately apparent from the mapping functions, similar to the

loadings of the variables in principal component analysis. Once again this is not so

obvious when using neural networks or other techniques.

86

Stellenbosch University https://scholar.sun.ac.za

RECOMMENDATIONS FOR FUTURE RESEARCH

During this research several limitations were encountered with the genetic

programming algorithm and with a-GP, in particular.

o One of these (for both algorithms) is the lack of a local optimization procedure.

This drawback resulted in the proliferation of complex tree-like structures in

successive generations as reported in Chapter 4. These complex structures
I

were necessary to estimate parameters within the model structures. Although

some researches have tried to use other searphing algorithms in parallel with the

genetic programming algorithm, no significant (if any!) improvements were

obtained1
• A possible solution to this problem of local optimization is to generate

and evolve solutions in such a way that, when they are simplified, they can be

expressed in the following form

(6.1)

where Ik represents individual k, and F 1 to F n are sub-trees in the individual with

weights, 8 1 ... 8 m attached to them. The weights or constants, 8 1 ..• 8 n, can then be

calculated through a linear batch regression technique. This will yield

- -considerable improvements in terms of spe-ed and memory usage as opposed

to a technique that employs two concurrent searching algorithms.

o Time-series prediction can be achieved via a static encoding of the time-series.

A future implementation could look at the use of an autoregressive moving

average CARMA) model which can be expressed as

ISee Chapter 2.4.2

87

Stellenbosch University https://scholar.sun.ac.za

6-Recommendations for Future Research

k I

X t = ao + I ajX t _ j + I b/~t_j (6.2)
j=1 j=O

to use this model for a-GP, we can replace X t by Ik' as in (6.1), and rewrite (6.2)

as

k I

Ikt = aD + ~ a.l k + ~ b.a t . L..J 1 t-j L..J 1 -1 (6.3)
j=1 j=O

The ARMA model is a well studied and widely used (since the late 1920's)

implementation for linear time-series modelling.

o A lack of diversity increases the probability of entrapment within a local optimum.

This arises out of natural selection, which allows the best individual to dominate

large portions of the population over succeeding generations. For now, the only

way of e~suring diversity is to use several populations (or demes) in parallel.
..

Mutation too, allows some degree of diversity but selecting a too high mutation

rate will result in an inefficient local search. Some technique. is required to

compute the inter-spatial distance between two individuals within the GP search

space and hence ensure that only individuals, which are in close proximity of one

another, are allowed to mate. This would be analogous to the technique

employed in genetic algorithms which uses the Hamming distance between

solutions to enforce local mating.

o The disruptive nature of the crossover operation was not addressed in this

thesis. Research will need to be done on ways of minimizing the displacement

of individuals in the search-space after applying crossover. This, once again,
- _. -"- "-- -".- - ." '.~' ~ ... ~~. .- - ._-_. -- -- ~. -- . - -".-

reinforces the need to find some way of computing the inter-spatial distance

between individuals.

88

Stellenbosch University https://scholar.sun.ac.za

CONCLUSIONS

Several alterations have been proposed in this thesis to improve the original

genetic programming algorithm as proposed by Koza (1992).

o Although the original algorithm was implemented in LISP, which is an interpreted

language; to increase speed and scalability, it had to be designed and

implemented in an object oriented compiled language. C++ was used for this

purpose. The implementation of each solution was altered to such an extend that

every node in the tree-like structure could be stored in 1 byte of computer

memory as opposed to the 22 bytes required by other implementations. This

resulted in a significant reduction in resources required by the algorithm. Also

the evaluation scheme was changed from node-branch reduction, to a simple

stack-based RPN 1 evaluation which is much faster and non-recursive. A

significant increase in convergence and robustness in regression models, was

also obtained by changing the implementation of the fitness function from an

error-based fitness function to a correlation-based fitness function in conjunction

with a correction filter. Unfortunately, the unsimplified tree-like structures were

more complex when a correlation-based fitness function was used. The

correction filter was needed to eliminate any scale or bias in the final models,

which affected the SSE but not the R2.

o Chapter 4 saw the application of the newly improved algorithm, a-GP, in the

development of regression models on four case stUdies. The algorithm was

compared to other algorithms such as: standard genetic programming (using an

1 Reverse Polish Notation

89

Stellenbosch University https://scholar.sun.ac.za

7 -Conclusions

error-based fitness function), a multilayer perceptron neural network and linear

regression. a-GP improved significantly on genetic programming on all four case

studies and performed very similar to the neural network. Unfortunately, the

evolved models were too complex. This can be attributed to the lack of

parameter estimation which the genetic programming algorithm tries to

compensate for by evolving complex tree structures; which it uses to

approximate the parameters. This demonstrates the need for a local optimization

procedure to generate and optimize parameters in the genetic programming

algorithm.

o As a data visualization tool, genetic programming compares favourably with

other techniques proposed by various researchers in the literature. Four bench

marking data sets were used for comparative purposes. The final results

compared favourably with the other techniques suggested by various

researchers. Additionally the algorithm was applied to flotation data obtained

from an Australian base metal flotation plant in which thirteen variables in the

plant was transformed to two dimensions. The concentration of one of the

valuable metals were superimposed on the data, in a discretized form as "high",

"medium" and "low". By mapping these thirteen features, three large clusters

were discerned, which was indicative of the different operating regimes on the

plant. The results were similar to those derived from the first two principal

components of the data implicating that the data was linearly separable. Finally,

the flow of oil and water emulsions in pipes, which can be classified as

"homogeneous", "annular" and "stratified" was analysed. The original twelve

variables were projected to a two-dimensional map. The resulting projections

from three different runs were all different in appearance, although the Sammon

stress was more or less the same. The first projection showed the stratified flow

manifested in four relatively small elongated clusters, which surrounded two

larger clusters representing the annular and the homogeneous flows. The two

clusters appeared to be rather spherical and not very distinct. In the second

projection the clusters representing the annular and homogeneous flows were

more distinct, while the clusters representing the stratified flows appeared to be

90

Stellenbosch University https://scholar.sun.ac.za

7 -Conclusions

less elongated. The final projection was similar in appearance to the latter, albeit

with a simpler model. Genetic programming, however had the additional benefit

of being able to generate a population of projection maps which, collectively,

could be more revealing than single projections, such as those generated by

neural networks. Perhaps the most important ~dvantage was that by use of

genetic programming relatively simple and explicit models relating the original

variables and the projected variables or features could be formed. This is not the

case when neural networks or other methods of optimization are used, and could

be potentially useful where these types of maps are used in the monitoring of

multivariate processes, since process variables, giving rise to deviations from

the norm can be more readily identified.

In conclusion, a-GP is an extremely viable tool for both regression modelling and data

visualization. It compares favourably with other existing methods. However a-GP (or

genetic programming for that matter) does not yield simple symbolic models when used

in regression modelling. The algorithm lacks a local optimization procedure which

severely restricts its usage to evolve simple symbolic functions.

As a data visualization tool, a-GP does generate simple symbolic projection functions.

These functions are more revealing than the non-parametric models obtained from

neural networks. A possible explanation for this discrepancy for not being able to evolve

simple functions for both cases can be that: regression requires a mapping, in such a

way, that the projected data is an exact replica (in the mean squared error sense) of the

desired output, whilst data visualization (using a Sammon mapping criterion) requires

a mapping, in such a way, that the interspatial distance, between data residing in the

input space and that in the projected space, is minimized.

91

Stellenbosch University https://scholar.sun.ac.za

REFERENCES

(Angeline, 1997)

Angeline, P.J., 1997. Subtree Crossover: Building block engine or

Macromutation? Genetic Programming 1997: Proceedings ofthe Second Annual

Conference, Morgan Kaufmann Publishers, July 13-16, 9-17.

(Andre, 1995)

Andre, D., 1995. The Evolution of Agents that Build Mental Models and create

simple plans using Genetic Programming. Proceedings ofthe Sixth International

Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc., July 15-

19,248-255.

(Atwar,1994)

Atmar, W., 1994. Notes on the Simulation of Evolution. IEEE Transactions on

Neural Networks, 5(1), January, 130-147.

(Biswas et al., 1981)

Biswas, G., Jain, A.K. and Dubes, R.C., 1981. -Evaluation of projection

algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-3(6),701-708.

(Breiman et al., 1984)

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., 1984. Classification

92

Stellenbosch University https://scholar.sun.ac.za

References

and Regression Trees. Chapman & Hall, 115 Fifth Avenue, New York, NY

10003.

(Chang and Lee, 1973)

Chang, C.L. and Lee, R.C.T., 1973. A heuristic relaxation method for nonlinear

mapping in cluster analysis. IEEE Transactions on System, Man and

Cybernetics, SMC-3, 197-200.

(Chen et al., 1999)

Chen, Z.P., Jiang, J.H., Li, Y. and Yu, RQ., 1999. Nonlinear mapping using real

valued genetic algorithm. Chemometrics and Intelligent Laboratory Systems, 45,

409-418.

(Daida et al., 1996)

Daida, J.M., Bersano-Begey, T.F., Ross, S.J. and Vesecky, J.F., 1996. Evolving

feature-extraction algorithms: adapting genetic programming for image analysis

in geoscience and remote sensing. International Geoscience and Remote

Sensing Symposium (IGARSS), Part 3 and 4, 4, IEEE, Piscataway, NJ,

USA,96CB35875. 1520-1522,2077-2079.

(Das et aI., 1995)

Das, G.K., Acharya, S., Anand, S. and Das,. RP., 1995. Acid pressure leaching

of nickel-containing chromite overburden in the presence of additives.

Hydrometallurgy, 39, 11.7-128.

(DeJong, 1975)

DeJong, K., 1975. An analysis of the behaviour of a class of genetic adaptive

systems. Dissertation Abstracts International, 36(10), 5140B.

(Del Giudice and Amabile, 1997)

Del Giudice, V. and Amabile, R, 1997. The appraisal of the Hedonic prices with

93

Stellenbosch University https://scholar.sun.ac.za

References

Neural Network Models. An alternative approach to multiple regression analysis.

5th European Congress on Intelligent Techniques and Soft Computing, Aachen,

Germany, September 8-11, Proceedings, 1,448-453.

(Dong and McAvoy, 1996)

Dong, D. and McAvoy, T.J., 1996. Nonlinear principal component analysis -

based on principle curves and neural networks. Computers and Chemical

Engineering, 20(1),65-77.

(Dracopoulos, 1997)

Dracopoulos, D.C., 1997. Evolutionary Control of a Satellite. Genetic

Programming 1997: Proceedings of the Second Annual Conference. Morgan

Kaufmann Publishers, July 13-16,77-81.

(Francone et al., 1996)

Francone, F.D., Nordin, P. and Banzhaf, W., 1996. Benchmarking the

generalization capabilities of a Compiled Genetic Programming System using

sparse data sets. Proceedings of the First International Conference on Genetic

Programming, MIT Press, 72-80.

(Gray et al., 1996)

Gray, G.J., Li, Y., Murray-Smith, D.J. and Sharman, K.C., 1996. Structural

system identification using genetic programming and a block diagram oriented

simulation tool. Electronics Letters, 32(15), July, 1422-1424.

(Greeff and Aldrich, 1998)

Greeff, D.J. and Aldrich, C., 1998. Empirical Modelling of Chemical Process

Systems with Evolutionary Programming. Computers and Chemical Engineering,

22(7 -8), 995-1005.

(Gritz and Hahn, 1997)

94

Stellenbosch University https://scholar.sun.ac.za

References

Gritz, L. and Hahn, J.K., 1997. Genetic Programming Evolution of Controllers for

3-D character animation. Genetic Programming 1997: Proceedings of the

Second Annual Conference, Morgan Kaufmann Publishers, July 13-16,139-146.

