An algebraic framework for reasoning about privacy

by

Solofomampionona Fortunat Rajaona

Dissertation approved for the degree of Doctor of
Philosophy in the Faculty of Science at Stellenbosch

University

Department of Mathematics,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Promoter: Prof. JW. Sanders

March 2016

Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this dissertation electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the sole author
thereof (save to the extent explicitly otherwise stated), that reproduction and
publication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for

obtaining any qualification.

S. F. Rajaona March 2019

Copyright © 2016 Stellenbosch University
All rights reserved.

Stellenbosch University https://scholar.sun.ac.za

Abstract

An algebraic framework for reasoning about privacy

S. F. Rajaona
Department of Mathematics,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD (Maths)
March 2016

In this thesis, we study a formal programming language and algebraic tech-
niques to analyse computational systems that considers data confidentiality
and hidden computations. The reasoning techniques are based on the refine-
ment of programs (Back and von Wright, Carroll Morgan). The underlying
logic is a first-order S5 , epistemic logic t hat distinguish b etween objects and
concepts — of the family of Melvin Fitting’s First Order Intensional Logic. We
give a relational semantics and a weakest-precondition semantics to prove the
soundness of programming laws. The laws for confidentiality r efinement ex-
tends those of Carroll Morgan’s Shadow Knows refinement c alculus, whereas
the laws for reasoning about knowledge derives mostly from the Public An-
nouncement Logic. As applications for knowledge dynamics, we study the
classical puzzles of the Three Wise Men and the Muddy Children by means
of the programming laws; and as an application for reasoning about confiden-
tiality and anonymity, we give a sketch of formal analysis of the Anonymous

Cocaine Auction Protocol.

ii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to my doctoral advisor Jeff Sanders
for his guidance, support, and friendship. I thank the German Academic Ex-
change Service (DAAD), and the African Institute for Mathematical Sciences
(AIMS) - South Africa for their financial support.

I thank all the friends who helped my family have a memorable stay in Cape
Town. Particularly, the Ralaivaosaona, the Rabenatoandro, the FTMCTM
members, Gillian Hawkes, the Quakers, Liane Greeff and Roy McGregor, and
all AIMS students and staff.

Misaotra ny fianakaviana sy ny havana rehetra any Madagasikara izay
nitrotro am-bavaka sy nankahery hatrany anay telo mianaka. Ary ny fitiavanao
ry Sophie, ny fahendrenao ry Mahefa, sy ny faharetanareo no nahavitako asa

tsara sy nahatonga ahy ho tompon’andraikitra.

iii

Stellenbosch University https://scholar.sun.ac.za

Dedication

To Sophie and Mahefa,

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

[Declaration|
[Abstract]

[Acknowledgements|

[Dedicationl

Contents|

(1 _Introduction|
L1 Overviewl.

(1.2 Refinement of programs|

(1.3 Refinement and confidentiality|.

(1.4 Knowledge in modal logic|

(1.5 Logic of knowledge and information change.

(1.6 Logic of knowledge in first-order|
(1.7 Description of this thesis|

2 Program algebral

2.1 Assumptions|.

2.2 Program syntax| o oL

[2.3 Modelling with programs|

3 Logics

[3.1 First-order epistemic logic|

2 lation nmodels

[3.3 First-order public announcement logic|.

ii

iii

iv

<

© 1 0 s N =

12
12
14
20

Stellenbosch University https://scholar.sun.ac.za

CONTENTS

[4 Program semantics|

.1 Den 1onal semanti

[4.2 Weakest precondition semantics|

4. nnection n th

[> Algebraic laws|

manticsl L.

[>.1 On the use of program algebra.

[6 Applications|

[6.1 The Three Wise Men puzzle|

(6.2 The Muddy Children Puzzle|

Iii,;i Ills: g:!)g:flln,ﬁ J&!lg:t}ig!ll I IQ!QQQII

[r__Conclusion|

(A Appendix|

[A.1 First-order Intensional Logic|

[A.2 Soundness of PAL axioms in Chapter 3[.

[A.3 Proofs from Chapter 0|

(Bibliography|

vi

46
46
59
62
64

65
65
66
70

75
75
7
87

91

93
93
96
100

102

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Overview

This thesis focuses on reasoning formally about what agents in a group can
learn about the program resources from an execution of a program. Here a
program does not necessarily mean a computer program. A program may refer
to any system of interest that we can describe using a syntax close to that of

a programming language.

EXAMPLE 1.1 The systems that we call programs might be computer programs,
commumnication protocols, card games etc.. As such, a resource of the program
might be a public or a private key, a password, a set of cards, confidential data,
etc.. The agents might be the users of a program, the players of a game, wise

men, muddy children, cocaine dealers etc..

We are interested in what each individual in a group of agents can learn from
the execution of a program. But that does not mean that the programs we
are interested in are meant only to give information to the agents. A program
usually has other purposes that are not related to the knowledge of the agents.
We refer to these as functional requirements. And we refer to the requirements

related to the flow of information as confidentiality requirements.

EXAMPLE 1.2 A functional requirement in a voting or an anonymous auction
protocol is election of a winner whilst a confidentiality requirement is that no

individual vote or bid is revealed during the process.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

The functional requirements of a program are related to the factual changes
whereas the confidentiality requirements to be related to information flow.
We define the factual changes to be the changes made by the program on its
resources. Information flow is the change in the knowledge of an agent that

can partially observe the program and its resources.

EXAMPLE 1.3 A communication protocol. Changing a public key is a factual

change. Announcing the value of a public key is a change of information.

REMARK 1.1 A statement of knowledge might be recorded as a program vari-
able but this is not practical. For example, let a propositional variable &, be
true if agent a knows the color of its hat v,. On one hand, whenever there is an
operation leaking v, to agent a the variable k, needs to be reassigned (simul-
taneously). On the other hand, reassigning k,, e.g., k, := 1, can correspond to

any operation that reveals v, (e.g., announcing publicly v, or reassigning v,).

In this dissertation, we provide a common framework to reason about the
factual changes induced by a program and the flow of information to each
individual in a group of agents. Our aim is to use only algebraic laws of
program refinement, similar to those given for standard programs (see e.g.,
[27, 20, 21]).

In the following sections, we give an overview of different formalisms con-
stituting, influencing, or closely related to this work. In the final section of
this introduction, we provide a description of this thesis highlighting its scope

and its contributions.

1.2 Refinement of programs

Practically, program refinement is the transformation of what is to be achieved
into how to achieve it. There might be more than one way to achieve a speci-
fication. We say that a specification is nondeterministic. Refining a specifica-
tion makes it more deterministic, thus closer to a language instructable to a
computer.

In a formal program refinement framework [2, 27|, specifications are un-

derstood to be also programs, though not always executable. In that setting

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

refinement is a relation between specifications. A program P is said to be
refined by (), denoted P C (), when () preserves all the logically expressible
properties of P.

PC @Q = if P guarantees ¢ then @ guarantees ¢ (1.2.1)
or reading the contraposition
PC @ = if @ can breach ¢ then P can breach ¢

The logical property ¢ might be for example a first-order logic formula such
as dn € Ney = 2" for some program variable v. This notion of program re-
finement has been used for reasoning about sequential programs, concurrency,
and probabilistic systems. Morgan [28] defined an ignorance-preserving refine-
ment to reason about confidentiality. Originally, refinement was designed for
sequential programs and the concern was functional correctness. The follow-
ing describes program semantics, which are mathematical frameworks that are
used to formalise (|1.2.1]).

Semantics give mathematical meaning to programs. Relational semantics
associates a program P to a relation between an initial state s; and any final
state s; that can be obtained after executing P from s;. It is equivalent to
take the meaning of P to be a function [P] taking an initial state s; to the set
of possible final states that can be reached from s; (denotational semantics,
see e.g., [23]). For standard programs, i.e., without issue of confidentiality, the

values of the program variables determine a state and refinement is defined by
PC Q = [P]o2[Q].c forany initial state o (1.2.2)

In predicate transformer semantics, a command is interpreted as a function
between set of states (or predicates), e.g., Dijkstra’s weakest precondition [10].

Given a predicate ¢ and a command P,
wp.P.p (Dijkstra’s weakest precondition)

is the weakest predicate that an initial state needs to satisfy so that by exe-
cuting P from it the resulting state satisfies .

Below is the meaning of refinement in the weakest precondition semantics.

PCQ = wp.P.o= wp.Q.0 forany predicate ¢ (1.2.3)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

The refinement calculus framework [27, 2] enables formal program verifi-
cation and construction. By means of programming laws, a specification is
refined step by step, to give an implementation. Specifications and program
codes are all part of a unique space of “programs”. The programming space in-
volves operators such as nondeterministic choice M and sequential composition
g, and it is ordered by the refinement relation C. The program models (predi-
cate transformer or denotational models) are used only to prove the soundness

of the laws used in the refinement.

1.3 Refinement and confidentiality

The refinement calculus for classical programs is not suitable for direct use in
reasoning about confidentiality (see e.g., [28]). Some valid classical refinements
can breach confidentiality requirements as in the Refinement Paradox (Exam-
ple . Morgan proposed, in his Shadow Knows refinement framework [2§],
an ignorance-preserving refinement that avoids the paradox and keeps most of
the classical program algebra. His work was continued in [23], 25] 24] and was
used to formally derive security protocols.

The characterisation of ignorance-preserving refinement extends that of
classical programs in . An agent (or attacker) a is assumed, and refine-

ment has to take into account what can be learnt by a.

if P guarantees ¢ then () guarantees
PCQ = (and & v & i)

if P guarantees to hide ¢ from a then @) do so
(1.3.1)

or reading the contraposition

if () can breach ¢ then P can breach ¢
PC@Q = |and (1.3.2)

if () can allow a to learn ¢ then P can do so.

1.4 Knowledge in modal logic

As in the work of Morgan for ignorance-preserving refinement, we will reason
about knowledge using the modal operator K. This particular logic is called

epistemic logic [19] and is part of the big family of modal logic [7]. Epistemic

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

logic, like any other modal logic, is a system built on top of another logical lan-
guage to describe the modal operator. It provides a proof system based on the
choice of axioms and inference rules. It also provides a relational model that
interprets the logical formulas. In this section, we discuss about propositional

modal logic, which is the most dominant in literatureﬂ

Axioms

To define an epistemic logic on top of propositional logic, axioms from the

following set

K(¢ = 1) = (K¢ — K¢) (Modal distribution
K¢ — ¢ (Axiom of necessitation

K¢ — Ko (Positive introspection

)
)
)
-K¢ — K=Ko¢ (Negative introspection)

and the inference rule

K(¢ = v),K(¢) - K¢ (1.4.1)

are added to the axioms and inference rules of propositional logic. Taking all
four axioms above defines the epistemic logic S5. The system S5 assumes the

knowledge an ideal agent, or an agent with perfect knowledge.

Possible worlds models

Another characteristic of the modal logic family is the use of a possible worlds
model called Kripke structure [19] or variants of it. In propositional modal
logic, for a given set P of propositions, a Kripke structure or model is a triple
(W, R, V) where

o W is a set of possible worlds,
 cach R is a relation (accessibility relation) between worlds of W,

o V is a valuation function from W to P that determines which proposi-

tions are true at each world.

1See e.g., [5] for that observation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

Logical semantics interprets the validity of logical formulas on this type of
model.

Following the Correspondence Theorem (see e.g., [5]), the choice of taking
epistemic logic S5 corresponds to considering Kripke models whose accessibility

relations are equivalence relations.

Multiple agents and Common Knowledge

Epistemic logic can also be used to study the knowledge of a group of agents
about some facts (basic information) and their knowledge about the knowledge
of other agents (higher-order information). Thus we assume a group .4 agents.
And for each agent a € A, we define a modal operator K,. For example,
the formula K, (v = 0) reads “agent a knows that v = 0”. For a multi-agent
epistemic logic, the axioms are generalised for the family of modalities (K,)qe4
And in the model, a family of accessibility relations (R,).c4 is considered.
An important notion in the study of multi-agent knowledge is common

knowledge, which is illustrated in the following example from [4]

ExAaMPLE 1.4 (On Common Knowledge) I (JFAK wvan Benthem) approach
you in a busy Roman street, A.D. 180, intent on rescuing my former general

Mazximus, now held as a gladiator, and ask:
Q: Is this the road to the Colosseum?
As a well-informed and helpful Roman citizen, you answer truly:

A: Yes.

.. By asking the question, I convey to you that I do not know the answer, and
also, that I think it possible that you do. This information flows before you
have said anything at all. Then, by answering, you do not just convey the
topographical fact to me. You also bring it about that you know that I know, I
know that you know I know, etc.. This knowledge up to every finite depth of
mutual reflection is called common knowledge. It involves a mizture of factual

information and iterated information about what others know ...

Given a set of agents A C A, the formula C4¢ reads “it is common knowl-

edge to agents in A that ¢”. Whereas the formula E4¢ reads “every agent in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

A knows that ¢”, and is equivalent to A{a : A*K,¢}. We note that the truth
of C4¢ implies the truth of E4E, ... E ¢ for any number of repetitions, and
hence the truth of K, K,, ... K, _,¢ for any n and any choice of the a;’s. The
semantic interpretations and axioms for common knowledge can be found for

example in [12].

1.5 Logic of knowledge and information

change

Epistemic models describe the state of knowledge of agents. Different ap-
proaches exist to reason about how the knowledge of agents evolve. Two partic-
ular branches of study exists: Dynamic Epistemic Logic (DEL, [3|,[17,11]) stud-
ies mechanisms that update epistemic models and Interpreted Systems/Epis-
temic Temporal Logic (ETL, [12) 32]) incorporates an epistemic structure to
linear or branching time models; see [0] for a comparative study and the merg-
ing of the two frameworks.

In this dissertation, we make use of only a subset of DEL namely the Public
Announcement Logic (PAL, see [33, [18]). In PAL, a formula [¢]¢ ((¢)1) [
means after every (some) announcement of ¢, holds ¢. The announcements
considered in PAL are public and truthful (only true formulas are announced).

Most existing tools that extend epistemic logic to more complex systems
make use of an underlying propositional logic. All the tools for reasoning about
knowledge we presented so far uses propositional logic. Yet, in the reasoning
about program and information flow state properties are better represented

and sometimes require quantification.

1.6 Logic of knowledge in first-order

In order to reason about program refinement and knowledge, we would like
to have a theory of program refinement where the properties of a state are
expressed in some epistemic logic formula. It would be ideal, to follow the
classical approach of program refinement |27, 2] and to have a predicate logic

rather than propositional as a basis of the programming techniques. Moreover,

2[33] uses the notation ¢ + 1 for ()

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 8

such a feature would give us more expressive power. For example, in using an

operator KV for knowing the value of a variable.

A richer epistemic predicate logic can make further important dis-
tinctions about knowledge of properties of individual objects, such
as JzK,p(z) (“de re knowledge”) versus K, Jzp(z) (“de dicto
knowledge”). J. van Benthem in Modal Logic for Open Minds [5].

But first-order modal logic is not as popular as its propositional counterpart
and there is no single direction for the researches made on it. Several problems
arise both in the proof systems and in the models when adding quantification
and variables to modal logic (see e.g., [15, B]), e.g., the distinction between de

dicto and de re knowledge.

De dicto/De re

ExAMPLE 1.5 Consider two program variables h : hid.a and v : vis.a where
a € A. In some state of the program where v = 0 and a knows that v = h, we

expect to make the following deduction.

Ka(h = 1)) _
(/\ Ka(U:0)> = K,(h =0). (1.6.1)

Although this deduction is correct, it does not come from simple equal to equal
substitution. For if we can just make equal to equal substitution then: suppose

we are at another state where h = 19, we have the following.

Ka(h = h) _
(/\ b= 19 > = K,(h =19) (1.6.2)

The deduction in means that agent a knows h also at that state even if

a 1s not supposed to be given any hint about h.

In fact the false deduction in [1.6.2] comes from the fact that knowing v = h
does not have the same meaning as knowing h = h. The latter is a knowledge
de dicto and the former a knowledge de re. This distinction is extensively
explained in philosophy with examples like “the morning star and the evening

star” or “Hesperus and Phosphorus” or “Superman and Clark Kent”; see e.g.,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 9

[15] which gives also a historical context on how philosophers have approached
this problem.

We need a first-order logical system that allows formulas that have the
same meaning as and disallows formulas that have the same meaning
as . This motivates our use of Fitting’s First-Order Intensional Logic
(FOIL) [16, 13, [15]. FOIL distinguishes between object and concept, and
makes use of predicate abstraction to distinguish the de dicto and the de re

reading of modal formulas; see Chapter 3.

1.7 Description of this thesis

Scope

We focus on what a program can achieve and what the agents can learn about
the variables from the execution. Thus, in our programs, we do not make
explicit who is performing an action in the program. We assume that the
environment performs the program and the agents are observers. In a system
in which the identity of the agent who perfoms an action carries extra infor-
mation, that information is made implicit in the program itself. For example,
a program “Alice sends a message to Bob” is captured by “The environment
sends a message of Alice to Bob” or “A message of Alice was sent to Bob”. See
more examples in the next chapter.

