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Abstract 

In many South African plantation forestry regions, repeated disc harrowing (after clear 

felling and during stand development) among other objectives is used as a fuel load 

reduction measure to minimise wildfire damage. This study reports the effects of this 

treatment on fuel loading, soil properties and stand growth. The implementation of 

repeated disc harrowing throughout the rotation of Eucalyptus grandis x nitens stands 

significantly reduced fuel loading of the most active (i.e. the finer) fuel classes. In a 

fence line study of adjacent experimental plots, repeated disking (BD) was contrasted 

with non-disking (B0) treatments. Repeated disc harrowing reduced the average oven 

dried fuel loading of the 1 hour fuel class by 29.0 t ha-1 and that of the 10 hour fuels by 

4.3 t ha-1 when compared to the non-disked treatments. Repeated disc harrowing 

significantly altered the forest floor structure. The non-disking treatment consisted of the 

litter (L), fermented (F), and humus (H) strata on top of the mineral soil (MS) layer. 

Following numerous harrowing application in the BD treatment, the forest floor structure 

was reduced to only a sparse L layer directly on top of the MS layer. This indicated a 

considerable change in fuel loading and forest floor structure as a result of disc 

harrowing. 

Repeated disc harrowing significantly increased topsoil exchangeable cation quantities, 

S-value, and reduced bulk density. Topsoil exchangeable K, Ca, Mg, Na, and S-value

increased by 0.04, 0.34, 0.12, 0.01 and 0.51 cmolc kg-1 respectively following repeated 

disking. The topsoil pHKCl, extractable P, total N and C were not significantly different 

among the two treatments.    

The above and below ground tree growth variables examined in this fence line study 

indicated no significant differences following repeated disc harrowing treatment. The BD 

treatment exhibited similar stand density of 1168 stems ha-1 over 1141 stems ha-1 for B0 

treatment. Likewise, stand productivity was similar among treatments, with basal area, 

volume, and plant biomass in the B0 treatment being 24.6 m2 ha-1, 212.5 m3 ha-1and 

134.4 t ha-1 versus 23.5 m2 ha-1, 202.6 m3 ha-1 and 127.5 t ha-1 for the BD treatment. 

Using a profile wall root study method, B0 treatment was observed to have a non-

significantly higher root count of 30% on the top 10 cm soil depth when contrasted to BD 

treatment, which was 22% (percentage of the total root count on a 1 x 1 m vertical 

profile wall). All the differences observed on the tree growth and stand productivity 
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parameters among the two treatments were not significant at (p<0.05). The negligible 

growth reduction in repeatedly disked treatment is surpassed by the significant fuel load 

reduction and reduced wildfire risk.  
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Opsomming 

ŉ Aantal bosboustreke in Suid-Afrika eg stroke grond met ŉ skotteleg na kaalkap (maar 

daarna ook herhaaldelik gedurende die rotasie), ten einde brandstof lading te verminder 

en sodoende skade deur veldbrande te beperk. In hierdie studie word die effek van 

hierdie behandeling op brandstoflading, grondeienskappe en opstandsgroei ondersoek.  

Herhaalde eg operasies gedurende die rotasie in Eucalyptus grandis x nitens opstande 

het gelei tot vermindering in brandstof lading van die aktiefste (d.w.s die fynste) 

brandstofklasse. In 'n studie van aangrensende persele is herhaalde egting (BD) 

gekontrasteer met onbewerkte (B0) behandelings. 

Die oonddroë brandstoflading van die 1 uur brandstofklas is deur herhaalde egting 

verminder met 29,0 t ha-1 en die brandstof van 10 uur klas met 4,3 t ha-1 vergeleke met 

die onbewerkte persele. Herhaalde egting het ook ŉ wesenlike verandering in die 

struktuur van die bosvloer teweeggebring. Die onbewerkte behandeling het bestaan uit 

die onlangs gekapte materiaal (L – laag), gefermenteerde (F) en humus (H) laag bo-op 

die minerale grondlaag (MG). Na 'n gereelde egting in die BD-behandeling, is die 

bosvloer struktuur verskraal tot slegs 'n ylerige L-laag direk bo-op die MG-laag. Dit dui 

op 'n aansienlike verandering in brandstoflading en bosvloerstruktuur as gevolg van 

herhaalde egting. 

 

Herhaalde egting het die hoeveelheid uitruilbare katione, die S-waarde en die 

bulkdigtheid van die bogrond beduidend verhoog. Die bogrondse uitruilbare K, Ca, Mg, 

Na en S-waarde het met herhaalde egting onderskeidelik met 0.04, 0.34, 0.12, 0.01 en 

0.51 cmolc kg-1 gestyg. Die bogrondse pHKCl, ekstraheerbare P, totale N en organiese 

koolstof het nie beduidend verskil tussen die twee behandelings nie. 

 

Bogrondse en ondergrondse boomgroeiveranderlikes wat in aangrensende persele 

ondersoek is, het nie beduidend verskil tussen behandelings nie. Die BD-behandeling 

se opstandsdigtheid van 1168 stamme ha-1 was vergelykbaar met die 1141 stamme ha-1 

vir die B0-behandeling. Net so was die maatstawwe van opstandsproduktiwiteit nie 

betekenisvol verskillend (p<0.05) tussen die behandelings nie. Die basale oppervlakte, 

volume en biomassa in die B0-behandeling was 24.6 m2 ha-1, 212.5 m3 ha-1, en 134.4 t 

Stellenbosch University https://scholar.sun.ac.za



vi 

 

ha-1 teenoor waardes van 23.5 m2 ha-1, 202.6 m3 ha-1, en 127.5 t ha-1 vir die BD-

behandeling.  

Met behulp van 'n profielgat wortelstudiemetode is daar waargeneem dat die B0-

behandeling ŉ effens hoër worteltelling van 30% in die grondlaag van 0-10 cm het, in 

teenstelling met BD-behandeling, wat 22% was. Hierdie effek was egter nie 

betekenisvol nie. Die weglaatbaar klein negatiewe effek op opstandsgroei na herhaalde 

egting word oorskadu deur die aansienlike vermindering van die brandstoflading en die 

gepaardgaande verlaging in die brandrisiko. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



vii 

 

Dedication 

 

I dedicate this thesis to my late mother  

 

Vuyiswa Veronica Goldsmith  

 

1968 - 1999 

 

My mother, role model, and inspiration, passed on before I could experience her love 

and kindness which many people tell me stories about. Mama, your legacy lives on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



viii 

 

Acknowledgements 

I give my gratitude to the following persons and organizations for their invaluable 

assistance in the success of this project: 

 Professor Ben du Toit, my supervisor, for your time, patience & academic advice. 

 Johané Nienkemper-Swanepoel for your statistical analysis advice.  

 Aladrian Elmore for editing this manuscript. 

 Dr. Ronn Elmore for being my mentor, counselor, and spiritual advisor. 

 Dean da Costa, Paul Viero, Tim Pretorius, and Rudi du Randt for invaluable on-

the-ground assistance whenever I needed it. 

 Mondi Group for funding and allowing me to use their property to conduct this 

research. 

 Southern African Institute of Forestry for additional funding.  

 Daniele Poiati for your contribution throughout the field sapling phase up until 

laboratory work and data collection and capturing phase. Muzi Khumalo & Scelo 

Sangweni for offering an extra hand. 

 My family at large, especially brothers Patrick & Christopher Goldsmith, & Ali 

Gaehler for your unconditional love. 

 My dear friends Chulumanco Sigcau, Siyababalwa Athenkosi Bhucwa, & 

Munyaradzi Makoto for your loyal continued support.   

 The Earth & Luxe Scholars for moral support.  

 “The Small Things Fund” community, especially Rhoda Malgas for creating & 

offering me a supportive environment for the duration of my study.   

 Above all, I give absolute glory to God our heavenly Father for entrusting me with 

such a great opportunity.  

Stellenbosch University https://scholar.sun.ac.za



ix 

 

 Genesis 2:15 (NIV) 15 The Lord God took the man and put him in the Garden of 

Eden to work it and take care of it.    

Thank you very much.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



x 

 

TABLE OF CONTENTS 

                   Page 

1.  INTRODUCTION             1 

1.1.   Study Objectives and Key Questions          3  

1.2.  Relevance of Study             4 

2.            LITERATURE REVIEW             5  

2.1.   Introduction                    5 

2.2. Forest Fuels and Fire Management Strategies         8 

2.2.1. Structure of the forest floor fuel strata               10 

2.2.2.  Fuel load management techniques        13  

2.3.     The Effect of Bio Charcoal on Soil Nutrients and Tree Growth    16 

2.3.1.     Description of bio charcoal physical and chemical properties  17  

2.3.2.      Alteration on soil physical properties        18 

2.3.3.      Alteration on soil chemical properties        18  

2.4.         Pros and Cons of Burning or Retaining Harvest Residue and Its              
Impact on Fuel Loading                  21 

2.4.1.      Retention of harvest slash residue                23  

2.4.2.      Harvest slash residue burning         23 

2.4.2.1.    Burning conditions            25 

2.5.         Influence of Soil Tillage (Disc Harrowing) on Soil Properties and              
Eucalyptus Spp Growth        26 

2.5.1. Soil structure           26 

2.5.2.    Tree growth and survival             27 

2.6.      Literature Review Conclusion             28 

3.         METHODS AND MATERIALS          30 

Stellenbosch University https://scholar.sun.ac.za



xi 

 

3.1.      Site Description              30 

3.2.      Study Design Methodology                   33 

3.3.      Data Collection            36 

3.3.1.  The above ground plant growth             36 

3.3.2.      Below ground growth: root distribution patterns       37 

3.3.3.      Forest floor and litter characterisation        38 

3.3.3.1.   Laboratory            39 

3.3.4.      Sampling for soil physical and chemical properties      41 

4.            DATA ANALYSIS         43 

5.            RESULTS          44 

5.1.         Fuel Loading and Forest Floor Structure                                            44  

5.2.         Soil Chemical Properties         53 

5.2.1.      Exchangeable base cations (K, Ca, Mg, and Na) and ECEC     53 

5.2.2.      Topsoil pH, S-value, base saturation and acid saturation      58 

5.2.3.      Soil N, P, and C response to treatments for the two blocks     62 

5.3.         Soil Bulk Density            65 

5.4.         Above Ground and Below Ground Plant Growth      67 

5.4.1.     Stand density            67 

5.4.2.     Stand basal area           69 

5.4.3.     Stand volume           70 

5.4.4.     The above ground plant biomass         71 

5.5.     Below ground Growth: Root Distribution Pattern       73 

6.     DISCUSSION           86 

Stellenbosch University https://scholar.sun.ac.za



xii 

 

6.1.      Fuel Loading and Forest Floor Structure           86 

6.2.      Soil Nutrient Distribution           89 

6.3.      Above Ground Plant Growth          91 

6.4.      Below Ground Growth: Root Distribution Pattern      92 

7.      CONCLUSION           95 

REFERENCE LIST                        97 

            

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



xiii 

 

LIST OF FIGURES 

                 Page 

Figure 2.1: Damage to plantation by fire from 1980 - 2017         5 

Figure 2.2: Index of round wood production vs plantation area 1980 - 2017  7 

Figure 2.3:  Fire triangle               8 

Figure 2.4.    Section of undisturbed forest floor with carefully cleared outer     
perimeter                                  11 

Figure 2.5:  Categorised forest floor strata material assortments        12  

Figure 2.6.    Changes in ECEC and selected soil properties and nutrient levels 
overtime following different slash management practices  22            

Figure 3.1:  Site location map          30 

Figure 3.2:  Mean monthly rainfall over 3 years        31 

Figure 3.3:  Mean monthly temperatures over 3 years       31  

Figure 3.4:  Soil profile from Block 1 study site        32  

Figure 3.5: Soil profile from Block 2 study site        33  

Figure 3.6: Schematic demonstration of the two blocks showing disked    

  swathes within each replication, nested within one of two blocks   34  

Figure 3.7: Section of a single plot layout         35 

Figure 3.8:  Photograph of a single plot layout         36  

Figure 3.9:  Profile wall root study method        38  

Figure 3.10:  Infield litter collection technique using a custom built frame of 1x1m 39  

Figure 3.11:  Litter sample separated according to fuel time lag classes     40 

Figure 3.12: Soil sampling for bulk density at 10 - 20 cm depth       42 

Figure 5.1.    Fuel loading distribution for treatments of the 1 hour fuel class             
(branch fraction)                  45 

 

Stellenbosch University https://scholar.sun.ac.za



xiv 

 

Figure 5.2.    Fuel loading distribution for treatments of the 1 hour fuel class                
(bank and leaf fraction)              46 

Figure 5.3: Fuel loading distribution for treatments of the 10 hour fuel class  47 

Figure 5.4: Total forest floor mass distribution for treatments     48 

Figure 5.5:  Combined fuel loading per size class across treatments    49 

Figure 5.6:  Block 1 fuel loading per size class across treatments     50 

Figure 5.7:  Block 2 fuel loading per size class across treatments      50 

Figure 5.8:     Infield photos from Block 2         52 

Figure 5.9:  Topsoil exchangeable K values among treatments and blocks 54 

Figure 5.10: Topsoil exchangeable Ca values among treatments and blocks   55 

Figure 5.11: Topsoil exchangeable Mg values among treatments and blocks    56 

Figure 5.12: Topsoil exchangeable Na values among treatments and blocks  57 

Figure 5.13: Topsoil ECEC values among treatments for the two blocks     58 

Figure 5.14: Topsoil pH in KCI values among treatments and blocks     59 

Figure 5.15: Topsoil S-value mean values among treatments and blocks     60 

Figure 5.16: Topsoil base saturation values among treatments and blocks    61 

Figure 5.17:  Topsoil acid saturation values among treatments and blocks   62 

Figure 5.18:  Topsoil total N values among treatments for the two blocks     63 

Figure 5.19: Topsoil extractable P values among treatments and blocks    64 

Figure 5.20:   Topsoil total C values among treatments for the two blocks     65 

Figure 5.21: Soil bulk density response to treatment for the two blocks    67 

Figure 5.22:  Stand density for treatments        68 

Figure 5.23: Basal area for the two treatments        70 

Figure 5.24: Average volume per hectare for the two treatments      71 

Stellenbosch University https://scholar.sun.ac.za



xv 

 

Figure 5.25: Distribution of the above ground plant biomass       73 

Figure 5.26: Profile wall root mapping for Block 1        79  

Figure 5.27: Profile wall root mapping for Block 2       80 

Figure 5.28: Root distribution pattern for a tree with 10 cm diameter       81 

Figure 5.29: Root distribution pattern for a tree with 15 cm diameter     83 

Figure 5.30: Root distribution pattern for a tree with 20 cm diameter    84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



xvi 

 

LIST OF TABLES 

                  Page 

Table 2.1: Fuel time lag classes            9 

Table 2.2: Classification of the effectiveness of a prescribed burn     16 

Table 2.3: Soil nutrient response to bio charcoal application in different  
        soil types           20 
 

Table 2.4: Average oxidation inception temperature of nutrient element     24 

Table 2.5: Safe conditions for prescribed burn       26 

Table 5.1:  ANOVA results of the 1 hour fuel class (branch fraction)      44 

Table 5.2: ANOVA results of the 1 hour fuel class (bark and leaf fraction)  45  

Table 5.3: ANOVA results of the 10 hour fuel class       46 

Table 5.4: ANOVA results for the total forest floor mass       47  

Table 5.5: Forest floor material nutrient distribution        51 

Table 5.6: ANOVA results of topsoil exchangeable K quantity      53 

Table 5.7: ANOVA results of topsoil exchangeable Ca quantity      54 

Table 5.8: ANOVA results of topsoil exchangeable Mg quantity       55 

Table 5.9: ANOVA results of topsoil exchangeable Na quantity      56 

Table 5.10: Topsoil exchangeable cation content       57 

Table 5.11:  ANOVA results of topsoil ECEC         58 

Table 5.12:  ANOVA results of topsoil pH in KCI        59 

Table 5.13:  ANOVA results of topsoil S-value         60  

Table 5.14:  ANOVA results of topsoil base saturation       61  

Table 5.15:  ANOVA results of topsoil acid saturation               62  

Stellenbosch University https://scholar.sun.ac.za



xvii 

 

Table 5.16: ANOVA results of topsoil total N content       63 

Table 5.17: ANOVA results of topsoil extractable P Bray II content     64 

Table 5.18: ANOVA results of topsoil total C content       65 

Table 5.19: ANOVA results of soil bulk density        66 

Table 5.20: ANOVA results of stand density         67 

Table 5.21: ANOVA results of stand basal area       69 

Table 5.22: ANOVA results of stand volume productivity       70 

Table 5.23: ANOVA results of stand above ground plant biomass      72 

Table 5.24: ANOVA results of root count per 10 cm depth       75 

Table 5.25: Exponential models for root distribution patterns for 10 cm trees 81 

Table 5.26: Exponential models for root distribution patterns for 15 cm trees    82 

Table 5.27: Exponential models for root distribution patterns for 20 cm trees    83 

Table 5.28: Summary of exponential models for root distribution patterns    84  

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

1 

 

1. INTRODUCTION 

Potential benefits around the application of prescribed burning, as well as the negative 

effects of uncontrolled wildfires are well documented on the available literature with 

regard to plantation forests (Norris, 1993). These include reduction of surplus woody 

fuels and elimination of unwanted vegetation for improved site access, the negative 

effects being excessive soil erosion, nutrients depletion and increased soil water 

repellence.  

De Ronde et al. (2004) suggested numerous strategies and techniques to reduce forest 

fuel loading that would minimize the chances of uncontrolled wildfire damage. 

Placement of firebreaks on plantation boundaries had become a standard practice. This 

is done to counteract wildfires from adjacent properties spreading into the plantation or 

to contain fire within the plantation not to spread onto adjacent property. However, 

operations like thinning, pruning, and coppice reduction tend to increase the amount of 

available fuel within compartments. De Ronde (1982) proposed the practice of under 

canopy prescribed burning to be conducted in Pinus patula stands. The practice was 

reported to be effective in reducing fuel loading during the rotation. This was especially 

true with 1 hour and 10 hour fuel classes with minimal impact on soil, and with tree 

growth when a low to moderate burn is conducted (Gresse, 2016).  

Similarly under canopy prescribed burning practice is also implemented in Eucalyptus 

stands. According to Potgieter (2016), this operation requires thorough planning, must 

be conducted under ideal weather conditions, and only in stands above six years old. 

However, many Eucalyptus species are fire sensitive due to thin bark; under canopy 

burning in these stands may result in high tree motility. The applicability of under canopy 

burning in Eucalyptus stands is further limited by special fire ignition techniques and is a 

time consuming operation. There is limited research publication on the available 

literature regarding under canopy burning in Eucalyptus stands in South Africa. Hence 

the majority of literature presented in this paper is cited from under canopy prescribed 

burning practice conducted in Pinus patula stands. 

The implementation of repeated disc harrowing in Eucalyptus plantations of South Africa 

is practiced as an alternative to reduce stand fuel loading. The idea with this practice is 

to create a break in fuel horizontal continuity in order to reduce rate of spread of surface 

fires as well as to reduce fuel loading on the disc swathes, thus reducing fire intensity. 
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Fine and medium sized fuel classes are the main target fuels since these classes are 

more active in influencing fire behaviour. Altering the latter mentioned fuel characteristic 

presents an ideal situation to prevent wildfire occurrence as well as a great opportunity 

to safely control and suppress fire with much more ease if it does occur. Disc harrowing 

is done using an agricultural tractor pulling a disc harrow to break up and incorporate 

slash and forest floor material into the soil. This is commonly done in swathes between 

tree rows, after every seven rows of trees (Figures 3.6 - 3.8). This tillage operation is 

commonly done repeatedly throughout the stand rotation. It should be noted that the 

strategic placement of disked swathes may vary from site to site, depending on the 

degree of fire risk and vulnerability of the compartment. Nevertheless, the efficiency and 

effectiveness of this operation on fuel reduction as well as its impact on tree growth 

have not been examined and documented in the available literature; henceforth this 

study was conducted.  

