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ABSTRACT

Targeted therapy for prostate cancer may offer potential improvement over current 

conventional therapies because of its specificity. Although conventional treatments 

are effective, they are not curative and have several limitations. In prostate cancer, 

activation of both the epidermal growth factor receptor (EGFR) and the 

phosphatidylinositol 3 – kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) 

pathway have been implicated in tumorigenesis and resistance to both conventional 

and targeted anticancer therapies. Having a better understanding of the molecular 

mechanisms involved in PCa development, progression and resistance to therapy, 

could assist in the design of novel therapeutic strategies. 

The objective of this study was to inhibit key molecular targets of the human 

epidermal growth factor receptor signalling pathway and expose prostate cell lines to 

doses of radiation, so as to establish potential therapeutic targets that may be 

amenable to combined modality therapy, and formulate a cocktail of inhibitors to 

evaluate its radiosensitising capability.

The EGFR/PI3K/mTOR pathway plays an important role in the radiosensitivity of the 

human prostate carcinoma cell line (DU145) and the normal cell line (1542N). In our 

study we have shown that AG-1478, an EGFR inhibitor, and BEZ-235, a dual 

inhibitor of the PI3K/mTOR pathway, singly or in combination, at low and relatively 

high radiation doses, resulted in radiosensitisation of DU145 cells. Radio-protection 

was achieved in 1542N cells. AG-1478 had no effect on radiosensitivity. 

Stellenbosch University  https://scholar.sun.ac.za



iii

OPSOMMING

Geteikende terapies wens hul spesifisiteit teenoor konvensionele terapies vir 

prostaat kanker, mag potensieel verbetering offer. Konvensionele behandeling is wel 

effektief maar nie genesend nie wens ‘n aantal beperkings, sowel as die toksisiteit vir 

normale selle. In prostaat kanker is die aktivering van beide die epidermiese groei 

faktor reseptor (EGFR) en fosfatidielinositol 3-kinase/Akt/soogdier teiken vir rapamisien 

(mTOR) seingewing baan sterk betrek by tumor groeisel en weerstand teen 

konvensionele en geteikende anti-kanker terapies.

Beter begrip van die molekulêre meganismes betrokke by prostaat kanker 

ontwikkeling, bevordering en weerstand teen terapie, kan die ontwerp van nuwe 

terapeutiese strategies ondersteun.

Die doelwit van hierdie studie was om sleutel molekulêre teikens van die 

epidermiese groei faktor reseptor seingewing baan te inhibeer en om prostaat selle 

bloot te stel aan dosisse bestraling, om potensiële terapeutiese teikens te vestig wat 

vatbaar is vir gekombineerde modaliteit terapie, om ‘n mengsel van stremmiddels te 

formuleer, en om die straling gevoeligmaking bekwaamheid daarvan te evalueer.

Die EGFR/PI3K/mTOR seingewingbaan speel ‘n belangrike rol in the radiosensitiwiteit van 

die menslike prostaat kanker sellyn (DU145) en die normale prostaat sellyn (1542N). Die 

studie bevind dat AG-1478, ‘n EGFR stremmer, en BEZ-235, ‘n tweevoudige beperker van 

die fosforinositied 3-kinase (PI3K) en soogdier teiken vir rapamisien (mTOR) 

seingewingbaan, enkel of in kombinasie die DU145 selle radiosensitiseer vir straling dosisse 

van 2 en 6 Gy. Stralings beskerming was verkry met die 1542N sellyn. AG-1478 het geen 

effek getoon op radiosensitiwiteit nie.
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1.1. Introduction 

Prostate cancer (PCa) is the second most common cancer in men, accounting for 

903 500 new diagnoses and 258 400 deaths per year worldwide (Siegel et al., 2012). 

The incidence and mortality rates of prostate cancer are on the rise globally, 

especially in developed countries, also in parts of Africa, including South Africa 

(Rebbeck et al., 2013). Radiotherapy and surgical resection are the potential curative 

treatment protocols for patients with localized PCa (Di Lorenzo et al., 2002). Despite 

early screening, most men are diagnosed at an advanced stage, with 25-29% of 

patients with early stage disease relapsing within 5 years (Di Lorenzo et al., 2002; 

Siegel et al., 2012). 

During the development of PCa, the first line treatment for patients who have 

relapsed, or with advanced PCa, is androgen deprivation therapy (ADT); this is 

because the majority of the tumours remain androgen-dependent (Carrión-Salip et 

al., 2012). However, in most cases, the tumour cells progress to a hormone 

refractory state, where androgen-independent tumours are generated (Carrión-Salip 

et al., 2012; Di Lorenzo et al., 2002). Once the first line therapy fails, therapeutic 

options are limited and survival is about 6-12 months for patients with androgen-

independent hormone refractory prostate cancer (HRPC)(Di Lorenzo et al., 2002). 

The major clinical challenge is the resistance prostate cancer cells develop against 

treatment, resulting in tumour recurrences. Approximately 30-40% of prostate cancer 

patients reveal failure after radiotherapy (Skvortsova et al., 2008). The epidermal 

growth factor receptor (EGFR) and phosphatidylinositol-3-Kinase (PI3K) pathways 

are implicated in disease progression and survival of prostate cancer cells after 
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radiation exposure, resulting in resistance to radiotherapy (Gao et al., 2003; Guérin 

et al., 2010; Sarker et al., 2009).  

To address these challenges, there is an urgent need to develop novel therapeutic 

strategies targeting the affected pathways within the androgen-independent tumours 

for optimum treatment of prostate cancer. It is envisioned that using a cocktail of 

targeted therapeutic agents to inhibit survival signalling markers like EGFR, PI3K 

and mammalian target of rapamycin (mTOR), in combination with radiotherapy, 

could be more effective in treating prostate cancer.  

 

1.2. Literature Review 

1.2.1. The Prostate 

The prostate is a gland about the size of a walnut. It makes and stores the liquid that 

carries sperm. The prostate is located near the bladder and rectum, just below the 

bladder, and surrounds the urethra. The glandular epithelium of the normal prostate 

is composed of three cell types. The two major cell types, basal and secretory 

luminal cells, express several specific markers by which they can be distinguished 

(Abate-Shen and Shen, 2000; Shen and Abate-Shen 2010). 

  

1.2.2 Prostate Cancer – Clinical Picture 

Prostate cancer, like other cancers, arises in differentiated epithelial cells in which 

embryonic pathways are reactivated through the activation of oncogenes and the 

loss of tumour suppressor genes, leading to growth and survival advantage 

(Taichman et al., 2007). The initiation and progression of prostate cancer is 
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illustrated in Figure 1. The disease presents as heterogeneous and multi-stage, both 

at the clinical and histological level. This makes it difficult to understand the factors 

involved in the onset and progression of the disease (Van Bokhoven et al, 2003). 

 

Figure1. Initiation and progression of human prostate cancer.  

 

1.2.3. Epidemiology  

Prostate cancer is of significant human health concern because it is the most 

diagnosed form of cancer in men. It remains one of the most common causes of 

cancer deaths amongst men worldwide, accounting for about 14% of total new cases 

and 6% mortality rates (Ghosh et al., 2005; Rajasekhar et al., 2011). The incidence 

of this disease is on the rise, especially in developed countries, due to a high quality 

of living and an ageing population (Bolus et al, 2001; Heyns et al. 2011; Sherwood, 

2008). Similar trends have been documented in developing countries, and especially 

in South Africa (Heyns et al., 2011). The incidence and mortality rates of prostate 

cancer are, respectively, about 1.75 and 2.50 times higher among African-American 

men than in men of other ethnic groups (Heyns et al., 2011), and increasing mortality 

rates remain problematic because of the lack of curative treatment in androgen-

resistant metastatic disease (Li et al., 2005). With the abovementioned, it is clear 

that prostate cancer remains one of the most common causes of cancer deaths 

amongst men. 
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 1.2.4. Treatment for Prostate Cancer  

There are numerous treatment options for prostate cancer, each with its own 

limitations. An effective treatment regimen, ideally, must result in less morbidity; 

decreased recurrence of tumours, and be specific for destroying cancer cells without 

damaging normal cells (Spitzweg et al., 2000). Effective therapies have been 

developed to address the heterogeneity of PCa, but no curative therapeutic 

strategies exist. Most patients with organ-confined disease undergo radical 

prostatectomy, radiotherapy or androgen deprivation therapy (ADT) (Lee et al., 

2008).  