(Haynes et al., 1995)

Haynes, T., Wainwright, R., Sen, S. and Schoenefeld, D., 1995. Strongly Typed

Genetic Programming in Evolving Cooperation Strategies. Proceedings of the

Sixth International Conference on Genetic Algorithms, Morgan Kaufmann

Publishers, Inc., July 15-19, 271-278.

(Herrmann, 1994)

Herrmann, E., 1994. Asymptotic distribution of bandwidth selectors in kernel

regression estimation. Statistical Papers, 35, 17-26.

(Hiden et al., 1997)

Hiden, H., Willis, M., McKay, B. and Montague, G., 1997. Non-linear and

direction dependant dynamic modelling using Genetic Programming. Genetic

Programming 1997: Proceedings of the Second Annual Conference, Morgan

Kaufmann Publishers, July 13-16, 168-173.

(Holland, 1992)

Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. An Arbor, MI:

University of Michigan Press.

(Hondo et a/. , 1997)

Hondo, N., Iba, H. and Kakazu, Y., 1997. Automatic generation of robot behavior

using extended genetic programming (acquisition of partial behaviorwith library).

Nippon Kika; Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of

Mechanical Engineers, Part C, 63(609), May, 1685-1692.

(Hornik et al., 1989)

95

Stellenbosch University https://scholar.sun.ac.za

References

Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayerfeedforward neural

networks are universal approximators. Neural Networks, 2,502-516.

(Howard and D'Angelo, 1995)

Howard, L.M. and D'Angelo, D.J., 1995. The GA-P: A Genetic Programming

hybrid. IEEE Expert, 10(3), 11-15.

(Iba and Sato, 1992)

Iba, H. and Sato, T., 1992. Meta-level Strategy for genetic algorithms based on

Structured Representation. Proceedings of the 2nd Pacific Rim International

Conference on Artificial Intelligence, 1, September, 548-554.

(Iba and Sato, 1995a
)

Iba, H. and Sato, T., 1995a
. Temporal Data Processing using Genetic

Programming. ETL Technical Report-95-1.

(Iba and Sato, 1995b
)

Iba, H. and Sato, T., 1995b
• Extending Genetic Programming with Recombinative

Guidance. ETL Technical Report-95-15.

(Iba et al., 1996)

Iba, H., deGaris, H. and Sato, T., 1996. A Numerical Approach to Genetic

Programming for System Identification. Evolutionary Computation, 3(4), 417-

452.

(Jolliffe, 1986)

Jolliffe, I.T., 1986. Principal Component Analysis. Springier-Verlag.

(Jones, 1995)

Jones, T., 1995. Crossover, Macromutation and Population-based search.

Proceedings of the Sixth International Conference on Genetic Algorithms.

96

Stellenbosch University https://scholar.sun.ac.za

References

Morgan Kaufmann Publishers, Inc., July 15-19,73-80.

(Keane, 1995)

Keane, A.J., 1995. Genetic Algorithm optimization of multi-peak problems:

studies in convergence and robustness. Artificiallntel/igence in Engineering, 9,

75-83.

(Kendall, 1975)

Kendall, M., 1975. Multivariate Analysis. Charles Griffin & Co.

(Koza, 1992)

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by

means of Natural Selection, The MIT Press, Cambridge, Massachusetts.

(Kraaiveld et al., 1995)

Kraaiveld, M.A., Mao, J. and Jain, A.K., 1995. A Nonlinear Projection Method

based on Kohonen's Topology Preserving Maps.·IEEE Transactions on Neural

Networks, 6(3), May, 548-559.

(Kulkarni et al. 1999)

Kulkarni, B.D., Tambe, S.S., Oahule, R.K. and Yadavalli, V.K., 1999. Consider

genetic programming for process identification. Hydrocarbon Processing, July,

89-97.

(Langdon, 1995)

Langdon, W.B., 1995. Evolving data structures with Genetic Programming.

Proceedings of the Sixth International Conference on Genetic Algorithms,

Morgan Kaufmann Publishers, Inc., July 15-19,295-302.

(Lampinen and Oja, 1995)

97

Stellenbosch University https://scholar.sun.ac.za

References

Lampinen, J. and Oja, E., 1995. Distortion Tolerant Pattern Recognition Based

on Self-Organizing Feature Extraction. IEEE Transactions on Neural Networks,

6(3), May, 539-547.

(MacGregor, 1989)

MacGregor, J., 1989. Multivariate statistical methods for monitoring large data

sets from chemical processes. AICHE Meeting.

(Mao and Jain, 1995)

Mao, J. and Jain, AK., 1995. Artificial Neural Networks for feature extraction and

Multivariate data projection. IEEE Transactions on Neural Networks, 6(2), March,

296-317.

(McKay et al., 1997)

McKay, B., Willis, M. and Barton, G., 1997. Steady-state Modelling of Chemical

Process Systems using Genetic Programming. Computers and Chemical

Engineering, 21(9),981-996.

(Montana, 1994)

Montana, D.J., 1994. Strongly typed genetic programming. Technical Report

7866, Bolt Beranek and Newman, Inc., March· 25.

(Nordin and Banzhaf, 1995)

Nordin, P. and Banzhaf, W., 1995. Evolving Turing-Complete Programs for a

register machine with self-modifying code. Proceedings of the Sixth International

Conference on GeneticAlgorithms. Morgan Kaufmann Publishers, Inc., July 15-

19,318-325.

(Pal and Eluri, 1998)

98

Stellenbosch University https://scholar.sun.ac.za

References

Pal, N.R. and Eluri, V.K., 1998. Two Efficient Connectionist Schemes for

Structure Preserving Dimensionality Reduction. IEEE Transactions on Neural

Networks, 9(6), November, 1142-1153.

(Piovoso et al., 1992)

Piovoso, M.J., Kosanovich, K.A. and Yuk, J.P., 1992. Process data

chemometrica. IEEE Trans. Instrum. Meas., 41(2), 262-268.

(Pykett, 1978)

Pykett, C. E., 1978. Improving the efficiency of Sammon's nonlinear mapping bu

using clustering archetypes. t=lectronic Letters, 14, 799-800.

(Rubner and Schulten, 1990)

Rubner, J. and Schulten, K., 1990. Dvelopment of feature detectors by self­

organizing. Biological Cybernetics, 62, 193-199.

(Rubner and Tavan, 1989)

Rubner, J. and Tavan, P., 1989. A self-organizing network for principal

component analysis. Europhysics Letters, 10, 693-698.

(Sammon, 1969)

Sammon, J.W., 1969. A nonlinear mapping for data structure analysis. IEEE

Transactions on Computers, C-18, 401-409.

(Schachter, 1978)

Schachter, 8., 1978. A nonlinear mapping algorithm for large databases.

Computational Graphics and Image Processing, 7, 271-278.

(Seborg et al., 1989)

Seborg, D.E., Edgar, T.F. and Mellichamp, D.A., 1989. Process Dynamics and

Contro/. John Wiley and Sons, Inc., New York.

99

Stellenbosch University https://scholar.sun.ac.za

References

(Shakouri et al., 1997)

Shakouri, H.G., Nikravesh, K.Y. and Menhaj, M.B., 1997. The center of the

possibility distribution in Fuzzy Regression Analysis with applications to real

economic modeling. sth European Congress on Intelligent Techniques and Soft

Computing, Aachen, Germany, September 8-11, Proceedings, 1,335-339.

(Sharman et al., 1995)

Sharman, K.C., Esparcia Alcazar, A.1. and Li, Y., 1995. Evolving signal

processing algorithms by genetic programming. Proceedings of lEE/IEEE

Genetic Algorithms in Engineering Systems: Innovations and Applications

(GALES/A).

(Stephanopoulos and Guterman, 1989)

Stephanopoulos, G.N. and Guterman, H., 1989. Pattern recognition in

fermentation processes. ACS Meeting, Miami Beach.

(Srinivas and Patnaik, 1994a
)

Srinivas, M. and Patnaik, L.M., 1994.GeneticAlgorithms: A Survey. IEEE, 27(6),

17-26.

(Srinivas and Patnaik, 1994b
)

Srinivas, M. and Patnaik, L.M., 1994. Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms: A Survey. IEEE Transactions on Systems, Man

and Cybernetics, 24(4), April, 656-667.

(South et al., 1995)

South, M.C., McConnel, S., Tham, M.T. and Willis, M.J., 1995. Data analysis via

symbolic regression, Submitted to the Trans. /chem.

100

Stellenbosch University https://scholar.sun.ac.za

References

(Tacket, 1994)

Tacket, W.A, 1994. Recombination, Selection and the Genetic Construction of

Computer Programs. Dissertation, Faculty of the Graduate School, UCLA, CA.

(Tamburino and Zmuda, 1995)

Tamburino, L.A and Zmuda, M.A, 1995. Generating Pattern-Recognition

Systems using Evolutionary Learning. IEEE Expert, 10(4), August, 63-68.

(Tanese, 1989)

Tanese, R., 1989. Distributed Genetic Algorithms. Proceedings of the Third

International Conference on Genetic Algorithms. Morgan Kaufmann Publishers,

Inc., 434-439.

(Tattersall and Limb, 1994)

Tattersall, G.D. and Limb, P.R., 1994. Visualization techniques for data mining.

BT Technology Journal, 12(4), 23-31.

(Teller and Veloso, 1995)

Teller, A and Veloso, M., 1995. Algorithm evolution for face recognition: what

makes a picture difficult? Proceedings of the IEEE Conference on Evolutionary

Computation, IEEE, Piscataway, NJ, USA, 2, 608-613.

(Watson and Parmee, 1997a
)

Watson, AH. and Parmee, I.C., 1997a
. Steady state Genetic Programming with

Constrained Complexity Crossover using Species sub-populations. Genetic

Programming 1997: Proceedings of the Second Annual Conference, Morgan

Kaufmann Publishers, July 13-16, 329.

101

Stellenbosch University https://scholar.sun.ac.za

References

(Watson and Parmee, 1997b
)

Watson, A.H. and Parmee, I.C., 1997b
. An Improved Genetic Programming

strategy for preliminary design model development. Sh European Congress on

Intelligent Techniques and Soft Computing Aachen, Germany, September 8-11,

Proceedings. 1, 682-686.

(Whigham, 1995)

Whigham; P .A., 1995. Schema theorem for context-free grammars. Proceedings

of the IEEE Conference on Evolutionary Computation, IEEE, Piscataway, NJ,

USA, 1,178-181.

(Winkeler and Manjunath, 1997)

Winkeler, J.F. and Manjunath, B.S., 1997. Genetic Programming for object

detection. Genetic Programming 1997: Proceedings of the Second Annual

Conference, Morgan Kaufmann Publishers, July 13-16, 330-335.

102

Stellenbosch University https://scholar.sun.ac.za

A

Y

r(~)

p

a-GP

ADF

ANN

c

c
eee
eGP
d

d* I)

NOMENCLATURE

Predicted output vector

Total number of individuals that can be constructed with function Fi

k'th output of the observed output vector

Predicted output vector of individual i

k'th output of the predicted individual i

Linear separability

Population correlation

Standard deviation of the difference in the R2 between the training data

and the testing data.

Augmented Genetic Programming

Automatically Defined Functions

Artificial Neural Network

Number of classes/clusters

Optimization criterion

Constraint Complexity Crossover

Compiled Genetic Programming

Dimensionality

Euclidian distance between projected points u and v in the output space,

(£".

Euclidian distance between points i and j in the input space, ~.