We assume the environment carrying the actions does not discuss issues
of interference on a shared resource. But that assumption allows us to reason
about anonymity without difficulty, e.g., “a message is sent to Bob”. This fea-
ture is used in Chapter 6 to formally describe an anonymous auction protocol.
Efficiency of a program is outside of our formalism. Quantitative information
analyses, like probabilities are not part of it but we believe they can be added

later. That is also the case for recursive and iterative program constructs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 10

Contributions

This work is an extension of the works of Morgan [28] in the use of algebraic
techniques to reason about privacy in sequential programs. Although Morgan
and Mclver could develop and analyse multi-agents systems such as security
protocols [23] 25 26], Morgan’s Shadow model of computation is based on a
single agent point of view and is not suitable to interpret elaborate epistemic
logical formulas such as the nesting of modalities. Our main contribution is to
combine their programming language and techniques with a full (multi-modal)
epistemic logic. The resulting ignorance-preserving refinement of programs
can be used for both secure protocol analysis and dynamic epistemic logic
reasoning.

We added more commands to Morgan’s programming language and allowed
epistemic logical expressions. The latter required us to define an appropriate
first-order logic of knowledge. Our logic is a First Order Intensional Logic
(FOIL, [13]) enriched with a visibility type on the flexible intensions (concepts).
In our setting of ideal agents (assuming the axioms of S5), the logic was given
a multi-dimensional logic model (in the sense of [22]). Using this logic, we
propose a first-order version of the Public Announcement Logic ([11]).

We developed models of computations appropriate for multi-modal epis-
temic logical formulas: the first interprets a program as a relation between
epistemic models and the second is a predicate transformer semantics (Dijk-
stra’s weakest precondition) in which the underlying logic is a multi-modal
epistemic logic. In particular, we use the Public Announcement Logic as a
basis for our weakest precondition semantics.

We made possible the use of Morgan and Mclver’s techniques to study
scenarios involving nested knowledge, e.g., I know that you know that ... The
classical puzzles of the Three Wise Men and the Muddy Children [12] were
analysed using program algebraic laws. We also give a formal description of
the Cocaine Auction Protocol [35] that demonstrates the efficacy of the pro-
gramming language to reason about anonymity and privacy in communication

protocols.

Plan

Chapter 2 gives the assumptions and the syntax of the programs with examples

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 11

on how to use them to model certain kinds of system. Chapter 3 defines the
first-order modal logic used throughout the thesis. Chapter 4 presents the two
programming models and their connection. Chapter 5 gives a collection of
programming laws. Chapter 6 presents the case studies: the Three Wise Men,
the Muddy Children puzzles, and the Cocaine Auction Protocol. Chapter 7

concludes the work.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2
Program algebra

In this chapter, we explain the assumptions and define the language adopted
in this thesis. We give examples using the language to model systems of

information flow and confidentiality-aware computations.

2.1 Assumptions

A program variable is either hidden or visible to each agent.

This assumption distinguishes programming with privacy from standard im-
perative programs. A variable must be specified with the set of agents that
can see it or alternatively with the set of agents that cannot see it. Thus a

declaration of a variable in the program must have one of the forms
vis, v or hid, v. (2.1.1)

Inside the scope of vis, v, an agent a can observe the value stored in v during
the execution of the program; i.e., a can observe the changes of the variables
visible to it after each atomic step of the program. In contrast, inside a scope
of hid, v, agent a never sees the content of v. Yet it is possible that a infers
the value of v because of its knowledge of the code; that is our following

assumption.

The program code is common knowledge to all agents.

Knowledge of the program code means that the agents know the code of the

program to be executed. This assumption was shown by Morgan to be useful

12

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 13

for reasoning about information flow using program refinement. It is also a
required assumption when we model the program states to form an epistemic
model: if every state in the model satisfies a logical formula ¢, then ¢ is a
theorem, thus every agent knows it, by the axiom of necessitation (see Section
. Therefore, for our reasoning of multi-agents systems, we need to assume

that the program is a theorem— a common knowledge to the agents.

We distinguish between non-atomic and atomic programs.

Morgan [28] introduced atomic execution to limit the power of the agents.
An agent can observe the values of the variables visible to him only between
atomic steps of a program and not within them. To assume that some steps
are hidden to an agent, we need to make the program atomic. In our setting of
multi-agent systems, we define a notion of atomicity for each agent. A program
inside atomic brackets «», is understood as atomic to agent a.
Nondeterministic and atomic choice. In standard programs the nonde-
terministic choice P M () can execute either be P or (). Morgan introduced
confidentiality requirement into program refinement. He showed in [28|that, if
the nondeterministic choice I has to satisfy structural algebraic laws, then it
has to be interpreted as an explicit choice. In contrast, an atomic choice needs
to be defined for modelling a hidden choice. This can achieved, for example,

with « P Q», or with :€ as we will see.

EXAMPLE 2.1 Modelling a vote. The choice by a voter should ideally be atomic

(visible only to him). His choice whether to vote or not is explicit.

The distinction between an explicit and an atomic nondeterministic choice

provides a program algebra that makes the refinement paradoz invalid.

EXAMPLE 2.2 (The refinement paradox) the classical setting, i.e., without

confidentiality requiremens, we have the following refinements.

vi=—1MNv:=1 C v:=1
and

v:=—1MNv:=1 C v:=-1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 14

Both v :=1 and v := —1 are possible implementations of the nondeterministic
choice in the left hand side. Such refinements are forbidden if we require that
v is hidden to some agent a. But in fact, these should be forbidden only if

the choice between the two implementations is hidden from a. Thus, in our

setting,
v=—1MNv:=1 C v:=1
and
vi=—1MNv:=1 C v:=-1
but

ve{-1L1}=w:=—1Nv:=1» Z v:=1
and

ve{-11}=q:=—1Nv:=1» Z v:=-1.

2.2 Program syntax

In the following we will define the language of programs, namely the syntax
for expressions and the syntax of commands. We refer to Chapter 3 for the

definition of the more elaborate logical expressions.

2.2.1 Vocabulary and expressions

To define our programming language we fix the following sets of symbols

o A of all agents denoted by a,b,...; subsets of agents are denoted by
AB,...

o C of constants denoted by ¢, d, ...
e R of relations denoted by R, S, ...
o F of functions denoted by f, g, ...

In addition we have program variable symbols, which we denote by v, w,....
The set of program variables may vary. In some context we specify the pro-

grams to have a common set P of global variables.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 15
P = skip (No operation)
|v:=c¢e (Assignment)

| v:€eE (Invisible choice)

| P g P (Sequential composition)

| Pagp>P (Conditional)

| PT1P (Visible choice)

| annl¢ (Announce pubicly that p)

| revye (Reveal e to agents in a)

| [visq ve P] (Local variable)

| «P», (Atomic execution)

| assert ¢ (Assertion)

| abort (Divergence)

| magic (Miracle)

Table 2.1: Syntax of programs

DEFINITION 2.1 An expression is defined in BNF form as follows

en= ¢ (Constant)
| v (Program variable)
| feo, er,-..en) (Function)

DEFINITION 2.2 A logical expression is a closed formula as defined in Section
3.1.1 The constant concepts symbols in Z are the constants in C and the

program variables symbols.

2.2.2 Visible and hidden variables declaration

The command [[visy v ¢ P] introduces a new variable v that is visible only to

the agents in A. The new variable can be used only within its scope, which

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 16

determined by the brackets [[-]|. We adopt the following notations.

ViS, U = ViS{4} v
visv = visgv = hidy v

hidv = hidgv = visp v

2.2.3 Atomic choice, assignment

An atomic choice v :€ E nondeterministically changes the value of v to the
value of an expression from a non-empty set F of expressions. This type of
command is assumed to always terminate and to be executed immediately
(atomically). Thus, only the agents that can see the variable v know its value
after the choice, unless F is a singleton.

The assignment command v := e is a particular case of the previous atomic

choice command, when the set F is a singleton.

vi=e = v:€ {e} (2.2.1)

2.2.4 Skip, magic, and abort

The command skip performs nothing. It terminates immediately and changes
no variable. The command abort is a computation that may fail to terminate
or may terminate in any arbitrary final state. In our setting, abort is the most
insecure command, as it can possibly produce a state where a secret is leaked.

The command magic is a computation that is never enabled.

skip = v:i=w (2.2.2)

2.2.5 Explicit atomicity

For a program P and a set A of agents, the command « P» 4 “makes P atomic
except for the group A”. It ensures that agents outside A cannot observe any
change of the program variables occurring during the execution of P. These
agents outside A see the changes induced by P as a single step from the initial

values — before P— to the final values — after P.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 17

We adopt the following notations.

«Pry = «Priy
«P» = «Pw»y
«Prpy = P

We note that whilst Morgan and Mclver [29] 23] allows the atomic brackets
to apply only to classical programs, we give it a more expressive power. For
instance, we allow the nesting of atomic brackets. We emphasize that the
brackets «»4 reads as “prevent agents outside A to see all the intermediate
values inside the brackets” rather than “allow agents in A to see all interme-
diate values inside the brackets”. For example, it is possible that inside the
brackets «», (which executes atomically only for agents other than a), some
intermediate values of v : vis.a might be hidden to a (possible occurence of

«»g inside «»,), see the following example.

EXAMPLE 2.3 Consider two variables x,y visible to all and a variable s hidden

to all. In the program

(y:€{01} s {z=s352:=2Dyha 3 y:=0)z,

agents in A cannot learn s. The outside atomic brackets prevent them to see
the intermediate value of © that leaks the value of s. But agents outside A can
learn s even if they also cannot see the intermediate value of x that leaks s (the
inner brackets prevent them). Indeed, because y is visible to agents outside A,
and they are not prevented to see the intermediate value of y (after the first
$), they can infer the value of s. They do so by looking at the final value of
z and the intermediate value y (we have © = s @ y, thus s = = @ y after the

inner atomic block).

2.2.6 Public announcement command

If the logical expression ¢ is true, the command ann!¢ “reveals that ¢” or
“announces that ¢” to all agents. It changes no program variable. If ¢ is
false, the command is not enabled, thus ¢ cannot be announced. We have the
following law resulting from the assumption that the program code is common

knowledge.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 18

LAw 2.1 ann!¢ = skip<¢r> magic

A simultaneous announcement of finitely many formulas is possible using their
conjunction. Because of the assumption on the common knowledge of the pro-
gram, if a program reveals that ¢ to an agent, then it is common knowledge
that it reveals that ¢. Therefore we do not indicate to which agent an an-
nouncement is made. To model a private announcement, we need to use the

command ann! with other commands; see Subsection [2.3.1]

LAW 2.2 «ann!l¢y, = annl¢

REMARK 2.1 We note that with this definition of ann!, announcing a false
formula cannot be enabled: it is miraculous (see e.g., [27] for miraculous pro-
grams). For standard programs ann! is equivalent to coercion. It is also
possible to define an announcement command that is equivalent to assertion

in standard commands i.e.,
skip< ¢ abort . (2.2.3)

In this case, the program aborts when false is announced. But the use of
coercion is more appropriate for us. For instance, in expressing the revelation

made in executing a conditional expression; see Law [2.5]

2.2.7 Revelation of an expression

Given a group A of agents and an expression e, the command revs{e} “reveals
e to A”. It changes no (global) variables. A publication is an atomic command
but a revelation is not. That is because what an agent learn from an atomic
program is from its observation of the global variables before and after the
atomic program, and from its knowledge of the program code. The following

laws concerns the atomic execution of rev .
Law 2.3 «revy{e}rp = revanp{e}

Law 2.4 revp{e} = skip

2.2.8 Sequential composition

The command P §) executes P and if P terminates, it executes @).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 19

2.2.9 Nondeterministic choice, conditional choice

The command P<¢r> () reads as “P if ¢ else Q7. It executes P if ¢ is true
and @ if ¢ is false. The following law results from the assumption that the

program code is common knowledge.

lp 3 P
Law 2.5 PagsQ = [n2™os
ann! =¢ § Q)

2.2.10 Remarks on the syntax

Assertion

In the assertion (¢), ¢ is a logical expression of program variables. If ¢ is true,
the program continues with the next command, else the program diverges. As

for coercions we have

assertp = «skip<¢> abort ». (2.2.4)

Specifications

We could have included a specification command [1&] in the style of |21} 27, 2]
in this programming language. In a specification [zﬂ], the logical expression
zﬁ involves the program variables and their dashed versions (we put the hat
to indicate that it involves dashed variables). For example, in the scope of a
program variable v, the command [gﬁ.v.fu’ | specifies that if there are values of v’
that make zﬁ true, then the program is enabled, changing nondeterministically
v to one of the values v', and leaving any other variable unchanged. If there
is no possible value, the program is not enabled.

~

An atomic specification «[¢)]» has the same effect on the program variables

as [1] but executes atomically and specifies, in particular, that there is no

other leak of information apart from that specified in the formula @/AJ

EXAMPLE 2.4 In the scope of two global variables u,v and an agent a, non-

atomic specification allows insecure refinement such as

(v € {0,1}] C (v:=0Mv:=1).

INot to confuse the square brackets with a public announcement formula [@]1), see

Section

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 20

However, the atomic version allows only refinement by another atomic program,

ensuring no leak of extra information. We have
«[v" € {0,1}]» = v:€{0,1}.

When relating nondeterminism to atomic and a non-atomic specification, we

have

An example of this is
2/ =0|N[z'=1Z[z' =0V 2’ =1]

which is the analogue expressed in specifications of
z:=0MNz:=1Zz:€{0,1}

When the logical expression inside a specification does not involve dashed
variables we have a coercion. In our setting atomic coercion is synonymous

with the ann! command

«[]y = «skip<y> magicy» = annly (2.2.5)

Recursion and Iteration

These commands are yet to be included in our language. However, we note
that programs with loops were considered in Morgan and Mclver’s ignorance-

preserving refinement [26].

2.3 Modelling with programs

2.3.1 Modelling hidden computation

How do we model a situation where we want the program code to be hidden
from some agents? We have to use a metaprogram in which, the program code

is a choice among others that the metaprogram can takei, and that choice is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 21

hidden to the agent in question. An example to hide a program P from an

agent a is
«P Mskip »g. (2.3.1)

If such program is executed, although the agent a knows the code, it does not
know whether P was executed or not. But one might ask if a knows the code
wouldn’t a be suspicious that P might have run? This is a property of

an ideal agent: it cannot ignore its ignorance.

2.3.2 Signed revelations

We can construct commands that substitute a publication or revelation made
by a specific agent. Such individual publication or revelation gives the extra
information that the agent knows the value of the expression it is communi-

cating or that it knows the formula it is revealing. We have

brev,{e} = annl{KV,e} ¢ rev,{e} (2.3.2)
bannlp = ann!{(p AK,p)}. (2.3.3)

We note that from this definition, if in a program P, an agent reveals something

it does not know, then P is not enabled, P is magic.

2.3.3 Modelling anonymity

As we have seen above, the commands for revelations do not make any assump-
tion on who is making the revelation. We make use of these to reason about
anonymous broadcast in our case study of the Cocaine Auction Protocol of
Stajano and Anderson [35]; see Chapter 6. Using anonymous communication
commands such as ann![] and rev should facilitate the study of cryptographic

protocols:

.. new ideas come from challenging fossilised axioms: it is needlessly
limiting to design all cryptographic protocols under the unexam-
ined assumption that communications must perforce be point-to-

point ... Stajano and Anderson in [35]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PROGRAM ALGEBRA 22

Summary

The syntax of basic programs presented in this chapter appeared in the setting
of imperative programs (e.g., in [2] and [27]). The distinction between visible
and hidden variables the rev command, the explicit atomicity command are
taken from [2§]. Some of the syntax was already used in [26] and [23]. But
instead of using first-order predicates for logical expressions, we use a first

order logic of knowledge that is the object of following chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3
Logics

This chapter presents the syntax of the logic used in this dissertation. In
particular the logical expressions in the programming syntax of the previous
chapter makes use of this logic. Throughout this dissertation, we will assume
a first-order epistemic logic that describe the knowledge of ideal agents. Thus
we assume a logic obeying the system of axioms S5 (see Section . This
logic will be given a concrete Kripke model, which is a special case of Kripke
model for S5 logics. Our study of these models will allow us to study relations
between models, notably the refinement between models, the modal equiva-
lence between models, and the updates of a model. The chapter will end with

our proposed first order version of the Public Announcement Logic.

3.1 First-order epistemic logic

The First Order Intensional Logic (FOIL) is a family of logic introduced by
Fitting in [16, 13 [15]. FOIL logics distinguish between concepts and objects to
overcome the de dicto/de re problem (see Section [1.6]). Concepts were defined
to be functions from possible worlds to the object domain. Different types of
the logic exist according to taking these functions to be total or partial, and to
taking the object domain to vary or to be constant across the possible worlds.
We will now explore the definitions and terminology of FOIL.
The following example is taken straight from [16].

ExAMPLE 3.1 (On designation and existence) Consider the concept “The King
of France in 1700”. Such a concept designates an object, which is Louis XIV.

23

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 24

But the object Louis XIV does not exist now in 2016. Thus in the world of
2016, the King of France in 1700 designates a non-existing object. Consider
the concept “The present King of France” Such a concept does not designate
at all now in 2015.

Fitting (see e.g., [L5]) used this example to explain the difference between
designation and existence in FOIL. Designation is a property of terms whilst
existence is a property of objects. In our reasoning of programs, we do not
expect to assume non-existing objects. The possible worlds are possible runs
of the same program. And it is reasonable to assume that the domain of a

program does not vary for different executions.

