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Abstract 

Individual tree models, as opposed to stand models, have the potential to greatly improve sensitivity 

of forest growth models to changing conditions such as silvicultural amendments, irregular stand 

structures, etc. It was the purpose of this study to extend two sub-components of a European 

individual tree growth model to introduce individual tree growth modelling concepts in South Africa 

using Pinus elliottii as a study species. Two main objectives were established: Modelling the 

potential height of stands across different site qualities and modelling diameter increment using a 

potential modifier approach with a combination of competition indices that change in importance 

according to the edaphic conditions of the site. 

Potential height modelling used three steps in order to achieve this objective. The first was to 

compare site index models based on different model fitting techniques, namely nonlinear least 

squares, generalised nonlinear least squares and nonlinear mixed effects models. The nonlinear 

mixed effects model proved to be superior in terms of achieving the principles of regression 

assumptions and model fit for the data range observed. The second step was to fit potential height 

using nonlinear quantile regression on observed spacing trial height measurements. This proved to 

be a robust technique able to capture potentials according to the defined Chapman-Richards model 

structure. The final step was to use the predicted site index as a site classification variable in order to 

predict potential height. While some small deviation occurred, potential height seems to be well 

correlated to site index and validation on selected sites suggested that site index can be used to 

model potential height until a more sophisticated site classification model is used for future 

improvement of the model.  

Diameter increment modelling followed six major steps in order to apply the full parameterisation 

methodology of an age-independent diameter increment model dependent on tree diameter and 

competition. Diameter increment potentials were fit using site index as a predictor of the potential 

height curves. Multiple competition indices were tested on two sites to obtain a combination of two 

indices, which can capture overtopping and local crowding effects. Principle components analysis 

and variance inflation factors calculation were applied to test for collinearity between indices. 

Suitable combinations were tested resulting in a combination of the KKL and Local Basal Area 

competition indices. Changing importance of the two indices were observed on the two sites tested 

indicating a shift in the mode of competition according to a water gradient.  

These were combined in a deterministic potential modifier model, which mimicked competitive 

stages over age; however the validation showed a skewed distribution, which was not sensitive to 

stand density gradients. A stochastic model was constructed to model variance from observed 

residual plots using linear quantile regression to determine bounds for a truncated normal 

distribution which generates random deviates for a predicted increment. The stochastic element 

significantly improved the performance and sensitivity of the model, however the model was still 

not sensitive enough at very high and very low spacing densities. All in all two key models for an 

adaptation of an individual tree growth simulator to South African conditions were successfully 

demonstrated. The two main objectives were achieved; however some indicated improvements 

could be made, especially for the competition indices where the sensitivity of competition to 

changing resource limitation according to site and temporal scales needs to be further investigated. 
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Furthermore, the full set of models for simulating individual tree growth still needs to be applied. 

Overall, as a methodological approach, the study outlined problems and future improvements, 

introduced new concepts and can serve as a guideline for future parameterisation of an individual 

tree growth model. 
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Opsomming 

In vergelyking met vakgroeimodelle, het individuele-boomgroeimodelle die potensiaal om die 

sensitiwiteit van plantasiegroeimodelle vir veranderende omstandighede soos aanpassings in 

boskultuur,  onreëlmatige vakstrukture, ensovoorts, drasties te verbeter. Die doel van hierdie studie 

was om twee subkomponente van ‘n Europese individuele-boomgroeimodel uit te brei om 

sodoende individuele-boomgroei modelleringskonsepte in Suid-Afrika bekend te stel. Pinus elliottii is 

gebruik as studiespesie. Twee hoofdoelstellings is bepaal. Eerstens, die modellering van hoogtegroei  

potensiaal van opstande oor verskeie vlakke van  groeiplek kwaliteit. Tweedens, die modellering van 

deursnee-aanwas deur gebruik te maak van ‘n potensiaal matigingsbenadering  “potential modifier 

approach“  met ‘n kombinasie van kompetisie-indekse waarvan die belangrikheid verander volgens 

die edafiese toestande van die groeiplek. 

Die hoogtepotensiaalmodellering bestaan uit drie stappe. Tydens die eerste stap word  groeiplek 

bonniteitsmodelle vergelyk op grond van verskillende modelpassingstegnieke, naamlik nie-lineêre 

minimum kwadrate, algemene nie-lineêre minimum kwadrate en nie-lineêre gemengde effek 

modelle. Laasgenoemde het die beste gevaar in terme van die beginsels van regressiemodelle asook 

die mate waarin die model die waargeneemde data pas. Tweedens  is hoogtegroei potensiaal 

gemodelleer deur nie-lineêre kwantielregressie op waargeneemde hoogtes van 

spasiëringseksperimente  toe te pas. Die metode is robuust en in staat om potensiale volgens die 

gedefinieerde Chapman Richards modelstruktuur vas te vang. Laastens is die voorspelde  bonniteits 

indeks as ‘n groeiplek klassifasie veranderlike gebruik om sodoende die hoogtegroei potensiaal te 

voorspel. Alhoewel klein afwykings voorgekom het, blyk hoogtegroei potensiaal goed gekorreleer te 

wees met bonniteits indeks. Uit validasie op geselekteerde groieplekke blyk dit dat  bonniteits indeks 

gebruik kan word om hoogtegroei potensiaal te modelleer totdat ‘n meer gesofistikeerde groeiplek 

klassifikasiemodel beskikbaar is wat die model verder sal kan vebeter.  

Die volledige parametriseringsmetodiek van ‘n ouderdoms-onafhanklike deursnee-aanwas model 

wat afhanklik is van boomdeursnee en kompetisie  bestaan uit ses  hoof prosesse.  Nie-lineêre 

kwantielregressie is gebruik om deursnee-aanwaspotensiale te pas vir verskeie groeiplekke. Dié is 

gekombineer met ‘n bonniteits indeks om ‘n nuwe model te vorm waarmee hoogtegroeipotensiaal 

kurwes voorpel kon word. Daar is met veelvuldige kompetisie-indekse op twee  groeiplekke 

geëksperimenteer om ‘n kombinasie van slegs twee indekse te vind wat die effekte van 

oorskaduwing en  plaaslike verdringing kan vasvang, te vind. Hoof komponent analise “Principle 

components analysis” en variansie inflasie faktore berekening “variance inflation factors calculation” 

is gebruik om vir kollineariteit tussen die indekse te toets. Gepaste indekskombinasies is getoets. ‘n 

Kombinasie van die KKL en plaaslike basale oppervlakte “Local Basal Area” kompetisie-indekse het 

die beste resultate gelewer. Die twee indekse is as volg geselekteer. Veranderings in die 

belangrikheid van elk van die indekse is waargeneem op die twee toetspersele. Dit dui op ‘n 

verskuiwing in die modus van kompetisie afhangend van ‘n watergradiënt.  

Die twee indekse is gekombineer in ‘n deterministiese potensiaal matigings model wat die 

kompeterende stadiums oor ouderdom naboots. Validasie het egter ‘n skewe verdeling wat nie 

sensitief vir opstandsdigtheidsgradiënte is nie, gewys. ‘n Stogastiese model is ontwikkel om variansie 

in die residuele grafieke te modelleer. Lineêre kwantielregressie is gebruik om grense vir ‘n 
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afgestompte normaalverdeling wat ewekansige afwykings vir ‘n voorspelde aanwas te bepaal. Die 

stogastiese element het die prestasie van die deterministiese model merkbaar verbeter. Selfs met 

die stogastiese element, is die model egter steeds nie sensitief genoeg vir baie hoë en baie lae 

opstandsdigthede nie. 

Ter opsomming is twee modelle vir ‘n aanpassing van ‘n individuele-boomgroeisimuleerder vir Suid-

Afrikaanse toestande suksesvol gedemonstreer. Die twee hoofdoelstellings is bereik. Daar is egter 

steeds ‘n paar aangeduide verbeterings wat aangebring kan word. Die sensitiwiteit van die 

kompetisie-indekse op hulpbronbeperkings wat verander op grond van die  ruimtelike en temporale 

skale moet veral verder bestudeer word. Verder moet die volle stel modelle wat benodig word om 

individuele-boomgroei te modelleer nog toegepas word. As ‘n metodologiese benadering, het die 

studie probleme uitgewys en toekomstige verbeterings aangedui, nuwe konsepte bekendgestel en 

kan dus dien as ‘n riglyn vir toekomstige parametrisering van individuele-boomgroeimodelle.   
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Chapter 1: Introduction and background 
 

 

1.1 Problem statement 
Due to the fast growing, even-aged and single-species nature of the local plantation stands,  

forest growth modelling in South Africa has, for good reason, mostly been confined to 

computer implanted stand models and yield table predictions (Kotze et al. 2012). These 

models have proven to project stand volume with high accuracy and are well suited to the 

homogenous situation of the stands applied. However, stand models like these have 

limitations. Top-down approaches have to model changes and distributions, or in other 

words have to decompose the stand volume again to obtain individual tree volumes. Stand 

models further are not designed to model irregular stand structures or deviations from 

typical silvicultural regimes. Individual tree growth models, following a bottom-up approach 

that models  interactions between a mosaic of individual trees (Munro 1974), offer an 

alternative to stand modelling. Due to their interaction and feedback loops between stand 

structure and growth they are more flexible to changes in the stand structure and prove 

very useful for scenario analysis, simulation for research purposes and academic tools 

(Pretzsch et al. 2002).  

Competition indices are a key element of individual tree models since they describe the 

interaction between the individual trees in the stand. Different indices capture different 

modes of competition, which is related to the specific resource limitation influencing the 

interactions among the trees as shown by Seifert et al. (in review). This also feeds back to 

the interaction between trees of different dimensions. In predominantly light limiting 

environments, overtopping of the crowns of the trees cause the competition of the trees to 

become size-asymmetrical, where larger trees benefit disproportionately to their size. When 

edaphic resources such as nutrients and water become more limiting the size symmetry 

shifts to situations where trees benefit proportional to their size (Schwinning and Weiner 

1998). Competition models should be able to capture the variability and gradient between 

these two extremes. 

In this study an individual tree modelling approach was undertaken for Pinus elliottii 

plantations in South Africa as an initial attempt to parameterise a growth model following 

the structure of an existing European growth simulator called SILVA (Pretzsch et al. 2002). 

SILVA was parameterised for central European growth conditions, which are predominantly 

light limited. That made some model changes necessary in order to adapt the simulation 

approach to predominantly edaphic limited sites in South Africa. Two aspects of the model 

were addressed: the potential height modelling required for the simulation initialisation, as 

well as diameter increment modelling.  With application to South African forest inventory 
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standards in mind, potential height predicted from site index was modelled. For the 

development of diameter increment models, different competition indices were combined 

in order to capture the variable nature and shift of resource limitation and competition 

mode. 

 

1.2 Background and literature review 

1.2.1 Pinus elliottii plantations in South Africa 

Pinus elliottii (Engelmann), commonly known as slash pine, is an introduced species grown 

typically in even-aged commercial plantation forests in South Africa. It is indigenous to the 

South Eastern United states; found predominantly in the coastal plains of North and Central 

Florida, although its range extends into neighbouring states as well (Poynton 1979). In South 

Africa, it has a relatively long history of use in the commercial forestry sector, with seeds 

first imported in 1916 and extensive expansion occurring since.  

In South Africa, Pinus elliottii has a very wide planted range in both the summer and all-year 

rainfall regions, including a very wide altitudinal gradient. It is known as a hardy, relatively 

slow growing species that is adaptable to many different site conditions (du Toit 2012). The 

thick outer bark and it’s specific bark structure also makes it one of the most fire resistant 

species (Odhiambo et al. 2014), allowing it to be ameliorable to preventative under canopy 

burning and use as a buffer in fire prone areas. 

This species was chosen for this thesis due to its representation in almost all of the growing 

regions in South Africa. 

1.2.2 Forest growth modelling  

Although many modelling approaches exist, in this chapter three main modelling 

approaches are mentioned: statistically based stand models and individual tree models and 

process based models. 

Stand models represent the whole stand as a unit and do not consider individual tree 

interactions for model construction or parameterisation. These growth models usually make 

use of variables such as stems per hectare (SPHA), basal area (BA) per hectare and dominant 

height (Vanclay 1995, Kotze et al. 2012). Stand models can model individual tree or 

individual tree classes of diameter at breast height (DBH) for example by modelling 

distributions, e.g. Kassier (1993), in a typical top down approach. By combining stand table 

projection methods with the stand level model approach, projection from an observed 

inventory into the future can provide accurate stand table details (Corral-Rivas et al. 2009) 

Individual tree models use information of individual trees in the simulation and model 

prediction of tree growth, and require at least the size of every tree in a stand and model 

interactions between the trees in a mosaic in the stand (Pretzsch et al. 2002, Vanclay 1995). 
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The spatial position of the individual trees is an optional parameter included depending on 

the structure of the model. Competition indices are often noted as distance dependent or 

distance independent competition indices (Pretzsch 2009). While statistical individual tree 

models have the advantage to be sensitive to irregular tree distributions for example due to 

insect damage, wind or snow breakage or inappropriate silvicultural practice (Ackerman et 

al. 2013) they share a major trait with statistical stand models: They are strictly speaking 

only valid in the range of their parameterisation. Extrapolations must be done with care, 

which limits their application in projections during transitional stages such as the 

experienced climate change. 

Ecophysiological process based models do also follow the individual tree (e.g. Rötzer et al. 

2012) or stand (Landsberg and Waring 1997) paradigm. Big-leaf stand models such as 3PG 

(Landsberg and Waring 1997), that make use of mechanistic processes, and allometric 

relationships to model resource allocation on a stand level  have been successfully 

parameterised for some South African tree species (Dye et al. 2004). Process based models 

offer superior climate sensitivity, since they predict growth from the basis of 

ecophysiological processes (“white-box” approach). Unfortunately, developing mechanistic 

process models tends to be an extremely complicated and time-consuming task due to the 

complex nature of these processes, and these models are often parameterised from intense 

measurements of a few sites (Pretzsch 2009, Rötzer et al. 2009). Further limitations of the 

mechanistic process models, in comparison to currently applied statistical models, are that 

they lack the accuracy and practical output options such as log classes, harvesting costs and 

wood quality considerations, necessary for decision systems to support forest management 

on a commercial scale. However, this makes them currently more suited as research tools. 

Hybrid models represent a compromise between empirical models, such as the individual 

tree and stand models mentioned previously, and process based models, by estimating 

productivity in relation to primary factors (Dzierzon and Mason 2006, Pretzsch 2009) and 

combining a solid forestry output with increased climate sensitivity. 

Currently, growth and yield modelling in the South African plantation industry is 

characterised by “black box” statistical stand models, which are reasonably accurate, but 

unable to cater for changing site conditions, and are in danger of becoming less useful due 

to the environmental changes brought about by climate change (Pretzsch 2009). The stand 

models currently in use are also not designed for the complexities of intra-specific 

competition in even-aged, single species plantations under changing conditions or stress. 

This is a major concern in the climate change context, since statistical models are able to 

model growth only within a range or close to the conditions under which the measurements 

for the model were made as pointed out before. Extrapolation beyond this parameterisation 

range could lead to false conclusions. 

Individual tree growth models are able to account for changes to stand structure, which 

occur due to mortality, mechanised row removal, etc. Changes to silvicultural regimes, such 
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as changing planting or thinning density, age mixture, etc., are easier to model by virtue of 

the bottom up approach taken to individual tree interactions and competition analysis 

(Pretzsch 2009). Preferably they should have certain climate sensitivity in a hybrid approach. 

1.2.3 Competition Indices 

There are different competition indices (CI’s) applied in individual tree modelling, position 

dependent and position independent being the two major distinctions. While position 

independent CIs only use the relative size of a tree in comparison to other trees in the 

stand; position dependent competition indices calculate competition based on the explicit 

positions of the trees in relation to each other. Firstly the neighbouring trees that compete 

with the central tree are determined based on their position and whether they would 

influence the tree in question. Once the relevant neighbours have been found, the strength 

of the competition for each of the trees and their effect on that tree is determined. 

When stands are homogenously structured, position independent indices do not differ from 

position dependent indices significantly; however they are not deemed flexible and accurate 

enough to capture irregularity in the stand, thus position dependent models are better 

suited to extrapolating across a broad range of conditions and stand structures (Pretzsch 

2009). 

Many methods exist for the determination of the competitor trees. Fixed radii can, for 

example, be defined around the central tree. All trees with a distance less than the radius 

away from the central tree are identified as competitors, as in the case of Hegyi (1974) who 

used a radius of 3.048m (10ft). Fixed radii have severe disadvantages though as they are 

only adequate for certain sizes of trees under a specific competitive circumstance (Pretzsch 

2009). The search radius would have to adjust for tree size or tree age for instance.  

The next step in calculating a position dependent CI would be to determine the strength of 

the competition determined from specific attributes of the trees such as diameter, height, 

crown size, or a search crown. 

1.2.4 Competition symmetry 

Competition symmetry refers to a plant population where the size of a plant in competition 

to other plants determines its relative competitive advantage over neighbouring plants 

(Schwinning and Weiner 1998, Stoll et al. 2002, Wichmann, 2001). Size symmetry of 

competition can simplistically be grouped into size asymmetric, size symmetric and 

symmetric competition. This point is illustrated in Figure 1-1. 
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Figure 1-1: Hypothesis on the relationship of plant size on growth rate in a given stand with respect to the size symmetry 

of competition. Stands are usually in a continuum between these extremes where light limitation result in size 

asymmetric relationships and size symmetric relationships where underground resource limitations are prevalent. 

Symmetric competition occurs when competition is not related to tree size (figure from Pretzsch and Biber, 2010). 

In forest communities growth is either size asymmetric when dominant or larger plants 

benefit disproportionately to their size or size symmetric where plants benefit proportional 

to their size (Schwinning and Weiner 1998, Wichmann 2001). The theory being that in light 

limited circumstances – asymmetric competition is more prevalent because light is a 

directional resource, where dominant trees not only gain because their canopies are larger 

and able to capture more sunlight, but also shade out their competitors giving those trees a 

distinct advantage disproportionate to their size. In more size symmetric circumstances, 

edaphic factors (water or nutrients) are usually limiting and therefore, since these 

components are not as strictly spatially dependent, the competition is symmetric with size, 

meaning larger trees benefit proportional to their size as they are able to obtain more 

resources. 

This phenomenon can act on two scales. One is where a site inherently has certain 

characteristics, for example an ample water supply and is dominated by size asymmetric for 

instance. The mode of competition can also vary with time, either seasonally or between 

different years, for instance in drought years or years of above average rainfall.  Wichmann 

(2001) found that in the same sites for different years, trees in their respective stand 

dynamics can actually shift between these two types of competition mode. 

Silvicultural regimes can be catered to the specific mode of competition in productive forest 

stands. In predominantly light limited stands, “thinning from above” is applied, where 

certain trees with large canopies are removed to allow for more light to reach neighbouring 

trees, which can result in overall higher productivity. In more size symmetric and water 
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limiting circumstances, “thinning from below” is mostly practiced, whereby 

underperforming suppressed trees or smaller trees are removed to allow space and boost 

growth for larger, better performing neighbouring trees which results in optimum size and 

volume growth (Pretzsch 2009) 

Individual tree forest growth models rarely cater for these complexities of the mode of 

competition (Pretzsch and Biber 2010). One option would be to combine different 

competition indices under such different sites (Figure 1-2), with the relative strength of each 

index changing for the different nature of the sites – i.e. one competition index would 

account more for competition between light, while another would account for below 

ground competition for resources (e.g. soil water) .  

 

Figure 1-2: Figure illustrating two different types of competition indices theoretically more suited to overtopping and 

local crowding respectively.  

As will be shown in this thesis, parameterisation of such models require an adequate 

number of sites of different average resource conditions, and longitudinal data to capture 

temporal changes as well, making these types of modelling strategies difficult to 

parameterise. However, the value of these types of models would be in their ability to cater 

for changing climatic conditions and their ability to adjust silvicultural regimes specifically to 

sites based on their inherent resource limitation. 

In South Africa the commercial plantation forest environment is predominantly water 

limited with adequate light supply, so water or edaphic limitations are usually prevalent, 

leading to the hypothesis that growth is more size symmetric. However, it is not known at 

which point water is not limit anymore and light becomes a limitation (if such sites exist), 

and furthermore whether this changes seasonally or annually during different climatic 

weather conditions. 
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1.2.5 Vulnerability of forestry to climate change  

Currently, the outcome of climate change in South Africa, and specifically the area under 

afforestation, is still uncertain (Warburton and Schulze 2006). The predicted effect on 

precipitation and temperature is diverse (Warburton and Schulze 2006); some regions may 

experience increased precipitation, while others experience drier conditions. Temperature 

in general is predicted to increase – but with varying levels in different regions. 

