
An Investigation into Underwater Navigation Accuracy

with regard to Sensor Combinations and Quality

by

Leo Herselman

Thesis presented at the University of Stellenbosch in
partial fulfilment of the requirements for the degree of

Master of Science in Engineering

Department of Electrical Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Study leader: Mr J. Treurnicht

March 2008

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is

my own original work and that I have not previously in its entirety or in part

submitted it at any university for a degree.

Signature: .

L. Herselman

Date: .

Copyright © 2008 University of Stellenbosch

All rights reserved.

Abstract

A navigation performance sensitivity study with respect to the quality vari-

ation of sensors and sensor combinations is presented in this thesis.

Navigation simulation software capable of using real-time and simulated

sensor data is developed in this project. The simulation software is used to

simulate different sensor combinations and therefore evaluate the best con-

figuration for each AUV mission. A sensor module is also developed to cap-

ture real-time sensor data. The sensor module includes a low-cost 6-degree-

of-freedom inertial measurement module (rate gyroscopes and accelerome-

ters), a three-axes magnetometer and other sensor interfaces. The real-time

sensor data are used to test and calibrate the navigation simulation software.

Different sensor combinations are evaluated by using the navigation simula-

tion software with simulated sensor data as input. The quality of each sensor

is varied by changing its noise characteristics.

The performance study, together with the developed simulation tools, sim-

plifies the process of selecting a sensor combination to fulfill a specific navi-

gation accuracy requirement.

ii

Opsomming

’n Navigasie werksverrigtingstudie met betrekking tot sensor kwaliteit en

kombinasies is in hierdie tesis voorgedra.

Navigasie simulasie sagteware, wat daartoe instaat is om intydse en ges-

imuleerde sensor data as intree te ontvang, word in hierdie projek ontwikkel.

Die simulasie sagteware word gebruik om verskillende sensor kombinasies

te evalueer om sodoende die mees optimale konfigurasie vir ’n selfbesturende

onderwater voertuig te kies. ’n Sensor module is ook ontwikkel om intydse

data te versamel. Die sensor module bevat ’n lae-koste 6-grade-van-vryheid

inersiële metingseenheid (giroskope en versnellingsmeters), ’n drie-as mag-

netometer asook ander sensor koppelvlakke. Die intydse sensor data word

gebruik om die simulasie sagteware te toets en te kalibreer. Verskillende sen-

sor kombinasies is geëvalueer deur gebruik te maak van die simulasie sagte-

ware en gesimuleerde sensor data. Die kwaliteit van elke sensor is gevarieer

deur die sensor se ruis eienskappe te verander.

Die werksverrigtingstudie, saam met die ontwikkelde simulasie gereedskap,

vergemaklik die proses waar ’n sensor kombinasie gekies moet word om ’n

spesifieke navigasie akkuraatheidsvereiste te bevredig.

iii

Acknowledgements

This project would not have been possible without the support, guidance

and investment of numerous people. I would like to thank everybody who

assisted me. In particular I would like to extend my gratitude to:

• Jesus Christ for giving me the strength and wisdom to complete this

project.

• Mr Treurnicht for all your guidance and suggestions.

• My lab partners for all your help and discussions: Keith Browne, Izak

Marais, Johan Schoonwinkel, Helgard van Rensburg and Emile Rossouw.

• Willie van Rooyen, Johan Arendse and other staff members from the

University of Stellenbosch. Your support is greatly appreciated.

• Laurence Hill for proofreading this thesis.

• My parents and sister for their continued love and support.

• And most importantly, my wonderful fiancée, Cecile Kingma. Thank

you for your love, patience, understanding and support throughout

this project.

iv

Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Contents v

List of Tables x

List of Figures xii

Abbreviations xvi

Symbols / Nomenclature xviii

1 Introduction and Overview 1

1.1 Background . 1

1.2 AUV requirements and constraints 2

1.3 Project requirements . 2

1.4 Outline . 3

2 Navigation Concepts 4

2.1 Overview . 4

2.2 Axes definitions and rotations 4

2.2.1 Inertial axial system . 5

2.2.2 Earth axial system . 5

2.2.2.1 ECEF rectangular axial system 6

v

CONTENTS vi

2.2.2.2 ECEF geocentric axial system 6

2.2.3 Navigation axial system 7

2.2.4 Body axial system . 8

2.2.5 Euler angles . 9

2.2.6 Quaternions . 11

2.3 Equations of motion . 14

2.4 The TRIAD algorithm . 15

2.5 Allan Variance . 17

2.5.1 Angle / velocity random walk 19

2.5.2 Rate random walk . 20

2.5.3 Log-log plot . 21

2.6 State estimation . 23

2.6.1 Basic EKF . 24

2.6.2 MEKF . 27

2.6.2.1 Quaternion vector perturbations 28

2.6.2.2 Quaternion covariance matrix 31

2.6.2.3 Bias drift . 32

2.6.2.4 State space model 32

2.6.2.5 Measurement updates 34

2.6.3 Position and Velocity EKF 36

2.6.3.1 Non-linear dynamics 36

2.6.3.2 State space model 38

2.6.3.3 Measurement updates 39

2.7 Summary . 39

3 Hardware Test Bed and Embedded Software 40

3.1 Overview . 40

3.2 Hardware . 40

3.2.1 NodeSense . 41

3.2.1.1 Processor . 41

3.2.1.2 Communication hardware 42

3.2.1.3 A/D conversion 43

3.2.1.4 Analog anti-aliasing filters 45

3.2.1.5 Power distribution 49

3.2.2 IMU . 51

3.2.3 Magnetometer and pressure sensor 52

CONTENTS vii

3.2.4 Power board . 52

3.3 Embedded software . 55

3.3.1 Digital filtering . 55

3.3.2 Communication protocols 61

3.3.2.1 RS232 . 61

3.3.2.2 SPI . 62

3.3.3 Timing . 63

3.4 Interface GUI . 64

3.4.1 Communications . 65

3.4.2 Control commands . 65

3.4.3 Data logging . 66

3.4.4 Sensor data . 66

3.5 Sensor calibration . 67

3.5.1 Cross coupling matrix and bias vector 67

3.5.1.1 Gyroscopes . 67

3.5.1.2 Magnetometer 68

3.5.1.3 Accelerometers 70

3.5.1.4 Pressure sensor 70

3.5.2 Temperature . 70

3.6 Summary . 74

4 Navigation Simulation Software 75

4.1 Overview . 75

4.2 Sensor data simulation . 75

4.2.1 Forces and moments . 75

4.2.2 Sensor models . 78

4.2.2.1 GPS . 78

4.2.2.2 Gyroscopes . 79

4.2.2.3 Accelerometers 80

4.2.2.4 Magnetometer 81

4.2.2.5 Sonar . 82

4.2.2.6 Tilt sensors . 83

4.2.2.7 Pressure sensor 84

4.2.2.8 Water wheel 85

4.3 Navigation algorithms . 86

4.3.1 MEKF . 86

CONTENTS viii

4.3.1.1 Initialization 86

4.3.1.2 Update . 87

4.3.2 Position and Velocity EKF 90

4.3.2.1 Initialization 91

4.3.2.2 Update . 91

4.4 User interface . 94

4.4.1 Sensors and Help menu 95

4.4.2 Main . 95

4.4.3 Anti-alias filters . 95

4.4.4 Sensor data options . 96

4.4.5 Noise seed . 96

4.4.6 Initial states . 97

4.4.7 Navigation options . 97

4.4.8 Sensor failure . 98

4.4.9 Simulation execution . 98

4.5 Summary . 99

5 Results 100

5.1 Overview . 100

5.2 Real-time data . 100

5.2.1 Straight line maneuver 102

5.2.2 Wave maneuver . 104

5.2.3 Turn maneuver . 105

5.3 Simulations . 107

5.3.1 Case study 1 . 108

5.3.2 Case study 2 . 110

5.3.3 Case study 3 . 112

5.3.4 Case study 4 . 114

5.3.5 Case study 5 . 117

5.3.6 Case study 6 . 119

5.3.7 Case study 7 . 122

5.3.8 Case study 8 . 124

5.3.9 Case study 9 . 126

5.4 Summary . 127

CONTENTS ix

6 Project Summary and Recommendations 128

6.1 Summary . 128

6.2 Recommendations . 129

Bibliography 130

List of Tables

2.1 The SI-units of Q . 20

2.2 The SI-units of K . 21

3.1 dsPIC30F6014A features . 42

3.2 Sensor characteristics with noise calculated at 100Hz bandwidth

where required and A/D resolution unscaled over 5V. 44

3.3 Filter coefficient quantization . 58

5.1 Noise characteristics of rate gyroscopes 101

5.2 Noise characteristics of accelerometers 101

5.3 Noise characteristics of magnetometer 101

5.4 Noise characteristics of pressure sensor 101

5.5 Expected updated states . 102

5.6 Simulated sensors and their different noise characteristics 108

5.7 Case study 1: Expected updated states 109

5.8 Case study 1 additional results . 109

5.9 Case study 1 comparison results 110

5.10 Case study 2: Expected updated states 110

5.11 Case study 2 additional results . 111

5.12 Case study 2 comparison results 112

5.13 Case study 3: Expected updated states 112

5.14 Case study 3 additional results . 113

5.15 Case study 3 comparison results 114

5.16 Case study 4: Expected updated states 115

5.17 Case study 4 additional results . 116

5.18 Case study 4 comparison results 116

5.19 Case study 5: Expected updated states 117

5.20 Case study 5 additional results . 118

x

LIST OF TABLES xi

5.21 Case study 5 comparison results 119

5.22 Case study 6: Expected updated states 119

5.23 Case study 6 additional results . 121

5.24 Case study 6 comparison results 121

5.25 Case study 7: Expected updated states 122

5.26 Case study 7 additional results . 123

5.27 Case study 7 comparison results 123

5.28 Case study 8: Expected updated states 124

5.29 Case study 8 additional results . 125

5.30 Case study 8 comparison results 125

List of Figures

1.1 An AUV . 1

2.1 Axial systems [4] . 5

2.2 (a) Earth grids [8], (b) ECEF geocentric axial system [5] 6

2.3 Body axes definition . 8

2.4 Definition of Euler 3-2-1 angle rotation [7] 9

2.5 Allan Variance calculation process [14] 18

2.6 σ(T) plot for angle / velocity random walk [14] 21

2.7 σ(T) plot for rate random walk [14] 22

2.8 Allan Deviation results [5] . 22

3.1 (a) Frequency components of analog signal, (b) Sampling at fs, the

frequency components below fs/2 are reliably digitized while the

frequency components above fs/2 are folded back and appear as

lower frequencies in the digital output [33] 45

3.2 Effect of low-pass anti-alias filter [33] 46

3.3 Active second-order Sallen-Key Butterworth filter [33] 47

3.4 Data acquisition signal chain [33] 48

3.5 LC filter . 49

3.6 NodeSense functional block diagram 51

3.7 Main power supply functional block diagram 53

3.8 Top views of the hardware test bed 53

3.9 (a) Black magnetometer and IMU cube, (b) Accelerometer mounted

underneath rate gyroscope . 54

3.10 (a) Main power supply PCB underneath NodeSense PCB, (b) En-

closed hardware test bed with wireless RS232 transceiver 54

3.11 Enclosed pressure sensor . 54

xii

LIST OF FIGURES xiii

3.12 Magnitude and phase response of analog, digital and combined

filter design . 58

3.13 Magnitude and phase response of original and quantized digital

filter . 59

3.14 Digital filter implementation on dsPIC30F6014 60

3.15 RS232 implementation . 62

3.16 SPI implementation . 63

3.17 Main routine of embedded software 63

3.18 Sensor module GUI . 64

3.19 GUI communication setup . 65

3.20 GUI control interface . 65

3.21 GUI logging interface . 66

3.22 Sensor data display . 66

3.23 Magnetometer calibration . 69

3.24 Accelerometer calibration . 70

3.25 Gyroscope X temperature calibration 71

3.26 Gyroscope Y temperature calibration 71

3.27 Gyroscope Z temperature calibration 72

3.28 Accelerometer X temperature calibration 72

3.29 Accelerometer Y temperature calibration 73

3.30 Accelerometer Z temperature calibration 73

4.1 Simulink model of simulated AUV motion 76

4.2 (a) Simulated body forces (b) and resulting NED velocities of AUV 77

4.3 (a) Simulated body moments (b) and resulting attitude of AUV . 77

4.4 Simulink model of GPS . 78

4.5 Simulink model of rate gyroscopes 79

4.6 Simulink model of accelerometers 80

4.7 Simulink model of magnetometer 81

4.8 Simulink model of sonar . 82

4.9 Simulink model of tilt sensors . 83

4.10 Simulink model of pressure sensor 84

4.11 Simulink model of water wheel . 85

4.12 MEKF initialization routine . 86

4.13 MEKF update routine . 87

4.14 PVEKF initialization routine . 91

LIST OF FIGURES xiv

4.15 PVEKF update routine . 91

4.16 Simulation software GUI . 94

4.17 Sensors and Help menu . 95

4.18 Main . 95

4.19 Anti-alias filters . 96

4.20 Sensor data options . 96

4.21 Noise seed . 97

4.22 Initial states . 97

4.23 Navigation options . 97

4.24 Sensor failure . 98

4.25 Summary of simulation software 98

5.1 Straight line maneuver simulation with (a) estimated attitude and

(b) 2σ error bounds . 102

5.2 Straight line maneuver simulation with (a) estimated position and

(b) 2σ error bounds . 103

5.3 Straight line maneuver simulation with (a) estimated velocity and

(b) 2σ error bounds . 103

5.4 Wave maneuver simulation with (a) estimated attitude and (b) 2σ

error bounds . 104

5.5 Wave maneuver simulation with (a) estimated position and (b) 2σ

error bounds . 104

5.6 Wave maneuver simulation with (a) estimated velocity and (b) 2σ

error bounds . 105

5.7 Turn maneuver simulation with (a) estimated attitude and (b) 2σ

error bounds . 106

5.8 Turn maneuver simulation with (a) estimated position and (b) 2σ

error bounds . 106

5.9 Turn maneuver simulation with (a) estimated velocity and (b) 2σ

error bounds . 106

5.10 Simulation results when rate gyroscope A and accelerometer A

noise characteristics are used . 109

5.11 Simulation results when rate gyroscope A and tilt sensor A noise

characteristics are used . 111

5.12 Simulation results when rate gyroscope A, tilt sensor A and mag-

netometer A noise characteristics are used 113

LIST OF FIGURES xv

5.13 Simulation results when rate gyroscope A, accelerometer A and

magnetometer A noise characteristics are used 115

5.14 Simulation results when attitude sensors A and sonar A noise

characteristics are used . 118

5.15 Simulation results when attitude sensors A and water wheel A

noise characteristics are used . 120

5.16 Estimated NED velocity . 120

5.17 Simulation results when attitude sensors A and pressure sensor A

noise characteristics are used . 122

5.18 Simulation results when attitude sensors A and GPS A noise char-

acteristics are used . 124

5.19 Sensor failure simulation with (a) estimated attitude and (b) NED

velocity . 126

Abbreviations

6-DOF Six Degrees of Freedom

A/D Analog-to-Digital

AUV Autonomous Underwater Vehicle

CAN Controller Area Network

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DCM Direction Cosine Matrix

DSP Digital Signal Processor

ECEF Earth Centred Earth Fixed

EKF Extended Kalman Filter

ESL Electronic Systems Laboratory

FIR Finite Impulse Response

GPS Global Positioning System

GUI Graphical User Interface

HMO Hermanus Magnetic Observatory

I2C Inter-Integrated Circuit

IC Integrated Circuit

IEEE Institute for Electrical and Electronic Engineers

IIR Infinite Impulse Response

IMT Institute for Maritime Technology

IMU Inertial Measurement Unit

ISR Interrupt Service Routine

I/O Input/Output

KB Kilobytes

xvi

ABBREVIATIONS xvii

LSB Least Significant Bit

LLH Latitude Longitude Height

MCM Mine-Countermeasures

NED North East Down

MEKF Multiplicative Extended Kalman Filter

MEMS Micro Electromechanical Sensor

MIPS Million Instructions Per Second

OPAMP Operational Amplifier

PC Personal Computer

PCB Printed Circuit Board

PSD Power Spectral Density

PVEKF Position and Velocity EKF

RMS Root Mean Square

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter

UKF Unscented Kalman Filter

US University of Stellenbosch

WGS-84 World Geodetic System 1984

Symbols / Nomenclature

Symbols

Ω Earth turn rate

λ, ϕ, h Latitude, Longitude, Height

R Earth radius

φ, θ, ψ Roll, Pitch, Yaw

q1 − q4 Quaternion parameters

u, v, w Body velocity vector

Fx, Fy, Fz Applied forces

Mx, My, Mz Applied moments

Ix, Iy, Iz Moment of inertia in roll, pitch and yaw

VN , VE, VD Velocity along the NED axes

Xb, Yb, Zb Vector in body axes

Xr, Yr, Zr Vector in reference axes

Mathematical operations

⊗ Quaternion multiplication

× Vector cross product

Matrices

I Identity matrix

F State transition matrix in the continuous domain

G Input matrix in the continuous domain

xviii

SYMBOLS / NOMENCLATURE xix

Lk Estimator feedback gain

Mk Error covariance matrix before a measurement update

Pk Error covariance matrix after a measurement update

Qk Equivalent process noise covariance matrix in the dis-

crete domain

Rk Equivalent measurement noise covariance matrix in the

discrete domain

T Direction Cosine Matrix

Φk State transition matrix in the discrete domain

Chapter 1

Introduction and Overview

1.1 Background

An AUV (Autonomous Underwater Vehicle) is a submersible vessel capa-

ble of operating or remaining underwater without the need for human occu-

pancy or control.

Figure 1.1: An AUV

AUVs can perform a multitude of tasks. These tasks include: search and

rescue missions, military operations and the mapping of underwater terrain.

The most important advantage of AUVs is their ability to perform hazardous

missions. Entering unknown, deep ocean waters or crossing enemy lines to

gather critical information can be extremely dangerous for the occupants of

a manned underwater vehicle.

The threat of international terrorism makes harbor protection increas-

ingly important [1]. Enemy mines in a harbor prevent supply ships from

delivering their merchandise and can cripple a country’s economy. AUVs

1

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

can patrol the harbor floor, detect terrorist mines and, if deemed necessary,

perform a MCM (Mine-Countermeasures) role. AUVs functioning in a har-

bor environment is considered as the main theatre of operation throughout

this project. The requirements and constraints of an AUV inspecting the har-

bor floor are discussed in the next section.

1.2 AUV requirements and constraints

In order to classify an underwater vehicle as an AUV certain requirements

need to be satisfied. The submerged vessel must be unmanned and must

be able to calculate its current position, velocity and orientation from sen-

sor data in order to navigate autonomously in its designated area. Obstacle

avoidance technology, like sonar, is critical for detecting harbor walls or any

other obstruction that may be encountered. An AUV must also be able to

complete missions several hours long.

The most significant constraint on a submerged AUV is the absence of a

GPS (Global Positioning System) signal. The AUV will only receive a GPS

signal when it surfaces. Surfacing is not always a possibility, especially if the

AUV needs to operate undetected. A lack of GPS signal will force the AUV

to rely on its remaining inertial sensors. The inertial sensors will cause sig-

nificant route drift, depending on sensor quality, if they are not corrected by

the GPS signal. Surface buoys transmitting a GPS signal underwater can al-

leviate the drift problem, but it will decrease the AUV’s chances of operating

undetected and only a limited amount of area will be covered by the buoys’

signal.

1.3 Project requirements

When a decision is made to design and manufacture a new AUV, a variety

of aspects regarding navigation need to be taken into consideration. Partic-

ularly to what degree the navigation accuracy is required and what inertial

sensor combination is required to deliver the accuracy. Also whether the

GPS signal can be acquired periodically. These are some of the questions that

need to be answered during the AUV design process. The most significant

factor of any project is the budget. The budget factor raises the question:

Will the available money be enough to satisfy the required specifications?

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

The stated questions create a need for a process by which sensor combina-

tions and other navigation aspects can be simulated beforehand to attain the

maximum navigation precision possible given the project budget and other

relevant information. The demand for such a process led to the US (Univer-

sity of Stellenbosch) and IMT (Institute for Maritime Technology) creating

the following requirements for this project:

1. Develop a sensor module. The module must allow the capturing of

data from a variety of sensors and must include a low-cost 6-degree-of-

freedom inertial measurement module (rate gyroscopes and accelerom-

eters), a three-axes magnetometer and other sensor interfaces.

2. Develop a navigation algorithm simulation capable of using the batch

measurement data in (1) to simulate the sensor combinations and there-

fore evaluate the best configuration for each mission.

3. Calibrate simulation inputs using measured and simulated sensor in-

puts.

4. Provide a GUI (Graphical User Interface) to allow the use of the simu-

lation module for performance prediction.

5. Provide a sensitivity analysis per sensor option and sensor combination

(fusion).

1.4 Outline

The chapters in this thesis are outlined as follows:

Chapter 2 discusses the theory behind inertial navigation. Chapter 3 focuses

on the development of the sensor module and its embedded software, while

Chapter 4 focuses on the development of the navigation simulation program

and its GUI. Chapter 5 compares the different simulation results and Chapter

6 delivers the summary and recommendations for this project.

Chapter 2

Navigation Concepts

2.1 Overview

Chapter 2 focuses on the definition of navigation concepts and algorithms.

Section 2.2 defines axial systems and rotations, while section 2.3 focuses on

the equations of motion. Section 2.4 discusses the TRIAD algorithm. Sec-

tion 2.5 concentrates on the Allan variance and section 2.6 explains state es-

timation concepts. Chapter 2 concludes with section 2.7 which gives a short

summary of the chapter.

2.2 Axes definitions and rotations

Navigation is the process of determining the position, velocity and attitude of

a physical body relative to a specified reference frame or axial system [2], [3].

For navigation over the earth, axial systems enable inertial measurements to

be related to the primary directions of the earth [4]. The axial systems se-

lected for this project are the inertial, Earth, navigation and body co-ordinate

frames. The chosen co-ordinate frames have also been implemented by [5],

[6] and [7] in the ESL (Electronic Systems Laboratory).

The axial systems are discussed in the following sections.

4

CHAPTER 2. NAVIGATION CONCEPTS 5

Figure 2.1: Axial systems [4]

2.2.1 Inertial axial system

The inertial axial system is defined by the orthogonal axes OXi, OYi and

OZi illustrated in figure 2.1. The axial system is non-rotating with respect

to the fixed stars. Point O represents the centre of Earth and the axis OZi is

aligned with Earth’s polar axis. Since the inertial axial system is non-rotating,

it serves as a reference for rotating axial systems that change over time.

2.2.2 Earth axial system

The ECEF (Earth Centred Earth Fixed) axial system is the Earth axial system

of choice for this project. Point O in figure 2.1 also represents the origin of

the ECEF axial system. The axial system rotates, with respect to the inertial

axial system, at a rate Ω (15 deg/h) about the axis OZi. The rectangular and

geodetic ECEF systems are discussed below.

CHAPTER 2. NAVIGATION CONCEPTS 6

2.2.2.1 ECEF rectangular axial system

The ECEF rectangular axial system is defined by the orthogonal axes OXe,

OYe and OZe illustrated in figure 2.1. The axis OZe is aligned with Earth’s

polar axis, while the axis OXe lies along the intersection of the Greenwich

meridian and Earth equatorial plane.

2.2.2.2 ECEF geocentric axial system

(a) (b)

Figure 2.2: (a) Earth grids [8], (b) ECEF geocentric axial system [5]

Figure 2.2(a) illustrates the earth’s surface divided into grids. The grids are

known as latitude, λ, and longitude, ϕ. Figure 2.2(b) shows that latitude

is measured from the equator with positive angles in a northern direction

and negative angles in a southern direction, while longitude is measured

from the Greenwich meridian with positive angles in an eastern direction

and negative angles in a western direction. Latitude is given between -90◦

and 90◦, while longitude is given between -180◦ and 180◦. The height above

the earth’s radius, R, represents the height, h, of an object.

The use of the ECEF geocentric axial system indicates that a round earth

model is used. However, the earth is not round and there are numerous

models to describe the earth more accurately. A popular model is the WGS-

84 (World Geodetic System 1984). The round earth model is accurate enough

CHAPTER 2. NAVIGATION CONCEPTS 7

for this project considering that an AUV in a harbor environment will not

travel at a high speed whereas the earth’s radius will change significantly

over time.

To convert from the ECEF rectangular axial system to the ECEF geocentric

axial system and vice versa the following formulas can be used [5] :

λ = tan−1(
Y

X
) (2.2.1)

ϕ = tan−1(
Z√

X2 + Y2
) (2.2.2)

h =
√

X2 + Y2 + Z2 − R (2.2.3)

X = (R + h) cos λ cos ϕ (2.2.4)

Y = (R + h) cos λ sin ϕ (2.2.5)

Z = (R + h) sin λ (2.2.6)

where:

R = 6378137m = spherical radius of the earth

2.2.3 Navigation axial system

The navigation axial system, also called the NED (North East Down) axial

system, is an axial system used for local navigation at a specific point on

Earth. The three orthogonal axes, depicted in figure 2.1, are aligned with the

directions of north, east and local vertical (pointing to the centre of the earth).