ExXAMPLE 3.2 (On designation and existence) In a game of Texas Hold Em
Poker, the object domain is the set of 52 cards. It should be the case that this
object domain stays the same in all possible scenarios of the game. Let the
concepts (uq, v,) be the cards held by player a. In a point of the game when the
dealer is still shuffling the cards, it does not make sense to talk about (ug,v,),
i.e., these concepts do not designate. The concepts (uq, v,) will designate only
when a takes his cards from the table. In a reasonable poker game, the two
cards are always among the 52. The object domain is always the deck of 52
Poker cards. We would not think about a situation where the player a is holding

two Tarot cards instead.

But different runs of a program may introduce different local variables. In
reasoning about confidentiality, these variables cannot be discarded directly.
Local variables can leak information to the agents. To treat local variables,
we have to allow concepts to be partial functions. These observations lead us

to consider a FOIL logic that assumes:
« concepts to be partial functions: terms might not designate
e a constant object domain: terms always designate an existing object.

The meaning, in terms of programs, of “a term designate at a world”, is that

a term can be evaluated at the state in question. Thus,

the requirement “a term always designates an existing object” cor-

responds to the programming requirement “a declared program

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 25

variable must have been initialised”.

Now we introduce the syntax of the FOIL logic that we will use.

3.1.1 Syntax

Our vocabulary consists of:
o Concept or intension variable symbols, denoted by z, v, 2, ..
e Object variable symbols, denoted by X, Y, Z, ..

o Constant concept symbols, denoted n, m, ... when naming a rigid con-

cept, and v, u, w, .. when naming a flexible concept
« Constant objects symbols, denoted by N, M, ...
o Function symbols, denoted by f, g, ..
o Relation symbols, denoted by R, S,...

« Agent symbols, denoted by a, b,.. (A, B,.. denote sets of agents.)

DEFINITION 3.1 (Term) A term is defined in BNF form as follows

to= X (Object variable)
| = (Concept variable)
| ¢ (Constant concept)
| fto, tas ooy tv-1) (Function)

Objects are of type O, and concepts are of type [. If a function f is of type
(1,...,7) for 7 € {O, I'} then the term f(f, ..., ty_1) is of type 7. This means

that we distinguish between object terms and concept terms.

DEFINITION 3.2 (Atomic formula) An atomic formula has the form R(#y, t1,..., tn_1)
where R is a relation of type (7,...,7), where 7 € {O, I'}.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 26

DEFINITION 3.3 (Formula) A formula is defined in BNF form as follows

¢ = R(to,tr,...,tn-1) (Atomic formula)
| —¢ (Negation)
| poo (Binary composition)
| Vzeoo (Universal quantification on concepts)
| Jze¢ (Existential quantification on concepts)
| K, ¢ (K-modal)
| (AX « D).t (Predicate abstract)

Symbol ¢ designate any formula and ® designate a formula with objects only.

We do not consider symbols for constant objects because we can refer to them
by using the concept associated. For example, the equality X = 2 between
two objects can be substituted by (AY ¢ X = Y).2. In the latter, 2 is the
(rigid) concept that is interpreted as the object 2 in every world. The formula
(AY X = Y).2 reads as the object X is equal to the object designated by
the concept 2 (which is also the object 2). This means that we have a rigid
concept associated to each object of the domain.

Each N-place function is either a function on concepts or a function on
objects. To distinguish between the two kinds, functions are given a type in
addition to their arity. A N-place function on concepts has a type that is the
N + 1-uple (I,---,I). And a N-place function on objects has a type that
is the N + 1-uple (O, -, O). The same applies for relations: the type of a
N-place relation is either the N-uple (I,--- ,I) or the N-uple (O,---, O).

It is possible to allow functions and relations to have arguments of mixed
objects and concepts. In that case, their type are tuple of Os and Is (see e.g.,
[15]). For simplicity, we replace such functions and relations by their equiv-
alents but with only concepts arguments. This is possible since we assumed
to have a rigid concept associated to each object. For example, consider the
addition N-+c between an object variable N and a concept variable ¢. The
addition N4c can be replaced by the addition n+c between two concepts,
where 7 is a rigid concept variable associated to the object variable N. Using
predicate abstraction, N+c is equivalent to (AX ¢ N + X).c whereas n+-c is
equivalent to (AX, Y Y + X).(n, ¢). For instance, in a possible world where

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 27

the concept ¢ designates the object 2, the concept n+c designates the object
N +2.

DEFINITION 3.4 (Vocabulary) A vocabulary V consists of a set Z of constant

concepts symbols, a set F of function symbols, and a set ‘R of relation symbols.

DEFINITION 3.5 (Formula, sentence) A V-formula is a formula in which every
constant symbols is in the vocabulary V. A V-sentence is a V-formula with no

free variable.

3.1.2 Models

DEFINITION 3.6 (Standard model) A standard model on a vocabulary V is a
tuple

M = <57 (Na)aEAa Doa Dc> m[[.]])

where
1. S, the set of possible worlds, is a given set

2. (~4)aea, the accessibility relations on S, are equivalence relations on S:

for each a, ~,C S xS
3. D,, the domain of objects, is a given set
4. D., the domain of concepts, is a subset of partial functions in S + D,

5. 9.], the interpretation function, interprets the symbols in V :

— for each ¢ € Z: M[c] € D.(CS + D,)

— for each N-place function f € F of type (7,...,7), where 7 € {O,1}:
M[f] €S-+ DY - D,

— for each N-place relation R € R of type (7,...,7), where 7 € {O, [}:
M[R] € S -+ D¥

The set Z of concepts is partitioned into the subset Z; of flexible concepts and
the subset Z, for rigid concepts. The same partition applies for F and R.
The previous definition of a FOIL model is similar to most first-order modal

logic Kripke models. The definition of the starts by giving a frame (S, (~,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 28

Jaca). The frame consists of a particular nonempty set S of possible worlds
and a family of relations given on S. Then, domains D, and D, are associated
with the frame. And a function [.] is defined to interpret the symbols in
the vocabulary, at each world of S.

In this type of model, that we call standard model, to each possible world
is associated an interpretation of the constant symbols. But there might be
two different worlds having the same interpretation of all the constant sym-
bols. We define concrete models to be models that have a correspondence
between possible worlds and the interpretation of the constant symbols. This
means that, in a concrete model, a possible world is uniquely defined by its

interpretation of the constant symbols.

DEFINITION 3.7 (Attributes) The world attributes in the vocabulary V of a
model It are the symbols in a subset A C V. such that, the interpretation of

the symbols in A completely determines a world in the model 9.

Because the interpretation of certain symbols in V' does not vary from world
to world — in this case we say that the interpretation is rigid —, a world is
completely determined by its interpretation of the non-rigid symbols. Thus,
the attributes correspond exactly to the symbols that interpret non-rigid (or
flexible) constants, functions, and relations.

In our study, the only flexible constant symbols that we consider are
the flexible concepts symbols. Functions and relations symbols are all as-
sumed to be interpreted rigidly. Thus, we consider models over a vocab-
ulary V = Iy UZ, U F U R (we omit the subscript r for F and R). If
M = (S, (~0)aca, Do, D, M[.]) is such a model, then S is determined by
the interpretation of flexible symbols. Thus S is determined by the restric-
tion of the interpretation function 9[.] to the flexible symbols Z, denoted
Zy <[.]. An element of S is of the form s : Zy — D,. We will see that each
accessibility relation ~, is also determined by the interpretation of a particular

predicate vis.a on Zy.

DEFINITION 3.8 (Concrete model) Consider a vocabulary V = (Z, UZ;, F,R)
that contains a predicate vis.a for every a € A. A concrete model on V is a
tuple 9 = (S, (~4)aca, Do, De, M[.]) where

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 29

1. D,, the domain of objects, is a given set
2. S, the possible worlds, is a subset of partial functions in Z; + D,
3. D., the domain of concepts, is a subset of partial functions in S + D,

4. M| .], the interpretation function, interprets the symbols in V:

— for each v € Zy: M[v] € D, and M[v].s =s.v for s € dom v

— for each ¢ € Z,: M[c] € D, and is total and constant

— for each N-place function f € F of type (7,...,7), where 7 € {O,[}:
] € DY — D,

— for each N-place relation R € R of type (7,...,7), where 7 € {O,1}:
M[R] € DY

5. (~4)aca, the accessibility relations on S, are determined by the visibility
of the elements of 7y, i.e., by Z; < M[vis.a].

We will give the definition of an accessibility relation ~, only after defining
term evaluation and designation in a model. The definition of term evaluation

and designation do not require the accessibility relations.

3.1.3 Semantics

REMARK 3.1 (Notation) We denote elements in the semantics by sans serif
characters. Possible worlds in S are denoted by sans serif characters s;t, ...
Elements of the domains D, are denoted by sans serif characters m,n,....
Elements of the domains D, are denoted by sans serif characters M, N,
Functions on the domains are denoted by f,g,.... Usual mathematical opera-

tors will be understood from the context.

DEFINITION 3.9 (Assignment) An assignment is a mapping that assigns to
each object variable an element of D,, and assigns to each concept variable an

element of D.. We denote assignments by Greek letters u, v,

DEFINITION 3.10 (Evaluation) Consider 9t to be a model and p to be an

assignment. The evaluation of a term ¢ is the partial function 9,[t] from S

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 30

to D, satisfying

M, [X] = 2s e (n.X)

M, [z] = po

My, [v] = M[o]

MIF-(fo, -, tv1)]s = MIFT-O, o], .. ., O [tn—1])

where X is an object variable, z is a concept variable, v is a constant concept,

and f is a function.

We note that the evaluation of an object is a total function. An object vari-
able is evaluated to a unique element of D, in all possible worlds. However,
the evaluation of a concept is a partial function. The evaluation of the free

variables is just the assignment .

DEFINITION 3.11 (Designation) Given a model 9%, an assignment p of the free
variables, and a state s, we say that ¢ designates at s when s € dom 9, [¢]
and the object designated by t is 9, [t].s. We denote D.t the predicate that

is true at just the states where ¢ designates.

DEFINITION 3.12 (Accessibility relation) Ina V-model M = (S, (~4)aca, Do, Do, M[.]),

we define for s,t € S, and for each agent a, the accessiblity relation ~, by

s ~, tif for all v in Z; such that v € M[vis.a] :
v designates at s iff v designates at t and M[v].s = M[v].t.

In the following, a triple (91, s, i) consists of a model 9, a possible world s of

M, and an assignment p of the free variables.

DEFINITION 3.13 (Truth of a formula) We define the truth of a formula at a
triple (I, s, u) as follows

1. M,s,uE R.(ty,...,ty_q) iff all ¢; designates at s for p
and (,uto, .. ,,u.tN_l) € m[[R]]S

2. M, s, uEK,¢ iff foreveryteS, ifs~,tthen M t,ukE o
3.Ms,uEVreg iff M s,vE ¢ forevery v = p®{z — a} where a € D,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 31

4. M s,pE Iz iff M s, vE ¢ for some v = p@&{z — a} where a € D,

5. M,s,uE (AX »P).t iff ¢ designates at s and M, s, v = P
for v = p@&{X — M,[t].s}

3.1.4 Equality, visibility, and KV

We assume the existence of an equality relation on the object domain D,. We

define a relation of type (I, I) denoted = by
r=y = AX,YeX =Y).(z,y). (3.1.1)

which reads: the concepts x and y designate the same object.
As for equality, we can associate, to any relation R of type (O,...,0), a
relation R of type (I,...,1) by

tRy = AX,Y*XRY).(z,y). (3.1.2)

For every a € A, we assumed the existence of a special predicate (unary
relation) wvis.a on concepts. We have seen that the interpretation of wvis.a
restricted to the flexible constant concepts entirely defines the relation ~j.

The definition of vis.a extends to terms as follows.

DEFINITION 3.14 (Visibility of terms) Consider a triple (9, s, 1) and an agent
a. The interpretation of wvis is extended from the concept symbols to any

concept term as follows.

M, u,s =t € vis.a iff ¢ designates at s and for any s',s” with s’ ~, 5"
if ¢ designates at s’ then ¢ designates at s” and 9MM[¢].s" = M[¢].s

We note that in this definition, the quantification takes any two worlds s',s”.
If a concept is visible to an agent a, then it is visible in every world where it
designates. We use the following abbreviation for the visibility of a set A of

agents

tevis.A = /\{a:A’this.a}.

PROPOSITION 3.1 (Visibility of rigid terms) If a term t is rigid — M[t] is a

constant function on S — then we have, for every agent a, t € vis.a. If f is a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 32

function of type (I,...,1), and if (ty,...,tn_1) € vis.a, then f(ly,...,ty_1) €

MS. a.

Proof.

If M[f].s = Mf]t,
Mto].s = M[to]t,

Mty_1].s = M[ty_1]t
then by Definition [3.10]
MIf-(to, - .., tx—1)]-s = M[f-(ko, . . ., tw_1)]t.
[

The kind of modal formula that we have seen so far is based on the knowledge
modality K. Literally a modal formula K® means “knowing that & ”. In
some type of systems, we would like to have another modality KV to describe
“knowing something” in addition to K which describes “knowing some facts”.
In the following, we use the standard notation where K “knowing that” and
KV “knowing what”.

DEFINITION 3.15 We define the truth of KV ¢ for a term ¢ when given (I, s, 1)

as follows

M, s, u =KV, t iff ¢ designates at s for u and
for any t € S if s ~, t then I, [¢].s = M, [¢].t

We would like an expression for KV in terms of other operators as that will
simplify our study. If we had allowed quantification over objects (the corre-
sponding semantics can be seen in Appendix A), the definition of KV,z would
be 3 Y ¢ (K,(AX * X = Y)).z. Semantically, KV,z would hold at 9, s if there
is an object that agent a knows to be what = designates at s. Because objects
do not vary from world to world, the object will be the same for all possible
worlds in the same ~,-equivalence class.

We would like a definition of KV using only quantification over concepts.

An attempt at this definition is Jy*K(z = y) but this does not work since

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 33

any intension z satisfies K, (z = z) for any agent. In fact the correct definition

requires us to quantify only on the concepts that are visible to the agent.

Law 3.1 KV,z = Jy € vis.a*K,(z = y)

Proof.

Ms,ul=Jyey € vis.a NKy(z = y)
Semantics of 3
M,s,v =y e vis.a NKy(z = y)
where v = p®{y — ¢} for some ¢ € D,
Semantics of N
M,s,v =y € vis.a and M,s,v = K,(z = y)
where v = p®{y — ¢} for some ¢ € D,
Semantics of vis.a and K,
For any t ~, s,v.y.s = v.y.t and for any t ~, s
M, t,v =z =y where v = p®{y — ¢} for some ¢ € D,
Definition of =
swapping of “and” and “for any”
forany t ~, s, vys=rvytand Mt,v = AX, Ve X = Y)(z,y)
where v = p@®{y — ¢} for some ¢ € D,
Semantics of A
forany t~, s, vys=vytand Mt,0 =X =Y
where v = p@®{y — ¢} for some ¢ € D,
and 0 =v & {X —»rvat, Y — vy.t}

Truth of an atomic formula
for any t ~, s, (¢.s = c.t) A (c.t = p.z.t)for some ¢ € D,
S~gS
forany t ~, s, (u.z.s=c.s) A(c.s = c.t) A (c.t = p.x.t))for some ¢ € D,
transitivity of = between objects
for any t ~, s, (n.z.5s = p.2.1)
Definition of KV,
M, s, u = KV,z

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 34

]

REMARK 3.2 (vis and KV) We note the difference between ¢ € wis.a and
KV,t. The first is a property of the term ¢. The predicate vis.a does not
depend on worlds. However KV, can vary from world to world. Therefore
we have as a theorem ¢t € vis.a — KV, but the converse may not hold. For
example, in a card game, if v is the card of player a, then we have v € vis.a
in every world where a holds a card. In a world where another player b can
guess the card v, we have KV,v whilst v ¢ vis.b. In a world where player a

does not hold any card, v does not designate therefore v € vis.a is false.

3.1.5 De dicto and de re
Recall the distinction between the two formulas:

K,(AX *®.X).1) (de re)
(AX K, (P.X)).1 (de dicto)

These two formulas become equivalent, together with (AX ¢ ($.X)).t, when ¢
is rigid. Whilst that might be a limitation in a general modal logic setting, it
is not a problem in our setting because we assume ideal agents.

A weaker condition for the equivalence of these formulas was observed by
Fitting and Mendelsohn [16]. At a possible world s these two formula are
equivalent if the term ¢ designates the same object in all other possible worlds
accessible from s vis ~,. That means in our terms, that 3z € vis.a * K, (t =)
(KV,t). It was shown in [16] that, for locally rigid terms, the distinction
between de dicto and de re vanishes. Our definition of visibility matches the

definition of local rigidity.

PROPOSITION 3.2 (De dicto knowledge and visible terms) If t € vis.a then

K,((AX *®).t) & (AX K, ®).t < (AX *®).¢

Using Fitting’s formula for local rigidity [15], we can write vis and KV in terms

of the other operators

AX s (K,AY s X =Y).1)).t & tcvis.a (3.1.3)
Jre(AX * (K,AY e X = Y).t))a & KV, ¢ (3.1.4)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 35

3.1.6 Common Knowledge

We have defined the knowledge of a concept t by an agent a with the formula
Jz € vis.a* K, (t = z) (which we abbreviate to KV,¢ when it is convenient).
In this definition, wvis.a is a rigid relation. Similarly, we define a formula for
the common knowledge of a term ¢ by agents in a group A (abbreviated to
CVt) with

CVt =3z cvis.As \{a: AK,(v=12)}. (3.1.5)
We note that

T € vis.A = /\{a cAex € vis.a}
and

Ea(v=1) :/\{a:A°Ka(v£x)}.