The impact of climate change is thought to have substantial effects on the pest and disease 

occurrences and outbreaks, due to shifts in the climatic gradient and the expansion of pests 

and diseases into new environments (van Staden et al. 2004). New regions for forest growth 

may also become available due to the reduction of frost occurrences and a shorter frost 

season (Warburton and Schulze 2006); in particular the high-altitude high rainfall sites of the 

Drakensberg and the Highveld regions of South Africa.  

Generally, the effect on plantation forestry is thought to be severe, due to the long planning 

horizons that are characteristic of forestry and vulnerability of plantations in the current 

sites, many of which are on the marginal scale of production (Fairbanks and Scholes 1999, 

Warburton and Schulze 2006).  

Improved predictive models and decision support systems will be necessary to be able to 

adapt to such changes, by allowing proactive management and anticipating expected 

climate outcomes. For this to be realised, a high level understanding of forest growth and 

development under a range of conditions is necessary (Seifert et al. in press). Due to the 

significant potential impact of climate change on forestry and the relative speed at which it 

is developing, it is clear that the time period for response, especially for an industry 

dependent on long rotations, is extremely short. Before any major adaptive and reactive 

approaches can be made, a significant advance in the understanding of the growth of South 

African forests under a wide range of site conditions is necessary. 

1.2.6 Potential modifier approach 

The potential modifier method is an approach to controlling individual tree growth in a 

simulation model. In this approach, an assumed potential increment is obtained, usually 

from potential height-age or diameter-age curves of the upper boundary lines of a given site 

(Pretzsch 2009), which then represents the growth of a tree in the absence of competition. 

The real or predicted tree growth (ipred) is obtained by multiplying this potential growth (ipot) 

by a modifier (mod.), which reduces the potential growth (Equation 1-1). 

  Equation 1-1 

 

 

The modifier is a representation of competition state of the individual and has a value of 

between 0 (for extreme competition) and 1 (for no competition). This competition is 
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expressed by CI, which quantifies the competitive status of trees. The competition status is 

then included into a modifier function which scales the competition appropriately.  

Potential Growth 

Potential growth is defined as the maximum level of production possible for a tree or stand 

under a given state of optimal growing conditions (Reed et al. 2003). This is an important 

part of many model components, as it represents the starting point for growth modelling 

before the real growth is determined by the modifying factors. Determining the potential 

growth is commonly seen as a problematic component, because it is often difficult to 

observe (Bragg 2001), and presents further problems when deciding on a definition of 

potential growth. 

Potential height is often used as a starting point to characterise the potential growth in a 

stand or single trees. The benefit of using the height to determine the potential growth is 

that dominant stand height can be used, or is closely linked to a predetermined potential, as 

it is not strongly affected by thinning (Ritchie and Hann 1990). Many forest inventory 

systems already measure dominant height and thus the information is often readily 

available. 

The JABOWA model series (Botkin et al. 1972), a precursor to most North American gap 

models, uses inferred leaf area for its calculation of maximum height and diameter in its sub 

model “GROW”. The individual tree-based growth simulator SILVA (Pretzsch et al. 2002) on 

the other hand, incorporates a site model, determined form a predefined list of site 

conditions, resulting in a site factor (Figure 1-3), allowing determination of the potential 

height growth of a single trees through the use of a Chapman Richards type equation  – the 

basis for further growth calculations in SILVA.  

 

Stellenbosch University  http://scholar.sun.ac.za



1-9 

 

 

Figure 1-3: Illustration of the site factor model used in SILVA, used as the precursor to modelling potential height growth 

( Pretzsch et al. 2002). 

 

The site dependent potential growth can be determined by: 

• Defining and measuring a top percentage of trees under observed conditions 

• Using open grown trees 

• Applying treatments to stands to provide conditions for optimal growth. 

The potential growth may be obtained by selecting a predefined top percentage of trees 

representing a maximum growth range, usually from an extensive database reference, for 

example in SILVA (Pretzsch et al. 2002). This can be useful as it represents realistic, observed 

values for practical forest management as these values are often obtained from large 

databases of repeated measurements (sample plots, etc.) and, as mentioned previously, are 

often already measured in many forest inventory systems. Vanclay (1995) suggested that 

one possible problem with this approach is that the estimates may sometimes select for 

measurement errors rather than real growth. 

The potential growth may also be determined based on open grown trees. Botkin et al. 

(1972), including other gap models, used this definition to determine maximum growth for a 

forest gap model. This method is in many ways theoretically sound as it represents a 

competition-free state, but it has some limitations as it is often very difficult to find open 

grown trees in reality, especially for frost intolerant species (Bragg 2001) and in particular 

shade tolerant broad-leaved species will not show a maximum height growth in a solitary 

state but rather grow extensive lateral crowns (Uhl et al. 2006). So the use of solitary trees 

might be restricted to frost resistant pioneering species that have a clear acrotony in their 

growth pattern. 
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Edaphic limitations on their own are often used to determine the potential. The North 

American gap model JABOWA reduces the maximum height and diameter formed under 

optimal conditions with modifications made for shade tolerance, soil quality, and average 

climate (Botkin et al. 1972).  

Reed et al. (2003) used a different approach to determine the potential growth (height and 

diameter) for Eucalyptus globulus in Portugal by opting to eliminate nutrient and water 

limitations by fertilisation and irrigation. The potential height or diameters were then 

modelled by using the cumulative air temperature heat unit (not described here) using a 

modified Chapman Richards type equation  

 
 

Equation 1-2 

Where: 

   

   

   

This approach was very successful in determining the potential growth and was unique in 

the sense that it tried to create and parameterise the model according to optimal conditions 

created by removing belowground limitations to growth, although modifiers were not 

developed for a feasible model and a large amount of information regarding ambient 

temperature was necessary. The added benefit of such an approach is that it can observe 

and then model responses for predefined treatments and conditions (e.g. water supply, 

stand nutrition, etc.). However, obtaining a full range of such conditions and separating 

response factors could be problematic.  

The Modifying Factors 

The modifier is basically a reduction factor, which represents competition or any other 

limitation to growth, e.g. light, water, CO2, etc. (Porte and Bartelink 2002). Theoretically, 

these factors are usually based on the assumption described by Liebig’s Law of the minimum 

which states that the resource that is in the shortest supply will most affect the growth rate 

of the plant. 

These multipliers are typically exponential in form, especially under high competition (Ek 

and Dudek 1980). Diameter and height responses to competition, and their manifestation in 

the modifier response, are usually different (Seifert 2003). Figure 1-4 shows the common 

form of this response. 
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Figure 1-4: Effect of competition on the modifier values of dbh and height. From Ek and Dukek 1980 

Competition is a common variable used for determining the modifier. SILVA  uses a 

combination of competition indices and crown dimensions on the individual tree for both 

height growth and basal area growth (Pretzsch et al. 2002). 

 
 

Equation 1-3 

 

Where: zh is potential height growth, CSA is the crown surface area, KKL is the competition 

index, NDIST is a measure of the centre of competition from the stem centre of the subject 

tree and KMA is a conifer-broadleaf tree neighbour effect.  

In this way light limitation with regards to competition is taken into account, but in the site 

model (which determines the potential growth) SILVA takes into account a variety of site 

conditions such as mean and minimum temperature, soil nutrient supply, CO2, soil water 

retention, etc. which gives the model a complete structure with added sensitivity to site 

changes such as global climate change (Porte and Bartelink 2002). Thus while not including 

these factors explicitly as modifying factors, the potential is determined, with competition 

doing the rest, resulting in a simplified model structure without the interactions between 

competition and site conditions. 

In the growth simulator EFIMOD2,  Komarov et al. (2003) used a slightly different approach, 

focussing on tree nutrition in boreal forests, whereby each tree occupies a certain space 

above and below ground in a “single plant ecosystem”. In this case the focus was on 

nutrient limitations with a complex set of soil nutrient models, primarily because the boreal 

forests in the study were highly dependent on nitrogen availability, with light as a secondary 

growth limitation, which usually comes into play in sub-dominant trees (Chertov 1990, 

Komarov et al. 2003). This soil fertility based approach is rare, especially at its rate of 

sensitivity (Porte and Bartelink 2002). 
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1.2.7 Silva 

The distance dependant individual tree forest growth simulator SILVA, has been successfully 

implemented in Germany and other European forests, and provides the flexible, high level 

understanding and application to forest growth necessary to predict changes in forest 

growth under various site conditions and climate change scenarios (Pretzsch et al. 2002, 

Pretzsch 2009).  

As a consequence of its individual and fully spatial model approach SILVA has proven to be a 

versatile tool for prediction of forest growth. It is for instance currently used by the Bavarian 

State Forest Enterprise one of the biggest forest owner in Central Europe as a standard tool 

for sustainability planning. SILVA has proven its worth as  a tool for scenario simulations in 

order to optimise silvicultural thinning regimes in a variety of applications, including long 

term sustainability planning, wood quality prediction (Seifert and Pretzsch 2004), pest 

management (Seifert 2007), biomass prediction, etc. SILVA is being extensively used for 

practical growth modelling and application for forestry, it is used as an education tool, 

scenario analysis, climate change projections and visualisation for virtual forest stands for a 

wide range of applications. 

Parameterisation of this model though, has not yet been performed in a South African 

forest context. This task requires substantial remodelling and re-parameterisation in order 

for the model to become functional in South Africa. A first NRF-financed pilot project at the 

Department of Forest and Wood Science of Stellenbosch University in collaboration with the 

working group of Prof. Hans Pretzsch at TU München Germany, showed that due to the 

different resource limitations SILVA cannot simply be re-parameterised but needs to be 

structurally changed in the sub-module for competition calculation. 

To achieve this adaptation to South African forests and growth conditions two main steps 

are addressed in this thesis: the potential height stand initialisation model (Figure 1-5) and 

the diameter increment model based on competition indices (Figure 1-6). 
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Figure 1-5: Silva flow diagram and the potential height-age relation in SILVA predicted from site quality. This curve is 

used for the simulation initialisation 

 

 

Figure 1-6: The diameter increment model function in SILVA determined by diameter (DBH). Predicted increment is then 

based on a modifier which takes competition into account. 

 

1.3 Objectives 
The main aim of the study was to introduce a methodological approach for individual tree 

models for South African forestry using the SILVA structure as an example. Two important 
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sub-components of the model were addressed: the potential height model and the 

diameter increment modelling. The sub-objectives of these two main components were 

addressed below: 

1.3.1 Potential height model: 

The objective was to model potential height as a function of site index, the South African 

standard for site quality description. Thus three working steps were identified as the sub-

objectives: 

1. Modelling site index using different model fitting methodologies 

2. Finding a suitable method to fit potential height models on observed data 

3. Predicting potential height from site index 

Step 1 was used as a study into different methodologies for site index model fitting 

techniques. These estimations were then used for the prediction of potential height (Step 

3). Step 2 involved finding a methodology to create potential height-age functions using the 

Chapman Richards equation, while Step 3 involves using SI to model potential height. 

1.3.2 Diameter increment model: 

As diameter increment is highly sensitive to competition between trees in a stand, the 

objective was to model diameter increment using the potential modifier methodology 

under changing resource limitations. The sub-objectives (steps) used to achieve this were: 

1. Classify sites according to water availability  

2. Determine the potential increment based on site conditions 

3. Fit different competition models 

4. Select a suitable combination of indices to capture overtopping and local crowding 

5. Use CI’s in combination in a deterministic potential modifier model 

6. Create a stochastic model mimicking natural variability 

The study was thus limited to two key aspects, which are deemed important for the 

potential application of an individual tree model, such as SILVA, in South African plantations. 

The two components provided insight into potential problems and future application of the 

model for forest growth modelling.  

1.4 The use of R in the study 
For all statistical purposes R (R Core Team 2013) was used in this study. R is an open source 

software project freely available on the internet, with multiple packages designed for 

multiple purposes; updated and reviewed frequently. The packages used and the software 
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itself proved very useful and robust, and allowed the researcher to combine statistical, 

spatial modelling and illustrative purposes simultaneously.  Select examples of the code 

constructed in the study are included in Appendix F either by the researcher or with 

assistance from peers. It is not referred to in text, but is included for example purposes. 
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Chapter 2: Dataset description 
 

Individual tree growth models and distance dependent competition indices require 

adequately designed spacing trials or sampled measured data in forest compartments to 

capture the range of possible spacing and distribution of trees. The project received support 

from a wide range of industry and research components, mentioned in the 

acknowledgements. Data from a few spacing trials were obtained representing a large 

number of observations and spacing designs.  

In a nutshell, these are the correlated curve trend (CCT) spacing trials (O’Connor 1935, 

Bredenkamp 1984) initiated in 1937, the Pinus elliottii trials consist of four locations. In 

addition one ongoing SSS-CCT (Standardised Sample Size), (Bredenkamp 1990), trial initiated 

in 1991 was included and a Nelder spacing trial, which was measured  from 1976-1998. The 

datasets are explained below and were used as deemed appropriate for the different 

purposes and objectives of this thesis. A map of the spacing trial locations is illustrated in 

Figure 2-6. 

2.1 The correlated curve trend (CCT) data 
The CCT trial concepts were laid down by O’Connor in 1935 as spacing trials to determine 

optimum planting and thinning regimes for the South African plantation industry. The CCT 

trials can be split into two series: an unthinned series called the basic series that were 

planted under a wide range of planting densities comprising of eight stand densities in 

stems per hectare (spha). In this study the unthinned series was used for modelling 

purposes with the design shown in Table 2-1. 

Table 2-1: CCT unthinned series trial summary 

Plot 
Nominal Stand density 

(spha) 

Plot size 

(ha) 

Measurement  

Trees/Plot 

1 2965 0.081 240 

2 1483 0.081 120 

3 988 0.081 80 

4 741 0.081 60 

5 494 0.081 40 

6 371 0.081 30 

7 247 0.081 20 

8 124 0.081 10 

 

To overcome suppression by competing weeds all of the plots were planted at very dense 

stocking levels and thinned in advance of competition (Table 2-2). In retrospect, this may 

not be the optimum solution as the high densities at these ages could include competition in 

any case, or lead to facilitation or other unknown effects.  
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For the purposes of this study this was assumed not to have a significant effect on the 

results and the stands were treated for their intended SPHA. The thinned plots incorporated 

various thinning regimes and management practices such as weed control.  

Table 2-2: Thinning in advance of coemptition for weed control in the CCT trial data 

Plot 
Age (years) 

0 2 5.08 6.17 7.5 8.83 9.42 10.25 

1 2965        

2 2965 1483       

3 2965 1483 988      

4 2965 1483 988 741     

5 2965 1483 988 741 494    

6 2965 1483 988 741 494 371   

7 2965 1483 988 741 494 371 247  

8 2965 1483 988 741 494 371 247 124 

 

The original CCT trials proved to be a difficult dataset to use, with measurement history, 

explanations, etc. not available to the researcher. For instance, many trees were simply 

sampled and it was not possible to determine which trees succumbed to mortality or were 

not included in the measurement sample. Tree positions were not available through 

repeated re-numbering and, because the trials do not exist anymore, could not be 

reconstructed. For this reason the data were used only for the potential height and site 

index modelling section of this thesis (Chapter 3). For this purpose, the data proved to be a 

good tool as it covered a wide range of site conditions and, by South Africa standards, were 

measured to a very high age (50yrs), which proved to be of great importance for the shape 

and asymptotic development of the height-age growth models. 

This Pinus elliottii dataset comprised of four sites called Weza, Kwabonambi, Dukuduku and 

Mac Mac. Measurements were taken at various intervals for the four trials – for example 

the height measurements are illustrated in Figure 2-1 and Figure 2-2 below illustrate the 

four CCT trials with regards to the height measurements over time and the height 

measurements of the different stand densities of each of the sites and plot densities 

respectively, showing differences between site and density of each stand. 
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Figure 2-1: Height measurements on the four CCT spacing trials showing a clear stratification between sites 

 

Figure 2-2: Height measurements on the four CCT spacing trial indicating different growth patterns and growth trends 

for different planting densities 
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Fig 2-2 illustrates the clear differences in height growth in sites and stand densities 

encountered in the spacing trials. It also illustrates the problems of re-measurement periods 

taken at different ages with large gaps between measurements. Figure 2-3 and Figure 2-4 

identify trends in competition encountered in the sites, with maximum tree height 

responding less to competition compared to diameter; which is why the study focussed on 

the effect of competition on diameter increment. 

 

 

Figure 2-3: 3D plot of height growth trends in the CCT spacing trials with a linear average response curve indicating little 

change between maximum height growth between different stand densities 
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Figure 2-4: 3D plot of diameter growth trends in the CCT spacing trials with a linear average response curve indicating 

significant change between height growth between different stand densities 

2.2 Triple S-CCT  
The Triple S-CCT concept (SSS-CCT) was established and designed in the late 1980’s, 

introduced by Bredenkamp (1990) in order to overcome the statistical shortcomings and the 

cost implications of the CCT trials. Six unthinned stand densities were planted at the stems 

per hectare indicated in Table 2-3 below. The SSS-CCT trial used in this thesis was one of 

two such trials for P. elliotttii planted in Tweefontein at an altitude of approximately 1200m. 

Tree positions could be reconstructed from the planting pattern and numbering system 

provided by the company. For this reason this dataset was very useful as competition 

indices could be calculated on the site. 

Table 2-3: Unthinned SSS-CCT spacing trial desing 

Plot 
Planting density 

(SPHA) 

Measurement  

Plot size (ha) 

Measurement  

Trees/Plot 

1 245 0.102 25 

2 403 0.062 25 

3 665 0.038 25 

4 1097 0.023 25 

5 1808 0.0138 25 

6 2981 0.008 25 

2.3 Nelder spacing trial 
The Nelder spacing trial concept is an unthinned spacing experimental design (Nelder, 

1962). Different designs were created for specific objectives (Figure 2-5). The trial used in 
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this thesis was planted in 1972 in the Lotterring plantation of the coastal plateau of the 

Tsitsikamma region in the all-year rainfall Southern Cape Region of South Africa, based on 

the conventional Nelder spacing design (a in Figure 2-5), where the rings (or circles) 

represent different spacings increasing with distance from the centre. The trial burnt down 

in 1998, with the last measurement age at 26 years. The measurement intervals and dates 

are shown in Table 2-4 below. 

 

 

Figure 2-5: Nelder trial designs based on different spacing geometries. Nelder (1962). 
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Table 2-4: Measurement intervals for the Lottering Nelder trial 

Remeasurement no. Date Age (years) Variables measured 

1 1976-12-13 4.58 Dbh, Ht 

2 1978-05-08 6.00 Dbh, Ht 

3 1979-05-26 7.00 Dbh, Ht, Branch thickness 

4 1983-06-01 11.08 Dbh, Ht 

5 1985-09-23 13.33 Dbh, Ht 

6 1987-12-08 15.58 Dbh, Ht 

7 1991-07-11 19.17 Dbh, Ht 

8 1992-08-16 20.25 Dbh, Ht 

9 1996-03-15 23.83 Dbh, Ht 

10 1998-05-20 26.00 Dbh, Ht 

 

Tree positions could be recalculated from the positions of the trees on the “spoke” and 

“rings” of the Nelder wheel. This means that although orientation of the spacing wheel in 

cardinal directions could not be determined, the relative positions of the trees with all of 

their neighbours could be easily calculated.   
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Table 2-5: Nelder spacing trial plot numbers (rings) with their corresponding stems per hectare, based on the radii and 

arc distances. 

Arc No 

(Ring in 

Design) 

Arc No 

(Ring no. in 

field) 

Radii of 

Arcs 

(m) 

Arc 

distances 

(m) 

Distance 

between Arcs 

(m) 

Area per 

tree (m
2
) 

Corresponding 

stems per ha 

3 0 Border 7.43 1.06 1.13 1.12 8900 

4 1 8.56 1.22 1.31 1.49 6700 

5 2 9.87 1.41 1.51 1.98 5043 

6 3 11.38 1.62 1.74 2.63 3796 

7 4 13.11 1.87 2.00 3.50 2857 

8 5 15.11 2.16 2.31 4.65 2151 

9 6 17.42 2.49 2.66 6.18 1619 

10 7 20.08 2.87 3.06 8.21 1219 

11 8 23.14 3.30 3.53 10.90 917 

12 9 26.67 3.81 4.07 14.48 691 

13 10 30.74 4.39 4.69 19.24 520 

14 11 35.44 5.06 5.41 25.56 391 

15 12 40.84 5.83 6.23 33.95 295 

16 13 47.08 6.72 7.18 45.11 222 

17 14 54.26 7.75 8.28 59.92 167 

18 15 62.54 8.93 9.54 79.61 126 

19 16 Border 72.09 10.29 11.00 105.76 95 

 

2.4 Permanent sample plots (PSP) data 
The permanent sample plot data was obtained with the permission of contributors and 

custodians of PSP inventory data from forestry companies in South Africa. These represent 

re-measured plots of active commercial plantations (not spacing trials).These were not used 

for model parameterisation as they only represented a narrow range of stand densities, but 

for illustrative and short validation purposes based on a few candidate sites. 
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Figure 2-6: Locations of the spacing trials 
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Chapter 3: Site index and potential height modelling 
 

3.1 Introduction 
Silva employs a potential modifier approach for predicting height and diameter increments. 

Thus one of the objectives of this thesis is to obtain a potential height which could be 

obtained by determining potential height from site index in a model in order to obtain the 

potential height from a widely used and readily available site quality measure. This chapter 

investigates whether this is possible, how this should be done and provides an initial 

working model. 