The motion of the NED axial system with respect to the Earth axial system is

referred to as the transport rate.

The NED axial system is adopted as the reference axial system for this

project. The motion of the NED axial system with respect to the Earth axial

system causes the NED axial system to deviate from the requirements of an

inertial axis system. However, as AUVs usually maneuver at a low speed

and do not travel far, the NED axial system can be considered to be an iner-

tial axial system.

The position differential equations using the NED velocity states are useful

when working with GPS measurements. Most GPS models provide veloc-

CHAPTER 2. NAVIGATION CONCEPTS 8

ity in the NED axial system and position in terms of latitude, longitude and

height. The position differential equations are expressed as follows [9], [5] :

λ̇ =
VN

R + h
(2.2.7)

ϕ̇ =
VE

(R + h) cos λ
(2.2.8)

ḣ = −VD (2.2.9)

where:

V = velocity North, East, Down

2.2.4 Body axial system

Figure 2.3: Body axes definition

The body axial system is a right handed orthogonal axial system, fixed to

the body of a vehicle and constrained to move with it. Navigation sensors

that are fixed to the body (known as a strap down configuration) will output

sensor data in terms of the body axial system.

Figure 2.3 illustrates the body axial system. The X-axis points forward

through the nose of the AUV, the Y-axis is directed to the right and the Z-axis

points downward. The origin of the body axial system is chosen to coincide

with the AUV’s centre of gravity. A clockwise rotation around the X-axis,

looking into the direction of the X-axis, generates a positive roll angle, φ,

CHAPTER 2. NAVIGATION CONCEPTS 9

while a clockwise rotation around the Y-axis, looking into the direction of

the Y-axis, produces a positive pitch angle, θ. Finally, a clockwise rotation

around the Z-axis, looking into the direction of the Z-axis, causes a positive

yaw angle, ψ. Roll, pitch and yaw angles usually define the attitude of a

body.

2.2.5 Euler angles

The three Euler angles: roll, pitch and yaw, define the attitude of an object

with respect to the reference axial system - i.e. to rotate the reference axial

system through the Euler angles it will coincide with the body axial system.

The order of rotations is important since the angles do not obey the commu-

tative law [4], [10]. The Euler 3-2-1 system is adopted as the rotation order for

this project and allows the transformation from one axial system to another

by executing the rotations in the sequence: yaw, pitch and roll. Figure 2.4

illustrates the Euler 3-2-1 angle rotations.

Figure 2.4: Definition of Euler 3-2-1 angle rotation [7]

The DCM (Direction Cosine Matrix) is a transformation matrix that trans-

forms a vector in inertial axes to a vector in body axes. The DCM is denoted

by T [9]:

T =





cos θ cos ψ cos θ sin ψ −sin θ

sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ






(2.2.10)

CHAPTER 2. NAVIGATION CONCEPTS 10

Now given the three Euler angles and equation (2.2.10) it is possible to cal-

culate the DCM and perform the required axes transformation. Converting a

vector in body axes to a vector in inertial axes is performed by calculating the

inverse of the DCM. The DCM is orthogonal which implies that its inverse is

simply its transpose.

T−1 = TT =





cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ

−sin θ sin φ cos θ cos φ cos θ






(2.2.11)

The following shows how the conversion from reference axes coordinates to

body axes coordinates and vice versa is applied:






Xb

Yb

Zb




 = T






Xr

Yr

Zr




 (2.2.12)






Xr

Yr

Zr




 = TT






Xb

Yb

Zb




 (2.2.13)

where:

[Xb Yb Zb]T = vector in body axes

[Xr Yr Zr]T = vector in reference axes

It is important to be cognizant of the relationship between the body angular

rates p, q and r and the Euler rotation rates φ̇, θ̇ and ψ̇. The relationship allows

the Euler angles and thus the attitude of an object to be determined dynami-

cally from the object-mounted gyros which provide body angular rates. The

following equation depicts the relationship [9], [5], [3]:






φ̇

θ̇

ψ̇




 =






1 sin φ tan θ cos φ tan θ

0 cos φ −sin φ

0 sin φ sec θ cos φ sec θ











p

q

r




 (2.2.14)

CHAPTER 2. NAVIGATION CONCEPTS 11

The tangent and secant terms in equation (2.2.14) result in singularities at

pitch angles of +90◦ and -90◦. The singularities are an undeniable short-

coming of the Euler attitude representation method. An alternative method

called the quaternion or "four parameter" method eliminates the mathemat-

ical singularities. The quaternion method is discussed in the following sec-

tion.

2.2.6 Quaternions

The quaternion attitude representation is based on the concept that a con-

version from one axial system to another may be accomplished by a single

rotation about a vector µ defined with respect to the reference axial system.

The four element quaternion vector consists of functions of the vector, µ, and

the magnitude of the rotation [4], [9] :

q =









q1

q2

q3

q4









=









µx

µ sin
µ
2

µy

µ sin
µ
2

µz

µ sin
µ
2

cos
µ
2









(2.2.15)

where:

µx, µy, µz = components of angle vector µ

µ = magnitude of µ

The reference axial system is rotated into coincidence with the body axial sys-

tem by rotating about µ through an angle µ.

The parameters of the quaternion vector must satisfy the following equation

at all points in time [9] :

q2
1 + q2

2 + q2
3 + q2

4 = 1 (2.2.16)

The Euler 3-2-1 DCM from equation (2.2.10) can now be converted to a quater-

nion form [5], [4] :

T =






q2
4 + q2

1 − q2
2 − q2

3 2(q4 q3 + q1 q2) 2(q1 q3 − q4 q2)

2(q1 q2 − q4 q3) q2
4 − q2

1 + q2
2 − q2

3 2(q4 q1 + q2 q3)

2(q4 q2 + q1 q3) 2(q2 q3 − q4 q1) q2
4 − q2

1 − q2
2 + q2

3




 (2.2.17)

CHAPTER 2. NAVIGATION CONCEPTS 12

with the inverse rotation:

TT =






q2
4 + q2

1 − q2
2 − q2

3 2(q1 q2 − q4 q3) 2(q4 q2 + q1 q3)

2(q4 q3 + q1 q2) q2
4 − q2

1 + q2
2 − q2

3 2(q2 q3 − q4 q1)

2(q1 q3 − q4 q2) 2(q4 q1 + q2 q3) q2
4 − q2

1 − q2
2 + q2

3




 (2.2.18)

The conversion from Euler angles to quaternions and vice versa is shown in

the following equations [4], [9] :

q1 = cos
ψ

2
cos

θ

2
sin

φ

2
− sin

ψ

2
sin

θ

2
cos

φ

2
(2.2.19)

q2 = cos
ψ

2
sin

θ

2
cos

φ

2
+ sin

ψ

2
cos

θ

2
sin

φ

2
(2.2.20)

q3 = −cos
ψ

2
sin

θ

2
sin

φ

2
+ sin

ψ

2
cos

θ

2
cos

φ

2
(2.2.21)

q4 = cos
ψ

2
cos

θ

2
cos

φ

2
+ sin

ψ

2
sin

θ

2
sin

φ

2
(2.2.22)

φ = tan−1

(
2(q4 q1 + q2 q3)

q2
4 − q2

1 − q2
2 + q2

3

)

(2.2.23)

θ = sin−1 (−2(q1 q3 − q4 q2)) (2.2.24)

ψ = tan−1

(
2(q4 q3 + q1 q2)

q2
4 + q2

1 − q2
2 − q2

3

)

(2.2.25)

where:

q2
4 − q2

1 − q2
2 + q2

3 6= 0 and q2
4 + q2

1 − q2
2 − q2

3 6= 0

In the event that only the DCM from equation (2.2.10) is available, the fol-

lowing equations can be utilized to calculate the four quaternions :

Define:

DCM =






e11 e12 e13

e21 e22 e23

e31 e32 e33




 (2.2.26)

where:

e[1..3][1..3] = elements of DCM

CHAPTER 2. NAVIGATION CONCEPTS 13

Then, for small angular displacements:

q4 =

√
1 + e11 + e22 + e33

2
(2.2.27)

q1 =
e23 − e32

4 q4
(2.2.28)

q2 =
e31 − e13

4 q4
(2.2.29)

q3 =
e12 − e21

4 q4
(2.2.30)

where:

q4 6= 0

In equation (2.2.14) the relationship between the body angular rates p, q and

r and the Euler rotation rates φ̇, θ̇ and ψ̇ is established. However, by making

use of the quaternion method the relationship is defined in terms of the body

angular rates p, q and r and the quaternion rotation rates q̇1, q̇2, q̇3 and q̇4.

The following equation depicts the relationship [5], [4] :









q̇1

q̇2

q̇3

q̇4









=
1

2









q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

















p

q

r

0









(2.2.31)

Quaternion multiplication is defined as:

a ⊗ b =









b4 −b3 b2 b1

b3 b4 −b1 b2

−b2 b1 b4 b3

−b1 −b2 −b3 b4

















a1

a2

a3

a4









(2.2.32)

Using equation (2.2.32), equation (2.2.31) can be written in terms of quater-

nion multiplication as:

q̇ =
1

2
ω ⊗ q (2.2.33)

where:

ω = [ω1 ω2 ω3 0]T = [p q r 0]T

CHAPTER 2. NAVIGATION CONCEPTS 14

Equation (2.2.33) is used for quaternion prediction - i.e. to keep track of the

quaternion parameters which define body orientation. The quaternion pa-

rameters can then be utilized to calculate an equivalent DCM.

2.3 Equations of motion

The equations of motion of an AUV are identical to those of an aircraft and

can be deduced from Newton’s first and second law. The generalized 6-DOF

(Six Degrees of Freedom) equations of motion in body coordinates are de-

fined as follows [9], [11], [12] :

Translation:

Fx = m[u̇ − r v + q w − x(q2 + r2) + y(p q − ṙ) + z(p r + q̇)] (2.3.1)

Fy = m[v̇ − p w + r u + x(p q + ṙ) − y(p2 + r2) + z(q r − ṗ)] (2.3.2)

Fz = m[ẇ − q u + p v + x(p r − q̇) + y(q r + ṗ) − z(p2 + q2)] (2.3.3)

Rotation:

Mx+Fyz − Fzy =

Ix ṗ − (Iy − Iz)q r + Ixy(p r − q̇) − Ixz(p q + ṙ) + Iyz(r2 − q2)
(2.3.4)

My+Fzx − Fxz =

Iyq̇ + (Ix − Iz)p r + Iyz(p q − ṙ) + Ixz(p2 − r2) − Ixy(q r + ṗ)
(2.3.5)

Mz+Fxy − Fyx =

Izṙ − (Ix − Iy)p q − Iyz(p r − q̇) + Ixz(q r − ṗ) + Ixy(q2 + p2)
(2.3.6)

where:

[p q r]T = body angular rotation vector

[u v w]T = body velocity vector

[x y z]T = offset between AUV centre and body axial system centre

[Fx Fy Fz] = applied forces

[Mx My Mz] = applied moments





Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz




 = body inertia tensor

CHAPTER 2. NAVIGATION CONCEPTS 15

Equation (2.3.1) to (2.3.6) can be simplified by making the following three

assumptions:

• The centre of the AUV coincides with the centre of the body axial sys-

tem.

⇒ x = y = z = 0

• The AUV is symmetric about the xz plane with the mass equally dis-

tributed.

⇒ Ixy = Iyz = 0

• The AUV body axes are aligned with the principle inertia axes.

⇒ Ixz = 0

With the three assumptions taken into consideration, equations (2.3.1) to (2.3.6)

simplify to:

Fx = m[u̇ − r v + q w] (2.3.7)

Fy = m[v̇ − p w + r u] (2.3.8)

Fz = m[ẇ − q u + p v] (2.3.9)

Mx = Ix ṗ − (Iy − Iz)q r (2.3.10)

My = Iyq̇ + (Ix − Iz)p r (2.3.11)

Mz = Izṙ − (Ix − Iy)p q (2.3.12)

2.4 The TRIAD algorithm

The TRIAD algorithm is a deterministic method for calculating the DCM us-

ing vector pairs [13]. Each vector pair consists of a reference vector in refer-

ence axes, vr, and a measurement vector in body axes, vb. These two vectors

are related through the DCM, T , as follows [5] :

vb = T vr (2.4.1)

The reference vectors are known directions (e.g., the direction of the earth,

the sun, the geomagnetic field or gravity), while the body vectors represent

the same directions as measured by the vehicle’s onboard navigation sensors.

CHAPTER 2. NAVIGATION CONCEPTS 16

The TRIAD algorithm uses two vector pairs, which means that there are four

independent parameters. Only three parameters are needed for attitude de-

termination, creating the need for one parameter to be discarded. The extra

parameter or vector is eliminated by creating two triads: one for the two ref-

erence vectors and one for the two measurement vectors. A triad consists

of three orthonormal vectors. The most accurate of the two input vectors

forms the base vector of the triad. The second triad vector is constructed or-

thonormal to the two input vectors, and the third triad vector is generated

orthonormal to the first and second triad vectors. The triad vectors must be

unit vectors. The equations for the two triads are as follows [5], [13] :

Reference vector triad:

ur
1 =

vr
1

|vr
1|

(2.4.2)

ur
2 =

vr
1 × vr

2

|vr
1 × vr

2|
(2.4.3)

ur
3 = ur

1 × ur
2 (2.4.4)

Measurement (body) vector triad:

ub
1 =

vb
1

|vb
1|

(2.4.5)

ub
2 =

vb
1 × vb

2

|vb
1 × vb

2|
(2.4.6)

ub
3 = ub

1 × ub
2 (2.4.7)

In effect, one vector of the second reference-measurement pair is discarded,

and therefore the first vector pair must be chosen to be more accurate than

the second pair in order to maximize the TRIAD algorithm accuracy. The

DCM can now be calculated as follows:

T = Mbt MT
rt (2.4.8)

where:

Mbt = [ub
1 ub

2 ub
3] and Mrt = [ur

1 ur
2 ur

3]

The DCM, calculated from the TRIAD algorithm, is used in this project to

initialize the quaternions utilizing equations (2.2.27) to (2.2.30).

CHAPTER 2. NAVIGATION CONCEPTS 17

The QUEST algorithm is another attitude determination method that attempts

to minimize a loss function in order to find the optimal DCM. The QUEST ap-

proach can be used when two or more vector pairs are available. However,

only two vector pairs are available for this project and the added computa-

tional complexity of the QUEST algorithm is not justified by the small in-

crease in accuracy [5]. The QUEST method performs well in situations where

there are more than two vector pairs available.

2.5 Allan Variance

Different types of noise cause sensor data to be of questionable accuracy. Al-

lan Variance is a method for examining recorded sensor data in order to ob-

tain a characteristic curve that provides a systematic characterization of vari-

ous random errors contained in the inertial sensor output data [14]. The types

and magnitude of various noise terms can be provided by the measurable Al-

lan variance quantity. Identifying the aspects of various noise terms enables

the user to model and simulate the noise, resulting in more precise sensors.

The increase in sensor accuracy will also contribute to the decrease in nav-

igation errors. There are many methods available for the identification and

stochastic modeling of inertial sensor noise, [14]. However, the simple im-

plementation and ease of interpretation of the Allan variance method makes

it the noise identification method of choice for this project.

There are five basic noise terms [14], [5] :

1. Angle / velocity random walk

2. Rate random walk

3. Bias instability

4. Quantisation

5. Drift rate ramp

The first two sources dominate the noise on MEMS (Micro Electromechanical

Sensor) devices as well as many other sensors, [5], and are the only two noise

sources modeled and simulated in this project.

CHAPTER 2. NAVIGATION CONCEPTS 18

The Allan variance method is based upon variance calculation as a function

of average time. Sensor data, sampled for at least a hour, are utilized for

the variance calculation process. It is important to keep the selected sensor

in a static position, to prevent the sampled values from being influenced by

movement. During the variance determination process the use of short aver-

age times will result in the variance being overshadowed by high-frequency

measurement noise. Long average times will result in the variance being

dominated by low-frequency bias drift.

The Allan variance process and equations are defined as follows [5] :

Assume the sensor output is recorded as x(k) and has a sampling time of

Ts seconds. Select a bin size of T seconds where:

T = n Ts (2.5.1)

Divide the sensor data, x(k), into consecutive bins. See figure 2.5.

Figure 2.5: Allan Variance calculation process [14]

Next, calculate the average value, y(k), of each bin:

y(k) =
1

n

kn

∑
i=(k−1)n+1

x(i) (2.5.2)

Now, calculate the Allan variance by summing the squared difference be-

tween two successive bins over the whole range and normalizing it:

σ2
A(T) =

1

2(N − 1)

N−1

∑
k=1

(y(k + 1) − y(k))2 (2.5.3)

CHAPTER 2. NAVIGATION CONCEPTS 19

where:

N = number of bins in the data

It is important to note that the Allan variance, equation (2.5.3), is a function

of the bin size, T, and not a scalar value as in the case of normal deviation

computation.

There exists a special relationship between the Allan variance and the PSD

(Power Spectral Density) of the random noise processes [14]. The IEEE (In-

stitute for Electrical and Electronic Engineers) defines the relationship as fol-

lows:

σ2
A(T) = 4

∫ ∞

0
S(f)

sin4(π f T)

(π f T)2
d f (2.5.4)

where:

S(f) = PSD of the random noise process

2.5.1 Angle / velocity random walk

The integration of the measurement noise on the output of a sensor results

in a random walk. Integrating the output noise of a rate gyroscope, given in

rad/s, produces an angle random walk, while integrating the output noise

of a accelerometer, given in m/s2, causes a velocity random walk. The IEEE

standard characterizes the angle / velocity random walk as a white noise

spectrum defined by the following PSD [14], [5] :

SARW(f) = SVRW(f) = Q2 (2.5.5)

where:

Q = angle / velocity random walk coefficient

It is important to be aware of the fact that equation (2.5.5) implies that the

noise signal will have unlimited energy. Infinite energy is impossible in the

real world. However, (2.5.5) still serves as an acceptable approximation of

real noise when the bandwidth is restricted to a certain range.

The Allan deviation (square root of Allan variance) for angle / velocity ran-

dom walk can be formulated by using equation (2.5.5) in equation (2.5.4) and

CHAPTER 2. NAVIGATION CONCEPTS 20

results in the following [14] :

σARW(T) =
Q√

T
(2.5.6)

Angle / velocity random walk SI-units

Rate gyroscope rad/s/
√

Hz

Accelerometer m/s2/
√

Hz

Table 2.1: The SI-units of Q

There exists a relationship between the angle / velocity random walk coef-

ficient, Q, and the variance used in Kalman filters (discussed in section 2.6).

The relationship is as follows [15] :

σ2
ARW KF = 2

∫ f 2

f 1
Q2 d f (2.5.7)

2.5.2 Rate random walk

The drifting of the sensor bias is called a rate random walk. The sensor bias

instability can be due to temperature dependency or any other drift-causing

factor.

The rate random walk can be characterized by the following IEEE standard

PSD [14], [5] :

SRRW(f) =

(
K

2π f

)2

(2.5.8)

where:

K = rate random walk coefficient

Equation (2.5.8) has more power in lower frequencies, verifying that bias

drifts are usually slow processes. The rate random walk PSD can be inter-

preted as the integration of white noise [5].

CHAPTER 2. NAVIGATION CONCEPTS 21

The Allan deviation for rate random walk can be formulated by using equa-

tion (2.5.8) in equation (2.5.4) and results in the following [14] :

σRRW(T) = K

√

T

3
(2.5.9)

Rate random walk SI-units

Rate gyroscope rad/s2/
√

Hz

Accelerometer m/s3/
√

Hz

Table 2.2: The SI-units of K

By substituting Q with K in equation (2.5.7) the rate random walk coefficient

can also be converted to a variance for use in Kalman filters.

2.5.3 Log-log plot

Figure 2.6 illustrates a straight line with a slope of − 1
2 . The line is the result

of plotting equation (2.5.6) as a function of averaging time, T, on a log-log

scale. The value of Q can be obtained by reading the slope line at T = 1.

Figure 2.6: σ(T) plot for angle / velocity random walk [14]

Figure 2.7 illustrates a straight line with a slope of 1
2 . The line is the result of

CHAPTER 2. NAVIGATION CONCEPTS 22

plotting equation (2.5.9) as a function of averaging time, T, on a log-log scale.

The value of K can be obtained by reading the slope line at T = 3.

Figure 2.7: σ(T) plot for rate random walk [14]

Figure 2.8: Allan Deviation results [5]

Figure 2.8 summarizes the process for calculating the coefficients Q and K:

CHAPTER 2. NAVIGATION CONCEPTS 23

• Plot the square root of equation (2.5.3) as a function of averaging time,

T, on a log-log scale (1).

• Plot equation (2.5.6) on the same log-log scale as (1). Shift the line plot

up or down until it roughly coincides with a part of the negative slope

of (1). Obtain Q by reading the slope line (2) at T = 1.

• Plot equation (2.5.9) on the same log-log scale as (1). Shift the line plot

up or down until it roughly coincides with a part of the positive slope

of (1). Obtain K by reading the slope line (3) at T = 3.

2.6 State estimation

"The states of a system are those variables that provide a complete represen-

tation of the internal condition or status of the system at a given instant of

time [16]." Position, velocity and angular orientation are the selected AUV

states for this project. The translation and rotation of an AUV cause the

states to change with respect to time. Keeping track of the changing states

requires estimation algorithms. There are a multitude of estimation algo-

rithms, each with its own advantages and disadvantages [16], [17]. A study

by [5] concludes that the best approach for state estimation of a vehicle with

slow dynamics and small angular rotations requires the use of two estima-

tion algorithms, the MEKF (Multiplicative Extended Kalman Filter) and the

PVEKF (Position and Velocity Extended Kalman Filter). The MEKF estimates

the attitude of the vehicle, while the PVEKF estimates the position and ve-

locity of the vehicle. The study by [5] states that the use of two algorithms

decreases the computational load considerably, while sacrificing minimal ac-

curacy compared to an approach that implements one algorithm to estimate

all the states. Another advantage of using two estimation algorithms is that

the MEKF will still operate optimally even when there are no GPS updates

available, while the one-algorithm approach will be significantly affected by

the absence of GPS updates. GPS signals are unavailable underwater and

an AUV in a harbor environment usually demonstrates slow dynamics. The

previous two facts make the MEKF and the PVEKF the adopted estimation

algorithms for this project. Section 2.6.1 briefly describes the basic EKF (Ex-

tended Kalman Filter) and its equations. Section 2.6.2 discusses the attitude

MEKF algorithm, while section 2.6.3 focuses on the PVEKF algorithm.

CHAPTER 2. NAVIGATION CONCEPTS 24

2.6.1 Basic EKF

The Kalman filter is an effective and versatile algorithm for combining noise

polluted sensor data to estimate the states of a system with uncertain dy-

namics. "A Kalman filter is essentially a set of mathematical equations that

implement an estimator that is optimal in minimizing estimated error covari-

ances between the prediction of parameters from a previous time constant

and the external observations at a present time (measurements) [9]." An ex-

tended Kalman filter is utilized when the system dynamics or measurement

equations are non-linear. In this project the system dynamics are non-linear

and thus require the use of an EKF algorithm.

The EKF process and its equations are stated concisely in this section. For

a detailed explanation and derivation of the Kalman filter equations see [16],

[17], [19] and [18].

The dynamics of a non-linear system can be defined by the following con-

tinuous difference equations:

ẋ = f (x, u, w, t) (2.6.1)

with a measurement that is:

y = h(x, v, t) (2.6.2)

where:

x = system states

u = control inputs

w = process noise

v = measurement noise

The random zero-mean processes, w and v, are assumed to be independent

of one another, white and with normal probability distributions.

p(w) ∼ (0, Q) (2.6.3)

p(v) ∼ (0, R) (2.6.4)

CHAPTER 2. NAVIGATION CONCEPTS 25

where:

Q = process noise covariance matrix

R = measurement noise covariance matrix

Assuming that the noise can be decoupled from the non-linear system dy-

namics, equation (2.6.1) and equation (2.6.2) can be written as follows:

ẋ = f (x, u, t) + w(t) (2.6.5)

y = h(x, t) + v(t) (2.6.6)

Equation (2.6.5) is used for state propagation between measurement updates.

When update measurements are available, the Riccati equations (see equa-

tions 2.6.12 to 2.6.14) need to be calculated to determine the Kalman gains

and propagate the error covariance matrix. The Riccati equations require lin-

ear plant dynamics, thus a first order approximation around the current best

estimate is used to calculate the continuous linearized plant dynamics:

F =
∂ f (x, u, t)

∂x

∣
∣
∣
∣

x =x̂
(2.6.7)

G =
∂ f (x, u, t)

∂u

∣
∣
∣
∣

x =x̂
(2.6.8)

H =
∂h(x, u, t)

∂x

∣
∣
∣
∣

x =x̂
(2.6.9)

The EKF is implemented as a discrete algorithm, resulting in the use of the

discrete Riccati equations which require discrete versions of F, Q and R. The

matrix F can be approximated by a Taylor-series expansion and is defined as

follows [19] :

Φk = I + FTs +
F 2T 2

s

2!
+

F 3T 3
s

3!
+ . . .