The function of the prostate is initially controlled by androgens which are important in 

maintaining and regulating the expression of specific genes (Carrión-Salip et al., 

2012). EGFR and their respective receptors mediate proliferation of the androgen-

independent PCa and may interact with androgen receptors in the absence of 

androgen ligand binding, constituting an essential signalling pathway for tumour 

growth, invasiveness and metastasis (Eichhorn et al., 2008)   

The majority of prostate tumours are dependent on androgens for growth (Ghosh et 

al., 2005) and advanced prostate cancers are generally treated with ADT (Jain et al., 

2012). However, the majority of prostate cancers have been known to develop 

resistance against ADT (Jain et al., 2012). Another factor known to increase tumour 

cell resistance to treatment is the presence of overexpressed or activated 

oncogenes, or the loss of function in tumour suppressor proteins (Cully et al., 2006). 
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1.2.5. Conventional Therapy 

The primary treatment for localised prostate cancer is ionising radiation, or complete 

removal of the prostate (radical prostatectomy) (Lee et al., 2008). Due to resistance 

to therapy many patients relapse, resulting in re-growth of the cancer. The next step 

to follow is ADT; cancerous cells die due to androgen blockade. Most tumours 

develop resistance, eventually growing in the absence of testosterone. This is known 

as hormone relapse, and patients in this stage are defined as hormone-refractory 

(Lee et al., 2008), and are also known as presenting with castration-resistant 

prostate cancer (CRPCa) (Jain et al, 2012). 

After hormone relapse, therapeutic options are limited. Chemotherapy is also utilised 

in the clinical setting but has been found to be ineffective in prostate cancer. It leads 

to toxicity with severe side effects to patients (Lee et al., 2008). 

Below is a list of conventional therapies and their limitations: 

 Radiotherapy: the problem is toxicity and the lack of specificity to the site of 

the tumour. Normal cells are also killed during treatment  (Lee et al., 2008). 

 Surgery is invasive and can only be performed on localised prostate cancer. 

In addition to complications like incisional hernia and rectal injury, surgery has 

a high morbidity rate (Bolus et al. 2001). 

 Long-term hormonal therapy, also known as ADT, reduces the quality of life of 

an individual resulting in a loss of stamina, atrophy, premature osteoporosis 

and increased fatigue (Spitzweg et al., 2000). Most prostate cancers develop 

resistance against ADT (Jain et al., 2012). 

 Chemotherapy involves very toxic drugs that kill fast growing cells, as well as, 

normal cells. For example, blood cells are destroyed during chemotherapy, 
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and immunological function is suppressed and compromised. This results in 

infections and poor immune response (Bolus et al. 2001). 

 

1.2.6. Personalised/Targeted Therapy 

The development of monoclonal antibody therapy targeted at tumour antigens for 

treatment of cancer has had some stunning success. Examples include the use of 

trastuzumab for HER-2-positive breast cancer, rituximab for CD20-positive non-

Hodgkins lymphomas, cetuximab for EGFR-positive colorectal lymphomas, and 

gemtuzumab for CD33-positive malignancies (Fleuren et al., 2014; Harris, 2004; 

Stern and Herrmann, 2005).  

The potential for EGFR-targeted therapy in the treatment of cancers has shown 

great success, especially in breast cancer therapy (Liang et al., 2003). ErbB2, also 

known as HER-2, has been shown to be overexpressed in about 30% of patients 

with breast cancer (Liang et al., 2003). Therapeutic strategies using inhibitory agents 

directed at the growth receptor, and other components of the intracellular signalling 

pathway, have shown great success in the treatment of breast cancer with 

trastuzmab (Herceptin), which is a monoclonal antibody binding to the HER-2 

receptor, thus providing evidence to validate this type of approach (Liang et al., 

2003).  

The hormone-resistant state observed in breast cancer is similar to that in prostate 

cancer. Therefore, the management of prostate cancer through targeted therapy 

may be developed by translation of the successful treatment approach for breast 

cancer (Liang et al., 2003).  
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Figure 2. Human epidermal growth factor receptor family signal 

transduction pathways. Homodimerisation and heterodimerisation of 

HER-2 leads to tyrosine kinase activation and downstream signalling via 

the PI3K/Akt/mammalian target of rapamycin pathway, and the 

Ras/Raf/mitogen-activated protein kinase pathway to stimulate 

processes involved in cell survival and proliferation (Hurvitz et al., 2013). 

 

1.2.7. The PI3K/Akt/mTOR Signalling Pathway 

Cells exposed to stress, such as ionising radiation, activate multiple intracellular 

signalling pathways. Activating these pathways plays a critical role in controlling cell 

survival and proliferation rates (Dent et al., 2003). The PI3K/Akt/mTOR pathway, as 

depicted in Figure 2, plays a central role in the development and progression of 
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cancer (Liu et al., 2009) and has a diverse array of functions, including 

differentiation, growth, metabolism, migration and regulation of cell survival (Bitting 

and Armstrong, 2013). Studies indicate that the PI3K/Akt/mTOR pathway is central 

in the development and progression of specific human malignancies (Bitting and 

Armstrong, 2013; Carracedo and Pandolfi, 2008; Liu et al., 2009; Morgan et al., 

2009). There are three classes of PI3K and the class most implicated in cancer is 

Class 1, specifically Class 1A. Class 1A PI3K consists of two subunits: a regulatory 

subunit, p85, and a catalytic subunit, p110 (Courtney et al., 2010). Initial activation of 

the pathway occurs at the cell membrane, where the signal is translated through 

Class 1A (LoPiccolo et al., 2008).  

Activation of the pathway can occur through a tyrosine kinase growth factor receptor, 

such as epidermal growth factor receptor (EGFR) (Liu et al., 2009; LoPiccolo et al., 

2008). The process leads to the phosphorylation of phosphatidylinositol 4, 5-

bisphosphate (PI(4,5)P2) to phosphatidylinositol 3, 4, 5-trisphosphate (PI(3,4,5)P3), 

followed by the recruitment and activation of ‘Akt’ to the plasma membrane 

(Courtney et al., 2010; Liu et al., 2009). The activation of Akt leads to the 

phosphorylation and regulation of a wide spectrum of substrates involved in multiple 

cellular processes, including cell survival, cell growth, cell differentiation, cell cycle 

progression and cell proliferation (Bitting and Armstrong, 2013; Liu et al., 2009). 

After activation of Akt, numerous downstream proteins, including mTOR, are 

phosphorylated thereby regulating a range of cellular processes (Bitting and 

Armstrong, 2013). mTOR is a master regulator of protein transcription, playing an 

important role in protein synthesis and cell survival. 
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1.2.8. The PI3K/Akt/mTOR Signalling Pathway in Prostate Cancer 

Prostate cancer cells utilise multiple molecular pathways to proliferate, survive and 

invade tissue during the course of tumour progression (Shukla et al., 2007). The two 

main pathways are; PI3K/Akt/mTOR that leads to cell survival, and mitogen-

activated protein kinase (MAPK) that leads to cell proliferation. Among several 

prostate signalling pathways, up-regulation of PI3K/Akt/mTOR signalling through 

mutations in the PTEN gene and activation of growth factor receptors are important 

for the identification of therapeutic targets (Lee et al., 2008; Shukla et al., 2007).  

