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SUMMARY 

Enhancing the performance of any process requires a detailed knowledge of 

the unknown system, with a mathematical model being the most common means of 

representing this knowledge. The most frequently used statistical techniques, assume 

that any relationships between input and output variables are linear and that the data 

itself is normally distributed. However, real world systems can be highly non-linear and 

linear approaches can therefore fail to predict the behaviour of the system accurately. 

Explicit specification of optimal structure in large non-linear models is often not practical 

and as a result, non-parametric methods (kernel regression, artificial neural networks, 

etc.) are usually employed. Although these models allow accurate representation of 

complex systems, they can be very difficult to interpret. 

This research project explores a novel approach to this problem of mathematical 

modelling which attempts to evolve optimal parametric models, based on the Darwinian 

mechanism of evolution. This approach, referred to as genetic programming (GP), 

facilitates development of explicit or implicit models, or any mix of these two extremes, 

as dictated by the problem and unlike other methods, it can handle a trade-off between 

accuracy and interpretability with great ease. 

During this research; a -commercial application (a-GP) was developed, since very few 

commercial systems are currently available. Some techniques were developed, which 

improved the performance ofthe original algorithm considerably. For instance, memory 

demands were decreased by a factor of 5 by utilizing a different implementation model. 

Improved convergence and robustness was obtained by using a correlation-based 

fitness function in conjunction with a correction filter which reduced the sum of the 
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squared errors; at the expense of a more complex model. The evaluation process was 

expedited by evaluating each tree-like structure as a reverse polish expression; as 

opposed to a branch-node reduction technique. Additional execution speed was further 

obtained by implementing the algorithm in c++ (an object oriented compiled language) 

which is significantly faster than the original LISP (an interpreted language) 

implementation, . 

The newly improved algorithm, a-GP, was applied to four industrial data sets and the 

results were compared against other methods such as standard genetic programming, 

multilayer perceptron neural networks and linear regression. It was found that a-GP 

outperformed standard genetic programming on all four case studies, while improving 

on neural networks on half of the runs. 

The evolved models tended to be complex. This could be attributed to the lack of 

parameter estimation that the genetic programming algorithm tried to compensate for 

by evolving complex tree structures; which it used to approximate the parameters. 

As a data visualization tool, a-GP was applied to four bench marking data sets used 

extensively in the literature. The results acquired with a-GP compared favourably with 

those obtained by other methods with the additional benefit in that a-GP was able to 

evolve simple mapping functions, which clearly indicated how the variables related to 

the structure. Additionally, the algorithm was applied in the mapping of two industrial 

processes. The results showed distinct clustering tendencies within the data, indicating 

the different operating regimes of the processes under investigation. 
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OPSOMMING 

m die vermoe van 'n proses stelsel te verbeter vereis 'n gedetaileerde kennis 

of model van die onderliggende proses. Die statistiese tegnieke wat meestal gebruik 

word, neem aan dat enige verwantskap tussen die intree- en die uittree-veranderlikes 

lineer is en dat die data self normaal versprei is. Ongelukkig is realistiese probleme 

dikwels nie-linieer en linieere benaderings kan nie die gedrag van sulke stelsels 

akkuraat karakteriseer nie. Die eksplisiete spesifikasie van die optimale struktuur in 

groot nie-linieere modelle is nie altyd prakties moontlik nie, met die gevolg dat nie­

parametriese metodes (basisfunksie-regressie, kunsmatige neurale netwerke, ens.) 

gebruik word. Alhoewel hierdie modelle akkurate voorstellings toelaat van komplekse 

sisteeme is hulle baie moeilik om te interpreteer. 

Hierdie tesis beskryf 'n unieke benadering tot die probleem van wiskundige modellering 

deur optimale parametriese modelle te evolueer, wat op die basiese beginsels van 

Darwin se evolusionere model berus. Hierdie tegniek, wat genetiese programmering 

(GP) heet, kan eksplisiete, sowel as implisiete modelle ontwikkel of enige kombinasie 

daarvan, soos gedikteer word deur die probleem. Anders as ander metodes, kan dit ook 

maklik 'n balans tussen akkuraatheid en interpreteerbaarheid handhaaf. 

Gedurende hierdie navorl?ing is_ 'n kommersiele sagteware-pakket (a-GP) ontwikkel, 
- - - ._.- ~ - - - - -

aangesien baie min sulke pakkette tans beskikbaar is. Verskeie tegnieke is ontwikkel 

wat die standaard algoritme aansienlik verbeter het. By voorbeeld, die aanvraag na 

geheue is verminder met 'n faktor van 5 deur gebruik te maak van 'n alternatiewe 

implementeringsmodel. Versnelde konvergensie en robuustheid was ook verkry deur 

gebruik te maak van 'n korrelasie-gebaseerde fiksheidfunksie in samewerking met 'n 
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korreksiefilter wat die som van die gekwadreerde foute geminimeer het. Die 

evaluasieproses was ook versnel deur elke boomstruktuur as 'n omgekeerde Pooise 

vergelyking op te los, in plaas van 'n tak-node vereenvoudigingstegniek. Die verwerking 

was verder versnel deur die algoritme te implementeer in C++ ('n objek georienteerde, 

gekompileerde taal) wat aansienlik vinniger is as die oorspronklike LISP 

(ge"interpreteerde taal) implementering. 

Die nuwe verbeterde algoritme, a-GP, is toegepas op vier realistiese probleme met die 

doel om regressiemodelle te genereer en die resultate is vergelyk met die verkry deur 

ander tegnieke, 5005 standaard genetiese programmering, kunsmatige neurale 

netwerke en linieere regressie. Daar was gevind dat a-GP op die standaard genetiese 

programmering verbeter in al vier gevalle, terwyl dit op kunsmatige neurale netwerke 

verbeter het op een van die toetsstelle. Die mode lie het geneig om kompleks te wees, 

wat interpretasie bemoeilik het. Dit kan toegeskryf word aan die tekortkoming van 'n 

parameterbenadering, waarvoor die genetiese programmering algoritme probeer 

kompenseer deur komplekse boomstukture te ontwikkel. Die algoritme gebruik die 

strukture om die parameters af te skat. 

a-GP is ook gebruik om data te visualiseer. Die resultate op vier datastelle het gewys 

dat a-GP baie goed vergelyk met ander metodes, terwyl dit die addisionele voordeel 

gehad het, dat dit eenvoudige projeksie-funksies kon evolueer wat duidelike 

verwantskappe tussen die veranderlikes en die struktuur uitgewys het. Die algoritme 

was ook toegepas op die projeksie van twee industrieele stelsels na twee dimensies vir 

visualisering. Die resultate het duidelike trosvorming in die data uitgewys, wat 'n 

indikasie was van die verskillende operasionele toestande van die-prosesse. 
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INTRODUCTION TO EXPLORATORY DATA 
ANALYSIS AND EMPIRICAL MODELLING 

1.1 Background to exploratory data analysis 

he tremendous acceleration in computer technology, which was accompanied 

by a reduction in hardware size and an increase in computational speed; and the 

emergence of the internet and especially the World Wide Web (WWW) has led to an 

increase in data traffic and especially data processing. Chemical and metallurgical 

process industries have likewise experienced a continued growth in large data systems. 

This has precipitated intense efforts to develop more efficient methods for the 

exploration and interpretation of large volumes of data. It is therefore not uncommon 

for the individual analyst to have to interpret many hundreds or even thousands of 

variables and hundreds of thousands of observations off-line, while in automated 

monitoring and control systems, data volumes of an order of magnitude higher may 

have to be accommodated. 

Exploratory data analysis, therefore, aims to find interesting structures in data for 

visualization purposes. These structures may ultimately lead to an increased 

understanding of the unknown process and may be used for empirical modelling. As 

such, data-are usually -pre-processed via 'exploratory data analysis before the actual 

modelling occurs. 

Principal component analysis (PCA) is the most widely used tool for exploratory data 

analysis (Kendall, 1975; Jolliffe, 1986; Piovoso et a/., 1992; MacGregor, 1989; 

Stephanopoulos and Guterman, 1989). However, principal component analysis is a 

linear technique. This has lead to several attempts to extend the technique to deal with 

1 

Stellenbosch University  https://scholar.sun.ac.za



1- Introduction to Exploratory Data Analysis and Empirical Modelling 

non-linearities arising from complex data. In this regard, artificial neural networks have 

been used extensively (Lampinen and Oja, 1995), (Mao and Jain, 1995), (Pal and Eluri, 

1998), (Kraaiveld et a/., 1995). Also, major advances have been made with methods 

such as cluster analysis, which try to group individuals or objects that are more 

homogeneous than objects that reside in other groups; factor analysis, which reduces 

the dimensions of a problem, similar to principle component analysis, except that the 

effect of noise is taken into account and projection pursuit analysis which tries to find 

directions such that the projection of the data in that direction has an "interesting" 

distribution. 

One of the main problems with the non-linear techniques is their inability to generate 

simple non-linear functions which can transform the higher dimensional data to a lower 

dimensional space. The lack of transformation functions can lead to an inability (eg. 

Sammon mapping) to generalize which results in the retraining of the system should 

new data arrive. Also the transformations obtained via non-parametric solutions are 

restricted in the sense that the models are difficult to interpret. 

Therefore, the idea is then to construct explicit and simple, non-linear transformation 

functions, using genetic programming. This will not only allow generalization (within the 

range of the data used for model development and avert exhaustive retraining) but also 

facilitate the development of interpretability transformation functions. 

1.2 The nature of empirical modelling of process systems 

Processing plants require periodical adjustments of their operating conditions to 

maximize profits or minimize costs (Seborg et a/., 1989). For example, instrumentation 

has to be recalibrated and the plant units need to be adjusted to accommodate 

variations in ore feed; blending operations in the petrochemical industry may have to 

be modified in response to changes in crude oil feedstocks, etc. These modifications 

require some form of representation or modelling of the processes, without which 

adjustments could result in significant inefficiency in overall operations (Greeff and 

Aldrich, 1998). 
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The advantage of having a process model is that it can be analysed to increase 

understanding of the underlying physical phenomena inherent to the system. Although 

possible, the development of a model requires a detailed knowledge of the physics and 

chemistry of a system. This is not always viable, owing to the complex and non-linear 

nature of industrial process systems. Also, it may require a considerable amount of time 

and resources to develop a realistic model. Nonetheless, an accurate process model 

can improve process operability. Empirical models are often based on regression 

analysis, aimed at minimizing a least square criterion. 

A regression analysis tries to model an input-output description of the system using 

historic data. The most widely used and well understood regression model is the linear 

model as depicted in Eq. 1.1. 

n 

F(x) = 8 0 + 8 1X 1 + 8 2 X 2 +···+8n X n = 8 0 + L 8 i X i (1.1) 
i =1 

Although simple, linear models try to make a linear approximation of the process while 

in practice most systems are non-linear. This has lead to the development of non-linear 

methods using various techniques, some of which generate solutions using a simulated 

form of evolution, viz. evolutionary 

algorithms (EA), other, such as 

inductive systems, try to build decision 

trees that are equivalent to IF-THEN 

rules , while packages like CART 

construct regression trees that are 

similar to decision trees, except that the 

nodes do not represent classes, but 

continuous values. Additionally, 

polynomial regression, breakpoint 

regression and piece-wise regression 

are also used. Perhaps the most 

important and widely used are Figure 1.1 : Typical structure of a feedforward 
neural network. 
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algorithms that try to model solutions which mimic the workings of the brain, viz. artificial 

neural networks (ANN). Non-linear methods are typically based on iterative procedures 

for estimation of the parameters, such as Gauss-Newton, Levenberg-Marquardt or 

Powell algorithms, which are normally extremely computationally intensive and thus 

slow; whilst in linear methods the parameters are calculated directly. 

Usually no a priori information is available regarding the structure of the model. This 

results in considerable effort to find an adequate model to which parameters may be 

fitted. For non-parametric techniques, such as artificial neural networks, no explicit 

structure specification is required1 but the derived mathematical models are extremely 

complex and very difficult to analyse. Figure 1.1 illustrates the ~tructure of a typical 

feedforward neural network. 

As explained in more detail in Chapter 2, evolutionary methods (specifically genetic 

programming) facilitate the automatic construction of explicit models. This can lead to 

considerable cost savings over manual efforts. In fact it can provide a feasible approach 

to the development of explicit models, where other methods may not be viable at all. 

1.3 The objectives 

As mentioned previously, in this thesis it is shown that by making use of genetic 

programming, interpretable empirical models and transformation functions can be 

constructed without any need to specify explicit model structures. This technique is also 

more cost effective in the sense that it does not need any encoding schemes as 

required by other evolutionary algorithms. 

Owing to the novelty of this algorithm, very few commercial tools are available that 

employ the genetic programming algorithm. Consequently, this· necessitated the 

development of a commercial application which could perform all of these tasks, i.e. 

1Although artificial neural networks do not need any information regarding the structure of 
the model, the neural network architecture still need to be specified, i.e. the number of hidden layers 
and nodes, type of activation function, etc. 
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perform exploratory data analysis and generate empirical models, using this algorithm. 

o One of the main objectives of this thesis was the design of a commercial 

package that incorporates the genetic programming algorithm, and the creation 

of a simple and intuitive graphical user interface (GUI). 

Specifically, genetic programming algorithms will therefore be used 

o for data visualisation purposes, to find explicit symbolic mapping functions which 

allows the visualisation of data residing in a high dimensional space (d > 3), to 

be viewed in a lower (d = 2) dimension. 

o to obtain explicit symbolic functions to describe the input-output relationships 

within processes, especially in the chemical and metallurgical industries. 

o for comparison with other methods, such as neural networks and linear 

regression techniques. 

Additionally, some improvements will be made to the original algorithm to 

o improve the convergence speed and robustness of regression models. 

o reduce memory usage and increase processing speed. 

Included in this thesis is the fully functional software package, a-GP, which the reader 

may install and evaluate on his/her own computer. The reader is advised to consult 

Appendix C to gain understanding on how to use this software. 
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CHAPTER 2 
THE GENETIC PROGRAMMING PARADIGM 

2.1 The emergence of algorithms driven by evolution 

2.1.1 A brief history of Darwin's evolutionary world 

In 1859, Charles Darwin published his controversial "The Origin of Species". In 

this book he claimed that life itself was compelled by evolution and that the main driving 

force behind evolution was natural selection. In short, natural selection implied that the 

strongest, or fittest, individuals within species would have a better chance of surviving 

and being selected for mating. They would therefore be more likely to pass there genes 

Figure 2.1 : According to the evolutionary 
theory, mankind and other primates, share a 
common ancestor. 

adapted completely to its environment. 

on to the next generation, than the 

weaker members of the species. 

Subsequently, the offsprings of these fit 

individuals would therefore possess 

traits from both parents. Given the 

environment in which the species live, 

the offspring would be better adapted 

to it than the parents. With increasing 

generations the species would have 

changed to the point where it has 

Although this notion of evolution is not without its discrepancies, some very exciting 

work has been done since the early 1960's, by applying the concept of evolution and 

natural selection to optimize real world problems. 
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2.1,2 An overview of evolutionary strategies 

In 1963, two students at the Technical University of Berlin met and collaborated 

on experiments which used the wind tunnel of the Institute of Flow Engineering. During 

the search for the optimal shapes of bodies in a flow, which was then a matter of 

labourious intuitive experimentation, the idea was conceived of proceeding strategically. 

However, attempts with coordinate and simple gradient strategies were unsuccessful. 

One of the students, Ingo Rechenberg, now Professor of Bionics and Evolutionary 

Engineering at the Technical University of Berlin, hit upon the idea of trying random 

changes in the parameters defining the shape, following the example of natural 

mutations. In this way the evolutionary strategy (ES) was born. A third student, Peter 

Bienert, joined them and started the construction of an automatic experimenter, which 

would work according to the simple rules of mutation and selection. Evolution strategies 

were invented to solve technical optimization problems like constructing an optimal 

flashing nozzle, the design of truss bridges and more recently to the design of partially 

recurrent neural networks. Until recently the evolutionary strategy was only known to 

civil engineers, as an alternative to standard solutions. Although genetic algorithms 

(GA), (Holland, 1992) which were developed in the ·1960's, are closely linked to 

evolutionary strategies, genetic algorithms use crossover as the main searching 

operator whereas evolutionary strategies use mutation. Crossover is a stochastic 

process which allows two parents to exchange some of their traits (or genes) during 

mating and hence produce offspring which resemble both of them. Both genetic 

algorithms and evolutionary strategies are referred to as evolutionary algorithms (EA). 

At present evolutionary algorithm is an umbrella term for all population based 

algorithms that employ the basic principles of evolution, viz. natural selection, crossover 

and/or mutation to evolve new and fitter individuals during successive generations. 

2.1.3 An overview of genetic algorithms 

The genetic algorithm (GA) developed by Holland (1992) in the early 1960's is 

a model of machine learning which derives its behaviour from a metaphor of some of 

the mechanisms of evolution in nature, i.e. the natural selection, mutation and 

crossover of genetic material. This is done by the creation of a population of individuals 
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represented by chromosomes. In essence a set of character strings that are analogous 

to the base-4 chromosomes that can be seen in our human DNA. The individuals in the 

population then go through a process of simulated evolution until a good or optimal 

solution is found. 

Genetic algorithms are used in a number of different application areas. These 

applications are typically multidimensional optimization problems in which the character 

string of the chromosome can be used to encode the values for the different 

parameters being optimized. 

In practice, one can implement this genetic model of computation by having arrays of 

bits or characters to represent the chromosomes as shown in Figure 2.2. 

Figure 2.2 : An example of a chromosome in genetic algorithms. This 
chromosome is comprised of four genes. Each gene is represented by a 
different colour. 

Simple bit manipulation allows the implementation of cros~over, mutation and other 

operations, as indicated in Figure 2.3. The crossover operation, between two 

individuals, results in genetic material being selected from both parents. This material 

is then swapped (Figure 2.3.a) and the resulting individuals are the offspring of the two 

parents. The offspring become members of the next generation. Mutation results in one 

of the bits being randomly flipped to either 1 or 0, as indicated in Figure 2.3.b. This new 

individual becomes a member of the next generation. 

Although a substantial amount of research has been performed on variable-length 

strings (Nordin and- Banthaf,-1995) ana Other structures (Iba and Sato, 1992), the vast 

majority of work [with genetic algorithms] has focussed on fixed-length character 

strings. In this regard genetic algorithms differ substantially from genetic programming 

(GP) (Koza, 1992) that does not have a fixed length representation and does not need 

any encoding scheme. 
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Parent individual 1 Parent individual 2 

1 0 11 11 I 0 1 it411 1 0 1 0 1 10111010111111111 
I I ..... : .... - . . : 

········--...·····:::f ······· ····· ···· · 

Offspring 1 Offspring 2 

(a) Crossover operation 

Original individual New individual 

(b) Mutation operation 

Figure 2.3 : A schematic representation of the genetic operators: (a) 
crossover and (b) mutation. 

2.2 The emergence of automated programming: Genetic Programming 

2.2.1 An introduction to genetic programming 

The notion of instructing a computer what to do as opposed to how to do 

something has stimulated the human mind since the early stages of the development 

K 

Figure 2.4 : A parse tree in 
GP conSisting of two 
functional nodes and three 
terminal nodes. 

of the computer. This dream came a step closer to reality 

when John Koza (Koza, 1992) introduced a form of a self­

modifying code generator, which he called Genetic 

Programming or GP. Using the LISP programming 

language as an implementation platform, and the ideas of 

natural selection (i .e. survival of the fittest and genetic 

manipulation) as the main driving force behind his 

algorithm, he was able to generate (or evolve) complete 
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and syntactically correct computer programs which could be used in virtually any field 

or application. Genetic programming did not require any a priori knowledge regarding 

a model structure which is required in virtually all other algorithms such as evolution 

strategies, genetic algorithms, artificial neural networks (ANN)1, mUltivariate linear 

regression, etc. Since no encoding and no structure was required, the algorithm could 

be seen as a "black box" approach to solving problems. Essentially genetic 

programming was a new paradigm in the sense that any solution to a problem could be 

expressed in a parse tree-like structure as shown in Figure 2.4. 

Genetic programming is a programming variant of genetic algorithms. Unlike genetic 

algorithms_ the objects tbat constitute the population are not fixed-length character­

strings (see Figure 2.2) that encode possible solutions of the problem at hand, but 

programs that are the possible solutions to the problem. Genetic programming assumes 

no a priori information regarding inputs, structure or parameters. 

In genetic programming every individual is represented as a tree-like structure of 

variable length. This representation can be seen as a phenotypic depiction of the 

individual. For example the simple program "x2+ x 1 ~ K" would be represented as in 

Figure 2.4. 

As one can see, the parse tree consists of nodes and leaves. A node acts as a function 

or operator and a leave as a terminal. A function can be any known mathematical 

function or operator, such as " +", "-", "*", "sin", ... , etc. The terminals are usually the 

input variables of the process under investigation or any other known2 constants. In 

Figure 2.4 there are two function nodes {+, *} and three terminal nodes {X11 X 21 K}. The 

sets of all possible functions and terminals, which can be used to construct an 

individual, are termed the function set, F, and terminal set, T, respectively. Each 

element in the function and terminal set is referred to as an allele, which is derived from 

biological terminology. 

1 For an artificial neural network, the network architecture has to be specified. 

2Actually the term known is a little misleading since one generally does not know anything 
about the process. 
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The advantages of using a parse tree is that (1) it can be rewritten in Polish notation, 

(2) it lends itself to easy manipulation and (3) it is very easy and fast to evaluate when 

expressed in Polish notation. In Polish notation the tree in Figure 2.4 can be expressed 

as 

(2.1 ) 

Which equals 

(2.2) 

in standard notation. 

2.2.2 The characterization of an evolutionary algorithm 

All evolutionary based algorithms' implementations can be characterized by the 

following sequence of events: 

1. First construct an initial random population of N individuals. 

2. Evaluate each individual against its objective and assign it a fitness value. Check 

for the termination criteria using the fitness value. 

3. Select individuals for reproduction based on their fitness, i.e. those individuals 

who exhibit a high degree of fitness have a better chance for reproduction than 

. dtners-with -a lower fitne·ss. These individuals are placed in a mating pool. The 

mating pool is an intermediate container which the selected individuals enter 

before one applies the genetic operators to create the offspring. 

4. Apply genetic operations, such as crossover and mutation, on randomly selected 

individuals in the mating pool. 
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5. Repeat step 2. 

One iteration of this loop is referred to as a generation. There is no theoretical reason 

for this as an implementation model. Indeed, this punctuated behaviour is not seen in 

populations in nature as a whole, but it is a convenient implementation model. The first 

generation [generation 0] of this process operates on a population of randomly 

generated individuals. From there on, the genetic operations, in concert with the fitness 

measure, operate to improve the population. Figure 2.4 presents a flowchart of an 

evolutionary algorithm. 

2.2.2.1 

Figure 2.5: The basic flowchart characterizing the behaviour of an 
evolutionary algorithm. 

Initialization 

When the algorithm is initialized, N individuals are randomly generated. Every individual 
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is constructed as a parse tree (see Figure 2.4) from alleles of the function set and 

terminal set. These individuals can range from less than ten to several thousands. It is 

extremely important that the initial population be as diverse as possible to reduce 

premature convergence. 

2.2.2.2 Evaluation 

After this process of initialization, the fitness values, fi , of all N individuals are computed. 

The fitness is a measure of the individual's ability to survive in its environment, while 

the fitness function itself characterizes the behaviour of the population. That is, if the 

fitness function assigns a high fitness to individuals who can approximate a desired 

state as accurately as possible, then after numerous generations all members of the 

population will start behaving in such a way that they can approximate the desired state. 

For regression, the environment will typically be the output data of the process under 

investigation. If y = F(x 1'X 2' .. . ,x k)' where x 1 ' . .. , X k represents the input vectors 

of the process, y the output and F the functional representation of the process, the 

values of vector y will represent the environment. Every individual will represent a 

possible solution to the process. The difference between the actual output, y, and the 

predicted, y, is here defined as the fitness. This kind of fitness criterion is referred to 

as an error-based fitness. In regression one can among other use an error-based 

fitness function or a correlation-based fitness function. In a correlation-based fitness 

function the correlation between the actual output, y, and the predicted, y, is used as 

a measure of fitness. 

The fitness (f;).of tl"let'th individual, using an error-based fitness, can be expressed as 

follows: 

(2.3) 

Where Y k is the k'th value of the process output and Yi
k 

is the k'th value of individual 
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i. For a correlation-based fitness, (2.3) changes to 

(2.4) 

COV(Y'Yi) represents the covariance betwe'en the process output, Y, and the tth 

individual, Y i' cry and cry; are there respective standard deviations. The absolute 

value of the correlation is used to bound it between 0 and 1. 

In (2.3) the fitness will decrease as the individual becomes fitter in its environment. For 

convenience, the fitness is expressed as a value between 0 and 1, where 1 represents 

a 100% accurate description of the process and values close to 0 a very poor 

description. (2.3) can now be rewritten as: 

(2.5) 

to invert the relationship between the individual's fitness and the error-based criterion 

in (2.3). Note that in an error-based fitness function, either the sum of the squared 

errors (SSE) or the mean of the squared errors (MSE) is used as a means of error 

measurement. 