3.1.1 Site index 

Site index is widely used in the South African forestry industry as a measure of site class and 

is an important predictor for many modelling and growth prediction applications (von 

Gadow and Bredenkamp 1992). Many definitions of top height exist, the approach most 

widely used in South Africa is based on the definition that top height is the height of the 

20% largest trees (according to their DBH) in a stand, which is usually estimated by 

calculating the quadratic mean diameter of the largest 20% of trees and substituting this for 

D in the following formula (Bredenkamp 1993): 

 
 

Equation 3-1 

 

In this study, the relationship between site index and potential height curves was sought 

out. Site curves over age were modelled to understand the change in relationship over time. 

3.1.2 Potential height growth 

Potential height over age is a measure of a stand’s height growth  and represents an upper 

boundary line or curve of measured tree heights for a given site (Pretzsch 2009, Seifert 

2003). In the SILVA methodology, a potential height–age curve is developed as an 

initialisation of the model process (Pretzsch et al. 2002). Therefore, a methodology had to 

be developed using the available data to quantify potential height development over age. 

Site index values are typically obtained from plantation inventory and are not explicitly 

modelled in this thesis. One possible pitfall of using site index in this context is that site 

index on the same site can vary according to varying (stems per hectare) densities (Figure 3-

10). In this chapter, while on the same site, each plot representing a planting density was 

treated as an individual with its own site index in order to determine the relationship 

between site index and potential height. 

3.1.3 Nonlinear regression assumptions 

Developing site index curves on a longitudinal, repeated measures dataset presents certain 

problems. Standard regressions rely on inherent assumptions to the modelling process such 

Stellenbosch University  http://scholar.sun.ac.za



3-26 

 

as homoscedasticity of residuals and independence of the residual errors. Longitudinal, 

repeated measures violate the assumption of independence 

Serial autocorrelation 

While simple least squares estimation has been used for modelling data of this kind, a 

relatively simple and proven method; the longitudinal nature of the data presents a 

significant problem. Each of these datasets represents repeated measurements over time, 

which violates the assumption of independence of errors; in this case the errors are 

correlated with the error of the previous and later measurements of the same tree. 

Heteroscedasticity 

Heteroscedasticity is a common problem in model fitting, whereby the residuals increase 

along a predictor gradient – for example age. This was a common problem in the modelling 

of height in the study sites 

3.1.4 Chapter objectives 

The objectives of this chapter are thus to: 

• Develop continuous site index curves that take into account heteroscedasticity and 

autocorrelated time series errors 

• Develop a suitable methodology to develop potential height-age curves 

• Assess the effect of density on site index for the same sites and over a comparison of 

sites 

• Fit a model that predicts potential height from dominant height 

Thus the results of this chapter are split into three steps 

1. The development of dominant height-age curves 

2. Nonlinear quantile regression for potential height modelling 

3. Prediction of potential height from site index 

3.2 Step 1: Site index modelling 
This section deals with the calculation of site index. In the following sections the Weza 

Dataset was used to demonstrate the modelling methodology. It was deemed more suitable 

than the younger CCT datasets as it was assumed that only a data set with older trees would 

reflect asymptotic growth – which will be shown to be a very important factor. This section 

outline Figure 3-1 shows the conceptual flowchart of the outline used in this section with 

brief descriptions. 

 

Stellenbosch University  http://scholar.sun.ac.za



3-27 

 

 

Figure 3-1: Flowchart of site index modelling section of this chapter (Step2) 

3.2.1 Identification of dominant trees 

Each plot from each site of the spacing trials was modelled separately. The 20% largest trees 

in respect to their diameter were selected by using the quantile function in R to bin the data 

into five 20% classes and then sub-set the data for the largest 20%. The trees selected were 

then used for further height model development, as illustrated in Figure 3-2. In the older 

CCT trials where the number of trees measured differed for the different spacing densities 

(lower amount of trees for low densities) – this represented a problem due to the differing 

amount of observations. However, it was decided to maintain the South African standard 

site index definition in this thesis and outline potential pitfalls with recommendations for 

possible improvements where necessary.  
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Figure 3-2: Dominant height modelling example for the Mac Mac 2965spha plot with red dots representing the dominant 

trees, the red and black dashed lines representing the dominant and mean height curves respectively 

 

3.2.2 Model selection 

As with the nonlinear quantile regression, the Chapman-Richards three parameter form 

equation was used (Equation 3-2) to develop anamorphic dominant height-age growth 

curves, which were used for site index classification for any given reference age.  

 

  Equation 3-2 

 

In this study, the nonlinear least squares (nls) approach was used as the standard 

methodology for fitting the site index function in the South African Forestry industry. The nls 

approach was compared to some alternative methods in order to identify the best fitting 

method to deal with independence violations and homoscedasticity errors. These are: 

• Nonlinear Mixed Effects Model (nlme) 
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• Generalised Least Squares Estimation (glns) 

It should be noted that parameters (slope of the curve) are often fixed in anamorphic site 

height-age models, often noted as b and c, and vary the asymptote (a) only. While this is 

common practice in many growth models in South Africa it was decided in this case not to 

fix any of the parameters in order to be able to introduce and assess random effects in the 

model. The purpose of this exercise is not to develop reference site index curves for 

management, but to model site index accurately to use as a predictor for potential height 

and to investigate the use of mixed effects models for site index modelling in South Africa. 

3.2.3 Dataset and trial Age 

As might be expected, significant differences were seen between the younger SSS-CCT 

spacing trials and the older CCT trials, with much more volatility in the asymptote due to the 

more linear growth at these ages without the realisation of the approach towards an 

asymptote. For this reason all of the models were fit on the original CCT datasets. 

These were all tested on the Weza Dataset, whereafter the methodology was standardised 

for all sites. Using different random effects, weighting, autocorrelation, etc., produced 

markedly different results in some cases, especially at higher ages.  

3.2.4 Starting values: 

Starting values (sometimes called initial values) for iteration of nonlinear models can have a 

significant effect on the results and wrong starting values can cause significant problems in 

parameter estimation. The method used for the selection of starting values is outlined by 

Fekedulegn et al. (1999) and Lekwadi et al. (2012); the parameters for the Chapman 

Richards equation (Equation 3-2) are estimated by a simple algorithm, where:  

 

b is defined as the rate constant at which the response variable approaches it maximum 

possible value b0 

 

Or for this example rewritten as (Lekwadi et al., 2012) 

 

c lies between zero and 1 for the Chapman-Richards as recommended by Fekedulegn et al. 

1999. The c parameter was fixed at 0.66 or changed as seen fit to foster model conversion. 

This methodology worked well for the purpose of the study; improving calculation time and 
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producing estimates that were within the expected ranges for the parameters, resulting in 

model convergence. 

3.2.5 Nonlinear least squares 

Nonlinear Least Squares (NLS) estimation is a commonly used fitting technique in nonlinear 

regressions. It uses an unconstrained minimisation algorithm, which simply defines a model 

curve which is fit by minimizing the sum of squares that occur on the y-axis (Dalgaard 2008). 

Figure 3-3 provides an example of a NLS fit in one of the CCT spacing trial plots, with some 

visual diagnostic plots in Figure 3-4.  

 

Figure 3-3: Example of an NLS fit on the Weza 2965 plot 
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Figure 3-4: Regression diagnostics for the Weza 2965 plot 

As can be seen in Figure 3-4 above inherent problems with heteroscedasticity are prevalent, 

as seen in the residual plots (top right and top left images). Furthermore, while no 

significant trend is apparent in the autocorrelation plot in this small dataset, it is obvious 

that error correlation occurs in a repeated measures study such as this. For this reason, 

alternative methods were sought to quantify site index growth, which do not have time 

related autocorrelation errors. While somewhat trivial to the overall structure and 

contribution to the thesis, this was sought to adequately define a methodology for guide 

curve fitting of site index curves. The model fit shows also a model bias (overestimation of 

smaller values), which can be attributed to the inflexible Chapman-Richards equation. The 

Chapman-Richards equation is an often used model for SI modelling (Esler 2012). It was not 

in the scope of this thesis to compare different mathematical model formulations, however 

several models could present alternatives, for example the Hossfeld equation (Gea-

Izquierdo, Cañellas, and Montero 2008). It is important to stress that models such as the 

Chapman-Richards model, which have a rigid, and sometimes inflexible structure (as 
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compared to polynomial models for example) are used because tree growth is based on 

certain assumptions and that nonlinear models such as these are applied for their 

interpretability, parsimony and validity (extrapolation and robustness) beyond the range of 

the data (Pinheiro and Bates 2000). But as seen in Figure 3-4 this can come at a cost of a 

bias in the prediction of height at younger ages. 

3.2.6 Generalised nonlinear least squares 

Generalised nonlinear least squares (GNLS) is comparable to NLS, except that when there is 

reason to believe that the assumptions of equal variance and uncorrelated errors 

(independence) are violated, GNLS is a possible option to overcome some of these issues by 

the incorporation of autocorrelated error functions (ACF) and variance weighting 

transformations.  

Variance and Autocorrelation 

In order to cater for unequal variance and autocorrelation, variance weighting 

transformations including an autocorrelation function (ACF) were applied to the GNLS and 

the NLME models. A power weighted variance transformation for residuals and the ACF 

function for the lag factors significantly improved the models and were included from the 

outset; these improve the heteroscedasticity and the autocorrelated time errors in the 

model (shown in the heteroscedasticity improvement in Figure 3-6 and improvements of fit 

in Table 3-3).  

3.2.7 Nonlinear mixed effects model 

Nonlinear Mixed Effects modelling (nlme) is a modelling technique used for grouped data 

(Pinheiro and Bates 2000). Mixed models effectively split the variance in fixed effects that 

can be explained by factors and random effects that cannot be explained but are 

nonetheless inherently present in the dataset such as observed variability within trees and 

between trees and sites and can be at least attributed to those clustering entities. In this 

case no distinction was made according to the differences in site; however the deviation of 

the parameters from every tree were defined as random effects. Thus in this case the 

deviation of parameter estimates for every tree (the random effects) must be chosen by 

deciding, which parameters to include as random effects. 

The methodology applied to developing site index curves with mixed effects modelling was 

done by following the procedures set out by Pinheiro and Bates (2000) for mixed effects 

model fitting, and Fang and Bailey (2001) for application to forestry related examples 

(incidentally, also fitted for P. elliottii). 

In describing the steps to specify fixed and random effects Fang and Bailey (2001) suggest 

that the nature of the Chapman-Richards parameters (a, b, c) be specified as fixed and 

random effects or purely mixed effects. According to Fang and Bailey (2001) model 

comparison can start by examining the full model with all the parameters as random effects 

without considering covariates, and then picking the parameters or a combination one by 
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one, as described in Pinheiro and Bates (2000). While the full models (considering every 

coefficient as random effects) can sometimes improve model fits, they often do not 

converge. There is also a risk of over-parameterisation when applying such a methodology 

(Pinheiro and Bates 2000). 

Consequently either one or a combination of two of the parameters was tested as random 

effects.  For this reason the NLME section starts by describing how the different parameters 

affected the model in Table 3-1 and Appendix A over a wider range of plots.  

Random Effects 

As mentioned earlier, a decision had to be made on which components to include as 

random effects. First it is necessary to see whether there is correlation between the 

parameter estimates; this can simply be seen visually in a scatter plot matrix (Figure 3-5). 

 

Figure 3-5: Scatter plot matrix of the relationship between three parameters of the Chapman Richards equation for a 

model fit, showing significant correlation between the parameters. 

From Figure 3-5 it is clear that with significant correlations between coefficients not all have 

to be included in the random effects – this pattern was consistent for all of the plots. 

However, there is no clear methodology to determine which should be included without 

testing the models first by alternating the coefficients chosen for random effects, as 

explained by Pinheiro and Bates (2000).  

Appendix A summarises the results from the Weza dataset – which was used as a sample to 

decide on which parameters to include in the random effects, an example of one site is 

shown in Table 3-1. Model 4 in Appendix A, with only the asymptote as a random effect, 
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provided the most consistent results, with the resulting models providing improved Akaike 

Information Criterion (AIC) values, often significantly lower compared to the models using 

the other parameters as random effects. The counts of the number of times a model, with 

its corresponding random effect, was significantly the best performing model tested on the 

Weza dataset is summarised in Table 3-2. 

Table 3-1: Random effect tests for the nonlinear mixed effects model. The column “parameter chosen” indicates which 

parameters used as an additional random effect in the model.  

Parameter chosen 

(as random 

effects) 

Convergence 

(Y,N) 
df AIC BIC Test p-value 

a,b,c N      

a,b Y 9 269.5768 295.922   

a,c Y 9 269.5766 295.9219   

a Y 7 265.5755 286.0662   

b,c Y 9 272.0675 298.4128   

b Y 7 268.0678 288.5586 6 vs 5 0.9999 

c Y 7 269.1501 289.6409   

 

 

Table 3-2: Count of best fit random effects models 

Random effects models 

Parameters Included No. of Lowest AIC values 

a,b,c 0 

a,b 0 

a,c 1 

a 7 

b,c 0 

b 3 

c 5 

 

As shown in Table 3-2, including the asymptote (a) only as the random effect was resulted in 

improved model fits over a number of sites. Thus the asymptote was used as the standard 

random effect for all further NLME models, which were tested against the NLS models, as 

the benchmark, and the GNLS models as an alternative. 
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3.2.8 Model comparisons 

Diagnostics for nonlinear regression is a contentious issue as nonlinear regression curves are 

fixed to the definition of the model, and thus drawing meaningful conclusions for the quality 

of the fit (such as the R
2
 value) is difficult. In this case a straightforward approach was taken, 

by simply analysing the visual structure of the model and the significance of the parameters. 

Residual plots for every model type and site were compared – these give a good idea on 

how the data is scattered around the mean curve, with priority given to homoscedastic 

residual plots. 

Different models were then compared with the Akaike Information Criterion (AIC) described 

by Akaike (1972), which can be used to compare models with different covariance 

parameters as fixed and random effects (Fang and Bailey 2001). The root mean square error 

(RMSE) was also used as an indication of model fit. 

A comparison of all of the main types of residuals and improvements is shown in Figure 3-6 

and Table 3-3 below: what was noticed from the summary of the models (Table 3-4) is a 

depreciation of the asymptote compared to the NLS fitting method – although small. 
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Figure 3-6: Residual plots of an example dataset using different modelling techniques 

Clearly the NLME models are superior in both the results of the residual plots as the residual 

plots are more staggered, with less heteroscedasticity and a smaller unexplained variance. 

ACF and weighting significantly improve the model output, as can be seen from the 

conversion of NLS to GNLS, and the standard NLME model to the variance weighting and 

autocorrelated error inclusion to the NLME model.  

Anova comparison and RMSE 

Comparison between the different models was performed using ANOVA, where the AIC and 

RMSE were calculated (Table 3-3).  While often Mean Squared error is used for model 

evaluation which includes bias and precision elements (Seifert and Seifert 2014) the Root 

Mean Square Error (RMSE) provides the advantage to be in the same unit as the modelled 

variable. It is an aggregation of the residuals obtained from a predicted model and is a good 

measure of how well a model fits overall, especially when compared to other models. 
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From the NLME, GNLS, and NLS model fits, an Anova comparison was tested, looking closely 

at the AIC and RMSE values as a measure of comparison. 

Table 3-3: Anova and RMSE comparisons of different modelling fitting methods on the Weza dataset 

Plot (spha) Model df AIC BIC Test p-value RMSE 

124 
GNLS 6 47.65 54.46   0.9131529 

NLME 7 51.59 59.54 1 vs 2 0.1638 0.8415766 

NLS 4 69.07 73.61 2 vs 3 <.0001 0.9127091 

247 

GNLS 6 102.05 113.40    0.6671696 

NLME 7 99.86 113.10 1 vs 2 0.0406 0.6672069 

NLS 4 106.36 113.93 2 vs 3 0.0058 0.6567917 

371 

GNLS 5 188.10 199.75     0.8037401 

NLME 7 148.52 164.83 1 vs 2 <.0001 0.8151494 

NLS 4 190.21 199.53 2 vs 3 <.0001 0.8023609 

494 

GNLS 6 241.99 256.93     1.155355 

NLME 7 165.12 182.54 1 vs 2 <.0001 0.958164 

NLS 4 286.11 296.06 2 vs 3 <.0001 1.154249 

741 

GNLS 6 389.17 406.74     1.048519 

NLME 7 265.58 286.07 1 vs 2 <.0001 0.6787632 

NLS 4 412.69 424.40 2 vs 3 <.0001 1.048472 

988 

GNLS 5 462.56 478.15     1.066507 

NLME 7 321.67 343.50 1 vs 2 <.0001 0.7933879 

NLS 4 502.45 514.92 2 vs 3 <.0001 1.063379 

1483 

GNLS 6 589.71 610.36     0.9901197 

NLME 7 488.85 512.95 1 vs 2 <.0001 1.245127 

NLS 4 630.70 644.47 2 vs 3 <.0001 0.9313569 

2965 

GNLS 6 872.70 896.18     0.8478684 

NLME 7 574.83 602.22 1 vs 2 <.0001 0.5896667 

NLS 4 935.20 950.85 2 vs 3 <.0001 0.8470756 

 

According to the AIC values, besides one plot, the NLME fitted model outperformed the 

other model types with p-values all below 0.05, suggesting a significantly improved fit on all 

of the plots. Furthermore, it most resulted in lower RMSE values, indicating an overall 

improved fit. 

3.2.9 NLME final results (model selection) 

The summary of the NLME models for all of the four sites is represented in Table 3-4; with 

illustrated curves n Figure 3-7. What is noticeable is that the site index is not strictly 

sensitive to the stems per hectare (as opposed to mean height), there is a general tendency 
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of a density effect on site index (Figures 3-7 and 3-10). This tendency must be taken into 

consideration when site index is used for prediction of growth. However, as previously 

stated, each plot was treated as an individual with its corresponding potential height 

(calculated in step two), which are explained in the third section of this chapter results. 

The NLME model was finally chosen for model fitting as it provided a better fit for the 

relevant data range (50 years). However, with the associated problems using the asymptote 

as a random effect, to achieve an improved fit for the entire data range, extrapolation 

beyond 50 years may be compromised as the asymptote seems to be lower than the other 

fitting methods used. It was decided that, seeing as it is unlikely that plantations will be 

grown for such long periods for commercial purposes, this would be an acceptable 

compromise. 

The overestimation of the model at young ages, which is most likely an effect of the 

inflexible Chapman-Richards equation was not solved by the NLME. However, to remain 

compatible to SILVA the compromise of applying the Chapman-Richards equation was 

made. 
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Table 3-4: Fitted SI-age models for the CCT trials 

  Weza Mac Mac Dukuduku Kwambonambi 

Density  Value 
Std. 

Error 
DF t-value 

p-

value 
Value 

Std. 

Error 
DF t-value 

p-

value 
Value 

Std. 

Error 
DF t-value 

p-

value 
Value 

Std. 