Linear dimensionality

103

Stellenbosch University https://scholar.sun.ac.za

EA

ES

E[X]

F

F

f;

fr

G(Xd,Xa)

GA

GP

GUI

MLP

MSE

n

NC

rxy

R2(X, Y)

S

5(1)

SSE

STGP

T

y

Nomenclature

Randomly generated noise factor

Evolutionary Algorithm

Evolution Strategy

Expected or mean value of variable X

Function set

Functional representation of a process

Fitness of individual i

Total fitness of the population

Correction filter to remove any bias and scale introduced in Xa.

Genetic Algorithm

Genetic Programming

Graphical User Interface

Individual i

Multilayer Perceptron

Mean of the squared errors

Number of patterns

Node Complexity

Percentage crosSover

Principal Component Analysis

Percentage mutation

Sample correlation coefficient

Amount of variation Yexplains in X.

Sammon stress

Size of the search space at level I.

Sum of the squared errors

-Strongly Typed Genetic Programming

Terminal set

Actual variable

Desired variable

Observed output vector

Input space

104

Stellenbosch University https://scholar.sun.ac.za

I

Output space

Mapping function

Higher dimensional space

Lower dimensional space

Nomenclature

105

Stellenbosch University https://scholar.sun.ac.za

EVOLVED MODELS

A.1 The unsimplified regression models of Chapter 4

A.1.1 Regression model for data set PINE

Pre~icted Model = * TEMP + * - LEAFMASS XPP * * TEMP WOODDEN + * log - PAR -

LEAFMASS XPP WSPEED * TEMP WOODDEN - PAR * log - * - * LEAFMASS

WOODDEN PAR * TREE TEMP + * - PAR WOODDEN * * log - PAR LEAFMASS

WSPEED +*-LEAFMASS TEMP -LEAFMASS WOODDEN *TEMP TREE *TEMP

WOODDEN * log + * - * LEAFMASS WOODDEN log TREE * * TEMP log - LEAFMASS

AGE + * log WSPEED - LEAFMASS WOODDEN - LEAFMASS WOODDEN WOODDEN

* TEMP WOODDEN

A.1.2 Regression model for data set POP

Predicted Model = * / age + + + + log exp vpd log exp - - hour seasno seasno + exp * * / exp

tree PAR / * Tree age - hour seasno // date / date Tree age day age + vpd 1- - exp *

* / exp hour * Tree age / * Tree seasno - date Tree / hour age + + * + exp tree exp tree

age + age + exp tree exp tree log exp tree PAR / date -/ PAR / hour + age exp tree +

/ * + exp tree exp tree age - age Tree log exp tree vpd

A.1.3 Regression model for data set BMVANO

Predicted Model = * AvrGreenCuSc * / AvrRedCuSc + * * * / AvrBlueCuSc + * FlowCuSc

SMCuSc / SMCuSc SNECuSc MobilitCuSc * / AvrBlueCuSc + AvrGreenCuSc * log

MobilitCuSc - - MobilitcuSc AvrRedCuSc AvrRedCuSc / AvrGreenCuSc + + AvrGreenCuSc

A.1

Stellenbosch University https://scholar.sun.ac.za

/ SMCuSc AvrBlueCuSc * log MobilitCuSc - - MobilitCuSc AvrRedCuSc AvrRedCuSc * * *

/ AvrGreenCuSc + * log MobilitCuSc - AvrBlueCuSc AvrRedCuSc log SMCuSc MobilitCuSc

MobilitCuSc * / + AvrRedCuSc AvrGreenCuSc log SMCuSc MobilitCuSc AvrBlueCuSc * /

AvrBlueCuSc AvrBlueCuSc * I AvrBlueCuSc + + * log MobilitCuSc AvrRedCuSc log I

AvrBlueCuSc AvrBlueCuSc AvrGreenCuSc * I AvrBlueCuSc + AvrGreenCuSc AvrBlueCuSc

* * / AvrBlueCuSc AvrRedCuSc * I AvrBlueCuSc + AvrGreenCuSc * log MobilitCuSc -

MobilitCuSc AvrBlueCuSc I AvrBlueCuSc + AvrGreenCuSc * log MobilitCuSc - MobilitCuSc .

AvrBlueCuSc I AvrBlueCuSc + AvrGreenCuSc . * log MobilitCuSc - / AvrBlueCuSc

AvrBlueCuSc AvrBlueCuSc

A.1.4 Regression model for data set SOLPREP

Predicted Model = + + * I NH40H_addition [H2S04]after T093_0/f + + + + + + + Mn093am

log [H2S04]after log [H2S04]after log - + H2S04_addition H2S04_addition [H2S04]after

log - + log - + [H2S04]before H2S04_addition [H2S04]after + * I NH40H_addition

[H2S04]after [H2S04]after LeachFlowrate [H2S04]after log + log + - I T093_0/f

H2S04_addition H2S04_addition + [H2S04]after [H2S04]after log - + exp +

H2S04_addition H2S04_addition LeachFlowrate log [H2S04]after log [H2S04]after log +­

- + log + LeachFlowrate log H2S04_addition - + NH40H_addition LeachFlowrate

[H2S04]after [H2S04]before + [H2S04]before H2S04_addition + log log + - I

NH40H_addition [H2S04]after H2S04_addition + - I NH40H_addition H2S04_addition

[H2S04]after LeachFlowrate log - + Mn093am H2S04_addition [H2S04]after + - Mn093am

H2S04_addition Mn093am

A.2

Stellenbosch University https://scholar.sun.ac.za

THE SOURCE CODE

B.1 Abstract base classes

8.1.1 Header file for abstract class Genericlndividual and GenericAlgorithm

#ifndef GenericAlgH

#define GenericAlgH

#include <vector>

#include <vcl/syncobjs.hpp>

using namespace std;

template <class T>

inline T sign(T x)

return (x < 0) ? -1 1;

} ;

template <class T>

inline void Swap(T &x, T &y)

} ;

T dummy = x;

x = y;

y dummy;

template<class Type>

inline void ClearContainer(vector<Type *> &C)

int N = C.size();

for (register int i =0; i < N; i++)

8.1

Stellenbosch University https://scholar.sun.ac.za

} ;

delete (Type *)C[i);

C.clear() ;

typedef vector<double> VECTOR DOUBLE;

11===

11===

11===

1*11IIIIIIIIIII

GenericIndividual Class

1*11IIIIIIIIIII
class GenericIndividual

private:

protected:

public:

} ;

1*1

GenericIndividual() ;

-GenericIndividual();

virtual void Clone (GenericIndividual* &Target);

double Fitness;

GenericIndividual Implementation

1*1
GenericIndividual::GenericIndividual()

Fitness=O.O;

} ;

GenericIndividual::-GenericIndividual() {};

inline void GenericIndividual: :Clone(GenericIndividual* &Target)

} ;

if(!Target) return;

Target->Fitness = this->Fitness;

11===

11===

11===

1*11IIIIIIIIIII

B.2

Stellenbosch University https://scholar.sun.ac.za

GenericAlgorithm Class

/*/////////1////////11//////1/1/1//////11/////1/111///1///1/////1

template <class T>

class GenericAlgorithm

private:

protected:

TCriticalSection* CriticalSection;

bool Elitism;

int PopulationSize;

vector<T *> Population;

double TotalFitness;

virtual void ComputeFitness(T * &AnInd) 0;

virtual void ClearSystemVariables();

virtual void UpdateSystemVariables();

void ComputeTotalFitness();

virtual T* GenerateAnIndividual() = 0;

bool IndGreaterThan(GenericIndividual *I1, GenericIndividual* I2)

return I1->Fitness > 12->Fitness;

} ;

public:

} ;

/*/

GenericAlgorithm() ;

-GenericAlgorithm();

void Initialize();

virtual void DoAlgorithm() = 0;

virtual double GetFitness(int i);

void SetElitism(bool E);

bool GetElitism();

void SetPopulationSize(int S);

int GetPopulationSize();

double GetTotalFitness();

double GetAvgFitness();

int CurrentStep;

bool Initialized;

vector<double> SVBestOfFitness; //System variable

vector<double> SVAvgFitness; //System variable

int GetActualPopSize();

B.3

Stellenbosch University https://scholar.sun.ac.za

GenericAlgorithrn Implementation

/*/

template<class T>

GenericAlgorithm<T>::GenericAlgorithm()

} ;

CriticalSection = new TCriticalSection();

Current Step = 0;

TotalFitness = 0.0;

Elitism = false;

Initialized = false;

PopulationSize = 50;

template<class T>

GenericAlgorithm<T>::-GenericAlgorithm()

} ;

CriticalSection->Enter();

ClearContainer((vector<T *»Population);

CriticalSection->Leave();

ClearSystemVariables();

delete CriticalSection;

template<class T>

inline int GenericAlgorithm<T>::GetActualPopSize()

return Population.size();

} ;

template<class T>

inline void GenericAlgorithm<T>::ClearSystemVariables()

} ;

SVBestOfFitness.clear();

SVAvgFitness.clear() ;

template<class T>

inline void GenericAlgorithm<T>::UpdateSystemVariables()

} ;

SVBestOfFitness.push_back(Population[Oj->Fitness);

SVAvgFitness.push_back(TotalFitness/(double)Population.size());

B.4

Stellenbosch University https://scholar.sun.ac.za

template<class T>

inline void GenericAlgorithm<T>: :SetElitism(bool E)

Elitism E;

} ;

template<class T>

inline bool GenericAlgorithm<T>::GetElitism()

return Elitism;

} ;

template<class T>

inline void GenericAlgorithm<T>::SetPopulationSize(int S)

PopulationSize = S;

} ;

template<class T>

inline int GenericAlgorithm<T>::GetPopulationSize()

return PopulationSize;

} ;

template<class T>

inline void GenericAlgorithm<T>::Initialize()

T *r=NULL;

CriticalSection->Enter() ;

ClearContainer((vector<T *»Population);

CriticalSection->Leave();

ClearSystemVariables() ;

for (register int i=O; i<PopulationSize; i++)

r=GenerateAnlndividual();

ComputeFitness(r) ;

Population.push_back(r);

r=NULL;

ComputeTotalFitness() ;

UpdateSystemVariables();

Current Step = 0;

Initialized=true;

8.5

Stellenbosch University https://scholar.sun.ac.za

} ;

sort (Population.begin(), Population.end(), &IndGreaterThan);

Current Step = 0;

template<class T>

inline double GenericAlgorithm<T>: :GetFitness(int i)

return ((GenericIndividual *)Population[i])->Fitness;

} ;

template<class T>

inline double GenericAlgorithm<T>::GetTotalFitness()

return TotalFitness;

} ;

template<class T>

inline double GenericAlgorithm<T>::GetAvgFitness()

} ;

double 0 = TotalFitness;

if(Population.size()) 0 /= (double)Population.size();

return 0;

template<class T>

inline void GenericAlgorithm<T>: :ComputeTotalFitness()

} ;

int N = Population.size();

TotalFitness = 0.0;

for (register int i = 0; i < N; i++)

TotalFitness += ((GenericIndividual *)Population[i])->Fitness;

//--~--------------------------

#endif

8.1.2 Header file for abstract
Generic Evol utionary Algorithm

#ifndef evoalgorithmH

#define evoalgorithmH

#include <math.h>

#define NDEBUG

class GenericEvolndividua! and

8.6

Stellenbosch University https://scholar.sun.ac.za

#include "debugger.h"

#include "vectormath.h"