Eucalyptus forest plantations in South Africa are commercially planted primarily for pulp 

and paper production, and various other products (Godsmark and Oberholzer, 2019). 

These stands are intensively managed; in addition, numerous research studies have 

been conducted to ensure holistic sustainable forest management practices, to improve 

wood quality, and to strengthen forest protection against external biotic and abiotic risk 

factors (du Toit et al., 2014). Over the past four decades uncontrolled wildfires have 

been reported to account for majority of damage to forest plantations of about 669 439 

hectares, (Godsmark and Oberholzer, 2019). Wildfires remain a major threat to the 

forestry industry, particularly with the increased rate of climate change and common 

episodic drought occurrence in South Africa (Strydom and Savage, 2016). 

Tillage at site preparation, middle rotation or throughout the rotation in Eucalyptus forest 

plantations is done to achieve various other objectives: to enhance soil properties such 

as soil structure and incorporation of organic material for improved fertility (Dedecek et 

al., 2007); to improve tree survival and growth (Mhando et al., 1993; Jones et al., 1999; 

Smith et al., 2001); and, to manage under canopy vegetation and fuel loading (Carneiro 

et al., 2007; Madera et al., 2012; Carneiro et al., 2009).        

Plant roots are responsible for colonising the site to absorb water and essential plant 

nutrients, enabling the plant to grow optimally and compete with its neighbouring 

vegetation. They penetrate the soil depth to anchor trees to the ground, preventing wind 
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throws at a later stage, thus improving tree growth and survival (Grant et al., 2012). This 

makes it particularly important to understand the implication of repeated disc harrowing 

on root growth in this study.  

Several studies reported in the literature may shed light on the effects of slash burning 

followed by repeated disc harrowing practices as it is currently practiced in 

Mpumalanga. These are slash burning studies, effects of bio charcoal application on 

soil, and soil tillage research trials; however, most of these treatments were 

implemented in isolation (du Toit, 2003; Gonçalves et al., 2004; Smith and Little, 2001). 

The proposed study is to evaluate the combined effects of the above-mentioned 

practices in Eucalyptus plantations in South Africa. The following effects will be 

investigated: the changes in forest fuel loading and forest floor structure, above ground 

tree growth, below ground growth (which is the root distribution patterns in soils), and 

soil nutrient status.   

1.1. Study Objectives and Key Questions 

The main goals the study aims to achieve are listed as points 1 - 4. The key questions 

that need to be answered to accomplish the main goals are listed under alphabetical 

letters: 

1. To examine the effectiveness of repeated disc harrowing throughout the stand 

rotation on forest fuel load reduction for wildfire management purposes.  

a. Is there a difference in fuel load following treatment? 

b. Which fuel classes underwent change following treatment? 

c. Are there any differences on the forest floor structure?   

2. To investigate the effect of harvest slash residue burning incorporated with disc 

harrowing on total nitrogen, available phosphorus, soil organic carbon, base 

cation content and ECEC. 

a. Are there any changes to the forest floor and soil profile structure due to 

treatment? 
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b. Did any of the forest floor, topsoil or subsoil horizons show evidence of 

change in total N, extractable P, total organic C, exchangeable base cation 

quantity and ECEC? 

3. To determine the potential impact of slash burning during site preparation 

incorporated with repeated disc harrowing throughout the rotation on Eucalyptus 

grandis x nitens stand growth.  

a. Did treatment implementation affect stand density? 

b. Could differences in mean tree or stand level variables be detected among 

treatments? 

4. To investigate whether prescribed slash burning incorporated with repeated disc 

harrowing has any effect on root distribution patterns of Eucalyptus grandis x 

nitens. 

a. Did any of the soil horizons show evidence of change in the abundance of 

coarse, medium and fine root size class distribution patterns?  

1.2. Relevance of Study  

The results from this study will aid forest managers as a decision supporting tool to 

select the most appropriate harvest slash residue management practice, and evaluate 

the effectiveness of using repeated disc harrowing to manage forest fuel loading during 

the rotation of Eucalyptus grandis x nitens stand. It will also give a viable indication of 

long term soil nutrient sustainability, soil fertility as well as tree growth, and stand 

productivity when these management practices are implemented.   
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2. LITERATURE REVIEW  

2.1. Introduction  

Plantation forestry in South Africa is the business of growing trees by making use of 

various production factors, which include land as the actual planting site. Given the fact 

that plantation forestry is practiced using natural resources, the South African forestry 

industry adopted the ‘triple bottom line’ sustainable forest management practices, which 

require growers to belong to a certification body and conform to specified standards of 

practices that promote social, economic and environmental sustainability (Brink, 2012).  

Plantation forestry is practiced in an open environment which increases risks and 

vulnerability to external factors. Amongst the vast variety, impact of uncontrolled 

wildfires has been reported as the major threat (Forsyth, Kruger, & Le Maitre, 2010). 

Godsmark and Oberholzer (2019), reported that in South Africa from 1980 - 2017, an 

area of 1 143 116 hectares suffered some damage from biotic and abiotic external 

factors; wildfires alone accounted for the highest proportion of about 669 439 hectares 

(59%), and the remaining 473 677 hectares (41%) shared amongst other abiotic and 

biotic factors (Figure 2.1).  

 

Figure 2.1: Damage to plantation by fire from 1980 - 2017 (Godsmark and Oberholzer,  

2019) 
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Unmanaged forest fuel loading has been identified as one of the chief contributing 

factors to the occurrence, spread and intense damage caused by wildfires. In an attempt 

to reduce the incidence of uncontrolled fire, Gorte (2010) mentioned numerous 

alternative strategies that may be implemented as a means for effectively reducing 

forest fuel loading to minimal levels. This includes changing characteristics of existing 

fuel, partial removal of fuel, and partial combustion.    

It is critical for fire managers to identify all operations that contribute to an increase in 

forest fuel loading, such as harvesting, pruning, thinning, coppice reduction and weed 

control (slashing understory vegetation such as Solanum mauritianum), as well as 

herbicide application operations (de Ronde et al., 2004). Such operations tend to 

influence the fuel characteristics, resulting in an increase in fuel availability and fuel 

loading. This necessitates holistic planning of all of operations and the implementation 

of an integrated management plan to counteract the levels of fuel loading; this will 

consistently keep risk of uncontrolled fires at minimum levels.  

This chapter presents various findings from the available published literature regarding 

the implementation of numerous fuel loading management methods and their impact on 

site long-term productivity. This chapter specifically focuses on fire and fuel 

management practices, application of soil tillage, bio charcoal application and slash 

management in commercial forestry plantation in relation to fuel loading, impact on soil 

fertility and tree growth in Eucalypt stands. Research publications regarding under 

canopy burning in Eucalyptus stands is limited in the literature. Thus, the majority of 

literature presented in this chapter is cited from under canopy prescribed burning 

practice conducted in Pinus patula stands. 

The South African forest industry is faced with a huge challenge of an increased 

demand for timber while land suitable for planting is continuously decreasing. The 

decrease is due to land claims amounting to about 40% of privately owned plantations, 

70% of the state-owned plantation land, and strict environmental policies on water 

licensing and wetland restrictions (Chirwa, 2015). In order to keep up with the ever 

increasing timber demand, growers plant fast growing species that will grow to maturity 

and be ready for market within a short rotation; this has resulted in an increased interest 

in farming with Eucalyptus species. Godsmark and Oberholzer (2019) noticed a trend 
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from 1980 to 2017 of an increasing plantation productivity while plantation area 

continued to decrease (Figure 2.2).  

 

Figure 2.2: Index of round wood production vs plantation area from 1980 to 2017 

 (Godsmark and Oberholzer, 2019) 

Eucalyptus species are known for rapid growth with rotations between 8 to 15 years and 

relatively less intensive management requirements in comparison to Pinus species; 

however, its down side is a relatively high nutrient demand and potentially negative 

impact on the soil structural properties between the short successive rotations (Jones et 

al., 1999). It is particularly imperative to consider the fact that plant growth is highly 

dependent on site conditions; however, silviculturists can manipulate site conditions 

through a variety of practices that can influence plant growth. For example, fertilizer 

application at planting and at mid-rotation can counteract nutrients lost through 

harvesting and harvest residue slash burning, while soil tillage can be used as a remedy 

for damaged soil structure to maintain the site in more sustainable and productive 

condition. 

To a large extent, current forest management practices influence soil nutrient dynamics 

and hence, site productivity and sustainability. Du Toit (2003), noted that certain 

management practices might result in a decline in nutrient pools (burning and 

harvesting), while the others may have a positive input on the nutrient fluxes 

(fertilization). For this reason it is critical to monitor stocks of Nitrogen, Phosphorus and 

Carbon and the base cations essential for plant growth and survival.  
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Implementation of disc harrowing during site preparation and at mid-rotation is practiced 

in South Africa for both silvicultural purposes and fire management. Madeira (2012) 

states that findings from his experiments yielded positive results, such as improved soil 

friability, aeration and incorporate residues into the soil possibly improving tree growth. 

Karer et al. (2013) also mentioned bio charcoal application as an efficient soil 

rehabilitation remedy for both physical and chemical properties. In the context of this 

study, the term bio charcoal is used to refer to the remaining charred material from 

harvesting resides after slash burning.   

2.2. Forest Fuel and Fire Management Strategies 

Occurrences of uncontrolled wildfires that destroy plantation forests and natural 

ecosystems are among the biggest threat commercial plantation forests are vulnerable 

to. To manage wildfires (de Ronde, 2004), various strategies and techniques have been 

investigated and implemented for both small and large scale practices; this is termed 

integrated fire management. The principles of fire management are mainly based on 

three components: prevention, protection and suppression. This chapter presents 

research findings with specific focus on the “protection” component.  

Research findings presented by various scientists suggest that in order for a wildfire to 

exist, it requires three of the fundamental environmental components: heat, oxygen and 

fuel. These are commonly referred to as the fire triangle (Trollope, de Ronde & 

Geldenhuys, 2004) presented in Figure 2.3. Fuel remains the only aspect that fire 

managers can potentially manipulate as an attempt to manage wildfire related risks.  

 

Figure 2.3: Fire triangle (NOVA SCOTIA, 2013)  
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Forest fuels strongly impact fire behaviour: ignition, intensity, the rate of spread, and 

flame height (Teie, 2009). The extent to which the fuels will influence the fire behaviour 

is related to the generic fuel characteristics of shape and size, compactness, fuel 

loading, horizontal continuity, and vertical arrangement (fuel ladder). However, fire 

behaviour is not entirely dependent on fuels, but is also influenced by weather and 

topography as well (Bradstock et al., 2012).    

Shape and size: The time it will take for fuels to ignite when presented to a heat source 

is mainly determined by its form and dimension. Woody fuel material of large 

dimensions with a rough surface requires more heat and takes more time to ignite, as 

opposed to fine fuels of smaller diminutions. Fuel shape and size also determines the 

amount of time it will take the material to either gain or lose moisture to be in equilibrium 

with ambient atmosphere (Wade & Lunsford, 1989). Fuel shape and size also influence 

the amount of heat required for ignition as well as the duration of the exposure, thus 

influencing fire intensity. The small fine woody fuel lose or gain moisture rapidly in 

comparison to thick heavy fuel which requires lengthy periods of exposure and a high 

amount of heat. Hence fine and coarse fuels classes highly impact fire rate of spread. 

Schlobohm & Brain (2002) better explains the impact of fuel size and shape on fire 

behaviour and moisture content using fuel time lag classes presented in Table 2.1. 

Hollis et al. (2016)  states that 1 hour and 10 hour fuel class make up the largest 

proportion of the available fuels and are the most active fuel classes influencing fire 

behaviour in Eucalypt forest fires. 

Table 2.1: Fuel time lag classes (Schlobohm & Brain, 2002)  

Time lag  Fuel diameter  Description  

1 hour  < 0.6 cm Fine fuels moisture content fluctuate rapidly in response to 
weather conditions. Temperature, humidity and cloudiness.  

10 hour 0.6 - 2.5 cm Monitored from observation time temperature, humidity, 
and cloudiness. Also by using fuel sticks that are weighed 
for fire weather observation.  

100 hour 2.5 - 7.6 cm  Observed from 24 hours average conditions. Day length, 
hours of rain, daily temperature, and humidity ranges.   

1000 hour 7.6 - 20.3 cm Observed over 7 days average conditions. Day length, 
hours of rain, daily temperature, and humidity ranges.   
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Compactness: Woody fuel material that is tightly arranged does not ignite and burn 

easily when presented to heat because compactness eliminates oxygen, the third 

component of the fire triangle. Conversely, loosely arranged fuel material provides 

access for oxygen to circulate freely, resulting in ease of fuel ignition and increased fire 

rate of spread (Wade & Lunsford, 1989).  

Fuel Loading: The amount of available fuels in an area (t ha-1) significantly influences 

the intensity of the fire. Fire intensity takes into account the amount of heat released by 

the fire over a given area within a duration of time (Teie, 2009). High accumulation of 

available fuels in an area results in highly intense fires with great damage to the 

environment. Fire intensity is linked to fire rate of spread. The more material available to 

burn, the longer the fire will take to consume woody fuels; thus high fuel loading 

produces a fire with enormous heat energy released in one area over a relatively 

lengthy period of time (Wu, He, Liu, & Liang, 2013).  

Horizontal Continuity and Vertical Arrangement: Fire moving laterally on the land 

surface is entirely dependent on the horizontal continuity of the available fuels. Similarly, 

the vertical arrangement of fuel may cause a surface fire to develop into a crown fire 

(Fernandes et al., 2011). Horizontal continuity and vertical arrangement directly affect 

the fire rate of spread. Fire burning in sparse, patchy fuels will move much slower than 

when burning in an area with continuous dense available fuel on a horizontal plane. Also 

the presence of dry fuel ladder increases danger for surface fires becoming crown fires.  

2.2.1. Structure of the forest floor fuel strata         

Fuels in various ecosystems are broadly categorised into ground fuels, surface fuels, 

and aerial fuels. Ground fuels are all buried dead logs and root material, surface fuels 

are those fuels laying on top of the soil surface includes all dead and live material up to 

2 m above the soil. Fuels above 2 m height are classified as aerial fuels (Teie, 2009). 

Surface fuels, both live material with diameter of <2.5 cm and dead material contributes 

significantly to the damage caused by wildfires and greatly impacts the fire behaviour 

(Fernandes et al., 2011). 
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Figure 2.4: Section of undisturbed forest floor with carefully cleared outer perimeter  

The nature of this study necessitates a thorough understanding of the forest floor 

structure, functions and its generic characteristics concerning fire behaviour. Forest floor 

refers to all the dying, dead, and partially decomposed accumulation of flora and fauna 

organic material on top of the mineral soil in a forest ecosystem (Ross & du Toit, 2004). 

Figure 2.4 presents a typical forest floor structure that can be expected in an intensively 

managed and mature Eucalypt stand. The horizontal continuity, mass, and bed depth of 

the forest floor are dependent on decomposition and litter deposition rates. Morris 

(1995) reported that there is a correlation between site type and forest floor 

accumulation, and sites at high altitude were observed to have a relatively high forest 

floor mass. However, litter accumulation can also be influenced by silviculture activities, 

fires and the abundance of animal life in a particular ecosystem (Nadel, Scholes, & 

Byrne, 2007).  

The forest floor plays significant roles in the forest ecosystem such as regulating water 

infiltration, thereby preventing excessive run off and erosion. The forest floor (Fisher & 

Binkley, 2000) was reported to be one of the major nutrient pools in a forest ecosystem. 

Du Toit (2006) presented strong evidence that manipulation of forest floor material has 

implications on the sites’ long-term productivity in Eucalypt forest plantation systems. 

The forest floor also serves as an insulation mechanism with a direct impact on the soil 

microclimate and temperature, moister, and oxygen during adverse weather conditions.            
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Figure 2.5: Categorised forest floor strata material assortments  

Several layers in the forest floor strata exist, namely, the litter (L), fermented (F), and 

humus (H) layer on top of the mineral soil (MS) layer (Ross & du Toit, 2004). Figure 2.5 

shows the aforementioned forest floor layers in a managed Eucalyptus plantation forest 

system. The material is labelled L - MS depicting the manner in which it would appear 

when observed on a transversal view from a horizontal direction.  

The L layer is the first stratum consisting mainly of fresh dead bark, branch, and foliage 

material (Figure 2.5). This stratum constitutes significant amounts of available fuels and 

carries the majority of fire hazard because it is mostly concentrated with 1 and 10 hour 

fuel class characteristic of high fire receptiveness (De Ronde, 1990). The F layer is the 

second stratum comprised of partially decomposed material with its form still in a 

recognisable state; here fungi and bacteria exist. This stratum is between L and H in 

Figure 2.5 when observed in a cross section in a horizontal direction, even though it was 

challenging to demarcate it in this photograph. The H layer is where the decomposition 

process is in its peak; here the form of organic material is no longer recognisable 

(Figure 2.5). Lastly in Figure 2.5, the MS is the final stratum of the forest floor. A dark 

colouring appears in the interface between the mineral soil and humus layer. This is 

totally decomposed organic material mixed with the mineral soil and is an indication of 

carbon rich soil and various other nutrients elements. The layers L, F, and H account for 

the largest quantity of nutrient elements locked in the forest floor (Fisher & Binkley, 

2000). These layers greatly influence the behaviour of surface fires. The L layer mostly 
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impacts the ignition process, flame length, and the fire rated of spread, depending on 

the type of fuel class present on site. Conversely, the humus layer impacts the intensity 

of the fire as well as the degree of damage to the mineral soil (De Ronde, 1990). The 

humus layer consists of fine material that is characteristic of high fuel compactness. The 

amount of oxygen present in this layer allows for smouldering. Smouldering occurs at a 

much slower rate over a lengthy duration period, resulting in high fire intensity and soil 

damage.           

2.2.2. Fuel load management techniques  

A thorough knowledge of the aforementioned forest fuel characteristics, fire behaviour 

patterns and forest floor structure enables fire managers to understand the effectiveness 

of the particular fuel management technique in reducing the risk of wildfire damage. 

Rummer (2010) states that certain techniques completely remove or consume burnable 

material from site, thereby eliminating wildfire occurrence. The other methods, however, 

only alter important fuel characteristics, thus inhibiting and retarding erratic fire 

behaviour.  

Partial Fuel Removing: Operations such as target grazing and browsing, chipping for 

bio energy, and firewood collection can be implemented to partially remove excess 

organic material that later becomes a fire hazard in forest ecosystems. Prescribed live 

stock is a strategically planned grazing or browsing operation in predetermined areas to 

accomplish fuel loading and fire hazard reduction (Browsing Academy, 1999; Lovreglio 

et al., 2014; Strand et al., 2014). According to the Browsing Academy (1999), prescribed 

livestock grazing can be implemented to create and maintain green/live fire breaks and 

to manage understory vegetation. Nader et al. (2007), states that prescribed herbivory 

reduce fire hazards by altering the following fuel characteristics: fuel bed depth, fuel 

loading, horizontal continuity, and vertical arraignment (ladder fuels). Target grazing and 

browsing effectiveness is only limited to fine 1 hour and 10 hour fuel classes (Strand et 

al., 2014). Livestock impact fuels either by ingestion: feeding on grass (fire breaks and 

buffer zones in grassland vegetation) and on understory vegetation (weeds, shrubs, 

twigs and branches); or physically: trampling over the forest floor fuel bed, rubbing 

posts, and “pruning” (breaking lower branches) (Lovreglio et al., 2014).  