≈ I + FTs (2.6.10)

where:

Φk = fundamental matrix (discrete F)

Ts = sampling time of system

I = identity matrix

CHAPTER 2. NAVIGATION CONCEPTS 26

The discrete process-noise matrix, Qk, is calculated by using the following

equation:

Qk = GQGTTs (2.6.11)

where:

G = linearized process-noise coupling matrix (equation 2.6.8)

The discrete measurement noise matrix, Rk, simply consists of each measure-

ment noise source’s variance.

Now, the discrete Riccati equations are calculated as follows:

Mk = ΦkPk−1Φ
T
k + Qk (2.6.12)

Lk = Mk HT
(

HMk HT + Rk

)−1
(2.6.13)

Pk = (I − Lk H) Mk (I − Lk H)T + LkRkLT
k (2.6.14)

where:

Mk = covariance matrix representing errors in the state estimates

before a measurement update

Lk = optimal EKF feedback gain

Pk = covariance matrix representing errors in the state estimates

after a measurement update

Equation (2.6.14) can be simplified, but its current form (called the Joseph

form) is less susceptible to round off errors and keeps Pk positive semidefi-

nite [5].

The EKF process can now be summarised as follows:

• Perform state propagation:

x̄k = x̂k−1 + ˆ̇xk−1Ts (2.6.15)

where:

x̄k = new propagated system states

x̂k−1 = estimated system states from previous time step

ˆ̇xk−1 = f (x, uk) |x =x̂k−1

CHAPTER 2. NAVIGATION CONCEPTS 27

ˆ̇xk−1Ts = Euler integration of the non-linear system differential

equation

Euler integration is effective if the sampling time, Ts, is small enough.

Integration methods like Runge-Kutta can be used to improve accuracy.

• Calculate the matrices F, G and H by utilizing equations (2.6.7) to (2.6.9).

• Calculate the discrete matrices Φk and Qk by using equations (2.6.10)

to (2.6.11).

• Calculate the error covariance matrix, Mk, before any update measure-

ments are used by implementing equation (2.6.12).

When update measurements are available the following steps must also

be executed:

• Calculate the EKF optimal feedback gain by utilizing equation (2.6.13).

• Update the noise figures by calculating the error covariance matrix, Pk,

using equation (2.6.12).

• Update the system states by implementing the following equation:

x̂k = x̄k + Lk [yk − h(x̄k, uk)] (2.6.16)

The EKF does not perform strictly optimally, since the error covariance ma-

trix is only a linear approximation of the real error figures. There exist algo-

rithms that track the error more accurately like the UKF (Unscented Kalman

Filter), but a study from [23] shows that the UKF does not improve estimates

in the case of quaternion motion. The UKF also requires more computations

than the EKF.

2.6.2 MEKF

The MEKF is an estimation algorithm that estimates the four quaternion

states and the three rate gyroscope bias states. Using quaternions to rep-

resent attitude eliminates singularity problems (sections 2.2.5 and 2.2.6) and

causes the prediction equations to be treated linearly [20]. Quaternion dy-

namics are described as a function of the rate gyroscope inputs and serve as

CHAPTER 2. NAVIGATION CONCEPTS 28

the plant model. The quaternion estimate is used to transform known refer-

ence vectors (e.g., the geomagnetic field or gravity) to vectors in body axes

(equation 2.2.17). The difference between the transformed reference vectors

and the measured body vectors is utilized to keep the quaternion error within

bounds.

2.6.2.1 Quaternion vector perturbations

The error quaternion, δq, is defined as the difference between the real, q, and

estimated, q̂, quaternion. Composing the error quaternion with the estimated

quaternion forms the true quaternion [22] and can be expressed as [5] :

q = δq ⊗ q̂ (2.6.17)

The error quaternion is very useful, since the unity constraint of the quater-

nion will be satisfied when quaternion multiplication is utilized.

The time derivative of equation (2.6.17) gives:

q̇ = δq̇ ⊗ q̂ + δq ⊗ ˙̂q (2.6.18)

Equation (2.2.33) in terms of the real quaternion, q, and real body angular

rates, ω, gives:

f (x, u,t) = q̇ =
1

2
ω ⊗ q (2.6.19)

Equation (2.2.33) can also be expressed in terms of the estimated quaternion,

q̂, and estimated angular body rates, ω̂:

˙̂q =
1

2
ω̂ ⊗ q̂ (2.6.20)

Substituting equation (2.6.19) and equation (2.6.20) into equation (2.6.18) and

rearranging the terms, the following can be obtained:

δq̇ ⊗ q̂ =
1

2
ω ⊗ q − δq ⊗

(
1

2
ω̂ ⊗ q̂

)

(2.6.21)

CHAPTER 2. NAVIGATION CONCEPTS 29

Right multiplying equation (2.6.21) by the inverse of q̂, produces the follow-

ing:

δq̇ =
1

2
(ω ⊗ δq − δq ⊗ ω̂) (2.6.22)

The rate gyroscope measurements play an important role in the quaternion

dynamics (equation 2.6.19). However, measurement noise and bias drift (sec-

tions 2.5.1 and 2.5.2) can corrupt the rate gyroscope measurements. Estimat-

ing the rate gyroscope bias results in more accurate attitude estimation [20],

[22].

The real rate gyroscope measurements vector, ω, is defined as follows:

ω = u − b (2.6.23)

where:

u = real rate gyroscope output vector

b = real rate gyroscope bias vector

The estimated rate gyroscope measurements vector, ω̂, is defined as follows:

ω̂ = u − b̂ + ηgm (2.6.24)

where:

b̂ = estimated rate gyroscope bias vector

ηgm = rate gyroscope measurement noise vector

Now, define the body angular rates perturbation as:

δω =

[

ω − ω̂

0

]

=

[

b̂ − b − ηgm

0

]

=

[

−δb − ηgm

0

]

(2.6.25)

Equation (2.6.22) can now be rewritten by using equation (2.6.25):

δq̇ =
1

2
((ω̂ + δω) ⊗ δq − δq ⊗ ω̂)

=
1

2
(ω̂ ⊗ δq − δq ⊗ ω̂) +

1

2
δω ⊗ δq (2.6.26)

CHAPTER 2. NAVIGATION CONCEPTS 30

Using the quaternion multiplication definition from equation (2.2.32) and the

following quaternion multiplication definition,

a ⊗ b =









a4 a3 −a2 a1

−a3 a4 a1 a2

a2 −a1 a4 a3

−a1 −a2 −a3 a4

















b1

b2

b3

b4









(2.6.27)

equation (2.6.26) can be rewritten in matrix form as:









δq̇1

δq̇2

δq̇3

δq̇4









=









0 ω̂3 −ω̂2 0

−ω̂3 0 ω̂1 0

ω̂2 −ω̂1 0 0

0 0 0 0

















δq1

δq2

δq3

δq4









+
1

2









0 δω3 −δω2 δω1

−δω3 0 δω1 δω2

δω2 −δω1 0 δω3

−δω1 −δω2 −δω3 0

















δq1

δq2

δq3

δq4









(2.6.28)

Assuming that a small rotation will be implied by the error quaternion, δq4

will be close to unity, and equation (2.6.28) can be simplified to:









δq̇1

δq̇2

δq̇3

δq̇4









=









0 ω̂3 −ω̂2 0

−ω̂3 0 ω̂1 0

ω̂2 −ω̂1 0 0

0 0 0 0

















δq1

δq2

δq3

δq4









+
1

2









δω1

δω2

δω3

0









(2.6.29)

Vector multiplication can be defined as:

a × b =






0 −a3 a2

a3 0 −a1

−a2 a1 0











b1

b2

b3




 (2.6.30)

Now, using equation (2.6.25) and equation (2.6.30), equation (2.6.29) can be

formulated as follows:

δ~̇q = −ω × δ~q +
1

2

(

−δb − ηgm

)

(2.6.31)

δq̇4 = 0 (2.6.32)

CHAPTER 2. NAVIGATION CONCEPTS 31

where:

δ~q = [δq1 δq2 δq3]T

Equation (2.6.31) and equation (2.6.32) show that the dynamics of the system

are contained in the vector part of the perturbation quaternion. The previous

fact implies that only the vector perturbations need to be used.

2.6.2.2 Quaternion covariance matrix

Utilizing the quaternion vector perturbations will result in the MEKF calcu-

lating a 3 × 3 covariance matrix. However, a full 4 × 4 covariance matrix is

needed to examine the noise statistics on all four quaternion elements.

Using equation (2.2.32), equation (2.6.17) can be rewritten in matrix form:









q1

q2

q3

q4









=









q̂4 −q̂3 q̂2 q̂1

q̂3 q̂4 −q̂1 q̂2

−q̂2 q̂1 q̂4 q̂3

−q̂1 −q̂2 −q̂3 q̂4

















δq1

δq2

δq3

δq4









(2.6.33)

Assuming that a small rotation will be implied by the error quaternion, δq4

will be close to unity, and equation (2.6.33) can be simplified to:









q1

q2

q3

q4









=









q̂4 −q̂3 q̂2

q̂3 q̂4 −q̂1

−q̂2 q̂1 q̂4

−q̂1 −q̂2 −q̂3














δq1

δq2

δq3




 +









q̂1

q̂2

q̂3

q̂4









(2.6.34)

Equation (2.6.34) clearly shows that all four quaternion elements can be de-

termined when the quaternion vector perturbations are used. The full 4 × 4

quaternion covariance matrix can be calculated from the 3 × 3 quaternion

vector perturbations covariance matrix by using the standard covariance trans-

formation method [5] :

P4×4 =









q̂4 −q̂3 q̂2

q̂3 q̂4 −q̂1

−q̂2 q̂1 q̂4

−q̂1 −q̂2 −q̂3









P3×3






q̂4 q̂3 −q̂2 −q̂1

−q̂3 q̂4 q̂1 −q̂2

q̂2 −q̂1 q̂4 −q̂3




 (2.6.35)

CHAPTER 2. NAVIGATION CONCEPTS 32

2.6.2.3 Bias drift

Section 2.5.2 shows that the bias dynamics of the rate gyroscope can be in-

terpreted as integrated zero mean Gaussian white noise [20]. Band limiting

the noise before integration, creates a good approximation of bias drift and is

used throughout this project. The real bias vector is defined as follows [5] :

ḃ = ηgb (2.6.36)

where:

ηgb = rate gyroscope bias noise vector

As stated by [5], there is no model of analysis for the bias vector in terms of

some state or input. Thus, the estimated bias vector is defined as follows:

˙̂b = 0 (2.6.37)

Using equation (2.6.36) and equation (2.6.37) the bias perturbation (error) dy-

namics can be written as follows:

δḃ = ḃ − ˙̂b

= ηgb (2.6.38)

2.6.2.4 State space model

The combination of equation (2.6.31) and equation (2.6.38) forms the follow-

ing continuous MEKF state space perturbation model:

ẋ
︷ ︸︸ ︷













δq̇1

δq̇2

δq̇3

δḃ1

δḃ2

δḃ3














=

F
︷ ︸︸ ︷













0 ω3 −ω2 −0.5 0 0

−ω3 0 ω1 0 −0.5 0

ω2 −ω1 0 0 0 −0.5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0














x
︷ ︸︸ ︷













δq1

δq2

δq3

δb1

δb2

δb3














CHAPTER 2. NAVIGATION CONCEPTS 33

+

G
︷ ︸︸ ︷












−0.5 0 0 0 0 0

0 −0.5 0 0 0 0

0 0 −0.5 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1














u
︷ ︸︸ ︷












ηgmx

ηgmy

ηgmz

ηgbx

ηgby

ηgbz














(2.6.39)

The matrix, F, has three rate gyroscope inputs, while the three rate gyroscope

measurement and bias noise sources are coupled into the system by the ma-

trix, G.

In the event of a rotating Earth model the rate gyroscope measurements will

be affected by the earth’s rotation rate and the geographical platform velocity.

The two effects must be taken into consideration in order to produce accurate

angular rate measurements.

Define the turn rate of the earth in NED axes [4] :

ωearth =






ωNearth

ωEearth

ωDearth




 =






Ω cos λ

0

−Ω sin λ




 (2.6.40)

where:

ωearth = Earth’s turn rate vector

Ω = Earth’s rotation rate

Compensation must also be made for the transport rate (section 2.2.3) and is

defined as follows [4] :

ωtr =






ωNtr

ωEtr

ωDtr




 =






ϕ̇ cos λ

−λ̇

−ϕ̇ sin λ




 =






VE
R+h
−VN
R+h

−VE tan λ
R+h




 (2.6.41)

where:

ωtr = transport rate vector

Equation (2.6.40) and equation (2.6.41) are with reference to the NED ax-

ial system and need to be transformed to the body axial system, using the

CHAPTER 2. NAVIGATION CONCEPTS 34

quaternion derived DCM, to allow the rate gyroscope measurements to be

adjusted. The adjustments are made as follows:






ω1adj

ω2adj

ω3adj




 =






ω1

ω2

ω3




 − T [ωearth + ωtr]

=






ω1

ω2

ω3




 − T






Ω cos λ + VE
R+h

0 − VN
R+h

−Ω sin λ − VE tan λ
R+h




 (2.6.42)

where:

[ω1adj
ω2adj

ω3adj
]T = adjusted rate gyroscope body measurements

[ω1 ω2 ω3]T = actual rate gyroscope body measurements

The adjusted rate gyroscope measurements can now be used as the inputs

for the matrix, F, of equation (2.6.39).

2.6.2.5 Measurement updates

After state propagation, the update measurement vectors need to be char-

acterized as a function of the quaternion vector perturbations. The DCM in

quaternion form (equation 2.2.17) can be written as a function of the pertur-

bation quaternion and estimated quaternion [21], [22] :

T(q) = T(δq ⊗ q̂) = T(δq)T(q̂) (2.6.43)

Define the update measurement error (or innovation), im, as follows [21] :

im = v bm − T(q̂)v
r

= T(δq)T(q̂)v
rm − T(q̂)v

r (2.6.44)

where:

v bm = body measurement vector

v rm = body measurement vector transformed to a vector in reference axes

v r = known reference vector (e.g. the direction of the earth, the sun, the

geomagnetic field or gravity)

CHAPTER 2. NAVIGATION CONCEPTS 35

Rewriting equation (2.6.44) in terms of body axes gives:

im = T(δq)v̂
bm − v̂ b

≈ [T(δq)− I]v̂ b (2.6.45)

where:

v̂ b = known reference vector, v r, transformed to a vector in body

axes

A small error quaternion results in the following approximation:

T(δq) ≈






1 2δq3 −2δq2

−2δq3 1 2δq1

2δq2 −2δq1 1




 (2.6.46)

Now, expanding the right-hand side of equation (2.6.45) gives:

[T(δq)− I]v̂ b =






0 2δq3 −2δq2

−2δq3 0 2δq1

2δq2 −2δq1 0











v̂b
x

v̂b
y

v̂b
z






=






2δq3v̂b
y − 2δq2v̂b

z

−2δq3v̂b
x + 2δq1v̂b

z

2δq2v̂b
x − 2δq1v̂b

y






= 2






0 −v̂b
z v̂b

y

v̂b
z 0 −v̂b

x

−v̂b
y v̂b

x 0











δq1

δq2

δq3




 (2.6.47)

= 2






0 −v̂b
z v̂b

y 0 0 0

v̂b
z 0 −v̂b

x 0 0 0

−v̂b
y v̂b

x 0 0 0 0



















δq1

δq2

δq3

δb1

δb2

δb3














Thus, the measurement matrix, H, can be defined as follows:

H = 2






0 −v̂b
z v̂b

y 0 0 0

v̂b
z 0 −v̂b

x 0 0 0

−v̂b
y v̂b

x 0 0 0 0




 (2.6.48)

CHAPTER 2. NAVIGATION CONCEPTS 36

The measurement matrix, H, is suitable for one vector update. In the event

that two vector updates are available, two of the matrices in equation (2.6.48)

can be combined to form a 6 × 6 measurement matrix.

2.6.3 Position and Velocity EKF

The PVEKF is an estimation algorithm that estimates the position and ve-

locity of an object. Accelerometers measure the vehicle’s static (gravity) and

dynamic accelerations. Subtracting the static accelerations from the measure-

ments allows the PVEKF to use the dynamic accelerations to determine the

position and velocity of the vehicle. Integrating the dynamic accelerations

produces velocity and integrating the velocity produces position. The dou-

ble integrating system is highly affected by noise and bias drift, resulting

in growing errors over time. However, the growing errors are kept within

bounds by update measurements from other available sensors (e.g. GPS).

This project follows the strap down platform approach where sensors are

"strapped down" to the body of the vehicle. A gimbaled platform can also be

implemented where the sensors are kept in a fixed orientation with respect to

the inertial axial system, independent of the body orientation. However, the

strap down approach has more advantages than the gimbal approach [25],

[9]. The accelerometer body measurements need to be transformed to mea-

surements in NED axes, since the integration of the dynamic accelerations oc-

curs in NED axes. The estimated quaternions from the MEKF (section 2.6.2)

are used to calculate the quaternion DCM. The DCM is then used to perform

the necessary axes transformations.

2.6.3.1 Non-linear dynamics

From section 2.2.3 the three non-linear position equations in terms of NED

velocities are as follows:

λ̇ =
VN

R + h
(2.6.49)

ϕ̇ =
VE

(R + h) cos λ
(2.6.50)

ḣ = −VD (2.6.51)

The three non-linear velocity equations are derived below [9] :

CHAPTER 2. NAVIGATION CONCEPTS 37

Define the accelerations in NED axes as follows:






αN

αE

αD




 = TT






ax

ay

az




 (2.6.52)

where:

[αN αE αD]T = accelerations in NED axes

[ax ay az]T = measured accelerations in body axes

TT = quaternion defined inverse DCM

A rotating Earth model requires the earth’s rotation rate and gravity anoma-

lies to be taken into account in order to obtain high accuracy inertial naviga-

tion [26]. Coriolis accelerations need to be considered:






cN

cE

cD




 =







−2VE Ω sin λ +
VDVN−V2

E tan λ
R+h

2VN Ω sin λ + 2VD Ω cos λ + VDVN tan λ+VEVD
R+h

−2VE Ω cos λ +
−V2

E−V2
N

R+h







(2.6.53)

where:

[cN cE cD]T = Coriolis accelerations

Ω = Earth’s rotation rate

The earth’s gravity and centripetal accelerations are also considered:






g′N
g′E
g′D




 =

Ω2(R + h)

2






sin 2λ

0

1 + cos 2λ




 +






gN

gE

gD






=






−Ω2(R + h) cos λ sin λ

0

−Ω2(R + h) cos2λ + gD




 (2.6.54)

where:

[g′N g′E g′D]T = Earth’s gravity and centripetal acceleration

[gN gE gD]T = Earth’s gravity constant

It is assumed that there is no change in the earth’s gravitational field with

variations in the position of the navigation system. Thus gN = gE = 0 and

gD = 9.81m/s2.

CHAPTER 2. NAVIGATION CONCEPTS 38

Now, the equations for V̇N , V̇E and V̇D can be defined as follows:






V̇N

V̇E

V̇D




 =






αN

αE

αD




 +






cN

cE

cD




 +






g′N
g′E
g′D






= TT






ax

ay

az




 +







−2VE Ω sin λ +
VDVN−V2

E tan λ
R+h

2VN Ω sin λ + 2VD Ω cos λ + VDVN tan λ+VEVD
R+h

−2VE Ω cos λ +
−V2

E−V2
N

R+h







+






−Ω2(R + h) cos λ sin λ

0

−Ω2(R + h) cos2λ + gD






(2.6.55)

The non-linear system kinematic equations can now be written in the follow-

ing format:

f (x, u,t) =
[

λ̇ ϕ̇ ḣ V̇N V̇E V̇D

]T
(2.6.56)

2.6.3.2 State space model

Using equation (2.6.7) and equation (2.6.8) together with equation (2.6.56)

results in the following continuous linearized PVEKF state space model:

ẋ
︷ ︸︸ ︷


















λ̇

ϕ̇

ḣ

V̇N

V̇E

V̇D



















=

F
︷ ︸︸ ︷


















∂λ̇
∂λ

∂λ̇
∂ϕ

∂λ̇
∂h

∂λ̇
∂VN

∂λ̇
∂VE

∂λ̇
∂VD

∂ϕ̇
∂λ

∂ϕ̇
∂ϕ

∂ϕ̇
∂h

∂ϕ̇
∂VN

∂ϕ̇
∂VE

∂ϕ̇
∂VD

∂ḣ
∂λ

∂ḣ
∂ϕ

∂ḣ
∂h

∂ḣ
∂VN

∂ḣ
∂VE

∂ḣ
∂VD

∂V̇N
∂λ

∂V̇N
∂ϕ

∂V̇N
∂h

∂V̇N
∂VN

∂V̇N
∂VE

∂V̇N
∂VD

∂V̇E
∂λ

∂V̇E
∂ϕ

∂V̇E
∂h

∂V̇E
∂VN

∂V̇E
∂VE

∂V̇E
∂VD

∂V̇D
∂λ

∂V̇D
∂ϕ

∂V̇D
∂h

∂V̇D
∂VN

∂V̇D
∂VE

∂V̇D
∂VD



















x
︷ ︸︸ ︷


















λ

ϕ

h

VN

VE

VD



















CHAPTER 2. NAVIGATION CONCEPTS 39

+

G
︷ ︸︸ ︷


















∂λ̇
∂ax

∂λ̇
∂ay

∂λ̇
∂az

∂λ̇
∂q1

∂λ̇
∂q2

∂λ̇
∂q3

∂λ̇
∂q4

∂ϕ̇
∂ax

∂ϕ̇
∂ay

∂ϕ̇
∂az

∂ϕ̇
∂q1

∂ϕ̇
∂q2

∂ϕ̇
∂q3

∂ϕ̇
∂q4

∂ḣ
∂ax

∂ḣ
∂ay

∂ḣ
∂az

∂ḣ
∂q1

∂ḣ
∂q2

∂ḣ
∂q3

∂ḣ
∂q4

∂V̇N
∂ax

∂V̇N
∂ay

∂V̇N
∂az

∂V̇N
∂q1

∂V̇N
∂q2

∂V̇N
∂q3

∂V̇N
∂q4

∂V̇E
∂ax

∂V̇E
∂ay

∂V̇E
∂az

∂V̇E
∂q1

∂V̇E
∂q2

∂V̇E
∂q3

∂V̇E
∂q4

∂V̇D
∂ax

∂V̇D
∂ay

∂V̇D
∂az

∂V̇D
∂q1

∂V̇D
∂q2

∂V̇D
∂q3

∂V̇D
∂q4



















u
︷ ︸︸ ︷





















ax

ay

az

q1

q2

q3

q4






















(2.6.57)

The six state PVEKF has seven inputs: three for the accelerometers and four

for the quaternion (as estimated by the MEKF).

2.6.3.3 Measurement updates

A multitude of update sensors are utilized in this project. Each sensor has

its own measurement matrix, H, that couples the sensor data into the system

through the six PVEKF states. The measurement matrix is calculated by using

equation (2.6.9). Each sensor and its measurement matrix are discussed in

more detail in chapter 4.

2.7 Summary

Chapter 2 discusses the relevant theory used in this project. Section 2.2 fo-

cuses on axial systems, Euler angles and quaternions, while the equations of

motion and the TRIAD algorithm are discussed in sections 2.3 and 2.4 respec-

tively. Section 2.5 focuses on the Allan variance and section 2.6 discusses the

EKF, MEKF and PVEKF.

Chapter 3

Hardware Test Bed and

Embedded Software

3.1 Overview

Chapter 3 focuses on the design and implementation of a sensor module

that captures selected sensor data. The data is processed and sent to a PC

(Personal Computer) for storage and analysis. Sensor data captured in real

time serve as a test input for the navigation simulation software discussed in

Chapter 4. Section 3.2 focuses on the hardware aspects of the sensor module,

while section 3.3 discusses the embedded software developed for the mod-

ule. Section 3.4 discusses the GUI (Graphical User Interface) developed for

the sensor module. Sensor calibration is the focus of section 3.5 and finally,

section 3.6 gives a brief summary of Chapter 3.

3.2 Hardware

The sensor module is divided into four main parts:

• A capturing and processing unit, called NodeSense (section 3.2.1).

• A 6-DOF IMU (Inertial Measurement Unit) (section 3.2.2).

• Other inertial sensors (section 3.2.3).

• A power supply unit (section 3.2.4).

40

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 41

3.2.1 NodeSense

The NodeSense unit has to fulfill the following requirements:

• A CPU (Central Processing Unit) is required to process the captured

sensor data, execute the necessary communication protocols and main-

tain the timing of all the different processes. The CPU must have on-

board A/D (Analog-to-Digital) converters, enough I/O (Input/Output)

pins and must be able to perform digital signal processing.

• Communication transceiver units are necessary to implement the phys-

ical layer of the required communication protocols.