#include "GenericAlg.h"

enum SetType {stTRAINING, stVALIDATION, stTESTING};

enum TerminalType {tpINPUT, tpOUTPUT, tpSYSTEM};

enum NodeType {ntTERMINAL, ntFUNCTION};

enum FitnessType {ftERROR_BASED, ftCORR_BASED, ft2ndORDER_POLY};

enum SelectionType {stFITNESS_PROPORTIONATE, stTOURNAMENT, stRANK};

class AbstractException {};

class NotInitialized : public AbstractException {};

1*11IIIIIIIIIII

GenericEvoIndividual Class

1*111111111111111111/111111111111111111111111111111111IIIIIIIIIII
template<class G>

class GenericEvoIndividual : public GenericIndividual

private:

protected:

public:

} ;

1*1

GenericEvoIndividual();

-GenericEvoIndividual();

virtual void Clone (GenericEvoIndividual* &Target);

vector<G*> Genome;

void SetGenome(G* Src, int Index);

G* GetGenome(int i);

GenericEvoIndividual Implementation

1*1
template<class G>

GenericEvoIndividual<G>: :GenericEvoIndividual()

GenericIndividual() {};

template<class G>

GenericEvoIndividual<G>: :-GenericEvoIndividual()

int N = Genome.size();

B.7

Stellenbosch University https://scholar.sun.ac.za

} ;

for (register int i =0; i < N; i++)

delete (G *)Genome[i);

Genome.clear();

template<class G>

inline void GenericEvoIndividual<G>: :Clone(GenericEvoIndividual * &Target)

} ;

if(!Target) Target = new GenericEvoIndividual();

GenericIndividual::Clone(Target);

int N = this->Genome.size();

Target->Genome.reserve(N);

G * Dummy;

for (register int i 0; i < N; i++)

Dummy = new G();

*Dummy = *(this->Genome[i]);

Target->Genome.push_back(Dummy);

template<class G>

inline void GenericEvoIndividual<G>: :SetGenome(G* Src, int Index)

Genome [Index] = Src;

} ;

template<class G>

inline G* GenericEvoIndividual<G>: : GetGenome (int i)

return Genome[i];

} ;

11===

1*1111111111111111111111111111/11111111111111111111111IIIIIIIIIII

GenericEvolutionaryAlgorithm Class

1*11IIIIIIIIIII
template<class T, class G>

class GenericEvolutionaryAlgorithm : public GenericAlgorithm<T>

B.8

Stellenbosch University https://scholar.sun.ac.za

private:

protected:

vector<T *> Pool;

SelectionType SelectionMethod;

int TournamentMembers, Pc, Pm;

FitnessType FitnessFunction;

virtual void ClearSystemVariables();

virtual void UpdateSystemVariables();

virtual void Crossover(vector<G *> &Parentl, vector<G *> &Parent2) 0;

virtual void Mutate (vector<G *> &Parent) = 0;

virtual void Crossover(vector<G *> &Parentl, vector<G *> &Parent2,

int &Levell, int &Leve12) = 0;

virtual void Mutate (vector<G *> &Parent, int &Level) = 0;

virtual void RawFitness(T * &AnInd, const VECTOR DOUBLE *ObservedOutput,

const VECTOR_DOUBLE *PredictedOutput);

void Reproduction(int PopSize, SelectionType SelectionMethod, int
TournamentMembers);

virtual void GeneticOperations(int Pc, int Pm, int PopSize) = 0;

virtual VECTOR DOUBLE* EvaluateGenome(const vector<G *> &Genome) 0;

public:

} ;

/*/

/*/

GenericEvolutionaryAlgorithm();

~GenericEvolutionaryAlgorithm();

void DoAlgorithm();

void SetSelectionMethod(SelectionType SM);

SelectionType GetSelectionMethod();

void SetTournamentMembers(int T);

int GetTournamentMembers();

void SetPc(int P);

int GetPc();

void SetPm(int P);

int GetPm();

void SetFitnessFunction(FitnessType F);

FitnessType GetFitnessFunction();

GenericEvolutionaryAlgorithm Implementation

template<class T, class G>

GenericEvolutionaryAlgorithm<T, G>: :GenericEvolutionaryAlgorithm()

GenericAlgorithm<T>()

SelectionMethod = stTOURNAMENT;

TournamentMembers = 3;

B.9

Stellenbosch University https://scholar.sun.ac.za

} ;

Pc = 60; Pm = 4;

FitnessFunction = ftCORR_BASED;

template<class T, class G>

inline GenericEvolutionaryAlgorithm<T, G>::-Generic~volutionaryAlgorithm()

} ;

CriticalSection->Enter();

ClearContainer((vector<T *» Pool);

CriticalSection->Leave();

ClearSystemVariables();

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: :ClearSystemVariables()

GenericAlgorithm<T>: :ClearSystemVariables();

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: :UpdateSystemVariables()

GenericAlgorithm<T>: :UpdateSystemVariables();

} ;

template<class T, class G>

in line void GenericEvolutionaryAlgorithm<T,
G>::SetSelectionMethod(SelectionType SM)

SelectionMethod = SM;

} ;

template<class T, class G>

inline SelectionType GenericEvolutionaryAlgorithm<T, G>: :GetSelectionMethod()

return SelectionMethod;

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: :SetTournamentMembers(int T)

TournamentMembers T;

} ;

template<class T, class G>

8.10

Stellenbosch University https://scholar.sun.ac.za

inline int GenericEvolutionaryAlgorithm<T, G>: :GetTournamentMembers()

return TournamentMembers;

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: :SetPc(int P)

Pc P;

} ;

template<class T, class G>

inline int GenericEvolutionaryAlgorithm<T, G>::GetPc()

return Pc;

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: :SetPm(int P)

Pm P;

} ;

template<class T, class G>

inline int GenericEvolutionaryAlgorithm<T, G>::GetPm()

return Pm;

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>:: SetFitnessFunction (FitnessType
F)

{

FitnessFunction F;

} ;

template<class T, class G>

inline FitnessType GenericEvolutionaryAlgorithm<T, G>::GetFitnessFunction()

return FitnessFunction;

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: : DoAlgorithm()

8.11

Stellenbosch University https://scholar.sun.ac.za

} ;

PRINT ("Initializing") ;

STARTTIMER() ;

if(!Initialized) Initialize();

ENDTIMER () ;

PRINT ("Reproduction") ;

STARTTIMER() ;

Reproduction (PopulationSize, SelectionMethod, TournamentMembers);

ENDTIMER () ;

PRINT("Genetic operations");

STARTTIMER() ;

GeneticOperations(Pc, Pm, PopulationSize);

ENDTIMER () ;

CurrentStep++;

UpdateSystemVariables();

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>::RawFitness(T * &AnInd, const
VECTOR_DOUBLE *ObservedOutput,

const VECTOR_DOUBLE *PredictedOutput)

CriticalSection->Enter() ;

switch (FitnessFunction)

case ftERROR BASED:

((GenericIndividual
*)AnInd)->Fitness=l.O/(l.O+sse(PredictedOutput, ObservedOutput));

break;

case ftCORR BASED:

((GenericIndividual *)AnInd)->Fitness
rsquared(PredictedOutput, ObservedOutput);

break;

default

CriticalSection->Leave();

} ;

template<class T, class G>

inline void GenericEvolutionaryAlgorithm<T, G>: : Reproduction (int PopSize,

SelectionType SelectionMethod, int TournamentMembers)

int contender;

B.12

Stellenbosch University https://scholar.sun.ac.za

T *competitor, *current_winner, * Dummy=NULL;

switch (SelectionMethod)

case stFITNESS PROPORTIONATE:

double pf;

int ind=O;

while(((int)Pool.size() < PopSize) && (ind <
(int) Population. size ()))

pf=((GenericIndividual
*)Population[ind])->Fitness/TotalFitness;

int K=floor(pf*PopSize);

for(register int i = 0; (i<K) && ((int)Pool.size() <
PopSize); i++)

Dummy = NULL;

Population[ind]->Clone(Dummy) ;

Pool.push_back(Dummy) ;

ind++;

break;

case stTOURNAMENT:

while ((int)Pool.size()<PopSize)

break;

default:

contender = random(Population.size());

if((Pool.size() == 0) && Elitism) contender 0;

current_winner = (T *)Population[contender];

for (register int i=l; i<TournamentMembers; i++.)

contender = random(Population.size());

competitor = (T *)Population[contender];

if(((GenericIndividual *)current_winner)->Fitness <

((GenericIndividual *)competitor)->Fitness)

current winner = competitor;

Dummy = NULL;

current_winner->Clone(Dummy);

Pool.push_back(Dummy);

sort(Pool.begin(), Pool.end(), &IndGreaterThan);

8.13

Stellenbosch University https://scholar.sun.ac.za

} ;

CriticalSection->Enter();

ClearContainer((vector <T *»Population);

CriticalSection->Leave();

//---
#endif

B.2 The GP class

8.2.1 Header file for class GPlndividual and CustomGPalgorithm

#ifndef GPalgorithmunitH

#define GPalgorithmunitH

#include "evoalgorithm.h"

#include "vectormath.h"

#define MEMCOPY_double(dest, src, count)\

asm\

{ \

push ecx;\

xor ecx,.

mov ecx,

push esi;

push edi;

\
mov edi,

mov esi,

shl ecx,

cld;

ecx;\

(count) ;\

\

\

(dest) ;\

(src) ;\

1; \
\

REP MOVSD; \

#define MINVALUE 10e-IS

#define MAXVALUE l/MINVALUE

class Vectorlnfo

public:

pop

pop

pop

edi;

esi;

ecx;

Vectorlnfo () : Dim (0), Ptr (NULL) {};

-Vectorlnfo () {delete [l Ptr;};

int Dim;

\

\
\

\

B.14

Stellenbosch University https://scholar.sun.ac.za

double* Ptr;

} ;

struct vectorinfo

int dim;

double* ptr;

} ;

typedef struct VectorInfo VINFO;

typedef vector<VINFO*> StackType;

1*111/111/11/11111/1/1/111/
BaseNode Class

1*11111111111111111/11/1111111111111111/1111111/11111111/111/1111
class BaseNode

protected:

private:

pUblic:

} ;

BaseNode(char *N, NodeType T);

~BaseNode();

virtual void Clone (BaseNode *Target);

char *Name;

NodeType NodeKind;

II---------------------------------------~---------------
11.<.' '

II Implementation

11---
BaseNode::BaseNode(char *N, NodeType T) :

NodeKind(T)

} ;

Name = new char[strlen(N)+l);

strcpy(Name, N);

Name[strlen(N»)='\O';

BaseNode: :~BaseNode()

delete Name;

} ;

inline void BaseNode: :Clone(BaseNode *Target)

if(!Target) return;

Target->Name = new char[strlen(this->Name)+l);

strcpy(Target->Name, this->Name);

8.15

Stellenbosch University https://scholar.sun.ac.za

} ;

Target->Name[strlen(this->Name)]='\0';

Target->NodeKind = this->NodeKind;

11===

1*111111111111111111111/111
TerminalNode Class

1*111
class TerminalNode : public BaseNode

protected:

private:

public:

} ;

TerminalNode();

TerminalNode(char *N);

TerminalNode(char *N, TerminalType T);

-TerminalNode();

void Clone (TerminalNode *Target);

vector<double> *Values;

int GetDim();

TerminalType ActingAs;

II-----------~---

II Implementation

11---
TerminalNode::TerminalNode() :

BaseNode("", ntTERMINAL)

ActingAs = tpINPUT;

} ;

TerminalNode::TerminalNode(char *N)

BaseNode(N, ntTERMINAL)

ActingAs = tpINPUT;

} ;

TerminalNode: : TerminalNode (char *N, TerminalType T)

BaseNode(N, ntTERMINAL)

ActingAs = T;

} ;

TerminalNode: :-TerminalNode()