Nader et al. (2007) reported that prescribed herbivory (goats grazing on California 

Mountainous Pine and Eucalyptus forests) application over a period of three years 
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resulted in reduction of vegetation cover ranging from 20 to 80%, a decline in understory 

vegetation of about 46% and 82% at a height of 50.8 cm and 1.5 m respectively, and a 

decrease of litter bed depth from 7.4 cm to 5.1 cm. 

Altering Fuel Characteristics: One technique for managing fuel is to retain organic 

material on site while altering fuel traits that exacerbate erratic fire behaviour. This 

practice can be done using mechanical fuel load management techniques such as 

chopper rolling, mulching and disc harrowing. Graham et al. (2004) mentioned that 

chipping and mulching operations are effective in reducing fuels into fine compact 

material that becomes difficult to ignite and characteristic of a very slow rate of fire 

spread, making fire easy and safe to control and suppress. However, these operations 

do not reduce fuel loading. Mulching is efficient for fire risk reduction, but mulch layer 

prevents water infiltration and sun penetration; thus decomposition is hindered, resulting 

in microbial organisms consuming the available nitrogen required for plant growth 

(Rummer, 2010). Ryan et al. (2011), sustains the effectiveness of mulching in wildfire 

risk reduction, especially when implemented as a follow-up operation after pruning and 

thinning operations. Contrary to Rummer (2010) findings, Ryan et al. (2011), in this trail 

reported no impact in the soil microclimate and nitrogen following the treatment. This is 

due to a shallow fuel bed depth of the mulch material and the sparse broadcast 

distribution of the material from the mastication head of the machine.  

Jones et al. (1999) mentioned disc harrowing as an effective alternative in fuel loading 

reduction through incorporation of organic material into the soil. This practice 

significantly and effectively addressed both fuel loading reduction and horizontal 

continuity with improved decomposition. Madeira et al. (2012) affirms that disc 

harrowing was effective on fuel loading reduction when implemented at mid-rotation of 

Eucalyptus grandis stand for fire risk reduction. Ximenes et al. (2017) and Hugget et al. 

(2008) state that there is an increasing demand for alternative efficient fuel load 

reduction methods to substitute the application of controlled burning. This is primarily 

due to climate change presenting a limited window of ideal weather conditions for 

burning, the urban and forest interface raising social and health issues (concern over 

smoke pollution), and increased record of runaway fires from controlled burn. Campbell 

& Ager (2013), also add the question of carbon stocks to the list. Furthermore, 

Fernández et al. (2013) substantiates that mechanical fuel load reduction is an efficient 
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alternative when managing wildfire risk in a landscape with vegetation that is highly 

sensitive to fires.   

Prescribed Burning: Partial combustion of fuels through prescribed burning practice 

has historically been conducted to accomplish fuel load reduction in one of several 

burning techniques: burning open areas, block burning, slash burn, under canopy burn, 

and firebreaks (de Ronde, 1982; de Ronde et al., 2004; Bradstock et al., 2012; 

Fernández et al., 2013; Campbell & Ager, 2013; Wu et al., 2013; Bird & Scholes, 2005). 

Fire intensity in this regard becomes of critical importance as it greatly impacts both the 

soil’s physical and chemical properties, as well as tree survival after fire. 

De Ronde (1990), reported that various fire intensities will alter the forest floor structure 

differently: with reference to Figures 2.4 and 2.5, fires with high intensity consume all of 

the forest floor material down to mineral soil (MS), as opposed to medium intensity fires 

that consume only the litter layer (L) and a small portion of the humus layer (H). On the 

contrary, low intensity fires are only limited to the litter layer (L). Prescribed burning is 

careful implementation of a pre-planned fire under ideal weather conditions to achieve a 

low to medium fire intensity that will consume all the excess woody fuels on the forest 

floor, but leave the humus layer protecting the mineral soil from the burn (Goldammer 

and de Ronde, 2004). Table 2.2 presents guidelines to evaluate and categorise the 

effectiveness of a prescribed burn when implemented on fuels of various vegetation 

types (Fernandes & Botelho, 2003).   

This technique addresses the majority of the fuel characteristics that may result in 

erratic fire behaviour and intense damage. This has been reported as one of the most 

effective methods to reduce fuel loading. Graham et al. (2004), mentions reduction of 

both fine and coarse fuel classes, duff layer, horizontal and vertical continuity, and 

increase fuel compactness, thereby inhibiting fire ignition and rate of spread. Hollis et al 

(2016), states that a proper prescribed burn consumes an average of 31% of the forest 

floor as opposed to wildfire consuming an average of 51%. Bird & Scholes (2005), in 

support of Hollis et al. (2016), also reported 15, 30 and 60% fuel consumption from a 

low, medium and high fire intensity burns respectively. This was an under canopy 

prescribed burn on a Pinus patula stand, and fuel load results were: 16.7, 14.8, 12.0, 

and 14.0 t ha-1 for control treatment, low, medium and high fire intensity.  
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Table 2.2: Classification of the effectiveness of a prescribed burn (Fernandes & Botelho, 
2003)  

Effectiveness class  Reduction (%) 

 Litter  Slash  Shrub  

Very good  >50 >75 >75 

Good 25 - 50 >75 25 – 75 

Fair  <25 25 - 75 <25 

Poor  Unburned  <25 Unburned  

 

De Ronde (2012) also highlight the importance of incorporating fuel loading when 

compiling a fire management plan by performing fuel appraisal and fire hazard mapping 

of the area based on fuel availability, as well as identifying buffer zones.       

Systematic planning should be done in order to consider the following operations that 

will take place. Factors like machine access to sites, soil sensitivity, negative 

environmental site impacts, the types of fuels to manage, and cost of operations should 

be considered before deciding on a specific fuel management strategy.  

2.3. The Effect of Bio Charcoal on Soil Nutrients and Tree Growth 

When fire occurs on the forest floor, it combusts, and to a certain degree, consumes the 

existing fuel, depending on the intensity of the fire (determined by fuel characteristics, 

weather and topography), leaving white ash bed layer and some charred partially 

combusted material (Pietikainen, Kiikkila, & Fritze, 2016). They further explain that fire 

burning with high intensity will consume all the organic matter in fuels and leave only the 

inorganic compounds in a form of white ash. This is in contrast to cool burns with low to 

moderate intensity, resulting into partially burnt material with a charring characteristic of 

black carbon or bio charcoal. This is the case with the common practice of prescribed 

fires for harvest residue slash burning during site preparation and under canopy burning 

for fuel load reduction.  

Bio charcoal has become of interest over the past decades as it has been observed to 

potentially alter soil properties, resulting in positive benefits for plant growth and yield 

(Karer, 2013). Bio charcoal is formed when organic material is incompletely combusted 
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during a natural fire or fire conducted under controlled pyrolysis conditions (DeLuca et 

al., 2006). Wróbel-Tobiszewska (2014) points out that it is of paramount importance to 

note that bio charcoal should be distinguished from mining coal used as heat generating 

fuel. To be clear, bio charcoal refers to charred material from organic biomass that is 

deliberately applied into the soil with the sole purpose of improving soil properties and 

bringing about ideal plant growing conditions.  

Bio charcoal in the soil has been observed to influence soil moisture, soil nutrient 

reactivity and availability to various degrees pending on the soil type as its effects are 

site-specific (Kolb, Fermanich, & Dornbush, 2009). Table 2.3 illustrates responses of 

different soils to biomass application. In support of bio charcoal influence on soil, Drake   

et al. (2015)  also points out positive benefits of bio charcoal, which are: improved soil 

physical properties; induces a slow release of phosphorus and nitrogen, thereby 

increasing soil nutrient availability; an increase in carbon stock; and an increase 

microorganism biomass in the soil. 

2.3.1. Description of bio charcoal physical and chemical properties  

According to Wróbel-Tobiszewska (2014), the physical and chemical properties of bio 

charcoal vary considerably and are highly dependent on biomass type and pyrolysis 

conditions. Bio charcoal characteristics are determined by temperature, resident time, 

and amount of available oxygen during pyrolysis of material. The type of feedstock used 

to produce bio charcoal will influence to a greater extent the characteristics of bio 

charcoal produced. Typical biomass material used includes animal waste (poultry litter 

and cow manure), municipal waste (sewage sludge and domestic biodegradable 

products), and agriculture and wood residues (straws, thinning and harvesting residues, 

and macadamia shells) Wróbel-Tobiszewska (2014).  

Bio charcoal has been reported and recommended as an effective tool that has been 

used over many decades for soil rehabilitation remedy, fertilization and growth stimulus 

in forestry nurseries (Wrobel-Tobiszewska et al., 2012; Águas et al., 2018 & Carter et 

al., 2018). The fundamental characteristics that make its use a success in all these 

aspects include prolonged chemically active resident time in the soil, its physical form 

(micro pores and a relatively large surface area), and most importantly, its negatively 

charged surface area, making it to be highly adsorptive (Carter et al., 2018).  
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2.3.2. Alteration on soil physical properties 

Incorporation of bio charcoal into the soil remarkably modifies moisture content, soil 

water retention capacity, and soil bulk density as far as the physical properties are 

concerned. In a study conducted by Karer (2013) bio charcoal was applied at various 

rates. At an application rate of 72 t ha-1 on contrasting sites with different soil types, 

water holding capacity increased by 57.8% for cambisol and 49.4% for chernozem; 

while the plant available water increased by 20.1% for cambisol and 26.4% for 

chernozem.  

According to FAO (1988), chernozem are soils characteristic of a mollic A horizon with a 

moist chroma of 2 or less to a depth of <15 cm; calcic or petrocalcic horizon or 

concentrations of soft powdery lime within 125 cm of the surface. Cambisols are soils 

that have a cambic B horizon and no diagnostic horizon other than an ochric or an 

umbric A horizon or mollic A horizon overlying a cambic B horizon (FAO, 1988). In the 

South African soil classification system context chernozems and cambisols soils are 

equivalent to melanic and cumulic soil groups (Fey, 2010).  

Similar findings were produced by (Rhoades et al., 2017) in a study using bio charcoal 

and mulched residue material for soil amendment, where volumetric water content 

increased by 1.4% and 1.5% respectively for the treatments, in comparison to the 

control treatment. This effect is associated with the bio charcoal structural composition 

of having relatively high amounts of micro pores that trap and retain water, making it 

available to plants for a relatively lengthy period of time.   

2.3.3. Alteration on soil chemical properties  

The application of bio charcoal in the soil has been observed to alter the most important 

soil chemical properties, both directly and indirectly. Soil chemical properties by bio 

charcoal can be amended directly through sorption of essential elements, preventing 

them from leaching and thereby improving nutrient status of the soil. Indirectly, bio 

charcoal may bring about ideal conditions for microbiological organisms dwelling in the 

soil that contribute significantly in various soil microbial activities which include 

nitrification (Kolb et al., 2009). The act of bio charcoal adsorbing organic compounds to 

its surface was perceived to increase microorganism biomass and respiration in the soil, 

which suggests that the microbial activities associated with these microorganism will 
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increase as well, thus enhancing fertility and nutrition of the particular soil (Pietikainen et 

al., 2016). 

Bio charcoal has been observed to have a liming effect: it tends to raise soil pH after 

being applied, due to its high adsorption ability attracting significant amounts of cations. 

In support of this rationale, Rhoades et al. (2017), also mentions that the structural 

features of bio charcoal, like its large negatively charged surface area which enable it to 

attract and keep nutrient elements on its surface, thereby increasing soil pH and 

enhancing nutrient status of the soil in question. Micropores of bio charcoal are essential 

for trapping and storing water for lengthy periods of time, making it available for plants 

and also preventing excessive leaching of the essential nutrient elements required by 

plants for growth. 

 DeLuca et al. (2009), in favour of the above-mentioned statements regarding high 

adsorption potential of bio charcoal, points out that it adsorbs a significant amount of 

organic compounds into its surface; and based on this feature, it is also used for water 

purification purposes.  

Rhoades et al. (2017) reported changes in total soil carbon and nitrogen, and pH when 

bio charcoal was applied in combination with wood mulch in comparison with control 

untreated soil. The amount of total C and N (g kg-1), and pH on the control sites was 

17.4, 0.8, and 5.3 respectively, in contrast to 24.5, 1.0 and 5.7 at the treated sites. 

On the other hand, DeLuca et al. (2009) confirmed that bio charcoal influences 

processes that alter soil chemical properties. From experimenting with incubated soil 

samples under controlled laboratory conditions, were bio charcoal from naturally 

occurred fire was applied on the soil samples and then the rate of nitrification was 

studied by measuring the amount of nitrate in the soil. The results indicated that addition 

of bio charcoal increased the rate of nitrification in contrast to control treatments where 

bio charcoal was not applied.  

However, since the incubated soils were sampled from sites with different time period 

since the previous fire event, it was noted that the most recently burned site of 4 years 

did not show any statistically significant variation, and sites of 26, 47, 89 and 94 years 

demonstrated the greatest increase on the rate of nitrification.  
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The research publications on the available literature has produced positive findings 

regarding the application of bio charcoal or residual bio charcoal from naturally occurring 

wildfire. In relation to a positive effect on soil chemical properties and chemical 

processes, Carter et al. (2018) recently reported an increase in microbial activities after 

bio charcoal application. It is suggested that this is associated with the bio charcoal’s 

ability to increase soil pH to levels closer to ideal conditions for microorganisms thriving 

in the soil. During its long resident life in the soil, bio charcoal actively adsorbs all the 

phytotoxic elements that might interfere with the microbial activities, this increases the 

rates of mineralization and nitrification in the soil.     

 Table 2.3: Soil nutrient response to bio charcoal application in different soil types  

Nutrient element  

and analysis 

Effect  Comment  Soil Type  Source  

Colwell P (mg kg-1) 45.6 - 58.7 Increase  Podzol  Drake et al. (2015) 

Nitrate N (mg kg-1) 61.0 - 63.6 Increase Podzol Drake et al. (2015) 

Ammonium N (mg kg-1 ) 47.6 - 58.4 Increase Podzol Drake et al. (2015) 

Total C (%) 4.1 - 4.2 Increase Podzol Drake et al. (2015) 

Total N (%) 0.3 - 0.3 Increase Podzol Drake et al. (2015) 

Total C (%) 7.8 - 7.9 Increase Podzol Rovira et al. (2009) 

Total N (%) 4.0 - 4.2  Increase Podzol Rovira et al. (2009) 

CAL P (mg kg-1) 70.3 - 77  Increase  Cambisol Karer et al. (2013) 

CAL P (mg kg-1) 55 - 61 Increase  Chernozem Karer et al. (2013) 

Ammonium N (mg N kg-1) 1.6 - 1.2 Decreas
e  

Alfisol Rhoades et al. 
(2017)  

Nitrate N (mg N kg-1) 0.4 - 0.5 Increase  Alfisol Rhoades et al. 
(2017) 

Total N  (g N kg-1) 0.8 - 0.7 Decrease  Alfisol Rhoades et al. 
(2017) 

Total C  (g N kg-1) 17.4 - 19.3 Increase  Alfisol Rhoades et al. 
(2017) 
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2.4. Pros and Cons of Burning or Retaining Harvest Residue and Its Impact  

on Fuel Loading  

Site preparation prior to re-establishment is one of the most critical practices that 

ensures a high initial survival and growth of a newly planted stand. Activities that are 

encompassed in this operation greatly impact long-term site productivity and nutrient 

status as it involves manipulation of harvesting residues and forest floor litter layer in 

varying management approaches. While striving for sustainable forest management 

practices, it is imperative to note that harvest slash residues contribute a significant 

amount of nutrients into the soil and hence soil fertility (Rocha et al., 2016). However, 

harvest slash residues also considerably contribute to forest fuel loading and risk of 

uncontrolled wildfire damage.  

To minimise the impact on soil, various alternatives for managing harvest residue from 

the previous rotation have been studied in order to select the most suitable and 

appropriate method for the specific site in question (du Toit & Scholes, 2002; Nzila, 

Bouillet, Laclau, & Ranger, 2002; du Toit, 2003; de Ronde et al., 2004; and Corbeels et 

al., 2005).  

Harvest slash residues can be managed by: spreading and retaining the material on the 

forest floor; by broadcast and burn; by burning in slash piles; or through complete 

removal of material for firewood collection or bio energy (du Toit, 2003). Fires and 

harvest slash residue management methods have a significant impact on the sites’ long-

term productivity (du Toit and Scholes, 2002). The available slash management options 

will influence soil nutrients dynamics to various magnitudes. Figure 2.6 presents findings 

reported by du Toit et al. (2008) on the top soil (0 - 10 cm) nutrient changes over time 

following different slash management treatments in a Eucalyptus stand. Treatment 

were: all harvest residue removed (BL0), harvest residue broadcasted and retained on 

site (BL2), harvest residue from BL0 added onto this site (BL3), and slash burn with 

medium fire intensity (SB). 
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Figure 2.6: Changes in ECEC and selected soil properties and nutrient levels over time 

following different slash management practices (du Toit et al., 2008).  
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2.4.1. Retention of harvest slash residue  

From the stand’s establishment until rotation end, trees depend on the soil for growth 

essential nutrient elements and take them up in large quantities. In the long-term, site 

fertility diminishes, leading to poor and less productive sites after numerous successive 

rotations (Mendham et al., 2003). Foliage, bark, and branches were observed to have a 

high quantity of nutrients. Hence, harvesting only the bole and retaining harvest slash 

residues on site may reduce the impact and sustain soil fertility or even potentially 

improve the soil nutrient status (Corbeels et al., 2005). Numerous research publications 

point out that the bark, branches and foliage contain relatively large amount of the 

essential nutrients N, P, K, Ca and Mg. In a study of short rotation eucalypt stands in the 

KwaZulu Natal Midlands, these pools amounted to 68, 54, 70, 80 and 82% in relation to 

the above ground biomass, and, therefore this suggests that slash retention be 

considered (du Toit, 2003).  

However, from a management perspective, harvest slash retention also presents some 

challenges concerning access during pitting and actual planting, creating a potential 

breeding ground for pests and pathogens, and more especially, a huge fire hazard. 

During the early stages of development, small seedlings are vulnerable and at high risk 

of motility. According to Mendham et al. (2003) slash retention further exacerbates 

growth suppression of small seedlings and saplings.   

2.4.2. Harvest slash residue burning  

Burning harvest slash residue is an available alternative to managing for slash during 

site preparation, which can significantly reduce fire hazard and risk of uncontrolled 

wildfires. This practice can minimise damage if fire does occurs. However, this practice 

has been looked upon with disfavour from a sustainability view point in that numerous 

scientific research studies have reported a negative impact on soil nutrient status 

following the implementation of this practice (Fernández et al., 2009)  and (Gonçalves et 

al., 2007) . 

Fire burning on a landscape, ignites and burns woody plant material that it comes into 

contact with; however, the extent to which woody fuels are combusted depends on the 

intensity of the fire which is influenced by fuel characteristics and other environmental 

factors (Pietikainen et al., 2016). Uncontrolled and unplanned fires are predominantly 

characteristic of high intensity, thereby resulting in substantial negative environmental 
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implications like total vegetation cover removal, excessive erosion, damage to soil 

physical properties and immediate nutrient losses through volatilisation and oxidation as 

well as post-fire nutrient losses by excessive leaching (Rhoades, 2017). 

For the purpose of soil nutrient sustainability and the application of prescribed fires, it 

becomes essential to understand the average oxidation inception temperature (Table 

2.4) of the individual nutrient element. This could be linked to the most suitable fire 

intensity at which the intended burn should be aimed to minimize soil nutrient depletion. 

Low intensity surface fires commonly burn at temperatures not exceeding 600 ˚C, which 

means that oxidation losses of N does occur but most of the P, and base cations are not 

oxidised.    