In prostate cancer, alterations of the PI3K/Akt/mTOR pathway have been reported in 

42% of primary prostate tumours and 100% of metastatic tumours (Bitting and 

Armstrong, 2013). These include mutations and altered expression in the proteins 

within the pathway, leading to increased PIK3/Akt/mTOR signalling activity. The 

detection of altered PI3K/Akt/mTOR has been found in prostate tissue. This 

suggests the importance of the pathway in the development and progression of PCa. 

Up-regulation of the components of this pathway occurs in about 30-50% of PCa, 

and the signalling of the molecules in this pathway has also been detected in PCa 

cell lines and xenografts (Morgan et al., 2009). 

The PI3K/PTEN/Akt/mTOR pathway is the most accepted pathway to study the 

survival of prostate cancer cells compared to that of MAPK (Li et al, 2005). Within 

the prostate gland, the population of cells that undergoes active proliferation is 1-3% 

(Lee et al., 2008). This observation explains why diagnosis of the disease only takes 

place in the later stages of life in men between 40-60 years. Pathways that mediate 

survival rather than proliferation may be more attractive targets for reducing tumour 

growth in prostate cancer patients (Lee et al., 2008; Li et al, 2005). 

Stellenbosch University  https://scholar.sun.ac.za



11 
 

PTEN, a lipid phosphatase, is a well-known negative regulator of the 

PI3K/Akt/mTOR signal transduction cascade (Lee et al., 2008). The loss of PTEN 

function and up-regulation of PI3K leads to the inhibition of apoptosis, and activation 

of the survival pathway (Cully et al., 2006; Lee et al., 2008). The majority of prostate 

cancer cells that have been evaluated show inactivation of the PTEN tumour 

suppressor gene (Li et al, 2005). Loss of PTEN function in advanced prostate cancer 

takes place in 50-80% of patients (Lee et al., 2008). The mutated PTEN protein 

initiates the activation of the cascade which presents the cell with a number of 

cancer-like properties (Cully et al, 2006).  

The PI3K/Akt/mTOR pathway is fundamental to the metastatic potential of PCa and 

provides a strong rationale for targeting this pathway in prostate disease. 

 

1.2.9. Inhibition of the PI3K/ Akt /mTOR Signalling Pathway  

Given the importance of the PI3K/Akt/mTOR pathway in cell survival signalling and 

the high prevalence of activation of the pathway in PCa, its inhibition has great 

potential for improved clinical outcome in men with advanced prostate cancer (Bitting 

and Armstrong, 2013). 

The catalytic domain of the p110 subunits and mTOR belong to the 

phosphatidylinositol kinase-related family of kinases, and are, therefore, structurally 

similar. Recent developments in the inhibition of the PI3K/Akt/mTOR pathway, 

termed dual-inhibition, means that two sites in the PI3K/Akt/mTOR pathway are 

targeted, resulting in optimum blockage of the pathway. Compared to single 

targeting of specific components of the pathway, a dual inhibitor has the potential of 
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inhibiting all the PI3K catalytic isoforms, thus effectively switching off the pathway 

completely and overcoming feedback inhibition, normally observed with mTORC1  

inhibitors ( Bitting and Armstrong, 2013; Courtney et al., 2010).  

There are a number of agents currently being studied and utilised in the clinic today 

that target the PI3K/Akt/mTOR pathway. One well-known agent is LY294002, a dual 

PI3K-mTOR inhibitor, which  has been studied extensively and used in preclinical 

studies, but this agent is not suitable for patients (Bitting and Armstrong, 2013; 

Courtney et al., 2010). Other dual inhibitors, such as the NVP BEZ235 and NVP – 

BGT226 have entered phase 1 clinical trials. NVP BEZ235 has been extensively 

evaluated clinically, with positive results. It has been shown to be well-tolerated, with 

no significant changes in the body weight of mice, and  slowed the growth of PTEN-

deficient human cancer cells (Courtney et al., 2010). In addition, HER-2 amplification 

in breast cancer cell lines appeared sensitive to NVP BEZ235 (Brachmann et al., 

2009; Serra et al., 2008), and was shown to induce apoptosis in oestrogen-deprived 

oestrogen-positive breast cancer cells (Brachmann et al., 2009; Serra et al., 2008). 

In the clinic, BEZ235 has been well-tolerated in patients with solid tumours (Choi et 

al, 2010). A study using genetically engineered mice also demonstrated that BEZ235 

was highly effective at shrinking murine lung tumours (Roper et al., 2011). 

 

1.2.10. Epidermal Growth Factor Receptor (EGFR) 

The epidermal growth factor receptor (EGFR) family, consists of four members, 

namely; ErbB1 (EGFR), ErbB2, ErbB3 and ErbB4 (Hynes and MacDonald, 2009). 

They are composed of 3 functional domains, namely, an extracellular ligand binding 
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domain, a hydrophobic trans-membrane, and an intracellular domain that has 

catalytic tyrosine kinase activity (Hynes and MacDonald, 2009). 

Activation of the EGFR signalling pathway takes place when the EGFR family of 

peptides binds to their receptive extracellular domains (Hynes and MacDonald, 

2009). Dimerisation of the receptor takes place with another member of the ErbB 

family or an EGFR monomer (Baselga, 2002). This is followed by the induction of 

intrinsic protein tyrosine kinase activity, and tyrosine autophosphorylation, leading to 

the recruitment of several intracellular substrates resulting in mutagenic signalling 

and other cellular activities (Baselga, 2002). The most important and well-studied 

signalling route of the EGFR is the Ras-Raf-mitogen-activated protein kinase 

(MAPK) pathway and phosphatidylinositol 3-kinase (PI3K)(Baselga, 2002). 

 

1.2.11. EGFR and Prostate Cancer 

The ErbB receptors are expressed in a variety of epithelial tissues where they play 

an important role in development, proliferation and differentiation (Guerin et al, 

2010). High levels of EGFR have been observed in a variety of tumours, including 

prostate, breast, colorectal and ovarian (Baselga, 2002; Di Lorenzo et al., 2002). 

Bladder cancer  and renal cell cancer, too, are reported to  express EGFR (Baselga, 

2002). ErbB2 and EGFR have been implicated in the development of numerous 

cancers, including PCa (Guérin et al., 2010; Hynes and MacDonald, 2009). Genetic 

changes detected in the cancers lead to the deregulation of receptors, resulting in 

the overexpression of EGFR proteins. Activation of EGFR has been shown to 

enhance tumour growth and tumour progression (Baselga, 2002; Scaltriti and 

Baselga, 2006). Poor therapy response and disease progression has been 
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correlated with EGFR overexpression in tumours. This leads to the development of 

resistance to cytotoxic agents and radiation therapy (Baselga, 2002; Scaltriti and 

Baselga, 2006). 

 

1.2.12. Inhibition of the EGFR 

The majority of new therapeutic approaches for PCa currently in the clinic, are 

directed against the growth factor signalling pathway involving the EGFR family of 

receptors and the downstream components that transduce signals to the cell nucleus 

(Guérin et al., 2010). Targeted therapies in oncology, to date, include two main 

categories of molecules: monoclonal antibodies and tyrosine kinase inhibitors (TKI) 

(Guérin et al., 2010). 

Preclinical studies have demonstrated that EGFR-targeting agents have the potential 

to be used in combination with cytotoxic chemotherapy and radiotherapy. IMC-C225 

(cetuximab) has been shown to enhance the effects of cytotoxic agents and 

radiotherapy (Baselga, 2002; Fleuren et al., 2014; Harris, 2004; Stern and 

Herrmann, 2005). This is achieved by inhibiting cell growth and survival both in vitro 

and in vivo. 

 

1.2.13. Radiosensitisation of Prostate Cancer  

The radiosensitisation of prostate cancer is achieved by inhibiting proliferating and 

survival pathways, leading to the suppression of prostate cancer cells (Valerie et al, 

2007). Tumour cell growth  is reduced and the sensitivity of the prostate cancer cells 
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to physiological stress, such as ionising radiation, will be increased (Dent et al., 

2003).  