In the definition of the common knowledge of a term, the required concept
visible to everyone is unique. In contrast in the formula “everyone knows the

concept t”, the required visible concept may vary for each agent.

EVt:/\{a:A° dz cvis.a | Ko(v=1)}.

3.1.7 Axioms and theorems

An axiomatisation of FOIL was given in [14] and is included in the Appendix
with some additional theorems. The axioms are for a basic modal logic
(axiom K) with one modality and an assumed equality = between objects. For
reasoning about the knowledge of ideal agents, we need to add to these, the
axioms (7', K4, K5) in Section 1.4. The following theorems will also be used

in some of our case studies.

Law 3.2 K,(u=v)AK,(v=w)=K,(u=w)
Law 3.3 KVpAK(pVg = pVKg

Law 34 KVpAK(pAgq)=-pVKg

Law 35 pewviskFK(pVg) < pVKg

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 36

Law 3.6 pewviskEK(pAq) < —pVKg
Proof of Law . Suppose p € vis, then

K(pVq)

= true = pV —p

p Evis = p<+ Kp (Prop

=: Aziom D

<: Kqg—K(qVp)

<:Kp—>K(qVp)

= p €Evis = p <+ Kp (Prop. [3.9)
ko)
-p A Kg
& Distributing
pVKyqg
[l

3.2 Relations between models

We are interested in the relations between concrete models over the same object

domain D, and having finite set of attributes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 37

3.2.1 Modal equivalence and isomorphism

Recall that, in propositional modal logic, models satisfy the same set of modal
sentences if and only if there is a bisimulation between them. The concrete
models that we consider share a unique domain D, and they are defined such
that the worlds and the accessibility relations are coded into the interpreta-

tions. We have the following.

DEFINITION 3.16 (Theory) Given a vocabulary V, the theory of a V—model
M is

Thy, (9) = {V-sentences ¢ such that M = ¢}
and for any subset V' of V

Thy (9) = {V'-sentences ¢ such that M = ¢}

PROPOSITION 3.3 Let a vocabulary V = (Zy,Z,,F,R) such that Iy is finite.
Two concrete V-models M and ', having the same object domain D,, are

modally equivalent if and only if they are isomorphic.

Thy(IM) = Thy (M) iff M = M’ (3.2.1)

Proof. The reverse implication is straightforward.

We will prove the forward implication. Consider two modally equivalent
models M = (S, (~4)aca, Do, De, M[.]) and M = (S, (~,) aca, Do, DL, M.]),
ie., M and M validate the same set of modal formulas. In particular they
satisfy the same set of classical formulas. The rigid concept domains are
the constant total functions to D, thus isomorphic to D, for both models.
There is an isomorphism § between the rigid structures (D,,V, <9M[.]) and
(DL, V, <[.]) where V, = (Z,, F,R). We will prove that these rigid com-
ponents augmented with the set of possible worlds remain isomorphic and so
will be the two models.

For simplicity, we assume only two symbols u, v in the Z; set of attributes.
The proof can be extended for finitely many symbols. A possible world s € S is
either a total function of the form (u, v) — (N, M) or a partial function of the
form u +— N. We will prove that (S,D,, V. <9M[.]) and (S, D), V, <M[.])

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 38

are isomorphic by showing that

(u,v) = (N,M) € S
and (u+— N) € S

(u,v) = (FN,FM) € §
(u—F.N) € S

We denote by n, m the rigid concepts that interpret rigidly to N, M

(u,v) = (N,M) ¢ S (resp. u+— N)
Definition of S

for any s in S: not (s.u = N and s.v = M)

(resp. s.u = N and v ¢ doms)

Definition of M

for any s in S: not (M[u].s = M[n].s and M[v].s = M[m].s)
(resp. not (M[u].s = M[n].s and s ¢ M[v]))

Truth in M

for any sin S: M, s = —(u =nAv=m)
(resp. M,s = —(u=nA-D.v))

Modal equivalence of M and I

forany tin §": M t=—-(u=nAv=m)
(resp. Mt = —~(u=nA-D.v))

Truth in OV
for any t in S’: not (9 [u].t = D' [n].t and M'[v].t = MM’ [m].t)
(resp. not (M'[u].t = M'[n].t and t & M[v])
Definition of M’

and isomorphism §
for any t in §’: not (t.u = N and t.v = M)
resp. (not (t.u = §.N and v ¢ t))

Definition of S’

(u,v) = (FN,FM) ¢ S (resp. u—FN &5

The other components: D, €S + D, and (~,)sec4. The isomorphism between
D. and D, is obtained in a similar way as above but considering a formula of the
form (u = nAv = m) = (i = ¢v~D.I) for an intension 7 designating the same

object as some rigid intension c¢. The equivalences are defined from (vis.a) on

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 39

the set of possible worlds. But the relation vis.a is rigid and the two sets of

worlds are isomorphic, so the accessibility relations will be isomorphic. O

The previous theorem states the modal equivalence of two models defined on
the same vocabulary. The following lemma states that, if we add only an
attribute that is invisible to every agent into a model, then, the resulting
model validates the same set of sentences (not containing the new attribute

symbols).

LEMMA 3.1 Assume a V-model M and let M’ be an extension of M with the
attribute w i.e., {w}y < W/, F, R,V IM') =M. If for any a € A w ¢ vis.a,
then

Thy(9N) = Thy (9. (3.2.2)

Proof. Adding a new attribute w to a model can change only its accessibility
relations. Thus adding an attribute hidden to every agent does not change the

set sentences (not having w) validated by the model. O
A similar result holds also when adding an attribute that is constant across

the possible worlds.

LEMMA 3.2 Adding an attribute that has the same value in all the possible
worlds does not change the set of valid sentences (not containing the new

attribute symbols), independently of the visibility of the new attribute.

3.2.2 Standard model and concrete models

THEOREM 3.1 For any standard V-model I, we can find a concrete V'-model
M with V' DV that validates the same V-sentences i.e.,

Thy(9M) = Thy (V) (3.2.3)

Proof. Take “the name of the world” to be a new constant concept that is not

visible to any agent.]

REMARK 3.3 (Graphical representation of a concrete model) We do not spec-

ify what is the actual world in our concrete models. When reasoning about

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 40

<UQ —> m0>AO
. or

(oy = my)ay_,

FiGure 3.1 Graphical representations of a state given attributes
(vo,...,un_1). Each m; is an object in the domain of the model. The la-
belled brackets ()4, indicate that the attribute inside them is not visible to
agents in A;, i.e., v; € hid.A;. The simpler version on the right is used when
there is no ambiguity.

programs, the definition of refinement between programs does not depend on
the initial worlds. Thus, we do not define explicitly an actual state, most of
the reasoning is on the actual state of knowledge.

Assume a set of tuple of attributes (v, ..., vn). A possible world is defined
by associating a tuple (mg, ..., my) of objects to the attributes. And a model
is defined by giving a set of states and associating to each attribute v; the set

mask.v; of agents that cannot see v;

mask.v; = {a : A|v; ¢ vis.a}.

ExAMPLE 3.3 (Three wise men puzzle) In this example, we consider three
agents wearing a hat that can be black or white. Each agent can see the hat of
the two others but not his own.

To construct a concrete model for this situation, let aj—o12 be the three
agents, h; the color of a;’s hat, and {b,w} be the set of colors black and white.
A possible world is determined by the color of each agent’s hat. The situation
is formalised: h; ¢ vis.a; iff j = 1.

* The world attributes are {hg, hy, ho}.

* The possible worlds are the elements of {hg, hi, ha} — {b,w}>.

» The visibility relations are determined by mask.v; = {a;}.

We note that a possible world is a total function because each agent wears a
hat.

From Figure [3.2] we observe that every possible world is connected to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 41

F1GURE 3.2 Concrete epistemic model for the three wise men ag, a1, ap. Each
node is a possible world and is determined by the hat’s color hg, hy, hy (these are
the world attributes). Invisibility of h; by a; — mask.h; = {a;} is represented
by putting brackets (),, around the value of ;. An arrow <—% is put between
two worlds if they differ only on what is inside (),,.

another possible world by an arrow labelled with a; (for every 7). This means
that no wise man knows the colour of his hat. The use of a concrete epistemic
model instead of the Shadow Model for reasoning about computation (as we
shall see in Chapter 4) allows us to use well-established laws and techniques

of epistemic logic, for instance the drawing of possible worlds.

3.2.3 Update of a concrete model

Suppose that we would like a change of information in a model i.e., we do not
change any world attribute inside the worlds. What are the possible ways to
transform a concrete model like the cube in Figure[3.37 An attempt to change
the model results in giving information to a particular agent, thus removing
some of his arrows of ignorance. But removing or adding arrows (accessibility)

relations cannot be done directly; these will not give us another concrete model.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 42

Because in a concrete model, arrows are encoded into the states. In fact, in
Figure 3.2 arrows were only drawn for the sake of presentation.

Removing a state or a group of states corresponds exactly to a public
announcement; see Section 1.5. The only possible update of a concrete model
into another concrete model is a public announcement unless we make some
factual change in the model. In fact the factual change need not change the
values of the attributes present in the models. If, only information has been
given, then more attributes are added to the possible worlds. To model a
private announcement, we encode the given information into some private

resource that are added to the set of attributes.

3.3 First-order public announcement logic

Definition

The Public Announcement Logic (PAL) defines two formula constructs ()¢
and [1]¢. Originally, the underlying logic is propositional. We will give a
first-order version of it. The truth definition of a PAL formula in a model is
the same as its original version, and is taken directly from the reading of the

formula.
o The formula (1))¢ reads as “after some announcement of v, ¢ holds.”
o The formula [1]¢ reads as “after every announcement of ¢, ¢ holds.”

We have the duality

[Pl & — (). (3.3.1)

Semantics

The following interpretation of the formula (1)) in a possible model is common
in the literature on PAL. However, we interpret the formula in a first-order

model.

DEFINITION 3.17 The truth of the formula ()¢ given a triple (9M,s, u) is
given by

M,s, b= (U)o = (M,s,p =) and (Myy,s, 1 = @)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 43

where My, = (Sjys (~ajy)acas Do, Do, My [-) such that

SWJ = {SZS|9,R,S’:77/)}
~alp ="~a N (S X Syy)
My[.] = S <M.]

The truth definition for [¢)]® is similar but with an implication instead of a

conjunction.

Axioms

Existing PAL axiom systems that we know are for propositional PAL. In the
following, we give the axioms reducing the first-order PAL formulas into first-
order epistemic formulas. Most axioms are proved, similarly to the proposi-
tional case ([11]), using the update model definition of PAL. Most axiomatisa-
tions of PAL in the literature do not involve KV except in its perhaps original
form [33], although it was not totally axiomatised. The use of quantifiers lets

us give a direct PAL axiom for KV.

PROPOSITION 3.4 For atomic formula o = R(ty,...,ty_1) and a formula 1)

in which x is not free, we have:

(Vya & YA« (3.3.2)

(V)0 = b A (U)o (3.3.3)

(V)do N1 & (U)o A (1)1 (3.3.4)
(V)do Vo1 & (W)do V (1)1 (3.3.5)
(Y)do = o1 & Y A ()0 = (¥)¢1) (3.3.6)
(V)Jzd < Jze()o (3.3.7)
(V)Vzeg & VoY) (3.3-8)
W)AX @)t & (X« (0)o).¢ (3:3.9)
W)KS & B AKY - (6)9) (3:3.10)
(WKV,t & ATy evis.a* Ky, (v =t =y)) (3.3.11)

PROPOSITION 3.5 For atomic formula o = R(ty,...,ty_1) and a formula 1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 44

in which x is not free, we have:

[Yla & ¢ —a (3.3.12)

[W]=¢ = ¥ — [Pl (3.3.13)

[0 A1 < [Ylgo A [(3.3.14)
[ldo V 1 = [Ydo V [l (3.3.15)
[ldo = @1 & [Ylgo = [¥]én (3.3.16)
[WY]3zed & Jze[Y]o (3.3.17)
Y]Vzeg & Vae[Yd (3.3.18)
[WIAX §).t & (AX *[¢]¢).¢ (3.3.19)
[W]K¢ = 1 — K([¢]o) (3.3.20)
VKV, t & ¢ — (Fycvis.a* K, (v =t =1y)) (3.3.21)

Following are some properties of PAL listed and proved to be sound in [I1].

PROPOSITION 3.6

(V)o = v A[Y]o (3.3.22)

W)p = VAP (3.3.23)

W] < v — W] (3.3.24)

W]¢ < ¢ — (¥)o (3.3.25)
PROPOSITION 3.7 More properties of PAL.

(o) (¥1)o & {((Yo)vn)¢ (3.3.26)

[ol[tlg < [(Wo)tnle < [Yo A [tol]d (3.3.27)

Soundness of (3.3.27)) can be found in [11] and that of (3.3.26) is found in
3.

Summary

We have developed a first-order epistemic logic based on First-Order Inten-
sional Logic (FOIL) [13] by Fitting; the version in [14] is closer to the one
presented here. Other versions of FOIL is found in [16] and in [7]. We have

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LOGICS 45

adapted FOIL to suit our own notation, intension or individual concepts are
simply called concepts, constant concepts and functions are considered, and
for every object an associated (rigid) concept was assumed, thus quantification
was considered only over concepts.

Another difference is in the definition of models. We define the possible
worlds with the set of nonrigid constants, and the accessibility relations with
the visibility of these nonrigid constants by the agents. The resulting model
is a multidimensional frame. It is equivalent to a Kripke structure. While a
Kripke structure is defined by a set of possible states, and sets of relations
on the possible states (W, (R;);), the relations in a multidimensional frame is

“coded” in its states.

“Multi-Dimensional Modal Logic is about special relational struc-
tures, in which the states (or possible states), rather than being
abstract entities, have some inner structure; furthermore, the ac-
cessibility relations between states are determined by this inner

structure. Marx and Venema in Multi-Dimensional Modal Logic

(122])”

The first-order epistemic logic was extended to a public announcement logic.
The use of quantifiers allows us to define formulas such as KV, v which reads
“a knows the value of v” (in addition to the classical modality K,¢ —“a knows
that ¢”).

Stellenbosch University https://scholar.sun.ac.za

Chapter 4
Program semantics

This chapter presents the programming models that justify our program alge-
bra. The first part of this chapter treats the denotational semantics sensitive
to information flow. The computational models used in classical programs are
not suitable for reasoning about knowledge. This is due to the fact that in the
classical models a logical property (some facts about the program variables) is
a property of individual states. In reasoning about information flow, a logical
property (some facts or some information that an agent knows about the pro-
gram variables) is a property of a set of states and cannot always be validated
by looking at individual states.

In the second part of this chapter, we propose a weakest precondition semantics
extending those given by Morgan [28]. Our wp-semantics will make use of the
first-order Public Announcement Logic developed in Chapter 3. In the last
section, we give the connection between the two semantics for some of the

commands in our programming language.

4.1 Denotational semantics

To reason about programs sensitive to information flow, Morgan [28] proposed
his Shadow Model to replace the classical relational model. Traditional states
are determined by the values of the program variables. A state in the shadow
model is also determined by the other possible values of the secret variable

according to the attacker.

46

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 47

EXAMPLE 4.1 Consider a public variable v and a secret variable h. A classical
state is a couple of values v,h, and a state can validate or not any first-order
formulas on v, h. For example the classical formula h € E is true at a state
where h € [E].v.h. However, in the Shadow Model, a state is a triple v,h,H
and the model allows validation of modal formulas. For example, the modal

formula K(h € E) is true at a state v,h,H if H C [E].(v, h, H).

A single agent (the attacker) was assumed in the Shadow Model and reasoning
about multiple agents is possible only by taking the point of view of each agent
separately. This approach cannot take into account scenarios with nesting of
knowledge, and cannot be used for instance to reason about common knowl-
edge. A Shadow model that captures the knowledge of more than one agents
would consider states not as triples v, h,H but as tuples v, h,Hqg,Hq,... , Hy.
Each H; would be the shadow of h according to agent A; But rather than ex-
tending the Shadow model, our approach is to develop a programming model
that can serve also as a model for (multi-modal) epistemic logic. We give a
more elaborate definition of the state (or epistemic state) of a program. These
epistemic states serve both as a computational model and as a model for the
logic. This section makes use of the concrete epistemic models presented in
Chapter 3.

4.1.1 States

For standard programs, a state is uniquely determined by the values of the
program variables. A state is a function from the global variable symbols to
the domain: a state is determined by the current values of the global program
variable. For our purpose, we need to record not only the current values of
global variables but also their past values. The latter are not erased even when

the variables are discarded.

DEFINITION 4.1 (State) The state s of a program is a partial function
PUH +D

where P = {w, ..., vy_1} is a set of global variable symbols and H = {hist.vyU
... U hist.uy_1} is a set of historical variable symbols. Each hist.v; is a list of
symbols. The union P U H is the set of the state attributes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 48

EXAMPLE 4.2 Let P be the program
v:€{0,1} svarwew :=wvend v :=3.

If P is executed from a state v — 1 then the possible resulting states are

v o= 3 v o= 3
hist.v +— (1,0) and hist.v — (1,1)
hist.w +— (0) hist.w +— (1)

We read from these that the current global variable is v and its value is 3 in
both possible states. The history of v is either (1,0) or (1,1) corresponding to
histories (0) and (1) of w. When w is no longer available (no longer global),

only its history remains in the final state.