• High resolution A/D converters are required for certain analog sensors.

• Low-pass anti-aliasing filters are required for analog sensors to prevent

the high frequency signals from corrupting the sampled data.

• Power distribution and filtering are required to supply each component

on the NodeSense unit with the necessary voltage and current.

The fulfillment of the NodeSense requirements is discussed in the following

sections.

3.2.1.1 Processor

Processors from different manufacturers, like Analog, Microchip, ST, Atmel,

Freescale and Renesas, were compared to one another. The dsPIC30F6014A

from Microchip is chosen as the most suitable CPU for the NodeSense unit due

to its low-cost, availability and combination of a microcontroller and DSP

(Digital Signal Processor) engine. The dsPIC30F6014A has also been success-

fully used in the ESL.

The dsPIC30F6014A is a low-power 16-bit high-performance digital signal

controller capable of executing up to 30 MIPS (Million Instructions Per Sec-

ond). Further features of the CPU include: 144 KB (kilobytes) of embedded

program space, 8 KB of on-chip data RAM, interrupt sources, 16-bit timers

and 12-bit A/D converters. UART (Universal Asynchronous Receiver Trans-

mitter), SPI™(Serial Peripheral Interface), I2C™(Inter-Integrated Circuit) and

CAN (Controller Area Network) modules are also part of the CPU’s periph-

eral features. The main features of the dsPIC30F6014A are summarized in the

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 42

following table:

Pins Program

Memory

Bytes

SRAM

Bytes

EEPROM

Bytes

Timer

16-bit

ADC

12-bit

100ksps

80 144K 8192 4096 5 16 ch

Max MIPS Voltage UART SPI I2C CAN

30 5V 2 2 1 2

Table 3.1: dsPIC30F6014A features

The CPU’s DSP engine consists of a high-speed 17-bit × 17-bit multiplier,

a barrel shifter and a 40-bit adder/subtracter (with two target accumula-

tors, round and saturation logic). Digital filtering and other signal process-

ing tasks can easily be implemented by making use of the DSP instruction

set. The DSP engine performs fixed-point calculations, with software imple-

mented floating-point calculations if necessary. A dedicated floating-point

unit is preferred when intense floating-point calculations and high accuracy

are required. However, only small DSP operations are required for this project,

thus the fixed-point architecture is accepted as accurate enough. For a com-

plete description of the dsPIC30F6014A and all its features see [27].

3.2.1.2 Communication hardware

To accommodate a variety of sensors and external devices, the following four

communication protocols are selected:

• RS232

• SPI

• I2C

• CAN

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 43

Each communication protocol requires hardware and software. The hard-

ware component generates the correct signals and signal levels to enable

communication between the devices using the protocol. The software im-

plements the rules of the protocol and is discussed in section 3.3.2.

The dsPIC30F6014A already implements the physical layer of the SPI and

I2C protocol. However, external components are required for the RS232 and

CAN protocol. The MAX3238 from Texas Instruments is chosen for the RS232

protocol due to its low cost and availability. For a complete description of the

MAX3238 and all its features see [28]. The SN65HVD1050 from Texas Instru-

ments is chosen for the CAN protocol also due to its low cost and availability.

For a complete description of the SN65HVD1050 and all its features see [29].

3.2.1.3 A/D conversion

Many sensors have analog outputs and need to be digitized for CPU process-

ing. An A/D converter is required to digitize analog sensor data at a fixed

rate. The A/D resolution must first be calculated before an A/D converter

can be selected and this is done by using the following equation [30] :

bits = ceil

[

log2

(
Vrange

Vnoise

)]

(3.2.1)

where:

bits = A/D resolution required

Vrange = range of the sensor voltage

Vnoise = rms (root mean square) noise of sensor

ceil = function to round argument to nearest integer

Accelerometers, rate gyroscopes, a magnetometer and a pressure sensor are

used in this project and are discussed in more detail in section 3.2.2 and sec-

tion 3.2.3. All of the sensors produce analog outputs between 0V and 5V.

Therefore, to facilitate the analog interface, the A/D resolution is distributed

between the 0V - 5V range. The alternative is to make use of the full dy-

namic range of the A/D converter (assumed to be 5V) by scaling the sensor

output. Scaling the sensor output would require more complicated analog

circuitry, but allow for lower resolution A/D converters in some cases [30].

The sensors together with their characteristics and minimum A/D resolution

(equation 3.2.1) are shown in table 3.2.

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 44

Sensor Type Model

Number

Vmin

[V]

Vmax

[V]

Vnoise

[mV]

Min

A/D

Resolu-

tion

True res-

olution

with

16-bit

A/D

Accelerometer LIS3L02AS4 0.33 2.97 0.33 13 15

Rate ADXRS401 1.38 3.63 3 10 14
Gyroscope

Absolute
Pressure

MPX4115A 0.20 4.79 1 13 15

Table 3.2: Sensor characteristics with noise calculated at 100Hz bandwidth where
required and A/D resolution unscaled over 5V.

Note that the magnetometer has been omitted from table 3.2. The magne-

tometer was given for use in this project, but there is no available data sheet

specifying its noise statistics. However, a previous implementation of the

magnetometer showed that 12-bit A/D converters are sufficient for digitiz-

ing the analog magnetometer signals [31]. Thus, the 12-bit A/D converters

of the dsPIC30F6014A are used for the magnetometer output.

Table 3.2 shows that a 13-bit A/D converter satisfies the minimum re-

quirement for all the analog sensors. However, quantization noise can be

introduced by the A/D converter, so a 16-bit device is adopted as a better

choice. The last column of table 3.2 shows that the true resolution achieved

with a 16-bit A/D converter also satisfies the minimum A/D requirement.

The dsPIC30F6014A only provides 12-bit A/D converters, creating the need

for an external 16-bit A/D device. Simultaneous sampling A/D IC’s (Inte-

grated Circuit) with parallel data interfaces were considered, but proved to

be slow, expensive and difficult to obtain. The ADS8344 form Texas Instru-

ments is a high speed, serial A/D converter with 8 channels, 16-bit resolution

and a reference voltage input. Due to the ADS8344’s low cost, availability

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 45

and attractive features, it is utilized in this project. For a complete descrip-

tion of the ADS8344 and all its features see [32].

3.2.1.4 Analog anti-aliasing filters

As discussed in section 3.2.1.3, analog signals are digitized at a fixed sam-

pling rate by an A/D converter. Using a sampling frequency, fs, all frequency

components below fs/2 are reliably digitized. However, frequency compo-

nents above fs/2 will fold back into the 0 − fs/2 bandwidth section when

digitized [33]. Thus, to correctly represent an analog signal with samples re-

quires that the highest frequency components be less than fs/2. The previous

statement is known as Nyquist’s Theorem and fs/2 is known as the Nyquist

frequency [35]. The aliasing or fold back phenomenon is depicted as follows:

Figure 3.1: (a) Frequency components of analog signal, (b) Sampling at fs, the fre-
quency components below fs/2 are reliably digitized while the frequency compo-
nents above fs/2 are folded back and appear as lower frequencies in the digital out-
put [33]

The folded back frequencies in figure 3.1b, faliased, are calculated by using the

information from figure 3.1a and the following equation [33] :

faliases = | fin − N fs| (3.2.2)

where:

fin = frequency of input signal component

N = segment where input signal component appears

The aliasing effect can be eliminated or considerably reduced by implement-

ing an analog low-pass filter prior to the A/D converter [33]. The low-pass

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 46

filter allows lower frequencies to pass through up to the cut-off frequency

(fcut−o f f <= fs/2) and attenuates high frequency noise above the cut-off fre-

quency, preventing undesirable aliased harmonic information from corrupt-

ing the digital output code. The effect of the low-pass anti-aliasing filter is

illustrated in the following figure:

Figure 3.2: Effect of low-pass anti-alias filter [33]

Figure 3.2 shows how the low-pass filter attenuates the input signal compo-

nent at frequency (2). The gray area in figure 3.2, known as the transition

band, is generally determined by the amount of poles that are used to im-

plement the filter design. An increase in filter poles will result in a decrease

in the transition bandwidth and vice versa. Since the transition band in fig-

ure 3.2 is greater than fs/2, signal components existing in this band will be

aliased into the output of the A/D converter. By selecting a cut-off frequency

smaller than fs/2 or by increasing the order (add more poles) of the filter,

the transition band aliasing effect is minimized. Increasing the order of the

low-pass filter until the transition band is 0 may seem like a good approach,

but practically, it may not be the best approach for an anti-aliasing solution.

Every two filter poles require a minimum of one OPAMP (Operational Am-

plifier), two capacitors and two resistors. High order filters will take up too

much PCB (Printed Circuit Board) space and additionally, each OPAMP will

also contribute its own offset and noise errors into the pass band region. Se-

lecting a smaller cut-off frequency is the adopted strategy for this project.

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 47

To determine the amount of attenuation necessary for a specific A/D con-

verter, the following equation can be used [34] :

Att [dB] = 6n (3.2.3)

where:

n = A/D resolution in bits

Equation (3.2.3) indicates the amount of attenuation needed to make the

amplitude of any component above fs/2 smaller than the A/D converter’s

LSB (Least Significant Bit). In practice, noise-signal amplitudes almost never

equal the amplitudes of signal components of interest [34], so equation (3.2.3)

represents worst case.

The analog low-pass anti-aliasing filters for this project are realized by mak-

ing use of active, second-order Butterworth filters. Active filters make use

of OPAMPs which provide excellent isolation between stages. The isola-

tion is possible due to the OPAMP’s high input impedance and low output

impedance. The Butterworth filter provides the flattest passband response

[36] and a low component count.

The Sallen-Key topology provides better passband unity gain than the

multiple feedback topology [34] and is utilized in this project. Figure 3.3

illustrates an active second-order Sallen-Key Butterworth filter.

Figure 3.3: Active second-order Sallen-Key Butterworth filter [33]

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 48

fcut−o f f =
1

2π
√

R1R2C1C2
(3.2.4)

K = 1 +
R4

R3
(3.2.5)

Vout

Vin
(s) =

K

s2C1C2R1R2 + s[C1(R1 + R2) + (1 − K)C2R1] + 1
(3.2.6)

The sensors are sampled at 1000 Hz [30], implying that fcut−o f f must be below

500 Hz. To make component selection easy and to achieve good attenuation

at the Nyquist frequency, a value of fcut−o f f ≈ 95 Hz is chosen. R3 is open

and R4 is shorted, resulting in unity gain, K. The component values are as

follows:

R1 = 4.7 kΩ

R2 = 18 kΩ

C1 = 100 nF

C2 = 330 nF

R3 = ∞ Ω

R4 = 0 Ω

The OPA4350 from Texas Instruments is a rail-to-rail CMOS (Complementary

Metal Oxide Semiconductor) operational amplifier optimized for low volt-

age, single supply operation. Rail-to-rail input/output, low noise (5nV/
√

Hz),

high speed operation (38 MHz, 22V/µs), low cost and availability make the

OPA4350 ideal for driving sampling A/D converters [37] and it is used in this

project.

Analog low-pass filtering is only part of the data acquisition signal chain

and is illustrated in figure 3.4.

Figure 3.4: Data acquisition signal chain [33]

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 49

Noise can be injected during the A/D conversion process, making it neces-

sary to design and implement digital filters. Digital filters are programmable

and enable the user to program the cut-off frequency and output data rates.

Section 3.3.1 discusses the digital filter design and illustrates the combined

response of the analog and digital filters.

3.2.1.5 Power distribution

The NodeSense unit receives +12V, -12V and +5V from the separate power

board (section 3.2.4). Analog components (eg. sensors) are powered by the

+12V and -12V supplies, while the digital components (eg. CPU) are pow-

ered by the +5V supply. Decoupling capacitors provide adequate filtering for

the digital power supply. However, analog electronics are very sensitive to

unwanted high frequencies and power supply ripple, making it necessary to

design and implement additional analog power supply filtering.

A LC filter design is selected for the analog power supply filtering, since it

reduces output ripple and high frequency components [38]. The LC filter also

provides a low component count, resulting in easy implementation. Figure

3.5 depicts a basic LC filter design.

Figure 3.5: LC filter

The following equation is used to calculate the required values of the filter

components in order to achieve the desired damping ratio [38] :

Min required damping o f LC f ilter =
Vmax ripple

VOac
=

XC

XC + XL
(3.2.7)

where:

Vmax ripple = maximum allowed output ripple of LC filter

VOac = listed output ripple of DC/DC converter (section 3.2.4)

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 50

XC = 1
2π f C [Ω]

XL = 2π f L[Ω]

f = switching frequency of the DC/DC converter

C = capacitance

L = inductance

Using [39], the following values are known:

Vmax ripple = 10 mV

VOac = 75 mV

f = 300 kHz

By using equation (3.2.7) the minimum required damping can be calculated

as follows:

Min required damping o f LC f ilter =
10

75
= 0.133 (3.2.8)

A convenient capacitance and inductance of 1 µF and 1 mH respectively sat-

isfies the minimum damping requirement.

Not all of the analog components of the NodeSense unit require a +12V or

-12V supply. An analog +5V supply as well as a +5V reference voltage are

required. The A/D converters require a very stable reference and make use

of the +5V reference voltage.

The REG104 from Texas Instruments is a low-noise, low-dropout linear

regulator capable of providing a regulated +5V supply from a +12V input

[40]. The MAX6350 from Maxim is a low-noise, precision voltage reference

with extremely low temperature coefficients and excellent accuracy, capa-

ble of providing a +5V reference voltage from a +12V input [41]. Both the

REG104 and the MAX6350 are used in this project, due to their low cost, ac-

curacy and availability.

A summary of the NodeSense unit can now be shown in the following func-

tional block diagram:

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 51

Microprocessor

dsPIC30F6014A

RS232 Interface

MAX3238

CAN Interface

SN65HVD1050

8 Channel

16-bit A/D Converter

ADS8344

Anti-aliasing Filters

2 x OPA4350

Anti-aliasing Filters

OPA4350

A
n

a
lo

g

SPI

A
n

a
lo

g
 S

e
n

s
o

rs

I2
C

A
n

a
lo

g
 S

e
n

s
o

rs

1
2

-b
it
 A

/D

C
o

n
v
e

rt
e

rs

D
ig

it
a

l
I/

O

Power

Distribution

Analog

Digital

+
1

2
 V

-1

2
 V

+

5
 V

+

5
 V

re
f

+
5

 V

Figure 3.6: NodeSense functional block diagram

3.2.2 IMU

The rate gyroscopes and accelerometers form part of the IMU. Rate gyro-

scopes provide angular rate data, while accelerometers provide static and

dynamic acceleration data. A triad of rate gyroscopes and accelerometers is

needed to create a 6-DOF IMU.

The ADXRS401 MEMS rate gyroscope from Analog Devices has a dynamic

range of ±75◦/s and is chosen for this project, due to its low cost, small size

and availability. It is also used by [5], [6] and [30] in the ESL. The single

rate output of the ADXRS401 is a voltage proportional to the angular rate

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 52

about the axis normal to the top surface of the sensor package [42]. A preci-

sion reference and a temperature output are also provided for compensation

techniques. Analog’s ADXRS401 measures the angular rate in one axis only,

making it necessary to purchase three units and mount them orthogonal with

respect to each other.

The LIS3L02AS4 from STMicroelectronics is a low-power three-axes MEMS

linear accelerometer with a dynamic range of ±2g/±6g [43]. It is used in

this project to test its capabilities as a low-cost three-axes accelerometer, since

it has not been used in the ESL before. Each output of the LIS3L02AS4 is a

voltage proportional to the measured static and dynamic accelerations in the

specific axis.

3.2.3 Magnetometer and pressure sensor

The FG-D2 from the HMO (Hermanus Magnetic Observatory) is a three-axes

magnetometer capable of measuring the earth’s magnetic field vector. The

magnetometer is given for use in this project. Each output of the FG-D2 is a

voltage proportional to the measured magnetic field in the specific axis. Un-

fortunately, no data sheet could be found for the FG-D2. Only basic output

information is available.

The MPX4115A from Freescale Semiconductor is a monolithic, signal condi-

tioned, silicon pressure sensor capable of measuring absolute pressures from

15 kPa to 115 kPa [44]. It is used in this project, due to its low cost, small size

and availability. It is also utilized by [6] and [30] in the ESL. The output of

the MPX4115A is a voltage proportional to the applied pressure.

3.2.4 Power board

The main power supply for an AUV is simulated in this project by using two

+12V batteries connected in series, creating a +24V supply. The NodeSense

unit requires +12V, -12V and +5V to operate correctly (see section 3.2.1.5),

making it necessary to use DC-DC converters in order to convert the +24V to

+12V, -12V and +5V. The TEL5-2411 and TEL-2422 from Traco Power are high

power density DC-DC converters with high efficiency, regulated outputs and

a wide input range of 18V - 36V [39]. Both the TEL5-2411 and TEL-2422 are

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 53

used in this project, due to their excellent cost/performance ratio and avail-

ability. The TEL5-2411 has an output voltage of +5V, while the TEL5-2422 has

an output voltage of ±12V.

The DC-DC converters are mounted on a separate PCB, due to their rather

large packaging. A separate PCB architecture will also simplify the imple-

mentation of future power supply requirement changes.

A summary of the power supply PCB can now be shown in the following

functional block diagram:

DC-DC Converter

TEL5-2411

DC-DC Converter

TEL5-2422

+24V

+5V

+12V

-12V

Figure 3.7: Main power supply functional block diagram

The complete NodeSense unit, inertial sensors and main power supply unit

are illustrated as follows:

(a) (b)

Figure 3.8: Top views of the hardware test bed

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 54

(a) (b)

Figure 3.9: (a) Black magnetometer and IMU cube, (b) Accelerometer mounted un-
derneath rate gyroscope

(a) (b)

Figure 3.10: (a) Main power supply PCB underneath NodeSense PCB, (b) Enclosed
hardware test bed with wireless RS232 transceiver

Figure 3.11: Enclosed pressure sensor

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 55

3.3 Embedded software

The embedded software for the dsPIC30F6014A is divided into three main

parts:

• The digital filtering of the sampled sensor data (section 3.3.1).

• The implementation of the necessary communication protocols (section

3.3.2).

• The timing of all the different processes (section 3.3.3).

3.3.1 Digital filtering

Digital filters are used to remove noise injected during the A/D conversion

process [33]. There are two types of digital filters:

• FIR (Finite Impulse Response) filters

• IIR (Infinite Impulse Response) filters

FIR filters utilize past inputs, while IIR filters utilize past inputs and outputs.

The IIR filter is chosen for this project, since it is characterized by a signifi-

cantly lower order than the corresponding FIR filter [45]. A lower order filter

executes faster and also uses less processing resources. Another advantage of

the IIR filter is the fact that an analog filter transfer function can be designed

and converted to a transfer function in the digital domain.

An IIR second order Butterworth filter is chosen for this project, due to its

maximally flat passband response. The Butterworth filter also has minimal

phase shift over the passband region when compared to other conventional

filters [45]. The Butterworth digital filter can be written in the following form

[30]:

a1y(n) = b1x(n) + b2x(n − 1) + b3x(n − 2) − a2y(n − 1) − a3y(n − 2)

(3.3.1)

where:

a1..3, b1..3 = filter coefficients

x = A/D samples

y = filter output values

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 56

Equation (3.3.1) shows that the digital filter is the sum of product terms. The

dsPIC30F6014A can multiply two 16-bit values and store the 32-bit result in

one of its two 40-bit accumulators. Addition and subtraction operations, per-

formed on the accumulators and registers, are also supported.

The dsPIC30F6014A microprocessor does not have any hardware to han-

dle floating-point mathematics, therefore any such operations must be emu-

lated with integer math. The sampled A/D values are 16-bit integers and can

be represented as follows:

integer bits . decimal bits

16 . 0

The filter coefficients for this project are 16-bits wide and in the range of 0 to

2 (see table 3.3). Multiplication or division by 2 on a microprocessor is a fast

operation, since the bits are simply shifted left or right. Thus, normalizing

the coefficients to be in the range of 0 to 1 will allow the coefficients to be

represented as follows:

integer bits . decimal bits

0 . 16

Now, the multiplication of an A/D sample and its coefficient can be written

as follows:

A/D sample 16.0

×Filter coe f f icient 0.16

−−−−−
16.16 (3.3.2)

−−−−−

The result of equation (3.3.2) is a 32-bit fixed-point value where the integer

part is 16 bits wide and the decimal part is also 16 bits wide. Addition and

subtraction of 32-bit values will also result in 32-bit values.

Now, the multiplication of a filter output value and its coefficient can be writ-

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 57

ten as follows:

Filter output 16.16

×Filter coe f f icient 0.16

−−−−−
16.32 (3.3.3)

−−−−−

The result of equation (3.3.3) is a 48-bit fixed-point value. However, the 32-

bit decimal value exceeds 16 bits, making it necessary to discard the lower 16

bits. Discarding the lower 16 bits creates a 32-bit fixed-point value without

any significant loss in accuracy.

The digital filter reduces A/D noise. However, the noise can be reduced even

more by making use of oversampling. Sampling and filtering the analog sen-

sor data at a high rate, fhigh, and taking the average value every Nth sample

as the sensor module output, creates a log2(N) times reduction in the A/D

noise [30]. The high rate, fhigh, for this project is 1000 Hz (section 3.2.1.4) and

the sensor module outputs data at a rate of 50 Hz. The selected output rates

have also been used by [5], [6] and [30] in the ESL. A high sampling rate of

1000 Hz and an output rate of 50 Hz creates a (log2(20) = 4.32) times noise

reduction, more than adequate for most applications [30]. The 50 Hz output

rate makes it necessary to design the digital filter to provide enough attenu-

ation at 25 Hz (Nyquist frequency) in order to prevent secondary aliasing. A

bandwidth of 8 Hz is selected to reduce the computational complexity of the

digital filter, while still providing good attenuation at 25 Hz.

The digital filter coefficients are calculated by using the Matlab™ function,

butter(). Since only 16 bits are used for the coefficient representation, there

will be an error between a calculated filter coefficient and its 16-bit represen-

tation. The calculated digital filter coefficients, their 16-bit representation and

the percentage quantization error are listed as follows (coefficient a1, equa-

tion 3.3.1, is normalized to 1) :

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 58

Calculated 16-bit Error [%]

b1 0.00060985471872 0.00061035156250 0.081469

b2 0.00121970943743 0.00122070312500 0.081469

b3 0.00060985471872 0.00061035156250 0.081469

a2 -1.92894226325203 -1.92895507812500 0.000664

a3 0.93138168212690 0.93139648437500 0.001589

Table 3.3: Filter coefficient quantization

The following figures illustrate the analog (section 3.2.1.4), digital and com-

bined filter response as well as the effect of the quantization error:

0 100 200 300 400 500
−120

−100

−80

−60

−40

−20

0
Response (0−500 Hz)

M
ag

ni
tu

de
 [d

B
]

0 100 200 300 400 500
−350

−300

−250

−200

−150

−100

−50

0

Frequency [Hz]

P
ha

se
 [d

eg
]

0 5 10 15 20 25
−20

−15

−10

−5

0

X: 7.997
Y: −3.029

Response (0−25 Hz)

Analog
Digital
Combined

0 5 10 15 20 25
−200

−150

−100

−50

0

X: 8.001
Y: −96.54

Frequency [Hz]

Figure 3.12: Magnitude and phase response of analog, digital and combined filter
design

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 59

0 100 200 300 400 500
−400

−300

−200

−100

0

100
Response (0−500 Hz)

M
ag

ni
tu

de
 [d

B
]

0 100 200 300 400 500
−200

−150

−100

−50

0

Frequency [Hz]

P
ha

se
 [d

eg
]

0 5 10 15 20 25
−20

−15

−10

−5

0

5
Response (0−25 Hz)

Original
Quantized

0 5 10 15 20 25
−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency [Hz]

Figure 3.13: Magnitude and phase response of original and quantized digital filter

Figure 3.12 shows that the filter designs provide satisfactory attenuation. The

phase of the analog anti-aliasing filter also has little effect on the output

within the system bandwidth. Figure 3.13 shows that the effect of quanti-

zation error is negligible.

The digital filter algorithm implemented on the dsPIC30F6014A can be di-

vided into three main parts:

1. For each coefficient-sample pair ([b1, x(n)], [b2, x(n− 1)], [b3, x(n− 2)])

the following is done:

• Load the normalized coefficient and sensor A/D sample into 16-

bit registers.

• Multiply the two registers and add the product to accumulator A

(40-bit register).

2. For each coefficient-filter output pair ([a2, y(n − 1)], [a3, y(n − 2)]) the

following is done:

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 60

• Load the normalized coefficient and higher 16 bits of the 32-bit

filter output into 16-bit registers.

• Multiply the two registers and add the product to accumulator A.

• Load the lower 16 bits of the filter output into a register.

• Multiply the lower 16 bits register with its appropriate coefficient

and store the result in accumulator B (40-bit register).

• Shift accumulator B 16 bits to the right and add/subtract the result

to/from accumulator A.

3. Since all the coefficients are normalized, correct the final result in ac-

cumulator A by multiplying it by two. Check for overflow errors and

update the necessary states.