Conventional external beam irradiation is the preferred non-invasive treatment option 

for many prostate cancer patients (Dent et al., 2003). Radio-recurrence and 

resistance of the disease are mostly due to the fact that the conventional radiation 

dose does not irradiate the tumour completely (Lee et al., 2008). The radiation dose 

is usually increased to overcome the aforementioned problem, but dose escalation is 

directly associated with high normal tissue toxicity (Lee et al., 2008). This option is, 

therefore, not clinically relevant because of the severe acute effects suffered by 

patients. Curative radiation therapy aims to prevent tumour regrowth by inducing 

tumour cell death and loss of reproductive integrity.  

After radiation therapy, more than 99% of the malignant cells typically are killed. The 

surviving fraction, which amounts to more than a million cells per gram of tumour, 

has the potential to actively contribute to radio-recurrence of prostate cancer and is 

the major target for radiosensitisation (Lee et al., 2008). The surviving tumour 

subpopulation can be targeted by monoclonal antibodies and agents that inhibit the 

EGFR and PI3K pathways (Dent et al., 2003; Lee et al., 2008), in combination with 

radiation. This approach proves that the concept of combination therapy results in a 

better treatment outcome than therapy with a single modality. 
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1.3. Hypothesis 

It is hypothesised that low doses of ionising radiation in combination with BEZ235 

and Tyrphostin AG-1478 (inhibitors) as a cocktail can significantly sensitise prostate 

cancer cells to radiotherapy.  

 

1.4. Thesis Objectives 

The current study aims to understand the molecular mechanisms involved in the 

evolution of prostate cancer cells surviving ionising radiation treatment, by identifying 

and validating the expression of potential therapeutic targets responsible for the 

survival pathways: the PI3K/Akt/mTOR and EGFR signalling pathways. The idea is 

to sensitise prostate cancer cells to radiation therapy. It is hoped that an improved 

outcome to radiotherapy will be achieved by concomitant treatment of prostate cells 

with low doses of ionising radiation and BEZ235 (dual inhibitor of PI3K and mTOR) 

and Tyrphostin AG-1478 (inhibitor of EGFR), either singly or as a cocktail.  

These novel therapies will improve the outcome of radiotherapy by targeting the 

molecular elements that drive the radiation resistance. It is expected that this 

approach will make a significant contribution towards the formulation of patient-

specific therapeutic cocktails that will revolutionise the treatment of prostate cancer.  

 

The main objectives of this study were to:  

1. Determine the intrinsic radiosensitivity of two prostate cell lines: DU145 

(prostate cancer cells) and 1542N (normal prostate cells). 
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2. Identify and validate the expression of EGFR and PI3K proteins. 

3. Sensitise the prostate cell lines with BEZ235 and AG-1478, individually and in 

combination, to ideally enhance the effectiveness of radiotherapy. 
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CHAPTER 2 
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2.1. Cell Lines 

  

1542-NPTX 

The benign 1542-NPTX (1542N) human prostate epithelial cell culture was derived 

from a primary adenocarcinoma of the prostate, and immortalised with E6 and E7 

genes of the human papilloma virus 16 (Bright et al, 1997). The cells were grown in 

Roswell Park Memorial Institute medium (RPMI-1640) (Sigma-Aldrich, Germany) 

supplemented with 10% heat-inactivated foetal bovine serum (FBS) (HyClone, UK), 

penicillin (100 U/ml) and streptomycin (100 µg/ml) (Lonza, Belgium). The cell line 

was provided by Professor JRW Masters (Prostate Cancer Research Centre, 

University College London, UK).  

 

DU145 

DU145 is a human prostate cell line which is derived from a metastatic lesion of the 

central nervous system (Stone et al, 1978). DU145 cells which have an epithelial-like 

morphology, were grown in Minimum Essential Medium (MEM) (Sigma-Aldrich, 

Germany) supplemented with 10% heat-inactivated foetal bovine serum (FBS) 

(HyClone, UK), penicillin (100 U/ml) and streptomycin (100 µg/ml) (Lonza, Belgium). 

The cell line was obtained from Professor P Bouic (Synexa Life Sciences, Montague 

Gardens, South Africa). 
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2.2. Cell Culture Maintenance  

 

The cells were routinely maintained at 37ºC in a humidified atmosphere (95% air and 

5% CO2) in SHEL LAB incubators (Sheldon Manufacturing Inc, USA) and all cell culture 

procedures were carried out in vertical laminar flow cabinets using aseptic techniques. 

Cells were routinely grown in 75 cm2 flasks, and were passaged when culture confluency 

was between 80-90%. For cryopreservation, cells were trypsinised, pelleted by 

centrifugation (4000 RPM for 5 minutes), resuspended in a mixture of 0.9 ml foetal 

bovine serum and 0.1 ml of dimethyl sulfoxide (DMSO), stored at -80°C overnight, and 

then transferred into liquid nitrogen for use at a later stage. 

   

2.3. Target Inhibitors 

BEZ235 is a dual inhibitor of phosphoinositide-3-kinase (PI3K) and mammalian 

target of rapamycin (mTOR), with an inhibitory concentration at 50% (IC50) of 7.5 nM 

for PI3K and 5 nM for mTOR in highly metastatic human prostate tumour cells (Maira 

et al., 2008; Potiron et al., 2013). BEZ235 has a molecular weight of 469.55 and 

chemical formula C30H23N5O (Santa Cruz Biotechnology, Texas, USA), and is 

soluble in dimethyl sulfoxide (DMSO). 

AG-1478 is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor with 

an IC50 of 3 nM in non-small cell lung cancer (Levitzki and Gazit, 1995; Puri and 

Salgia, 2008). AG-1478 has a molecular weight of 315.8 and chemical formula 

C16H14CIN3O2 (Tocris Bioscience, UK), and is soluble in DMSO. 
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2.4. Irradiation 

Cell lines grown in 25 cm2 tissue culture flasks were irradiated using the 60Co -

irradiation source at Tygerberg Academic Hospital. Dosimetry was by 

thermoluminescent dosimetry (TLD-chips). The beam configuration was vertical with 

a source-to-sample distance (SSD) of 66.5 cm measured to the base of the 

experimental cell culture flasks. The field size was 30 x 30 cm2. Build-up consisted of 

10 ml of medium in the 25 cm2 culture flasks, and a 0.5 cm perspex sheet positioned 

on top of the culture flasks. The backscatter radiation was absorbed by a 5 cm thick 

perspex sheet and an 8.5 cm thick foamalite slab.  

For all assays cell cultures were irradiated at room temperature (22°C) over a dose 

range of 0-10 Gy at an average dose rate of 0.827 Gy/min (range: 0.782 - 0.873 

Gy/min).  

 

2.5. Clonogenic Survival Assay 

Near-confluent stock cultures were washed with sterile phosphate buffered saline 

(PBS), trypsinised and counted using a haemocytometer. Cells were seeded in 

triplicate per experiment in 25 cm2 culture flasks at varying density from 300 to 100 

000 cells per flask, depending on cell type and on the radiation absorbed dose that 

cells received, and left to settle for 4 – 5 hours. The cell cultures were then exposed 

to graded doses ranging from 0 - 10 Gy. After an appropriate incubation period 

(usually 10 - 14 days),  the colonies were fixed by decanting the medium in the flask, 

and replacing it with 10 ml of fixative, consisting of 100 ml glacial acetic acid, 100 ml 

methanol and 800 ml distilled water, for 10 minutes. The fixative was then decanted 
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and replaced with 10 ml of Amido Black stain, consisting of 10 ml of 0.01% amido 

black in 1 litre of fixative. The colonies were left to stain for 10 minutes. The stain 

was then decanted, and the flasks left to dry. The colonies were counted using a 

dissection microscope, and corresponding surviving fractions calculated. The means 

(± SD) of the surviving fractions for the three experiments were plotted against the 

irradiation dose, and cell survival curves were obtained by fitting the data to the 

linear-quadratic equation: 

  

where S is the surviving fraction, α and β are the linear and quadratic cell inactivation 

constants, respectively, and D is the dose in Gy.  