Error 
DF t-value 

p-

value 

124 

a 117.65 74.87 17 1.57 0.1345 45.53 1.39 80 32.85 0 25.11 1.30 45 19.26 0 28.53 1.93 47 14.78 0 

b -0.01 0.01 17 -1.02 0.3216 -0.04 0.00 80 -12.78 0 -0.06 0.01 45 -6.47 0 -0.06 0.01 47 -6.66 0 

c 0.83 0.06 17 13.62 0 1.18 0.03 80 37.19 0 1.01 0.09 45 11.69 0 1.09 0.07 47 16.34 0 

247 

a 42.38 3.82 41 11.08 0 37.64 1.50 91 25.07 0 28.23 1.21 80 23.28 0 48.98 5.01 74 9.78 0 

b -0.03 0.01 41 -4.58 0 -0.07 0.01 91 -11.58 0 -0.06 0.01 80 -8.67 0 -0.02 0.00 74 -5.15 0 

c 0.96 0.08 41 11.56 0 1.43 0.05 91 26.09 0 1.12 0.07 80 16.94 0 0.89 0.04 74 24.74 0 

371 

a 41.10 2.61 62 15.74 0 38.37 0.89 113 43.24 0 29.46 1.23 114 24.00 0 42.50 1.96 91 21.64 0 

b -0.03 0.01 62 -6.04 0 -0.06 0.00 113 -16.99 0 -0.04 0.00 114 -9.16 0 -0.03 0.00 91 -9.34 0 

c 1.02 0.08 62 13.24 0 1.37 0.04 113 35.87 0 0.94 0.04 114 21.16 0 0.89 0.03 91 30.06 0 

494 

a 34.62 1.57 73 22.06 0 41.46 1.80 127 23.05 0 28.75 1.11 136 25.99 0 39.85 1.51 117 26.40 0 

b -0.05 0.01 73 -8.84 0 -0.05 0.00 127 -11.59 0 -0.04 0.00 136 -10.03 0 -0.03 0.00 117 -11.05 0 

c 1.15 0.07 73 17.63 0 1.23 0.04 127 32.01 0 0.95 0.04 136 23.18 0 0.92 0.03 117 31.40 0 

741 

a 38.08 1.49 117 25.64 0 42.26 2.13 151 19.87 0 30.66 1.15 159 26.58 0 50.39 3.31 155 15.22 0 

b -0.04 0.00 117 -10.25 0 -0.05 0.00 151 -11.14 0 -0.03 0.00 159 -9.21 0 -0.02 0.00 155 -7.24 0 

c 1.02 0.04 117 22.95 0 1.26 0.04 151 33.17 0 0.83 0.04 159 22.37 0 0.84 0.03 155 30.49 0 

988 

a 45.36 3.34 143 13.58 0 45.17 2.35 184 19.23 0 29.18 0.72 228 40.67 0 47.27 2.26 181 20.90 0 

b -0.03 0.00 143 -6.60 0 -0.05 0.00 184 -11.24 0 -0.04 0.00 228 -13.04 0 -0.02 0.00 181 -9.55 0 

c 0.93 0.04 143 24.25 0 1.24 0.04 184 34.78 0 0.96 0.04 228 23.14 0 0.85 0.02 181 36.12 0 

1483 

a 30.74 0.77 182 39.76 0 41.94 1.36 268 30.88 0 32.43 1.39 281 23.41 0 42.93 1.75 246 24.54 0 

b -0.06 0.00 182 -21.78 0 -0.05 0.00 268 -16.16 0 -0.02 0.00 281 -8.85 0 -0.02 0.00 246 -10.89 0 

c 1.46 0.03 182 49.19 0 1.19 0.03 268 43.75 0 0.79 0.03 281 27.28 0 0.86 0.02 246 38.23 0 

2965 

a 28.437 0.58596 362 48.53 0 
42.37 0.97 491 43.85 0 27.28 0.61 518 44.82 0 34.63 1.15 388 30.06 0 

b -0.0599 0.00217 362 -27.63 0 
-0.05 0.00 491 -24.81 0 -0.05 0.00 518 -17.36 0 -0.04 0.00 388 -13.82 0 

c 1.36917 0.0181 362 75.66 0 
1.19 0.02 491 73.10 0 1.02 0.03 518 36.26 0 0.91 0.02 388 46.58 0 
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Figure 3-7: Fitted dominant height curves for the CCT trials 
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3.3 Step 2: Potential height modelling 
Nonlinear quantile regression is one possible method to quantify potential height growth. 

Quantile regression was introduced by Koenker and Bassett (1978) as a statistical set of 

methods for defining conditional means in data analysis. Another option would be to subset 

the data into quantiles and perform some type of least squares estimation to achieve a 

nonlinear fit for that subset; however quantile regression was preferred as dividing the data 

into subsets and achieving a mean, instead of median response delivers differing values; 

more eloquently described in Koenker and Hallock (2001). 

3.3.1 Description of the NLRQ procedure 

Quantile regression is a generalisation of the median regression. While the latter was 

introduced as a robust method for dealing with outliers, which used the median instead of 

the arithmetic mean to fit a regression curve, quantile regression is able to use any quantile 

(denominated by the “tau” value) of the distribution to fit a regression curve to it (Cade and 

Noon 2003). Thus it is an appropriate technique to fit potentials. Nonlinear quantile 

regression was fit using the nlrq function in the quantreg package in R (Koenker 2006). 

In this study, tau vectors of 0.9, 0.95, 0.975 and 0.99 quantiles (which represent the 

conditional quantile fits, e.g. 0.5 represents the 50% - or median fit) were used to determine 

the sensitivity of the nonlinear quantile regression on the parameterisation data. As a 

starting point for the potential modifier approach, the maximum possible definition must 

first be determined as the modifier only reduces the potential height value (Pretzsch 2009).  

After careful consideration and visual inspection, it was decided to use the 0.975 quantile 

for the potential height definition. While it does not achieve the maximum values for height 

growth, it seems more flexible than the 0.99 tau vector and does not exclude too much of 

the maximum potential height series. The effects of these choices are discussed further on. 

Nonlinear quantile regression proved to be a robust and easy method to obtain potential 

height-age growth series. By specifying the 0.975 quantile the fits were more consistent. 

The potential height fits are shown in Figure 3-8 below, fitted over their respective spacing 

trial series for each plot (spha). The results per plot are summarised in Table 3-5. 
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Dukuduku Kwambonambi 

Weza Mac Mac 

Figure 3-8: Fitted potential height curves for the CCT dataset for different stems per hectare. 

 

From simply observing the growth curve series – a trend appears (seen within each trial 

series) that the 0.975 quantiles seem to be affected by density only to a small degree, 

although the extreme high and low ranges of stand density (e.g. 124 and 2965 spha plots) 

tend to dominate the upper and lower bounds respectively.  However the difference 

between sites does not seem to overtly density dependent, but may be more strongly 

dependent on the site quality or location of the plots, suggesting that a site quality measure 

may be useful for predicting potential height.  
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In order to see whether these potential heights are representative, visual assessment was 

done on the PSP dataset. Figure 3-9 below shows that for the best site in the CCT trials (the 

Mac Mac lowest density plot); the potential captures the upper bound of the PSP height 

series quite well, besides a few outliers, suggesting that the potential models fitted on the 

spacing trials represent the upper boundary of observed potentials.  

 

 

Figure 3-9: Potential height of the highest CCT trial value (Mac, spha = 124) plotted over PSP data of a wide range of 

sites, the blue line is the potential of the CCT plot, the red line represents the mean height of the PSP dataset 
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Table 3-5: Potential height fits by plot for the four spacing trials 

  Weza Dukuduku Mac Mac Kwambonambi 

Density   Value 

Std. 

Error t value Pr(>|t|)   Value 

Std. 

Error t value Pr(>|t|)   Value 

Std. 

Error t value Pr(>|t|)   Value 

Std. 

Error t value Pr(>|t|) 

2965 

a 41.26 2.81 14.67 0  39.27 2.69 14.61 0  59.23 5.61 10.55 0  46.16 3.95 11.68 0 

b -0.03 0.00 -6.43 0  -0.02 0.00 -6.31 0  -0.03 0.00 -6.27 0  -0.02 0.00 -5.59 0 

c 1.04 0.06 17.10 0  0.74 0.02 30.87 0  1.02 0.03 32.40 0  0.82 0.03 29.51 0 

1483 

a 44.77 3.44 13.03 0   33.13 2.11 15.68 0   79.91 19.56 4.08 0.00005   48.15 4.79 10.05 0 

b -0.03 0.00 -5.37 0  -0.03 0.00 -5.84 0  -0.02 0.01 -2.64 0.00848  -0.02 0.00 -4.68 0 

c 0.96 0.07 14.15 0   0.74 0.04 20.69 0   0.90 0.04 23.67 0   0.79 0.03 23.82 0 

988 

a 69.25 12.87 5.38 0  30.62 1.17 26.21 0  67.38 18.20 3.70 0.00022  50.97 3.20 15.90 0 

b -0.01 0.00 -3.05 0.00232  -0.04 0.00 -8.06 0  -0.02 0.01 -2.27 0.0231  -0.02 0.00 -6.71 0 

c 0.87 0.04 20.19 0  0.83 0.05 17.32 0  0.98 0.07 14.01 0  0.77 0.03 28.58 0 

741 

a 42.50 3.43 12.38 0   39.74 3.33 11.95 0   64.78 7.03 9.21 0   53.54 3.76 14.26 0 

b -0.04 0.01 -5.22 0  -0.02 0.00 -4.66 0  -0.02 0.00 -5.14 0  -0.02 0.00 -5.39 0 

c 1.04 0.08 12.60 0   0.70 0.04 18.38 0   0.97 0.04 23.99 0   0.75 0.03 22.23 0 

494 

a 38.33 0.81 47.46 0  30.82 1.98 15.53 0  73.13 18.22 4.01 0.00007  40.61 3.39 11.98 0 

b -0.05 0.00 -20.46 0  -0.04 0.01 -4.78 0  -0.02 0.01 -2.42 0.01576  -0.03 0.01 -4.84 0 

c 1.24 0.03 37.49 0  0.92 0.09 10.66 0  0.92 0.05 16.99 0  0.86 0.06 15.33 0 

371 

a 40.09 1.25 32.15 0   32.65 1.56 20.98 0   43.65 1.41 30.89 0   42.72 2.83 15.10 0 

b -0.04 0.00 -16.22 0  -0.03 0.01 -5.97 0  -0.06 0.01 -10.79 0  -0.03 0.01 -5.59 0 

c 1.16 0.03 33.76 0   0.79 0.06 14.07 0   1.24 0.06 20.62 0   0.79 0.05 16.81 0 

247 

a 39.38 1.05 37.64 0  38.08 2.26 16.84 0  58.28 6.25 9.32 0  42.72 3.13 13.66 0 

b -0.05 0.00 -20.16 0  -0.03 0.01 -5.96 0  -0.03 0.01 -4.47 0.00001  -0.03 0.01 -5.22 0 

c 1.26 0.03 50.58 0  0.82 0.05 16.92 0  0.99 0.07 15.18 0  0.85 0.06 14.37 0 

124 

a 48.22 3.32 14.51 0   30.02 1.22 24.57 0   55.78 6.25 8.93 0   34.90 1.03 33.82 0 

b -0.04 0.00 -9.58 0  -0.04 0.00 -9.05 0  -0.03 0.01 -3.19 0.00151  -0.05 0.00 -10.31 0 

c 1.21 0.03 37.05 0   0.86 0.04 20.64 0   1.03 0.11 9.30 0   0.94 0.04 21.22 0 
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3.4 Step 3: Prediction of potential height from Site Index  
It was decided to use SI20, the dominant stand height at the base age of 20 years, as a 

reference index. First the relationship of the potential height and site index curves was 

plotted and analysed after which the corresponding dominant height age 20 is used as the 

site index. 

The equation used to describe this relationship is a Chapman Richards height-age function 

with site index as a factor (Payandeh 1974): 

 ℎ��� = � ∗ �	
��
� ∗ �1 − ��∗���
�∗�����
∗� Equation 3-4 

 

 

hpot is the potential height (m), SI20 the expected site index, age is measured in years, and 

a1, a2 and a3 are regression parameters. This model was chosen due to its parsimonious 

structure. 

The model incorporates an effect of the site quality in SI20, which was obtained from the 

predicted site index model of the different sites (Step 1). Thus the potential height 

development of the stand is modelled according to their respective SI20 values. This was 

done for each site first and finally for all of the sites combined. In order to validate the final 

model, first the potential height series predicted from dominant height was compared to 

the actual potential height in the CCT plots.  

3.4.1 Effect of stand density 

In the dataset used, stand density affected site index. Figure 3-10 clearly illustrates this 

point with linear trendlines applied for each of the four sites used in the study, although 

some variations around the trend existed. This was possibly due to microsite and 

management differences of the plots. This was not significant to the overall performance of 

the predictive model, as each site index plot was used as an input for the parameterisation. 

It is included here as a possible pitfall of using measured site index that does not take into 

account changing the possible changing density in a following rotation; although the 

gradient is quite low for the range of commonly planted stand densities. 
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Figure 3-10: Site Index values on different stand densities for the CCT dataset 

.  

The 95% confidence bands are expectedly wide due to the low number of points. What is 

noticeable from Fig 3 – 10 is that each site has a different SI-density gradient and that the 

lines shift upwards or downwards dependent on the inherent site quality. This further 

emphasises the need for a site quality predictor based on edaphic conditions as proposed by 

(Esler 2012, Louw and Scholes 2002). 

3.4.2 Relationship between potential height and dominant height 

It is important to see what the relationship between dominant height and the fitted 

potential height on the same site over age is. As an example, Figure 3-11 illustrates this for 

the Weza dataset for each of the plots. 
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Figure 3-11: Example of potential and dominant height-age curves for the Weza trial 

This shows how the difference between potential and dominant height increases over age. 

In order to assess this relationship potential height is plotted over dominant height for all of 

the four CCT trials in Figure 3-12 below. 
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Figure 3-12: Potential height plotted over   dominant height for all of the the CCT dataset plots 

Figure 3-12 shows a generally linear relationship for the dominant and potential heights 

over age, although the values begin to vary as age, and consequently dominant height, 

increase.  This gradient was modelled by a least squares linear fit, forcing the intercept 

through zero, which suggests about a 10% difference in potential and dominant height 

values over age (Table 3-6), i.e. the difference between potential and dominant height 

increases over age, as expected. 

Table 3-6: Potential height - dominant height gradient  

Site Gradient Std. Error t value Pr(>|t|) R
2 

Dukuduku 1.094623 0.001635 669.3 <2e-16 0.9991 

Kwambonambi 1.124993 0.002466 456.2 <2e-16 0.9981 

Weza 1.080868 0.001919 563.1 <2e-16 0.9987 

Mac Mac 1.124993 0.002466 456.2 <2e-16 0.9981 

 

This linear relationship and the relatively similar gradients suggest that a reference SI20 

could be introduced as an added effect, as specified in Equation 3-4. 
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3.4.3 Predictive equation 

Site index will change over two gradients: the site and, to a smaller degree, the density (a 

potential source of error in the model). The objective here is to obtain potential height 

models for a given site index (in this case, SI20). The potential height over site index 

relationship is defined for all sites combined. It must be noted that the effect of density on 

site index, which was calculated on the South African top height definition, is not ideal, and 

a great improvement could be made by basing the site index on site factors mentioned in 

the previous section. 

Final Combined Model 

The four CCT spacing trials were pooled into the final model for potential height-age 

prediction from site index using Equation 3-4. Pooling all of the sites together will prevent 

the occurrence of extreme cases and provide a balanced model that is able to fit most cases 

sufficiently. Figure 3-13 represents the final proposed model for prediction of potential 

height from site index. 

 

 

Figure 3-13: Final parameterised model of potential height-age using SI as a predictor 
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Table 3-7: Final model parameterised on the pooled CCT trial datasets from Equation 3-4 

Parameter Value Std. Error t value Pr(>|t|) 

a 0.8338 0.04237 19.67727 0 

b 1.31306 0.01982 66.26476 0 

c -0.02965 0.00101 -29.3729 0 

d 0.16613 0.00948 17.52046 0 

e 0.55563 0.01795 30.94866 0 

 

3.4.4 Validation 

Observed vs. Predicted Potential height 

It was decided to see how the potential height compared with the potential height 

predicted from the site index (in the pooled model). This was done by calculating the 

difference in predicted potential height compared to the observed potential height fitted for 

each of the spacing trial plots (Fig 3-8, Table 3-5).The models fits tested on the individual 

sites a relatively high error margin (over and under prediction) before age 10 (Fig 3-15). 

They begin to converge age 20 and then fan out again representing an increased error 

predicted for higher ages (Fig 3-14), although the values are small considering the actual 

height of the trees at those ages.  
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Figure 3-14: Deviation from the observed potential height-age compared to the potential height predicted equation 
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Figure 3-15: Median deviation in percentage of the observed and predicted potential height curves 

Overall, considering the vastly differing site conditions, growing conditions and the different 

shape of the height-age growth curves, the combined model reacts well, and although 

seems to underpredict slightly at after age 20 (Fig 3-15), it seems to stabilise to some 

degree. It seems that site index can indeed be used as a predictor for potential height 

modelling, although the values will range at very young and very old ages. The high error 

before age 10 could also mean that this Chapman Richards based model may be unsuitable 

for pulpwood rotations, although as these are only potential height values it would first 

need to be determined how the final predicted model performs once a modifier is applied. 

Referencing against independent PSP data  

The above validation used sites in which the model was parameterised; however it is 

necessary to see how this model works for independent data. For this reason a few sites 

were selected from the PSP dataset which had a suitable number of re-measurements. From 

this an inspection of how the observed vs. the predicted potentials compare for sites of a 

given site index can be seen (Fig 3-21). 
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Figure 3-16: Potential height curves plotted over PSP data of different classes. The red lines represent the predicted 

potential height for the upper bound of the SI classes presented above. The top left image presents all of the data with 

15, 20, 25 and 30 SI predicted potentials 

In Figure 3-21, the predicted potential from site index seems to capture the upper bound of 

the PSP dataset, with the top left hand graph representing all of the sites, with lines of the 

predicted potentials for SI’s of 15, 20, 25 and 30. Each of the other graphs represents SI 

classes within this dataset with the respective potential height curves predicted from SI of 

20, 25, and 30 respectively.  

To see how this performs on a few selected sites, five sites were selected from the second 

PSP series, where measured SI’s were not available, and thus had to be calculated from the 

methodology proposed in this chapter. The SI values would then predict a potential curve 

which would be superimposed on the plot height-age data for visual inspection (Fig 3-17). 
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Figure 3-17: Fitted predicted potential height curves fitted on selected independent PSP data 

The predicted potential seems to capture the potential heights of each site quite well, with 

only a few trees which fall above the predicted potential curves. 
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3.5 Chapter conclusion 
 

The main objective for this chapter, split onto three steps, was to model potential height 

based on measured site index. 

Site index models and potential height models were developed in order to develop a 

methodology to predict potential height from site index. The relationship between site 

index and potential height was shown to be a linear relationship, and a reference site index 

of SI20 was used to predict potential height from site index. 

The use of nonlinear mixed effects modelling has proved a superior method for modelling 

dominant height-age curves with the associated clustered data structures and 

heteroscedasticity and it also represents a potential improvement for other height-age 

models. However, care must be taken to ensure that including the asymptote as a random 

effect does not inflate or deflate the asymptote implausibly – as it tends to change the 

asymptote to fit the observed data, which may affect extrapolation beyond the measured 

years in the parameterisation training set. 

Nonlinear quantile regression proved to be a robust method of fitting observed height 

potentials. The model training set (CCT trials) covered the range of heights observed PSP 

data. 

Potential height seems to be well correlated to a stand’s site index. Visual validation of the 

results seem to suggest that site index can indeed be used to model the potential height, 

which covers the first step of the potential modifier method and simulation initialisation  by 

deriving a height potential from an industry standard site index information. 
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Chapter 4: Modelling diameter increment in response 

to resource limitations and site classification 
 

 

4.1 Introduction 
The main purpose of this chapter is to create an age-independent diameter increment 

model, which predicts diameter increment from DBH and the competitive conditions of the 

tree at any point in time. Figure 4-1 illustrates this relationship for all of the plots in the Mac 

Mac spacing trial, where the gradient for the increment-diameter relation flattens out 

(decreases) over time, with each scatter cloud representing a different measurement 

activity at a certain age. In the proposed approach, which is following the SILVA 

methodology, the age effect is substituted by tree size (DBH), while the competition 

interaction is supposed to cater for the change in increment-diameter relations over age. 

 

Figure 4-1: DBH Increment - DBH scatterplot on the Mac Mac CCT trial, showing decreasing linear gradient over age 

Employing a potential-modifier methodology, two steps were thus required. First the 

potential increment for any given tree diameter had to be found. Second, the modifier, 

based on a competition index, had to reduce the increment and display a structure similar 
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to Figure 4-1 above, whereby the gradient of diameter increment for a given DBH 

decreases.  

Different competition indices are developed and describe growth differently according to 

their mathematical structure. For instance the KKL index (Pretzsch et al. 2002), with its 

search crown is intrinsically more suited to describing overtopping and thus competition in 

light limited environments. Other indices, based solely on distance between individuals or 

groups of individuals in an area, will be intrinsically more size symmetric, such as the Local 

Basal Area (LBA) index, described later (Seifert et al. in press). 

Thus the sensitivity of diameter increment to an index can change according to site location 

and the resource limitation which is experienced as demonstrated by Seifert et al. (in press). 

For instance, competition index A might describe more of the variation in the predicted 

model than index B in a wet environment. This can also change according to the quality of 

the site. The performance of competition indices may also change according to age, density 

and longitudinal climate changes (wet and dry spells).  

4.1.1 Dataset 

The Nelder spacing design and the SSS-CCT design at Tweefontein were used for these 

purposes. It must be noted upfront that these are two very different designs – thus when 

making comparisons between the behaviour of the indices, some differences could be due 

to the different spacing design, observation, etc. However, these were the only trials where 

tree positions could be obtained and most of these problems should be negated by the 

nature of the competition indices. 