2.2.2.3 Selection 

Selection is the phase driven by natural selection, i.e. survival of the fittest. Those 

individuals who exhibit the greatest fitness are selected for mating and to contribute 

some of their traits (sub-trees) which will be passed on to the next generation. During 

selection a selection scheme is used to select N individuals to enter the mating pool. 

Three selection schemes are typically employed in GP: 

o Fitness proportionate: The fitness of the individual is an indication of its probability 
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to be selected for reproduction. The [selection] probability of each individual is 

f. 
defined as Pi = -'- where fT is the total fitness of the current generation. Those 

fT 

individuals who have a higher fitness than others will constitute a larger part of the 

mating pool as opposed to less fit members, therefore the average population 

fitness increases. 

D Tournament selection: Two or more individuals are randomly selected from the 

current population to compete against one another. The fittest individual is 

selected to enter the mating pool for reproduction. Normally more than two 

individuals will be selected to compete against one another. Too few competitors 

will eventually cause slow convergence while too many will facilitate premature 

convergence and a rapid decay in diversity. Usually three competitors are 

sufficient for this selection scheme. 

D Rank selection: The M fittest individuals have a probability of, say, 70% for 

reproduction, while the remaining, N-M, only have a probability of 30%. 

Fitness proportionate and Tournament selection are the two selection schemes 

normally used. There is no evidence as to which is the better of the two. Tournament 

selection, however is favoured by most researchers, since it appears to be a more 

natural scheme. 

One of the major problems with selection is that, with increasing generations, the 

diversity within the population decreases. This normally leads to premature 

convergence. 

2.2.2.4 

After the selection phase, the selected members (after entering the mating pool) are 

subjected to genetic operations. A percentage, Pc, (between 50% and 90%) are 

selected for crossover. To maintain diversity, a small percentage Pm (between 0% and 

10%) are selected for mutation. The remaining members are reproduced without 

change. 
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o Crossover: During crossover, two individuals are randomly selected from the 

mating pool. These individuals are the parents. A random node is chosen from the 

first parent's tree. This node represents the crossover point of the first parent. The 

same is done for the second parent. The two nodes and there respective sub­

trees are the genetic material that is swapped between the two parents. After 

swapping their respective genetic material, these new members are termed the 

progeny or offspring of the two parents. As depicted in Figure 2.6, crossover is 

representative of the analogous sexual process observed in biological 

populations, since two individuals are involved. By swapping genetic material in 

this way, the vicinity of the two parents in the search space can be explored. 

Parent Individual 1 Parent Individual 2 

Offspring 1 Offspring 2 

Figure 2.6 : A graphical depiction of the crossover operation. Two points are 
randomly selected on the two parents and their respective sub-trees are 
swapped. 

o Mutation: Mutation is mainly used to restore some lost diversity in the population 
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and acts as a random search mechanism. It proceeds as follows: one individual 

is selected at random from the mating pool. A node is randomly selected for 

mutation. Everything from the node downwards is removed and replaced with a 

randomly generated sub-tree. Mutation is representative of an asexual process 

associated with biological populations, since only one parent is involved. Figure 

2.7 illustrates the mutation operation. 

Original Individual 

Randomly generated 

X, ~~ subtree 

X1 0.6 

New Individual 

Figure 2.7: A random node is selected on the parent and replaced by a 
randomly generated sub-tree, during mutation. 

Note, however, that crossover, which is a stochastic searching operator, is the main 
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genetic operator. Mutation plays a very small (if any!) role in GP. Both crossover and 

mutation are search operators, in that they allow the exploration of different parts of the 

search space. Increasing the search rate will automatically result in a faster search, but 

at an increased risk of entrapment in a local optimum. Specifying too Iowa rate will 

avoid entrapment. Unfortunately one does not have unlimited time and selecting a low 

search rate will be too time consuming. 

2.3 Current limitations in genetic programming 

There are several drawbacks in the way genetic programming algorithms are 

normally implemented. In the following paragraphs each weakness is considered and 

possible remedies are proposed. 

2.3.1 Speed and resources 

Since genetic programming is a population-based searching algorithm, it 

requires an enormous amount of resources, to the detriment of computational speed. 

Previous research conducted by Greeff and Aldrich (1998) confirmed this when even 

a PC equipped with 128MB of RAM eventually ran out of memory even though only 

small computational problems were considered. The wayan individual is represented 

in the system's memory is critical in this regard. The conventional way of representing 

an individual (Koza, 1992), is to implement every node as a pointer in memory, hence 

creating a tree-like structure (in memory) or S-expression containing nodes and leaves 

(see Figure 2.4). Since the original algorithm was implemented in the LISP 

programming language3
, this implementation made sense because a LISP program is 

written as an S-expression. Eachnode is usuallycomprised of the following information: 

o the type of node, functional or terminal (1 byte). 

o a pointer (if it is a terminal) to the value of the appropriate vector in the terminal 

3USP is an interpreted language like BASIC. These languages are much slower than 
compiled languages such as C and C++, because each instruction has to be interpreted during 
runtime to execute the appropriate machine code. 
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list (4 bytes). 

o a variable (if it is a function) to indicate which function is being called (1 byte). 

o pointers to the previous, left and right node in the tree structure (12 bytes). 

o other information the programmer may deem pertinent (4 bytes). 

Adding all these memory requirements yield at least 22 bytes of memory per node. This 

technique lends itself to severe restrictions: 

o memory is squandered on irrelevant information concerning a node, such as the 

pointer to the vector in the terminal list if the node is functional or the value ofthe 

function if the node is a terminal. 

o the left, right and back pointers require additional memory storage. 

o should a function node be required that uses more than two arguments, the 

code will need to be rewritten to accommodate this change. Instead of having 

only a left and right pointer, the structure will require new pointers which will 

eventually only confuse the programmer and increase the memory requirements. 

Vast amounts of memory are required this way which degrades the performance of the 

algorithm. 

Nordin and Banzhaf (1995) implemented the GP algorithm in pure machine code which 

they referred to as Compiling Genetic Programming or CGP. That is, every individual 

was comprised of a linear set of machine code instructions. Since each instruction was 

exactly 32 bits, this approach was more analogous to a genetic algorithm which 

consisted ofchrOl)losomes of varying lengths and genes which were made up of 32 bits 

each. The normal searching or genetic operators, i.e. crossover and mutation, could be 

applied to produce new [and valid!] machine code instructions. The main advantage to 

this approach was that the individuals did not need to be interpreted by the virtual 

machine (which one requires for the other techniques) since they are already in 

machine code. Nordin et 81. (1995) reported a speed improvement by a factor 1500 -

2000 after comparing their algorithm against the traditional S-expression 
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implementation in LISP. Tacket (1994) presented a system written in the C 

programming language which was about 25 times faster when compared against the 

LISP implementation. Suffice to say that Nordin's implementation outperforms any of 

the other at present (which is to be expected since it was implemented in assembler!). 

It should be stressed, however, that the main difference between genetic programming 

and compiling genetic programming is that in the former an explicit mathematical 

function is obtained, while the latter yields an explicit computer program as shown in 

Figures 2.8 and 2.9. The drawback in compiling genetic programming is that no explicit 

mathematical model structure is obtained and therefore the way in which each variable 

relates to the structure is not obvious. 

Polish notation: 
f (X) = - * sin * + X 2 Xl - 5 

Xl cos + Xl X 2 Xl 

Standard form: 
f (X) = sin (5x2+5xl -X2X 1-X/) * 

cos (X l +X2 ) -Xl 

Figure 2.8 : An explicit mathematical 
function evolved by GP written in both 
Polish and standard form. 

Funcl (X) 
begin 

end; 

Xl sin (x 2 ) ; 

Xl xl +5; 

x2 4; 
i = 0; 
while (L < 5) 
begin 

end 

X3 = x3+ i *xl ; 

Inc (i) ; 

Figure 2.9 : An explicit computer program 
evolved by CGP. 

2.3.2 Limitations with-genetic programming as a global searching algorithm 

It has been maintained by numerous researchers that the main obstacle is not 

the development of a model structure, but the simultaneous fitting of parameters to this 

structure. Genetic programming is a global optimizing algorithm, owing to the fact that 

it evolves its own model structures and searches through the discrete tree-like search 

space for the optimal structure. It can only optimize these structures by evolving 
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complex structures to estimate any parameters. 

Koza (1992) introduced his so-called ephemeral random constants. These were random 

numbers that were included in the terminal set and changed every generation. When 

the mutation operator was applied, it would select a new random number from the 

terminal set and hopefully improve the newly mutated solution. The problem here was 

that it was completely random and could not be optimized. To solve this problem 

various other searching algorithms, such as genetic algorithms (Howard and D'Angelo, 

1995) and simulated annealing (Sharman et aI., 1995; Gray et aI., 1996) were used to 

accelerate the identification of optimal model parameters. 

Searching the discrete tree-like structures and continuous parameters concurrently 

seemed to be embraced by researchers as a solution to this problem. However, this 

approach consumed a vast amount of resources, since there were two searching 

algorithms operating concurrently. Even though Howard and D'Angelo (1995) claimed 

that using this hybrid genetic algorithm-program (GA-P) actually improves on the 

original algorithm, careful analysis of their results proves the contrary. Of the fifteen 

different simulation runs they conducted only seven outperformed genetic programming 

by a slight margin! The problem is aggravated by the fact that the search space for the 

parameters can be very large. Consider for example a model with six parameters, each 

considered at 10 levels (as a gross simplification). This means 106 possible parameter 

combinations. By comparison, the number of model structures to be searched could be 

significantly smaller 

2.3.3 The disruptive behavior of the crossover operation 

Genetic programming blindly combines sub-trees when applying the crossover 

operation. This can often lead to a disruption of beneficial sub-functions in the trees. 

Watson and Parmee (199r) introduced the concept of constrained complexity 

crossover or CCC to minimize the disruptive behaviour of crossover. Using this 

technique they assigned a weight factor to each node in the tree-like structure. All 

terminal nodes were assigned a value of 1.0 while function weights varied from 1.1 to 
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1.x, where x is directly related to the complexity of the node. The more complex the 

function the higher its weight. 

To compute the complexity of a specific node (the so-called node complexity or NC) 

each node complexity is expressed as a function of the node complexity values below 

it and the weighting of that node. The complexity of the tree therefore decreases with 

tree depth, while the root node has the highest node complexity. When the crossover 

operator is applied, it is constrained by only applying it to sub-trees with node 

complexity values that fall within a similar range. This ensures that the crossover 

operation is not overly disruptive when it swaps sub-trees between individuals. Watson 

and Parmee found that by using this technique, smaller population sizes were needed 

than with the traditional GP implementation, which greatly reduced memory 

requirements. However, the crossover operator required extra administration to find 

sub-trees with node complexity values within the required range. 

Angeline (1997) introduced two forms of macro mutation, originally conceived by Jones 

(1995) that were mechanically identical to sub-tree crossover, viz. strong headless 

chicken crossover (SHCC) and weak headless chicken crossover (WHCC). When 

SHCC was applied,two parents were randomly selected from the population. For each 

parent a random tree was constructed to mate with. Once the random parent was 

constructed, standard crossover was performed on the given parent and its 

corresponding randomly generated counterpart. The operation was then repeated for 

the second parent and its corresponding random counterpart. After this operation both 

modified parent trees were returned as the offspring. The modified random trees were 

discarded. The redeeming feature of the offspring stemmed from the fact that they 

contained some rand~mly generated material. 

WHCC proceeds exactly like SHCC, except that it has an even probability of returning 

either the modified parent or the modified random tree. This operation was considered 

weak, since for half of the offspring, a small amount of non-random material was 

returned to the population. 

Angeline compared strong headless chicken crossover and weak headless chicken 
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crossover against standard crossover on three data sets, as described in Koza (1992). 

The first data set consisted of an intertwined spiral and the aim was to separate the two 

spirals. The second data set consisted of data collected from the average number of 

sunspots observed for each month since the year 1700. Here the aim was to predict 

when the next sunspot would occur. The third data set was the Boolean 6-bit even 

parity problem. The objective ofthe problem was to induce a function that returns TRUE 

when an even number of terminals are TRUE and FALSE otherwise. Angeline's results 

indicated that standard crossover outperformed both SHCC and WHCC by a slight 

margin on the spiral and the 6-bit even parity problem. However, it did significantly 

worse on the sunspot modelling problem. 

2.3.4 Exploring large search spaces 

A key concern in genetic programming is (1) the size of the search space which 

must be searched and (2) the number of invalid programs (due to type mixing) that are 

produced during initialization and the application of the genetic operators. Even for 

small terminal sets, function sets -and tree depths, search spaces of the order 1030 
- 1040 

is not uncommon (Montana, 1994). One method to reduce the size of the search space 

is to use strongly typed genetic programming (STGP) (Montana, 1994). Montana 

maintained a table giving the types of all available terminals and functions. If a function 

requires its arguments to be of type X, then this implicitly constrained its offspring to 

produce a value of type X. A second table provides type constraints (or type 

possibilities) according to the depth in the tree where type matching occurs. This extra 

.information constrains the choice offunctions to create nodes in the tree to ensure that 

the tree can grow to its maximum depth. During the initialization phase of the population 

(and during crossover and mutation), each parse tree is grown top-down by choosing 

functions and terminalsat random within the constraints of the types in the table. In this 

way the initial and subsequent populations only consists of parse trees that are type 

correct. Strongly typed genetic programming utilizes the structuring of the genetic 

programming S-expressions to reduce the search space. Haynes et 81. (1995) used this 

technique to develop a multiple cooperating agent system where numerous agents 
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cooperated to hunt and track down prey. Their results indicated that strongly typed 

genetic programming was able to evolve programs with a higher success rate than 

genetic programming. Also solutions were generated in a fewer number of generations 

than those obtained by genetic programming. 

2.3.5 Restraining premature convergence 

Like all other searching algorithms, genetic programming tends to converge too 

fast. The reason for this is that with selection the diversity decreases, because the next 

generation will have duplicates of the best individuals. Selection is a necessity in order 

to improve the overall fitness of the population. Selecting individuals by only looking at 

their fitness is a sure way of guaranteeing entrapment in local optima. It has been 

proposed (De Jong, 1975) that to ensure diversity in a genetic algorithm, the Hamming 

distance between chromosomes be used. Since a GA consists of a fixed length 

chromosome consisting of genes, each gene can be visualized as a vector in a n­

dimensional hyper-space; where n equals the number of genes. By selecting individuals 

with Hamming distances (that fall within a similar range) for mating, one is ensured of 

diversity. Another possibility is to distribute several populations (the so-called distributed 

genetic algorithm) over several processors and assign each population to a separate 

processor (Tanese, 1989). However, this approach requires an enormous amount of 

expensive hardware which is not economically viable. 

Although the concept of using a Hamming distance will work [in GA's] the problem 

arises when one tries to express the distance between two individuals in genetic 

programming. Because each individual is a tree-like structure it becomes impossible 

to determine the interspatial distance between them. Also an individual is not unique 

in the sense that there is more than one way of representing a simplified tree. Therefore 

even though one may have two trees that appear dissimilar, when simplified, they are 

exactly the same and occupy the same position in the search space. Koza (1992), 

Langdon (1995) and Winkeler and Manjurath (1997) made use of a parallel genetic 

program which consists of several populations running in series. These populations or 
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demes reduced premature convergence considerably. During crossover, genetic 

material is only shared amongst members of the same deme. This kept the code from 

becoming too tightly focussed in a particular area of the search space and subsequently 

reduced premature convergence. 

2.3.6 Discussion of the current remedies 

From sections 2.4.1 to 2.4.5 the reader was introduced to several of the 

limitations facing genetic programming and some of the suggested remedies. 

Implementing any algorithm, especially a population based algorithm, in an interpreted 

language such as LISP is not advisable. Interpreted languages are simply too slow and 

cannot handle extensive usage of floating point arithmetic. Although fast, machine 

language implementations tend to be restricted to specific hardware platforms. Also 

from a design point of view, machine language programs do not have the scalable 

properties of an object oriented programming (OOP) language, such as C++, SmallTalk 

or Object Pascal. Therefore future extensions to the algorithm becomes a formidable 

task. 

Although several suggestions have been proposed to create some form of local 

optimization in genetic programming, none of these attempts have been wholly 

successful. Using two population based searching algorithms concurrently does not 

yield any significant improvement; it only degrades the available resources. 

Although several suggestions have been proposed to minimize the disruptive behaviour . 
of the crossover operation, none of these solutions have been successful. Enforcing 

strict type checking via strongly typed genetic programming, forces the algorithm to 

evolve syntactical and type correct programs. This in effect shrinks the search space 

which results in higher convergence. 

By using sub-populations and allowing only interaction amongst members of the same 

sub-population, one is ensured of a means to reduce premature convergence. 

Unfortunately, genetic programming does not allow simple (Hamming) distance 
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calculation between individuals, therefore one does not have the advantages of a GA 

to allow individuals who are in close proximity, to mate. 

2.4 Applications of genetic programming 

2.4.1 Robotic control 

Koza (1992) further proposed usage of automatically defined functions (ADF). 

These are subtrees of a genetic program which are randomly selected and incorporated 

into the function set for reuse. These functions form a library of possible useful utilities 

which then may be selected during the mutation operation. Hondo et a/. (1997) used 

this technique to generate programs for robotic control. Andre (1995) used 

automatically defined functions to create an intelligent agent which could collect gold 

placed on random locations on an n x n grid of squares. Langdon (1995) used 

automatically defined functions to create simple abstract data structures, namely a 

circular data queue and an integer stack via genetic programming. Each data structure 

was implemented by five independent, cooperating. procedures. Each procedure was 

represented as an independent tree within the same individual. Thus each individual 

was comprised of five parse trees or S-expressions. Langdon showed that the abstract 

data structures could be successfully evolved. When the data primitives, such as the 

appropriate increment and decrement operations were omitted, automatically defined 

functions could successfully evolve these routines, although it took much more effort 

than when the primitives were included. 

2.4.2 Image analysis and feature extraction 

Recently work has been conducted on employing feature extraction and image 

analysis via genetic programming. One of the main obstacles in image analysis is the 

size of the data sets (up to 1024 x 1024) and the fact that genetic programming is a 

population based searching algorithm. As such, this implies vast amounts of processing 
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power and memory demands, which tend to make population based algorithms 

unfavourable for these tasks. One way of overcoming this obstacle is to process only 

a small portion of the image (say 32 x 32). Daida et al. (1996) used genetic 

programming to extract pressure-ridge and rubble features from multiyear-ice 

signatures. There results showed that the algorithm performed well with a low-resolution 

European remote sensing satellite (ERS) synthetic aperture radar (SAR) data products. 

Teller and Velosa (1995) utilized genetic programming for image recognition in which 

they classified various human faces. They demonstrated that genetic programming can 

generate programs which can correctly recognize different faces. Genetic programming 

has also been used for object detection (Winkeler and Manjunath, 1997) by first 

performing an experiment which extracted statistical features from images to ascertain 

whether the image was a face and then processing gray-scale images to locate faces. 

Although the training was expensive, the first experiment (classifying images by 

extracting features) did well at locating a specific scale offace (i.e. faces of more or less 

the same size), while the second experiment (classifying faces from gray-scale images) 

could locate faces at all scales based solely on intensity, but exhibited an undesirable 

number of misclassifications. 

2.4.3 Language learning applications 

In the field of grammatically-based learning systems, Whigham (1995) used 

genetic programming to map each sentence to a fitness value. Each individual tree 

structure was associated with these sentences to define the structure of the schemata. 

The simple genetic operators, crossover and mutation, were then applied to evolve new 

and grammatically correct sentences. 

2.4.4 Evolving controllers for systems 

Several researches have used genetic programming to evolve controllers for 

systems. Gritz and Hahn (1997) used genetic programming to evolve controllers for 3-D 
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character animation. Although the initial training was extremely time consuming, the 

resulting motion was fluid, physically and biologically believable; and often appeared 

to be very organic. Dracopoulos (1997) applied genetic programming to a highly 

nonlinear control problem, the attitude control problem for satellites. The satellite was 

detumbled and controlled by a control law evolved by genetic programming. 

Simulations seemed to show that the control law could stabilize the system for different 

initial conditions. Dracopoulos proved the theoretical stability of the control algorithm 

found by genetic programming by utilizing the classical theory of Lyapunov functions. 

2.4.5 Process modelling 

During the past few years some work had been conducted in the modelling of 

industrial processes via evolutionary computations (Watson and Parmee, 1997a
; 

Watson and Parmee, 1997b
; Greeff and Aldrich, 1998; Mackay et al., 1997; Kulkarni et 

al. 1999). Genetic programming, however, is capable of finding solutions to relatively 

small problems only, or alternatively, it has to be compromised to allow. it to deal with 

large problems. Mackay et al. (1997) used genetic programming to develop (1) a model 

to infer the bottom product composition of a binary vacuum distillation column and (2) 

a model of a continuous stirred tank reactor system. They used the standard genetic 

programming algorithm [as proposed by Koza] combined with a Levenberg-Marquardt 

method of least squares optimisation to optimise the model constants. There results 

revealed that in each case genetic programming was able to generate an accurate 

input-output model based solely on observed data. The identified structures, however, 

did not provide detailed phenomenological information regarding the system being 

modelled. 

Greeff and Aldrich (1998) attempted to model the acid pressure leaching of 

nickeliferous chromites. This process has previously been investigated by Das et al. 

(1995) for which they derived quadratic regression equations for nickel, cobalt and iron 

dissolutions. The evolved model for nickel and cobalt had an accuracy similar to the 

regression models of Das et al. (1995). The evolved models were significantly more 
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accurate in the case of the leaching of iron. 

Hiden et al. (1997) extended the genetic programming algorithm to model dynamic 

systems. By using the input data, U and approximating the objective function F(u) by 

k 

F(u) = L b j gj(u) (2.6) 
j=1 

a linear combination of functions g,{u), j = 1 ... k, such that 

gj(U) was then evolved via genetic programming. The process dynamics was 

approximated by a simple first order Laplace transform. In order to model non-linear 

process dynamics, (2.6) was augmented with the Laplace transform to give the 

following non-linear dynamic model. 

~ b· g.(u) 
F'(u) =.i...J J J 

j=1 't jS + 1 
(2.7) 

where Lj are the model time constants and's' the Laplace operator. Here the genetic 

programming algorithm was used to determine the non-linearfunctions gl(U), g2(U), ... , 

gk(U) and the values of the time constants LI' L2' .•. , Lk while the coefficients b1, b2, ... , bk 

were determined using batch least squares. Hiden et al. (1997) applied their algorithm 

to the modelling of a plasticating extruder. Their results indicated that models obtained 

with genetic programming are as accurate as those using a neural network with the 

additional benefit of being easy to analyse and interpret. 

2.5 Objectives of this study 

2.5.1 Motivation for this research 

Genetic programming is a very new and rapidly expanding field in computational 
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intelligence. It's main advantage is its ability to evolve symbolic structures which makes 

it ideally suited for virtually any application. The very fact that it does not require any 

encoding schemes or structural information means that it truly takes a "black box" 

approach towards problem solving. From section 2.5 it is apparent that genetic 

programming is a very versatile tool. It is this author's opinion that genetic programming 

will eventually be seen as a viable alternative for artificial neural networks and as such 

more extensive research needs to be. done. 

This research is concerned with finding solutions to overcome some of the obstacles 

in genetic programming. That is 

o looking at ways of speeding up the algorithm. 

o improving memory management and hence reduce the substantial amount of 

resources required by the current implementation of the genetic programming 

algorithm. 

o and increasing convergence and robustness for improved performance. 

Additionally this technique is applied to mineral processing for process modelling 

(Chapter 4) and symbolic feature extraction or dimensionality reduction (Chapter 5). 

Both of these fields have been investigated extensively via other techniques such as 

neural networks, linear regression, gradient descent, etc. Also, the results obtained are 

compared with the abovementioned algorithms which are used as benchmarks. 

2.5.2 Outline of the chapters in this thesis 

Chapter--r infroduces the reader to explorative data analysis and empirical 

modelling and its importance in today's world. Some of the major obstacles 

encountered within these disciplines are highlighted. The objectives regarding this 

research are also presented. 

Chapter 2 provides an introduction to the concepts of evolutionary algorithms and looks 

at the development of genetic programming and the limitations [and current remedies] 
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facing this novel algorithm. Additionally the reader is presented with a wide range of 

applications that use the genetic programming algorithm. 

Chapter 3 focusses on new augmentations incorporated in the genetic programming 

algorithm to improve efficacy in terms, memory demand, execution speed and improved 

convergence and robustness of regression models. The reader is also introduced to 

some object oriented programming (OOP) terminology and why it was used to develop 

the genetic programming kernel. 

In Chapter 4 the augmented algorithm, a-GP, is used to model industrial processes via 

steady-state modelling and the results are compared against those obtained with 

standard genetic programming, linear regression and a multilayer perceptron neural 

network. 