The filter implementation is shown in the following functional block dia-

gram:

Multiply w4, w5 and add

product to accumulator B

Clear accumulator A

Load filter coefficient b1 into 16-bit register (w4)

Load sensor sample, x(n), into 16-bit register (w5)

Multiply w4, w5 and add

product to accumulator A

Load filter coefficient b2 into w4

Load sensor sample, x(n-1), into w5

Multiply w4, w5 and add

product to accumulator A

Load filter coefficient b3 into w4

Load sensor sample, x(n-2), into w5

Multiply w4, w5 and add

product to accumulator A

Load filter coefficient a2 into w4

Load higher 16 bits of 32-bit filter output, y(n-1), into w5

Multiply w4, w5 and add

product to accumulator A

Clear accumulator B

Load filter coefficient a2 into w4

Load lower 16 bits of 32-bit filter output, y(n-1), into w5

Shift accumulator B 16 bits to the

right and add result to accumulator A

Multiply w4, w5 and add

product to accumulator B

Load filter coefficient a3 into w4

Load higher 16 bits of 32-bit filter output, y(n-2), into w5

Multiply w4, w5 and add

product to accumulator A

Clear accumulator B

Load filter coefficient a3 into w4

Load lower 16 bits of 32-bit filter output, y(n-2), into w5

Shift accumulator B 16 bits to the right

and suntract result from accumulator A

Correct final result by shifting

accumulator A 1 bit to the left

Update states

x(n-2) = x(n-1)

x(n-1) = x(n)

y(n-2) = y(n-1)

y(n-1) = y(n)

Accumulator A overflow?

y(n) = 32-bit accumulator result
 y(n) = 0xFFFFFFFF

No

Yes

1
 2
 3

Figure 3.14: Digital filter implementation on dsPIC30F6014

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 61

3.3.2 Communication protocols

As discussed in section 3.2.1.2, the physical layer of RS232, SPI, I2C and CAN

communication are supported by the sensor module. However, only the

RS232 and SPI protocols are implemented on the dsPIC30F6014. The RS232

protocol is used to enable communication between the sensor module and

a PC, while the SPI protocol is used to enable communication between the

dsPIC30F6014 and the A/D converter. Although the I2C and CAN protocols

are not implemented at this stage, it can easily be done when future imple-

mentations create the need for the sensor module to interface with I2C or

CAN sensors/devices. The RS232 and SPI protocol implementations are dis-

cussed in the following sections.

3.3.2.1 RS232

The RS232 implementation can be divided into three main parts:

1. Initialize the UART by loading the correct values into the required reg-

isters (see [27]).

2. To send a string of bytes the following is done:

• Load the bytes that need to be transmitted into a user-defined

transmit buffer.

• Load the first byte from the transmit buffer into the UART’s 8-bit

transmit buffer.

• The first byte is automatically sent and the transmit ISR (Interrupt

Service Routine) is called.

• Customize the ISR to clear the transmit flag and load the next byte

into the UART’s transmit buffer.

• The ISR will now automatically send the rest of the bytes con-

tained in the user-defined buffer.

3. When bytes are received, the following is done:

• Each byte received is stored in the UART’s 8-bit receive buffer.

• Create an ISR to clear the receive flag and store the received byte

in a user-defined buffer.

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 62

• The ISR will now automatically store all the received bytes in the

user-defined buffer.

The RS232 implementation is shown in the following functional block dia-

gram:

Initialize UART

115 200 kbps

8-bit data

1 stop bit

no parity

UART Transmit

ISR (Interrupt Service Routine)

After user sends first byte of transmit

buffer ISR transmits the remaining

bytes

UART Receive

ISR (Interrupt Service Routine)

Each byte received is stored in a

receive buffer by the ISR

1

2
 3

Figure 3.15: RS232 implementation

3.3.2.2 SPI

The SPI implementation can be divided into two main parts:

1. Initialize the SPI module by loading the correct values into the required

registers (see [27]).

2. To send/store a string of bytes the following is done:

• Load the bytes that need to be transmitted into a user-defined

transmit buffer.

• Load the first byte from the transmit buffer into the SPI module’s

transmit/receive buffer.

• The byte is automatically transmitted.

• The SPI module immediately executes a receive, stores the received

byte in the transmit/receive buffer and calls the ISR.

• Customize the ISR to clear the interrupt flag, store the received

byte in a user-defined buffer and load the next byte to be transmit-

ted into the SPI module’s transmit/receive buffer.

• The ISR will now automatically send the rest of the bytes that need

to be transmitted and save the received byte after each send.

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 63

The SPI implementation is shown in the following functional block diagram:

Initialize SPI

Master mode

Byte wide communication

SPI

ISR (Interrupt Service Routine)

After user sends byte, ISR is called to

store received byte

1

2

Figure 3.16: SPI implementation

3.3.3 Timing

The main routine of the dsPIC30F6014A’s embedded software is illustrated in

the following functional block diagram:

No

Initialize

Variables

I/O ports

12-bit A/D converters

SPI

UART

Timer1

Timer2

Timer1

1 ms timer

1 ms past?

Retrieve sensor samples from 12-bit

(dsPIC) and 16-bit (external) A/D converters

Perform digital filtering on all

sampled sensor data

Yes

No

20 ms past?

No

Data output

enabled?

Yes

Send filtered data to PC

Yes

Figure 3.17: Main routine of embedded software

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 64

3.4 Interface GUI

The GUI developed for the sensor module executes on a PC and is capable of

performing the following tasks:

• Establishment of communication with the sensor module (section 3.4.1).

• Enabling/disabling of sensor data flow from the sensor module to the

PC (section 3.4.2).

• Logging of sensor data received from the sensor module (section 3.4.3).

• Displaying of current sensor data received from the sensor module (sec-

tion 3.4.4).

The complete GUI is illustrated in figure 3.18.

Figure 3.18: Sensor module GUI

The GUI tasks are discussed in the following four sections.

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 65

3.4.1 Communications

The communication setup allows the user to select the required RS232 COM

port number and baud rate. After the selection is made, the user must click

on the Connect button to initiate the RS232 communication with the sensor

module. The Connect button will change to a Disconnect button if the com-

munication setup is successful. Clicking on the Disconnect button will disable

the RS232 connection. The communication setup is shown in figure 3.19.

Figure 3.19: GUI communication setup

3.4.2 Control commands

The control interface allows the user to send a command to the sensor mod-

ule. There are two commands to choose from: Start sensor data and Stop sensor

data. If the sensor module receives the first command, it will start to output

sensor data at 50 Hz. The second command tells the sensor module to halt all

data sending. By selecting the required command and clicking on the Send

button, the command is sent to the sensor module. The control interface is

shown in figure 3.20.

Figure 3.20: GUI control interface

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 66

3.4.3 Data logging

The logging interface allows the user to start and stop the logging of received

sensor data. By clicking on the Start logging button all sensor data are stored

in a text file. The title of the text file will contain the string in the Filename

text box as well as the date and time. When data logging is initiated the

Start logging button changes to a Stop logging button. Clicking on the Stop

logging button will disable the data logging process. The size of the text file,

containing the logged sensor data, is displayed in the Data logged text box.

Figure 3.21 illustrates the logging interface.

Figure 3.21: GUI logging interface

3.4.4 Sensor data

Figure 3.22 illustrates the display area where all received sensor data is shown.

Figure 3.22: Sensor data display

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 67

3.5 Sensor calibration

Sensor calibration is necessary to compensate for nominal gain deviations,

sensor misalignments, sensor bias values and temperature effects. The gain

deviation and sensor misalignment effects are combined in a 3 × 3 matrix,

also known as a cross coupling matrix. A separate vector is used for the sen-

sor bias values. The cross coupling matrix is equal to a unity 3 × 3 matrix if

the sensors are perfectly aligned with the body axial system and if the sen-

sor gains match the theoretical (data sheet) gains. However, even with small

misalignments and gain deviations the cross coupling matrix is still close to

a 3 × 3 unity matrix. All calibrations are done with respect to available refer-

ences. It is important to select an accurate reference, since the calibration is

only accurate if the reference is accurate [5].

3.5.1 Cross coupling matrix and bias vector

The cross coupling matrix and bias vector are defined in the following equa-

tion:






Xcal

Ycal

Zcal




 =






C11 C12 C13

C21 C22 C23

C31 C32 C33











XA/D

YA/D

ZA/D




 +






Ox

Oy

Oz




 (3.5.1)

where:

[Xcal Ycal Zcal]T = sensor values after calibration





C11 C12 C13

C21 C22 C23

C31 C32 C33




 = cross coupling matrix

[XA/D YA/D ZA/D]T = sensor values before calibration

[Ox Oy Oz]T = vector containing bias values

3.5.1.1 Gyroscopes

The rate gyroscopes are calibrated by using one of the following two meth-

ods:

• Mount the sensor module on a rate table and spin each of the three axes

(x, y, z) at known rotation rates. The rotation direction must also be

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 68

varied to increase the calibration accuracy. Log the measured rotation

rates and fit them with the known rotation rates.

• Rotate the sensor module through known angles. Log the measured

rotation rates and integrate them to form the measured angles. Fit the

measured angles with the known angles.

The first method is used, since a working rate table is available in the ESL.

A least squares fit on the data provides accurate calibration results. If MEMS

sensors are used, it is important to make sure that the sensors are exposed

to constant static acceleration during the calibration process, since the bias is

sensitive to accelerations.

3.5.1.2 Magnetometer

The magnetometer is calibrated by making use of the fact that the maximum

magnetic field in Stellenbosch (test location) is 0.26 Tesla. The sensor mod-

ule is rotated so that the three axes of the magnetometer cut the maximum

magnetic field an equal number of times. It is important not to let any of

the magnetometer axes cut the magnetic field notably more, since the least

squares algorithm used will then weight some of the parameters more than

it should. The magnetometer axes will cut the magnetic field an equal num-

ber of times by executing the following rotations:

• Point the nose (x-axis) of the sensor module in a northern direction. All

movements are made through 360 degrees, first in one direction and

then in the other.

• Pitch, and then roll the sensor module.

• Roll the sensor module through 90 degrees and rotate it through 360

degrees in the northern direction, again in both directions.

Note that the rotation movements do not have to be perfect in order for the

algorithm to be effective. The rotation movements can be done very slowly,

as long as they are done at the same pace throughout.

A least squares algorithm is now applied in Microsoft’s Excel to optimize

the cross coupling matrix and the bias vector (equation 3.5.1). The algorithm

ensures that the minimum error between the maximum magnetic field and

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 69

the calculated magnetic field is obtained. Thus, the error to be minimized can

be defined as follows:

∑(0.26−r)2 (3.5.2)

where:

r2 = (C11XA/D + C12YA/D + C13ZA/D + Ox)2

+(C21XA/D + C22YA/D + C23ZA/D + Oy)2

+(C31XA/D + C32YA/D + C33ZA/D + Oz)2

r =
√

r2

Figure 3.23 illustrates the calibration procedure of the magnetometer used in

this project. The top row shows the uncalibrated measurements and the bot-

tom row depicts the measurements after calibration. Tell tale signs to know

if the calibration is successful are that the rotations appear spherical and that

they touch the four sides of the 0.26 Tesla box.

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
A/D

 [Gauss]

y A
/D

 [G
au

ss
]

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
A/D

 [Gauss]

z A
/D

 [G
au

ss
]

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

y
A/D

 [Gauss]

z A
/D

 [G
au

ss
]

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
cal

 [Gauss]

y ca
l [G

au
ss

]

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
cal

 [Gauss]

z ca
l [G

au
ss

]

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

y
cal

 [Gauss]

z ca
l [G

au
ss

]

Figure 3.23: Magnetometer calibration

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 70

3.5.1.3 Accelerometers

The magnetometer calibration process is also used for the accelerometers, ex-

cept that the maximum magnetic field (0.26 T) is replaced by the earth’s grav-

ity constant (assumed to be 9.81 m/s2). Figure 3.24 illustrates the calibration

results.

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

x
A/D

 [m/s/s]

y A
/D

 [m
/s

/s
]

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

x
A/D

 [m/s/s]

z A
/D

 [m
/s

/s
]

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

y
A/D

 [m/s/s]

z A
/D

 [m
/s

/s
]

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

x
cal

 [m/s/s]

y ca
l [m

/s
/s

]

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

x
cal

 [m/s/s]

z ca
l [m

/s
/s

]

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

y
cal

 [m/s/s]

z ca
l [m

/s
/s

]

Figure 3.24: Accelerometer calibration

3.5.1.4 Pressure sensor

The pressure sensor is calibrated by applying known pressures, logging the

measured pressures and minimizing the error between the known and mea-

sured pressures. However, the calibration process shows that the gain and

offset values from the pressure sensor data sheet are accurate enough.

3.5.2 Temperature

The bias value of a MEMS sensor is temperature dependent [5], making it

necessary to perform temperature calibration in order to compensate for any

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 71

temperature variations. Only the rate gyroscopes and accelerometers show

significant, linear bias drift with temperature variations. Figures 3.25 to 3.30

illustrate each sensor’s bias value with respect to temperature. A linear fit is

done on the sensors’ data.

16 18 20 22 24 26 28 30 32 34
−36

−35.5

−35

−34.5

−34

−33.5

−33

−32.5

−32

−31.5

−31

Temperature [°Celcius]

G
yr

o
X

 [
° / s

]

Gyro Bias vs Temperature

y = 0.24216*x − 39.73

data 1
 linear

Figure 3.25: Gyroscope X temperature calibration

16 18 20 22 24 26 28 30 32 34
16

17

18

19

20

21

22

23

Temperature [°Celcius]

G
yr

o
Y

 [
° / s

]

Gyro Bias vs Temperature

y = − 0.26882*x + 26.223 data 1

 linear

Figure 3.26: Gyroscope Y temperature calibration

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 72

16 18 20 22 24 26 28 30 32 34
−37

−36

−35

−34

−33

−32

−31

−30

−29

−28

−27

Temperature [°Celcius]

G
yr

o
Z

 [
° / s

]

Gyro Bias vs Temperature

y = 0.47177*x − 44.039

data 1
 linear

Figure 3.27: Gyroscope Z temperature calibration

16 18 20 22 24 26 28 30 32 34
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Temperature [°Celcius]

A
cc

 X
 [

m
 /

s
/ s

]

Acc Bias vs Temperature

y = 0.013737*x + 0.79324 data 1

 linear

Figure 3.28: Accelerometer X temperature calibration

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 73

16 18 20 22 24 26 28 30 32 34
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

Temperature [°Celcius]

A
cc

 Y
 [

m
 /

s
/ s

]
Acc Bias vs Temperature

y = 0.0071771*x + 1.0508 data 1

 linear

Figure 3.29: Accelerometer Y temperature calibration

16 18 20 22 24 26 28 30 32 34

9.7

9.8

9.9

10

10.1

10.2

Temperature [°Celcius]

A
cc

 Z
 [

m
 /

s
/ s

]

Acc Bias vs Temperature

y = 0.025736*x + 9.2855

data 1
 linear

Figure 3.30: Accelerometer Z temperature calibration

CHAPTER 3. HARDWARE TEST BED AND EMBEDDED SOFTWARE 74

3.6 Summary

Chapter 3 discusses the hardware and embedded software developed for this

project. The hardware consists of four main parts: a capturing and process-

ing unit, a 6-DOF IMU, other inertial sensors and a power supply unit. Sec-

tion 3.2 focuses on the four main hardware parts. The embedded software

mainly consists of digital filter and communication protocol implementa-

tions and these are discussed in section 3.3. Section 3.4 focuses on the GUI

developed for the hardware and finally, section 3.5 discusses the sensor cali-

bration methods used in this project.

The hardware and embedded software were tested and operate as specified

by the requirements. The hardware schematics and embedded software are

available on a disc included with this thesis.

Chapter 4

Navigation Simulation Software

4.1 Overview

Chapter 4 focuses on the development of a navigation algorithm simulation,

capable of using simulated and real-time sensor data to simulate sensor com-

binations and therefore evaluate the best configuration for each mission. The

modeling of sensors and the reproduction of sensor data are discussed in

section 4.2, while section 4.3 focuses on the implementation of the navigation

algorithms. Section 4.4 focuses on the development of a simulation GUI and

finally, section 4.5 gives a brief summary of chapter 4.

4.2 Sensor data simulation

The simulation of sensor data can be divided into two main parts:

• Forces, moments and the equations of motion (section 2.3) are used to

generate vital navigation data.

• The navigation data, from the first part, and sensor models are used to

generate the required sensor data.

All simulations are done in Matlab™ and Simulink™.

4.2.1 Forces and moments

For simulation purposes the body forces and moments are usually gener-

ated by the vehicle model. However, an AUV model is not available for

this project and the development of a model falls outside the scope of this

75

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 76

project. The required forces and moments are generated by making use of

two developed controllers: a speed-to-force and an angle-to-moment con-

troller. The speed-to-force controller receives NED speed references and the

vehicle mass as input, while the angle-to-moment controller receives attitude

references as input. A standard six degrees of freedom block, implementing

the equations of motion, receives the generated forces and moments as input

and gives accelerations, velocities, angular accelerations, angular rates and

angles (attitude) as output. The two controllers and the 6-DOF block are il-

lustrated in figure 4.1.

Figure 4.1: Simulink model of simulated AUV motion

Information received from IMT indicates that their developed AUV has a

maximum speed of 1.2 m/s and a mass of 360 kg. Taking the received infor-

mation into account, the forward speed reference is varied between -1.2 m/s

and 1.2 m/s, while the other two speed references are kept as close to zero

as possible. A mass reference of 360 kg and attitude references between -15◦

and 15◦ are also used. The generated forces, moments and AUV motion are

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 77

shown in the following figures:

0 100 200 300 400 500 600 700 800 900 1000
−100

0

100

F
X
 [N

]

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

F
Y
 [N

]

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

F
Z
 [N

]

Time [s]

(a)

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

V
N

 [m
/s

]

0 100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

V
E
 [m

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

V
D

 [m
/s

]

Time [s]

(b)

Figure 4.2: (a) Simulated body forces (b) and resulting NED velocities of AUV

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2
x 10

−3

M
X
 [N

−
m

]

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2
x 10

−3

M
Y
 [N

−
m

]

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2
x 10

−3

M
Z
 [N

−
m

]

Time [s]

(a)

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

R
ol

l [
de

g]

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

P
itc

h
[d

eg
]

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

Y
aw

 [d
eg

]

Time [s]

(b)

Figure 4.3: (a) Simulated body moments (b) and resulting attitude of AUV

Figure 4.2(b) shows how VN varies between -1.2 m/s and 1.2 m/s, while the

variations of VE and VD are very small. Figure 4.3(b) shows how the roll,

pitch and yaw vary between -15◦ and 15◦. The velocities have a period of

40 - 50 seconds, while the attitude has a period of 80 - 90 seconds. The long

periods represent the slow movement of an AUV. The simulated motion in

figures 4.2(b) and 4.3(b) accurately represents the movements of an AUV and

is used, together with the other 6-DOF block outputs, as inputs for the sensor

models (section 4.2.2).

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 78

4.2.2 Sensor models

Each sensor simulated in this project has its own model. The model simulates

real-life sensor data, making it very useful if certain sensors are unavailable

or too expensive to purchase. A GPS, rate gyroscopes, accelerometers, a mag-

netometer, a sonar, tilt sensors, a pressure sensor and a water wheel are mod-

eled in this project. Each model is discussed in the following sections and is

based upon the research done by [5].

4.2.2.1 GPS

Although there is no GPS signal underwater, the sensor is modeled to il-

lustrate the difference between navigation with and without a GPS. A GPS

provides position and velocity measurements. The position is given in lati-

tude, longitude and height (LLH), while the velocity is given in NED axes.

Figure 4.4 illustrates the GPS model. A discussion of the model follows after

the figure.

Figure 4.4: Simulink model of GPS

The GPS model receives velocity, displacement and initial position as input.

The displacement and velocity are provided by the model in figure 4.1, while

the initial position is provided by a user input. The displacement and veloc-

ity are both in NED axes, while the initial position is given in LLH. To add the

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 79

displacement to the initial position, the initial position is converted to ECEF

rectangular format by using equations (2.2.4) to (2.2.6). The displacement is

converted to rectangular format by using the following equation [5] :






Xrec

Yrec

Zrec




 =






−sin λ cos ϕ −sin ϕ −cos λ cos ϕ

−sin λ sin ϕ cos ϕ −cos λ sin ϕ

cos λ 0 −sin λ











XN

YE

ZD




 (4.2.1)

The sum of the displacement and initial position in rectangular format is

combined with GPS position noise and converted back to LLH by using equa-

tions (2.2.1) to (2.2.3). GPS signal delay is added to the converted position

and results in a simulated GPS position output. GPS velocity noise and sig-

nal delay are added to the input velocity and result in a simulated GPS ve-

locity output. The position and velocity output values are also scaled and

converted to integer values to simulate a digital GPS position and velocity

output.

4.2.2.2 Gyroscopes

Rate gyroscopes provide angular rate measurements. The angular rates, in

rad/s, are given in body axes. Figure 4.5 illustrates the gyroscope model. A

discussion of the model follows after the figure.

Figure 4.5: Simulink model of rate gyroscopes

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 80

The gyroscope model receives body angular rates as input. The angular rates

are provided by the model in figure 4.1. A second-order anti-aliasing filter is

applied to the input data to simulate the sensor filtering process. The filtered

angular rates are then multiplied with a cross coupling matrix (section 3.5) to

simulate gain deviation and sensor misalignment effects. Measurement noise

(section 2.5.1), bias drift (section 2.5.2) and sensor offset are added to the an-

gular rates and result in a simulated three-axes rate gyroscope output. The

output of the noise sources is filtered through second-order Butterworth fil-

ters to set the bandwidth. The angular rate output values are also scaled and

converted to integer values to simulate a digital three-axes rate gyroscope

output.

4.2.2.3 Accelerometers

Accelerometers measure static and dynamic accelerations. The accelerations,

in m/s2, are given in body axes. Figure 4.6 illustrates the accelerometer

model. A discussion of the model follows after the figure.

Figure 4.6: Simulink model of accelerometers

The accelerometer model receives dynamic accelerations and the DCM as in-

put. The dynamic accelerations and the DCM are provided by the model

in figure 4.1. Static accelerations are added to the dynamic accelerations by

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 81

converting the earth’s gravity vector in NED axes to a gravity vector in body

axes. The DCM is used for the axes transformation. A second-order anti-

aliasing filter is applied to the sum of accelerations to simulate the sensor

filtering process. The filtered accelerations are then multiplied with a cross

coupling matrix to simulate gain deviation and sensor misalignment effects.

Measurement noise, bias drift and sensor offset are added to the accelerations

and result in a simulated three-axes accelerometer output. The output of the

noise sources is filtered through second-order Butterworth filters to set the

bandwidth. The acceleration output values are also scaled and converted to

integer values to simulate a digital three-axes accelerometer output.

4.2.2.4 Magnetometer

The magnetometer measures the magnitude of a magnetic field in three axes.

The magnetometer measurements, in Gauss, are given in body axes. Figure

4.7 shows the magnetometer model. A discussion of the model follows after

the figure.

Figure 4.7: Simulink model of magnetometer

The magnetometer model receives the DCM as input. The DCM is provided

by the model in figure 4.1. The magnetometer measurements are simulated

by converting the earth’s magnetic reference vector in NED axes to a vector

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 82

in body axes. The DCM is used for the axes transformation. A second-order

anti-aliasing filter is applied to the magnetometer measurements to simu-

late the sensor filtering process. The filtered magnetometer measurements

are then multiplied with a cross coupling matrix to simulate gain deviation

and sensor misalignment effects. Measurement noise, bias drift and sensor

offset are added to the magnetometer measurements to simulate noise, hard

iron and soft iron effects [5]. The magnetometer measurements with added

noise result in a simulated three-axes magnetometer output. The output of

the noise sources is filtered through second-order Butterworth filters to set

the bandwidth. The magnetometer measurement values are also scaled and

converted to integer values to simulate a digital three-axes magnetometer

output.

4.2.2.5 Sonar

The sonar provides velocity measurements with respect to the ocean floor.

The velocity measurements, in m/s, are given in body axes. Figure 4.8 shows

the sonar model. A discussion of the model follows after the figure.

Figure 4.8: Simulink model of sonar

The sonar model receives body velocity measurements as input. The velocity

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 83

measurements are provided by the model in figure 4.1. A second-order anti-

aliasing filter is applied to the velocity measurements to simulate the sensor

filtering process. The filtered velocity measurements are then multiplied with

a cross coupling matrix to simulate gain deviation and sensor misalignment

effects. Measurement noise, bias drift and sensor offset are added to the ve-

locity measurements to simulate noise and the condition of the ocean floor

(e.g. sandy or rocky). The velocity measurements with added noise result

in a simulated three-axes sonar output. The output of the noise sources is

filtered through second-order Butterworth filters to set the bandwidth. The

velocity output values are also scaled and converted to integer values to sim-

ulate a digital three-axes sonar output.

4.2.2.6 Tilt sensors

The tilt sensors provide roll and pitch measurements in radians. Figure 4.9

shows the tilt sensor model. A discussion of the model follows after the fig-

ure.