4.1.2 Chapter outline 

With only two sites from which to test competition with different water availability, this 

Chapter should be strictly seen as a methodological guideline for predicting diameter 

increment, instead of an investigation on changing competition mode with different 

resource limitations, although an indication of shift in importance of competition indices on 

different sites is seen (4.5.3). The chapter presents possible methodologies for future testing 

of changing competition modes and their effect on diameter Increment. The methodology 

was developed according to the following steps: 

• Step 1: Classify sites according to water availability  

• Step 2: Determine the potential based on site conditions 

• Step 3: Fit multiple competition indices 

• Step 4: Select competition indices 

• Step 5: Use CI’s in a deterministic potential modifier equation 

• Step 6: Create a stochastic model incorporating natural variability 
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Figure 4-2: Flowchart of the chapter outline showing working steps of the methodological approach used in the study 
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4.2 Step 1: Site classification according water availability and 

site index 
With the hypothesis in mind that the mode of competition shifts with the availability of 

edaphic factors, a simple categorisation of the sites according to water availability was 

sought, subject to the availability of data. The FAO – UNEP index (UNEP 1992) where aridity 

is calculated by dividing the precipitation by the potential evapotranspiration, as calculated 

by the Thornthwaite method (Thornthwaite 1948). 

In this instance, the aridity index was fixed by using monthly weather data supplied by the 

Agricultural Research Council (ARC) climate database. This provides an added static 

classification for the site. 

Defining the water index longitudinally (changing over time), either using this index or other 

candidate indices (McKee, Doesken, and Kleist 1995, Palmer 1965), would improve the 

interaction with diameter increment. Unfortunately measurements in the trials were not 

taken at annual intervals; often at 2-5 years, which would mask correlations.  

Table 4-1: Classification of the sites according to the FAO-UNEP classification and SI. The Tweefontein and Mac Mac trials 

used the same weather station. 

Location Precipitation Aridity index Classification (FAO- 

UNEP) 

Average SI 

Lottering Nelder 950 1.106 Humid 21.2 

*Tweefontein SSS-CCT 1222 0.86 Humid 23.0 

Kwambonambi 1208 1.2 Humid 20.3 

Dukuduku 960 0.76 Humid 17 

Weza 927 0.69 Humid 20.3 

*Mac Mac 1222 0.86 Humid 24.0 

 

Table 4-1 shows this index for all of the spacing trials used in this thesis. For the aridity 

index, only two sites were relevant, the Nelder trial and the Tweefontein SSS-CCT trial, as 

these were the only available trials with tree positions necessary for modelling the effects of 

competition in this case. However the average site index (averaged over the SI values 

presented in Chapter 3) was used for the potential increment estimation in Section 4.3 and 

for the testing of the model in Sections 4.6 and 4.7.  

With this is mind, a tentative linear model was drawn between the water index values of the 

two sites – accepting that more work would need to be done to fully incorporate water 

availability. This simple methodology would then be developed and tested for future 

experiments, using this simple water index as a pointer to determine whether there are any 
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functional relationships between the water availability and the competition indices in this 

model. 

4.3 Step 2: Determine the potential based on site conditions 
For the purpose of this study, the methodology proposed by Pretzsch and Biber (2010) was 

used to determine a workable simulation routine for diameter increment modelling. In this 

procedure the potential diameter growth/increment was first defined using the nlrq 

package in R for nonlinear quantile regression application (as done in Chapter 3), using the 

0.99 tau values, where: 

  Equation 4-1 
 

Where dipot is the predicted potential increment, d is the diameter (DBH) of the tree and a0, 

a1 and a2 are coefficient to be determined in the model. This represents the maximum 

potential diameter increment for a given DBH – while not a true potential, it is an adequate 

approximation for the purpose of this thesis.  

4.3.1 Comparison of sites 

Four sites were considered for potential increment parameterisation, the Mac Mac, 

Kwambonambi and Dukuduku CCT trials and the Nelder spacing trial. The Weza trial was not 

included as there was a large period of measurements gaps; the Tweefontein SSS-CCT trial 

was not included as it was too young. The potential curves fitted for the considered sites are 

presented in Figure 4-3 below. 
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Mac Mac Kwambonambi 

Dukuduku Nelder 

Figure 4-3: Fitted potential increment curves for the four sites considered for increment potential estimation 
Including the Nelder trial to the model results in a much flatter curve which gives poor fit to 

the data upon visual inspection. This was because the Nelder trial was only measured until 

26 years, which did not include the flattening of the Increment/DBH relationship, resulting 

in an interference with the gradient. Thus the results of the potential increment curves of 

the three CCT trials according to Equation 4-1 are represented below. 
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Table 4-2: Potential increment model coefficients according to Equation 4-1. 

  
SI 17.0 SI 20.3  

Kwambonambi 

SI 23.9 

Dukuduku Mac Mac 

Parameter Estimate SE Estimate SE Estimate SE 

a 0.0532 0.0103 0.8002 0.2241 3.9714 0.5858 

b 2.2383 0.0973 0.7967 0.1337 0.2282 0.0799 

c 0.128 0.0042 0.0539 0.0052 0.0316 0.0039 

 

 

From Figure 4-3 and Table 4-2 it can be seen that site index had an effect on the 

determination of potential increment (as seen in the above figures). Thus dominant height – 

or hdom - can be included as a predictor variable to Equation 4-1, where a site quality effect 

can be included (Pretzsch and Biber 2010) as was done in in Chapter 3, resulting in Equation 

4-2 below 

 
  

Equation 4-2 

 

 

The resulting fit of the above model is tabulated in Table 4-3 and the curves are illustrated 

in Figure 4-4. 

Table 4-3: Coefficients of the potential increment model (Equation 2) using site index and dbh as predictor variables 

Combined Increment/ DBH model (Equation 4-2) 

  Value Std. Error t value Pr(>|t|) 

a1 0.5372 0.27377 1.96221 0.04975 

a2 0.11434 0.01564 7.30886 0 

a3 0.34421 0.08628 3.9893 0.00007 

a4 0.03724 0.00413 9.01277 0 
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Figure 4-4: Potential increment over DBH curves parameterised from the CCT trial data; the different curves represent 

different SI values 

These potentials are the 99% quantiles representing the maximum annual diameter 

increment that a tree can obtain for a given DBH and site index. The estimated increment 

was then modelled by including a suitable competition index, discussed in the following 

sections, which should mimic the structure presented in Figure 4-1. 

4.4 Step 3: Fit various competition models 

4.4.1 Distance dependent competition indices 

In this study five distance-dependent competition indices were used. These indices were 

chosen to capture a gradient, which would describe overtopping or local crowding, with the 

objective that two indices will be selected which both adequately describe competition and 

capture different modes of competition (Seifert et al. in review). These, summarised in 

Table 4-4 and described below, are the KKL (which is used in SILVA), the local basal area 

(LBA), basal area of larger trees (BAL), Hegyi and Voronoi polygons. 
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Table 4-4: Illustration of the different competition indices used in this study (Seifert et al. in review), i refers to the 

central tree, j refers to the competitor trees. Models shown below are discussed in more detail in text below. 

 

The KKL index (Pretzsch 2009) uses a search for competitors based on a search cone at an 

angle of 60° which starts at a point of 60% of the tree height. As most competition indices it 

works in a combination of competitor selection and the quantification of the competition 

effect of those identified competitors. Neighbouring trees, which fall inside the search cone, 

are included as competitors and the angle from the tip of the neighbouring tree and its 

maximum crown extension to the cone mantle (angle β in Table 4-4) is calculated. This is 

used as a measure of competition, which is then multiplied by the cross-sectional crown 

area of the competitor in relation to the subject tree (CCAi/CCAj). Species specific values for 

crown dimensions for P. elliottii were not available, for this reason the SILVA model was 

used to calculate the KKL for the stands using Pinus sylvestris crown model as a proxy. The 

KKL is by its design strongly focussing on competition induced by crown competition and 

overtopping.  
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The local basal area (LBA) is simply the sum of the basal area of all trees within a 

competition search radius and the reference tree located in the centre of the circle 

(Steneker and Jarvis 1963). It has been suggested as an effective measure of local crowding 

and is more sensitive to measuring edaphic limitations as it does not discriminate between 

the sizes of the trees included in the influence zone, except for their basal area contribution 

(Seifert et al. in review). 

The basal area of larger trees (BAL) is identical to the LBA except that it only includes trees 

which are larger in DBH than the reference tree, which would then provide a good 

indication of overtopping and radiation exclusion. 

The Hegyi Index (Hegyi 1974) calculates size ratios of the reference tree with its competitors 

multiplied by an inverse distance weighting. These are then all summed up for each 

reference tree within a zone of competition. 

The Voronoi index is a simple growing space index where the space in a given stand is 

divided equally among trees, first by drawing distance lines between each tree and its 

neighbours, these lines are then bisected and lines are drawn connecting the bisected lines, 

resulting in a polygon for each tree based on its growing area with regards to its neighbour 

(Figure 4-5). This is thus simply a refined measure of a tree’s growing area and the 

relationships would change with age and competition. It is included here as a benchmark – 

to illustrate the performance of the other indices in relation to a simplistic growing area 

index. It must be noted that refinements of the Voronoi exist, where the size of the 

polygons is changed proportional to the size ratio of the tree compared to its neighbours or 

even to measured crown dimensions (Seifert and Utschig 2002). This was not examined in 

this study, but would be a potential point of interest for future comparison. 
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Figure 4-5: Voronoi polygons calculated for the Nelder spacing trial as an example 

4.4.2 Edge effects 

In the Tweefontein SSS-CCT trial, although border trees were present, they were not 

measured. With the small size of each stand, 25 trees in a stand, many of the indices will 

have search zones which fall outside of the boundary. This is noted as a possible limitation 

of the study. 

Pretzsch (2009) mentions three methods to simulate or extrapolate stand structure outside 

of the edge of the measured stand: plot mirroring, shifting and linear expansion. In this 

study, the plot shifting technique was used for the SSS-CCT trial, where the plot is shifted 

along the sides and corners creating eight edge plots, with the measured plot in the centre. 

This was not necessary for the Nelder trial, the first and last rings were simply repeated 

along the gradient for positions. 

4.4.3 Competition search radius (influence zone) 

The definition of the size of the search radius is critical to the performance of the 

competition indices – if the zone is too big or too small, information on competition will be 
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lost. The first decision to be made is whether the search radius should be fixed or relative 

(to stems per hectare for instance). In this study a fixed radius for the different stand 

densities was chosen, however on which would change relative to the dominant height of a 

stand at a certain age, the hypothesis being that the size of the influence zone would change 

as trees become larger in a stand.  The Hegyi, LBA and the BAL indices use fixed search radii 

and it was decided to standardise the radius for all three indices in order to draw reasonable 

comparisons.  

The LBA was used as a reference to determine how large the search radius should be as it is 

the simplest of the three indices and is not complicated by additional factors such as size of 

competitors, etc. Furthermore, the LBA index has a much clearly linear correlation with 

diameter increment (Figure 4-8), with a much higher link to linear correlation than the other 

indices, where more sophisticated nonlinear or transformation applications would have 

been necessary to determine the maximum correlation with the search radius. 

To determine the optimum search radius, different sizes of search radii were tested on 

every measurement age of the Nelder trial and the correlation of the LBA with diameter 

increment determined (the minimum of each correlation was chosen since the size of the 

competition has a negative effect on diameter increment). This is represented in Figure 4-6 

and summarised in Table 4-5 below. 

 

Figure 4-6: Negative Correlation of the LBA competition index with diameter increment at different measurement years 

(ages) using different competition search radii, the correlation was multiplied by -1 for illustrative purposes. 
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Table 4-5: Correlation of the LBA competition index at different ages of the Nelder trial with the resulting search radius 

size included 

Age 
Dominant 

height 
Minimum correlation 

Optimum search 

radius 

4.58 4.314737484 -0.36186 2.622173 

6 5.929475765 -0.66753 5.861549 

11.08 11.77634706 -0.8528 4.312308 

13.33 14.28871325 -0.79171 7.970661 

15.58 16.71489227 -0.83003 7.970661 

19.17 20.37716099 -0.82632 7.970661 

20.25 21.42530206 -0.57752 7.970661 

23.83 24.7174421 -0.81951 7.970661 

26 26.57690163 -0.84739 10.11444 

 

A simple linear model was then fitted for the values from Ages 4-26 – with their respective 

dominant heights in order to exclude age from the calculations illustrated in Figure 4-7, with 

the resulting model in Table 4-6. 
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Figure 4-7: Linear regression of the optimum search radius over dominant height 

 

Table 4-6: Linear regression coefficients of the optimum search radius based on dominant height 

Linear (OLS) competition zone model 

 Parameter Estimate Std. Error t  value Pr(>|t|)  

 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 2.90895 1.00781 2.886 0.02344 * 

Hdom 0.25036 0.05646 4.434 0.00303 ** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 1.256 on 7 degrees of freedom 

Multiple R-squared: 0.7375,     Adjusted R-squared:   0.7  

 

Thus the competition search zone will increase with the given dominant height, which was 

used for all three competition indices that required a search radius (LBA, BAL and Hegyi). 

4.4.4 Performance of competition indices 

Each of the competition indices introduced in Section 4.4.1 was applied to the Lottering and 

Tweefontein spacing trials resulting in the following diameter increment in relation to the 

competition index plots below (Figure 4-8).  
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 Lottering Nelder Tweefontein SSS-SCCT 

KKL 

  

LBA 

  

BAL 

  

Hegyi 

  
Figure 4-8: Relationship of diameter increment and the competition indices fitted in the two spacing trials used for this 

study 
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The Hegyi and KKL indices both had a clear negative exponential trend of increment over the 

CI value, the BAL index also showed a nonlinear trend and the LBA index shows a linear 

response. Significant variation exists in the plots, especially when competition indices 

approach zero (state of no competition). The Voronoi index did not show much correlation 

(Appendix B); however this could be because the correlation changes at different ages or 

stages of development of the stand, which this investigation is trying to avoid. 

4.5 Step 4: Selecting competition indices 
As seen in the previous section, each competition index, by virtue of the different aspects 

that they measure, covers different explanatory aspects of competition and thus would 

potentially contribute explanatory value. Thus,  combining two or more CI’s to the modifier 

equation by creating a multiple regression equation, more aspects of competition might be 

covered and a better fit may be obtained with respect to diameter increment.  

However, overlap of the explanation between competition indices or collinearity may distort 

the explanation value of each index used. Collinearity (or multicollinearity, when more than 

two variables are included in a model) occurs when predictor variables in a multiple 

regression are highly correlated (Myers 1986). Collinearity does not always affect the 

predictive power of a model on the data that it is fit. However, collinearity significantly 

affects the stability of the model and hinders the ability to draw valid conclusions about 

individual regressor variables; small changes in y-values can significantly alter model 

coefficients even though measures of fit (e.g. R
2
 values) remain relatively unchanged (Myers 

1986). This would compromise one of the objectives of this chapter – to determine how the 

importance of different variables changes under different edaphic and site quality 

conditions. Additionally, although it is tempting to add regressor variables (the CI’s) to 

obtain a better fit, the concept of Ockham’s razor should be followed, where parsimonious 

models are sought. Furthermore, tedious calculation of every competition index would not 

be ideal for any future model application.  

In view of the objectives of this chapter, the set of chosen competition indices was thus 

tested individually as well as in combinations to identify index combinations that were not 

significantly collinear. Ideally, a combination of two CI’s was to be obtained that adequately 

describe diameter increment. The resulting model should provide a good explanatory power 

with regards to overtopping (light limitations) and local crowding (edaphic limitation) – as in 

the example of Figure 1-2. 

This required a variable selection exercise, where correlation (collinearity) and behaviour of 

the respective indices was sought through principle component analysis (PCA) and variance 

inflation factors (VIF’s). Different combinations of CI’s variables were tested sequentially to 

determine the best combination of CI’s. Relative importance measures were then carried 

out with the two final selected CI’s on different sites.  
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Figures 4-9 and 4-10 show the pairwise matrix scatterplots of the different competition 

indices against each other in the Nelder and SSS-CCT trials, indicating correlation between 

certain variables. 

 

Figure 4-9: Pairwise scatterplot matrix of the various competition indices against each other in the Nelder Trial 
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Figure 4-10: Pairwise scatterplot matrix of the various competition indices against each other in the Tweefontein Trial 

4.5.1 Variable selection 

As seen in Figure 4-8 most of the competition indices were nonlinear in their effect on id. A 

simple square root transformation was found to be adequate to linearise the response; 

 

where f(x) represents a linear combination of one, several, or all of the competition indices. 

Square root transformations have the advantage over logarithmic transformations that, for 

diameter increment where 0 values are prevalent, no infinite values are produced. The 

transformation produced visually linear fits (ordinary least squares) for all of the models, 

except for the KKL and Voronoi.  
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Table 4-7: Linear models coefficients of the square root transformation of diameter increment using the respective 

competition indices 

Model R
2 

AIC 

sqrt(DbhIncrement) ~ BAL 

0.6002 2088.409 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.404668 0.004503 312 <2e-16 *** 

BAL -0.01864 0.000177 -105.1 <2e-16 *** 

sqrt(DbhIncrement) ~ LBA 

0.5834 2392.123 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.496116 0.005296 282.5 <2e-16 *** 

LBA -0.01444 0.000142 -101.5 <2e-16 *** 

sqrt(DbhIncrement) ~ HgCI 

0.4606 4291.707 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.35438 0.005146 263.17 <2e-16 *** 

HgCI -0.07005 0.000884 -79.24 <2e-16 *** 

sqrt(DbhIncrement) ~ kkl 

0.4524 4403.322 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.240745 0.004345 285.59 <2e-16 *** 

kkl -0.25707 0.003299 -77.93 <2e-16 *** 

lm(formula = sqrt(DbhIncrement) ~ Voronoi, data = sss) 

0.1995 7195.024 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.893277 0.006296 141.88 <2e-16 *** 

Voronoi 0.008485 0.000198 42.81 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 4-7 shows that the LBA and BAL indices explain the variance well, (showing the 

highest R
2
 values), although it must be noted that the KKL could be better described with an 

alternative transformation.  

Combining all of the indices into a full model to describe diameter increment according to 

Equation 4-3 shows how a much improved fit can be obtained by adding variables together, 

indicated by their respective names in the equation, with parameters a-e to be determined 

(Table 4-8). 

 ����
 = � ∗ �� + " ∗ ��#$% +& ∗ '�( +) ∗ *+,+-+% + �  
Equation 4-3 

 

However, due to interactions and collinearity between variables, a decision has to be made 

of which variables should be included in the model that represents a good compromise 

between model fit and reduced correlation between the variables. Variance inflation is one 

method used to detect collinearity (Myers 1986):  
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Equation 4-4 

  

 

where the VIF for a variable is the reciprocal of the inverse of R
2
 from the regression. 

Variance inflation is calculated for each of the explanatory variables. As a guideline a VIF of 

5, or a square root of the VIF larger than two, indicate collinearity in the model. 

Table 4-8: Full linear model of the square root diameter increment transformation using all of the CI's as  regressor 

variables 

Model: sqrt(Diameter Increment) = LBA + BAL + HgCI + KKL + Voronoi 

Parameter Estimate Std. Error t value Pr(>|t|)  VIF sqrt(VIF) 

(Intercept) 1.5046982 0.0089776 167.606 < 2e-16 ***   

LBA -0.0072389 0.0002346 -30.863 < 2e-16 *** 3.496665 1.869937 

BAL -0.0065211 0.0003478 -18.749 < 2e-16 *** 4.750188 2.179493 

HgCI -0.0165476 0.0014857 -11.138 < 2e-16 *** 4.710291 2.170321 

kkl -0.0434107 0.0052941 -8.2 2.82E-16 *** 4.361191 2.088346 

Voronoi -0.0004587 0.0001793 -2.558 0.0106 * 2.026482 1.423546 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Multiple R-squared: 0.6767,     Adjusted R-squared: 0.6765 

F-statistic:  3077 on 5 and 7349 DF,  p-value: < 2.2e-16 

 

Table 4-8 shows a significant fit for all of the parameters, however VIF is quite high for most 

of the variables indicating that the model needed to be reduced and dependencies between 

variables better understood. 

4.5.2 Principle component analysis 

Principal component analysis (PCA), (Hotelling 1933), can be used to reveal similarities in 

explanation value and thus collinear structures between variables. It is a multivariate 

statistical feature extraction method that works by projecting the data onto orthogonal 

vectors, called principal components, which explain the maximum variation of the data. 

These principal components are the features of the data.  

Detailed information of PCA can be found in multiple texts. Briefly explained though: If X is a 

matrix with the columns representing variables and the rows representing sample 

observations, the first principal component p1 is the linear combination where the 

projection onto p1, given by , yields the maximum variance subject to . 