In Chapter 5, a-GP is used for feature extraction or dimensionality reduction on several 

bench marking data sets and two industrial processes. The results obtained from the 

bench marking data sets are compared against those obtained via artificial neural 

networks and other algorithms. 

Chapter 6 presents the reader with ideas for future research while the results and 

conclusions are discussed in Chapter 7. 
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3.1 Taking an object oriented approach towards designing the genetic 
programming kernel 

Object oriented programming (OOP) is a design philosophy in its own right. 

The main difference between OOP and structured programming is that the former tries 

to represent any solution as a closed object which encapsulates the states (variables) 

and methods (functions) through which we alter the behaviour of an object, while the 

latter takes a top-down approach towards solving problems. Object oriented 

programming, however, has the ability to inherit the properties of an object and derive 

a new object which can have new implementations and ultimately change the behaviour 

of the derived object. This ability to inherit and override previous implementations by 

using the same interfaces presents tremendous benefits for programmers. For one, it 

reduces the amount of code writing and debugging considerably. Secondly, a properly 

designed class (or blueprint of an object) is highly scalable; something which cannot be 

readily achieved with structured programming. Some of the terminology used here may 

seem foreign to readers who are not familiar with object oriented programming. 

Although the author has gone to great lengths to explain the terminology, this thesis is 
. . ~- ,....-_._---_ ........ ----_ ... 

not an introduction to object oriented programming. That is beyond the scope of this 

thesis. The interested reader is referred to Tom Swan's: Using Borland C++ 4.5 and 

other books on C++ to help him/her come to grips with object oriented programming. 
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3.1.1 . Designing the abstract base class 

In designing the base class we start off by looking for common properties in our 

algorithm. This process is called abstraction. Any population-based algorithm has: 

o A solution. How the solution is implemented varies from algorithm to algorithm. 

For instance: an artificial neural network's solution consists of neurons, weights 

and activation functions; a linear regression model has parameters, ai' while a 

genetic programming individual is a tree-like structure comprised of nodes and 

leaves. We therefore opt for an open implementation, which we will specify in 

another derived class. 

o A fitness. The solution's ability to solve the problem at hand is rated by this 

floating point value. 

o A population of solutions. We simply use a vector (of unspecified length) to store 

each solution. 

o A method to initialize the population. All population-based algorithms have the 

same initialization procedure which is summarized in Figure 3.1. Note that the 

function itself is very generic in the sense that both the CreateSolution and 

Procedure Initialize ( Population, PopulationSize ) 

Begin 

End. 

For i=O to PopulationSize-l 

Begin 

CreateSolution(Dummy); 

ComputeFitness(Dummy); 

Add'I'oPopulation(Population, Dummy); 

End; 

ComputeTotalFitness(Population) ; 

CurrentStep = 0; 

Figure 3.1 : A generic initialization algorithm. 
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ComputeFitness methods are pure virtual1 methods. They are implemented 

in the final derived class for each respective algorithm, and 

o A variable CurrentStep keeping track of the current iteration number, because 

population-based algorithms depend on some form of iteration. 

The reader is referred to Appendix B. 1 for a complete listing of the abstract base class 

GenericAlgorithm. 

3.1.2 Designing the abstract evolutionary algorithm class 

All evolutionary algorithms undergo natural selection and have the ability to 

evolve via mutation and/or crossover. To incorporate these methods into the algorithm 

one first have to derive a new class from the base class in section 3.1.1 and define new 

methods. Once again some of these methods will be pure virtual because it depends 

on the particular algorithm2 how they will be implemented. 

Figure 3.2 shows the DoAlgori thm function. Reproduction is implemented in this 

Procedure DoAlgorithm() 

Begin 

End ... 

while(NOT(Paused)) 

Begin 

Reproduction (PopulationSize, SelectionMethod, 
TournamentMembers) ; 

End; 

GeneticOperations(Pc, Pm, PopulationSize); 

CurrentStep = CurrentStep+l; 

Figure 3.2.: The generic DoAlgorithm() method. Note the method: GeneticOperations is 
defined as pure virtual. It's actual behaviour depends on the class in which it is implemented. 

1A virtual method is a function which has the same name and takes the same arguments in 
all classes derived from the class where the method was defined. Their implementations, however, 
differ. A pure virtual method has no implementation. 

2Crossover and mutation in genetic programming is implemented different than in genetic 
algorithms. 
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class because it is not related to any specific evolutionary algorithm. All this function 

does is to fill the mating pool (or gene pool for a genetic algorithm) with the fittest 

members of the current generation by using a predefined selection scheme (Fitness 

proportionate, Tournament or Rank selection). GeneticOperations is defined as 

pure virtual. The reader is referred to Appendix B.1 for a complete listing of the abstract 

class GenericEvolutionaryAlgori thrn. 

3.1.3 Designing the genetic programming class 

To start dE3signing the final genetic programming class we-first need to derive a 

class from the abstract class GenericEvolutionaryAlgori thrn. This class will have 

an open implementation for both the CreateSolution and ComputeFitness 

methods. The reason for this will become apparent shortly. Finally an implementation 

is provided here for GeneticOperations. This new abstract class is called 

CustomGPAlgori thrn. From this parent class we derive two important classes. The 

one is GPSupervised, which will be used for supervised training, i.e. for algorithms 

which have variables which we can denote as outputs. The other is a pseudo-abstract 

class GPUnsupervised which will be used for unsupervised training, Le. for algorithms 

where there are no variables which we can denote as outputs. Both of these classes 

have their own implementation for the CreateSolution and ComputeFi tness 

methods. The reader is referred to Appendix B.2 for a complete listing of these classes. 

3.1.4 Designing the feature extraction class 

Thrs--trassisderived from the GPUnsupervised class, since feature extraction 

is essentially an unsupervised training problem (see Chapter 5). The Compu te Fi tne s s 

method needs to be overridden and given a new implementation. The reader is referred 

to Appendix B.2 for a complete listing of the class FeatureExtract. 
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3.1.5 Graphical overview of the base class and all its derived descendants 

Figure 3.3 presents a graphical overview of the abstract base class and its 

derived descendants. Note how the hierarchy splits in two after the 

CustomGPAl g or i thIn class. GPSupe r vised is used for regression , since it is the 

final class in this hierarchy for supervised training. Fea tureEx tract is derived from 

G PUns upe rvi s ed because it uses a different implementation for evaluating the fitness 

SupervisedGP 

GenericAlgorithm 

Evolutionary 
GenericAlgorith m 

CustomGP 
Algorithm 

UnsupervisedGP 

FeatureExtract 

Figure 3.3 : A graphical overview of a/l the classes and their decedents. 

of a solution. One can clearly see that by using an object oriented programming 

methodology very complex behaviour can be programmed in the minimum time. Also, 

to maintain an algorithm such as this is much easier than one that is written in a 

structured programming language. 

36 

Stellenbosch University  https://scholar.sun.ac.za



3-The Design Methodology 

3.2 Probing the size of the search space 

By definition, the search space is the set of all possible individuals that can be 

constructed of the elements in the function set and terminal set while the solution 

space (which is a sub-set of the search space) is the set of all good or perfect solutions 

to the problem at hand (McKay ef 81., 1997). The search space is constrained by the 

limit imposed on the maximum number of levels an individual can assume. To 

determine the effective size of the search space one proceeds as follows: 

Let the terminal set be represented by T and the function set by F. The terminal set can 

be expressed as 

T = { Tj I i = 1 .. k} (3.1 ) 

Similarly, for the function set 

F={Fj I j= 1 .. m} (3.2) 

The size (5) of the search space, at a levell, is given by 5(1). Clearly for 1=1 

5(1) = k (3.3) 

where k equals the number of terminals in the terminal set. 

For I = 2, we consider the case where the function set consists of the following 

functions, F = {+, /, sin} and the terminal set has two terminals, T = {f1' t:J If the root 

node consists of the function '+' then the total number of individuals, r(~), that can 

be constructed with two terminals and function Fj> are 
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(F -' ') - ~1 (k _ ') _ k(k + 1) _ 2(3) - 3 Y 1-+ -L..J 1- --
i=O 2 2 

(3.4) 

However, if the root node is "/" then (3.4) becomes 

(3,5) 

and using a root node of "sin" 

r (F3 =' si n' ) = k = 2 (3.6) 

The reason why equations 3.4 and 3.5 differ is that 

(3.7) 

but 

(3.8) 

Likewise, (3.4) and (3.5) are also applicable to the functions u*" and "_", respectively. 

For an arbitrary number of levels (3.4) changes to 

S(l-1)-1 5(1-1)(5(1-1) + 1) 
y(F1 ='+') = L (5(1- 1) - i) = ,--"'---------'-

i=O 2 

While (3,5) becomes 

y(F2 ='/') = 5(1-1)2 

and (3.6) 

y(F3 =' sin') = 5(1 -1) 

(3.9) 

(3.10) 

(3.11 ) 

Where 5(1- 1) refers to the effective size of the search space of the previous level. 

Taken together 
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2 I J E +, 
y(Fj ) = 8(1- 1)2 if Fj E {-,I} (3.12) 

{ 

5(1-1)(5(1-1)+1) ·f F. { *} 

8(1-1) if Fj E {all single argument functions} 

For I = 1 

S(I) = S(1) ,= k (3.13) 

and for I > 1 

m 

S(I) = I y (Fj ) + k (3.14) 
j=1 

3.3 Augmentations to improve the original genetic programming 

algorithm 

3.3.1 Changing the internal representation of an individual, in genetic 

programming 

Genetic programming consumes a vast amount of resources. In this investigation 

a novel approach was pursued to minimize the memory requirements of an individual. 

A different representation was used to store the individual in memory. The individual 

was stored as a Polish expression, as in (2.1). This enabled the storage of the whole 

expression as an array of characters which, in effect, is equivalent to encapsulate a 

node in one byte or character. This constituted a significant improvement on a previous 

implementation (Greeff'and Aldrich, 1998), that used about 22 bytes of memory per 

node. This new implementation requires only 1 byte per node resulting in a 95% 

reduction in memory usage, which eventually allows faster computation time. 

To represent terminals and functions via a single byte requires some new approaches 

in designing the genetic programming kernel. Since a byte can address 256 unique 

values, i.e. 0 to 255, it has to be divided to represent either a function or a terminal. To 
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accomplish this the first half (0 to 127) of the byte, is allocated for terminals, while the 

second half (128 to 255) is used for functions. That is, each value of the byte in the 

range 1 to 127 uniquely identifies a terminal3. One drawback to this approach is that 

one is only permitted to have a maximum of 127 terminals! Similarly, the remaining 128 

positions, from 128 to 255, uniquely map to 128 possible functions. Each terminal and 

function is stored in a terminal list and a function list. The terminal list contains 

information regarding each terminal. These are 

o The terminallD, which ranges from 1 to 127. 

o The pointer to the memory block where the values of the terminal is stored in 

memory. The terminal has to be a column vector, i.e. an (n x 1) matrix. This 

pointer is called the terminal pointer. 

o An indicator to specify whether the terminal acts as an input or an output of a 

process4
. 

The function list contains 

o The function 10, which ranges from 128 to 255. 

o The number of arguments the function requires. 

Once all the functions and terminals have been selected, the process of constructing 

an individual commences. To avoid complexity and constrain the size of the search 

space, a limit has to be set to the number of levels each individual can have. This limit 

is usually set to thirteen. Using a limit of thirteen allows each individual to have a 

maximum of 213_1 or 8191 nodes. Each level adds an exponential increase in the 

maximum number of nodes and size of the search space. Increasing the search space 

results in slower convergence. Assuming a function set of F = {+, -, *, sigmoidal} and 

a terminal set of T = {X1' x2} and using (3.14), the effective size (for a thirteen level 

parse tree) of the search space is calculated as 

3The value 0 is not used to represent a terminal. Instead it is used by C++ to signify the end 
of an array of characters. 

4This feature is only used for regreSSion and not feature extraction. 
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5(13) = 9.4 x 102996 (3.15) 

Needless to say the search space gets very large and grows exponentially for every 

function included in the function set! 

To understand how an individual is constructed, the following piece (see Figure 3.4) of 

pseudocode is used to illustrates the process. Two parameters are passed to the 

Procedure CreateIndividual(Individual, CurrentLevel) 

Begin 

TotalArguments=O; 

TypeOfNode=random(l) ; {A value of either 1 or O} 

CurrentLevel = CurrentLevel+l; 

If(CurrentLevel == MaximumLevel) Then 

{Select a random terminal from the terminal list} 

NewNode=SelectedRandom_TerminalID(); 

Else 

Begin 

1f(TypeOfNode == 1) Then 

{Select a random function from the function list} 

NewNode=SelectedRandom_FunctionID()i 

{Get the number of arguments required for this function} 

TotalArguments= GetArgumentCount(NewNode); 

Else 

{Select a random terminal from the terminal list.} 

NewNode=SelectedRandom_TerminalID(); 

End; 

Append (Individual, NewNode) {Add the new node to the current 
expression} 

For 1=0 To TotalArguments-l 

Begin 

{each argument of the function} 

Create Individual (Individual, CurrentLevel); 

End; 

Figure 3.4 : A recursive procedure that generates a genetic programming tree-like structure. 
This structure may be used as either an individual or as a randomly generated sub-tree during 
mutation. 
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function. The one parameter is a reference to the individual that is to be constructed 

and the other is a variable that keeps track of the number of levels the individual has 

at its current insertion point. First the current level is incremented and then compared 

against the maximum number of levels the individual can assume; to ascertain whether 

it equals this value. If the result true, a terminal is randomly selected and appended 

to the individual. At this stage the algorithm exits the function and returns to the caller 

function (which happens to be itself), if false a random number between 0 and 1 is 

generated. If the result is 1, the new node will be a random member of the, function set, 

else it is a randomly selected terminal. If a function was selected, the number of 

arguments the function needs is obtained from the terminal list by using the appropriate 

function 10. A loop is constructed, which ranges from zero to the number of arguments 

minus one. Each time the loop is executed the function is called again with the new 

individual and the current level as arguments. This recursive process continues until 

each branch in the individual has been terminated by a terminal. 

3.3.2 A different evaluation scheme 

Evaluating a tree hierarchically from top to bottom is a very slow process. To 

evaluate a tree, one starts at the root node and traverses along the left most branch of 

the tree until a terminal is reached. If the corresponding right branch also has a terminal 

on the same level as the current terminal an operation is executed on the two terminals 

and the result is placed in a temporary storage facility. This process of node-branch 

simplification continues until the whole tree has been reduced to a single node which 

yields the final answer. Needless to say that this is the part of the algorithm that 

consumes most of the resources. Also, extensive use is being made of floating point 

arithmetic that generally degrades performance even further. The evaluation can be 

accelerated and simplified if the individual is evaluated as a reverse Polish expression. 

In Polish notation, expressions are characterized by a function followed by its 

~he creation process uses recursion which means that the algorithm calls itself until some 
termination criterion is reached. Although this may seem unnecessarily complicated, recursion 
actually makes the whole creation process very simple! 
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arguments. In reverse Polish notation6 the arguments are followed by the function. In 

evaluating a reverse Polish expressions as in Table 3.1, we make use of a stack7. We 

Table 3.1 : Illustrating the difference between Standard, Polish and reverse Polish notation. 

first start by pushing 7 onto the stack. This is followed by pushing 6. When we arrive 

at the u*" sign we pop two8 values from the stack, i.e. 6 and 7, apply the corresponding 

function (we multiply 6 by 7) and push the result onto the stack. Note, there is now only 

one value on the stack, 42. 

Proceeding, the value 5 is pushed onto the stack followed by two pops when the next 

function, u+", is reached. Adding the two recently popped values, 5 and 42, we obtain 

47. This is the final result and is returned by the evaluation function. The following piece 

of pseudocode illustrates this operation: 

6The HP Scientific calculators use RPN (reverse Polish notation) to evaluate an expression. 

7 A stack is an array of values. To insert a value in the stack we push it. To retrieve the most 
recent value we pushed on the stack we pop it from the stack. 

8We need to pop two values from the stack because the multiplication function requires two 
arguments. 
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Function Evaluate{Individual) 

Begin 

End. 

K=Total number of nodes in the individual 

For i=K DownTo 0 {Start at the back and move to the front} 

Begin 

{If the current node isa terminal} 

If {Individual [i)<=127) 

Begin 

End 

Else 

TerminalID=Individual[i); 

{now push the appropriate Terminal pointer on the stack} 

push{GetTerminalPointer{TerminalID)); 

{the current node is a function} 

Begin 

End; 

End; 

FunctionID=Individual[i); 

{Do the appropriate function specified by FunctionID} 

{And push the result on the stack} 

push {ApplyFunction (FunctionID) ); 

{And finally pop the last value off the stack and return it} 

Return pop{); 

Figure 3.5 : The pseudocode for the evaluation function. 

3.3.3 increasing convergence and robustness in regression models using an 

expanded solution space 

3.3.3.1 Fitness function 

A solution's fitness is a measure of how accurately it approximates the desired state or 

optimum solution. An error-based fitness function's measure is usually based on the 

sum of the squared errors (SSE) or mean of the squared errors (MSE) between the 

desired state and the solution's approximation to that state. Error-based fitness 
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functions such as these are used widely in regression problems (Iba et aI., 1995; Koza, 

1992; Tang et al., 1996; Watson and Parmee, 1997). 

South et al. (1995) noted that using a correlation-based fitness function improves 

convergence speed. A correlation-based fitness describes the fitness as the correlation 

between the desired state and the solution's approximation. Pearson's correlation 

coefficient is used as the actual fitness. The correlation ranges from -1 to 1, where -1 

implies [perfect] negative correlation, 0 indicates no correlation and 1 perfect 

correlation. If the absolute value of the correlation is used to bound it between 0 and 

1, it can serve as the fitness value. 

3.3.3.2 Correlation 

Correlation is a measure of the linear association between two random variables X and 

Yand is given by the population correlation coefficient, p, where 

cov(x, Y) 
p Xy = ----'----'- (3.16) 

Since J..l x "..L y , cr xandcr yare usually unknown, PXy can be estimated by the sample 

correlation coefficient9 r xy , where 

n 

L (Xi - E[X])(y - E[Y]) 
i=1 rXY = -n--'------n----- (3.17) 

L (Xi - E[X]). L (Yi - E[y]) 
i=1 i=1 

Each variable consists of n observations. E[X] and E[Y] denote the estimated or mean 

of variables X and Y respectively. The sum of the squared errors or SSE between two 

random variables X and Y is 

9 Also referred to as the Pearson correlation coefficient. 
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n 

SSExy = I (x; - y;)2 
;=1 

(3.18) 

Consider a variable Y, as a linear function of X, such that 

y= aX + b (3.19) 

and a, b E m. If a = 1 then b is simply a bias added to X which transforms it by a 

constant value of b. If b = 0 then a is a scale which expands or shrinks X. Substituting 

(3.18) in (3.16) and (3.17) yields 

rXY = 1 

and 

n 

SSEXY = I (x; - (ax; + b»2 
;=1 

(3.20) 

(3.21 ) 

One can clearly see that if a correlation-based fitness function is used, a misleadingly 

high fitness of 1 (regardless of a or b) is obtained. If the value for an error-based fitness 

function is defined as f= 1/(1+SSE)#then the fitness using (3.20) can range from either 

-00 to 00, depending on the actual values of a and b. 

Consequently, a correlation-based fitness as in (3.16), can result in solutions having 

large SSEs, while not being able to appro>,<imate the desired state, which in this case 

is X, even though the fitness is 1. 

The idea now is to remove the scale and bias (a and b) introduced in (3.18), from Y. To 

accomplish this we must first standardize the variable Y, i.e. subtract the mean and 

divide by the standard deviation and then scale it to have the same standard deviation 

and the same mean as the desired state, X. The following correction filter does just that 

tt-ro bound it between 0 and 1 
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(3.22) 

Here Xd represents the desired state, Xa the approximation, 0Xd and 0Xa the respective 

standard deviations of Xd and Xa and E[Xdl and E[Xal the respective means of Xd and 

Xa· Since the correlation between Xd and Xa can be less than 0 we need to invert the 

sign of Xa to compensate for negative correlation. This is done via sign(rxy) which is 

either 1 or -1. Now substituting Y for Xa and X for Xd yields 

G(X, Y) = sign(rXY >( :: (Y - E[Yj) + E[XD) (3.23) 

It can be shown that 

cry = acr x (3.24) 

and 

G(X,y) = X (3.25) 

Therefore (3.22) simplifies to 

Y - E[ Y] = a(X - E[ X ]) (3.26) 

That is, after passing through G(X, y), Y can approximate the desired state, X, exactly 

if it is a linear function of X. Therefore the SSE between X and Y remains 0, regardless 

of a or b. This implies that sol~tiqn~ which would have been previously discarded by an 
-- - --" -- --~ - ~. _ .. --

error-based fitness function will now be accepted as valid solutions by a correlation­

based fitness function after it has passed through the correction filter, G(Xd,Xa), which 

removes any bias, scale or inversion; i.e. an expansion of the solution space. This 

process can be visualized in Figure 3.6. 
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o ~I Algorithm 

Figure 3.6 : An algorithm and the correction filter, G, acting as a hybrid model. 

Since the algorithm is connected to another stage, G(Xd,Xa)' this process is effectively 

a hybrid model. Also the algorithm can be any algorithm and is not limited to genetic 

programming. 

Note 

All the parameters O'Xd' 0')(8' E[Xd], E[Xa] and sign(r xy) are computed during training and are 
left unchanged during testing or valiGfation! 

Note, that the values O'Xd ' O'Xa , E[Xdl, E[Xal and sign(r xy) are computed during training 

and are left unchanged during testing or validation. 

From these results we can deduce three hypotheses: 

1. Since more potentially good solutions are retained in each generation , there is an 

increase in convergence. 

2. The more stringent the fitness criterion becomes, the more specialized the solutions 

will be as they try to abide by the criterion. A correlation-based fitness is not as 

stringent a criterion as an error-based fitness, therefore the final solutions have 

better generalizing abilities. 

3. They are thus simpler (Occam's razor!)2. 

3.3.3.3 Confirming the hypotheses 

20ccam's razor states that, all things being equal , the simplest solution is always the best. 
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To confirm the hypotheses, several runs were conducted on each of the three data sets 

described below and a statistical analysis was performed on the measured results. The 

results that were measured were 

o Convergence speed or fitness over generations 

o Standard deviations in the differences of the R2 obtained during training and testing 

o The length (in terms at-the number of nodes in the parse tree) of the best individual 

after each run. 

Ten runs were conducted on each data set by first using a correlation-based fitness 

function and then repeating it using an error-based fitness function. 

The following data sets were used: 

o Data set, PINE, consists of 6612 exemplars measured from the Pinus patula of 

the form [AGE, TREE, DATE, TIME, TEMP, RH, VPD, PAR, WSPEED, 

LEAFMASS, HEIGHT, DBH,XPP, WOODDENS, SAPFLO] , whereAGEdenotes 

the age of the tree in years, TREE denoted the specific individual from which 

samples were taken, DATE the date of the observations (yymmdd), TIME the 

time of day during which measurements were taken, TEMP the temperature 

(OC), RH the relative humidity, VPD the vapour pressure deficit (kPa), PAR the 

photo synthetically active radiation Cumollm2/s), WSPEEDthe wind speed (m/s), 

LEAFMASS the estimated leaf mass of the tree (kg), HEIGHT the height of the 

tree (m), DBH the diameter of the tree at breast height (m), XPP the xylem 

pressure potential (kPa), WOODDENSthe density of the tree (kg/m3), as well as 

SAPFLO, the rate at which water was transported through the tree by means of 

transpiration (I/tree/h). The objective is to predict the hourly sapflow rates per 

tree. 

o Data set, BMVANO, is comprised of 1234 observations measured from the Black 

Mountain base metal flotation plant. It consists of eight variables. AvrGrayCuSc 

. is the average grey scale value of the digitized froth image, indicative of the 

average loading of solids on the bubble, AvrRedCuSc the average level of red 
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colour in the froth appearance, AvrGreenCuSc the average level of green colour 
, . -

in the froth appearance, AvrBlueCuSc the average level of blue colour in the 

froth appearance, SNECuSc is a statistical parameter indicative of the number 

of small bubbles in an image, 8.MCuSc is an indicator of the image darkness, 

MobilifCuSc the ~ositional change of froth elements in consecutive images, 

FlowCuSc and CuSc%Pb the percentage lead in the final concentrate. Here 

CuSc%Pb is used as the output variable, i.e. t~e %Pb in the concentrate; 

o Data set, SOLPREP, consists of set of plant data of a solution preparation circuit 

,that were collected on a daily basis. There are eight variables x1, x2 , .:., X8 that 

describe the behaviour of the circuit. 

Thefollowingparameters listed in Table 3.2, were used for each run. Two populations 

Table 3.2 : Parameters used for each data set during regression. 