Table 2.4: Average oxidation inception temperature of nutrient elements 

Nutrient element  Oxidation temperature Source  

N 200 °C White & Thompson et al. (1973) 

P 774 °C Raison et at. (1985) 

K 774 °C Raison et at. (1985) 

Mg 1107 °C De Bano (1991) 

Ca 1484 °C Raison et at. (1985) 

Organic material  Threshold temperature   Source 

Organic matter 100 °C Hosking (1938) 

 

Prescribed fires which are characteristic of low to medium intensity have been reported 

to be an effective tool to manage for harvest slash residues with limited immediate 

negative implications but with even greater positive response of soil nutrients (Nzila et 

al., 2002). This was affirmed by (du Toit and Scholes, 2002) findings from the Karkloof 

case study using the index of nutritional sustainability to evaluate the long and short-

term site resilience under various management practices at different intensities; 

particularly harvest slash residue management when it was burned at a low to moderate 

fire intensity, which resulted in nutrient losses that were within the proposed index of 

nutritional sustainability. 
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Amongst many other positive potential benefits that come with the application of fire on 

the wild environment is the alteration of undesirable soil chemical conditions such as 

allopathy (Águas et al., 2018). The thermal effect from fire volatilises toxic elements that 

interfere with plant growth, and the remaining bio charcoal adsorbs most of the toxic 

element into its surface, thereby alleviating growth stress and improving plant survival.  

2.4.2.1. Burning conditions  

Low to moderate intensity fires by far result in relatively low damage to the soil’s 

physical and chemical properties, contrary to high intensity fires (Norris, 1993). This may 

be linked to the fact that low to moderate fires result in a partial combustion of the 

humus layer protecting the actual mineral soil; its temperature is normally below the 

volatile temperature threshold of certain nutrient elements (de Ronde et al., 1990 and 

Table 2.4). This is the case in controlled prescribed fires applied under favourable 

weather conditions in forest plantations for various management purposes.   

Table 2.5 presents guidelines indicating ideal and safe conditions for conducting a 

prescribed burn. To successfully achieve an effective prescribed burn for slash 

management purpose special attention with regards to temperature, wind, relative 

humidity, and fuel moisture is required (de Ronde et al., 2004). There is an inverse 

proportional relationship between temperature and relative humidity. The daily 

temperatures tend to be much cooler in the early hours of the day with a high relative 

humidity accompanied by gentle wind and slightly moist fuels (Wade & Lunsford, 1989). 

This presents an ideal situation to initiate and control a prescribed burn safely with much 

ease. Contrary to the late afternoon hours when relative humidity is usually at its lowest, 

temperature at the peak with high speed wind gust rapidly drying out the fuel totally. 

Caution to be taken when conducting a prescribed burn under these conditions or 

prevented all together (Teie, 2009).  
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Table 2.5: Safe conditions for prescribed burn  

Elements  Condition Sources  

Temperature  5 - 15 % de Ronde (2004) 

Relative humidity  25 - 45 % Teie (2009) 

Wind speed inside stand 
 <4 Km hr-1 Wade & Lunsford (1989) 

Wind speed outside stand 
 12 - 16 Km hr-1 Wade & Lunsford (1989) 

Fuel Moisture  10 - 20 %  USDA (2009) 

 

2.5. Influence of Soil Tillage (Disc Harrowing) on Soil Properties and 

Eucalyptus Spp Growth  

Soil tillage prior to planting is a common practice for positivity altering soil properties as 

a means of ensuring plant survival and good growth. Karuma et al. (2014) points out 

other potential benefits obtained from a proper tillage operation, such as: eases plant 

root penetration; improves soil water retention and infiltration; controls weeds from 

competing with the intended crop; and incorporates organic residue material into the 

soil, thereby hastening the decomposition process and plant nutrient availability.  

Madeira et al. (2012) adds to the list of potential benefits from disc ploughing, such as 

reducing soil bulk density, improving soil aeration, and possibly improving tree growth 

and volume. He adds that disc harrowing at mid-rotation is a common practice executed 

with intentions to eliminate understory vegetation, alleviating interspecific competition 

between trees and weeds, and to reduce fuel loading as part of forest fire management 

strategies to reduce risk of uncontrolled wildfires. 

2.5.1. Soil structure  

The various soil tillage methods used in commercial forestry plantation during site 

preparation, and sometimes at mid-rotation, have a huge impact on soil physical 

properties. According to Madeira et al. (1989), the implementation of disc harrowing at 

site preparation prior to planting on a Eucalyptus globulus stand in Mediterranean 

conditions resulted in a reduction of soil bulk density. At a depth of 0 - 10 cm, surface 
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disc harrowing was observed to significantly reduce bulk density compared to 75 cm 

deep ripping. Soil bulk densities were 1.37 g cm3 for surface tillage, 1.59 g cm3 for deep 

ripping, and 1.54 g cm3 for the control treatment. 

 Soil tillage at site preparation contributes significantly to altering soil structure by 

mechanically converting compacted soil into friable soil with improved aeration that is 

much more ideal for plant growth. Dedecek et al. (2007) affirms that soil tillage positively 

alleviates soil compaction. This was observed by measuring soil penetrometer 

resistance on ripped soils and comparing it to soils that were not ripped; the results 

exhibited a high penetrometer resistance on soils that were not ripped Soils that have a 

high penetrometer resistance indicated a great degree of compaction that might be 

linked to limited plant root length density and growth.  

Madeira (1989) reported an increase in porosity of 48.3%, a rate of 18.0% water 

infiltration, and 23.4 cm ha-1 aeration for surface treatment; 40.0% increase in porosity, 

a rate of 6.7% water infiltration, and 10.7 cm ha-1 aeration for deep ripping; and 41.9% 

increase in porosity, a rate of 16.4% water infiltration, and 11.7 cm ha-1 aeration for 

control treatment.  

2.5.2. Tree growth and survival 

Different soil tillage methods applied on various soil types have been observed to yield 

significantly positive growth responses. Smith, Little, & Norris (2001), experimented with 

different tillage practices that are applicable at site preparation for planting Eucalyptus 

grandis, Eucalyptus dunnii, Eucalyptus grandis x camaldulensis, and Acacia mearnsii in  

KwaZulu-Natal in South Africa. A positive type two growth response was observed in the 

study findings for final survival, basal area and volume growth. Variation growth 

response was measured in terms of basal area, where surface harrowing was applied 

(19.0 m2 ha-1) in comparison to control treatment which was pitting alone (17.6 m2 ha-1). 

A slight difference was also observed when comparing growth responses from sites 

where ripping was applied (20.8 m2 ha-1) and sites where there was no rip application 

(19.1 m2 ha-1). All this positive growth can be associated with the breakdown of the 

compacted topsoil surfaces through surface disking and removal of soil depth impending 

layer through rip application. These soil amelioration methods form part of a sound site 

preparation practice during reestablishment under the above-mentioned soil conditions 

to achieve good soil structure, tree survival and growth.    
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Alteration of soil structure attained through tillage (for example, alleviation of compacted 

soil into a friable and well aerated soil) can be a positive benefit on the below ground 

tree growth. This was observed by Gonçalves et al. (2004), where he examined root 

length density of Eucalyptus grandis x nitens under various penetrometer resistances.  

His findings showed a negative correlation between root growth and penetrometer 

resistance, where root length density declined with about 71% with an increase in 

penetrometer resistance from 0.4 to 4.2 MPa. The available literature only reports soil 

tillage practices conducted at site preparation prior to planting and at mid-rotation; no 

studies have been conducted on the implementation of disc harrowing throughout the 

stand rotation. 

2.6. Literature Review Conclusion      

Wildfires are a serious threat to commercial forest plantations in South Africa and 

worldwide. Thorough knowledge of how forest fuels characteristics influence fire 

behaviour and increase the risk of wildfires is essential when constructing a strategic fire 

management plan. Fuel management remains the only fire environment component that 

fire managers can potentially manipulate in an attempt to effectively reduce fuel loading 

and fire related risks. Long-term effects on site productivity, efficiency and effectiveness 

of the fuel load management practices, as well as physical possibility should be 

considered when selecting a fuel management method for a particular site. Of the 

various fuel management techniques, it is important to identify those most effective and 

efficient when implemented prior to planting or during stand rotation.    

Prescribed burning to reduce fuel loading is an option when practiced under favourable 

conditions in order to achieve a cool burn with minimal negative impact on the site and 

optimal results on fuel loading reduction. This practice on Pine stands is effective and 

efficient when applied both prior to planting (slash burning) and during rotation (under 

canopy burning), but requires more preparatory input and cost when using it in eucalypt 

stands (especially the gum bark types).  

Mechanical options such as disc harrowing can be implemented as an alternative to 

burning applications for managing forest fuel with negligible impact of site productivity 

and tree growth. Disc harrowing has potential to significantly reduce fuel loading, to 

improve soil bulk density and aeration, as well as soil water retention and infiltration. 

The extent to which these processes applicable in South African sites and conditions 
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have not been quantified. Most international research publications report on disc 

harrowing studies conducted either prior to planting or at mid-rotation only. The 

application of disc harrowing throughout the rotation has also not been investigated and 

published. 
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3. METHODS AND MATERIALS 

3.1. Site Description  

This study was conducted in Iswepe area near Piet Retief in Mpumalanga province, 

South Africa. Iswepe is located in the high altitude region at 1 444 m above sea level in 

a warm temperate climatic zone. Weather data for the site was attained from the South 

African Sugarcane Research Institute from Mondi Office Iswepe weather station located 

approximately 16.7 km from the study site (Figure 3.1). Figure 3.2 presents monthly 

mean rainfall from July 2016 to July 2019. The site is within a summer rainfall region, 

with relatively dry, cold winter and wet, warm summer. December receives the highest 

mean rainfall of 192 mm and June receives the least rainfall of 0.20 mm. The mean 

annual precipitation is 858.2 mm (Note this data was a record of only three years). Both 

monthly mean minimum and maximum temperatures are presented in Figure 3.3. May 

was the hottest month averaged at 26 °C and July was the coldest month averaged at 

12 °C.  

 

Figure 3.1: Site location map  
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Figure 3.2: Mean monthly rainfall over 3 years  

 

Figure 3.3: Mean monthly temperatures over 3 years.  

This research was conducted on two Eucalyptus grandis x nitens stands grown for 

pulpwood production. One was an 11 year old coppiced regenerated stand and the 

other a 9 year old replanted stand. The two compartments had been established on two 

contrasting soil types; Magwa for the replanted compartment and Kranskop for the 

coppiced compartment, but under similar climatic conditions. At a depth of 

approximately 40 cm in Block 1 and 25 cm in Block 2 there was a broken stony 

impeding layer of about 15 to 20 cm in thickness (Figures 3.4 & 3.5). This layer had a 

great limiting effect mostly on roots of large diameter, but with minimal effect on fine 
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roots as they were still observed beyond the stony layer depth throughout the soil profile 

during the root count. The soil profile of the study area to a depth of 100 cm is presented 

in Figures 3.4 & 3.5.     

 

 

 

Figure 3.4: Soil profile from Block 1 study site 
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Figure 3.5: Soil profile from Block 2 study site 

3.2. Study Design Methodology 

A fence line study design method was used for the purpose of this research using as 

illustrated in Figure 3.6. The treatments were nested in two blocks; the blocks were a 

combination of regeneration method and site characteristics.  

Block 1: Replanted regeneration method on a south facing aspect on a Magwa soil      

     type. 

Block 2: Coppiced regeneration method on a north facing aspect on a Kranskop soil  

     type.    

It was important that the treatments be investigated on the two blocks (approximately 1 

km apart) in order to test for the universal applicability of this practice. This is due to 

slight differences between the sites that might influence the response of the site to 

treatment. Firstly, the regeneration method and subsequent coppice reduction might 

possibly influence forest floor litter accumulation during the stand rotation, resulting in 

greater fuel loading in Block 2. Secondly, geographical position of the site influences the 

amount of fuel loading and the type of fuel classes present in a particular site; south 

facing aspects are typical of dense and heavy fuel class, thus Block 1. Geographical 

position also influences mean annual temperature (MAT) and mean annual precipitation 

(MAP) of the site. According to the company’s information system, the two blocks fall on 
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the transition zone between two warm temperate (WT) climatic classes: Block 1 is 

classified as a WT5 site type and Block 2 is a WT2 site type. Site type WT2 has a MAT 

within the range of 16 -17 °C and MAP within 850 - 950 mm, while WT5 site type has a 

MAT 17 - 18 °C and MAP within 875 - 975 mm (Louw & Smith, 2012). Lastly, certain soil 

types respond differently to treatments and might have higher nutrient content and 

ECEC than another.    

 

 

Figure 3.6: Schematic demonstration of the two blocks showing disked swathes within 

each replication, nested within one of two blocks. 

Two slash and fuel load management treatments were investigated: 

B0 – Slash was burned during site preparation with no disc harrowing operation during 

 the stand rotation. 

BD – Slash was burned during site preparation and the stand was repeatedly disc 

 harrowed, at least once a year throughout the rotation for purposes of fuel 

 loading reduction.  
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The treatments were investigated on the two blocks. Block 1 consisted of three main 

plots; each plot had a total area of 2 400 m2 (12 m x 200 m). These plots were laid out in 

the form of two transects spanning the length of the block, i.e., 6 sub-plots of 1 200 m2 

(6 m x 200 m) each. Of the two transects, one was for the B0 treatment and the other for 

the BD treatment as illustrated in Figure 3.6. The plot length in Block 1 was reduced due 

to compartment boundary limitations. 

Similarly for Block 2, a single main plot had an area of 3 600 m2 (12 m x 300 m), then 

split into two transects forming sub-plots of 1 800 m2 (6 m x 300 m) each. One of the 

two transects was for the B0 treatment and the other for the BD treatment. Each block 

had three treatment replications, making six replications in total. To prevent the edge 

effect, plots were placed 20 m from the compartment boundary (see Figure 3.6 point 

(A)) and 40 m apart spanning the length of the block (see Figure 3.6 point (B)). Figure 

3.7 illustrates a schematic diagram of a section of a single main plot with the two 

treatments. A distance of 6 m between the two treatments was demarcated using two 

rows of trees as “guard rows” to maintain constant distance between the treatments 

(Figure 3.7 point (F)). Figure 3.8 demonstrates the actual situation of plantation forest 

when the treatment is implemented.   

 

Figure 3.7:  Section of a single plot layout: the inner measurement plot of trees is thus 

located between the boundaries marked with the line - • - • - in the figure.  
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Figure 3.8: Photograph of a single plot layout  

3.3. Data Collection 

3.3.1. The above ground plant growth 

Tree diameter at breast height (DBH) was measured on all the trees in each of the plots 

using manual callipers. Thirty DBH height pairs were also measured to generate a 

height regression equation for estimating heights of all the trees in the plot. Hypsometer 

vertex and transponder were used for measuring tree heights. During data collection, 

dead, dying and missing trees were noted for the purpose of analysing stand density 

and survival for the two treatments. The effect of repeated disc harrowing on the 

aboveground plant growth was examined through measuring and comparing differences 

between various growth-related variables: (a) at the individual tree level: stand density 

(Stems ha-1), and (b) at the stand level: basal area m2 ha-1, volume (m3 ha-1), and plant 

biomass (t ha-1) for the B0 treatments in contrast to the BD treatments in the fence line 

study. Stand density was evaluated both on the single stem and individual stump basis. 

Stellenbosch University https://scholar.sun.ac.za



 

37 

 

For single stem, all the stems in the plot were regarded as an individual tree irrespective 

of two or three stems originating from the same stump. For individual stumps, only the 

stumps were counted and regarded as an individual tree with disregard to the number of 

shoot or stems per stump. This was essential to understand the potential effect of 

regeneration method (coppicing versus planting) on stand density in this study.   

3.3.2. Below ground growth: root distribution patterns  

Twelve trees were identified for the purpose of analysing the effect of repeated disc 

harrowing on root distribution pattern. This was done by contrasting root distribution 

patterns of the selected trees from the B0 treatments to the BD treatments. The tree 

population in Block 1 had a mean DBH of 15.7 cm and a standard deviation of 3.8. The 

corresponding values for Block 2 were 14.9 cm and 3.5. It was therefore decided to 

select sample trees from three distinct size classes in the population, namely 10, 15 and 

20 cm classes. Of the selected trees, three pairs were from Block 1 and the other three 

pairs from Block 2. The pairs were selected with one tree in the B0 treatment and the 

other in the BD treatment within one main plot (Figure 3.7 & 3.9).  

The root distribution pattern of below ground tree growth was investigated following the 

profile wall root study method (Böhm, 1979). This was done by digging a trench at a 

distance of 50 cm from the tree under study, then placing a 1 m x 1 m frame against the 

profile wall to be studied as shown in Figures 3.4, 3.5 & 3.9. The trench was dug using 

manual handpick and spade. After the profile wall was dug according to the required 

specification, the actual wall under study was scrubbed with both wire brush and 

nylon/plastic brush. The wall was then sprayed with pressured water from a 

conventional firefighting knapsack, making the roots clearly visible for counting. Roots 

protruded from the profile wall with a minimum length of 5 mm.    

The frame housed 100 boxes within a 10 cm x 10 cm grid. Roots visible in each grid 

were counted horizontally and summed. The depth of each horizontal row increased by 

10 cm, with the last row being 1 meter. A graphic paper was used to record root count 

and map the root distribution pattern as it appeared on the profile wall. The roots found 

on the vertical face of the profile wall were classified according to various class 

categories based on diameter: class A, < 2 mm regarded as fine roots; class B, 2 to 5 

mm as small; class C, 5 to 10 mm being medium; class D, 10 to 20 mm, large; and class 
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E, > 20 mm, very large (Böhm, 1979). A small handheld calliper was used to measure 

root diameter for root classification.  

   

Figure 3.9: Profile wall root study method  

3.3.3. Forest floor and litter characterisation 

A number of litter samples were collected for the purpose of determining the impact of 

the above-mentioned treatments on Eucalyptus grandis x nitens stand forest floor 

dynamics. Difference in forest floor structure and fuel loading of various fuel classes and 

chemical content of the actual forest floor material under study were analysed. 

Six litter samples were collected from each of the 6 main plots = 36 samples. Six litter 

samples were collected from each plot: three samples from the B0 treatments and three 

from the BD treatments, totalling 36 collected samples. This was done using a 1 m x 1 

m custom built wooden sampling frame, then collecting all the material within the 

sampling point. Figure 3.10 shows some of the steps followed during the sampling 

procedure: randomly selecting a sampling point by throwing a hatchet over the shoulder; 

placing the sampling frame on the selected point; carefully removing all the material 

around the sampling point using secateurs and small pruning saw; and then clearing the 

perimeter of the sampling point using a spade. The actual litter within the sampling 

frame was then collected down to the humus layer; then the humus was collected until 

the mineral soil appeared. Humus was collected by gently scraping with a small garden 

fork and placing the material in a paper bag. The litter material was placed in packaging 

paper bags separate from the humus material.  
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As it appears in Figure 3.7, the undisturbed forest floor on the B0 treatment is 

homogeneous; sampling was done randomly throughout the transects. In contrast, the 

BD treatments had a heterogeneous forest floor, where one-third of transect within the 

tree rows was not disked. These rows had partial incorporation of soil material displaced 

by the disc harrow from the disked swathe onto the so-called island, forming some sort 

of a bedding. For this reason one of the tree sampling points with BD treatments was 

intentionally placed on the island within the row of trees as a representative sampling 

procedure. 

  

        

       

Figure 3.10: Infield litter collection technique using a custom built frame of 1x1 m.  