The state space is determined by the available (global) program variables P,
which are a subset of the attributes A. The elements of A outside P, are the
variables that are only “part of the history”. As defined in the syntax, each
program variable in P has a special type specifying the set of agents that can
see it, or equivalently the agents that cannot see it. We shall use the latter for
graphical representation. We put brackets (),, around the value of a variable

0

that agent a; cannot see.

EXAMPLE 4.3 In Ezample[{.9, consider two variables vis.av and vis.bw. The
mask of s.v and every function whose domain is in hist.v is {a}. The mask

of every function with domain in hist.w is {b}.

v (3) v (3
hist.v — (1,0), and hist.v +— (1,1),
hist.w — (0), hist.w — (1),

4.1.2 Epistemic state
We assume a fixed alphabet of functions, relations, constant rigid concepts

symbols F U R UZ, and their interpretation.

DEFINITION 4.2 (Epistemic state) An epistemic state 9 is a set of states
with history and visibility. Each epistemic state 91 is determined by its set of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 49

attributes (P UHan), its interpretation of the attributes, and its interpretation

of wis.
M= ((PUHm) <M., M[vis]) = (S, M[vis])

This definition corresponds to the definition of a concrete model of Chapter 3.
Recall that, we assume a unique domain of object and a fixed interpretation
of the rigid symbols. An accessibility relation ~, is defined for each agent a
from this model. The flexible concept symbols are Zy = P UH. We recall also
that v designates at s if v € doms and that s.v = M[v].s

s ~, tif for all v in Z; such that v € M[vis.a] :
if v designates at s, then v designates at t and M[v].s = M[v].t.

It is possible to simplify the history of a state by preserving only the val-
ues that affect the future information flows. But this is difficult in general
as it amounts to comparing the epistemic models not containing the values
discarded to the original epistemic model. In contrast, the Shadow model dis-
cards unnecessary values. The state of knowledge is completely captured by
the shadow set (H in the triple v, h, H, see Example . The Shadow seman-
tics puts the description of operations into a programming language but only
a simpler logic of knowledge is supported there. Now, we give the semantics

of the programming commands using the epistemic model defined above.

4.1.3 Program semantics

The semantics of a program P, denoted [P], is a function from an initial
information set 9, to a final information set M;. For some programming
commands (most classical commands) [P] can be defined on individual states
of My, then union of final states give the possible states states ;. The
semantics of expressions and logical expressions are those given in Chapter 3.

When there is no ambiguity we will write s[v] instead of I, s[v].

Local variables

Declaring a new variable w extends the state space as w is added to P. The

closing of the scope of w moves to the original state space and appends the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 50

latest value of w to its history.
[vis, w].so ={n :Desg® {w+ n}}

[vise w] 9= (U {sp : So * [viss w].s0} , Mo[vis] & {w +— {a}})

[wend].sy = ({w} <s) @ {hist.w — s[hist.w] ~ s[w]})
[wend].Mto= ({sp : Sp * [wend].so}, {w} < My [vis])

Assignment

Assigning an expression e to a variable v appends the current value of v to its

history s[hist.v] and changes its current value s[v] to s[e]

[v:=e].so = {so ®{v— so[e], hist.v — so[hist.v] " so[v]}
[v:=e] M= ({s: My *[v:= e].so}, Mo[vis])

[v:€e E].sy ={e: Ee*so® {v— sofe], hist.v — sy[hist.v] " so[v]}
[v:€ E].9My= (U{s: My [v:€ E].s0}, Mo[vis])

EXAMPLE 4.4 Suppose A= {a, b}

[vis, wew :=2w].({},{})

(o (M8 o)
reos (ML)

Sequential composition

Using the brackets () for

non-distinguishability

[P 5 Q]9 = [Q].[P]-2M

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 51

Nondeterministic choice

The standard semantics for nondeterministic choice between two programs P

and (@ is as follows
[P Q)M = [P].9% W [Q]. M.

The right hand side makes use of a disjoint union . A disjoint union between
standard Kripke models is known to preserve modal formulas; see e.g., [8].
(Classically, a disjoint union of two models is straightforward if their sets of
worlds are disjoint. If that is not the case isomorphic copies of the models
with disjoint sets of worlds are taken.

However, for concrete models, having only disjoint sets of worlds does not
guarantee that the worlds from the two original models are not related. In
addition, we have to first determine when the union of such models is well
defined.

DEFINITION 4.3 (Union of concrete models) Consider two concrete models
My and M. If My and 9, have a common set P of attributes then their

union is well defined if vis agrees on P.

The predicate vis agrees on P means that if v is a global variable in P. In

both models 9y and 9, the set of agents that can see v is the same.
In our setting the common set P consist of the global variables, and we assume
that the visibility of the global variables is fixed. So vis agrees on P, but not
necessarily on the local variables. To take the union of two concrete mod-
els from program semantics, local variables —which corresponds to historical
attribute in the semantics— must be renamed such that the two models have
disjoint historical attributes.

As we noted earlier, having disjoint sets of worlds does not guarantee to
construct a disjoint union of two concrete models. Accessibility relations can
possibly arise between worlds from the two original models because these re-
lations are coded in the worlds. To define disjoint union we always need to
“tag” every world with the model where it comes from. This is equivalent to
what is done for standard Kripke models (e.g., [8]) where isomorphic copies of
the models are taken. For concrete models in particular, we can make explicit

how to take the copies by virtue of Lemma [3.2]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 52

DEFINITION 4.4 (Disjoint union of concrete models) The disjoint union & of
two epistemic states 9y and 9N, is defined by taking the union of their disjoint
isomorphic copies constructed as follows. For each model add a new attribute
which take a same value in all the world of the model, this attribute will dif-
ferentiate any world from that model to any other world from the other model

in the union.

The following is a classical result in modal logic, where standard Kripke
models are used (see e.g., [8]). It states that modal formulas are preserved
under disjoint union of models. In fact, they are preserved in both ways
because the original models are generated submodels of the combined model

(see also e.g., [§]).

LEMMA 4.1

Atomic block

The program «P» 4 is executed by not allowing agents in A to see the inter-
mediate steps in P. In [«P»4].90, histories in 9y are preserved, histories

introduced by P are made invisible from A.
Let HP]]SUIO = E)ﬁi = (Sz,i)ﬁz HUZS]])

[«P»] = (San,, M [vis] @ {h : (Hs \ Ho) * b (M [wis] \ A)}))

Abort

We define 91, to be an epistemic state where any program variable can have
any arbitrary value and where any agent can know the value of any program

variable.

[abort] .2ty = M,

Revelation

In the command [ann!)] restrict the possible states to those that satisfy .

[ann! 4] = ({s: My | (Mo, s) = v}, Mo [wis])

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 53

Publication

In the command [rev,{e}] the value of e is given to a historical variable visible

to a

Treva{e}]. M = ({s: Mo s @ {hist.e — s[e]} }, My [vis] @ hist.e — a).

Magic

Magic restricts to the states that satisfy false, resulting in an empty set of

possible states.

[magic]. My = ({}, Mo[vis])

Semantics for refinement

Refinement is defined between two programs P and () on the same set of global

variables P and is defined for each initial configuration (epistemic state).
[PCE Q)M = [P]-M C[Q]- My (4.1.1)

The refinement in the right hand side makes use of the refinement between

epistemic models given in Definition [4.6

Refinement between models

Consider V =7; UZ, UFUR, V' =7y UZ, UF UR, and a common set of
state attributes P C Z; N Z;. Let us denote by v the tuple of the symbols in
P.

DEFINITION 4.5 For a vocabulary V containing a set of P attributes. A P-
tgnorant formula is a formula of Vp such that any occurrence of a modality K,

are of the form —K,¢, where ¢ is a classical formula. It is defined inductively

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 54

on the modality on the vocabulary Vp below.

¢ = R(lo,ty,...,ty_1) 0:= ¢

| —¢ | =Ka ¢
| —¢ |OAO
| oo A
| Vz oo | Vzeb
| Jze¢ | Jze0
| (AX D).t

in which € denotes a P-ignorant formula and ¢ denotes a classical formula.

DEFINITION 4.6 (Refinement between models) Let V = (Z;,Z,, F,R), V' =
(Z;,Z., F,R), and a common set of state attributes P C Ty N Z;. We define
the refinement relation Cp between V and V' models 9t and 9 by

MLCp M = for any P-ignorant sentence 6 if M = 6 then M’ |= 6.

The definition of 90T Cp M’ states that if a P-ignorant sentence is validated
in 9 then it is validated in 9V. Because for modal sentences validity and
satisfiability are dual, any P-ignorant sentence, that cannot be satisfied in 9V,

cannot be satisfied in 9. In particular we have for classical sentences:

PROPOSITION 4.1 Given two models M and M on two vocabularies V =
UL, UFUR and V' = IJ’C UZ,.UFUR, and a common set of state attributes
P CIyNI;. If ¢ is a classical sentence on Vp

If MEp M then if ¢ is satisfiable in M’ then ¢ is satisfiable in M

We would like to give a characterisation of C using the components of each
model, i.e., characterising C semantically. To achieve that, we need the fol-

lowing definitions from Aumann [I] [[]

DEFINITION 4.7 (Information sets, information partition) Consider a V—model
M = (S, (~a)aca, Do, De, M[.]) and an agent a. The information function 1,

L] uses Q and w for our S and s, I and Z for our | and &.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 55

associates each possible state s to its ~,equivalence class i.e., to the sets of

possible states that a cannot distinguish from s.

l,.s={s":S|s ~,s}

A set l,.s is called an information set of a. The states of |,.s are in-
distinguishable from a. For two states s,s’, we have either l,.s = I,.s" or
l,.sN1,.s" = {}. Thus, the information sets of a constitute a partition &, of

S, which is called the information partition of a.

S, =S/~={ICS|Vs,teles~,t} = {s:Sel,.s}

Recall that the possible states are partial functions from attributes to the
object domain. Thus information sets are sets of partial functions. To each
program variable v, |,.s.v is the range of values that v takes in the information
set l,.s. We will refer to |,.s.v as the a-shadow of v at s. The following defines
the a-Shadows of v.

S,v = {lys: 6,50} (4.1.2)
REMARK 4.1 Our use of the term “shadow” is no purpose. The set &,.v is the

same as the shadow of a hidden variable in the Shadow semantics of Morgan

[28] if a single agent is assumed.

THEOREM 4.1 (Semantics of refinement) Consider two V—models 9t and OV

and assume a tuple v of global variables

M Cp M

iff
SwvCSuw (Functional requirement)
Vae AeS,vCs G v (Confidentiality requirement)

where Cg is the Smyth partial ordering on the set of sets

S,vCs& v iff VILve& veIl,veS,v|l,vCl v

Proof of Definition[{.60 = Theorem [{.1]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 56

Hypothesis: 9t Cp 9V

= Definition [{.6]
for any P-ignorant sentence 6 if M |= 6 then M’ = 6
Assume for contradiction 31,.v | ViI,vel,v € 1,.0
= if th ~o s then Mv].t' € l,.0
Jl, and s' | Vi .vel,.o € 1,0 and
M.s EK,(vel,.v)
lo.v € lg.v
N z
Truth of K,

dl, and s’ | M s =K, (v € 1,.v) and
VseSeM st~ K, (vel,.)
= Truth of negation
Jl, and s’ | M s =K, (v € 1,.v) and
VseSeM s K,(vel,.n)
= Definition of validity
Jl, and s’ | M s =K, (v € 1,.v) and
M = —Ka(v € lov)

K, (v € l,.0) is ignorant

= .
Hypothesis
dl, and s | M, =K, (v €1,.v) and
M =K, (v € l,.v)
= Definition of validity
M = K, (v €l,.v) and M = —K, (v € 1,.0)
=
False
O

LEMMA 4.2 Consider P = {wy,...,vx} and denote v = (vy,...,on-1). If ¢

is a Vp non-modal sentence and n is an N-uple of rigid concepts, we have

v =mn = ¢ is satisfiable = v =n = ¢ is valid (4.1.3)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 57

Proof. Because ¢ is non-modal, M,s = v = n = ¢ iff M, s = ¢,\,. Because
all flexible concepts are in v all terms in ¢,\, are rigid, thus ¢,\, is valid.

Therefore v = n = ¢ is valid. O

Proof of Theorem = Definition[4.0. The proof is by structural induction
on the formula 6. We take as base case a classical formula ¢ (without modality)
and prove the implication for an ignorant formula —K¢. The rest of the proof
treats the compositions of the first two kinds with usual connectives Vv, A, 3,V
and are not presented here.

Assume that Va € A*S,.v Cg & .v.

Case 0 = ¢

Let us prove the contraposition MM’ = ¢ = M £~ ¢.

The partial ordering &,.v Cg &' .v implies that |J&,.v C |J&,.v. Thus
the range of values of v in 9 is contained in its range of values in 9. There-
fore, if a non-modal v-sentence ¢ is satisfiable in 9, then ¢ is satisfiable in
M.

Now assume that D = ¢. This implies that —¢ is satisfiable in 9t. By
the previous observation —¢ is also satisfiable in 9T thus 9 £~ ¢.

Case = =K ,¢ We will prove the contraposition I & K, ¢ = M }~= ¢.

o’ % _'Ka¢
= Duality of validity and satisfiability

There exists s’ such that M, s" = K, ¢

lq is ~q4-equivalence

= class of s’
There exists s’ and |, such that 9. s' = K, ¢

= Definition of K,
There exists |, such that Vs’ € 1, M’ s' = ¢

=
For each s; € 1,, let n be the rigid concept associated to s'.v;
then M. Fv=n=¢

> Satisfiability

For concept n associated to a v € l,.v, v=n = ¢ is satisfiable in 2V

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 58

The claim is true for v=n = ¢

=

which is non-modal

For each concept n associated to a v € l,.v, v = n = ¢ is satisfiable in

= Lemma [{-2
For each concept n associated to a v € 1,.v, v = n = ¢ is valid in M (¥)
= Hypothesis
For each concept n associated to av € l,.v, v = n = ¢ is valid in I
and there exists |, such that l,.0 C I,.v
= s€ly,=>svel,.vClw
For each concept n associated to av € l,.v, v =n = ¢ is valid in I
and there exists |, such that for each s € I,, M, s = v = n for some n €1,

> From (*), truth of =

There exists |, such that for each s € l,, M, s = ¢

Truth of K,
=

l, is a ~, class

There exists |, such that for each s € l,, M, s = K, ¢

= Satisfiability
K. ¢ is satisfiable in 91
= Validity
M = K, ¢
O

We note that the functional requirement in Theorem is the same re-
quirement as for the refinement of classical programs [1.2.2, This correspond

to the property that refinement preserves valid factual formulas.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 59

[skip] .t = 901,

[P 5 Q]-Mo= [Q].[P]-MMy

[P 1 Q)Mo= [P].M & [Q].M
[viso w].sy ={n:Desy ® {w > n}}

[vis, w]. 9% = (U {50 : So * [Visw w].50} , Mo [vis] ® {w s {a}})

[wend].sy = ({w} 9so) ® {hist.w — so[hist.w] ™ so[w]})
[wend].9Mo= ({so : So * [wend].so}, {w} <4 My[vis])

[v:=e].so = {so®{v+> so[e], hist.v — so[hist.v] " so[v]}
[v :=e].Mo= ({s: Mo *[v:=e].so}, Mo[vis])

[v:€ Elso = {e: Eeso@ {v > sofe], hist.v = so[hist.v] ™ so[v]}
[v:€ El.omo= ({Jfs: 9o« [v :€ E].so}, Mo [vis])
[«P> 4l Mo = (San,, M[vis] © {h = (Hi \ Ho) * b= (M [wis] \ A)}))
[ann!@].MMo = ({s : Mo [(Mo, 5) = p}, Mo[vis]) (= Mojy)
[reva{e}].Mo= ({s: My +s & {hist.c — s[e]}}, Mo [vis] & hist.e — a)
[magic]. Mo = ({}, Mo[vis])
[abort] .Mty = M,

lassert p]|. 90ty = (So|p, Mo [vis]) & M,

FIGURE 4.1: Denotational semantics of programs.

4.2 Weakest precondition semantics

In this section, we extend the weakest precondition given in [2§].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 60

4.2.1 WP for reveal

The formula wp[ann! p].¢ is the precondition such that after revealing p, ¢
is true and corresponds directly to the public announcement formula [p]¢.
Recall from Section , that a formula [p]¢ reads as after every truthful public

announcement of p, ¢ true.

PROPOSITION 4.2 The weakest precondition semantics are as follows for pro-

grams excluding explicit atomicity

wp[skip].o = ¢ (4.2.1)
wpl[assertp].¢0 = (p)¢ (4.2.2)
wplann!p].¢ = [p]¢ (4.2.3)
wp[rev, e].¢ = Vz € vis.a* [z = e]p (4.2.4)
wpv:=e].p = Vz Zoye [z = e]lpns (4.2.5)
wplv :€ E].¢ = Vz e [z € Elpp\s (4.2.6)
wplP 5 Q16 = wolPl.(wpl@l¢) (2.7
wplP 11 Ql.é = wp[Pl.é Awp[Ql6 (4.2.8)
wp[PQ.¢ = [b]wp[P].¢ A[=blwp[Q].¢ (4.2.9)
wp[[vis, ve P]].¢ = Yv € vis.a*wp[P].¢ (4.2.10)

where © Xy = (z € vis.a) < (y € vis.a).