Number of 
popu/ations(demes) 

'2 2 - , ',2 ' 
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(demes) were used, each containing 50 individuals. Each run's function set included the 

basic arithmetic functions F = {+, -, *, I} and the natural logarithm, In, as well as the 

exponential function, expo The terminal set for data set PINE included all fourteen 

variables except TIME. For data set SOLPREP seven variables were included in the 

terminal set, while Mn063am was used as the target variable, while data set BMVANO 

had eight variables in the terminal set and CuSc%Pb as target. 

Crossover and mutation rates were set at 60% and 4% respectively, while tournament 

selection was used with a tournament size of 3. An elitist strategy was followed in that 

the best individual after each generation was passed on, unchanged, to the next 

generation. Each run was terminated after 200 generations. 2000 pbservations were 

randomly selected from the original 6612 exemplars of the PINE data set. Of these, 

1000 observations were used as training data and the remaining 1000 as testing data. 

864 randomly selected observations were used as training data for the BMVANO data 

set and the remaining 370 as testing data. 235 exemplars were used as training data 

for the SOLPREP data set and the remaining 100 as testing data. 

3.3.3.4 Discussion of results 

The results obtained from the 20 runs3 for each data set are listed in Figures 3.7 (a) -

(c) and summarized in Table 3.2. 

To measure the robustness of the final model after 200 generations, the difference in 

the R2 between the training data and the testing data was obtained for each run. The 

standard deviation is computed from these differences and is denoted by 0T_T (see 

Table 3.2). From the results we can deduce that a correlation-based fitness initially 

starts at a much higher average fitness (for all three case studies) as opposed to an 

error-based fitness. The final average fitness is also significantly higher for all three 

data sets. Because a correlation-based fitness is a less stringent fitness criterion than 

an error-based fitness, specialization is reduced, as one can see from the 0T-T for data 

set PINE ranging from 0.024 for an error-based fitness, down to 0.011 for a correlation­

based fitness. 

310 runs for an error-based fitness and 10 for a correlation-based fitness. 

51 

rr 

Stellenbosch University  https://scholar.sun.ac.za



3-The Design Methodology 

Table 3.3 : Measured results obtained for each data set after using an error-based fitness 
function and a correlation-based fitness function. 

However, the specialization increased for data set SOLPREP, from 0.016 to 0.022. This 

was owing to the fact that the'error-based fitness runs got continuously entrapped in a 

local optimum. This kept the convergence line horizontal (see Figure 3.7.(b» for most 

part of the simulation. In contrast, the models obtained via a correlation-based fitness 

were significantly more complex than those obtained using an error-based fitness, as 

shown by the average number of nodes for all three case studies. 

------------.--
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Average convergence using tvvo different fltn ••• schemes 'for PINE data 
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Figure 3.7 : The difference in average convergence, for the three data sets in 
terms of R2-values vs the number of generations: (a) PINE, (b) SOLPREP and 
(c) BMVANO, when an error-based fitness function (broken line) and a 
correlation-based fitness function (solid line) is used. In all three examples, 
the correlation-based fitness function yields a much higher convergence. 

53 

Stellenbosch University  https://scholar.sun.ac.za



3-The Design Methodology 

3.3.3.5 Conclusions 

Form the results we can deduce that a correlation-based fitness allows much faster 

convergence than an error-based fitness (using the same run parameters). This can be 

seen as an expansion of the solution space, since solutions which would have been 

discarded previously by an error-based fitness function are now deemed valid. Second, 

the final results are more robust and can generalize better, owing to the smaller 

standard deviations in the fitness, obtained from the training sets and the test sets. 

Third, the average fitness of the models are higher, since an error-based fitness is a 

more critical way (as opposed to a correlation-based fitness) of looking at a solution. 

It only makes sense that the solution itself will start to specialize and take longer to 

converge. Finally, contrary to prior believe, the solutions (model structures) are on 

average, more complex4 than those obtained using an error-based fitness. This 

phenomenon may be specific to genetic programming, because it evolves structures. 

A correlation based fitness forces any algorithm to act as a hybrid model, because it 

has to be connected to a correction filter, G(Xd,Xa) to reduce the SSE. In theory one 

would be able to achieve even higher convergence by expressing the fitness as a n-th 

order polynomial association between the actual state and the desired state and then 

using the correction-filter to remove the higher order parameters. 

4 'n terms of the number of nodes. This number was obtained from models which were not 
simplified. 
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4.1 An introduction to process modelling 

rocess modelling strives to find-functional representations between inputs 

and outputs of unknown processes. That is, given a set on n inputs and m outputs, the 

idea is to construct some kind of mathematical function to relate the inputs and the 

outputs and thus to identify the underlying trend in the data and predict the outputs as 

accurately as possible. 

Consider the simplest case of a linear model of the form 

y = xb+e (4.1) 

where y isan m x 1 response, x is an m x n matrix of data, with rank(x) = n, b is an n 

x 1 vector of parameters and e is an m x 1 random vector with independent, identically 

and normally distributed elements, i.e. ei - m(O, 0 2
) for i = 1, 2, ... m. 

A linear relationship between a continuous variable (assumed to have normal 

distribution) and a single explanatory variable, is modelled by 

(4.2) 

This is equivalent to the model E(y) = xb, with 
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Y1 1 X 1 

Y2 1 x 2 
and b ~ [::J Y= X= (4.3) , 

Yn 1 xn 

The simplest models are based on the premise that any relationship between the input 

and output variables are linear and that the data themselves are normally distributed 

(McKay et al., 1997). However, real world systems are highly non-linear and these 

linear approximations fail to discover the functional relationships in the data. 

Subsequently systems are often modelled using non-parametric techniques (such as 

neural networks (Del Giudice and Amabile, 1997), regression trees (Breiman et al., 

1984), kernel regression (Herrmann, 1994) and fuzzy regression (Shakouri et al., 1997). 

It has been proven (Hornik et al., 1989) that neural networks, with one hidden layer of 

sigmoidal units, are capable of approximating any continuous function. However, the 

main drawback with neural networks and other non-parametric techniques is that the 

mathematical models are extremely complex and very difficult to analyse. Also, no 

insight is gained as to how the inputs relate to the structure:, 

Genetic programming, on the other hand, can easily handle a trade-off between 

interpretability and accuracy. In effect, genetic programming applies symbolic 

regression to discover the underlying trend in the data, which allows it to operate as a 

non-parametric algorithm, whilst having the interpretabilities of a linear approximation. 

The final solution can be represented as a parametric model. Also the way in which the 

input variables relate to the structure becomes immediately apparent from the 

symbolically evolved functions. There is thus, no need for any a priori knowledge 

regarding the inputs (or structure) of the process. 
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4.2 Case studies 

4.2.1 Approximation of multivariate functional relationships 

To evaluate the performance of the genetic programming algorithm, a 

multivariate functional relationship of two independent variables, as represented by 

(4.4) was considered. 

(4.4) 

200 exemplars were uniformly sampled over the appropriate ranges by means of (4.4). 

Twenty runs were conducted. In the first ten runs, an error-based fitness criterion was 

used while the last ten employed a correlation-based fitness criterion. For each run, two 

demes were used, each consisting of 50 individuals. The terminal and function sets 

consisted of the following, F = {+, -, *, I} and T = {X1' x2}. Crossover and mutation rates 

were set at 60% and 4% respectively, while tournament selection was used with a 

tournament size of 3. An elitist strategy was followed in that the best individual after 

each generation was passed on, unchanged, to successive generations. Each run was 

terminated when the fitness of the best individual after each generation was equal to 

1. 

In each of the runs the desired relationship was attained, regardless of the fitness 

criterion. The equations in (4.5) are representative of a typical result obtained during 

one of the runs. 

As shown in Table 4.1, the algorithm (using both fitness criteria) was able to correctly 

identify the functional relationship from the given data; which resulted in a fitness of 1. 
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Using a correlation-based fitness criterion, the average number of generations 

(averaged over 10 generations) needed for convergen'ce, was 79.7. In comparison, an 

error-based fitness criterion required 139.2 generations. A 43% improvement in 

performance, 

To investigate the effect "a priori knowledge" has,on t~e al~orithm the foUowing functio~' 

Table 4.1 : Results obtained for the identification of the multivariate functional relationship in 
eq. 4.4. 20 runs were conducted of which 10 used a correlation-based fitness criterion and 
the remainder, an error-based fitness criterion. 

Average number of 
generations needed for 
cO,nvergence 

79.7 139.2 

, of two independent variables was consider~d 

. (' ) X 1 X 2 'th [4 4]' d' [4 4] Y = Sl~ X 1X 2 + -,-5-" WI x 1 E - 7t, 7t an. ~2 E - 7t, 7t (4.6) 

500 exemplars were uniformly sampled over the appropriate ranges by means of (4.6). 

Once again, 20 runs were conducted. The same parameter criteria were used as 
, ' ' 

Table 4.2 : Results obtained for the evaluation of the algorithm with and without a priori 
knowledge in the function set. 20 runs were conducted of which 10 used a function set that 
had the a priori information included or F = (+, -, *, I, sin). In the remaining ten runs, this 
information was excluded, therefore F = {+, -, *, /}. . , 

Best fitness 1 " 0.925 

* i.e., finding the exact relationship 
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described in the previous example. A correlation-based fitness function was employed. 

For the first ten runs, the function set consisted of F = {+, -, *, /, sin} while in the 

remaining ten runs the "sin" function was excluded from the function set to evaluate the 

performance of the algorithm without this "a priori knowledge". The terminal set, 

consisted of T = {x1 , x2}. Each run was terminated after either the desired functional 

relationship was discovered or after the 200th generation, whichever came first. The 

results obtained are presented in Table 4.2. 

A run was considered successful if the algorithm was able to correctly identify the exact 

functional relationship from the given data. From Table 4.2 one finds that when the "sin" 

function is included in the function set, the algorithm identifies the correct function 80% 

of the time. When the "sin" function is excluded from the function set, the algorithm is 

unable to find the correct function. However, it consistently produces reliable 

approximations in the sense that the worst fitness and the best fitness over ten runs are 

not significantly different. The equation in (4.7) is representative of a typical result 

(4.7) 

obtained during runs, using the functional set F = {+, -, *, I}. 

Figure 4.1 presents the fitness distribution within a population sampled at specific 

generations. During the first few generations most individuals have very low fitness 

values. With increasing generations there occurs a shift in the distribution towards the 

region with a higher fitness (i.e. towards a fitness of 1). One should also bear in mind 

that natural selection decreases the diversity and therefore the final generations are 

primarily composed of copies of the best of individual. 

The lack of "a priori knowledge" results in a complex parametric approximation of the 

desired functional relationship. 
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Histogram of the fitness distribution at various generations 
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Figure 4.1 : A histogram plot of the frequency distribution of the 
fitness of each individuals in a sampled at a specific generation. 
Notice that when the algorithm starts (generation 1) most 
individuals have very low fitness values. With succeeding 
generations this distribution starts moving towards the region 
with higher fitness. 

4.2.2 Obtaining regression models for four real data sets 

A regression analysis was conducted on four data sets as described in the following 

case studies. The augmented genetic programming algorithm (a-GP) was compared 

against standard genetic programming, linear regression and a multilayer perceptron 

(MLP) neural network in all four case studies. For standard genetic programming an 

error-based fitness function was used while a-GP employed a correlation based fitness 

function in conjunction with a correction filter1
, G(Xd,Xa), to correct the SSE. A multilayer 

perceptron neural network architecture was used consisting of one hidden layer which 

was comprised of sixteen hidden nodes. Each node contained a sigmoidal activation 

function. Training for the neural network was completed after 10000 epochs. These four 

techniques were compared against one another by using their MSE and R2, averaged 

over three runs. 

'See Chapter 3.4.3. 
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4.2.2.1 Modelling of transpiration in pine trees 

Refer to Chapter 3.4.3.3 for a description of the PINE data set. 

4.2.2.2 Modelling of transpiration in poplar trees 

This data set, referred to as POP, consists of 1130 exemplars measured from the 

Populus deltoides of the same form [AGE, TREE, DATE, SEASON_NO, HOUR, VPD, 

PAR, LEAVE_AREA, ETLA] , where AGE denotes the age of the tree in years, TREE 

denoted the specific individual from which samples were taken, DA TE the date of the 

observations (yymmdd), SEASON_NO a dummy variable for the seasons (Autumn= 1, 

Spring=2 and Summer=3), HOUR the hour of day during which measurements were 

taken, VPD the vapour pressure deficit (kPa), PAR the photo-synthetically active 

radiation (,umollm2/s), LEAVE_AREA the leave area (m2) and ETLA, the rate at which 

water was transported through the tree by means of transpiration (IIm2/h). Here the 

objective is to predict the hourly sapflow rates per square metre. 

4.2.2.3 Modelling of the Black Mountain base metal flotation plant 

Refer to Chapter 3.4.3.3 for a description of the BMVANO data set. 

4.2.2.4 Modelling of a solution preparation circuit 

Refer to Chapter 3.4.3.3 for a description of the SOLPREP data set. 

4.3 Run parameter listings 

The following parameters listed in Table 4.3, were used for each run. Two 

populations (demes) were used, each containing 50 individuals. Each run's function set 
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included the basic arithmetic functions F = {+, -, *, I} and the natural logarithm, In, as 

well as the exponential function, expo The terminal set for data set PINE included 

thirteen variables with TIME and SAPFLO excluded. SAPFLO was used as the target 

variable. In data set POP, eight variables were included in the terminal set except ETLA 

which was used as the target variable. For data set SOLPREP, seven variables were 

included in the terminal set while Mn063am was used as the target variable, while data 

set BMVANO had seven variables in the terminal set and FlowCuSc as target. 

Crossover and mutation rates were set at 60% and 4% respectively, while tournament 

selection was used with a tournament size of 3. An elitist strategy was followed in that 

- the best individual after each generation was passed on; unchanged, to successive 

generations. Each run was terminated after 300 generations. 2000 observations were 

randomly selected from the original 6612 exemplars of the PINE data set. 1000 

observations were used as training data and the remaining 1000 as testing data, while 

791 observations were randomly selected from the POP data set as training data and 

the remaining 339 were used as test data. 864 randomly selected observations were 

used as training data for the BMVANO data set and the remaining 370 as testing data. 

235 exemplars were used as training data forthe SOLPREP data set and the remaining 

100 as testing data. 

A correlation-based fitness function was used for a-GPo For standard genetic 

programming, the fitness function was changed to an error-based fitness function. The 

remaining parameters were left unchanged. Table 4.3 presents a run parameter 

description. 
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Table 4'.3 : Run parameters used for each data set during regression. 

Terminal set (T) , AGE, TREE, : . AGE, TREE, AvrGrayCuSc, 
• DATE, TEMP, ! DATE, AvrRedCuSc, . e, 
. RH, VPD, PAR; : SEASON_NO, AvrGreenCuSc; [H2SOJ_after, 

WSPEED, : HOUR, VPD, : ,AvrBlueCuSc, ; H2S04-additio 
_~ LEAFMASS,-~- •• PAR, ~-~ .~--~~~,; 'SNECuSc;-·-,"",,~-..r~' n;~ ~'~'~"~' C' ._C~-~, - ~~-~. 

HEIGHT,DBH, LEAVE_AREA SMCuSc, .NH40H_additi 
XPP, MobilitCuSc on, 
WOODDENS LeachFlow,. 

[Mn21~solidT 
093, Mn093am· 

4.4 . Investigating the effect different crossover and mutation rates has 

on the overall performance of the algorithm 

To understand'how the crossover rate (Pc) and m~tation rate (P~-) affect~ the 

performance of the genetic programming algorithm, tWo different runs were performed 

on each of the data sets described above using different crossover/mutation rate 

combinations. For the first run, all the parameters in Table 4.3 were left unchanged. 
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Figure 4.2 : The effect of varying combinations of crossover (Pc) and mutation (Pm) rates, 
emphasized the fact that a too small search rate does not yield satisfactory results. In (a) and 
(b) we can see that the algorithm got entrapped in a local optimum, when the 
crossover/mutation rate was set at (20/1)%. Increasing the search rate to (80/20)% allowed the 
algorithm to avoid entrapment in the local optimum. In (c) the larger search rate did not make 
significant difference, while in (d) a steady increase can be observed. 

Crossover and mutation rates were set at 20% and 1 % respectively. For the second 

run, all the parameters in Table 4.3 were also left unchanged. Crossover and mutation 

rates, however, were set at 80% and 10% respectively. The results are depicted in 

Figure 4.2. 
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4.5 Discussion of results 

Judging from Figure 4.3 and Table 4.3 one can clearly differentiate amongst the 

performance of the four different algorithms, i.e. a-GP, genetic programming (GP), 

linear regression and the multilayer perceptron neural network. Clearly, a-GP 

outperforms standard genetic programming as proposed by Koza (1992) on all four 

case studies. Of particular interest is the fact that a-GP improves on the multilayer 

perceptron neural networks on one of the four case studies. For data sets POP, 

BMVANO and SOLPREP, the neural network outperformed a-GP by a small margin. 

Interestingly, linear regression outperformed both a-GP and the neural network, when 

Table 4.4 : Results obtained for each of the four data set after testing. A comparison of ~ and 
MSE is made amongst the four different regression techniques. These are a-GP, GP, linear 
regression and ANN's. 

SOLPREP 0.48 0.50 ' 0.37, 0.74 0.31 0.31 

applied to data set SOLPREP, by a slight margin. A two-tailed test of significance 

revealed that the results obtained [for data set SOLPREP] using linear regression were 

not significant at the 0.05 level when compared to any of the other techniques. This 

could imply that the data is linear. Unfortunately the evolved models were too complex 

to simplify and are included in Appendix A. 
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Table 4.5 presents the significance of the difference between the correlation 

coefficients of the four regression techniques. The null hypothesis, He, was tested to 

see whether the results obtained via a-GP was significantly different at the 0.05 level. 

A two-tailed test of the normal distribution was used. He would only be rejected if the 

Table 4.5 : Significance of the difference between the correlation coefficients of the four 
different regression techniques. Here, the null hypothesis, Ho' is tested to see whether the 
results obtained with a-GP, on the four data sets, are significantly different than those 
obtained via GP, linear regression and neural networks. The values inside the table are the 
test statistic (z) values. The values that are labelled with (a) imply that the results obtained via 
a-GP, are significantly different when compared to the corresponding algorithm in that row. 

(a)Significantly different from a-GP at the 0.05 level. 

test statistic, z> 1.96 or z < -1.96. From the test statistics in Table 4.5 we can conclude 

that the results obtained for data set PINE were significantly different when compared 

against the other techniques. Like wise, for data set POP, the difference was significant, 

A comparison of R2 using four different regression techniques 

0.8 +--~'I--------"----'-'-:;;:----;-::--l 

0.6 

0.4 

0.2 

PINE POP BMVANO SOL PREP 

Data sets 

a-GP 

• GP o Linear Regression 

• ANN 

Figure 4.3 : A comparison of R2 obtained from the four data sets. 
a-GP outperforms GP on all four case studies. 
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except when compared to the neural network. 

Figure 4.2 illustrates the effect different crossover/mutation rate combinations has on 

the overall performance of the a-GP algorithm. Clearly, when the crossover/mutation 

rate is too low (20/1) the algorithm gets entrapped in a local optimum (see Figures 

4.2.(a) and 4.2.(b)). Increasing the search rate to (80/20) alleviates this problem. The 

effect of varying rates was least significant in Figure 4.2.(c), while in Figure 4.2.(d) a 

steady increase in convergence is noticed. 

Figures 4.4 (a)-(d) are scatter plots of the observed output vs the predicted output of 

Observed output vs PredIcted output for 

data set PINE. R2 - 0.85 

15.8 

.1 ~~--,-----,-----,-----,----~ 

- 1 3 .2 1.4 11 .6 15.8 

Predicted output 

(a) 

Observed output vs PredIcted output for 

data set BMVANO. R" - 0.53 

20 

100 -r----,----------::--------;-:----, 

82.5 

"$ 65 

~ 
o 
~ 47.5 

~ 30 

12. 5 

10 20 30 40 SO 60 70 80 

Predicted output 

(c) 

Observed output vs PredIcted output for 

data set POP. R" -= 0.67 
1.2 ..,.....,----___ ---,----,., _________ -, 

"$ 0.8 

~ 
o 
-a 0.& -

! 0.4 
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(b) 

Observed output vs PredIcted output for 

data set SOLPREP. R 2 .. 0 .48 

30 +---.-~--_r~-_,---~---~ 

30 31 32 33 34 35 
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(d) 

Figure 4.4 : X- Y scatter plots of the Observed output vs Predicted output for data sets: (a) 
PINE [R2=O.85}, (b) POP [R2=O.67}, (c) BMVANO [R 2=O.53} and (d) SOLPREP [R2:0.48J. 
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the best individual obtained for each data set. There is less scatter in the model 

obtained for data set SOLPREP as opposed to data set BMVANO, even though the 

evolved model for BMVANO explains 5% more variation. 

4.6 Conclusions 

The results clearly indicate how a vital tool a-GP can be for steady-state process 

modelling and that it can be seen as a viable alternative for artificial neural networks. 

When applied to a the identification of a multivariate functional relationship of two 

independent variables, the algorithm was able to obtain the correct function from the 

given data. Using a correlation-based fitness criterion, the correct solution was found 

in 43% less generations than when an error-based fitness criterion was employed. 

Using a correlation-based fitness function allows much faster convergence than using 

an error-based fitness function. 

The effect of "a priori knowledge" was investigated in that a multivariate functional 

relationship (that incorporated a "sin" function) of two independent variables was 

generated. In this instance, the "sin" function represented the "a priori knowledge". 

When this "a priori knowledge" was included in the function set, the algorithm was able 

to correctly identify the function from the given data. However, when the "sin" function 

was excluded from the function set, the algorithm was unable to correctly identify the 

function. The approximations, however, were extremely consistent in the sense that the 

best of fitness and the worst of fitness over ten runs were very similar. Incorporating" a 

priori knowledge" in the function- and/or terminal set does benefit the genetic 

programmtog algorithm. Excluding this information from the algorithm results in complex 

parameterized approximations of the desired functional relationship. 

Although a-GP failed against the multilayer perceptron neural network on three of the 

four case studies, the results obtained [using the neural network] were not significantly 

different at the 0.05 level. Allowing possible longer evolution time or by using a larger 

population could also improve results. Given the complexity of the evolved models, one 
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can conclude that the underlying relationships within the data are extremely complex 

and that very little "a priori knowledge" was available, which resulted in highly 

parametric models. Owing to the fact that the genetic programming algorithm lacks 

parameter estimation, it evolves complex tree structures; which it uses to approximate 

the parameters. This demonstrates he need for a local optimization procedure to 

generate and optimize parameters in the genetic programming algorithm. The result 

obtained via a-GP were significantly different at the 0.05 level, on half of the data sets, 

when compared to standard genetic programming. 

By varying the crossover/mutation rate combinations the results (as expected) clearly 

indicate that high search rates are favoured. A too small crossover/mutation rate does 

not allow sufficient exploration of the search space in the allotted time (300 

generations). Also the low mutation rate (1 %) was not sufficient to avoid entrapment in 

local optima. This would seem to imply that the search rates used in this thesis, viz. 

60% for crossover and 4% for mutation, are sufficient. 
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VISUALIZATION OF PROCESS SYSTEMS USING 
a .. GP. 

5.1 An introduction to dimensionality reduction 

he continued growth in large data systems in the chemical and metallurgical 

process industries has precipitated intense efforts to develop. more efficient methods 

for the exploration and interpretation of large volumes of data. It is not uncommon for 

the individual analyst to have to interpret many hundreds or even thousands of 

variables and hundreds of thousands of observations off-line, while in automated 

monitoring and control systems, data volumes of an order of magnitude higher may 

have to be accommodated. The extraction of features and the reduction of 

dimensionality are two vitally important ways of dealing with these problems. Feature 

extraction and dimensionality reduction provides an antidote to the "curse of dimensio­

nality" and can improve the generalizability of process models and classifiers, allow us 

to visualize high dimensional data to better understand the underlying structure, explore 

the intrinsic dimensionality and analyse the clustering tendency of multivariate data 

(Mao and Jain, 1995). 

Dimensionality reduction can generally be achieved in two ways, viz. by selecting a 

small but important subset of variables prior to analysis, or by extracting a lower­

dimensional set of features that preserve the essential characteristics of the original 

data (Pal and Eluri, 1998). 

A large number of approaches for the dimensionality reduction of data (i.e. feature 

extraction and multivariate data projection) has been reported in the literature dealing 
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with pattern recognition (Sammon, 1969; Biswas et a/., 1981; Mao and Jain, 1995; 

Kraaijveld et al., 1995). The differences in these approaches are based on the 

characteristics of the mapping function ~ (linear or non-linear), the way ~ is learned 

(supervised or unsupervised), the nature of the optimization criterion, etc. (Mao and 

Jain, 1995). Although non-linear techniques are more suitable for complex (non-linear) 

process systems, these mapping functions (such as represented by artificial neural 

networks) tend to be non-parametric, among other, and may also be difficult to optimize 

in the presence of a large number of local minima in the error surface of the 

optimization criterion associated with the mapping. 