3.3.3.1. Laboratory  

For purposes of fire behaviour modelling, litter and fuel loads are categorized into four 

distinct fuel class sizes, namely the 1, 10, 100 and 1000 hour fuel classes (de Ronde, 

1990; Teie, 2009; and Prell, 2016), shown in Table 2.1. The same classification was 

used in the current study with one modification, specifically that the 1 hour fuel class 

was split into (a) branch fraction with a thick end diameter of < 0.6 cm and (b) the leaves 

and bark fraction. This was done because branch fraction could practically be separated 

out, and because its nutrient content is likely to be different from that of the bark and leaf 

Step 1  Step 2   

Step 4  Step 3 
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fraction. There were no branches with a diameter greater than 2.5 cm from all the 

sampled material (Figure 3.11).  

The sites in which this study was conducted are subjected to intensive management, 

namely, clear-fell harvesting methods, slash burn during site preparation, and weed 

control of understory vegetation. Consequently, the forest floor is broadly limited to 1 

hour and 10 hour fuel classes, as opposed to natural forest systems where up to 1 000 

hour fuels are present on the forest floor. It was particularly important to focus attention 

on the most active fuel classes, which are the 1 hour and 10 hours fuels in influencing 

fire behaviour (ignition, rate of spread and intensity). A small handheld manual calliper 

was used to measure the thick diameter of the branch when separating the litter material 

into various fuel classes. Then all the 10 hour, 1 hour (branch fraction) and 1 hour (bark 

and leaf fraction) fuel classes were oven dried at 65°C to a constant weight and 

weighed separately. Mass was measured using a Delta Range Mettler PC 4400 scale. 

The final mass was scaled up into oven dry tonnes per hectare (t ha-1); this was done to 

all the forest floor material samples that were collected from the field. The samples were 

further milled and sent to an accredited service provider laboratory (Bemlab) for (N, P, 

K, Ca, and Mg) analysis.    

 

Figure 3.11: Litter sample separated according to fuel time lag classes   
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3.3.4. Sampling for soil physical and chemical properties  

Soil samples for chemical analysis were collected using a Beater auger. This was done 

by first removing the litter layer, then inserting the auger in the actual mineral soil. Soil 

samples from the B0 treatments were collected from 10 randomly selected sampling 

points throughout the entire transect and then bulked into one sample representing the 

entire transect.  

Sampling was slightly different in the BD treatments. For the specific purpose of 

chemical soil sampling on the BD treatment, three categories of soil samples were 

collected from: the actual disked swathe between the tree rows, and two samples from 

the non-disked island on the tree row. On the tree row, a sample was taken from the 

roughly mixed material “Mound” that had been deposited on top of the regular soil profile 

through the disc harrowing operation (Figures 3.7 & 3.8). This material consisted of 

partially decomposed forest floor material partly mixed with the displaced topsoil. A 

second sample was taken in the regular soil profile below the displaced material. On the 

actual disked swathe, 10 soil subsamples were collected from 10 randomly selected 

sampling points and then bulked to make one sample. The same procedure was done 

for collecting samples with partly mixed and displaced material as well as samples 

consisting of only mineral soil. Four samples were collected for a single main plot for the 

six plots: one from the B0 treatments and three from the BD treatments (one actual disc 

swathe, one with partly mixed material and one only mineral soil), making a total of 24 

soil samples.    

Soil samples from infield were then taken to the laboratory to measure total nitrogen (N), 

extractable phosphorus (P) and total organic carbon (C). Total N and total organic C 

were measured at high temperature combustion by means of Leco Truspec® C and N 

analyser. The amount of extractable P in the soil was measured following Bray II 

procedure (Hunter, 1974). Extractable topsoil cation quantities (K, Ca, Mg, and Na) were 

extracted with 0.2 M ammonium acetate solution at a pH 7. Extractable acidity was 

measured using titration with 0.05 M NaOH, after extraction with 1 M KCl. The effective 

cation exchange capacity (ECEC) was determined by adding the amount of extractable 

acidity to the sum of base cations charge at an unbuffered soil pH. The soil pH was 

analysed in 1 M KCl. Contents and quantities of the above-mentioned soil elementals 

were examined by performing an inductively coupled plasma optical emission 
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spectroscopy (ICP-OES) for all the extracted solutions. The extractable P quantity was 

determined with Varian ICP-OES.  

Soil sampling for contrasting differences in soil bulk density between the two treatments 

was done by knocking a core cylinder of a known dimension into the ground to collect 

an undisturbed soil sample as illustrated in Figure 3.12. This was done at a depth of 0 - 

10 cm and 10 - 20 cm. In the laboratory, the samples were oven dried at 105°C to 

constant mass. The oven dried mass was divided by the volume of the cylinder to get 

the actual density. Delta Range Mettler PC 4400 scale was used to measure soil mass.  

          

 

Figure 3.12: Soil sampling for bulk density at 10 - 20 cm depth  
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4. DATA ANALYSIS 

Data from infield was captured and sorted using an Excel 2013 spreadsheet. The 

effectiveness of treatment was statistically evaluated by making use of SAS Enterprise 

Guide 7.1. The following procedure was followed:  

 Distribution of data sets was analysed by performing normality test of residuals 

using Shapio-Wilk test at p<0.05.  

 One-Way ANOVA was used to test for homogeneity performing Levene’s p<0.05.  

 Data was transformed using  function if the aforementioned assumptions 

were not met and satisfied. 

 Nested design: the treatments were nested in two blocks, then tested for 

significant difference between the two blocks and between the treatments within 

each block.  

o Nested design was appropriate because the blocks did not have 

replications and this prevented the application of factorial design.  

 ANOVA linear model at p<0.05, where there was significant difference Bonferroni 

(Dunn) t-Test was used to follow up.  
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5. RESULTS  

5.1. Fuel Loading and Forest Floor Structure   

The undisturbed fuel build-up from slash burning (during the site preparation phase) 

until sampling for this study was recorded for Block 1 and Block 2. This serves as a 

benchmark for treatment effects. In Block 1, the humus fraction averaged to 19.0 t ha-1, 

the 10 hour fuels averaged to 10.9 t ha-1, 1 hour fuel (bark and leaf fraction) averaged to 

11.8 t ha-1 and 1 hour fuel (branch fraction) had an average mass of 4.7 t ha-1. The total 

forest floor mass averaged to 44.8 t ha-1. In Block 2, the humus fraction averaged 18.9 t 

ha-1, the 10 hour fuels averaged 5.2 t ha-1, 1 hour fuel (bark and leaf fraction) averaged 

to 13.4 t ha-1 and 1 hour fuel (branch fraction) had an average mass of 3.9 t ha-1. The 

total forest floor mass averaged to 41.4 t ha-1. 

1 hour fuel (branch fraction): Mean fuel loading of this fraction is presented in Figure 

5.1. The repeated disk harrowing treatment resulted in a significant reduction of the 1 

hour fuels (branch fraction), however, there was no significant difference between the 

two blocks for fuel class in this experiment (Table 5.1). In Block 1, the B0 treatments 

had a mass of 4.7 t ha-1 and the BD treatments had 1.8 t ha-1. Similarly in Block 2, the 

B0 treatments amounted to 3.9 t ha-1 and the BD treatments to 1.6 t ha-1.  

Table 5.1: ANOVA results of the 1 hour fuel class (branch fraction)   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 62.8537 31.4268 34.65 <0.0001 

Blocks 1 1.6737 1.6737 1.85 0.1835 

Treatment 1 61.1800 61.1800 67.46 <0.0001 

Error 33 29.9279 0.9069     

Corrected Total 35 92.7816       
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Figure 5.1: Fuel loading distribution for treatments of the 1 hour fuel class (branch 
fraction) (Aa) Letters with different cases indicate significant difference among the treatments at p<0.05 

 

1 hour fuels (bark and leaf fraction): The data for this fraction is shown in Figure 5.2. 

Significant fuel load reduction in this fuel class was only brought about by treatment; 

there was no significant difference between the blocks (Table 5.2). Block 1 had a mass 

of 11.4 t ha-1 for the B0 treatments compared to 5.5 t ha-1 for the BD treatments. Block 2 

was similar, with mass of 13.4 t ha-1 for the B0 treatments compared to 4.6 t ha-1 for the 

BD treatments. 

Table 5.2: ANOVA results of the 1 hour fuel class (bark and leaf fraction)   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 14.5384 7.2692 18.06 <0.0001 

Blocks 1 0.0626 0.0626 0.16 0.6959 

Treatment 1 14.4758 14.4758 35.97 <0.0001 

Error 33 13.2804 0.4024     

Corrected Total 35 27.8188       
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Figure 5.2: Fuel loading distribution for treatments of the 1 hour fuel class (bark and leaf 
fraction) (Aa) Letters with different cases indicate significant difference among the treatments at p<0.05 

 

10 hour fuels: The values for the 10 hour fuel loading are shown in Figure 5.3. In this 

fuel class, significant differences in fuel loading were observed between the blocks and 

the treatments (Table 5.3). When the two blocks were combined, the BD treatments had 

an average mass of 3.8 t ha-1 and the B0 treatments had 8.1 t ha-1, indicating that the 

BD treatment resulted in a significant reduction in fuel loading across both blocks. 

Furthermore, Block 1 had significantly higher fuel loading in comparison to Block 2 for 

both the BD and B0 treatments. For the B0 treatment, Block 1 had a dry mass of 10.9 t 

ha-1 in comparison to 5.2 t ha-1 for Block 2. Similarly, for BD treatment, Block 1 had fuel 

loading amounting to 4.6 t ha-1 in comparison to 2.9 t ha-1 for Block 2.  

Table 5.3: ANOVA results of the 10 hour fuel class  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 285.5301 142.7650 18.19 <0.0001 

Blocks 1 119.6537 119.6537 15.24 0.0004 

Treatment 1 165.8764 165.8764 21.13 <0.0001 

Error 33 259.0679 7.8505     

Corrected Total 35 544.5971       
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Figure 5.3: Fuel loading distribution for treatments of the 10 hour fuel class  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  

 

Total forest floor mass: It is important to note that the total litter load consisted of only 

the 1 and 10 hour piece sizes, i.e., no pieces of litter were encountered in the 100 and 

1000 hour fuel classes. Table 5.4 illustrates that repeated disc harrowing resulted in a 

significant reduction in total forest floor mass. The difference in total forest floor mass 

was non-significant between the two blocks. As shown in Figure 5.4, in Block 1 the B0 

treatments had a significantly higher quantity at 44.8 t ha-1 while the BD treatments had 

a significantly lower total forest floor mass of 11.8 t ha-1. Similarly in Block 2, the B0 

treatments amounted to 41.4 t ha-1 over 9.2 t ha-1 for the BD treatments. 

Table 5.4: ANOVA results for the total forest floor mass   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 9397.6813 4698.8407 95.95 <0.0001 

Blocks 1 78.6586 78.6586 1.61 0.2142 

Treatment 1 9260.6884 9260.6884 189.10 <0.0001 

Error 32 1567.0957 48.9717     

Corrected Total 34 10964.7771       
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Figure 5.4: Total forest floor mass distribution for treatments  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 

 

Block 1 and block 2 combined: The practice of repeated disc harrowing resulted in a 

significant decrease in fuel loading in the BD treatments in comparison to the B0 

treatments for the combined sites (Block 1 and Block 2). This is illustrated in Figure 5.5. 

The mean values of fuel loading from the two treatments were significantly different for 

all the fuel classes and for the total forest floor mass (Tables 5.1 - 5.4). This section 

presents the magnitude of the difference in fuel loading among the treatments for the 

various fuel classes. The difference between the two treatments for humus was 19.0 t 

ha-1; for 10 hour fuels, 4.3 t ha-1; for 1 hour fuels (bark and leaf fraction), 7.3 t ha-1; and 

for 1 hour fuels (branch fraction), the difference was 2.7 t ha-1. The mean difference in 

total forest floor mass was 32.58 t ha-1.  
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Figure 5.5: Combined fuel loading per size class across treatments  
 (Aa) Letters with different cases indicate significant differences among the treatments at p<0.05 
 

Block 1: Differences in fuel loading for this block are presented in Figure 5.6. This site 

had slightly greater fuel loading than Block 2 for the same treatment. However, the 

difference in fuel loading between blocks was only significant (p<0.05) for the 10 hour 

fuel class; the differences for the other classes were all non-significant (Tables 5.1 - 

5.4). For total fuel loading in the non-disking treatments, Block 1 had an average load of 

44.8 t ha-1 in contrast to the 41.4 t ha-1 in Block 2. For the repeatedly disked treatments, 

the total fuel loading in Block 1 averaged 11.8 t ha-1 while Block 2 averaged at 9.2 t ha-1. 

The magnitude the of difference in fuel loading between the two treatments for various 

fuel classes in Block 1 was measured, namely humus, 19.0 t ha-1; 10 hour fuels, 6.3 t 

ha-1; 1 hour fuels (bark and leaf fraction) 5.9 t ha-1 and 1 hour fuels (branch fraction), 3.2 

t ha-1. For the total forest floor mass, the difference was 33.0 t ha-1. Tables 5.1 - 5.4 

illustrate that the magnitude of difference in fuel loading and total forest floor mass 

observed between B0 and BD treatment was significant. 
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Figure 5.6: Block 1 fuel loading per size class across treatments 
(Aa) Letters with different cases indicate significant differences among for the treatments at p<0.05 
 
 

Block 2: This block had a slightly lower amount of fuel loading when contrasted to Block 

1 for both treatments. However, the BD treatments within this block had a significantly 

lower quantity of fuel loading compared to the B0 treatments (Tables 5.1 - 5.4). Data 

showing means for fuel loading for the two treatments are presented in Figure 5.7. The 

magnitude in difference between the two treatments for humus was 18.9 t ha-1; for 10 

hour fuels, 2.3 t ha-1; for 1 hour fuels (bark and leaf fraction), 8.8 t ha-1 and 2.3 t ha-1 for 

1 hour fuels (branch fraction). The difference in the total forest floor mass averaged 32.2 

t ha-1. Difference in fuel loading following repeated disc harrowing was significant for all 

the fuel classes as well as the total forest floor mass (refer to Table 5.1 - 5.4).   
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Figure 5.7: Block 2 fuel loading per size class across treatments 
(Aa) Letters with different cases indicate significant differences among the treatments at p<0.05 
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Mean values showing differences in nutrient content of the forest floor material are 

indicated in Table 5.5. The nutrient distribution for the total forest floor material was 

significantly different for all elements among the treatments. The repeatedly disked 

treatments had the least amount of all the measured nutrient elements compared to the 

significantly higher quantities for the non-disking treatments across all blocks. Nitrogen 

was the only nutrient element that was significantly different among the blocks, Block 1 

having the highest amount of N for both treatments.   

 Table 5.5: Forest floor material nutrient distribution  

Kg ha-1  Forest Floor     N    P    K    Ca    Mg    

Treat B0 BD B0 BD B0 BD B0 BD B0 BD B0 BD 

Block 1 44780A 11817a 366A 86a 14A 3a 34A 9.0a 265A 59a 34A 9a 

  (3185) (1672) (32) (16) (2) (1) (5) (1) (36) (9) (4) (1) 

Block 2 41419A 9220a 297B 50b 11A 2a 33A 8a 217A 37a 37A 7a 

  (2419) (1720) (29) (8) (1) (0) (3) (1) (26) (7) (3) (1) 

 
(Aa) Letters with different cases in a row indicate significant differences among the treatments at p<0.05 
(AB) Different letters in a column indicate a significant difference among the blocks at p<0.05  
(1.8) Standard error values are presented in parenthesis below means  
 

Figures 5.8A and B are photographs of the forest floor material captured infield before 

sampling in both treatments. Figure 5.8A depicts the non-disking treatments while 

Figure 5.8B portrays the repeatedly disked treatments. It is clear to see with the naked 

eye that the B0 treatment has dense, raised forest floor layers with a deep fuel bed. This 

indicates a greater accumulation of fuel loading over time. In contrast, the BD treatment 

(Figure 5.8B) shows a sparse forest floor layer where it is almost possible to see 

through to the mineral soil, indicating a significantly lower fuel loading scenario. All three 

generic forest floor strata were still present with non-disking treatment, as seen in 

Figures 5.8A. On the contrary, Figure 5.8B illustrates significant alteration in the forest 

floor structure following the application of repeated disc harrowing treatments. This 

resulted in L only present directly on top of the MS layer; both the F and H strata were 

not present in the disked swathes.      
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A        A1  

B         B1   

Figure 5.8: Infield photographs from Block 2 [the inner material is the untouched forest floor (A = B0 and B = BD) with carefully 

cleared outer perimeter]  
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5.2. Soil Chemical Properties  

Soil samples were collected at a depth of 0 - 10 cm in both blocks for both treatments. 

Soil chemical property values presented in this section are applicable only to the topsoil 

layer. For base cations (K, Ca, Mg, and Na), the difference was only quantified in the 

exchangeable fraction, extractable fraction for topsoil P (Bray II), the total topsoil N and 

organic C fractions, and soil pH in KCl. 

5.2.1. Exchangeable base cations (K, Ca, Mg, and Na) and ECEC 

K: The exchangeable topsoil K ANOVA results are presented in Table 5.6. Differences 

in the topsoil exchangeable K fraction were significant between treatments within and 

between the blocks in this experiment. Mean values of topsoil exchangeable K quantity 

are shown in Figure 5.9. Block 2 had a significantly high topsoil exchangeable K 

compared to Block 1. The BD treatment in overall had the highest topsoil exchangeable 

K in contrast to the B0 treatment for both blocks. Within Block 2, the BD treatment had 

0.108 cmolc kg-1 and the B0 treatment was 0.067 cmolc kg-1. Block 1 had the least 

topsoil exchangeable K: the BD treatment was 0.073 cmolc kg-1 and 0,037 cmolc kg-1 for 

the B0 treatment.   

Table 5.6: ANOVA of topsoil exchangeable K quantity  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.0077 0.0038 9.01 0.0071 

Blocks 1 0.0031 0.0031 7.33 0.0241 

Treatment 1 0.0045 0.0045 10.68 0.0097 

Error 9 0.0038 0.0004     

Corrected Total 11 0.0115       
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Figure 5.9: Topsoil exchangeable K values among treatments and blocks  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  
 

Ca: Repeated disc harrowing treatment significantly contributed to the difference in 

topsoil exchangeable Ca quantities; however, the difference between the blocks was not 

significant (Table 5.7). Mean values of topsoil exchangeable Ca for both the blocks and 

the treatments are presented in Figure 5.10. This practice resulted in a significant 

increase in topsoil exchangeable Ca quantity in both blocks. In Block 1, topsoil 

exchangeable Ca was 0.83 cmolc kg-1 for the BD treatment and 0.48 cmolc kg-1 for the 

B0 treatment. Likewise, for Block 2, exchangeable topsoil Ca was 0.55 cmolc kg-1 for the 

BD treatment and 0.24 cmolc kg-1 for the B0 treatment. Even though Block 2 had a low 

topsoil exchangeable Ca compared to Block 1, Table 5.6 illustrates that the magnitude 

of difference was not significant.   

Table 5.7: ANOVA results of topsoil exchangeable Ca quantity  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.5411 0.2706 6.39 0.0187 

Blocks 1 0.2011 0.2011 4.75 0.0572 

Treatment 1 0.3400 0.3400 8.03 0.0196 

Error 9 0.3811 0.0423     

Corrected Total 11 0.9222       
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Figure 5.10: Topsoil exchangeable Ca values among treatments and blocks  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 

 

Mg: Data showing the effect of repeated disc harrowing on the topsoil exchangeable Mg 

quantity is presented in Figure 5.11. Table 5.8 shows that the repeated disc harrowing 

treatment resulted in a significant increase in topsoil exchangeable Mg in this 

experiment, but there was no significant difference between the blocks. The BD 

treatment had the highest topsoil exchangeable Mg when compared to the B0 treatment 

for both blocks. Block 2 had a slightly greater topsoil exchangeable Mg with BD 

treatment of 0.42 cmolc kg-1 and B0 treatment of 0.25 cmolc kg-1. In contrast, Block 1 

had a lower topsoil exchangeable Mg: the BD treatment was 0.30 cmolc kg-1 and the B0 

treatment was 0.23 cmolc kg-1, Figure 5.11. 