ExAMPLE 4.5 (Atomic block in wp) Consider two distinct agents a and b.

wp[{ann!p Mskip),]. (=K, —Kqp)

— wp fora
—K,wp[(ann! p M skip)].-K,p
= wp for a on Tl

=K, ((wp[ann! p].~K,p) A (wp[skip].=K,p))

= wp for on ann! and skip
‘Kb ([p]‘Kap A _'Kap>
= public announcement logic

—K, (false A =K, p)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 61

true

EXAMPLE 4.6 This example illustrates the difference between an atomic

choice and an explicit nondeterministic choice using the wp-semantics.

wp[v:€ {0,1}].¢0 = V2 X velz € {0,1}]gn.
Ve T yelr = 0]\ z
Va2 ye [z =1]pne

_ VZ'%Q’U’ (/\ [$:O]¢v\z)

wpv:=0Mv:=1].¢ = (/\

4.2.2 WP for explicit atomicity

Recall that the program (P)) 4 allows only agents not in A to observe the steps
within P. The formula wp[{P)) 4].¢ is defined inductively on ¢.

PROPOSITION 4.3 The following are the wp-semantics for explicit atomicity,
in which A is a group of agents containing a but not b.
wp[«P»a].a = wp[P].« ()
wp[«Pra]l.md = —wp[«Pra].00 ()
Wp[«Pral.00 N1 = wp[«Pra].00 AN Wp[«P»a].01 ()
wWp[«P a0V o1 = wp[«Pra].00 V wp[«P»a].d1 ()
wp[«Pra].(Vzep) = Vrewp[«P»a].¢ (4.2.15)
wp[«Pra].(3zed) = Fzewp[«Pra].¢ ()
wWp[«P»a]l.00 = &1 = wWp[«P»a]l.00 — wp[«Pra].¢1 ()
wp[«Pr»a]. Kyp = wp[«Pra].¢ ()
wp[«Pra] Kod = Ko (wp[«P»a].0) ()

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 62

WP for refinement

With the same definition of ignorant formula as in Chapter 3, we give the

wp-semantics for refinement below.

PC @ = Forany ignorant formula § wp[P].0 = wp[Q].0

PROPOSITION 4.4

. wp[P].¢ = wp[Q].¢
wp[P].~K¢ = wp[Q].~K¢

PC @Q = Forany classical formula ¢

Proof. Other ignorant formulas are conjunctions, disjunctions and quantifica-
tions on =K. Our definition of wp[P] (standard program) and wp[[«P»] gives
predicate transformers monotone with respect to A,V,3,V. For the case of
standard programs (wp[P]), the reason is that both [| and () are monotone
with respect to A, V,3,V (Law [3.3.14} [3.3.15} [3.3.18] and [3.3.17)). For atomic
programs, wp[«P»] is monotone with respect to A, V, 3,V by the Laws ,

L. L. an L. L
1214, .2.16, and [£.2.15 O

4.3 Connection between the two semantics

Instead of the classical denotational semantics relating an initial state to a
set of final states, the semantics given in Section 4.1 relates an initial set of
states to a final set of states. This is equivalent to a strongest postcondition
semantics. Thus, for a given command P the connection between the two

semantics of P is given by the equivalence

Mo = wp[Ply = [P].D o (4.3.1)

Connection for public announcement

My = wpfann! ¢].:

Mo |= [o]Y

mokb): (0

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 63

[ann! ¢].90, |= ¥

Connection for sequential composition

Assume for induction that the equivalence is true for commands P and ().

Moy = wplP 5 Q¥

wp[] semantics of 3

My = wp[P].wp[Q].¢

Induction hypothesis

[P].9 = wplQ].¥

Induction hypothesis

[Q[P]-DMo =4

[l semantics of ¢

[P s Q]9Mo =

Connection for nondeterministic choice

A nondeterministic choice of programs corresponds to disjoint union of models.
The connection makes use of the preservation of modal formulas under disjoint
union (4.1)).

Assume that the equivalence is true for commands P and ().

Moy = wp[P N QY

wp[] semantics of M

My = wp[p].» A wplq].¥

truth of N\

Mo = wplp]-vy A Mo b= wplq].¥

induction hypothesis

[Pl =¥ A [q] 9 =

Lemma

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. PROGRAM SEMANTICS 64

([P]-9M W [Q]- M) = o

4.4 Discussion

The denotational model given in this chapter gives an operational understand-
ing of programs. But the weakest precondition semantics might be easier to
handle in calculations. Both the denotational model and the weakest precon-
dition model can be used to prove the soundness of the programming laws,

which are the subject of the next chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5
Algebraic laws

In this chapter, we will give programming laws that are sensitive to information
flow. These laws allow us to reason about programs using mostly the same
language in which they are written, abstracting from the models described in
the previous chapter. The model will be used only to prove the soundness of
the proposed laws at the end of this chapter. We begin by motivating the use

of the laws.

5.1 On the use of program algebra

The use of algebraic laws allows for instance a formal stepwise refinement of
programs [27,, 20} 2]. Using this approach, from the specification of a program,
we can derive an implementation that necessarily meets the same requirements

of by virtue of the laws.

Reasoning about confidentiality and deriving security

protocols

Stepwise derivation of a security protocol begins by writing the specification
S of the protocol using the programming language described in Chapter 2. By
means of algebraic laws, S is refined until we get an implementation I. Each

step of refinement should obey the programming laws.

S:POEPlg...EPn_lzl

65

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 66

The derived implementation I achieves the functional requirements of S. More-
over I does not reveal any more information than S does.

This type of derivation was used to develop security protocols such as
the dining cryptographers protocol, an oblivious transfer protocol, and the
millionaire’s protocol in [28| 29, 23, 25| 206].

Describing knowledge-based programs and reasoning

about information flow

Because ignorance and knowledge are dual, the algebraic laws can also be used
to reason about what agents can learn. Suppose that we are given how a system
works, and described it in terms of our programming language. We are given
a program P with global variables in a set G. Consider a classical formula ¢
on the global program variables. The question Can the agents learn that ¢

holds after any run of P¢ is answered positively if we have the refinement
PC P gannl¢ (5.1.1)

If the execution of P followed by the explicit public announcement of ¢ reveals

no more information than the execution of P, then P implicitly reveals ¢.

5.2 Laws

Morgan [29] listed five principles that would ease the practical use of ignorance-

preserving refinement calculus.

Refinement is monotonic. If one program fragment is shown in isolation to

refine another, then the refinement continues to hold in any context.
All classical visible-variable only refinements remain valid.
All classical structural refinements remain valid.
Some classical explicit-hidden refinements become invalid.

Referential transparency. If two expressions are equal (in a declarative context)
then they may be exchanged (in that context) without changing the

meaning of the program.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 67

For the first principle, we note that all operations on programs except for
atomic execution are monotonic with respect to refinement; see [26]. For the
principles 2,3 and 4 we refer to the arguments in [30] which we believe can
be generalised to multi-agents. Our treatment of equality in the first-order
epistemic logic (Chapter 3) prevents us from any problem with referential

transparency.

5.2.1 Laws of refinement

Law defines the refinement relation using nondeterminism as for classical
programs. This law still holds because we assume that the nondeterministic

choice M is an explicit choice, thus avoiding the refinement paradox (see Section

13).
Law 51 PCQ = PNnQ=P
LAaw 5.2 annl¢p =annly = ¢

REMARK 5.1 It may seem natural to consider the refinement between two

public announcements such as
annlz =2 C ann!z is even. (5.2.1)

Announcing that z is even reveals no more information than announcing that
x = 2. But such refinement is correct only if z = 2 is true. At a state
where z = 4, the refinement does not hold because the left hand side would
be miraculous (magic). However, in our reasoning we never refer to what is
the actual state. And this kind of refinement is not valid. Instead, a similar
refinement that is valid independently of the actual state uses the revelation

command instead of the public announcement. We have
rev (z = 2) C rev (z mod 2) (5.2.2)

where z = 2 is a boolean expression (7 or F).

5.2.2 Structural laws

Following are examples of structural laws, we refer to [34] for more laws.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 68

LAw 5.3 For non-empty sets of programs P and Q
(MP)n(MQ) = N(PUQ).
Law 5.4
Pab>(QMNR) = (P<brQ)N(PR)
LAw 5.5

(PM1Q)s R = (PsR)N(Qs R)

5.2.3 Laws on explicit atomicity

The atomic bracket «», has the following properties (Morgan): at run time,
a weak agent a is assumed there (an advantage); but, at development time,

refinement is not allowed there (a disadvantage).
PCQ 2 «P»C«Q@» (5.2.3)

The Laws , , and (Chapter 2) state that for syntactically atomic
programs « P» = P. Syntactically atomic programs include assignment, atomic
choice, and the announcement of a formula but exclude the revelation of an

expression (Law [2.3)).
Law 5.6 For any program P, P T «P»
LAW 5.7 «x:=e» = x:=¢€

Law 5.8 «r:€¢ Ey» = x:€ F

5.2.4 Laws on sequential composition

In classical programs, the sequential composition of two coercions can be
merged into one coercion using the conjunction of the two logical expressions.
In general, this does not apply for the sequential composition of public an-
nouncements (which corresponds to coercions for classical programs, see Sec-
tion , see Example . The sequential composition of public announce-
ments requires the use of the diamond PAL formula (Law[5.9)). Law [5.12]states

that publications can commute between them.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 69

LAaw 5.9 annl¢ § annly = annl{¢)e.
LAaw 5.10 annl¢ = ann!¢ s annlyy = [d)0)

Law 5.11 For a classical formula ¢ and any formula 1

ann!y ¢ annl = ann!(y) A @)
LAW 5.12 revg {eo} ¢ revy {e1} =revy{en} § revy, {e}
The following example shows that Law does not hold for non-classical

formulas.

EXAMPLE 5.1 (ann!4 § annlp # ann! (¢ A) Consider two agents a, b and

program variables p, q. In the scope of
hidg, 5y p : B § hidgyy ¢ : B § annlp V g
we have
ann!p g ann!K,p IZ ann! (p A K,p) (5.2.4)

The right hand side reveals the value of q to b. The formula (p N K,p) is
true only at (p,q) = (1,0), which would be the only final state. But the left
hand side does not reveal q to b. Announcing that p only discards the state
(p,q) = (0,1). The possible final states are (p,q) = (1,1) and (p, q) = (1,0),

and announcing K,p afterwards will not change them.

5.2.5 Successful formulas

The equality ann!) ¢ ann!¢ = ann!(i) A ¢) is not always valid as we have seen
in the previous example. Formulas satisfying this equality play an important
role in reasoning about public announcement and in Dynamic Epistemic Logic
(DEL). They are defined in the following.

DEFINITION 5.1 (Successful formula) A successful formula is a formula that

remains true after being revealed, i.e., [¢]o.

DEFINITION 5.2 (Preserved formula) Preserved formulas are a fragment of

the logical formulas defined in BNF as follows

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 70

az= R(ty,t,...,tn_1)
P= «

| ~av

| Ka ¢

| oA

AR

| Vzeo

| Jz¢

in which ¢ denotes a preserved formula and o denotes an atomic formula.
PROPOSITION 5.1 Preserved formulas are successful [11)].

Law 5.13 For a successful formula ¢:
annl¢ = ann!¢ § ann!¢
Law 5.14 For preserved formula ¢ and any formula 1:
annl¢ ¢ annly = ann!¢ ¢ annl®y § annl¢
Law 5.15 For a successful formula ¢, any formula 1, a € A, and A C A:

ann!¢ § annly = ann!¢ ¢ ann!(o A 1))
ann!¢ § ann!ty = annl¢ ¢ ann!(K, ¢ A1)
annl¢ ¢ ann!ly = annl¢ ¢ annl(Cxo A1)

where a € A;A C A, and C, designates the common knowledge modality

(Section [1.4).

Law will be used particularly in our treatment of the Three Wise Men
and the Muddy Children Puzzles.

5.3 Soundness of the laws

Soundness of Law|5.2: annl¢p =annly = ¢ & 1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 71

ann! ¢ = ann!l v

V ignorant formula 6, wp.(ann!¢).0 < wp.(annl).0

V ignorant formula 6, [¢]0 <[]0
= false is ignorant and atomic

¢ — false < 1 — false

=
¢ = Y

= Admissible rule of PAL
for any x, [¢]x < [¢]x

= In particular for ignorant formulas
ann! ¢ = ann!lv

O]

LEMMA 5.1 [¢]¢p & ¢ < (P)o

Proof.
true <> [¢]¢

= (3.3-22)
¢ < (@)

=
OV g (P)oV g

=
true <> ¢ — (P)o

. (3-3.25)

true <> [¢]o

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 72

Soundness of Law[5.9 Let 6 be an ignorant formula (although the derivation

is true for any arbitrary formula).

wp[ann! ¢ ¢ ann!].0

& wp-semantics of §
wp[ann! ¢].wp[ann! ¢].6

& wp-semantics of ann!
[¢][]0

= [|]— composition
[¢ A [o]v]0

Aad [|—definition of () (3.3.22)
[(9)]0

&

wp[ann!(g)y].6

]

Proof of Law|5.10] The implication < follows from the previous law as follows:

wp[ann! ¢ ¢ ann!¢].0

wplann!{¢)¢].0

=
[(#)¢]0

& Proposition [3.3.23
[0 A [o]¢]0

& Assumption (6]
9]0

=
wp[ann! ¢].0

We need to prove =.

ann!l¢ = ann!¢ ¢ ann!¢

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 73

wp[ann! ¢].0 < wp[ann! ¢ ¢ ann!¢].0 for any ignorant formula 6
= false is ignorant

wp[ann! ¢].false < wp[ann! ¢ § ann!] false

[qﬁ]false = [<¢>¢]fa|se

¢ & ()Y

¢ < (9)Y

O

Soundness of Law . Using the wp semantics, the first equality is equiva-
lent to (p)y) < (¢)(¢ A 1)), which obtains for a successful formula ¢. Indeed,

true & [¢]o
=
(0)v < ([g0 A (D))
=
(@) < ([9]¢ A ¢ A (D))
=
(D) < ((9)o A (9)1))
=

(D) < (d)(d N)

For the two other equalities, we use properties of successful formulas, already

observed for example in [11]: if ¢ is successful then [¢]¢ is valid if and only if

[¢]Co is. O

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ALGEBRAIC LAWS 74

Soundness of Law[5.11 For a formula ¢ not containing K, or KV,, (¢)p =
¥ A . This was observed in the propositional case, for example in [33]. It can

also be obtained for ¢ with quantifiers by induction on .]

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Applications

6.1 The Three Wise Men puzzle

Imagine three wise men are tested by their king as follows. The king puts a
hat on the head of each wise man. Each wise man can see the hat of the others
but not his own. The king announces that hats are either black or white and
at least one of them is black. The king then asks the first wise man if he knows
his hat’s color or not, and the first wise man replies “No”. The king went on
to ask the second wise man, who also does not know his hat’s color. In this
situation, the third wise man learns that he has a black hat. In fact everyone
learns that, and it is a common knowledge, assuming that all the questions and
declarations are public. We note that, in this puzzle the wise men are assumed
to be ideal agents, their knowledge obeys the axioms of S5 (Section 1.4), and
that they can carry out logical reasoning. Figure provides description of
the puzzle using the programming language of Chapter 2.

ann! (po V p1 V p2) 3§ ann! (po V p1 V p2) 3
ann! =KVypp § = ann! =KVypy § ann! (p1 V p2) 3
ann! =KV p; ann! =KVip; § ann! py

FiGURE 6.1 The Three Wise Men puzzle as a program equation. Boolean
variables (p;)i—o.. 2 correspond to the hat’s color of the wise men (A;);—o . 2
such that p; is true when A; wears a black hat. The programs are inside the
scope of p; € vis.p; =1 # J.

75

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 76

The left hand side of describes the successive announcements by the
king, by Ay who does not know his hat’s color, and by A; who also does
not know his hat’s color. The right hand side of the equation tells us that
after the announcement by Ay it is revealed (to all) that p; V ps, and after
the announcement by A; it is revealed (to all) that py. Consequently, the
third wise man A, learns that he wears a black hat (py). Now we provide a
derivation of this equation using the programming and logical laws from the

previous chapters.
Proof of the equation in Figure[0.1]

ann! (po V p1 V p2) 3
ann! =KVq pp $
ann!—|KV1p1

= Law[5.15, po V p1 V po is successful
ann! (po V p1 V p2)

9
ann! =KVy po A Ko(po V p1 V p2) §
ann! =KV p;

= p €vis=K(pVq)« pVKq (Law[3.3)
ann! (po V p1 V p2)

ann! =KVy po A (Kopo V (p1 V p2)) 3
ann! =KV p;

= =KV pg A Kgpg > false

ann! (po V p1 V p2)
ann! (=KVy po A (p1 V p2))
ann! =KV p;
For atomic formula p:
ann!¢p A p =annl¢ § annlp
ann! (po V p1 V p2) ¢
ann! =KV po § ann! (p; V p2) 3
ann! =KV p;

= Law p1 V po is successful
ann! (po V p1 V p2) 3

ann! =KV po § ann! (p1 V p2)
ann! (=KVip; AKi(p1 V p2))

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 77

= pevis=K(pVyqg) < pVKg (Law

ann! (po V p1 V p2) ¢
ann! =KV pg § ann! (p; V po)
ann! (=KVip A (Kipy V p2))

= -KVipi AKip & false

ann! (po V p1 V p2) ¢
ann! =KVj py § ann! (p1 V p2)
ann! (=KVip1 A p2))

For atomic formula p:
ann!¢ A p=ann!¢ § annlp
ann!(po V p1 V p2)$
ann! =KV pg § ann! (p1 V pa) §
ann! =KVip; § ann! py

It is possible, in this proof, not to use KV and replace instances of KVp with
Kp vV K= p. O]

In this puzzle, we could observe that the successive announcements, by
the king and by the first two wise men, induce some information flow to the
third wise man. The latter could learn the color of his hat even if that was not
communicated directly to him. If the three wise men were asked by the king to
reply simultaneously to the same question, then all three would not know the
color of their hat (if they are asked by the king only once!). This is another dif-
ference between simultaneous and successive announcements, similar to what
was observed in Example[5.1] But even answering simultaneously to the same
question, the wise men can infer information on the color of their hats. This

version is called the Muddy Children Puzzle and is our next example.