During this research a novel strategy, based on the use of genetic programming (GP) 

to visualize and explore industrial mineral process data, is proposed. This approach has 

the advantage that an explicit non-linear mapping function, ~, is generated which gives 

an indication of the structure of the data as well as the way the original variables are 

related to this structure, as will be shown by way of a few case studies. 

5.1.1 An overview of data projection 

During feature extraction and data projection, data residing in a higher 

dimensional space, 9{P, is mapped to a lower dimensional space, 9{q (where q < p), 

while the essential characteristics of the original data are preserved (Pal and Eluri, 

1998). Usually q (for exploratory data analysis purposes) is set to either 2 or 3 in order 

to visualize the mapped data. In order to map the data some criterion C, is optimized. 

However, unlike regression where the mapping function is estimated from input-output 

pairs (known outputs), in feature extraction or data projection the outputs are often not 

available.---- -

The Sammon measure (Sammon, 1969) is the most widely used criterion which tries 

to preserve all the inter-pattern distances between the data in 9{P and the mapped data 

in 9{q. Euclidian distance is used in this projection. Sammon's method is an intuitively 

simple, but powerful way of preserving the structure of the data, and can be 

summarized as follows: 
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Define the similarities in the input space ~ E mp as F(i,}) and in the output.(t E mq as 

G(u, v), where q ~ p and i andj are points in the input space, ~, while u and vare points 

in the output space, (t.Assuming that there are n points or patterns to be mapped, and 

that p is a one-to-one mapping of points from the input space to the output space, 

yielding n points or patterns in the output space, so that the following objective function 

can be defined: 

(5.1 ) 

S is also referred to as the Sammon stress. This objective function assumes that both 

F and G are Euclidean distances in the two spaces, with a unity distance between 

neighbouring points in each space. Alternatively (5.1) can be rewritten as 

(5.2) 

i.e. d/ is the [Euclidian] distance between points i and j in the input space, ~, and dij is 

the [Euclidian] distance between the corresponding projected points u and v in the 

output space, (t. 

Sammon used the method of steepest descent for the approximate minimization of S, 

that is, if y,{t) is the estimate of y; at the fth iteration, then y;(t+1) is given by 

Y ij (t + 1) = Y ij (t) - a[ A / B] (5.3) 

where 

(5.4) 

with a the step size for the gradient search, i.e. a nonnegative scalar constant with a 

recommended value of between 0.3 and 0.4. 
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With the approach originally formulated by Sammon, as well as other optimization 

strategies, such as proposed by Chen et a/. (1999), it is not possible to obtain an 

explicit mapping function, p, relating patterns in the input space, ~, with patterns in the 

output space, ~. This means that if new points are to be projected, the optimization 

procedure has to be repeated. This is a major disadvantage, given that the optimization 

is computationally intensive, as every step within an iteration requires the calculation 

of n(n-1 )/2 distances. In addition, the error surface is riddled with local minima, and the 

algorithm is likely to get stuck in one of these. 

Various approaches based on cluster analysis (Chang and Lee, 1973; Schachter, 1978; 

Pykett, 1980) have been proposed to alleviate the computational burden associated 

with the optimization, but these were only partially successful. More recently, methods 

based on the use of neural networks (Mao and Jain, 1995; Pal and Eluri, 1998) to 

model the mapping function have removed the need for re-optimization prior to the 

mapping of new data. 

5.1.2 Characteristics of data 

During feature extraction the data that are used for projection can be described 

by the following characteristics (Mao and Jain, 1995). 

o Data source (source): Specifies whether the data is real or artificially generated. 

o Dimensionality of pattern vectors (d): Specifies the number of input vectors. 

o Intrinsic dimensionality (d,): The intrinsic dimensionality of the data is measured 

by the number of significant eigenvalues (more than 97% of the total variance 

is retained by the first d, principal components) of the covariance matrix of the 
- -- - .~- - ---

data. 

o Number of classes/clusters (c): Indicates how many known classes or clusters 

there are in the data. 

o Number of patterns (n): Specifies the dimensions of the input vectors. 
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o Linear separability (/\) : This is defined as the largest eigenvalue of the 

covariance matrix. A.s is restricted to the range [0.0, 1.0]. As A.s increases from 0.0 

to 1.0 the data set becomes more and more linearly separable. 

o Sparseness: This is measured by the ratio of the dimensionality to the number 

of patterns (din) in the data set; the larger this ratio , the sparser the data. 

5.2 Extending the genetic programming algorithm to accommodate 

feature extraction 

During this research, genetic programming was used to construct the mapping 

functions. Since the mapped data resides in a q-dimensional space, q mapping 

functions are needed. An individual in the genetic programming algorithm is extended 

to have q parse trees representing q mapping functions , tJ1 .. tJq, as shown in Figure 5.1. 

Figure 5.1 : The q parse-trees that make up an individual for feature 
extraction. Each tree represent a mapping function ranging from P1 to Pq• 

Crossover is limited to a single tree at a time in the expectation that this will reduce the 

extent to which it disrupts "building blocks" of useful code. Therefore, one mapping 

function (with the same index), tJk' is randomly selected from two [randomly] selected 

individuals Ij and Ij" The actual crossover only occurs between the two parse trees Ij:tJk 

and li tJk' as depicted in Figure 5.2. 

Since the [Sammon] stress has to be minimized and the fitness, f, is always expressed 

as a value between 0 and 1, the fitness can be expressed as 
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f=_1_ 
1+8 

Figure 5.2 : During feature extraction, crossover only occurs between parse­
trees with similar indices. In this example two individuals, I, and IJ are 
randomly selected from the mating pool. A parse-tree, P3' is randomly 
selected from both trees for crossover. 

5.3 Case studies 

(5.5) 

A dafa dimensionality reduction analysis was conducted on five data sets to 

increase understanding into the underlying relationship amongst the data. During all of 

these cases the reduced space dimensions, q, was set to two (for visualization 

purposes). 

In order to illustrate the characteristics of the evolutionary computation algorithm used 

for the projection of multivariate data, the following simple data sets were considered. 
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5.3.1 Case studies on artificial and bench marking data sets 

5.3.1.1 Description of each data set 

Four data sets were investigated in this analysis. These data sets are widely used as 

bench marking sets in the literature and are described below: 

o Data set BITET consisted of an asymmetrically arranged set offour 3-dimensio­

nal clusters (A, B, C and D) is considered. The clusters are arranged along the 

vertices of two tetrahedra joined at their bases and with apices pointing in 

opposite directions. Clusters A, Band C are roughly spherical and arranged 

along the vertices of the common basis of this bi-tetrahedron. Cluster D is an 

elongated ellipsoidal cluster that joins the fourth and fifth vertices (apices) of the 

bi-tetrahedron. 

o The SPIRAL data set has been investigated previously by (Mao and Jain, 1995) 

and (Pal and Eluri, 1998). It is an artificially generated data set describing two 

spirals (500 data points each) in 3D-space, so that x1 = %cos e + G, x2 = %sin e + 

G and X3 = sin2e + cos2e + G, with e E {-nI2, nI2}, and G a randomly generated 

noise factor, G E {O, 0.25}. 

o The third data set, SPHERESHELL (Pal and Eluri, 1998) was likewise comprised 

of three coordinates, and described a hemisphere with radius 0.6 (500 data 

points) enclosed in a shell (also of 500 data points) with an inner radius of 2 and 

and outer radius of 2.013. The hemisphere, as well as the shell each contained 

500 randomly generated data points. This data set was also artificially 

generated. 

o Although the IRIS data set is neither artificial, nor related to chemical process 

systems, it has been investigated extensively elsewhere, and serves as a useful 

benchmark for data mapping algorithms. It consists of 150 data points describing 

three species of Iris (setosa, virginica and versicolor) in terms of sepal length (x1) 

and width (X2 ) , and petal length (x3) and width (x4 ). 

The essential characteristics of each data set are summarized by Table 5.1. The 

terminal set of the genetic programming algorithm, for each run, contained all the 
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variables of the corresponding data set, T = {X1' x 2, ... , X n}, while the function set. 

contained the four basic arithmetic operators and the sigmoidal function, cr, that is F = 
{+, -, *, I, cr}. 

Table 5.1 : Essential characteristics of the four data sets 

The size ofthe population for each data set was 100, and the reproduction, crossover 

and mutation probabilities were 36%; 60% and 4% respectively. An elitist strategy was, , 

followed, . in that. the best individual was automatically retained in successive 

generations. The trees were constrained to a'maximum depth of 7, which is not· 

particularly ~estrictive, given the simplicity of the data sets. Individuals were selected 

by means of a 3-way tournament method, while the fitness of each individual was 

defined as the inverse of the Sammon stress (Eq. 5.5). Three runs were conducted for 

each data set and the average stress was recorded. Table 5.2 outlines the parameters 

used for each run. 

Table 5.2 : Parameters used (or each d~ta set during feature extraction . 

Population size i 100 100 . 100 100 

Mutation rate (Pm) 4% 

77 

Stellenbosch University  https://scholar.sun.ac.za



5-Visualization of Process Systems using a-GP 

5.3.1.2 Results obtained 

Since the algorithm had to extract more than one feature, the trees in the population 

had composite structures, as shown in Figure 5.1. This meant that for each feature (in 

this case two), the exchange of genetic material was confined to trees with similar 

indices, representing a specific feature (Figure 5.2). The co-ordinates of the individual 

points in each data set were presented to the genetic programming algorithm, which 

projected the data to a two-dimensional feature spaces with coordinates Y1 and Y2' The 

results visualized in Figures 5.3-5.6 and are summarized in Table 5.3, were they are 

also compared with those obtained by other researchers making use of other methods 

Table 5.3 : A comparison of stress values (Sammon stress) obtained from six different 
projection algorithms for the four data sets. 

Average stress for three runs for each of the data sets (b) - (e) below 
(b) C91' 6'2) = (Xl' X1+X2); (X2' X3-X1) and (X3-X2, Xl)' 

(c) (6'1' 6'2) = (X2' X3); (X3' x2) and (x/lx/, X3)' 

(d) (6'1' 6'2) = (Xl' X2); (X2' Xl) and (Xl' X2). 
(e) (6'1' 6'2) = (X1-X2, x/lx4+X2X3); (X2' X1+X4) and (-X1-X4, x2). 

to map the data. Specifically, SAM refers to the original algorithm proposed by Sammon 

(1969), based on the use of Eq. 5.2. SNN1 refers to a multilayer perceptron-type neural 

network described by Tattersall and Limb (1994). SNN2 refers to the same type of 

network as SNN1, except that a peA network (Rubner and Schulten, 1990), (Rubner 

and Tavin, 1989) was first used to project the data, and the weights from this network 

were consequently used to initialize the Sammon neural network (Mao and Jain, 1995; 

Pal and Eluri, 1998). SNN3 refers to alternative strategies proposed by Pal and Eluri 

(1998), making use of statistical sampling and subsets to reduce the n(n-1)/2 number 

of calculations involved in the computation of the quality of the maps (Sammon stress). 

With SNN4 (Pal and Eluri, 1998) the idea is the same, except that a Kohonen map is 
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used to extract a small, but adequate representation of the data set prior to generating 

a Sammon map with a multilayer perceptron. 

TYPical Sammon map of the BITET data .. t .. ... . 
.. ~ l~ ;"a+ ••• 

't. ". .,: ,Ii,. '4 • • '" + 
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I • ~ •• +., ••• + + + ... + + + ++ + . +. .... +++++ =t- + 
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~: .•. q.:..~ + ... 
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Figure 5.3 : Typical Sammon map of the 
BITET data set, generated by the Genetic 
Programming algorithm, S = 0.0472, F1 = x 1 

and F2 = x 1 + x2• The clusters are indicated 
by different labels, as shown in the legend 

Typical Sammon map of the SPHERESHEU. data •• L 

Typical Sammon map of the IRIS d.t. .et 

+ 

" 
• Setosa . Versicolor VlrrI/n/ca 

Figure 5.5 : Typical Sammon map of the 
IRIS data set generated by the Genetic 
Programming algorithm, S = 0.00657, F1 = X 3 

+ x/[1+exp(x1)]; F2 = x 2• 

Typical Sammon map of the SPIRAL data •• t 

.u +---.....,..~-'------r-'-~---'-T--"--~~------l ., . " 
" 

Figure 5.4 : The Sammon map of the 
SPHERESHELL data set,generated by the 
Genetic Programming algorithm, S = 
0.0531, F1 = x 2 and F2 = x 1• 

SpItal 1 Sp/ra12 

Figure 5.6 : Typical Sammon map of the 
SPIRAL data set, generated by the Genetic 
Programming algorithm, S = 0.00403, F1 = X3 

and F2 = Xz' 
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5.3.2 Flotation data from an Australian base metal flotation plant 

5.3.2. 1 A description of each data set 

The following data set was collected from a base metal flotation plant. It consisted of 

approximately 1500 observations, 13 variables that described the ore and reagent feed 

rates to the plant, as well as other operating conditions. The variables were denoted as 

PCA map of the Australian base metal flotation data set 

lE+Ol x< 

SE+OO 

6E+OO 

OE~l 

-2E+OO +l- • 
-4E+OO --l---'--'---=-r-"'-'--"--r----~~~---r----"-__'____,_~~"____I 

-3E+02 -2.SE+02 

Low 

-2E+02 -1 .SE+02 
peAl (55.9%) 

Medium 

-lE+02 ~E+Ol OE~l 

High 

Figure 5.7 : Principal component map of 13 plant variables on a 
base metal flotation plant. The first two principal components (PC1 

and PC-,J explained 55.9% and 14.1 % of the variation in the data 
respectively. The discretized values of the concentration of the 
valuable metal (not part of the mapped data set) is superimposed 
on the map. 

As before, the terminal set of the genetic programming algorithm contained the 

variables, T= {x1, x2 , .. . , X13}' while the function set contained the four basic arithmetic 

operators, that is F = {+, -, *,1}. The same default values, i.e. a population size of 100, 
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a maximum tree depth of 7 and reproduction , crossover and mutation probabilities of 

respectively 36%,60% and 4% were used to map the data. 

5.3.2.2 Results obtained 

The plant data exhibited a clustered structure, owing to the way in which the plant was 

operated. This is shown in a principal component map of the data in Figure 5.7. Here 

the concentration of one of the valuable metals have been superimposed on the data, 

in a discretized form as "high", "medium" and "low". 

By mapping these thirteen features, three large clusters can be discerned, that is 

indicative of the different operating regimes on the plant, as shown in Figure 5.8. 

350 
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250 

200 

N 
"-

150 

100 

50 

0 

100 

Typical Sammon map of the Australian base metal flotation data set 

X 

++ ++ 
+ ++ 

150 

Low 

200 250 
F1 

Medium 

300 350 

High 

400 

Figure 5.8 : Sammon map of the base metal flotation data generated by the 
Genetic Programming algorithm with S = 0.00473, F1 = X6 - X 12 and F2 = 1 + x 1 + 
x4 - x7 + X 11 - x/x11• 

Although the first principle component only explains 55.9% of the variation, some 

degree of separation is possible using principle component analysis. Genetic 

programming, on the other hand, allows greater separation (see Figures 5.8) . 

Unfortunately, it is not known how much variation is explained via the genetic 

programming mapping because the two algorithms use different mapping objectives. 
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.... ... 

Typical Sammon map of the Australian base metal flotation data set 
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Figure 5,9 : Sammon map of the base metal flotation data generated by the 
multilayer perceptron neural network, with a Sammon stress of S = 0.02473. 

A multilayer perceptron neural network as proposed by Tattersall and Limb (1994) was 

also used for comparative purposes. After using various parameter combinations (i.e. 

changing the learning rate, number of hidden nodes, number of epochs, etc.), the 

mappings obtained appeared consistent over the range of runs, as shown by way of 

Figure 5.9. Two clusters, representing the "high" and "low" concentration can be 

discerned, although they are not well separated. The "medium" concentration appears 

also more clustered around the "high" concentrate. A Sammon stress of 0.02473 was 

attained, compared to a value of 0.00473 that was obtained via genetic programming. 

Very little separation was obtained through the neural network. 

5.3.3 Three-phase oil flow data. 

5.3.3.1 A description of each data set 

The flow of oil and water emulsions in pipes can be classified as homogeneous, annular 

and stratified. 1000 measurements were made on twelve variables v1, v2 , ... , V 12 . These 

data were mapped to two dimensions (F1 and F2) using genetic programming with T = 
{V1 ' v2 , . . . , V 12} and F = {+, -, *, /, sin, cos, tan, exp, log, cr}. For comparative purposes, 
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the runs were repeated using a multilayer perceptron-type neural network as described 

by Tattersall and Limb (1994). 

5.3.3.2 Results obtained 

The results from different runs, using genetic programming, can be seen in Figures 

5.10, 5.11 and 5.12. Figure 5.13 presents the results obtained using the technique 

proposed by Tattersall and Limb (1994). Although all the first three maps shown in 

these figures have more or less the same Sammon stress value, the appearances of 

the projections are different. From Figure 5.10 the stratified flow is manifested in four 

relatively small elongated clusters, surrounding two larger clusters representing the 

annular and the homogeneous flows. 

These two clusters appear to be rather spherical and not very distinct. In Figure 5.11 

the clusters representing the annular and homogeneous flows are more distinct, while 

the clusters representing the stratified flows appear to be less elongated. Figure 5.11 

Typical Sammon map of the Three Phase all flow 

0.5 

~ -0.5 

-1 

-l .S 

A • 
-2 +-----,,----r---,---~----r----''---_I 

·2 -1 

• Homogeneous 

1 
F1 

Annular 

3 

Stratified 

Figure 5.10 : Three-phase flow with S = O.05270,F1 = vz- V 3 + v10 + 
1/(1+exp(v1"}J andF2 = vIl1+exp(v1v-JJ + vr 1/{1+exp[1/(1+exp(v1v-JJ]J - v4 • 

is similar to Figure 5.12 in appearance, despite the simpler model relating the measured 

variables, v1, v2 , .. . , V 12 ' with the features F 1 and F 2. In Figure 5.13 the appearance of 
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the clusters are very similarto those obtained in Figures 5.11 and 5.12 but the Sammon 

stress is lower (0.0324). The stratified flows , however, are better separated than in the 

previous two figures but it is also more clustered. The two larger clusters, representing 

the annular and the homogeneous flows, are still not as distinct. 

'" .... 

Typical Sammon map of the Three Phase 011 flow 

·1 +----,---.-----,-----,--'-'--"-T-'--~-___1 

·1 

• Homogeneous 

2 
F1 

Annular Stratified 

Figure 5.11 : Three-phase flow with S = O.052931 F1 = v2 + V 6 + v10 and F2 = vr + 
2v5• 

Since the Sammon stress criterion is not uniquely related to a specific projection, the 

Typical Sammon map of the Three Phase all flow 

~ 2 

o 

• Homogeneous Annular Stratified 

Figure 5.12 : Three-phase flow with S = O.04943,F1 = 2s in(v.J + V10 and F2 = 
sin(sin(vr) + Vs + vr-
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generation of different maps is an advantage that can enhance the interpretation of the 

structure of process systems. Genetic programming provides a natural way of 

generating different types of maps, which could not readily be duplicated by use of 

neural networks, for example. 

N ... 

F1 

Homogeneous Annular 

Stratlfted 

Figure 5.13 : The results obtained using a mUltilayer-perceptron neural 
network. The Sammon stress. S = 0.0324. The stratified flows appear more 
distinct but also more clustered. from the homogeneous and annular 
clusters. 

5.4 Results and conclusions 

By comparing the results obtained using genetic programming and those using 

a multilayer-perceptron neural network, one can see that the results appear very similar. 

The neural network approach offered better separation of the individual clusters in the 

three phase oil data set, whereas the neural network approach was not able to separate 

the Australian base metal flotation data set sufficiently compared to the results obtained 

via genetic programming. This demonstrates the powerful capabilities of this novel 

approach toward data visualization. By making use of evolutionary computation to 

project high-dimensional data sets to lower-dimensional spaces, a population of 

projections is generated. Evolutionary computation is a natural way of generating 

multiple projections of a data set, which collectively can be more revealing than single 
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projections, such as those generated by neural networks. The quality of the maps was 

influenced mainly by the composition of the function set. Reliable maps could be 

generated consistently by inclusion of the basic arithmetic functions {+, -, *, I} only, 

which also tended to yield relatively simple, linear models for most of the cases 

considered in this investigation. 

Perhaps the most important advantage is that by use of genetic programming, relatively 

simple and explicit models relating the original variables and the projected variables or 

features can be formed. This is not the case when neural networks or other methods 

__ of optimization is used, and ~an be potentially useful where tbese types of maps are 

used in the monitoring of multivariate processes, since process variables, giving rise 

to deviations from the norm can be more readily identified. Also, the importance of each 

variable become immediately apparent from the mapping functions, similar to the 

loadings of the variables in principal component analysis. Once again this is not so 

obvious when using neural networks or other techniques. 
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During this research several limitations were encountered with the genetic 

programming algorithm and with a-GP, in particular. 

o One of these (for both algorithms) is the lack of a local optimization procedure. 

This drawback resulted in the proliferation of complex tree-like structures in 

successive generations as reported in Chapter 4. These complex structures 
I 

were necessary to estimate parameters within the model structures. Although 

some researches have tried to use other searphing algorithms in parallel with the 

genetic programming algorithm, no significant (if any!) improvements were 

obtained1
• A possible solution to this problem of local optimization is to generate 

and evolve solutions in such a way that, when they are simplified, they can be 

expressed in the following form 

(6.1) 

where Ik represents individual k, and F 1 to F n are sub-trees in the individual with 

weights, 8 1 ... 8 m attached to them. The weights or constants, 8 1 ..• 8 n, can then be 

calculated through a linear batch regression technique. This will yield 

- -considerable improvements in terms of spe-ed and memory usage as opposed 

to a technique that employs two concurrent searching algorithms. 

o Time-series prediction can be achieved via a static encoding of the time-series. 

A future implementation could look at the use of an autoregressive moving 

average CARMA) model which can be expressed as 

ISee Chapter 2.4.2 
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k I 

X t = ao + I ajX t _ j + I b/~t_j (6.2) 
j=1 j=O 

to use this model for a-GP, we can replace X t by Ik' as in (6.1), and rewrite (6.2) 

as 

k I 

Ikt = aD + ~ a.l k + ~ b.a t . L..J 1 t-j L..J 1 -1 (6.3) 
j=1 j=O 

The ARMA model is a well studied and widely used (since the late 1920's) 

implementation for linear time-series modelling. 

o A lack of diversity increases the probability of entrapment within a local optimum. 

This arises out of natural selection, which allows the best individual to dominate 

large portions of the population over succeeding generations. For now, the only 

way of e~suring diversity is to use several populations (or demes) in parallel. 
.. 

Mutation too, allows some degree of diversity but selecting a too high mutation 

rate will result in an inefficient local search. Some technique. is required to 

compute the inter-spatial distance between two individuals within the GP search 

space and hence ensure that only individuals, which are in close proximity of one 

another, are allowed to mate. This would be analogous to the technique 

employed in genetic algorithms which uses the Hamming distance between 

solutions to enforce local mating. 

o The disruptive nature of the crossover operation was not addressed in this 

thesis. Research will need to be done on ways of minimizing the displacement 

of individuals in the search-space after applying crossover. This, once again, 
- _. -"- "-- -".- - ." '.~' ~ ... ~~. .- - ._-_. -- -- ~. -- . - -".-

reinforces the need to find some way of computing the inter-spatial distance 

between individuals. 
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Several alterations have been proposed in this thesis to improve the original 

genetic programming algorithm as proposed by Koza (1992). 

o Although the original algorithm was implemented in LISP, which is an interpreted 

language; to increase speed and scalability, it had to be designed and 

implemented in an object oriented compiled language. C++ was used for this 

purpose. The implementation of each solution was altered to such an extend that 

every node in the tree-like structure could be stored in 1 byte of computer 

memory as opposed to the 22 bytes required by other implementations. This 

resulted in a significant reduction in resources required by the algorithm. Also 

the evaluation scheme was changed from node-branch reduction, to a simple 

stack-based RPN 1 evaluation which is much faster and non-recursive. A 

significant increase in convergence and robustness in regression models, was 

also obtained by changing the implementation of the fitness function from an 

error-based fitness function to a correlation-based fitness function in conjunction 

with a correction filter. Unfortunately, the unsimplified tree-like structures were 

more complex when a correlation-based fitness function was used. The 

correction filter was needed to eliminate any scale or bias in the final models, 

which affected the SSE but not the R2. 

o Chapter 4 saw the application of the newly improved algorithm, a-GP, in the 

development of regression models on four case stUdies. The algorithm was 

compared to other algorithms such as: standard genetic programming (using an 

1 Reverse Polish Notation 
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error-based fitness function), a multilayer perceptron neural network and linear 

regression. a-GP improved significantly on genetic programming on all four case 

studies and performed very similar to the neural network. Unfortunately, the 

evolved models were too complex. This can be attributed to the lack of 

parameter estimation which the genetic programming algorithm tries to 

compensate for by evolving complex tree structures; which it uses to 

approximate the parameters. This demonstrates the need for a local optimization 

procedure to generate and optimize parameters in the genetic programming 

algorithm. 

o As a data visualization tool, genetic programming compares favourably with 

other techniques proposed by various researchers in the literature. Four bench 

marking data sets were used for comparative purposes. The final results 

compared favourably with the other techniques suggested by various 

researchers. Additionally the algorithm was applied to flotation data obtained 

from an Australian base metal flotation plant in which thirteen variables in the 

plant was transformed to two dimensions. The concentration of one of the 

valuable metals were superimposed on the data, in a discretized form as "high", 

"medium" and "low". By mapping these thirteen features, three large clusters 

were discerned, which was indicative of the different operating regimes on the 

plant. The results were similar to those derived from the first two principal 

components of the data implicating that the data was linearly separable. Finally, 

the flow of oil and water emulsions in pipes, which can be classified as 

"homogeneous", "annular" and "stratified" was analysed. The original twelve 

variables were projected to a two-dimensional map. The resulting projections 

from three different runs were all different in appearance, although the Sammon 

stress was more or less the same. The first projection showed the stratified flow 

manifested in four relatively small elongated clusters, which surrounded two 

larger clusters representing the annular and the homogeneous flows. The two 

clusters appeared to be rather spherical and not very distinct. In the second 

projection the clusters representing the annular and homogeneous flows were 

more distinct, while the clusters representing the stratified flows appeared to be 
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less elongated. The final projection was similar in appearance to the latter, albeit 

with a simpler model. Genetic programming, however had the additional benefit 

of being able to generate a population of projection maps which, collectively, 

could be more revealing than single projections, such as those generated by 

neural networks. Perhaps the most important ~dvantage was that by use of 

genetic programming relatively simple and explicit models relating the original 

variables and the projected variables or features could be formed. This is not the 

case when neural networks or other methods of optimization are used, and could 

be potentially useful where these types of maps are used in the monitoring of 

multivariate processes, since process variables, giving rise to deviations from 

the norm can be more readily identified. 