Figure 4.9: Simulink model of tilt sensors

The tilt sensor model receives roll and pitch measurements as input. The roll

and pitch measurements are provided by the model in figure 4.1. A second-

order anti-aliasing filter is applied to the input data to simulate the sensor fil-

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 84

tering process. The filtered roll and pitch measurements are then multiplied

with a cross coupling matrix to simulate gain deviation and sensor misalign-

ment effects. Measurement noise, bias drift and sensor offset are added to

the roll and pitch measurements and result in a simulated two-axes tilt sen-

sor output. The output of the noise sources is filtered through second-order

Butterworth filters to set the bandwidth. The roll and pitch output values are

also scaled and converted to integer values to simulate a digital two-axes tilt

sensor output.

4.2.2.7 Pressure sensor

The pressure sensor provides pressure measurements that can be converted

to underwater depth measurements in meters. Figure 4.10 shows the pres-

sure sensor model. A discussion of the model follows after the figure.

Figure 4.10: Simulink model of pressure sensor

The pressure sensor model receives height measurements as input. The height

measurements are provided by the GPS model (figure 4.4). Negative height

indicates the underwater depth of the vehicle. A second-order anti-aliasing

filter is applied to the input data to simulate the sensor filtering process. The

filtered height measurements are then multiplied with a scaling gain to simu-

late gain deviation effects. The pressure sensor is a single-axis sensor, thus no

cross coupling matrix is required. Measurement noise, bias drift and sensor

offset are added to the height measurements and result in a simulated depth

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 85

output. The output of the noise sources is filtered through second-order But-

terworth filters to set the bandwidth. The depth output values are also scaled

and converted to integer values to simulate a digital depth output.

4.2.2.8 Water wheel

The water wheel provides forward body velocity (in m/s) with respect to the

ocean current flow. Figure 4.11 shows the water wheel model. A discussion

of the model follows after the figure.

Figure 4.11: Simulink model of water wheel

The water wheel model receives forward body velocity measurements as in-

put. The forward velocity measurements are provided by the model in figure

4.1. A second-order anti-aliasing filter is applied to the input data to simulate

the sensor filtering process. The filtered forward velocity measurements are

then multiplied with a scaling gain to simulate gain deviation effects. The

water wheel is a single-axis sensor, thus no cross coupling matrix is required.

Ocean currents are simulated by adding a sinusoidal offset to the forward

velocity measurements. Measurement noise and bias drift are also added to

the forward velocity measurements and result in a simulated water wheel

output. The output of the noise sources is filtered through second-order But-

terworth filters to set the bandwidth. The forward velocity output values are

also scaled and converted to integer values to simulate a digital water wheel

output.

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 86

4.3 Navigation algorithms

The two navigation algorithms implemented in this project are the MEKF

(section 2.6.2) and the Position and Velocity EKF (section 2.6.3). Each algo-

rithm implementation is divided into two parts: an initialization and update

part. The initialization part initializes the algorithm, while the update part is

executed at each time step for the duration of the simulation.

4.3.1 MEKF

The MEKF estimates the quaternion vector which is used to calculate the

DCM (equation 2.2.17) and the attitude (equations 2.2.23 to 2.2.25) of a ve-

hicle. The MEKF also estimates the three rate gyroscope biases. Simulated

sensor data (section 4.2) and real-time sensor data can be used for the MEKF

input.

4.3.1.1 Initialization

The initialization routine is illustrated in the following functional block dia-

gram:

Vehicle in static position pointing North

Initialize covariance matrices to zero

Initialize state vector to zero

Update sensors

available?

Calculate DCM with TRIAD algorithm

Calculate quaternion vector from DCM

Set quaternion vector equal to [0 0 0 1]'

Calculate roll, pitch from accelerometers

Set yaw equal to zero

Calculate DCM

Calculate quaternion vector from DCM

Accelerometers + Magnetometer
 None

Accelerometers
 Tilt sensors

Roll, pitch from tilt sensors

Set yaw equal to zero

Calculate DCM

Calculate quaternion vector from DCM

Update four quaternion states

Set three bias states equal to static rate gyroscope measurements

1

2

3

2a

2b
 2c

2d

Figure 4.12: MEKF initialization routine

The functional block diagram in figure 4.12 is now discussed in more detail:

1. With the vehicle in a static position and pointing North, the covariance

matrices and the state vector are initialized to zero.

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 87

2. The choice of update sensors determines the next step.

a) The accelerometer measurements, gravity reference vector, mag-

netometer measurements and magnetic field reference vector are

used with the TRIAD algorithm (section 2.4) to calculate the DCM.

The quaternion vector is then calculated by using equations (2.2.26)

to (2.2.30).

b) The accelerometer measurements are used to calculate roll and

pitch, while yaw is set to zero. Equation (2.2.10) is used to cal-

culate the DCM. The quaternion vector is then calculated by using

equations (2.2.26) to (2.2.30).

c) The tilt sensors provide roll and pitch, while yaw is set to zero.

Equation (2.2.10) is used to calculate the DCM. The quaternion

vector is then calculated by using equations (2.2.26) to (2.2.30).

d) The quaternion vector is initiated to [0 0 0 1]T.

3. The quaternion states are updated, while the three bias states are set

equal to the static rate gyroscope measurements.

4.3.1.2 Update

The update routine is illustrated in the following functional block diagram:

Save covariance matrix and

state vector from previous

time step

Rotating Earth

model?

Calculate DCM

Calculate compensastion values

Get current rate gyroscope measurements

Subtract compensation values from measurements

Get current rate gyroscope measurements
 No
 Yes

Propagate non-linear quaternion kinematics

Propagate 6-state covariance matrix

Measurement

update sensors?

Calculate feedback gain by using

accelerometer + magnetometer

measurement vector

No measurement update

Only propagation

Calculate feedback gain by using

accelerometer measurement vector

Update estimated states

Normalize quaternions

Update the 6-state covariance matrix

Calculate the 7-state covariance matrix

Obtain perturbation update

Calculate feedback gain by using

magnetometer measurement vector

Calculate feedback gain by using

tilt sensor measurement vector

Calculate feedback gain by using

tilt sensor + magnetometer

measurement vector

Calculate feedback gain by using

tilt sensor + accelerometer

measurement vector

Accelerometers+magnetometer

Accelerometers

Magnetometer

Tilt sensors

None

Tilt sensors+accelerometers

Tilt sensors+magnetometer

1

2
2a

2b

3

4

5

5a

5b

5c
 5d
 5e

5f

5g

6

7

Figure 4.13: MEKF update routine

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 88

The functional block diagram in figure 4.13 is now discussed in more detail:

1. The covariance matrix and state vector from the previous time step are

saved.

2. The choice of an Earth rotation model determines the next step.

a) A non-rotating model is adopted and the estimated gyroscope bi-

ases, from the previous time step, are subtracted from the current

rate gyroscope measurements.

b) A rotating model is adopted and compensation must be done (sec-

tion 2.6.2.4). The DCM is calculated by using the quaternion vec-

tor from the previous time step. Position and velocity values, es-

timated by the Position and Velocity EKF, together with the DCM

and the earth’s rotation rate are substituted into equation (2.6.42)

and the adjusted rate gyroscope measurements are calculated. The

estimated gyroscope biases, from the previous time step, are also

subtracted from the adjusted rate gyroscope measurements.

3. The non-linear quaternion kinematics are propagated by integrating

equation (2.6.20) and adding the result to the estimated quaternions

from the previous time step. The gyroscope biases are propagated by

using the estimated bias states from the previous time step.

4. The perturbation covariance matrix is propagated as follows:

• The discrete matrix, Φk, is calculated by using equation (2.6.10)

and the continuous matrix, F, from equation (2.6.39).

• The discrete process-noise matrix, Qk, is calculated by using equa-

tion (2.6.11).

• Equation (2.6.12) is then used for the covariance propagation.

5. The choice of update sensors determines how update measurements

are integrated into the system:

a) The gravity and magnetic field reference vector in NED coordi-

nates are transformed to vectors in body axes by making use of

the calculated DCM. Since two vector updates are available, two

of the matrices in equation (2.6.48) are combined to form a 6×6

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 89

measurement matrix. The vectors in body axes are normalized

and substituted into the combined measurement matrix. Equation

(2.6.13) is used to calculate the optimal feedback gain matrix. The

innovation vector is obtained by subtracting the transformed ref-

erence vectors from the sensor measurement vectors.

b) The gravity reference vector in NED coordinates is transformed to

a vector in body axes by making use of the calculated DCM. Since

only one vector update is available, the matrix in equation (2.6.48)

is used for the measurement matrix. The vector in body axes is

normalized and substituted into the measurement matrix. Equa-

tion (2.6.13) is used to calculate the optimal feedback gain matrix.

The innovation vector is obtained by subtracting the transformed

gravity reference vector from the accelerometer measurement vec-

tor.

c) The magnetic field reference vector in NED coordinates is trans-

formed to a vector in body axes by making use of the calculated

DCM. Since only one vector update is available, the matrix in

equation (2.6.48) is used for the measurement matrix. The vector

in body axes is normalized and substituted into the measurement

matrix. Equation (2.6.13) is used to calculate the optimal feedback

gain matrix. The innovation vector is obtained by subtracting the

transformed magnetic field reference vector from the magnetome-

ter measurement vector.

d) The tilt sensor measurements are integrated into the system by

using equation (2.2.23), equation (2.2.24) and the following mea-

surement matrix:

H =

[
∂φ
∂q1

∂φ
∂q2

∂φ
∂q3

0 0 0
∂θ
∂q1

∂θ
∂q2

∂θ
∂q3

0 0 0

]

(4.3.1)

Equation (2.6.13) is used to calculate the optimal feedback gain

matrix. The innovation vector is obtained by subtracting the es-

timated roll and pitch (equations 2.2.23 and 2.2.24) from the tilt

sensor measurement vector.

e) The measurement matrix from 5(c) and 5(d) are combined to form

a 6×6 measurement matrix. Equation (2.6.13) is used to calculate

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 90

the optimal feedback gain matrix. The innovation vector is ob-

tained as discussed in 5(c) and 5(d).

f) The measurement matrix from 5(b) and 5(d) are combined to form

a 6×6 measurement matrix. Equation (2.6.13) is used to calculate

the optimal feedback gain matrix. The innovation vector is ob-

tained as discussed in 5(b) and 5(d).

g) No sensor update measurements are available. Only the propaga-

tion, described in 3 and 4, takes place. The full seven-state (four

quaternions and three gyroscope biases) covariance matrix is cal-

culated by using an adapted version of equation (2.6.35) and is

written as follows:

P7×7 = S P6×6 S′ (4.3.2)

where:

S =
















q̂4 −q̂3 q̂2 0 0 0

q̂3 q̂4 −q̂1 0 0 0

−q̂2 q̂1 q̂4 0 0 0

−q̂1 −q̂2 −q̂3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
















6. The perturbation update vector is obtained by multiplying the optimal

feedback gain matrix with the innovation vector.

7. The four propagated quaternion states are updated by using equation

(2.6.34), while the three gyroscope bias states are updated by adding the

bias perturbation vector to the propagated bias states. The quaternions

are normalized and the six-state perturbation covariance matrix is up-

dated by using equation (2.6.14). Equation (4.3.2) is used to calculate

the full seven-state covariance matrix.

4.3.2 Position and Velocity EKF

The PVEKF estimates the position and velocity of a vehicle. The position is

given in LLH, while the velocity is given in NED axes. Simulated sensor data

(section 4.2) and real-time sensor data can be used for the PVEKF input.

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 91

4.3.2.1 Initialization

The initialization routine is illustrated in the following functional block dia-

gram:

Initiate covariance matrix to zero

Initiate state vector to zero

Set position and velocity states equal

to initial position and velocity of vehicle

1

2

Figure 4.14: PVEKF initialization routine

The functional block diagram in figure 4.14 is now discussed in more detail:

1. The covariance matrix and the state vector are initialized to zero.

2. The position and velocity states are set equal to the initial position and

velocity of the vehicle. The initial position and velocity can be entered

manually or it can be retrieved from onboard sensors (e.g. GPS).

4.3.2.2 Update

The update routine is illustrated in the following functional block diagram:

Save covariance matrix and

state vector from previous

time step

Rotating Earth

model?

Use non-linear position and velocity equations with

compensation included

Use non-linear position and velocity

equations without compensation

No
 Yes

Propagate non-linear kinematics

Propagate 6-state covariance matrix

Measurement

update sensors?

Calculate feedback gain by using

GPS position and velocity data

No measurement update

Only propagation

Calculate feedback gain by using

sonar velocity data

Update estimated states

Update 6-state covariance matrix

Calculate feedback gain by using

water wheel velocity data

Calculate feedback gain by using

pressure sensor depth data

Calculate feedback gain by using

sonar velocity and pressure

sensor depth data

Calculate feedback gain by using

water wheel velocity and pressure

sensor depth data

GPS

Sonar

Water wheel

Pressure sensor

None

Water wheel+pressure sensor

Sonar+pressure sensor

1

2
2a
 2b

3

4

6

6a

6b

6c
 6d
 6e

6f

6g

7

Calculate DCM
5

Figure 4.15: PVEKF update routine

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 92

The functional block diagram in figure 4.15 is now discussed in more detail:

1. The covariance matrix and state vector from the previous time step are

saved.

2. The choice of an Earth rotation model determines the next step.

a) Equations (2.6.49) to (2.6.51) are used for the non-linear position

kinematics. Equation (2.6.55), without the compensation terms, is

used for the non-linear velocity kinematics.

b) Equations (2.6.49) to (2.6.51) are used for the non-linear position

kinematics. Equation (2.6.55), with the compensation terms in-

cluded, is used for the non-linear velocity kinematics.

3. The non-linear position and velocity kinematics are propagated by inte-

grating the non-linear equations and adding the result to the estimated

position and velocity states from the previous time step.

4. The six-state covariance matrix is propagated as follows:

• The discrete matrix, Φk, is calculated by using equation (2.6.10)

and the continuous matrix, F, from equation (2.6.57).

• The discrete process-noise matrix, Qk, is calculated by using equa-

tion (2.6.11).

• Equation (2.6.12) is then used for the covariance propagation.

5. The DCM is calculated by using equation (2.2.17). The quaternions are

estimated by the MEKF.

6. The choice of update sensors determines how update measurements

are integrated into the system:

a) All six states are updated by the GPS measurements. The follow-

ing measurement matrix is used:

H =














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1














(4.3.3)

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 93

Equation (2.6.13) is used to calculate the optimal feedback gain

matrix. The innovation vector is obtained by subtracting the prop-

agated position and velocity states from the GPS measurement

vector.

b) The sonar measurement vector in body axes is transformed to a

vector in NED axes by using the inverse DCM. All three velocity

states are updated by the NED measurement vector. The following

measurement matrix is used:

H =






0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




 (4.3.4)

Equation (2.6.13) is used to calculate the optimal feedback gain

matrix. The innovation vector is obtained by subtracting the prop-

agated velocity states from the NED measurement vector.

c) The water wheel measurement in body axes is transformed to a

measurement in NED axes by using the inverse DCM. Only one

velocity state, VN , is updated by the NED measurement. The fol-

lowing measurement matrix is used:

H =
[

0 0 0 1 0 0
]

(4.3.5)

Equation (2.6.13) is used to calculate the optimal feedback gain

matrix. The innovation value is obtained by subtracting the prop-

agated velocity state, VN , from the NED measurement.

d) The pressure sensor measurement is converted to a depth mea-

surement and incorporated into the system by using the following

measurement matrix:

H =
[

0 0 1 0 0 0
]

(4.3.6)

Equation (2.6.13) is used to calculate the optimal feedback gain

matrix. The innovation value is obtained by subtracting the prop-

agated height state from the depth measurement.

e) The measurement matrix from 6(b) and 6(d) are combined to form

a 4×6 measurement matrix. Equation (2.6.13) is used to calculate

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 94

the optimal feedback gain matrix. The innovation vector is ob-

tained as discussed in 6(b) and 6(d).

f) The measurement matrix from 6(c) and 6(d) are combined to form

a 2×6 measurement matrix. Equation (2.6.13) is used to calculate

the optimal feedback gain matrix. The innovation vector is ob-

tained as discussed in 6(c) and 6(d).

g) No sensor update measurements are available. Only the propaga-

tion, described in 3 and 4, takes place.

7. The optimal feedback gain matrix is multiplied with the innovation

vector and the result is added to the six propagated states, resulting

in updated states. Equation (2.6.14) is used to update the covariance

matrix.

4.4 User interface

The GUI developed for the simulation software executes in the Matlab™ environment

and is illustrated in figure 4.16.

Figure 4.16: Simulation software GUI

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 95

The GUI in figure 4.16 helps the user to run a navigation simulation and dis-

plays the necessary simulation results. Each part of the GUI is discussed in

the following sections.

4.4.1 Sensors and Help menu

By clicking on the Sensors drop-down menu, illustrated in figure 4.17, the

user is able to select any of the modeled sensors (section 4.2.2) and enter the

sensor’s characteristics. The characteristics include measurement noise, bias

drift, offset, cross coupling and a few sensor-specific aspects. By clicking

on the Help drop-down menu, the user is provided with information that

explains the use of each GUI function.

Figure 4.17: Sensors and Help menu

4.4.2 Main

The Main section enables the user to enter the simulation runtime and the

system update frequency. Figure 4.18 shows the Main section.

Figure 4.18: Main

4.4.3 Anti-alias filters

The Anti-Alias filters section, illustrated in figure 4.19, enables the user to

set the sensors’ sampling frequency and the anti-aliasing filters’ cut-off fre-

quency.

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 96

Figure 4.19: Anti-alias filters

4.4.4 Sensor data options

The Sensor data options section enables the user to choose between the use

of newly generated sensor data, previously saved sensor data or saved real-

time sensor data. New sensor data are generated by the sensor simulation

software (section 4.2), while real-time sensor data are generated by a vehicle’s

sensors and saved in a text file. Figure 4.20 illustrates the Sensor data options

section.

Figure 4.20: Sensor data options

4.4.5 Noise seed

The Noise seed section enables the user to choose between a constant or newly

generated seed value. A constant seed value will cause the random number

generators, in the simulation software, to produce the same sequence of val-

ues with each simulation. A new seed value will cause the random number

generators to produce a different sequence of values. The noise seed option

is useful when different sensor combinations are compared and the noise se-

quence needs to stay the same with each simulation. Figure 4.21 shows the

Noise seed section.

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 97

Figure 4.21: Noise seed

4.4.6 Initial states

The Initial states section enables the user to enter the initial position, velocity

and attitude of an AUV or any other simulated vehicle. The mass of the

vehicle can also be entered. Figure 4.22 illustrates the Initial states section.

Figure 4.22: Initial states

4.4.7 Navigation options

The Navigation options section enables the user to select the sensor combina-

tions that need to be simulated. Sensor combinations can be selected for the

MEKF and the PVEKF. The user also has a choice between a rotating and a

non-rotating Earth model. Figure 4.23 illustrates the Navigation options sec-

tion.

Figure 4.23: Navigation options

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 98

4.4.8 Sensor failure

The Sensor failure section enables the user to simulate sensor failures for cer-

tain periods of time. Additional information about a sensor combination can

be obtained by analyzing the navigation results during sensor failure. Figure

4.24 shows the Sensor failure section.

Figure 4.24: Sensor failure

4.4.9 Simulation execution

By clicking on the Run simulation button, the GUI collects all the entered in-

formation and calls the necessary procedures. After a successful simulation

all the necessary outputs are generated and displayed in a user-friendly for-

mat. The simulation output shows the position, velocity and attitude of the

vehicle during the simulation. Statistical error information is also part of the

simulation output and is used to compare sensor combinations with each

other. The simulation software discussed in this chapter is summarized in

the following functional block diagram:

GUI

MEKF

for one time step

PVEKF

for one time step
 Output figures and

statistical info

End of simulation?

Yes

No

Figure 4.25: Summary of simulation software

CHAPTER 4. NAVIGATION SIMULATION SOFTWARE 99

4.5 Summary

Chapter 4 discusses the navigation simulation software developed for this

project. Section 4.2 focuses on AUV movement simulation and sensor mod-

eling. The implementation of the MEKF and PVEKF algorithms is discussed

in section 4.3, while the simulation GUI is discussed in section 4.4.

The simulation software was tested and operates as specified by the require-

ments. The software is available on a disc included with this thesis.

Chapter 5

Results

5.1 Overview

Chapter 5 illustrates and discusses the navigation simulation results of this

project. Section 5.2 focuses on simulations where real-time sensor data are

used as input, while section 5.3 focuses on simulations where simulated sen-

sor data are used as input. Finally, section 5.4 gives a brief summary of Chap-

ter 5.

5.2 Real-time data

Real-time sensor data are used to test the simulation software discussed in

Chapter 4. Real-time data are also used to make sure that the simulations

are realistic enough. The sensor module discussed in Chapter 3 is used to

collect real-time sensor data. Three maneuvers are simulated: a straight line,

wave and turn maneuver. With each maneuver the sensor module is man-

ually moved by a human to simulate the specific movements. The real-time

sensor data are logged and used as input for the simulation software.

Before a simulation with real-time data is executed, the quality of the sensor

module’s sensors must be determined by calculating their noise characteris-

tics. The Allan variance method (section 2.5) is used to calculate the noise

characteristics and these are listed in tables 5.1 to 5.4. The noise characteris-

tics are entered into the simulation by using the simulation GUI (section 4.4).

100

CHAPTER 5. RESULTS 101

Rate gyroscope axis X Y Z Avg

Angle random walk [1×10−4 rad/s/
√

Hz] 6.84 7.27 7.45 7.19

Rate random walk [1×10−5 rad/s/s/
√

Hz] 2.45 3.09 4.22 3.26

Table 5.1: Noise characteristics of rate gyroscopes

Accelerometer axis X Y Z Avg

Velocity random walk [1×10−4 m/s2/
√

Hz] 6.88 6.68 11.3 8.28

Rate random walk [1×10−5 m/s2/s/
√

Hz] 4.62 3.08 12.2 6.62

Table 5.2: Noise characteristics of accelerometers

Magnetometer axis X Y Z Avg

Magnetic random noise [1×10−5 Gauss/
√

Hz] 3.92 5.20 3.69 4.27

Rate random walk [1×10−5 Gauss/s/
√

Hz] 2.45 7.00 1.32 3.59

Table 5.3: Noise characteristics of magnetometer

Pressure sensor axis Z

Pressure random noise [1×10−3 kPa/
√

Hz] 1.65

Rate random walk [1×10−4 kPa/s/
√

Hz] 2.99

Table 5.4: Noise characteristics of pressure sensor

CHAPTER 5. RESULTS 102

5.2.1 Straight line maneuver

While keeping a constant height and attitude, the sensor module is moved

forward in a straight line. The logged data are used as input for the sim-

ulation software. The sensor module provides rate gyroscope, accelerom-

eter, magnetometer and pressure sensor measurements (sections 3.2.2 and

3.2.3). By taking the given sensors into consideration and using the informa-

tion from section 4.3, the following states are expected to be updated:

Attitude Roll
√

Pitch
√

Yaw
√

Position North X East X Down
√

Velocity North X East X Down
√

Table 5.5: Expected updated states

The pressure sensor will update the down position state. However, the down

velocity state will also be updated, since velocity is equal to differentiated po-

sition. To make the simulation results more intuitive, the position and veloc-

ity states are displayed in NED axes. The results of the straight line maneuver

simulation are illustrated in figures 5.1 to 5.3.

0 5 10 15 20
−4

−2

0

R
ol

l [
de

g]

Kalman filter attitude estimation

0 5 10 15 20
0

2

4

P
itc

h
[d

eg
]

0 5 10 15 20

−22
−20
−18
−16

Y
aw

 [d
eg

]

Time [s]

(a)

0 5 10 15 20

−0.2

0

0.2

R
ol

l e
rr

or
 [d

eg
] Kalman filter attitude estimation

0 5 10 15 20
−0.05

0

0.05

P
itc

h
er

ro
r

[d
eg

]

0 5 10 15 20
−0.5

0

0.5

Y
aw

 e
rr

or
 [d

eg
]

Time [s]

(b)

Figure 5.1: Straight line maneuver simulation with (a) estimated attitude and (b) 2σ
error bounds

CHAPTER 5. RESULTS 103

0 5 10 15 20
0

10
20
30

X
 [m

]

NED position

0 5 10 15 20
0

20

40

Y
 [m

]

0 5 10 15 20
−1.5

−1.48

−1.46

Z
 [m

]

Time [s]

(a)

0 5 10 15 20

−5
0
5

x 10
−6 Geodetic position error

La
tit

ud
e

[d
eg

]

0 5 10 15 20

−1
0
1

x 10
−5

Lo
ng

itu
de

 [d
eg

]

0 5 10 15 20
−4
−2

0
2
4x 10

−3

H
ei

gh
t [

m
]

Time [s]

(b)

Figure 5.2: Straight line maneuver simulation with (a) estimated position and (b) 2σ
error bounds

0 5 10 15 20
0

2

4

NED velocity

V
N

 [m
/s

]

0 5 10 15 20
0

2

4

V
E
 [m

/s
]

0 5 10 15 20

0
0.05

0.1
0.15

V
D

 [m
/s

]

Time [s]

(a)

0 5 10 15 20

−0.05
0

0.05

V
N

 [m
/s

]

NED velocity errors

0 5 10 15 20

−0.1
0

0.1

V
E
 [m

/s
]

0 5 10 15 20

−5
0
5

x 10
−3

V
D

 [m
/s

]

Time [s]

(b)

Figure 5.3: Straight line maneuver simulation with (a) estimated velocity and (b) 2σ
error bounds

Figures 5.1 to 5.3 confirm the expected results listed in table 5.5. The esti-

mated attitude in figure 5.1(a) changes by small amounts and confirms a con-

stant attitude. Figure 5.1(b) shows that the 2σ (95%) error bounds converge

to constant values. The converged error bounds indicate that the estimation

errors are kept within bounds by update sensor measurements. Figure 5.2(a)

illustrates the updated down position state with its coverged error bounds in

figure 5.2(b). The other two position states in figure 5.2(a) show diverging be-

havior. The diverging behavior is explained by the diverging error bounds in

figure 5.2(b), indicating that the estimation errors are not kept within bounds

by update sensor measurements. Figure 5.3(a) shows the estimated velocity

CHAPTER 5. RESULTS 104

states. Since velocity is equal to differentiated position, the down velocity

state is also updated. However, the other two velocity states diverge.