Table 5.8: ANOVA results of topsoil exchangeable Mg quantity  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.0597 0.0298 7.36 0.0127 

Blocks 1 0.0145 0.0145 3.57 0.0914 

Treatment 1 0.0452 0.0452 11.16 0.0087 

Error 9 0.0365 0.0041     

Corrected Total 11 0.0962       
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Figure 5.11: Topsoil exchangeable Mg values among treatments and blocks  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 
 

Na: Table 5.9 indicates that both the blocks and the treatments had no significant effect 

on differences in the topsoil exchangeable Na quantities in this experiment; p-values 

were all greater than 5%. Data showing mean values is presented in Figure 5.12. Block 

2 had topsoil exchangeable Na of 0.109 cmolc kg-1 for the BD treatment and 0.093 cmolc 

kg-1 for the B0 treatment. Similarly, in Block 1, the topsoil exchangeable Na was 0.088 

cmolc kg-1 for the BD treatment and 0.083 cmolc kg-1 for the B0 treatment. 

Table 5.9: ANOVA results of topsoil exchangeable Na quantity  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.0010 0.0006 3.53 0.0738 

Blocks 1 0.0007 0.0007 5.00 0.0522 

Treatment 1 0.0003 0.0003 2.07 0.1845 

Error 9 0.0013 0.0001     

Corrected Total 11 0.0023       
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Figure 5.12: Topsoil exchangeable Na values among treatments and blocks  
(AA) Letters with same cases indicate no significant differences among the treatments and the blocks at p<0.05 
 

Table 5.10 is a summary of topsoil exchangeable cation content in kg per ha (1 ha • 

0.1m). This data is essential to contextualize the differences between treatments in 

topsoil cation content on a stand level.    

Table 5.10: Topsoil exchangeable cation content  

Cation (kg ha-1) K   Ca   Mg   Na    

Treatment  B0 BD B0 BD B0 BD B0 BD 

Block 1 19.4A 36.1a 129.0A 210.1A 75.5A 92.9A 25.9A 25.4A 

 
(1.8) (6.2) (17.8) (58.0) (5.0) (10.9) (1.0) (2.5) 

Block 2 35.7B 46.2b 65.0B 124.3B 83.2A 113.4A 29.4A 27.3A 

 
(1.8) (8.8) (8.7) (25.3) (5.8) (17.8) (2.8) (0.4) 

(Aa) Letters with different cases in a row indicate significant differences among the treatments at p<0.05 
(AB) Different letters in a column indicate a significant difference among the blocks at p<0.05  
(1.8) Standard error values are presented in parenthesis below means  

 

ECEC: Figure 5.13 shows that the repeatedly disked treatments had a slightly higher 

ECEC for both blocks in comparison to non-disking. However, according to the ANOVA 

results (Table 5.11), the difference was not significant. Soil ECEC was only significantly 

different between blocks, as illustrated in Table 5.11. Block 2 had significantly higher 

ECEC in comparison to Block 1. Block 2 had an ECEC of 7.76 cmolc kg-1 for the BD 
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treatments and 7.23 cmolc kg-1 for the B0 treatments. Conversely, Block 1 had a 

significantly lower ECEC of 6.35 cmolc kg-1 for the BD treatment and 5.84 cmolc kg-1 for 

the B0 treatment.  

Table 5.11: ANOVA results of topsoil ECEC  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 667.4446 333.7223 8.60 0.0082 

Blocks 1 587.5334 587.5334 15.15 0.0037 

Treatment 1 79.91120 79.9112 2.06 0.1850 

Error 9 349.1075 38.7897     

Corrected Total 11 1016.5521       

 

 

 

Figure 5.13: Topsoil ECEC values among treatments for the two blocks  
(AB) Different letters indicate significant difference among the blocks at p<0.05 

 

5.2.2. Topsoil pH, S-value, base saturation and acid saturation   

pH: Soil pH (KCI) did not differ significantly among treatments or blocks (Table 5.12). In 

Figure 5.14, Block 1 had a pH value of 3.5 in KCI for both treatments. Similarly, the pH 

value of Block 2 was 3.6 in KCI for both the BD and the B0 treatments. Clearly the 

treatment had no significant effect on soil pH in this experiment.    
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Table 5.12: ANOVA results of topsoil pH in KCI  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.0093 0.0046 0.43 0.6646 

Blocks 1 0.0093 0.0093 0.86 0.3791 

Treatment 1 0.0000 0.0000 0.00 1.0000 

Error 9 0.0974 0.0108     

Corrected Total 11 0.1067       
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Figure 5.14: Topsoil pH in KCI values among treatments and blocks  
(AA) Same alphabets indicate no significant differences for the treatments and blocks at p<0.05   
 

S-value: S-value ANOVA results in Table 5.13 indicate that the differences in topsoil S-

value were only significant in response to the treatments, but not significant among the 

blocks. The S-value mean values for the blocks and the treatments are presented in 

Figure 5.15. In Block 1, the BD treatment significantly increased topsoil S-value to 1.30 

cmolc kg-1 in comparison to the B0 treatment at 0.83 cmolc kg-1. Similarly in Block 2, the 

BD treatment increased topsoil S-Value at 1.19 cmolc kg-1in comparison to the B0 

treatment at 0.64 cmolc kg-1.  
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Table 5.13: ANOVA results of topsoil S-value    

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 83.5417 41.7708 6.32 0.0193 

Blocks 1 6.0208 6.0208 0.91 0.3647 

Treatment 1 77.5208 77.5208 11.73 0.0076 

Error 9 59.4564 6.6063     

Corrected Total 11 142.9981       

 

 

 

Figure 5.15: Topsoil S-value mean values among treatments and blocks  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 

 

Base Saturation: There was a significant difference in base saturation percentage 

between blocks and treatments, as shown in Table 5.14. Block 2 had a significantly 

lower base saturation than Block 1, Figure 5.16. The repeated disc harrowing treatment 

significantly increased topsoil base saturation in comparison to the non-disking 

treatment. Block 1 had the highest base saturation, amounting to 19.3% for the BD 

treatment and 14.2% for B0 treatment. On the contrary, Block 2 had the least base 

saturation amounting to 14.9% for the BD treatment and 8.9% for the B0 treatment.  
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Table 5.14: ANOVA results of topsoil base saturation  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 163.5234 81.7617 9.82 0.0055 

Blocks 1 70.4137 70.4137 8.46 0.0174 

Treatment 1 93.1097 93.1097 11.19 0.0086 

Error 9 74.9155 8.3239     

Corrected Total 11 238.4389       

 

 

Figure 5.16: Topsoil base saturation values among treatments and blocks  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  

 
 
Acid saturation: Topsoil acid saturation ANOVA results in Table 5.15 indicate a 

significant difference among the blocks and the treatments. In Figure 5.17, Block 2 had 

a significantly higher acid saturation in contrast to Block 1. The BD treatment in Block 1 

significantly reduced acid saturation to 80.6% compared to 85.8% for the B0 treatment. 

Following the same trend in Block 2, the BD treatment was at 85.1% compared to the 

B0 treatment at 91.1%. 
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Table 5.15: ANOVA results of topsoil acid saturation  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 163.5234 81.7617 9.82 0.0055 

Blocks 1 70.4137 70.4137 8.46 0.0174 

Treatment 1 93.1097 93.1097 11.19 0.0086 

Error 9 74.9155 8.3239     

Corrected Total 11 238.4389       

 

 

 

Figure 5.17: Topsoil acid saturation values among treatments and blocks  
(Aa) Letters with different cases indicate a significant differences among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  
 

5.2.3. Soil N, P, and C response to treatments for the two blocks  

Total N: From Table 5.16, the difference in topsoil total N percentage was only 

significant among the blocks, but not significant for the treatments. Mean values are 

presented in Figure 5.18. Block 2 had the highest topsoil total N content with no 

difference between the treatments at 0.16%. Block 1 indicated a significantly lower 

topsoil total N, with BD treatment at 0.11% and B0 treatment at 0.10%. 
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Table 5.16: ANOVA results of topsoil total N content  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.0095 0.0047 20.24 0.0005 

Blocks 1 0.0093 0.0093 39.47 0.0001 

Treatment 1 0.0002 0.0002 1.01 0.3410 

Error 9 0.0021 0.0002     

Corrected Total 11 0.0116       

 

 

Figure 5.18: Topsoil total N values among treatments for the two blocks  
(AA) letters with the same casing indicate no significant differences among the treatments at p<0.05 
(AB) Different letters indicate significant difference among the blocks at p<0.05   
 

P Bray II: The topsoil extractable P (Bray II) was not significantly different amongst both 

the blocks or the treatments in this experiment (see Table 5.17). Topsoil extractable P 

mean values are presented in Figure 5.19. In Block 1, BD treatment was 14.1 mg kg-1 

and the B0 treatment was 14.4 mg kg-1 in comparison to Block 2 with BD treatment at 

18.2 mg kg-1 and B0 treatment at 16.1 mg kg-1.  

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

64 

 

Table 5.17: ANOVA results of topsoil extractable P Bray II content  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 28.2884 14.1442 2.25 0.1614 

Blocks 1 25.76447 25.76447 4.10 0.0737 

Treatment 1 2.5239 2.5239 0.40 0.5422 

Error 9 56.6075 6.2897     

Corrected Total 11 84.8959       

 

 

 

Figure 5.19: Topsoil extractable P values among treatments for the two blocks  
(AA) letters with the same casing indicate no significant differences among the treatments at p<0.05 
 

Total Organic C: Neither the blocks nor treatments had a significant effect on topsoil 

total C in this experiment, Table 5.18. Data presented in Figure 5.20 illustrates that the 

topsoil total C was similar in both blocks and treatments. Treatment did not have any 

effect on topsoil total C in Block 1; it remained at 2.4% for both the BD and B0 

treatments. In Block 2, the BD treatment had 2.5% of soil C content and the B0 

treatment at 2.4%.  
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Table 5.18: ANOVA results of topsoil total C content  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.0213 0.0106 0.72 0.5121 

Blocks 1 0.0169 0.0169 1.14 0.3126 

Treatment 1 0.0044 0.0044 0.30 0.5979 

Error 9 0.1327 0.0147     

Corrected Total 11 0.1540       

 

 

 

Figure 5.20: Topsoil total C values among treatments for the two blocks  
(AA) letters with the same casing indicate no significant differences among the treatments at p<0.05 
 

5.3.  Soil Bulk Density   

Concerning the soil physical properties, only soil bulk density was investigated in this 

study. Figure 5.21 shows means for soil bulk density data that was measured and 

contrasted between the two treatments and the two blocks. Sampling was done at 

depths of 0 - 10 cm (Figure 5.21A) and 10 - 20 cm depth (Figure 5.21B). Repeated disc 

harrowing significantly reduced soil bulk density in both blocks (see Table 5.19). The 

effect was also significant to the depth of 20 cm throughout all the blocks. However, 

there was no significant difference in soil bulk density between the blocks.  
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Table 5.19: ANOVA results of soil bulk density (A=depth 0-10 & B = depth 10-20 cm) 

A           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.1845 0.0923 11.32 0.0035 

Blocks 1 0.0406 0.0406 4.98 0.0526 

Treatment 1 0.1439 0.1439 17.67 0.0023 

Error 9 0.0733 0.0081     

Corrected Total 11 0.2578       

B           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.2406 0.1203 21.77 0.0004 

Blocks 1 0.0141 0.0140 2.55 0.1446 

Treatment 1 0.2265 0.2265 41.00 0.0001 

Error 9 0.0497 0.0055     

Corrected Total 11 0.2903       

 

 

At a depth of 0 - 10 cm, the non-disking treatment had the highest soil bulk density (1.37 

g cm3) while the repeatedly disked treatment showed a significant reduction in soil bulk 

density (1.02 g cm3) in Block 1 (Figure 5.21A). Correspondingly, Block 2 followed a 

similar trend in soil bulk density: non-disking treatment was at 1.35 g cm3 and repeatedly 

disked treatment was at 1.26 g cm3. This was similar for depth of 10 - 20 cm in Figure 

5.21B. In Block 1, the non-disking treatment showed the highest soil bulk density at 1.29 

g cm3 in comparison to the repeatedly disked treatment at 1.07 g cm3. Likewise in Block 

2, the non-disking treatment had a higher soil bulk density at 1.28 g cm3 and the 

repeatedly disked treatment had 0.95 g cm3.  
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A   B  

Depth: 0-10 cm                                                                  Depth: 10-20 cm                                                                                                               

Figure 5.21: Soil bulk density response to treatment for the two blocks 
(Aa) letters with different cases indicate significant differences among the treatments at p<0.05 
 

5.4. Above Ground and Below Ground Plant Growth 

The effect of repeated disc harrowing on the above ground tree growth is presented in 

Figures 5.22 - 5.26. The magnitude of difference was tested with ANOVA results seen in 

Tables 5.20 - 5.23. The effect of repeated disc harrowing on the above ground tree 

growth was examined by evaluating differences on various growth-related variables, 

including stand density (stems ha-1), basal area (cm2 ha-1), volume (m3 ha-1), and plant 

biomass (t ha-1).  

5.4.1. Stand density  

The effect of repeated disc harrowing throughout the stand rotation on stand density of 

Eucalyptus grandis x nitens was recorded and reported for both individual stump and 

single stem within blocks and treatments (detailed explanation in Methodology section 

3.3.1). The magnitude of difference in stand density was tested with ANOVA results 

presented in Table 5.20. Mean values are shown in Figure 5.22.  

Table 5.20: ANOVA results of stand density (A = Stump & B = Stem)  

A           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 21185.6996 10592.8498 5.11 0.0329 

Blocks 1 19022.6337 19022.6337 9.18 0.0143 

Treatment 1 2163.0658 2163.0658 1.04 0.3336 

Error 9 18649.6914 2072.1879     
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Corrected Total 11 39835.3901       

B           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 581360.5967 290680.2984 37.78 <0.0001 

Blocks 1 573004.1152 573004.1152 74.47 <0.0001 

Treatment 1 8356.4815 8356.4815 1.09 0.3245 

Error 9 69246.3992 7694.0444     

Corrected Total 11 650606.9959       

 

A   B   

Figure 5.22: Stand density for treatments. [(A) Individual stump and (B) single stem] 

(Aa) Letters with same cases indicate no significant difference among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  
    

The following observations in stand density are based on individual stump (data shown 

in Figure 5.22A). Table 5.20A indicates no significant difference in stand density 

between the treatments. The difference in stand density was only significant between 

the blocks. Treatment B0 had an average of 1141 stems ha-1 and 1168 stems ha-1 on 

the BD treatments for the combined blocks. Block 1 had an average of 1197 stems ha-1 

for the B0 treatments and 1192 stems ha-1 for the BD treatments. For Block 2, the B0 

treatments had an average of 1085 stems ha-1 while the BD treatments averaged 1144 

stems ha-1.  

When stand density was evaluated on a single stem basis, the results still followed the 

same trend (see Figure 5.22B). However, stand density in Block 2 increased 

dramatically for both B0 and BD treatments in contrast to using individual stump. This 

was not the case for Block 1. Table 5.19B indicates that there was a significant 

difference in stand density between the blocks, but no significance between the 
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treatments. For the combined blocks, the B0 treatments, had 1388 stems ha-1, thus 

being the lowest, while the BD treatments had 1439 stems ha-1. In Block 1, the B0 

treatments had 1197 stems ha-1 and 1192 stems ha-1 in the BD treatments. For Block 2, 

the B0 treatments was 1578 stems ha-1 and the BD treatments was 1687 stems ha-1.  

5.4.2. Stand basal area 

Basal area in this study was used as a supplementary stand growth and productivity 

indicator; data is presented in Figure 5.23. Basal area was measured for both 

treatments and in two blocks. The ANOVA results in Table 5.21 show that there was no 

significant difference between the two treatments or between the two blocks. For Block 

1, B0 treatments had a basal of 24.6 m2 ha-1 and BD treatments, 23.5 m2 ha-1. 

Correspondingly the two treatments had a similar productivity with a basal area of 25.5 

m2 ha-1 in B0 compared to the BD treatment with a basal area of 24.9 m2 ha-1 in Block 2. 

The magnitude of difference in stand productivity for the treatments was negligible at 

p<0.05 across all blocks.  

    

 

Table 5.21: ANOVA results of stand basal area  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 5.9733 2.9866 1.75 0.2280 

Blocks 1 3.8755 3.8755 2.27 0.1661 

Treatment 1 2.0978 2.0978 1.23 0.2963 

Error 9 15.3581 1.7065     

Corrected Total 11 21.3314       
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Figure 5.23: Basal area for the two treatments  
(AA) Letters with same cases indicate no significant difference among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  
 

5.4.3. Stand volume  

Stand volume was measured to quantify the effects of the repeated disk harrowing 

treatment on stand productivity by comparing it to the non-disking treatment; results are 

presented in Figure 5.24. The ANOVA results in Table 5.22 show stand volume was not 

significantly different as a function of either the blocks or the treatments. In Block 1, the 

B0 treatments had a slightly higher stand volume at 212.7 m3 ha-1 in comparison to the 

BD treatments at 200.4 m3 ha-1. Similarly, in Block 2, the B0 treatments had stand 

volume of 212.4 m3 ha-1 compared to the BD treatments at 205.0 m3 ha-1. The average 

stand volume for the combined blocks amounted to 212.6 m3 ha-1 in B0 treatments and 

202.7 m3 ha-1 in BD treatments. The magnitude of the differences in stand volume 

between the two treatments was negligible across all the blocks, and the response 

followed a similar trend throughout.  

Table 5.22: ANOVA results of stand volume productivity  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 307.7523 153.87612 1.50 0.2737 

Blocks 1 13.8139 13.8139 0.13 0.7220 

Treatment 1 293.9384 293.9384 2.87 0.1246 

Error 9 922.3215 102.4802     

Corrected Total 11 1230.0738       
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Figure 5.24: Average volume per hectare for the two treatments  
(AA) Letters with same cases indicate no significant difference among the treatments at p<0.05 
(AB) Different letters indicate a significant difference among the blocks at p<0.05  
 

5.4.4. The above ground plant biomass  

The above ground plant biomass was estimated to further quantify and evaluate the 

effect of repeated disc harrowing on stand productivity. Mean values are presented in 

Figure 5.25. Stem, bark, branches, and foliage making up the total aboveground plant 

biomass of Eucalyptus grandis x nitens. Stem wood contributed the most significant 

biomass amount towards the total aboveground plant biomass in relation to the other 

components across all sites and treatments. The ANOVA results in Table 5.23 confirm 

that neither the blocks nor the treatments had significant differences in aboveground 

plant biomass for the various components, with bark biomass being the only exception. 