8.16

Stellenbosch University https://scholar.sun.ac.za

//
} ;

delete Values; Values NULL;

inline int TerminalNode: :GetDim()

} ;

int N = 0;

if(Values) N

return N;

Values->size();

inline void TerminalNode: :Clone(TerminalNode *Target)

} ;

if(!Target) Target = new TerminalNode();

BaseNode: : Clone (Target) ;

Target->Values = new vector<double>();

* (Target->Values) = *(this->Values);

Target->ActingAs = this->ActingAs;

//===

class BaseFunctionNode public BaseNode

public:

} ;

BaseFunctionNode (int A, 'char *N) : BaseNode (N, ntFUNCTION) ,

TotalArgs (A) {};

virtual void ApplyFunction(StackType &S) = 0;

int TotalArgs;

class AddNode public BaseFunctionNode

private:

double *ptrl, *ptr2;

// VECTOR DOUBLE *xl, *x2;

VINFO *xl, *x2;

double k;

int N;

public:

AddNode () BaseFunctionNode(2, n+n),

ptrl(NULL) , ptr2(NULL) , xl (NULL) , x2(NULL) {I;

-AddNode () {};

void ApplyFunction(StackType &S)

xl=S.back(); S.pop_back(); x2=S.back(); S.pop_back();

B.17

Stellenbosch University https://scholar.sun.ac.za

} ;

} ;

ptrl = xl->Ptr;

ptr2 = x2->Ptr;

N = xl->Dim;

for (register int i = 0; i < N; i++)

k (*ptrl) + (*ptr2);

k

k

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE)

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE)

*ptrl = k;

ptrl++; ptr2++;

ptrl = ptr2 = NULL;

delete x2; x2=NULL;

S.push_back(xl); xl=NULL;

k;

k;

class SubtractNode public BaseFunctionNode

private:

double *ptrl, *ptr2;

VINFO *xl, *x2;

double k;

int N;

public:

SubtractNode() BaseFunctionNode(2, "-"),

ptrl(NULL) , ptr2(NULL) , xl (NULL) , x2(NULL)

{};

void ApplyFunction(StackType &S)

x2=S.back(); S.pop_back(); xl=S.back(); S.pop_back();

ptrl = xl->Ptr;

ptr2 = x2->Ptr;

N ,,; xl->Dim;

for (register int i = 0; i < N; i++)

k

k

k

(*ptrl) - (*ptr2);

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE)

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE)

*ptrl = k;

ptrl++; ptr2++;

ptrl = ptr2 = NULL;

delete x2; x2 = NULL;

S.push_back(xl); xl = NULL;

k;

k;

8.18

Stellenbosch University https://scholar.sun.ac.za

} ;

} ;

class MultiplyNode public BaseFunctionNode

private:

double *ptrl, *ptr2;

double k;

int N;

//VECTOR DOUBLE *xl, *x2;

VINFO *xl, *x2;

public:

MultiplyNode () BaseFunctionNode(2, "*") ,

ptrl(NULL) , ptr2(NULL) , xl (NULL) , x2(NULL)

{ } ';

void ApplyFunction(StackType &S)

/* x2=S.back(); S.pop_back(); xl=S.back(); S.pop_back();

*/

ptrl = (double *)xl->begin();

ptr2 = (double *)x2->begin();

N = xl->size();

for (register int i = 0; i < N; i++)

k

k

k

(*ptrl) * (*ptr2);

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE)

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE)

*ptrl = k;

ptrl++; ptr2++;

ptrl = ptr2 = NULL;

delete x2; x2 = NULL;

S.push_back(xl); xl = NULL;

k;

k;

x2=S.back(); S.pop_back(); xl=S.back(); S.pop_back();

ptrl = xl->Ptr;

pt:i:2 = x2->Ptr;

N = xl->Dim;

for(register int i = 0; i < N; i++)

k (*ptrl) * (*ptr2);

k

k

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE)

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE)

*ptrl = k;

ptrl++; ptr2++;

k;

k;

B.19

Stellenbosch University https://scholar.sun.ac.za

} ;

} ;

ptrl ptr2 = NULL;

delete x2; x2 = NULL;

S.push_back(xl); xl = NULL;

class DivideNode public BaseFunctionNode

private:

double *ptrl, *ptr2;

double k;

int N;

IlvECTOR DOUBLE *xl, *x2;

VINFO *xl, *x2;

public:

1*

*1

Di vide Node () BaseFunctionNode(2, "/"),

ptrl(NULL) , ptr2(NULL) , xl(NULL), x2(NULL)

{};

void ApplyFunction(StackType &S)

xl=S.back(); S.pop_back(); x2=S.back(); S.pop_back();

ptrl = (double *)xl->begin();

ptr2 = (double *)x2->begin().;

N = xl->size();

for (register int i = 0; i < N; i++)

k = (fabs(*ptr2) < MINVALUE) ? (sign(*ptr2)*MINVALUE)

k = (*ptrl)/k;

*ptrl = k;

ptrl++; ptr2++;

ptrl = ptr2 = NULL;

delete x2; x2 = NULL;

S.push_back(xl); xl = NULL;

xl=S.back(); S.pop_back(); x2=S.back(); S.pop_back();

ptrl = xl->Ptr;

ptr2 = x2->Ptr;

N = xl->Dim;

for (register int i 0; i < N; i++)

k = (fabs(*ptr2) < MINVALUE) ? (sign(*ptr2)*MINVALUE)

k = (*ptrl)/k;

(*ptr2) ;

(*ptr2) ;

B.20

Stellenbosch University https://scholar.sun.ac.za

} ;

} ;

*ptrl = k;

ptrl++; ptr2++;

ptrl = ptr2 = NULL;

delete x2; x2 = NULL;

S.push_back(xl); xl = NULL;

11===

1*11IIIIIIIIIII
GPIndividual Class

1*11IIIIIIIIIII
typedef vector<BaseNode *> VECTOR_BASENODE;

class GPIndividual : public GenericEvoIndividual<VECTOR BASENODE>

private:

protected:

public:

} ;

GPIndividual();

-GPIndividual();

void Clone (GPIndividual* &Target);

int GetLevel(int i);

void SetLevel(int if int Depth);

vector<int> Levels;

11---
II Implementation

11---
GPIndividual: :GPlndividual() :

GenericEvoIndividual<VECTOR_BASENODE>() {};

GPIndividual: :-GPIndividual()

Levels.clear() ;

} ;

inline void GPIndividual::Clone(GPIndividual* &Target)

} ;

if(!Target) Target = new GPIndividual();

GenericEvoIndividual<VECTOR_BASENODE>::Clone(Target);

Target->Levels = this->Levels;

inline void GPIndividual: :SetLevel(int if int Depth)

B.21

Stellenbosch University https://scholar.sun.ac.za

Levels [iJ Depth;

} ;

inline int GPlndividual::GetLevel(int i)

return Levels[i);

} ;

11===

1*11IIIIIIIIIII
GPalgorithm Class

1*11111111111111111111111111111111////111/1/////11/11//1//1///11/
class CustomGPAlgorithm : public GenericEvolutionaryAlgorithm<GPlndividual,
BaseNode> .

private:

StackType StackVector;

AddNode *PlusNode;

SubtractNode *MinusNode;

DivideNode *DivNode;

MultiplyNode *MultNode;

protected:

vector<TerminalNode *> TerminalSet;

vector<BaseFunctionNode *> FunctionSet;

int InitTreeLevels, MaxTreeLevels;

void InsertSubtree(VECTOR_BASENODE &Genome,

const VECTOR_BASENODE &SubTree, int Pos);

void RemoveSubtree(VECTOR_BASENODE &Genome,

const VECTOR_BASENODE &SubTree, int Pos);

VECTOR_BASENODE* GetSubtree(const VECTOR_BASENODE &Genome,

int &subtree levels, int pos);

void GetLevel(const VECTOR_BASENODE &Genome, int &Level, int Pos);

virtual void Crossover(VECTOR_BASENODE &Parentl,

VECTOR_BASENODE &Parent2) {};

virtual void Mutate (VECTOR_BASENODE &Parent) {};

virtual void Crossover(VECTOR_BASENODE &Parentl,

VECTOR_BASENODE &Parent2, int &Levell, int &Leve12);

virtual void Mutate (VECTOR_BASENODE &Parent, int &Level);

virtual void EvolveGenome(VECTOR_BASENODE &Genome, int CurrentLevel,

int MAXLEVELS, int &TotalLevels,

const vector<TerminalNode *> &TerminalSet,

const vector<BaseFunctionNode *> &FunctionSet);

VECTOR DOUBLE* EvaluateGenome(const VECTOR BASENODE &Genome);

8.22

Stellenbosch University https://scholar.sun.ac.za

virtual GPlndividual* GenerateAnlndividual(} = 0;

virtual void ComputeFitness(GPlndividual* &Anlnd} = 0;

virtual void GeneticOperations(int Pc, int Pm, int popSize};

virtual void ApplyGeneticScalingFunc(VECTOR_DOUBLE &PredictedOutput, int
Env} = 0;

public:

} ;

CustomGPAlgorithm(} ;

-CustomGPAlgorithm(} ;

void SetMaxTreeLevels(int L};

virtual void SetTerminalSet(const vector<TerminalNode *> &TrmSet};

void SetFunctionSet(bool plus, bool minus, bool div, bool mult};

int GetMaxTreeLevels(};

virtual double GetRecomputedFitness(int Ind} = 0;

virtual vector<VECTOR_DOUBLE *> *GetPredictedOutput(int ind} 0;

virtual char* GetGenomeString(int Ind, int Env};

VECTOR_BASENODE *GetGenome(int Ind, int Env};

VECTOR DOUBLE* GetTerminal(int whichtrm};

8.2.2 Header file for class GPSupervised
class GPSupervised.: public CustomGPAlgorithm

protected:

virtual void UpdateSystemVariables(};

virtual void ClearSystemVariables(};

virtual GPlndividual* GenerateAnlndividual(};

virtual void ComputeFitness(GPlndividual* &Anlnd};

virtual void ApplyGeneticScalingFunc(VECTOR_DOUBLE &PredictedOutput, int
Env} ;

private:

double SVCurrentRsqr, SVCurrentSSE;

vector<TerminalNode *> EnvironmentSet;

public:

GPSupervised () ;

-GPSupervised(};

double GetCurrentRsqr(};

double GetCurrentSSE(};

vector<double> SVRsqr, SVSSE; IISystem variables

double GetRecomputedRsqr(int I};

double GetRecomputedSSE(int I};

void SetEnvironmentSet(const vector<TerminalNode *> &EnvSet};

virtual vector<VECTOR_DOUBLE *> *GetPredictedOutput(int ind};

virtual double GetRecomputedFitness(int Ind};

VECTOR DOUBLE* GetEnvironment(int whichenv};

8.23

Stellenbosch University https://scholar.sun.ac.za

int GetEnvironmentSize();

} ;

B.2.3 Header file for class GPUnsupervised
class GPUnsupervised : public CustomGPAlgorithm

protected:

virtual GPIndividual* GenerateAnIndividual();

virtual void ComputeFitness(GPIndividual* &AnInd) = 0;

virtual void ApplyGeneticScalingFunc(VECTOR_DOUBLE &PredictedOutput, int
Env)=O;

int TargetSpaceDim;

private:

public:

} ;

GPUnsupervised() ;

-GPUnsupervised();

void SetTargetSpaceDim(int T);

int GetTargetSpaceDim();

vector<VECTOR_DOUBLE *> *GetPredictedOutput(int ind);

virtual double GetRecomputedFitness(int Ind)=O;