5.2.2 Wave maneuver

The wave maneuver is executed by performing a straight line maneuver,

while inducing positive and negative pitch to create a wave movement. The

results listed in table 5.5 are also expected for the wave maneuver, since the

same sensor module is used. Figures 5.4 to 5.6 illustrate the wave maneuver

simulation results.

0 5 10 15 20

0

2

4

R
ol

l [
de

g]

Kalman filter attitude estimation

0 5 10 15 20

−5
0
5

10
15

P
itc

h
[d

eg
]

0 5 10 15 20
−45

−40

−35

Y
aw

 [d
eg

]

Time [s]

(a)

0 5 10 15 20

−0.2

0

0.2
R

ol
l e

rr
or

 [d
eg

] Kalman filter attitude estimation

0 5 10 15 20
−0.1

0

0.1

P
itc

h
er

ro
r

[d
eg

]

0 5 10 15 20
−0.5

0

0.5

Y
aw

 e
rr

or
 [d

eg
]

Time [s]

(b)

Figure 5.4: Wave maneuver simulation with (a) estimated attitude and (b) 2σ error
bounds

0 5 10 15 20
0

5

10

X
 [m

]

NED position

0 5 10 15 20
0

5

Y
 [m

]

0 5 10 15 20

−1.5

−1.4

Z
 [m

]

Time [s]

(a)

0 5 10 15 20

−5
0
5

x 10
−6 Geodetic position error

La
tit

ud
e

[d
eg

]

0 5 10 15 20

−1
0
1

x 10
−5

Lo
ng

itu
de

 [d
eg

]

0 5 10 15 20
−4
−2

0
2
4x 10

−3

H
ei

gh
t [

m
]

Time [s]

(b)

Figure 5.5: Wave maneuver simulation with (a) estimated position and (b) 2σ error
bounds

CHAPTER 5. RESULTS 105

0 5 10 15 20
−0.5

0

0.5

1
NED velocity

V
N

 [m
/s

]

0 5 10 15 20
−2

−1

0

1

V
E
 [m

/s
]

0 5 10 15 20
−0.2

0
0.2
0.4

V
D

 [m
/s

]

Time [s]

(a)

0 5 10 15 20
−0.1

0

0.1

V
N

 [m
/s

]

NED velocity errors

0 5 10 15 20

−0.1
0

0.1

V
E
 [m

/s
]

0 5 10 15 20
−5

0

5
x 10

−3

V
D

 [m
/s

]

Time [s]

(b)

Figure 5.6: Wave maneuver simulation with (a) estimated velocity and (b) 2σ error
bounds

Figures 5.4 to 5.6 confirm the expected results listed in table 5.5. The pitch

state in figure 5.4(a) illustrates the wave movement. The converged error

bounds in figure 5.4(b) show that all the attitude states are updated by sen-

sor measurements. The wave maneuver also causes the sensor module to

experience increases and decreases in height. The variations in height are

illustrated by the down position state in figure 5.5(a). Figure 5.5(b) shows

that the down position state is updated by sensor measurements. The other

two position states in figure 5.5(a) show diverging behavior. The diverging

behavior is explained by the diverging error bounds in figure 5.5(b). Figure

5.6(a) shows the estimated velocity states. Since velocity is equal to differen-

tiated position, the down velocity state is also updated. However, the other

two velocity states diverge.

5.2.3 Turn maneuver

The turn maneuver is executed by performing a positive roll, positive pitch,

positive yaw and negative roll sequence. If the sensor module faces North,

then it will face East after the maneuver is executed. The results listed in table

5.5 are also expected for the turn maneuver, since the same sensor module is

used. Figures 5.7 to 5.9 illustrate the turn maneuver simulation results.

CHAPTER 5. RESULTS 106

0 5 10 15 20
0

10

20

R
ol

l [
de

g]

Kalman filter attitude estimation

0 5 10 15 20

0

5

10

P
itc

h
[d

eg
]

0 5 10 15 20
−100

−50

0

50

Y
aw

 [d
eg

]

Time [s]

(a)

0 5 10 15 20
−0.2

0

0.2

R
ol

l e
rr

or
 [d

eg
] Kalman filter attitude estimation

0 5 10 15 20
−0.2

0

0.2

P
itc

h
er

ro
r

[d
eg

]

0 5 10 15 20
−0.5

0

0.5

Y
aw

 e
rr

or
 [d

eg
]

Time [s]

(b)

Figure 5.7: Turn maneuver simulation with (a) estimated attitude and (b) 2σ error
bounds

0 5 10 15 20

−10

−5

0

X
 [m

]

NED position

0 5 10 15 20

−10

−5

0

Y
 [m

]

0 5 10 15 20
−1.52
−1.5

−1.48
−1.46
−1.44
−1.42

Z
 [m

]

Time [s]

(a)

0 5 10 15 20

−5
0
5

x 10
−6 Geodetic position error

La
tit

ud
e

[d
eg

]

0 5 10 15 20

−1
0
1

x 10
−5

Lo
ng

itu
de

 [d
eg

]

0 5 10 15 20
−4
−2

0
2
4x 10

−3

H
ei

gh
t [

m
]

Time [s]

(b)

Figure 5.8: Turn maneuver simulation with (a) estimated position and (b) 2σ error
bounds

0 5 10 15 20
−1.5

−1

−0.5

0
NED velocity

V
N

 [m
/s

]

0 5 10 15 20

−2
−1

0
1

V
E
 [m

/s
]

0 5 10 15 20

0

0.2

0.4

V
D

 [m
/s

]

Time [s]

(a)

0 5 10 15 20

−0.05
0

0.05

V
N

 [m
/s

]

NED velocity errors

0 5 10 15 20

−0.1
0

0.1

V
E
 [m

/s
]

0 5 10 15 20
−5

0

5
x 10

−3

V
D

 [m
/s

]

Time [s]

(b)

Figure 5.9: Turn maneuver simulation with (a) estimated velocity and (b) 2σ error
bounds

CHAPTER 5. RESULTS 107

Figures 5.7 to 5.9 confirm the expected results listed in table 5.5. The roll,

pitch and yaw states in figure 5.7(a) show how the sequence of movements

is executed. The converged error bounds in figure 5.7(b) show that all the at-

titude states are updated by sensor measurements. Figure 5.7(b) also shows

that there are variations in the convergence values of the roll and pitch states’

error bounds. The variations are caused by dynamic accelerations. The ac-

celerometers help to update the roll and pitch states by providing the MEKF

with a gravity (static acceleration) measurement vector (section 4.3.1). How-

ever, dynamic accelerations, caused by vehicle movement, can make the mea-

sured gravity vector more "noisy" since the accelerometers measure static and

dynamic accelerations. A decrease in the quality of the gravity measurement

vector will cause the error uncertainty (bound) to converge at a higher value.

However, an AUV or any vehicle with slow dynamics will only generate

small dynamic accelerations and will have little effect on the gravity mea-

surement vector.

Figure 5.8(b) shows that the down position state is also updated by sensor

measurements. The other two position states in figure 5.8(a) show diverging

behavior. The diverging behavior is explained by the diverging error bounds

in figure 5.8(b). Figure 5.9(a) shows the estimated velocity states. Since veloc-

ity is equal to differentiated position, the down velocity state is also updated.

However, the other two velocity states diverge.

5.3 Simulations

Section 5.2 shows that the navigation simulation software functions correctly

when real-time sensor data are used as input. In section 5.3 simulated sen-

sor data (section 4.2) are used as input for the simulation software. Different

sensor combinations are simulated and the RMS (Root Mean Square) estima-

tion errors are compared to one another. The quality of each sensor is also

varied by changing its noise characteristics (section 2.5). Each sensor is simu-

lated with high noise and low noise values to simulate a low and high quality

sensor respectively. The Allan variance method (section 2.5) and sensor data

sheets are used to form realistic sensor noise values. In cases where the Allan

variance method and data sheets are not used, hypothetical values are used.

The sensors used in the simulations, together with their noise characteristics,

CHAPTER 5. RESULTS 108

are listed in table 5.6. If a sensor’s noise characteristics are gathered from

a data sheet, then its model number is also listed in table 5.6. Each sensor

combination is discussed in a separate case study.

Sensor Measurement noise Bias drift

Rate gyroscope A

Analog Devices ADXRS401 MEMS 7.19×10−4 rad/s/
√

Hz 3.26×10−5 rad/s/s/
√

Hz
Rate gyroscope B

Honeywell GG1320AN Laser 1.02×10−6 rad/s/
√

Hz 1.02×10−7 rad/s/s/
√

Hz
Accelerometer A

STMicroelectronics LIS3L02AS4 MEMS 8.28×10−4 m/s2/
√

Hz 6.62×10−5 m/s2/s/
√

Hz
Accelerometer B

Dytran 7500A1 Variable Capacitance 7.85×10−5 m/s2/
√

Hz 7.85×10−6 m/s2/s/
√

Hz
Magnetometer A

HMO FG-D2 Fluxgate 4.27×10−5 Gauss/
√

Hz 3.59×10−5 Gauss/s/
√

Hz
Magnetometer B

MEMSense MAG3 AMR 6.80×10−8 Gauss/
√

Hz 6.80×10−9 Gauss/s/
√

Hz

Sonar A 1.00×10−3 m/s/
√

Hz 1.00×10−4 m/s/s/
√

Hz

Sonar B 1.00×10−6 m/s/
√

Hz 1.00×10−7 m/s/s/
√

Hz
Tilt sensor A

Crossbow CXTD02 MEMS 2.34×10−3 rad/
√

Hz 2.34×10−4 rad/s/
√

Hz
Tilt sensor B

Whirlybird WTILT-02D MEMS 1.66×10−4 rad/
√

Hz 1.66×10−5 rad/s/
√

Hz

Water wheel A 1.00×10−2 m/s/
√

Hz 1.00×10−3 m/s/s/
√

Hz

Water wheel B 1.00×10−6 m/s/
√

Hz 1.00×10−7 m/s/s/
√

Hz
Pressure sensor A

Freescale MPX4115A 1.65×10−3 kPa/
√

Hz 2.99×10−4 kPa/s/
√

Hz
Pressure sensor B

Paroscientific Series 8000 5.5×10−5 kPa/
√

Hz 5.5×10−6 kPa/s/
√

Hz

Position deviation Velocity deviation

GPS A
Ublox 4Hz update 4 m 0.1 m/s
GPS B
Novatel 20Hz update 0.45 m 0.03 m/s

Table 5.6: Simulated sensors and their different noise characteristics

5.3.1 Case study 1

The first four case studies focus on sensor combinations for the MEKF (sec-

tion 4.3.1.2). The MEKF estimates attitude and thus, only attitude estimation

errors are compared. The first case study focuses on a rate gyroscope and

accelerometer combination. The rate gyroscopes are the core sensors of the

CHAPTER 5. RESULTS 109

MEKF, while the accelerometers provide the MEKF with gravity vector up-

date measurements. The expected updated states are listed in table 5.7.

Attitude Roll
√

Pitch
√

Yaw X
Position North X East X Down X
Velocity North X East X Down X

Table 5.7: Case study 1: Expected updated states

The noise characteristics of rate gyroscope A and accelerometer A (table 5.6)

are used and the simulation results are illustrated in figure 5.10.

Figure 5.10: Simulation results when rate gyroscope A and accelerometer A noise
characteristics are used

The quality of the rate gyroscopes and accelerometers are varied and the sim-

ulation results are listed in table 5.8. The simulations are executed with and

without bias drift to show the effect of sensor bias drift. The results in table

5.8 are with respect to the RMS estimation errors in figure 5.10. The down ar-

row (↓) means that the RMS error is "x" times smaller than the reference RMS

error, while the up arrow (↑) means that the RMS error is "x" times larger than

the reference RMS error. The values listed in table 5.8 represent the "x" factor.

NSC is the abbreviation for "No Significant Change".

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Rate gyroscope B
Accelerometer A Roll 5.88 ↓ Pitch 25.00 ↓ Roll 25.00 ↓ Pitch 25.00 ↓
Rate gyroscope A
Accelerometer B Roll NSC Pitch NSC Roll NSC Pitch NSC
Rate gyroscope B
Accelerometer B Roll 7.14 ↓ Pitch 25.00 ↓ Roll 25.00 ↓ Pitch 25.00 ↓

Table 5.8: Case study 1 additional results

CHAPTER 5. RESULTS 110

Figure 5.10 shows that only the roll and pitch states are accurately updated.

The large yaw error can be explained by the fact that the gravity vector has

a big downward component. When the AUV is yawing around the down-

ward axis, the measured vector will not change as much as when the AUV is

rolling or pitching, resulting in bigger estimation errors in the yaw angle.

Using the results listed in table 5.8, the factor by which the sensors are

improved is compared with the average RMS error change. The comparison

results are listed in table 5.9. The sensor improvement factor is calculated by

using the measurement noise values listed in table 5.6. The RMS error change

is also with respect to the RMS values in figure 5.10. NC is the abbreviation

for "No Change".

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Rate gyroscopes 704.9
Accelerometers NC 15.40 ↓ 25.00 ↓
Rate gyroscopes NC
Accelerometers 10.5 NSC NSC
Rate gyroscopes 704.9
Accelerometers 10.5 16.10 ↓ 25.00 ↓

Table 5.9: Case study 1 comparison results

The results listed in table 5.9 show that a large rate gyroscope improvement

factor of 704.9 is necessary to decrease the average RMS error by a factor of

15.4. By calibrating the sensors and thereby reducing the bias drift, the RMS

errors are decreased even more. The small accelerometer improvement factor

results in no significant RMS error changes.

5.3.2 Case study 2

The second case study focuses on a rate gyroscope and tilt sensor combina-

tion. The rate gyroscopes are the core sensors of the MEKF, while the tilt

sensors provide the MEKF with roll and pitch update measurements. The

expected updated states are listed in table 5.10.

Attitude Roll
√

Pitch
√

Yaw X
Position North X East X Down X
Velocity North X East X Down X

Table 5.10: Case study 2: Expected updated states

CHAPTER 5. RESULTS 111

The noise characteristics of rate gyroscope A and tilt sensor A (table 5.6) are

used and the simulation results are illustrated in figure 5.11.

Figure 5.11: Simulation results when rate gyroscope A and tilt sensor A noise char-
acteristics are used

The quality of the rate gyroscopes and tilt sensors are varied and the simu-

lation results are listed in table 5.11. The simulations are executed with and

without bias drift to show the effect of sensor bias drift. The results in table

5.11 are with respect to the RMS estimation errors in figure 5.11. The down

arrow (↓) means that the RMS error is "x" times smaller than the reference

RMS error, while the up arrow (↑) means that the RMS error is "x" times

larger than the reference RMS error. The values listed in table 5.11 represent

the "x" factor. NSC is the abbreviation for "No Significant Change".

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Rate gyroscope B
Tilt sensor A Roll 1.25 ↓ Pitch 1.20 ↓ Roll 25.00 ↓ Pitch 16.67 ↓
Rate gyroscope A
Tilt sensor B Roll 5.26 ↓ Pitch 5.88 ↓ Roll 5.56 ↓ Pitch 6.67 ↓
Rate gyroscope B
Tilt sensor B Roll 11.10 ↓ Pitch 12.50 ↓ Roll 14.28 ↓ Pitch 25.00 ↓

Table 5.11: Case study 2 additional results

Figure 5.11 shows that only the roll and pitch states are accurately updated.

Using the results listed in table 5.11, the factor by which the sensors are im-

proved is compared with the average RMS error change. The comparison

results are listed in table 5.12. The sensor improvement factor is calculated

by using the measurement noise values listed in table 5.6. The RMS error

change is also with respect to the RMS values in figure 5.11.

CHAPTER 5. RESULTS 112

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Rate gyroscopes 704.9
Tilt sensors NC 1.23 ↓ 20.83 ↓
Rate gyroscopes NC
Tilt sensors 14.1 5.57 ↓ 6.12 ↓
Rate gyroscopes 704.9
Tilt sensors 14.1 11.80 ↓ 19.64 ↓

Table 5.12: Case study 2 comparison results

The results listed in table 5.12 show that by increasing the rate gyroscope

quality by a factor of 704.9 and keeping the quality of the tilt sensors the

same, the average RMS error is decreased by a factor of only 1.23. The previ-

ous result shows that it is important to keep the variation in quality between

different navigation sensors small, especially if no drift calibration is done.

The small variation is necessary, otherwise the low-quality sensors (tilt sen-

sors) may influence the effect of the high-quality sensors (rate gyroscopes)

when they are combined in a navigation algorithm. By calibrating the sen-

sors and thereby reducing the bias drift, the RMS errors are decreased even

more.

5.3.3 Case study 3

The third case study focuses on a rate gyroscope, tilt sensor and magne-

tometer combination. The rate gyroscopes are the core sensors of the MEKF.

The tilt sensors provide the MEKF with roll and pitch update measurements,

while the magnetometer provides the MEKF with magnetic field vector up-

date measurements. The expected updated states are listed in table 5.13.

Attitude Roll
√

Pitch
√

Yaw
√

Position North X East X Down X
Velocity North X East X Down X

Table 5.13: Case study 3: Expected updated states

The noise characteristics of rate gyroscope A, tilt sensor A and magnetometer

A (table 5.6) are used and the simulation results are illustrated in figure 5.12.

The quality of the rate gyroscopes, tilt sensors and magnetometer are varied

and the simulation results are listed in table 5.14. The simulations are exe-

cuted with and without bias drift to show the effect of sensor bias drift. The

CHAPTER 5. RESULTS 113

Figure 5.12: Simulation results when rate gyroscope A, tilt sensor A and magne-
tometer A noise characteristics are used

results in table 5.14 are with respect to the RMS estimation errors in figure

5.12. The down arrow (↓) means that the RMS error is "x" times smaller than

the reference RMS error, while the up arrow (↑) means that the RMS error is

"x" times larger than the reference RMS error. The values listed in table 5.14

represent the "x" factor.

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Rate gyroscope B
Tilt sensor A Roll 5.90 ↑ Pitch 7.47 ↑ Roll 5.60 ↑ Pitch 7.44 ↑
Magnetometer A Yaw 7.20 ↑ Yaw 7.28 ↑
Rate gyroscope A
Tilt sensor B Roll 4.00 ↓ Pitch 1.75 ↓ Roll 8.33 ↓ Pitch 5.88 ↓
Magnetometer A Yaw NSC Yaw 4.00 ↓
Rate gyroscope A
Tilt sensor A Roll 1.28 ↓ Pitch 1.33 ↓ Roll 1.56 ↓ Pitch 2.22 ↓
Magnetometer B Yaw NSC Yaw 1.33 ↓
Rate gyroscope B
Tilt sensor B Roll 2.78 ↑ Pitch 3.76 ↑ Roll 2.78 ↑ Pitch 3.76 ↑
Magnetometer B Yaw 3.35 ↑ Yaw 3.35 ↑

Table 5.14: Case study 3 additional results

Figure 5.12 shows that the roll, pitch and yaw states are accurately updated.

The larger yaw error can be explained by the fact that the magnetic field vec-

tor has a big downward component. When the AUV is yawing around the

downward axis, the measured vector will not change as much as when the

AUV is rolling or pitching, resulting in bigger estimation errors on the yaw

angle.

Using the results listed in table 5.14, the factor by which the sensors are

improved is compared with the average RMS error change. The comparison

CHAPTER 5. RESULTS 114

results are listed in table 5.15. The sensor improvement factor is calculated

by using the measurement noise values listed in table 5.6. The RMS error

change is also with respect to the RMS values in figure 5.12.

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Rate gyroscopes 704.9
Tilt sensors NC
Magnetometer NC 6.86 ↑ 6.77 ↑
Rate gyroscopes NC
Tilt sensors 14.1
Magnetometer NC 2.25 ↓ 6.07 ↓
Rate gyroscopes NC
Tilt sensors NC
Magnetometer 627.9 1.20 ↓ 1.70 ↓
Rate gyroscopes 704.9
Tilt sensors 14.1
Magnetometer 627.9 3.29 ↑ 3.29 ↑

Table 5.15: Case study 3 comparison results

The results listed in table 5.15 show that by increasing the rate gyroscope

quality by a factor of 704.9 and keeping the quality of the tilt sensors and

magnetometer the same, the average RMS error is increased by a factor of

6.86. The average RMS error is also increased when the quality factor of all

three sensors are increased. The previous two result show that it is important

to keep the variation in quality between different navigation sensors small.

The small variation is necessary, otherwise the sensor measurements may

influence the MEKF negatively and cause the RMS error to increase instead

of decrease. By calibrating the sensors and thereby reducing the bias drift,

the RMS errors are decreased even more. The results of this case study also

show that the magnetometer helps to update the yaw state.

5.3.4 Case study 4

The fourth case study focuses on a rate gyroscope, accelerometer and magne-

tometer combination. The rate gyroscopes are the core sensors of the MEKF.

The accelerometers provide the MEKF with gravity vector update measure-

ments, while the magnetometer provides the MEKF with magnetic field vec-

tor update measurements. The expected updated states are listed in table

5.16.

CHAPTER 5. RESULTS 115

Attitude Roll
√

Pitch
√

Yaw
√

Position North X East X Down X
Velocity North X East X Down X

Table 5.16: Case study 4: Expected updated states

The noise characteristics of rate gyroscope A, accelerometer A and magne-

tometer A (table 5.6) are used and the simulation results are illustrated in

figure 5.13.

Figure 5.13: Simulation results when rate gyroscope A, accelerometer A and magne-
tometer A noise characteristics are used

The quality of the rate gyroscopes, accelerometers and magnetometer are var-

ied and the simulation results are listed in table 5.17. The simulations are ex-

ecuted with and without bias drift to show the effect of sensor bias drift. The

results in table 5.17 are with respect to the RMS estimation errors in figure

5.13. The down arrow (↓) means that the RMS error is "x" times smaller than

the reference RMS error, while the up arrow (↑) means that the RMS error is

"x" times larger than the reference RMS error. The values listed in table 5.17

represent the "x" factor.

Figure 5.13 shows that the roll, pitch and yaw states are accurately updated.

The larger yaw error can be explained by the fact that the magnetic field and

gravity vectors have a big downward component. When the AUV is yawing

around the downward axis, the measured vectors will not change as much

as when the AUV is rolling or pitching, resulting in bigger estimation errors

in the yaw angle.

Using the results listed in table 5.17, the factor by which the sensors are

improved is compared with the average RMS error change. The comparison

results are listed in table 5.18. The sensor improvement factor is calculated

CHAPTER 5. RESULTS 116

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Rate gyroscope B
Accelerometer A Roll 1.27 ↓ Pitch 1.10 ↓ Roll 14.29 ↓ Pitch 20.00 ↓
Magnetometer A Yaw 1.39 ↓ Yaw 33.33 ↓
Rate gyroscope A
Accelerometer B Roll NSC Pitch NSC Roll 1.15 ↓ Pitch 2.08 ↓
Magnetometer A Yaw NSC Yaw 1.69 ↓
Rate gyroscope A
Accelerometer A Roll 1.16 ↓ Pitch 2.17 ↓ Roll 1.16 ↓ Pitch 2.17 ↓
Magnetometer B Yaw 1.69 ↓ Yaw 1.72 ↓
Rate gyroscope B
Accelerometer B Roll 7.69 ↓ Pitch 12.50 ↓ Roll 7.69 ↓ Pitch 12.50 ↓
Magnetometer B Yaw 14.29 ↓ Yaw 14.29 ↓

Table 5.17: Case study 4 additional results

by using the measurement noise values listed in table 5.6. The RMS error

change is also with respect to the RMS values in figure 5.13.