Bark biomass estimates in Block 1 was significantly greater than that of Block 2.  
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Table 5.23: ANOVA results of stand above ground plant biomass  

Total Above Ground Biomass            

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 146.0665 73.0333 1.31 0.3178 

Blocks 1 0.1793 0.1793 0.00 0.9561 

Treatment 1 145.8873 145.8873 2.61 0.1408 

Error 9 503.5241 55.9472     

Corrected Total 11 649.5915       

Stem Biomass           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 86.7665 43.3833 1.39 0.2980 

Blocks 1 2.9372 2.9372 0.09 0.7660 

Treatment 1 83.8293 83.8293 2.68 0.1357 

Error 9 281.0274 31.2253     

Corrected Total 11 367.7939       

Bark Biomass           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 12.7970 6.3985 11.64 0.0032 

Blocks 1 12.5067 12.5067 22.74 0.0010 

Treatment 1 0.2903 0.2903 0.53 0.4859 

Error 9 4.9492 0.5499     

Corrected Total 11 17.7463       

Branches Biomass           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2.2711 1.1356 1.65 0.2454 

Blocks 1 0.9372 0.9372 1.36 0.2734 

Treatment 1 1.3349 1.3339 1.94 0.1974 

Error 9 6.1982 0.6887     

Corrected Total 11 8.4693       

Foliage Biomass           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.5279 0.2639 1.26 0.3287 

Blocks 1 0.1324 0.1324 0.63 0.4467 
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Treatment 1 0.3955 0.3955 1.89 0.2023 

Error 9 1.8818 0.2091     

Corrected Total 11 2.4097       

 

 

Figure 5.25: Distribution of the above ground plant biomass 

(AA) letters with same cases indicate no significant difference among the treatments at p<0.05    
(CC DD) Different letters indicate significance difference among the blocks at p<0.05 
 

The total above ground tree biomass was similar between treatments across the blocks. 

For Block 1, the B0 treatments was at 135.2 t ha-1 and the BD treatments at 127.0 t ha -

1. In Block 2, the B0 treatments had 133.7 t ha-1 and 120.0 t ha-1 for the BD treatments. 

When the two blocks were combined, the B0 treatments had an average of 134.4 t ha-1 

and the BD treatments had an average of 127.5 t ha-1. The differences in the 

aboveground biomass was not significant between the two treatments at (p< 0.05). 

From the aboveground biomass components, only bark biomass showed a significant 

between the blocks (p<0.05).  

5.4.5. Below ground growth: root distribution pattern  

Data presented in this section is specifically focused on fine roots distribution patterns 

(class A, <2 mm diameter). Fine roots are feeder roots with significant contribution to 

tree growth. A thorough understanding of changes in fine root distribution patterns 
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became particularly important for interpreting above ground growth differences in the 

two treatments. The effect of repeated disc harrowing on the below ground tree growth 

was investigated and quantified by assessing variation in fine root distribution patterns 

of the trees under study. In Figure 5.26 and Figure 5.27, the root distribution patterns in 

the non-disking treatments were used as benchmark for changes in root distribution 

patterns in the repeatedly disc harrowed treatments. The profile wall root study 

methodology was used. The results are presented in a profile wall mapping in Figure 

5.26 and Figure 5.27. To demonstrate an increase or decline in the number of root 

counted per grid box, a colour intensity gradient was used. Root count is directly 

proportional to darkness of shading, as indicated by the key next to the profile wall map.   

For every 10 cm depth, form 0 - 100 cm, the magnitude of difference in root distribution 

patterns between the two treatments was measured. Table 5.24 presents the ANOVA 

results for root count per 10 cm depth for the treatments and blocks. At the 5% 

confidence level, there was no significant difference in the abundance of fine root 

distribution patterns between the two treatments in any of the soil horizons. There was a 

slight trend, (only very weakly significant at the 11% level), showing greater root 

abundance at 10 - 20 cm in the BD treatment. Between the two blocks, evidence of 

significant difference in rooting count per horizon was only recorded at a depth of 20 - 

30 cm. The remaining soil horizons had no significant differences in root distribution 

patterns following the repeated disc harrowing treatments between Block 1 and Block 2.     

Results in changes of Eucalyptus grandis x nitens root distribution pattern for the two 

treatments are also presented using an exponential decay function in Figures 5.28, 5.29 

and 5.30. Variation in root distribution pattern between B0 treatments and BD treatments 

is demonstrated by the changes on the curvature of the root distribution pattern curve 

and a shift in position of the root distribution curve. In Tables 5.25 - 5.28, equations were 

fitted to the curves to quantify changes on the curvature and shift in the position of the 

curve. This was done for B0 treatments and BD treatments for three discrete tree 

diameter classes (10, 15 and 20 cm) in both Block 1 and Block 2.  

Repeated disc harrowing had an influence on the root distribution patterns of Eucalyptus 

grandis x nitens trees, even though the effect was non-significant. In Figures 5.26 and 

5.27, this practice resulted in a slight reduction of root colonisation on the top 10 cm 

depth of the soil profile in BD treatments. The B0 treatments had a slightly higher root 
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count in the first 10 cm depth in both blocks and all trees, with an exception for the 10 

cm class tree in Block 2 (Figure 5.27). From 50 - 100 cm, the BD treatments indicated a 

greater root count when contrasted with the B0 treatments in all occasions. The BD 

treatments had a higher total root count than the B0 treatments throughout all the blocks 

and tree classes; however, the contrary was observed for the 10 cm class trees in Block 

1 (Figure 5.27).      

Table 5.24: ANOVA results of root count per 10 cm depth  

Depth 0 - 10 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2984.6667 1492.3333 1.14 0.3619 

Blocks 1 1008.3333 1008.3333 0.77 0.4029 

Treatment 1 1976.3333 1976.3333 1.51 0.2503 

Error 9 11777.0000 1308.5556     

Corrected Total 11 14761.6667       

Depth 10 - 20 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2520.1667 1260.0833 1.64 0.2473 

Blocks 1 140.0833 140.0833 0.18 0.6796 

Treatment 1 2380.0833 2380.0833 3.09 0.1124 

Error 9 6922.7500 769.1944     

Corrected Total 11 9442.9167       

Depth 20 - 30 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 650.6667 325.3333 2.92 0.1054 

Blocks 1 645.3333 645.3333 5.79 0.0395 

Treatment 1 5.3333 5.3333 0.05 0.8317 

Error 9 1003.0000 111.4444     

Corrected Total 11 1653.6667       

Depth 30 - 40 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2408.8333 1204.4167 1.16 0.3555 

Blocks 1 2268.7500 2268.7500 2.19 0.1730 
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Treatment 1 140.0833 140.0833 0.14 0.7215 

Error 9 9321.4167 1035.7130     

Corrected Total 11 11730.2500       

Depth 40 - 50 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2714.1667 1357.0833 1.04 0.3912 

Blocks 1 2054.0833 2054.0833 1.58 0.2404 

Treatment 1 660.0833 660.0833 0.51 0.4942 

Error 9 11702.7500 1300.3056     

Corrected Total 11 14416.9167       

Depth 50 - 60 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1912.3333 956.1667 0.88 0.4480 

Blocks 1 867.0000 867.0000 0.80 0.3952 

Treatment 1 1045.3333 1045.3333 0.96 0.3525 

Error 9 9789.33333 1087.7037     

Corrected Total 11 11701.6667       

Depth 60 - 70 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1333.6667 666.8333 0.92 0.4328 

Blocks 1 800.3333 800.3333 1.10 0.3206 

Treatment 1 533.3333 533.3333 0.74 0.4131 

Error 9 6519.0000 724.3333     

Corrected Total 11 7852.6667       

Depth 70 - 80 cm 
 

        

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 780.0000 390.0000 1.07 0.3828 

Blocks 1 12.0000 12.0000 0.03 0.8600 

Treatment 1 768.0000 768.0000 2.11 0.1805 

Error 9 3279.0000 364.3333     

Corrected Total 11 4059.0000       

Depth 80 - 90 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 
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Model 2 481.6667 240.8333 1.21 0.3424 

Blocks 1 161.3333 161.3333 0.81 0.3914 

Treatment 1 320.33333 320.3333 1.61 0.2364 

Error 9 1791.0000 199.0000     

Corrected Total 11 2272.6667       

Depth 90 - 100 cm           

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 10.8333 5.4167 0.04 0.9569 

Blocks 1 10.0833 10.0833 0.08 0.7804 

Treatment 1 0.7500 0.7500 0.01 0.9393 

Error 9 1100.0833 122.2315     

Corrected Total 11 1110.9167       
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Figure 5.26: Profile wall root mapping for Block 1 (B0 left and BD right ) 
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Figure 5.27: Profile wall root mapping for Block 2 (B0 left and BD right )                                         
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Table 5.25: Exponential models for root distribution patterns for 10 cm class trees 

 

A     B  

Figure 5.28: Root distribution pattern for a tree with 10 cm diameter (A, actual 
distribution depicted with a moving average and, B, fitted exponential distribution) 

Eucalyptus grandis x nitens roots were observed to diminish exponentially as a function 

of depth in both the B0 treatments and BD treatments (Figures 5.28B - 5.30B). The 

repeatedly disked harrowing also had an influence on the curvature and shift in the 

position of the root distribution curve. In Table 5.25, the first group of numbers of the 

equation (y = 208.33) describes the position of the root distribution curve for Block 1. The 

greater this figure, the greater the indication of a high root count at the initial topsoil 

value of the distribution curve. This occurs just below the surface of the mineral soil 

profile, at 0 - 10 cm soil depth in actual forestry ecosystems. A low value indicates a 

lower topsoil root count, which will cause a shift in the position of the curve. The 

exponent describes the curvature of the root distribution curve. A large value of k is an 

indication of an abrupt decline in root count as a function of depth, resulting in a strong 

curvature for increasing depth (Figure 5.29B). On the contrary, a low value of k 

demonstrates a fairly modest decline in root count as a function of depth, resulting in a 

gentle curvature (Figure 5.29B).     

Site  BDH (cm) B0 Treatment BD Treatment 

Block 1  10 y = 208.33  e-0,028(d)    R² = 0.8032 y = 140.59  e-0,017(d)      R² = 0.6386 

Block 2 10 y = 213.12  e-0,017(d)    R² = 0.6718 y = 240.47  e-0,016(d)      R² = 0.6551 

Stellenbosch University https://scholar.sun.ac.za



 

82 

 

Figure 5.28B illustrates a difference in both the position and curvature of the root 

distribution curve of 10 cm diameter class trees. For 10 cm diameter class trees, Table 

5.25 shows a difference in curvature as well as a shift in the position of the root 

distribution curves in Block 1. The B0 treatment was y = 208.33 e-0.028(d), while the BD 

treatment was y = 140.59 e-0.017(d). In Block 2, there was a shift in the position of the 

curve, but the curvature remained relatively unchanged for the two treatments: for B0 

treatment, y = 213.12 e-0.017(d) and for BD treatment, y = 240.47 e-0.016(d). Trees from 

Block 2 demonstrated a relatively higher root count in both treatments when contrasted 

with trees from Block 1.    

For 15 cm diameter class trees, Figure 5.29B shows a relatively high number of roots in 

the BD treatment compared to roots counted In the B0 treatment. Figure 5.30B also 

indicates that a shift occurred in the position of the curve in both blocks. However, the 

curvature remained relatively similar for the treatments. The equations are shown in 

Table 5.26 for Block 1 with the B0 treatment of y = 136.06 e-0.021(d) and the BD treatment 

of y = 187.27 e-0.023(d). Likewise, in Block 2, B0 treatment was y = 207.03 e-0.026(d), and 

BD treatment was y = 255.06 e-0.028(d). Trees from Block 1 had a relatively lower root 

count in both treatments in contrast to trees from Block 2.    

 

Table 5.26: Exponential models for root distribution patterns for 15 cm class trees 

Site  BDH (cm) B0 Treatment BD Treatment 

Block 1 15 y = 136.06  e-0.021(d)    R² = 0.7775 y = 187.27  e-0.023(d)      R² = 0.7766 

Block 2  15 y = 207.03  e-0,026(d)    R² = 0.886 y = 255.06  e-0.028(d)      R² = 0.7659 
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A    B  

Figure 5.29: Root distribution pattern for a tree with 15 cm diameter (A, actual 
distribution depicted with a moving average and, B, fitted exponential distribution) 

Trees in the 20 cm diameter class were observed to have the least total root count 

overall for the experiment (Figure 5.30). Block 1 had a greater root count in comparison 

to Block 2 in the B0 treatments; the contrary occurred in the BD treatment. In Table 

5.27, there were slight changes in both the position and the curvature of the root 

distribution curve between the two treatments in Block 1: for the B0 treatment, y = 

206.74 e-0.029(d); and, for the BD treatment, y = 198.87 e-0.024(d). Block 2 had pronounced 

changes in both the shift in position of the curve and curvature for the two the 

treatments: for the B0 treatment, y = 323.33 e-0.047(d); and, for the BD treatment, y = 

237.72 e-0.031(d).    

Table 5.27: Exponential models for root distribution patterns for 20 cm class trees 

Site  BDH (cm) B0 Treatment BD Treatment 

Block 1  20 y = 206.74  e-0,029(d)    R² = 0.9022 y = 198.87  e-0.024(d)    R² = 0.6667 

Block 2 20 y = 323.33  e-0.047(d)    R² = 0.7945 y = 237.72  e-0.031(d)    R² = 0.8945 
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A  B  

Figure 5.30: Root distribution pattern for a tree with 20 cm diameter (A, actual 
distribution depicted with a moving average and, B, fitted exponential distribution) 

In Table 5.28, the changes in the root distribution curves for the two treatments are 

summarized. Results from the exponential decay function graphs and equations used to 

quantify changes in root distribution patterns indicate no particular trend when evaluated 

for individual trees. However, when using the mean of all the trees per treatment, 

irrespective of tree size and blocks, the following equation was formulated: for B0 

treatments, y = 215.77 e-0.028(d) and y = 210.00 e -0.023(d) for BD treatments. Overall, 

repeated disc harrowing resulted in a shift of the distribution curve: decline on root count 

at a depth of 0 - 10 cm. It also altered curvature: nearly even root declined as a function 

of depth from 0 - 100 cm.                

Table 5.28: Summary of exponential models for root distribution patterns    

Site  DBH (cm) B0 Treatment BD Treatment 

Block 1  10 y = 208.33  e-0.028(d)    R² = 0.8032 y = 140.59  e-0.017(d)      R² = 0.6386 

Block 1 15 y = 136.06  e-0.021(d)    R² = 0.7775 y = 187.27  e-0.023(d)      R² = 0.7766 

Block 1  20 y = 206.74  e-0.029(d)    R² = 0.9022 y = 198.87  e-0.024(d)      R² = 0.6667 

Block 2 10 y = 213.12  e-0.017(d)    R² = 0.6718 y = 240.47  e-0.016(d)      R² = 0.6551 

Block 2  15 y = 207.03  e-0.026(d)    R² = 0.886 y = 255.06  e-0.028(d)      R² = 0.7659 

Block 2 20 y = 323.33  e-0.047(d)    R² = 0.7945 y = 237.72 e-0.031(d)        R² = 0.8945 
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Mean 
 

y = 215.77 e-0.028(d)   R2= 0.8059 y = 210.00  e-0.023(d)       R2 =0.7329 

Std. Error  
 

 ±24.59        ±0.00423        ±0.0340  ±17.50        ± 0.00241       ±0.0402    
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6.  DISCUSSION  

6.1 Fuel Loading and Forest Floor Structure     

The accumulation of forest floor is a balance between the amount of litter-fall and the 

rate of decomposition. Morris (1995) mentioned several factors that can potentially 

influence the rate of decomposition in a particular forest ecosystem, including climate 

and altitude (this is elaborated in the literature review, section 2.2.1). This current study 

is located 1 444 meters above sea level and is characterised by moderately cool 

conditions; therefore, the rate of decomposition is relatively low while the litter 

accumulation is average, resulting in a moderate fuel loading of approximately 43 t ha-1 

(Figure 5.5).  

In fire management it is essential to view the litter layer as a single unit comprised of 

several components separated into fuel time lag classes. This is important because the 

fuel ignition process, fire rate of spread, fire intensity, and fire behaviour are strongly 

influenced by fuel characteristics such as fuel size and shape, amongst various other 

factors (Morvan & Dupuy, 2001). In Figure 5.5 (where averaged data across blocks are 

presented), the humus layer contributed greatly to the forest fuel loading in these sites 

as it made up an average of 19.0 t ha-1. The 1 hour  fuel (bark and leaf fraction) had the 

second largest proportion at 12.4 t ha-1, followed by the 10 hour fuels at 8.1 t ha-1, and 

the 1 hour fuels (branches) at 4.3 t ha-1, making the smallest contribution to the total 

mass. These treatments represent the actual situation of the plantation as a whole 

where slash was burnt before stand reestablishment, and disc harrowing was not done 

to reduce and incorporate fuel into the mineral soil. Thus, the results are estimates of 

the net amount of fuel that will accumulate over a rotation in the absence of fuel 

reduction measures during the life of the stand (where net amount refers to litter-fall 

minus litter decomposition).   

In contrast, the BD treatments had a total forest floor mass only amounting to 10.5 t ha-1 

on average (Figure 5.5). The humus layer was not present in these treatments. The 1 

hour fuel (bark and leaf fraction) accounted for the greatest proportion at 5.1 t ha-1, 

followed by the 10 hour fuels at 3.8 t ha-1, and 1 hour fuels (branches) at 1.7 t ha-1 

making up for the remainder. These plots are representative of the average quantity of 

fuel in the repeatedly disc harrowed swathes between the tree rows and in the non-

disked island within the tree rows that forms part of this treatment.  

Stellenbosch University https://scholar.sun.ac.za



 

87 

 

The application of repeated disc harrowing throughout the rotation of Eucalyptus grandis 

x nitens significantly reduced fuel loading (Tables 5.1 - 5.4). From Figures 5.1 - 5.8, the 

BD treatments had a lower quantity of fuel loading when compared to the B0 treatments 

in all fuel classes for all sites. The reduction in fuel loading reported in this study is 

comparable to findings presented by Madeira (2012), where disc harrowing at mid-

rotation of Eucalyptus globulus stand in Mediterranean conditions reduced fuel loading 

from 8.19 t ha-1 for control to 5.91 t ha-1 for the disc harrowing treatment 30 months after 

treatment. However, the difference was not significant in Madeira’s (2012) experiment, 

hence the author suggested that disc harrowing be done continually during stand 

rotation. This is the case with the current study and explains the significant difference of 

fuel loading recorded among treatments.   

The disc harrowing action crushes and break the branches into relatively small 

dimensions. In the process, organic material is constantly incorporated into the mineral 

soil, which hastens the decomposition process (Madeira, 2012). Therefore, the 

discernible change in forest floor structure and fuel loading in the BD treatments is 

probably due to the combined effect of litter maceration and soil incorporation. 

It was shown in Figures 5.6 and 5.7 that Block 1 had a slightly greater fuel loading than 

Block 2. However, Tables 5.1, 5.2 & 5.4 indicate that the difference was non-significant 

in all fuel classes except for in the 10 hour fuels (Table 5.3). The significant difference in 

fuel loading for the 10 hour fuel class fuel between the two blocks can be attributed to 

site type (aspect) and the regeneration method. As illustrated in Figure 3.4, Block 1 was 

located on a southerly aspect. South facing slopes in middle and high latitudes of the 

Southern Hemisphere characteristically have relatively lower temperatures, slightly 

lower evapotranspiration rates, and usually denser and heavier fuel loads, in contrast 

with north facing slopes (Teie, 2009). Block 2 was located on the northerly aspect. It is 

well documented that north facing slopes are typical of relatively warmer temperatures, 

with sparse and lighter fuels, in contrast with southerly aspect (Teie, 2009).  

Stand density is another factor that may have contributed to the significant differences in 

10 hour fuel loads among blocks. The ANOVA results in Table 5.20 illustrate a 

significant difference in stand density among the blocks. Block 1 has a significantly 

lower stand density (Figure 5.22B). It is well documented that branching intensity and 

branch thickness increase with a reduction in stand density (Mäkinen & Hein, 2006). 
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Less dense stands typically have numerous heavier branches. The contrary occurs in 

dense stands, as seen in Block 2 of this study. The significantly greater accumulation of 

the 10 hour fuel class in Block 1 could partly be explained by this phenomenon.        