6.2 The Muddy Children Puzzle

This puzzle was known from [12]. Three children (which generalises to n) get
dirty after playing together in the garden. The children want to get clean but
they cannot be sure if their forehead is clean, as they cannot see their forehead;
but each can see the forehead of any other. Their father comes along, and tells
them: “At least one of you has a muddy forehead”. After that, the father asks

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 78

all of them: “Do you know if you have a muddy forehead or not?”, and all of
them reply at the same time “No”. After, the father asking the same question
a second time, all children say “No” again, but after a third time, the three of
them all know.

Using program algebra and logic (classical, epistemic, and PAL) we will

investigate:
o that in this scenario the three children are all muddy,

e how does each of them learn that they are muddy after a precise number

of steps?

o what do the children learn after each step of their simultaneous an-

nouncements?

6.2.1 Puzzle with three muddy children

The left hand side of the equation in Figure describes the announcements
by the father and the first two simultaneous announcement by the children.
The right hand side shows the implicit flow of information after each of the
children’s simultaneous announcement. For instance, after their first simulta-
neous announcement (that each of them does not know whether she is muddy

or not), it is revealed that for every two of them, at least one is muddy.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 79
annlpo V p1 V p23
ann! " KVypo A “KVipi A =KVaps §
ann! =KVypg A =KVip1 A =K Vsps
ann!po V y4i V P23 (621)
ann! ﬁKVopO A _|KV1]91 A _‘KV2p2 5 (622)
ann! (po V. p1) A (p1 Vp2) A (p2 V Do) (6.2.3)
ann! ﬁKVopQ VAN _|KV1p1 A ﬁI(\/vgpg 9 (624)
ann!po A P1 VAN D2 (625)

FI1GURE 6.2 The Three Muddy Children puzzle. The children are denoted by
ag, a1, ap with corresponding modalities Ky, Ky, Ko. The programs are in the
scope of p; € vis.p; = ¢ # j, where p; is a boolean variable that is true when

a; has a muddy forehead.

Proof of the equation in Figure[6.3 . We prove first that (6.2.1) ¢ (6.2.2) =

(6.2.1)) 5 (6.2.2) ¢ (6.2.3). Then, we will prove that (6.2.3]) ¢ (6.2.4) = (6.2.3)) 3

(6:2-4) ¢ (6.2.5).

annlpo V p1 V pa§
ann! ﬁKVopo A ﬂKlel A\ _\KV2p2

po V p1V po is successful, becomes common

knowledge after announcement, Law|5.1

annlpy V p1 V pa§

ann!(=KVypo A Ko(po V p1 V pa2))A
—KVipt AKi(p1 V p2 V po))A
—KVaps AKa(p2 VoV p1)))

— p; and py are visible to agent A{#j7k}

annlpo V p1 V p2 s

ann!(=KVopo A (Kopo V (p1 V p2)))A
—KVipi A (Kipi V (p2 V po)))A
—KVapy A (Kapz V (po V p1))))

ann!py V p1 V pa s

_'KV() A Kopo = false

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS

ann!(=KVypo A (p1 V p2))A
—|KV1P1 A (p2 \ p0>>/\
—|KV2p2 A (pO \ pl)))

ann!po V p1 V po s
ann! =KVypy A =KVipi A =KVaps §

ann! (po V p1) A (p1 V p2) A (p2 V po)

ann! (po V p1) A (p1 V p2) A(p2V Do) s
ann! (=KVypo A =" KVip; A =KVyp9)

ann! (po V p1) A (p1 V p2) A(p2 V po) $

ann!(=KVypo A Ko(po V p1)A
—KVipr AKq(p1 V pa)A
—KVope AKo(p2 Vo))

pLVop2) A(p2Vopo)s
Kopo V p1)A
Kipi V p2)A
Kaps V o))

ann! (po V p1) A
ann!(=KVypy A
-KVipr A
—KVspo A

~ o~ o~ —

ann! (po V p1) A (prVp2) A(p2Vpo)s
ann!(=KVypo A ;1A

—KVipi A p2A

—KVaps A po)

ann! (po V p1) A (p1 V p2) A(p2 V Do) $
ann! (mKVypy A “KVips A =KVaps)

ann! (po A p1 A p2)

80

(pi V pj) is successful, remains true after

announcement

Now, we continue with the second part of the proof.

(pi V pj) is successful, becomes common

knowledge after announcement

p; 1is visible to A; forj # i

(=KV;p; ANK;p;) = false

pi 18 a successful formula

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 81

This proof generalises to a situation with n children where the father an-

nounces that at least m, of them is muddy.

6.2.2 Puzzle with n children, all muddy

In this case, we assume that
e there are n children
o the father announces: “At least m, of you is muddy” (Announcement 0)

o all n children says: “No” to the question of their father n — m, times

(Announcement 1 to Announcement n — m,)
o every child learns that she is muddy after Announcement n — m,

We note that we do not assume to know that all n children are muddy.
We can deduce that from the fact that every child learns that she is muddy
after Announcement n — m,. In fact, the kind of deduction that we make is
made from the point of view of a muddy child. When a muddy child makes his
reasoning, he does not know a priori that all n children are muddy. However,
all the other assumptions and the announcements are common knowledge to
all n children.

The proof used in this case also serves in the most general case with m
muddy children (m < n).

We use the following notations.
N ={0,1,...,n—1} (Set of indices)

N
(k> ={yC N ||yl =k} (Set of k-elements subsets)

The following equation states what is revealed from the first announcement

by the father and the first simultaneous announcement of the children.

ann! | \/ (/\%) ; ann! V)(AP& ;

ve(

ann! </\ —|KVl~pi> ann! /\ ﬂKVipi> $ ann! /\ \/ /\pj)
o

N se(y) \ve(h)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 82

(6.2.6)

The disjunction (V¢ L) (/\jg7 pj)) reads as “There is at least a combination
of m, children that are all muddy”, which can be read as “There are at least
m, muddy children”. So, it corresponds to the announcement of the father.

This same announcement can also be put in other words as
for every n children, at least m, is muddy (Step 0).
And the implicit information flow in [6.2.6| can be read as
for every n — 1 children, at least m, is muddy (Step 1).
And in fact, this will generalise at any step j (provided that j < m — a):
for every n — j children, at least m, is muddy (Step 7).

By induction on the number of steps (simultaneous announcements), we
will prove that after n — m, steps, all children learns that they are muddy. For

that, we need to prove the base case [6.2.6

Proof of Equation[6.2.6,
ann! \/ /\ pj> S
V€ () NV

ann! </\ —|KVz-pz>
iEN

the first formula announced is successful, it is

a factual formula

oo

otV (An)

ve(m) NV

ann! { /\ ﬁKVipi) AN K \/) (/\ pj)

ieN keN ve(N) \iev

a

for each k, separate the conjunctions that

contains px

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 83

ann! </\ —|KVl-pZ> A /\ Ky \/ (/\ pj> \Y \/ (/\ pj>
iEN keN '76(77]1\;)‘79]“ JEY 7e(mf\/a) |y #k JEY

= Apy distributes over \/

ann! \/ /\pj> 9
v€(m)

ann! /_'Kvipi>/\/\Kk J A \/ (/\Pj) 2 \/ (/\PJ)
ieN keN 76(N\k) JEY jey

ve ()
each p; forj €y e (Nl\ak) is visible to Ay,
Law Ky ¢ < ¢ applies

ot |\ (/\pj> ;

ve(N) Ni€v

ann! /\ﬁKVip,)/\/\ Ki [pen\/ (/\p]) \/ /\p]>

ieN kEN ve(Mh) \iEY e (M)

- Kypy is inconsistent with =KV}, py,

ot |\ /\p]>s

7€ ()

ann! /\ﬂKVipi)/\/\ V gpj>

1eEN keEN ,YE(I;/n\Ek)
every k € N corresponds to a § € (]Y)

= the disjunction \,cy ... is a successful

formula

arnt |/ /\pj>s

v€(m)

ann! /\ﬂKVipZ) sannl A |/ </\pj)

e se(Y) \rve(h) V&

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 84

The previous proof is the refinement obtained using the announcement of
the father (step 0) and the first simultaneous announcement (step 1). We have

a general result any step between 0 and n — m,, namely

AV (An)]

ann! /\ \/ /\pj> s € (4rp) \E(LY) NEY
5 (ey) \7€() VY ann! (/\ _‘KVipi> 5
ann! </\ ﬁKVipZ) ieN
- ann! /\ \/ /\ pj>
o

e (steg+ 1) S (]:rn\a(s)

(6.2.7)

The proof of equality (6.2.7)) is similar to the previous proof of the refinement
(6:2.6) and is found in Appendix[A.3] Assuming (6.2.7),

at step 0:

we have (](\)7) ={} and

ann! /\ \/) gpj> — ann! \/)(/\pj> (6.2.8)

se(y) \re(ly ve(m,) NEY

which corresponds to the announcement of the father: “At least m, of you
have muddy children forehead”.
The general result ((6.2.7]) used for each step implies the following refinement

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS

of the successive announcements.

i AV (A

o€(y) \ve(h) V&

mq

)
ann! (/\ —|KVZ»p1> 3

1EN

ann! </\ ﬁKVipl')
\

1EN

at step n — my:

85

oo

o (2)

se(f) \re(h)) V&

mgq

ann! (/\ ﬂKViva) 3

1EN

ann! /\ \/ (/\p])
6€(, 0) \e(hy) &

n—mgq,

(6.2.9)

A subset 0 € (n jvma) has n — m, elements. Thus N \ § has m, elements,

therefore (]yn \f) is the singleton {N \ 0}, and the disjunction vanishes.

ot AV (A

de (n—de) e (]:rn\a&) el

ann! /\ /\ D;

de (n—]\ina)]EN\(S

e)

€€ (im,)

JjEe

This reveals that for every m, combination of children, all of them are muddy.

Thus for m, > 0, every child learns that she is muddy.

Stellenbosch University https://scholar.sun.ac.za
CHAPTER 6. APPLICATIONS 86

6.2.3 Puzzle with n children, m muddy

For this case, a muddy child learns that they are muddy after step m — m,.

Indeed, after step m — m,, we have the following revelation:

annl A \/ (/\p]) (6.2.10)

0€(,) \E() V&

N\f) has n— (m —mg,) = (n — m) + m, elements.

We remark that a subset in (m
The revelation ((6.2.10)) reads that it is revealed that:

For every (n — m) + m, children, m, of them are muddy.

A muddy child A, sees n —m non-muddy children. If m, children (which may
include A,) are added to the non-muddy children, all m, must be muddy.
Thus A. learns that she is muddy.

Thus a muddy child learns that he/she is muddy.

REMARK 6.1 The command ann! A,_, =KV, p;, reads as it is revealed (truth-
fully) that no child knows whether she/he is muddy or not. It could be in-
terpreted to be a truthful event as no child steps forward [11]; or by an an-
nouncement of the father “none of you knows”, assuming that the father has
asked privately each child; or that they all announce at the same time: “I
don’t know” assuming that the children can speak simultaneously and can all

hear each other while they are speaking.

6.2.4 Discussion

By describing the scenarios of the puzzle as programs, we preserve their dy-
namic aspect. The proofs make explicit the information flow between each
step of the programs (determined by the sequential composition §) which is
not the case when analysing the puzzle with only epistemic logic. Our proofs
make use of only programming laws and logical theorems. We do not reason
about the update of the possible worlds (as e.g., in [12]). We could describe
faithfully the scenarios of puzzle using the programming language and also

encode could the questions as refinements (or equations) between programs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 87

6.3 The Cocaine Auction Protocol

In this case study, we attempt to formalise an anonymous auction between

cocaine dealers from [35].

The scenario

“Several extremely rich and ruthless men are gathered around a table. An
auction is about to be held in which one of them will offer his next shipment
of cocaine to the highest bidder. The seller describes the merchandise and
proposes a starting price. The others then bid increasing amounts until there
are no bids for 30 consecutive seconds. At that point the seller declares the
auction closed and arranges a secret appointment with the winner to deliver
the goods.”

This situation represents an extreme case auction in which the trust be-
tween the participants is minimum, privacy requirements are of high stake,

and cheating could be fatal. The auction requires the following.
o No third party to run the auction, the protocol must be self-enforcing.

o Nobody except the buyer and the seller should know who won the auc-

tion.

o The seller should not be able to find out the winner before committing

to the sale.
Now we proceed with the implementation of the Cocaine Auction Protocol
as proposed in [35].
The protocol
The protocol (Figure) is organised in timed rounds such that
o the clock is initialised before each round (line 9 or line 12:R:3),

« a round starts just after the seller reveals the new price (line 10 or line
12:R:4),

o a round ends as soon as a buyer says “yes” to the current price or by

timeout (R is chosen in line 12 or ¢ > At in line 11).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 88

In a round, for each interval of time §¢
o ecither a bidder anonymously says “yes” to the current price (line 12:R)
o or nothing happens, the clock ticks (line 12:L).

Everyone would distinguish between the two cases because the “yes” message
is public, thus we have modelled the alternative as an explicit choice M. In the
first case (right hand side of M), the buyer (from the set A but anonymous, line
12:R:1) broadcasts a “yes” message, which is an encryption of his private key
(line 12:R:2). This would allow him to perform a Diffie-Hellman key exchange
[9] with the seller, if he eventually becomes the final winner. A new round
begins after that.

When a round ends by timeout, the auction terminates and, provided that

there was at least a bidder to the initial price (line 14 condition r > 0):
o the final winner is the winner of the previous round (line 14:1:1),

o the seller computes a common secret key with the winner (DH-key) with

the winner’s “yes” message and his secret key (line 14:1:2),

o the seller broadcast an encryption of the date and time of the sale with
the DH-key (line 14:L:3).

The winner is the only bidder who can decrypt the appointment message by
computing the DH-key (line 15), assuming an encryption method that use the

same key for encryption and decryption (i.e., Dec.(Enc.(sale, key)) = sale) .

Discussion

We now discuss one of the possible attacks to this protocol described in [35]:
the case where the seller attempts to sell the goods to another buyer other
than the final winner. The seller would compute a DH-key with the “yes”

message of his preferred buyer, say ,; then line 14:L:2 would become
key := ¢™Y mod n

In such a case, the cheated winner ¢ can expose the treachery by broadcasting
publicly his private key (rev{z.}). Everyone can check whether he is the real

winner

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 89

rev{z, = wy}

c?

rev{g® mod n = ¢ mod n}

the “yes” message ¢/ mod n was revealed

I

publicly

rev{g™ mod n}

I

g and n are public

rev{z.}

The question mark in the first step indicates that we do not apply a refinement
law. What can be achieved is to check whether ¢ has the same “yes” message
as the real winner. But it is reasonable to assume that c is the real winner in
that case assuming a large n.

Everyone can check if the seller has cheated, by decrypting the seller’s

appointment message

rev{ Dec.(Enc.(sale, key)}, g™¥ mod n)

I

Enc.(sale, key) was revealed publicly

rev{g®¥ mod n}

I

g and n are public

rev{z.}

Variants of the protocol are presented in [35], as well as other possible
attacks and the practical interests of such protocols, other than selling drugs.

Whilst it might be difficult to formalise every aspect of the protocol, we
could describe it using a formal programming language. We could abstract,
for instance, from how the anonymous broadcasts are done. Implementation
of these broadcasts based on the Dining Cryptographer’s protocol and based
on physical devices are discussed in [35]; these are refinements of the program

in Figure (6.3

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS

90

==
_ O

12:

13:

14:

15:

Visg, ¥ : D §
visgg:D,n:N, g modn §
hidg w : AV 3
hid 4 Wy A 5
vis, 7, :€ DV 3
vis,, sale : D §
vist : N, r: N
vis,, price : NV ¢
t,r:=0,0 §
rev{price[0]} ¢
while ¢ < Atdo

L: t:=t+0t N R:

end while
1wy = wlr —1]3
L: | 20 key := (g™)Y mod n
3: rev{Enc.(sale, key)}
key = (gy>fuf mod n

o

9

Secret key of the seller ag

Public keys of the seller ag

The winner of a round: hidden to all
The final winner: hidden to all

Secret key of agent a at round 14

Place and time of the sale: visible to ag
The time, the round are visible to all
The price for each round: visible to ag

w(r] € As

rev{g®[mod n}
t,r:=0,r+13 ’
rev{price[r]|}

ar > 0> R: skip §

FIGURE 6.3: The Cocaine Auction Protocol

Stellenbosch University https://scholar.sun.ac.za

Chapter 7
Conclusion

In this work, we have proposed a programming language for refinement calculus
in which the underlying predicate logic allows us to express knowledge. The
programming language extends the one used in Morgan’s Shadow refinement
calculus 28] to include, for instance an announcement command ann! and to
allow higher order knowledge formulas. For example, the simultaneous answers
of the children to their father in the Muddy Children Puzzle was expressed by

ann! " KVypo A =KVip; A =KVaps

We used a first-order epistemic logic that is based on Fitting’s First Order
Intensional Logic (FOIL) [13| [15]. Our addition was to define explicitly a
visibility type for intensions (or concepts) by specifying the set A of agents that
see a variable v, in which case we have v € vis.A. We defined a concrete Kripke
model using vis and a set of intensions (or concepts). The latter determines
the possible states and the former determines the accessibility relations. The
type of model used here is a multi-dimensional frame in the sense of [22].
The model for the logic was also used for the program denotational semantics.
This could be done only by storing all the past values of the program variables,
not forgetting local variables. By extending the logic to Public Announcement
Logic (PAL, |33, 18], 11]) we could also define a weakest precondition semantics
for the programs.