In conclusion, a-GP is an extremely viable tool for both regression modelling and data 

visualization. It compares favourably with other existing methods. However a-GP (or 

genetic programming for that matter) does not yield simple symbolic models when used 

in regression modelling. The algorithm lacks a local optimization procedure which 

severely restricts its usage to evolve simple symbolic functions. 

As a data visualization tool, a-GP does generate simple symbolic projection functions. 

These functions are more revealing than the non-parametric models obtained from 

neural networks. A possible explanation for this discrepancy for not being able to evolve 

simple functions for both cases can be that: regression requires a mapping, in such a 

way, that the projected data is an exact replica (in the mean squared error sense) of the 

desired output, whilst data visualization (using a Sammon mapping criterion) requires 

a mapping, in such a way, that the interspatial distance, between data residing in the 

input space and that in the projected space, is minimized. 
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A 

Y 

r(~) 

p 

a-GP 

ADF 

ANN 

c 

c 
eee 
eGP 
d 

d* I) 

NOMENCLATURE 

Predicted output vector 

Total number of individuals that can be constructed with function Fi 

k'th output of the observed output vector 

Predicted output vector of individual i 

k'th output of the predicted individual i 

Linear separability 

Population correlation 

Standard deviation of the difference in the R2 between the training data 

and the testing data. 

Augmented Genetic Programming 

Automatically Defined Functions 

Artificial Neural Network 

Number of classes/clusters 

Optimization criterion 

Constraint Complexity Crossover 

Compiled Genetic Programming 

Dimensionality 

Euclidian distance between projected points u and v in the output space, 

(£". 

Euclidian distance between points i and j in the input space, ~. 

Linear dimensionality 
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EA 

ES 

E[X] 

F 

F 

f; 

fr 

G(Xd,Xa) 

GA 

GP 

GUI 

MLP 

MSE 

n 

NC 

rxy 

R2(X, Y) 

S 

5(1) 

SSE 

STGP 

T 

y 

Nomenclature 

Randomly generated noise factor 

Evolutionary Algorithm 

Evolution Strategy 

Expected or mean value of variable X 

Function set 

Functional representation of a process 

Fitness of individual i 

Total fitness of the population 

Correction filter to remove any bias and scale introduced in Xa. 

Genetic Algorithm 

Genetic Programming 

Graphical User Interface 

Individual i 

Multilayer Perceptron 

Mean of the squared errors 

Number of patterns 

Node Complexity 

Percentage crosSover 

Principal Component Analysis 

Percentage mutation 

Sample correlation coefficient 

Amount of variation Yexplains in X. 

Sammon stress 

Size of the search space at level I. 

Sum of the squared errors 

-Strongly Typed Genetic Programming 

Terminal set 

Actual variable 

Desired variable 

Observed output vector 

Input space 
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I 

Output space 

Mapping function 

Higher dimensional space 

Lower dimensional space 

Nomenclature 
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EVOLVED MODELS 

A.1 The unsimplified regression models of Chapter 4 

A.1.1 Regression model for data set PINE 

Pre~icted Model = * TEMP + * - LEAFMASS XPP * * TEMP WOODDEN + * log - PAR -

LEAFMASS XPP WSPEED * TEMP WOODDEN - PAR * log - * - * LEAFMASS 

WOODDEN PAR * TREE TEMP + * - PAR WOODDEN * * log - PAR LEAFMASS 

WSPEED +*-LEAFMASS TEMP -LEAFMASS WOODDEN *TEMP TREE *TEMP 

WOODDEN * log + * - * LEAFMASS WOODDEN log TREE * * TEMP log - LEAFMASS 

AGE + * log WSPEED - LEAFMASS WOODDEN - LEAFMASS WOODDEN WOODDEN 

* TEMP WOODDEN 

A.1.2 Regression model for data set POP 

Predicted Model = * / age + + + + log exp vpd log exp - - hour seasno seasno + exp * * / exp 

tree PAR / * Tree age - hour seasno // date / date Tree age day age + vpd 1- - exp * 

* / exp hour * Tree age / * Tree seasno - date Tree / hour age + + * + exp tree exp tree 

age + age + exp tree exp tree log exp tree PAR / date -/ PAR / hour + age exp tree + 

/ * + exp tree exp tree age - age Tree log exp tree vpd 

A.1.3 Regression model for data set BMVANO 

Predicted Model = * AvrGreenCuSc * / AvrRedCuSc + * * * / AvrBlueCuSc + * FlowCuSc 

SMCuSc / SMCuSc SNECuSc MobilitCuSc * / AvrBlueCuSc + AvrGreenCuSc * log 

MobilitCuSc - - MobilitcuSc AvrRedCuSc AvrRedCuSc / AvrGreenCuSc + + AvrGreenCuSc 
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/ SMCuSc AvrBlueCuSc * log MobilitCuSc - - MobilitCuSc AvrRedCuSc AvrRedCuSc * * * 

/ AvrGreenCuSc + * log MobilitCuSc - AvrBlueCuSc AvrRedCuSc log SMCuSc MobilitCuSc 

MobilitCuSc * / + AvrRedCuSc AvrGreenCuSc log SMCuSc MobilitCuSc AvrBlueCuSc * / 

AvrBlueCuSc AvrBlueCuSc * I AvrBlueCuSc + + * log MobilitCuSc AvrRedCuSc log I 

AvrBlueCuSc AvrBlueCuSc AvrGreenCuSc * I AvrBlueCuSc + AvrGreenCuSc AvrBlueCuSc 

* * / AvrBlueCuSc AvrRedCuSc * I AvrBlueCuSc + AvrGreenCuSc * log MobilitCuSc -

MobilitCuSc AvrBlueCuSc I AvrBlueCuSc + AvrGreenCuSc * log MobilitCuSc - MobilitCuSc . 

AvrBlueCuSc I AvrBlueCuSc + AvrGreenCuSc . * log MobilitCuSc - / AvrBlueCuSc 

AvrBlueCuSc AvrBlueCuSc 

A.1.4 Regression model for data set SOLPREP 

Predicted Model = + + * I NH40H_addition [H2S04]after T093_0/f + + + + + + + Mn093am 

log [H2S04]after log [H2S04]after log - + H2S04_addition H2S04_addition [H2S04]after 

log - + log - + [H2S04]before H2S04_addition [H2S04]after + * I NH40H_addition 

[H2S04]after [H2S04]after LeachFlowrate [H2S04]after log + log + - I T093_0/f 

H2S04_addition H2S04_addition + [H2S04]after [H2S04]after log - + exp + 

H2S04_addition H2S04_addition LeachFlowrate log [H2S04]after log [H2S04]after log +­

- + log + LeachFlowrate log H2S04_addition - + NH40H_addition LeachFlowrate 

[H2S04]after [H2S04]before + [H2S04]before H2S04_addition + log log + - I 

NH40H_addition [H2S04]after H2S04_addition + - I NH40H_addition H2S04_addition 

[H2S04]after LeachFlowrate log - + Mn093am H2S04_addition [H2S04]after + - Mn093am 

H2S04_addition Mn093am 
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THE SOURCE CODE 

B.1 Abstract base classes 

8.1.1 Header file for abstract class Genericlndividual and GenericAlgorithm 

#ifndef GenericAlgH 

#define GenericAlgH 

#include <vector> 

#include <vcl/syncobjs.hpp> 

using namespace std; 

template <class T> 

inline T sign(T x) 

return (x < 0) ? -1 1; 

} ; 

template <class T> 

inline void Swap(T &x, T &y) 

} ; 

T dummy = x; 

x = y; 

y dummy; 

template<class Type> 

inline void ClearContainer(vector<Type *> &C) 

int N = C.size(); 

for (register int i =0; i < N; i++) 
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} ; 

delete (Type *)C[i); 

C.clear() ; 

typedef vector<double> VECTOR DOUBLE; 

11================================================================= 

11================================================================= 

11================================================================= 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 

GenericIndividual Class 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 
class GenericIndividual 

private: 

protected: 

public: 

} ; 

1*1 

GenericIndividual() ; 

-GenericIndividual(); 

virtual void Clone (GenericIndividual* &Target); 

double Fitness; 

GenericIndividual Implementation 

1*1 
GenericIndividual::GenericIndividual() 

Fitness=O.O; 

} ; 

GenericIndividual::-GenericIndividual() {}; 

inline void GenericIndividual: :Clone(GenericIndividual* &Target) 

} ; 

if(!Target) return; 

Target->Fitness = this->Fitness; 

11================================================================= 

11================================================================= 

11================================================================= 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 
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GenericAlgorithm Class 

/*/////////1////////11//////1/1/1//////11/////1/111///1///1/////1 

template <class T> 

class GenericAlgorithm 

private: 

protected: 

TCriticalSection* CriticalSection; 

bool Elitism; 

int PopulationSize; 

vector<T *> Population; 

double TotalFitness; 

virtual void ComputeFitness(T * &AnInd) 0; 

virtual void ClearSystemVariables(); 

virtual void UpdateSystemVariables(); 

void ComputeTotalFitness(); 

virtual T* GenerateAnIndividual() = 0; 

bool IndGreaterThan(GenericIndividual *I1, GenericIndividual* I2) 

return I1->Fitness > 12->Fitness; 

} ; 

public: 

} ; 

/*/ 

GenericAlgorithm() ; 

-GenericAlgorithm(); 

void Initialize(); 

virtual void DoAlgorithm() = 0; 

virtual double GetFitness(int i); 

void SetElitism(bool E); 

bool GetElitism(); 

void SetPopulationSize(int S); 

int GetPopulationSize(); 

double GetTotalFitness(); 

double GetAvgFitness(); 

int CurrentStep; 

bool Initialized; 

vector<double> SVBestOfFitness; //System variable 

vector<double> SVAvgFitness; //System variable 

int GetActualPopSize(); 
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GenericAlgorithrn Implementation 

/*/ 

template<class T> 

GenericAlgorithm<T>::GenericAlgorithm() 

} ; 

CriticalSection = new TCriticalSection(); 

Current Step = 0; 

TotalFitness = 0.0; 

Elitism = false; 

Initialized = false; 

PopulationSize = 50; 

template<class T> 

GenericAlgorithm<T>::-GenericAlgorithm() 

} ; 

CriticalSection->Enter(); 

ClearContainer((vector<T *»Population); 

CriticalSection->Leave(); 

ClearSystemVariables(); 

delete CriticalSection; 

template<class T> 

inline int GenericAlgorithm<T>::GetActualPopSize() 

return Population.size(); 

} ; 

template<class T> 

inline void GenericAlgorithm<T>::ClearSystemVariables() 

} ; 

SVBestOfFitness.clear(); 

SVAvgFitness.clear() ; 

template<class T> 

inline void GenericAlgorithm<T>::UpdateSystemVariables() 

} ; 

SVBestOfFitness.push_back( Population[Oj->Fitness ); 

SVAvgFitness.push_back( TotalFitness/(double)Population.size() ); 
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template<class T> 

inline void GenericAlgorithm<T>: :SetElitism(bool E) 

Elitism E; 

} ; 

template<class T> 

inline bool GenericAlgorithm<T>::GetElitism() 

return Elitism; 

} ; 

template<class T> 

inline void GenericAlgorithm<T>::SetPopulationSize(int S) 

PopulationSize = S; 

} ; 

template<class T> 

inline int GenericAlgorithm<T>::GetPopulationSize() 

return PopulationSize; 

} ; 

template<class T> 

inline void GenericAlgorithm<T>::Initialize() 

T *r=NULL; 

CriticalSection->Enter() ; 

ClearContainer((vector<T *»Population); 

CriticalSection->Leave(); 

ClearSystemVariables() ; 

for (register int i=O; i<PopulationSize; i++) 

r=GenerateAnlndividual(); 

ComputeFitness(r) ; 

Population.push_back(r); 

r=NULL; 

ComputeTotalFitness() ; 

UpdateSystemVariables(); 

Current Step = 0; 

Initialized=true; 

8.5 

Stellenbosch University  https://scholar.sun.ac.za



} ; 

sort (Population.begin(), Population.end(), &IndGreaterThan); 

Current Step = 0; 

template<class T> 

inline double GenericAlgorithm<T>: :GetFitness(int i) 

return ((GenericIndividual *)Population[i])->Fitness; 

} ; 

template<class T> 

inline double GenericAlgorithm<T>::GetTotalFitness() 

return TotalFitness; 

} ; 

template<class T> 

inline double GenericAlgorithm<T>::GetAvgFitness() 

} ; 

double 0 = TotalFitness; 

if(Population.size()) 0 /= (double)Population.size(); 

return 0; 

template<class T> 

inline void GenericAlgorithm<T>: :ComputeTotalFitness() 

} ; 

int N = Population.size(); 

TotalFitness = 0.0; 

for (register int i = 0; i < N; i++) 

TotalFitness += ((GenericIndividual *)Population[i])->Fitness; 

//------------------------------------------------~--------------------------

#endif 

8.1.2 Header file for abstract 
Generic Evol utionary Algorithm 

#ifndef evoalgorithmH 

#define evoalgorithmH 

#include <math.h> 

#define NDEBUG 

class GenericEvolndividua! and 
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#include "debugger.h" 

#include "vectormath.h" 

#include "GenericAlg.h" 

enum SetType {stTRAINING, stVALIDATION, stTESTING}; 

enum TerminalType {tpINPUT, tpOUTPUT, tpSYSTEM}; 

enum NodeType {ntTERMINAL, ntFUNCTION}; 

enum FitnessType {ftERROR_BASED, ftCORR_BASED, ft2ndORDER_POLY}; 

enum SelectionType {stFITNESS_PROPORTIONATE, stTOURNAMENT, stRANK}; 

class AbstractException {}; 

class NotInitialized : public AbstractException {}; 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 

GenericEvoIndividual Class 

1*111111111111111111/111111111111111111111111111111111IIIIIIIIIII 
template<class G> 

class GenericEvoIndividual : public GenericIndividual 

private: 

protected: 

public: 

} ; 

1*1 

GenericEvoIndividual(); 

-GenericEvoIndividual(); 

virtual void Clone (GenericEvoIndividual* &Target); 

vector<G*> Genome; 

void SetGenome(G* Src, int Index); 

G* GetGenome(int i); 

GenericEvoIndividual Implementation 

1*1 
template<class G> 

GenericEvoIndividual<G>: :GenericEvoIndividual() 

GenericIndividual() {}; 

template<class G> 

GenericEvoIndividual<G>: :-GenericEvoIndividual() 

int N = Genome.size(); 
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} ; 

for (register int i =0; i < N; i++) 

delete (G *)Genome[i); 

Genome.clear(); 

template<class G> 

inline void GenericEvoIndividual<G>: :Clone(GenericEvoIndividual * &Target) 

} ; 

if(!Target) Target = new GenericEvoIndividual(); 

GenericIndividual::Clone(Target); 

int N = this->Genome.size(); 

Target->Genome.reserve(N); 

G * Dummy; 

for (register int i 0; i < N; i++) 

Dummy = new G(); 

*Dummy = *(this->Genome[i]); 

Target->Genome.push_back(Dummy); 

template<class G> 

inline void GenericEvoIndividual<G>: :SetGenome(G* Src, int Index) 

Genome [Index] = Src; 

} ; 

template<class G> 

inline G* GenericEvoIndividual<G>: : GetGenome (int i) 

return Genome[i]; 

} ; 

11================================================================= 

1*1111111111111111111111111111/11111111111111111111111IIIIIIIIIII 

GenericEvolutionaryAlgorithm Class 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 
template<class T, class G> 

class GenericEvolutionaryAlgorithm : public GenericAlgorithm<T> 
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private: 

protected: 

vector<T *> Pool; 

SelectionType SelectionMethod; 

int TournamentMembers, Pc, Pm; 

FitnessType FitnessFunction; 

virtual void ClearSystemVariables(); 

virtual void UpdateSystemVariables(); 

virtual void Crossover(vector<G *> &Parentl, vector<G *> &Parent2) 0; 

virtual void Mutate (vector<G *> &Parent) = 0; 

virtual void Crossover(vector<G *> &Parentl, vector<G *> &Parent2, 

int &Levell, int &Leve12) = 0; 

virtual void Mutate (vector<G *> &Parent, int &Level) = 0; 

virtual void RawFitness(T * &AnInd, const VECTOR DOUBLE *ObservedOutput, 

const VECTOR_DOUBLE *PredictedOutput); 

void Reproduction(int PopSize, SelectionType SelectionMethod, int 
TournamentMembers); 

virtual void GeneticOperations(int Pc, int Pm, int PopSize) = 0; 

virtual VECTOR DOUBLE* EvaluateGenome(const vector<G *> &Genome) 0; 

public: 

} ; 

/*/ 

/*/ 

GenericEvolutionaryAlgorithm(); 

~GenericEvolutionaryAlgorithm(); 

void DoAlgorithm(); 

void SetSelectionMethod(SelectionType SM); 

SelectionType GetSelectionMethod(); 

void SetTournamentMembers(int T); 

int GetTournamentMembers(); 

void SetPc(int P); 

int GetPc(); 

void SetPm(int P); 

int GetPm(); 

void SetFitnessFunction(FitnessType F); 

FitnessType GetFitnessFunction(); 

GenericEvolutionaryAlgorithm Implementation 

template<class T, class G> 

GenericEvolutionaryAlgorithm<T, G>: :GenericEvolutionaryAlgorithm() 

GenericAlgorithm<T>() 

SelectionMethod = stTOURNAMENT; 

TournamentMembers = 3; 
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} ; 

Pc = 60; Pm = 4; 

FitnessFunction = ftCORR_BASED; 

template<class T, class G> 

inline GenericEvolutionaryAlgorithm<T, G>::-Generic~volutionaryAlgorithm() 

} ; 

CriticalSection->Enter(); 

ClearContainer((vector<T *» Pool); 

CriticalSection->Leave(); 

ClearSystemVariables(); 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: :ClearSystemVariables() 

GenericAlgorithm<T>: :ClearSystemVariables(); 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: :UpdateSystemVariables() 

GenericAlgorithm<T>: :UpdateSystemVariables(); 

} ; 

template<class T, class G> 

in line void GenericEvolutionaryAlgorithm<T, 
G>::SetSelectionMethod(SelectionType SM) 

SelectionMethod = SM; 

} ; 

template<class T, class G> 

inline SelectionType GenericEvolutionaryAlgorithm<T, G>: :GetSelectionMethod() 

return SelectionMethod; 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: :SetTournamentMembers(int T) 

TournamentMembers T; 

} ; 

template<class T, class G> 
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inline int GenericEvolutionaryAlgorithm<T, G>: :GetTournamentMembers() 

return TournamentMembers; 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: :SetPc(int P) 

Pc P; 

} ; 

template<class T, class G> 

inline int GenericEvolutionaryAlgorithm<T, G>::GetPc() 

return Pc; 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: :SetPm(int P) 

Pm P; 

} ; 

template<class T, class G> 

inline int GenericEvolutionaryAlgorithm<T, G>::GetPm() 

return Pm; 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>:: SetFitnessFunction (FitnessType 
F) 

{ 

FitnessFunction F; 

} ; 

template<class T, class G> 

inline FitnessType GenericEvolutionaryAlgorithm<T, G>::GetFitnessFunction() 

return FitnessFunction; 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: : DoAlgorithm() 
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} ; 

PRINT ("Initializing") ; 

STARTTIMER() ; 

if(!Initialized) Initialize(); 

ENDTIMER () ; 

PRINT ("Reproduction") ; 

STARTTIMER() ; 

Reproduction (PopulationSize, SelectionMethod, TournamentMembers); 

ENDTIMER () ; 

PRINT("Genetic operations"); 

STARTTIMER() ; 

GeneticOperations(Pc, Pm, PopulationSize); 

ENDTIMER () ; 

CurrentStep++; 

UpdateSystemVariables(); 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>::RawFitness(T * &AnInd, const 
VECTOR_DOUBLE *ObservedOutput, 

const VECTOR_DOUBLE *PredictedOutput) 

CriticalSection->Enter() ; 

switch (FitnessFunction) 

case ftERROR BASED: 

((GenericIndividual 
*)AnInd)->Fitness=l.O/(l.O+sse(PredictedOutput, ObservedOutput)); 

break; 

case ftCORR BASED: 

((GenericIndividual *)AnInd)->Fitness 
rsquared(PredictedOutput, ObservedOutput); 

break; 

default 

CriticalSection->Leave(); 

} ; 

template<class T, class G> 

inline void GenericEvolutionaryAlgorithm<T, G>: : Reproduction (int PopSize, 

SelectionType SelectionMethod, int TournamentMembers) 

int contender; 
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T *competitor, *current_winner, * Dummy=NULL; 

switch (SelectionMethod) 

case stFITNESS PROPORTIONATE: 

double pf; 

int ind=O; 

while(((int)Pool.size() < PopSize) && (ind < 
(int) Population. size () )) 

pf=((GenericIndividual 
*)Population[ind] )->Fitness/TotalFitness; 

int K=floor(pf*PopSize); 

for(register int i = 0; (i<K) && ((int)Pool.size() < 
PopSize); i++) 

Dummy = NULL; 

Population[ind]->Clone(Dummy) ; 

Pool.push_back(Dummy) ; 

ind++; 

break; 

case stTOURNAMENT: 

while ( (int)Pool.size()<PopSize) 

break; 

default: 

contender = random(Population.size()); 

if((Pool.size() == 0) && Elitism) contender 0; 

current_winner = (T *)Population[contender]; 

for (register int i=l; i<TournamentMembers; i++.) 

contender = random(Population.size()); 

competitor = (T *)Population[contender]; 

if(((GenericIndividual *)current_winner)->Fitness < 

((GenericIndividual *)competitor)->Fitness) 

current winner = competitor; 

Dummy = NULL; 

current_winner->Clone(Dummy); 

Pool.push_back(Dummy); 

sort(Pool.begin(), Pool.end(), &IndGreaterThan); 
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} ; 

CriticalSection->Enter(); 

ClearContainer((vector <T *»Population); 

CriticalSection->Leave(); 

//---------------------------------------------------------------------------
#endif 

B.2 The GP class 

8.2.1 Header file for class GPlndividual and CustomGPalgorithm 

#ifndef GPalgorithmunitH 

#define GPalgorithmunitH 

#include "evoalgorithm.h" 

#include "vectormath.h" 

#define MEMCOPY_double(dest, src, count)\ 

asm\ 

{ \ 

push ecx;\ 

xor ecx,. 

mov ecx, 

push esi; 

push edi; 

\ 
mov edi, 

mov esi, 

shl ecx, 

cld; 

ecx;\ 

(count) ;\ 

\ 

\ 

(dest) ;\ 

(src) ;\ 

1; \ 
\ 

REP MOVSD; \ 

#define MINVALUE 10e-IS 

#define MAXVALUE l/MINVALUE 

class Vectorlnfo 

public: 

pop 

pop 

pop 

edi; 

esi; 

ecx; 

Vectorlnfo () : Dim (0), Ptr (NULL) {}; 