 

2.6. Radiosensitisation Effect of Inhibitors 

Radiosensitisation induced by inhibitors, BEZ235 and AG-1478, added 30 minutes 

prior to irradiation, was assessed using the clonogenic assay in the DU145 and 

1542N cell lines. Cells were seeded in 25 cm2 tissue culture flasks with an 

appropriate number of cells (300 to 50 000) per flask depending on radiation dose. 

After 4 hours of cell attachment, cells were treated with either 18 nM of BEZ235, 15 

nM of AG-1478 or a combination of the two inhibitors as a cocktail, before radiation. 

The flasks were then irradiated at 2 and 6 Gy with 60Co -irradiation. After an 

incubation period of 10 - 14 days, colonies were fixed, stained and scored. 

Unirradiated cell cultures with and without inhibitor served as controls. 

Radiosensitisation by each inhibitor was expressed as a radiation enhancement 

)2()( DDeSSurvival  

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factor (EF), given by the ratio of surviving fractions with and without inhibitor as 

follows: 

 

𝑅𝐸𝐹 =  
𝑆𝐹(2 𝐺𝑦)

𝑆𝐹 (2 𝐺𝑦 + 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟)
 

or 

𝑅𝐸𝐹 =  
𝑆𝐹(6 𝐺𝑦)

𝑆𝐹 (6 𝐺𝑦 + 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟)
 

 

The criteria for inhibition, no effect, and enhancement of radiosensitivity by inhibitors 

were REF < 1.0, REF  1.0 and REF > 1.0, respectively. 

 

 

2.7. Protein Extraction 

Total protein extraction from cells was performed on ice (4°C). Cells were harvested 

at 0, 6 and 24 hours after treatment with inhibitors and radiation. The medium was 

decanted, and the treated flasks rinsed with cold PBS. The cells were mechanically 

harvested by gentle scraping with a cell scraper. Each cell suspension was then 

transferred to a tube containing growth medium. The cells were pelleted by 

centrifugation (4000 RPM for 5 minutes), washed and resuspended in cold PBS, 

followed by a second centrifugation. The pellet was then resuspended in 200 µl 

TBS/1%Triton X-100 extraction buffer and placed on a tube roller mixer overnight at 

4°C. Lysates were clarified by centrifugation (14000 RPM for 15 minutes) to remove 

Stellenbosch University  https://scholar.sun.ac.za



24 
 

insoluble cellular debris, and the supernatant was collected and stored at -80°C for 

use at a later stage.  

 

2.8. Determination of Protein Concentration 

Protein determination was performed on ice (4°C) by means of the bicinchoninic acid 

colorimetric assay kit, manufactured by Pierce (Rockford, IL, USA).  Briefly, samples 

were diluted in TBS/1%Triton X-100 buffer (1:2 and 1:5), and 10 µl of the diluted 

protein placed in a 96-well multiwell plate. Two hundred microliters of working 

reagent (Reagent A and Reagent B mixed in a 51:1 ratio, to produce a clear light 

green solution) was added to each well and the plate incubated at 37°C for 30 

minutes. A purple colour developed. The reaction was stopped by incubating the 

multiwell plate at 4°C for 10 minutes before measuring the absorbance values with a 

Labtech L-4000 microplate reader (Sussex, UK) at a wavelength of 570 nm. 

Serial dilutions were made from a 2 mg/ml bovine serum albumin (BSA) stock vial 

and a standard curve was produced by plotting the average blank-corrected 570 nm 

measurement for each BSA standard against its concentration in μg/ml. The 

standard curve was then used to determine the protein concentration of each 

unknown sample. The working range of the assay was 125 - 2000 µg/ml. 

 

2.9. Preparation of Acrylamide Gels 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used 

to determine changes in the expression of PI3K, mTOR and EGFR total proteins, 

including the phosphorylated proteins. This method separates proteins by the 
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relative distance they migrate across a polyacrylamide gel matrix, based on their 

molecular weights. 

A 10% separating gel and a 5% stacking gel were used for optimum resolution of the 

PI3K, mTOR and EGFR proteins. Briefly, the separating gel was prepared by mixing 

volumes of the following components: 5.9 ml of distilled water, 5 ml of 30% 

acrylamide/Bis solution (29:1; 3.3%), 3.8 ml of 1.5 M Tris (pH 8.8) and 150 µl of 10% 

SDS. One hundred and fifty microlitres of freshly prepared 10% ammonium 

persulfate and 9 µl of tetramethylethylenediamine (TEMED) were added to initiate 

polymerisation of the gel. The stacking gel was prepared as follows: 3.4 ml of 

distilled water, 83 µl of 30% acrylamide/Bis solution 29:1 (3.3%), 63 µl of  1.0 M Tris 

(pH 6.8) and 50 µl of 10% SDS. Fifty microlitres of freshly prepared 10% ammonium 

persulfate and 5 µl of TEMED were added to initiate polymerisation.  

Samples were boiled at 95°C for 5 minutes in Laemmli sample buffer (Bio-Rad, USA) 

before loading onto the gel. Equivalent amounts of protein (20 µg) were loaded per 

lane. Ten microlitres of a precision pre-stained 10 - 250 kDa molecular weight 

marker (Bio-Rad, USA) was loaded in the first lane to assist with the orientation and 

size determination of separated proteins.  

Proteins were fractioned by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) on a Mini-PROTEAN® Tetra cell vertical 

electrophoresis system (Bio-Rad, USA) at a constant voltage of 100 V (AA Hoefer 

Power Pac PS300-B, USA) until the migration front reached the bottom of the gel. 
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2.10. Western Blotting and Immunoblot 

The cells were assayed for levels of protein expression before and after exposure to 

ionising radiation, by Western blotting with antibodies specific for EGFR, PI3K and 

mTOR.  

The resolved proteins were electro-transferred onto a polyvinylidene difluoride 

membrane (PVDF Immun-Blot™) (Bio-Rad, USA) for 2½ hours on ice at a current of 

200 mA, using a vertical wet transfer system (Mini- PROTEAN® Tetra cell) (Bio-Rad, 

USA). 

The proteins were transferred from the gel to the membrane in transfer buffer 

containing glycine (192 mM), Tris (25 mM) and methanol (20%).  

 

2.11. Ponceau S Staining of PVDF Membranes 

PVDF membranes were stained with Ponceau S (Sigma, Germany) to expose the 

protein bands and allow for an assessment of sample loading. Following protein 

transfer by electroblotting, membranes were soaked in Ponceau S for 60 seconds 

and rinsed in distilled water, before blocking with Tris buffered saline with Tween 20 

(TBST) containing 5% non-fat milk or 5% BSA. 

 

2.12. Immuno-detection 

The membranes were blocked in Tris buffered saline with Tween 20 (TBST) 

containing 5% non-fat milk for 25 – 30 minutes at room temperature, followed by 

three washes in Tris buffered saline (TBS)/Tween 20 solution, before the primary 
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antibodies were added and membranes left rotating overnight at 4°C. Incubation in 

primary antibodies against anti-PI3 kinase p110 beta (PI3K) mouse monoclonal 

antibody to PI3 kinase p110 beta (Abcam, UK), EGFR (mouse monoclonal antibody) 

(Santa Cruz Biotechnology, USA), and mammalian target of rapamycin (mTOR) 

(7C10) rabbit monoclonal antibody (Cell Signaling Inc., USA) was followed by 

several washes in TBS/Tween 20 solution, before the addition of a secondary 

antibody (goat anti-mouse IgG or goat anti-rabbit IgG horseradish peroxidase 

antibody) (Santa Cruz Biotechnology, USA), and incubated for 1 hour at room 

temperature. The membranes were then washed several times in TBS/Tween 20 

solution, before protein detection. 