8.2.4 Implementation of each class in the GP kernel

8.2.4.1 Implementation of class CustomGPAlgorithm

11---
II Implementation

11---
CustomGPAlgorithm::CustomGPAlgorithm() :

GenericEvolutionaryAlgorithm<GPIndividual, BaseNode>()

} ;

Elitism = true;

MaxTreeLevels = 10;

InitTreeLevels = 5;

PlusNode = new AddNode();

MinusNode = new SubtractNode();

DivNode = new DivideNode();

MultNode = new MultiplyNode();

CustomGPAlgorithm::-CustomGPAlgorithm()

{

CriticalSection->Enter();

B.24

Stellenbosch University https://scholar.sun.ac.za

} ;

ClearContainer((vector<TerminalNode *» TerminalSet);

CriticalSection->Leave();

delete PlusNode;

delete MinusNode;

delete DivNode;

delete MultNode;

GPSupervised::GPSupervised()

CustomGPAlgorithm()

{ } ;

GPSupervised: :-GPSupervised()

} ;

CriticalSection->Enter();

ClearContainer((veotor<TerminalNode *» EnvironmentSet);

CriticalSection->Leave();

GPUnsupervised: :GPUnsupervised()

CustomGPAlgorithm()

TargetSpaceDim = 1;

} ;

GPUnsupervised: :-GPUnsupervised()

{ } ;

inline void CustomGPAlgorithm::GeneticOperations(int Pc, int Pm, int PopSize)

int Parent1, Parent2;

GPlndividual *P1=NULL, *P2=NULL;

int Genome1, Genome2;

TotalFitness=O.O;

if (Elitism)

Pool[O]->Clone(P1) ;

TotalFitness += P1->Fitness;

Population.push_back(P1);

P1=NULL;

int K=floor(Pc/200.0*PopSize);

for (register int i=O; (i<K) && ((int) Population. size () <PopSize); i++)

B.25

Stellenbosch University https://scholar.sun.ac.za

i++)

} ;

PI = P2 = NULL;

ParentI = random(Pool.size()); Parent2

Pool[Parentl]->Clone(Pl);

Pool[Parent2]->Clone(P2);

random(Pool.size());

Genomel = Genome2 = random(Pl->Genome.size());

Crossover(*(Pl->GetGenome(Genomel)), * (P2->GetGenome(Genome2)),

PI->GetLevel(Genomel), P2->GetLevel(Genome2));

//now compute the new fitness

ComputeFitness(Pl);

ComputeFitness(P2);

TotalFitness += PI->Fitness;

TotalFitness += P2->Fitness;

Population. push_back (PI) ;

Population. push_back (P2) ;

K=floor(Pm/lOO.O*PopSize);

for(register int i = 0; (i < K) && ((int)Population.size() < PopSize);

PI = NULL;

ParentI = random(Pool.size());

Pool [ParentI]->Clone (PI) ;

Genomel = random (PI->Genome . size ()) ;.

Mutate (* (PI->GetGenome (Genomel)) ,. PI->GetLevel (GenomeI));

ComputeFitness (PI);-

TotalFitness += PI->Fitness;

Population.push_back(Pl);

forI; (~nt)Populatiorl.size()<PopSize;)

PI = NULL;

ParentI = random(Pool.size());

Pool[Parentl]->Clone(Pl);

TotalFitness += PI->Fitness;

Population.push_back(Pl);

sort (Population.begin(), Population.end(), &IndGreaterThan);

CriticalSection->Enter() ;

ClearContainer((vector<GPlndividual *» Pool);

CriticalSection->Leave();

inline void CustomGPAlgorithm: :Crossover(VECTOR_BASENODE &ParentI,

B.26

Stellenbosch University https://scholar.sun.ac.za

VECTOR BASENODE &Parent2, int &Levell, int &Leve12)

int cpl, cp2;

int subtree levelsl=O, subtree levels2=0, level at cpl=O, level at cp2=0;

VECTOR BASENODE *Plsubtree, *P2subtree;

cpl=random(Parentl.size());
strings

//obtain the crossover points in the 2

} ;

cp2=random(Parent2.size());

GetLevel(Parentl, level_at cpl, cpl);

GetLevel(Parent2, level_at cp2, cp2);

Plsubtree=GetSubtree(Parentl, subtree levelsl, cpl);

P2subtree=GetSubtree(Parent2, subtree_levels2, cp2);

///

//now remove the subtree from expr

//

if(subtree_levels2+level_at~cpl-l<=MaxTreeLevels)

RemoveSubtree(Parentl, *Plsubtree, cpl);

InsertS~btree(Parentl, *P2subtree, cpl);

//use this line to get the nr of levels for the whole tree

delete GetSubtree(Parentl, Levell, 0);

if(subtree levelsl+level at cp2-l <= MaxTreeLevels)

RemoveSubtree(Parent2, *P2subtree, cp2);

InsertSubtree(Parent2, *Plsubtree, cp2);

delete GetSubtree(Parent2, Leve12, 0);

delete Plsubtree; delete P2subtree;

Plsubtree = P2subtree = NULL;

inline void CustomGPAlgorithm::Mutate(VECTOR_BASENODE &Parent, int &Level)

int level=-l, cp;

int nr_of_levels=O, level_at cp, subtree levels;

VECTOR BASENODE *Psubtree NULL;

VECTOR BASENODE *sub tree new VECTOR_BASENODE();

cp=random(Parent.size());

GetLevel(Parent, level_at cp, cp);

B.27

Stellenbosch University https://scholar.sun.ac.za

} ;

if(level_at cp < MaxTreeLevels)

Psubtree=GetSubtree(Parent, subtree levels, cp);

RemoveSubtree(Parent, *Psubtree, cp);

delete Psubtree;

//create a new random subtree of maxlength abs_max_level-level at cp+l

EvolveGenome(*sub_tree, level, MaxTreeLevels-level at cp+l,

nr_of_levels, TerminalSet, FunctionSet);

InsertSubtree(Parent, *sub_tree, cp);

delete GetSubtree(Parent, Level, 0);

delete sub tree;

inline void CustomGPAlgorithm: : EvolveGenome (VECTOR BASENODE &Genome, int
CurrentLevel,

int MAXLEVELS, int &TotalLevels,

const vector<TerminalNode *> &TerminalSet,

const vector<BaseFunctionNode *> &FunctionSet

BaseNode *NodePtr;

int Args=O, i;

double Tp, Op;

CurrentLevel++;

jill/this part describes the propability

//of a terminal or an operator being chosen/III

Op=-l.O/((double) (MAXLEVELS-l.O))*((double)CurrentLevel)+l.O;

Tp=l.O-Op;

l///

if (Op*random(lOO) >= Tp*random(lOO))

i = random(FunctionSet.size());

Nodeptr = (BaseFunctionNode *)FunctionSet[i];

Args = ((BaseFunctionNode *)NodePtr)->TotalArgs;

else

i random(TerminalSet.size());

NodePtr = (TerminalNode *)TerminalSet[i];

if (TotalLevels<CurrentLevel) TotalLevels=CurrentLevel;

Genome.push_back(NodePtr) ;

NodePtr = NULL;

for (register int k=O; k < Args; k++)

B.28

Stellenbosch University https://scholar.sun.ac.za

} ;

EvolveGenome(Genome, CurrentLevel, MAXLEVELS, TotalLevels,

TerminalSet, FunctionSet);

inline void CustomGPAlgorithm: : InsertSubtree (VECTOR_BASENODE &Genome,

const VECTOR BASENODE &SubTree, int Pos)

Genome.reserve(Genome.size()+SubTree.size());

Genome. insert (Genome.begin()+Pos, SubTree.begin(), SubTree.end());

} ;

inline void CustomGPAlgorithm::RemoveSubtree(VECTOR_BASENODE &Genome,

const VECTOR BASENODE &SubTree, int Pos)

Genome. erase ((Genome.begin()+Pos), (Genome.begin()+Pos+SubTree.size())
) ;

} ;

inline VECTOR BASENODE* CustomGPAlgorithm::GetSubtree(const VECTOR BASENODE
&Genome, int &subtree levels, int pos)

} ;

int exprpos=-l+pos, s tree_pos=-l;

VECTOR BASENODE* s tree = new VECTOR_BASENODE(); //newlyadded

void newsubtree(BaseNode **Genome, VECTOR BASENODE &s tree,

int &, int &, int &, int);

void subtree(const VECTOR_BASENODE &Genome, VECTOR BASENODE &s_tree,

int &, int &, int &, int);

subtree levels=O;

newsubtree((BaseNode **) (Genome.begin()), *s tree, exprpos, s tree_pos,
subtree levels, -1);

subtree levels++;

return s tree;

inline void newsubtree(BaseNode** Genome, VECTOR_BASENODE &SubTree,

int &exprindex, int &s tree index, int &subtree levels, int
level)

int Args=O;

exprindex++;

s treeindex++;

level++;

B.29

Stellenbosch University https://scholar.sun.ac.za

} ;

SubTree.push_back(Genome[exprindex));

if(Genome[exprindex)->NodeKind==ntFUNCTION)

Args = ((BaseFunctionNode *)Genome[exprindex))->TotalArgs;

else

if(subtree levels<level) subtree levels=level;

for (register int i=O; i<Args; i++)

newsubtree(Genome, SubTree, exprindex, s tree index,

subtree levels, level);

inline void subtree (const VECTOR_BASENODE &Genome, VECTOR_BASENODE &SubTree,

int &exprindex, int &s_tree index, int &subtree levels, int
level)

} ;

int Args=O;

exprindex++;

s tree index++;

level++;

SubTree.push_back(Genome[exprindex));

if (Genome [exprindex)->NodeKind==ntFUNCTION)

Args ((BaseFunctionNode *)Genome[exprindex))->TotalArgs;

else

if(subtree levels<level) subtree_levels=level;

for (register int i=O; i<Args; i++).

subtree (Genome, SubTree, exprindex, s_tree index,

subtree~levels, level);

inline void CustomGPAlgorithm::GetLevel(const VECTOR BASENODE &Genome, int
&Level, int Pas)

int 1=-1;

void get the damn level (const VECTOR BASENODE &Genome, int &len, int
CurrentLevel~ - -

int Pos, int &Level);

void n,ewget the_damn_level (BaseNode **Genome, int &len, int CurrentLevel,

B.30

Stellenbosch University https://scholar.sun.ac.za

int Pas, int &Level);

Level=O;

II get_the_damn_level(Genome,l, -1, Pos, Level);

newget_the_damn_level((BaseNode **) (Genome.begin()),1, -1, Pos, Level);

Level++;

} ;

inline void newget the_damn_level(BaseNode
CurrentLevel,

int Args=O;

CurrentLevel++;

len++;

int Pos, int &Level)

if(len == Pos) Level=CurrentLevel;

if(len < Pos)

if (Genome [len)->NodeKind ntFUNCTION)

* *Genome , int . &len,

Args ((BaseFunctionNode *)Genome[len))->TotalArgs;

for (register int i = 0; i < Args; i++)

newget_the_damn_level (Genome, len, CurrentLevel, Pos, L·evel);

} ;

int

inline void get the damn level(canst VECTOR BASENODE &Genome, int &len, int
CurrentLevel, - - - -

} ;

int Args=O;

CurrentLevel++;

len++;

int Pos, int &Level)

if(len == Pos) Level=CurrentLevel;

if (len < Pos)

if (Genome [len)->NodeKind ntFUNCTION)

Args ((BaseFunctionNode *)Genome[len))->TotalArgs;

for (register int i = 0; i < Args; i++)

get_the_damn_level(Genome, len, CurrentLevel, Pas, Level);

8.31

Stellenbosch University https://scholar.sun.ac.za

inline int CustomGPAlgorithm::GetMaxTreeLevels()

return MaxTreeLevels;