-Vectorlnfo () {delete [l Ptr;}; 

int Dim; 

\ 

\ 
\ 

\ 
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double* Ptr; 

} ; 

struct vectorinfo 

int dim; 

double* ptr; 

} ; 

typedef struct VectorInfo VINFO; 

typedef vector<VINFO*> StackType; 

1*11111111111111111111111111111111111111111/111/11/11111/1/1/111/ 
BaseNode Class 

1*11111111111111111/11/1111111111111111/1111111/11111111/111/1111 
class BaseNode 

protected: 

private: 

pUblic: 

} ; 

BaseNode(char *N, NodeType T); 

~BaseNode(); 

virtual void Clone (BaseNode *Target); 

char *Name; 

NodeType NodeKind; 

II---------------------------------------~---------------
11.<.' ' 

II Implementation 

11-------------------------------------------------------
BaseNode::BaseNode(char *N, NodeType T) : 

NodeKind(T) 

} ; 

Name = new char[strlen(N)+l); 

strcpy(Name, N); 

Name[strlen(N»)='\O'; 

BaseNode: :~BaseNode() 

delete Name; 

} ; 

inline void BaseNode: :Clone(BaseNode *Target) 

if(!Target) return; 

Target->Name = new char[strlen(this->Name)+l); 

strcpy(Target->Name, this->Name); 
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} ; 

Target->Name[strlen(this->Name) ]='\0'; 

Target->NodeKind = this->NodeKind; 

11================================================================= 

1*111111111111111111111/11111111111111111111111111111111111111111 
TerminalNode Class 

1*111111111111111111111111111111111111111111111111111111111111111 
class TerminalNode : public BaseNode 

protected: 

private: 

public: 

} ; 

TerminalNode(); 

TerminalNode(char *N); 

TerminalNode(char *N, TerminalType T); 

-TerminalNode(); 

void Clone (TerminalNode *Target); 

vector<double> *Values; 

int GetDim(); 

TerminalType ActingAs; 

II-----------~-------------------------------------------

II Implementation 

11-------------------------------------------------------
TerminalNode::TerminalNode() : 

BaseNode("", ntTERMINAL) 

ActingAs = tpINPUT; 

} ; 

TerminalNode::TerminalNode(char *N) 

BaseNode(N, ntTERMINAL) 

ActingAs = tpINPUT; 

} ; 

TerminalNode: : TerminalNode (char *N, TerminalType T) 

BaseNode(N, ntTERMINAL) 

ActingAs = T; 

} ; 

TerminalNode: :-TerminalNode() 

8.16 

Stellenbosch University  https://scholar.sun.ac.za



// 
} ; 

delete Values; Values NULL; 

inline int TerminalNode: :GetDim() 

} ; 

int N = 0; 

if(Values) N 

return N; 

Values->size(); 

inline void TerminalNode: :Clone(TerminalNode *Target) 

} ; 

if(!Target) Target = new TerminalNode(); 

BaseNode: : Clone (Target) ; 

Target->Values = new vector<double>(); 

* (Target->Values) = *(this->Values); 

Target->ActingAs = this->ActingAs; 

//================================================================= 

class BaseFunctionNode public BaseNode 

public: 

} ; 

BaseFunctionNode (int A, 'char *N) : BaseNode (N, ntFUNCTION) , 

TotalArgs (A) {}; 

virtual void ApplyFunction(StackType &S) = 0; 

int TotalArgs; 

class AddNode public BaseFunctionNode 

private: 

double *ptrl, *ptr2; 

// VECTOR DOUBLE *xl, *x2; 

VINFO *xl, *x2; 

double k; 

int N; 

public: 

AddNode () BaseFunctionNode(2, n+n), 

ptrl(NULL) , ptr2(NULL) , xl (NULL) , x2(NULL) {I; 

-AddNode () {}; 

void ApplyFunction(StackType &S) 

xl=S.back(); S.pop_back(); x2=S.back(); S.pop_back(); 
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} ; 

} ; 

ptrl = xl->Ptr; 

ptr2 = x2->Ptr; 

N = xl->Dim; 

for (register int i = 0; i < N; i++) 

k (*ptrl) + (*ptr2); 

k 

k 

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE) 

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE) 

*ptrl = k; 

ptrl++; ptr2++; 

ptrl = ptr2 = NULL; 

delete x2; x2=NULL; 

S.push_back(xl); xl=NULL; 

k; 

k; 

class SubtractNode public BaseFunctionNode 

private: 

double *ptrl, *ptr2; 

VINFO *xl, *x2; 

double k; 

int N; 

public: 

SubtractNode() BaseFunctionNode(2, "-"), 

ptrl(NULL) , ptr2(NULL) , xl (NULL) , x2(NULL) 

{}; 

void ApplyFunction(StackType &S) 

x2=S.back(); S.pop_back(); xl=S.back(); S.pop_back(); 

ptrl = xl->Ptr; 

ptr2 = x2->Ptr; 

N ,,; xl->Dim; 

for (register int i = 0; i < N; i++) 

k 

k 

k 

(*ptrl) - (*ptr2); 

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE) 

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE) 

*ptrl = k; 

ptrl++; ptr2++; 

ptrl = ptr2 = NULL; 

delete x2; x2 = NULL; 

S.push_back(xl); xl = NULL; 

k; 

k; 
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} ; 

} ; 

class MultiplyNode public BaseFunctionNode 

private: 

double *ptrl, *ptr2; 

double k; 

int N; 

//VECTOR DOUBLE *xl, *x2; 

VINFO *xl, *x2; 

public: 

MultiplyNode () BaseFunctionNode(2, "*") , 

ptrl(NULL) , ptr2(NULL) , xl (NULL) , x2(NULL) 

{ } '; 

void ApplyFunction(StackType &S) 

/* x2=S.back(); S.pop_back(); xl=S.back(); S.pop_back(); 

*/ 

ptrl = (double *)xl->begin(); 

ptr2 = (double *)x2->begin(); 

N = xl->size(); 

for (register int i = 0; i < N; i++) 

k 

k 

k 

(*ptrl) * (*ptr2); 

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE) 

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE) 

*ptrl = k; 

ptrl++; ptr2++; 

ptrl = ptr2 = NULL; 

delete x2; x2 = NULL; 

S.push_back(xl); xl = NULL; 

k; 

k; 

x2=S.back(); S.pop_back(); xl=S.back(); S.pop_back(); 

ptrl = xl->Ptr; 

pt:i:2 = x2->Ptr; 

N = xl->Dim; 

for(register int i = 0; i < N; i++) 

k (*ptrl) * (*ptr2); 

k 

k 

(fabs(k»MAXVALUE) ? (sign(k)*MAXVALUE) 

(fabs(k)<MINVALUE) ? (sign(k)*MINVALUE) 

*ptrl = k; 

ptrl++; ptr2++; 

k; 

k; 

B.19 

Stellenbosch University  https://scholar.sun.ac.za



} ; 

} ; 

ptrl ptr2 = NULL; 

delete x2; x2 = NULL; 

S.push_back(xl); xl = NULL; 

class DivideNode public BaseFunctionNode 

private: 

double *ptrl, *ptr2; 

double k; 

int N; 

IlvECTOR DOUBLE *xl, *x2; 

VINFO *xl, *x2; 

public: 

1* 

*1 

Di vide Node ( ) BaseFunctionNode(2, "/"), 

ptrl(NULL) , ptr2(NULL) , xl(NULL), x2(NULL) 

{}; 

void ApplyFunction(StackType &S) 

xl=S.back(); S.pop_back(); x2=S.back(); S.pop_back(); 

ptrl = (double *)xl->begin(); 

ptr2 = (double *)x2->begin().; 

N = xl->size(); 

for (register int i = 0; i < N; i++) 

k = (fabs(*ptr2) < MINVALUE) ? (sign(*ptr2)*MINVALUE) 

k = (*ptrl)/k; 

*ptrl = k; 

ptrl++; ptr2++; 

ptrl = ptr2 = NULL; 

delete x2; x2 = NULL; 

S.push_back(xl); xl = NULL; 

xl=S.back(); S.pop_back(); x2=S.back(); S.pop_back(); 

ptrl = xl->Ptr; 

ptr2 = x2->Ptr; 

N = xl->Dim; 

for (register int i 0; i < N; i++) 

k = (fabs(*ptr2) < MINVALUE) ? (sign(*ptr2)*MINVALUE) 

k = (*ptrl)/k; 

(*ptr2) ; 

(*ptr2) ; 
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} ; 

} ; 

*ptrl = k; 

ptrl++; ptr2++; 

ptrl = ptr2 = NULL; 

delete x2; x2 = NULL; 

S.push_back(xl); xl = NULL; 

11================================================================= 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 
GPIndividual Class 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 
typedef vector<BaseNode *> VECTOR_BASENODE; 

class GPIndividual : public GenericEvoIndividual<VECTOR BASENODE> 

private: 

protected: 

public: 

} ; 

GPIndividual(); 

-GPIndividual(); 

void Clone (GPIndividual* &Target); 

int GetLevel(int i); 

void SetLevel(int if int Depth); 

vector<int> Levels; 

11-------------------------------------------------------
II Implementation 

11-------------------------------------------------------
GPIndividual: :GPlndividual() : 

GenericEvoIndividual<VECTOR_BASENODE>() {}; 

GPIndividual: :-GPIndividual() 

Levels.clear() ; 

} ; 

inline void GPIndividual::Clone(GPIndividual* &Target) 

} ; 

if(!Target) Target = new GPIndividual(); 

GenericEvoIndividual<VECTOR_BASENODE>::Clone(Target); 

Target->Levels = this->Levels; 

inline void GPIndividual: :SetLevel(int if int Depth) 
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Levels [iJ Depth; 

} ; 

inline int GPlndividual::GetLevel(int i) 

return Levels[i); 

} ; 

11================================================================= 

1*1111111111111111111111111111111111111111111111111111IIIIIIIIIII 
GPalgorithm Class 

1*11111111111111111111111111111111////111/1/////11/11//1//1///11/ 
class CustomGPAlgorithm : public GenericEvolutionaryAlgorithm<GPlndividual, 
BaseNode> . 

private: 

StackType StackVector; 

AddNode *PlusNode; 

SubtractNode *MinusNode; 

DivideNode *DivNode; 

MultiplyNode *MultNode; 

protected: 

vector<TerminalNode *> TerminalSet; 

vector<BaseFunctionNode *> FunctionSet; 

int InitTreeLevels, MaxTreeLevels; 

void InsertSubtree(VECTOR_BASENODE &Genome, 

const VECTOR_BASENODE &SubTree, int Pos); 

void RemoveSubtree(VECTOR_BASENODE &Genome, 

const VECTOR_BASENODE &SubTree, int Pos); 

VECTOR_BASENODE* GetSubtree(const VECTOR_BASENODE &Genome, 

int &subtree levels, int pos); 

void GetLevel(const VECTOR_BASENODE &Genome, int &Level, int Pos); 

virtual void Crossover(VECTOR_BASENODE &Parentl, 

VECTOR_BASENODE &Parent2) {}; 

virtual void Mutate (VECTOR_BASENODE &Parent) {}; 

virtual void Crossover(VECTOR_BASENODE &Parentl, 

VECTOR_BASENODE &Parent2, int &Levell, int &Leve12); 

virtual void Mutate (VECTOR_BASENODE &Parent, int &Level); 

virtual void EvolveGenome(VECTOR_BASENODE &Genome, int CurrentLevel, 

int MAXLEVELS, int &TotalLevels, 

const vector<TerminalNode *> &TerminalSet, 

const vector<BaseFunctionNode *> &FunctionSet ); 

VECTOR DOUBLE* EvaluateGenome(const VECTOR BASENODE &Genome); 
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virtual GPlndividual* GenerateAnlndividual(} = 0; 

virtual void ComputeFitness(GPlndividual* &Anlnd} = 0; 

virtual void GeneticOperations(int Pc, int Pm, int popSize}; 

virtual void ApplyGeneticScalingFunc(VECTOR_DOUBLE &PredictedOutput, int 
Env} = 0; 

public: 

} ; 

CustomGPAlgorithm(} ; 

-CustomGPAlgorithm(} ; 

void SetMaxTreeLevels(int L}; 

virtual void SetTerminalSet(const vector<TerminalNode *> &TrmSet}; 

void SetFunctionSet(bool plus, bool minus, bool div, bool mult}; 

int GetMaxTreeLevels(}; 

virtual double GetRecomputedFitness(int Ind} = 0; 

virtual vector<VECTOR_DOUBLE *> *GetPredictedOutput(int ind} 0; 

virtual char* GetGenomeString(int Ind, int Env}; 

VECTOR_BASENODE *GetGenome(int Ind, int Env}; 

VECTOR DOUBLE* GetTerminal(int whichtrm}; 

8.2.2 Header file for class GPSupervised 
class GPSupervised.: public CustomGPAlgorithm 

protected: 

virtual void UpdateSystemVariables(}; 

virtual void ClearSystemVariables(}; 

virtual GPlndividual* GenerateAnlndividual(}; 

virtual void ComputeFitness(GPlndividual* &Anlnd}; 

virtual void ApplyGeneticScalingFunc(VECTOR_DOUBLE &PredictedOutput, int 
Env} ; 

private: 

double SVCurrentRsqr, SVCurrentSSE; 

vector<TerminalNode *> EnvironmentSet; 

public: 

GPSupervised ( ) ; 

-GPSupervised(}; 

double GetCurrentRsqr(}; 

double GetCurrentSSE(}; 

vector<double> SVRsqr, SVSSE; IISystem variables 

double GetRecomputedRsqr(int I}; 

double GetRecomputedSSE(int I}; 

void SetEnvironmentSet(const vector<TerminalNode *> &EnvSet}; 

virtual vector<VECTOR_DOUBLE *> *GetPredictedOutput(int ind}; 

virtual double GetRecomputedFitness(int Ind}; 

VECTOR DOUBLE* GetEnvironment(int whichenv}; 
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int GetEnvironmentSize(); 

} ; 

B.2.3 Header file for class GPUnsupervised 
class GPUnsupervised : public CustomGPAlgorithm 

protected: 

virtual GPIndividual* GenerateAnIndividual(); 

virtual void ComputeFitness(GPIndividual* &AnInd) = 0; 

virtual void ApplyGeneticScalingFunc(VECTOR_DOUBLE &PredictedOutput, int 
Env)=O; 

int TargetSpaceDim; 

private: 

public: 

} ; 

GPUnsupervised() ; 

-GPUnsupervised(); 

void SetTargetSpaceDim(int T); 

int GetTargetSpaceDim(); 

vector<VECTOR_DOUBLE *> *GetPredictedOutput(int ind); 

virtual double GetRecomputedFitness(int Ind)=O; 

8.2.4 Implementation of each class in the GP kernel 

8.2.4.1 Implementation of class CustomGPAlgorithm 

11-------------------------------------------------------
II Implementation 

11-------------------------------------------------------
CustomGPAlgorithm::CustomGPAlgorithm() : 

GenericEvolutionaryAlgorithm<GPIndividual, BaseNode>() 

} ; 

Elitism = true; 

MaxTreeLevels = 10; 

InitTreeLevels = 5; 

PlusNode = new AddNode(); 

MinusNode = new SubtractNode(); 

DivNode = new DivideNode(); 

MultNode = new MultiplyNode(); 

CustomGPAlgorithm::-CustomGPAlgorithm() 

{ 

CriticalSection->Enter(); 
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} ; 

ClearContainer((vector<TerminalNode *» TerminalSet); 

CriticalSection->Leave(); 

delete PlusNode; 

delete MinusNode; 

delete DivNode; 

delete MultNode; 

GPSupervised::GPSupervised() 

CustomGPAlgorithm() 

{ } ; 

GPSupervised: :-GPSupervised() 

} ; 

CriticalSection->Enter(); 

ClearContainer((veotor<TerminalNode *» EnvironmentSet); 

CriticalSection->Leave(); 

GPUnsupervised: :GPUnsupervised() 

CustomGPAlgorithm() 

TargetSpaceDim = 1; 

} ; 

GPUnsupervised: :-GPUnsupervised() 

{ } ; 

inline void CustomGPAlgorithm::GeneticOperations(int Pc, int Pm, int PopSize) 

int Parent1, Parent2; 

GPlndividual *P1=NULL, *P2=NULL; 

int Genome1, Genome2; 

TotalFitness=O.O; 

if (Elitism) 

Pool[O]->Clone(P1) ; 

TotalFitness += P1->Fitness; 

Population.push_back(P1); 

P1=NULL; 

int K=floor(Pc/200.0*PopSize); 

for (register int i=O; (i<K) && ((int) Population. size () <PopSize); i++) 
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i++) 

} ; 

PI = P2 = NULL; 

ParentI = random(Pool.size()); Parent2 

Pool[Parentl]->Clone(Pl); 

Pool[Parent2]->Clone(P2); 

random(Pool.size()); 

Genomel = Genome2 = random(Pl->Genome.size()); 

Crossover(*(Pl->GetGenome(Genomel)), * (P2->GetGenome(Genome2) ), 

PI->GetLevel(Genomel), P2->GetLevel(Genome2)); 

//now compute the new fitness 

ComputeFitness(Pl); 

ComputeFitness(P2); 

TotalFitness += PI->Fitness; 

TotalFitness += P2->Fitness; 

Population. push_back (PI) ; 

Population. push_back (P2) ; 

K=floor(Pm/lOO.O*PopSize); 

for(register int i = 0; (i < K) && ((int)Population.size() < PopSize); 

PI = NULL; 

ParentI = random(Pool.size()); 

Pool [ParentI]->Clone (PI) ; 

Genomel = random (PI->Genome . size () ) ;. 

Mutate (* (PI->GetGenome (Genomel)) ,. PI->GetLevel (GenomeI)); 

ComputeFitness (PI);-

TotalFitness += PI->Fitness; 

Population.push_back(Pl); 

forI; (~nt)Populatiorl.size()<PopSize;) 

PI = NULL; 

ParentI = random(Pool.size()); 

Pool[Parentl]->Clone(Pl); 

TotalFitness += PI->Fitness; 

Population.push_back(Pl); 

sort (Population.begin(), Population.end(), &IndGreaterThan); 

CriticalSection->Enter() ; 

ClearContainer((vector<GPlndividual *» Pool); 

CriticalSection->Leave(); 

inline void CustomGPAlgorithm: :Crossover(VECTOR_BASENODE &ParentI, 
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VECTOR BASENODE &Parent2, int &Levell, int &Leve12) 

int cpl, cp2; 

int subtree levelsl=O, subtree levels2=0, level at cpl=O, level at cp2=0; 

VECTOR BASENODE *Plsubtree, *P2subtree; 

cpl=random(Parentl.size()); 
strings 

//obtain the crossover points in the 2 

} ; 

cp2=random(Parent2.size()); 

GetLevel(Parentl, level_at cpl, cpl); 

GetLevel(Parent2, level_at cp2, cp2); 

Plsubtree=GetSubtree(Parentl, subtree levelsl, cpl); 

P2subtree=GetSubtree(Parent2, subtree_levels2, cp2); 

/////////////////////////////////////////// 

//now remove the subtree from expr 

////////////////////////////////////////////// 

if(subtree_levels2+level_at~cpl-l<=MaxTreeLevels) 

RemoveSubtree(Parentl, *Plsubtree, cpl); 

InsertS~btree(Parentl, *P2subtree, cpl); 

//use this line to get the nr of levels for the whole tree 

delete GetSubtree(Parentl, Levell, 0); 

if(subtree levelsl+level at cp2-l <= MaxTreeLevels) 

RemoveSubtree(Parent2, *P2subtree, cp2); 

InsertSubtree(Parent2, *Plsubtree, cp2); 

delete GetSubtree(Parent2, Leve12, 0); 

delete Plsubtree; delete P2subtree; 

Plsubtree = P2subtree = NULL; 

inline void CustomGPAlgorithm::Mutate(VECTOR_BASENODE &Parent, int &Level) 

int level=-l, cp; 

int nr_of_levels=O, level_at cp, subtree levels; 

VECTOR BASENODE *Psubtree NULL; 

VECTOR BASENODE *sub tree new VECTOR_BASENODE(); 

cp=random(Parent.size()); 

GetLevel(Parent, level_at cp, cp); 
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} ; 

if(level_at cp < MaxTreeLevels) 

Psubtree=GetSubtree(Parent, subtree levels, cp); 

RemoveSubtree(Parent, *Psubtree, cp); 

delete Psubtree; 

//create a new random subtree of maxlength abs_max_level-level at cp+l 

EvolveGenome(*sub_tree, level, MaxTreeLevels-level at cp+l, 

nr_of_levels, TerminalSet, FunctionSet); 

InsertSubtree(Parent, *sub_tree, cp); 

delete GetSubtree(Parent, Level, 0); 

delete sub tree; 

inline void CustomGPAlgorithm: : EvolveGenome ( VECTOR BASENODE &Genome, int 
CurrentLevel, 

int MAXLEVELS, int &TotalLevels, 

const vector<TerminalNode *> &TerminalSet, 

const vector<BaseFunctionNode *> &FunctionSet 

BaseNode *NodePtr; 

int Args=O, i; 

double Tp, Op; 

CurrentLevel++; 

jill/this part describes the propability 

//of a terminal or an operator being chosen/III 

Op=-l.O/((double) (MAXLEVELS-l.O))*((double)CurrentLevel)+l.O; 

Tp=l.O-Op; 

l///////////////////////////////////////////////////////// 

if (Op*random(lOO) >= Tp*random(lOO)) 

i = random(FunctionSet.size()); 

Nodeptr = (BaseFunctionNode *)FunctionSet[i]; 

Args = ((BaseFunctionNode *)NodePtr)->TotalArgs; 

else 

i random(TerminalSet.size()); 

NodePtr = (TerminalNode *)TerminalSet[i]; 

if (TotalLevels<CurrentLevel) TotalLevels=CurrentLevel; 

Genome.push_back(NodePtr) ; 

NodePtr = NULL; 

for (register int k=O; k < Args; k++) 
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} ; 

EvolveGenome(Genome, CurrentLevel, MAXLEVELS, TotalLevels, 

TerminalSet, FunctionSet); 

inline void CustomGPAlgorithm: : InsertSubtree (VECTOR_BASENODE &Genome, 

const VECTOR BASENODE &SubTree, int Pos) 

Genome.reserve(Genome.size()+SubTree.size()); 

Genome. insert (Genome.begin()+Pos, SubTree.begin(), SubTree.end()); 

} ; 

inline void CustomGPAlgorithm::RemoveSubtree(VECTOR_BASENODE &Genome, 

const VECTOR BASENODE &SubTree, int Pos) 

Genome. erase ( (Genome.begin()+Pos), (Genome.begin()+Pos+SubTree.size()) 
) ; 

} ; 

inline VECTOR BASENODE* CustomGPAlgorithm::GetSubtree(const VECTOR BASENODE 
&Genome, int &subtree levels, int pos) 

} ; 

int exprpos=-l+pos, s tree_pos=-l; 

VECTOR BASENODE* s tree = new VECTOR_BASENODE(); //newlyadded 

void newsubtree(BaseNode **Genome, VECTOR BASENODE &s tree, 

int &, int &, int &, int); 

void subtree(const VECTOR_BASENODE &Genome, VECTOR BASENODE &s_tree, 

int &, int &, int &, int); 

subtree levels=O; 

newsubtree((BaseNode **) (Genome.begin()), *s tree, exprpos, s tree_pos, 
subtree levels, -1); 

subtree levels++; 

return s tree; 

inline void newsubtree(BaseNode** Genome, VECTOR_BASENODE &SubTree, 

int &exprindex, int &s tree index, int &subtree levels, int 
level) 

int Args=O; 

exprindex++; 

s treeindex++; 

level++; 
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} ; 

SubTree.push_back(Genome[exprindex)); 

if(Genome[exprindex)->NodeKind==ntFUNCTION) 

Args = ((BaseFunctionNode *)Genome[exprindex))->TotalArgs; 

else 

if(subtree levels<level) subtree levels=level; 

for (register int i=O; i<Args; i++) 

newsubtree( Genome, SubTree, exprindex, s tree index, 

subtree levels, level); 

inline void subtree ( const VECTOR_BASENODE &Genome, VECTOR_BASENODE &SubTree, 

int &exprindex, int &s_tree index, int &subtree levels, int 
level) 

} ; 

int Args=O; 

exprindex++; 

s tree index++; 

level++; 

SubTree.push_back(Genome[exprindex)); 

if (Genome [exprindex)->NodeKind==ntFUNCTION) 

Args ((BaseFunctionNode *)Genome[exprindex))->TotalArgs; 

else 

if(subtree levels<level) subtree_levels=level; 

for (register int i=O; i<Args; i++). 

subtree ( Genome, SubTree, exprindex, s_tree index, 

subtree~levels, level); 

inline void CustomGPAlgorithm::GetLevel(const VECTOR BASENODE &Genome, int 
&Level, int Pas) 

int 1=-1; 

void get the damn level (const VECTOR BASENODE &Genome, int &len, int 
CurrentLevel~ - -

int Pos, int &Level); 

void n,ewget the_damn_level (BaseNode **Genome, int &len, int CurrentLevel, 
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int Pas, int &Level); 