 

2.13. Western Blotting Detection System 

Following Western blot transfer, the immobilised proteins were detected using the 

tetramethylbenzidine membrane peroxidase substrate system (KPL Inc., USA). This 

is a sensitive colorimetric detection method for the presence of peroxidase 

conjugates, permitting easy visualisation of blue bands. 

 

2.14. Data Evaluation 

Data are presented as the mean ± standard error of the mean (SEM) of three 

independent experiments as indicated by error bars. Statistical analysis and data 

fitting were performed by means of GraphPad Prism (GraphPad Software, San 

Diego, USA). A two-sided Student’s t-test was used to compare the means between 

sample groups, p-values < 0.05 were declared significant.                       
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3.1. Radiosensitivity 

The cellular radiosensitivity was determined using the clonogenic cell survival assay. 

Cell survival data for the human prostate carcinoma cell line were fitted to the linear-

quadratic model and are presented in Figure 3.  

 

 

Figure 3: Clonogenic survival curve for the prostate carcinoma cell line 

(DU145) after 60Co -irradiation. Symbols represent mean (± SD) surviving 

fractions from three independent experiments. The survival curve was 

obtained by fitting experimental data to the linear-quadratic model. 
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Similarly, cell survival data for the normal prostate cell line are shown in Figure 4. 

 

 

 Figure 4: Clonogenic survival curve for the normal prostate cell line 

(1542N) after 60Co -irradiation. Symbols represent mean (± SD) surviving 

fractions from three independent experiments. The survival curve was 

obtained by fitting experimental data to the linear-quadratic model. 

 

From the dose-response curves presented in Figures 3 and 4, it is apparent that the 

normal cell line is more radiosensitive than its malignant counterpart. The survival 
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curve for 1542N is relatively steeper than that for DU145. The - and β-coefficients 

for the two cell lines were found to be 0.57  0.11 Gy-1 and 0.01  0.01 Gy-2 and 0.28 

 0.06 Gy-1 and 0.01  0.01 Gy-2, respectively. For comparison, intrinsic cellular 

radiosensitivity was expressed in terms of the surviving fraction at 2 Gy (SF2). 

Indeed, the DU145 cell line was found to be more radioresistant than the 1542N cell 

line. The SF2-values emerged as 0.53  0.07 and 0.36  0.09 for DU145 and 1542N, 

respectively, and were not statistically different (P = 0.1894).  

 

 3.2. Cytotoxicity of Inhibitors  

 

To assess the cytotoxicity of the PI3K, mTOR and EGFR inhibitors, plating 

efficiencies (PE) of cell cultures were determined in the presence of the inhibitors, 

either singly or in combination, and compared with those obtained for cells cultured 

without inhibitors. The PE-values for the DU145 cell line were found to be 0.0229  

0.0075 and 0.1210  0.0996 in the absence and presence of BEZ235, respectively, 

and were not significantly different (P = 0.3819). On average, treatment of these cells 

with 17.5 nM of BEZ235 appeared to improve plating efficiency. The PE-value for 

AG-1478 emerged as 0.0203  0.0084 and was essentially the same as the PE 

value without inhibitor (P = 0.8292), corresponding to no cell kill. The plating 

efficiency in DU145 cell cultures treated with a cocktail of the two inhibitors was 

0.1130  0.0826, and was not statistically different from that obtained for untreated 

cell cultures (P = 0.9537). For the 1542N cell line, the plating efficiencies were 

0.0240  0.0010 and 0.0110  0.0006 in the absence and presence of BEZ235, 

respectively, and were significantly different (P = 0.0004). BEZ235 induced a 54% 
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cell kill in this cell line. The plating efficiency in AG-1478 treated 1542N cell cultures 

was 0.0350  0.0020 and was significantly higher than that obtained for untreated 

cell cultures (P = 0.0114). AG-1478 appears to enhance plating efficiency in the 

normal prostate cell line. The PE-value for 1542N cells treated with a cocktail of two 

inhibitors was found to be 0.0073  0.0009 and was also significantly lower than the 

PE value for untreated cell cultures (P = 0.0007), giving a 70% cell kill.          

 

3.3. Modulation of Radiosensitivity of DU145 and 1542N at 2 Gy 

 

To assess whether blocking the activities of PI3K, mTOR and EGFR, with specific 

inhibitors resulted in changes in cellular radiosensitivity, cell cultures were treated 

with BEZ235 (against PI3K and mTOR) and AG-1478 (against EGFR), and 

subsequently irradiated with 2 Gy. The cell survival data for DU145 are shown in 

Figure 5. Treatment with BEZ235 alone sensitised the cells, reducing SF2 from 0.58 

± 0.12 to 0.39 ± 0.08, although the sensitisation was not statistically significant (P = 

0.2432). A higher radiosensitisation was observed when cells were pre-treated with 

AG-1478, with SF2 decreasing from 0.58 ± 0.12 to 0.32 ± 0.07 (P = 0.1274). The 

levels of radiosensitisation that was individually induced by the two agents were not 

significantly different (P = 0.5522). When the cells were treated with a cocktail of the 

two inhibitors BEZ235 and AG-1478, the surviving fraction at 2 Gy emerged as 0.35 

± 0.05 and was not significantly different from those obtained for single agent 

treatment (P = 0.1449 and P = 0.7342, respectively). 
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Figure 5: Clonogenic cell survival at 2 Gy of 60Co -irradiation for a 

human prostate carcinoma cell line (DU145) following single or 

combined (cocktail) treatment with PI3K and mTOR inhibitor (BEZ235) 

and EGFR inhibitor (AG-1478).  

 

 

The corresponding data for the normal cell line are presented in Figure 6. 

Interestingly, pre-treatment of 1542N cells with BEZ235 resulted in a high level of 

radioprotection, with the surviving fraction at 2 Gy increasing from 0.36 ± 0.06 to 

0.69 ± 0.11 (P = 0.0509). On the other hand, when cells were treated with the EGFR 

inhibitor alone, SF2 did not differ markedly from that for untreated cell cultures. The 

corresponding SF2 was found to be 0.29 ± 0.06. Cellular treatment with a 

BEZ235/AG-1478 cocktail appeared to have no effect on the radiosensitivity of the 

1542N cells, giving a surviving fraction at 2 Gy of 0.32 ± 0.03. 
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Figure 6: Clonogenic cell survival at 2 Gy of 60Co -irradiation for a 

normal human prostate cell line (1542N) following single or combined 

(cocktail) treatment with PI3K and mTOR inhibitor (BEZ235) and EGFR 

inhibitor (AG-1478). 

 

 3.4. Modulation of Radiosensitivity of DU145 at 6 Gy 

 

To investigate whether the apparent radiosensitisation seen in the prostate 

carcinoma cell line (DU145) exists at higher fractional doses as may be encountered 

in stereotactic radiotherapy, the effect of blocking the activities of PI3K, mTOR and 

EGFR and irradiating cell cultures to 6 Gy was assessed, and the cell survival data 

are presented in Figure 7. The reduction in cell survival due to pre-treatment with 

BEZ235, AG-1478, or the cocktail of the two inhibitors, was marginal, with the 
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surviving fraction at 6 Gy decreasing from 0.17 ± 0.09 to 0.10 ± 0.04 (P = 0.5509), 

0.11 ± 0.02 (P = 0.5501), and 0.06 ± 0.02 (P = 0.3685), respectively.  

 

 

Figure 7: Clonogenic cell survival at 6 Gy of 60Co -irradiation for a 

human prostate carcinoma cell line (DU145) following single or 

combined (cocktail) treatment with PI3K and mTOR inhibitor (BEZ235) 

and EGFR inhibitor (AG-1478). 