The projection  onto the second principal component p2 is the combination that 

gives the second highest variance subject to  and p2 being orthogonal to p1. This is 

extended to all further principal components. The orthogonality criterion ensures that each 

component is completely uncorrelated with all other components, thereby ensuring that the 

components explain the maximum variation. The principal component loading vectors, pi (i 
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= 1,…, m), are the eigenvectors of the covariance matrix of the data set, therefore they can 

be obtained from spectral decomposition of the covariance matrix.  

Once the principal components have been determined a biplot can be used to visualise 

which variables contribute most to each principal component, it also shows similarities or 

collinearity behaviour of the variables in relation to each other in the transformed space. 

When a biplot is applied to PCA results, the axes are a pair of principal components. The 

points represent the principal component scores of the observation, and the vectors 

represent the coefficients of each variable on the principal components. So in the biplot the 

longest vector will represent the variable that contributes most to the variation in the data 

and therefore provides the most important information for the model.  

R has a function called princomp in its stats package for PCA. A data matrix consisting of the 

competition indices is passed into it and it performs PCA on it.  

Table 4-9: Importance measures of the principle components 

Importance of components: 

Measure Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Standard deviation 1.646021 1.034012 0.879463 0.560748 0.365429 

Proportion of Variance 0.541877 0.213836 0.154691 0.062888 0.026708 

Cumulative Proportion 0.541877 0.755713 0.910405 0.973292 1 

 

Table 4-9 above shows that Component 1 accounts for 54% of the variation in the data: The 

loadings of each variable (CI) of the principle components above can be shown numerically 

in Table 4-10. 

Table 4-10: Principle component loadings of the respective principle components 

Principle Component Loadings: 

Index Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

KKL -0.455 0.424 -0.421 -0.285 -0.596 

BASAL -0.479 0.286 0.303 -0.496 0.592 

LBA -0.455  0.687 0.447 -0.348 

HgCI -0.476  -0.503 0.6 0.398 

Vor 0.361 0.858  0.336 0.122 

 

Visually this is shown in the biplots for both sites (Figures 4-11 and 4-12), where the length 

of the arrow for each variable indicates its contribution to the component loading. 
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Figure 4-11: PCA biplot of the variable plotted in the transformed space of the first two principle components in the 

Nelder trial 

 

Figure 4-12: PCA biplot of the variable plotted in the transformed space of the first two principle components in the 

Tweefontein trial 
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Not much can be determined from the length of the vectors (or their loadings) as they load 

relatively equally on the two main components. However, Figures 4-11 and 4-12 show 

consistent performance on the two sites with regards to behaviour (grouping) of the CI 

variables. The Voronoi index is negatively correlated to the other potential predictors – a 

high Voronoi area will mean that there is more growing space and thus a higher increment, 

as opposed to the other variables which increase in values with increasing competition. 

However, what is interesting is the correlation between the other four variables, which will 

be necessary for stratification of the variables to make deductions about their expected 

similarity. The KKL and the BAL are very similar, as they characterise competition strongly by 

overtopping. The Hegyi and LBA, which might explain edaphic competition (local crowding) 

to a higher degree, are closely grouped compared to the other indices. 

As explained earlier, collinearity will be a problem for creating a combined model. The PCA 

loadings above give a qualitative idea of which variables to include. Clearly, the two groups 

can be seen, with the KKL and BAL closely related, and the Hegyi and LBA closely related as 

well. It was decided to include one variable from each grouping (e.g. the KKL and Hegyi) for 

multiple collinearity problems and for parsimony in the model. The Voronoi index was not 

considered for further modelling purposes due to its low explanation value (Table 4-7 and 

Table 4-6). Table 4-11 below shows the results for the various pairings of indices: 
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Table 4-11: Linear model coefficients for the combinations of the competition indices 

Model VIF Sqrt(VIF) R 2 AIC 

sqrt(DbhIncrement) ~ kkl + LBA 

1.563 1.250 0.655 1005.657 

  Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.467 0.005 300.95 <2e-16 *** 

kkl -0.128 0.003 -39.08 <2e-16 *** 

LBA -0.011 0.000 -65.73 <2e-16 *** 

sqrt(DbhIncrement) ~ kkl + HgCI 

2.915 1.707 0.504 3671.775 
  Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.322994 0.005085 260.17 <2e-16 *** 

kkl -0.136476 0.005358 -25.47 <2e-16 *** 

HgCI -0.040179 0.001447 -27.77 <2e-16 *** 

sqrt(DbhIncrement) ~ LBA + BAL 

3.033 1.742 0.651 1089.763 

  Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.4841496 0.004857 305.55 <2e-16 *** 

LBA -0.007428 0.000227 -32.73 <2e-16 *** 

BAL -0.010904 0.000289 -37.77 <2e-16 *** 

sqrt(DbhIncrement) ~ HgCI + BAL 

2.024 1.423 0.633 1457.380 

  Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.4324895 0.004447 322.12 <2e-16 *** 

HgCI -0.026661 0.001037 -25.71 <2e-16 *** 

BAL -0.014221 0.000242 -58.82 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The combination of the KKL and LBA indices had the best R
2
 values, lowest AIC values and 

had lowest VIF – suggesting that they were the least collinear of the above combinations 

and represented the best fit. A combination of LBA and BAL also resulted in a good fit; 

however the VIF was the highest as they are based on the same competition index. 

The combination of KKL and LBA intuitively represent different modes of competition, which 

is quantified in the better fit obtained and the low collinearity between the two CI’s. These 

two were thus selected as a candidate combination to test the changing mode of 

competition and combination of CI’s for the modifier function. 

4.5.3 Relative importance 

Now that a candidate combination was obtained, where collinear effects would be minimal 

to the explanation value of the two CI’s - a comparison between the importance of variables 

in each site is given. The full model and the suggested reduced model (KKL and LBA) are 

introduced to see how they change over the two sites – assuming that the water index is 

representative of a gradient. 
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The relaimpo package developed by Grömping (2006) in R was used for this purpose. The 

package provides different methods for decomposing the contribution of R
2
 with different 

predictor variables provided that the regressors are not correlated. Grömping  (2006) 

recommends that two particular methods “lmg” method and “pmvd” method, with lmg 

more appropriate for causal analysis and pmvd more appropriate for predictive analysis 

(Grömping 2006). The other methods were included here for a complete picture to analyse 

whether the relative importance changes consistently with other variance decomposition 

methods. 

The results for the Nelder and Tweefontein trials are summarised in Table 4-12 below, using 

different variance decomposition methods for illustration and to see consistency with other 

methods, although the lmg and pmvd methods are of importance. 

Table 4-12: Relative importance proportions (explanation contribution) of the KKL and LBA indices respectively using 

different importance measures 

  Nelder Tweefontein 

 Method KKL LBA KKL LBA 

lmg 0.431 0.569 0.407 0.593 

pmvd 0.329 0.671 0.255 0.745 

betasq 0.329 0.671 0.255 0.745 

car 0.413 0.587 0.379 0.621 

last 0.329 0.671 0.255 0.745 

first 0.457 0.543 0.443 0.557 

Total R2 61.71% 69.16% 

 

The LBA was attributed consistently a higher importance to the variance explanation of the 

model on every method type. In the lmg method, this was small, suggesting a small 

difference between sites, however the pmvd method showed a much larger difference. The 

results are illustrated in Figure 4-13 and Figure 4-14 for the Tweefontein and Nelder sites 

respectively, with 95% bootstrapped confidence intervals for the respective importance 

values for the different CI’s. 
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Figure 4-13: Relative importance graphs using different methods for the Tweefontein spacing trial 
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Figure 4-14: Relative importance graphs using different methods for the Nelder spacing trial showing improved KKL 

importance as compared to the Tweefontein site 

Regardless of the method it is clear the LBA has the largest contribution to the R
2
 value in 

both sites, with the KKL increasing in importance in the Nelder site, which was classified as a 

wetter site according to the aridity index (Table 4-1) for both the lmg and pmvd methods 

consistently. It can be tentatively hypothesised that this could be due to the better moisture 

conditions on the site. This is an encouraging result for changing importance of competition 

indices based on resource limitations and changing mode of competition. However more 

sites are necessary for proper validation of such a hypothesis. For the purpose of this thesis 

water index was used as a considered addition to the modifier function. 

4.6 Step 5: Use CI’s in a deterministic potential modifier 

equation 
Step 2 defined the potentials, which can be modelled for any given diameter on a certain 

site. Using the information gained in the previous section, the competition indices can now 

be incorporated into a modifier. Two objectives are represented here: to see whether the 
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incorporation of an additional competition index, which would balance the light oriented 

KKL with an index more focussed on local crowding and edaphic limitations, would improve 

the model. The second objective is to see if the incorporation of a water index, which can 

scale the CI’s according to the available water, improves the model fit. 

4.6.1 Objective 1: Incorporating the LBA competition index 

Using the KKL and the LBA in a linear model within the modifier of the potential modifier 

approach results in Equation 4-5: 

  
 

Equation 4-5 

 

Where  is the mean annual diameter increment,  is the potential diameter 

increment for that specific site with its given site index calculated in Equation 4-2 and 

illustrated in Figure 4-4, and the exponential function with the linear equation representing 

the modifier. For the Nelder and Tweefontein sites together this was represented by: 

Table 4-13: Coefficients of the diameter increment potential modifier formula (Equation 4-5) 

Formula: Equation 4-5 

Parameter Estimate Std. Error t value Pr(>|t|)  

a -0.4224962 0.0067322 -62.76 < 2e-16 *** 

b -1.1991936 0.0408444 -29.36 < 2e-16 *** 

c -0.0036113 0.0005382 -6.71 2.09E-11 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6703 on 7493 degrees of freedom 

 

The exponent of the linear equation scaled the linear equation between 0 (absolute 

theoretical competition: no growth) and 1 (no competition: maximum growth). The 

intercept presented a potential problem as it will always reduce the potential (i.e. the 

modifier will never reach 1 (the potential growth). However, excluding this intercept 

resulted in an over scaled, unrealistic model where too many trees are growing at the 

potential or not growing at all, which would not be ideal for the simulation. For this reason, 

it was decided not to exclude the intercept from the model in order to obtain a good 

average, with a stochastic component to be added later (Step 6). 

As stated, the first objective is to see whether including the local basal area in addition to 

the KKL improved the model. This was done by only including either the LBA or KKL in 

Equation 4-5, comparing each of them in addition to the combined model. 
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Table 4-14: Anova comparison if Equation 4-5 with KKL, LBA and both indices included in Model 1, 2 and 3 respectively 

Analysis of Variance Table 

Model Res.Df Res.Sum Sq Df Sum Sq AIC RMSE F value  Pr(>F)  

1 7494 3385.5   15320.34 0.67204     

2 7494 4139.9 0 0 16828.38 0.743157     

3 7493 3366.5 1 773.37 15280.29 0.670158 1721.3 < 2.20E-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The Anova comparison shows a significant improvement to the AIC, RMSE and F-statistic. 

Including both indices seems to indicate that including the LBA in conjunction with KKL in 

Equation 4-5 improves the predictive fit for diameter increment modelling. 

4.6.2 Objective 2: Incorporating a water index 

In order to include the water availability with the aridity index presented in Table 4-1, a new 

linear model inside of the modifier can be incorporated: 

  
 

Equation 4-6 

 

Where W represents the FAO – UNEP (1992) water index, KKL and LBA are the CI’s and a is 

the intercept. This can be incorporated as the modifier into Equation 4 -7: 

  
 

Equation 4-7 

 

Table 4-15: Coefficients of the diameter increment potential modifier formula (Equation 4-7) incorporating the water 

index 

Formula: Equation 7 

Parameter Estimate Std. Error t value Pr(>|t|)  

a -0.43025 0.006868 -62.647 < 2e-16 *** 

b -1.15627 0.040222 -28.747 < 2e-16 *** 

c -0.00298 0.00053 -5.622 1.96E-08 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.6782 on 7493 degrees of freedom 

 

Section 4.5.3 (Relative importance) showed that for the two sites being used for 

parameterisation, the importance of the indices changed for the square root transformed 

model. Thus the next objective was to see whether the water index does indeed improve 

the model by comparing Equation 4-7 and Equation 4-5  
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Table 4-16: Anova comparison of the diameter increment model with (Model1) and without (Model 2) the water index 

Analysis of Variance Table 

Model Res.Df Res.Sum Sq Df Sum Sq AIC RMSE F value Pr(>F) 

1 7493 3446.9   15457.02 0.678104   

2 7493 3366.5 0 0 15280.29 0.670158   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Table 4-16 shows no significant difference between the two models based on the F-statistic. 

This could mean that with only two sites containing numbers of observations and only two 

water index values, not enough information was available to test whether this should be 

included in the full model, despite the plausible relative changes of the variable importance 

observed (4.5.3). Furthermore, as the water index was a static value for each site, it may be 

improved by a water availability index in order to introduce dynamic effects. Unfortunately, 

such an index was not available in this study. In order to test whether the model 

performance was due to the relative size of the datasets – random samples from the Nelder 

experiment were taken to match the number of observations of the Tweefontein site and a 

comparison tested (Table 4-17). 

Table 4-17; Anova comparison of the diameter increment model with (Model1) and without (Model 2) the water index 

by randomly subsetting data from the Nelder trial to match the number of observations in the Tweefontein trial 

Analysis of Variance Table 

 Model  Res.Df Res.Sum Sq Df Sum Sq AIC RMSE F value Pr(>F) 

1 2439 1093.3   4975.732 0.669118   

2 2439 1048.8 0 0 4874.234 0.655356   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

This result was consistent with multiple randomised samples, suggesting that the water 

gradient provided here between the two sites may not have been large enough to cover 

changes in CI behaviour with water availability. For further modelling it was decided to use 

the model (Equation 4-7) with the water index on the different sites nonetheless since it 

showed a logical behaviour and was statistically not different in the explanation value than 

Equation 4-5 without the water index. 

4.6.3 Model behaviour 

Predictions from Equation 7 were used on the two datasets to analyse the structure of the 

predicted values compared to the observed increment values. Figure 4-15 shows the 

procedure where the potentials for each given site are calculated (a), after which a modifier 

(b) reduces the increment. The observed and predicted increments for each site are shown 

sequentially (c-f). 
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a. Potential increment curves b. Modifier 

  

c. Nelder observed d. Nelder predicted 

  

e. Tweefontein observed f. Tweefontein predicted 

  
Figure 4-15: Illustration of the potential modifier approach on the two spacing trials, with the top right hand diagram 

representing the change of the modifier over the size of competition  
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The predicted increment follows a pattern that mimics the trend of competition at different 

DBH values (Figure 4-1); however the predicted values show much less variability than the 

observed increments shown above. 

What is also evident is that the predicted increments are constrained both by the potential 

and by the maximum value of the modifier (which was 0.65 in this case), which means that 

the increment cannot increase above 0.65 times the increment potential for a given DBH. 

The depression of the modifier was due to the inclusion of an intercept in the modifier 

equation (a in Equation 4-7), which was nonetheless included because it includes variation 

from factors unexplained in the model and prevents extreme values in the modifier. It was 

decided to test the performance of this model, and then to incorporate random variability 

as a stochastic component for further improvement in the next section. 

4.6.4 Model validation 

The chosen model (Equation 4-7) was tested on the Nelder spacing trial, with the first 

measurement age (4.58 years in the Nelder trial) used as a starting point. The simulation 

time step period was not initiated (in SILVA it is 5 years). In this case the simulation is 

performed between measurement periods to test how the model reacts in the different 

time steps. This means that the effect of competition is constant between two 

measurement ages – thus the simulated increment will remain the same for that period.  

The simulated series of the deterministic model (without variance component) produces a 

series where the diameter increment and thus DBH is overpredicted from age 6 to 23, after 

which point it begins to converge again (Appendix C). The full range of simulated periods is 

shown in Appendix D. Figure 4-16 below shows the end of the simulation at 26 years of the 

Nelder trial (the final measured age of the trial). 
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Figure 4-16: Comparison between the observed (red bars) and the simulated diameter (DBH) represented as a 

distribution of 2.5cm diameter classes. The mean DBH for the site is represented in the notched boxplot. This showed a 

skewed prediction grouped around a narrower DBH band 

As can be seen from the simulation end (Figure 4-16) and Appendix D the diameter 

simulated DBH distribution shifts towards higher DBH classes, clustered around a narrow 

range of DBH. While this is still a significant improvement from a simple mean model, this 

could be problematic in the simulation as it will reduce the variability of the diameter 

classes in the model and reduce the competitive complexity. Thus with each simulation step 

the model continues to shift in this trend, thereby compounding the error. For this reason it 

was necessary to see whether the increment prediction with variability improved the model 

– and finally in which rings (and corresponding SPHA) of the Nelder trials it overpredicted. 

4.7 Step 6: Create a stochastic model incorporating natural 

variability 

4.7.1 Incorporating natural variation 

Due to the complex nature of biological systems, and our inability (or difficulty) to capture 

this complexity in a model with distinct variables, it is often necessary to account for this 

variability around the mean value with the help of stochastic models (Pretzsch 2009). In this 

case it is desired to approximate (or mimic) the high degree of variability of diameter 

increment, which could be caused by factors not included in the model, e.g. micro-site 

variation in water and nutrient supply, weather, genetics, etc. As is seen by the scatter plot 

of Figure 4-17, which represent a residual plot of the predicted value deviation, while much 

of the increment patterns can be discerned from stand age/competition and the diameter 

of the tree, there remains a need to incorporate random variance into the model in order to 

mimic natural variability. Furthermore, the application of the model led to a mismatched 
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diameter distribution, skewed to the right and highly concentrated around a narrow band of 

diameter classes (Figure 4-16). For this reason a stochastic model was tested that 

incorporates variability by including a random deviate in the increment function. 

It was decided to incorporate natural variance by analysing the residual scatter plots of the 

predicted values for the two parameterisation sites, with the residual standard deviation of 

the observed minus the predicted values plotted over the predicted values (Figure 4-17). 

Linear quantile regression models of the residual plots were created to represent the upper 

and lower bounds and a new random deviate would then be generated between these two 

bounds based on a normal distribution. 

 

Figure 4-17: Residual plot of the predicted values of the spacing trials 

The scatter plot shows that the variance seems to increase slightly with increasing predicted 

increment values. This is more clear in the negative tail of the distribution, which is 

expected since the increment is bound by the lower zero value (diameter does not usually 

become negative). To model this relationship the 0.95 and 0.05 tau value (5% and 95%) 

linear quantile regression lines were used to represent the upper and lower bounds 

respectively of the residual plot (Figure 4-18). The benefit of the quantile line is that it 

allows continuous variance bounds for any given predicted value.  
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Figure 4-18: 5% and 95% linear quantile regression lines which represents the upper and lower bounds for the truncated 

normal distribution 

This significant positive (tau=0.95) and negative  (tau=0.05) slope values for the quantile 

lines illustrate an increasing variability for higher predicted values, with strong deviation in 

the negative direction, while the variance in the positive residual direction only increases 

slightly. The values of the quantile lines are shown in Table 4-18 below. For instance this 

means that bounds of the variance for a diameter increment of 1.5 would be between -0.92 

and 1.30.  

Table 4-18: Linear quantile regression coefficients of 0.05 and 0.95 tau values representing the upper and lower bounds 

of simulated residual prediction 

rq(formula = Increment residuals ~ Predicted Increment, tau = c(0.05, 0.95)) 

tau value Parameter Value Std. Error t value Pr(>|t|) 

tau: 0.05 
(Intercept) -0.18648 0.02259 -8.25416 0 

Increment -0.48784 0.01464 -33.3323 0 

tau: 0.95 
(Intercept) 1.15066 0.03729 30.85437 0 

Increment 0.09447 0.0254 3.71888 0.0002 

 

While the quantiles do not capture all of the data points, they proved to be the most robust 

with some observed variation sacrificed.  
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As is seen from Figure 4-18 the predicted bounds from the quantile regression  is quite 

large, indicating a high degree of variability, however, the points are still strongly clustered 

around the mean or predicted value and the distance of the bounds increases with 

predicted increment. For this reason and because the distance between the bounds changes 

over the size of the predicted increment), a weighting factor was added to the standard 

deviation value of the normal distribution, where the standard deviation is defined by: 

 	.��/ = 0.5 ∗ �344�, −  +5�,
 Equation 4-8 

 

 

where StDev is the standard deviation of the normal distribution, upper and lower are the 

truncation bounds for any predicted value.  

The results of the predicted diameter increment based on the complete stochastic model 

produced a scatter plot illustrated below overlain on the observed residual plot (Figure 4-

19), with the full visual procedure illustrated in Figure 4-20. 

 

Figure 4-19: Predicted residual generated from a random deviate between two bounds (Figure 18) based on a normal 

distribution 
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Figure 4-20: Sequential process of generating random deviation, from plotting residuals (top left), predicting bounds 

(top right), generating random deviation (bottom left) superimposed on the residual plot (bottom right) 

The new predicted scatterplot showed a similarity to the observed natural deviation. It 

remained to be seen how these deviate result in an improvement of the increment model.  