Level=O; 

II get_the_damn_level(Genome,l, -1, Pos, Level); 

newget_the_damn_level( (BaseNode **) (Genome.begin() ),1, -1, Pos, Level); 

Level++; 

} ; 

inline void newget the_damn_level(BaseNode 
CurrentLevel, 

int Args=O; 

CurrentLevel++; 

len++; 

int Pos, int &Level) 

if(len == Pos) Level=CurrentLevel; 

if(len < Pos) 

if (Genome [len)->NodeKind ntFUNCTION) 

* *Genome , int . &len, 

Args ((BaseFunctionNode *)Genome[len))->TotalArgs; 

for (register int i = 0; i < Args; i++) 

newget_the_damn_level (Genome, len, CurrentLevel, Pos, L·evel); 

} ; 

int 

inline void get the damn level( canst VECTOR BASENODE &Genome, int &len, int 
CurrentLevel, - - - -

} ; 

int Args=O; 

CurrentLevel++; 

len++; 

int Pos, int &Level) 

if(len == Pos) Level=CurrentLevel; 

if (len < Pos) 

if (Genome [len)->NodeKind ntFUNCTION) 

Args ((BaseFunctionNode *)Genome[len) )->TotalArgs; 

for (register int i = 0; i < Args; i++) 

get_the_damn_level(Genome, len, CurrentLevel, Pas, Level); 
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inline int CustomGPAlgorithm::GetMaxTreeLevels() 

return MaxTreeLevels; 

} ; 

inline void CustomGPAlgorithm::SetMaxTreeLevels(int L) 

MaxTreeLevels=L; 

if (InitTreeLevels>MaxTreeLevels) InitTreeLevels=MaxTreeLevels; 

} ; 

inline void CustomGPAlgori thm: : SetFunctionSet (bool plus, boo 1 minus, bool di v, 
bool mult) 

} ; 

FunctionSet.clear() ; 

if(plus) FunctionSet.push_back(PlusNode); 

if (minus) FunctionSet.push_back(MinusNode); 

if(div) FunctionSet.push_back(DivNode); 

if(mult) FunctionSet.push_back(MultNode); 

void CustomGPAlgorithm: :SetTerminalSet(const vector<TerminalNode *> &TrmSet) 

} ; 

int N = TerminalSet.size(); 

CriticalSection->Enter(); 

ClearContainer«vector<TerminalNode *» TerminalSet); 

CriticalSection->Leave(); 

TerminalSet.clear() ; 

N = TrmSet.size(); 

for (register int i = 0; i < N; i++) 

if(TrmSet[i]->ActingAs == tpINPUT) 

TerminalSet.push back( new TerminalNode(TrmSet[i]->Name, 
TrmSet[i]->ActingAs)) ; 

TerminalSet.back()->Values = TrmSet[i]->Values; 

inline char* CustomGPAlgorithm: : GetGenomeString(int Ind, int Env) 

char* t; 

VECTOR BASENODE* Genome 

int N = Genome->size(); 

Population[Ind]->GetGenome(Env) ; 
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} ; 

t = new char[lOOOO]; 

t[O]='\O'; 

char *src; 

for (register int i = 0; i < N; i++) 

src = (*Genome) [i]->Name; 

strcat (t, II "); 

strcat (t, src); 

return t; 

inline VECTOR_BASENODE *CustomGPAlgorithm: : GetGenome (int Ind, int Env) 

return Population[Ind]->GetGenome(Env); 

} ; 

inline VECTOR_DOUBLE* CustomGPAlgorithm: : GetTerminal (int whichtrm) 

return TerminalSet[whichtrmj->Values; 

} ; 

inline VECTOR DOUBLE* CustomGPAlgorithm: : EvaluateGenome (const VECTOR_BASENODE 
&Genome) 

CriticalSection->Enter(); 

BaseNode **Ptr = (BaseNode **) (Genome.end()-l); 

VINFO * Dummy, *PtrValues; 

double* memblock, *doubleptr; 

StackVector.clear(); 

int N = Genome.size(); 

int NValues; 

StackVector.reserve(N+l); 

for (register int i=N-l; i>=O; i--, Ptr--) 

if«*Ptr)->NodeKind ntTERMINAL) 

doubleptr =«TerminalNode *) (*Ptr))->Values->begin(); 

NValues = «TerminalNode *) (*Ptr))->Values->size(); 

memblock = new double[NValues]; 

for (register int i 0; i < NValues; i++, doubleptr++) 
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else 

memblock[ij = *doubleptr; 

Dummy = new VINFO(); 

Dummy->Dim = NValues; 

Dummy->Ptr = memblock; 

StackVector.push_back(Dummy) ; 

«BaseFunctionNode *) (*Ptr))->ApplyFunction(StackVector); 

Dummy = StackVector.back(); StackVector.pop_back(); 

VECTOR DOUBLE *rtn = new VECTOR_DOUBLE(); 

N = Dummy->Dim; 

rtn->reserve(N); 

for (register int i = 0; i < N; i++) 

rtn->push_back(Dummy->Ptr[ij); 

delete Dummy; 

CriticalSection->Leave() ; 

return rtn; 

} ; 

8.2.4.2 Implementation of class GPSupervised 
/** 

Supervised Genetic Programming (GP) 

*/ 

inline void GPSupervised: :UpdateSystemVariables() 

GenericEvolutionaryAlgorithm<GPlndividual, 
BaseNode>: :UpdateSystemVariables(); 

const vector<VECTOR_DOUBLE *> *Ptr=GetPredictedOutput(O); 

int N = EnvironmentSet.size(); 

SVCurrentRsqr = SVCurrentSSE = 0.0; 

for (register int i = 0; i < N; i++) 

SVCurrentRsqr += rsquared«*Ptr) [ij, EnvironmentSet[ij->Values); 

SVCurrentSSE += sse«*Ptr) [ij, EnvironmentSet[ij->Values); 

if(N) 

{ 

SVCurrentRsqr /= (dou~le)N; 

SVCurrentSSE /= (double)N; 
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} ; 

SVRsqr.push_back(SVCurrentRsqr) ; 

SVSSE.push_back(SVCurrentSSE); 

N = Ptr->size(); 

for (register int i = 0; i < N; i++) 

delete (*Ptr) [i); 

delete Ptr; 

inline void GPSupervised: :ClearSystemVariables() 

GenericEvolutionaryAlgorithm<GPlndividual, 
BaseNode>::ClearSystemVariables(); 

SVRsqr.clear(); 

SVSSE.clear() ; 

} ; 

inline double GPSupervised: :GetCurrentRsqr() 

return SVCurrentRsqr; 

} ; 

inline double GPSupervised::GetCurrentSSE() 

return SVCurrentSSE; 

} ; 

inline double GPSupervised::GetRecomputedRsqr(int I) 

const vector<VECTOR_DOUBLE *> *Ptr=GetPredictedOutput(I); 

int N = EnvironmentSet.size(); 

SVCurrentRsqr = SVCurrentSSE = 0.0; 

CriticalSection->Enter(); 

for (register int i = 0; i < N; i++) 

SVCurren~Rsqr += rsquared((*Ptr) [i), EnvironmentSet[i]->Values); 

CriticalSection->Leave(); 

if (N) 

{ 

SVCurrentRsqr /= (double}N; 

N Ptr->size(); 
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for (register int i = 0; i < N; i++) 

delete (*Ptr) [ij; 

delete Ptr; 

return SVCurrentRsqr; 

} ; 

inline double GPSupervised::GetRecomputedSSE(int I) 

} ; 

const vector<VECTOR_DOUBLE *> *Ptr=GetPre"dictedOutput(I); 

int N = EnvironmentSet.size(); 

SVCurrentRsqr = SVCurrentSSE = 0.0; 

CriticalSection->Enter(); 

for (register int i = 0; i < N; i++) 

SVCurrentSSE += sse((*Ptr) [ij, EnvironmentSet[ij->Values); 

CriticalSection->Leave() ; 

if (N) 

{ 

SVCurrentSSE /= (double)N; 

N = Ptr->size(); 

for (register int i 

delete (*Ptr) [ij; 

delete Ptr; 

return SVCurrentSSE; 

0; i < N; i++) 

inline int GPSupervised: : GetEnvironmentSize () {return EnvironmentSet. size () ; } ; 

inline void GPSupervised::ComputeFitness(GPlndividual* &Anlnd) 

VECTOR_DOUBLE *Ptr=NULL; 

int N = EnvironmentSet.size(); 

double AvgFitness = 0.0; 

CriticalSection->Enter() ; 

for (register int i = 0; i < N; i++) 

Ptr=EvaluateGenome(*(Anlnd->GetGenome(i)) ); 
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} ; 

RawFitness(AnInd, EnvironmentSet[i)->Values, ptr); 

AvgFitness += AnInd->Fitness; 

delete Ptr; Ptr=NULL; 

if(N) AnInd->Fitness = AvgFitness/(double)N; 

CriticalSection->Leave(); 

inline GPIndividual* GPSupervised: :GenerateAnIndividual() 

{ 

} ; 

GPIndividual *Dummy=new GPIndividual(); 

VECTOR BASENODE* Genome = NULL; 

int CurLevel=-l, Level; 

int N = EnvironmentSet.size(); 

for (register int i = 0; i < N; i++) 

Level = 0; 

Genome = new VECTOR_BASENODE(); 

EvolveGenome(*Genome, CurLevel, InitTreeLevels, Level, 

TerminalSet, FunctionSet); 

Level++; 

Dummy->Genome . push_back (Genome) ;" 

Dummy-~Levels.push_back(Level); 

Genome = NULL; 

return Dummy; 

inline VECTOR_DOUBLE* GPSupervised: : GetEnvironment (int whichenv) 

return EnvironmentSet[whichenv)->Values; 

} ; 

inline double GPSupervised: : GetRecomputedFitness (int Ind) 

VECTOR DOUBLE *Ptr=NULL; 

double v=O.O; 

GPIndividual *p = Population[Ind); 

GPIndividual *Dummy = new GPIndividual(); 

int N = EnvironmentSet.size(); 

double AvgFitness = 0.0; 

CriticalSection->Enter(); 

for(register int i = 0; i < N; i++) 

B.37 

Stellenbosch University  https://scholar.sun.ac.za



} ; 

Ptr=EvaluateGenome(*(P->GetGenome(i))) ; 

RawFitness(Dummy, EnvironmentSet[i]->Values, Ptr); 

AvgFitness += Dummy->Fitness; 

delete Ptr; Ptr=NULL; 

if(N) Dummy->Fltness = AvgFitness/(double)N; 

v = Dummy->Fitness; 

delete Dummy; 

CriticalSection->Leave(); 

return v; 

inline void GPSupervised: : SetEnvironmentSet(const vector<TerminalNode *> 
&EnvSet) 

int N = EnvironmentSet.size(); 

CriticalSection->Enter(); 

ClearContainer((vector<TerminalNode *» EnvironmentSet); 

CriticalSection->Leave() ; 

EnvironmentSet.clear(); 

N = EnvSet.size(); 

for (register int i = 0; i < N; i++) 

if(EnvSet[i]->ActingAs == tpOUTPUT) 

{ 

EnvironmentSet . push_back ( new Termiri'alNode (EnvSet [i] ->Name, 
EnvSet[i]->ActingAs) ); 

EnvironmentSet.back()->Values = EnvSet[i]->Values; 

} ; 

inline vector<VECTOR DOUBLE *> *GPSupervised: : GetPredictedOutput (int ind) 

vector<VECTOR DOUBLE *> *Ptr = NULL; 

int N = EnvironmentSet.size(); 

Ptr new vector<VECTOR DOUBLE *>(); 

for (register int i = 0; i < N; i++) 

Ptr->push_back(EvaluateGenome(*(Population[ind]->GetGenome(i)))); 

if(FitnessFunction == ftCORR_BASED) 

ApplyGeneticScalingFunc (* ( (*Ptr) [i] ), i); 

return Ptr; 
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} ; 

inline void GPSupervised: :ApplyGeneticScalingFunc(VECTOR DOUBLE 
&PredictedOutput, int Env) 

int N=PredictedOutput.size(); 

double stdevPredicted, meanPredicted, sf, 

meanObserved=mean( EnvironmentSet[Envl->Values ); 

double *ptr; 

double thesign sign(corr(&PredictedOutput, 
EnvironmentSet[Envl->Values)); 

} ; 

stdevPredicted=stdev(&PredictedOutput)*thesign; 

meanPredicted=mean(&PredictedOutput); 

try 

sf=stdev(EnvironmentSet[Envl->Values)/stdevPredicted; 

catch( ... ) 

sf=O.O; 

ptr = (double *)PredictedOutput.begin(); 

for (register int i = 0; i < N; i++) 

*ptr = sf*( (*ptr)-meanPredicted ) + meanObserved; 

ptr++; 

8.2.4.3 Implementation of class GPUnsupervised 
/** 

Unsupervised Genetic Programming 

*/ 

inline vector<VECTOR DOUBLE *> *GPUnsupervised: : GetPredictedOutput (int ind) 

vector<VECTOR DOUBLE *> *Ptr NULL; 

int N = TargetSpaceDim; 

Ptr new vector<VECTOR DOUBLE *>(); 

for (register int i = 0; i < N; i++) 

Ptr->push_back(EvaluateGenome(*(Population[indl->GetGenome (i) ))); 

if(FitnessFunction == ftCORR_BASED) 

ApplyGeneticScalingFunc (* ((*Ptr) [il), i); 
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return Ptr; 

} ; 

//-------------------------------------------------------
GPlndividual* GPUnsupervised: :GenerateAnlndividual() 

} ; 

GPlndividual *Dummy=new GPlndividual(); 

VECTOR BASENODE* Genome = NULL; 

int CurLevel=-l, Level; 

int N = TargetSpaceDim; 

for (register int i = 0; i < N; i++) 

Level = 0; 

Genome = new VECTOR_BASENODE(); 

EvolveGenome(*Genome, CurLevel, InitTreeLevels, Level, 

TerminalSet, FunctionSet); 

Level++; 

Dummy->Genome.push_back(Genome); 

Dummy->Levels.push_back(Level); 

Genome = NULL; 

return Dummy; 

inline void GPUnsupervised::SetTargetSpaceDim(int T) {TargetSpaceDim = T;}; 

inline int GPUnsupervised::GetTargetSpaceDim() {return TargetSpaceDim;}; 

//---------------------------------------------------------------------------
#endif 

8.2.5 Header file for class FeatureExtract 

#ifndef FeatureXH 

#define FeatureXH 

#include "GPalgorithmunit.h" 

//---------------------------------------------------------------------~---

enum StressType {stSammon}; 

class FeatureExtract : public GPUnsupervised 

private: 

StressType StressIs; 

protected: 

virtual void ComputeFitness(GPlndividual* &Anlnd); 

virtual void ApplyGeneticScalingFunc (VECTOR DOUBLE &Predi.ctedOutput, int 
Env){}; -
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double ApplySammon(vector<VECTOR_DOUBLE *> &OriginalSpace, 

vector<VECTOR DOUBLE *> &TargetSpace); 

public: 

} ; 

FeatureExtract() ; 

-FeatureExtract(); 

void SetEnvironmentSet(const vector<TerminalNode *> &E) {}; 

double GetStress(); 

StressType GetStressType(); 

void SetStressType(StressType S); 

virtual double GetRecomputedFitness(int Ind); 

vector<VECTOR DOUBLE *> GetTargetSpace(int Ind); 

inline StressType FeatureExtract::GetStressType() {return StressIs;}; 

inline void FeatureExtract::SetStressType(StressType S) {StressIs = S;}; 

inline double FeatureExtract::GetStress() {}; 

inline double FeatureExtract: : GetRecomputedFitness (int Ind) 

} ; 

double v; 

GPlndividual *p = Population[Ind); 

GPlndividual *Dummy=NULL; 

P->Clone(Dummy) ; 

ComputeFitness(Dummy); 

v = Dummy->Fitness; 

delete Dummy; 

return v; 

inline vector<VECTOR_DOUBLE *> FeatureExtract: :GetTargetSpace(int Ind) 

} ; 

GPlndividual* Anlnd = Population[Ind); 

vector<VECTOR_DOUBLE *> TargetSpace; 

TargetSpace.reserve(TargetSpaceDim); 

for (register int i = 0; i < TargetSpaceDim; i++) 

TargetSpace.push_back(EvaluateGenome(*(Anlnd->GetGenome(i)))); 

return TargetSpace; 

inline void FeatureExtract::ComputeFitness(GPlndividual* &Anlnd) 

vector<VECTOR DOUBLE *> TargetSpace; 
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vector<VECTOR DOUBLE *> OrigSpace; 

double Stress = 0.0; 

TargetSpace.reserve(TargetSpaceDim); 

for (register int i = 0; i < TargetSpaceDim; i++) 

TargetSpace.push_back(EvaluateGenome(*(Anlnd->GetGenome(i)))); 

if(FitnessFunction == ftCORR_BASED) 

ApplyGeneticScalingFunc(*(TargetSpace[ij), i); 

int N = TerminalSet.size(); 

OrigSpace.reserve(N); 

for (register int i = 0; i < N; i ++) 

OrigSpace.push_back( TerminalSet[i]->Values ); 

switch(StressIs) 

case stSammon: 

Anlnd->Fitness 

break; 

default:; 

1.0/(1.0+ApplySammon(OrigSpace, TargetSpace)); 

} ; 

ClearContainer((vector<VECTOR_DOUBLE *» TargetSpace); 

OrigSpace.clear(); 

inline double FeatureExtract: : ApplySammon (vector<VECTOR_DOUBLE *> 
&OriginalSpace, 

vector<VECTOR_DOUBLE *> &TargetSpace) 

int T_Dim = TargetSpace.size(); 

int O_Dim = OriginalSpace.size(); 

int TotalPoints = TargetSpace[Oj->size(); 

int origPoints = OriginalSpace[Oj->size(); 

int Obsrvl, Obsrv2; //select two random observations 

int Tmax=TotalPoints; 

double TotalDistance 

double *Ptr=NULL; 

0.0, Stress 0.0; 

double DistOriginalSpace=O.O, DistTargetSpace=O.O, K=O.O; 

for (register int i 0; i < Tmax; i++) 
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DistOriginalSpace =0.0; 

Obsrvl = random(TotalPoints); Obsrv2 = random(TotalPoints); 

while(Obsrvl == Obsrv2) Obsrv2 = random(TotalPoints); 

for (register int k = 0; k < O_Dim; k++) 

Ptr = (double *)OriginalSpace[k]->begin(); 

Dis tOr i gin a 1 Spa c e + 
(Ptr[Obsrvl]-Ptr[Obsrv2])*(Ptr[Obsrvl]-Ptr[Obsrv2]) ; 

DistOriginalSpace = sqrt(DistOriginalSpace); 

DistTargetSpace = 0.0; 

for (register int k = 0; k < T Dim; k++) 

Ptr = (double *)TargetSpace[k]->begin(); 

DistTargetSpace += 
(Ptr[Obsrvl]-Ptr[Obsrv2])*(Ptr[Obsrvl]-Ptr[Obsrv2]) ; 

try 

DistTargetSpace=sqrt(DistTargetSpace); 

TotalDistance += DistOriginalSpace; 

try 

K (DistOriginalSpace-DistTargetSpace)* 

(DistOriginalSpace-DistTargetSpa g e )/DistOriginalSpace; 

catch( ... ) 

K = 0.0; 

Stress += K; 

Stress /= TotalDistance; 

catch ( ... ) 

Stress=O; 

return Stress; 

} ; 

#endif 
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HELP ON THE a-GP PACKAGE 

C.1 Possible analysis that can be conducted using a-GP 

Two modelling techniques are available on this package: Process Modelling and 

Data Projection. 

o For process modelling any multi-input, multi-output system can be analysed. 

However time-series prediction is not yet available on this package. 

o For data visualization purposes a multi input system can be analysed. 

o Although there is no limit on the size of a data set, try and keep each data set 

less than 2000 observations per variable. Because a-GP is a population-based 

searching algorithm, a vast amount of processing is required which will slow 

down the computer! 

o There is no limit on the number of variables. 

o Try and keep population sizes less than 1000 for acceptable processing levels. 

C.2 How to select a new algorithm 

Click on File I New I Regression (for multi-input multi-output modelling) or 

File I New I Feature extraction (for data projection). The newly selected process 

will appear in a drop-down process box. 

C.3 How to select a different process 

Click on the down arrow of the process list box and select a new process from 
the list of available processes. See Figure C.1. 
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Figure C.2: The drop down list of the available processes. To activate one 
of the processes move the mouse cursor to the process and click. 

C.4 How to change the properties of an algorithm 

All processes have properties such as Population size, Elitism, Input 

vectors, etc. Some of these properties can be directly manipulated. Others cannot. 

The properties which can be changed will have either a drop-down box or an edit 

control appear next to them when the user clicks on the value field of the property box. 

The property box is shown in Figure C.2. 

Note that the box is divided into two fields, a Name field and a Value field. The Name 

Figure C.3 : The property box with all the available properties of the active 
process. The box is divided into two regions: a Name field and a Value field. 

fields indicates the name of the property while its associated value lies within the Value 

field. To change the value click on the Value field. 
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C.S How to import data 

C.S.1 Format of data file 

All data files have to be in text format. Each column can be separated using a tab, 

space or comma delimiter. The first row may include labels for each column while all 

subsequent rows must have numeric values. 

C.S.2 Importing the data 

Select a data file by click on File I Open and selecting the text file you wish to analyse. 

Once the variables have been send to their desired process, they should appear in the 

Input Variables property of the property box. Clicking on the expand button 

Figure C.4: The contents of the data file is displayed in the Data Import 
Wizard. If the first rows have labels click on "Labels in first row". The data 
type of each column can be specified by right clicking on the Type row of 
the corresponding column. Click on U»" to continue. 

(indicated as a u+") all the variables or vectors will appear below the Input 

Variables property. Ifthe current process is a Regression process, the variables that 

one wishes to use as output variables may be moved to the Output Variables 

property by clicking down with the mouse button on the name property of the variable 

and dragging and releasing it on the Output Variables property. 
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fir~ Data ImpOIt Wi~ard BGI E:l 

Figure C.S : If the contents of al/ the columns contain valid numeric values, 
the variables may b e send to any of the processes listed in the process list 
box. Click on the down arrow and select a different process you wish to 
send the variables to. 

C.6 Starting the algorithm 

C.S.1 The Start button 

Clicking on S imul at i on I S ta r t will start the simulation of the currently active process. 

This process' 10 appears in the process drop-down box. 

C.S.2 The Pause button 

The algorithm can be Paused any time during simulation. Go to Simulation I Paus e 

to pause it. When the current algorithm is paused a new algorithm can be selected from 

the available processes in the process box. This algorithm will then become active. 

Clicking on S imulation I Sta r t will allow the newly selected process to 

continue/commence its simulation. 

C.S.3 The Restart button 
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At any time during the simulation, one can restart the simulation. This will send an 

initialize signal to the active process, which will force it to re-initialize and subsequently 

restart. Click on Simulation I Restart to restart the active process. 

C.7 Plotting the results 

C.7.1 Available charts 

Charts are divided into two categories: Active and Inactive charts. An Active chart is 

one which is continuously updated as the simulation progresses, while an inactive chart 

only displays the plot of a single instance during simulation. This basically implies that 

when an Active chart is used the execution speed will be degraded as the chart is 

updated. Inactive charts, although faster, does not allow continuous monitoring of the 

simulation. 

The following charts are available: 

o Active and Inactive line charts. 

o Inactive scatter charts: Useful for feature extraction. It requires two vectors. One 

for the x-axis an another for the y-axis. 

o Inactive frequency distribution charts: These charts allows the visualization of 

the distribution of a vector. 

o Active and Inactive step line charts. 

C.7.2 Dragging a vector to a chart 

To display a specific variable or vector on a chart, click the mouse on the Input 

Variables, Output Variables or System Variables property. A list of available 

vectors will appear. A variable or vector can be identified by looking at the Value field 

of the property box. The size of the variable will be presented in the following format 
, 

"<row x col>". Hold the mouse button down (in the Name field) on the specific variable 

you wish to plot, and drag it to the specific chart on which you would like to have it 

plotted. 

c.s 

Stellenbosch University  https://scholar.sun.ac.za



C.7.3 Removing a specific plot from a chart 

Right click on the specific chart from which you would like to remove a plot or plots. A 

list of available plots will appear (see Figure C.5). 

Select the plot you want to remove by clicking on Delete and the plot you wish to 

remove. Alternatively you may decide to remove all the plots. Select Clear all . 

Figure C.6 : The available plots are displayed on the pane!. Clicking on any 
of the variables will remove it from the current chart. 

C.7.4 Changing chart types 

Click on the specific chart that you would like to change. Now click on the Chart 

Components button at the bottom of the screen. A list of available charts types will 

appear on the left panel. Click on any chart type that you would like the selected chart 

to change to. 
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