 

 

3.5. Evaluation of Effect of Inhibitors on Radiotoxicity 

 

To further evaluate the effect of inhibitors on radiation-induced cell kill, radiation 

enhancement factors were calculated for each cell line and treatment scenario from 

the data presented in Figures 5 - 7. The radiotoxicity enhancement data for the 

DU145 cell line are summarised in Table 1. On average, treatment with AG-1478 
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showed a higher level of radiation enhancement than BEZ235 at 2 Gy. The reverse 

was observed at 6 Gy where the effect of BEZ235 was higher. Treatment with both 

agents did not seem to yield an added effect at 2 Gy relative to single agent 

exposure. However, cocktail treatment at 6 Gy resulted in an over 2-fold 

radiosensitisation.  

 

Table 1:  Radiation enhancement data at 2 and 6 Gy for DU145 cells treated 

with BEZ235 and AG-1478. 

Treatment SF2 REF* 

2 Gy (no inhibitor)  0.58 ± 0.12  

2 Gy + BEZ235  0.39 ± 0.08 1.49 ± 0.43 

2 Gy + AG-1478  0.32 ± 0.07 1.81 ± 0.55 

2 Gy + Cocktail  0.35 ± 0.05 1.66 ± 0.42 

   

6 Gy (no inhibitor)  0.17 ± 0.09  

6 Gy + BEZ235  0.10 ± 0.04 1.70 ± 1.13 

6 Gy + AG-1478  0.11 ± 0.02 1.55 ± 0.88 

6 Gy + Cocktail  0.06 ± 0.02 2.83 ± 1.77 

*Errors calculated using an appropriate error propagation formula.  

 

The radiotoxicity enhancement data for the normal prostate cell line (1542N) are 

presented in Table 2. In this cell line, treatment with BEZ235 significantly protected 

cells against a radiation absorbed dose of 2 Gy. In contrast, AG-1478 treatment 
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yielded a radiation enhancement factor of 1.24. When cells were treated with a 

cocktail of the two inhibitors, no effect was apparent.  

 

Table 2:  Radiation enhancement data at 2 Gy for 1542N cells treated with BEZ235 

and AG-1478. 

Treatment  SF2 REF ⃰ 

2 Gy (no inhibitor)  0.36 ± 0.06  

2 Gy + BEZ235  0.69 ± 0.11 0.52 ± 0.12 

2 Gy + AG-1478  0.29 ± 0.06 1.24 ± 0.33 

2 Gy + Cocktail  0.32 ± 0.03 1.13 ± 0.22 

*Errors calculated using an appropriate error propagation formula. 

 

 

3.6. Western Blot Analysis 

 

Ponceau Stain 

Figure 8 shows a representative image of a PVDF membrane that has been 

Ponceau stained after it has been through protein transfer.  The Ponceau stain is a 

general stain used to determine if the transfer of proteins has taken place. Bands 

representing the standard protein ladder and samples are illustrated with arrows to 

indicate the relative positions of the target proteins: EGFR, mTOR, and PI3K.   
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Figure 8: A representative image of a PVDF membrane that has been 

Ponceau stained after the transfer of proteins. 

 

 

 

Immuno-Blots 

 

Figure 9 is a representative image of a PVDF membrane developed from irradiated 

prostate cell cultures. Immuno-detection for total protein was used to identify EGFR, 

PI3K and mTOR. All proteins were expressed. Neither radiation dose nor incubation 
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time of the order of 6 hours had an impact on the expression levels of the target 

proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Representative immuno-blots of mTOR (top panel), EGFR 

(middle panel), and PI3K (bottom panel) expression. Protein samples 

were loaded in duplicate: Lanes 1 (unirradiated control); Lanes 2 (2 Gy 

with no incubation); and Lanes 3 (2 Gy with a 6-hour incubation). 
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4.1. Cellular Resistance to Radiotherapy 

 

Radiation therapy plays an important role in prostate cancer treatment (Skvortsova 

et al., 2008). However, the radioresistance of prostate cancer cells limits the 

outcome of radiotherapy (An et al., 2006). It is assumed that the surviving and 

repopulating cancer cells are capable of providing molecular protection against the 

cytotoxic effects of radiation therapy. This research aimed to investigate radio-

enhancement for a better therapeutic outcome. 

 

No therapy has yet demonstrated a clear superiority in terms of long-term survival 

(Lee et al., 2008; Kuban et al., 2008), the major clinical problem being the resistance 

observed in prostate cancer patients (Skvortsova et al., 2008). With the current 

standard protocol of radiation therapy, local and metastatic relapse remain frequent 

in high-risk patients. One well-recognised cause is the relative resistance of cells to 

radiation therapy (Potiron et al., 2013; Skvortsova et al., 2008). Knowledge of the 

radiosensitivity of prostate tumours could provide a rational basis for adjuvant 

radiotherapy approaches, and help optimise prostate cancer management. To 

address this need, a prostate cancer cell line (DU145) and a normal prostate cell line 

(1542N) were used in this study.  

 

Figures 3 and 4 show survival curves for the DU145 and 1542N cell lines, 

respectively. The 1542N curve is relatively steeper than that of DU145, suggesting 

that the 1542N cell line is more radiosensitive than the malignant DU145 cell line. 

Similar results were previously reported for the 1542N cell line (Serafin et al., 2003). 
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4.2. Simultaneous Inhibition of EGFR and PI3K Pathways Enhance 

Radiosensitivity of Prostate Cancer Cells 

 

Radiation therapy is an integral part of prostate cancer management, especially in 

combination with other cytotoxic agents (Galper et al., 2000; Mokbel, 2003). A 

significant reduction in incidences of local recurrence in prostate malignancies after 

therapy has been reported. However, subsets of patients are resistant to 

radiotherapy, due to mutations in the PI3K/mTOR survival pathway, and the 

overexpression of EGFR and other proteins involved cell survival pathways (Choi et 

al., 2010; Rikova et al., 2007). This severely limits the effects of radiotherapy. An 

appealing approach to overcoming this problem is combined molecular targeted 

therapy to sensitise tumours to radiotherapy. This approach has led to improved 

treatment outcomes in patients with advanced solid tumours, such as head and neck 

(Bonner et al., 2006). 

 

This study explored whether the dual inhibitor of PI3K and mTOR, BEZ235, and AG-

1478 which is an EGFR inhibitor, could sensitise human prostate cancer cells to 

ionising radiation. Furthermore, the study assessed whether a cocktail of the two 

inhibitors would yield a greater radiosensitisation in cells, in comparison to a single 

inhibitor. The effects of the inhibitors combined with radiation were assessed at a 

cellular level and clonogenic survival was measured. At the molecular level, 

expression of EGFR, PI3K and mTOR was evaluated using Western blot analysis. 

 

Multiple features of tumour cells are involved in shaping their intrinsic and acquired 

radioresistance (Baumann et al., 2007). As mentioned earlier, the EGFR and PI3K 
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pathways have been implicated in disease progression and survival of prostate 

cancer cells after radiation exposure, resulting in resistance to radiotherapy. The 

pathways have also been shown to constitute one of many regulators of prostate 

cancer radiosensitivity (Bitting and Armstrong, 2013; Carracedo et al., 2008; 

Carracedo and Pandolfi, 2008; Liu et al., 2009).  

 

The overexpression of EGFR activated by homodimer or heterodimer combinations, 

with other ErbB family members, was associated with poor prostate tumour response 

to radiotherapy (Baumann et al., 2007). Therefore, inhibition of EGFR signalling may 

enhance the radiosensitivity of cancer cells. It has been shown that inhibition of 

EGFR enhances the radiosensitivity of various tumours in preclinical and clinical 

studies (Magné et al., 2008). This is in agreement with the results presented here.  