The new predicted icrement values with the random deviates added had to be compared to 

the increment values. This was done visually initially to see if it matches the structure of the 

increment-DBH scatter plots, with its distinctive pattern. Figure 4-21 and Figure 4-22 below 

shows the improvement of the stucture from the observed increment for the Nelder and 

the Tweefontein sites respectively, with the predicted plots without deviation and the 

predicted plots with deviation. 
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Figure 4-21: Observed and predicted scatterplots for the Tweefontein SS-CCT spacing trial, with black points 

representing the observed and green representing the predicted values. The left hand image represents the scatter of 

the average model – with the linear quantile in the top right, the bottom left and right images represent the scatter of 

the model with added modelled random variance 
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Figure 4-22: Observed and predicted scatterplots for the Lottering Nelder spacing trial, with black points representing 

the observed and green representing the predicted values. The top right image shows the deterministic model, the 

bottom left and right images represent the scatter of the model with added modelled random variance 
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Figure 4-23: Residual scatter of the added random variance model for the parameterised sites 
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Figure 4-24: Residual scatter overlain on the observed increment scatter of the added random variance model for the 

parameterised sites. The black points represent the observed and the green points represent the predicted values from 

the stochastic model. 

The new plots (Figure 4-23 and 4-24) seemed to mimic the observed increment quite well, 

matching the point clouds obtained from the competitive situation at different 

measurement ages, except for a depressed tail of points at higher DBH values (with lower 

predicted increment curves). It is now necessary to see how the new random deviates 

behave in a simulation over time. This is done in the validation section below. 

Model Validation 

Adding variability should prevent model from collecting or converging towards a mean 

around one DBH class, as was seen form the simulated model (Appendix D). The same 

simulation was done as in Section 4.6.4, this time with the random variance added to the 

prediction, shown in Appendix E with the end point at 26 years shown in Figure 4-25. 

Diameter increment is clearly overestimated at most ages, for both the model including 

variability and without.  

Stellenbosch University  http://scholar.sun.ac.za



4-97 

 

 

Figure 4-25: Observed (red bars) vs. simulated (blue bars) for the Nelder trial with random deviation added at each 

point. The model shows a clear overall overpredicition of DBH, however with an improved distribution compared to the 

model without deviation (Figure 4-16). 

From a diameter distribution point of view, the predicted model is clearly superior – 

although shifted to the right due to the overpredicted dbh originating from the 

deterministic model part. The model overall showed an overprediction for the Nelder trial, 

however with the extreme planted densities that exist (from 6700- 126 spha) it is necessary 

to see at which densities the model is not predicting well. For the end of the simulation run 

the following Table 4-19 shows the average observed vs. predicted DBH values for the 

different Nelder rings (and corresponding stems per hectare) at 26 years: 
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Table 4-19: Average of observed and predicted values for the different Nelder plots, showing clearly that the model 

underperforms at extreme densities 

Plot 

(ring) 

SPHA 

(Planted) 

Average of predicted 

DBH(cm) 

Average of observed DBH 

(cm) 
Difference 

4 126 42.46 53.15 -10.69 

5 167 43.18 51.40 -8.22 

6 222 42.64 48.68 -6.04 

7 295 39.56 44.93 -5.37 

8 391 40.14 42.00 -1.85 

9 520 37.56 36.48 1.08 

10 691 36.37 34.65 1.71 

11 917 34.16 31.94 2.22 

12 1219 32.22 28.88 3.34 

13 1619 29.99 23.86 6.13 

14 2151 27.40 22.50 4.90 

15 2857 25.79 19.67 6.12 

16 3796 23.41 18.31 5.10 

17 5043 22.94 16.40 6.54 

18 6700 22.35 14.78 7.57 

 

Table 4-19 shows that the model overpredicts at high densities and underpredicts at very 

low densities; however, at moderate densities at which most stands would be planted and 

managed under in plantation stands (highlighted in blue), the difference is relatively small. 

This difference is illustrated as a percentage in Figure 4-26 below. 
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Figure 4-26: Deviation of predicted average diameter increment for a more realistic of planted stand densities for a 

plantation industry setup in the Nelder trial 

 

4.8 Chapter conclusion 
The main objective of this chapter was to model diameter increment in as a function of 

resource limitations and site classification for application of a methodological based 

approach for a specific dataset to outline problems and future work. This was split into the 6 

sub-objectives which formed the outline of the working steps of the chapter. This main 

objective was achieved, however some key issues arose which will be discussed according to 

the six working steps/objectives of the Chapter. 

The water index introduced in the first step proved not to be adequate to capture a large 

enough gradient between the two sites for modelling purposes. However, it did result in a 

shift between importance of the competition indices discussed later. Potential increment 

curves were applied based on a given DBH on different stands, which showed clear 

differences between sites. Incorporating site index as a site quality measure into the 

potential increment model resulted in a gradient of predicted potentials from site quality.  

In order to include a modifier multiple distance-dependent competition indices were tested 

on two sites with available tree positions with the objective to identify a combination of 
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indices that showed small collinearity while explaining diameter increment well. The key 

idea behind this was to capture a gradient between overtopping (light limitation) and local 

crowding (edaphic limitations) modes of competition as highlighted by Seifert et al. (in 

press). The chosen competition indices reacted differently, but in order to identify and 

quantify the differences the behaviour and correlation between the indices were examined. 

Differences in PCA biplots and improved fit with low collinearity resulted in the decision to 

choose the LBA and KKL indices in a combined model. Incorporating a competition index 

which captures more size symmetric competition (LBA) seemed, under the fitted model 

constructed above, to improve prediction compared to model relying purely on the 

standard SILVA competition index KKL. The relative importance of the KKL and LBA to the 

transformed model changed under different site conditions on the two sites, with the KKL 

increasing in importance in the less drought affected site. Incorporating both indices in one 

model has potential to capture changing competition symmetry under changing water 

availability - although this needs to be investigated under a much wider gradient of sites 

with varying water availability and perhaps of different years of the same site in a 

longitudinal study approach. 

The results have shown that including the aridity index in the modifier equation presents 

potential for inclusion of a water index into the diameter increment prediction. Although 

the chosen approach was very simple, restricted by site and data availability, and reliable 

conclusions are difficult to make with regards to changing importance of CI models, it could 

be used for further parameterisation of SILVA. The ideal situation would be to combine a 

water index and weather data with a soil water balance model to estimate water 

availability, which was outside the scope of this thesis. In this study the longitudinal data 

aspect was not considered due to time and resource limitations, however, it must be noted 

that this may have a significant effect, which should be analysed in future studies.  

The presented model matched competitive stages, achieving the objective of obtaining an 

age-independent model. The potential modifier model with the competition indices were 

still not able to capture the wide range of variability observed in diameter increment 

predictions; this lead to a skewed, narrow prediction of DBH distribution of predicted 

compared to observed distributions.  

The use of a linear quantile regression for the truncation of a normal distribution between 

residuals, and a random prediction based on a normal distribution proved to be a robust 

methodology to incorporate natural variation. However, the captured variability was not 

large enough to mimic the variance in observed stands. It is the opinion of the author that 

the problem originates from the deterministic model, where the competition indices were 

still not sensitive enough to model diameter based solely on a potential and competition in 

the modifier. It is thought that including allometric relationships, such as diameter/height or 

crown dimensions into the model would greatly improve the situation. The structure of the 

KKL index may also not currently be suited to capture the competitive situation in the South 
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African context; changes could be made to the angle of the search cone which detects and 

counts potential competitors. This could be tested in a sensitivity analysis. The problem 

could also be related to the size of the trees – larger trees may be expected to deviate in the 

upper regions of the random spectrum for instance. This was not addressed in the model 

and represents a key issue for future work. 

Further refinements to the stochastic model could be made by testing the normality 

assumption and by using a Weibull distribution for instance. The variation predicted also did 

not take into account density effects in the observed residual plot, which may affect the size 

of the variation of diameter increment under different degrees of competition (a higher 

variation at low competition for instance); this could be a consideration for an investigation 

for future studies, which may make the stochastic model more sensitive to different stand 

density ranges.  

Visual analysis of the new predicted increments showed a good likeness to observed 

Increment-DBH scatterplots. Incorporating a variability to move into stochastic modelling 

drastically improved the DBH distribution problem, matching observed DBH values 

reasonably well. The model seemed to capture the average situation quite well. 

This Chapter serves as an example of a methodological approach to simulate diameter 

increment combinations of distance dependent competition indices and stochastic 

modelling. Future studies can greatly improve the process by considering further sites with 

different water indices and site quality and by studying the shifting importance of 

competition indices under different water availability in order to increase the sensitivity of 

the model to changing climatic conditions. 
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Chapter 5: Conclusion and recommendations 
 

 

This chapter provides a brief overview of what was achieved and recommendations for 

future work, as most of the issues have been discussed in the individual chapters already. 

This is divided into two sections: the work which was applied in this thesis (the potential 

height and diameter increment models in Chapters 3 and 4) and steps for further 

parameterisation for SILVA, which were not applied in this thesis. 

5.1 Potential height modelling 
The overall objective of this chapter was to model potential height and to see whether site 

index can be used as a predictor variable for potential height. In this sense the overall 

objective was achieved as it seemed to be a viable approach. 

Nonlinear quantile regression proved to be a robust method for conditional median 

modelling, in this case of the potential height. The algorithm used seems to be less affected 

by outliers than other least squares estimation techniques. There were some limitations 

worth noting: for one, as with many models, it is bound by the observed values of the data 

represented, and may thus be unable to quantify the true potential. This limits the potential 

height model as it is then by definition unable to further model exceptional trees, which 

have a large effect on competition and neighbours. This can be remedied by the inclusion of 

stochastic modelling techniques, as applied in Chapter 4 whereby the allowance of a 

random deviation procedure could allow some trees to vary above the allocated potential 

after the application of a modifier. 

Modelling site index using different fitting techniques provided potential new and 

interesting techniques for site index modelling. Nonlinear mixed effects modelling proved 

superior in predictive quality compared to the NLS and GNLS techniques for the data range 

acquired. Including the asymptote as the random effect provided the most robust and 

accurate inclusion of random effects into the NLME methodology.  

Using site index as a predictor, the overall objective of the chapter, proved to be possible. 

Some validation and refinements to the process could be made, however it is thought that 

site index is able to model potential height quite well. A major concern would be the effect 

of density on site index, while this thesis used the South African site index definition as is, it 

could lead to substantial errors at extreme (very high or low) stand densities and is an issue 

that should be addressed in future work. 

Future work should focus on a site quality predictor based on edaphic conditions (Esler 

2012, Louw and Scholes 2002), which should improve the sensitivity of the model to site 

conditions and move the model into a hybrid modelling approach. 
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5.2 Diameter increment modelling 
The overall objective of the chapter was, under data limitations, to present a methodology 

for future parameterisation and to highlight problems associated with this. In this sense, the 

objective was achieved; however improvements to this methodology can still be made. 

Stratifying the indices based on the collinear relationships in order to obtain models with a 

combination of good predictive power to diameter increment and low collinearity to each 

other using PCA and VIF’s was a novel and powerful approach. 

As noted earlier, the discussion on the behaviour of competition indices on different site 

types must be taken very tentatively, as two sites does not represent a good gradient. 

However, some trends can be noted and the validation produced some interesting results, 

showing clearly that the importance of the different indices.   

Including the Local Basal Area index, which captures a more growth symmetric competition 

structure representing edaphic factors, improved the model and often performed better 

that the KKL for P. elliottii under the water limited South African conditions.  

It is necessary though to see how this changes for different growth periods, taking into 

account rainfall and water availability over different seasons and years to see whether the 

competitive nature of the trees can switch between symmetric and asymmetric 

competition. It is strongly suggested that a study be undertaken to understand the cross-

sectional (site stratification) and temporal shifts in competition mode. This could for 

example be done in combination with a dendrochronological study.  

 

5.3 Additions for model completion 
As this thesis did not cover the entire modelling and simulation process done in Silva, 

further work must be done in the following areas, although no strong deductions can be 

made until they are tested in the South African growing context. 

The omission of the species specific crown model and light transmission factor may have 

been a major factor in the behaviour of the KKL model. A model should be developed for 

South Africa to model the crown structure of P. elliottii and other species to be used in 

future parameterisations, which could be used in the competition indices and allometric 

equations to improve growth prediction. Height increment modelling based on potential 

height and the stand initialisation should be studied. Although height increment is not as 

strongly affected by competition as diameter increment, competition in addition to 

allometric models and site quality could be investigated. Mortality was not parameterised in 

this study. Some surrogates could be used, however a more size and competition based 

approach should be used for parameterisation into SILVA. 
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5.4 Overall thoughts 
While the two components studied are very different in their model approaches and are not 

combined into a full model yet, the overall objectives for each were obtained. The above 

process in the thesis gives a good indication of the complexity of constructing single-tree 

growth models. However, the thesis resulted in a strong indication that this type of 

modelling process would be feasible, with the main focus to shift on completing the 

simulation structure of the entire growth modelling structure and to focus on shifts in 

competition index and competition modes under changing water availability. Problems 

encountered, and the solutions suggested, with the models tested could be of use for 

further research. 
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Chapter 7: Appendices 

Appendix A: NLME random effects anova table 
 

Density/Plot Model Parameter Convergence (Y,N) df AIC BIC logLik Test L.Ratio p-value 

124 

1 a,b,c N         

2 a,b N         

3 a,c Y 9 55.72202 65.94146 -18.86101     

4 a Y 7 51.58846 59.53692 -18.79423       

5 b,c Y 9 55.72365 65.94309 -18.86182     

6 b N         

7 c Y 7 51.72368 59.67214 -18.86184 5 vs 7 3.11E-05 1 

247 

1 a,b,c Y 12 109.375 132.0768 -42.6875       

2 a,b N         

3 a,c Y 9 103.87055 120.8969 -42.93528 1 vs 3 0.4955555 0.9199 

4 a N         

5 b,c Y 9 103.37498 120.4014 -42.68749     

6 b Y 7 99.85563 113.0984 -42.92781 5 vs 6 0.4806494 0.7864 

7 c Y 7 99.85563 113.0984 -42.92782       

371 

1 a,b,c N               

2 a,b N         

3 a,c N         

4 a Y 7 148.517 164.8322 -67.25852       

5 b,c Y 9 151.3502 172.3268 -66.67508     

6 b Y 7 149.1949 165.51 -67.59743 5 vs 6 1.8447 0.3976 

7 c Y 7 148.3134 164.6285 -67.15669       

494 

1 a,b,c Y 12 174.6198 204.4834 -75.30988       

2 a,b Y 9 168.6184 191.0161 -75.30919 1 vs 2 0.001373 1 

3 a,c Y 9 174.2355 196.6333 -78.11777     

4 a Y 7 165.1243 182.5447 -75.56214       

5 b,c N         

6 b Y 7 163.8356 181.2561 -74.9178 6 vs 3 6.399935 0.0408 

7 c Y 7 170.2361 187.6566 -78.11805       

741 

1 a,b,c N               

2 a,b Y 9 269.5768 295.922 -125.7884     

3 a,c Y 9 269.5766 295.9219 -125.7883     

4 a Y 7 265.5755 286.0662 -125.7877       

5 b,c Y 9 272.0675 298.4128 -127.0338     

6 b Y 7 268.0678 288.5586 -127.0339 6 vs 5 0.000245222 0.9999 

7 c Y 7 269.1501 289.6409 -127.5751       
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Density/Plot Model Parameter Convergence (Y,N) df AIC BIC logLik Test L.Ratio p-value 

988 

1 a,b,c Y 12 331.6635 369.0794 -153.8317       

2 a,b Y 9 325.6821 353.7441 -153.8411 1 vs 2 0.018633177 0.9993 

3 a,c Y 9 325.675 353.7369 -153.8375       

4 a Y 7 321.6714 343.4974 -153.8357 3 vs 4 0.003530949 0.9982 

5 b,c N         

6 b N         

7 c N               

1483 

1 a,b,c Y 12 498.8548 540.1638 -237.4274       

2 a,b Y 9 492.8549 523.8366 -237.4274 

1  vs 

2 2.27E-05 1 

3 a,c N         

4 a Y 7 488.8548 512.9518 -237.4274       

5 b,c N         

6 b Y 7 488.8548 512.9518 -237.4274 6 vs 2 2.47E-05 1 

7 c Y 7 488.285 512.382 -237.1425       

2965 

1 a,b,c nlme.fit1 12 763.7114 812.588 -369.8557       

2 a,b nlme.fit2 9 757.7237 794.3811 -369.8618 1 vs 2 0.012269636 0.9996 

3 a,c nlme.fit3 9 757.7107 794.3681 -369.8553     

4 a nlme.fit7 7 753.7078 782.2191 -369.8539       

5 b,c nlme.fit4 9 758.2332 794.8906 -370.1166     

6 b nlme.fit5 7 754.2328 782.7441 -370.1164 5 vs 6 0.000403051 0.9998 

7 c nlme.fit6 7 744.5137 773.025 -365.2569       
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Appendix B: Voronoi polygon increment relationship for the 

Nelder and Tweefontein sites respectively 
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Appendix C: Observed and predicted DBH for the 

deterministic model 
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Appendix D: Simulation steps for the deterministic model 
 

Period 1: 6 years 

 
Period 2: 7 years 

 
Period 3: 11.08 years 
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Period 4: 13.33 years 

 
Period 5:15.58 

 
Period6: 19.17 
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Period 7:20.25 

 
Period 8:23.83 

 
Period 9:26 
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Appendix E: Simulation steps for the stochastic model 
 

Period 1: 6 years 

 
Period 2: 7 years 

 
Period 3: 11.08 years 
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Period 4: 13.33 years 

 
Period 5:15.58 
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Period6: 19.17 

 
Period 7:20.25 
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Period 8:23.83 

 
Period 9:26 
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Appendix F: Select examples of R- Code 
 

######################################################### 

####### Nonlinear quantile regression example ########### 

######################################################### 

 

Allccttrials <- subset(Allccttrials, Height > 0) 

 

str(Allccttrials) 

head(Allccttrials) 

 

 

###1.2 Subset the data into the different trials 

 

Weza <- subset(Allccttrials, Location == "Weza") 

Mac <- subset(Allccttrials, Location == "Mac Mac") 

Kwam <- subset(Allccttrials, Location == "Kwambonambi") 

Duku <- subset(Allccttrials, Location == "Dukuduku") 

 

###2. Deriv For functions 

 

#2.1.1 Chapman Richards Three Parameter 

height.chapman <- 

deriv(~ a * (1 - exp(b*x))^c, 

c("a","b","c"), 

function(x, a, b, c){}, 

hessian = TRUE) 

 

 

 

Weza2965 <- subset(Weza, Spha =="2965") 

 

a <- max(Weza2965$Height) 

b1 <- max(Weza2965$Height) - min(Weza2965$Height) 

b2 <- max(Weza2965$Age) - min(Weza2965$Age) 

b3 <- (b1/b2) 

b <- b3/(max(Weza2965$Height)) 

c <- 0.66 

a 

b 

c 

 

Weza.0.9 <- nlrq(Height ~ height.chapman(Age, a, b, c), 

start = list(a = a, b = -b, c = c), 

data = Weza2965, tau=0.9, trace=TRUE) 

 

Weza.0.95 <- nlrq(Height ~ height.chapman(Age, a, b, c), 

start = list(a = a, b = -b, c = c), 

data = Weza2965, tau=0.95, trace=TRUE) 

 

Weza.0.975 <- nlrq(Height ~ height.chapman(Age, a, b, c), 

start = list(a = a, b = -b, c = c), 

data = Weza2965, tau=0.975, trace=TRUE) 
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#Test0.9 

handy.Height.hat <- function(Age) 

predict(Weza.0.9, newdata = data.frame(Age = Age)) 

#Call 

par(las = 1) 

Plotnlrq <- plot(Height ~ Age, data = Weza2965, 

xlim = c(0, max(Weza2965$Age, na.rm=TRUE)), 

ylim = c(0, max(45)), 

ylab = "Height(m)", xlab = "Age (y)", main = "0.9 Quantile") 

curve(handy.Height.hat, add = TRUE) 

 

summary(Weza.0.9) 

 

 

#Test0.95 

handy.Height.hat2 <- function(Age) 

predict(Weza.0.95, newdata = data.frame(Age = Age)) 

#Call 

par(las = 1) 

Plotnlrq <- plot(Height ~ Age, data = Weza2965, 

xlim = c(0, max(Weza2965$Age, na.rm=TRUE)), 

ylim = c(0, max(45)), 

ylab = "Height(m)", xlab = "Age (y)", main = "0.95 Quantile") 

curve(handy.Height.hat2, add = TRUE) 

 

summary(Weza.0.95) 

 

 

 