In addition to structural laws, which also apply for classical programs, the
laws governing confidentiality /knowledge sensitive programs take into account
the information flow to the agents. An agent gets information from how much

it knows from the program code executed (limited by atomicity), from the

91

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 92

program variables visible to it, and from higher-order information. The laws
using a public announcement derive mostly from PAL.

For reasoning about information flow we established a program calculus
with refinement. We do not propose a new dynamic epistemic logic but propose
that the Public Announcement Logic can be used in conjunction with program
algebra to reason about knowledge dynamics. In our framework, epistemic
actions can be written in a programming language; reasoning about them is
achieved using programming laws and the theorems of PAL. We explained the
Wise Men Puzzle and the Muddy Children [12] using this approach. Reasoning
with laws saves us from explaining model updates but still gives an operational
understanding of the puzzle. What the children can learn at each step of the
puzzle is expressed in a logical formula.

For applications in protocol analysis, we described the Cocaine Auction
Protocol [35] using the language and techniques of refinement. Reasoning
about this anonymous auction protocol demonstrates how can we use the

framework to reason about
« confidentiality of data,
e private or anonymous communication,
e hidden computation.

A completion of this framework would introduce iterative and recursive
programs, procedure call and other commands used in the refinement calcu-
lus. To be investigated are also the decidability of the intensional logic given
in Chapter 3, as well as the axiomatization of the first-order Public Announce-
ment Logic. It is also possible to provide a complete set of programming laws,
as in [21] for classical programs, and in [34] for a subset of the programming
language used here.

This work could constitute a basis for quantitative analysis of information
flow in programs. The proposed denotational model is close to Aumann’s infor-
mation models (see [1]). Another development would analyse the information

flow in probabilistic systems; in the direction of [31].

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Appendix

A.1 First-order Intensional Logic

A.1.1 FOIL with quantification on objects

DEFINITION A.1 (Truth in a Model) Let a model 9% and an assignment j of

free variables
LM s, uE R(ty, ..., t,) iff (u(ty),...,u(t,)) € M[R].H
2. M s, uE K, iff foreveryt €S, if s~, t then M, t, uF ¢

3. M,s,u F Vrep iff we have M,s,v E ¢ for every v = u®{z — a}
where a € Dy

4. M,s,uEJz e iff we have M, s, v F ¢ for some v = p@{x — a} where
(IGD]

5. M,s,u EVXeg iff we have M,s,v E ¢ for every v = p®{X — a}

where a € Dy

6. M,s,u E IX ¢ iff we have M, s, v F ¢ for some v = p@&{X — a}

where a € Do

7. Ms,uE (AX 29)(t) iff we have M, s, vk ¢ for v = pd{z — M[t].s}

93

Stellenbosch University https://scholar.sun.ac.za
APPENDIX A. APPENDIX 94

A.1.2 Theorems and axioms of FOIL

ProprosiTioN A.1 The following are Axioms of FOIL without quantifiers
(not S5 FOIL). Capital letters X, Y designate objects, t designate concept

terms.
1. AXep =)t = (AX *9).t = (AX *1)).1)
2. If X is not free in ¢ then (AX *¢).t = ¢
3. (AX +6.X).t = AX *¢.Y).t
4. Dt = (AX *9).t V (AX *—9).1)
5. X=X
6. X=Y = (PX=P.Y)
7. (X =Y)= K, (X = Y)
8. (X =Y)=K,~(X =Y)
9. Dt= AX,Y X =Y).(t,1)

PRrROPOSITION A.2 The following are FOIL theorems from Fitting
1. (D.t AN ¢) = (AX *—¢).t provided that X is not free in ¢
2. (AX e —¢).t = D.t
3. (AX e =¢).t & D.t A ¢ provided that X is not free in ¢
4. AX e=p AY).t & (AX *—¢).t A (AX *).t
5. (AX e=¢p).t = =(AX *—¢).t
6. Dt = (AX *—¢).t & —(AX *—d).1)
7. Dt= (AX *—¢ = ¢).t) & (AX *=¢).t = (AX *—).1)
8. AX V)t (AX e—p).t V (AX o).t
9. (AXeX=Y)tANQAY Y =2)t)=> (X =12)

Proof of Law|3.5.11. Given M, s, p, if a term ¢ that designates at H for
(p)KVat
4 Law KV

(p)Jyey € vis.a NK,(t = y)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX 95

Law|3.3.4 and Law|3.3.

as y 1is not free in p

Law and Law @

as y is not free in p

Fye(p)y € vis.a A (p)Ka(t = y)

& Law[332
Jyep Ay € vis.a N (p)K,(t =y)

& LawB310
Jyep Ay €vis.ah(p ANKa(p = (p)t =y))

& Law[Z32

JyepAyecvis.aN(pAKy(p— (pAt=1y)))
p implies q

iff p implies (p and q)
pAJy € vis.a*K,(p — (t =vy))

If a term ¢ does not designate at H for u the equivalence still holds.]

Law[3.9: Ko(u = v) AK,(v = w) = K, (u = w).

K,AU,VeU=7V)(u,v) NKAV, WeV = W).(v, w)

=
K,JJAU, VeU=V).(u,0) N\AV, WeV = W).(v,w)]

= Aziom 4.1.4 Fitting
KJAU, We(AV e U = VALV eV = W).y).(, 2)]

= Aziom 4.1.9 Fitting
K AU, We U = W).(z,2)]

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX 96

A.2 Soundness of PAL axioms in Chapter 3

In the following we prove the soundness of Laws |3.3.2 3.3.3] [3.3.4} [3.3.10]
3.3.8] Laws [3.3.5| and [3.3.7] can be derived from the first set of laws.

Derivation of Law [3.3.11]is presented.

Proof of Law[3.3.3. Given M,s, u, if o, ..., ty—1 designates at s for u then
mvsnu }: <p>R(t07 LI ZfN—l)

Definition|3.1

iUI:Sa,u):p and i)jt|10757u): R(t07"'7tN—1)

Truth of an atomic formula

M,s, 1 =p and (u(to), ..., pw(tv—1)) € M, [R].s

p and p iff p

M,s,u=p and (M,s,p=p and (pu(t), ..., u(tyv—1)) € Mp[R].s)
if M,s, pu |= p then s € domS§),
and Mp[.] =S, <M[.]

M.s, = p and (u(to), ..., u(ty-1)) € M[R].s

Truth of an atomic formula and A

M, s, u = pand R(ty,...,tn—1)

If some t; does not designate, the equivalence remains. O

Proof of Law|3.5.5.
M s, 1 = (p) o

Definition |3.1

M, s, = p and My, s, 4 = ¢
Truth of negation, p and q

iff p and (—p or q)
M, s, pub=pand (M,s, e pVIN| p,s, b~)

De Morgan’s law

M, s, = pand ~(M, s, u = p and M | p,s, pu = @)

Definition|5.1
Sﬁ,S,,u }: p and m7s7u l# <p>¢

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX 97

Truth of A
M, s, i =pA—=(p)¢

Proof of Law|[3.3.4).
mvsnu): <p>¢0 A ¢1

Definition |3.1

mvsnu):p and mlpasuu):¢0A¢1

Truth of A
M,s, u }: p and i)jqpashu }: ¢o and i)j/t|p7smu }: ¢1

piff p and p

mt7s7u ’: p and m|pas7lu’ ’: ¢0 and m7571u IZ p and mqp?shu’): ¢1
Definition |3.17, truth of A

M, s, p = (p)do A (p)P1

Proof of Law[3.3.10,
M,s, 1 |= (p)Ko

Definition|3.1
M,s, 1 = p and My,,s, 1 = Ko

Truth of K

M, s, u = p and for any t ~,), s we have M, t, u = ¢

Definition of ~q)p

M, s, = p and for any t ~, s and t € S, we have M, t, 1 |= ¢
(p and q) implies r

iff p implies (q implies r)
M, t, = p and for any t ~, s, if t € Sy, then M, t, 1 = ¢
Definition of Sy,

M, t, 1 = p and for any t ~, s, if M, t, = p then M, t, 1= ¢
(p and q) implies r

iff p implies (q implies r)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX 98

M, t, 1 = p and for any t ~, s, if M, t, u = p then

M, t, pu |= p implies M, t, 1 = @

= Definition[5.17
M, t, 1 = p and for any t ~, s, if M, t, u = p then

M.t = (p)o

= Truth of = and N

M,s,.pul=pAK(p = (p)¢)

Proof of Law|[3.3.8,
M,s, p = (p) Vo

Definition|3.1

M,s, u }:p and iIn|]’)7s>:u }ZV$¢

Truth of universal quantification

M, s, u = p and My, s,v |= ¢ for any v = p®{x — c} where c € D,

x s not free in p

M, s, u = p and My, s,v |= ¢ for any v = p®{z — c} where c € D,

Definition|3.1

M,s, u = (p)¢ for any v = p@{x — ¢} where ¢ € D,

Truth of universal quantification

M, s, p = Va(p)o

Proof of Law[3.3.9. Given M, s, u, if a term ¢ that designates at H for u
M,s, = (p)(AX =)t

Definition|3.1

M, s, = p and My, s, = (AX *¢).1

Truth of predicate abstraction

M,s, 1w |=p and My,,s,v = ¢ where v = p®{X — (M, p)[t]}

X is not free in p

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX 99

M,s,v=p and My, s, v = ¢ where v = p®{X — (M, pu)[t]}

Definition|3.1

M,s,v = (p)¢p where v = p®{X — (M, 1) [¢]}

Truth of predicate abstraction

M5, = (A X (p)o).1

If a term ¢ does not designate at H for u the equivalence still holds. O

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX

A.3 Proofs from Chapter 6

Proof of [6.2.9.

ann! /\

se(

5tep)

vE

V

(o)

mq

ann! /\ ﬁKVipZ)

ann!

ann!

ann!

ann!

ann!

ann!

ann!

1€EN

V

vE (N\&)

ma

/\ —KV;p;

1€EN

V

vE (N\&)

1EN

V

ve(M\)

/\PJ

/\pj

/\ ﬁKVz‘Pz‘)

/\ ﬁKVz‘Pz’)
o€

i

JEY

/\Pj) 5
o

)

)2,

)

A K

keN\S

/\/\Kk

(ot

)

N) kEN\S

ANARY

) FEN\

V

ve(N\)

V

YA

As)

V

(N\{éu{k}})

maq—1

ve(ek V€ 7e(

(

A

ViSal

100

) y
ye(

vV (An)

M) Iy zk

JEY

V

N\{éu{k}})

(

A

ViSal

)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. APPENDIX 101

ann!</\ﬁsz.pi>Aée/\ Al mn (/\pJ) Y (/\pj>

i€N (X) keN\S SN sy He (MM \jey

ann! |/ </\pj) ;

ve(MY) V€Y

ann! /\ﬂKVipZ)/\ A A \/ /\pj>

iEN be(N) KENNS \ ye (MUt \jey

ann! \/ /\m) 9
o

ve(M\)

ann! (/\ _‘Kvipi> 5 a””!/\ae(stf,}jl) (v'ye(%f) </\j67 pj>)

1EN

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[10]

[11]

R.J. Aumann. Interactive epistemology I: Knowledge. International Jour-

nal of Game Theory, 28:263-300, 1999.

R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Intro-

duction. Springer-Verlag, Graduate texts in computer science, 1998.

A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements,
common knowledge, and private suspicions. Technical report, SEN-R9922,
CWI, Amsterdam, 1999.

J. van Benthem. One is a lonely number: on the logic of communication.
Technical report, ILLC, University of Amsterdam, 2002.

J. van Benthem. Modal Logic for Open Minds. CSLI lecture notes. Center
for the Study of Language and Information, 2010.

J. van Benthem, J.D. Gerbrandy, T. Hoshi, and E. Pacuit. Merging frame-

works for interaction. Journal of Philosophical logic, 2009.

P. Blackburn and J. van Benthem. Modal logic: a semantic perspective.
In Handbook of Modal Logic. Elsevier, 2007.

P. Blackburn, M. De Rijke, and Y. Venema. Modal Logic: Graph. Darst,
volume 53. Cambridge University Press, 2002.

W. Diffie and M. E. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644-654, 1976.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. Synthese Library. Springer, 2007.

102

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 103

[12]

[16]

[17]

[18]

22]

[23]

[24]

R. Fagin, J.Y. Halpern, Y.O. Moses, and M.Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

M. Fitting. First-order intensional logic. Annals of pure and applied logic,
127(1):171-193, 2004.

M. Fitting. Foil axiomatized. Studia Logica, 84(1):1-22, 2006.

M. Fitting. Intensional logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2015 edition, 2015.

M. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer, 1998.

J. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, University of
Amsterdam, 1999.

J.D. Gerbrandy and W. Groeneveld. Reasoning about information change.
Journal of Logic, Language, and Information, 6:147-169, 1997.

J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

C.A.R. Hoare, 1.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W.
Sanders, I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of program-
ming. Communications of the ACM, 30(8):672-686, 1987.

C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice

Hall International Series in Computer Science. Prentice Hall, 1998.

M. Marx and Y. Venema. Multi-Dimensional Modal Logic. Kluwer Aca-
demic Publishers, 1997.

A K. Mciver. The Secret Art of Computer Programming. In Proceedings
of the 6th International Colloquium on Theoretical Aspects of Computing,
ICTAC ’09, pages 61-78. Springer-Verlag, 2009.

A K. Mclver, L.A. Meinicke, and C.C. Morgan. Security, probability and
nearly fair coins in the Cryptographers’ Café. In Proceedings of the 2nd
World Congress on Formal Methods, Lecture Notes in Computer Science,

pages 41-71. Springer-Verlag, 2009.

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 104

[25]

[33]

[34]

[35]

A.K. Mclver and C.C. Morgan. Sums and Lovers: Case studies in secu-
rity, compositionality and refinement. In Proceedings of the 2nd World
Congress on Formal Methods, FM 09, pages 289-304. Springer-Verlag,
2009.

A K. Mclver and C.C. Morgan. Compositional refinement in agent-based
security protocols. Formal Aspect of Computing, 23(6):711-737, 2011.

C.C. Morgan. Programming from Specifications. Prentice Hall Interna-

tional Series in Computer Science. Prentice Hall, 2 edition, 1994.

C.C. Morgan. The Shadow Knows: Refinement of ignorance in sequential
programs. In Mathematics of Program Construction, Lecture Notes in

Computer Science, pages 359-378. Springer, 2006.

C.C. Morgan. The Shadow Knows: Refinement and security in sequential

programs. Science of Computer Programming, 74:629-653, 2009.

C.C. Morgan. Compositional noninterference from first principles. Formal
Aspect of Computing, 24(1):3-26, 2012.

C.C. Morgan and A.K. Mclver. Abstraction, Refinement And Proof
For Probabilistic Systems (Monographs in Computer Science). Springer-
Verlag, 2004.

R. Parikh and R. Ramanujam. A knowledge based semantics of mes-

sages. Journal of Logic, Language and Information, 12:453-467, 2003.

J.A. Plaza. Logics of public communications. Proceedings of the /th

International Symposium on Methodologies for Intelligent Systems, 1989.

S. F. Rajaona. An Algebraic Framework for Reasoning about Security.
Master’s thesis, University of Stellenbosch, 2013.

F. Stajano and R. Anderson. The cocaine auction protocol: On the power
of anonymous broadcast. In Information Hiding, pages 434—447. Springer,
2000.

	Declaration
	Abstract
	Acknowledgements
	Dedication
	Contents
	Introduction
	Overview
	Refinement of programs
	Refinement and confidentiality
	Knowledge in modal logic
	Logic of knowledge and information change
	Logic of knowledge in first-order
	Description of this thesis

	Program algebra
	Assumptions
	Program syntax
	Modelling with programs

	Logics
	First-order epistemic logic
	Relations between models
	First-order public announcement logic

	Program semantics
	Denotational semantics
	Weakest precondition semantics
	Connection between the two semantics
	Discussion

	Algebraic laws
	On the use of program algebra
	Laws
	Soundness of the laws

	Applications
	The Three Wise Men puzzle
	The Muddy Children Puzzle
	The Cocaine Auction Protocol

	Conclusion
	Appendix
	First-order Intensional Logic
	Soundness of PAL axioms in Chapter 3
	Proofs from Chapter 6

	Bibliography