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Rate gyroscopes 704.9
Accelerometers NC
Magnetometer NC 1.25 ↓ 22.54 ↓
Rate gyroscopes NC
Accelerometers 10.5
Magnetometer NC NSC 1.64 ↓
Rate gyroscopes NC
Accelerometers NC
Magnetometer 627.9 1.67 ↓ 1.68 ↓
Rate gyroscopes 704.9
Accelerometers 10.5
Magnetometer 627.9 11.49 ↓ 11.49 ↓

Table 5.18: Case study 4 comparison results

The results of this case study once again show the importance of sensor cal-

ibration. By calibrating the sensors and thereby reducing the bias drift, the

RMS errors in some cases are significantly decreased . The case study results

also show that the magnetometer helps to update the yaw state. The sen-

sor combination used in this case study shows the best overall performance

when compared to the results of case studies one to three. Case study three

also shows good results. However, accelerometer sensor data are useful for

the MEKF and PVEKF, while tilt sensor data are only useful for the MEKF.

The rate gyroscope, accelerometer and magnetometer sensor combination is

recommended for the attitude estimation of an AUV or vehicle with slow dy-

CHAPTER 5. RESULTS 117

namics. By performing sensor calibration, the attitude estimation errors will

decrease even more.

The next four case studies focus on sensor combinations for the PVEKF (sec-

tion 4.3.2.2). Thus, only position and velocity estimation errors are compared.

However, the PVEKF requires the estimated MEKF quaternion states. The

rate gyroscope, accelerometer and magnetometer sensor combination is used

with the MEKF to estimate the required quaternion states.

5.3.5 Case study 5

The fifth case study focuses on an attitude sensor and sonar sensor combi-

nation. The attitude sensors (rate gyroscopes, accelerometers and magne-

tometer) are used with the MEKF to estimate the required quaternion states.

The sonar provides the PVEKF with body velocity update measurements.

The expected updated states are listed in table 5.19. The attitude sensors are

discussed in study cases one to four, thus only PVEKF estimation errors are

compared in this case study.

Attitude Roll
√

Pitch
√

Yaw
√

Position North X East X Down X
Velocity North

√
East

√
Down

√

Table 5.19: Case study 5: Expected updated states

The noise characteristics of rate attitude sensors A (rate gyroscope A, ac-

celerometer A, magnetometer A) and sonar A (table 5.6) are used and the

simulation results are illustrated in figure 5.14.

The quality of the attitude sensors and sonar are varied and the simulation

results are listed in table 5.20. The simulations are executed with and without

bias drift to show the effect of sensor bias drift. The results in table 5.20 are

with respect to the RMS estimation errors in figure 5.14. The down arrow (↓)

means that the RMS error is "x" times smaller than the reference RMS error,

while the up arrow (↑) means that the RMS error is "x" times larger than the

reference RMS error. The values listed in table 5.20 represent the "x" factor.

CHAPTER 5. RESULTS 118

Figure 5.14: Simulation results when attitude sensors A and sonar A noise charac-
teristics are used

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Attitude sensors B VN 2.23 ↑ VE 2.27 ↓ VN 2.20 ↑ VE 2.27 ↓
Sonar A VD 1.18 ↓ VD 1.30 ↓
Attitude sensors A VN 2.04 ↓ VE 1.04 ↓ VN 2.04 ↓ VE 1.92 ↓
Sonar B VD 1.22 ↓ VD 2.70 ↓
Attitude sensors B VN 2.08 ↓ VE 11.11 ↓ VN 2.08 ↓ VE 11.11 ↓
Sonar B VD 8.33 ↓ VD 8.33 ↓

Table 5.20: Case study 5 additional results

Figure 5.14 shows that the north, east and down velocity states are accu-

rately updated. Using the results listed in table 5.20, the factor by which the

sensors are improved is compared with the average RMS error change. The

comparison results are listed in table 5.21. The sensor improvement factor

is calculated by using the measurement noise values listed in table 5.6. The

RMS error change is also with respect to the RMS values in figure 5.14.

The results listed in table 5.21 show that the velocity RMS errors are de-

creased the most when the quality of the attitude sensors and sonar is in-

creased. However, by increasing the sonar quality by a factor of 1000 and

keeping the quality of the attitude sensors the same, the average RMS error

is only decreased by a factor of 1.43. By calibrating the sensors and thereby

reducing the bias drift, the RMS errors are decreased even more. Accurate

CHAPTER 5. RESULTS 119

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Attitude sensors B
Sonar NC 0.407 ↓ 0.457 ↓
Attitude sensors NC
Sonar 1000 1.43 ↓ 2.22 ↓
Attitude sensors B
Sonar 1000 7.17 ↓ 7.17 ↓

Table 5.21: Case study 5 comparison results

sonar velocity updates also improve the estimation of the position states,

since position is equal to integrated velocity. However, any velocity noise

will also be integrated and will result in position random walk. The sonar

provides velocity measurements with respect to the ocean floor, thus the ac-

curacy of the sonar largely depends on the terrain where it is used.

5.3.6 Case study 6

The sixth case study focuses on an attitude sensor and water wheel sen-

sor combination. The attitude sensors (rate gyroscopes, accelerometers and

magnetometer) are used with the MEKF to estimate the required quaternion

states. The water wheel provides the PVEKF with forward body velocity up-

date measurements. The expected updated states are listed in table 5.22. The

attitude sensors are discussed in study cases one to four, thus only PVEKF

estimation errors are compared in this case study.

Attitude Roll
√

Pitch
√

Yaw
√

Position North X East X Down X
Velocity North

√
East X Down X

Table 5.22: Case study 6: Expected updated states

The noise characteristics of attitude sensors A (rate gyroscope A, accelerom-

eter A, magnetometer A) and water wheel A (table 5.6) are used and the

simulation results are illustrated in figures 5.15 and 5.16. A very weak ocean

current is modeled for the water wheel simulations.

The quality of the attitude sensors and water wheel are varied and the simu-

lation results are listed in table 5.23. The simulations are executed with and

without bias drift to show the effect of sensor bias drift. The results in table

CHAPTER 5. RESULTS 120

Figure 5.15: Simulation results when attitude sensors A and water wheel A noise
characteristics are used

0 100 200 300 400 500 600 700 800
−1

0

1

NED velocity

V
N

 [m
/s

]

0 100 200 300 400 500 600 700 800
0

20

40

V
E
 [m

/s
]

0 100 200 300 400 500 600 700 800
0

0.5

1

V
D

 [m
/s

]

Time [s]

Figure 5.16: Estimated NED velocity

CHAPTER 5. RESULTS 121

5.23 are with respect to the RMS estimation errors in figure 5.15. The down

arrow (↓) means that the RMS error is "x" times smaller than the reference

RMS error, while the up arrow (↑) means that the RMS error is "x" times

larger than the reference RMS error. The values listed in table 5.23 represent

the "x" factor.

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Attitude sensors B
Water wheel A VN NSC VN 1.02 ↓
Attitude sensors A
Water wheel B VN 1.20 ↓ VN 1.22 ↓
Attitude sensors B
Water wheel B VN 1.22 ↓ VN 1.22 ↓

Table 5.23: Case study 6 additional results

Figure 5.16 shows that the north velocity state is accurately updated. The

east and down velocity states are not updated and diverge over time. Using

the results listed in table 5.23, the factor by which the sensors are improved

is compared with the average RMS error change. The comparison results are

listed in table 5.24. The sensor improvement factor is calculated by using the

measurement noise values listed in table 5.6. The RMS error change is also

with respect to the RMS values in figure 5.15.

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Attitude sensors B
Water wheel NC NSC 1.02 ↓
Attitude sensors NC
Water wheel 10000 1.20 ↓ 1.22 ↓
Attitude sensors B
Water wheel 10000 1.22 ↓ 1.22 ↓

Table 5.24: Case study 6 comparison results

The results listed in table 5.24 show that by increasing the water wheel qual-

ity by a factor of 10000 and keeping the quality of the attitude sensors the

same, the average RMS error is only decreased by a factor of 1.20. By cali-

brating the sensors and thereby reducing the bias drift, the RMS errors are

decreased even more. Accurate water wheel velocity updates also improve

the estimation of the north position state, since position is equal to integrated

CHAPTER 5. RESULTS 122

velocity. However, any velocity noise will also be integrated and will result

in position random walk. The water wheel provides velocity measurements

with respect to the water current flow, thus the accuracy of the water wheel

largely depends on the strength and direction of the current.

5.3.7 Case study 7

The sixth case study focuses on an attitude sensor and pressure sensor com-

bination. The attitude sensors (rate gyroscopes, accelerometers and magne-

tometer) are used with the MEKF to estimate the required quaternion states.

The pressure sensor provides the PVEKF with depth update measurements.

The expected updated states are listed in table 5.25. The attitude sensors are

discussed in study cases one to four, thus only PVEKF estimation errors are

compared in this case study.

Attitude Roll
√

Pitch
√

Yaw
√

Position North X East X Down
√

Velocity North X East X Down X

Table 5.25: Case study 7: Expected updated states

The noise characteristics of rate attitude sensors A (rate gyroscope A, ac-

celerometer A, magnetometer A) and pressure sensor A (table 5.6) are used

and the simulation results are illustrated in figures 5.17.

Figure 5.17: Simulation results when attitude sensors A and pressure sensor A noise
characteristics are used

CHAPTER 5. RESULTS 123

The quality of the attitude sensors and pressure sensor are varied and the

simulation results are listed in table 5.26. The simulations are executed with

and without bias drift to show the effect of sensor bias drift. The results in

table 5.26 are with respect to the RMS estimation errors in figure 5.15. The

down arrow (↓) means that the RMS error is "x" times smaller than the refer-

ence RMS error, while the up arrow (↑) means that the RMS error is "x" times

larger than the reference RMS error. The values listed in table 5.26 represent

the "x" factor.

Noise characteristics RMS error [Drift on] RMS error [Drift off]

Attitude sensors B
Pressure sensor A ZD NSC ZD 1.92 ↓
Attitude sensors A
Pressure sensor B ZD 14.29 ↓ ZD 16.67 ↓
Attitude sensors B
Pressure sensor B ZD 16.67 ↓ ZD 16.67 ↓

Table 5.26: Case study 7 additional results

Figure 5.17 shows that the down position state is accurately updated. The

north and east position states are not updated and diverge over time. Using

the results listed in table 5.26, the factor by which the sensors are improved

is compared with the average RMS error change. The comparison results are

listed in table 5.27. The sensor improvement factor is calculated by using the

measurement noise values listed in table 5.6. The RMS error change is also

with respect to the RMS values in figure 5.17.

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Attitude sensors B
Pressure sensor NC NSC 1.92 ↓
Attitude sensors NC
Pressure sensor 30 14.29 ↓ 16.67 ↓
Attitude sensors B
Pressure sensor 30 16.67 ↓ 16.67 ↓

Table 5.27: Case study 7 comparison results

The results listed in table 5.27 show that by increasing the pressure sensor

quality by a factor of 30 and keeping the quality of the attitude sensors the

same, the average RMS error is decreased by a factor of 14.29. By calibrating

CHAPTER 5. RESULTS 124

the sensors and thereby reducing the bias drift, the RMS errors are decreased

even more. Accurate pressure sensor depth updates also improve the esti-

mation of the down velocity state, since velocity is equal to differentiated

position.

5.3.8 Case study 8

The eighth case study focuses on an attitude sensor and GPS combination.

The attitude sensors (rate gyroscopes, accelerometers and magnetometer) are

used with the MEKF to estimate the required quaternion states. The GPS

provides the PVEKF with position and velocity update measurements. The

expected updated states are listed in table 5.28. The attitude sensors are dis-

cussed in study cases one to four, thus only PVEKF estimation errors are

compared in this case study.

Attitude Roll
√

Pitch
√

Yaw
√

Position North
√

East
√

Down
√

Velocity North
√

East
√

Down
√

Table 5.28: Case study 8: Expected updated states

The noise characteristics of rate attitude sensors A (rate gyroscope A, ac-

celerometer A, magnetometer A) and GPS A (table 5.6) are used and the sim-

ulation results are illustrated in figures 5.18.

Figure 5.18: Simulation results when attitude sensors A and GPS A noise character-
istics are used

CHAPTER 5. RESULTS 125

The quality of the attitude sensors and GPS are varied and the simulation re-

sults are listed in table 5.29. The simulations are executed with and without

bias drift to show the effect of sensor bias drift. The results in table 5.29 are

with respect to the RMS estimation errors in figure 5.18. The down arrow (↓)

means that the RMS error is "x" times smaller than the reference RMS error,

while the up arrow (↑) means that the RMS error is "x" times larger than the

reference RMS error. The values listed in table 5.29 represent the "x" factor.

Noise characteristics RMS error [Drift on] RMS error [Drift off]

VN 2.44 ↓ VE NSC VN 2.70 ↓ VE NSC
Attitude sensors B VD 1.02 ↓ XN 3.88 ↑ VD 1.52 ↓ XN 3.74 ↑
GPS A YE 5.15 ↑ ZD 4.10 ↑ YE 5.5 ↑ ZD 3.70 ↑

VN 5.26 ↓ VE 6.67 ↓ VN 7.69 ↓ VE 11.11 ↓
Attitude sensors A VD 5.26 ↓ XN 5.56 ↓ VD 7.14 ↓ XN 5.56 ↓
GPS B YE 20 ↓ ZD 12.5 ↓ YE 25 ↓ ZD 12.5 ↓

VN 12.5 ↓ VE 6.25 ↓ VN 12.5 ↓ VE 5.88 ↓
Attitude sensors B VD 6.25 ↓ XN 5.26 ↓ VD 11.11 ↓ XN 5.26 ↓
GPS B YE 6.67 ↓ ZD 7.69 ↓ YE 6.25 ↓ ZD 8.33 ↓

Table 5.29: Case study 8 additional results

Figure 5.18 shows that the north, east and down position and velocity states

are accurately updated. Using the results listed in table 5.29, the factor by

which the sensors are improved is compared with the average RMS error

change. The comparison results are listed in table 5.30. The sensor improve-

ment factor is calculated by using the GPS position and velocity noise devi-

ation values listed in table 5.6. The RMS error change is also with respect to

the RMS values in figure 5.18.

Sensor improvement factor Avg RMS error [Drift on] Avg RMS error [Drift off]

Attitude sensors B
GPS NC Vel 1.49 ↓ Pos 4.38 ↑ Vel 1.74 ↓ Pos 4.31 ↑
Attitude sensors NC
GPS pos 8.9 vel 3.3 Vel 5.73 ↓ Pos 12.69 ↓ Vel 8.65 ↓ Pos 14.35 ↓
Attitude sensors B
GPS pos 8.9 vel 3.3 Vel 8.33 ↓ Pos 6.54 ↓ Vel 9.83 ↓ Pos 6.61 ↓

Table 5.30: Case study 8 comparison results

The results listed in table 5.30 show that the combination of high-quality at-

titude sensors and a low-quality GPS causes an increase in the position RMS

error. However, by using a higher-quality GPS the position and velocity RMS

CHAPTER 5. RESULTS 126

errors are decreased. By calibrating the sensors and thereby reducing the bias

drift, the RMS errors are decreased even more.

The sensor combination used in this case study shows the best overall perfor-

mance when compared to the results of case studies five to seven. However,

GPS signals are not available under water. With no GPS signals, a sonar

and pressure sensor combination is recommended to provide the necessary

PVEKF sensor update measurements. However, the sonar and pressure sen-

sor combination will only update the north, east and down velocity states

and the down position state. The accuracy of the sonar also largely depends

on the terrain where it is used. Thus, it is recommended that the AUV surface

at fixed time intervals to receive GPS updates. If surfacing is not possible,

then a buoy system is recommended. Buoys in a harbor environment can be

designed to transmit position data under water and provide an AUV with

the necessary updates.

5.3.9 Case study 9

This case study shows an example of simulated sensor failure. A rate gyro-

scope, accelerometer and magnetometer combination is used for the MEKF,

while a sonar and pressure sensor combination is used for the PVEKF. The

0 100 200 300 400 500 600 700 800

−10

0

10

R
ol

l [
de

g]

Kalman filter attitude estimation

0 100 200 300 400 500 600 700 800

−10

0

10

P
itc

h
[d

eg
]

0 100 200 300 400 500 600 700 800

−10

0

10

Y
aw

 [d
eg

]

Time [s]

(a)

0 100 200 300 400 500 600 700 800
−1

0

1

NED velocity

V
N

 [m
/s

]

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

V
E
 [m

/s
]

0 100 200 300 400 500 600 700 800
−0.15

−0.1
−0.05

0
0.05

V
D

 [m
/s

]

Time [s]

(b)

Figure 5.19: Sensor failure simulation with (a) estimated attitude and (b) NED ve-
locity

magnetometer and sonar are simulated to fail between 300 and 500 seconds

and the results are illustrated in figure 5.19. The yaw state is slightly affected

by the failure of the magnetometer, while the north and east velocity states

CHAPTER 5. RESULTS 127

are significantly affected by the failure of the sonar. The pressure sensor up-

dates the down position state and that is why the down velocity state is still

updated after the sonar failure.

5.4 Summary

Chapter 5 focuses on the results of navigation simulations where different

sensor combinations are used. The quality of each sensor is also varied. A

rate gyroscope, accelerometer, magnetometer, pressure sensor and sonar sen-

sor combination with periodic position updates via GPS or a buoy position-

ing system is recommended for accurate AUV navigation. The navigation

performance sensitivity with respect to the quality variation of each recom-

mended sensor is listed in tables 5.18, 5.21, 5.27 and 5.30. Sensor bias drift

calibration also helps to improve navigation accuracy.

Chapter 6

Project Summary and

Recommendations

6.1 Summary

Navigation simulation software capable of using real-time and simulated

sensor data is developed in this project. The simulation software is used to

simulate different sensor combinations and therefore evaluate the best con-

figuration for each AUV mission. A sensor module is also developed to cap-

ture real-time sensor data. The sensor module includes a low-cost 6-degree-

of-freedom inertial measurement module (rate gyroscopes and accelerome-

ters), a three-axes magnetometer and other sensor interfaces. The real-time

sensor data are used to test and calibrate the navigation simulation software.

Different sensor combinations are evaluated by using the navigation simula-

tion software with simulated sensor data as input. The quality of each sensor

is varied by changing its noise characteristics. A rate gyroscope, accelerome-

ter, magnetometer, pressure sensor and sonar sensor combination with peri-

odic position updates via GPS or a buoy positioning system is recommended

for accurate AUV navigation. A navigation performance sensitivity study,

with respect to the quality variation of the sensors and sensor combinations

used in this project, is also done and the results are listed in Chapter 5.

All the requirements specified in Chapter 1 have been fulfilled by the work

done in this project. The largest contribution of this project is a navigation

128

CHAPTER 6. PROJECT SUMMARY AND RECOMMENDATIONS 129

performance sensitivity study with respect to the quality variation of sensors

and sensor combinations. The performance study, together with the devel-

oped simulation tools, will simplify the process of selecting a sensor combi-

nation to fulfill a specific navigation accuracy requirement.

6.2 Recommendations

For future work on AUV navigation simulation, more accurate sensor mod-

els can be used. Only measurement noise and bias drift are modeled in this

project. More noise characteristics (see [14]) can be added to the current sen-

sor models. A sonar provides measurements with respect to the ocean floor,

while a water wheel provides measurements with respect to the water cur-

rent. Thus, accurate environmental modeling is also recommended for future

work. By increasing the accuracy of the sensor and environmental models,

more accurate navigation simulations are made possible.

For simulation purposes the body forces and moments are usually gener-

ated by the vehicle model. However, an AUV model is not available for this

project. An AUV model is recommended for future work. The model must

receive navigation commands as input and generate the necessary forces and

moments as output. An AUV model will make it possible to simulate a wide

variety of AUV maneuvers by simply providing the model with the neces-

sary navigation commands.

An AUV must be used for future real-time data capturing. Data from an

AUV in its operating environment can provide more accurate real-time sen-

sor data. The sensor data can also help to model environmental aspects more

accurately.

Bibliography

[1] Lok, J., Mine-countermeasures forces emerge from splendid

isolation, Jane’s International Defence Review, 2006.

[2] Britting, K.R., Inertial Navigation Systems Analysis, 1971.

[3] Biezad, D.J., Integrated Navigation and Guidance Systems,

1999.

[4] Titterton, D.H., Weston, J.L., Strapdown Inertial Navigation

Technology, 1997.

[5] Bijker, J., Development of an Attitude and Heading Reference

System for an Airship, 2006.

[6] Peddle, I.K., Autonomous Flight of a Model Aircraft, 2005.

[7] Hough, W.J., Autonomous Aerobatic Flight of a Fixed Wing

Unmanned Aerial Vehicle, 2007.

[8] [Online]. Available: http://www.istockphoto.com

/file_closeup/how/style_and_design/illustrations/

96063_vector_grid.php?id=96063.

[9] Wilson, J., Design of an Estimator for a Vertical Take-off and

Landing Vehicle, 2006.

[10] Milne, G.W., Simplifying Vector Rotations and Coordination,

AIAA Atmospheric Flight Mechanics Conference and Exhibit,

2001.

[11] Cook, M.V., Flight Dynamic Principles, 1997.

130

BIBLIOGRAPHY 131

[12] Etkin, B., Reid, L.D., Dynamics of Flight - Stability and Con-

trol, 1996.

[13] Shuster, M.D., Oh, S.D., Three-Axis Attitude Determination

from Vector Observations, Journal of Guidance and Control,

Vol. 4, Nr 1, 1981.

[14] Hou, H., Modeling Inertial Sensors Errors Using Allan Vari-

ance, 2004.

[15] Cemenska, J., Sensor Modeling and Kalman Filter Applied to

Satellite Attitude Determination, 2003.

[16] Simon, D., Optimal State Estimation, 2006.

[17] Gelb, A., Applied Optimal Estimation, 1974.

[18] Bar-Shalom, Y., Rong Li, X., Kirubarajan, T., Estimation with

Applications to Tracking and Navigation, 2001.

[19] Zarchan, P., Musoff, H., Fundamentals of Kalman Filtering,

2000.

[20] Lefferts, E.J., Markley, F.L., Shuster, M.D., Kalman Filtering for

Spacecraft Attitude Estimation, Journal of guidance, control

and dynamics, Vol. 5, Nr 5, 1982.

[21] Treurnicht, J., Notes on Attitude Filtering, 2004.

[22] Markley, F.L., Attitude Error Representation for Kalman Fil-

tering, Journal of guidance, control and dynamics, Vol. 26, Nr

2, 2003.

[23] LaViola, J.J., A Comparison of Unscented and Extended

Kalman Filtering for Estimating Quaternion Motion, Proceed-

ings of the 2003 American control conference, 2003.

[24] Markley, F.L., Multiplicative versus Additive Filtering for

Spacecraft Attitude Determination, Dynamics and control

systems and structures in space (DCSSS), 6th conference, 2004.

[25] Lawrence, A., Modern Inertial Technology: Navigation, Guid-

ance and Control, 1998.

BIBLIOGRAPHY 132

[26] ChatField, A.B., Fundamentals of High Accuracy Inertial

Navigation, 1997.

[27] Microchip Technology Inc., dsPIC30F6014A Data Sheet, 2005.

[28] Texas Instruments Inc., MAX3238 Data Sheet, 2004.

[29] Texas Instruments Inc., SN65HVD1050 Data Sheet, 2005.

[30] Groenewald, S., Development of a Rotary-Wing Test Bed for

Autonomous Flight, 2005.

[31] Treurnicht, J., Sun sensor development notes, 2004.

[32] Texas Instruments Inc., ADS8344 Data Sheet, 2003.

[33] Baker, B.C., Anti-Aliasing, Analog Filters for Data Acquisition

Systems, Microchip Technology Inc., 1999.

[34] Frequency Devices Inc., Analog Electronic Fil-

ter Design Guide, 2003. [Online]. Available:

http://www.freqdev.com/guide/fullguide.html

[35] Franklin, G.F., Powell, J.D., Workman, M., Digital Control of

Dynamic Systems, 1998.

[36] Horowitz, P., Winfield, H., The Art of Electronics, 1989.

[37] Texas Instruments Inc., OPA4350 Data Sheet, 2005.

[38] Ericsson, Output Filter Design, Design Note 011, 2005.

[39] Traco Power, DC/DC Converters Tel 5 Series 5/6 Watt Data

Sheet, 2003.

[40] Texas Instruments Inc., REG104 Data Sheet, 2005.

[41] Maxim IC, MAX6350 Data Sheet, 2001.

[42] Analog Devices Inc, ADXRS401 Data Sheet, 2004.

[43] STMicroelectronics, LIS3L02AS4 Data Sheet, 2005.

[44] Freescale Semiconductor Inc., MPX4115A Data Sheet, 2005.

[45] Ginde, S.V., Noronha, J.A.N., Design of IIR Filters, 2001.

	Abstract
	Opsomming
	Contents
	List of Tables
	List of Figures
	Abbreviations
	Symbols / Nomenclature
	1. Introduction and Overview
	2. Navigation Concepts
	3. Hardware Test Bed and Embedded Software
	4. Navigation Simulation Software
	5. Results
	6. Project Summary and Recommendations
	Bibliography