Pre-treatment of DU145 cells with the EGFR inhibitor, AG-1478, reduced the 

surviving fractions at 2 and 6 Gy, giving average radiation enhancement factors of 

1.81 and 1.55, respectively (Figures 5 and 7; Table 1). However, the resulting 

radiosensitisation did not reach statistical significance. The similarity in radiation 

enhancement at the two doses suggests that radiosensitisation of DU145 cells via 

inhibition of EGFR is likely independent of radiation dose, and that AG-1478 could 

potentially be used as a radiosensitiser in conventional, as well as, stereotactic 

fractionated radiotherapy. In contrast, it has been demonstrated elsewhere for head 

and neck, lung, and bladder tumour cell lines that BEZ235 exhibits greater 

enhancement at higher radiation doses (Konstantinidou et al., 2009; Fokas et al., 

2012). The radiosensitisation observed in the 1542N cell line at 2 Gy is much less 

than that seen in the malignant cell line (Figure 6; Table 2), indicating that an 
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improved therapeutic benefit may be achieved with less extensive normal tissue 

toxicity when AG-1478 is used as an adjuvant to radiotherapy. 

 

In addition, inhibition of the PI3K/Akt/mTOR pathway has been shown to enhance 

the radiosensitivity of various cancer cell types, including those from prostate origin 

(Toulany et al., 2006). In the current study, pre-treatment of DU145 cells with 

BEZ235, a dual inhibitor of PI3K and mTOR, was found to enhance the effect of 

radiation by levels similar to those produced by the EGFR inhibitor, but these were 

also not significantly different (Figures 5 and 7; Table 1). These data suggest that 

targeting the EGFR and PI3K/Akt/mTOR pathways singly has the same effect on the 

radiation response of the malignant cell line, regardless of radiation dose.   

 

Interestingly, a significant radio-protective effect emerged when the 1542N normal 

prostate cell line was pre-treated with BEZ235 (Figure 6; Table 2). In fact, inhibiting 

PI3K and mTOR with BEZ235 almost doubled clonogenic survival in 1542N. Similar 

radio-protective properties of BEZ235 have been demonstrated in normal gut tissue 

(Potiron et al., 2013). The radiosensitisation seen in the DU145 may be attributable 

to the observation that BEZ235 inhibits double-strand-break repair in tumour cells 

and likely contributes to mitotic catastrophe (Wouters and Koritzinsky, 2008). This 

inhibition of DNA repair by BEZ235 should also enhance radiotoxicity in normal 

tissue, but no such enhancement was found in the gut (Potiron et al., 2013). 

Targeting the PI3K/mTOR pathway has anti-clonogenic effects in tumour cells 

(Potiron et al., 2013; Maira et al., 2008) and pro-clonogenic effects in normal cells 

(Martin et al., 2011), and should result in improved radiotherapy outcomes. The 
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radio-protection demonstrated here for BEZ235 in the normal prostate cell line, if 

validated, could have significant implications in prostate cancer management.  

 

It is important to focus on the upstream target, EGFR, and the downstream targets, 

PI3K and mTOR, since inhibition of only one target upstream or downstream may 

not fully counteract the resistance of cells to irradiation. Co-targeting EGFR, PI3K 

and mTOR may, theoretically, maximise the radiosensitivity of cancer cells. The 

rationale or the desired expectation for this combination therapy approach is to target 

sub-populations of tumour cells that may be resistant to one or other cytotoxic agent, 

and, furthermore, to target all cells on a cell-by-cell basis at the same time, reducing 

normal tissue toxicity (Lee et al., 2008). Pre-treatment with a cocktail of AG-1478 

and BEZ235 did not seem to be more superior at radiosensitising DU145 cells at 2 

Gy than if cells were exposed to each agent individually (Figures 5 and 7; Table 1). 

However, at 6 Gy, the cocktail yielded a 3-fold radiosensitisation in these cells 

although no statistical significance was observed, suggesting that combined use of 

AG-1478 and BEZ235 in radiotherapy modalities that employ relative large fractional 

doses might be beneficial. More so, if it is demonstrated that the effect of the cocktail 

in normal cells is as marginal at higher radiation doses as found in the 1542N cell 

line at 2 Gy (Figure 6, Table 2). 

 

It is worth noting that while AG-1478 and BEZ235 appeared to radiosensitise the 

malignant cell line, they seem to be non-toxic and growth promoting, respectively, 

when administered alone. These findings suggest that interference with the EGFR 

and PI3K/Akt/mTOR pathways without concomitant use of radiotherapy might not 

have a therapeutic benefit. In addition, the significant cytotoxicity seen in the normal 
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cell line for both pathway inhibitors in the absence of radiation requires further 

evaluation as it is highly desirable to keep normal tissue toxicity to the minimum.  

 

 

4.3. Target Expression in Prostate Cells 

To demonstrate capacity to detect expression of the pathway targets, Western blot 

analyses were performed on the cell lines. The representative immuno-blots for total 

protein in Figure 9 show that mTOR, EGFR, and PI3K are indeed expressed by 

DU145 and 1542N. Prostate carcinoma cells express EGFR, PI3K and mTOR under 

in vitro and in vivo conditions (Di Lorenzo et al., 2002, Baselga, 2002, Hynes and 

MacDonald, 2009).  Expression of these proteins have been evaluated for their 

potential as prognostic indicators of disease progression (Di Lorenzo et al., 2002). 

The significant level of EGFR expression demonstrated in Figure 9 is consistent with 

those observed in patients treated with radical surgery, hormone therapy, as well as 

in patients with metastatic and hormone-refractory disease (Di Lorenzo et al., 2002). 

The finding that EGFR, PI3K and mTOR are expressed in both the malignant 

(DU145) and normal (1542N) cell lines, makes the cell lines suitable for evaluating 

how perturbation of the EGFR/PI3K/mTOR pathway may affect the radiation 

response of tumours and normal tissue. More extensive studies on the roles of these 

proteins in the radiation response of malignant and normal prostate cell lines could 

lead to more effective targeted therapeutic approaches. 
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4.4. Possible Future Avenues for Research 

 

1. It would be of interest to validate the apparent radiosensitisation of the cancer 

cell line, using lower concentrations of the target inhibitors. This may provide 

useful information on the optimum inhibitor doses that can be used without 

inducing undue normal tissue toxicity;  

 

2. Further molecular evaluation of the activity status of the targets by detection 

and measurement of the corresponding phosphorylated entities would shed 

more light on the signalling mechanisms underlying the radiation responses; 

 

3. Studies seeking to understand why blocking PI3K and mTOR with BEZ235 

leads to radiation protection in normal cells would have significant benefit not 

only in radiotherapy, but also in radiation protection.  

 
4. The lack of statistical significance in the current results opens a door for a 

more extensive study to explore whether the findings are coincidental. This 

can be addressed by using varying concentrations of the inhibitors. If 

statistical significance is achieved, the finding might have a huge impact on 

the future management of prostate cancer.  
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CHAPTER 5 

CONCLUSION 
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In the current study, it has been shown that treatment of a human prostate cancer 

cell line (DU145) with inhibitors of EGFR, PI3K, and mTOR, singly or in combination, 

at low and relatively high radiation doses resulted in a measurable but significant 

radiosensitisation. In the normal prostate cell line (1542N), blocking PI3K and mTOR 

had an appreciable level of radio-protection, while inhibition of EFGR had no effect 

on radiosensitivity. These data indicate that inhibition of the EGFR and 

PI3K/Akt/mTOR pathways may be a potential mode of reducing clonogenic cell 

survival in prostate cancer after radiation. In conclusion, PI3K and mTOR play an 

important role in EGFR/PI3K/mTOR-mediated radioresistance. This finding supports 

the molecular-target approach for sensitising prostate cancer cells to radiotherapy 

with novel inhibitors that are specific for cell survival pathways. These novel 

therapies will improve the outcome of radiotherapy by targeting the molecular 

elements that drive cellular resistance. It is expected that this approach will make a 

significant contribution towards the formulation of patient-specific therapeutic 

cocktails that will revolutionise the treatment of prostate cancer. 
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