Repeated disc harrowing throughout the rotation of Eucalyptus grandis x nitens caused 

significant alterations of the forest floor structure. Infield photographs of the two 

treatments captured before sampling (Figures 5.8A and B) show the difference in forest 

floor structure following the implementation of repeated disking. The non-disking sites in 

Figure 5.8A had a dense forest floor structure with all generic forest floor layers (L, F 

and H) easily discernible. (Note that although the F layer was visible infield, it is 

indiscernible in Figure 5.8A.) In contrast, repeated disc harrowing in Figures 5.8B 

significantly altered the forest floor structure, reducing it to only a sparse L layer directly 

on top of the MS layer. The F and H strata were not present in the disked swathes due 

to repeated harrowing constantly mixing the organic material into the MS layer.  

H layer build-up contributed a significant portion of 19.0 ha-1 out of 43.1 t ha-1 (i.e., 44%) 

of fuel loading in these sites. The H layer strongly impacts fire intensity, degree of 

damage to the mineral soil and may bring about challenges during fire suppression 

“intensive mop up” (De Ronde, 1990). Therefore, alterations of the forest floor structure 

through disking reduces the aforementioned negative implications in case of a fire.  

Section 2.2 of the literature review mentioned that, within the three components of the 

Fire Triangle, fuel remains the single component that can be manipulated to manage 

wildfires. The results presented in this manuscript indicate that repeated disc harrowing 

was effective in significantly altering the fuel horizontal continuity and reducing fuel 

loading of the 1 hour and 10 hour fuel classes. The disked swathes serve as an internal 

break in fuel horizontal continuity inside the compartment. Repeated disc harrowing 

supplements the practice of fire break placement on plantation boundaries. This practice 

further creates fire breaks within the compartment between the standing trees, thus 

reinforcing the firebreak network. Reduced fuel loading and a break in fuel horizontal 

continuity were reported to inhibit erratic fire behaviour of surface fires. This creates a 

possible reduction in the fire rate of spread and fire intensity as well as presents an 

opportunity to control and suppress the fire with more ease and safety (de Ronde, 

1990).    
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6.2. Soil Nutrient Distribution 

The knowledge of nutrient pools in the ecosystem forms the basis of understanding the 

nutrient input-output budgets in a forest ecosystem. Nutrients within the forest 

ecosystem move around the three major pools of soil, standing biomass, and litter and 

slash residues (du Toit, 2014). Trees will take up nutrients in large quantities from the 

mineral soil through their roots. These nutrients are stored in different locations, namely 

roots, stem, bark, foliage and fruits/flowers (du Toit, 2003). The nutrients are returned 

back into the mineral soil through stem flow, through fall, and litter fall (Fisher and 

Binkley, 2000). Litter and dead roots have been identified as the major pathways for 

returning these nutrients back into the soil.  

The litter material and harvest slash residue in the forest ecosystem significantly 

contribute to the soil nutrient cycle (du Toit and Scholes, 2002). This was also observed 

in the current study. The significant decline on forest floor nutrient quantities presented 

in Table 5.5 and the increased mineral soil nutrient quantities in Figures 5.9 - 5.21 

following disc harrowing indicates that this practice resulted in large scale nutrient 

translocation from the forest floor to the mineral soil.  

Humus colloids are characteristic of two major qualities: a large surface area and 

abundance of negative charge per unit mass, which improve soil cation exchange 

capacity, depending on soil pH (Brady & Weil, 2010). Figures 5.9 - 5.12 illustrate that 

repeated disc harrowing significantly increased the quantity of the topsoil exchangeable 

base cations (K, Ca, and Mg), and caused a non-significant increase in Na. This 

indicates that disc harrowing incorporates the organic forest floor material into the 

topsoil which might have possibly increased the quantity of humus colloids. Therefore 

this practice enriches the soil nutrient status of the site in question. Disc harrowing at 

site preparation of a Eucalyptus globulus stand resulted in a significant decrease in 

organic carbon and sum of base cations 18 months after treatment in Madeira’s (1989) 

study. In Madeira’s (2012) study, the control treatment had total organic carbon values 

averaging 1.82%, and sum of base cation was 3.13 mmol/100g compared to 1.25% 

organic carbon and 2.36 mmol/100g for the sum of base cations in the disking 

treatment.   

In Figure 2.6, du Toit et al. (2008) reported a slash burning treatment in E. grandis, 

KwaZulu Natal to significantly increase the topsoil ECEC and the exchangeable base 
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cations quantities over time when contrasted to various other slash management 

practices. In their experiment a low to moderate fire intensity was applied. A similar fire 

intensity during slash burn at site preparation on the present study was implemented.  

The significant increase base cation quantities in BD treatment in this experiment follow 

a similar trend to du Toit’s et al. (2008) observation.    

Bio charcoal by Rhoades et al. (2017) has been observed to have a slight liming effect: 

it tends to raise soil pH after being applied, due to its high adsorption ability attracting 

significant amounts of cations. In a six months greenhouse trial he reported a significant 

increase in soil pHKIC (4.5 - 4.9), K (23.6 - 30.5 mg/L), Mg (16.6 - 18.7 mg/L) and Ca 

(99.5 - 112.2 mg/L). The incorporation of bio charcoal from slash burning during site 

preparation in the current study can partly explain the significant increase in base cation 

quantity recorded in BD treatments of this experiment. Amalgamation of bio charcoal in 

the repeatedly disked sites may have possibly increased the negatively charged surface 

area of the site, thus improved adsorption of the high base cation quantities translocated 

to the mineral soil in these treatments. 

In Figure 5.13, the incorporation of organic material in the topsoil through disc harrowing 

resulted in a non-significant increase in topsoil ECEC. Block 2 had significantly higher 

levels of exchangeable base cations and ECEC compared to Block 1, except for Ca that 

was significantly higher in Block 1. The high levels of exchangeable base cations and 

ECEC recorded for Block 2 might have been influenced by soil and site types. 

Furthermore, coppice reduction practice may have contributed to the results. Coppice 

reduction in Block 2 added more organic material on the forest floor, which was later 

incorporated into the soil through disc harrowing. This may have contributed to higher 

base cation and ECEC levels. Plantation forestry in South Africa is generally practiced in 

sites with relatively low soil pH value (Louw and Smith, 2012). The fast growing species 

that are planted in these plantation forests have adapted and are now able to grow in 

these acidic soils. The soil pH values of 3.6 and 3.5 in KCI recorded in this experiment 

are typical to soil pH values identified by Louw and Smith (2012) for forestry sites. The 

negligible difference in soil pH (Table 5.12) following repeated disc harrowing treatment 

presented in this manuscript is in line with Madeira et al., (2012) findings when 

comparing disc harrowing (pHKIC 3.60), fertilizing (pHKIC 3.84) and non-disking (pHKIC 

3.82) in a Eucalyptus stand.  
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As presented in Tables 5.16 - 5.18, the disc harrowing practice did not have a significant 

effect on topsoil total N, total organic C and extractable P (Bray II) content in this study. 

Data presented in Figures 5.18 - 5.20, show similar average topsoil N, P and C values 

between the two treatments. Among the blocks, only the total N content was significantly 

higher in Block 2. The higher N, P and C content can be attributed to slightly raised pH 

in Block 2, soil type, and site type. In addition, the organic material from coppice 

reduction may have contributed to the topsoil nutrient status of Block 2.  

Soil bulk density was the only physical property that was measured in this study. 

Repeated disc harrowing significantly reduced bulk density of 0 - 10 cm and 10 - 20 cm 

topsoil; this effect was similar to Madeira’s (1989) findings. He reported disc harrowing 

reduced soil bulk density to 1.37 g cm3 18 months after treatment and 1.36 g cm3 30 

months after treatment, compared to 1.54 g cm3 for the control treatment at a depth of 0 

- 10 cm. Likewise, for 10 - 20 cm depth, bulk density of the control was 1.77 g cm3 in 

contrast to 1.49 g cm3 18 months after treatment and 1.44 g cm3 30 months after 

treatment.  

The current study was conducted on very gentle slopes which limited the ability to 

investigate and quantify possible effects of repeated disc harrowing on soil erosion. This 

potential impact still needs to be investigated in further studies.  

6.3. Above Ground Stand Growth 

The implementation of repeated disc harrowing throughout the rotation of Eucalyptus 

grandis x nitens stand as shown in Table 5.20 - 5.23 had no significant impact on any of 

the tree growth and stand productivity measures. Related variables include stand 

density, basal area m2 ha-1, volume m3 ha-1, and above ground plant biomass t ha-1. The 

non-significant growth difference between treatments reported in this study agrees with 

results presented by Madeira et al. (2012); he reported harrowing and fertilization at 

middle rotation had no significant effect on Eucalyptus globulus growth. Growth 

response was measured for control, fertilization, and disc harrowing treatments in 

Madeira’s study: basal area was 21.83 m2 ha-1, 22.76 m2 ha-1, 25.38 m2 ha-1 and volume 

was 219.5 m3 ha-1, 228.5 m3 ha-1, and 264.9 m3 ha-1 respectively. Madeira et al. (2012) 

reported that a single, mid-rotation disc harrowing operation slightly increased tree 

growth, contrary to the non-significant growth reduction reported in the current study 

with repeated disking operations. However, the changes in growth observed in this 
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study are negligible compared to the intended benefits of effective and efficient fuel load 

reduction. 

Stand density measurements are explained in detail in the Methods and Materials 

Section 3.3.1. Rotation end stand density was contrasted with the intended initial stand 

density to monitor tree survival through the rotation. The repeated disc harrowing 

treatment had a non-significantly higher stand density, possibly indicating slightly better 

plant survival (Figure 5.22). Similarly, Mhando et al. (1993) reported 88, 93, and 97% 

survival for complete tillage 20 cm deep, strip tillage 15 cm deep, and strip tillage 25 cm 

deep respectively. These treatments were implemented during site preparation of 

Eucalyptus saligna and had no significant effect on survival. Stand density for Block 2 

was significantly lower than Block 1 for all treatments when evaluated for individual 

stump (Figures 5.22 and 5.23). This indicated a possibility that there was a low initial 

stump survival from the previous rotation that remained in the current stand in Block 2. 

However, this was countered by leaving a relatively higher number of stems (two stems 

per stump next to open gaps caused by stump mortality) during coppice reduction to 

make up for the dead stumps. This resulted in Block 2 having significantly higher stand 

density based on the single stem evaluation. 

Figure 5.24 shows that even though the repeatedly disked treatments had a slightly 

higher stand density over the no-till treatments, they exhibited a slightly lower volume 

than the no-till treatments. Both blocks had a similar volume for the B0 treatments, and 

Block 2 had a slightly higher volume than Block 1 for the BD treatments, but the effect 

was not significant. This indicates that leaving two stems per stump during coppice 

reduction allows for more volume to be carried per stump. Throughout the experiment 

the repeated disc harrowed treatments had a non-significantly lower stand productivity. 

The action of disc harrowing during the multiple passes cuts and disturbs tree roots in 

the top 0 - 20 cm depth (more details on the next sub-section 6.4). This may result in 

trees being under some stress and thus explain the small (5%) reduction in tree growth 

and stand productivity. 

6.4. Below Ground Growth: Root Distribution Pattern 

Figures 5.26 and 5.27 show that the majority of fine roots were concentrated in the top 

10 cm depth of all the profile walls that were studied in both blocks and treatments. 

Grant et al. (2012) studied Eucalypt roots and found that about 30% root count was 
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concentrated in the top 10 cm soil depth. Table 5.24 presents the ANOVA results for 

root count per 10 cm depth for treatments and blocks. At the 5% confidence level, there 

was no significant difference in the abundance of fine root distribution patterns amongst 

the two treatments in any of the soil horizons. When comparing root count concentration 

in the top 10 cm between the treatments, an average of 30% for the B0 treatments and 

an average of 22% for the BD treatments was recorded (percentage of the total root 

count on a 1 x 1 m vertical profile wall). The B0 treatments still had a higher root count 

over the BD treatments at a depth of 0 - 50 cm: a cumulative root count averaged 76% 

for B0 treatments and 70% for BD treatments.  

The negligible difference in fine root abundance among treatments reported in the 

current study is similar to observations reported by Madeira et al. (2012). At a depth of 0 

- 10, he recorded root biomass of  0.101, 0.096, and 0.100 kg m2 for control over 0.084, 

0.099, and 0.108 kg m2 for harrowing at 0, 14, and 26 months after treatment, indicating 

no evidence of significant changes in root mass among treatments. At a depth of 50 - 

100 cm, B0 treatments exhibited a low cumulative root count concentration in contrast to 

the BD treatments in the present study. The B0 treatments had an average of 24% and 

the BD treatments had an average of 30%.  

Though non-significant, the implementation of repeated disc harrowing throughout the 

stand rotation had an influence on the root distribution patterns for Eucalyptus grandis x 

nitens. The practice has resulted in a slight reduction in root count in the top 10 cm 

depth. However, this was compensated for by the fairly even root distribution throughout 

the profile wall in the BD treatments (see Figure 5.26 and Figure 5.27). Between the two 

blocks, evidence of significant difference in root count per horizon was only recorded at 

a depth of 20 - 30 cm. The rest of the soil horizons had no significant differences in root 

distribution patterns following the repeated disc harrowing treatments between Block 1 

and Block 2. The significant difference observed between the two blocks can be 

associated with the stony layer occurring at different depths in these blocks (Figures 3.3 

and 3.4).   

The exponential root distribution curve diminishing as a function of depth observed in 

this study is comparable to findings reported by Laclau (2013). He measured root length 

density of a six years old Eucalyptus grandis tree per 25 cm2 grid to a depth of 0 - 10 m 

using a profile wall method. Results were 10.34, 1.97, 0.28, and 0.11 cm cm3 for 0.0 - 
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0.1, 0.5 - 1.0, 4.0 - 6.0, and 8.0 - 10.0 m depths respectively. In the present study, the 

B0 treatments had an average of 215.77 and the BD treatments had an average of 210 

root counts in the top 10 cm as expressed by first values of the exponential equation in 

Table 5.28. The relatively low value exhibited by the BD treatment indicates a shift in the 

root distribution curve as a result of repeated disc harrowing treatment. In comparison to 

the non-disked treatment (Table 5.28), the fairly even root distribution patterns with 

depth are also expressed by the relatively lower k value, as observed for the repeatedly 

disked treatment in Figures 5.28 - 5.30. The B0 treatments had a slightly higher k value 

of 0.028 and the BD treatments had a relatively lower k value of 0.023 on average. The 

higher k value for the B0 treatment indicates a stronger curvature of the root distribution 

pattern curve for this treatment, showing a sharper decline in root count with increase in 

depth. In contrast, the lower k value for the BD treatments assumes a root distribution 

curve with a relatively gentle curvature, indicating a fairly even root distribution pattern.   

          

Root distribution patterns indicated some differences among the treatments. For both 

treatments the highest root concentration was observed on the first 10 cm depth; only a 

low percentage was found at 100 cm depth. However, in BD treatments, there was a 

relatively lower concentration of roots in the first top 10 cm depth and the roots were 

fairly spread out throughout the profile wall. The repeatedly disked treatment had the 

highest total root count across all blocks for all tree classes. These findings correspond 

with observations reported by Gonçalves et al. (2004), which affirmed that disc 

harrowing increases root growth and eases root penetration into the soil. He reported 

71% decline in root density with increasing penetrometer resistance, from 0.4 - 4.2 MPa. 

Similarly in the present study, where B0 treatment have a significantly higher soil bulk 

density there was a low total root count and conversely in the BD treatment.     

Karuma et al. (2014), states that proper tillage operations potentially eases plant root 

penetration; improves soil water retention and infiltration, and improve soil fertility, thus 

ideal root growing conditions. Similar conditions (improved nutrient availability and 

reduced soil bulk density) were observed in the BD treatment. The slightly high total root 

in this treatment can thus be linked to this phenomenon.    
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7. CONCLUSION 

The implementation of repeated disc harrowing to reduce the risk of wildfire is effective 

in reducing fuel loading and breaking fuel horizontal continuity in 1 hour and 10 hour fuel 

classes. These two fuel characteristics significantly contribute to fire behaviour, 

particularly to the fire rate of spread and fire intensity. The act of disking three rows 

between every seventh row of trees in commercial stands breaks the fuel horizontal 

continuity, potentially reducing the rate of surface fire spread. To some degree, this 

practice also separates the compartment into blocks that may possibly contain the fire 

burning in one area. Secondly, repeated disc harrowing reduces fuel loading in the 

disked swathes, thus fire is more easily controlled and more safely suppressed. By 

reducing fuel loading, fire will cause minimal damage on soil chemical and physical 

properties. Implementation of this practice effectively reduced fuel loading for 1 hour and 

10 hour fuels, the most active fuel classes. Considering the findings from this study, 

slash burning at site preparation incorporated with repeated disc harrowing throughout 

the stand rotation is an effective tool that can be safely implemented with guaranteed 

effectiveness on fuel load reduction in these two classes.  Unlike prescribed burning 

practices, repeated disc harrowing is a safe method to reduce fuel loading that can be 

executed under almost any weather condition successfully, although limited to flat or 

moderately sloping terrain conditions and tree spacing.  

Repeatedly disc harrowed sites demonstrated significant changes in the forest floor 

structure in comparison to non-disked sites across both blocks studied. Disc harrowing 

reduced the forest floor structure to only the litter and mineral soil layer in the disked 

swathes. The non-disked site had a forest floor consisting of the three generic forest 

floor strata as well the mineral soil layer.  

The practice of disking was associated with an improvement in soil chemical and 

physical properties that were measured in this study. The soil total C, total N and Bray II 

P underwent no significant changes following repeated disc harrowing practices 

throughout the rotation, even though these analyses indicated a slight increase in the 

disked sites. However, disc harrowing significantly increased the quantity of 

exchangeable base cations (K, Ca, and Mg) in the topsoil, with the exception of Na 

where the increase was not significant. Furthermore, the practice significantly reduced 

soil bulk density at a depth of 0 - 20 cm throughout the blocks. Disc harrowing in this 
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study has no negative implications for soil nutritional sustainability as nutrients are 

essentially moved from the litter pool to the soil pool, rather than lost from the system. 

The increase in levels of exchangeable bases also means that these nutrients in the soil 

are more readily available for plant uptake.  

Repeated disc harrowing had no significant effects in all growth and stand productivity 

related variables measured in this study. The practice was associated with increased 

stand density, but this was not significant. In contrast, the above ground tree growth at 

the stand level (basal area, volume, and plant biomass) was non-significantly greater in 

non-disking sites compared to repeatedly disked sites across both blocks. However, the 

marginal difference in growth response measured in this experiment indicated that the 

implementation of repeated disc harrowing throughout the rotation has no significant 

implications on Eucalyptus grandis x nitens tree growth and stand productivity. 

There were no significant changes in root distribution patterns following repeated disc 

harrowing practice throughout the rotation. Disc harrowing slightly reduced root count in 

the topsoil. The reduction was more pronounced in the top 0 - 10 cm depth. The practice 

also resulted in a slightly higher total root count in the entire profile wall. Repeated disc 

harrowing slightly (but not significantly) altered the curvature of Eucalyptus grandis x 

nitens root distribution pattern curves, thus showing evidence of subtle changes in the 

abundance of fine root distribution patterns throughout the profile wall. 

These findings suggest that fuel loading reduction can effectively be accomplished 

through the implementation of repeated disc harrowing throughout the rotation in 

Eucalyptus grandis x nitens stand, with a positive benefit of improved soil nutrient status 

and bulk density. However, a slight decline in tree growth and stand productivity may be 

expected most probably as a result of the severing of superficial roots. The negligible 

reduction in stand productivity following repeated disc harrowing is overshadowed by 

the significant fuel load reduction and the reduced wildfire risk. The results showed 

similar findings across all blocks indicating applicability beyond the level of a single case 

study. 
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