} ;

inline void CustomGPAlgorithm::SetMaxTreeLevels(int L)

MaxTreeLevels=L;

if (InitTreeLevels>MaxTreeLevels) InitTreeLevels=MaxTreeLevels;

} ;

inline void CustomGPAlgori thm: : SetFunctionSet (bool plus, boo 1 minus, bool di v,
bool mult)

} ;

FunctionSet.clear() ;

if(plus) FunctionSet.push_back(PlusNode);

if (minus) FunctionSet.push_back(MinusNode);

if(div) FunctionSet.push_back(DivNode);

if(mult) FunctionSet.push_back(MultNode);

void CustomGPAlgorithm: :SetTerminalSet(const vector<TerminalNode *> &TrmSet)

} ;

int N = TerminalSet.size();

CriticalSection->Enter();

ClearContainer«vector<TerminalNode *» TerminalSet);

CriticalSection->Leave();

TerminalSet.clear() ;

N = TrmSet.size();

for (register int i = 0; i < N; i++)

if(TrmSet[i]->ActingAs == tpINPUT)

TerminalSet.push back(new TerminalNode(TrmSet[i]->Name,
TrmSet[i]->ActingAs)) ;

TerminalSet.back()->Values = TrmSet[i]->Values;

inline char* CustomGPAlgorithm: : GetGenomeString(int Ind, int Env)

char* t;

VECTOR BASENODE* Genome

int N = Genome->size();

Population[Ind]->GetGenome(Env) ;

8.32

Stellenbosch University https://scholar.sun.ac.za

} ;

t = new char[lOOOO];

t[O]='\O';

char *src;

for (register int i = 0; i < N; i++)

src = (*Genome) [i]->Name;

strcat (t, II ");

strcat (t, src);

return t;

inline VECTOR_BASENODE *CustomGPAlgorithm: : GetGenome (int Ind, int Env)

return Population[Ind]->GetGenome(Env);

} ;

inline VECTOR_DOUBLE* CustomGPAlgorithm: : GetTerminal (int whichtrm)

return TerminalSet[whichtrmj->Values;

} ;

inline VECTOR DOUBLE* CustomGPAlgorithm: : EvaluateGenome (const VECTOR_BASENODE
&Genome)

CriticalSection->Enter();

BaseNode **Ptr = (BaseNode **) (Genome.end()-l);

VINFO * Dummy, *PtrValues;

double* memblock, *doubleptr;

StackVector.clear();

int N = Genome.size();

int NValues;

StackVector.reserve(N+l);

for (register int i=N-l; i>=O; i--, Ptr--)

if«*Ptr)->NodeKind ntTERMINAL)

doubleptr =«TerminalNode *) (*Ptr))->Values->begin();

NValues = «TerminalNode *) (*Ptr))->Values->size();

memblock = new double[NValues];

for (register int i 0; i < NValues; i++, doubleptr++)

B.33

Stellenbosch University https://scholar.sun.ac.za

else

memblock[ij = *doubleptr;

Dummy = new VINFO();

Dummy->Dim = NValues;

Dummy->Ptr = memblock;

StackVector.push_back(Dummy) ;

«BaseFunctionNode *) (*Ptr))->ApplyFunction(StackVector);

Dummy = StackVector.back(); StackVector.pop_back();

VECTOR DOUBLE *rtn = new VECTOR_DOUBLE();

N = Dummy->Dim;

rtn->reserve(N);

for (register int i = 0; i < N; i++)

rtn->push_back(Dummy->Ptr[ij);

delete Dummy;

CriticalSection->Leave() ;

return rtn;

} ;

8.2.4.2 Implementation of class GPSupervised
/**

Supervised Genetic Programming (GP)

*/

inline void GPSupervised: :UpdateSystemVariables()

GenericEvolutionaryAlgorithm<GPlndividual,
BaseNode>: :UpdateSystemVariables();

const vector<VECTOR_DOUBLE *> *Ptr=GetPredictedOutput(O);

int N = EnvironmentSet.size();

SVCurrentRsqr = SVCurrentSSE = 0.0;

for (register int i = 0; i < N; i++)

SVCurrentRsqr += rsquared«*Ptr) [ij, EnvironmentSet[ij->Values);

SVCurrentSSE += sse«*Ptr) [ij, EnvironmentSet[ij->Values);

if(N)

{

SVCurrentRsqr /= (dou~le)N;

SVCurrentSSE /= (double)N;

B.34

Stellenbosch University https://scholar.sun.ac.za

} ;

SVRsqr.push_back(SVCurrentRsqr) ;

SVSSE.push_back(SVCurrentSSE);

N = Ptr->size();

for (register int i = 0; i < N; i++)

delete (*Ptr) [i);

delete Ptr;

inline void GPSupervised: :ClearSystemVariables()

GenericEvolutionaryAlgorithm<GPlndividual,
BaseNode>::ClearSystemVariables();

SVRsqr.clear();

SVSSE.clear() ;

} ;

inline double GPSupervised: :GetCurrentRsqr()

return SVCurrentRsqr;

} ;

inline double GPSupervised::GetCurrentSSE()

return SVCurrentSSE;

} ;

inline double GPSupervised::GetRecomputedRsqr(int I)

const vector<VECTOR_DOUBLE *> *Ptr=GetPredictedOutput(I);

int N = EnvironmentSet.size();

SVCurrentRsqr = SVCurrentSSE = 0.0;

CriticalSection->Enter();

for (register int i = 0; i < N; i++)

SVCurren~Rsqr += rsquared((*Ptr) [i), EnvironmentSet[i]->Values);

CriticalSection->Leave();

if (N)

{

SVCurrentRsqr /= (double}N;

N Ptr->size();

8.35

Stellenbosch University https://scholar.sun.ac.za

for (register int i = 0; i < N; i++)

delete (*Ptr) [ij;

delete Ptr;

return SVCurrentRsqr;

} ;

inline double GPSupervised::GetRecomputedSSE(int I)

} ;

const vector<VECTOR_DOUBLE *> *Ptr=GetPre"dictedOutput(I);

int N = EnvironmentSet.size();

SVCurrentRsqr = SVCurrentSSE = 0.0;

CriticalSection->Enter();

for (register int i = 0; i < N; i++)

SVCurrentSSE += sse((*Ptr) [ij, EnvironmentSet[ij->Values);

CriticalSection->Leave() ;

if (N)

{

SVCurrentSSE /= (double)N;

N = Ptr->size();

for (register int i

delete (*Ptr) [ij;

delete Ptr;

return SVCurrentSSE;

0; i < N; i++)

inline int GPSupervised: : GetEnvironmentSize () {return EnvironmentSet. size () ; } ;

inline void GPSupervised::ComputeFitness(GPlndividual* &Anlnd)

VECTOR_DOUBLE *Ptr=NULL;

int N = EnvironmentSet.size();

double AvgFitness = 0.0;

CriticalSection->Enter() ;

for (register int i = 0; i < N; i++)

Ptr=EvaluateGenome(*(Anlnd->GetGenome(i)));

8.36

Stellenbosch University https://scholar.sun.ac.za

} ;

RawFitness(AnInd, EnvironmentSet[i)->Values, ptr);

AvgFitness += AnInd->Fitness;

delete Ptr; Ptr=NULL;

if(N) AnInd->Fitness = AvgFitness/(double)N;

CriticalSection->Leave();

inline GPIndividual* GPSupervised: :GenerateAnIndividual()

{

} ;

GPIndividual *Dummy=new GPIndividual();

VECTOR BASENODE* Genome = NULL;

int CurLevel=-l, Level;

int N = EnvironmentSet.size();

for (register int i = 0; i < N; i++)

Level = 0;

Genome = new VECTOR_BASENODE();

EvolveGenome(*Genome, CurLevel, InitTreeLevels, Level,

TerminalSet, FunctionSet);

Level++;

Dummy->Genome . push_back (Genome) ;"

Dummy-~Levels.push_back(Level);

Genome = NULL;

return Dummy;

inline VECTOR_DOUBLE* GPSupervised: : GetEnvironment (int whichenv)

return EnvironmentSet[whichenv)->Values;

} ;

inline double GPSupervised: : GetRecomputedFitness (int Ind)

VECTOR DOUBLE *Ptr=NULL;

double v=O.O;

GPIndividual *p = Population[Ind);

GPIndividual *Dummy = new GPIndividual();

int N = EnvironmentSet.size();

double AvgFitness = 0.0;

CriticalSection->Enter();

for(register int i = 0; i < N; i++)

B.37

Stellenbosch University https://scholar.sun.ac.za

} ;

Ptr=EvaluateGenome(*(P->GetGenome(i))) ;

RawFitness(Dummy, EnvironmentSet[i]->Values, Ptr);

AvgFitness += Dummy->Fitness;

delete Ptr; Ptr=NULL;

if(N) Dummy->Fltness = AvgFitness/(double)N;

v = Dummy->Fitness;

delete Dummy;

CriticalSection->Leave();

return v;

inline void GPSupervised: : SetEnvironmentSet(const vector<TerminalNode *>
&EnvSet)

int N = EnvironmentSet.size();

CriticalSection->Enter();

ClearContainer((vector<TerminalNode *» EnvironmentSet);

CriticalSection->Leave() ;

EnvironmentSet.clear();

N = EnvSet.size();

for (register int i = 0; i < N; i++)

if(EnvSet[i]->ActingAs == tpOUTPUT)

{

EnvironmentSet . push_back (new Termiri'alNode (EnvSet [i] ->Name,
EnvSet[i]->ActingAs));

EnvironmentSet.back()->Values = EnvSet[i]->Values;

} ;

inline vector<VECTOR DOUBLE *> *GPSupervised: : GetPredictedOutput (int ind)

vector<VECTOR DOUBLE *> *Ptr = NULL;

int N = EnvironmentSet.size();

Ptr new vector<VECTOR DOUBLE *>();

for (register int i = 0; i < N; i++)

Ptr->push_back(EvaluateGenome(*(Population[ind]->GetGenome(i))));

if(FitnessFunction == ftCORR_BASED)

ApplyGeneticScalingFunc (* ((*Ptr) [i]), i);

return Ptr;

B.38

Stellenbosch University https://scholar.sun.ac.za

} ;

inline void GPSupervised: :ApplyGeneticScalingFunc(VECTOR DOUBLE
&PredictedOutput, int Env)

int N=PredictedOutput.size();

double stdevPredicted, meanPredicted, sf,

meanObserved=mean(EnvironmentSet[Envl->Values);

double *ptr;

double thesign sign(corr(&PredictedOutput,
EnvironmentSet[Envl->Values));

} ;

stdevPredicted=stdev(&PredictedOutput)*thesign;

meanPredicted=mean(&PredictedOutput);

try

sf=stdev(EnvironmentSet[Envl->Values)/stdevPredicted;

catch(...)

sf=O.O;

ptr = (double *)PredictedOutput.begin();

for (register int i = 0; i < N; i++)

ptr = sf((*ptr)-meanPredicted) + meanObserved;

ptr++;

8.2.4.3 Implementation of class GPUnsupervised
/**

Unsupervised Genetic Programming

*/

inline vector<VECTOR DOUBLE *> *GPUnsupervised: : GetPredictedOutput (int ind)

vector<VECTOR DOUBLE *> *Ptr NULL;

int N = TargetSpaceDim;

Ptr new vector<VECTOR DOUBLE *>();

for (register int i = 0; i < N; i++)

Ptr->push_back(EvaluateGenome(*(Population[indl->GetGenome (i))));

if(FitnessFunction == ftCORR_BASED)