#Test0.975 

handy.Height.hat3 <- function(Age) 

predict(Weza.0.975, newdata = data.frame(Age = Age)) 

#Call 

par(las = 1) 

Plotnlrq <- plot(Height ~ Age, data = Weza2965, 

xlim = c(0, max(Weza2965$Age, na.rm=TRUE)), 

ylim = c(0, max(45)), 

ylab = "Height(m)", xlab = "Age (y)", main = "0.975 Quantile") 

 

+ curve(handy.Height.hat, add = TRUE, lty = 2, lwd = 2, col = 

"Green")  

+ curve(handy.Height.hat2, add = TRUE, lty = 2, lwd = 2, col = 

"Blue")  

+ curve(handy.Height.hat3, add = TRUE, lty = 2, lwd = 2, col = 

"Red") 

 

legend(1, 45, c("0.90","0.95","0.975"), lty=c(2,2,2), 

lwd=c(2,2,2),col=c("Green","Blue","Red")) 

 

summary(Weza.0.975) 

 

 

 

######################################################### 

######     Site index modelling example      ############ 

######################################################### 
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Wezadom1 <- subset(dominantheightclass, Location == "Weza") 

 

Wezadom247 <- subset(Wezadom1, Spha == "247") 

Wezadom247 <- subset(Wezadom247, Height > 0) 

 

 

a <- max(Wezadom247$Height) 

b1 <- max(Wezadom247$Height) - min(Wezadom247$Height) 

b2 <- max(Wezadom247$Age) - min(Wezadom247$Age) 

b3 <- (b1/b2) 

b <- b3/(max(Wezadom247$Height)) 

c <- 0.66 

a 

c 

b 

nlc <- nls.control(maxiter = 200, tol = 1e-05, minFactor = 1/1024, 

            printEval = FALSE, warnOnly = FALSE) 

handy.nls2 <- 

nls(Height ~ Height.growth(Age, a, b, c), 

start = list(a = a, b = -b, c = c), 

data = Wezadom247, control = nlc) 

#Test 

handy.Height.hat <- function(Age) 

predict(handy.nls2, newdata = data.frame(Age = Age)) 

#Call 

par(las = 1) 

Plotted2 <- plot(Height ~ Age, data = Wezadom247, 

xlim = c(0, max(Wezadom247$Age, na.rm=TRUE)), 

ylim = c(0, max(45)), 

ylab = "Height(m)", xlab = "Age (y)", main = "Average Height") 

curve(handy.Height.hat, col = "red", add = TRUE) 

 

summ <- summary(handy.nls2) 

require(nlstools) 

resid <- nlsResiduals(handy.nls2) 

plotresid <- plot(resid, type = 0) 

 

 

library(nlme) 

Weza247group <- groupedData(Height~Age|Number, Wezadom247) 

plot(Weza247group) 

head(Weza247group) 

 

cor(coef(handy.nls2)) 

 

####Nlme 

 

a <- max(Weza247group$Height) 

b1 <- max((Weza247group$Height) - min(Weza247group$Height)) 

b2 <- max(Weza247group$Age) - min(Weza247group$Age) 

b3 <- (b1/b2) 

b <- b3/(max(Weza247group$Height)) 

c <- 0.66 
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a 

b 

c 

 

nlc1 <- nlmeControl(maxiter = 100000, tol = 1e-05, minFactor = 

1/1024, 

            printEval = FALSE, warnOnly = FALSE) 

 

nlc2 <- nls.control(maxiter = 500, tol = 1e-05, minFactor = 1/1024, 

            printEval = FALSE, warnOnly = FALSE) 

 

Weza247nlslist <- 

nlsList(Height ~ Height.growth(Age, a, b, c), data = Weza247group,  

start = list(a = 36.74088, b = -0.03314, c = 1.05124), control = 

nlc2) 

summary(Weza247nlslist) 

 

pairs(Weza247nlslist, id = 0.1, na.action = na.exclude) 

plot(intervals(Weza247nlslist), layout = c(3,1)) 

 

 

start <- c(a = a,b = -b, c = c)  # starting value  

nlme.fit <- nlme(Height ~ Height.growth(Age, a, b, c), 

                 fixed = a + b + c ~ 1, random = a+ b + c ~ 1,  

                 data = Weza247group, start=c(start), 

control=nlmeControl(opt='nlm'), 

   weights = varPower(form = ~ Age), corr = 

corAR1(0.296739967))  

summary(nlme.fit) 

pairs(nlme.fit) 

 

anova(nlme.fit, handy.nls2) 

###3 - Substantial correlation between b and c random effects - 

makes it difficult to converge 

intervals(nlme.fit, which = "var-cov") 

 

nlme.fit.a <- update(nlme.fit, random = a ~ 1) 

nlme.fit.b <- update(nlme.fit, random = b ~ 1) 

nlme.fit.c <- update(nlme.fit, random = c ~ 1) 

nlme.fit.bc <- update(nlme.fit, random = b + c ~ 1) 

 

anova(nlme.fit.a, nlme.fit.b, nlme.fit.c, nlme.fit.bc) 

anova(nlme.fit.a, nlme.fit.bc) 

summary(nlme.fit.a) 

summ 

 

##Fit diagonal variance covariance matrix assuming random effects 

are independent 

 

nlme.fit.diag <- update(nlme.fit, random = pdDiag(a + b + c ~ 1), 

control=nlmeControl(opt='nlm')) 

 

#doesnt converge, thus try other random effects 

nlme.fit.diagbc <- update(nlme.fit, random = pdDiag(b + c ~ 1)) 

nlme.fit.diagac <- update(nlme.fit, random = pdDiag(a + c ~ 1), 

control=nlmeControl(opt='nlm')) 
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nlme.fit.diagab <- update(nlme.fit, random = pdDiag(a + b ~ 1), 

control=nlmeControl(opt='nlm')) 

nlme.fit.diaga <- update(nlme.fit, random = pdDiag(a ~ 1), 

control=nlmeControl(opt='nlm')) 

nlme.fit.diagb <- update(nlme.fit, random = pdDiag(b ~ 1), 

control=nlmeControl(opt='nlm')) 

nlme.fit.diagc <- update(nlme.fit, random = pdDiag(c ~ 1), 

control=nlmeControl(opt='nlm')) 

 

anova(nlme.fit.diagac, nlme.fit.diagab, nlme.fit.diaga, 

nlme.fit.diagb, nlme.fit.diagc) 

 

####With a, b and c all substantially corellated, it may not be 

necessary to include them all in the model 

# Just using a seems to be the best model 

summary(nlme.fit.diaga) 

summary(handy.nls2) 

 

anova(nlme.fit.diaga, handy.nls2) 

plot(handy.nls2) 

plot(nlme.fit.diaga) 

plot(nlme.fit.diagb) 

plot(nlme.fit.diagbc) 

 

 

 

#Now use the weights 

nlme.fit.diaga <- update(nlme.fit.diaga, weights = varPower(form = ~ 

Age) ) 

summary(nlme.fit.diaga) 

 

plot(nlme.fit.diaga) 

 

anova(nlme.fit.diaga, nlme.fit) 

 

 

###gnls 

library(nlme) 

Weza247gnls <- gnls(Height ~ Height.growth(Age, a, b, c), data = 

Weza247group,  

start = list(a = 46.86677, b = -0.04293, c = 1.45860)) 

summary(Weza247gnls) 

summ 

 

Nelder126gnls.Power3 <- update(Weza247gnls, weights = varPower(form 

= ~ Age), corr = corAR1(0.296739967)) 

summary(Nelder126gnls.Power3) 

 

plot(Nelder126gnls.Power3) 

 

gnlspowerwightedresiduals <- Nelder126gnls.Power3 

nlmepowerweightedresiduals <- nlme.fit.diaga 

nlme <- nlme.fit 

nls <- handy.nls2 

 

anova(Nelder126gnls.Power3, nlme.fit.a, handy.nls2) 
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####rmse 

RMSE(Nelder126gnls.Power3) 

RMSE(nlme.fit.a) 

RMSE(handy.nls2) 

 

anova(gnlspowerwightedresiduals, nlmepowerweightedresiduals, nlme, 

nls) 

 

plot(nls) 

plot(nlme) 

plot(gnlspowerwightedresiduals) 

plot(nlmepowerweightedresiduals) 

 

 

##Test the autocorrelation regression improvements for the best nlme 

(weighted and unweighted) 

 

#Unweighted: 

plot(ACF(nlme.fit, maxLag = 10), alpha = 0.05) 

ACF(nlme.fit) 

nlme.fit.acf <- update(nlme.fit, corr = corAR1(0.11717144)) 

plot(ACF(nlme.fit.acf , maxLag = 10), alpha = 0.05) 

summary(nlme.fit.acf) 

summary(nlme.fit) 

anova(nlme.fit, nlme.fit.acf) 

plot(nlme.fit.acf) 

 

# Weighted 

plot(ACF(nlme.fit.diaga, maxLag = 10), alpha = 0.05) 

ACF(nlme.fit.diaga) 

nlme.fit.diaga.acf <- update(nlme.fit.diaga, corr = 

corAR1(0.29005147)) 

plot(ACF(nlme.fit.diaga.acf, maxLag = 10), alpha = 0.05) 

ACF(nlme.fit.diaga.acf) 

summary(nlme.fit.diaga) 

summary(nlme.fit.diaga.acf) 

anova(nlme.fit.diaga.acf, nlme.fit.diaga) 

plot(nlme.fit.diaga.acf) 

plot(nlme.fit.diaga) 

 

anova(nlme.fit, nlme.fit.acf, nlme.fit.diaga, nlme.fit.diaga.acf) 

 

##See if the Nlmeweighted and unweighted acf's compare 

summary(nlme.fit.acf) 

summary(nlme.fit.diaga.acf) 

 

anova(nlme.fit.acf, nlme.fit.diaga.acf) 

 

##See if changing the parameters used for random effects has and 

effect 

 

nlme.fit.diagbc <- update(nlme.fit, random = pdDiag(b + c ~ 1)) 

 

plot(nlme.fit.diagbc) 
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nlme.fit.diag.bc <- update(nlme.fit.diagbc , weights = varPower(form 

= ~ Age) ) 

ACF(nlme.fit.diag.bc) 

nlme.fit.diaga.bc.acf <- update(nlme.fit.diag.bc, corr = 

corAR1(0.29005147)) 

plot(nlme.fit.diaga.bc.acf) 

#unweighted 

nlme.fit.diaga.unweight <- update(nlme.fit.diagbc, corr = 

corAR1(0.29005147)) 

plot(nlme.fit.diaga.unweight) 

 

summary(nlme.fit.diaga.bc.acf) 

summary(nlme.fit.diaga.unweight) 

 

 

anova(nlme.fit.diaga.bc.acf, nlme.fit.diaga.unweight) 

 

anova(gnlspowerwightedresiduals, nlmepowerweightedresiduals, nlme, 

nls, nlme.fit.diaga.acf) 

 

 

######################################################### 

#####    Competition indices exapmle        ############# 

######################################################### 

 

 

####BALIndex 

 

 

 

#df <- read.csv("C:/Users/Gerard/Documents/Masters/r voronoi/Nelder 

Year by year/1998.csv") 

df <- read.csv("F:/Tweefontein BAL/Tweefonteinnew.csv") 

 

#df<- subset(df, TPH0 =="245") 

#df<- subset(df, TPH0 =="403") 

#df<- subset(df, TPH0 =="665") 

df<- subset(df, TPH0 =="1097") 

#df<- subset(df, TPH0 =="1808") 

#df<- subset(df, TPH0 =="2981") 

 

head(df) 

# computes the BAL competition index as follows: 

# all neighbour trees inside the competion zone radius (CZR) 

# contibute to the total sum of the Basal area, if their 

# DBH is thicker than the central tree. 

# 

# alle trees are assumed to be on a axias allinged rectangular plot 

# 

# stefan seifert 2013-1 

 

 

require(RANN) 

 

 

df<- subset(df, Age =="1.83") 
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df<- subset(df, Age =="2.5") 

df<- subset(df, Age =="3.58") 

df<- subset(df, Age =="6.25") 

df<- subset(df, Age =="7.83") 

df<- subset(df, Age =="10.5") 

df<- subset(df, Age =="12.67") 

df<- subset(df, Age =="14.58") 

df<- subset(df, Age =="16.58") 

df<- subset(df, Age =="18.33") 

df<- subset(df, Age =="20.42") 

 

 

d <- df 

head(d) 

createtorus = function(d, dx=NA, dy=NA) { 

   if (is.na(dx)) 

      dx=diff(range(d$x)) 

   if (is.na(dy)) 

      dy=diff(range(d$y)) 

   dnew = d 

   dnew$outside=F 

   #   centerrow 

   dc=rbind(dnew,transform(d, x=x-dx, outside = T)) 

   dc=rbind(dc,transform(d, x=x+dx, outside = T)) 

   #+top 

   dnew = rbind(dc,transform(dc, y=y-dy, outside=T)) 

   #+bottom row 

   dnew = rbind(dnew, transform(dc, y=y+dy, outside=T)) 

   return(dnew) 

} 

 

head(createtorus(d)) 

 

neighbours.BAL = function(x,y,r=plotsize,k=100) { 

   # returns all neighbours in a distance of r 

   # neighbour number is limited to k 

   # warning will be given if there might be more neighbous than k 

   require(RANN) 

   k = min(k,nrow(x)) 

   neigh = nn2(x[,c("x","y")], x[,c("x","y")], searchtype="radius", 

radius = r-1e-6, k=k) 

   if(max(neigh$nn.idx[,k])>0 & k<nrow(x)) { 

      warning("neighbours.BAL: k might be to less to find all 

potential neighbours") 

   } 

   return(neigh) 

} 

 

p = createtorus(d) 

head(p) 

str(p) 

 

 

 

BAL = function(p,CZR=plotsize) { 

   # compute the BAL index, BASAL AREA, and DIAM for all trees in p 
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   # p is a data.frame with the columns x, y for the tree position 

   #    and D for the DBH of the tree 

   #    a column newID with unique IDs 

   # CZR is teh radius to which neighbours are counted 

   #   if CZR is NA then CZR will be estimated as 2 times the  

   #   squareroot of the specific tree area 

   # bounding 

   BAL = rep(NA,nrow(p)) 

   BASAL = BAL 

   CR13 = BAL 

   mimax = range(p$x) 

   mimay = range(p$y) 

   if (is.na(CZR)) { 

      a = diff(mimax)*diff(mimay) 

      spa = a/nrow(p) # 1/intensity : specific area per tree 

      CZR = sqrt(spa) * 2 # k-facor 2 : radius is 2-times the 

specific tree area 

   } 

   border = with(p, x<=mimax[2]-CZR & x>=mimax[1]+CZR &  

y<=mimay[2]-CZR & y>=mimay[1]+CZR) 

   sqha = CZR^2*pi/10000 # circle ha 

   ne = neighbours.BAL(p,CZR, k=100) # all neighbours for all trees! 

   # sum up all valid neighbours squared DBHs 

   # we do it in a loop 

   for (ct  in 1:nrow(p)) { 

      nonu = ne$nn.idx[ct,-1] 

      nonu = nonu[nonu>0] 

      d = p[nonu,"D"] 

      d1 = d[d>p$D[ct]] 

      d2 = d[d>10 & d <=30] 

 

      BAL[ct] = sum( d1^2 )*pi/40000 / sqha # [ basal area per ha] 

      BASAL[ct] = sum( d^2 )*pi/40000 / sqha  

      CR13[ct] = sum(d2) / sqha 

   } 

   return(data.frame(newID=p$newID, BAL=BAL,BASAL=BASAL, Age = 

p$Age, DBH = p$D, DIncrement = p$Di,HtIncrement = p$Hti, 

     Ht = p$Ht, x = p$x, y = p$y, SPHA = p$TPH0, 

flagBALOk=border, CR13=CR13, CZR=rep(CZR,nrow(p)) )) 

} 

 

 

 

BALCALL <- BAL(p) 

head(BALCALL) 

plot(BALCALL$BAL, BALCALL$DIncrement) 

plot(BALCALL$BASAL, BALCALL$DIncrement) 

 

 

 

#################Hegyi Index 

 

 

p <- BALCALL 

head(p) 

names(p)[names(p) == "newID"] <- "ID" 
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p$newID <- 1:nrow(p) 

p$D <- p$DBH 

 

CZR <- plotsize 

 

 

neighbours.heg = function(x,r,k=100) { 

   # returns all neighbours in a distance of r 

   # neighbour number is limited to k 

   # warning will be given if there might be more neighbous than k 

   require(RANN) 

  k = min(k,nrow(x)) 

  neigh = nn2(x[,c("x","y")], x[,c("x","y")], searchtype="radius", 

radius = r-1e-6, k=k) 

  if(max(neigh$nn.idx[,k])>0 & k<nrow(x)) { 

     warning("neighbours.heg: k might be to less to find all 

potential neighbours") 

  } 

  return(neigh) 

} 

 

it.heg.stand = function(p,CZR, k=100) { 

    # p are all trees in the plot 

    # this data.frame must contain x,y as coordinates 

    # and d as diameter [cm] 

    # the column newID should contain a unique ID like the row 

number 

    #   if some trees ar excluded this ID helps to reconstruct the 

    #   original data 

    require(plyr) 

     

    ne = neighbours.heg(p,CZR, k) # all neighbours for all trees! 

    HgCI = rep(NA,nrow(p)) 

    newID = HgCI 

    flagBorder = rep(NA,nrow(p)) 

 

    mimax = range(p$x) 

    mimay = range(p$y) 

    flagBorder = with(p, x<=mimax[2]-CZR & x>=mimax[1]+CZR &  

y<=mimay[2]-CZR & y>=mimay[1]+CZR) 

    for (ct  in 1:nrow(ne$nn.idx)) { 

       #print(ct) 

       # test if current tree ct is to near the maximum extent of 

the plot (B:think this comment is meant for line 53) 

       z = c() 

       # number of neighbours 

       nonna = (ne$nn.idx[ct,]>0) 

       nc = length(na.omit(ne$nn.idx[ct,nonna])) # B:na.omit just 

removes incomplete cases, i.e. more than number k, or out of CZR 

 

          neighb = ne$nn.idx[ct,nonna][-1] # all valid neighbour 

indexes 

          neighbd = ne$nn.dist[ct,nonna][-1] # all valid neighbours 

distances 

          HgCI[ct]=sum( (p$D[neighb]/p$D[ct])/neighbd ) 

          newID[ct]=p$newID[ct] 
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} 

    return(data.frame(HgCI=HgCI,flagInside=flagBorder,newID=newID)) 

} 

 

source("J:/B Fury/ci-Hegyi-iterNocea.R")#specifiy which script has 

the functions being used 

 

head(p) 

str(p) 

 

 

heg=it.heg.stand(p,CZR,35) 

plot(p$x,p$y) 

head(heg) 

str(heg) 

heg.1=data.frame(ID = p$ID, newID=p$newID, 

BAL=p$BAL,BASAL=p$BASAL,HgCI=heg$HgCI, Age = p$Age,  

   DBH = p$DBH, DbhIncrement = p$DIncrement, 

HtIncrement = p$HtIncrement, 

    Ht = p$Ht, x = p$x, y = p$y, SPHA = p$SPHA, 

CZR=rep(CZR,nrow(p))) 

 

plot(heg.1$HgCI, heg.1$DbhIncrement) 

head(heg.1) 

 

str(heg.1) 

 

 

###########################Voronoi 

p <- heg.1 

head(p) 

str(p) 

treecoords <- subset(p, select=c(newID,x,y)) 

require(deldir) 

  

x<-c(treecoords$x) 

y<-c(treecoords$y) 

plot(x,y) 

delresult <- deldir(x,y) 

 

summ<-delresult[["summary"]] 

summ 

summ8<-summ[8] 

summ8merge <- merge(summ8, heg.1, all=TRUE, by="row.names") 

 

 

plot(delresult) 

 

plot(delresult,add=FALSE,wlines=c("tess"), 

wpoints=c("both","real","dummy","none"), 

number=FALSE,cex=1,nex=1,col=NULL,lty=NULL, 

pch=NULL,xlim=NULL,ylim=NULL,xlab='x',ylab='y', 

showrect=FALSE) 

 

 

plot(delresult,add=FALSE,wlines=c("tess"), 
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wpoints=c("none"), 

number=FALSE,cex=1,nex=1,col=NULL,lty=1, 

pch=NULL,xlim=NULL,ylim=NULL,xlab='x',ylab='y', 

showrect=FALSE) 

 

head(summ8merge) 

summ8merge$conc <- paste(summ8merge$ID,summ8merge$newID, sep = '.') 

str(summ8merge) 

plot(summ8merge$dir.area, summ8merge$DbhIncrement) 

 

 

setwd("F:/B Fury/Tweefontein/hegyi and cvor") 

write.csv(summ8merge, "2981.20.42.csv") 
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