ApplyGeneticScalingFunc (* ((*Ptr) [il), i);

B.39

Stellenbosch University https://scholar.sun.ac.za

return Ptr;

} ;

//---
GPlndividual* GPUnsupervised: :GenerateAnlndividual()

} ;

GPlndividual *Dummy=new GPlndividual();

VECTOR BASENODE* Genome = NULL;

int CurLevel=-l, Level;

int N = TargetSpaceDim;

for (register int i = 0; i < N; i++)

Level = 0;

Genome = new VECTOR_BASENODE();

EvolveGenome(*Genome, CurLevel, InitTreeLevels, Level,

TerminalSet, FunctionSet);

Level++;

Dummy->Genome.push_back(Genome);

Dummy->Levels.push_back(Level);

Genome = NULL;

return Dummy;

inline void GPUnsupervised::SetTargetSpaceDim(int T) {TargetSpaceDim = T;};

inline int GPUnsupervised::GetTargetSpaceDim() {return TargetSpaceDim;};

//---
#endif

8.2.5 Header file for class FeatureExtract

#ifndef FeatureXH

#define FeatureXH

#include "GPalgorithmunit.h"

//---~---

enum StressType {stSammon};

class FeatureExtract : public GPUnsupervised

private:

StressType StressIs;

protected:

virtual void ComputeFitness(GPlndividual* &Anlnd);

virtual void ApplyGeneticScalingFunc (VECTOR DOUBLE &Predi.ctedOutput, int
Env){}; -

BAD

Stellenbosch University https://scholar.sun.ac.za

double ApplySammon(vector<VECTOR_DOUBLE *> &OriginalSpace,

vector<VECTOR DOUBLE *> &TargetSpace);

public:

} ;

FeatureExtract() ;

-FeatureExtract();

void SetEnvironmentSet(const vector<TerminalNode *> &E) {};

double GetStress();

StressType GetStressType();

void SetStressType(StressType S);

virtual double GetRecomputedFitness(int Ind);

vector<VECTOR DOUBLE *> GetTargetSpace(int Ind);

inline StressType FeatureExtract::GetStressType() {return StressIs;};

inline void FeatureExtract::SetStressType(StressType S) {StressIs = S;};

inline double FeatureExtract::GetStress() {};

inline double FeatureExtract: : GetRecomputedFitness (int Ind)

} ;

double v;

GPlndividual *p = Population[Ind);

GPlndividual *Dummy=NULL;

P->Clone(Dummy) ;

ComputeFitness(Dummy);

v = Dummy->Fitness;

delete Dummy;

return v;

inline vector<VECTOR_DOUBLE *> FeatureExtract: :GetTargetSpace(int Ind)

} ;

GPlndividual* Anlnd = Population[Ind);

vector<VECTOR_DOUBLE *> TargetSpace;

TargetSpace.reserve(TargetSpaceDim);

for (register int i = 0; i < TargetSpaceDim; i++)

TargetSpace.push_back(EvaluateGenome(*(Anlnd->GetGenome(i))));

return TargetSpace;

inline void FeatureExtract::ComputeFitness(GPlndividual* &Anlnd)

vector<VECTOR DOUBLE *> TargetSpace;

B.41

Stellenbosch University https://scholar.sun.ac.za

vector<VECTOR DOUBLE *> OrigSpace;

double Stress = 0.0;

TargetSpace.reserve(TargetSpaceDim);

for (register int i = 0; i < TargetSpaceDim; i++)

TargetSpace.push_back(EvaluateGenome(*(Anlnd->GetGenome(i))));

if(FitnessFunction == ftCORR_BASED)

ApplyGeneticScalingFunc(*(TargetSpace[ij), i);

int N = TerminalSet.size();

OrigSpace.reserve(N);

for (register int i = 0; i < N; i ++)

OrigSpace.push_back(TerminalSet[i]->Values);

switch(StressIs)

case stSammon:

Anlnd->Fitness

break;

default:;

1.0/(1.0+ApplySammon(OrigSpace, TargetSpace));

} ;

ClearContainer((vector<VECTOR_DOUBLE *» TargetSpace);

OrigSpace.clear();

inline double FeatureExtract: : ApplySammon (vector<VECTOR_DOUBLE *>
&OriginalSpace,

vector<VECTOR_DOUBLE *> &TargetSpace)

int T_Dim = TargetSpace.size();

int O_Dim = OriginalSpace.size();

int TotalPoints = TargetSpace[Oj->size();

int origPoints = OriginalSpace[Oj->size();

int Obsrvl, Obsrv2; //select two random observations

int Tmax=TotalPoints;

double TotalDistance

double *Ptr=NULL;

0.0, Stress 0.0;

double DistOriginalSpace=O.O, DistTargetSpace=O.O, K=O.O;

for (register int i 0; i < Tmax; i++)

B.42

Stellenbosch University https://scholar.sun.ac.za

DistOriginalSpace =0.0;

Obsrvl = random(TotalPoints); Obsrv2 = random(TotalPoints);

while(Obsrvl == Obsrv2) Obsrv2 = random(TotalPoints);

for (register int k = 0; k < O_Dim; k++)

Ptr = (double *)OriginalSpace[k]->begin();

Dis tOr i gin a 1 Spa c e +
(Ptr[Obsrvl]-Ptr[Obsrv2])*(Ptr[Obsrvl]-Ptr[Obsrv2]) ;

DistOriginalSpace = sqrt(DistOriginalSpace);

DistTargetSpace = 0.0;

for (register int k = 0; k < T Dim; k++)

Ptr = (double *)TargetSpace[k]->begin();

DistTargetSpace +=
(Ptr[Obsrvl]-Ptr[Obsrv2])*(Ptr[Obsrvl]-Ptr[Obsrv2]) ;

try

DistTargetSpace=sqrt(DistTargetSpace);

TotalDistance += DistOriginalSpace;

try

K (DistOriginalSpace-DistTargetSpace)*

(DistOriginalSpace-DistTargetSpa g e)/DistOriginalSpace;

catch(...)

K = 0.0;

Stress += K;

Stress /= TotalDistance;

catch (...)

Stress=O;

return Stress;

} ;

#endif

8.43

Stellenbosch University https://scholar.sun.ac.za

HELP ON THE a-GP PACKAGE

C.1 Possible analysis that can be conducted using a-GP

Two modelling techniques are available on this package: Process Modelling and

Data Projection.

o For process modelling any multi-input, multi-output system can be analysed.

However time-series prediction is not yet available on this package.

o For data visualization purposes a multi input system can be analysed.

o Although there is no limit on the size of a data set, try and keep each data set

less than 2000 observations per variable. Because a-GP is a population-based

searching algorithm, a vast amount of processing is required which will slow

down the computer!

o There is no limit on the number of variables.

o Try and keep population sizes less than 1000 for acceptable processing levels.

C.2 How to select a new algorithm

Click on File I New I Regression (for multi-input multi-output modelling) or

File I New I Feature extraction (for data projection). The newly selected process

will appear in a drop-down process box.

C.3 How to select a different process

Click on the down arrow of the process list box and select a new process from
the list of available processes. See Figure C.1.

C.1

Stellenbosch University https://scholar.sun.ac.za

Figure C.2: The drop down list of the available processes. To activate one
of the processes move the mouse cursor to the process and click.

C.4 How to change the properties of an algorithm

All processes have properties such as Population size, Elitism, Input

vectors, etc. Some of these properties can be directly manipulated. Others cannot.

The properties which can be changed will have either a drop-down box or an edit

control appear next to them when the user clicks on the value field of the property box.

The property box is shown in Figure C.2.

Note that the box is divided into two fields, a Name field and a Value field. The Name

Figure C.3 : The property box with all the available properties of the active
process. The box is divided into two regions: a Name field and a Value field.

fields indicates the name of the property while its associated value lies within the Value

field. To change the value click on the Value field.

C.2

Stellenbosch University https://scholar.sun.ac.za

C.S How to import data

C.S.1 Format of data file

All data files have to be in text format. Each column can be separated using a tab,

space or comma delimiter. The first row may include labels for each column while all

subsequent rows must have numeric values.

C.S.2 Importing the data

Select a data file by click on File I Open and selecting the text file you wish to analyse.

Once the variables have been send to their desired process, they should appear in the

Input Variables property of the property box. Clicking on the expand button

Figure C.4: The contents of the data file is displayed in the Data Import
Wizard. If the first rows have labels click on "Labels in first row". The data
type of each column can be specified by right clicking on the Type row of
the corresponding column. Click on U»" to continue.

(indicated as a u+") all the variables or vectors will appear below the Input

Variables property. Ifthe current process is a Regression process, the variables that

one wishes to use as output variables may be moved to the Output Variables

property by clicking down with the mouse button on the name property of the variable

and dragging and releasing it on the Output Variables property.

C.3

Stellenbosch University https://scholar.sun.ac.za

fir~ Data ImpOIt Wi~ard BGI E:l

Figure C.S : If the contents of al/ the columns contain valid numeric values,
the variables may b e send to any of the processes listed in the process list
box. Click on the down arrow and select a different process you wish to
send the variables to.

C.6 Starting the algorithm

C.S.1 The Start button

Clicking on S imul at i on I S ta r t will start the simulation of the currently active process.

This process' 10 appears in the process drop-down box.

C.S.2 The Pause button

The algorithm can be Paused any time during simulation. Go to Simulation I Paus e

to pause it. When the current algorithm is paused a new algorithm can be selected from

the available processes in the process box. This algorithm will then become active.

Clicking on S imulation I Sta r t will allow the newly selected process to

continue/commence its simulation.

C.S.3 The Restart button

C.4

Stellenbosch University https://scholar.sun.ac.za

At any time during the simulation, one can restart the simulation. This will send an

initialize signal to the active process, which will force it to re-initialize and subsequently

restart. Click on Simulation I Restart to restart the active process.

C.7 Plotting the results

C.7.1 Available charts

Charts are divided into two categories: Active and Inactive charts. An Active chart is

one which is continuously updated as the simulation progresses, while an inactive chart

only displays the plot of a single instance during simulation. This basically implies that

when an Active chart is used the execution speed will be degraded as the chart is

updated. Inactive charts, although faster, does not allow continuous monitoring of the

simulation.

The following charts are available:

o Active and Inactive line charts.

o Inactive scatter charts: Useful for feature extraction. It requires two vectors. One

for the x-axis an another for the y-axis.

o Inactive frequency distribution charts: These charts allows the visualization of

the distribution of a vector.

o Active and Inactive step line charts.

C.7.2 Dragging a vector to a chart

To display a specific variable or vector on a chart, click the mouse on the Input

Variables, Output Variables or System Variables property. A list of available

vectors will appear. A variable or vector can be identified by looking at the Value field

of the property box. The size of the variable will be presented in the following format
,

"<row x col>". Hold the mouse button down (in the Name field) on the specific variable

you wish to plot, and drag it to the specific chart on which you would like to have it

plotted.

c.s

Stellenbosch University https://scholar.sun.ac.za

C.7.3 Removing a specific plot from a chart

Right click on the specific chart from which you would like to remove a plot or plots. A

list of available plots will appear (see Figure C.5).

Select the plot you want to remove by clicking on Delete and the plot you wish to

remove. Alternatively you may decide to remove all the plots. Select Clear all .

Figure C.6 : The available plots are displayed on the pane!. Clicking on any
of the variables will remove it from the current chart.

C.7.4 Changing chart types

Click on the specific chart that you would like to change. Now click on the Chart

Components button at the bottom of the screen. A list of available charts types will

appear on the left panel. Click on any chart type that you would like the selected chart

to change to.

C.6

Stellenbosch University https://scholar.sun.ac.za

